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Chapter 1

Introduction

1.1 Mixed Morrey spaces

Function spaces collect functions having the same properties such as continuity, differ-
entiability, and integrability, and so on. By characterizing the properties of function
spaces, many fields of mathematics, for example, Fourier analysis and PDE, etc., have
been developed. One of the most fundamental function spaces is the Lebesgue space
Lp(Rn). For 0 < p ≤ ∞, we define the Lp norm ‖ · ‖Lp by

‖f‖Lp = ‖f‖p =

(∫
Rn
|f(x)|pdx

) 1
p

(0 < p <∞),

where f is a measurable function on Rn. If p =∞, we interpret this expression as

‖f‖L∞ = ‖f‖∞ = ess sup
x∈Rn

|f(x)|.

The Lebesgue space Lp(Rn) is the set of all measurable functions f for which ‖f‖p <
∞. Based on this space, the theory of analysis has advanced remarkably. However,
integrability is not enough to describe sufficiently many properties of functions we
require. Thus, function spaces having more fine properties were needed, and so during
the 20th century many authors introduced a lot of function spaces such as Sobolev
spaces, Orlicz spaces, Morrey spaces, Lorentz spaces, Hardy spaces, mixed Lebesgue
spaces, Besov spaces, Triebel–Lizorkin spaces, and so on.

One of the important function spaces in this thesis is the Morrey space Mp
q(Rn).

This is defined as follows: Let 0 < q ≤ p <∞. Define the Morrey norm ‖ · ‖Mp
q

by

‖f‖Mp
q
≡ sup

{
|Q|

1
p
− 1
q

(∫
Q
|f(x)|q dx

) 1
q

: Q is a cube in Rn
}

for a measurable function f . The Morrey space Mp
q(Rn) is the set of all measurable

functions f for which ‖f‖Mp
q

is finite.
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Morrey spaces were introduced by C.B.Morrey Jr. in 1938 to investigate the local
behavior of solutions to second order elliptic partial differential equation [97]. Morrey
spaces cover Lebesgue spaces so that Morrey spaces describe nice properties more than
Lebesgue spaces. For instance, Morrey spaces can handle the function |x|−

n
p which fails

to belong to Lebesgue spaces. We recall the fundamental properties of this space and
the boundedness results for basic operators in harmonic analysis in Subsection 2.1.1.

Meanwhile, in [11], Benedek and Panzone introduced mixed Lebesgue spaces and
investigated some properties in 1961. Let ~p = (p1, . . . , pn) ∈ (0,∞]n. Then define the
mixed Lebesgue norm ‖ · ‖~p or ‖ · ‖(p1,...,pn) by

‖f‖L~p = ‖f‖~p = ‖f‖(p1,...,pn)

≡

∫
R
· · ·

(∫
R

(∫
R
|f(x1, x2, . . . , xn)|p1dx1

) p2
p1

dx2

) p3
p2

· · · dxn


1
pn

,

where f : Rn → C is a measurable function. If pj = ∞, then we have to make
appropriate modifications. We define the mixed Lebesgue space L~p(Rn) = L(p1,...,pn)(Rn)
to be the set of all measurable functions f on Rn with ‖f‖~p <∞.

Since functions belonging to mixed Lebesgue spaces have the different integrability
for each direction, we expect that they can characterize functions more subtly. In
Subsection 2.1.2, we summarize their properties and the classical results for this space.

The author defined the mixed Morrey space Mp
~q(R

n) combining the Morrey space

Mp
q(Rn) and the mixed Lebesgue space L~q(Rn) in [106].

Let ~q = (q1, . . . , qn) ∈ (0,∞]n and p ∈ (0,∞) satisfy

n∑
j=1

1

qj
≥ n

p
.

Then define the mixed Morrey norm ‖ · ‖Mp
~q
(Rn) by

‖f‖Mp
~q
≡ sup

{
|Q|

1
p
− 1
n

(∑n
j=1

1
qj

)
‖fχQ‖~q : Q is a cube in Rn

}

for all measurable functions f on Rn. We define the mixed Morrey space Mp
~q(R

n) to
be the set of all measurable function f on Rn satisfying ‖f‖Mp

~q
<∞.

In [106], the author investigated the basic properties (for example, embedding,
completeness) and the mapping properties of the Hardy–Littlewood maximal operator,
fractional integral operators, and singular integral operators. We recall these properties
in Subsection 2.1.3.

In this thesis, based on the studies in [106], we summarize the further studies of
mixed Morrey spaces and the related spaces in [55, 106, 107, 108]. The next section is
devoted to a summary of three topics and main theorems treated in each chapter.
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1.2 Three topics and main theorems

From Chapter 3 to Chapter 5, we treat three topics related to mixed Morrey spaces. In
this section, we give an overview of these topics and main results for each topic. First,
we introduce the idea of commutators generated by functions and operators and con-
sider the boundedness results for commutators on mixed Morrey spaces in Subsection
1.2.1. Subsection 1.2.2 is devoted to giving the concept of pointwise multiplier spaces,
and we characterize them in terms of Morrey spaces. Finally, in Subsection 1.2.3, we
consider the characterization by atomic decomposition for mixed Morrey spaces.

1.2.1 Main theorem on the boundedness of commutators generated
by BMO functions and fractional integral operators on mixed
Morrey spaces

The idea of commutators generated by functions and operators was introduced by
Coifman, Rochberg, and Weiss [20] and many authors investigated the boundedness
and compactness results for these operators. In particular, we treat commutators
generated by functions and fractional integral operators. Let 0 < α < n. Define the
fractional integral operator Iα of order α by

Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy

for f ∈ L1
loc(Rn) as long as the right-hand side makes sense. The commutator [a, Iα] is

given by

[a, Iα](f)(x) = a(x)Iαf(x)− Iα(af)(x) =

∫
Rn

a(x)− a(y)

|x− y|n−α
f(y)dy

for a measurable function a and x ∈ Rn as long as the integral makes sense. Moreover,
to describe our main theorem, we recall the BMO class. Define the BMO norm by

‖f‖BMO = sup
Q

1

|Q|

∫
Q
|f(y)− fQ|dy

for f ∈ L1
loc(Rn), where

fQ =
1

|Q|

∫
Q
f(y)dy

and the supremum is taken over all cubes Q in Rn. Then, BMO(Rn) is the set of all
functions f modulo constants satisfying ‖f‖BMO <∞.

We recall the classical results on the boundedness of commutators on Morrey spaces.
In 1991, Di Fazio and Ragusa [24] gave the necessary and sufficient condition on a
function b for the boundedness of commutator [b, Iα] on Morrey spaces. Although
there was a little additional assumption in their result, Shirai removed it in [140]. Our
aim in Chapter 3 is to generalize these results to mixed Morrey spaces. Here we state
our main theorem in Chapter 3.
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Theorem 1.2.1. Let 0 < α < n, 1 < p <
n

α
,
n

p
≤

n∑
j=1

1

qj
, and

n

r
≤

n∑
j=1

1

sj
. Also,

assume that
1

r
=

1

p
− α

n
,

qj
p

=
sj
r

(j = 1, . . . , n).

Then, the following conditions are equivalent:

(a) b ∈ BMO(Rn).

(b) [b, Iα] is bounded from Mp
~q(R

n) to Mr
~s(R

n).

(c) [b, Iα] is bounded from M̃p
~q(R

n) to Mr
~s(R

n).

(d) [b, Iα] is bounded from M̃p
~q(R

n) to Mr
1(Rn).

Here, M̃p
~q(R

n) is the Mp
~q(R

n)-closure of C∞c (Rn).

We compare our results with the classical ones. Usually, when we handle commu-
tators, the sharp maximal operator is a useful tool as was done in [24, 129, 130]. The
sharp maximal operator, which is defined in [34], is a good operator to control the sin-
gularity of the integral operators. To control the sharp maximal operator, we use the
so-called good λ-inequality described in [141]. However, the layer cake formula, which
is also described in [141], is not available in the mixed-norm setting. So we make use
of the dyadic local sharp maximal operator defined in [84] together with a key formula
[84, Theorem 2.2]. By using these ingredients, we established the estimate for the sharp
maximal operator on mixed Morrey spaces in Section 3.2. In Section 3.3, we give the
proof of Theorem 1.2.1. We note that our method does not employ the predual spaces
of Morrey spaces which were used in the previous works ([24, 140]).

1.2.2 Main theorems on the characterization of Morrey spaces as-
sociated with Banach lattice in terms of pointwise multiplier
spaces

Given Banach spaces E1(Rn) and E2(Rn) of measurable functions defined on Rn, we
define PWM(E1(Rn), E2(Rn)) as follows: A measurable function g is a pointwise mul-
tiplier from E1(Rn) to E2(Rn) if the pointwise product f · g belongs to E2(Rn) for each
f ∈ E1(Rn) and there exists a constant M > 0 such that

‖f · g‖E2(Rn) ≤M‖f‖E1(Rn). (1.1)

One defines a norm on PWM(E1(Rn), E2(Rn)) by

‖g‖PWM(E1,E2) ≡ inf{M > 0 : (1.1) holds for all f ∈ E1(Rn)}

for g ∈ PWM(E1(Rn), E2(Rn)).
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A typical example is

PWM(Lp(Rn), L1(Rn)) = Lp
′
(Rn),

where p′ =
p

p− 1
is a conjugate exponent of p. This example is easily obtained from

the Hölder inequality.

In [82], to investigate the solution of the Navier–Stokes equation, Lemarié-Rieusset
used that pointwise multiplier spaces from Besov spaces to Lebesgue spaces coincide
Morrey spaces.

Theorem 1.2.2 (cf. [82]). Let 1 ≤ p <∞ and 0 < s ≤ n

p
. Then

PWM(Ḃs
p1(Rn), Lp(Rn)) ≈M

n
s
p (Rn)

with equivalence of norms.

Lemarié-Rieusset obtained Theorem 1.2.2 for n = 3 and p = 2 [82, Lemma 6]. A
passage to the general case is a minor modification, so that we give a proof in Subsection
4.2.2.

Our main result generalizes this one by replacing Lebesgue spaces with abstract
Banach lattices. Recall that a Banach (function) lattice on Rn is a Banach space
(E, ‖ · ‖E) contained in the linear space of all measurable functions, such that, for
all f, g ∈ E, the implication “|f | ≤ |g| ⇒ ‖f‖E ≤ ‖g‖E” holds. Then, we have
also to generalize Morrey spaces and Besov spaces. To simplify the discussion, in this
subsection and Chapter 4, we let E(Rn) be a Banach lattice be such that ‖f(·−x)‖E =
‖f‖E for all f ∈ E(Rn) and x ∈ Rn.

Based on [58, Definition 2.6], we define Mp
E(Rn) to be the set of all measurable

functions f for which

‖f‖Mp
E
≡ sup

Q
|Q|

1
p

(
1

‖χQ‖E
‖fχQ‖E

)
is finite, where Q moves over all cubes whose edges are parallel to the coordinate axes.
Note that if we take E(Rn) = Lq(Rn), Mp

E(Rn) coincides with the classical Morrey
space Mp

q(Rn).

Next, we define 2-microlocal Besov spaces. First, we recall the class Wα3
α1,α2

:

Definition 1.2.3 (Weight class Wα3
α1,α2

). Let α1, α2, α3 ∈ [0,∞). The class Wα3
α1,α2

of weights is defined as the set of all the sequences of the measurable functions w =
{wj}∞j=−∞ satisfying the following conditions:

1. There exists a constant C > 0 such that for all x, y ∈ Rn and j ∈ Z,

0 < wj(x) ≤ Cwj(y)(1 + 2j |x− y|)α3 .
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2. For all x ∈ Rn and j ∈ Z,

2−α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x).

Such a sequence w ∈ Wα3
α1,α2

is called an admissible weight sequence.

The (homogeneous) generalized 2-microlocal Besov spaces are usually defined by the
use of the Fourier transform as follows. For f ∈ L1(Rn), define its Fourier transform
and its inverse Fourier transform by

Ff(ξ) ≡ (2π)−
n
2

∫
Rn
f(x)e−ix·ξdx, F−1f(x) ≡ (2π)−

n
2

∫
Rn
f(ξ)eix·ξdξ.

By a well-known method, we can extend F ,F−1 naturally to the Schwartz distribution
space S ′(Rn).

Definition 1.2.4 (Generalized 2-microlocal Besov spaces). Let w ∈ Wα3
α1,α2

. Let ϕ ∈
C∞c (Rn) satisfy

χB(4)\B(2) ≤ ϕ ≤ χB(8)\B( 3
2

).

and define ϕj(x) = ϕ(2−jx). Let 0 < p, q ≤ ∞. Then for f ∈ S ′(Rn) define

‖f‖
Ḃs,mloc
pq (Rn,w)

≡

 ∞∑
j=−∞

2js
∥∥wjF−1[ϕjFf ]

∥∥q
p

 1
q

.

The generalized 2-microlocal Besov space Ḃs,mloc
pq (Rn, w) is the set of all f ∈ S ′(Rn) for

which ‖f‖
Ḃs,mloc
pq (Rn,w)

is finite.

Note that if we take wj(x) = 1 for all x ∈ Rn and j ∈ Z, we obtain classical Besov
spaces.

To state our result, also recall the definition of dyadic cubes. For j ∈ Z and m ≡

(m1,m2, . . . ,mn) ∈ Zn, we define Qjm ≡
n∏
j=1

[
mj

2j
,
mj + 1

2j

)
. Denote by D = D(Rn)

the set of such cubes. The elements in D are called dyadic cubes.

Our main result in Chapter 4 is the following assertion.

Theorem 1.2.5. Let E(Rn) and F (Rn) be Banach lattices such that

‖χQjm‖F . ‖χQjm‖E |Qj0|
− 1
p (j ∈ Z,m ∈ Zn).

Set
wj ≡ ‖χQj0‖E |Qj0|

−1− 1
p (j ∈ Z).

Then Ḃ0,mloc
11 (Rn, w) is continuously embedded into F (Rn) and

PWM(Ḃ0,mloc
11 (Rn, w), E(Rn)) ≈Mp

E(Rn)

with equivalence of norms.
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In Section 4.2, we give the proofs of our results. Lemarié-Rieusset used the wavelet
decomposition to show the corresponding result since he considered the assertion based
on L2(Rn). Meanwhile for the proof of Theorem 1.2.5, we employ the atomic decompo-
sition for classical Besov spaces and 2-microlocal Besov spaces. Section 4.3 is devoted
to apply our result for various function spaces, which are Orlicz spaces (Subsection
4.3.1), Lorentz spaces (Subsection 4.3.2), mixed Lebesgue spaces (Subsection 4.3.3),
and mixed Morrey spaces (Subsection 4.3.4). In addition, the definition of each func-
tion space is given in Section 2.2.

1.2.3 Main theorems on the atomic decomposition for mixed Morrey
spaces

One of the characterization methods of function spaces is to decompose functions or
distributions into linear sums of elementary ones. In Chapter 5, we discuss the de-
composition results for mixed Morrey spaces. In particular, we concentrate on the
decomposition by the atom, which is a function with a compact support, a suitable
norm estimate, and the moment condition. The decomposition results by atoms for
classical Morrey spaces were proved by Iida, Sawano, and Tanaka in [66].

Denote by Q(Rn) the set of all cubes in Rn. Our first result is the following con-
struction result about the functions in mixed Morrey spaces.

Theorem 1.2.6. Suppose that the parameters p, ~q, s,~t satisfy

1 < p < s <∞, 1 < max{q1, . . . , qk} < tk <∞ (k = 1, . . . , n),

n

p
≤

n∑
j=1

1

qj
,

n

s
≤

n∑
j=1

1

tj
.

Assume that {aj}∞j=1 ⊂Ms
~t
(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn) fulfill

‖aj‖Ms
~t
≤ |Qj |

1
s , supp(aj) ⊂ Qj ,

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

<∞.

Then f =
∞∑
j=1

λjaj converges in S ′(Rn) ∩ L~qloc(R
n) and satisfies

‖f‖Mp
~q
≤ Cp,~q,s,~t

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

.

The next assertion concerns the decomposition of functions inMp
~q(R

n). For d ≥ 0,
denote by Pd(Rn) the set of all polynomial functions with degree less than or equal

11



to d, so that P(Rn) ≡
∞⋃
d=0

Pd(Rn). It is clear that P−1(Rn) = {0}. The set PK(Rn)⊥

denotes the set of measurable function f for which

(1 + | · |2)
K
2 f ∈ L1(Rn) and

∫
Rn
xαf(x)dx = 0

for any α ∈ (N ∪ {0})n with |α| ≤ K. Such a function f is said to satisfy the moment
condition of order K. In this case, one also writes f ⊥ PK(Rn).

Theorem 1.2.7 (cf. [60]). Suppose that the real parameters p, ~q,K satisfy

1 < p <∞, ~q ∈ (0,∞)n,
n

p
≤

n∑
j=1

1

qj
, K ∈ N0 ∩

(
n

q0
− n− 1,∞

)
,

where q0 = min(q1, . . . , qn). Let f ∈ Mp
~q(R

n). Then there exists a triplet {aj}∞j=1 ⊂

L∞(Rn) ∩ P⊥K(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn) such that f =
∞∑
j=1

λjaj in

S ′(Rn) and that, for any v > 0

|aj | ≤ χQj ,

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v

 1
v

∥∥∥∥∥∥∥
Mp

~q

≤ Cv‖f‖Mp
~q
.

Here the constant Cv > 0 is independent of f .

Note that applying Theorems 1.2.6 and 1.2.7 for f ∈ Mp
~q(R

n), we obtain norm
estimate

C−1

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

≤ ‖f‖Mp
~q
≤ C

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

for some C > 1. Here λj and Qj are same ones which appear in Theorem 1.2.7.

Although Theorem 1.2.7 can be given as a corollary of the abstract results in [60],
we can give a direct proof without using Herz spaces which were used in the abstract
setting of [60].

Moreover, we can prove the general decomposition theorems using Hardy-mixed
Morrey spaces (Theorems 5.1.7 and 5.1.8 to follow). We can show that Hardy-mixed
Morrey spaces coincide with mixed Morrey spaces for ~q > 1 (Proposition 5.3.1). There-
fore, Theorems 5.1.7 and 5.1.8 include Theorems 1.2.6 and 1.2.7, respectively.

As an application, we show the Olsen inequality for the fractional integral operator
Iα acting on mixed Morrey spaces.

Theorem 1.2.8. Suppose that the parameters α, p, ~q, p∗, ~q ∗, s,~t satisfy

1 < p, p∗, s <∞, 1 < ~q, ~q ∗,~t <∞,

12



n

p
≤

n∑
j=1

1

qj
,

n

p∗
≤

n∑
j=1

1

q∗j
,

n

s
≤

n∑
j=1

1

tj
,

max{t1, . . . , tj} < q∗j ,
1

p
>
α

n
,

1

p∗
≤ α

n
,

for each j = 1, 2, . . . , n, and that

1

s
=

1

p∗
+

1

p
− α

n
,

tj
s

=
qj
p

(j = 1, 2, . . . , n).

Then for all f ∈Mp
~q(R

n) and g ∈Mp∗

~q ∗(R
n)

‖g · Iαf‖Ms
~t
≤ C‖g‖Mp∗

~q ∗
· ‖f‖Mp

~q
,

where the constant C is independent of f and g.

As the special case of qi = q and ti = t for all i = 1, . . . , n, this result recaptures
the one for classical Morrey spaces [134, Proposition 1.8].

In Section 5.2, we establish the boundedness result for the maximal operator to
prove Theorem 1.2.6. We observe the characterization of Hardy-Morrey spaces in
Section 5.3. Section 5.4 is devoted to the proof of the main theorems. In Subsections
5.4.1 and 5.4.2, we consider the reconstruction theorems for mixed Morrey spaces and
Hardy-mixed Morrey spaces, respectively. Meanwhile in Subsection 5.4.3, we prove the
decomposition theorems for mixed Morrey spaces and Hardy-mixed Morrey spaces. At
last, in Section 5.5, we establish Olsen’s inequality for mixed Morrey spaces by applying
the atomic decompositions.

1.3 Notation

Throughout this thesis, we use the following notation.

1. The letters ~p, ~q, ~r, . . . denote the n-tuples of the numbers in [0,∞] (n ≥ 1), that
is, ~p = (p1, . . . , pn), ~q = (q1, . . . , qn), ~r = (r1, . . . , rn).

2. The inequality, for example, 0 < ~p < ∞ means that 0 < pj < ∞ for each
j = 1, . . . , n.

3. For ~p = (p1, . . . , pn) and r ∈ R \ {0}, let

1

~p
=

(
1

p1
, . . . ,

1

pn

)
,

~p

r
=
(p1

r
, . . . ,

pn
r

)
, ~p ′ = (p′1, . . . , p

′
n),

where p′j =
pj

pj − 1
is the conjugate exponent of pj (j = 1, . . . , n).
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4. Let Q = Q(x, r) be a cube having center x and radius r, whose sides are parallel
to the coordinate axes. In particular, if x = 0, then we write Q(r). The symbol
Q denotes the set of all cubes.

5. Denote by B(x, r) the ball centered at x and radius r > 0. We shall write
B(r) = B(0, r) as before.

6. The symbols |Q| denotes the volume of the cube Q and `(Q) denotes the side
length of the cube Q.

7. For given a cube Q and k > 0, k Q means a cube concentric to Q with sidelength
k `(Q).

8. For j ∈ Z and m ≡ (m1, . . . ,mn) ∈ Zn, we define Qjm ≡
n∏
k=1

[
mk

2j
,
mk + 1

2j

)
.

Denote by D = D(Rn) the set of such cubes. The elements in D are called dyadic
cubes.

9. By A . B, we denote that A ≤ CB for some constant C > 0, and A ∼ B means
that A . B and B . A.

10. When we need to emphasize or keep in mind that the constant C depends on the
parameter α, β, etc, we write C = Cα,β.

11. We write N0 = N ∪ {0}.

12. We use “ · ” for functions; f = f(·). In particular, when we only use “ · ” for j-th
coordinate, we write f = f(·j).

13. Let E be a measurable set in Rn. Then, χE denotes the characteristic function
for E.

14. Let E be a measurable set in Rn and f be a measurable function. Then,

‖f‖Lp(E) ≡ ‖fχE‖p.

15. Let w be a nonnegative measurable function. Then, ‖·‖Lp(w) denote the weighted
Lebesgue norm, that is, for a measurable function f ,

‖f‖Lp(w) ≡ ‖fw‖p.

16. The norm ‖ · ‖∗ denote the operator norm.

17. We define L0(Rn) as the set of all measurable functions on Rn.

18. S(Rn) denote the set of all rapidly decreasing functions on Rn and S ′(Rn) its
dual (that is, the set of all tempered distributions on Rn).

19. Let L~qc(Rn) denote the set of all L~q(Rn) functions with compact support.

14



Chapter 2

Preliminaries

In this chapter, we provide the definition and some properties of function spaces which
are used in this thesis. In Section 2.1, we recall mixed Morrey spaces and their related
spaces. First, we review Morrey spaces and mixed Lebesgue spaces in Subsections
2.1.1 and 2.1.2, respectively. After that we summarize the definition and some results
of mixed Morrey spaces investigated in [106]. At the end of this section, we consider
the predual spaces of mixed Morrey spaces. We use the predual spaces in Chapter 5.
Section 2.2 is devoted to introducing some function spaces which we apply to in Section
4. At first, we recall Besov spaces in Subsection 2.2.1. We also consider generalized
2-microlocal Besov spaces which generalize the weighted Besov spaces in Subsection
2.2.2. In the last two subsections, we recall Lorentz spaces and Orlicz spaces, which
are other generalizations of Lebesgue spaces.

2.1 Mixed Morrey spaces and related spaces

2.1.1 Classical Morrey spaces and fundamental results

In this subsection, we recall the definition and some properties of the Morrey space
Mp

q(Rn). For their proofs, we refer to [117].

Definition 2.1.1. Let 0 < q ≤ p <∞. Define the Morrey norm ‖ · ‖Mp
q

by

‖f‖Mp
q
≡ sup

{
|Q|

1
p
− 1
q

(∫
Q
|f(x)|q dx

) 1
q

: Q is a cube in Rn
}

for a measurable function f . The Morrey space Mp
q(Rn) is the set of all measurable

functions f for which ‖f‖Mp
q

is finite.

Remark 2.1.2. We can also define the following norm:

‖f‖ball
Mp

q
≡ sup

{
|B|

1
p
− 1
q

(∫
B
|f(x)|q dx

) 1
q

: B is a ball in Rn
}
.
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Then, using the fact
B(x, r) ⊂ Q(x, r) ⊂ B(x,

√
nr),

we see that the norms ‖f‖Mp
q

and ‖f‖ball
Mp

q
are equivalent. Thus, we will use the suitable

one and denote it by the same notation ‖ · ‖Mp
q
.

First of all, we point out the fundamental properties of Morrey spaces.

Theorem 2.1.3. Let 1 ≤ q ≤ p < ∞. Then, the Morrey space Mp
q(Rn) is a Banach

space.

The next proposition suggests that Morrey spaces are generalizations of Lebesgue
spaces.

Proposition 2.1.4. Let 0 < p <∞. Then, Mp
p(Rn) = Lp(Rn).

The relation of two different Morrey spaces is as follows.

Proposition 2.1.5. Let 0 < q1 ≤ q2 ≤ p <∞. Then, we have

Lp(Rn) =Mp
p(Rn) ↪→Mp

q2(Rn) ↪→Mp
q1(Rn).

Next, we consider the examples of functions belonging to Morrey spaces.

Example 2.1.6 ([126, Exercise 6.17]). Let Q be a cube in Rn. Then, for 0 < q < p <∞

‖χQ‖Mp
q

= |Q|
1
p .

Example 2.1.7 ([79, Lemma 4.1]). Let 0 < q < p <∞. Then, |x|−
n
p ∈Mp

q(Rn).

Note that |x|−
n
p does not belong to Lp(Rn) for 0 < p <∞. Therefore, the Lebesgue

space Lp(Rn) is proper subset of the Morrey space Mp
q(Rn).

Finally, we recall the studies of Morrey spaces. Morrey spaces were introduced by
C.B.Morrey Jr. in 1938 to investigate the local behavior of solutions to second order el-
liptic partial differential equation [97]. Later, many authors investigated Morrey spaces.
In 1960s, Campanato introduced and studied Campanato spaces which coincide with
the many function spaces, the BMO space, Lipschitz spaces, Hölder spaces, and Morrey
spaces. Peetre [114] gave a survey of Morrey spaces and Campanato spaces in 1969.
In this survey, he also investigated the boundedness of the singular integral operators.
Singular integral operators on Morrey spaces have several definitions via preduals and
weight theory. See [19, 120, 121]. As the last point in the first development, Adams
pointed out that the fractional integral operator Iα is bounded on Morrey spaces in [1].

Theorem 2.1.8. Let 0 < α < n, 1 < q ≤ p <∞, and 1 < s ≤ r <∞. Assume that

1

r
=

1

p
− α

n
,

p

q
=
r

s
.

Then, for all f ∈Mp
q(Rn),

‖Iαf‖Mr
s
. ‖f‖Mp

q
.
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The next turning point is that Chiarenza and Frasca proved the boundedness of
the Hardy–Littlewood maximal operator on Morrey spaces in 1987 [19]. The Hardy–
Littlewood maximal operator is one of the most important operators in harmonic anal-
ysis. This operator is defined for all measurable functions f and x ∈ Rn as

Mf(x) = sup
Q

χQ(x)

|Q|

∫
Q
|f(y)|dy,

where the supremum is taken over all cubes Q in Rn. The basic idea of this operator was
introduced by Hardy and Littlewood [54] in the language of cricket. Frankly speaking,
this operator is taking the largest average of a function over all cubes containing x.
The technique of averaging naturally arises in many situations, so it is very significant.
The boundedness result of the Hardy–Littlewood maximal operator on Morrey spaces
is as follows.

Theorem 2.1.9. Let 1 < q ≤ p <∞. Then

‖Mf‖Mp
q
. ‖f‖Mp

q

for all f ∈Mp
q(Rn).

Using the maximal operator, Di Fazio and Ragusa [24] and Shirai [140] proved
commutators generated by BMO functions and the fractional integral operator Iα are
bounded on Morrey spaces (these statements will appear in Theorems 3.1.2 and 3.1.3).

Concerning the duality, Long proved that the block spaceHp
′

q′ (R
n) is a predual space

of the Morrey space Mp
q(Rn) in [87]. Zorko characterized the predual space by means

of the atomic decomposition in [152]. In [73], Kalita constructed another predual space
of Morrey spaces which is the same space as Zorko’s spaces with norm equivalence.
Furthermore, by using the theory of capacities, the third predual space was defined by
Adams and Xiao [2]. See also a recent survey by Rosenthal and Triebel [122].

Furthermore, Morrrey spaces were generalized by many authors in various direc-
tions. First of all, we take up generalized Morrey spaces. A definition which are
still often used goes back to Zorko’s paper [152]. Later, Mizuhara [93], Nakai [98],
and Guliyev [43] defined and investigated generalized Morrey spaces, respectively, and
many authors studied them in [22, 30, 44, 45, 79, 53]. For an application to partial
differential equations, we refer to [3, 23, 78, 86]. See also a survey [127]. Next, we turn
to the weight theory of Morry spaces. We have two different definitions of weighted
Morrey spaces which are Samko type [123] and Komori–Shirai type [80]. We regard
the weight as the one for functions in the former, as the one for measures in the latter.
Each of them is investigated in [103, 104] and [65, 139, 151]. Furthermore, both of
them appear in the study of partial differential equations [32, 51, 52, 138]. In addition,
Morrey spaces for non-doubling measures were defined by Sawano and Tanaka and
investigated the boundedness property of some operators [124, 130, 132], and variable
exponent Morrey spaces were studied in [4, 48, 49, 94, 95].
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2.1.2 Mixed Lebesgue spaces and fundamental results

In this subsection, we recall the mixed Lebesgue space L~p(Rn) which is introduced by
Benedek and Panzone in [11]. Since the proofs are overall elementary, we omit the
details; see [11].

Definition 2.1.10. Let ~p = (p1, . . . , pn) ∈ (0,∞]n. Then define the mixed Lebesgue
norm ‖ · ‖~p or ‖ · ‖(p1,...,pn) by

‖f‖L~p = ‖f‖~p = ‖f‖(p1,...,pn)

≡

∫
R
· · ·

(∫
R

(∫
R
|f(x1, x2, . . . , xn)|p1dx1

) p2
p1

dx2

) p3
p2

· · · dxn


1
pn

,

where f : Rn → C is a measurable function. If pj = ∞, then we have to make
appropriate modifications. We define the mixed Lebesgue space L~p(Rn) = L(p1,...,pn)(Rn)
to be the set of all measurable functions f on Rn with ‖f‖~p <∞.

Note that if each pi = p, then L~p(Rn) = Lp(Rn), so mixed Lebesgue spaces gener-
alize classical spaces. This space has properties similar to classical Lebesgue space.

Proposition 2.1.11. For 1 ≤ ~p ≤ ∞, L~p(Rn) is a Banach space.

Proposition 2.1.12 (Hölder’s inequality). Let 1 < ~p, ~q < ∞ and define ~r so that
1

~p
+

1

~q
=

1

~r
. If f ∈ L~p(Rn), g ∈ L~q(Rn), then fg ∈ L~r(Rn), and

‖fg‖~r ≤ ‖f‖~p‖g‖~q.

Proposition 2.1.13. Let 0 < ~p ≤ ∞. The mixed Lebesgue norm has the dilation
relation: for all f ∈ L~p(Rn) and t > 0,

‖f(t·)‖~p = t
−
∑n
j=1

1
pj ‖f‖~p.

The mapping

(x2, . . . , xn) ∈ Rn−1 7→ ‖f‖(p1)(x2, . . . , xn) ≡
(∫

R
|f(x1, . . . , xn)|p1dx1

) 1
p1

is a measurable function and defined on Rn−1. Moreover, we define

‖f‖~q = ‖f‖(p1,...,pj) ≡
∥∥∥[‖f‖(p1,...,pj−1)

]∥∥∥
(pj)

,

where ‖f‖(p1,...,pj−1) denotes |f |, if j = 1 and ~q = (p1, . . . , pj), j ≤ n. Note that ‖f‖~q is
a measurable function of (xj+1, . . . , xn) for j < n.

Next, we consider the examples of L~p(Rn).
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Example 2.1.14. Let Q be a cube. Then, for 0 < ~p ≤ ∞,

‖χQ‖~p = |Q|
1
n

( 1
p1

+···+ 1
pn

)
. (2.1)

This identity is important to consider some inequalities of mixed Morrey spaces.

Example 2.1.15. Let m = (m1, . . . ,mn) ∈ Zn and {am}m∈Zn ⊂ C. Define

f(x) =
∑
m∈Zn

amχm+[0,1]n(x).

Then,

‖f‖~p =

 ∑
mn∈Z

· · ·

∑
m1∈Z

∣∣a(m1,...,mn)

∣∣p1


p2
p1

· · ·


1
pn

. (2.2)

We can consider the right-hand side of (2.2) as a mixed sequence norm, which
computes each `pi-norm with respect to mi. We denote it by ‖{am}m∈Zn‖`(p1,...,pn) :

‖{am}m∈Zn‖`(p1,...,pn) = ‖a(m1,...,mn)‖`(p1,...,pn)

≡

 ∑
mn∈Z

· · ·

∑
m2∈Z

∑
m1∈Z

∣∣a(m1,...,mn)

∣∣p1


p2
p1


p3
p2

· · ·


1
pn

.

Furthermore, this norm is also defined inductively:

‖a(m1,...,mn)‖`(p1,...,pj) ≡
∥∥∥[‖a(m1,...,mn)‖`(p1,...,pj−1)

]∥∥∥
`(pj)

,

where ‖a(m1,...,mn)‖`(p1,...,pj−1) = |a(m1,...,mn)| if j = 1 and

‖a(m1,...,mn)‖`(pj) ≡

∑
mj∈Z

|a(m1,...,mn)|pj

 1
pj

for j = 1, . . . , n.

We survey the studies of mixed Lebesgue spaces. Benedek and Panzone investi-
gated fundamental properties (completeness, duality, reflexivity, etc.), a counterpart
to the Riesz–Thorin interpolation theorem, the boundedness of the fractional integral
operator, and so on. After this paper, there are a lot of studies for mixed Lebesgue
spaces. In 1975, Bagby showed the boundedness of the Hardy–Littlewood maximal
operator for the functions taking values in the mixed Lebesgue spaces [10]. In par-
ticular, Stöckert considered that the strong maximal operator is bounded on mixed
Lebesgue spaces [144]. The author, in [106], gave another simple proof using the above
Bagby’s result. See also [35, 57] for this boundedness. Singular integral operators were
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studied in [35, 142] by Fernandez, and by Stevanov and Torres, respectively. Addition-
ally, there exist many remarkable works which concern Hörmander–Mikhlin theorem
[7], multivariate rearrangements [15, 37], the inclusion problem [42], the theory of vari-
able exponents [59], and the interpolation theory [63, 91]. Recently, Huang and Yang
summarized a recent series of investigation on function spaces with mixed norms [62].

From the viewpoint of applications, this mixed norm serves to describe decay at
infinity for each direction. For example, we consider a bounded measurable function f
on R3 satisfying

|f(x)| ≤ C

|x1|1/10|x′|10
, |x1| > 1, |x′| > 1, C > 0

for x = (x1, x
′) ∈ R × R2, where x′ = (x2, x3). Then, f ∈ Lp(R3) if p > 10, that is,

the fast decaying directions are completely ignored in the classical Lebesgue norm. So,
in this framework of Lebesgue spaces, this function f is identified with the same as a
function g satisfying

|g(x)| ≤ C

|x|1/10
, |x| > 1, C > 0.

Meanwhile, using the mixed Lebesgue norm, we can see f ∈ L~p(Rn) for p1 > 10 and

p2, p3 >
1

10
. Employing this idea, many authors established and analyzed solutions

for partial differential equations, abstract elliptic and parabolic equations, the Navier–
Stokes equation, and etc. [28, 112, 113].

2.1.3 Mixed Morrey spaces and some results

In this subsection, based on [106], we collect some properties and boundedness results
of fundamental operators in harmonic analysis. All the proofs are in [106].

Definition 2.1.16. Let ~q = (q1, . . . , qn) ∈ (0,∞]n and p ∈ (0,∞] satisfy

n∑
j=1

1

qj
≥ n

p
.

Then define the mixed Morrey norm ‖ · ‖Mp
~q

by

‖f‖Mp
~q
≡ sup

{
|Q|

1
p
− 1
n

(∑n
j=1

1
qj

)
‖fχQ‖~q : Q is a cube in Rn

}

for all measurable functions f on Rn. We define the mixed Morrey space Mp
~q(R

n) to
be the set of all measurable functions f on Rn satisfying ‖f‖Mp

~q
<∞.

First, we remark the relations of Morrey spaces and mixed Lebesgue spaces. If each
qi = q ∈ (0,∞), then Mp

~q(R
n) = Mp

q(Rn) with coincidence of norm. In particular,
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choose ~q ∈ (0,∞]n satisfying
1

p
=

1

n

n∑
j=1

1

qj
so thatMp

~q(R
n) = L~q(Rn) with coincidence

of norm.

Note that Scapellato and Ragusa [137] introduced the same named space “Mixed
Morrey space”, which is different from our space, essentially.

We give the properties of the mixed Morrey spaces. Just as with mixed Lebesgue
spaces, we see that mixed Morrey norm has the following dilation relation:

‖f(t·)‖Mp
~q
(Rn) = t

−n
p ‖f‖Mp

~q
(Rn) (f ∈ L0(Rn), t > 0), (2.3)

for ~q ∈ (0,∞]n and p ∈ (0,∞] with
n

p
≤

n∑
j=1

1

qj
. The embedding properties are as

follows:

Proposition 2.1.17. ([106, Proposition 3.2]) Let 0 < ~q ≤ ~r ≤ ∞, 0 < p < ∞, and

assume
1

r1
+ · · ·+ 1

rn
≥ n

p
. Then,

Mp
~r(R

n) ⊂Mp
~q(R

n).

Let us give some examples.

Example 2.1.18. By Example 2.1.7, f(x) = |x|−
n
p ∈ Mp

q(Rn) if q < p. Let ~q =
(q1, . . . , qn). Using Proposition 2.1.17, we have

Mp
q̃(R

n) =Mp

(q̃, . . . , q̃︸ ︷︷ ︸
n times

)
(Rn) ⊂Mp

~q(R
n),

where q̃ = max(q1, . . . , qn). Thus, if max(q1, . . . , qn) = q̃ < p,

f(x) = |x|−
n
p ∈Mp

~q(R
n).

However, the condition
max(q1, . . . , qn) = q̃ < p (2.4)

is a sufficient condition but is not a necessary condition for f(x) = |x|−
n
p ∈ Mp

~q(R
n).

In fact, consider the case ~s = (s1, ∞, . . . ,∞︸ ︷︷ ︸
(n− 1) times

) and s1 <
p

n
. Then, by Proposition

2.1.13,

‖f‖Mp
~s
(Rn) = sup

Q=Q(x,r)
|Q(x, r)|

1
p
− 1
n

(∑n
j=1

1
sj

)
‖fχQ(x,r)‖~s

= sup
r>0
|Q(0, r)|

1
p
− 1
n

(∑n
j=1

1
sj

)
‖fχQ(0,r)‖~s

= sup
r>0
|Q(0, r)|

1
p
− 1
n

(∑n
j=1

1
sj

)
‖fχQ(0,1)‖~s × r

∑n
j=1

1
sj × r−

n
p

≤
(∫ 1

−1
|x1|−

n
p
s1dx1

) 1
s1

.
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Since s1 <
p

n
, ‖f‖Mp

~s
(Rn) <∞ and f ∈Mp

~s(R
n). But ~s does not satisfy (2.4).

Example 2.1.19. Let 0 < ~q ≤ ∞ and assume that qj < pj if pj <∞ and that qj ≤ ∞
if pj =∞ (j = 1, . . . , n). Let

n∑
j=1

1

pj
=
n

p
. (2.5)

Then, we have

f(x) =

n∏
j=1

|xj |
− 1
pj ∈Mp

~q(R
n).

Furthermore, condition (2.5) is a necessary and sufficient condition for f(x) =
n∏
j=1

|xj |
− 1
pj to be a member in Mp

~q(R
n). In fact, let f ∈ Mp

~q(R
n) and f 6= 0. Applying

(2.3), we have

‖f(t·)‖Mp
~q
(Rn) = t

−n
p ‖f‖Mp

~q
(Rn) (t > 0). (2.6)

On the other hand, since f(tx) = t
−
∑n
j=1

1
pj f(x),

‖f(t·)‖Mp
~q
(Rn) = t

−
∑n
j=1

1
pj ‖f‖Mp

~q
(Rn). (2.7)

By (2.6) and (2.7), for all t > 0,

t
−
∑n
j=1

1
pj = t

−n
p .

Thus, we obtain (2.5).

Example 2.1.20. Let Q be a cube and ~q ∈ (0,∞]n. Then,

‖χQ‖Mp
~q
(Rn) = |Q|

1
p .

To check this, put
n∑
j=1

1

qj
= q̄. First, using (2.1), we get

‖χQ‖Mp
~q
(Rn) = sup

R∈Q
|R|

1
p
− q̄
n ‖χQχR‖~q ≥ |Q|

1
p
− q̄
n ‖χQ‖~q = |Q|

1
p
− q̄
n |Q|

q̄
n = |Q|

1
p .

Meanwhile, thanks to Proposition 2.1.17,

‖χQ‖Mp
~q
(Rn) ≤ ‖χQ‖Mp

max(q1,...,qn)
(Rn) = |Q|

1
p .

Combining the above two inequalities, we obtain

‖χQ‖Mp
~q
(Rn) = |Q|

1
p .
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We turn to the boundedness results for some operators on mixed Morrey spaces.
First, we consider the Hardy–Littlewood maximal operator. The boundedness of the
Hardy–Littlewood maximal operator in classical Morrey spaces is showed by Chiarenza
and Frasca in 1987 [19] (see Theorem 2.1.9 above).

Theorem 2.1.21 ([106, Theorem 4.5]). Let 1 < ~q < ∞ and 1 < p < ∞ satisfy
n

p
≤

n∑
j=1

1

q j
. Then

‖Mf‖Mp
~q
. ‖f‖Mp

~q

for all f ∈Mp
~q(R

n).

Next, we give the boundedness result of the fractional integral operator Iα. Its
boundedness in classical Morrey spaces is proved by Adams [1] (see, Theorem 2.1.8).

Theorem 2.1.22 ([106, Theorem 1.11]). Let 0 < α < n, 1 < ~q,~s < ∞ and 1 < p, r <

∞. Assume that
n

p
≤

n∑
j=1

1

qj
and

n

r
≤

n∑
j=1

1

sj
. Also, assume that

1

r
=

1

p
− α

n
,

~q

p
=
~s

r
.

Then, for f ∈Mp
~q(R

n),
‖Iαf‖Mr

~s
. ‖f‖Mp

~q
.

Finally, we recall the boundedness results for singular integral operators. A singular
integral operator T with a kernel k(x, y) is defined as an L2-bounded operator which
satisfies the following conditions:

(1) There exists a constant C > 0 such that |k(x, y)| ≤ C

|x− y|n
.

(2) There exist ε > 0 and C > 0 such that

|k(x, y)− k(z, y)|+ |k(y, x)− k(y, z)| ≤ C |x− z|ε

|x− y|n+ε
,

if |x− y| ≥ 2|x− z| with x 6= y.

(3) If f ∈ L∞c (Rn), the set of all compactly supported L∞-functions, then

Tf(x) =

∫
Rn
k(x, y)f(y)dy (x /∈ supp(f)).

Keeping in mind that T extends to a bounded linear operator on Mp
q(Rn) [19], we

obtain the following theorem.
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Theorem 2.1.23 ([106, Theorem 1.12]). Let 1 < ~q <∞ and 1 < p <∞ satisfy

n

p
≤

n∑
j=1

1

qj
.

Then, if we restrict T to Mp
~q(R

n), which is initially defined on Mp
min(q1,...,qn)(R

n),

‖Tf‖Mp
~q
(Rn) . ‖f‖Mp

~q
(Rn)

for f ∈Mp
~q(R

n).

At last in this subsection, we describe the Fefferman–Stein vector-valued inequality
on mixed Morrey spaces. This inequality was first considered by Fefferman and Stein
in [33].

Proposition 2.1.24 ([106, Theorem 1.8]). Let 1 < ~q, p <∞,
n

p
≤

n∑
j=1

1

qj
, and 1 < r ≤

∞. Then ∥∥∥∥∥∥∥
 ∞∑
j=1

(Mfj)
r

1/r
∥∥∥∥∥∥∥
Mp

~q

≤ C

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |r
1/r

∥∥∥∥∥∥∥
Mp

~q

for all sequences of measurable functions {fj}∞j=1.

See [130, Theorem 2.2] and [146, Lemma 2.5] for the case of classical Morrey spaces.

2.1.4 Predual spaces of mixed Morrey spaces

In this subsection, we introduce the predual spaces of mixed Morrey spaces following
the idea of Long [87]. We need these space in Section 5.

Definition 2.1.25. Let 1 ≤ p <∞ and
n

p
≤

n∑
j=1

1

qj
. A measurable function A is said

to be a (p, ~q)-block if there exists a cube Q that supports A such that

‖A‖~q ≤ |Q|
1
n

(∑n
j=1

1
qj

)
− 1
p
.

Note that the idea of blocks was introduced by Taibleson and Weiss to investigate
the a.e. convergence of the Fourier series in [145]. Based on this functions, we define
the following function spaces.

Definition 2.1.26. Let 1 ≤ p <∞ and
n

p
≤

n∑
j=1

1

qj
. Define the function space Hp

′

~q ′(R
n)

as the set of all f ∈ Lp(Rn) for which f is realized as the sum f =
∞∑
j=0

λjAj with some
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λ = {λj}j∈N0 ∈ `1(N0) and a sequence {Aj}j∈N0 of (p′, ~q ′)-blocks. The norm ‖f‖Hp′
~q ′

for f ∈ Hp
′

~q ′(R
n) is defined as

‖f‖Hp′
~q ′
≡ inf

λ
‖λ‖`1 ,

where λ = {λj}j∈N0 runs over all admissible expressions

f =

∞∑
j=0

λjAj , {λj}j∈N0 ∈ `1, Aj is a (p′, ~q ′)-block for all j ∈ N0. (2.8)

Note that if q1 = · · · = qn, then the notion of (p, ~q)-block and the one of Hp
′

~q ′(R
n)

coincide the classical ones.

Remark 2.1.27. As is easily verified by Hölder’s inequality, any (p, ~q)-block has Lp

norm less than 1;
‖A‖p ≤ 1

for all blocks A. Due to this fact, the series f =

∞∑
j=0

λjAj in Definition 2.1.26 converges

in the topology of Lp(Rn). In fact, let n < m. Then,∥∥∥∥∥∥
m∑
j=0

λjAj −
n∑
j=0

λjAj

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
m∑

j=n+1

λjAj

∥∥∥∥∥∥
p

≤
m∑

j=n+1

|λj |‖Aj‖p ≤
m∑

j=n+1

|λj | −→ 0

as n,m→ 0. Thus, this series converges in the topology of Lp(Rn).

We shall see some properties of the space Hp
′

~q ′(R
n).

Lemma 2.1.28. Let 1 ≤ p <∞ and
n

p
≤

n∑
j=1

1

qj
. If A is a (p′, ~q ′)-block, then

‖A‖Hp′
~q ′
≤ 1.

Proof. In (2.8), simply choose

A0 = A,A1 = A2 = · · · = 0, λ0 = 1, λ1 = λ2 = · · · = 0.

Lemma 2.1.29. Let 1 ≤ p < ∞ and
n

p
≤

n∑
j=1

1

qj
. Let A be an L~q

′
(Rn) function

supported on a cube Q. Then

‖A‖Hp′
~q ′
≤ ‖A‖~q ′ |Q|

1
n

(∑n
j=1

1
qj

)
− 1
p
. (2.9)
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Proof. Set B ≡ |Q|
1
p−

1
n

(∑n
j=1

1
qj

)
‖A‖~q ′

A, and assume that A is not zero for almost everywhere.

Then B is supported on a cube Q and by virtue of the facts that
1

p
+

1

p′
= 1 and

1

~q
+

1

~q ′
= (1, 1, . . . , 1),

‖B‖~q ′ = |Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
= |Q|

1
n

(∑n
j=1

1
q′
j

)
− 1
p′
.

Hence, B is a (p′, ~q ′)-block. By Lemma 2.1.28, ‖B‖Hp′
~q ′
≤ 1. Thus, we obtain (2.9).

Recall that L~qc(Rn) denotes the set of all L~q(Rn) function with compact support.

By Lemma 2.1.29, the elements of L~qc(Rn) can be regarded as a (p′, ~q ′)-block modulo
multiplicative constants. From this fact, we also consider the density for the space

Hp
′

~q ′(R
n).

Lemma 2.1.30. The space L~qc(Rn) is dense in Hp
′

~q ′(R
n). In particular, the space

Hp
′

~q ′(R
n) is separable.

Proof. We shall verify that for all g ∈ Hp
′

~q ′(R
n), the sequence {hj}∞j=1 ⊂ L~qc(Rn) exists

such that lim
j→∞

hj = g in Hp
′

~q ′(R
n). Since g ∈ Hp

′

~q ′(R
n), there exist {λj}∞j=1 ∈ `1 and

{bj}∞j=1 which is a sequence of (p′, ~q ′)-blocks such that

g =
∞∑
k=1

λkbk.

For each j ∈ N, let

hj ≡
j∑

k=1

λkbk.

Then hj ∈ L~qc(Rn) and since

|g − hj | ≤
∞∑

k=j+1

|λkbk|,

we have

‖g − hj‖Hp′
~q ′
≤

∞∑
k=j+1

|λk| → 0 (j →∞).

The following theorem is an extension of the result by Long [87] to mixed Morrey
spaces.
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Theorem 2.1.31. Suppose that 1 ≤ p <∞ and
n

p
≤

n∑
j=1

1

qj
.

(i) Any f ∈Mp
~q(R

n) defines a continuous functional Lf by

Lf : Hp
′

~q ′(R
n) 3 g 7−→

∫
Rn
f(x)g(x)dx ∈ C

on Hp
′

~q ′(R
n).

(ii) Conversely, every continuous functional L on Hp
′

~q ′(R
n) can be realized with f ∈

Mp
~q(R

n).

(iii) The correspondence

τ : Mp
~q(R

n) 3 f 7−→ Lf ∈
(
Hp
′

~q ′(R
n)
)∗

is an isomorphism. Furthermore,

‖f‖Mp
~q

= sup

{∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ : g ∈ Hp
′

~q ′(R
n), ‖g‖Hp′

~q ′
= 1

}
(2.10)

and

‖g‖Hp′
~q ′

= max

{∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ : f ∈Mp
~q(R

n), ‖f‖Mp
~q

= 1

}
. (2.11)

Proof. (i) Since g ∈ Hp
′

~q ′(R
n), for any ε > 0, there exist a non-negative sequence

{λj}j∈N ∈ `1(N) and a sequence {gj}j∈N of (p′, ~q ′)-blocks such that

g =

∞∑
j=1

λjgj ,

and
∞∑
j=1

λj ≤ ‖g‖Hp′
~q ′

+ ε,

where each gj is supported on Qj . Then, by Hölder’s inequality,

|Lf (g)| =

∣∣∣∣∣∣
∫
Rn
f(x)

∞∑
j=1

λjgj(x)dx

∣∣∣∣∣∣ ≤
∞∑
j=1

λj

∫
Rn
|f(x)gj(x)|dx

≤
∞∑
j=1

λj‖fχQj‖~q‖gj‖~q ′ .
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Since each gj is a (p′, ~q ′)-block which is supported on Qj , it follows that

|Lf (g)| ≤
∞∑
j=1

λj |Qj |
1
p
− 1
n

(∑∞
j=1

1
qj

)
‖fχQj‖~q

≤ ‖f‖Mp
~q

∞∑
j=1

λj ≤ ‖f‖Mp
~q

(
‖g‖Hp′

~q ′
+ ε

)
.

Since ε is arbitrary, we have

|Lf (g)| ≤ ‖f‖Mp
~q
‖g‖Hp′

~q ′
. (2.12)

Thus, we conclude
‖Lf‖∗ ≤ ‖f‖Mp

~q
, (2.13)

where ‖ · ‖∗ denotes the operator norm.

(ii) We take a cube Q0 and let Qj ≡ 2jQ0 for j ∈ N. For the sake of the simplicity,
we write

L~q
′
(Qj) ≡

{
f ∈ L~q ′(Rn) : f is supported onQj

}
.

According to the proof of Lemma 2.1.29, since we can regard the element of
L~q
′
(Qj) as a (p′, ~q ′)-block modulo multiplicative constant, the functional g 7−→

L(g) is well defined and bounded on L~q
′
(Qj). Thus, by the L~q−L~q ′ duality [11],

there exists fj ∈ L~q(Qj) such that

L(g) =

∫
Qj

fj(x)g(x)dx

for all g ∈ L~q
′
(Qj). By the uniqueness of this theorem, we can find L~qloc(R

n)-
function f such that

f |Qj = fj a.e.

for any j. We shall prove f ∈ Mp
~q(R

n). For a fixed cube Q and the above f , we
set

g ≡ (sgnf)|f |q1−1χQ‖fχQ‖q2−q1(q1) ‖fχQ‖
q3−q2
(q1,q2) · · · ‖fχQ‖

qn−qn−1

(q1,...,qn−1).

A simple calculation shows∫
Q
f(x)g(x)dx = ‖fχQ‖qn~q , ‖g‖~q ′ = ‖fχQ‖qn−1

~q .

Then we can write

|Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
‖fχQ‖~q = |Q|

1
p
− 1
n

(∑n
j=1

1
qj

)(∫
Q
f(x)g(x)dx

) 1
qn

= |Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
(L(g))

1
qn . (2.14)
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Meanwhile, thanks to Lemma 2.1.29,

|L(g)| ≤ ‖L‖∗|Q|
1
n

(∑n
j=1

1
qj

)
− 1
p ‖g‖~q ′ = ‖L‖∗|Q|

1
n

(∑n
j=1

1
qj

)
− 1
p ‖fχQ‖qn−1

~q . (2.15)

Using (2.14) and (2.15), we obtain

‖f‖Mp
~q
≤ ‖L‖∗, (2.16)

so that f ∈ Mp
~q(R

n). Hence, we conclude that L is realized as L = Lf for

f ∈ Mp
~q(R

n) at least on g ∈ L~qc(Rn). Since L~q
′

c (Rn) is dense in Hp
′

~q ′(R
n) by

Lemma 2.1.30, we can obtain the desired result.

(iii) Thanks to (2.13), (2.16) and (ii), it follows that τ is an isomorphism. We shall
check (2.10). By virtue of (2.12), we have

‖f‖Mp
~q
≥ sup

{∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ : g ∈ Hp
′

~q ′(R
n), ‖g‖Hp′

~q ′
= 1

}
.

Fix a cube Q. We can assume that f 6≡ 0 on Q. Then, let

g ≡ (sgnf)|f |q1−1χQ‖fχQ‖q2−q1(q1) ‖fχQ‖
q3−q2
(q1,q2) · · · ‖fχQ‖

qn−qn−1

(q1,...,qn−1),

and

h ≡ |Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
‖g‖~q ′

g.

By Lemma 2.1.29, we see that ‖h‖Hp′
~q ′
≤ 1. Therefore,

∫
f(x)h(x)dx =

|Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
‖g‖~q ′

∫
Q
f(x)g(x)dx =

|Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
‖fχQ‖qn−1

~q

‖fχQ‖qn~q

= |Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
‖fχQ‖~q.

Taking the supremum over the all functions h ∈ Hp
′

~q ′(R
n) satisfying ‖h‖Hp′

~q ′
≤ 1,

we obtain

|Q|
1
p
− 1
n

(∑n
j=1

1
qj

)
‖fχQ‖~q ≤ sup

{∣∣∣∣∫
Rn
f(x)h(x)dx

∣∣∣∣ : h ∈ Hp
′

~q ′(R
n), ‖h‖Hp′

~q ′
= 1

}
.

Thus, we conclude

‖f‖Mp
~q
≤ sup

{∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ : g ∈ Hp
′

~q ′(R
n), ‖g‖Hp′

~q ′
= 1

}
,

so that we have (2.10). Meanwhile, by (2.12), we have

‖g‖Hp′
~q ′
≥ sup

{∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ : f ∈Mp
~q(R

n), ‖f‖Mp
~q

= 1

}
.
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Using the Hahn–Banach theorem, we learn that there exists a functional L̃ ∈(
Hp
′

~q ′(R
n)
)∗

such that ‖L̃‖∗ = 1 and ‖g‖Hp′
~q ′

= L̃(g). Since L̃ ∈
(
Hp
′

~q ′(R
n)
)∗

, by

(ii), there is a function f ∈Mp
~q(R

n) such that L̃(g) = Lf (g), and that

‖f‖Mp
~q

= ‖Lf‖∗ = ‖L̃‖∗ = 1.

Thus, we obtain (2.11).

Finally, we give an example of functions in the predual spaces Hp
′

~q ′(R
n).

Example 2.1.32. Let 1 < p <∞ and
n

p
≤

n∑
j=1

1

qj
. Then, we have

‖χQ‖Hp′
~q ′

= |Q|
1
p′ .

Applying Lemma 2.1.29 to the function χQ, we have

‖χQ‖Hp′
~q ′
≤ ‖χQ‖~q ′ |Q|

1
n

(∑n
j=1

1
qj

)
− 1
p

= |Q|1−
1
p = |Q|

1
p′ .

Meanwhile, let f(x) ≡
χQ(x)

‖χQ‖Mp
~q

. Then, ‖f‖Mp
~q

= 1. Thanks to Theorem 2.1.31 (iii),

we obtain

‖χQ‖Hp′
~q ′
≥
∫
Rn
f(x)χQ(x)dx =

1

‖χQ‖Mp
~q

∫
Rn
χQ(x)dx = |Q|1−

1
p = |Q|

1
p′ .

Thus, we conclude ‖χQ‖Hp′
~q ′

= |Q|
1
p′ .

2.2 Other function spaces

2.2.1 Besov spaces

Besov spaces have a lot of studies. First, Besov introduced this space using differences
in 1959 [13]. Peetre characterized this space by using Fourier transform in 1967 [115].
After that Besov spaces have been investigated by many authors until now. As for the
relation with Morrey sapces, Kozono and Yamazaki introduced Besov-Morrey spaces
which were introduced to apply to Navier–Stokes equations [81]. Furthermore, there
are many textbooks including these spaces [116, 126, 147, 148].

In this subsection, we recall the definition and some fundamental properties of
Besov spaces. All of the proofs are referred to books [116, 126, 147, 148] or a survey
paper [128].
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In this thesis, we employ the well-known definition by the Fourier transform. For τ ∈
S(Rn) and f ∈ S ′(Rn), define τ(D)f ≡ F−1[τ · Ff ]. Next, we define the Littlewood–
Paley decomposition. Let ϕ ∈ C∞c (Rn) satisfy

χB(4)\B(2) ≤ ϕ ≤ χB(8)\B( 3
2

). (2.17)

Then define ϕj ≡ ϕ(2−j ·). The j-th Littlewood–Paley decomposition is the operator
ϕj(D). Now we are ready to define the (homogeneous) Besov space Ḃs

pr(Rn) for 1 ≤
p <∞, 1 ≤ r ≤ ∞ and s ∈ R using the polynomial space P(Rn).

Definition 2.2.1. Let s ∈ R, 1 ≤ p, r ≤ ∞. We define

‖f‖Ḃspr ≡

 ∞∑
j=−∞

(2js‖ϕj(D)f‖Lp)r
 1

r

for f ∈ S ′(Rn)/P(Rn). The (homogeneous) Besov space Ḃs
pq(Rn) is the set of all

f ∈ S ′(Rn)/P(Rn) for which the norm ‖f‖Ḃspq is finite.

Remark that in the above definition, we choose ϕ so that the norm of Ḃs
pq(Rn)

depends on ϕ. However, we can verify that Ḃs
pq(Rn) is independent of ϕ as the set.

Theorem 2.2.2 ([126, Theorem 2.1]). In Definition 2.2.1, we obtain the equivalent
norms for the admissible choice of ϕ.

We recall the elementary properties for Besov spaces.

Theorem 2.2.3 ([126, Theorem 2.4]). Let 1 ≤ p, q ≤ ∞ and s ∈ R. Then, Ḃs
pq(Rn) is

complete, that is, Ḃs
pq(Rn) is Banach space.

The embedding properties are as follows.

Proposition 2.2.4.

(1) ([126, Proposition 2.2]) For s ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, we have

Ḃs
pr1(Rn) ↪→ Ḃs

pr2(Rn).

(2) ([126, Theorem 2.5]) For s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞,

Ḃs
p1r1(Rn) ↪→ Ḃ

s−( n
p1
− n
p2

)

p2r2 (Rn).

Moreover, we consider the relation between Besov spaces and Lebesgue spaces.

Proposition 2.2.5.

(1) ([126, Theorem 4.4]) For 1 ≤ p ≤ q ≤ ∞, Ḃ
n
p
−n
q

p1 (Rn) ↪→ Lq(Rn).
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(2) ([126, Proposition 2.1]) For 1 ≤ p ≤ ∞, Ḃ0
p1(Rn) ↪→ Lp(Rn) ↪→ Ḃ0

p∞(Rn).

(3) ([126, Exercise 3.8]) For 1 < p < ∞, Ḃ0
p2(Rn) ↪→ Lp(Rn). Moreover, by duality,

for 1 < p ≤ 2, Lp(Rn) ↪→ Ḃ0
p2(Rn).

(4) ([126, Exercise 3.8]) For 1 ≤ p ≤ 2, Ḃ0
pp(Rn) ↪→ Lp(Rn). Moreover, by duality,

for 2 ≤ p ≤ ∞, Lp(Rn) ↪→ Ḃ0
pp(Rn).

In Section 4, we use the Besov space Ḃs
p1(Rn) characterized by atoms. So we only

describe the characterization of the Besov space Ḃs
p1(Rn). Full statements for Besov

spaces can be found in many books. See [126, 147, 148, 149].

Theorem 2.2.6. Let 1 ≤ p <∞ and 0 < s ≤ n

p
. Define q ∈ (p,∞) by

−n
q

= s− n

p
, that is q = n

(
n

p
− s
)−1

.

Then, the Besov space Ḃs
p1(Rn) coincides with the set of all f ∈ Lq(Rn) for which it

can be expressed:

f =
∞∑

j=−∞

( ∑
m∈Zn

λjmajm

)
in Lq(Rn) for some complex sequence Λ ≡ {λjm}j∈Z,m∈Zn and some sequence A ≡
{ajm}j∈Z,m∈Zn of C∞-functions satisfying

∞∑
j=−∞

2js

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lp

<∞, |∂αajm| ≤ 2j|α|χ3Qjm

for all (j,m) ∈ Z×Zn and multiindices α with |α| ≤ [s+ 1]. Moreover the Besov norm
‖f‖Ḃsp1 is equivalent to the infimum of

∞∑
j=−∞

2js

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lp

=
∞∑

j=−∞
2
js−j n

p

( ∑
m∈Zn

|λjm|p
) 1

p

=

∞∑
j=−∞

2
−j n

q

( ∑
m∈Zn

|λjm|p
) 1

p

,

where Λ = {λjm}j∈Z,m∈Zn moves over all possible expressions.

Remark that we use a different definition of sequence spaces to make ajm behave
almost similarly to χQjm . See [148] and [149, §13.1].

As is easily seen from Proposition 2.2.5, Ḃs
p1(Rn) is continuously embedded into

Lq(Rn). We remark that Theorem 2.2.6 is an expression of homogeneous Besov spaces
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that differs from the one in [126, 147, 148, 149]. See [126, 148, 149] for the fact that
these two definitions are actually the same.

Finally, we give an example of the elements of Ḃs
p1(Rn). This example will use to

prove Theorem 4.1.5.

Example 2.2.7. Let 1 < p < ∞ and 0 < s ≤ n

p
. Fix j ∈ Z. Then, by using

the partition of unity subordinate to the covering {3Qjm}m∈Zn , we can show that

exp(−|2j · −m|2) ∈ Ḃs
p1(Rn) satisfies ‖ exp(−|2j · −m|2)‖Ḃsp1 . 2

js−j n
p for all m ∈ Zn.

2.2.2 Microlocal Besov spaces

We recall the generalized 2-microlocal Besov space Bs,mloc
pq (Rn, w). The idea of 2-

microlocal analysis is due to Bony in 1984 [16]. It is an appropriate instrument to
describe the local regurality and the oscillatory behavior of functions near singularities.
Later many authors investigated the function spaces introduced this idea. In particular,
Moritoh and Yamada introduced this idea into Besov spaces and characterized these
spaces in 2004 [96]. After that Kempka defined and investigated the generalized 2-

microlocal Besov space Bs,mloc
pq (Rn, w) [74].

To define 2-microlocal Besov spaces, we recall the class Wα3
α1,α2

:

Definition 2.2.8 (Weight class Wα3
α1,α2

). Let α1, α2, α3 ∈ [0,∞). The class Wα3
α1,α2

of weights is defined as the set of all the sequences of the measurable functions w =
{wj}∞j=−∞ satisfying the following conditions:

1. There exists a constant C > 0 such that for all x, y ∈ Rn and j ∈ Z,

0 < wj(x) ≤ Cwj(y)(1 + 2j |x− y|)α3 .

2. For all x ∈ Rn and j ∈ Z,

2−α1wj(x) ≤ wj+1(x) ≤ 2α2wj(x).

Such a sequence w ∈ Wα3
α1,α2

is called an admissible weight sequence.

The (homogeneous) generalized 2-microlocal Besov spaces are usually defined by
the use of the Fourier multipliers as follows.

Definition 2.2.9 (Generalized 2-microlocal Besov spaces). Let w ∈ Wα3
α1,α2

. Let ϕ
satisfy (2.17) and define ϕj(x) = ϕ(2−jx). Let 0 < p, q ≤ ∞. Then for f ∈ S ′(Rn)
define

‖f‖
Ḃs,mloc
pq (Rn,w)

≡

 ∞∑
j=−∞

2js
∥∥wjF−1[ϕjFf ]

∥∥q
p

 1
q

.

The generalized 2-microlocal Besov space Ḃs,mloc
pq (Rn, w) is the set of all f ∈ S ′(Rn) for

which ‖f‖
Ḃs,mloc
pq (Rn,w)

is finite.
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Note that if we take wj(x) = 1 for all x ∈ Rn and j ∈ Z, we obtain classical Besov
spaces. Also remark that the norm ‖ · ‖

Ḃs,mloc
pq (Rn,w)

is independent of the choice of ϕ.

We refer to [74].

Kempka characterized the spaces Bs,mloc
pq (Rn, w) via the atomic decomposition in

[74].

Theorem 2.2.10. Let w = {wj}∞j=−∞ ∈ Wα3
α1,α2

, s ∈ R, and 0 < p, q ≤ ∞. Further-
more, let K,L ∈ N0 with

K > s+ α2, and L > max

{
0, n

(
1

p
− 1

)}
− s+ α1.

For each f ∈ Ḃs,mloc
pq (Rn, w), there exist sequences

{λjm}j∈Z,m∈Zn ⊂ C, {ajm}j∈Z,m∈Zn ⊂ C∞(Rn) and {Qjm}j∈Z,m∈Zn ⊂ D

such that the representation

f =
∞∑

j=−∞

∑
m∈Zn

λjmajm,

holds, where the triplet {λjm}j∈Z,m∈Zn, {ajm}j∈Z,m∈Zn and {Qjm}j∈Z,m∈Zn satisfies

|∂αajm| ≤ 2j|α|χ3Qjm ,

∫
Rn
xβajmdx = 0,

∑
j∈Z

2jsq

∥∥∥∥∥ ∑
m∈Zn

wjλjmχQjm

∥∥∥∥∥
q

p

 1
q

<∞

for all multiindices α and β with |α| ≤ K and |β| ≤ L. Here the convergence is in
S ′(Rn). Moreover, there exists a constant C > 0 such that∑

j∈Z
2jsq

∥∥∥∥∥ ∑
m∈Zn

wjλjmχQjm

∥∥∥∥∥
q

p

 1
q

≤ C‖f‖
Ḃs,mloc
pq (Rn,w)

for all f ∈ Ḃs,mloc
pq (Rn, w).

Note that this characterization will be used in Section 4, see Definition 4.1.2.

2.2.3 Lorentz spaces

Next, we turn to Lorentz spaces. Lorentz spaces were introduced by Lorentz in [88, 89].
A general treatment of this space was given in the article of Hunt [61]. The boundedness
of the classical results on Lorentz spaces are investigated in [9, 136]. Here, we recall
the definitions and elementary facts needed in Subsection 4.3.2. For more details, we
refer to [41, Section 1.4] or [143, Chapter V].

To define Lorentz spaces, we prepare some notation. Let f : Rn → C be a measur-
able function. Then the distribution function λf : [0,∞)→ [0,∞] is a function defined
by

λf (t) ≡ |{x ∈ Rn : |f(x)| > t}| (t ≥ 0).
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Definition 2.2.11. Let f ∈ L0(Rn). Then its decreasing rearrangement f∗ is the
function defined on (0,∞) by

f∗(t) ≡ inf({s ∈ [0,∞) : λf (s) ≤ t} ∪ {∞}) (t > 0).

Definition 2.2.12.

1. Let 0 < p <∞ and 0 < q <∞. Then the Lorentz space Lp,q(Rn) is the set of all
f ∈ L0(Rn) for which the quasi-norm

‖f‖Lp,q ≡
{∫ ∞

0
(t

1
p f∗(t))q

dt

t

} 1
q

is finite.

2. The Lorentz space L∞,∞(Rn) stands for L∞(Rn).

3. If 0 < p < ∞, then the Lorentz space Lp,∞(Rn) denotes the weak Lp-space:
Lp,∞(Rn) = WLp(Rn).

By virtue of the definition, we easily show that Lp,p(Rn) = Lp(Rn) for 0 < p ≤ ∞.
Remark that the space Lp,q(Rn) is complete under the above quasi-norm ‖ · ‖Lp,q , that
is, Lp,q(Rn) is a quasi-Banach space. Meanwhile, we can show that the Lorentz space
Lp,q(Rn) is normable when p, q > 1. To see this, we shall define the function f∗∗. The
idea to use this function is due to Calderón [17]. We now set the maximal function f∗∗

by

f∗∗(t) ≡ 1

t

∫ t

0
f∗(s)ds, 0 < t ≤ ∞.

Then define the norm

‖f‖∗Lp,q ≡


{∫ ∞

0
(t

1
p f∗∗(t))q

dt

t

} 1
q

, 1 < p <∞, 1 ≤ q <∞,

sup
t>0

t
1
p f∗∗(t), 1 < p ≤ ∞, q =∞.

Thanks to the Hardy inequality, if 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, then ‖·‖∗Lp,q ∼ ‖·‖Lp,q
holds. Furthermore, Lp,q(Rn) is a Banach space with the norm ‖ · ‖∗Lp,q .

The following result shows that the the scale of Lorentz spaces is monotone for the
parameter q increases for any fixed p.

Proposition 2.2.13. Suppose that 0 < p ≤ ∞ and 0 < q < r ≤ ∞. Then, the
embedding

Lp,q(Rn) ↪→ Lp,r(Rn)

holds.

At last, we consider the quasi-triangle inequality for the infinite sum. The following
lemma is somehow well known. But it seems that its proof is missing in the literature.
So, we give a proof.
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Lemma 2.2.14. Let 0 < p ≤ q ≤ ∞. If we decompose a measurable function f by

f =
∞∑
j=1

fj such that {supp(fj)}∞j=1 are pairwise disjoint, then we have

‖f‖pLp,q .
∞∑
j=1

‖fj‖pLp,q .

Proof. We will use the property of the Lorentz norm (see [41, Proposition 1.4.9]):

‖f‖Lp,q ∼


{∫ ∞

0
(tλf (t)

1
p )q

dt

t

} 1
q

, q <∞,

sup
t>0

tλf (t)
1
p , q =∞.

Note that we calculate

λf (t) =

∣∣∣∣∣∣
∞⊔
j=1

{x ∈ Rn : |fj(x)| > t}

∣∣∣∣∣∣ =
∞∑
j=1

λfj (t).

Then by using the triangle inequality, we have

‖f‖pLp,q ∼

∥∥∥∥∥∥
∞∑
j=1

λfj

∥∥∥∥∥∥
L
q
p (tq−1dt)

≤
∞∑
j=1

‖λfj‖L
q
p (tq−1dt)

=

∞∑
j=1

‖fj‖pLp,q ,

where ‖ · ‖
L
q
p (tq−1dt)

denotes the L
q
p -norm with respect to the measure tq−1dt. This is

a desired result.

2.2.4 Orlicz spaces

Orlicz spaces initially appeared in 1930’s. Birnbaum–Orlicz [14], Orlicz [109, 110,
111], and Nakano [105] investigated Orlicz spaces. Kita investigated the boundedness
property of the Hardy–Littlewood maximal operator on Orlicz spaces in [75, 76, 77].
In this thesis, we only recall fundamental facts used in Subsection 4.3.1. For the proof
and more details of Orlicz spaces, we refer to [12, 90, 119].

To define Orlicz spaces, we recall the definition of Young functions. A function
Φ : [0,∞)→ [0,∞) is a Young function, if it satisfies the following conditions:

1. Φ(0) = 0.

2. Φ is convex. That is, Φ((1−θ)t1+θt2) ≤ (1−θ)Φ(t1)+θΦ(t2) for all t1, t2 ∈ (0,∞)
and 0 < θ < 1.

3. lim
t→0

Φ(t) = Φ(0), lim
t→∞

Φ(t) =∞.
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So, we define the Orlicz space LΦ(Rn).

Definition 2.2.15 (Orlicz space). Let Φ : [0,∞)→ [0,∞) be a Young function. Then
define the Luxemburg–Nakano norm ‖ · ‖LΦ by

‖f‖LΦ ≡ inf

({
λ ∈ (0,∞) :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
∪ {∞}

)
for f ∈ L0(Rn). The Orlicz space LΦ(Rn) is the set of all f ∈ L0(Rn) for which ‖f‖LΦ

is finite.

Orlicz spaces extend Lebesgue spaces in the following sense:

Example 2.2.16. If Φ(t) = tp for 1 ≤ p <∞, then LΦ(Rn) = Lp(Rn) with coincidence
of norms.

Here we content ourselves with the completeness of LΦ(Rn) without the proof.

Theorem 2.2.17. Let Φ be a Young function. Then, the Orlicz space LΦ(Rn) is a
Banach space with respect to ‖ · ‖LΦ.

If we suppose bijective for Young functions Φ, we can calculate ‖χE‖LΦ .

Lemma 2.2.18. Assume that Φ is a Young function. Also let Φ be bijective. Then,
for all measurable set E with 0 < |E| <∞,

‖χE‖LΦ =

{
Φ−1

(
1

|E|

)}−1

.

Proof. We write the norm ‖χE‖LΦ in full:

‖χE‖LΦ ≡ inf

{
λ ∈ (0,∞) :

∫
Rn

Φ

(
χE(x)

λ

)
dx ≤ 1

}
.

Since Φ(0) = 0, we have

1 ≥
∫
Rn

Φ
(χE
λ

)
dx =

∫
E

Φ

(
1

λ

)
dx = Φ

(
1

λ

)
× |E|.

By virtue of the bijection of Φ,

λ ≥
{

Φ−1

(
1

|E|

)}−1

.

Thus,

‖χE‖LΦ =

{
Φ−1

(
1

|E|

)}−1

.
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Chapter 3

Boundedness of commutators of
fractional integral operators on
mixed Morrey spaces

3.1 Introduction and theorems

In this section we consider the necessary and sufficient conditions for the boundedness
of commutators generated by BMO functions and the fractional integral operator Iα
on mixed Morrey spaces.

First, we look back on the background and classical results. The idea of commu-
tators for functions and operators appeared first in Coifman-Rocheberg-Weiss’s paper
[20]. In this paper, they gave the necessary and sufficient condition for the bounded-
ness of commutators generated by functions and singular integral operators on Lebesgue
spaces. Meanwhile, Chanillo obtained the following boundedness results for [b, Iα] [18].

Theorem 3.1.1. Let 1 < p, q <∞ and 0 < α < n. Assume that

1

p
=
α

n
+

1

q
.

If b ∈ BMO(Rn), then the commutator [b, Iα] is bounded from Lp(Rn) to Lq(Rn).
Conversely, if n − α is even and [b, Iα] is bounded from Lp(Rn) to Lq(Rn), then we
have b ∈ BMO(Rn).

These results were extended to Morrey spaces. In 1991, Di Fazio and Ragusa gave
the necessary and sufficient condition for the boundedness of commutator [b, Iα] on
Morrey spaces [24].

Theorem 3.1.2. Let 0 < α < n, 1 < q ≤ p < n

α
. Assume that

1

r
=

1

p
− α

n
,

q

p
=
s

r
.
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If b ∈ BMO(Rn), then
[b, Iα] : Mp

q(Rn)→Mr
s(Rn).

Conversely, if n− α is even and [b, Iα] : Mp
q(Rn)→Mr

s(Rn), then b ∈ BMO(Rn).

Shirai removed the condition for n− α in [140].

Theorem 3.1.3. Let 0 < α < n, 1 < q ≤ p < n

α
. Also, assume that

1

r
=

1

p
− α

n
,

q

p
=
s

r
.

Then, the following conditions are equivalent:

(a) b ∈ BMO(Rn).

(b) [b, Iα] is bounded from Mp
q(Rn) to Mr

s(Rn).

Our main theorem extends these results to mixed Morrey spaces. We state our
result (This is a same one as Theorem 1.2.1).

Theorem 3.1.4. Let 0 < α < n, 1 < p <
n

α
,
n

p
≤

n∑
j=1

1

qj
, and

n

r
≤

n∑
j=1

1

sj
. Also,

assume that
1

r
=

1

p
− α

n
,

qj
p

=
sj
r

(j = 1, . . . , n).

Then, the following conditions are equivalent:

(a) b ∈ BMO(Rn).

(b) [b, Iα] is bounded from Mp
~q(R

n) to Mr
~s(R

n).

(c) [b, Iα] is bounded from M̃p
~q(R

n) to Mr
~s(R

n).

(d) [b, Iα] is bounded from M̃p
~q(R

n) to Mr
1(Rn).

Here, M̃p
~q(R

n) is the Mp
~q(R

n)-closure of C∞c (Rn).

The remaining parts of this chapter are as follows. In Section 3.2, we establish
the sharp maximal inequality on mixed Morrey spaces (Theorem 3.2.6). In Subsection
3.2.1, we prepare some ingredients to show the sharp maximal inequality. Its proof is
given in Subsection 3.2.2. Additionally, we check the action of the commutator [b, Iα]
on mixed Morrey spaces in Subsection 3.2.3. To prove Theorem 3.1.4, Lemma 3.2.15
is significant. Finally, we prove the main theorem in Section 3.3.
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3.2 Sharp maximal inequality

We next consider the sharp maximal inequality on mixed Morrey spaces and the relation
of the sharp maximal operator and commutators on mixed Morrey spaces to prove the
main theorem.

3.2.1 Preliminaries

As we said in Subsection 1.2.1, we cannot apply the layer cake formula and good-λ
inequality for mixed norm setting. So instead of these tools, we employ the dyadic
local maximal operator M#,d

λ;Q0
and the concept of the sparse family. We follow the

definition in [84].

Definition 3.2.1. Let f ∈ L0(Rn) and Q ∈ Q.

1. The decreasing rearrangement of f on Rn is defined by

f∗(t) ≡ |{ρ > 0 : µf (ρ) > t}| (0 < t <∞),

where µf is a distribution of f . That is, µf (ρ) = |{x ∈ Rn : |f(x)| > ρ}|.

2. The local mean oscillation of f on Q is defined by

ωλ(f ; Q) ≡ inf
c∈C

((f − c)χQ)∗ (λ|Q|) (0 < λ < 2−1).

3. Assume that the function f is real-valued. Then, the median of f over Q, which
is denoted by mf (Q), is a real number satisfying

|{x ∈ Q : |f(x)| > mf (Q)}| , |{x ∈ Q : |f(x)| < mf (Q)}| ≤ 1

2
|Q|.

Note that the median mf (Q) is possibly non-unique.

The symbol D(Q0) denotes a set of all cubes with respect to the cube Q0, that is,
D(Q0) is the set of the form

n∏
j=1

[
xj +

(mj − 1)`(Q0)

2k
, xj +

mj`(Q0)

2k

)

for all k ∈ N0 and mj = 1, . . . , 2k (j = 1, . . . , n), where (x1, . . . , xn) denotes the left
corner of the cube Q0. For 0 < λ < 2−1 and Q0 ∈ Q, the dyadic local sharp maximal
operator M#,d

λ;Q0
is defined by

M#,d
λ;Q0

f(x) ≡ sup
Q∈D(Q0)

ωλ(f ; Q)χQ(x)
(
x ∈ Rn, f ∈ L0(Rn)

)
.
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Moreover, we use the following sharp maximal operator

M#,d
λ f(x) ≡ sup

Q0∈Q
sup

Q∈D(Q0)
ωλ(f ; Q)χQ(x)

(
x ∈ Rn, f ∈ L0(Rn)

)
.

Let f ∈ L1
loc(Rn). The Fefferman–Stein sharp maximal operator is defined by

f#,η(x) ≡ sup
x∈Q

(
1

|Q|

∫
Q
|f(y)− fQ|ηdy

) 1
η

(x ∈ Rn),

where the supremum is taken over all cubes Q in Rn containing x. When η = 1, f#,η

equals to f#:

f#(x) = sup
x∈Q

1

|Q|

∫
Q
|f(y)− fQ|dy (x ∈ Rn).

Jawerth and Torchinsky proved a pointwise equivalence between these two types of
the sharp maximal operators in [71] :

M (η)
[
M#,d
λ f

]
(x) ∼ f#,η(x) (x ∈ Rn) (3.1)

for sufficiently small λ, where M (η) denotes the powered Hardy–Littlewood maximal
operator defined by

M (η)f(x) ≡ sup
x∈Q

(
1

|Q|

∫
Q
|f(y)|ηdy

) 1
η

(x ∈ Rn),

where the supremum is taken over all cubes Q in Rn containing x.

The fractional maximal operator Mα is defined by

Mαf(x) = sup
x∈Q

1

|Q|1−
α
n

∫
Q
|f(y)|dy (x ∈ Rn),

where the supremum is taken over all cubes Q in Rn containing x. Note that the
pointwise inequality Mαf(x) . Iα(|f |)(x), x ∈ Rn holds.

Moreover we also employ the following ingredient.

Definition 3.2.2. We say that the family of dyadic cubes {Qkj }k∈N0, j∈Jk is a sparse
family if the following properties hold:

1. For each fixed k ∈ N0, the cubes {Qkj }j∈Jk are disjoint;

2. If Ωk ≡
⋃
j∈Jk Q

k
j , then Ωk+1 ⊂ Ωk;

3. |Ωk+1 ∩Qkj | ≤
1

2
|Qkj | for all j ∈ Jk.

Remark 3.2.3. Recently, we substitute the definition of the sparse for the above: Let
0 < η < 1. Then, S ⊂ Q is η-sparse if for each Q ∈ Q, there exist pairwise disjoint
measurable subsets {EQ}Q∈S such that EQ ⊂ Q and |EQ| ≥ η|Q|. For more details,
we refer to [85].
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The following lemma is used in the estimate of the dyadic local maximal operator.

Lemma 3.2.4. Let {Qkj }k∈N0, j∈Jkbe a sparse family. Then,

|Qkj | ≤ 2|Qkj ∩ Ωc
k+1|

holds for all k ∈ N0 and j ∈ Jk.

Proof. For k ∈ N0 and j ∈ Jk,

|Qkj | ≤ |Qkj ∩ Ωc
k+1|+ |Qkj ∩ Ωk+1| ≤ |Qkj ∩ Ωc

k+1|+
1

2
|Qkj |

by the condition 3 in Definition 3.2.2. Thus, we obtain the result.

Note that, thanks to this lemma, we can see that the sparse family {Qkj }k∈N0, j∈Jk in

Definition 3.2.2 is 1
2 -sparse. Namely, the idea of η-sparse is generalization of Definition

3.2.2.

To prove the Theorems 3.2.7 and 3.2.8, we invoke the following inequality.

Theorem 3.2.5 ([84]). Let f ∈ L0(Rn) and Q0 ∈ Q. Then, there exists a sparse
family of {Qkj }k∈N0, j∈Jk ⊂ D(Q0) such that for a.e. x ∈ Q0,

|f(x)−mf (Q0)| ≤ 4M#,d
λn;Q0

f(x) + 2
∑
k∈N0

∑
j∈Jk

ωλn(f ;Qkj )χQkj
(x).

Here, λn ≡ 2−n−2.

3.2.2 Sharp maximal inequality on mixed Morrey spaces

Our aim in this subsection is to show the following sharp maximal inequality for mixed
Morrey spaces.

Theorem 3.2.6. Let 0 < ~q <∞ and 0 < p <∞ satisfy

n

p
≤

n∑
j=1

1

qj
.

Then, for any f ∈ L0(Rn) satisfying Mf ∈ Mp0

~q0
(Rn) for some 0 < p0 < ∞ and

~q0 = (q0,1, . . . , q0,n) ∈ (0,∞)n with

n

p0
≤

n∑
j=1

1

q0,j
,

we have
‖f‖Mp

~q
∼
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

.
∥∥∥f#

∥∥∥
Mp

~q

. (3.2)
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To obtain the above theorem, we have to consider the following norm equivalence
similar to [104, 132].

Theorem 3.2.7. Let 0 < ~q <∞ and 0 < p, s <∞ satisfy

n

p
≤

n∑
j=1

1

qj
, s ≤ min(q1, . . . , qn, p).

For all f ∈ L0(Rn), it holds that

‖f‖Mp
~q
∼
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

+ ‖f‖Mp
s
.

The term ‖f‖Mp
s

in Theorem 3.2.7 is an auxiliary one although this explains how
Morrey spaces can be used to control operators acting on Lebesgue spaces. We can
remove this term under a reasonable condition using the idea by Fujii [38].

Theorem 3.2.8. Let 0 < ~s ≤ ~q <∞ and 0 < p <∞ satisfy

n

p
≤

n∑
j=1

1

qj
.

Assume that f ∈ L0(Rn) satisfies

mf (2`Q)→ 0

as `→∞ for any Q ∈ Q and for some medians {mf (2`Q)}`∈N0. Then we have

‖f‖Mp
~s
.
∥∥∥M#,d

λ f
∥∥∥
Mp

~s

≤
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

.

Meanwhile, the condition proposed by Fujii [38] can be verified as follows.

Lemma 3.2.9. Let f ∈ L0(Rn). Assume that Mf ∈ Mp
~q(R

n) for some 0 < ~q < ∞
and 0 < p <∞ satisfying

n

p
≤

n∑
j=1

1

qj
.

For any Q ∈ Q and any medians {mf (2`Q)}`∈N0, it holds that

lim
`→∞

mf (2`Q) = 0.

Proof. For 0 < λ < 2−1, we have

|mf (2`Q)| ≤ (f · χ2`Q)∗(λ|2`Q|) ≤ 1

λ
inf

x∈2`Q
Mf(x).

Then,

|mf (2`Q)| . |2`Q|−
1
n

∑n
j=1

1
qj ‖Mfχ2`Q‖~q ≤ |2`Q|

− 1
p ‖Mf‖Mp

~q
.

Thus, we obtain lim
`→∞

mf (2`Q) = 0.
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At first, we show Theorem 3.2.6 applying Theorems 3.2.7 and 3.2.8.

Proof of Theorem 3.2.6. By Theorem 3.2.7, we easily know that

‖f‖Mp
~q
∼
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

+ ‖f‖Mp
s
≥
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

.

Since Mf ∈Mp0

~q0
(Rn) for some 0 < p0 <∞ and ~q0 ∈ (0,∞)n, we have lim

`→∞
mf (2`Q) =

0. Thus, we are in position to use Theorem 3.2.8. Since s ≤ min(q1, . . . , qn, p), com-
bining Theorems 3.2.7 and 3.2.8, we have

‖f‖Mp
~q
∼
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

+ ‖f‖Mp
s

=
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

+ ‖f‖Mp
(s, . . . , s︸ ︷︷ ︸
n times

)
.
∥∥∥M#,d

λ f
∥∥∥
Mp

~q

.

Hence we obtain the left equivalence in (3.2). Meanwhile, the right inequality in (3.2)
follows from the pointwise estimate (3.1).

We move on to the proofs of Theorems 3.2.7 and 3.2.8. First, we prepare some
lemmas to show Theorem 3.2.7 and give its proof. After that, we prove Theorem 3.2.8.

The following estimates are significant for the proof of Theorem 3.2.7. First, we
show that the dyadic local sharp maximal operator is bounded on mixed Morrey spaces.

Proposition 3.2.10. Let 0 < ~q <∞ and 0 < p <∞ satisfy

n

p
≤

n∑
j=1

1

qj
,

and 0 < λ < 2−1. Then, for f ∈ L0(Rn), we have∥∥∥M#,d
λ f

∥∥∥
Mp

~q

. ‖f‖Mp
~q
.

Proof. In [104], it is known that

M#,d
λ f(x) .M (η)f(x) (x ∈ Rn)

for any η > 0. By virtue of Theorem 2.1.21, taking η < min(q1, . . . , qn, p), we have∥∥∥M#,d
λ f

∥∥∥
Mp

~q

.
∥∥∥M (η)f

∥∥∥
Mp

~q

= ‖M [|f |η]‖
1
η

M
p
η
~q
η

. ‖|f |η‖
1
η

M
p
η
~q
η

= ‖f‖Mp
~q
.

To prove ”.” part of Theorem 3.2.7, we evaluate ‖fχQ‖~q using the dyadic local
sharp maximal operator. Here and below, let λn = 2−n−2.
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Theorem 3.2.11. Let 0 < ~q <∞and 0 < p, r <∞ satisfy

n

p
≤

n∑
j=1

1

qj
,

and Q0 ∈ Q. Then, for all f ∈ L0(Rn), we have

‖fχQ0‖~q .
∥∥∥(M#,d

λn;Q0
f
)
χQ0

∥∥∥
~q

+ |Q0|
1
n

∑n
j=1

1
qj

(
1

|Q0|

∫
Q0

|f(x)|rdx
) 1
r

.

Proof. We take a median mf (Q0) and use the quasi-triangle inequality to get

‖fχQ0‖~q . ‖[f −mf (Q0)]χQ0‖~q + |Q0|
1
n

∑n
j=1

1
qj |mf (Q0)|.

First, we estimate the first term. Applying Theorem 3.2.5, we obtain

‖[f −mf (Q0)]χQ0‖~q .
∥∥∥(M#,d

λn;Q0
f
)
χQ0

∥∥∥
~q

+

∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλn(f ;Qkj )χQkj

χQ0

∥∥∥∥∥∥
~q

.

Since {Qkj }k∈N0, j∈Jk is a sparse family, we have |Qkj | ≤ 2|Qkj ∩ Ωc
k+1| by Lemma 3.2.4.

This implies a pointwise estimate

χQkj
(x) ≤ 2M [χQkj∩Ωck+1

](x).

Let η > max(1, q−1
1 , . . . , q−1

n ). By Proposition 2.1.24, it follows that∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλn(f ;Qkj )χQkj

χQ0

∥∥∥∥∥∥
~q

.

∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλn(f ;Qkj )M [χQkj∩Ωck+1
]η

χQ0

∥∥∥∥∥∥
~q

.

∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλn(f ;Qkj )χQkj∩Ωck+1

∥∥∥∥∥∥
~q

.

We deduce from the disjointness of {Qkj ∩Ωc
k+1}k∈N0,j∈Jk and the definition of ωλ that

ωλn(f ;Qkj )χQkj
≤M#,d

λn;Q0
f,

∑
k∈N0

∑
j∈Jk

χQkj∩Ωck+1
≤ χQ0 .

Then we obtain∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλn(f ;Qkj )χQkj

χQ0

∥∥∥∥∥∥
~q

.
∥∥∥(M#,d

λn;Q0
f
)
χQ0

∥∥∥
~q
.
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Next, we evaluate the second term. For, 0 < λ < 2−1, we have

|mf (Q0)| ≤ (f · χQ0)∗(λ|Q0|) ≤

(
1

λ|Q0|

∫ λ|Q0|

0
(f · χQ0)∗(t)rdt

) 1
r

.

(
1

|Q0|

∫
Q0

|f(x)|rdx
) 1
r

.

Thus, combining the two estimates gives the desired result.

By virtue of Theorem 3.2.11, we have the following norm estimate.

Corollary 3.2.12. Let 0 < ~q <∞ and 0 < s <∞. Moreover, let 0 < p <∞ satisfy

n

p
≤

n∑
j=1

1

qj
, 0 < s ≤ p.

Then, for f ∈ L0(Rn), we have

‖f‖Mp
~q
.
∥∥∥M#,d

λn
f
∥∥∥
Mp

~q

+ ‖f‖Mp
s
.

So we turn to the proofs of Theorems 3.2.7 and 3.2.8.

Proof of Theorem 3.2.7. First, Since 0 < s ≤ min{q1, . . . , qn, p}, we have

‖f‖Mp
~q
.
∥∥∥M#,d

λn
f
∥∥∥
Mp

~q

+ ‖f‖Mp
s

by Corollary 3.2.12. Conversely, combining Proposition 3.2.10, and embedding

Mp
~q(R

n) ↪→Mp
s(Rn),

we obtain ∥∥∥M#,d
λn

f
∥∥∥
Mp

~q

+ ‖f‖Mp
s
. ‖f‖Mp

~q
+ ‖f‖Mp

s
. ‖f‖Mp

~q
,

as desired.

Next, we give the proof of Theorem 3.2.8.

Proof of Theorem 3.2.8. Fix any Q0 ∈ Q. Then,

|Q0|
1
p
− 1
n

(∑n
j=1

1
sj

)
‖fχQ0‖~s . |Q0|

1
p
− 1
n

(∑n
j=1

1
sj

) ∥∥∥[f −mf (2`Q0)]χQ0

∥∥∥
~s

+ |Q0|
1
p |mf (2`Q0)|.
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By the assumption, it follows that

|Q0|
1
p
− 1
n

(∑n
j=1

1
sj

)
‖fχQ0‖~s . lim sup

`→∞
|Q0|

1
p
− 1
n

(∑n
j=1

1
sj

) ∥∥∥[f −mf (2`Q0)]χQ0

∥∥∥
~s
. (3.3)

We use Theorem 3.2.5, and obtain∥∥∥[f −mf (2`Q0)]χQ0

∥∥∥
~s

.
∥∥∥(M#,d

λ f
)
χQ0

∥∥∥
~s

+

∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλ(f ;Qkj )χQkj

χQ0

∥∥∥∥∥∥
~s

. (3.4)

Here, we remark that the family {Qkj }k∈N0,j∈Jk ⊂ D(2`Q0) is a sparse family generated

by 2`Q0. To evaluate the second term of (3.4), we have only to calculate the following
two terms:

I =

∥∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk:Qkj⊂Q0

ωλ(f ;Qkj )χQkj

χQ0

∥∥∥∥∥∥∥
~s

,

II =

∥∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk:Qkj)Q0

ωλ(f ;Qkj )χQkj

χQ0

∥∥∥∥∥∥∥
~s

.

We can handle this with a similar argument to the proof of Theorem 3.2.11, that is,
due to Lemma 3.2.4 and the boundedness of the Hardy–Littlewood maximal operator.
Thus, we have

I .

∥∥∥∥∥∥
∑
k∈N0

∑
j∈Jk

ωλ(f ;Qkj )χQkj∩Ωck+1

χQ0

∥∥∥∥∥∥
~s

.

Note that the summation is taken over the cubes contained in Q0. Then, we have

I .
∥∥∥(M#,d

λ f
)
χQ0

∥∥∥
~s
,

thanks to the disjointness of {Qkj ∩ Ωc
k+1}k∈N0,j∈Jk .

Meanwhile, by recalling that Qkj ⊂ 2`Q0 and the dyadic property, we can rewrite
the summation of II as follows.

II ≤

∥∥∥∥∥
( ∞∑
m=1

ωλ(f ;Q
(m)
0 )χ

Q
(m)
0

)
χQ0

∥∥∥∥∥
~s

.

Here, Q
(m)
0 denotes the dyadic m-th ancestor of Q0. Namely, Q

(m)
0 is a unique dyadic

cube with respect to 2`Q0 whose side length is 2m`(Q0) and containing Q0. Then, by
Example 2.1.32, we see that

II ≤ ‖χQ0‖~s
∞∑
m=1

ωλ(f ;Q
(m)
0 )

= |Q0|
1
n

(∑n
j=1

1
sj

)
∞∑
m=1

∣∣∣Q(m)
0

∣∣∣− 1
n

(∑n
j=1

1
sj

) ∥∥∥(ωλ(f ;Q
(m)
0 )

)
χ
Q

(m)
0

∥∥∥
~s
.
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By virtue of the definition of the local sharp maximal operator M#,d
λ , we have

II ≤ |Q0|
1
n

(∑n
j=1

1
sj

)
∞∑
m=1

∣∣∣Q(m)
0

∣∣∣− 1
p
∥∥∥M#,d

λ f
∥∥∥
Mp

~s

=

( ∞∑
m=1

2
−m
p

)
|Q0|

− 1
p

+ 1
n

(∑n
j=1

1
sj

) ∥∥∥M#,d
λ f

∥∥∥
Mp

~s

∼ |Q0|
− 1
p

+ 1
n

(∑n
j=1

1
sj

) ∥∥∥M#,d
λ f

∥∥∥
Mp

~s

.

Thus, combining estimates I and II, we obtain

∥∥∥[f −mf (2`Q0)]χQ0

∥∥∥
~s
.
∥∥∥(M#,d

λ f
)
χQ0

∥∥∥
~s

+ |Q0|
− 1
p

+ 1
n

(∑n
j=1

1
sj

) ∥∥∥M#,d
λ f

∥∥∥
Mp

~s

. (3.5)

Therefore, by (3.3) and (3.5), we obtain the desired result.

3.2.3 The relation to commutators and the sharp maximal function
on mixed Morrey spaces

First, we check that the commutator [b, Iα]f is well defined for any f ∈ Mp
~q(R

n) and
b ∈ BMO(Rn).

Lemma 3.2.13. Let 0 < α < n, 1 < ~q < ∞, 1 < p <
n

α
, 1 < r < ∞, and

n

p
≤

n∑
j=1

1

qj
.

Also, assume that
1

r
=

1

p
− α

n
.

For any f ∈Mp
~q(R

n), b ∈ BMO(Rn), x ∈ Rn and Q ∈ Q containing x, we have∫
Rn\2Q

|b(x)− b(y)|
|x− y|n−α

|f(y)|dy . |Q|−
1
r ‖f‖Mp

~q
(‖b‖BMO + |b(x)− bQ|) .

Proof. By the triangle inequality, it follows that∫
Rn\2Q

|b(x)− b(y)|
|x− y|n−α

|f(y)|dy

≤
∫
Rn\2Q

|b(x)− bQ|
|x− y|n−α

|f(y)|dy +

∫
Rn\2Q

|b(y)− bQ|
|x− y|n−α

|f(y)|dy

≡ I + II.

Note that if x ∈ Q and y ∈ 2j+1Q\2jQ for each j ≥ 1, then we have |x−y| . 2j+1`(Q).
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We shall estimate I. By the above observation, we estimate

I = |b(x)− bQ|
∞∑
j=1

∫
2j+1Q\2jQ

1

|x− y|n−α
|f(y)|dy

. |b(x)− bQ|
∞∑
j=1

∫
2j+1Q\2jQ

1

(2j+1`(Q))n−α
|f(y)|dy

≤ |b(x)− bQ|
∞∑
j=1

|2j+1Q|−1+α
n

∫
2j+1Q

|f(y)|dy.

Since Mp
~q(R

n) ↪→Mp
1(Rn), we obtain

I ≤ |b(x)− bQ|
∞∑
j=1

|2j+1Q|−1+α
n |2j+1`(Q)|1−

1
p ‖f‖Mp

1

=

 ∞∑
j=1

2(j+1)(− 1
r

)

 |b(x)− bQ| · |Q|−
1
r ‖f‖Mp

~q

. |b(x)− bQ| · |Q|−
1
r ‖f‖Mp

~q
.

Here we use the convergence of the series
∞∑
j=1

2(j+1)(− 1
r

).

Next, we consider the second term II. Using Hölder’s inequality, we have

II =
∞∑
j=1

∫
2j+1Q\2jQ

|b(y)− bQ|
|x− y|n−α

|f(y)|dy

.
∞∑
j=1

|2j+1Q|−1+α
n

∫
2j+1Q

|b(y)− bQ||f(y)|dy

≤
∞∑
j=1

|2j+1Q|
α
n

(
1

|2j+1Q|

∫
2j+1Q

|b(y)− bQ|s
′
dy

) 1
s′
(

1

|2j+1Q|

∫
2j+1Q

|f(y)|sdy
) 1
s

for some s > 1. Since |b2j+1Q − bQ| . j‖b‖BMO, we get

(
1

|2j+1Q|

∫
2j+1Q

|b(y)− bQ|s
′
dy

) 1
s′

≤
(

1

|2j+1Q|

∫
2j+1Q

|b(y)− b2j+1Q|s
′
dy

) 1
s′

+ |b2j+1Q − bQ|

. (1 + j)‖b‖BMO. (3.6)
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Furthermore, since M (s) is bounded on Mp
~q(R

n), we have

(
1

|2j+1Q|

∫
2j+1Q

|f(y)|sdy
) 1
s

≤

∥∥χ2j+1Q

∥∥
Mp

~q∥∥χ2j+1Q

∥∥
Mp

~q

inf
x∈2j+1Q

M (s)f(x)

≤
∥∥χ2j+1Q

∥∥−1

Mp
~q

∥∥∥M (s)f
∥∥∥
Mp

~q

. |2j+1Q|−
1
p ‖f‖Mp

~q
.

Thus,

II .
∞∑
j=1

|2j+1Q|
α
n
− 1
p (1 + j)‖b‖BMO‖f‖Mp

~q

=

 ∞∑
j=1

2−
1
r

(j+1)(1 + j)

 |Q|− 1
r ‖b‖BMO‖f‖Mp

~q
.

Since

∞∑
j=1

2−
1
r

(j+1)(1 + j) converges, we obtain

II . |Q|−
1
r ‖b‖BMO‖f‖Mp

~q
.

Combining these two estimates, we conclude∫
Rn\2Q

|b(x)− b(y)|
|x− y|n−α

|f(y)|dy . (|b(x)− bQ|+ ‖b‖BMO) |Q|−
1
r ‖f‖Mp

~q
.

Remark 3.2.14. Let f ∈ Mp
~q(R

n), b ∈ BMO(Rn), x ∈ Rn, and Q ∈ Q containing x.

Then, we can show that fχQ ∈ L~q(Rn) and (bf)χQ ∈ L~r(Rn) for any 1 < ~r < ~q. In
fact, by the definition of the mixed Morrey norm, it is clear that fχQ ∈ L~q(Rn). On
the other hand,

‖(bf)χQ‖~r ≤ ‖(b− bQ)fχQ‖~r + ‖bQfχQ‖~r.

By Hölder’s inequality, for ~s satisfying
1

~s
+

1

~q
=

1

~r
,

‖(b− bQ)fχQ‖~r ≤ ‖(b− bQ)χQ‖~s‖fχQ‖~q

=
‖χQ‖~s
‖χQ‖~s

‖(b− bQ)χQ‖~s‖fχQ‖~q

≤ ‖b‖BMOs̃ |Q|
1
n

∑n
j=1

1
sj × ‖f‖Mp

~q
|Q|

1
n

∑n
j=1

1
qj
− 1
p

∼ |Q|
1
n

∑n
j=1

1
rj
− 1
p ‖b‖BMO‖f‖Mp

~q
,
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where

‖b‖BMOs̃ ≡ sup
Q∈Q

1

‖χQ‖~s
‖(b− bQ)χQ‖~s

and since mixed Lebesgue space is a ball Banach function space, we use the character-
ization of BMO via ball Banach function spaces [68]:

‖b‖BMOs̃ ∼ ‖b‖BMO.

Note that other characterizations of BMO can be found in [67, 69] and [59, Theorem
4.11]. Furthermore,

‖bQfχQ‖~r ≤ |Q|
1
n

∑n
j=1

1
rj
− 1
p |bQ|‖f‖Mp

~q
.

Thus, (bf)χQ ∈ L~r(Rn). Since |x− y|α−n is integrable on 2Q, we see that

|Iα(fχ2Q)(x)| ≤
∫
Rn

|f(y)|χ2Q

|x− y|n−α
dy ≤ ‖fχ2Q‖~q

∥∥|x− ·|α−nχ2Q

∥∥
~q ′
<∞

and

|Iα(bfχ2Q)| ≤
∫
Rn

|b(y)f(y)|χ2Q

|x− y|n−α
dy ≤ ‖bfχ2Q‖~r

∥∥|x− ·|α−nχ2Q

∥∥
~r′
<∞.

Hence, Iα(fχ2Q) and Iα(bfχ2Q) are well defined.

Using this fact and Lemma 3.2.13, we can justify the definition of [b, Iα]f .

Finally, we evaluate the sharp maximal function of the commutator [b, Iα]f . The
following estimate is also important to show the main theorem.

Lemma 3.2.15. Let 0 < α < n and 1 < η <∞. Then,

([b, Iα]f)#(x) . ‖b‖BMO

(
M (η)[Iαf ](x) +M (η)

ηα f(x)
)

for all b ∈ BMO(Rn), f ∈Mp
~q(R

n) and x ∈ Rn.

Note that similar estimates to Lemma 3.2.15 were proved in [8, 140]. Shirai showed
this estimate for f ∈ C∞c (Rn) [140, Lemma 4.2], while Arai and Nakai showed a similar
estimate for the element of generalized Campanato spaces and generalized Morrey
spaces [8, Proposition 5.2].

Proof of Lemma 3.2.15. Note that since

h#(x) ∼ sup
x∈Q

inf
c∈C

1

|Q|

∫
Q
|h(y)− c|dy,

for any locally integrable function h in general, to prove this lemma, we only show that

1

|Q|

∫
Q
|[b, Iα]f(y)− c|dy . ‖b‖BMO

(
M (η)[Iαf ](x) +M (η)

ηα f(x)
)
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for some c ∈ C. Let Q ≡ Q(x, `(Q)). First, we decompose

f = f1 + f2 ≡ fχ2Q + fχRn\2Q.

For, y ∈ Q, we define

F1(y) ≡ (b(y)− b2Q)Iαf(y),

F2(y) ≡ Iα[(b− b2Q)f1](y),

F3(y) ≡ Iα[(b− b2Q)f2](y)− CQ,

where CQ ≡ Iα[(b− b2Q)f2](x). Then,

[b, Iα]f + CQ = [(b− b2Q), Iα]f + CQ = F1 − F2 − F3.

Thus, we should evaluate

1

|Q|

∫
Q
|Fi(y)|dy (i = 1, 2, 3).

First, we estimate F1. By Hölder’s inequality, we obtain

1

|Q|

∫
Q
|F1(y)|dy .

(
1

|2Q|

∫
2Q
|b(y)− b2Q|η

′
dy

) 1
η′
(

1

|2Q|

∫
2Q
|Iαf(y)|ηdy

) 1
η

≤ ‖b‖BMOM
(η)(Iαf)(x). (3.7)

Next, we estimate F2. By Hölder’s inequality and the boundedness of the fractional
integral operator, we get

1

|Q|

∫
Q
|F2(y)|dy ≤ 1

|Q|
‖χQ‖r′‖F2‖r . |Q|−1+ 1

r′ ‖(b− b2Q)f1‖v,

where 1 < v < η satisfies
1

r
=

1

v
− α

n
. Let

1

v
=

1

u
+

1

η
. By virtue of Hölder’s inequality

again, we have

1

|Q|

∫
Q
|F2(y)|dy . |2Q|

1
v
− 1
r

(
1

|2Q|

∫
2Q
|b(y)− b2Q|udy

) 1
u
(

1

|2Q|

∫
2Q
|f(y)|ηdy

) 1
η

≤ ‖b‖BMO

(
1

|2Q|1−
ηα
n

∫
2Q
|f(y)|ηdy

) 1
η

≤ ‖b‖BMOM
(η)
ηα f(x). (3.8)

Finally, we estimate F3. If we write out fully the definition of Iα,

F3(y) = Iα[(b− b2Q)f2](y)− Iα[(b− b2Q)f2](x)

=

∫
Rn

(
1

|y − z|n−α
− 1

|x− z|n−α

)
(b(z)− b2Q)f2(z)dz.

52



Since z ∈ Rn\2Q and y ∈ Q, we get |x− z| . |y − z|. Hence,∣∣∣∣ 1

|y − z|n−α
− 1

|x− z|n−α

∣∣∣∣ = (n− α)

∣∣∣∣∣
∫ |y−z|
|x−z|

1

tn+1−αdt

∣∣∣∣∣
≤ min(|y − z|, |x− z|)−n−1+α|x− y| . |x− y|

|x− z|n+1−α .

Therefore,

|F3(y)| .
∫
Rn\2Q

|x− y|
|x− z|n+1−α |b(z)− b2Q||f(z)|dz

=
∞∑
j=1

∫
2j+1Q\2jQ

|x− y|
|x− z|n+1−α |b(z)− b2Q||f(z)|dz

.
∞∑
j=1

`(Q)

(2j+1`(Q))n−α+1

∫
2j+1Q\2jQ

|b(z)− b2Q||f(z)|dz.

Next, Hölder’s inequality yields

`(Q)

(2j+1`(Q))n−α+1

∫
2j+1Q\2jQ

|b(z)− b2Q||f(z)|dz

≤ `(Q)

(2j+1`(Q))n−α+1

(∫
2j+1Q

|b(z)− b2Q|η
′
dz

) 1
η′
(∫

2j+1Q
|f(z)|ηdz

) 1
η

=
1

2j+1

(
1

|2j+1Q|

∫
2j+1Q

|b(z)− b2Q|η
′
dz

) 1
η′
(

1

|2j+1Q|1−
ηα
n

∫
2j+1Q

|f(z)|ηdz

) 1
η

.

By the definition of Mα, we have(
1

|2j+1Q|1−
ηα
n

∫
2j+1Q

|f(z)|ηdz

) 1
η

≤M (η)
ηα f(x).

Moreover, in the same way as (3.6), we obtain(
1

|2j+1Q|

∫
2j+1Q

|b(z)− b2Q|η
′
dz

) 1
η′

. (1 + j)‖b‖BMO.

Since

∞∑
j=1

1 + j

2j+1
converges, we conclude

|F3(y)| . ‖b‖BMO ·M (η)
ηα f(x). (3.9)

Since estimate (3.9) is independent of y, we have

1

|Q|

∫
Q
|F3(y)|dy . ‖b‖BMO ·M (η)

ηα f(x). (3.10)

Combining estimates (3.7), (3.8), and (3.10) provides the desired result.
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3.3 Proof of the main theorem (Theorem 3.1.4)

Let us show Theorem 3.1.4.

Proof. (a) ⇒ (b): Let 1 < η < min(s1, . . . , sn, r) and f ∈ Mp
~q(R

n). Put s0 ≡
min(s1, . . . , sn) and q0 ≡ min(q1, . . . , qn). Since f ∈ Mp

~q(R
n) ↪→ Mp

q0(Rn), [b, Iα]f ∈
Mr

s0(Rn) = Mr
(s0, . . . , s0︸ ︷︷ ︸
n times

)(R
n) by the result for classical Morrey spaces. Then, we

see that M([b, Iα]f) ∈ Mr
(s0, . . . , s0︸ ︷︷ ︸
n times

)(R
n). Thus, the assumption of Corollary 3.2.6 is

satisfied. By virtue of Corollary 3.2.6 and Lemma 3.2.15, we have

‖[b, Iα](f)‖Mr
~s
.
∥∥∥([b, Iα]f)#

∥∥∥
Mr

~s

. ‖b‖BMO

∥∥∥M (η)[Iαf ] +M (η)
ηα f

∥∥∥
Mr

~s

≤ ‖b‖BMO

{
‖M (η)[Iαf ]‖Mr

~s
+
∥∥∥M (η)

ηα f
∥∥∥
Mr

~s

}

. ‖b‖BMO

‖Iα(|f |)‖Mr
~s

+ ‖Iηα(|f |η)‖
1
η

M
r
η
~s
η

 .

Using Theorem 2.1.22, we conclude

‖[b, Iα](f)‖Mr
~s
. ‖b‖BMO

‖f‖Mp
~q

+ ‖|f |η‖
1
η

M
p
η
~q
η

 = ‖b‖BMO‖f‖Mp
~q
.

(b) ⇒ (c): It is clear since only the domain is restricted.

(c) ⇒ (d): Using the embedding Mp
~s(R

n) ↪→Mp
1(Rn) and (c), we have

‖[b, Iα]f‖Mp
1
≤ ‖[b, Iα]f‖Mp

~s
. ‖f‖M̃p

~q

for f ∈ M̃p
~q(R

n). Thus we obtain (d).

(d) ⇒ (a): We use the same method as Janson [70]. Choose z0 ∈ Rn such that
|z0| = 5. Since 0 /∈ Q(z0, 2), |x|n−α ∈ C∞(Q(z0, 2)) for x ∈ Q(z0, 2). Hence, we
choose a function ϕ ∈ C∞(Rn) with a π periodicity and satisfying ϕ(x) = |x|n−α for all
x ∈ Q(z0, 2). Then, we can expand this function into the absolutely convergent Fourier
series on Q(z0, 2);

|x|n−αχQ(z0,2)(x) =
∑
m∈Zn

ame
2im·xχQ(z0,2)(x), (3.11)
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with
∑
m∈Zn

|am| < ∞. For any x0 ∈ Rn and t > 0, let Q ≡ Q(x0, t) and Q′ ≡ Q(x0 +

z0t, t). Let

s(x) ≡ sgn

(∫
Q′

(b(x)− b(y))dy

)
.

If x ∈ Q and y ∈ Q′, then
y − x
t
∈ Q(z0, 2). Hence, we have∫

Q
|b(x)− bQ′ |dx =

∫
Q

(b(x)− bQ′)s(x)dx

=
1

|Q′|

∫
Q
s(x)

(∫
Q′

(b(x)− b(y))dy

)
dx

=
tn−α

tn

∫
Q
s(x)

(∫
Q′

(b(x)− b(y))|x− y|−n+α

∣∣∣∣x− yt
∣∣∣∣n−α dy

)
dx.

By (3.11) and the triangle inequality, we get∫
Q
|b(x)− bQ′ |dx

= t−α
∑
m∈Zn

∫
Q
s(x)

(∫
Q′

(b(x)− b(y))|x− y|−n+αame
2im· y

t dy

)
e−2im·x

t dx

≤ t−α
∑
m∈Zn

∣∣∣∣am ∫
Rn
s(x)[b, Iα](e2im· ·

tχQ′)(x)χQ(x)e−2im·x
t dx

∣∣∣∣
≤ t−α

∑
m∈Zn

|am|
∫
Q

∣∣∣[b, Iα](e2im· ·
tχQ′)(x)

∣∣∣ dx
≤ t−α

∑
m∈Zn

|am| |Q|−
1
r

+1
∥∥∥[b, Iα](e2im· ·

tχQ′)
∥∥∥
Mr

1

≤ t−α
∑
m∈Zn

|am| ‖[b, Iα]‖M̃p
~q
→Mr

1
‖χQ′‖Mp

~q
|Q|−

1
r

+1

≤ t−α
∑
m∈Zn

|am| ‖[b, Iα]‖M̃p
~q
→Mr

1
t
n
p · t

n
r′ ∼ tn ‖[b, Iα]‖M̃p

~q
→Mr

1
.

Thus, we have

1

|Q|

∫
Q
|b(x)− bQ|dx ≤

2

|Q|

∫
Q
|b(x)− bQ′ |dx . ‖[b, Iα]‖M̃p

~q
→Mr

1
.

This implies that b ∈ BMO(Rn) since Q is an arbitrary cube.
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Chapter 4

A characterization of Morrey
spaces associated with Banach
lattice in terms of pointwise
multiplier spaces

4.1 Introduction and theorems

In [58], Ho defined vector-valued Morrey spaces. In this chapter, inspired these ideas,
we will define Morrey spaces associated to general Banach lattices and establish that
these spaces arise naturally as multiplier spaces from microlocal Besov spaces to Banach
lattices. Recall that a Banach (function) lattice on Rn is a Banach space (E, ‖ · ‖E)
contained in L0(Rn), the linear space of all measurable functions, such that, for all
f, g ∈ E, the implication “|f | ≤ |g| ⇒ ‖f‖E ≤ ‖g‖E” holds.

To define Morrey spaces associated to general Banach lattices, we assume the fol-
lowing:

Assumption 4.1.1. The Banach lattice E(Rn) is translation invariant, that is, let
E(Rn) be a Banach lattice be such that

‖f(· − x)‖E = ‖f‖E

for all f ∈ E(Rn) and x ∈ Rn.

A direct consequence of the translation invariance is that ‖χ3Q‖E . ‖χQ‖E for all
cubes Q, where 3Q denotes the triple of Q, that is, 3Q is a cube which is concentric to Q
and has volume 3n|Q|. With a natural modification we can include the case of variable
exponents but here for the sake of simplicity we do not do this. These assumptions
are postulated so as to simplify matters. Nevertheless, as our examples show, we have
translation invariant many function spaces.
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Based on [58, Definition 2.6], we define Mp
E(Rn) to be the set of all measurable

functions f for which

‖f‖Mp
E
≡ sup

Q
|Q|

1
p

(
1

‖χQ‖E
‖fχQ‖E

)
is finite, where Q moves over all cubes whose edges are parallel to the coordinate axes.
As we will show in Section 4.3, Morrey spaces associated to general Banach lattices
realize mixed Morrey spaces [106], Morrey–Lorentz spaces [118] and Orlicz–Morrey
spaces (of the third kind) [26].

From Assumption 4.1.1, we learn that the following dyadic Morrey norm is equiv-
alent to the original norm

‖f‖Mp
E
∼ sup

Q∈D
|Q|

1
p

(
1

‖χQ‖E
‖fχQ‖E

)
,

where D denotes the set of all dyadic cubes (see Section 1.3 (6)).

With the definition of dyadic cubes in mind, we formulate the definition of microlo-
cal Besov spaces. Although we gave it in Section 2.2.2, we will adopt Theorem 2.2.10
([74, Theorem 1]) with p = q = 1, s = 0, K = [α2 + 1] and L = [α1 + 1] as a definition
of the microlocal Besov space (we write Ḃw

11(Rn)) in this chapter.

Definition 4.1.2. Let w ≡ {wj}∞j=−∞ ⊂ R be a positive sequence, and let F (Rn) be
a Banach function lattice satisfying

‖χQjm‖F . wj |Qj0| (j ∈ Z,m ∈ Zn)

and
2−α1jwj ≤ wj+1 ≤ 2α2jwj (j ∈ Z),

where α1 and α2 are fixed parameters. One defines the microlocal homogeneous Besov
space Ḃw

11(Rn) by the set of all f ∈ F (Rn) for which it can be written as

f(x) =
∞∑

j=−∞

∑
m∈Zn

λjmajm(x)

for almost every x ∈ Rn, where for all j ∈ Z and m ∈ Zn, we have a collection
{ajm}j∈Z,m∈Zn of C∞-functions and a collection {λjm}j∈Z,m∈Zn of complex constants
satisfying

|∂αajm| ≤ 2j|α|χ3Qjm ,

∫
Rn
xβajm(x)dx = 0,

∞∑
j=−∞

2−jnwj

( ∑
m∈Zn

|λjm|

)
<∞

for all multiindices α with |α| ≤ [α2 + 1] and for all multiindices β with |β| ≤ [α1 + 1].
Then the microlocal Besov norm ‖f‖Ḃw11

is defined as the infimum of

∞∑
j=−∞

2−jnwj

( ∑
m∈Zn

|λjm|

)

where Λ = {λjm}j∈Z,m∈Zn moves over all possible expressions.
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In the above, the convergence in S ′(Rn) is guaranteed thanks to the condition on
Λ. The functions ajm are called atoms. Note also that in terms of Definition 2.2.9,

Ḃw
11(Rn) = Ḃ0,mloc

11 (Rn, w).

Finally, to state our main results, we turn to the definition of pointwise multipliers
spaces. Given Banach spaces E1(Rn) and E2(Rn) of measurable functions defined on
Rn, we define PWM(E1(Rn), E2(Rn)) as follows: A measurable function g is a pointwise
multiplier from E1(Rn) to E2(Rn) if the pointwise product f · g belongs to E2(Rn) for
each f ∈ E1(Rn) and there exists a constant M > 0 such that

‖f · g‖E2(Rn) ≤M‖f‖E1(Rn). (4.1)

One defines a norm on PWM(E1(Rn), E2(Rn)) by

‖g‖PWM(E1,E2) ≡ inf{M > 0 : (4.1) holds for all f ∈ E1(Rn)}

for g ∈ PWM(E1(Rn), E2(Rn)).

A simple example is the case of Lebesgue spaces.

Example 4.1.3. Let 1 ≤ p1, p2, p3 ≤ ∞ satisfy
1

p1
+

1

p2
=

1

p3
. Then, by Hölder’s

inequality, we have
PWM(Lp1(Rn), Lp3(Rn)) = Lp2(Rn).

We also refer to [83, 99] for the case where E1(Rn) and E2(Rn) are Morrey spaces.

Our main result in this chapter is the following assertion (This is the same one as
Theorem 1.2.5).

Theorem 4.1.4. Let E(Rn) and F (Rn) be Banach lattices such that

‖χQjm‖F . ‖χQjm‖E |Qj0|
− 1
p (j ∈ Z,m ∈ Zn).

Set
wj ≡ ‖χQj0‖E |Qj0|

−1− 1
p (j ∈ Z).

Then Ḃw
11(Rn) is continuously embedded into F (Rn) and

PWM(Ḃw
11(Rn), E(Rn)) ≈Mp

E(Rn)

with equivalence of norms.

In connection with Theorem 4.1.4, we consider the result by Lemarié-Rieusset.
Lemarié-Rieusset showed that Morrey spaces arises naturally when we consider the

pointwise multipliers from Ḃs
p1(Rn) to Lp(Rn) with 0 < s ≤ n

p
.

Theorem 4.1.5 (cf. [82]). Let 1 ≤ p <∞ and 0 < s ≤ n

p
. Then

PWM(Ḃs
p1(Rn), Lp(Rn)) ≈M

n
s
p (Rn)

with equivalence of norms.
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Lemarié-Rieusset obtained Theorem 4.1.5 for n = 3 and p = 2 [82, Lemma 6]. A
passage to the general case is a minor modification. Here for the sake of completeness,
we give a proof in Subsection 4.2.1.

Furthermore, we can generalize the result of Lemarié-Rieusset (Theorem 4.1.5) to
multiplier spaces from homogeneous Besov spaces to Morrey spaces. This proof is also
given in Subsection 4.2.1.

Theorem 4.1.6. Let 1 ≤ q ≤ p <∞ and 0 < s ≤ n

q
satisfy

0 <
s

n
− 1

q
+

1

p
≤ 1

p

Let
1

σ
≡ s

n
− 1

q
+

1

p
.

Then with equivalence norms

PWM
(
Ḃs
q1(Rn),Mp

q(Rn)
)
≈Mσ

Mp
q
(Rn) =Mσ

q (Rn).

The structure of Chapter 4 is as follows: In Section 4.2, we prove our results.
Subsection 4.2.1 is devoted to the proof of results for generalized 2-microlocal Besov
spaces (Theorem 4.1.4). In Subsection 4.2.2, we prove the results for the pointwise
multiplier spaces from classical Besov spaces to Lebesgue spaces (Theorem 4.1.5) and
from Besov spaces to Morrey spaces (Theorem 4.1.6). Finally, we give the examples
for our results in Section 4.3. We apply our results to Orlicz spaces (Subsection 4.3.1),
Lorentz spaces (Subsection 4.3.2), mixed Lebesgue spaces (Subsection 4.3.3), and mixed
Morrey spaces (Subsection 4.3.4), respectively.

4.2 Proofs of the main theorems

4.2.1 Pointwise multipliers from generalized 2-microlocal Besov spaces
to Banach lattices (Theorem 4.1.4)

We will show the former half of Theorem 4.1.4 to check that PWM(Ḃw
11(Rn), E(Rn))

is well defined.

Lemma 4.2.1. Let F (Rn) be a Banach function lattice satisfying

‖χQjm‖F . 2−jnwj (j ∈ Z,m ∈ Zn).

Then Ḃw
11(Rn) ↪→ F (Rn).
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Proof. Let f ∈ Ḃw
11(Rn) be a decomposition as in Definition 4.1.2. By the triangle

inequality, we have∥∥∥∥∥∥
∞∑

j=−∞

∑
m∈Zn

λjmajm

∥∥∥∥∥∥
F

≤
∞∑

j=−∞

∑
m∈Zn

‖λjmajm‖F

.
∞∑

j=−∞

∑
m∈Zn

∥∥λjmχ3Qjm

∥∥
F

.
∞∑

j=−∞
2−jnwj

( ∑
m∈Zn

|λjm|

)
.

We prove the latter half of Theorem 4.1.4. Let f ∈ Mp
E(Rn). Let also g ∈

Ḃw
11(Rn), so that there exist a collection {ajm}j∈Z,m∈Zn of C∞-functions and a col-

lection {λjm}j∈Z,m∈Zn of complex constants satisfying

g =
∞∑

j=−∞

( ∑
m∈Zn

λjmajm

)
,

∞∑
j=−∞

2−jnwj

( ∑
m∈Zn

|λjm|

)
<∞

and |∂αajm| ≤ 2j|α|χ3Qjm for all j ∈ Z and m ∈ Zn. Then

‖fajm‖E ≤ ‖fχ3Qjm‖E

= |Qjm|
1
p

1

‖χ3Qjm‖E
‖fχ3Qjm‖E‖χ3Qj0‖E |Qjm|

− 1
p

. ‖f‖Mp
E
‖χQj0‖E |Qj0|

− 1
p .

Consequently,

‖f · g‖E ≤
∞∑

j=−∞

( ∑
m∈Zn

|λjm|‖fajm‖E

)

. ‖f‖Mp
E

∞∑
j=−∞

‖χQj0‖E |Qj0|
− 1
p

( ∑
m∈Zn

|λjm|

)
.

If we take the infimum over all possible expressions of g, we obtain

‖f · g‖E . ‖f‖Mp
E
‖g‖Ḃw11

.

Thus, f ∈ PWM(Ḃw
11(Rn), E(Rn)) and ‖f‖PWM(Ḃw11,E) . ‖f‖Mp

E
.

Conversely, we let f ∈ PWM(Ḃw
11(Rn), E(Rn)). Choose a smooth function κ ∈

C∞c (Rn) so that κ(x) = 0 for any x ∈ Rn \ 3Q00, that κ(x) = 1 for any x ∈ Q00 and
that ∫

Rn
xβκ(x)dx = 0
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for any β with |β| ≤ [α1 + 1]. Define κjm(x) ≡ κ
(
2jx−m

)
for each j ∈ Z and m ∈ Zn.

Then since 2−jnwj‖f‖PWM(Ḃw11,E) = ‖χQj0‖E |Qj0|
− 1
p ‖f‖PWM(Ḃw11,E), we have

‖fχQjm‖E ≤ ‖fκjm‖E ≤ ‖f‖PWM(Ḃw11,E)‖κjm‖Ḃw11
. ‖χQj0‖E |Qj0|

− 1
p ‖f‖PWM(Ḃw11,E).

(4.2)

Thus, f ∈Mp
E(Rn).

4.2.2 Pointwise multipliers from Besov spaces to Lebesgue spaces and
Morrey spaces (Theorems 4.1.5 and 4.1.6)

Let us prove Theorem 4.1.5.

Proof of Theorem 4.1.5. Let f ∈ PWM(Ḃs
p1(Rn), Lp(Rn)). Then define κjm as before

for all m ∈ Zn and j ∈ Z. Thus, by Example 2.2.7 and the same argument of (4.2),

‖f‖Lp(Qjm) . 2
js−j n

p ‖f‖PWM(Ḃsp1,L
p).

Consequently, f ∈M
n
s
p (Rn).

To show the opposite estimate, by Theorem 2.2.6, it suffices to show that∥∥∥∥∥f ∑
m∈Zn

λjmajm

∥∥∥∥∥
Lp

. 2js‖f‖
M

n
s
p

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lp

for all sequences {ajm}j∈Z,m∈Zn of C∞-functions satisfying |∂αajm| ≤ 2j|α|χ3Qjm with
|α| ≤ [s+ 1]; once this is achieved, we have only to add this estimate over j ∈ Z.

We calculate∥∥∥∥∥f ∑
m∈Zn

λjmajm

∥∥∥∥∥
Lp

.

( ∑
m∈Zn

|λjm|p‖fχ3Qjm‖Lpp
) 1

p

≤ sup
m∈Zn

‖fχ3Qjm‖Lp
( ∑
m∈Zn

|λjm|p
) 1

p

. 2js‖f‖
M

n
s
p

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lp

.

Thus, the proof of Theorem 4.1.5 is complete.

We move on to the proof of Theorem 4.1.6.
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Proof of Theorem 4.1.6. If we write out the norm ofMσ
Mp

q
(Rn) using the dyadic Mor-

rey norm, then we obtain

‖f‖Mσ
Mp
q

≡ sup
Q∈D

sup
R∈D
|Q|

1
σ
− 1
p |R|

1
p
− 1
q ‖fχQ∩R‖Lq .

Let Q,R be dyadic cubes. In order that |Q|
1
σ
− 1
p |R|

1
p
− 1
q ‖fχQ∩R‖Lq is not zero, Q and

R must intersect. Since

|Q|
1
σ
− 1
p |R|

1
p
− 1
q ≤ |Q ∩R|

1
σ
− 1
p |Q ∩R|

1
p
− 1
q ,

it follows that

‖f‖Mσ
Mp
q

= sup
Q∈D
|Q|

1
σ
− 1
p |Q|

1
p
− 1
q ‖fχQ‖Lq = sup

Q∈D
|Q|

1
σ
− 1
q ‖fχQ‖Lq = ‖f‖Mσ

q
.

Let f ∈ PWM
(
Ḃs
q1(Rn),Mp

q(Rn)
)

. As in the proof of Theorem 4.1.5, we obtain

‖fχQjm‖Mp
q
. 2

js−j n
q ‖f‖PWM(Ḃsq1,M

p
q).

Thus, f ∈Mσ
Mp

q
(Rn).

To prove the opposite inclusion, it sufficies to show that

|Q|
1
p
− 1
q

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
Lq

. 2js‖f‖Mσ
Mp
q

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lq

for all cubes Q and sequences {ajm}j∈Z,m∈Zn of C∞-functions satisfying |∂αajm| ≤
2j|α|χ3Qjm with |α| ≤ [s+ 1]; once this is achieved, we have only to take the supremum
over all cubes and to add this estimate over j ∈ Z.

We calculate

|Q|
1
p
− 1
q

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
Lq

. |Q|
1
p
− 1
q

( ∑
m∈Zn

|λjm|q
∥∥(fχ3Qjm

)
χQ
∥∥
Lq

q

) 1
q

≤ sup
m∈Zn

|Q|
1
p
− 1
q
∥∥(fχ3Qjm

)
χQ
∥∥
Lq

( ∑
m∈Zn

|λjm|q
) 1

q

≤ sup
m∈Zn

‖fχ3Qjm‖Mp
q

( ∑
m∈Zn

|λjm|q
) 1

q

. 2js‖f‖Mσ
Mp
q

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lq

.

Thus, we obtain the desired result.
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4.3 Examples

We will consider various special cases. We suppose that E = LΦ(Rn), the Orlicz space
in Section 4.3.1, E = Lp,q(Rn), the Lorentz space in Section 4.3.2, E = L~q(Rn), the
mixed Lebesgue space in Section 4.3.3 and E = Mp

~q(R
n), the mixed Morrey space in

Section 4.3.4.

4.3.1 Pointwise multipliers from Besov spaces to Orlicz spaces

As an example of E(Rn), we first take up the case of E(Rn) = LΦ(Rn). Then, it
seems that the spaces Mp

E(Rn) coincide Orlicz–Morrey spaces. However, there are
at least three kinds of generalized Orlicz–Morrey spaces. In this time, we consider
Orlicz–Morrey spaces of the third kind defined in [50].

Definition 4.3.1. Let 1 ≤ p <∞. Suppose that Φ is a Young function. Also let Φ be
bijective. Then, the Orlicz–Morrey space Mp,Φ(Rn) of the third kind is defined as the
set of all measurable functions f for which the norm

‖f‖Mp,Φ
≡ sup

Q∈Q
|Q|

1
pΦ−1

(
1

|Q|

)
‖fχQ‖LΦ

is finite.

Generalized Orlicz–Morrey spaces of the first kind date back to 2004; see the paper
[100] by Nakai, while the one of the second kind date back to 2012; see the paper [135] by
Sawano, Sugano and Tanaka. See [26] for the definition of generalized Orlicz–Morrey
spaces. In [101], Nakai showed the boundedness of the Hardy–Littlewood maximal
operator for the Orlicz–Morrey spaces. As was shown in [39, Theorems 1.4 and 1.6],
generalized Orlicz–Morrey spaces of the first kind and the one of the second kind
are different. Deringoz, Guliyev, Hasanov, Noi, Samko and Sawano investigated the
decomposition of Orlicz–Morrey spaces of the third kind [50]. See [27, 47] for vanishing
generalized Orlicz–Morrey spaces of the third kind. We refer to [25] for the weighted
Orlicz–Morrey spaces of the third kind. See [25] for the maximal operator and its
commutator generated by BMO for the weighted Orlicz–Morrey spaces of the third
kind. Finally, see [46] for the fractional integral operators together with commutators
for the Orlicz–Morrey spaces of the third kind.

Thanks to Lemma 2.2.18, we can check the coincidence ofMp
LΦ(Rn) andMp,Φ(Rn).

Indeed,

‖f‖Mp

LΦ
= sup

Q∈Q
|Q|

1
p

1

‖χQ‖LΦ

‖fχQ‖LΦ = sup
Q∈Q
|Q|

1
pΦ−1

(
1

|Q|

)
‖fχQ‖LΦ = ‖f‖Mp,Φ

.

From these observations, we can apply Theorem 4.1.4 to Orlicz spaces and obtain
the following result.
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Theorem 4.3.2. Let 1 ≤ p <∞ and Φ be as in Definition 4.3.1. Set

wj = Φ−1

(
1

|Qj0|

)
|Qj0|−1− 1

p (j ∈ Z).

Then
PWM(Ḃw

11(Rn), LΦ(Rn)) ≈Mp,Φ(Rn)

with equivalence of norms.

4.3.2 Pointwise multipliers from Besov spaces to Lorentz spaces

As an example of E(Rn), we take up the case of E(Rn) = Lp,q(Rn). Then, we see that
the space Mp

E(Rn) coincides the Morrey–Lorentz space Mp
q,r(Rn). We define

‖f‖Mp
q,r
≡ sup

Q
|Q|

1
p
− 1
q ‖fχQ‖Lq,r

for 0 < q ≤ p < ∞, 0 < r ≤ ∞. The Morrey–Lorentz space Mp
q,r(Rn) denotes the

set of all f ∈ L0(Rn) for which ‖f‖Mp
q,r

is finite. This space is introduced by Ragusa
in [118]. Later, this space of characterizations and applications are investigated in
[5, 36]. If 1 < q ≤ p < ∞ and 1 ≤ r ≤ ∞, then Mp

q,r(Rn) is a Banach space since
above argument. The weak Morrey space WMp

q(Rn) denotesMp
q,∞(Rn). We note that

‖f‖WMp
q

= sup
λ>0

λ‖χ{|f |>λ}‖Mp
q

for any f ∈ L0(Rn).

When we replace E and F by Lq,r(Rn) and Lu,v(Rn) respectively in Theorem 4.1.4,
we obtain the following result by using the embeddings of Lorentz spaces (Theorem
2.2.13).

Theorem 4.3.3. Let 1 < q ≤ p <∞, 1 ≤ r, v ≤ ∞, 1 < u ≤ ∞. Assume that

1

q
=

1

p
+

1

u
.

Then Ḃ
n
p

+ n
q′

11 (Rn) is continuously embedded into Lu,v(Rn) and

PWM(Ḃ
n
p

+ n
q′

11 (Rn), Lq,r(Rn)) ≈Mp
q,r(Rn)

with equivalence of norms. In particular,

PWM(Ḃ
n
p

+ n
q′

11 (Rn),WLq(Rn)) ≈WMp
q(Rn)

with equivalence of norms.

We now extend Theorem 4.1.5 to Morrey-Lorentz spaces as follows.
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Theorem 4.3.4. Let 1 < p <∞, 1 ≤ q ≤ ∞ and 0 < s ≤ n

min(p, q)
. Assume

0 <
s

n
− 1

min(p, q)
+

1

p
≤ 1

p
.

Define σ > 0 by
1

σ
≡ s

n
− 1

min(p, q)
+

1

p
.

Then
PWM(Ḃs

min(p,q)1(Rn), Lp,q(Rn)) ≈Mσ
p,q(Rn)

with equivalence of norms.

Theorem 4.3.5. Let 1 < q ≤ p <∞, 1 ≤ r ≤ ∞ and 0 < s ≤ n

min(q, r)
. Assume

0 <
s

n
− 1

min(q, r)
+

1

p
≤ 1

p
.

Define σ by
1

σ
≡ s

n
− 1

min(q, r)
+

1

p
.

Then
PWM(Ḃs

min(q,r)1(Rn),Mp
q,r(Rn)) ≈Mσ

Mp
q,r

(Rn) =Mσ
q,r(Rn)

with equivalence of norms.

Theorem 4.3.4 is included in Theorem 4.3.5. So we prove Theorem 4.3.5.

Proof of Theorem 4.3.5. As in the proof of Theorem 4.1.6, we obtain

Mσ
Mp

q,r
(Rn) =Mσ

q,r(Rn).

Let f ∈ PWM(Ḃs
min(q,r)1(Rn),Mp

q,r(Rn)). Then define κjm as before. Similar to the
proof of Theorem 4.1.5, then we have

‖f‖Mσ
Mp
q,r

. ‖f‖PWM(Ḃs
min(q,r)1

,Mp
q,r)
.

Consequently, f ∈Mσ
Mp

q,r
(Rn).

To show the opposite estimate, it suffices to show that

|Q|
1
p
− 1
q

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
Lq,r

. 2js‖f‖Mσ
Mp
q,r

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lmin(q,r)

for all sequences {ajm}j∈Z,m∈Zn of C∞-functions satisfying |∂αajm| ≤ 2j|α|χ3Qjm with
|α| ≤ [s+ 1]; once this is achieved, we have only to add this estimate over j ∈ Z.
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Let r < q. By using Minkowski’s inequality,

|Q|
1
p
− 1
q

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
Lq,r

. |Q|
1
p
− 1
q

( ∑
m∈Zn

|λjm|r‖(fχ3Qjm)χQ‖Lq,r r
) 1

r

≤ sup
m∈Zn

‖fχ3Qjm‖Mp
q,r

( ∑
m∈Zn

|λjm|r
) 1

r

. 2js‖f‖Mσ
Mp
q,r

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lr

.

Conversely, let q ≤ r. Note that, each cube Qjl intersects 3n cubes 3Qjml,k , k =
1, 2, . . . , 3n. Therefore, using Lemma 2.2.14, we have

|Q|
q
p
−1

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
q

Lq,r

. |Q|
q
p
−1
∑
l∈Zn

∥∥∥∥∥
(
f

3n∑
k=1

λjml,kajml,k

)
χQ

∥∥∥∥∥
q

Lq,r(Qjl)

. |Q|
q
p
−1
∑
l∈Zn

3n∑
k=1

|λjml,k |
q

∥∥∥∥∥
(
|f |

3n∑
k=1

|χ3Qjml,k
|

)
χQ

∥∥∥∥∥
q

Lq,r(Qjl)

. sup
l∈Zn
‖fχQjl‖

q
Mp

q,r

(∑
l∈Zn
|λjl|q

)

Hence ∥∥∥∥∥f ∑
m∈Zn

λjmajm

∥∥∥∥∥
Mp

q,r

. 2js‖f‖Mσ
Mp
q,r

∥∥∥∥∥∑
l∈Zn

λjlχQjl

∥∥∥∥∥
Lq

Thus, f is a pointwise multiplier from Ḃs
min(q,r)1(Rn) to Mσ

q,r(Rn).

4.3.3 Pointwise multipliers from Besov spaces to mixed Lebesgue
spaces

Applying Theorem 4.1.4 for mixed Lebesgue spaces, we obtain the following result:

Theorem 4.3.6. Let 1 ≤ q1, . . . , qn <∞, and suppose that p satisfies

1

p
≤ 1

n

n∑
k=1

1

qk
.

Define r by

1

r
≡ 1

n

n∑
k=1

1

qk
− 1

p
.
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Then Ḃ
n
r′
11 (Rn) is continuously embedded into Lr(Rn) and

PWM

Ḃ n∑
k=1

1
rk

11 (Rn), L~q(Rn)

 =Mp
L~q

(Rn) =Mp
~q(R

n).

Proof. Simply observe that E(Rn) = L~q(Rn) and F (Rn) = Lr(Rn) satisfy the condition
of Theorem 4.1.4.

4.3.4 Pointwise multipliers from Besov spaces to mixed Morrey spaces

As an example of E(Rn), we take up the case of E(Rn) =Mp
~q(R

n).

Remark 4.3.7. In the definition of Mp
E , let E(Rn) =Mp

~q(R
n). Then

‖f‖Mp

Mp
~q

= sup
Q
|Q|

1
p

(
1

‖χQ‖Mp
~q

‖fχQ‖Mp
~q

)
= sup

Q
|Q|

1
p

(
1

|Q|
1
p

‖fχQ‖Mp
~q

)
= ‖f‖Mp

~q
.

Thus, we see that
Mp
Mp

~q
(Rn) =Mp

~q(R
n).

Keeping this remark in mind, we apply Theorem 4.1.4 for this space.

Theorem 4.3.8. Let 1 ≤ p <∞ and 1 ≤ ~q <∞ satisfy

n∑
j=1

1

qj
≥ n

p
.

Then
PWM

(
Ḃn

11(Rn),Mp
~q(R

n)
)

=Mp
Mp

~q
(Rn) =Mp

~q(R
n).

Also we extend Theorem 4.1.5 to mixed Morrey spaces.

Theorem 4.3.9. Let ~q = (q1, . . . , qn) ∈ [1,∞)n, 1 ≤ p < ∞ and 0 < s ≤ n

qn
. Suppose

that σ is given by
1

σ
≡ s

n
− 1

qn
+

1

p
.

Then with equivalence norms

PWM
(
Ḃs
qn1(Rn),Mp

~q(R
n)
)
≈Mσ

Mp
~q
(Rn) =Mσ

~q (Rn).

Proof. Let f ∈ PWM
(
Ḃs
qn1(Rn),Mp

~q(R
n)
)

. As in the proof of Theorem 4.1.5, we

obtain
‖fχQjm‖Mp

~q
. 2

js−j n
qn ‖f‖PWM(Ḃsqn1,M

p
~q
).
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Thus, f ∈Mσ
Mp

~q
(Rn).

To establish the opposite inclusion, it suffices to show that

|Q|
1
p
− 1
n

n∑
k=1

1
qk

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
L~q

. 2js‖f‖Mσ
Mp
~q

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lqn

for all cubes Q and sequences {ajm}j∈Z,m∈Zn of C∞-functions satisfying |∂αajm| ≤
2j|α|χ3Qjm with |α| ≤ [s + 1]; once this is achieved, again we have only to take the
supremum over all cubes and to add this estimate over j ∈ Z.

We calculate

|Q|
1
p
− 1
n

n∑
k=1

1
qk

∥∥∥∥∥
(
f
∑
m∈Zn

λjmajm

)
χQ

∥∥∥∥∥
L~q

. |Q|
1
p
− 1
n

n∑
k=1

1
qk

( ∑
m∈Zn

|λjm|qn
∥∥(fχ3Qjm

)
χQ
∥∥
Lq

qn

) 1
qn

≤ sup
m∈Zn

|Q|
1
p
− 1
n

n∑
k=1

1
qk
∥∥(fχ3Qjm

)
χQ
∥∥
L~q

( ∑
m∈Zn

|λjm|qn
) 1

qn

≤ sup
m∈Zn

‖fχ3Qjm‖Mp
~q

( ∑
m∈Zn

|λjm|qn
) 1

qn

. 2js‖f‖Mσ
Mp
~q

∥∥∥∥∥ ∑
m∈Zn

λjmχQjm

∥∥∥∥∥
Lqn

.

Thus, f is a pointwise multiplier from Ḃs
qn1(Rn) to Mp

~q(R
n).
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Chapter 5

Atomic decomposition for mixed
Morrey spaces

5.1 Introduction and theorems

One of the characterizations of function spaces is to decompose an element of function
spaces into good functions. The most important example is the Fourier series for L2

functions. In addition, there are the Littlewood–Paley decomposition (cf. Subsection
2.2.1), the molecular decomposition, and the wavelet decomposition. In this thesis, we
focus our interest on atomic decompositions, which were introduced by Coifman in 1974
to characterize the functions belonging to Hardy spaces. Here, an atom is a function
which has a support on a cube (support condition), a norm estimate with respect to
the cube (size condition), and moment condition. This decomposition is applied to
characterize many function spaces.

The aim of this chapter is to develop a theory of decompositions for mixed Morrey
spaces. Furthermore, we can extend these results to Hardy-mixed Morrey spaces. Our
results are extension of the results for classical Morrey spaces and Hardy-Morrey spaces
in [66].

First, we will prove the following boundedness of the maximal operator on mixed
Lebesgue spaces.

Theorem 5.1.1. Assume that

1 ≤ tk < min{q1, . . . , qk} ≤ ∞ (k = 1, . . . , n).

Define

M (~t)f(x) = sup
Q∈Q

χQ(x)

‖χQ‖L~t
‖fχQ‖L~t

for a measurable function f . Then for all measurable functions f

‖M (~t)f‖L~q . ‖f‖L~q .
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Based on this boundedness, we prove the following construction theorem. This is
the same one as Theorem 1.2.6 in Chapter 1.

Theorem 5.1.2. Suppose that the parameters p, ~q, s,~t satisfy

1 < p < s <∞, 1 < max{q1, . . . , qk} < tk <∞ (k = 1, . . . , n),

n

p
≤

n∑
j=1

1

qj
,

n

s
≤

n∑
j=1

1

tj
.

Assume that {aj}∞j=1 ⊂Ms
~t
(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn) fulfill

‖aj‖Ms
~t
≤ |Qj |

1
s , supp(aj) ⊂ Qj ,

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

<∞.

Then f =
∞∑
j=1

λjaj converges in S ′(Rn) ∩ L~qloc(R
n) and satisfies

‖f‖Mp
~q
≤ Cp,~q,s,~t

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

.

In connection with Theorem 5.1.2, we refer to [2, 40, 107] for more recent charac-
terizations of the predual spaces of classical and mixed Morrey spaces.

Before we state the next results, we recall the some notation. For d ≥ 0, denote by
Pd(Rn) the set of all polynomial functions with degree less than or equal to d, so that

P(Rn) ≡
∞⋃
d=0

Pd(Rn). It is clear that P−1(Rn) = {0}. The set PK(Rn)⊥ denotes the

set of measurable function f for which 〈·〉Kf ∈ L1(Rn) and

∫
Rn
xαf(x)dx = 0 for any

α ∈ Nn0 with |α| ≤ K, where 〈·〉 = (1 + | · |2)
1
2 . Such a function f is said to satisfy the

moment condition of order K. In this case, one also writes f ⊥ PK(Rn).

The next assertion concerns the decomposition of functions in Mp
~q(R

n). This the-
orem is the same one as Theorem 1.2.7 in Chapter 1.

Theorem 5.1.3 (cf. [60]). Suppose that the real parameters p, ~q,K satisfy

1 < p <∞, 1 < ~q <∞, n

p
≤

n∑
j=1

1

qj
, K ∈ N0 ∩

(
n

q0
− n− 1,∞

)
,

where q0 = min(q1, . . . , qn). Let f ∈ Mp
~q(R

n). Then there exists a triplet {aj}∞j=1 ⊂

L∞(Rn) ∩ P⊥K(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn) such that f =
∞∑
j=1

λjaj in
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S ′(Rn) and that, for any v > 0

|aj | ≤ χQj ,

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v

 1
v

∥∥∥∥∥∥∥
Mp

~q

≤ Cv‖f‖Mp
~q
. (5.1)

Here the constant Cv > 0 is independent of f .

We rephrase Theorems 5.1.2 and 5.1.3 in the case of mixed Lebesgue spaces.

Corollary 5.1.4. Suppose that the parameters ~q,~t satisfy

1 < max{q1, . . . , qk} < tk <∞ (k = 1, . . . , n).

Assume that {aj}∞j=1 ⊂ L
~t(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn) fulfill

‖aj‖L~t ≤ |Qj |
1
n

n∑
k=1

1
tk , supp(aj) ⊂ Qj ,

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
L~q

<∞.

Then f =
∞∑
j=1

λjaj converges in L~q(Rn) and satisfies

‖f‖L~q ≤ Cp,q,s,t

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
L~q

.

Corollary 5.1.5 (cf. [60]). Let 1 < ~q <∞ and K ∈ N0. Let f ∈ L~q(Rn). Then there
exists a triplet {aj}∞j=1 ⊂ L∞(Rn) ∩ P⊥K(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn)

such that f =
∞∑
j=1

λjaj in L~q(Rn) and that, for any v > 0

|aj | ≤ χQj ,

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v

 1
v

∥∥∥∥∥∥∥
L~q

≤ Cv‖f‖L~q .

Here the constant Cv > 0 is independent of f .

Next, we generalize Theorems 5.1.2 and 5.1.3. Based on [126], we define Hardy-
mixed Morrey spaces.

Definition 5.1.6. For 0 < ~q, p < ∞ satisfying
n

p
≤

n∑
j=1

1

qj
, the Hardy-mixed Morrey

space HMp
~q(R

n) is defined as the set of any f ∈ S ′(Rn) for which the quasi-norm

‖f‖HMp
~q

=

∥∥∥∥sup
t>0
|et∆f |

∥∥∥∥
Mp

~q
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is finite, where et∆f stands for the heat extension of f ;

et∆f(x) =

〈
1√

(4πt)n
exp

(
−|x− ·|

2

4t

)
, f

〉
(t > 0, x ∈ Rn).

See [150] for the equivalent norms of Hardy–Morrey spaces. We rephrase Theorem
5.1.2 and 5.1.3 in full generality in terms of Hardy-mixed Morrey spaces.

Theorem 5.1.7. Suppose that the parameters p, ~q, s,~t satisfy

1 < p < s <∞, 0 < max{1, q1, . . . , qk} < tk <∞ (k = 1, . . . , n),

n

p
≤

n∑
j=1

1

qj
,

n

s
≤

n∑
j=1

1

tj
.

Write v(~q) ≡ min{1, q1, . . . , qn} and dq =

[
n

(
1

v(~q)
− 1

)]
. Assume that a triple

({aj}∞j=1, {λj}∞j=1, {Qj}∞j=1) ∈ (Ms
~t
(Rn) ∩ P⊥dq(R

n))× [0,∞)×Q(Rn)

fulfills

‖aj‖Ms
~t
≤ |Qj |

1
s , supp(aj) ⊂ Qj ,

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

<∞.

Then f =

∞∑
j=1

λjaj converges in S ′(Rn) and satisfies

‖f‖HMp
~q
≤ Cp,~q,s,~t

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

.

Theorem 5.1.3 has the following counterpart.

Theorem 5.1.8 (cf. [60]). Suppose that the real parameters p, ~q,K satisfy

0 < p <∞, 0 < ~q <∞, n

p
≤

n∑
j=1

1

qj
, K ∈ N0 ∩

(
n

q0
− n− 1,∞

)
,

where q0 = min(1, q1, . . . , qn). Let f ∈ HMp
~q(R

n). Then there exists a triplet {aj}∞j=1 ⊂

L∞(Rn) ∩ P⊥K(Rn), {λj}∞j=1 ⊂ [0,∞), and {Qj}∞j=1 ⊂ Q(Rn) such that f =
∞∑
j=1

λjaj in

S ′(Rn) and that, for any v > 0,

|aj | ≤ χQj ,

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v

 1
v

∥∥∥∥∥∥∥
Mp

~q

≤ Cv‖f‖HMp
~q
. (5.2)

Here the constant Cv is a constant that is independent on v but not on f .
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As we said in Subsection 1.2.3, although Theorems 5.1.3 and 5.1.8 are given as
corollaries of the results in [60], we prove these theorems directly without using Hertz
spaces which were used in [60].

Finally, we survey the classical results of this section. In fact, atomic decompositions
are roughly classified into two types. One is the decomposition by smooth atoms, and
the other is the decomposition by non-smooth atoms. Our results correspond to the
non-smooth case. Concerning non-smooth results for Morrey spaces, Jia and Wang
considered non-smooth atomic decompositions for Hardy-Morrey spaces in [72]. After
that in [66], Iida, Sawano, and Tanaka investigated non-smooth atomic decompositions
for Morrey spaces, which include results of Jia and Wang. So, our results for mixed
Morrey spaces are extension of these results. At last, with respect to smooth results
for Morrey spaces, we refer to [92, 131].

The remaining parts of this chapter is as follows. In Section 5.2, we establish the
boundedness result for the maximal operator to prove Theorem 5.1.2. In Section 5.3,
we give characterizations of Hardy-Morrey spaces. Section 5.4 is devoted to showing
the main theorems. In Subsections 5.4.1 and 5.4.2, we consider the reconstruction
theorems for mixed Morrey spaces (Theorem 5.1.2) and Hardy-mixed Morrey spaces
(Theorem 5.1.7), respectively. Meanwhile in Subsection 5.4.3, we prove the decompo-
sition theorems for mixed Morrey spaces (Theorem 5.1.3) and Hardy-mixed Morrey
spaces (Theorem 5.1.8). As an application, we concern Olsen’s inequality for mixed
Morrey spaces in Section 5.5.

5.2 The boundedness of the maximal operator M (~t) (The-
orem 5.1.1)

In this section, we prove the boundedness property of the maximal operator M (~t) on
mixed Morrey spaces. This theorem is applied to the proof of Theorem 5.1.2. We
invoke a result due to Bagby [10].

Lemma 5.2.1. Let 1 < q1, . . . , qm <∞ and 1 < p <∞. For i = 1, 2 . . . ,m, let (Ωi, µi)
be σ-finite measure spaces, and Ω = Ω1 × · · · × Ωm. For f ∈ L0(Rn × Ω),∫

Rn
‖Mf(x, ·)‖p

L(q1,...,qm) dx .
∫
Rn
‖f(x, ·)‖p

L(q1,...,qm) dx.

The following lemma is used in the induction step.

Lemma 5.2.2. Let ~q = (q1, q2, . . . , qn) ∈ (1,∞)n and let

tn ∈ [1,min{q1, q2, . . . , qn}).

Then ∥∥∥M (tn)
n f

∥∥∥
L~q

. ‖f‖L~q

for all f ∈ L~q(Rn).
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For the proof we use the following notation for h ∈ L0(Rn):

‖h‖L(q1,...,qm) (xm+1, . . . , xn) ≡
∥∥[‖h‖

L(q1,...,qm−1)

]∥∥
L(qm) (xm+1, . . . , xn)

and when m = 1, we define

‖h‖L(q1)(x2, . . . , xn) ≡
(∫

R
|h(x1, . . . , xn)|q1dx1

) 1
q1

.

Proof. Thanks to Lemma 5.2.1, we obtain∥∥∥M (tn)
n f

∥∥∥qn
L~q

=

∫
R

∥∥∥M (tn)
n f(·, xn)

∥∥∥qn
L(q1,...,qn−1)

dxn

=

∫
R

∥∥Mn[|f |tn ](·, xn)
∥∥ qntn
L( q1tn ,...,

qn−1
tn )

dxn

.
∫
R

∥∥[|f(·, xn)|tn ]
∥∥ qntn
L( q1tn ,...,

qn−1
tn )

dxn = ‖f‖qn
L~q
.

Thus, we obtain the desired result.

Proof of Theorem 5.1.1. We start with a preliminary observation for maximal opera-
tors. Let x ∈ Rn. Let Q = I1×· · ·× In where each Ij is an interval in R with the same
length. Then,

χQ(x)

‖χQ‖L~t
‖fχQ‖L~t =

⊗n
j=1 χIj (x)
n∏
j=1
|Ij |

1
tj

∥∥∥∥∥∥fχ n∏
j=1

Ij

∥∥∥∥∥∥
L~t

=

⊗n
j=2 χIj (x2, . . . , xn)

n∏
j=2
|Ij |

1
tj

×

∥∥∥∥∥∥
[(

χI1(x1)

|I1|

∫
|f(y)|t1χI1(y1)dy1

) 1
t1

]
χ n∏
j=2

Ij

∥∥∥∥∥∥
L(t2,...,tn)

≤
⊗n

j=2 χIj (x2, . . . , xn)
n∏
j=2
|Ij |

1
tj

∥∥∥∥∥∥
[
M (t1)f

]
χ n∏
j=2

Ij

∥∥∥∥∥∥
L(t2,...,tn)

.

Continuing this procedure, we have

χQ(x)

‖χQ‖L~t
‖fχQ‖L~t ≤M

(tn)
n · · ·M (t1)

1 (f)(x).

Thus, it follows that

M (~t)f(x) ≤M (tn)
n · · ·M (t1)

1 (f)(x).
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Therefore, it suffices to show that∥∥∥M (tn)
n · · ·M (t1)

1 (f)
∥∥∥
L~q

. ‖f‖L~q . (5.3)

We proceed by induction on n. For n = 1, the result follows by the classical case of the
boundedness of the Hardy–Littlewood maximal operator.
Suppose that the result holds for n = m− 1 with m > 1 in N: assume that

‖M (tm−1)
m−1 · · ·M (t1)

1 h‖
L(q1,...,qm−1) . ‖h‖L(q1,...,qm−1)

for 1 < tk < min{q1, . . . , qk} < ∞ for each k = 1, . . . ,m − 1, and for h ∈ L0(Rm−1).
Since tm < min{q1, . . . , qm}, for g ∈ L0(Rm), we have∥∥∥M (tm)

m g
∥∥∥
L(q1,...,qm)

=
∥∥∥[∥∥∥M (tm)

m g
∥∥∥
L(q1,...,qm−1)

]∥∥∥
L(qm)

=

∥∥∥∥[∥∥Mm[|g|tm ]
∥∥
L( q1tm ,...,

qm−1
tm )

]∥∥∥∥ 1
tm

L( qmtm )

.
∥∥[‖g‖

L(q1,...,qm−1)

]∥∥
L(qm) = ‖g‖L(q1,...,qm) .

Thus, by the induction assumption, letting g = M
(tm−1)
m−1 · · ·M (t1)

1 (f), we obtain∥∥∥M (tm)
m · · ·M (t1)

1 (f)
∥∥∥
L(q1,...,qm)

=
∥∥∥M (tm)

m [M
(tm−1)
m−1 · · ·M (t1)

1 (f)]
∥∥∥
L(q1,...,qm)

.
∥∥∥M (tm−1)

m−1 · · ·M (t1)
1 (f)

∥∥∥
L(q1,...,qm)

=
∥∥∥∥∥∥M (tm−1)

m−1 · · ·M (t1)
1 (f)

∥∥∥
L(q1,...,qm−1)

∥∥∥
L(qm)

.
∥∥‖f‖

L(q1,...,qm−1)

∥∥
L(qm) . ‖f‖L(q1,...,qm) .

Hence, inequality (5.3) holds for any dimension n. We obtain the desired result.

One can show that the condition

tk < min{q1, q2, . . . , qk}

is sharp.

Proposition 5.2.3. In Theorem 5.1.1, for each k = 1, 2, . . . , n, the condition tk <
min{q1, q2, . . . , qk} can not be removed.

Proof. We induct on n. The base case n = 1 is clear since the Hardy–Littlewood
maximal operator is bounded on Lp(R) if and only if p > 1. Assume that the conclu-
sion of Proposition 5.2.3 is true for n = m − 1 and that M (t1,t2,...,tm) is bounded on
L(q1,q2,...,qm)(Rm). Let h ∈ L(t1,t2,...,tm−1)(Rm−1) and N ∈ N. Then

χ[−N,N ]m

(
M (t1,t2,...,tm−1)

[
χ[−N,N ]m−1h

]
⊗ χ[−N,N ]

)
≤M (t1,t2,...,tm)

[
(χ[−N,N ]m−1h)⊗ χ[−N,N ]

]
.
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Consequently,

(2N)
1
qm

∥∥∥χ[−N,N ]m−1M (t1,t2,...,tm−1)
[
χ[−N,N ]m−1h

]∥∥∥
L(q1,q2,...,qm−1)

=
∥∥∥χ[−N,N ]mM

(t1,t2,...,tm−1)
[
χ[−N,N ]m−1h

]
⊗ χ[−N,N ]

∥∥∥
L(q1,q2,...,qm)

≤
∥∥∥M (t1,t2,...,tm−1)

[
χ[−N,N ]m−1h

]
⊗ χ[−N,N ]

∥∥∥
L(q1,q2,...,qm)

≤ C
∥∥(χ[−N,N ]m−1h

)
⊗ χ[−N,N ]

∥∥
L(q1,q2,...,qm)

≤ C(2N)
1
qm ‖h‖

L(q1,q2,...,qm−1) .

So, we are led to∥∥∥χ[−N,N ]m−1M (t1,t2,...,tm−1)[χ[−N,N ]m−1h]
∥∥∥
L(q1,q2,...,qm−1)

≤ C‖h‖
L(q1,q2,...,qm−1) .

Letting N →∞, we obtain∥∥∥M (t1,t2,...,tm−1)h
∥∥∥
L(q1,q2,...,qm−1)

≤ C‖h‖
L(q1,q2,...,qm−1) .

By the induction assumption, we have tk < min{q1, q2, . . . , qk} for all k = 1, 2, . . . ,m−1.
If we start from the inequality

χ[−N,N ]m

(
χ[−N,N ] ⊗M (t1,t2,...,tm−1)

[
χ[−N,N ]m−1h

])
≤M (t1,t2,...,tm)

[
χ[−N,N ] ⊗

(
χ[−N,N ]m−1h

)]
,

and argue similarly, we obtain∥∥∥M (t2,t3,...,tm)h
∥∥∥
L(q2,q3,...,qm)

≤ C‖h‖L(q2,q3,...,qm) .

Thus tm < min(q2, q3, . . . , qm) by the induction assumption. It remains to show that
tm < q1. To this end, we consider the function of the form:

f(x1, x2, . . . , xm) =

∞∑
j=−∞

χ([jN,(j+1)N ]×[−N,N ]m−1)(x1, x2, . . . , xm)hj(xm),

where hj ∈ Lqm(R). Then for all (x1, x2, . . . , xm)

χ(R×[−N,N ]m−1)(x1, x2, . . . , xm)M (~t)f(x1, x2, . . . , xm)

≥
∞∑

j=−∞
χ([jN,(j+1)N ]×[−N,N ]m−1)(x1, x2, . . . , xm)M (tm)

[
χ[−N,N ]hj

]
(xm).

We abbreviate
Hm(xm) ≡M (tm)

[
χ[−N,N ]hj

]
(xm).
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Hence, we obtain∥∥∥∥∥∥
∞∑

j=−∞
χ([jN,(j+1)N ]×[−N,N ]m−1)M

(tm)
[
χ[−N,N ]hj

]∥∥∥∥∥∥
L~q

=

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∫
R
χ[jN,(j+1)N ] (Hm(·m))q1 dx1

 1
q1

χ[−N,N ]m−1

∥∥∥∥∥∥∥
L(q2,...,qm)

∼ (2N)
1
q1

+···+ 1
qm−1

∥∥∥∥∥∥∥
 ∞∑
j=−∞

(Hm(·m))q1

 1
q1

∥∥∥∥∥∥∥
Lqm

.

In the same way, we deduce∥∥∥χ(R×[−N,N ]m−1)M
(~t)f
∥∥∥
L~q

. (2N)
1
q1

+···+ 1
qm−1

∥∥∥∥∥∥∥
 ∞∑
j=−∞

(
|χ[−N,N ]hj(·m)|

)q1 1
q1

∥∥∥∥∥∥∥
Lqm

,

since M (~t) is bounded. Thus, letting N →∞, we obtain∥∥∥{M (tm)hj}∞j=−∞
∥∥∥
Lqm (`q1 )

≤
∥∥{hj}∞j=−∞∥∥Lqm (`q1 )

.

This forces q1 > tm.

5.3 Some observations of Hardy-mixed Morrey spaces

In this section, we consider the characterizations of Hardy-Morrey spaces. Concerning
Mp

~q(R
n) and HMp

~q(R
n) when ~q > 1, we have the following assertion:

Proposition 5.3.1. Let 1 < p <∞ and 1 < ~q <∞ satisfy

n

p
≤

n∑
j=1

1

qj
.

1. If f ∈Mp
~q(R

n), then f ∈ HMp
~q(R

n).

2. If f ∈ HMp
~q(R

n), then f can be represented by a locally integrable function and

the representative belongs to Mp
~q(R

n).

Proposition 5.3.1 was investigated in [66, 72] when qj = q for all j = 1, . . . , n. To
prove Proposition 5.3.1, we need the description of the predual spaces of mixed Morrey
spaces (see Subsection 2.1.4).
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Proof of Proposition 5.3.1.

1. Denote by B(R) = {x ∈ Rn : |x| < R} for R > 0. Since

‖f‖L1(B(R)) ≤ CR
−n
p

+n‖f‖Mp
~q
,

we have f ∈ S ′(Rn). As is described in [29], we have a pointwise estimate
|et∆f | ≤ Mf , where M denotes the Hardy–Littlewood maximal operator. Since
M is shown to be bounded in [19], we have f ∈ HMp

~q(R
n).

2. Let f ∈ HMp
~q(R

n). Then {et∆f}t>0 is a bounded set of Mp
~q(R

n), which admits
a separable predual as we have seen in Lemma 2.1.30. Therefore, there exists a
sequence {tj}∞j=1 decreasing to 0 such that {etj∆f}∞j=1 converges to a function g

in the weak-* topology ofMp
~q(R

n). Meanwhile, it can be shown that lim
t↓0

et∆f = f

in the topology of S ′(Rn) [126]. Since the weak-* topology ofMp
~q(R

n) is stronger

than the topology of S ′(Rn), it follows that f = g ∈Mp
~q(R

n).

Furthermore, Hardy-mixed Morrey spaces admit a characterization by using the
grand maximal operator. To formulate the result, we recall the following two funda-
mental notions.

1. Topologize S(Rn) by norms {pN}N∈N given by

pN (ϕ) ≡
∑
|α|≤N

sup
x∈Rn

(1 + |x|)N |∂αϕ(x)|

for each N ∈ N. Define FN ≡ {ϕ ∈ S(Rn) : pN (ϕ) ≤ 1}.

2. Let f ∈ S ′(Rn). The grand maximal operator Mf is given by

Mf(x) ≡ sup{|t−nψ(t−1·) ∗ f(x)| : t > 0, ψ ∈ FN} (x ∈ Rn), (5.4)

where we choose and fix a large integer N .

The following proposition can be proved.

Proposition 5.3.2. Let 0 < ~q <∞, 0 < p <∞, and n
p ≤

n∑
j=1

1
qj

. Then

‖Mf‖Mp
~q
∼ ‖f‖HMp

~q

for all f ∈ S ′(Rn).
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When p ≤ 1 and q1 = q2 = · · · = qn, this proposition represents the result for classical
Morrey spaces which is in [72].

Meanwhile the proof of Proposition 5.3.2 is similar to Hardy spaces with variable
exponents [21, 102]. We content ourselves with stating two fundamental estimates (5.5)
and (5.6).

We define the (discrete) maximal function with respect to et∆ by

Mheatf(x) ≡ sup
j∈Z
|e2j∆f(x)| (x ∈ Rn).

Suppose that we are given an integer K � 1. We write

M∗heatf(x) ≡ sup
j∈Z

(
sup
y∈Rn

|e2j∆f(y)|
(1 + 4j |x− y|2)K

)
(x ∈ Rn).

The next lemma connects M∗heat with Mheat in terms of the usual Hardy–Littlewood
maximal operator M .

Lemma 5.3.3 ([102, Lemma 3.2], [125, §4]). For 0 < θ < 1, there exists Kθ so that
for all K ≥ Kθ, we have

M∗heatf(x) ≤ CM (θ)[Mheatf ](x) = CM

[
sup
k∈Z
|e2k∆f |θ

]
(x)

1
θ (x ∈ Rn) (5.5)

for any f ∈ S ′(Rn), where M (θ) is the powered maximal operator given by

M (θ)g(x) ≡M [|g|θ](x)
1
θ (x ∈ Rn)

for measurable functions g.

In the course of the proof of [102, Theorem 3.3], it can be shown that

Mf(x) ∼ sup
τ∈FN , j∈Z

|τ j ∗ f(x)| .M∗heatf(x) (5.6)

once we fix an integer K � 1 and N � 1.

With the fundamental pointwise estimates (5.5) and (5.6), Proposition 5.3.2 can be
proved with ease.

Proof of Proposition 5.3.2. Take θ ∈ (0, 1) with θ < min{q1, . . . , qn, p}. Then, using
the pointwise estimates (5.5) and (5.6) and the boundedness of the Hardy–Littlewood
maximal operator, we have

‖Mf‖Mp
~q
. ‖M∗heatf‖Mp

~q
. ‖M (θ)[Mheatf ]‖Mp

~q
. ‖Mheatf‖Mp

~q
.

Since it is known that sup
t>0
|et∆f(x)| .Mf(x) (see [141, p. 98]), we obtain

‖Mf‖Mp
~q
. ‖Mheatf‖Mp

~q
≤
∥∥∥∥sup
t>0
|et∆f |

∥∥∥∥
Mp

~q

. ‖Mf‖Mp
~q
.

This is the desired result.
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5.4 Proofs of the main theorems (Theorems 5.1.2, 5.1.3,
5.1.7, and 5.1.8)

5.4.1 Reconstruction of mixed Morrey spaces by atoms (Theorem
5.1.2)

Before we show the main theorems, we observe the relation to the maximal operator
M (~t ′) and blocks.

Example 5.4.1. Suppose that 1 ≤ t′k < min(q′1, q
′
2, . . . , q

′
k) < ∞. If we let κ be the

operator norm of the maximal operator M (~t ′) on L~q
′
(Rn), whose finiteness is guar-

anteed by Theorem 5.1.1, then we obtain κ−1χQM
(~t ′)g is a (p′, ~q ′)-block modulo a

multiplicative constant for any (p′, ~q ′)-block g. Indeed, it is supported on a cube Q
and it satisfies∥∥∥κ−1χQM

(~t ′)g
∥∥∥
L~q ′
≤ ‖χQg‖L~q ′ = ‖g‖L~q ′ ≤ |Q|

1
n

n∑
j=1

1
q′
j
− 1
p′
.

Keeping in mind this observation, we turn to the proof.

Proof of Theorem 5.1.2. By decomposing Qj suitably, we may suppose each Qj is
dyadic.

To prove this theorem, we resort to the duality. For the time being, we assume that
there exists N ∈ N such that λj = 0 whenever j ≥ N . Let us assume in addition that

aj are non-negative. Fix a non-negative (p′, ~q ′)-block g ∈ Hp
′

~q ′(R
n) with the associated

cube Q.

Assume first that each Qj contains Q as a proper subset. If we group j’s such that
Qj are identical, we can assume that Qj is the j-th dyadic parent of Q for each j ∈ N.
Then by the Hölder inequality [11]∫

Rn
f(x)g(x) dx =

∞∑
j=1

λj

∫
Q
aj(x)g(x) dx ≤

∞∑
j=1

λj‖aj‖L~q(Q)‖g‖L~q ′ (Q)

from f =
∞∑
j=1

λjaj . Due to the size condition of aj and g, we obtain

∫
Rn
f(x)g(x) dx ≤

∞∑
j=1

λj |Q|
1
n

n∑
j=1

1
qj
− 1
s

|Qj |
1
s |Q|

1
n

n∑
j=1

1
q′
j
− 1
p′

≤
∞∑
j=1

λj |Q|
1
p
− 1
s |Qj |

1
s .

Note that ∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

≥
∥∥∥λj0χQj0∥∥∥Mp

~q

= |Qj0 |
1
pλj0
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for each j0. Consequently, it follows from the condition p < s that∫
Rn
f(x)g(x) dx ≤

∞∑
j=1

|Q|
1
p
− 1
s |Qj |

1
s
− 1
p

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

≤ C

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

.

Conversely assume that Q contains each Qj . Then by the Hölder inequality∫
Rn
f(x)g(x) dx =

∞∑
j=1

λj

∫
Qj

aj(x)g(x) dx ≤
∞∑
j=1

λj‖aj‖L~t(Qj)‖g‖L~t ′ (Qj).

Thanks to the condition of aj , we obtain

∫
Rn
f(x)g(x) dx ≤

∞∑
j=1

λj |Qj |
1
n

n∑
j=1

1
tj
− 1
s

|Qj |
1
s ‖g‖L~t ′ (Qj).

Thus, in terms of the maximal operator M (~t′) defined in Theorem 5.1.1, we obtain∫
Rn
f(x)g(x) dx ≤

∞∑
j=1

λj |Qj | × inf
y∈Qj

M (~t ′)g(y)

≤
∫
Rn

 ∞∑
j=1

λjχQj (y)

M (~t ′)g(y) dy

≤
∫
Rn

 ∞∑
j=1

λjχQj (y)

χQ(y)M (~t ′)g(y) dy.

Hence, by Example 5.4.1, we obtain∫
Rn
f(x)g(x) dx ≤ κ

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

.

This is the desired result. Finally, we can remove the assumption that λj = 0 for large
j. Thus, the proof is complete.

5.4.2 Reconstruction of Hardy-mixed Morrey spaces by atoms (The-
orem 5.1.7)

Before we move on the proof of Theorem 5.1.7, we prepare the estimate on the grand
maximal operator M. Recall again that the grand maximal operator M was given by

Mf(x) = sup{|ϕt ∗ f(x)| : ϕ ∈ FN , t > 0} (x ∈ Rn).

Then we know that

Maj(x) . χ3Qj (x)Maj(x) + (MχQj (x))
n+dq+1

n , (5.7)
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where dq =

[
n

(
1

v(~q)
− 1

)]
and v(~q) = min(1, q1, . . . , qn). See [102, (5.2)] for more

details. The first term can be controlled by an argument similar to Theorem 5.1.2.
The second term can be handled by using the Fefferman–Stein maximal inequality for
mixed Morrey spaces (see Proposition 2.1.24).

Let us show Theorem 5.1.7. Using Proposition 5.3.2 and (5.7), we have

‖f‖HMp
~q
∼ ‖Mf‖Mp

~q

≤

∥∥∥∥∥∥
∞∑
j=1

λjMaj

∥∥∥∥∥∥
Mp

~q

.

∥∥∥∥∥∥
∞∑
j=1

λj

(
χ3QjMaj + (MχQj )

n+dq+1

n

)∥∥∥∥∥∥
Mp

~q

.

∥∥∥∥∥∥
∞∑
j=1

λjχ3QjMaj

∥∥∥∥∥∥
Mp

~q

+

∥∥∥∥∥∥
∞∑
j=1

λj(MχQj )
n+dq+1

n

∥∥∥∥∥∥
Mp

~q

≡ I1 + I2.

First, we consider I1. The proof is similar to Theorem 5.1.2. For the sake of com-
pleteness, we supply the proof. Thanks to decomposing Qj suitably, we may suppose
each Qj is dyadic. We will use duality again. We assume that there exists N ∈ N such

that λj = 0 whenever j ≥ N . Let r =
p

v(~q)
and ~w =

~q

v(~q)
, so that r, ~w > 1. Then,

∥∥∥∥∥∥
∞∑
j=1

λjχ3QjMaj

∥∥∥∥∥∥
Mp

~q

≤

∥∥∥∥∥∥∥
 ∞∑
j=1

[
λjχ3QjMaj

]v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

=

∥∥∥∥∥∥
∞∑
j=1

[
λjχ3QjMaj

]v(~q)

∥∥∥∥∥∥
1
v(~q)

Mr
~w

.

Fix a non-negative (r′, ~w ′)-block g ∈ Hr′~w ′(R
n) with the associated cube Q. Assume

first that each Qj contains Q as a proper subset. If we group j’s such that Qj are
identical, we can assume that Qj is the j-th dyadic parent of Q for each j ∈ N. Then,
we calculate∫

Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx =

∞∑
j=1

λ
v(~q)
j

∫
Q

[Maj(x)]v(~q) g(x)dx.
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Using the Hölder inequality twice, we obtain∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

≤
∞∑
j=1

λ
v(~q)
j

∥∥∥[Maj ]
v(~q)
∥∥∥
L~w(Q)

‖g‖L~w ′ (Q)

≤
∞∑
j=1

λ
v(~q)
j ‖Maj‖v(~q)

L
~q
(Q)
‖g‖L~w ′ (Q)

≤
∞∑
j=1

λ
v(~q)
j

‖Maj‖L~t(Q) |Q|
1
n

n∑
j=1

(
1
qj
− 1
tj

)v(~q)

‖g‖L~w ′ (Q).

Using the boundedness of the Hardy–Littlewood maximal operator on Ms
~t
(Rn), we

have ∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

≤
∞∑
j=1

λ
v(~q)
j

‖Maj‖L~t(Q) |Q|
1
n

n∑
j=1

(
1
qj
− 1
tj

)v(~q)

‖g‖L~w ′ (Q)

≤
∞∑
j=1

λ
v(~q)
j |Q|

1
n

n∑
j=1

1
wj
[
|Q|−

1
s ‖Maj‖Ms

~t

]v(~q)
‖g‖L~w ′ (Q)

.
∞∑
j=1

λ
v(~q)
j |Q|

1
n

n∑
j=1

1
wj
[
|Q|−

1
s ‖aj‖Ms

~t

]v(~q)
‖g‖L~w ′ (Q).

Thus, using the size condition of aj and g, we obtain∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

 1
v(~q)

.

 ∞∑
j=1

λ
v(~q)
j |Q|

1
n

n∑
j=1

1
wj
[
|Q|−

1
s |Qj |

1
s

]v(~q)
|Q|

1
n

n∑
j=1

1
w′
j
− 1
r′

 1
v(~q)

= |Q|
1
p
− 1
s

 ∞∑
j=1

[
λj |Qj |

1
s

]v(~q)

 1
v(~q)

.

Note that ∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

≥
∥∥∥λj0χQj0∥∥∥Mp

~q

= λj0 |Qj0 |
1
p

83



for each j0 ∈ N. Thus,∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

 1
v(~q)

.
∞∑
k=1

|Q|
1
p
− 1
s |Qk|

1
s
− 1
p

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

∼

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

.

Conversely assume that Q contains each Qj . Then by the Hölder inequality,∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

=

∞∑
j=1

λ
v(~q)
j

∫
3Qj

[Maj(x)]v(~q) g(x)dx

≤
∞∑
j=1

λ
v(~q)
j

∥∥∥[Maj ]
v(~q)
∥∥∥
L~τ (3Qj)

‖g‖L~τ ′ (3Qj)

(
~τ =

~t

v(~q)

)

≤
∞∑
j=1

λ
v(~q)
j ‖Maj‖v(~q)

L~t(3Qj)
‖g‖L~τ ′ (3Qj).

Additionally, by virtue of the boundedness of the Hardy–Littlewood maximal operator
on L~t(Rn), we have∫

Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx .

∞∑
j=1

λ
v(~q)
j ‖aj‖v(~q)

L~t
‖g‖L~τ ′ (3Qj).

Considering the condition of aj , we obtain∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

.
∞∑
j=1

λ
v(~q)
j

|Qj | 1n n∑
j=1

1
tj
− 1
s

‖aj‖Ms
~t

v(~q)

‖g‖L~τ ′ (3Qj)

≤
∞∑
j=1

λ
v(~q)
j

|Qj | 1n n∑
j=1

1
tj

v(~q)

‖g‖L~τ ′ (3Qj).
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Thus, in terms of the maximal operator M (~t′) defined in Theorem 5.1.1, we obtain∫
Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

 1
v(~q)

≤

 ∞∑
j=1

λ
v(~q)
j |Qj | × inf

y∈Qj
M (~τ ′)g(y)

 1
v(~q)

≤

∫
Rn

 ∞∑
j=1

(
λjχQj (y)

)v(~q)

M (~τ ′)g(y) dy

 1
v(~q)

≤

∫
Rn

 ∞∑
j=1

(
λjχQj (y)

)v(~q)

χQ(y)M (~τ ′)g(y) dy

 1
v(~q)

.

As in Example 5.4.1, κ−1χQM
(~τ ′)g is a (r′, ~w ′)-block as long as κ is the operator norm

of M (~τ ′) on L~q
′
(Rn). Hence, we obtain∫

Rn

∞∑
j=1

[
λjχ3Qj (x)Maj(x)

]v(~q)
g(x)dx

 1
v(~q)

. κ
1
v(~q)

∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

∥∥∥∥∥∥
1
v(~q)

Mr
~w

= κ
1
v(~q)

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

.

Next, we consider I2. Put

u =
n+ dq + 1

n
p, ~v =

n+ dq + 1

n
~q.

Then, by Proposition 2.1.24 and the embedding `v(~q) ↪→ `1, we have

I2 =

∥∥∥∥∥∥∥
 ∞∑
j=1

λj(MχQj )
n+dq+1

n

 n
n+dq+1

∥∥∥∥∥∥∥
n+dq+1

n

Mu
~v

.

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

≤

∥∥∥∥∥∥∥
 ∞∑
j=1

(λjχQj )
v(~q)

 1
v(~q)

∥∥∥∥∥∥∥
Mp

~q

.

Thus, we obtain the desired result.
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5.4.3 Atomic decomposition for mixed Morrey spaces and Hardy-
mixed Morrey spaces (Theorems 5.1.3 and 5.1.8)

Theorem 5.1.3 is included in Theorem 5.1.8 so that we concentrate in the proof of
Theorem 5.1.8.

We invoke the following lemma. We refer to [66, Lemma 3.2] and [141, p.101–105].

Lemma 5.4.2. Let f ∈ S ′(Rn),K ∈ {0, 1, 2, . . .} and j ∈ Z. Then, there are collections
of cubes {Q∗j,k}k∈Kj and functions {ηj,k}k∈Kj ⊂ C∞c (Rn), which are all indexed be a
set Kj for every j, and a decomposition

f = gj + bj , bj =
∑
k∈Kj

bj,k,

such that

(i) Define Oj ≡ {y ∈ Rn : Mf(y) > 2j} and consider its Whitney decomposition.
Then, the cubes {200Q∗j,k}k∈Kj have the bounded intersection property, and

Oj =
⋃
k∈Kj

Q∗j,k =
⋃
k∈Kj

200Q∗j,k. (5.8)

(ii) Consider the partition of unity with respect to the collections of cubes {Q∗j,k}k∈Kj .
Denote it by {ηj,k}k∈Kj . Then each function ηj,k is supported in Q∗j,k and∑

k∈Kj

ηj,k = χ{y∈Rn :Mf(y)>2j}, 0 ≤ ηj,k ≤ 1.

(iii) The distribution gj satisfies the inequality:

Mgj(x) ≤ C

Mf(x)χOcj (x) + 2j
∑
k∈Kj

`n+K+1
j,k

(`j,k + |x− xj,k|)n+K+1


for all x ∈ Rn.

(iv) Each distribution bj,k is given by bj,k = (f − cj,k)ηj,k with a certain polynomial
cj,k ∈ PK(Rn) satisfying ∫

Rn
bj,k(x)q(x)dx = 0

for all q ∈ PK(Rn), and

Mbj,k(x) ≤ C

(
Mf(x)χQ∗j,k(x) + 2j ·

`n+K+1
j,k

|x− xj,k|n+K+1
χRn\Q∗j,k

)
(5.9)

for all x ∈ Rn.
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In the above xj,k and `j,k denote the center and the side-length of Q∗j,k, respectively,
and the implicit constants are dependent only on n.

Observe that (5.8) together with the bounded overlapping property, that is, every
point is contained in at most a fixed number (we denote it by N) of the {Q∗j,k}, yields

χOj (x) ≤
∑
k∈Kj

χQ∗j,k(x) ≤
∑
k∈Kj

χ200Q∗j,k
(x) ≤ NχOj (x) (x ∈ Rn). (5.10)

For the proof of Theorem 5.1.8, we need the following embedding.

Lemma 5.4.3. Let 0 < ~q < ∞, 0 < p < ∞, n
p
≤

n∑
j=1

1

qj
and q0 = min(q1, . . . , qn).

Choose τ to be 1− q0

p
< τ < 1. Then

Mp
~q(R

n) ↪→Mp
q0(Rn) ↪→ Lq0(MχB(1)

τ )(Rn),

where Lq(w) denotes the weighted Lebesgue space with respect to the measure w ·dx for
a non-negative measurable function w.

Proof. The first embedding follows from Proposition 2.1.17. We shall show the second
embedding. Let f ∈Mp

q0(Rn). Then, we have

‖f‖Lq0 (MχB(1)
τ ) ≤ ‖f‖Lq0(MχB(1)

τ ·χB(1)) +
∞∑
k=1

‖f‖
Lq0

(
MχB(1)

τ ·χ
B(2k)\B(2k−1)

)

.
∞∑
k=0

2
−nkτ

q0 ‖f‖Lq0 (B(2k))

.
∞∑
k=0

2
−nkτ

q0
+nk
q0
−nk

p ‖f‖Mp
q0
.

Since 1− q0

p
< τ < 1, −nτ

q0
+
n

q0
− n

p
< 0. Thus, f ∈ Lq0(MχB(1)

τ )(Rn).

Recall that a non-negative measurable function w is A1-weight if w satisfies

Mw(x) ≤ Cw(x) (x ∈ Rn).

Lemma 5.4.4. Let ϕ ∈ S(Rn). Keep to the same notation as Lemmas 5.4.2 and 5.4.3.
Then we have

|〈bj , ϕ〉| ≤ C‖χOjMf‖Lq0(MχB(1)
τ) (5.11)

and
|〈gj , ϕ〉| ≤ C

∥∥min(Mf, 2j)
∥∥
Lq0(MχB(1)

τ) , (5.12)

where the constants in (5.11) and (5.12) depend on ϕ but not on j or k.
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Proof. By the subadditivity of M given by (5.4), we have

|〈bj , ϕ〉| ≤ C inf
x∈B(1)

Mbj(x) ≤ C inf
x∈B(1)

∑
k∈Kj

Mbj,k(x).

Observe also that

CMχQ(x) ≥ |Q|
|Q|+ |x− xQ|n

,

if Q is a cube centered at xQ. Take a and θ satisfying q0 > a and (θ− τ)
(q0

a

)′
> 1. It

follows from (5.9) and Hölder’s inequality that inf
x∈B(1)

∑
k∈Kj

Mbj,k(x)

a

.
∫
Rn

∑
k∈Kj

Mbj,k(x)

a

χB(1)(x)dx

.
∫
Rn

Mf(x)χOj (x) + 2j
∑
k∈Kj

MχQ∗j,k(x)
n+K+1

n

a

MχB(1)(x)θdx

.

∥∥∥∥∥∥
(Mf)χOj + 2j

∑
k∈Kj

MχQ∗j,k
n+K+1

n

a∥∥∥∥∥∥
L
q0
a (MχB(1)

τ )

∥∥∥MχB(1)
θ−τ
∥∥∥
L( q0a )

′ .

Using the triangle inequality and the Fefferman–Stein weighted vector-valued inequality
for A1-weights (see [6]), we obtain inf

x∈B(1)

∑
k∈Kj

Mbj,k(x)

a

.
∥∥((Mf)χOj

)a∥∥
L
q0
a (MχB(1)

τ )
+

∥∥∥∥∥∥
2j

∑
k∈Kj

MχQ∗j,k
n+K+1

n

a∥∥∥∥∥∥
L
q0
a (MχB(1)

τ )

.
∥∥((Mf)χOj

)a∥∥
L
q0
a (MχB(1)

τ )
+

∥∥∥∥∥∥
2j

∑
k∈Kj

χQ∗j,k

a∥∥∥∥∥∥
L
q0
a (MχB(1)

τ )

.
∥∥(Mf)χOj

∥∥a
Lq0 (MχB(1)

τ )
.

Thus, (5.11) is proved.

In the same way we can prove (5.12). In fact, using the Fefferman–Stein inequality
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for A1-weighted Lebesgue spaces, we obtain(
inf

x∈B(1)
Mgj(x)

)a
.

∥∥∥∥∥∥
(Mf)χOcj + 2j

∑
k∈Kj

`n+K+1
j,k

(`j,k + | · −xj,k|)n+d+1

a∥∥∥∥∥∥
L
q0
a (MχB(1)

τ )

.
∥∥∥((Mf)χOcj

)a∥∥∥
L
q0
a (MχB(1)

τ )
+

∥∥∥∥∥∥
2j

∑
k∈Kj

MχQ∗j,k
n+K+1

n

a∥∥∥∥∥∥
L
q0
a (MχB(1)

τ )

.
∥∥∥((Mf)χOcj

)a∥∥∥
L
q0
a (MχB(1)

τ )
+
∥∥∥(2jχOj)a∥∥∥

L
q0
a (MχB(1)

τ )

.
∥∥∥(Mf)χOcj + 2jχOj

∥∥∥a
Lq0 (MχB(1)

τ )

=
∥∥min(Mf, 2j)

∥∥a
Lq0(MχB(1)

τ) .

Thus, (5.12) is proven.

Lemma 5.4.5. In the notation of Lemmas 5.4.2 and 5.4.3, in the topology of S ′(Rn),
we have gj → 0 as j → −∞ and bj → 0 as j →∞. In particular,

f =
∞∑

j=−∞
(gj+1 − gj)

in the topology of S ′(Rn).

Proof. By Lemma 5.4.3, since

‖Mf‖Lq0 (MχB(1)
τ ) . ‖Mf‖Mp

~q
∼ ‖f‖HMp

~q
<∞

for f ∈ HMp
~q(R

n), we have Mf ∈ Lq0(MχB(1)
τ ).

Let us show that bj → 0 as j →∞. Once this is proved, then we have f = lim
j→∞

gj

in S ′(Rn). Let us choose a test function ϕ ∈ S(Rn). Then by (5.11) we have

|〈bj , ϕ〉| . ‖χOjMf‖Lq0(MχB(1)
τ )).

Hence it follows that bj → 0 as j →∞. Likewise by (5.12),

|〈gj , ϕ〉| . ‖min(Mf, 2j)‖Lq0(MχB(1)
τ )).

Thus, gj → 0 as j → −∞. Consequently, we have f = lim
j→∞

(gj−g−j) =
∞∑

j=−∞
(gj+1−gj)

in S ′(Rn).

To prove Theorem 5.1.8, we first assume f ∈ L1
loc(Rn). After that, we show this

theorem for all f ∈ HMp
~q(R

n).
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Lemma 5.4.6. Theorem 5.1.8 holds for f ∈ L1
loc(Rn).

Proof. Assume that f ∈ L1
loc(Rn). For each j ∈ Z, consider the level set Oj as in

Lemma 5.4.2. Then it follows immediately from the definition that

Oj+1 ⊂ Oj .

If we invoke Lemma 5.4.2, then f can be decomposed;

f = gj + bj , bj =
∑
k

bj,k, bj,k = (f − cj,k)ηj,k

where each bj,k is supported in a cube Q∗j,k as is described in Lemma 5.4.2.

We know that

f =
∞∑

j=−∞
(gj+1 − gj),

in S ′(Rn). Here, going through the same argument as the one in [141, p.108–109], we
have an expression;

f =
∑
j,k

Aj,k, gj+1 − gj =
∑
k

Aj,k (j ∈ Z)

in the sense of distributions, where each Aj,k satisfies the pointwise estimate |Aj,k(x)| ≤
C02jχQ∗j,k(x), and belongs to PK(Rn)⊥. With these observations in mind, let us set

aj,k ≡
Aj,k
C02j

, κj,k ≡ C02j .

Then we automatically obtain that each aj,k belongs to PK(Rn)⊥ and satisfies that

|aj,k| ≤ χQ∗j,k ,

and that f =
∑
j,k

κj,kaj,k in the topology of S ′(Rn), once we prove the estimate of

coefficients. Put Λ = {(j, k) : j ∈ Z, k ∈ Kj} and fix a bijection µ : Λ→ N. Then, we
put

Qµ(j,k) = Q∗j,k, λµ(j,k) = λ∗j,k, aµ(j,k) = a∗j,k.

To establish (5.2) we need to estimate

α ≡

∥∥∥∥∥∥∥
 ∞∑

(j,k)∈Λ

|λµ(j,k)χQµ(j,k)
|v
 1

v

∥∥∥∥∥∥∥
Mp

~q

.

Since {(κj,k, Q∗j,k)}j,k = {(λµ(j,k), Qµ(j,k))}(j,k)∈Λ, we have

α =

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∑
k∈Kj

|κj,kχQ∗j,k |
v

 1
v

∥∥∥∥∥∥∥
Mp

~q

.
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If we insert the definition of κj,k into the definition of α, then we have

α = C0

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∑
k∈Kj

|2jχQ∗j,k |
v

 1
v

∥∥∥∥∥∥∥
Mp

~q

= C0

∥∥∥∥∥∥∥
 ∞∑
j=−∞

2jv
∑
k∈Kj

χQ∗j,k

 1
v

∥∥∥∥∥∥∥
Mp

~q

.

Thus, by (5.10), we obtain

α ≤ C

∥∥∥∥∥∥∥
 ∞∑
j=−∞

(
2jχOj

)v 1
v

∥∥∥∥∥∥∥
Mp

~q

.

Since Oj ⊃ Oj+1 for each j ∈ Z, for x ∈ Rn we have

∞∑
j=−∞

(
2jχOj (x)

)v ≤ [log2Mf(x)]+1∑
j=−∞

(
2jχOj (x)

)v ∼ 2[log2Mf(x)]+1 ∼Mf(x).

Hence, we conclude α ≤ C‖Mf‖Mp
~q
∼ ‖f‖HMp

~q
. This is the desired result.

Note that by Lemma 5.4.6, for f ∈ HMp
~q(R

n) ∩ L1
loc(Rn), there exists a decompo-

sition:

f =

∞∑
j=1

λjaj ,

where aj ∈ P⊥K(Rn), λj ≥ 0 and

|aj | ≤ χQj ,

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

. ‖Mf‖Mp
~q
.

By replacing each Qj by a dyadic cube suitably, we have a decomposition:

f =
∑
Q′∈D

λQ′aQ′ ,

where aQ′ ∈ P⊥K(Rn), λQ′ ≥ 0 and

|aQ′ | ≤ χ3Q′ ,

∥∥∥∥∥∥
∞∑

Q′∈D
λQ′χ3Q′

∥∥∥∥∥∥
Mp

~q

. ‖Mf‖Mp
~q
.

Here, D denotes the set of all dyadic cubes in Rn.

Let us prove Theorem 5.1.8.
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Proof of Theorem 5.1.8. Let f ∈ HMp
~q(R

n). Then we consider the decomposition:

et∆f =
∑
Q∈D

λtQa
t
Q

in the topology of S ′(Rn), where atQ ∈ P⊥K(Rn), λtQ ≥ 0 and

|atQ| ≤ χ3Q,

∥∥∥∥∥∥
∑
Q∈D

λtQχ3Q

∥∥∥∥∥∥
Mp

~q

. ‖M[et∆f ]‖Mp
~q
. ‖Mf‖Mp

~q
.

Due to the weak-* compactness of the unit ball of L∞(Rn), there exists a sequence
{tl}∞l=1 that converges to 0 such that

λQ = lim
l→∞

λtlQ, aQ = lim
l→∞

atlQ

exist for all Q ∈ D in the sense that

lim
l→∞

∫
Rn
atlQ(x)ϕ(x)dx =

∫
Rn
aQ(x)ϕ(x)dx

for all ϕ ∈ L1(Rn). We claim

f =
∑
Q∈D

λQaQ

in the topology of S ′(Rn). Let ϕ ∈ S(Rn) be a test function. Then we have

〈f, ϕ〉 = lim
l→∞
〈etl∆f, ϕ〉 = lim

l→∞

∑
Q∈D

λtlQ

∫
Rn
atlQ(x)ϕ(x)dx

from the definition of the convergence in S ′(Rn). Once we fix m, we have

|λtlQ| .
‖Mf‖Mp

~q

‖χ[0,2−m)n‖Mp
~q

(5.13)

and ∣∣∣∣∫
Rn
atlQ(x)ϕ(x)dx

∣∣∣∣ ≤ ∫
3Q
|ϕ(x)|dx.

Since ∑
Q∈Dm

‖Mf‖Mp
~q

‖χ[0,2−m)n‖Mp
~q

∫
3Q
|ϕ(x)|dx = 3n

‖Mf‖Mp
~q

‖χ[0,2−m)n‖Mp
~q

‖ϕ‖L1 <∞,

we are in the position of using the Fubini theorem to have

∑
m∈Z

∫
Rn

 ∑
Q∈Dm

λtlQa
tl
Q(x)

ϕ(x)dx =
∑
m∈Z

∑
Q∈Dm

λtlQ

∫
Rn
atlQ(x)ϕ(x)dx.
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With this in mind, let us set

am,l ≡
∑
Q∈Dm

λtlQ

∫
Rn
atlQ(x)ϕ(x)dx

for each m ∈ Z and l ∈ N. Then we have

|am,l| ≤ C2
nm
p ‖Mf‖Mp

~q
‖ϕ‖1 (m ∈ Z) (5.14)

thanks to (5.13).

Let m ∈ Z. Then we have

am,l =
∑
Q∈Dm

λtlQ

∫
3Q
atlQ(x)ϕ(x)dx

=
∑
Q∈Dm

λtlQ

∫
3Q
atlQ(x)

ϕ(x)−
∑
|β|≤K

1

β!
∂βϕ(c(Q))(x− c(Q))β

 dx

since atlQ ∈ P⊥K(Rn). Thus, by the mean-value theorem, we have

|am,l| ≤ C(ϕ)
∑
Q∈Dm

|λtlQ|`(Q)n+K+1 sup
y∈3Q

1

1 + |y|n+1
. (5.15)

Here C(ϕ) is a constant depending on ϕ.

Meanwhile, for each m̃ ∈ Zn, we have∥∥∥∥∥∥
∑

Q∈Dm,|c(Q)−m̃|≤n

λtlQχQ

∥∥∥∥∥∥
Mp

q0

. ‖Mf‖Mp
~q
,

which implies ∥∥∥∥∥∥
∑

Q∈Dm,|c(Q)−m̃|≤n

λtlQχQ

∥∥∥∥∥∥
Lq0

. ‖Mf‖Mp
~q

or equivalently  ∑
Q∈Dm,|c(Q)−m̃|≤n

2−mn|λtlQ|
q0

 1
q0

. ‖Mf‖Mp
~q
.

Since `q0(Zn) ↪→ `1(Zn), ∑
Q∈Dm,|c(Q)−m̃|≤n

|λtlQ| . 2
mn
q0 ‖Mf‖Mp

~q
.
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Combining this estimate with (5.15), we obtain

|am,l| .
∑
m̃∈Zn

∑
Q∈Dm,|c(Q)−m̃|≤n

|λtlQ|`(Q)n+K+1 sup
y∈3Q

1

1 + |y|n+1

∼
∑
m̃∈Zn

∑
Q∈Dm,|c(Q)−m̃|≤n

|λtlQ|`(Q)n+K+1

1 + |m̃|n+1

. 2
mn
q0
−(n+K+1)m‖Mf‖Mp

~q
. (5.16)

Since K + 1 > n

(
1

q0
− 1

)
, we obtain

n+K + 1 >
n

q0
.

Thus by (5.14) and (5.16), we obtain

|am,l| . min(2
mn
q0
−(n+K+1)m

, 2
mn
p ).

Since
∞∑

m=−∞
min(2

mn
q0
−(n+K+1)m

, 2
mn
p ) . 1,

we are in the position of using the Lebesgue convergence theorem to have

lim
l→∞

∞∑
m=−∞

am,l =
∞∑

m=−∞

(
lim
l→∞

am,l

)
.

That is,

〈f, ϕ〉 = lim
l→∞
〈etl∆f, ϕ〉 =

∞∑
m=−∞

 lim
l→∞

∑
Q∈Dm

λtlQ

∫
Rn
atlQ(x)ϕ(x)dx

 .

Hence, using Fubini’s theorem again, we obtain

〈f, ϕ〉 =

∞∑
m=−∞

 lim
l→∞

∫
Rn

 ∑
Q∈Dm

λtlQa
tl
Q(x)

ϕ(x)dx


=

∞∑
m=−∞

∑
Q∈Dm

lim
l→∞

(∫
Rn
λtlQa

tl
Q(x)ϕ(x)dx

)

=
∞∑

m=−∞

∑
Q∈Dm

∫
Rn
λQaQ(x)ϕ(x)dx =

〈∑
Q∈D

λQaQ, ϕ

〉
.

Consequently, we obtain the desired result.
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5.5 Application :Olsen’s inequality on mixed Morrey spaces

As an application of Theorem 5.1.2, we can prove the following Olsen inequality about
the fractional integral operator Iα. Based upon Proposition 2.1.22, we can prove the
following result.

Theorem 5.5.1. Suppose that the parameters α, p, ~q, p∗, ~q ∗, s,~t satisfy

1 < p, p∗, s <∞, 1 < ~q, ~q ∗,~t <∞,

n

p
≤

n∑
j=1

1

qj
,

n

p∗
≤

n∑
j=1

1

q∗j
,

n

s
≤

n∑
j=1

1

tj
,

max{t1, . . . , tj} < q∗j ,
1

p
>
α

n
,

1

p∗
≤ α

n
,

for each j = 1, 2, . . . , n, and that

1

s
=

1

p∗
+

1

p
− α

n
,

tj
s

=
qj
p

(j = 1, 2, . . . , n).

Then for all f ∈Mp
~q(R

n) and g ∈Mp∗

~q ∗(R
n)

‖g · Iαf‖Ms
~t
≤ C‖g‖Mp∗

~q ∗
· ‖f‖Mp

~q
,

where the constant C is independent of f and g.

This result recaptures [134, Proposition 1.8]. Note that a detailed calculation in
[133, p.6] shows that Theorem 5.5.1 is not just a combination of Proposition 2.1.22 and
Lemma 5.5.2.

Lemma 5.5.2. Suppose that the parameters p, ~q, p∗, ~q ∗, s,~t satisfy

1 < p, p∗, s <∞, 1 < ~q, ~q ∗,~t <∞,

n

p
≤

n∑
j=1

1

qj
,

n

p∗
≤

n∑
j=1

1

q∗j
,

n

s
≤

n∑
j=1

1

tj
.

Assume
1

s
=

1

p∗
+

1

p
,

1

tj
=

1

q∗j
+

1

qj
.

Then
‖f · g‖Ms

~t
≤ ‖f‖Mp

~q
‖g‖Mp∗

~q ∗
(f ∈Mp

~q(R
n), g ∈Mp∗

~q ∗(R
n)).

We can prove this lemma easily by using Hölder’s inequality. So we omit the proof.

We write ∞′ = 1 and s′ =
s

s− 1
for 1 < s <∞. We have the following proposition:
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Proposition 5.5.3. In addition to the assumption in Theorem 5.5.1, suppose that
u ∈ (1,∞] satisfies u′ < min{q1, q2, . . . , qn, p}. Let Ω ∈ Ls(Sn−1) be homogeneous of
degree zero, that is, Ω satisfies, for any λ > 0, Ω(λx) = Ω(x). Then,

‖g · IΩ,α(f)‖Ms
~t

≤ C ‖g‖Mp∗
~q ∗
‖Ω‖Lu(Sn−1) ‖f‖Mp

~q
,

where

IΩ,αf(x) ≡
∫
Rn

Ω(x− y)

|x− y|n−α
f(y)dy.

Proposition 5.5.3 is a direct consequence of Theorem 5.5.1, the next lemma and the
boundedness of the Hardy–Littlewood maximal operator M .

Lemma 5.5.4. [64] If 1 < u ≤ ∞, then we have

|IΩ,αf(x)| ≤ C ‖Ω‖Lu(Sn−1) |IαF (x)|,

where F (x) ≡M
(
|f |u′

)
(x)

1
u′ .

First, we prove two lemmas. We invoke an estimate from [30, Lemma 2.2] and [31,
Lemma 2.1].

Lemma 5.5.5. There exists a constant depending only on n and α such that, for every
cube Q, we have IαχQ(x) ≥ C`(Q)αχQ(x) for all x ∈ Q.

To prove the next estimate, we use Proposition 2.1.22. We invoke another estimate
from [66, Lemma 4.2].

Lemma 5.5.6. Let K = 0, 1, 2, . . .. Suppose that A is an L∞(Rn)∩PK(Rn)⊥-function
supported on a cube Q. Then,

|IαA(x)| ≤ Cα,K‖A‖L∞`(Q)α
∞∑
k=1

1

2k(n+K+1−α)
χ2kQ(x) (x ∈ Rn).

Now we prove Theorem 5.5.1. We may assume that f ∈ L∞c (Rn) is a positive
measurable function in view of the positivity of the integral kernel. We decompose f

according to Theorem 5.1.3 with K > α− n

p∗
−1; f =

∞∑
j=1

λjaj , where {Qj}∞j=1 ⊂ D(Rn),

{aj}∞j=1 ⊂ L∞(Rn)∩PK(Rn)⊥ and {λj}∞j=1 ⊂ [0,∞) fulfill (5.1). Then by Lemma 5.5.6,
we obtain

|g(x)Iαf(x)| ≤ C
∞∑
j=1

∞∑
k=1

λj

2k(n+K+1−α)

(
`(Qj)

α|g(x)|χ2kQj (x)
)
.

Therefore, we conclude

‖g · Iαf‖Ms
~t
≤ C‖g‖Mp∗

~q ∗

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

λj`(2
kQj)

α− n
p∗

2k(n+K+1)
· `(2

kQj)
n
p∗

‖g‖Mp∗
~q ∗

|g|χ2kQj

∥∥∥∥∥∥
Ms
~t

.
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For each (j, k) ∈ N× N, write

κjk ≡
λj`(2

kQj)
α− n

p∗

2k(n+K+1)
, bjk ≡

`(2kQj)
n
p∗

‖g‖Mp∗
~q ∗

|g|χ2kQj .

Then,
∞∑
j=1

∞∑
k=1

λj`(2
kQj)

α− n
p∗

2k(n+K+1)
· `(2

kQj)
n
p∗

‖g‖Mp∗
~q ∗

|g|χ2kQj =
∞∑

j,k=1

κjkbjk,

each bjk is supported on a cube 2kQj and

‖bjk‖Mp∗
~q ∗
≤ `(2kQj)

n
p∗ .

Observe that χ2kQj ≤ 2knMχQj . Hence, if we choose 1 < θ so that

K > α− n

p∗
− 1 + θn− n,

then we have∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

κjkχ2kQj

∥∥∥∥∥∥
Ms
~t

=

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

λj`(2
kQj)

α− n
p∗

2k(n+K+1)
χ2kQj

∥∥∥∥∥∥
Ms
~t

=

∥∥∥∥∥∥
∞∑
j=1

λj`(Qj)
α− n

p∗ (MχQj )
θ

∥∥∥∥∥∥
Ms
~t

≤ C

∥∥∥∥∥∥
∞∑
j=1

(
M
[
λj

1
θ `(Qj)

1
θ

(α− n
p∗ )
χQj

])θ∥∥∥∥∥∥
Ms
~t

≤ C


∥∥∥∥∥∥∥

∞∑
j=1

(
M
[
λj

1
θ `(Qj)

1
θ

(α− n
p∗ )
χQj

])θ
1
θ

∥∥∥∥∥∥∥
Mθs

θ~q


θ

.

Thanks to Proposition 2.1.24 with

fj = λj
1
θ `(Qj)

1
θ

(α− n
p∗ )
χQj ,

we can remove the maximal operator and we obtain

‖g · Iαf‖Ms
~t
≤ C‖g‖Mp∗

~q ∗

∥∥∥∥∥∥
∞∑
j=1

λj`(Qj)
α− n

p∗ χQj

∥∥∥∥∥∥
Ms
~t

.

We distinguish two cases here.

1. If α =
n

p∗
, then p = s and ~q = ~t. Thus, we can use (5.1).
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2. If α >
n

p∗
, then, by Proposition 2.1.22 and Lemma 5.5.5, we obtain

∥∥∥∥∥∥
∞∑
j=1

λj`(Qj)
α− n

p∗ χQj

∥∥∥∥∥∥
Ms
~t

≤ C

∥∥∥∥∥∥Iα− n
p∗

 ∞∑
j=1

λjχQj

∥∥∥∥∥∥
Ms
~t

≤ C

∥∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥∥
Mp

~q

.

Thus, we are still in the position of using (5.1).

Consequently, we obtain∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

κjkχ2kQj

∥∥∥∥∥∥
Ms
~t

. ‖f‖Mp
~q
<∞. (5.17)

Observe also that p∗ > s and that ~q ∗ > ~t. Thus, by Theorem 5.1.2 and (5.17), it follows
that

‖g · Iαf‖Ms
~t
≤ C‖g‖Mp∗

~q ∗

∥∥∥∥∥∥
∞∑
j=1

∞∑
k=1

κjkχ2kQj

∥∥∥∥∥∥
Ms
~t

≤ C‖g‖Mp∗
~q ∗
‖f‖Mp

~q
.

98



Bibliography

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

[2] D. R. Adams and J. Xiao, Nonlinear potential analysis on Morrey spaces and
their capacities, Indiana Univ. Math. J. 53 (6) (2004) 1629–1663.

[3] A. Akbulut, R. V Guliyev, S. Celik, and M. N. Omarova, Fractional integral
associated with Schrödinger operator on vanishing generalized Morrey spaces, J.
Math. Inequal. 12 (2018), no. 3, 789–805.

[4] A. Almeida, J. Hasanov, and S. Samko, Maximal and potential operators in vari-
able exponent Morrey spaces, Georgian Math. J. 15 (2) (2008), 195–208.

[5] M. F. de Almeida and L. S. M. Lima, Nonlinear boundary problem for
Harmonic functions in higher dimensional Euclidean half-spaces, available at
http://arxiv.org/abs/1807.04122v1.

[6] K. F. Anderson and R. T. John, Weighted inequalities for vector-valued maximal
functions and singular integrals, Studia Mathematica 69 (1980), 19–31.

[7] N. Antonic and I. Ivec, On the Hörmander-Mihlin theorem for mixed-norm
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Matemática, Campinas, 1989. iii+206 pp.
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