
A Study on Defense Against Adversarial Examples

and Unauthorized Access for Convolutional Neural

Networks

March, 2022

April Pyone Maung Maung

Tokyo Metropolitan University

Table of Contents

1 Introduction 6
1.1 Background . 6
1.2 Thesis Overview . 8

1.2.1 Motivation . 8
1.2.2 Issues to be Addressed . 9
1.2.3 Contributions . 10

1.3 Thesis Structure . 12

2 Security of Machine Learning 16
2.1 Notation . 16
2.2 General Threats . 19
2.3 Adversarial Examples . 20

2.3.1 Threat Models . 21
2.3.2 Adversary’s Capabilities . 22
2.3.3 Adaptive Adversaries . 23
2.3.4 Attacks . 23
2.3.5 Defenses . 26

2.4 Model Protection of Deep Neural Networks 30
2.4.1 Model Access Control . 30
2.4.2 Model Watermarking . 31

3 Adversarial Defense by Quantization 34
3.1 Related Work . 35

3.1.1 Previous Input Transformation-Based Defenses 35
3.1.2 Quantization . 37

3.2 Defense Framework by Quantization 38
3.3 Experiments and Discussion . 39

3.3.1 Experiment Conditions . 39
3.3.2 Results . 40
3.3.3 Discussion . 44

1

3.4 Summary . 45

4 Key-Based Adversarial Defense 47
4.1 Related Work . 48

4.1.1 Previous Encryption-Inspired Defenses 48
4.1.2 Learnable Image Encryption . 48

4.2 Defense Framework by Secret Key . 49
4.2.1 Block-Wise Transformation with Secret Key 49
4.2.2 Key Space . 52
4.2.3 Ensemble of Key-Based Models 52

4.3 Threat Models . 53
4.4 Experiments and Discussion . 54

4.4.1 Experiment Conditions . 54
4.4.2 Results . 56
4.4.3 Discussion . 62

4.5 Summary . 64

5 Model Protection by Secret Key 66
5.1 Related Work . 67

5.1.1 Previous Model Access Control Methods 67
5.1.2 Previous Model Watermarking Methods 67
5.1.3 Block-Wise Transformation with Secret Key 68

5.2 Model Access Control by Secret Key 68
5.2.1 Input Transformation . 69
5.2.2 Feature Map Transformation . 69

5.3 Model Watermarking by Secret Key . 70
5.3.1 Watermark Embedding . 70
5.3.2 Watermark Detection . 70

5.4 Threat Models . 72
5.5 Experiments and Discussion . 73

5.5.1 Experiment Conditions . 73
5.5.2 Results for Model Access Control 74
5.5.3 Discussion for Model Access Control 84
5.5.4 Results for Model Watermarking 86
5.5.5 Discussion for Model Watermarking 91

5.6 Summary . 91

6 Conclusion 93
6.1 Summary of Results . 93

6.1.1 Adversarial Defense by Quantization 93
6.1.2 Key-Based Adversarial Defense 93
6.1.3 Model Protection by Secret Key 94

6.2 Future Work . 95
6.3 Concluding Remarks . 95

References 112

Chapter 1

Introduction

Artificial intelligence (AI) has emerged into many applications and impacts nearly all
aspects of our lives. AI is not just for video games anymore. In all major applications
such as search engines, recommendation systems, social networks, etc., AI is lurking
in the background. With a tremendous developing speed, many more innovative ap-
plications of AI are expected to come. Therefore, reliability is essential for AI-based
systems, especially in adversarial settings. This thesis deals with defense against a
specific adversarial attack (adversarial examples) and unauthorized access for convolu-
tional neural networks which is a deep learning architecture, which is, in turn, a kind
of machine learning, that is mainly used for many approaches in AI.

This chapter provides background and overview of the thesis which covers motiva-
tion, issues to be addressed, and contributions of the thesis. The chapter also describes
the structure of the thesis with an outline.

1.1 Background

The amount of data produced is growing exponentially. With the abundance of data,
machine learning (ML) has entered ubiquitous computing. Many applications nowadays
are not conceivable without ML. Smart devices such as smartphones, smartwatches, etc.
are now equipped with ML-powered applications. As ML has become a prevalent tool
for many applications, it is necessary to investigate how ML techniques perform when
they are exposed to adversarial conditions, which is known as adversarial machine
learning [1, 2].

Particularly, one ML technique, also known as deep learning has brought ground-
breaking developments in pattern-recognition technology. Some notable examples where
deep learning excels are visual recognition [3], natural language processing [4], and

6

speech recognition [5]. Deep learning learns a representation of data with multiple
levels of abstraction from simple non-linear modules [6]. Learning procedure in deep
learning is done by the use of neural networks, and the word “deep” refers to multiple
layers of neural networks. Different layers in the networks learn different representa-
tions; the learned features from low-level layers represent low-level features and the ones
from high-level are high-level features [7]. For image classification tasks, the first layer
learns the presence or absence of edges at particular orientations and locations in an
image, the second layer detects motifs, the third layer may assemble motifs into larger
combinations, and so on [6]. Unlike traditional machine learning, these learned features
are not handcrafted by human engineers but are automatically discovered by using the
backpropagation algorithm in deep learning. The architecture of the neural network
and the activation function used in each layer vary from application to application.
Usually, convolutional neural networks (CNNs) are used for vision-related tasks and
recurrent neural networks (RNNs) are effective for sequential data. This thesis focuses
on CNNs.

Traditionally fully connected multi-layer perceptrons (MLPs) are invariant to the
order of features, discarding the spatial structure of the pixels. In contrast, CNNs are
specifically designed to detect spatial features. Moreover, CNNs are computationally
efficient because they require fewer parameters than MLPs, and they are convenient to
parallelize in graphics processing units (GPUs). CNNs are inspired by the human visual
system and are translation invariant. The earliest layers of CNNs focus on local regions,
rather than the contents of the image. Recent advances in CNNs have brought major
breakthroughs in computer vision [6]. Impressively, the last ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2017 proved that the image classification
accuracy has surpassed the level of human performance (i.e., an error rate of 2.25 %).

The image classification problem is the task of classifying an input image into a
class category from a fixed set of categories according to its visual content. The image
classification task is one of the core problems in computer vision, and other tasks
such as object detection and segmentation can be reduced to image classification. As
CNNs excel in exploring the structure of image data, CNN-based architectures are
ubiquitous in the field of computer vision and provides state-of-the-art results for the
image classification task. Therefore, CNNs have dominated visual recognition systems
in many different applications.

Despite the remarkable performance, modern CNN architectures such as residual
network (ResNet) are known to be sensitive to small image transformation [8]. In
particular, carefully perturbed data points known as adversarial examples are indistin-
guishable from clean data points but can cause CNNs to make erroneous predictions
with high confidence [9, 10]. Adversarial examples have raised security and reliability
concerns, since CNNs are deployed in security-critical applications such as autonomous

7

vehicles, healthcare, and finance. As adversarial examples are an obvious threat, nu-
merous methods for generating adversarial examples (attack methods) and defenses
against them have been proposed in the literature [11]. However, there is no defense
method that provides a high classification accuracy.

Regardless of being vulnerable to adversarial examples, CNNs are deployed in many
practical applications. In addition, trained CNN models are shared online via different
platforms such as Tensor Hub [12] for research and development purposes. The shared
models can be fine-tuned, and potentially be commercialized and monetized. Moreover,
training a production-level CNN model is not trivial, and requires a huge amount of
data, efficient algorithms, and fast computing resources (e.g., GPUs). Therefore, a
trained model can be regarded as a new intellectual property (IP). It is challenging
and demanding to protect trained CNN models from unauthorized and illegal activities
such as access control and copyright infringement.

1.2 Thesis Overview

1.2.1 Motivation

This thesis focuses on the security of CNNs in the context of the image classification
tasks. In particular, this thesis addresses adversarial examples, investigates attacks
and defenses, and develops new solutions to counter adversarial examples from differ-
ent perspectives in a well-defined threat model. In addition, the solution proposed for
the adversarial defense is further extended to protect trained CNN models from unau-
thorized access as new applications (model access control and model watermarking) in
this thesis.

As CNNs are deployed in security-critical applications such as autonomous vehicles,
healthcare, and finance, security and safety for such applications are crucial, and under
scrutiny. Incorrect decisions made by CNNs can cause serious and dangerous problems.
For example, self-driving cars may misclassify a “Stop” sign as “Speed Limit” [13], and
face recognition systems may authenticate unauthorized users as authorized ones [14–
17].

Adversarial attacks and defenses have entered into an arms race in the literature,
and attacks methods are ahead of defense ones. Once defense mechanisms are known
to the attacker, adaptive attacks can be carried out [18, 19]. In particular, input
transformation-based defenses can be defeated due to obfuscated gradients [18]. More-
over, adversarially trained models (with maximum norm-bounded perturbation) can be
attacked by Taxicab norm-bounded adversarial examples [20]. Although certified de-
fenses are attractive, they can be bypassed by generative perturbation [21] or parametric

8

perturbation (outside of pixel norm ball) [22]. Therefore, state-of-the-art adversarial
defenses are not yet satisfactory, and defense against adversarial examples remains an
open problem for adversarial machine learning research.

The study of adversarial examples goes beyond security implications. The phe-
nomenon of adversarial examples demonstrates that models are not learning the un-
derlying concepts in a robust manner [23]. Adversarial examples show where models
can fail and can be used to understand the models better. In addition, the notion of
adversarial examples can measure the gap between humans and machines.

Besides, in general, deep learning models including CNN ones are shared online
through platforms such as Model Zoo [24], Azure AI Gallery [25], and Tensor Hub [12]
for research and development purposes. A recent security assessment of on-device mod-
els from Android applications showed that many mobile applications fine-tuned pre-
trained models from Tensor Hub [26]. Since models from such sharing platforms are
widely used in real-world applications, it is necessary to properly credit model owners.
In addition, training a CNN model is not trivial, and requires a huge amount of data,
efficient algorithms, and fast computing resources (e.g., GPUs). Therefore, successful
trained CNN models have great business values for potential commercialization. To pre-
vent model thefts and copyright infringement, researchers have proposed model access
control [27] and model watermarking [28–34] methods. However, model protection is
still in its infancy and there are issues to be addressed such as piracy attacks [32,35,36].

1.2.2 Issues to be Addressed

As motivated above, this thesis identifies the following issues:

• Issue 1: Conventional adversarial defenses reduce classification accuracy, or are
completely broken. Once knowledge of defense methods is available, attackers
can design adaptive attacks and defeat the defense methods [18, 19]. Figure 1.1
illustrates an image classification scenario where an adversarial attack can be
successful even on a model with an adversarial defense. Therefore, state-of-the-art
adversarial defenses are not yet satisfactory, and new defenses that can maintain
a high classification for both plain images and adversarial examples are desired
and demanding.

• Issue 2: As CNN models have great business values, protection of models from
unauthorized access has become increasingly important. The consequences of
stolen models can lead to not only economic damage, but also other threats such
as model inversion attacks [37] and adversarial attacks [9]. A scenario of a stolen
model is depicted in Fig. 1.2. There is only one prior work that uses a secret

9

Model Defense ModelDog
Cat

Dog
Cat

Clean Image

Adversarial Example Adaptive Adversarial Example

Clean Image

Image Classification Without Defense Image Classification With Defense

Figure 1.1: Image classification scenario where an adversarial example can fool a model
even in the presence of an adversarial defense.

Model

Data Graphics Processing
Units

Money Time Expertise

Model Training

Model

Model Inversion Attacks

Adversarial Attacks

New Service Establishment

Stolen

Unauthorized Access

Figure 1.2: Scenario of consequences of stolen model.

perturbation network to protect the functionality of the models [27]. This method
slightly reduces classification accuracy and requires training an extra network.

• Issue 3: CNN models are shared online via different platforms for research and
development purposes. A recent study shows that many Android applications
are fine-tuned from pre-trained models [26]. Therefore it is necessary to properly
credit model owners. Although there are many model watermarking methods to
address this issue, conventional methods are vulnerable to attacks such as piracy
attacks and ambiguity attacks [32, 35, 36]. A scenario of copyright violation of a
trained CNN model is shown in Fig. 1.3.

1.2.3 Contributions

To maintain a high classification accuracy whether or not the model is under attack,
and to protect the model from unauthorized access, this thesis develops two novel

10

A

Model Sharing Platform

User A
Upload

Model

A

Download

User B

B

A

Removed
Watermark A

Overwrote
Watermark A

Piracy Attack
User C

Ambiguity Attack

AB

Added
Watermark B

Model Sharing Platform
Owner Attacker

Figure 1.3: Scenario of copyright violation of model where ambiguity and piracy attacks
can be carried out.

defense frameworks against adversarial examples and extends the defense technique
to model access control and model watermarking applications. All the work here has
been published or accepted at peer-reviewed venues. Table 1.1 summarizes the main
contributions of this thesis that consists of:

• Defense by Double Quantization [38] (Chapter 3): On Issue 1, a novel
defense framework in a restricted condition that maintains exactly the same ac-
curacy whether or not the model is under attack is proposed. Assuming only 1–bit
images are available to attackers, the defense framework utilizes linear quantiza-
tion to remove the adversarial noise, and uses dithering to improve classification
accuracy. Empirical results were presented comparing with state-of-the-art meth-
ods.

• Defense by Block-Wise Transformation [40] (Chapter 4): On Issue 1, an-
other novel defense framework that is more general, applicable to 8–bit images,
and maintains a high classification accuracy on both plain images and adver-
sarial examples is proposed by following the second Kerckhoffs’s cryptographic
principle. The defense framework introduces three different transformations by
taking inspiration from perceptual image encryption methods. Empirical results
on adaptive and non-adaptive attacks were presented comparing with state-of-
the-art methods.

• Model Protection by Block-Wise Transformation [44–46] (Chapter 5):
On Issues 2 and 3, two model access control frameworks and one model wa-

11

Table 1.1: Contributions of thesis

Method Assumption
Threat

Performance
Conventional

Model Methods

Defense [38] 1–bit Images `∞, `2 Superior [23,39]

Defense [40] Secret Key `∞, `2, `1 Superior [41–43]

Model Access
Secret Key

Key Estimation,
Superior [27]

Control [44] Fine-tuning

Model Access
Secret Key

Key Estimation,
Superior [27, 44]

Control [45] Fine-tuning

Model
Secret Key

Pruning,
Similar [36]

Watermarking [46] Fine-tuning

termarking framework are put forward by adopting the defense technique by the
block-wise transformation with a secret key. The first model access control frame-
work utilizes the block-wise transformation to input images, and the second one
deploys a specific block-wise transformation, pixel shuffling to one or more feature
maps of the network (Issue 2). The model watermarking approach employs the
negative/positive transformation in a block-wise manner to embed a watermark
(Issue 3). Various experiments and relevant attacks were carried out to eval-
uate the model protection methods and results were presented comparing with
state-of-the-art methods in this thesis.

1.3 Thesis Structure

The thesis is structured according to the outline in Fig. 1.4.

Chapter 1 provides a background of the thesis, an overview of the thesis including
the motivation, issues to be addressed, and the contributions of the thesis. It also
describes the structure of the thesis.

Chapter 2 discusses the security of neural networks in general. Then, it focuses
on adversarial examples; it describes threat models in detail, and surveys recent
attacks and defenses in a comprehensive way. It also discusses the intellectual
property of deep neural networks.

12

Chapter 3 introduces a novel adversarial defense framework that uses double
quantization for a scenario involving restricted 1-bit images. It also discusses
previous related work and describes issues. Next, it presents experiments and
results in comparison with state-of-the-art methods. In addition, it discusses the
justification and limitations of the defense framework. This framework is effective
and maintains an identical accuracy whether or not the model is under attack for
restricted 1-bit images.

Chapter 4 puts forward a new adversarial defense framework with a secret key
that is more general and applicable to 8-bit images. The chapter discusses previ-
ous related work and addresses the issue of a low classification accuracy. Three
different transformations for the defense are introduced that take inspiration from
perceptual image encryption methods. The main idea of the key-based defense
is to embed a secret key into the model structure with minimal impact on model
performance. Assuming the key stays secret, an attacker will not obtain any useful
information on the model, which will render adversarial attacks ineffective. The
chapter demonstrates the effectiveness of this defense framework by conducting
rigorous experiments and presents the results in comparison with state-of-the-art
methods. Models protected by the defense framework were confirmed to be resis-
tant against both adaptive and non-adaptive attacks on different datasets. The
chapter also highlights the advantages and limitations of the defense framework.

Chapter 5 adopts the block-wise transformation from Chapter 4 and extends the
concept of the secret key to model protection. It introduces two model access con-
trol frameworks and one model watermarking framework. It presents experiments
and shows the results of performing relevant attacks to verify the effectiveness of
the model protection frameworks. It also provides a discussion and comparison
with state-of-the-art methods for each model protection framework.

Chapter 6 concludes this thesis by providing a summary of the results in this
thesis with concluding remarks and directions for future work.

13

Chapter 3: Defense
by Double

Quantization

Chapter 4: Defense
by Block-Wise
Transformation

Chapter 1: Introduction
• Background • Thesis Overview
• Thesis Structure

Chapter 2: Security of Machine Learning
• General Threats • Adversarial Examples
• Model Protection

Chapter 5:
Model Protection
• Access Control
• Watermarking

Adversarial Defense Model Protection

Chapter 6: Conclusion
• Summary of Results • Future Work
• Concluding Remarks

Figure 1.4: Outline of the thesis.

14

Chapter 2

Security of Machine Learning

While we enjoy groundbreaking advancements in AI, deep neural networks have been
proven to be at risk for various attacks such as data corruption, model thefts, and
adversarial examples. Therefore, many organizations across different industries pay
significat attention to securing their AI systems.

This chapter first describes notations used throughout this thesis. Then, it discusses
general threats of machine learning and focuses on adversarial examples that cover
threat models, attacks, and defenses. Next, the chapter explains model protection
including model access control and model watermarking.

2.1 Notation

The following notations are utilized throughout this thesis.

• h, w, and c are used to denote the height, width, and number of channels of an
image.

• The tensor x ∈ [0, 1]c×h×w represents an input color image.

• f(·) denotes a deep convolutional neural network image classifier.

• θ is a vector of parameters for the network f .

• z denotes a n-dimensional prediction vector, (i.e., f(x) = (z1, z2, . . . , zn)).

• C(·) denotes the arg-max operation of f(x) (i.e., C(x) = arg maxi zi).

• ŷ denotes the predicted label (i.e., C(x)).

16

• y denotes the truth class label of x.

• t denotes the target class label of x′.

• L and L′ denote loss functions.

• λ is a hyperparameter in the Carlini and Wagner’s attack.

• Z(·) denotes the output of all layers except softmax function (i.e., logits).

• max(·, ·) is a function returns the item with the largest value.

• κ denotes a constant to control the attack confidence in Carlini and Wagner’s
attack.

• β is a regularization parameter in the elastic-net attack.

• δ denotes an adversarial noise that is added to the clean image x.

• The tensor x′ ∈ [0, 1]c×h×w represents an adversarial example for x, i.e., x′ = x+δ.

• ∆ denotes a allowable perturbation set.

• α is a step size in the iterative gradient-based attack.

• ε denotes a perturbation budget.

• g(·) denotes a general defensive transformation.

• K describes a key used in a block-wise transformation.

• v denotes a random permutation vector generated by key K.

• r denotes a random binary vector generated by key K.

• M is a block size of an image used in a block-wise transformation.

• g(x, K,M) denotes a block-wise transformation of x with block size M and key
K.

• x̂ denotes a block-wise transformed image (i.e., g(x, K,M) = x̂).

• d(·, ·) denotes a distance metric bounded by `p norm.

• ε denotes a perturbation budget for an adversarial example.

17

• Q1 denotes a one bit quantizer.

• Z[0,255] denotes a set of integers from 0 to 255 (i.e., {0, 1, . . . , 254, 255}).

• FSD(·) denotes a function that carries out Floyd-Steinberg dithering (FSD).

• s denotes a pixel value that is already being scanned.

• p denotes a current pixel value being scanned.

• A(·) denotes a function that deploys an attack algorithm and generates an adver-
sarial example.

• x1−bit denotes an image tensor in 1–bit.

• x′1−bit denotes an adversarial example for x1−bit.

• x̂1−bit denotes an image tensor in 1–bit after removing the noise.

• bac denotes the largest integer smaller than a.

• B(i,j) denotes a block of an image with a dimension of c×M ×M .

• b(i,j) denotes flattened B(i,j).

• b′(i,j) denotes transformed b(i,j).

• K denotes a key space of a key-based transformation.

• {(xi, yi)}i denotes a set of training examples (pairs of images and labels).

• {(x̂i, yi)}i denotes a set of training examples (pairs of transformed images and
labels).

• {ui}i denotes a set of N test images for watermark detection.

• τ denotes a matching rate used for watermark detection.

• th denotes a threshold value for ownership verification.

18

Model

Learning
Algorithm

Labels

Training Images

Prediction

Test Image

Po
is

on
in

g
A

tta
ck

s

Evasion Attacks

Model Inversion Attacks
Model Extraction/Theft
Membership Inference Attacks

Model Access Control
Model Watermarking

Figure 2.1: Attacks on ML pipeline.

2.2 General Threats

In the era of ubiquitous computing (software everywhere), software security itself is a
critical research area as new vulnerabilities are found and exploited almost every day.
Machine learning (ML) models are also computer software that addresses the tasks
such as computer vision, speech recognition, natural language processing, etc. that are
extremely hard or impossible to be solved by traditional programming (first-principles
approach). In addition to traditional software security, ML suffers from adversarial
attacks throughout its whole pipeline (training, model, inference) that can malfunction
ML systems. Figure 2.1 depicts attacks on ML pipeline, where poisoning attacks can
be carried out on training data, evasions attacks on test data, and the attacks such
as model inversion, model extraction/theft, and membership inference attacks can be
performed on the model itself. In addition, there are intellectual property issues on the
ML models such as model access control and model ownership verification via model
watermarking.

As the ML models especially data-hungry deep learning models require a huge
amount of data, the curation of training data is often outsourced and automated. This
opens a significant security flaw for data poisoning attacks where training data can be
manipulated to control the behavior of the ML models [47,48]. The danger of the poi-
soning attacks was illustrated by the manipulation of the Tay chatbot [49]. In a recent
survey, poisoning is also reported as a top attack that would affect the businesses of
the organizations [50].

Trained ML models are also exposed to other privacy and security attacks. Model
inversion attacks recover training data from the model [37]. Model parameters can be
extracted by prediction queries that can cause intellectual property theft [51]. Another

19

‘‘panda’’
57.7 % of confidence

‘‘gibbon’’
99.3 % of confidence

Noise

Figure 2.2: Example of adversarial example [53].

privacy attack to determine whether a given data record is in the model’s training data,
known as membership inference attacks [52]. Moreover, ML models can be abused to
generate fake content (known as deep fakes), that has a severe societal impact linking
to elections, automated trolling, court evidence, etc.

The ML models can also be attacked by manipulating the test input known as eva-
sion attacks. In evasion attacks, carefully perturbed data points known as adversarial
examples are indistinguishable from clean data points, but they cause ML models to
make erroneous predictions [9, 10].

Since the ML models are shared on model-sharing platforms such as Model Zoo [24],
Azure AI Gallery [25], and Tensor Hub [12], it is necessary to protect models from
copyright infringement and unauthorized access. A recent security assessment of on-
device models from Android applications showed that many mobile applications fine-
tuned pre-trained models from Tensor Hub [26]. Therefore, the ML models are also
prone to copyrights and intellectual property thefts.

This thesis focuses on defending against adversarial examples (i.e., evasion attacks)
and model protection for access control, and ownership verification (i.e., model water-
marking). Therefore, the following subsections will further elaborate on these topics.

2.3 Adversarial Examples

Researchers have shown that neural networks are vulnerable to imperceptible inten-
tional perturbed data points known as adversarial examples [9, 10], despite the state-
of-the-art results. These adversarial examples can cause neural networks to misclassify
or force them to classify a targeted class with high confidence. Concretely, Good-
fellow et al. show that an input image (“panda”) with a small noise vector whose

20

elements are equal to the sign of the gradients of the loss function with respect to the
input on GoogLeNet [54] is predicted as “gibbon” with high confidence, as shown in
Fig. 2.2 [53]. Incorrect decisions made by the neural networks can cause serious and
dangerous problems. As an example, self-driving cars may misclassify a “Stop” sign as
“Speed Limit” [13]. Therefore, adversarial examples have received a significant amount
of attention even though security for machine learning began over a decade ago [55].

As adversarial examples are an obvious threat, numerous methods for generating
adversarial examples (attack methods) and defenses against them have been proposed
in the literature [11]. In this section, threat models for crafting adversarial examples
are first described, and selected recent attacks and defenses are surveyed in a brief and
comprehensive way.

2.3.1 Threat Models

To evaluate an adversarial defense method, precisely defining threat models is necessary.
As described in [56], a threat model includes a set of assumptions such as an adver-
sary’s goals, capabilities, and knowledge. Moreover, with the knowledge of a defense
mechanism, an adaptive adversary can be mounted to evaluate a defense method.

Let us consider a neural network image classifier f : [0, 1]c×h×w → [0, 1]n that takes
an image x ∈ [0, 1]c×h×w, for a c-channel image of height h and width w, and outputs a
n-dimensional prediction vector z = (z1, z2, . . . , zn) = f(x). Obtaining the most likely
label (namely, the predicted label) ŷ for x is done by finding the maximum element of
the output vector, i.e., ŷ = C(x) = arg maxi zi.

1

Adversary’s Goals

An adversary can construct adversarial examples to achieve different goals when attack-
ing a model, that is, either reduce the performance accuracy (i.e., untargeted attacks)
or classify an image as a targeted class (i.e., targeted attacks). Formally, untargeted
attacks will cause a classifier f to misclassify an adversarial example x′ (i.e., C(x′) 6= y)
regardless of its resulting label, and targeted ones will force the classifier to output a
targeted label t (i.e., C(x′) = t). This thesis focuses on untarget attacks for efficiency
in experiments although targeted attacks can be achieved in a similar way.

1In this thesis, it is assumed that the vector z always has one maximum element and the argmax
operation argmaxi zi returns an integer, although the argmax operation generally returns a set, i.e.,
indices of the maximum elements.

21

2.3.2 Adversary’s Capabilities

An adversarial example x′ is usually not perceptibly different from the original corre-
sponding example x, but it is misclassified by a classifier [9]. Therefore, an adversary
is restricted to modifying an input image x under some similarity metric d such that
d(x,x′) ≤ ε, where ε is the perturbation distance. As for the metric d, the `p norm
(e.g., `2 or `∞) is most often utilized.

There are two common approaches to finding such perturbations under `p bounded
threat models for untargeted attacks. The first approach creates an adversarial example
x′ by searching for a small perturbation by maximizing the loss function L (e.g., the
cross-entropy loss), i.e.,

x′ = arg max
x̂

L(f(x̂), y) s.t. d(x, x̂) ≤ ε. (2.1)

The second approach finds the minimum perturbation possible to generate an adver-
sarial example x′, i.e.,

x′ = arg min
x̂

d(x, x̂) s.t. C(x̂) 6= y. (2.2)

In addition, there are also other threat models that spatially transform input images
such as [57–59].

Regarding `p-bounded perturbation, threat models do not match real-world appli-
cations [60, 61] because there can be various physical conditions (e.g., camera angle,
lighting/weather), physical limits on imperceptibility, etc. However, it has been proved
that adversarial threats on neural networks remain real [13,16,62–64]. In addition, `p-
bounded threat models are crucial for principled deep learning due to their well-defined
nature [56]. They are helpful not only for evaluating the robustness of deep learning
models but also for understanding them better. It is almost certain that models that
are not robust against `p-bounded attacks will fail in real-world scenarios.

Adversary’s Knowledge

We can assume that an adversary may have different levels of knowledge about a target
model. According to [56], the adversary’s knowledge can be white-box (inner workings
of the defense mechanism, complete knowledge of the model and its parameters) or
black-box (no knowledge of the model) with varying degrees of access levels (e.g., limited
number of queries to the model, etc.). The adversary may also be gray-box (anything
in between white-box and black-box).

In some scenarios, we assume that the adversary does not know some secret infor-
mation about the model. As in the field of cryptography, there can be a small amount

22

of secret information even in white-box settings if the secret information must be easily
replaceable and non-extractable [56]. Some defense methods introduce a secret key to
transform the input [40, 41]. In this case, the adversary may or may not know the
transformation algorithm, but the secret key is not known to the adversary.

2.3.3 Adaptive Adversaries

To construct strong threat models, adaptive adversaries are necessary where the spe-
cific details of the defense methods are adapted. Athalye et al. pointed out that some
defenses that seem to defeat iterative optimization-based (white-box) attacks cause
obfuscated gradients (a way of gradient masking) [18]. Obfuscated gradients occur
under three conditions: (1) shattered gradients (non-existent/incorrect) due to non-
differentiable operations or numerical instability, (2) stochastic gradients because of
test-time randomness, and (3) vanishing/exploding gradients for very deep computa-
tion [18]. These obfuscated gradients can be bypassed by using backward pass differ-
entiable approximation (BPDA), expectation over transformation (EOT), or reparam-
eterization as in [18]. To avoid a false sense of security, adaptive adversaries are critical
to evaluate the robustness of a defense [56].

2.3.4 Attacks

Techniques for generating adversarial examples can mainly be divided into four cat-
egories: gradient-based, transfer-based, score-based, and decision-based attacks. Fig-
ure 2.3 depicts categories of attacks according to the varying degrees of access to a
model. As described in Section 2.3.2, attacks methods can also be categorized ac-
cording to the knowledge available (white-box, black-box, or gray-box). In this sec-
tion, white-box (gradient-based) attacks and black-box (transfer-based, score-based,
and decision-based attacks) ones are summarized as follows.

Gradient-Based Attacks

Gradient-based attacks are known as white-box attacks because they require direct ac-
cess to a model to compute the gradient of the loss with respect to the input. One of the
easy and popular gradient-based attacks is the fast gradient sign method (FGSM) [53]
that is performed under an `∞ norm with a single gradient step by solving Eq. (2.1).
The straightforward extended version of FGSM is the basic iterative method (BIM),
which involves taking multiple small gradient steps [65]. BIM with multiple random
restarts and initialization with uniform random noise is recognized as projected gra-
dient descent (PGD) [23]. The adversarial example, x′ at the (i + 1)th iteration with

23

Label

Lo
gi

ts

Model

Substitute

Gradient-Based
Attacks

Transfer-Based
Attacks

Score-Based
Attacks

Decision-Based
Attacks

Black-Box
Attacks

White-Box Attacks

Model

Figure 2.3: Attack categories applicable to a model based on the varying degrees of
access to the model.

PGD [23] is
x′(i+1) = Πx+∆(x′i + α · sign(∇xL(f(x′i), y))), (2.3)

where α is the step size, and Πx+∆ denotes projection to the allowable set of perturba-
tion, ∆. PGD is known as a powerful first-order adversary.

For solving Eq. (2.2), DeepFool finds the minimum perturbation under an `2 norm [66].
DeepFool can also be extended to the `∞ norm. Carlini and Wagner’s method (CW) re-
formulates Eq. (2.2) by using Lagrangian relaxation to find the minimum perturbation
under an `p norm [67]. Specifically, they solve the following optimization,

arg min
δ
‖δ‖p + λ · L′(x + δ) s.t. x + δ ∈ [0, 1]c×h×w, (2.4)

where ‖·‖p is a distance function under `p norm, λ is a hyperparameter and L′ is a new
objective function defined as,

L′(x + δ) = max (max{Z(x + δ)i : i 6= t} − Z(x + δ)t,−κ) , (2.5)

where Z(·) denotes the output of all layers except softmax function (i.e., logits), and κ
is a constant to control the confidence so that x + δ is classified as a target class t. To
encourage sparsity in the perturbation, the elastic-net attack (EAD) was proposed to
create `1-oriented adversarial examples [68]. EAD combines `1 and `2 regularization,
optimizes the following objective:

arg min
δ

λ · L′(x + δ) + β‖δ‖1 + ‖δ‖2
2 s.t. x + δ ∈ [0, 1]c×h×w. (2.6)

CW is also a special case of EAD, where the `1 regularization parameter, β is set to
zero [68].

24

Transfer-Based Attacks

Transfer-based methods are black-box attacks, and the actual model is not known to
attackers. Transferability between models is exploited, and white-box attacks can be
applied via a surrogate model. Although transfer-based attacks do not rely on model
information, they require information about the training data for the surrogate model.
Synthetic data, which are labeled by the targeted model, can be used as a substitute to
craft adversarial examples [64,69]. The momentum iterative method (MIM) integrates
the momentum term into the iterative process to stabilize update directions through-
out the attack optimization process [70]. To further improve the transferability, the
translation-invariant method (TI) optimizes perturbation over an ensemble of trans-
lated images [71]. In a similar fashion, the diverse inputs method (DI) applies random
transformation on each attack iteration to improve the transferability [72].

Score-Based Attacks

Unlike transfer-based attacks, score-based ones do not need a substitute model. How-
ever, attackers need to have access to the output of the model, either a full set of
probabilities or the top k (e.g., k = 5). Since only the output of a model is available,
score-based methods cannot compute gradients analytically as in white-box methods.
Therefore, some of the score-based methods estimate gradients on the basis of the
query feedback of the targeted model. One method uses natural evolution strategies
(NES) to estimate gradients and crafts adversarial examples by observing the output
of the model [73]. Another method utilizes zeroth-order optimization to directly esti-
mate gradients of the targeted model [74]. Another strategy to approximate gradients
and reliably produce adversarial examples is using simultaneous perturbation stochastic
approximation (SPSA) [75]. The prior-guided random gradient-free (P-RGF) method,
which can estimate gradients more accurately, generates black-box adversarial examples
by using a transfer-based prior and the query information simultaneously [76].

In addition, there are other score-based attacks that do not estimate gradients.
NATTACK learns a probability distribution centered around an input such that a
sample drawn from that distribution is likely an adversarial example [77]. The Square
Attack (SQUARE), which is based on a random search, generates adversarial examples
by modifying a square of the input image at a random position at each iteration [78].
Moreover, the OnePixel attack constructs an adversarial example by modifying one or
a few pixels without accessing the weights of a model with differential evolution [79].

25

Adversarial
Defenses

Certified
Defenses

Robust
Training

Adversarial
Training

Input
Transformation

Detection
Defenses

Key-Based
Transformation

Figure 2.4: Different categories of adversarial defenses.

Decision-Based Attacks

In this category, attack methods are restricted to hard labels only, and they do not have
access to class probabilities or scores. Therefore, decision-based methods are more chal-
lenging and practical for real-world applications. The Boundary Attack starts from a
large adversarial perturbation and seeks to reduce the perturbation based on a random
walk along the boundary between the adversarial and non-adversarial region [80]. This
random walk-based method is the first method proposed for the decision-based category.
One attack method models the hard-label black-box scenario as a real-valued optimiza-
tion problem that can be solved by any zeroth-order optimization algorithm [81]. To
use lesser queries, this problem formulation was also used to directly estimate the sign
of gradients in any direction [82]. In a particular application scenario, that of face
recognition systems, a decision-based attack method was proposed that uses an evo-
lutionary algorithm to improve the query efficiency [83]. In a particular application
scenario of face recognition systems, a decision-based attack method proposed to use
an evolutionary algorithm to improve the query efficiency [83].

2.3.5 Defenses

With the development of adversarial attacks, various defense methods have been pro-
posed in the literature. To get a big picture of defenses in different flavors, six categories
of defenses (Fig. 2.4): certified defenses, adversarial training, robust training, input
transformation, detection, and key-based transformation, are briefly surveyed accord-
ing to the design nature of the defense. Figure 2.5 shows an overview of the different
defense categories, where most defenses are applied during model training. However,
input transformation defenses and detection methods can be in and out of the model
training. For example, defense by input transformation [39] requires retraining a model
in order to adapt the input transformation, and some detection methods like [84] need
the defense model to be trained with a modified network.

26

+

Model

Training Images

Test Image Noise

Adversary

Input Transformation, Key-Based Transformation, Detection

Input Transformation,
Key-Based Transformation,
Detection

Adversarial Training

R
ob

us
t T

ra
in

in
g,

C
er

tif
ie

d
D

ef
en

se
s

Provider

Training

Testing Trained
Model

Figure 2.5: Defense categories relative to model training and testing.

Certified Defenses

Certified/provable defenses use formal verification techniques to guarantee that no ad-
versarial examples exist within some bounds. Ideally, these defenses are desired. Inspir-
ing works such as [85–87] proposed provable secure training. Although these methods
are attractive, they are not scalable. Some certified defenses have been scaled to a cer-
tain degree [88–91], but the guarantees do not match the empirical robustness provided
by adversarially trained models, which will be discussed in the next subsection.

Adversarial Training

Current state-of-the-art empirically robust defenses are under the use of adversarial
training, which includes adversarial examples in a training set. Adversarial training
is a form of regularization that aims to reduce test error [92]. The earliest form of
adversarial training is to inject FGSM-based adversarial noise into training data [53].
Since FGSM is not iterative and not robust against iterative attacks such as PGD,
FGSM-based training was found to be ineffective [23,65].

Madry et al. approach adversarial training as a robust optimization problem [23].
Given a classifier network fθ parameterized by θ and a dataset {(xi, yi)}i, they use a
PGD adversary, ∆, under the `∞ norm to approximate the worst inputs possible in
solving the following min-max objective,

arg min
θ

∑
i

arg max
δ∈∆

L(fθ(xi + δ), yi), (2.7)

where ∆ = {δ : ‖δ‖∞ ≤ ε}.

27

PGD training is computationally expensive. To make the computation of adversarial
training more feasible, “free” adversarial training was proposed in which gradients are
computed with respect to the network parameters and the input image on the same
backward pass [93]. In addition to “free” adversarial training, “fast” adversarial training
was proposed and uses FGSM and standard efficient training tricks [42]. Although
FGSM-based adversarial training was dismissed before, it is shown to be effective when
random initialization is introduced [42]. Nevertheless, while adversarial training is
repeatedly found to be robust against the best-known adversaries [18], the accuracy is
still very low compared with non-robust models.

Adversarial training approaches generate perturbation in a supervised way. A recent
work [43] proposed an adversarial training method by using an unsupervised method
called feature scattering, which involves maximizing the feature matching distance be-
tween clean examples and perturbed ones. Although they achieved better performance
than conventional methods for several datasets, the ImageNet [94] performance has not
yet been tested.

Tsipras et al. show that there is a trade-off between robustness and accuracy, i.e.,
gaining robustness causes some accuracy loss [95]. In addition, even empirically robust
models are susceptible to blind-spot attacks where input images reside in low-density
regions of a training data distribution [96]. Therefore, maintaining accuracy and getting
adversarial robustness is a growing concern and an ongoing area of research with a high
demand.

Robust Training

The defenses in this category change a model’s architecture by using a new loss, impos-
ing a special regularization scheme, or altering the final layer for adversarial robustness.
A recently proposed defense method uses the Max-Mahalanobis center loss to learn more
structured representations, thus enhancing adversarial robustness [97]. Methods that
modify the final layer include defensive distillation [98] and DeepCloak [99], which iden-
tifies and removes unnecessary features by adding a mask layer before the linear layer
(logits layer). Inspired by the contractive autoencoder (CAE), Gu and Rigazio proposed
the Deep Contractive Network, which imposes a layer-wise smoothness penalty [100].
Other methods utilize a special regularization scheme for adversarial robustness: Par-
seval regularization [101], input gradient regularization [102], perturbation-based regu-
larization [103], etc. In short, robust training-based defenses have not been extensively
tested with modern convolutional neural networks and different datasets, and it is often
recommend to include adversarial training for stronger robustness.

28

Input Transformation

The methods in this category aim to find a defensive transform g(·) such that

C(f(g(x′))) = C(f(x)). (2.8)

The transformation g is designed to reduce the impact of adversarial noise by restricting
the space of adversarial examples. The works in this direction utilize various means
of transformation such as thermometer encoding [104], image processing-based tech-
niques [105,106], making small changes to pixels with the intent of removing adversarial
noise [107], and GAN-based transformation [108]. These input transformation-based
defenses are appealing at first due to their higher accuracy. However, they have all been
broken because they rely on obfuscated gradients [18]. Accounting for this problem,
Raff et al. came up with a defense that uses a number of random different transforms
with random parameters [39]. Although their work claims majorly improved accuracy
on ImageNet, applying many transforms for each image is computationally expensive
and reduces the accuracy when the model is not under attack.

As input transformation defenses provide higher accuracy, this thesis also proposed
an input transformation defense by enforcing the use of 1–bit images and utilizing
quantization in Chapter 3.

Detection

Some defenses are designed to detect adversarial examples so that they can be rejected
for classification. Metzen et al. proposed a detection method that trains a binary clas-
sification network to distinguish clean data from adversarial examples [109]. Another
work by [110] detects adversarial examples by looking at the features in the subspace of
deep neural networks. However, it is reported that detection methods can also be by-
passed [111]. Another interesting detection method uses a one-to-one encoding scheme
from true labels to code vectors to hide input labels from the attackers [84]. Although
this approach [84] produces good results on small datasets, it has not been tested on
larger datasets.

Key-based Transformation

Defenses with key-based transformation are similar to input transformation-based meth-
ods that require transforming an input prior to an inference with a model. However,
there are differences: (1) key-based transformation methods have an information advan-
tage, that is, a secret key, and (2) a model is required to be trained by using transformed
images.

29

This category of defenses takes a different direction by taking inspiration from per-
ceptual image encryption techniques such as [112–116]. The main idea is to hide a
model’s decision from attackers by means of training the model with encrypted images.
Taran et al. first introduced a secret block for adversarial defense and proved the idea
by taking a pixel shuffling approach (pixel-wise manner) with a secret key with a stan-
dard random permutation [41]. Although their method [41] was effective at defending
against adversarial examples, it was tested only on small datasets (MNIST [117] and
F-MNIST [118]), and clean accuracy significantly dropped on larger datasets such as
CIFAR-10 [119] and ImageNet [94]. The reason is that shuffling in a pixel-wise man-
ner causes spatial perceptual information to be lost. As the key-based transformation
defense is effective to defend against adversarial examples, Chapter 4 will introduce a
method that utilizes a block-wise transformation with a secret key defending against
adversarial examples [40]. This method shows good results against white-box attacks
assuming that the secret key is kept secret from the attackers.

2.4 Model Protection of Deep Neural Networks

There is no doubt that neural networks provide remarkable performance in many recog-
nition tasks. However, training a successful neural network model is not trivial be-
cause it requires a huge amount of data, efficient algorithms, and fast computing re-
sources (e.g., GPU-accelerated computing). For example, the ImageNet (ILSVRC12)
dataset [94] contains about 1.28 million images, and training on such a dataset takes
days and weeks even on GPU-accelerated machines. In fact, collecting images and label-
ing them will also consume a massive amount of resources. Moreover, algorithms used
in training a model may be patented or have restricted licenses. Therefore, production-
level trained models have great business values. Considering the cost of training a
model (money, time, expertise), a model should be regarded as a kind of intellectual
property (IP).

There are two aspects of IP protection for models: model access control and model
watermarking. The former focuses on protecting the functionality of models from unau-
thorized access, and the latter addresses ownership verification by taking inspiration
from digital watermarking.

2.4.1 Model Access Control

As trained models are widely shared and emerged into many applications, model ac-
cess control has become an increasingly important problem to prevent from economic
damage. Model access control ensures that only authorized users can use the model

30

to full capacity. While distributing a trained model, an illegal party may obtain a
model and use it for its own service. One straightforward way of protecting a model
from illicit use is to encrypt the trained model weights by the traditional cryptographic
methods such as advanced encryption standard (AES). In this case, to be able to use
the protected model, rightful users have to decrypt the model. There are millions of
parameters in modern deep neural network models, so encrypting/decrypting all the
parameters is computationally expensive under the traditional cryptography in general.
Besides, once the model is decrypted, it becomes vulnerable for IP thefts.

Another approach for model access control may be to train models via homomorphic
encryption or functional encryption so that trained models can work on encrypted
parameters without needing the decryption. However, most of model architectures are
designed to learn from plaintext and learning from the encrypted data will severely
affect the performance. Therefore, researchers have proposed to embed a key to the
model’s structure by other means. Chapter 5 will introduce new solutions for model
access control by a block-wise transformation with a secret key.

2.4.2 Model Watermarking

Digital watermarking technology is widely used to combat copyright infringement for
multimedia data [120]. An owner embeds a watermark into multimedia content (such
as images, audio, etc.). When the protected content is stolen, the embedded water-
mark is extracted and used to verify ownership. In a similar fashion, to prevent the
illegal distribution of trained models, digital watermarking techniques are used to em-
bed watermarks into proprietary models. There are mainly two scenarios in model
watermarking: white-box and black-box.

A model watermarking scenario in white-box settings requires access to model
weights for embedding and extracting a watermark. Uchida et al. first proposed a
white-box model-watermarking method [28]. A watermark is embedded into one or
more layers of model weights by using “an embedding regularizer,” which is an addi-
tional regularization term in the loss function during training. Similarly, there are other
works that follow the use of an additional regularization term as in [29,30,32].

Extracting watermarks in white-box settings requires access to the model weights.
To overcome this limitation, another model watermarking scenario for black-box set-
tings was proposed, where an inspector observes the input and output of a model in
doubt to verify the ownership of the model. In the black-box scenario, adversarial ex-
amples are exploited as a backdoor trigger set [31,121], or a set of training examples is
utilized so that a watermark pattern can be extracted from the inference of a model by
using a specific set of training examples [32–34]. Therefore, access to the model weights
is not required to verify ownership in black-box settings. In this black-box direction,

31

Chapter 5 will also introduce a new solution for model watermarking by a block-wise
transformation with a secret key.

32

Chapter 3

Adversarial Defense by
Quantization

Despite deep neural networks being excellent in many recognition tasks and natural lan-
guage processing, they are vulnerable towards certain alteration in the input known as
adversarial examples [9,10]. The perturbation in adversarial examples is imperceptible
towards humans, but can cause neural networks misclassify or force to classify a targeted
class. Adversarial examples can either be physical or digital. It is possible that physical
objects can be adversarial examples by default. For example, IMAGENET-A [122] is a
dataset of natural adversarial examples with 200 classes. An attacker may distort the
physical objects intentionally or synthesize physical adversarial objects [13, 16, 62–64].
When these adversarial objects (naturally or adversarially) are captured by a camera,
they become adversarial examples and cause the model to behave differently. There
are different methods (as discussed in Chapter 2, Section 2.3.4) to generate adversarial
examples in the digital domain on the basics of the knowledge of the model available to
the attacker (i.e., white-box or black-box). As there are numerous methods to generate
adversarial examples (either physical or digital), the threat of adversarial examples has
become a major concern for deep neural networks in security-critical applications such
as autonomous vehicles, healthcare, and finance.

Although researchers have proposed various defenses concerning the adversarial at-
tack methods, the performance is not yet satisfactory. Therefore, this chapter reframes
the problem of adversarial examples into a specific scenario where only quantized (1–
bit) images are available to the attackers. Due to the expensive cost of fast computing
resources, models are usually trained in a cloud environment, and the models are de-
ployed as inference services. In such a case, a test image may be potentially intercepted
and injected with adversarial noise by an attacker as a man-in-the-middle as shown in
Fig 3.1. For example, the test image can be modified by an existing adversarial attack

34

8-bit 1-bit

User Adversary

Noise Test Image

+

Figure 3.1: Attack scenario on quantized images.

before reaching the model. This chapter considers this particular scenario and enforces
the use of quantized images. Therefore, this chapter assumes that original training
and test images are in 1–bit, and the attacker does not know the defense mechanism
although model weights are available to the attacker.

Although larger bit-depth images are usually preferred for aesthetics, it is not always
necessary for interpreting images as we, the human can recognize even black and white
images most of the time. The chapter hypothesizes that if adversarial noise is added
to 1–bit images, it can be simply removed by linear quantization. However, the use of
linearly quantized images can decrease the classification accuracy, and thus, dithering
is introduced to improve the accuracy. This chapter aims to achieve the following
requirements:

1. High classification for clean images and

2. High classification for adversarial examples.

3.1 Related Work

3.1.1 Previous Input Transformation-Based Defenses

To improve adversarial robustness while maintaining accuracy, many works have at-
tempted to find a defensive transformation. The transformation-based defenses include
having several image transformations (bit depth reduction, JPEG compression, total
variance minimization) [105], finding a clean input by using a generative adversarial
network (GAN) [108], and so on. However, they all have been defeated by adaptive
attacks in white-box settings [18]. To reinforce these weak defense methods, Raff,
Sylvester, Forsyth, et al. [39] proposed a stronger defense by combining a large number
of transforms stochastically. This defense is called “Barrage of Random Transforms”

35

Figure 3.2: Example of linearly quantized images.

(BaRT) [39]. BaRT is applied in both training and testing phases, and applying many
transforms is computationally expensive and reduces the classification accuracy when
the model is not under attack.

This chapter focuses on quantization as a mean of adversarial defense. Xu et al.
first introduced this concept as feature squeezing [123]. They reported to use 4-bit
images because images with bit-depth lower than four introduce some human-observable
distortion and neural networks also decrease performance accuracy. Later, Guo et
al. proposed adversarial defense by input transformation including quantization and
other image processing techniques [105]. Quantization seems an easy and effective
way of defending against adversarial examples. Recently, Miyazato et al. proposed a
method that searches a q–bit quantized image that maximizes the loss and uses it to
backpropagate during the training process [124]. Their method is similar to adversarial
training to harden the model by training with q–bit quantized images that maximize
the loss instead of training with adversarial examples. However, it was only tested on
black-box fast gradient sign method (FGSM) which is an easy adversary. Informed
by empirical results in [125], adversarial noise on low bit-depths can be filtered in a
condition that the noise is added to the quantized images. Therefore, this chapter
presents a defense framework by quantization which enforces the use of 1–bit images.

36

Figure 3.3: Example of dithered images.

3.1.2 Quantization

Quantization is a mapping from a large set of input values to a smaller set of output
values. For linear quantization in images, the pixel values are linearly scaled down in
accordance with the bit depth. The 1–bit quantizer is defined as:

Q1 : Z[0,255] → {0, 255}.

The pixel values in {0, 1, . . . , 254, 255} are mapped to either 0 or 255 in accordance with
the closest palette color. Technically, this is a thresholding operation (i.e., values less
than 128 are mapped to 0 and those greater than or equal to 128 are to 255). Example
of linearly quantized images are shown in Fig. 3.2.

To randomize quantization errors, dithering is usually applied in the quantization.
The defense framework in this chapter utilizes the 1–bit Floyd-Steinberg dithering al-
gorithm (FSD) [126]. The following error diffusion filter is applied to distribute the
residual quantization error in FSD. s s p 7

16
. . .

. . . 3
16

5
16

1
16

. . .

The pixel indicated as p in the above filter is the current pixel being scanned, and the
pixels indicated as s are already being scanned. The FSD first finds the nearest color

37

(whether 0 or 255) and calculates the residual error. The error is distributed to the
neighbouring pixels by the diffusion filter. For simplicity, Algorithm 1 describes FSD
algorithm for one channel image where each pixel is indexed by x(i, j). Example of
dithered images are shown in Fig. 3.3.

Algorithm 1 FSD algorithm

Input: x
Output: x1−bit

1: for each x(i, j) do . Scan for each pixel.
2: old← x(i, j)
3: if old ≥ 128 then
4: new ← 255
5: else
6: new ← 0
7: end if
8: x1−bit(i, j)← new
9: error ← old− new
10: x1−bit(i+ 1, j)← x(i+ 1, j) + error ∗ 7/16
11: x1−bit(i− 1, j + 1)← x(i− 1, j + 1) + error ∗ 3/16
12: x1−bit(i, j + 1)← x(i, j + 1) + error ∗ 5/16
13: x1−bit(i+ 1, j + 1)← x(i+ 1, j + 1) + error ∗ 1/16
14: end for each

3.2 Defense Framework by Quantization

The framework of the defense by quantization is depicted in Fig. 3.4, which enforces the
use of 1–bit dithered images for training and testing. Both training and testing images
are quantized with dithering by the FSD algorithm. The procedure of the framework
is detailed as follows.

1. Both training and testing images are first quantized to one bit with dithering by
FSD (algorithm 1). This process can be described as

x1−bit = FSD(x). (3.1)

The resulting dithered images are used to train a model.

38

Dither

Dither Perturb Linearly
Quantize

+

Step 1

Step 1 Step 2 Step 3

User Adversary Provider

Training

Testing

User Provider

Trained
Model

Model

Figure 3.4: Framework of adversarial defense by double quantization.

2. For testing, a testing dithered image from step (1) may be attacked by conven-
tional attacks such as FGSM [53], PGD [23], CW [67], etc. The attacking process
is defined as

x′1−bit = A(x1−bit). (3.2)

3. Linear quantization is applied to the attacked image (adversarial example) from
step (2). The sanitized image is described as

x̂1−bit =
⌊x′1−bit

128

⌋
· 255. (3.3)

The resulting sanitized image is sent to the model for inference.

3.3 Experiments and Discussion

3.3.1 Experiment Conditions

Datasets

Two datasets, CIFAR-10 [119] and Oxford-IIIT Pet [127] were used to evalute the
defense by quantization. CIFAR-10 consists of 60,000 color images (dimension of 32×
32×3) with 10 classes (6000 images for each class) where 50,000 images are for training
and 10,000 for testing. The Oxford-IIIT Pet dataset comprises 37 classes of cat and
dog breeds with approximately 200 images for each class. There are a total of 7390

39

high-resolution color images. The dataset is split into two sets: 5912 training images
and 1478 test images, and images are resized to (224×224×3) during the experiments.

Networks

Deep residual networks [3] were utilized for evaluating the defense framework by 1–bit
double quantization. Experiments were carried out on PyTorch [128] (version 1.1.0)
and fastai [129] (version 1.0.54).

For CIFAR-10, ResNet20 without pre-trained weights was trained for 160 epochs
with a batch size of 128 and live augmentation (random cropping with padding = 4
and random horizontal flip). The stochastic gradient descent (SGD) optimizer with
an initial learning rate of 0.1 was used. A step learning rate scheduler was used with
the parameters (lr steps = 40, gamma = 0.1). The weight decay and momentum were
configured with 0.0001 and 0.9, respectively.

For the Oxford-IIIT Pet dataset, ResNet34 was trained with transfer learning (with
ImageNet pre-trained weights), which has been proved to be effective in various visual
recognition tasks [130]. The optimizer was AdamW [131], and the parameters were
a batch size of 64 and a learning rate in the range of [1e−6, 1e−2]. The images were
resized into the dimensions of (224 × 224) and augmented with default augmentation
transforms from fastai.

Attack Settings

Three white-box attacks were used to test the defense framework by quantization: fast
gradient sign method (FGSM) under `∞-norm [53], projected gradient descent (PGD)
under `∞-norm [23], and Carlini and Wagner’s attack (CW) under `2-norm [67]. The
PGD attack was configured with a noise distance of 8/255, a step size of 2/255, and 20
iterations. The CW attack was set with a learning rate of 0.01, binary search steps of
9, and an initial constant of 0.001 for 20 iterations.

3.3.2 Results

Table 3.1 shows the results of the defense framework by quantization comparing to two
state-of-the-art defenses: adversarial training [23], and BaRT [39].

CIFAR-10

The following four models were compared in terms of clean accuracy and accuracy
under attacks in Table 3.1.

40

Table 3.1: Accuracy (%) of models under different attacks for CIFAR-10 and Oxford-
IIIT Pet

CIFAR-10
Model Clean FGSM PGD CW

ResNet20 90.71 16.22 0.00 0.21
ResNet20 w/Adv.Train 52.76 42.05 40.95 52.76
ResNet20-BaRT 80.02 80.25 80.21 35.09
ResNet20-dquant 85.28 85.28 85.28 85.28

Oxford-IIIT Pet
ResNet34 93.10 6.97 0.00 25.58
ResNet34 w/Adv.Train 3.38 3.38 3.32 2.10
ResNet34-BaRT 83.15 35.25 37.01 57.92
ResNet34-dquant 94.99 94.99 94.99 94.99

• ResNet20: This is the baseline model trained with clean images.

• ResNet20 w/Adv.Train: This model is adversarially trained by PGD training [23],
where ε = 16/255.

• ResNet20-BaRT: This model with is by the defense, BaRT [39], where the number
of transforms k = 5. There are ten transform groups in BaRT. In this experiment,
only seven of them were used, excluding the zoom group, contrast group, and
denoising group. The excluded transform groups caused the loss not a number
(NaN) during the experiment. Therefore, these transforms were excluded in this
experiment for the CIFAR-10 dataset.

• ResNet20-dquant: This model is trained with 1–bit dithered images by the defense
framework of this chapter. One-bit dithering is enforced by the framework because
dithering helps improve accuracy and adversarial noise on 1–bit images can be
completely removed.

Although the baseline model (ResNet20) has a highest accuracy, the accuracy severely
dropped under attacks. ResNet20-dquant achieved identical accuracy (i.e., 85.28 %)
whether or not the model was under attack given a condition that test images were 1–
bit. The accuracy of ResNet20 w/Adv.Train was 52.76 % under normal conditions (not
under attack). In comparison, ResNet20-BaRT model maintained an accuracy of 80 %
approximately. To further evaluate the defense models, PGD was run with differnet

41

20 40 60

Perturbation Budget ε (/255)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)
ResNet20

ResNet20 w/Adv.Train

ResNet20-BaRT

ResNet20-dquant

Figure 3.5: Accuracy (%) of models under PGD attack with various noise budgets for
the CIFAR-10 dataset.

noise budgets ε, and Fig. 3.5 plots the accuracy against varying ε. The ResNet20-
dquant and ResNet20-BaRT maintained a consistant accuracy and the other models
decreased the accuracy as ε was increased. From the figure, the defense by quantization
is effective even for the large ε if the test images are in 1–bit.

Oxford-IIIT Pet

In a similar fashion, the following four models were trained on the Oxford-IIIT Pet
dataset.

• ResNet34: This model was trained with clean images; four epochs to the last layer
and an additional four epochs to all unfrozen layers and the last layer by using
learning rate policy (1cycle) [132].

• ResNet34 w/Adv.Train: This model was trained with adversarial examples gener-
ated by PGD (i.e., adversarial training [23]) with ε = 16. The model was trained
for 4 epochs to the last layer and 30 epochs for all the layers.

• ResNet34-BaRT: This model was trained for four epochs before unfreezing the
layers and four epochs more after with BaRT applied images. Here, nine groups
of transforms were utilized, excluding the denoising group due to the NaN loss
problem.

42

0 20 40 60

Perturbation Budget ε (/255)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)
ResNet34

ResNet34 w/Adv.Train

ResNet34-BaRT

ResNet34-dquant

Figure 3.6: Accuracy (%) of models under PGD attack with various noise budgets for
the Oxford-IIIT Pet dataset.

• ResNet34-dquant: 1–bit dithered images were used to train this model by the
defense frame work of this chapter.

As presented in Table 3.1, with the help of transfer learning, ResNet34-dquant
achieved higher accuracy than the baseline model (i.e., 94.99 %). The accuracy of
ResNet34 w/Adv.Train was very low because it was only trained for 30 epochs and
transfer learning was not useful for this particular case. Although the model, ResNet34-
BaRT achieved the accuracy of 83.15 %, the accuracy significaltly dropped under at-
tacks. In contrast, the defense model by quantization (ResNet34-dquant) maintained an
identical accuracy whether or not the mode was under attacks. The graph of accuracy
versus varying noise budgets ε was shown in Fig. 3.6. The ResNet34-dquant with the
defense by quantization maintained the exact same accuracy for all noise distances (i.e.,
ε ≤ 64). The other models decreased the accuracy as ε was increased. Therefore, the
experiments confirmed that the defense by quantization is effective if the test images
are in 1–bit.

43

0 10 20 30 40 50

Pixel Number

0

50

100

150

P
ix

el
V

al
u

e

(a)

0 10 20 30 40 50

Pixel Number

0

50

100

150

200

250

P
ix

el
V

al
u

e

(b)

0 10 20 30 40 50

Pixel Number

0

50

100

150

200

250

P
ix

el
V

al
u

e

(c)

0 10 20 30 40 50

Pixel Number

0

50

100

150

200

250

P
ix

el
V

al
u

e

(d)

Figure 3.7: Visualization of image signal transform in quantization as a defense. (a) 8-
bit image x. (b) 1–bit image x1−bit. (c) Adversarial example x′

1−bit with noise distance
ε = 16. (d) 1–bit image x̂1−bit after removing adversarial noise.

3.3.3 Discussion

Justification

Let δ be x′
1−bit − x1−bit. Substituting x′

1−bit = x1−bit + δ to (3.3), we obtain

x′
1−bit =

⌊x1−bit + δ

128

⌋
· 255. (3.4)

Since x1−bit(i, j) ∈ {0, 255}, the following equation holds

x′
1−bit = x1−bit, (3.5)

under a condition that |δ(i, j)| < 128. This condition is generally satisfied because
adversarial noise is usually imperceptible to keep low distortion and the previously

44

known tested noise distance is 32. Therefore, x′
1−bit becomes exactly the same as

x1−bit after applying linear quantization for ε < 128.
For ease of understanding, 50 pixels from one test image were extracted, and the

change in pixel values in the defense framework was visualized in Fig. 3.7. In the figure,
an 8–bit image x in (a) was dithered to generate a 1–bit x1−bit in (b). Next, to form the
test image x′

1−bit, an adversarial noise with the distance ε = 16 was added as shown in
(c). The noise was completely removed by linear quantization as shown in (d) (i.e., the
original 1–bit image was reconstructed from the noisy one).

Limitation

The defense by quantization is effective only under the condition that the test images
are in 1–bit (i.e., adversarial noise is added to the 1–bit images). However, to defeat
the defense by quantization, an adaptive adversary can generate adversarial examples
under `0 projection, which is to control the number of pixels changed. In an experiment,
by flipping random 10 % of the pixels in a test image under the gradient direction, the
accuracy dropped to 31.72 %. Therefore, the defense by quantization is applicable only
for a limited scenario.

3.4 Summary

This chapter narrows down the adversarial space into 1–bit images and considers an
adversarial defense by simple linear quantization. The defense by quantization in this
chapter also introduces dithering to improve the classification accuracy for the first
time. Experiments were carried out for two datasets under three attacks. Empirical
results show that the defense by quantization achieved an identical accuracy whether
or not the model is under attack. The results suggest that the defense by quantization
was effective under the condition that the test images are in 1–bit, and the noise budget
is less than 128. However, `0 attack which controls the number of pixels changed can
attack the defense by quantization. Therefore, the defense by quantization works well
only under a limited scenario.

45

Chapter 4

Key-Based Adversarial Defense

As neural networks are vulnerable to adversarial examples [9,10], the security of neural
networks for applications such as autonomous vehicles, healthcare, and finance is under
scrutiny. In response to the threat of adversarial examples, numerous defenses have
been proposed in the literature. Yet, there is no robust model that can maintain a
classification accuracy close to a non-protected one.

Most of the defense methods either reduce the classification accuracy or are com-
pletely broken. The current state-of-the-art empirically robust defense is adversarial
training [23,42,93], but the accuracy of adversarially trained models is almost half lower
than that of non-robust models. Other ideal desirable defenses are certified/provable
defenses [85–87], but they are not scalable to larger datasets. Some certified defenses
have been scaled to a certain degree [88–91], but the accuracy is still not comparable to
empirically robust models. Other popular adversarial defenses that seem at first to have
a high classification accuracy are input transformation approaches such as in [104–108].
However, they all have been defeated when accounting for obfuscated gradients (a way
of gradient masking) [18]. To reinforce these weak defense methods, Raff et al. [39]
proposed a stronger defense by combining a large number of transforms stochastically.
However, applying many transforms results in a drop in accuracy even when a model
is not under attack, and it is computationally expensive.

Recently, new insight into adversarial defense has been gained by taking inspiration
from cryptographic principles [40,41,133]. The work by [41] bridges cryptography to ad-
versarial defense, and another method by [40,133] has been inspired by perceptual image
encryption methods, which were proposed for privacy-preserving machine learning and
encryption-then-compression systems [112–114, 116, 134, 135]. The encryption-inspired
adversarial defense (key-based defense) shows that as long as the key is kept secret,
conventional gradient-based attacks cannot produce good gradients, thus rendering the
attacks ineffective, even when the defense mechanism is known. This chapter aims to

47

achieve the following requirements:

1. High classification for clean images,

2. High classification for adversarial examples, and

3. Resistance against key estimation attacks.

In this chapter, the key-based defense is described in detail, and empirical results
are presented by performing non-adaptive attacks and adaptive attacks in comparison
with state-of-the-art defenses. Moreover, the chapter also discusses the advantages and
limitations of the key-based defense succinctly.

4.1 Related Work

4.1.1 Previous Encryption-Inspired Defenses

The second Kerckhoffs’s cryptographic principle states a system should not require se-
crecy even if it is exposed to the attacker, but the key should be secret [136]. By follow-
ing this cryptographic principle, Taran et al. first introduced a defense method that uses
a secret block of cryptographic transformation [41]. They proved the idea by using stan-
dard random permutation on small datasets (MNIST [117] and F-MNIST [118]) [41].
However, the use of cryptographic means is impractical because cryptography destroys
the correlation, and convolutional neural networks work best with correlation in im-
ages. This contradiction causes a severe accuracy drop on larger datasets such as
CIFAR-10 [119] and ImageNet [94]. To improve the classification accuracy, by taking
inspiration from learnable image encryption techniques [115,116], block-wise pixel shuf-
fling with a secret-key was proposed to maintain a high classification accuracy [133].
This chapter generalizes the previous key-based methods [41,133] and introduces other
transformations in a block-wise manner to defend against adversarial examples with a
secret key.

4.1.2 Learnable Image Encryption

Learnable image encryption (LIE) is to perceptually encrypt images to mainly protect
visual information on plain images while maintaining the network ability to learn the
encrypted ones for classification tasks. LIE methods are originally proposed for privacy-
preserving deep learning, and have two requirements: protecting visual information and
maintaining a high classification accuracy under the use of encrypted images. In a block-
wise manner, a color image is divided into blocks, and each block is processed by using a

48

series of encryption with a common key to all blocks [116] or with different keys [115]. In
a pixel-wise manner, negative/positive transformation to each pixel and color shuffling
across three channels are exploited to produce learnable encrypted images [114, 134].
Another recent method to generate visually protected images is the use of a transfor-
mation network which is trained in cooperation with a pre-trained classification model.
One such work utilized a generative adversarial network (GAN) [137]. To improve clas-
sification accuracy and robustness against various attacks, another approach that uses
U-Net has been proposed [138,139].

The key-based adversarial defense in this chapter is inspired by LIE methods, but
targets to achieve a different goal. The defense does not aim to protect visual in-
formation on plain images but to achieve a high classification for both clean images
and adversarial examples by keeping a secret key, which is used to control the model’s
decision.

4.2 Defense Framework by Secret Key

The main idea of the key-based defense is to embed a secret key into the model structure
with minimal impact on model performance. Assuming the key stays secret, an attacker
will not obtain any useful information on the model, which will render adversarial
attacks ineffective.

A block-wise transformation with a secret key can be defined as a function. Let g
be the transformation which takes input x ∈ [0, 1]c×h×w for a c-channel image of height
h and width w, key K, and block size M and produces a transformed image (i.e.,
g(x, K,M) = x̂). Here, the size of the input image is assumed to be a square shape
(i.e., h = w). Figure 4.1 illustrates an overview of the training and inference phases of
a classifier f with the key-based defense. Input images are transformed with a secret
key prior to training and inference of the model.

4.2.1 Block-Wise Transformation with Secret Key

Key-based transformation g can be implemented in different ways. The defense by [40]
introduced three block-wise transformations with a secret key: pixel shuffling (SHF),
negative/positive transformation (NEG), and format-preserving Feistel-based encryp-
tion (FFX) [140]. Figure 4.2 depicts the process of block-wise transformation [40]. The
detailed procedure of the block-wise transformation is as follows.

1. Divide x into blocks with a size of M such that {B(1,1), . . . ,B(h
M

, w
M

)}.

49

+

Model

Training Images

Test Image Noise

Adversary

Provider

Training

Testing

𝑔

Key 𝐾 Block Size 𝑀

𝑔

Key 𝐾 Block Size 𝑀

Trained
Model

Figure 4.1: Overview of key-based defense framework.

2. Flatten each block tensor B(i,j) into a vector, b(i,j) = (b(i,j)(1), . . . , b(i,j)(c×M ×
M)).

3. (For SHF)

• Generate a random permutation vector v with key K, such that
(v1, . . . , vk, . . . , vk′ , . . . , vc×M×M), where vk 6= vk′ if k 6= k′, and 1 ≤ vn ≤
c×M ×M .

• Permutate every vector b(i,j) with v as

b′(i,j)(k) = b(i,j)(vk) (4.1)

to obtain a shuffled vector, b′(i,j) i.e., (b′(i,j)(1), . . . , b′(i,j)(c×M ×M)).

(For NEG)

• Generate a random binary vector r with key K, such that
(r1, . . . , rk, . . . , rc×M×M), where rk ∈ {0, 1}. To keep the transformation
consistent, r is distributed with 50 % of “0”s and 50 % of “1”s.

• Perform negative/positive transformation on every vector b(i,j) with r as

b′(i,j)(k) =

{
b(i,j)(k) (rk = 0)
b(i,j)(k)⊕ (2L − 1) (rk = 1),

(4.2)

where ⊕ is an exclusive or (XOR) operation, L is the number of bits used in
b(i,j)(k), and L = 8 to obtain a transformed vector, b′(i,j).

50

Generate
𝒗 or 𝒓SHF/NEG/FFX

… …

……
… … … …

… …

……
… … … …

𝐁(%,%)

𝐁
((),

*
))

𝑐
𝑀

𝑀

𝑤

ℎ

𝒃(%,%)

𝒃
((),

*
))

𝒃′(%,%)

𝒃′
((),

*
))

𝐱

2𝐱

𝐾𝑀

Step 1 Step 2 Step 3

Step 4

𝑔

Figure 4.2: Procedure of block-wise transformation with secret key, g(x, K,M) which
takes image x, key K and block size M , and outputs transformed image x̂.

(For FFX)

• Generate a random binary vector r with key K, such that
(r1, . . . , rk, . . . , rc×M×M), where rk ∈ {0, 1}. To keep the transformation
consistent, r is distributed with 50 % of “0”s and 50 % of “1”s.

• Apply FFX to every vector b(i,j) with r as

b′(i,j)(k) =

{
b(i,j)(k) (rk = 0)
Enc(b(i,j)(k)) (rk = 1),

(4.3)

where Enc(·) is format-preserving Feistel-based encryption [140] configured
with an arbitrary password and a length of 3 digits to cover the whole range
of pixel values from 0 to 255, to obtain a transformed vector, b′(i,j).

4. Integrate the transformed vectors to form a transformed image tensor x̂.

Notably, the standard random perturbation used in Taran et al.’s method [41] is a
special case of SHF with the block size, which is equal to the image size (i.e., M = w =
h). In addition, different transformations produce different models, which is useful for
diversifying models in an ensemble. Moreover, users can have flexibility in choosing a
transformation according to desired requirements in a specific application.

51

4.2.2 Key Space

Typically, defense methods do not have an information advantage over attack methods.
Once the defense mechanism is known, an attacker can design adaptive attacks to
easily bypass the defense methods [18]. In key-based methods, the key is secret, and
it is critical to the strength of the defense method. In this regard, to keep the key
secret, it is assumed that transformed images are also secret because the key may be
recovered from these images. Therefore, the defensive key-based transformation should
be regarded as an intermediate layer, and transformed images should not be saved.

The key spaces of the three transformations from [40] vary depending on block size
M . For SHF, the key space is given by

KSHF(c×M ×M) = (c×M ×M)!. (4.4)

For NEG and FFX, 50 % of the pixels in each block are inversed/encrypted, and the
key controls which pixels are inversed/encrypted. Therefore, their key spaces are the
same and written as

KNEG/FFX(c×M ×M) =
(c×M ×M)!

((c×M ×M)/2)! · ((c×M ×M)/2)!
. (4.5)

When M is small, brute-force attacks are possible, and attackers can heuristically es-
timate the key by observing the model accuracy if the model weights are available to
the attackers. To overcome this limitation, the work by [141] proposed combining SHF
and NEG without degrading the model accuracy. Since there are two transformations
in [141], the 50 % constraint on the number of pixels to be transformed is relaxed. Thus,
the new combined key space becomes

K(SHF + NEG)(c×M ×M) = (c×M ×M)!× 2(c×M×M). (4.6)

4.2.3 Ensemble of Key-Based Models

By following Kerckhoffs’s second cryptographic principle, the key-based defense keeps a
secret key. Therefore, there is an information advantage over the gradient-based attacks.
Assuming the key stays secret, an attacker cannot compute any useful gradients on
the model, which will render the existing gradient-based adversarial attacks ineffective.
However, an attacker may perform gradient-free attacks (i.e., black-box attacks) without
the secret key if the attacker can obtain the probability scores of model prediction.

One straightforward way of defending against such attacks is to form an ensemble.
Ensemble methods have been used to improve model predictions in general. There
are many forms of an ensemble: voting, bagging, boosting, and stacking. A simple

52

Training Images

+

Test Image

Noise

A
dv

er
sa

ry

Training Models

Block Size
Selection 𝑓#

𝑓$

…

Transform
(𝐾#,𝑀#)

Transform
(𝐾$,𝑀$)

…

[𝑀#, … ,𝑀$]

Voting

𝑓#

𝑓$

…

Transform
(𝐾#,𝑀#)

Transform
(𝐾$,𝑀$)

…

Class Label Probability

Front-end Model
Testing Trained Models

Provider

Figure 4.3: Ensemble key-based defense framework [142].

voting ensemble can be formed with models trained by using key-based transformed
images [142].

Concretely, an ensemble of N models {f1, . . . , fN} is trained by using images trans-
formed by SHF with different keys and block sizes. An overview of the ensemble defense
framework is shown in Fig. 4.3. Block sizes {M1, . . . ,MN} are first selected, and then
N models are trained by using images transformed with the selected {M1, . . . ,MN} and
keys {K1, . . . , KN}. One of the models in the ensemble, f1, is a front-end model (i.e.,
public-facing model) that outputs the probability of a prediction. A final class label is
determined on the basis of voting prediction results from all models.

When an attacker attacks the public-facing model (f1), the adversarial noise gen-
erated on f1 is not efficiently transferable to other models in the ensemble. Thus,
the voting ensemble is able to defend against score-based black-box attacks. It was
confirmed that the ensemble defense [142] achieved more than 87 % accuracy under
score-based attacks such as in [78, 143, 144] and a clean accuracy of ≈ 95 % for the
CIFAR-10 dataset.

4.3 Threat Models

As described in [56], a threat model includes a set of assumptions such as an adver-
sary’s goals, capabilities, and knowledge. This chapter considers untargeted attacks
and employs three white-box attacks: projected gradient descent (PGD) under the `∞-
norm [23], Carlini and Wagner’s attack (CW) under the `2-norm [67], and elastic-net

53

attack (EAD) under the `1-norm [68].
The adversarial example, x′ at the (i+ 1)th iteration with PGD [23] is

x′(i+1) = Πx+∆(x′i + α · sign(∇xL(f(x′i), y))), (4.7)

where α is the step size, and Πx+∆ denotes projection to the allowable set of perturba-
tion, ∆. PGD is known as a powerful first-order adversary.

CW reformulates the optimization problem by using Lagrangian relaxation to find
the minimum perturbation under an `p norm [67]. Specifically, they solve the following
optimization,

arg min
δ
‖δ‖p + λ · L′(x + δ) s.t. x + δ ∈ [0, 1]c×h×w, (4.8)

where ‖·‖p is a distance function under `p norm, λ is a hyperparameter and L′ is a new
objective function defined as,

L′(x + δ) = max (max{Z(x + δ)i : i 6= t} − Z(x + δ)t,−κ) , (4.9)

where Z(·) denotes a softmax function, and κ is a constant to control the confidence so
that x + δ is classified as a target class t.

To encourage sparsity in the perturbation, EAD generates `1-oriented adversarial
examples [68]. EAD combines `1 and `2 regularization, optimizes the following objec-
tive:

arg min
δ

λ · L′(x + δ) + β‖δ‖1 + ‖δ‖2
2 s.t. x + δ ∈ [0, 1]c×h×w. (4.10)

CW is also a special case of EAD, where the `1 regularization parameter, β is set to
zero [68].

The chapter also assumes that the inner mechanism of the key-based defense is
known to the attackers except for the secret key. Therefore, to evaluate the key-based
defense, the three white-box attacks are utilized in both adaptive and non-adaptive
manners.

4.4 Experiments and Discussion

4.4.1 Experiment Conditions

Datasets

Two datasets were used: CIFAR-10 [119] and ImageNet [94]. CIFAR-10 consists of
60,000 color images (dimension of 32 × 32 × 3) with 10 classes (6000 images for each

54

class), where 50,000 images are for training and 10,000 for testing. For data prepro-
cessing, a batch size of 128 and live augmentation (random cropping with a padding
of 4 and random horizontal flip) were used for the training set. ImageNet comprises
1.28 million color images for training and 50,000 color images for validation. Images
were progressively resized during training, starting with larger batches of smaller im-
ages to smaller batches of larger images. Three phases of training were deployed from
the DAWNBench top submissions as mentioned in [42]. Phases 1 and 2 resized images
to 160 and 352 pixels, respectively, and phase 3 used the entire image size from the
training set. The augmentation methods used in the experiment were random resiz-
ing and cropping (sizes of 128, 224, and 288 respectively for each phase) and random
horizontal flip.

Networks

Deep residual networks [3] were utilized to evaluate the key-based defense. For CIFAR-
10, ResNet18 was trained for 200 epochs with efficient training techniques from the
DAWNBench top submissions: cyclic learning rates [145] and mixed-precision train-
ing [146]. The parameters of the stochastic gradient descent (SGD) optimizer were a
momentum of 0.9, weight decay of 0.0005, and maximum learning rate of 0.2. For Im-
ageNet, ResNet50 with pre-trained weights was used according to the training settings
from [42] with the removal of weight decay regularization from the batch normalization
layers. The network was trained for 15 epochs in total for the ImageNet dataset.

Attack Settings

Three white-box attacks were used to test the key-based defense: PGD under `∞-
norm [23], CW under `2-norm [67], and EAD under `1-norm [68]. The PGD attack
was configured with a noise distance of 8/255, a step size of 2/255, 50 iterations, and
random initialization. Since the evaluation was on untargeted attacks, CW and EAD
were configured with a confidence value of 0, learning rate of 0.01, binary search steps
of 9, and an initial constant of 0.001 for 1000 iterations for CIFAR-10 and 100 iterations
for ImageNet. EAD was set up with the elastic-net (EN) decision rule.

Evaluation Metrics

Two metrics were used to measure the performance of the key-based defense: accuracy
(ACC) and attack success rate (ASR). ACC is given by

ACC =

{
1
N

∑N
i=1 1(f(xi) = yi) (clean)

1
N

∑N
i=1 1(f(xi + δi) = yi) (attacked),

(4.11)

55

and ASR is defined as

ASR =
1

N

N∑
i=1

1(f(xi) = yi ∧ f(xi + δi) 6= yi), (4.12)

where N is the number of test images, 1(condition) is one if condition is true, otherwise
zero, {xi, yi} is a test image (xi) with its corresponding label (yi), and δi is its respective
adversarial noise depending on a specific attack.

4.4.2 Results

Clean Classification Accuracy

Table 4.1 captures the clean accuracy (ACC) of both the standard (no defense) and
key-based defense models for the CIFAR-10 and ImageNet datasets (i.e., when the
models were not under attack). Different block sizes (M ∈ {2, 4, 8, 16}) were used for
CIFAR-10, and only M = 4 was selected for ImageNet due to the expense of training
an ImageNet model. The ACC was calculated for the whole test set (10,000 images for
CIFAR-10 and 50,000 images for ImageNet). The trained models are denoted by their
defense method and block size in Table 4.1. For example, a model trained by using
SHF with a block size of M = 2 is indicated as “SHF (M = 2).” From Table 4.1, the
key-based defense models did not reduce the ACC significantly except for SHF with
M = 8 and 16 for the CIFAR-10 dataset. The results show that the key-based defense
models achieved a high clean accuracy close to that of a non-protected model.

Robustness Against Non-Adaptive Attacks

Models with different block sizes (M ∈ {2, 4, 8, 16}) for CIFAR-10 and models with
M = 4 for ImageNet were attacked by three adversaries bounded by different norm
balls: PGD (`∞) [23], CW (`2) [67], and EAD (`1) [68]. The attacks were carried out
without considering the defense (i.e., non-adaptive). Table 4.2 summarizes the results
for both CIFAR-10 and ImageNet.

CIFAR-10: The ASR was too low for all models under all attacks except for NEG
with M = 8 and 16. It is interesting to note that PGD could effectively defeat these two
NEG models, suggesting that the block size M plays an important role in key-based
defenses. However, the models using NEG with M = 2 and 4 were resistant against
PGD attacks and yielded low ASR values.

ImageNet: All three models had low ASR values for all attacks. Therefore, the
key-based defense was effective at defending against non-adaptive attacks even for a
large dataset like ImageNet.

56

Table 4.1: ACC (%) of standard and key-based defense models

Model ACC (CIFAR-10) ACC (ImageNet)

Standard (No defense) 95.45 73.70

SHF (M = 2) 94.45 –
SHF (M = 4) 91.84 72.41
SHF (M = 8) 85.12 –
SHF (M = 16) 76.22 –

NEG (M = 2) 95.32 –
NEG (M = 4) 93.41 72.63
NEG (M = 8) 91.54 –
NEG (M = 16) 92.68 –

FFX (M = 2) 93.67 –
FFX (M = 4) 92.30 72.18
FFX (M = 8) 91.99 –
FFX (M = 16) 91.38 –

Since PGD is a stronger adversary from the empirical results, the models with
M = 4 were further evaluated with PGD with different perturbation budgets (i.e.,
ε ∈ {2, 4, 8, 16, 22, 32}). A graph of ACC versus perturbation budget ε is shown in
Fig. 4.4. For both datasets, the ACC dropped as the perturbation budget ε increased.
All the models maintained a high ACC value when ε = 8/255. However, the models
reduced the ACC for ε = 32/255 significantly.

Robustness Against Adaptive Attacks

Three possible adaptive attacks, key estimation, estimation over transformation, and
transferred attack, are described, and the results of the attacks are presented as follows.

Key Estimation

Without the correct key or a near-correct key, conventional white-box attacks will not
work on the key-based defense. Brute-force attacks may not be feasible if the key space
is large enough. A heuristic way of searching for the key is to change the key on the basis
of accuracy. In the key-based defense, key K is used to generate a random permutation
vector v = (v1, . . . , vc×M×M) for SHF and a random binary vector r = (r1, . . . , rc×M×M)
for NEG and FFX. Therefore, the adversary can generate v′ or r′ with random key K ′

57

Table 4.2: ASR (%) of standard and key-based defense models under non-adaptive
attacks

CIFAR-10 ImageNet

Model PGD CW EAD PGD CW EAD
(`∞) (`2) (`1) (`∞) (`2) (`1)

SHF (M = 2) 7.90 0.00 0.00 – – –
SHF (M = 4) 3.82 0.00 0.00 8.43 0.00 0.20
SHF (M = 8) 3.19 0.00 0.00 – – –
SHF (M = 16) 2.21 0.00 0.00 – – –

NEG (M = 2) 8.93 0.18 0.09 – – –
NEG (M = 4) 3.18 0.00 0.00 6.36 0.00 0.00
NEG (M = 8) 90.30 2.66 4.28 – – –
NEG (M = 16) 98.88 5.31 9.31 – – –

FFX (M = 2) 4.53 0.37 0.28 – – –
FFX (M = 4) 4.37 0.28 0.00 8.86 0.80 0.00
FFX (M = 8) 4.07 0.19 0.09 – – –
FFX (M = 16) 2.17 0.76 0.09 – – –

Algorithm 2 Bubble sort-like Approach

Input: A batch of images, model
Output: v′ or r′

Initialize v′ or r′ with a random key K ′

accuracy ← 0
for i← 1, . . . , c×M ×M do

for j ← 1, . . . , (c×M ×M)− i do
Swap v′j and v′j+1 or r′j and r′j+1

current accuracy ← Calculate the accuracy of the model
if current accuracy > accuracy then

accuracy ← current accuracy
else

Swap v′j and v′j+1 or r′j and r′j+1 . Revert the swap
end if

end for
end for

58

10 20 30

Perturbation Budget ε (/255)

0

20

40

60

80

100

A
C

C
(%

)

SHF (M = 4, CIFAR-10)

NEG (M = 4, CIFAR-10)

FFX (M = 4, CIFAR-10)

SHF (M = 4, ImageNet)

NEG (M = 4, ImageNet)

FFX (M = 4, ImageNet)

Figure 4.4: ACC of key-based defense with M = 4 under PGD attack with various ε
for both CIFAR-10 and ImageNet.

and modify v′ or r′ by using the average accuracy over a batch of images as a guide to
carry out an adaptive attack. This can be done in a variety of ways. One straightforward
way is to run a bubble sort-like algorithm (repeatedly swapping the adjacent elements if
the accuracy improves as in Algorithm 2). Another way of estimating the key is finding
the correct position of an element in v′ or r′ by swapping an element with every other
element in v′ or r′ [40] (Algorithm 3) or by swapping every possible pair of elements in
v′ or r′ in accordance with the improvement in accuracy [141] (Algorithm 4).

After estimating v′ or r′, PGD was deployed to attack the models with M = 4.
Table 4.3 shows the results of all three algorithms for key estimation attacks, where
Algorithm 3 was run with T = 10 as reported in [40]. Algorithm 3 found an effective key
for NEG with M = 4, achieving an ASR of 77.76 %, which was significant. However,
the key estimation attacks were not successful for the other two models (i.e., SHF and
FFX).

Estimation over Transformation Attack

The Estimation over Transformation Attack (EOT) is effective for estimating gradients
in adversarial defenses with randomization as explained in [18]. Instead of taking one
step in the direction of gradients ∇xf(x), the direction of

∑30
i=1∇xf(x) is accounted

for to have better gradients. In other words, 30 keys are used to generate adversarial
examples under a PGD attack. Experiments results from [40] show that the ASR was

59

Algorithm 3 Method in [40]

Input: A batch of images, model
Output: v′ or r′

Initialize v′ or r′ with a random key K ′

accuracy ← 0
for t← 1 . . . T do

for i← 1, . . . , c×M ×M do
for j ← i+ 1, . . . , c×M ×M do

Swap v′i and v′j or r′i and r′j
current accuracy ← Calculate the accuracy of the model
if current accuracy > accuracy then

accuracy ← current accuracy
else

Swap v′i and v′j or r′i and r′j . Revert the swap
end if

end for
end for

end for

Algorithm 4 Method in [141]

Input: A batch of images, model
Output: v′ or r′

Initialize v′ or r′ with a random key K ′

indices← {(1, 2), (1, 3), . . . , (i, j), . . . , (c×M ×M − 1, c×M ×M)}
accuracy ← 0
for each pair (i, j) in indices do

Swap v′i and v′j or r′i and r′j
current accuracy ← Calculate the accuracy of the model
if current accuracy > accuracy then

accuracy ← current accuracy
else

Swap v′i and v′j or r′i and r′j . Revert the swap
end if

end for each

60

Table 4.3: ASR (%) of standard and key-based defense models under adaptive attacks
for the CIFAR-10 dataset

Model Key Estimation EOT Transferred Attack
Bubble Method [40] Method [141]

(T = 10)

SHF (M = 4) 4.17 3.70 3.70 1.70 5.07

NEG (M = 4) 3.80 77.76 28.73 1.58 1.49

FFX (M = 4) 3.46 3.27 3.09 5.24 6.41

too low for this type of attack (Table 4.3), suggesting the strength of key-based defenses.

Transferred Attack

Since the defense mechanism is known to the attacker, a substitute model can be trained
with the attacker’s assumed key. Then, the attacker generates adversarial examples with
PGD over the substitute model. This type of attack can be successful if the attacker’s
key is close to the correct secret key. Table 4.3 shows the empirical results from [40]
for the transferred attack. The ASR was low, and the adversarial examples from one
key-based defense model could not be transferred to another one. However, this type
of attack may be more effective if the attacker’s key is closer to the correct one.

Comparison with State-of-the-art Defenses

Most of the recent adversarial defenses, especially input transformation-based defenses,
have been invalidated by rigorous adaptive attacks [18,19]. Although adversarial train-
ing is repeatedly found effective for conventional attacks like PGD, it has been known to
be extremely difficult at the ImageNet scale due to the high computation cost [65]. Re-
cently, fast adversarial training was proposed to overcome such difficulty [42]. The key-
based defenses (both standard random permutation (SRP) [41] and block-wise trans-
formation [40]) have been compared with fast adversarial training (Fast AT) [42] and
a recent feature scattering-based approach (FS) [43] in terms of accuracy, whether or
not the model was under PGD attack with a perturbation budget of ε = 8/255.

CIFAR-10: The graph in Fig. 4.5 shows bar charts of the clean and attacked
accuracy (i.e., model accuracy under attack) of the defense models. One key-based
defense, NEG, achieved the highest accuracy whether or not the model was under
attack. However, NEG was vulnerable under key estimation attacks as shown in Ta-
ble 4.3. Although, the clean accuracies of Fast AT [42] and FS [43] were relatively high

61

Fast AT SRP FS SHF NEG FFX
0

20

40

60

80
A

cc
u

ra
cy

(%
)

83.8

65.16

89.98 91.84 93.41 92.3

46.44

62.63

69.35

89.47 91.2 88.73

Clean Attacked

Figure 4.5: Comparison of key-based defenses (M = 4) and state-of-the-art defenses
under PGD with ε = 8/255 for CIFAR-10.

(i.e., 83.80 % and 89.98 %), the attacked accuracy was significantly low (46.44 % and
69.35 %, respectively). The overall accuracy of SRP [41] was low. It can be clearly seen
that block-wise transformation provides a better performance accuracy even though
the same pixel shuffling operation was applied as in [41]. In short, key-based defenses
outperformed Fast AT [42] and FS [43] by having the information advantage of secret
keys for the CIFAR-10 dataset.

ImageNet: Similarly, the graph in Fig. 4.6 shows a performance comparison of Fast
AT [42] and key-based defense models. The clean accuracy of SRP [41] for ImageNet
was significantly low, and therefore, it was excluded from the comparison. The defense
by FS [43] was not available for ImageNet, and thus, the comparison was done with
Fast AT [42] only. When under attack, Fast AT [42] reduced the accuracy severely (i.e.,
11.61 %). From the empirical results, key-based defense models can be scaled to the
ImageNet level and maintain a high classification whether or not the models are under
attack.

4.4.3 Discussion

Advantages

• Classification Accuracy: Key-based defenses provide almost the same accuracy
as non-protected ones. One possible reason is that block-wise transformation

62

Fast AT SHF NEG FFX
0

20

40

60
A

cc
u

ra
cy

(%
)

55.45

72.41 72.63 72.18

11.61

67.86
70.47

67.94

Clean Attacked

Figure 4.6: Comparison of key-based defenses (M = 4) and a state-of-the-art defense
under PGD with ε = 8/255 for ImageNet.

maintains some correlation between pixels as reported in [44]. Moreover, each
block position in an input image is not changed (keeping spatial information)
unlike traditional encryption-then-compression (EtC) systems [112].

• Information Advantage for Defenses: Assuming the key stays secret, gradient-
based attacks are not effective against key-based defenses. Previous defenses,
especially input transformation defenses, are broken on account of obfuscated
gradients [18]. In contrast, in the key-based defense, transformed images are not
stored and are not available to the attacker. Thus, techniques like Backward
Pass Differentiable Approximation (BPDA) [18] are not applicable. Therefore,
the key-based defense has an information advantage over such attacks.

• Low Computation Cost: The block-wise operation utilized in the key-based de-
fense can be efficiently implemented with vectorized operations and is available for
large-scale systems without any noticeable overheads during training/inference,
in contrast to other image processing-based defenses such as [39].

• Application Range: The key-based defense can be expanded for other applications
such as model access control [44] and model watermarking [46].

63

Limitations

• High Perturbation Budget: In general, all adversarial defenses are designed to
defend against a certain noise budget. In real-world application scenarios, adver-
sarial noise cannot be controlled. Therefore, to account for a high perturbation
budget, the key-based defense alone is not enough, and it should be combined
with other detection methods.

• Black-Box Attacks: The key-based defense does not have any information advan-
tage over score-based and decision-based attacks. Therefore, such attacks may
successfully defeat the key-based defense in its current form. To overcome this
limitation, a simple solution is to add a randomization component to the key-based
defense or to form an ensemble. There are many ways of forming an ensemble,
such as voting, bagging, boosting, and stacking. A recent work shows that a
simple voting ensemble can be formed with models trained by using key-based
transformed images to defend against score-based attacks [142].

• Application Scenario: The key-based defense is specifically designed for image
classification models. Future research is required for other application scenarios
such as semantic segmentation and image retrieval.

4.5 Summary

This chapter presents a key-based defense that has the information advantage over the
attacks by following the second Kerckhoffs’s cryptographic principle. By keeping the
key secret, an attacker can not obtain any useful information on the model, which will
render adversarial attacks ineffective. The key-based defense in this chapter utilizes
a block-wise transformation with a secret key and is implemented in three different
transformations: pixel shuffling (SHF), negative/positive transformation (NEG), and
format-preserving Feistel-based encryption (FFX). Experiment results show that the
key-based defense maintained a high classification accuracy under gradient-based at-
tacks, and outperformed state-of-the-art adversarial defenses. However, the key-based
defense does not have any information advantage over black-box attacks.

64

Chapter 5

Model Protection by Secret Key

Training a production-level neural network model requires a significant amount of re-
sources such as a huge amount of data, powerful computing hardware, and efficient
algorithms. Therefore, trained models are a new form of intellectual property (IP), and
have great business value. In order to protect trained models from economic damage, it
is necessary to protect the IP of trained models. There are two aspects of IP protection
for CNN models: access control and watermarking.

Access control of trained models prevents unauthorized users from illegal usage of
the models and piracy. Unlike typical digital content such as audio, image, video, etc.,
neural network models are not static, but functional. Therefore, a stolen model can be
exploited for business gains from its competitors. Model access control addresses this
issue by ensuring only authorized users can use the model to its full capacity.

Another form of protecting trained models is through watermarking inspired by
digital watermarking methods. To combat copyright infringement, researchers have
proposed to embed a watermark into a neural network model, and the embedded wa-
termark is used to verify the ownership of the model. Model watermarking methods
focus on ownership verification and do not aim to protect the functionality of the model.

In order to prevent potential economic loss and to properly credit the model owners,
model protection methods (both access control and watermarking) are increasingly
important and demanding. This chapter presents two model access control frameworks
and one model watermarking framework by a secret key in the following sections. This
chapter aims to achieve the following requirements for model access control:

1. High classification accuracy for authorized users,

2. Low classification accuracy for unauthorized users, and

3. Resistance against key estimation attacks and fine-tuning attacks.

66

For model watermarking, this chapter aims to achieve the following requirements:

1. High classification accuracy for clean images,

2. High classification accuracy for transformed images, and

3. Resistance against pruning and fine-tuning attacks accounting for piracy and am-
biguity attacks.

5.1 Related Work

5.1.1 Previous Model Access Control Methods

Chen and Wu first proposed a model protection method against unauthorized access
inspired by adversarial examples [27]. Their method utilized an anti-piracy transform
module which is a secret perturbation network in such a way that the secret perturbation
is crucial to the model’s decision to control the access of the model [27]. In other words,
only the rightful users who have access to the secret perturbation can use the model
properly. However, this method [27] requires training a perturbation network along
with the classification network so that the optimal perturbation can be learned. In
addition, the classification accuracy of the method by [27] slightly drops compared to
non-protected models under the same training settings.

5.1.2 Previous Model Watermarking Methods

There are two types of model watermarking methods: white-box and black-box.
White-box approaches require access to model weights for embedding and detect-

ing watermarks in a model. These methods use an embedding regularizer, which is
an additional regularization term in a loss function during training [28–30]. A recent
study [35] showed that these regularizer-based methods can be attacked. Another pa-
per [32] highlighted that if watermarks are independent of a model’s performance, they
are vulnerable to ambiguity attacks [147] where two watermarks can be extracted from
a protected model, causing confusion regarding ownership. Therefore, they introduced
passports and passport layers [32]. However, a recent paper [36] pointed out that own-
ership verification can be broken by using reverse-engineered secret passport weights.
Accordingly, these white-box approaches are not practical in real-world applications
such as online services because access to the model weights from a plagiarized party is
not supported.

67

In black-box approaches, watermarks are extracted by observing the input and
output of a model. A study in [34] introduced a black-box method by using adversarial
examples. Another study in [121] implanted a backdoor in a model so that a watermark
can be triggered through the backdoor. Generally, in black-box approaches, a special
set of training examples is used so that watermarks are extracted from the inference
of a model [31–34]. Li et al. pointed out that backdoor attack-based methods can be
defeated by existing backdoor defenses (e.g. [148]), and most of the existing methods are
not robust enough against piracy attacks, where a verifiable watermark is injected into
a model while maintaining the model’s accuracy as described in [36]. Therefore, Li et
al. proposed a method called “null embedding”, which embeds a pattern into a model’s
decision process during the model’s initial training [36]. However, the effectiveness of
their method has not been confirmed yet on large networks such as residual networks [3],
which are widely used for image classification tasks.

Similar to the work by Li et al., this chapter introduces a model watermarking
framework that uses learnable transformed images with a secret key, in which the
original watermark cannot be removed by piracy attacks.

5.1.3 Block-Wise Transformation with Secret Key

Model protection methods (both access control and watermarking) in this chapter adopt
the block-wise transformation with a secret key from the key-based adversarial defense
in Chapter 4, Section 4. Three transformations: pixel shuffling (SHF), negative/positive
transformation (NEG), and format-preserving Feistel-based encryption (FFX) from the
adversarial defense (Chapter 4) are employed for a new application, model protection
in this chapter. However, there are a few differences as follows:

• For NEG and FFX, the restriction of 50 % of the pixels in each block are flipped
or encrypted, is relaxed. Therefore, the key spaces of these two transformations
(NEG and FFX) have become enlarged as

KNEG/FFX(c×M ×M) = 2(c×M×M). (5.1)

• Model protection methods utilize various transformation choices (both single and
combined transformations). In contrast, the adversarial defense uses only one or
two transformations.

5.2 Model Access Control by Secret Key

There are two variations of model access control frameworks by the block-wise transfor-
mation with a secret key: input transformation and feature map transformation. For

68

Training Images

Provider

Training Prediction
Transform

Key 𝐾 Block Size 𝑀

Key 𝐾 Block Size 𝑀

Transform

Correct
Prediction

Incorrect
Prediction

Authorized
User

Unauthorized
User

Testing

Testing

Model

Stolen
Model

Trained
Model

Figure 5.1: Access control framework by input transformation with secret key.

the first one, the block-wise transformation (SHF, NEG, FFX, or any combination of
the three) is applied to input images, while the second one applies only SHF to one or
more feature maps of the model.

5.2.1 Input Transformation

Figure 5.1 depicts the framework of model access control by input transformation with
a secret key. In this framework, input images are transformed by using block-wise
transformation with key K and block size M before training or testing a model. To test
a trained model, test images are also transformed with the same key K and block size
M . Here, there can be more than one transformation, therefore K can be a set of keys
depending on the number of transformations. When the model is stolen, unauthorized
users cannot get correct predictions in the absence of the secret key as shown in Fig. 5.1.

5.2.2 Feature Map Transformation

Instead of transforming input images, one or more feature maps in the network are
transformed by a block-wise transformation (SHF) with secret key K, and block size
M . Figure 5.2 illustrates the access control framework by feature map transformation
with a secret key. The transformation, SHF is applied to feature maps in the network
(e.g., ResNet-18), where the modified network is trained by using secret key K as shown
in Fig. 5.2. The model predicts a test image correctly only for authorized users with
secret key K, and the model provides incorrect predictions for unauthorized users when
the model is stolen. Accordingly, the stolen model cannot be used to its full capacity
when secret key K is not available.

69

Training Images

Provider

Training

PredictionKey 𝐾
Block Size 𝑀

Key 𝐾
Block Size 𝑀

Correct
Prediction

Incorrect
Prediction

Authorized
User

Unauthorized
User

Model

Transform

Trained Model

Testing

Testing

Transform

Stolen Model

Figure 5.2: Access control framework by feature map transformation with secret key.

5.3 Model Watermarking by Secret Key

For model watermarking, the block-wise transformation, NEG is utilized because NEG
provides a higher classification accuracy, and maintains a stronger correlation between
adjacent pixel values. An overview of image classification with the watermarking frame-
work is depicted in Fig. 5.3. To embed a watermark into a model, the model is trained
with both clean images and images transformed by using secret key K and block size
M . Such trained models learn to classify both plain images and transformed ones. This
property is exploited to verify the ownership of models.

5.3.1 Watermark Embedding

A pattern caused by the transformation with key K serves as a watermark in the
proposed method. To embed the watermark in a model, the model is trained by using
both plain and transformed images. Let {(xi, yi)}i be a set of training examples (pairs
of images and corresponding labels). Algorithm 5 shows the watermark embedding
process during training. Every image xi is transformed by NEG (g(·, ·, ·)) with key K
to obtain a transformed images x̂i. Model f is trained by using both {(xi, yi)}i and
{(x̂i, yi)}i.

5.3.2 Watermark Detection

To detect embedded watermarks, a statistical watermark-extraction method is used
during model inference. Let {ui}i be a set of test images. Every image ui is transformed

70

Transform
(𝐾,𝑀)

Transform
(𝐾,𝑀)

= ?

Prediction

Predictions

Training

Testing

Model

Trained
Model

Figure 5.3: Model watermarking framework by block-wise transformation with secret
key.

Algorithm 5 Watermark Embedding

Input: {(xi, yi)}i, K,M
Output: f
1: for each xi do
2: x̂i ← g(xi, K,M)
3: end for each
4: f ← Train ({(xi, yi)}i)
5: f ← Train ({(x̂i, yi)}i)

with the same key K and block size M to obtain ûi. Notably, {ui}i is not a special
pre-defined trigger set unlike conventional methods, so it can be a set of any test images
within a classifier’s distribution. In a typical image-classification scenario, f takes a
test image (ui) and outputs a vector of unnormalized log probabilities (i.e., logits) as
f(ui). In accordance with this scenario, the class label of ui is obtained by the argmax
operation denoted as C(f(ui)).

The watermark is detected by matching between C(f(ui)) and C(f(ûi)), and is
defined as

τ =
1

N

N∑
i=1

1(C(f(ui)) = C(f(ûi))), (5.2)

where N is the number of test images, and 1(condition) is a value of one if the condition

71

is satisfied, otherwise a value of zero.
To verify the ownership of a model, an inspector needs to set a threshold th. By

using th, the watermark detection process is carried out as in Algorithm 6. If τ is
greater than th, the ownership verification is successful.

Algorithm 6 Watermark Detection

Input: f, {ui}i, K,M, th
Output: Successful or Unsuccessful
1: for each ui do
2: ûi ← g(ui, K,M)
3: end for each
4: Calculate τ as in Eq. (5.2)
5: if τ > th then
6: Successful
7: else
8: Unsuccessful
9: end if

5.4 Threat Models

A threat model includes a set of assumptions such as an attacker’s goals, knowledge, and
capabilities. An attacker may steal a model to achieve different goals. The attacker’s
goal is assumed to be able to make use of a stolen model. Therefore, the attacker may
estimate a key or fine-tune the model in order to remove the key. Model protection
methods in this chapter assume that the attacker obtains a clone of the model and a
small subset of the training dataset. There are two common ways of modifying models:
fine-tuning and pruning.

Fine-tuning (transfer learning) [149] trains a model on top of pre-trained weights.
Since fine-tuning alters the weights of a model, an attacker may use fine-tuning as an
attack to overwrite a protected model with the intent of forging a key.

Deep neural network models are often over-parameterized and contain millions of
parameters. These giant models cannot be directly deployed on devices with limited
resources such as smartphones, digital assistants, and embedded systems. Therefore,
pruning techniques such as in [150–153] are used to compress the models by removing
unimportant connections or neurons without losing accuracy. In this chapter, parameter
pruning is carried out by zeroing out weight values on the basis of the lowest `1-norm

72

(i.e., to prune the weights that have the smallest absolute values) as in [28] to the
investigate the model’s reaction to protection after pruning.

5.5 Experiments and Discussion

5.5.1 Experiment Conditions

Datasets

Two datasets were used to evaluate the model protection methods: CIFAR-10 [119] and
ImageNet [94]. CIFAR-10 consists of 60,000 color images (dimension of 32 × 32 × 3)
with 10 classes (6000 images for each class) where 50,000 images are for training and
10,000 for testing. For data preprocessing, a batch size of 128 and live augmentation
(random cropping with a padding of 4 and random horizontal flip) on a training set.
ImageNet comprises 1.28 million color images for training and 50,000 color images
for validation. Images were progressively resized during training starting with larger
batches of smaller images to smaller batches of larger images. Three phases of training
from the DAWNBench top submissions as mentioned in [42] was deployed. Phases 1
and 2 resized images to 160 and 352 pixels, respectively, and phase 3 used the entire
image size from the training set. The augmentation methods used in the experiment
were random resizing and cropping (sizes of 128, 224, and 288 respectively for each
phase) and random horizontal flip.

Networks

Deep residual networks [3] were utilized for evaluating the key-based defense. For
CIFAR-10, ResNet18 was trained for 200 epochs with efficient training techniques from
the DAWNBench top submissions: cyclic learning rates [145] and mixed-precision train-
ing [146]. The parameters of the stochastic gradient descent (SGD) optimizer were a
momentum of 0.9, weight decay of 0.0005, and maximum learning rate of 0.2. For Im-
ageNet, ResNet50 with pre-trained weights was used according to the training settings
from [42] with the removal of weight decay regularization from batch normalization
layers. The network was trained for 15 epochs in total for the ImageNet dataset.

Attack Settings

It is assumed that a subset of dataset D′ is available to the attacker. Experiments were
carried out on the size of D′ (i.e., |D′| ∈ {100, 500, 1000, 5000}). The protected models
were fine-tuned with D′ for 30 epochs whether to remove or overwrite the key.

73

5.5.2 Results for Model Access Control

Classification Accuracy (Input Transformation)

Table 5.1 summarizes classification performance for protected models by input transfor-
mation method for two different datasets (CIFAR-10 and ImageNet). The models were
trained by using images transformed by various transformations (both single and com-
bined transformations) with different block sizes (i.e., M ∈ {2, 4, 8, 16}). The trained
models are named after the shorthand of the respective transformations. For example,
the model trained by using images transformed by SHF transformation is denoted as
SHF, that by SHF and NEG as SHF + NEG, and so on. The models were evaluated
under three conditions: with correct key K, with incorrect key K ′, and with plain im-
ages (without any transformation). The results for incorrect key K ′ were averaged over
1000 random keys. Overall, NEG achieved the highest accuracy when correct key K
was given. However, under the use of bigger block sizes such as 8 or 16, access control
performance was weak for the CIFAR-10 dataset (i.e., high accuracy for incorrect key
K ′ and plain images). The models with combined transformations such as SHF + NEG
and SHF + FFX decreased the classification accuracy, compared with those with NEG
and FFX, when using M = 8 or 16. The advantage of a combined transformation is
that it can increase the key space, but it slightly reduces the classification accuracy. In
short, the access control method by input transformation provides high accuracy for
correct key K, and low accuracy for incorrect key K ′ and plain images.

Key Estimation Attack (Input Transformation)

The Algorithm 4 from Chapter 4 was utilized to estimate a key by observing the ac-
curacy improvement over a batch of images. The resulting estimated key K ′ was used
to evaluate the classification performance of the protected models. Table 5.2 captures
the classification accuracy of protected models (M = 4) for both correct key K and
estimated key K ′. The estimated keys were not good enough to provide a reasonable
accuracy except for FFX, which replaces a pixel value with a random value by using
a password, so the encrypted pixel value contains almost no information. Therefore,
the location of the un-encrypted pixel values plays an important role in the model’s
decision-making process, as the encrypted pixel values are not important. This prop-
erty helps an attacker to effectively find a good key when performing key estimation
attacks (Chapter 4 Algorithm 4). In contrast, in the other two transformations (SHF
and NEG), transformed pixel values have some information, and both positions of un-
encrypted pixels and pixel values are important. Therefore, the indication to search for
a good key was difficult for SHF and NEG compared to FFX.

74

Table 5.1: Accuracy (%) of protected models and baseline model for two datasets. Best
results are in bold.

CIFAR-10 ImageNet
Model Correct Incorrect Plain Correct Incorrect Plain

(K) (K ′) (K) (K ′)

M
=

2

SHF 94.76 36.36 31.43 73.00 46.57 40.35
NEG 95.32 18.44 13.91 73.04 6.53 0.98
FFX 93.80 15.69 38.84 72.43 0.12 0.23
SHF + NEG 94.50 20.65 11.79 72.90 4.87 1.12
SHF + FFX 93.02 15.30 19.60 72.30 0.47 0.19
SHF + NEG + FFX 92.82 14.03 18.69 71.96 0.16 0.18

M
=

4

SHF 92.58 20.23 27.77 72.41 13.06 32.98
NEG 93.41 12.67 12.17 72.63 0.68 0.36
FFX 92.29 18.38 37.06 72.17 0.15 0.15
SHF + NEG 92.37 12.11 12.35 72.15 0.21 0.25
SHF + FFX 90.71 12.31 20.75 71.96 0.14 0.17
SHF + NEG + FFX 90.50 10.60 13.10 71.68 0.12 0.16

M
=

8

SHF 86.40 17.00 14.42 70.85 1.25 11.74
NEG 91.54 71.35 79.51 71.83 0.26 0.12
FFX 92.00 47.07 37.25 71.46 0.30 0.09
SHF + NEG 86.47 12.16 14.75 71.14 0.19 0.86
SHF + FFX 86.01 11.81 15.20 70.77 0.11 0.14
SHF + NEG + FFX 85.49 10.23 10.31 70.18 0.10 0.11

M
=

16

SHF 77.24 10.57 13.36 67.03 0.23 4.22
NEG 92.68 88.27 89.00 70.19 0.97 5.52
FFX 91.38 72.91 29.35 69.24 2.07 0.14
SHF + NEG 77.52 10.66 11.70 67.50 0.11 0.18
SHF + FFX 76.28 10.20 12.79 63.75 0.16 0.13
SHF + NEG + FFX 75.78 10.00 9.92 63.43 0.09 0.12

Baseline 95.45 (Not protected) 73.70 (Not protected)

75

Table 5.2: Accuracy (%) of protected models (M = 4) under key estimation attack

Model Correct (K) Estimated (K ′)

SHF 92.58 25.66
NEG 93.41 37.44
FFX 92.29 80.97
SHF + NEG 92.37 14.53
SHF + FFX 90.71 15.04
SHF + NEG + FFX 90.50 11.00

Fine-tuning Attack (Input Transformation)

As described in Section 5.5.1, fine-tuning attacks were performed to overwrite the cor-
rect key with a subset of the dataset, D′. Table 5.3 shows the results of fine-tuning
attacks for the CIFAR-10 dataset. Although the accuracy improved with respect to the
size of D′, it was still lower than the performance of the correct key K. Therefore, the
results show that the compromised models were not as good as the original models. As
a result, the attacker is not able to use the model to full capacity.

Table 5.3: Accuracy (%) of protected models by input transformation under fine-tuning
attacks

Model Correct (K) |D′| = 100 |D′| = 500 |D′| = 1000

SHF 92.58 12.69 38.33 46.73
NEG 93.41 10.57 37.25 47.41
FFX 92.29 10.15 32.30 40.52
SHF + NEG 92.37 14.03 37.50 46.36
SHF + FFX 90.71 12.54 46.28 55.11
SHF + NEG + FFX 90.50 11.15 39.59 48.13

Comparison with State-of-the-art Methods (Input Transformation)

The comparison was made for the model with NEG (M = 4) and the state-of-the-art
passport protected model, Scheme V1 [32] in terms of classification accuracy with/without
correct key/passports, overheads, network modification and key management for the
CIFAR-10 dataset. Scheme V1 [32] was not trained and tested using the same settings
as NEG model because the network in V1 was modified with passport layers and the

76

hyperparameters were based on the modified network. In contrast, the NEG model
used a standard ResNet18 and was trained with cyclic learning rates [145] and mixed
precision training [146].

Table 5.4 summarizes the comparison. In terms of accuracy when the correct
key/passport was given, the accuracy of V1 was slightly higher than that of NEG at
1.21 %. However, it was confirmed that if block size M = 2 was used, NEG achieved
higher accuracy than V1 (i.e., 95.32 %). When estimated incorrect key was given, the
accuracy of NEG significantly dropped. In contrast, when reverse-engineered (i.e., es-
timated) passports were used, the accuracy of V1 was high (70 %).

In terms of overhead, V1 modifies a network with additional passport layers; there-
fore, it introduces a training and inference overhead for both datasets. The overheads
in [32] are based on the relative recorded time taken as mentioned in the paper by
the original authors. In contrast, the model with NEG does not have any notice-
able overhead, and there is no modification in the network. Moreover, the block-wise
transformation in the proposed model protection can be efficiently implemented with
vectorized operations; therefore, pre-processing with the block-wise transformation does
not cause any noticeable overheads in both training and testing.

From a key management perspective, V1 requires a trained model to generate pass-
ports, and the model with NEG does not need any model to generate keys. Therefore,
the key management of NEG is simple and straightforward.

77

T
ab

le
5.

4:
C

om
p
ar

is
on

of
p
ro

te
ct

ed
m

o
d
el

N
E

G
b
y

in
p
u
t

tr
an

sf
or

m
at

io
n

an
d

st
at

e-
of

-t
h
e-

ar
t

p
as

sp
or

t-
p
ro

te
ct

ed
m

o
d
el

M
o
d
el

C
or

re
ct
K

/
P

as
sp

or
ts

E
st

im
at

ed
K
′

/
P

as
sp

or
ts

T
ra

in
in

g
In

fe
re

n
ce

N
et

w
or

k
K

ey
O

ve
rh

ea
d

O
ve

rh
ea

d
M

o
d
ifi

ca
ti

on
M

an
ag

em
en

t

N
E

G
(M

=
4)

93
.4

1
37
.4

4
N

eg
li
gi

b
le

N
eg

li
gi

b
le

N
o

E
as

y

S
ch

em
e
V 1

[3
2]

94
.6

2
70
.0

0
15

–3
0%

[3
2]

10
%

[3
2]

Y
es

D
iffi

cu
lt

78

Classification Accuracy (Feature Map Transformation)

Different models were trained by applying SHF to different feature maps in ResNet-18.
All models in the experiments used a block size M of 2. The trained models models
were evaluated under three conditions for transformation: with correct key K, with
incorrect key K ′, and without applying the transformation.

Table 3.1 summarizes the results of protected models by feature transformation
comparing with the ones by input transformation, where the classification accuracy for
incorrect key K ′ was averaged over 100 random keys. The key space for all models
is also presented in Table 3.1. The model trained by transforming the feature map of
the initial convolution is indicated as “Initial Conv”, that of the first group of residual
blocks as “Layer 1”, the second as “Layer 2”, and so on. Experiment results show
that the accuracy of the protected models by feature transformation is almost the
same as that of non-protected models (i.e., baseline). Moreover, feature transformation
significantly increased the key space, and maintained a higher classification accuracy
for correct key K, a lower classification accuracy for incorrect key K ′ and without
transformation. Therefore, the models by feature transformation outperformed the
ones by input transformation.

79

T
ab

le
5.

5:
A

cc
u
ra

cy
(%

)
an

d
ke

y
sp

ac
e

of
p
ro

te
ct

ed
m

o
d
el

s
b
y

fe
at

u
re

tr
an

sf
or

m
at

io
n

co
m

p
ar

in
g

w
it

h
on

es
b
y

in
p
u
t

tr
an

sf
or

m
at

io
n

an
d

b
as

el
in

e
m

o
d
el

M
o
d
el

K
ey

S
p
ac

e
A

cc
u
ra

cy
(K

)
A

cc
u
ra

cy
(K
′)

A
cc

u
ra

cy
(w

it
h
ou

t
tr

an
sf

or
m

at
io

n
)

Feature†

In
it

ia
l

C
on

v
(M

=
2)

25
6!

94
.8

3
10
.7

4
9.

94
L

ay
er

1
(M

=
2)

25
6!

95
.3

8
9.

64
10
.0

8
L

ay
er

2
(M

=
2)

51
2!

95
.1

6
10
.6

4
6.

55
L

ay
er

3
(M

=
2)

10
24

!
95
.3

9
10
.1

6
10
.2

2
L

ay
er

4
(M

=
2)

20
48

!
95
.2

1
11
.3

6
1.

30

Input∗

S
H

F
(M

=
2)

12
!

94
.7

6
36
.5

5
31
.4

3
N

E
G

(M
=

2)
21

2
95
.3

2
19
.4

0
13
.9

1
F

F
X

(M
=

2)
21

2
93
.8

0
14
.6

7
38
.8

4
S
H

F
(M

=
4)

48
!

92
.5

8
20
.1

5
27
.7

7
N

E
G

(M
=

4)
24

8
93
.4

1
12
.5

0
12
.1

7
F

F
X

(M
=

4)
24

8
92
.2

9
18
.4

5
37
.0

6

B
as

el
in

e
95

.4
5

(N
ot

p
ro

te
ct

ed
)

In
p
u
t∗

=
In
p
u
t
T
ra
n
sf
or
m
at
io
n
an

d
F
ea
tu
re
†
=

F
ea
tu
re

T
ra
n
sf
o
rm

a
ti
o
n

80

Table 5.6: Accuracy (%) of protected models by feature transformation under key
estimation attack comparing with previous protected models

Model Correct (K) Estimated (K ′)

Initial Conv (M = 2) 94.83 20.17
Layer 1 (M = 2) 95.38 16.35
Layer 2 (M = 2) 95.16 23.58
Layer 3 (M = 2) 95.39 50.13
Layer 4 (M = 2) 95.21 89.30

SHF∗ (M = 4) 92.58 25.66
NEG∗ (M = 4) 93.41 37.44
FFX∗ (M = 4) 92.29 80.97
∗ indicates the model by the input transformation method.

Key Estimation Attack (Feature Map Transformation)

Similar to the access control method by input transformation, the Algorithm 4 from
Chapter 4 was also deployed to estimate a key by observing the accuracy improvement
over a batch of images. The resulting estimated key K ′ was used to evaluate the
classification performance of the protected models.

Table 5.6 captures the classification performance of the protected models comparing
with the ones by input transformation under the key estimation attack. Note that the
previous models with M = 4 were used for the comparison because the key space of the
previous models for M = 2 is relatively small. From the table, the accuracy of estimated
key K ′ for Layer 3 and 4 are 50.13 % and 89.30 % respectively. Interestingly, although
the key space of Layer 3 and 4 was larger, key estimation attacks found a good key to
provide a reasonable accuracy. However, the estimated keys were not good enough for
the other models. Therefore, the protected models by feature transformation provided
better resistance against key estimation attacks except the models, Layer 3 and 4.

Fine-tuning Attack (Feature Map Transformation)

For feature transformation method, there are many feature maps in the network, and
the attacker may not know the location of the transformed feature map. Therefore,
it is more natural to carry out fine-tuning attacks to remove the key from the model,
rather than overwriting the key. The models were fine-tuned according to the settings in
Section 5.5.1 with a subset of the dataset, D′. Table 5.7 shows the results of fine-tuning
attacks for the protected models comparing with the ones by input transformation.

81

Table 5.7: Accuracy (%) of protected models under fine-tuning attacks comparing with
models by input transformation

Model Original |D′| = 100 |D′| = 500 |D′| = 1000

Initial† 94.83 18.47 55.38 69.42
Layer 1 95.38 22.37 66.90 78.54
Layer 2 95.16 21.75 66.38 74.94
Layer 3 95.39 20.84 74.59 80.99
Layer 4 95.21 87.43 73.28 94.63

SHF∗ 94.76 33.89 70.69 78.01
NEG∗ 95.32 16.84 58.17 75.00
FFX∗ 93.80 44.32 75.45 80.86

Initial† stands for “Initial Convolution”.
∗ indicates the model by the input transformation method.

Although the accuracy improved with respect to the size of D′, it was still lower than
the performance of the correct key K except for Layer 3 and 4. Overall, the model
“Initial Conv” provided better robustness against fine-tuning attacks than any other
models.

Comparison with State-of-the-art Methods (Feature Map Transformation)

Since underlying mechanisms of the access control method by [27], which uses a pertur-
bation network, and the method by feature transformation are different, it is difficult to
directly compare them. To make a high-level comparison, the anti-piracy method [27]
was implemented in the same training settings as in Section 5.5.1 for the CIFAR-10
dataset. Then, the models were compared in terms of authorized accuracy (i.e., with
correct transformation/perturbation), unauthorized accuracy (i.e., without transfor-
mation/perturbation), and the core method used in the two models (Table 5.8). The
main difference is that the method by feature transformation uses a block-wise trans-
formation with a secret key and the anti-piracy method [27] utilizes a perturbation
network. In terms of classification performance, the method by feature transformation
achieves a higher authorized accuracy, which is close to baseline accuracy, and a lower
unauthorized accuracy than that of the anti-piracy method [27].

82

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

o
n

lo
ca

ti
on

(x
+

1
,y

)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

o
n

lo
ca

ti
on

(x
,y

+
1)

(a)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
g
ra

y
va

lu
e

on
lo

ca
ti

o
n

(x
+

1
,y

+
1
)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x

+
1
,y

)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x
,y

+
1)

(b)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x

+
1
,y

+
1)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x

+
1
,y

)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x
,y

+
1)

(c)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x

+
1
,y

+
1)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x

+
1
,y

)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x
,y

+
1)

(d)

0 50 100 150 200 250

Pixel gray value on location (x, y)

0

50

100

150

200

250

P
ix

el
gr

ay
va

lu
e

on
lo

ca
ti

on
(x

+
1
,y

+
1)

Figure 5.4: Horizontal, vertical and diagonal correlation test results for (a) plain image
and images transformed by (b) SHF, (c) NEG and (d) FFX (M = 4).

83

Table 5.8: Comparison of proposed protected model and state-of-the-art anti-piracy
model [27]

Model Authorized Unauthorized Method
Accuracy Accuracy

Initial Conv 94.83 9.94 Block-Wise Transformation
Anti-piracy [27] 92.89 14.21 Perturbation Network

Baseline 95.45 95.45 Non-protected

5.5.3 Discussion for Model Access Control

Image Correlation Analysis (Input Transformation)

To gain insights into the classification performance of block-wise transformed images,
adjacent pixel correlation tests were carried out on a test image, “dog,” in the horizontal,
vertical, and diagonal directions as shown in Fig. 5.4. From the figure, all transforma-
tions were confirmed to maintain some correlation between pixels differently. The pixel
correlation distribution of the image transformed by SHF was similar to that of the
plain image. For NEG and FFX, the pixel correlation distributions were different from
that of the plain image. In addition, the pixel correlation of FFX was slightly weak
due to the use of FFX, compared with the other ones, so this property might have
caused a lower accuracy than those of the other transformations in Table 5.1. Accord-
ingly, there is some correlation between pixels in the transformed images, so block-wise
transformations can achieve a high classification accuracy.

Key Sensitivity Test (Input Transformation)

Key sensitivity tests were carried out for models with M = 4 and 8 on the CIFAR-10
dataset. The key sensitivity is defined as the difference in accuracy between the correct
key and the modified key (i.e., the correct key with a small change), which is given by

Key Sensitivity = ACC− ACC′, (5.3)

where ACC is the classification accuracy with a correct key, and ACC′ is that with a
key that has a small change from the correct key.

To make a small change, two random elements were swapped in the correct key
for SHF, and one element in the correct key was flipped for NEG and FFX (i.e., “0”
to “1” and “1” to “0”). Table 5.9 shows the result of the key sensitivity tests, where
the values in the table were averaged over c ×M ×M times to cover changes in the

84

different positions of the keys. From the results, it is observed that low key sensitivity
values reflected a higher accuracy for the incorrect keys, and high ones corresponded
to a lower accuracy for the incorrect ones, as shown in Table 5.1. The key sensitivity
in the table gives some insights into the difference among transformations.

Table 5.9: Key sensitivity of various transformations with M = 4 and 8

Model M = 4 M = 8

SHF 1.79 0.31
NEG 9.68 0.11
FFX 5.17 0.29
SHF + NEG 3.80 0.59
SHF + FFX 5.15 0.67
SHF + NEG + FFX 5.65 0.72

Key Improvement (Input Transformation)

When M = 2, the key space for the block-wise transformations is relatively small, so
brute force attacks are possible. To improve the key space, there are two ways: (1) to
use a larger block size such as 8×8, 8×4, etc. and (2) to use a combined transformation
such as SHF + NEG or SHF + FFX. Note that a value of M affects not only the key
space but also the classification accuracy and key sensitivity. Accordingly, users are
requested to find a good trade-off among them.

Selection of Transformations (Input Transformation)

Classification accuracy and model protection performance depend on the type of trans-
formation and block size M . We recommend the following selection of transformations
accordingly. When a higher classification accuracy is required, NEG or a combined
transformation such as SHF + NEG or SHF + FFX with a small block size M is rec-
ommended. When higher protection performance is preferred, a larger M with SHF or
a combined transformation is suitable.

Limitations (Input Transformation)

The access control method by input transformation focuses on image classification tasks
because the three encryption methods are designed for image classification tasks. When
these encryption methods are applied to other tasks such as image segmentation and

85

image retrieval, the performance may drop compared with that of using plain images.
Therefore, the access control method in this chapter is limited to image classification
tasks, and novel image transformations are expected to be designed for applying other
tasks.

Difference between Input and Feature Transformation

Although both feature transformation and input transformation utilize a block-wise
transformation with a secret key, only SHF is applicable to the feature transformation
because SHF does not change pixel values. The access control method by feature
transformation outperformed the one by input transformation in terms of classification
accuracy and key space. However, the models trained by transforming feature maps of
later layers in the network such as Layer 3 and 4 were vulnerable towards key estimation
and fine-tuning attacks. Therefore, transforming the feature maps of earlier layers in
the network is suitable for the stronger access control performance.

Both access control methods (input transformation and feature transformation) are
limited to image classification tasks. Further research is required to apply these methods
in other tasks such as semantic segmentation and image retrieval.

5.5.4 Results for Model Watermarking

Classification Accuracy

The models were trained with the watermarking framework under five block sizes (i.e.,
M ∈ {2, 4, 8, 16, 32}). The trained models were evaluated under three conditions: using
plain images (plain), using transformed images with correct key K, and using trans-
formed images with incorrect key K ′. The matching rates, τ and τ ′ were calculated to
verify the ownership for correct key K and incorrect key K ′ respectively.

Table 5.10 summarizes the results obtained under the above conditions. The models
with a small block size such as M = 2 and 4 performed better in detecting watermarks
than the ones with M = 8, 16, and 32. The models trained by transformed images
with bigger block sizes are sensitive towards the key, thus they may cause ownership
confusion. The baseline model did not have a watermark and therefore, the τ value was
low. Since models with M = 2 and 4 maintained a high classification accuracy when
correct key K was used, and the accuracy severely dropped when incorrect key K ′ was
given, the models with M = 2 and 4 were further evaluated against fine-tuning and
pruning attacks.

86

Table 5.10: Classification Accuracy (%) and τ (%) of watermarked models and baseline
model.

Model Plain Correct (K) τ Incorrect (K ′) τ

M = 2 92.74 93.43 95.87 10.53 10.26
M = 4 92.99 92.24 94.20 15.55 15.75

M = 8 93.52 87.25 89.18 73.40 75.00
M = 16 93.71 89.26 90.50 82.21 83.87
M = 32 93.88 89.00 91.08 85.51 87.78

Baseline 95.45 11.34 11.43 12.02 12.12

Table 5.11: Classification Accuracy (%) and τ (%) of watermarked models under fine-
tuning attacks.

1 |D′| = 100 2 |D′| = 500 3 |D′| = 5000
Model Accuracy τ τ ′ Accuracy τ τ ′ Accuracy τ τ ′

M = 2 89.44 93.64 13.26 83.59 88.84 31.93 86.37 87.11 84.26
M = 4 91.79 93.46 16.50 87.50 89.90 23.14 82.62 71.24 69.15

Fine-tuning Attack

In order to embed a new watermark, fine-tuning attacks were carried out according
to the settings in Section 5.5.1 with a subset of the dataset, D′. Table 5.11 captures
the results of fine-tuning attacks; model accuracy after fine-tuning, matching rate τ
for the original correct key K, and matching rate τ ′ for new key K ′. In any of the
cases, fine-tuning attacks impaired the model accuracy, and τ was greater than τ ′.
Therefore, empirical results show that the original watermark was not overwritten by
the new watermark in the model watermarking framework by block-wise transformation,
suggesting robustness against piracy attacks.

Pruning Attack

As described in Section 5.4, the pruning attack was carried out with the intent of
removing the watermark from the model. In experiments, classification accuracy and
matching rate τ under different pruning rates were observed. Figures 5.5 and 5.6
show graphs of accuracy and τ against pruning rates. From the figure, after pruning
more than 60 %, both the accuracy and τ dropped. Therefore, the results suggest that

87

0 20 40 60 80 100

Pruning Rate (%)

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

M = 2

M = 4

Figure 5.5: Classification accuracy under pruning attacks.

the watermark cannot be removed without impairing the model accuracy by pruning
attacks.

Comparison with State-of-the-art Methods

Table 5.12 provides a high-level overview of state-of-the-art model watermarking meth-
ods in black-box settings. Embedding and verification methods vary from method to
method. Most of the existing methods [31,32,34,121] are not robust to piracy attacks as
described in [36]. In contrast, the watermark patterns used in the method by block-wise
transformation and Li et al.’s method [36] are directly dependent on model’s accuracy.
Therefore, piracy attacks will deteriorate model’s performance, and the original water-
mark detection is still stronger than the pirated one. Note that the work in [36] was
evaluated only on a small convolutional network, and the method by block-wise trans-
formation was tested on a residual network with 18 layers (ResNet18). Therefore, the
effectiveness of the method by block-wise transformation was confirmed for a modern
convolutional neural network architecture.

88

0 20 40 60 80 100

Pruning Rate (%)

0

20

40

60

80

100

τ
(%

)

M = 2

M = 4

Figure 5.6: Matching rate τ under pruning attacks

89

T
ab

le
5.

12
:

H
ig

h
-l

ev
el

co
m

p
ar

is
on

w
it

h
st

at
e-

of
-t

h
e-

ar
t

b
la

ck
-b

ox
m

o
d
el

w
at

er
m

ar
k
in

g
m

et
h
o
d
s

M
o
d
el

E
m

b
ed

d
in

g
M

et
h
o
d

V
er

ifi
ca

ti
on

M
et

h
o
d

P
ir

ac
y

R
es

is
ta

n
ce

A
d
i

et
al

.
[1

21
]

B
ac

k
d
o
or

T
ri

gg
er

S
et

N
o

M
er

re
r

et
al

.
[3

4]
A

d
ve

rs
ar

ia
l

E
x
am

p
le

s
T

ri
gg

er
S
et

N
o

Z
h
an

g
et

al
.

[3
1]

W
at

er
m

ar
ke

d
E

x
am

p
le

s
T

ri
gg

er
S
et

N
o

F
an

et
al

.
[3

2]
P

as
sp

or
t

L
ay

er
s

+
T

ri
gg

er
S
et

P
as

sp
or

ts
+

T
ri

gg
er

S
et

N
o

L
i

et
al

.
[3

6]
†

N
u
ll

E
m

b
ed

d
in

g
+

T
ri

gg
er

S
et

W
at

er
m

ar
k

A
cc

u
ra

cy
+

T
ri

gg
er

S
et

Y
es

B
lo

ck
-w

is
e‡

L
ea

rn
ab

le
Im

ag
e

T
ra

n
sf

or
m

at
io

n
W

at
er

m
ar

k
D

et
ec

ti
on

A
cc

u
ra

cy
Y

es
†
E
va
lu
at
ed

on
a
sm

al
l
co
n
vo
lu
ti
on

al
n
eu
ra
l
n
et
w
o
rk
.
‡
E
va
lu
a
te
d
o
n
R
es
N
et
1
8
.

90

5.5.5 Discussion for Model Watermarking

Unlike model access control methods by input transformation and feature transforma-
tion, NEG is applied for model watermarking because NEG maintains a high classifica-
tion accuracy and strong correlation between adjacent pixel values. In the watermarking
framework by block-wise transformation, the original watermark in a model cannot be
removed, and adding a new watermark to the model will decrease the model’s accuracy.
The framework uses a secret key to verify ownership. Therefore, a special trigger set
with pre-defined labels for detecting a watermark is not required in the watermarking
framework by the block-wise transformation.

The block size plays an important role in the watermarking method by block-wise
transformation. Only small block sizes such as 2 and 4 are applicable for the CIFAR-10
dataset. In addition, the watermarking method is also limited to classification models.

5.6 Summary

This chapter presents three model protection methods: two model access control meth-
ods and one model watermarking method. All methods utilize block-wise transfor-
mations with secret keys. The access control method by input transformation employs
different transformations (SHF, NEG, and FFX) in both single and a combined manner.
The one with the feature map transformation uses only SHF, and the watermarking
framework adopts NEG. Experiments with different possible attacks such as key estima-
tion, fine-tuning, and pruning were carried out to verify the effectiveness of the model
protection methods. Results show that the access control method with feature map
transformation is superior to that with input transformation in terms of classification
accuracy and key space. In addition, the watermarking framework with the block-wise
transformation is piracy-resistant and maintains a high classification accuracy.

91

Chapter 6

Conclusion

In the previous chapters, two adversarial defenses against adversarial examples and
one model protection solution that covers both model access control, and model water-
marking have been presented. In this chapter, the results of these three approaches are
summarized. The chapter also describes future work and concluding remarks.

6.1 Summary of Results

6.1.1 Adversarial Defense by Quantization

This defense considers a restricted scenario where only 1–bit images are exposed to
attackers. Due to this condition, adversarial noise generated in 1–bit images can be
completely removed by simple linear quantization. To improve the classification accu-
racy, dithering was also used in this defense framework. The linear quantizer guarantees
that original 1–bit test images will be restored regardless of adversarial noise distance,
and, therefore, this defense maintains identical accuracy whether or not the model is
under attack. The results show that this defense achieves comparable accuracy, 85.28 %
on the CIFAR-10 and 94.99 % on the Oxford-IIIT Pet datasets against three state-of-
the-art adversaries with even a previously untested maximum adversarial distance of
64.

6.1.2 Key-Based Adversarial Defense

This defense utilizes a block-wise transformation with a secret key as a pre-processing
technique for both training and testing a model. Three different transformations: pixel
shuffling, negative/positive transformation, and format-preserving Feistel-based encryp-
tion were introduced in this defense framework. The results show that the key-based

93

defense achieved more than 90 % accuracy for both clean images and adversarial exam-
ples. Under PGD attack with different perturbation budgets, by having information
advantage as a secret key, the key-based defense outperformed the state-of-the art ad-
versarial defenses with the CIFAR-10 and ImageNet datasets.

6.1.3 Model Protection by Secret Key

Access Control by Input Transformation

The block-wise transformation from the adversarial defense was adopted to protect
the functionality of a model from unauthorized access. The performance accuracy
of a protected model was close to that of a non-protected model when the key was
correct, and it dropped drastically when an incorrect key was given, suggesting that a
protected model is not usable when the model is stolen. This access control method is
also applicable to large datasets like the ImageNet dataset, which has never been tested
by previous model-protection methods. Moreover, the access control method by input
transformation does not introduce any overhead in both training and inference time. It
is also robust against fine-tuning attacks in which the adversary has a small subset of
a training dataset to adapt a new forged key and key estimation attacks.

Access Control by Feature Map Transformation

Instead of applying a transformation to the input images, this access control method
directly applies a block-wise transformation, pixel shuffling with a secret key to feature
maps in the network. As a result, this access control method not only improves the
classification accuracy but also increases the key space substantially. The performance
accuracy of a protected model by this access control method was close to that of a
non-protected model when the key was correct, and it dropped drastically when an
incorrect key was given, suggesting the model cannot be used to its full capacity for
unauthorized users. Experiments results show that the access control method by fea-
ture map transformation outperformed the previous access control methods in terms of
classification accuracy and robustness against key estimation attacks and fine-tuning
attacks.

Model Watermarking

The block-wise transformation from the adversarial defense was also extended to model
watermarking scenarios. This method embeds a watermark pattern in a model by
using learnable transformed images and allows us to remotely verify the ownership of
the model. This was achieved by training a model with both plain and transformed

94

images. The results of experiments show that such a watermarking method maintains a
high classification accuracy, and watermarks in this method could not be overwritten by
piracy attacks, i.e., fine-tuning with a subset of dataset. In addition, this watermarking
method was also robust against pruning attacks when parameters were pruned up to
60 %.

6.2 Future Work

As future work, there are room for improvement in the key-based defense, and new
ideas shall be investigated and explored.

• The key-based defense in its current form does not have an information advantage
over black-box attacks. Although a simple voting ensemble was proposed to
overcome this limitation, different ensembles with different transformations and
block sizes will be explored.

• In the thesis, only analysis in pixel space was done, analysis in feature space
should be further explored. For example, Fréchet inception distance (FID) can
be used to compare differently transformed images and plain ones.

• As this thesis has experimented to transform input images and feature maps, one
of the future works is label encoding with a key.

• Convolutional neural networks are sensitive to spatial features and therefore, block
scrambling drops accuracy significantly. To be able to use block scrambling, visual
transformers [154] will be pursued.

6.3 Concluding Remarks

Regarding the solutions provided to defend against adversarial examples and unautho-
rized access in this thesis, a few extra key points are drawn as follows.

• Quantization may not be ideal for real-world applications because 8–bit images
are most widely used, and the attacking scenario is limited.

• The key-based defense is effective for having information advantage as a secret key
and maintains a high classification accuracy. It opens a new direction to control
a model with a key.

95

• The results presented in this thesis are based on residual networks and a few
datasets. To further confirm the performance of the key-based defense, more
networks and datasets need to be tested. However, experiments in this thesis
showed that both the key-based defense and model access control method were
scalable to the ImageNet level.

• This thesis shows that adversarial defense and model protection are closely re-
lated. Therefore, the concept of a secret key is useful for developing unified
solutions in securing deep learning models.

• With enough data and compute, fine-tuning attacks can be successful. Therefore,
this thesis considered the cost of the attack should be lower than training a new
model and assumed the attacker has only a small subset of the dataset.

• All in all, the solutions in this thesis can be potentially applied to real-world
applications and open new ideas for future research.

96

References

[1] Y. Vorobeychik and M. Kantarcioglu, “Adversarial machine learning,” Synthesis
Lectures on Artificial Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–169,
2018.

[2] A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, Adversarial machine
learning. Cambridge University Press, 2018.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neu-
ral information processing systems, 2017, pp. 5998–6008.

[5] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep re-
current neural networks,” in 2013 IEEE international conference on acoustics,
speech and signal processing, 2013, pp. 6645–6649.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[7] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818–833.

[8] A. Azulay and Y. Weiss, “Why do deep convolutional networks generalize so
poorly to small image transformations?” Journal of Machine Learning Research,
vol. 20, no. 184, pp. 1–25, 2019.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in International Conference
on Learning Representations, 2014.

98

[10] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli, “Evasion attacks against machine learning at test time,” in Joint
European conference on machine learning and knowledge discovery in databases.
Springer, 2013, pp. 387–402.

[11] K. Warr, Strengthening deep neural networks: making AI less susceptible to ad-
versarial trickery. O’Reilly Media, 2019.

[12] “Tensorflow hub is a repository of trained machine learning models,” https://
www.tensorflow.org/hub, 2021.

[13] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 1625–1634.

[14] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang, and
X. Lin, “Adversarial t-shirt! evading person detectors in a physical world,” in
European Conference on Computer Vision. Springer, 2020, pp. 665–681.

[15] S. Komkov and A. Petiushko, “Advhat: Real-world adversarial attack on arcface
face id system,” in 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE, 2021, pp. 819–826.

[16] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime:
Real and stealthy attacks on state-of-the-art face recognition,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 1528–1540.

[17] N. Guetta, A. Shabtai, I. Singh, S. Momiyama, and Y. Elovici, “Dodging attack
using carefully crafted natural makeup,” arXiv:2109.06467, 2021. [Online].
Available: https://arxiv.org/abs/2109.06467

[18] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” in Proceedings of
the 35th International Conference on Machine Learning, vol. 80, 2018, pp. 274–
283.

[19] F. Tramèr, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks
to adversarial example defenses,” arXiv:2002.08347, 2020. [Online]. Available:
https://arxiv.org/abs/2002.08347

99

[20] Y. Sharma and P.-Y. Chen, “Attacking the madry defense model with
l 1-based adversarial examples,” arXiv:1710.10733, 2017. [Online]. Available:
https://arxiv.org/abs/1710.10733

[21] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie, “Generative adversarial
perturbations,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 4422–4431.

[22] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and A. Jacobson, “Beyond
pixel norm-balls: Parametric adversaries using an analytically differentiable ren-
derer,” in International Conference on Learning Representations, 2019.

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference on
Learning Representations, 2018.

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proceedings of the 22nd ACM international conference on Multimedia,
2014, pp. 675–678.

[25] “Azure ai gallery,” https://gallery.azure.ai/, 2021.

[26] Y. Huang, H. Hu, and C. Chen, “Robustness of on-device models: Adversarial
attack to deep learning models on android apps,” arXiv:2101.04401, 2021.
[Online]. Available: https://arxiv.org/abs/2101.04401

[27] M. Chen and M. Wu, “Protect your deep neural networks from piracy,” in 2018
IEEE International Workshop on Information Forensics and Security (WIFS).
IEEE, 2018, pp. 1–7.

[28] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding watermarks into
deep neural networks,” in Proceedings of the 2017 ACM on International Confer-
ence on Multimedia Retrieval, 2017, pp. 269–277.

[29] H. Chen, B. D. Rouhani, and F. Koushanfar, “Deepmarks: A digital
fingerprinting framework for deep neural networks,” arXiv:1804.03648, 2018.
[Online]. Available: http://arxiv.org/abs/1804.03648

[30] B. D. Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: A generic watermarking
framework for IP protection of deep learning models,” arXiv:1804.00750, 2018.
[Online]. Available: http://arxiv.org/abs/1804.00750

100

[31] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and I. Molloy,
“Protecting intellectual property of deep neural networks with watermarking,” in
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security, 2018, pp. 159–172.

[32] L. Fan, K. Ng, and C. S. Chan, “Rethinking deep neural network ownership
verification: Embedding passports to defeat ambiguity attacks,” in Advances in
Neural Information Processing Systems, 2019, pp. 4716–4725.

[33] S. Sakazawa, E. Myodo, K. Tasaka, and H. Yanagihara, “Visual decoding of
hidden watermark in trained deep neural network,” in 2nd IEEE Conference on
Multimedia Information Processing and Retrieval, 2019, pp. 371–374.

[34] E. L. Merrer, P. Pérez, and G. Trédan, “Adversarial frontier stitching for re-
mote neural network watermarking,” Neural Computing and Applications, vol. 32,
no. 13, pp. 9233–9244, 2020.

[35] T. Wang and F. Kerschbaum, “Attacks on digital watermarks for deep neural
networks,” in ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 2622–2626.

[36] H. Li, E. Wenger, B. Y. Zhao, and H. Zheng, “Piracy resistant watermarks
for deep neural networks,” arXiv:1910.01226, 2019. [Online]. Available:
https://arxiv.org/abs/1910.01226

[37] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, 2015, pp.
1322–1333.

[38] M. AprilPyone, Y. Kinoshita, and H. Kiya, “Adversarial robustness by one bit
double quantization for visual classification,” IEEE Access, vol. 7, pp. 177 932–
177 943, 2019.

[39] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random transforms
for adversarially robust defense,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 6528–6537.

[40] M. AprilPyone and H. Kiya, “Block-wise image transformation with secret key
for adversarially robust defense,” IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 2709–2723, 2021.

101

[41] O. Taran, S. Rezaeifar, and S. Voloshynovskiy, “Bridging machine learning and
cryptography in defence against adversarial attacks,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[42] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial
training,” in International Conference on Learning Representations, 2020.

[43] H. Zhang and J. Wang, “Defense against adversarial attacks using feature
scattering-based adversarial training,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 1831–1841.

[44] M. AprilPyone and H. Kiya, “A protection method of trained CNN model with
a secret key from unauthorized access,” APSIPA Transactions on Signal and
Information Processing, vol. 10, p. e10, 2021.

[45] ——, “A protection method of trained cnn model using feature maps transformed
with secret key from unauthorized access,” in 2021 Asia-Pacific Signal and Infor-
mation Processing Association Annual Summit and Conference (APSIPA ASC).
IEEE, 2021, accepted.

[46] ——, “Piracy-resistant DNN watermarking by block-wise image transformation
with secret key,” in Proceedings of the 2021 ACM Workshop on Information Hid-
ing and Multimedia Security, 2021, pp. 159–164.

[47] M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song,
A. Madry, B. Li, and T. Goldstein, “Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses,” arXiv:2012.10544, 2020. [Online].
Available: https://arxiv.org/abs/2012.10544

[48] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manip-
ulating machine learning: Poisoning attacks and countermeasures for regression
learning,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 19–35.

[49] J. Wakefield, “Microsoft chatbot is taught to swear on Twitter,” https://www.
bbc.com/news/technology-35890188, 2016.

[50] R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall, M. Goertzel, A. Comis-
soneru, M. Swann, and S. Xia, “Adversarial machine learning-industry perspec-
tives,” in 2020 IEEE Security and Privacy Workshops (SPW). IEEE, 2020, pp.
69–75.

102

[51] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing machine
learning models via prediction apis,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 601–618.

[52] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference at-
tacks against machine learning models,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 3–18.

[53] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” in International Conference on Learning Representations, 2015.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[55] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning,” Pattern Recognition, vol. 84, pp. 317–331, 2018.

[56] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. J.
Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial robustness,”
arXiv:1902.06705, 2019. [Online]. Available: http://arxiv.org/abs/1902.06705

[57] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring the
landscape of spatial robustness,” in International Conference on Machine Learn-
ing. PMLR, 2019, pp. 1802–1811.

[58] Y. Song, R. Shu, N. Kushman, and S. Ermon, “Constructing unrestricted
adversarial examples with generative models,” arXiv:1805.07894, 2018. [Online].
Available: https://arxiv.org/abs/1805.07894

[59] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially
transformed adversarial examples,” arXiv:1801.02612, 2018. [Online]. Available:
https://arxiv.org/abs/1801.02612

[60] L. Engstrom, D. Tsipras, L. Schmidt, and A. Madry, “A rotation and a translation
suffice: Fooling CNNs with simple transformations,” arXiv:1712.02779, 2017.
[Online]. Available: http://arxiv.org/abs/1712.02779

[61] J. Gilmer, R. P. Adams, I. J. Goodfellow, D. Andersen, and G. E.
Dahl, “Motivating the rules of the game for adversarial example research,”
arXiv:1807.06732, 2018. [Online]. Available: http://arxiv.org/abs/1807.06732

103

[62] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial
examples,” in International Conference on Machine Learning, 2018, pp. 284–293.

[63] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” in International Conference on Learning Representations, 2017.

[64] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, 2017, pp.
506–519.

[65] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” in International Conference on Learning Representations, 2017.

[66] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accu-
rate method to fool deep neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2574–2582.

[67] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural net-
works,” in 2017 IEEE Symposium on Security and Privacy, 2017, pp. 39–57.

[68] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh, “EAD: elastic-net attacks
to deep neural networks via adversarial examples,” in Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence. AAAI Press, 2018, pp. 10–17.

[69] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples,”
arXiv:1605.07277, 2016. [Online]. Available: https://arxiv.org/abs/1605.07277

[70] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial
attacks with momentum,” in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 9185–9193.

[71] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adver-
sarial examples by translation-invariant attacks,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4312–4321.

[72] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille, “Im-
proving transferability of adversarial examples with input diversity,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 2730–2739.

104

[73] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks
with limited queries and information,” in International Conference on Machine
Learning, vol. 80. PMLR, 2018, pp. 2142–2151.

[74] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training
substitute models,” in Proceedings of the 10th ACM Workshop on Artificial In-
telligence and Security, 2017, pp. 15–26.

[75] J. Uesato, B. O’Donoghue, P. Kohli, and A. van den Oord, “Adversarial risk and
the dangers of evaluating against weak attacks,” in International Conference on
Machine Learning, vol. 80. PMLR, 2018, pp. 5032–5041.

[76] S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu, “Improving black-box adver-
sarial attacks with a transfer-based prior,” in Advances in Neural Information
Processing Systems, 2019, pp. 10 934–10 944.

[77] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “NATTACK: learning the distri-
butions of adversarial examples for an improved black-box attack on deep neural
networks,” in International Conference on Machine Learning, vol. 97. PMLR,
2019, pp. 3866–3876.

[78] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square Attack:
a query-efficient black-box adversarial attack via random search,” in European
Conference on Computer Vision, 2020, pp. 484–501.

[79] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp.
828–841, 2019.

[80] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Re-
liable attacks against black-box machine learning models,” in International Con-
ference on Learning Representations, 2018.

[81] M. Cheng, T. Le, P.-Y. Chen, H. Zhang, J. Yi, and C.-J. Hsieh, “Query-efficient
hard-label black-box attack: An optimization-based approach,” in International
Conference on Learning Representations, 2019.

[82] M. Cheng, S. Singh, P. H. Chen, P.-Y. Chen, S. Liu, and C.-J. Hsieh, “Sign-OPT:
A query-efficient hard-label adversarial attack,” in International Conference on
Learning Representations, 2020.

105

[83] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Efficient decision-
based black-box adversarial attacks on face recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
7714–7722.

[84] P. Zhao, Z. Fu, Q. Hu, J. Wang et al., “Detecting adversarial examples
via key-based network,” arXiv:1806.00580, 2018. [Online]. Available: https:
//arxiv.org/abs/1806.00580

[85] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adver-
sarial examples,” in International Conference on Learning Representations, 2018.

[86] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli, “A dual ap-
proach to scalable verification of deep networks.” in UAI, vol. 1, no. 2, 2018,
p. 3.

[87] E. Wong and Z. Kolter, “Provable defenses against adversarial examples via
the convex outer adversarial polytope,” in International Conference on Machine
Learning. PMLR, 2018, pp. 5286–5295.

[88] H. Salman, J. Li, I. P. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck, and G. Yang,
“Provably robust deep learning via adversarially trained smoothed classifiers,” in
Advances in Neural Information Processing Systems, 2019, pp. 11 289–11 300.

[89] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. A. Mann, and P. Kohli, “On the effectiveness of interval
bound propagation for training verifiably robust models,” arXiv:1810.12715,
2018. [Online]. Available: http://arxiv.org/abs/1810.12715

[90] M. Mirman, T. Gehr, and M. T. Vechev, “Differentiable abstract interpretation
for provably robust neural networks,” in Proceedings of the 35th International
Conference on Machine Learning, vol. 80, 2018, pp. 3575–3583.

[91] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable adversarial
defenses,” in Advances in Neural Information Processing Systems, 2018, pp. 8400–
8409.

[92] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks
architectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.

[93] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein, “Adversarial training for free!” in Advances in
Neural Information Processing Systems, 2019, pp. 3353–3364.

106

[94] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[95] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness
may be at odds with accuracy,” in International Conference on Learning Repre-
sentations, 2019.

[96] H. Zhang, H. Chen, Z. Song, D. Boning, inderjit dhillon, and C.-J. Hsieh, “The
limitations of adversarial training and the blind-spot attack,” in International
Conference on Learning Representations, 2019.

[97] T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, and J. Zhu, “Rethinking softmax cross-
entropy loss for adversarial robustness,” in International Conference on Learning
Representations, 2020.

[98] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[99] J. Gao, B. Wang, Z. Lin, W. Xu, and Y. Qi, “Deepcloak: Masking deep
neural network models for robustness against adversarial samples,” in ICLR
(Workshop), 2017. [Online]. Available: https://arxiv.org/abs/1702.06763

[100] S. Gu and L. Rigazio, “Towards deep neural network architectures robust
to adversarial examples,” in ICLR (Workshop), 2015. [Online]. Available:
http://arxiv.org/abs/1412.5068

[101] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval net-
works: Improving robustness to adversarial examples,” in International Confer-
ence on Machine Learning. PMLR, 2017, pp. 854–863.

[102] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness and in-
terpretability of deep neural networks by regularizing their input gradients,” in
Thirty-second AAAI conference on artificial intelligence, 2018.

[103] Z. Yan, Y. Guo, and C. Zhang, “Deep defense: Training DNNs with improved
adversarial robustness,” in Advances in Neural Information Processing Systems,
vol. 31, 2018, p. 417–426.

107

[104] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding: One
hot way to resist adversarial examples,” in International Conference on Learning
Representations, 2018.

[105] C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adversarial
images using input transformations,” in International Conference on Learning
Representations, 2018.

[106] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating adversarial
effects through randomization,” in International Conference on Learning Repre-
sentations, 2018.

[107] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend: Lever-
aging generative models to understand and defend against adversarial examples,”
in International Conference on Learning Representations, 2018.

[108] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protecting classi-
fiers against adversarial attacks using generative models,” in International Con-
ference on Learning Representations, 2018.

[109] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations,” in International Conference on Learning Representations, 2017.

[110] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting
adversarial samples from artifacts,” arXiv:1703.00410, 2017. [Online]. Available:
http://arxiv.org/abs/1703.00410

[111] N. Carlini and D. A. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, 2017, pp. 3–14.

[112] T. Chuman, W. Sirichotedumrong, and H. Kiya, “Encryption-then-compression
systems using grayscale-based image encryption for jpeg images,” IEEE Transac-
tions on Information Forensics and Security, vol. 14, no. 6, pp. 1515–1525, June
2019.

[113] W. Sirichotedumrong and H. Kiya, “Grayscale-based block scrambling image en-
cryption using YCbCr color space for encryption-then-compression systems,” AP-
SIPA Transactions on Signal and Information Processing, vol. 8, p. e7, 2019.

[114] W. Sirichotedumrong, Y. Kinoshita, and H. Kiya, “Pixel-based image encryption
without key management for privacy-preserving deep neural networks,” IEEE
Access, vol. 7, pp. 177 844–177 855, 2019.

108

[115] K. Madono, M. Tanaka, M. Onishi, and T. Ogawa, “Block-wise scrambled image
recognition using adaptation network,” in Workshop on Artificial Intelligence of
Things (AAAI-WS), 2020.

[116] M. Tanaka, “Learnable image encryption,” in 2018 IEEE International Confer-
ence on Consumer Electronics-Taiwan (ICCE-TW), 2018, pp. 1–2.

[117] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[118] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” arXiv:1708.07747, 2017. [Online].
Available: http://arxiv.org/abs/1708.07747

[119] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” University of Toronto, Tech. Rep., 2009.

[120] M. D. Swanson, M. Kobayashi, and A. H. Tewfik, “Multimedia data-embedding
and watermarking technologies,” Proceedings of the IEEE, vol. 86, no. 6, pp.
1064–1087, 1998.

[121] Y. Adi, C. Baum, M. Cissé, B. Pinkas, and J. Keshet, “Turning your weakness
into a strength: Watermarking deep neural networks by backdooring,” in 27th
USENIX Security Symposium, 2018, pp. 1615–1631.

[122] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural
adversarial examples,” arXiv:1907.07174, 2019. [Online]. Available: https:
//arxiv.org/abs/1907.07174

[123] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” arXiv:1704.01155, 2017. [Online]. Available:
https://arxiv.org/abs/1704.01155

[124] S. Miyazato, X. Wang, T. Yamasaki, and K. Aizawa, “Reinforcing the robustness
of a deep neural network to adversarial examples by using color quantization of
training image data,” in 2019 IEEE International Conference on Image Process-
ing (ICIP). IEEE, 2019, pp. 884–888.

[125] M. AprilPyone, Y. Kinoshita, and H. Kiya, “Filtering adversarial noise with dou-
ble quantization,” in 2019 Asia-Pacific Signal and Information Processing Associ-
ation Annual Summit and Conference (APSIPA ASC), Nov 2019, pp. 1745–1749.

109

[126] R. W. Floyd and L. Steinberg, “An Adaptive Algorithm for Spatial Greyscale,”
Proceedings of the Society for Information Display, vol. 17, no. 2, pp. 75–77, 1976.

[127] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and dogs,” in
2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012,
pp. 3498–3505.

[128] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala, “Pytorch: An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, 2019, pp. 8024–8035.

[129] J. Howard et al., “fastai,” https://github.com/fastai/fastai, 2018.

[130] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer bet-
ter?” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2661–2671.

[131] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv:1711.05101, 2017. [Online]. Available: https://arxiv.org/abs/1711.05101

[132] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part
1–learning rate, batch size, momentum, and weight decay,” arXiv:1803.09820,
2018. [Online]. Available: https://arxiv.org/abs/1803.09820

[133] M. AprilPyone and H. Kiya, “Encryption inspired adversarial defense for vi-
sual classification,” in 2020 IEEE International Conference on Image Processing
(ICIP), 2020, pp. 1681–1685.

[134] W. Sirichotedumrong, T. Maekawa, Y. Kinoshita, and H. Kiya, “Privacy-
preserving deep neural networks with pixel-based image encryption considering
data augmentation in the encrypted domain,” in 2019 IEEE International Con-
ference on Image Processing (ICIP), 2019, pp. 674–678.

[135] K. Kurihara, S. Imaizumi, S. Shiota, and H. Kiya, “An encryption-then-
compression system for lossless image compression standards,” IEICE Transac-
tions on Information and Systems, vol. 100, no. 1, pp. 52–56, 2017.

[136] A. Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires, pp.
5–38, 1883.

110

[137] W. Sirichotedumrong and H. Kiya, “A gan-based image transformation scheme
for privacy-preserving deep neural networks,” in 2020 28th European Signal Pro-
cessing Conference (EUSIPCO), 2020, pp. 745–749.

[138] H. Ito, Y. Kinoshita, and H. Kiya, “Image transformation network for privacy-
preserving deep neural networks and its security evaluation,” arXiv:2008.03143,
2020. [Online]. Available: https://arxiv.org/abs/2008.03143

[139] ——, “A framework for transformation network training in coordination with
semi-trusted cloud provider for privacy-preserving deep neural networks,” in 2020
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), Dec 2020, pp. 1420–1424.

[140] M. Bellare, P. Rogaway, and T. Spies, “Addendum to “the ffx mode of operation
for format-preserving encryption”,” A parameter collection for enciphering strings
of arbitrary radix and length, Draft 1.0, NIST, 2010.

[141] M. AprilPyone and H. Kiya, “An extension of encryption-inspired adversarial de-
fense with secret keys against adversarial examples,” in 2020 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference (AP-
SIPA ASC). IEEE, 2020, pp. 1369–1374.

[142] ——, “Ensemble of models trained by key-based transformed images for
adversarially robust defense against black-box attacks,” arXiv:2011.07697, 2020.
[Online]. Available: https://arxiv.org/abs/2011.07697

[143] J. Uesato, B. O’Donoghue, P. Kohli, and A. van den Oord, “Adversarial risk
and the dangers of evaluating against weak attacks,” in Proceedings of the 35th
International Conference on Machine Learning, vol. 80, 2018, pp. 5032–5041.

[144] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “NATTACK: learning the distri-
butions of adversarial examples for an improved black-box attack on deep neu-
ral networks,” in Proceedings of the 36th International Conference on Machine
Learning, vol. 97, 2019, pp. 3866–3876.

[145] L. N. Smith and N. Topin, “Super-convergence: Very fast training of residual
networks using large learning rates,” arXiv:1708.07120, 2017. [Online]. Available:
http://arxiv.org/abs/1708.07120

[146] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos, E. Elsen, D. Garćıa,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu,
“Mixed precision training,” arXiv:1710.03740, 2017. [Online]. Available:
http://arxiv.org/abs/1710.03740

111

[147] S. Craver, N. D. Memon, B. Yeo, and M. M. Yeung, “Resolving rightful ownerships
with invisible watermarking techniques: limitations, attacks, and implications,”
IEEE J. Sel. Areas Commun., vol. 16, no. 4, pp. 573–586, 1998.

[148] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao,
“Neural cleanse: Identifying and mitigating backdoor attacks in neural networks,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp. 707–
723.

[149] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in International Conference on Learning Representa-
tions, 2015.

[150] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:
Efficient inference engine on compressed deep neural network,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

[151] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding,” in International
Conference on Learning Representations, 2016.

[152] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural network,” in Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.,
vol. 28. Curran Associates, Inc., 2015, pp. 1135–1143.

[153] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional
neural networks for resource efficient inference,” in International Conference on
Learning Representations, 2017.

[154] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,”
in International Conference on Learning Representations, 2021.

112

List of Figures

1.1 Image classification scenario where an adversarial example can fool a
model even in the presence of an adversarial defense. 10

1.2 Scenario of consequences of stolen model. 10
1.3 Scenario of copyright violation of model where ambiguity and piracy

attacks can be carried out. 11
1.4 Outline of the thesis. 14

2.1 Attacks on ML pipeline. 19
2.2 Example of adversarial example [53]. 20
2.3 Attack categories applicable to a model based on the varying degrees of

access to the model. 24
2.4 Different categories of adversarial defenses. 26
2.5 Defense categories relative to model training and testing. 27

3.1 Attack scenario on quantized images. 35
3.2 Example of linearly quantized images. 36
3.3 Example of dithered images. 37
3.4 Framework of adversarial defense by double quantization. 39
3.5 Accuracy (%) of models under PGD attack with various noise budgets

for the CIFAR-10 dataset. 42
3.6 Accuracy (%) of models under PGD attack with various noise budgets

for the Oxford-IIIT Pet dataset. 43
3.7 Visualization of image signal transform in quantization as a defense. (a)

8-bit image x. (b) 1–bit image x1−bit. (c) Adversarial example x′
1−bit

with noise distance ε = 16. (d) 1–bit image x̂1−bit after removing adver-
sarial noise. 44

4.1 Overview of key-based defense framework. 50
4.2 Procedure of block-wise transformation with secret key, g(x, K,M) which

takes image x, key K and block size M , and outputs transformed image x̂. 51
4.3 Ensemble key-based defense framework [142]. 53

113

4.4 ACC of key-based defense with M = 4 under PGD attack with various
ε for both CIFAR-10 and ImageNet. 59

4.5 Comparison of key-based defenses (M = 4) and state-of-the-art defenses
under PGD with ε = 8/255 for CIFAR-10. 62

4.6 Comparison of key-based defenses (M = 4) and a state-of-the-art defense
under PGD with ε = 8/255 for ImageNet. 63

5.1 Access control framework by input transformation with secret key. . . . 69
5.2 Access control framework by feature map transformation with secret key. 70
5.3 Model watermarking framework by block-wise transformation with secret

key. 71
5.4 Horizontal, vertical and diagonal correlation test results for (a) plain

image and images transformed by (b) SHF, (c) NEG and (d) FFX (M = 4). 83
5.5 Classification accuracy under pruning attacks. 88
5.6 Matching rate τ under pruning attacks 89

114

List of Tables

1.1 Contributions of thesis . 12

3.1 Accuracy (%) of models under different attacks for CIFAR-10 and Oxford-
IIIT Pet . 41

4.1 ACC (%) of standard and key-based defense models 57
4.2 ASR (%) of standard and key-based defense models under non-adaptive

attacks . 58
4.3 ASR (%) of standard and key-based defense models under adaptive at-

tacks for the CIFAR-10 dataset . 61

5.1 Accuracy (%) of protected models and baseline model for two datasets.
Best results are in bold. 75

5.2 Accuracy (%) of protected models (M = 4) under key estimation attack 76
5.3 Accuracy (%) of protected models by input transformation under fine-

tuning attacks . 76
5.4 Comparison of protected model NEG by input transformation and state-

of-the-art passport-protected model . 78
5.5 Accuracy (%) and key space of protected models by feature transforma-

tion comparing with ones by input transformation and baseline model . 80
5.6 Accuracy (%) of protected models by feature transformation under key

estimation attack comparing with previous protected models 81
5.7 Accuracy (%) of protected models under fine-tuning attacks comparing

with models by input transformation 82
5.8 Comparison of proposed protected model and state-of-the-art anti-piracy

model [27] . 84
5.9 Key sensitivity of various transformations with M = 4 and 8 85
5.10 Classification Accuracy (%) and τ (%) of watermarked models and base-

line model. 87
5.11 Classification Accuracy (%) and τ (%) of watermarked models under

fine-tuning attacks. 87

115

5.12 High-level comparison with state-of-the-art black-box model watermark-
ing methods . 90

116

Acknowledgement

I would like to express my gratitude to:

• Prof. Hitoshi Kiya who is my supervisor. He has guided and encouraged me
throughout the study. He continually and persuasively conveyed a spirit of ad-
venture in regard to research. Without his supervision and constant help, this
thesis would not have been possible.

• Asst. Prof. Sayaka Shiota who is like my second supervisor. She has helped me
in building my career. Her support and encouragement has motivated me for my
Ph.D. research.

• Prof. Nobutaka Ono and Prof. Masaaki Fujiyoshi, who gave feedback for my
research at the end of every semester. Their valuable comments have improved
my research in this thesis.

• Prof. Naoyuki Kubota and Prof. Masayuki Tanaka who are reviewers of this thesis.
Their kind feedback has helped me improve this thesis.

• Dr. Yuma Kinoshita and all members in Kiya-Shiota laboratory, who have helped
me in many different ways from administrative things to research.

• Mrs. Kimiko Fukushima who is the secretary of Kiya-Shiota laboratory. She has
helped me with all the paper works throughout my Ph.D. course.

• Mrs. Mayu Abe who used to be the secretary in the international office of Tokyo
Metropolitan University. She has helped me even before I came to Japan for
getting visa and administrative things. She is like a family member and her
hospitality makes me feel home in Japan.

• Ms. Sayaka Koseki who is my close friend. She has helped me in many different
ways throughout my study.

118

• My mother who always encourages me for higher education, and always tell me
education is the key.

• All people who have helped me in any way throughout my Ph.D. course.

I would like to to express the deepest appreciation to:

• Tokyo Metropolitan Government and Tokyo Metropolitan University for granting
me Tokyo Human Resources Fund for City Diplomacy scholarship. Without this
support, it would not be possible to pursue my Ph.D.

119

