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Chapter 1

Introduction

1.1 Mixed Morrey spaces

Function spaces collect functions having the same properties such as continuity, differ-
entiability, and integrability, and so on. By characterizing the properties of function
spaces, many fields of mathematics, for example, Fourier analysis and PDE, etc., have
been developed. One of the most fundamental function spaces is the Lebesgue space
LP(R™). For 0 < p < oo, we define the LP norm || - ||z» by

11 =151 = rf<:c>rpdx); (0<p< o),

where f is a measurable function on R™. If p = oo, we interpret this expression as
I fllzee = || flloo = esssup|f(z)].
z€eR™

The Lebesgue space LP(R™) is the set of all measurable functions f for which || f||, <
oo. Based on this space, the theory of analysis has advanced remarkably. However,
integrability is not enough to describe sufficiently many properties of functions we
require. Thus, function spaces having more fine properties were needed, and so during
the 20th century many authors introduced a lot of function spaces such as Sobolev
spaces, Orlicz spaces, Morrey spaces, Lorentz spaces, Hardy spaces, mixed Lebesgue
spaces, Besov spaces, Triebel-Lizorkin spaces, and so on.

One of the important function spaces in this thesis is the Morrey space M%(R™).
This is defined as follows: Let 0 < g < p < co. Define the Morrey norm || - ||,z by

||f”M§ =sup {‘QVI’(I‘ </Q |f(a:)|qd:c> L Q is a cube in R”}

for a measurable function f. The Morrey space M%(R™) is the set of all measurable
functions f for which || f|| e is finite.



Morrey spaces were introduced by C.B.Morrey Jr. in 1938 to investigate the local
behavior of solutions to second order elliptic partial differential equation [97]. Morrey
spaces cover Lebesgue spaces so that Morrey spaces describe nice properties more than
Lebesgue spaces. For instance, Morrey spaces can handle the function |z|” 7 which fails
to belong to Lebesgue spaces. We recall the fundamental properties of this space and
the boundedness results for basic operators in harmonic analysis in Subsection 2.1.1.

Meanwhile, in [11], Benedek and Panzone introduced mixed Lebesgue spaces and
investigated some properties in 1961. Let p'= (p1,...,pn) € (0,00]". Then define the
mized Lebesgue norm || - ||z or || - |\(p17“_7pn) by

1A llze = 1F 15 = 1 1o oeip)

p2 E Pn
P
= /(/ </ |f($1,$2,~--,$n)|p1d$1> 1d$2> e day, ;
R r \JR

where f : R® — C is a measurable function. If p; = oo, then we have to make
appropriate modifications. We define the mized Lebesque space L' (R™) = LP1s-pn) (R™)
to be the set of all measurable functions f on R™ with || f||7 < oo.

Since functions belonging to mixed Lebesgue spaces have the different integrability
for each direction, we expect that they can characterize functions more subtly. In
Subsection 2.1.2, we summarize their properties and the classical results for this space.

The author defined the mixed Morrey space Mg(R“) combining the Morrey space
ME(R™) and the mixed Lebesgue space LI(R") in [106].

Let ¢= (q1,-.-,qn) € (0,00]™ and p € (0, 00) satisfy

n

IPE

n
ek

Then define the mizved Morrey norm || - || pqzmny by
q

1 n 1
N (ijl e

1
||f”Mf1i:SUP{|Q|p >||fXQ||q~ : @ is a cube in R”}

for all measurable functions f on R™. We define the mized Morrey space Mg(R") to
be the set of all measurable function f on R”™ satisfying || f|| e < oo.
q

In [106], the author investigated the basic properties (for example, embedding,
completeness) and the mapping properties of the Hardy—Littlewood maximal operator,
fractional integral operators, and singular integral operators. We recall these properties
in Subsection 2.1.3.

In this thesis, based on the studies in [106], we summarize the further studies of
mixed Morrey spaces and the related spaces in [55, 106, 107, 108]. The next section is
devoted to a summary of three topics and main theorems treated in each chapter.
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1.2 Three topics and main theorems

From Chapter 3 to Chapter 5, we treat three topics related to mixed Morrey spaces. In
this section, we give an overview of these topics and main results for each topic. First,
we introduce the idea of commutators generated by functions and operators and con-
sider the boundedness results for commutators on mixed Morrey spaces in Subsection
1.2.1. Subsection 1.2.2 is devoted to giving the concept of pointwise multiplier spaces,
and we characterize them in terms of Morrey spaces. Finally, in Subsection 1.2.3, we
consider the characterization by atomic decomposition for mixed Morrey spaces.

1.2.1 Main theorem on the boundedness of commutators generated
by BMO functions and fractional integral operators on mixed
Morrey spaces

The idea of commutators generated by functions and operators was introduced by
Coifman, Rochberg, and Weiss [20] and many authors investigated the boundedness
and compactness results for these operators. In particular, we treat commutators
generated by functions and fractional integral operators. Let 0 < a < n. Define the
fractional integral operator I, of order « by

nfe= [ I ay

n |z —y|rme

for f € LL _(R™) as long as the right-hand side makes sense. The commutator [a, I,] is
given by

a(x) — aly
o L)1) (@) = o) Lo @) - Talaf) (o) = [ S0 g
for a measurable function a and = € R™ as long as the integral makes sense. Moreover,
to describe our main theorem, we recall the BMO class. Define the BMO norm by

1
Ifllnio = sup /Q F@) — foldy

for f € L{ (R™), where

loc

1
fo= |Q|/Qf(y)dy

and the supremum is taken over all cubes @ in R™. Then, BMO(R") is the set of all
functions f modulo constants satisfying || f||ymo < oo.

We recall the classical results on the boundedness of commutators on Morrey spaces.
In 1991, Di Fazio and Ragusa [24] gave the necessary and sufficient condition on a
function b for the boundedness of commutator [b,I,] on Morrey spaces. Although
there was a little additional assumption in their result, Shirai removed it in [140]. Our
aim in Chapter 3 is to generalize these results to mixed Morrey spaces. Here we state
our main theorem in Chapter 3.



Theorem 1.2.1. Let 0 < o < n,1 < p < Also,

)

I3
SRS
<

¥
SIS

assume that
1 1 « qj  Sj

r p n p r

Then, the following conditions are equivalent:

(a) b e BMO(R").
(b) [b, 1] is bounded from Mf}(R”) to ML(R™).
(¢) [b,14] is bounded from Mg(R”) to ML(R™).

(d) [b, 4] is bounded from Mg(R”) to M7 (R™).
Here, MQ(R”) is the Mf}i(R”)—closure of C°(R™).

We compare our results with the classical ones. Usually, when we handle commu-
tators, the sharp maximal operator is a useful tool as was done in [24, 129, 130]. The
sharp maximal operator, which is defined in [34], is a good operator to control the sin-
gularity of the integral operators. To control the sharp maximal operator, we use the
so-called good A-inequality described in [141]. However, the layer cake formula, which
is also described in [141], is not available in the mixed-norm setting. So we make use
of the dyadic local sharp maximal operator defined in [84] together with a key formula
[84, Theorem 2.2]. By using these ingredients, we established the estimate for the sharp
maximal operator on mixed Morrey spaces in Section 3.2. In Section 3.3, we give the
proof of Theorem 1.2.1. We note that our method does not employ the predual spaces
of Morrey spaces which were used in the previous works ([24, 140]).

1.2.2 Main theorems on the characterization of Morrey spaces as-
sociated with Banach lattice in terms of pointwise multiplier
spaces

Given Banach spaces E1(R") and E3(R"™) of measurable functions defined on R", we
define PWM(E1(R™), E2(R™)) as follows: A measurable function g is a pointwise mul-
tiplier from E1(R™) to E2(R™) if the pointwise product f-g belongs to Eo(R™) for each
f € E1(R™) and there exists a constant M > 0 such that

1S - 9l zo@ry < M| fllgy@r)- (1.1)
One defines a norm on PWM(E1(R"™), E2(R™)) by
lgllpww(e, By = inf{M >0 : (1.1) holds for all f € Fy(R")}

for g € PWM(E1(R"™), E2(R™)).



A typical example is
PWM(LP(R"), L' (R")) = L (R™),

where p’ =

P 1 is a conjugate exponent of p. This example is easily obtained from

the Holder inequality.

In [82], to investigate the solution of the Navier—-Stokes equation, Lemarié-Rieusset
used that pointwise multiplier spaces from Besov spaces to Lebesgue spaces coincide
Morrey spaces.

Theorem 1.2.2 (cf. [82]). Let 1 <p < oo and 0 < s < " Then
p

PWM(BS, (R), LP(R™)) ~ M; (R™)

with equivalence of norms.

Lemarié-Rieusset obtained Theorem 1.2.2 for n = 3 and p = 2 [82, Lemma 6]. A
passage to the general case is a minor modification, so that we give a proof in Subsection
4.2.2.

Our main result generalizes this one by replacing Lebesgue spaces with abstract
Banach lattices. Recall that a Banach (function) lattice on R™ is a Banach space
(E,|| - ||[g) contained in the linear space of all measurable functions, such that, for
all f,g € E, the implication “|f| < |g| = ||flle < |lg||lg” holds. Then, we have
also to generalize Morrey spaces and Besov spaces. To simplify the discussion, in this
subsection and Chapter 4, we let E(R™) be a Banach lattice be such that ||f(-—z)||g =
| fllg for all f € E(R™) and x € R™.

Based on [58, Definition 2.6], we define M%,(R™) to be the set of all measurable
functions f for which

1 1
1 FlLae = sup @I (fo HE)
B =0 xals /X

is finite, where () moves over all cubes whose edges are parallel to the coordinate axes.
Note that if we take E(R™) = L?(R"), M%(R™) coincides with the classical Morrey
space MY (R™).

Next, we define 2-microlocal Besov spaces. First, we recall the class W3

a1,02°

Definition 1.2.3 (Weight class W$3 ). Let oy, a0, a3 € [0,00). The class W53

aq,02 Q1,02
of weights is defined as the set of all the sequences of the measurable functions w =

{w;}52_ satisfying the following conditions:
1. There exists a constant C' > 0 such that for all z,y € R" and j € Z,
0 < wj(z) < Cw;(y)(1+ 27|z —y[)*.
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2. For all x € R™" and j € Z,

27" wj(z) < wj(z) < 2%w;(2).

Such a sequence w € Wg? , is called an admissible weight sequence.

The (homogeneous) generalized 2-microlocal Besov spaces are usually defined by the
use of the Fourier transform as follows. For f € L'(R"), define its Fourier transform
and its inverse Fourier transform by

_n

F@)=n)E [ faetian, P =(2m)F | fed e

R
By a well-known method, we can extend F, F~! naturally to the Schwartz distribution
space S’(R™).
Definition 1.2.4 (Generalized 2-microlocal Besov spaces). Let w € Wg? ,,. Let ¢ €
C°(R™) satisfy
XB@)\B2) < ¥ < Xp(s)\B(2)-
and define ¢;(z) = ¢(277z). Let 0 < p,q < co. Then for f € S'(R") define

Q=

[e.9]

> 2w F e AL

j=—o00

||f | | B;;]mloc (R™w)

The generalized 2-microlocal Besov space B;g]mloc(R", w) is the set of all f € §’'(R™) for

which ||f||B;(’;“lOC(R",’w) is finite.

Note that if we take w;(xz) =1 for all x € R and j € Z, we obtain classical Besov
spaces.

To state our result, also recall the definition of dyadic cubes. For j € Z and m =
n

o m; mj +1
(mi,ma,...,my) € Z", we define Qj,, = 1_[1 [23., 5
]:

the set of such cubes. The elements in D are called dyadic cubes.

> . Denote by D = D(R")

Our main result in Chapter 4 is the following assertion.

Theorem 1.2.5. Let E(R™) and F(R™) be Banach lattices such that

_1 i
1XQjmIF S IXQjm lEIQj0l 7 (j € Z,m e Z").
Set

1

11— .
wj = xQullel@jpol 7 (G €2).
Then BY™°°(R™, w) is continuously embedded into F(R™) and

PWM(BY™(R", w), E(R™)) ~ MY (R™)

with equivalence of norms.

10



In Section 4.2, we give the proofs of our results. Lemarié-Rieusset used the wavelet
decomposition to show the corresponding result since he considered the assertion based
on L?(R"™). Meanwhile for the proof of Theorem 1.2.5, we employ the atomic decompo-
sition for classical Besov spaces and 2-microlocal Besov spaces. Section 4.3 is devoted
to apply our result for various function spaces, which are Orlicz spaces (Subsection
4.3.1), Lorentz spaces (Subsection 4.3.2), mixed Lebesgue spaces (Subsection 4.3.3),
and mixed Morrey spaces (Subsection 4.3.4). In addition, the definition of each func-
tion space is given in Section 2.2.

1.2.3 Main theorems on the atomic decomposition for mixed Morrey
spaces

One of the characterization methods of function spaces is to decompose functions or
distributions into linear sums of elementary ones. In Chapter 5, we discuss the de-
composition results for mixed Morrey spaces. In particular, we concentrate on the
decomposition by the atom, which is a function with a compact support, a suitable
norm estimate, and the moment condition. The decomposition results by atoms for
classical Morrey spaces were proved by lida, Sawano, and Tanaka in [66].

Denote by Q(R"™) the set of all cubes in R™. Our first result is the following con-
struction result about the functions in mixed Morrey spaces.

Theorem 1.2.6. Suppose that the parameters p,q,s,t satisfy

l<p<s<oo, 1<max{qi,...,qx}<tp<oo (k=1,...,n),

n

n 1 n 1
ey~ 2y~
D = q; S = b

Assume that {a;}32, C MER"™), {A;}52, C [0,00), and {Q;}52, C Q(R") fulfill

o
1
lajllae < 1Qs1%,  supp(ay) € Qj |[|D - Ajxg,|| < oo
i=1 MP.
q

o0
Then f = Z Ajaj converges in S'(R™) N L? (R™) and satisfies

loc
=1

o
£l < Cpgair|| D Aixes
=1 MP,
q

The next assertion concerns the decomposition of functions in Mg(R"). For d > 0,
denote by Py(R™) the set of all polynomial functions with degree less than or equal

11



o0
to d, so that P(R") = |J Py(R™). It is clear that P_1(R") = {0}. The set P (R")*
d=0

denotes the set of measurable function f for which

(1+]-)2fe LR and /:ro‘f(a:)d:xzo

n

for any o € (NU {0})" with |a| < K. Such a function f is said to satisfy the moment
condition of order K. In this case, one also writes f L Pg(R").

Theorem 1.2.7 (cf. [60]). Suppose that the real parameters p, q, K satisfy
n

1
< e K€N00<n—n—1,oo>,

l<p<oo, Ge€(0,00)",
j=1 q; q0

where qo = min(q1,...,q,). Let [ € Mg(R”). Then there ezists a triplet {a;}32,; C
L>®(R") NP (R™), {Aj}524 C[0,00), and {Q;}52, C Q(R") such that f = Aja; in
j=1

S'(R™) and that, for any v >0

S

o

laj| < XQj> Z()‘jXQj)v < Cva”M’qi'
j=1

Here the constant Cy > 0 is independent of f.

Note that applying Theorems 1.2.6 and 1.2.7 for f € Mf}(R”), we obtain norm
estimate

oo o0
CH D Aixe, < | fllpme =€ > Aixe,
=1 i=1
J M. J M.
for some C' > 1. Here \; and @); are same ones which appear in Theorem 1.2.7.

Although Theorem 1.2.7 can be given as a corollary of the abstract results in [60],
we can give a direct proof without using Herz spaces which were used in the abstract
setting of [60].

Moreover, we can prove the general decomposition theorems using Hardy-mixed
Morrey spaces (Theorems 5.1.7 and 5.1.8 to follow). We can show that Hardy-mixed
Morrey spaces coincide with mixed Morrey spaces for ¢ > 1 (Proposition 5.3.1). There-
fore, Theorems 5.1.7 and 5.1.8 include Theorems 1.2.6 and 1.2.7, respectively.

As an application, we show the Olsen inequality for the fractional integral operator
I, acting on mixed Morrey spaces.

Theorem 1.2.8. Suppose that the parameters o, p, q,p*, 7*, s,t satisfy

—

1<ppis<oo, 1<qq"t< oo,

12



n_~~1 =n I n_&1

ST TN T

max{tl,...,tj}<q;f, ]19>Z, pl*SZ’
for each j =1,2,...,n, and that

Pimn p* n
Then for all f € M(T(R ) and g € MJ*(R )
lg - Tafllag < Cligll v, - 1F L rez

where the constant C is independent of f and g.

As the special case of ¢; = g and t; = t for all ¢ = 1,...,n, this result recaptures
the one for classical Morrey spaces [134, Proposition 1.8].

In Section 5.2, we establish the boundedness result for the maximal operator to
prove Theorem 1.2.6. We observe the characterization of Hardy-Morrey spaces in
Section 5.3. Section 5.4 is devoted to the proof of the main theorems. In Subsections
5.4.1 and 5.4.2, we consider the reconstruction theorems for mixed Morrey spaces and
Hardy-mixed Morrey spaces, respectively. Meanwhile in Subsection 5.4.3, we prove the
decomposition theorems for mixed Morrey spaces and Hardy-mixed Morrey spaces. At
last, in Section 5.5, we establish Olsen’s inequality for mixed Morrey spaces by applying
the atomic decompositions.

1.3 Notation
Throughout this thesis, we use the following notation.

1. The letters g, q,7, ... denote the n-tuples of the numbers in [0,00] (n > 1), that
iSa ﬁ: (plv cee 7pn)7 C_T: (qla DRI qn)7F: (rla o 7Tn)'

2. The inequality, for example, 0 < p < oo means that 0 < p; < oo for each
i=1....n

3. For p'= (p1,...,pn) and r € R\ {0}, let

(s EZ(@ @) P = (pLs- - Ph)
ﬁ pla"'apn ) r r e ) 1o+ Fn)>

where p;» — b 1 is the conjugate exponent of p; (j =1,...,n).
pj —

13



10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

n
. For j € Z and m = (mq,...,my,) € Z", we define Qjp, = H[

. Let @ = Q(z,r) be a cube having center x and radius r, whose sides are parallel

to the coordinate axes. In particular, if x = 0, then we write Q(r). The symbol
Q denotes the set of all cubes.

. Denote by B(z,r) the ball centered at z and radius » > 0. We shall write

B(r) = B(0,r) as before.

. The symbols |Q| denotes the volume of the cube ) and ¢(Q) denotes the side

length of the cube Q.

For given a cube @ and k > 0, k@ means a cube concentric to ) with sidelength

k(Q).

me my + 1
k=1 2 '
Denote by D = D(R™) the set of such cubes. The elements in D are called dyadic
cubes.

. By A < B, we denote that A < CB for some constant C' > 0, and A ~ B means

that A < B and B < A.

When we need to emphasize or keep in mind that the constant C' depends on the
parameter o, 3, etc, we write C' = Cy g.

We write Ng = NU {0}.

We use “-” for functions; f = f(-). In particular, when we only use “-” for j-th
coordinate, we write f = f(-;).

Let E be a measurable set in R™. Then, xg denotes the characteristic function
for E.

Let FE be a measurable set in R™ and f be a measurable function. Then,
1fllLe ey = [ xEllp-

Let w be a nonnegative measurable function. Then, [|-||zr(,,) denote the weighted
Lebesgue norm, that is, for a measurable function f,

1 llzr ) = [1fwllp-

The norm || - ||« denote the operator norm.
We define LY(R") as the set of all measurable functions on R™.

S(R™) denote the set of all rapidly decreasing functions on R™ and S'(R") its
dual (that is, the set of all tempered distributions on R™).

Let Lg(R") denote the set of all LI(R™) functions with compact support.

14



Chapter 2

Preliminaries

In this chapter, we provide the definition and some properties of function spaces which
are used in this thesis. In Section 2.1, we recall mixed Morrey spaces and their related
spaces. First, we review Morrey spaces and mixed Lebesgue spaces in Subsections
2.1.1 and 2.1.2, respectively. After that we summarize the definition and some results
of mixed Morrey spaces investigated in [106]. At the end of this section, we consider
the predual spaces of mixed Morrey spaces. We use the predual spaces in Chapter 5.
Section 2.2 is devoted to introducing some function spaces which we apply to in Section
4. At first, we recall Besov spaces in Subsection 2.2.1. We also consider generalized
2-microlocal Besov spaces which generalize the weighted Besov spaces in Subsection
2.2.2. In the last two subsections, we recall Lorentz spaces and Orlicz spaces, which
are other generalizations of Lebesgue spaces.

2.1 Mixed Morrey spaces and related spaces

2.1.1 Classical Morrey spaces and fundamental results

In this subsection, we recall the definition and some properties of the Morrey space
ME(R™). For their proofs, we refer to [117].

Definition 2.1.1. Let 0 < g < p < co. Define the Morrey norm || - || ;s by

HfHMg = sup {‘Q’;; (/Q ]f(x)|qda;)q : Qs a cube in R”}

for a measurable function f. The Morrey space ME(R™) is the set of all measurable
functions f for which || f{| v is finite.

Remark 2.1.2. We can also define the following norm:

1
Hf\|?&%zsup{]3|;_; </Bf(x)]qu>q : Bis a ball inR”}.

15



Then, using the fact
B(z,r) C Q(z,r) C B(x,v/nr),

we see that the norms || f|[ sz and || f Hlj’\j% are equivalent. Thus, we will use the suitable
q
one and denote it by the same notation || - | v .

First of all, we point out the fundamental properties of Morrey spaces.

Theorem 2.1.3. Let 1 < ¢ < p < co. Then, the Morrey space M5(R™) is a Banach
space.

The next proposition suggests that Morrey spaces are generalizations of Lebesgue
spaces.

Proposition 2.1.4. Let 0 < p < oo. Then, MH(R") = LP(R™).

The relation of two different Morrey spaces is as follows.

Proposition 2.1.5. Let 0 < q1 < qo < p < c0. Then, we have
LP(R™) = MZ;(]R”) — /\/lg2 (R") — ./\/l{;1 (R™).

Next, we consider the examples of functions belonging to Morrey spaces.

Example 2.1.6 ([126, Exercise 6.17]). Let @ be a cube in R™. Then, for 0 < ¢ < p < o0
1
IxQllame = 1Q17.

Example 2.1.7 (|79, Lemma 4.1]). Let 0 < ¢ < p < oo. Then, |x\7% e MY(R™).

Note that |1:]7% does not belong to LP(R™) for 0 < p < co. Therefore, the Lebesgue
space LP(R™) is proper subset of the Morrey space M%(R™).

Finally, we recall the studies of Morrey spaces. Morrey spaces were introduced by
C.B.Morrey Jr. in 1938 to investigate the local behavior of solutions to second order el-
liptic partial differential equation [97]. Later, many authors investigated Morrey spaces.
In 1960s, Campanato introduced and studied Campanato spaces which coincide with
the many function spaces, the BMO space, Lipschitz spaces, Holder spaces, and Morrey
spaces. Peetre [114] gave a survey of Morrey spaces and Campanato spaces in 1969.
In this survey, he also investigated the boundedness of the singular integral operators.
Singular integral operators on Morrey spaces have several definitions via preduals and
weight theory. See [19, 120, 121]. As the last point in the first development, Adams
pointed out that the fractional integral operator I, is bounded on Morrey spaces in [1].

Theorem 2.1.8. Let 0 <a<n, 1 <qg<p<oo, and 1l <s<r<oo. Assume that

Then, for all f € MY(R"),
Hafllamz S 17l
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The next turning point is that Chiarenza and Frasca proved the boundedness of
the Hardy-Littlewood maximal operator on Morrey spaces in 1987 [19]. The Hardy—
Littlewood maximal operator is one of the most important operators in harmonic anal-
ysis. This operator is defined for all measurable functions f and z € R™ as

- XQ(7)
M) =sup X0 /Q F@)ld,

where the supremum is taken over all cubes () in R™. The basic idea of this operator was
introduced by Hardy and Littlewood [54] in the language of cricket. Frankly speaking,
this operator is taking the largest average of a function over all cubes containing =x.
The technique of averaging naturally arises in many situations, so it is very significant.
The boundedness result of the Hardy—Littlewood maximal operator on Morrey spaces
is as follows.

Theorem 2.1.9. Let 1 < ¢ <p < oo. Then

M fll sz S 1wz

for all f € MY(R™).

Using the maximal operator, Di Fazio and Ragusa [24] and Shirai [140] proved
commutators generated by BMO functions and the fractional integral operator I, are
bounded on Morrey spaces (these statements will appear in Theorems 3.1.2 and 3.1.3).

Concerning the duality, Long proved that the block space ’Hf;: (R™) is a predual space
of the Morrey space M5 (R™) in [87]. Zorko characterized the predual space by means
of the atomic decomposition in [152]. In [73], Kalita constructed another predual space
of Morrey spaces which is the same space as Zorko’s spaces with norm equivalence.
Furthermore, by using the theory of capacities, the third predual space was defined by
Adams and Xiao [2]. See also a recent survey by Rosenthal and Triebel [122].

Furthermore, Morrrey spaces were generalized by many authors in various direc-
tions. First of all, we take up generalized Morrey spaces. A definition which are
still often used goes back to Zorko’s paper [152]. Later, Mizuhara [93], Nakai [98],
and Guliyev [43] defined and investigated generalized Morrey spaces, respectively, and
many authors studied them in [22, 30, 44, 45, 79, 53]. For an application to partial
differential equations, we refer to [3, 23, 78, 86]. See also a survey [127]. Next, we turn
to the weight theory of Morry spaces. We have two different definitions of weighted
Morrey spaces which are Samko type [123] and Komori-Shirai type [80]. We regard
the weight as the one for functions in the former, as the one for measures in the latter.
Each of them is investigated in [103, 104] and [65, 139, 151]. Furthermore, both of
them appear in the study of partial differential equations [32, 51, 52, 138]. In addition,
Morrey spaces for non-doubling measures were defined by Sawano and Tanaka and
investigated the boundedness property of some operators [124, 130, 132], and variable
exponent Morrey spaces were studied in [4, 48, 49, 94, 95].
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2.1.2 Mixed Lebesgue spaces and fundamental results

In this subsection, we recall the mixed Lebesgue space L¥ (R™) which is introduced by
Benedek and Panzone in [11]. Since the proofs are overall elementary, we omit the
details; see [11].

Definition 2.1.10. Let p' = (p1,...,pn) € (0,00]". Then define the mized Lebesque
norm || - |z or | - llpy,...pn) Y

1Az = 171z = 1oy

1
o 3

= /(/ (/ |f(x1,a72,...,a:n)|p1d:n1>p1 dx2> coodzy, ,
R R \JR

where f : R" — C is a measurable function. If p; = oo, then we have to make
appropriate modifications. We define the mized Lebesque space L. (R™) = LP1spn) (R™)
to be the set of all measurable functions f on R™ with || f||7 < oo.

Note that if each p; = p, then LP(R™) = LP(R™), so mixed Lebesgue spaces gener-
alize classical spaces. This space has properties similar to classical Lebesgue space.

Proposition 2.1.11. For 1 < 5 < oo, LP(R"™) is a Banach space.

—

Proposition 2.1.12 (Holder’s inequality). Let 1 < p,¢ < oo and define ¥ so that
1 1 1 - o o

—+=-==. If f € LP(R"),g € LY(R"™), then fg € L"(R"), and

P q r

1 fgllz < I fllzllgllg-

Proposition 2.1.13. Let 0 < p < co. The mized Lebesgue norm has the dilation
relation: for all f € LP(R™) and t > 0,

YL
Ly =t == 7 1 fllp-

The mapping

1
(z9,...,2n) € R 1oy (T2, -+ 20) = (/R\f(xl,...,xn)]pldm)

is a measurable function and defined on R"~!. Moreover, we define

H(pj)’

where HfH(pl,...,pj,l) denotes |f|, if j =1 and ¢= (p1,...,p;),j < n. Note that || f||7 is
a measurable function of (zj11,...,2z,) for j <n.

Next, we consider the examples of LP(R™).
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Example 2.1.14. Let @ be a cube. Then, for 0 < p'< oo,

1,1 1
;(i_i'_..._l'_i)
IxQlly = [Q[ 1 " #n. (2.1)
This identity is important to consider some inequalities of mixed Morrey spaces.

Example 2.1.15. Let m = (mq,...,my,) € Z" and {a;, }mezn C C. Define

f(x) = Z ameJr[O,l}”(x)'

mezmn
Then,
1
% Pn
1A= D2 D |apmemnl™ | : (2:2)
mnp€ZL mi1€Z

We can consider the right-hand side of (2.2) as a mixed sequence norm, which
computes each ¢Pi-norm with respect to m;. We denote it by |[{am }mezn | o1, on):

[{am tmezn [lpr..om) = ll@(my,....mm) o1 om)
_ P
= 2 | 2 | 2 ™
mn€Z mo€Z mi1€Z
Furthermore, this norm is also defined inductively:
Ha(ml,...,mn)”é(m 77777 pj) = H [Ha(ml,...,mn)ng(m vvvvv ijl)i| ‘ o257

where [[a(mn, ....mn)ll w10 = 10(my,..jm)| i § =1 and

1

Pj

”a(m17...,mn)H£(Pj) = Z ‘a(ml,...,mn)‘pj

m]‘EZ
forj=1,...,n.

We survey the studies of mixed Lebesgue spaces. Benedek and Panzone investi-
gated fundamental properties (completeness, duality, reflexivity, etc.), a counterpart
to the Riesz—Thorin interpolation theorem, the boundedness of the fractional integral
operator, and so on. After this paper, there are a lot of studies for mixed Lebesgue
spaces. In 1975, Bagby showed the boundedness of the Hardy—Littlewood maximal
operator for the functions taking values in the mixed Lebesgue spaces [10]. In par-
ticular, Stockert considered that the strong maximal operator is bounded on mixed
Lebesgue spaces [144]. The author, in [106], gave another simple proof using the above
Bagby’s result. See also [35, 57] for this boundedness. Singular integral operators were
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studied in [35, 142] by Fernandez, and by Stevanov and Torres, respectively. Addition-
ally, there exist many remarkable works which concern Hormander—Mikhlin theorem
[7], multivariate rearrangements [15, 37], the inclusion problem [42], the theory of vari-
able exponents [59], and the interpolation theory [63, 91]. Recently, Huang and Yang
summarized a recent series of investigation on function spaces with mixed norms [62].

From the viewpoint of applications, this mixed norm serves to describe decay at
infinity for each direction. For example, we consider a bounded measurable function f
on R? satisfying

C
< - - /
for x = (x1,2") € R x R?, where 2’/ = (x9,23). Then, f € LP(R3) if p > 10, that is,
the fast decaying directions are completely ignored in the classical Lebesgue norm. So,
in this framework of Lebesgue spaces, this function f is identified with the same as a
function g satisfying

C
9 < i > 1.0 >0

Meanwhile, using the mixed Lebesgue norm, we can see f € LP(R") for p; > 10 and

D2,p3 > 10 Employing this idea, many authors established and analyzed solutions

for partial differential equations, abstract elliptic and parabolic equations, the Navier—
Stokes equation, and etc. [28, 112, 113].

2.1.3 Mixed Morrey spaces and some results

In this subsection, based on [106], we collect some properties and boundedness results
of fundamental operators in harmonic analysis. All the proofs are in [106].
Definition 2.1.16. Let ¢= (q1,-.-,¢s) € (0,00]™ and p € (0, oo] satisfy

2"31

14

@'\:

Then define the mized Morrey norm || - || \q2 by
q

| f1l pp. = sup {‘Q’pn(z] ' qj) I fxolly : @ is a cube in R”}
q

for all measurable functions f on R™. We define the mixed Morrey space Mg(R”) to
be the set of all measurable functions f on R" satisfying || ||y < o0.
q

First, we remark the relations of Morrey spaces and mixed Lebesgue spaces. If each
gi = q € (0,00), then ./\/lzqi(R") = MY(R™) with coincidence of norm. In particular,
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so that Mg(R”) = L9(R") with coincidence

I 1
choose ¢ € (0, 00]™ satisfying — = —
p n

no1
20
of norm.

Note that Scapellato and Ragusa [137] introduced the same named space “Mixed
Morrey space”, which is different from our space, essentially.

We give the properties of the mized Morrey spaces. Just as with mixed Lebesgue
spaces, we see that mixed Morrey norm has the following dilation relation:

1F @ mz ey = tr HfHMfz(Rn) (f € L(R™),t > 0), (2.3)

for ¢ € (0,00]"™ and p € (0, <] with = < . The embedding properties are as
p QJ

follows:
Proposition 2.1.17. ([106, Proposition 3.2]) Let 0 < § < ¥ < 00, 0 < p < 00, and
1 1
assume — + -+ — > n Then,
p

1 Tn

ME(R™) C MI(R™).

Let us give some examples.

Example 2.1.18. By Example 2.1.7, f(z) = |x|_% e MY(R™) if ¢ < p. Let ¢ =
(q1,-..,qn). Using Proposition 2.1.17, we have

ME(R") = ME- - (R") C My(R"),

n times

where ¢ = max(q, ..., qn). Thus, if max(q,...,q,) = q < p,

f(z) = 2|77 € MIUR™).
However, the condition

max(qi,...,qn) = ¢ <p (2.4)
is a sufficient condition but is not a necessary condition for f(z) = \:U|_% € Mg(R").
In fact, consider the case § = (s1, ©00,...,00 ) and s1 < % Then, by Proposition

(n — 1) times
2.1.13,

1 1 n
»n(2i=1s
”f”/\/lil(R”) = o sup |Q(z,7)| ( =

=Q(z,r)

)Ilfo (@) lls

1
= sup |Q(0,r)|”
r>0

Z'n 1
=S X

l( )
= HfXQOT Hs

11 )
=sup|Q(0,7)|" " T fxoonlls x T

r>0

1 o
< (/ |z1| 1d$1>
-1
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Since s1 < B, [ fllpprny < 00 and f € ME(R™). But § does not satisfy (2.4).
n 3

Example 2.1.19. Let 0 < ¢ < 0o and assume that ¢; < p; if p; < oo and that ¢; < oo
ifpj=o00(j=1,...,n). Let
"1 n
> —=-. (2.5)
=pi P

Then, we have

F(e) = [ byl 7 € MER™).
j=1

Furthermore, condition (2.5) is a necessary and sufficient condition for f(x) =

i _1

H |zj| *i to be a member in Mg(]R"). In fact, let f € Mg(R") and f # 0. Applying
j=1

(2.3), we have

LF @ mz@ny = 7 1l pz@ny (> 0). (2.6)
—_Sn 1
On the other hand, since f(tx) =t /="' f(x),

2

_yn L
LA aazgany = €255l ygn gy (2.7)

By (2.6) and (2.7), for all ¢ > 0,

n 1

Thus, we obtain (2.5).
Example 2.1.20. Let @ be a cube and ¢ € (0, 00]"™. Then,
1
Ixell i@ = 1Q[7.
no1
To check this, put > — = q. First, using (2.1), we get

j=19j

1_a 1_4q 1_a _.a 1
Ixell i = ZIGIZIRIP "lIxexrllg = Q1P " lIxqllg = Q7 = 1QI» = [Q».
Meanwhile, thanks to Proposition 2.1.17,

1
IxQllrmpmn < lIxallme @) = Q7.

max(qy,---,q

Combining the above two inequalities, we obtain

1
Ixellae e = 1Q[7.
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We turn to the boundedness results for some operators on mixed Morrey spaces.
First, we consider the Hardy-Littlewood maximal operator. The boundedness of the
Hardy-Littlewood maximal operator in classical Morrey spaces is showed by Chiarenza
and Frasca in 1987 [19] (see Theorem 2.1.9 above).

Theorem 2.1.21 ([106, Theorem 4.5]). Let 1 < ¢ < oo and 1 < p < oo satisfy
no1
n < > — . Then
P =14,
1M7L pgz < 1l

for all f € MZ(R").
Next, we give the boundedness result of the fractional integral operator I,. Its
boundedness in classical Morrey spaces is proved by Adams [1] (see, Theorem 2.1.8).

Theorem 2.1.22 ([106, Theorem 1.11]). Let 0 < a < n,1 < §,§< 00 and 1 < p,r <
n

n 1 n no]
0o. Assume that — < > — and — < Y —. Also, assume that
=14 T oSS

=S |y

Then, for f € MQ(R”),
o fllaz S W F [z

Finally, we recall the boundedness results for singular integral operators. A singular
integral operator T with a kernel k(z,y) is defined as an L2-bounded operator which
satisfies the following conditions:

(1) There exists a constant C' > 0 such that |k(z,y)| < FErE
r—=y

(2) There exist € > 0 and C' > 0 such that

|z — 2|

k(2 9) = (=, 9)| + [k(y, 2) = k(y, 2)| < 7 — ez,

if |x —y| > 2|z — 2| with x # y.

(3) If f € L>(R™), the set of all compactly supported L*°-functions, then

Tf(a) = [ o)Wy (o ¢ supp().

Keeping in mind that T extends to a bounded linear operator on M4 (R™) [19], we
obtain the following theorem.
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Theorem 2.1.23 ([106, Theorem 1.12]). Let 1 < §< 0o and 1 < p < oo satisfy

"1
<2

n
p

Then, if we restrict T to MZ»(R"), which is initially defined on MP (R™),

min(qi,...,qn)
HTfHMg(Rn) S HfHMg(Rn)

for f € M*Zi(R").

At last in this subsection, we describe the Fefferman—Stein vector-valued inequality
on mixed Morrey spaces. This inequality was first considered by Fefferman and Stein
in [33].

n 1
Proposition 2.1.24 ([106, Theorem 1.8]). Let 1 < ¢,p < o0, n <> — andl<r<
i=1 45
o0. Then

1/r 1/r
oo oo

> (M) <C D15
j=1 e j=1 e

for all sequences of measurable functions {f]}i‘;l

See [130, Theorem 2.2] and [146, Lemma 2.5] for the case of classical Morrey spaces.

2.1.4 Predual spaces of mixed Morrey spaces

In this subsection, we introduce the predual spaces of mixed Morrey spaces following
the idea of Long [87]. We need these space in Section 5.

7

1
< > —. A measurable function A is said
j=14j

Definition 2.1.25. Let 1 < p < oo and n
p
to be a (p, ¢)-block if there exists a cube @ that supports A such that

1 n 1) _1
14]; < ot ()

Note that the idea of blocks was introduced by Taibleson and Weiss to investigate
the a.e. convergence of the Fourier series in [145]. Based on this functions, we define
the following function spaces.

no1 ’
Definition 2.1.26. Let 1 < p < oo and D < >~ —. Define the function space 7—[21, (R™)
i=1 4

as the set of all f € LP(R™) for which f is realized as the sum f = Z AjA; with some
§=0
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A= {\}jen, € £1(Np) and a sequence {A;};en, of (p',d”’)-blocks. The norm 11,0
q
for f € ’Hf;, (R™) is defined as

£, = nf 1Al

where A = {\;}en, runs over all admissible expressions

o
F =Y NAj, {N}ien, € €1, Ajis a(p,§’)-block for all j € No. (2.8)
j=0
Note that if ¢; = -+ = ¢y, then the notion of (p,q)-block and the one of ’H’qi// (R™)

coincide the classical ones.

Remark 2.1.27. As is easily verified by Hoélder’s inequality, any (p, ¢)-block has LP

norm less than 1;
[All, <1

o0

for all blocks A. Due to this fact, the series f = Z AjA; in Definition 2.1.26 converges
§=0

in the topology of LP(R™). In fact, let n < m. Then,

Soud =S = Al < S il < S Il — 0
§=0 §=0 j=n+1 j=n+1 j=n+1

p p

as n,m — 0. Thus, this series converges in the topology of LP(R™).

We shall see some properties of the space H‘Z./, (R™).

Lemma 2.1.28. Let 1 < p < oo and * < E IfAis a (p',q")-block, then
p

j=194;
HAHHE,/ <1
q
Proof. In (2.8), simply choose
AOZA,Al :A2:-~:O?)\0:1,)\1:)\2:---20.
|
no1 -
Lemma 2.1.29. Let 1 < p < o and = < > —. Let A be an LT (R") function
p j=1 q
supported on a cube Q. Then
Y d) -
1Al < 1Al 1@l ( ’ 1‘”> i (2.9)
q
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1_1 n 1
le n j=1 a;

AT A, and assume that A is not zero for almost everywhere.
q

Proof. Set B = |

1 1
Then B is supported on a cube ) and by virtue of the facts that — + — =1 and
p p
1
-+
q

(g d) o (Em )2
1Bl = 1@ 7 =1q s

Hence, B is a (p/,¢’)-block. By Lemma 2.1.28, |B||,» < 1. Thus, we obtain (2.9). |
q~/

Recall that L?(R") denotes the set of all L9(R™) function with compact support.
By Lemma 2.1.29, the elements of L¢(R™) can be regarded as a (p/,¢”)-block modulo
multiplicative constants. From this fact, we also consider the density for the space

p/
He(R™).
Lemma 2.1.30. The space Lg(]R”) is dense in Hg./, (R™). In particular, the space
Hgl, (R™) is separable.

Proof. We shall verify that for all g € ’Hg, (R™), the sequence {h;}52; C LI(R") exists
such that lim h; = ¢ in 'Héi, (R™). Since g € 7-[{11/ (R™), there exist {A;}32; € /' and

Jj—o0

{b;}321 which is a sequence of (p’, ¢")-blocks such that

For each j € N, let

Then h; € LI(R™) and since
oo
lg—hil < > bl
k=j+1

we have

[e.e]
lg = hjllypr < D7 Pl =0 (= o00).
1 k=j+1

The following theorem is an extension of the result by Long [87] to mixed Morrey
spaces.
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n
Theorem 2.1.31. Suppose that 1 < p < co and Z

1
14

ﬁ\:

(i) Any f € Mf}(R") defines a continuous functional Ly by

Ly HEL(RY) 39— | fla)gle)de e C
RTL

on ’Hg, (R™).

(ii) Conwversely, every continuous functional L on Hgl, (R™) can be realized with f €

MER™).
(iii) The correspondence
T Mf}(R”) >fr—Lse </H§/(]R”)>

is an isomorphism. Furthermore,

Il =suw{ | [ s@lateras| g € HLE ol =1} @210
and
oy, =max{| [ e 1 e M Il =1} 20

Proof. (i) Since g € 7-[21/, (R™), for any € > 0, there exist a non-negative sequence
{\j}jen € £1(N) and a sequence {g;};en of (p/,¢”)-blocks such that

oo
9=>_Ngi,
j=1
and

oo
> A < lgllyr +e,
j=1 ¢

where each g; is supported on @;. Then, by Hoélder’s inequality,

L (g) /f Z)\]g] d:c<Z)\/ g;(2)|de

< ijr\fxmugjua.
Jj=1
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Since each g; is a (p/, §’)-block which is supported on @, it follows that

[e’s}

1_1
L5 (9) |<ZMQJP "( ” “’])foc; lg

< . < / .
<1, 30 = L (1l +2)
j:

Since € is arbitrary, we have

L5(0)] < I laeglol - (212
q
Thus, we conclude
[ Lglle < A Fllaes (2.13)
where || - ||« denotes the operator norm.

We take a cube Qg and let Q; = 27Q)q for j € N. For the sake of the simplicity,
we write

L‘T/(Qj) = {f eL? (R™) : fis supported on Qj} .

According to the proof of Lemma 2.1.29, since we can regard the element of
L‘TI(Qj) as a (p, ¢")-block modulo multiplicative constant, the functional g —
L(g) is well defined and bounded on L7’ (Q;). Thus, by the L7 — L9" duality [11],
there exists f; € LI(Q;) such that

2o = [ s

for all g € L‘TI(QJ-) By the uniqueness of this theorem, we can find LI
function f such that

(R™)-

loc

f|Q]. = fj a.e.

for any j. We shall prove f € Mf}(R”). For a fixed cube @ and the above f, we
set

9= (eI ol FxalZ 1 xal 7 - [l fxall o

A simple calculation shows

/Qf<x>g<x>dx = I Fxall, llgllar = IfxqlZ™

Then we can write

@b D) gl 1P (/f )

- IQ\;’_i( %) (g (2.14)



(iii)

Meanwhile, thanks to Lemma 2.1.29,

n 1

1 )_1
13) "I fxale Tt (2.15)

n 1

(o 4) |
1L(g)] < [IL]l]Q 77 P lgllg = IL]+|Q]

Using (2.14) and (2.15), we obtain

7Lz < 1211 (2.16)

so that f € Mg,(R”). Hence, we conclude that L is realized as L = L; for
f e Mg(R”) at least on g € LI(R™). Since Lg,(R”) is dense in %gl,(R") by
Lemma 2.1.30, we can obtain the desired result.

Thanks to (2.13), (2.16) and (ii), it follows that 7 is an isomorphism. We shall
check (2.10). By virtue of (2.12), we have

Iy = sup{| [ r@gtoraa] sg < 5 ). ol =1}

Fix a cube Q. We can assume that f Z 0 on (. Then, let

dn—Aqn—1

20 0l Gy gy

9= Genh)lf1" xallfxall®;

1 X gy q2)
and
Q|117_711(2;—1 %)
gl
By Lemma 2.1.29, we see that Hh”?—tp' < 1. Therefore,
q*/

1_1 n 1
o )

|qn71
7

h= g.

gllg

/ F(@)h(z)dz 1 xelle

Ilfxal

l-i(yr, L
= Q| (“JWmM

Taking the supremum over the all functions h € 7—[’;, (R™) satisfying ||h|| ! < 1,
(T/
we obtain

1 1

Ql” "@Xﬂ@>wxmw§smﬂﬁénﬂMh@Mw

. P (n _
:he Hq,(R ), HhH?—lZ’, = 1} .

Thus, we conclude

115 < sup {

f(x)g(x)dz
Rn

so that we have (2.10). Meanwhile, by (2

ol > sup {

f(x)g(x)dz

R

29

9 € MR gl =1}
q

.12), we have

€ MUE"). |l = 1.



Using the I;IahnfBanach theorem, we learn that there exists a functional *I~L €
(7—[’;,(1&")) such that || L], = 1 and HgHHf}i’, = L(g). Since L € (’H?,(]R”)) , by
(ii), there is a function f € ./\/l’qi(]R”) such that L(g) = L;(g), and that

1l = 1L gl = I Ll = 1.

Thus, we obtain (2.11).

Finally, we give an example of functions in the predual spaces ”Hg, (R™).

Example 2.1.32. Let 1 < p < oo and . Then, we have

1
145

E\S

1
||><Q||H§; = QI

Applying Lemma 2.1.29 to the function xg, we have

A\ X g, 1-1 L
Ixell,» < lixelsQl ( " qj) =@ =1Q"".
q
Meanwhile, let f(x) = M Then, | f||pe = 1. Thanks to Theorem 2.1.31 (iii),
Ixellre 7
we obtain
1
el > [ f@ixgeds = —— [ xola)dz=1Q" =1QI7.
a’ R HXQHMf; n

1
Thus, we conclude HXQH,H;J’ =1QI*".
g’

2.2 Other function spaces

2.2.1 Besov spaces

Besov spaces have a lot of studies. First, Besov introduced this space using differences
in 1959 [13]. Peetre characterized this space by using Fourier transform in 1967 [115].
After that Besov spaces have been investigated by many authors until now. As for the
relation with Morrey sapces, Kozono and Yamazaki introduced Besov-Morrey spaces
which were introduced to apply to Navier-Stokes equations [81]. Furthermore, there
are many textbooks including these spaces [116, 126, 147, 148].

In this subsection, we recall the definition and some fundamental properties of
Besov spaces. All of the proofs are referred to books [116, 126, 147, 148] or a survey
paper [128].
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In this thesis, we employ the well-known definition by the Fourier transform. For 7 €
S(R™) and f € S'(R"), define 7(D)f = F Y[ - Ff]. Next, we define the Littlewood—
Paley decomposition. Let ¢ € C°(R™) satisfy

XB@\B@2) S ¢ < XB@®)\B(2)" (2.17)

Then define ¢; = ©(277-). The j-th Littlewood-Paley decomposition is the operator
¢j(D). Now we are ready to define the (homogeneous) Besov space B, (R") for 1 <
p < oo, 1 <r<ooands € R using the polynomial space P(R").

Definition 2.2.1. Let s € R, 1 < p,r < co. We define

o0

105, = | D2 @ lles(D)flle)"

j=—o00

for f € S'(R")/P(R™). The (homogeneous) Besov space B;q(R") is the set of all
feS'(R")/P(R") for which the norm || f|| 5. is finite.
rq

Remark that in the above definition, we choose ¢ so that the norm of B;Q(R”)
depends on . However, we can verify that B;q (R™) is independent of ¢ as the set.

Theorem 2.2.2 ([126, Theorem 2.1]). In Definition 2.2.1, we obtain the equivalent
norms for the admissible choice of p.

We recall the elementary properties for Besov spaces.
Theorem 2.2.3 ([126, Theorem 2.4]). Let 1 < p,q < 0o and s € R. Then, B;q(R”) is
complete, that is, B;q(]R”) is Banach space.

The embedding properties are as follows.

Proposition 2.2.4.

(1) ([126, Proposition 2.2]) For s e R,1 <p<oo and 1 <r; <ry < oo, we have

B (R™) < B, (R").

P pra
(2) ([126, Theorem 2.5]) For s € R,1 <p; <py < oo and 1 <r; <ry < oo,

B, (R < B 7 (R").

P11
Moreover, we consider the relation between Besov spaces and Lebesgue spaces.

Proposition 2.2.5.

n

(1) ([126, Theorem 4.4]) For 1 <p <gq <oo, By} *(R") — LI(R").
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(2) ([126, Proposition 2.1]) For 1 < p < oo, BSI(R") — LP(R") — Bgoo(R").

(3) ([126, Exercise 3.8]) For 1'< p < 00, BSQ(R") — LP(R™). Moreover, by duality,
for 1< p <2, LP(R") — BY(R").

; >0 n n ;
(4) ([126, Exercise 3.8]) For 1 <p<2 B, (R") — LP(R™). Moreover, by duality,
for 2 < p < oo, IP(R") < BY (R™).

In Section 4, we use the Besov space B;l (R™) characterized by atoms. So we only

describe the characterization of the Besov space B;l (R™). Full statements for Besov
spaces can be found in many books. See [126, 147, 148, 149].

Theorem 2.2.6. Let 1 <p<oo and 0 < s < n Define q € (p,0) by
p

n ) n -1
=s5——, thatzsqzn(—s) .
p p

Then, the Besov space B;I(R") coincides with the set of all f € LY(R™) for which it

can be expressed:
7= 3 (3

j=—00 \mezZm

n
q

in LY(R™) for some complexr sequence A = {Ajm}jczmezn and some sequence A =
{ajm}jez,mezn of C-functions satisfying

Z )\ijQjm

mezZm™

o0

> o

j=—o0

< 00, |8°‘ajm| < 2]‘a|X3Q].m

Lp

for all (j,m) € Z xZ" and multiindices o with || < [s+ 1]. Moreover the Besov norm
||f||le s equivalent to the infimum of
P

o) ) 0 . n %
220D Nmxau| = D 2 <Z ‘Ajm’p>
j=—00 meZ" Lr j=—00 mez"m

. :
= QjZ(Z ijm\p) :
j=—00 mezn

where A = {\jm }jezmezn moves over all possible expressions.

Remark that we use a different definition of sequence spaces to make a;,, behave
almost similarly to xgq,,,. See [148] and [149, §13.1].

As is easily seen from Proposition 2.2.5, B;l (R™) is continuously embedded into
L%(R™). We remark that Theorem 2.2.6 is an expression of homogeneous Besov spaces
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that differs from the one in [126, 147, 148, 149]. See [126, 148, 149] for the fact that
these two definitions are actually the same.

Finally, we give an example of the elements of B;l (R™). This example will use to
prove Theorem 4.1.5.
Example 2.2.7. Let 1 < p < co and 0 < s < . Fix j € Z. Then, by using
p
the partition of unity subordinate to the covering {3Qjm }mezn, we can show that

exp(—[27 - —m|?) € B3y (R") satisfies || exp(—[27 - —m|?)] . S 27577} for all m € Z".
P

2.2.2 Microlocal Besov spaces

We recall the generalized 2-microlocal Besov space Biy™°°(R™,w). The idea of 2-
microlocal analysis is due to Bony in 1984 [16]. It is an appropriate instrument to
describe the local regurality and the oscillatory behavior of functions near singularities.
Later many authors investigated the function spaces introduced this idea. In particular,
Moritoh and Yamada introduced this idea into Besov spaces and characterized these
spaces in 2004 [96]. After that Kempka defined and investigated the generalized 2-
microlocal Besov space Ba™°(R™,w) [74].

To define 2-microlocal Besov spaces, we recall the class Wg? .

Definition 2.2.8 (Weight class W$3 ). Let a1, a9, a3 € [0,00). The class W33

aq,002 1,02
of weights is defined as the set of all the sequences of the measurable functions w =

{w;}52 _ satisfying the following conditions:
1. There exists a constant C' > 0 such that for all z,y € R" and j € Z,
0 < wy(@) < Cuy(y)(1 +2]a — yl)*™.
2. For all z € R™ and j € Z,

27" wj(z) < wj(z) < 2%w;(2).

Such a sequence w € Wg? . is called an admissible weight sequence.
The (homogeneous) generalized 2-microlocal Besov spaces are usually defined by
the use of the Fourier multipliers as follows.

Definition 2.2.9 (Generalized 2-microlocal Besov spaces). Let w € Wg3 , . Let ¢

satisfy (2.17) and define ¢;j(x) = ¢(277x). Let 0 < p,q¢ < co. Then for f € S'(R")
define

1
o q
> 2 |l T e F AL

j=—o00

Hf | ’ B;;}mloc (R™,w)

The generalized 2-microlocal Besov space B;zlmloc(]R”, w) is the set of all f € S’'(R™) for

Wthh ||f||B;&mloc(Rn,’u)) IS ﬁnlte

33



Note that if we take w;(xz) =1 for all x € R and j € Z, we obtain classical Besov
spaces. Also remark that the norm || - || 5s.moc is independent of the choice of ¢.
prq

We refer to [74].

(R, w)

Kempka characterized the spaces Bi™“(R", w) via the atomic decomposition in
[74].

Theorem 2.2.10. Let w = {wj}]?’ifoo EWS? ., s €ER, and 0 < p,q < co. Further-
more, let K, L € Ny with

1
K>s+4+ay, and L>max{0,n(1>}s+a1.
p

For each f € Bi™°(R", w), there exist sequences

{Nm}jezmezr C C, {ajm}jezmezn C CP(R") and {Qjm}jczmezn C D

such that the representation

f= Z Z )‘jmajma

Jj=—00 meZm™
holds, where the triplet {\jm}icz.mez, {@jm}jcz,mezn and {Qjm}jczmezn satisfies
¢\
< 00

> wiAjmXQm

mezZn"

0%ajm| < 2j|a‘X3Qjm’ /]R xﬁajmdx =0, Zstq
" jEZ

p

for all multiindices « and § with |a] < K and |5| < L. Here the convergence is in
S'(R™). Moreover, there exists a constant C > 0 such that

Z 9759

JEZ

1
q q
E WA mXQjm

mezZ"

S CHfHB;Z]mIDC(Rn,w)
p

for all f € B;;Imloc(R”,w).

Note that this characterization will be used in Section 4, see Definition 4.1.2.

2.2.3 Lorentz spaces

Next, we turn to Lorentz spaces. Lorentz spaces were introduced by Lorentz in [88, 89].
A general treatment of this space was given in the article of Hunt [61]. The boundedness
of the classical results on Lorentz spaces are investigated in [9, 136]. Here, we recall
the definitions and elementary facts needed in Subsection 4.3.2. For more details, we
refer to [41, Section 1.4] or [143, Chapter V].

To define Lorentz spaces, we prepare some notation. Let f : R” — C be a measur-
able function. Then the distribution function Ay : [0,00) — [0, 0] is a function defined
by

Ap(t) =z eR" : [f(z)| >t} (t=0).
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Definition 2.2.11. Let f € LY(R"). Then its decreasing rearrangement f* is the
function defined on (0, 00) by

fr(t) =inf({s € [0,00) : A\f(s) <t}U{oc}) (t>0).
Definition 2.2.12.

1. Let 0 < p < oo and 0 < ¢ < co. Then the Lorentz space LP1(R™) is the set of all
f € L°(R™) for which the quasi-norm

1fllwe = { /0 i f*(t))q% };

2. The Lorentz space L>*°(R™) stands for L (R").

is finite.

3. If 0 < p < oo, then the Lorentz space LP-*°(R™) denotes the weak LP-space:
LPo(R™) = WLP(R™).

By virtue of the definition, we easily show that LPP(R™) = LP(R") for 0 < p < co.
Remark that the space LP4(R™) is complete under the above quasi-norm || - ||zr.a, that
is, LP9(R™) is a quasi-Banach space. Meanwhile, we can show that the Lorentz space
LP4(R™) is normable when p,q > 1. To see this, we shall define the function f**. The
idea to use this function is due to Calderén [17]. We now set the maximal function f**
by

t
o= [ res o<tz
0

Then define the norm

1
R RPN A K
. rf@)'—¢ , 1<p<oo, 1<g<oo,
1flina={ o, :
iugtﬂf**(t), 1<p<oo, g=cc.
>

Thanks to the Hardy inequality, if 1 < p < coand 1 < g < oo, then ||-[|5,.4 ~ |||/ zr.a
holds. Furthermore, L”(R") is a Banach space with the norm || - ||7,.4-

The following result shows that the the scale of Lorentz spaces is monotone for the
parameter ¢ increases for any fixed p.

Proposition 2.2.13. Suppose that 0 < p < o0 and 0 < ¢ < r < oo. Then, the
embedding
LPYR™) — LPT(R™)

holds.
At last, we consider the quasi-triangle inequality for the infinite sum. The following

lemma is somehow well known. But it seems that its proof is missing in the literature.
So, we give a proof.
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Lemma 2.2.14. Let 0 < p < q < oco. If we decompose a measurable function f by

o0
f= > f; such that {supp(fj)}j?’i1 are pairwise disjoint, then we have
j=1

HfHqu ~ Z Hf]”%pq .

Proof. We will use the property of the Lorentz norm (see [41, Proposition 1.4.9)):

Note that we calculate

= |Utw e R 155(@)] > 1] = ZM
j=1

Then by using the triangle inequality, we have

[o.¢] [o.¢]
1120 ~ ([N, < I8 i S
=1 =1

q
L7 (ta-1dt) J=1

where || - || denotes the L#-norm with respect to the measure t9~'dt. This is
LP ta—1dt)

a desired result |

2.2.4 Orlicz spaces

Orlicz spaces initially appeared in 1930’s. Birnbaum—Orlicz [14], Orlicz [109, 110,
111], and Nakano [105] investigated Orlicz spaces. Kita investigated the boundedness
property of the Hardy-Littlewood maximal operator on Orlicz spaces in [75, 76, 77].
In this thesis, we only recall fundamental facts used in Subsection 4.3.1. For the proof
and more details of Orlicz spaces, we refer to [12, 90, 119].

To define Orlicz spaces, we recall the definition of Young functions. A function
® : [0,00) — [0,00) is a Young function, if it satisfies the following conditions:
1. (0) =0.

2. ®is convex. That is, ®((1—0)t;+0t2) < (1—0)D(t1)+0P(t2) for all t1,t2 € (0, 00)
and 0 <0 < 1.

3. lim ®(¢t) = ®(0), lim P(t) = oo.

t—0 t—00
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So, we define the Orlicz space L®(R").

Definition 2.2.15 (Orlicz space). Let @ : [0,00) — [0,00) be a Young function. Then
define the Luzemburg—Nakano norm || - || e by

£l =int ({re .00 [ o (L) ar <1} uie))

for f € L°(R™). The Orlicz space L (R") is the set of all f € L°(R™) for which || f| .+
is finite.

Orlicz spaces extend Lebesgue spaces in the following sense:

Example 2.2.16. If ®(t) = ¢ for 1 < p < oo, then L*(R") = LP(R") with coincidence
of norms.

Here we content ourselves with the completeness of L®(R™) without the proof.
Theorem 2.2.17. Let ® be a Young function. Then, the Orlicz space L®(R™) is a
Banach space with respect to || - || ;e .

If we suppose bijective for Young functions ®, we can calculate ||xg||re.

Lemma 2.2.18. Assume that ® is a Young function. Also let & be bijective. Then,
for all measurable set E with 0 < |E| < oo,

et = {o ()}

Proof. We write the norm ||xg|| ;e in full:

el =it {re 000+ [ & (X5 )ar <1},

Since ®(0) = 0, we have

12/}(%)@:4@@)@:@(0 x |E].

By virtue of the bijection of ®,

Thus,

Ieells = {27 () }
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Chapter 3

Boundedness of commutators of
fractional integral operators on
mixed Morrey spaces

3.1 Introduction and theorems

In this section we consider the necessary and sufficient conditions for the boundedness
of commutators generated by BMO functions and the fractional integral operator I,
on mixed Morrey spaces.

First, we look back on the background and classical results. The idea of commu-
tators for functions and operators appeared first in Coifman-Rocheberg-Weiss’s paper
[20]. In this paper, they gave the necessary and sufficient condition for the bounded-
ness of commutators generated by functions and singular integral operators on Lebesgue
spaces. Meanwhile, Chanillo obtained the following boundedness results for [b, I,] [18].

Theorem 3.1.1. Let 1 < p,qg < 00 and 0 < a < n. Assume that
1 o 1

p n gq

If b € BMO(R"™), then the commutator [b,1,] is bounded from LP(R™) to L(R™).
Conversely, if n — « is even and [b, 1,] is bounded from LP(R™) to LY(R™), then we
have b € BMO(R").

These results were extended to Morrey spaces. In 1991, Di Fazio and Ragusa gave
the necessary and sufficient condition for the boundedness of commutator [b,I,] on
Morrey spaces [24].

n
Theorem 3.1.2. Let 0 < a<n,l <qg<p< —. Assume that
o
1 1 « q s
r p n p 7
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If b € BMO(R"™), then
[0, 1a] + ME(R™) — ME(R™).

Conversely, if n — a is even and [b, I] : MY(R™) — ML(R"), then b € BMO(R™).
Shirai removed the condition for n — « in [140].

n
Theorem 3.1.3. Let 0 < a < n,1 <q<p< —. Also, assume that
!

Then, the following conditions are equivalent:

(a) b€ BMO(R™).
(b) [b, 1] is bounded from ML(R™) to M%(R™).

Our main theorem extends these results to mixed Morrey spaces. We state our
result (This is a same one as Theorem 1.2.1).

n
Theorem 3.1.4. Let 0 < a < n,1 < p < Z Also,

ﬂ\:

1 L
PRI
assume that

r p n p T

Then, the following conditions are equivalent:

(a) b € BMO(R").

(b) [b, 1] is bounded from Mg(R”) to ML(R™).

(c) [b,1a] is bounded from .//\/lvg(R”) to ML(R™).

(d) [b,1,] is bounded from //\\/l/g(R”) to M7 (R™).
Here, ./K/lvg(R”) is the MZ(R™)-closure of CZ°(R™).

The remaining parts of this chapter are as follows. In Section 3.2, we establish
the sharp maximal inequality on mixed Morrey spaces (Theorem 3.2.6). In Subsection
3.2.1, we prepare some ingredients to show the sharp maximal inequality. Its proof is
given in Subsection 3.2.2. Additionally, we check the action of the commutator [b, I,,]
on mixed Morrey spaces in Subsection 3.2.3. To prove Theorem 3.1.4, Lemma 3.2.15
is significant. Finally, we prove the main theorem in Section 3.3.

39



3.2 Sharp maximal inequality

We next consider the sharp maximal inequality on mixed Morrey spaces and the relation
of the sharp maximal operator and commutators on mixed Morrey spaces to prove the
main theorem.

3.2.1 Preliminaries

As we said in Subsection 1.2.1, we cannot apply the layer cake formula and good-A
inequality for mixed norm setting. So instead of these tools, we employ the dyadic
local maximal operator M ;\%’Qdo and the concept of the sparse family. We follow the
definition in [84].

Definition 3.2.1. Let f € L°(R") and Q € Q.

1. The decreasing rearrangement of f on R" is defined by

FF@)=H{p>0: pp(p) >t} (0 <t <o0),
where 115 is a distribution of f. That is, ur(p) = [{x € R" : |f(x)] > p}|.

2. The local mean oscillation of f on Q) is defined by

wA(f; Q) =mf ((f —)x)” (NQD (0 <A< 27h).

i
c

3. Assume that the function f is real-valued. Then, the median of f over @), which
is denoted by mf(Q), is a real number satisfying

{z e @ : |f(@)| >mp@Q)}, Hre@:|f(z)] <mp(@Q)} < %IQ\~

Note that the median m(Q) is possibly non-unique.

The symbol D(Q) denotes a set of all cubes with respect to the cube Qo, that is,
D(Qo) is the set of the form

ﬁ [xj n (mj —1)¢(Qo) _— mﬂ(@o))

ok [} ok

J=1

for all £ € Ny and m; = 1,...,28 ( = 1,...,n), where (z1,...,2,) denotes the left
corner of the cube Qy. For 0 < A < 271 and Qg € Q, the dyadic local sharp mazimal
operator M j\é,ﬁé?do is defined by

Mﬁgof(:v) = o sg(% )M(f; Q)XQ(x) (x cER™ f e LO(Rn)) '
€ 0
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Moreover, we use the following sharp maximal operator

Mf’df(ac) = quepQQ Sll)l(pQ )wA(f; Q)xo(z) (a: eR™ f € LO(R")) )
0 S 0

Let f € LlOC(R"). The Fefferman—Stein sharp maximal operator is defined by
1
n
ronte) = s (o [ 1500 fabay) " e,
TEQ ’Q‘

where the supremum is taken over all cubes @ in R” containing x. When n = 1, f#7
equals to f#:

#(z n
J7( ilég\Ql/ |f(y) — foldy (x € R™).

Jawerth and Torchinsky proved a pointwise equivalence between these two types of
the sharp maximal operators in [71] :

MO [ME] (@) ~ fA() (@ e RY) (3.1)

for sufficiently small X, where M denotes the powered Hardy-Littlewood mazimal
operator defined by

) £l — 1 " )717 n
M f(sc)igg(@|/@|f<y>| ) @eRr),

where the supremum is taken over all cubes @ in R™ containing .

The fractional maximal operator M, is defined by
Maf(@) =sp i [ fly @ € B,

where the supremum is taken over all cubes ) in R™ containing x. Note that the
pointwise inequality M, f(x) < I,(|f])(z), x € R™ holds.

Moreover we also employ the following ingredient.

Definition 3.2.2. We say that the family of dyadic cubes {Q?}keNO’jGJk is a sparse
family if the following properties hold:

1. For each fixed k € Ny, the cubes {Qé‘?}jejk are disjoint;

2. If Q. = UjeJk Q?, then Q11 C Q;

1 :
30 [ NQE < 5\@?\ for all j € J.

Remark 3.2.3. Recently, we substitute the definition of the sparse for the above: Let
0 <n <1 Then, S C Q is n-sparse if for each Q) € Q, there exist pairwise disjoint
measurable subsets {Eg}ges such that Eg C @ and |Eg| > n|Q|. For more details,
we refer to [85].
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The following lemma is used in the estimate of the dyadic local maximal operator.

Lemma 3.2.4. Let {Q‘I;fl}keNoyje{]k be a sparse family. Then,

Q51 < 21QF N QY|

holds for all k € Ny and j € Jy.
Proof. For k € Ny and j € Jg,

1
Q51 < 1QF N Q4] +1QF N Q| < 1QF N O] + 515

by the condition 3 in Definition 3.2.2. Thus, we obtain the result. il

Note that, thanks to this lemma, we can see that the sparse family {Q?} keNy, jeJ, i

Definition 3.2.2 is %—sparse. Namely, the idea of n-sparse is generalization of Definition
3.2.2.

To prove the Theorems 3.2.7 and 3.2.8, we invoke the following inequality.

Theorem 3.2.5 ([84]). Let f € L°(R") and Qo € Q. Then, there erists a sparse
family of {Qf}keNo,jGJk C D(Qo) such that for a.e. x € Qy,

[f (@) = mp(Qo)l < AMTG Fl@)+2 ) > wa (f: Q)xgr(@).

keNp jeJyi,

Here, \, = 2772,

3.2.2 Sharp maximal inequality on mixed Morrey spaces

Our aim in this subsection is to show the following sharp maximal inequality for mixed
Morrey spaces.
Theorem 3.2.6. Let 0 < §< o0 and 0 < p < 0o satisfy

"1
gzq—j.

n
p

Then, for any f € L°(R™) satisfying Mf € Mgg(R”) for some 0 < py < oo and
40 = (qo,1,---,90,n) € (0,00)" with

n 1
7§ -
Do j=1 q0,5
we have
~[args],,, < 1%, 2
ey ~ [[aas] . < %] (32
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To obtain the above theorem, we have to consider the following norm equivalence
similar to [104, 132].

Theorem 3.2.7. Let 0 < §< o0 and 0 < p,s < oo satisfy

n
1 .
<D sSmin(@ ),
J

n
p
For all f € L°(R™), it holds that

,d
Il ~ 221, + 1L
q

The term || f[| »» in Theorem 3.2.7 is an auxiliary one although this explains how
Morrey spaces can be used to control operators acting on Lebesgue spaces. We can
remove this term under a reasonable condition using the idea by Fujii [38].

Theorem 3.2.8. Let 0 < § <7< 00 and 0 < p < 0o satisfy

n "1
Sy
Assume that f € L°(R™) satisfies
ms(2°Q) — 0

as £ — oo for any Q € Q and for some medians {m;(2°Q)}sen,. Then we have

] 2]

Meanwhile, the condition proposed by Fujii [38] can be verified as follows.

Lemma 3.2.9. Let f € LY(R"). Assume that M f € Mg(R”) for some 0 < ¢ < o0
and 0 < p < oo satisfying
n
1
< —.
<25

n
p
For any Q € Q and any medians {mf(QEQ)}geNo, it holds that

li 2tQ) = 0.
fp ms(2Q)

Proof. For 0 < A < 27!, we have

ms Q)< (f xag) NR'Q) < §_inf M(o)
Then,
¢ Col Zi-1 3y ‘ol »
Imp(2°Q)| S 12°Q) TIM fxaeqlla < 12°Q1 7 [|M fl v

Thus, we obtain lim m;(2‘Q) = 0.
£L—o00
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At first, we show Theorem 3.2.6 applying Theorems 3.2.7 and 3.2.8.

Proof of Theorem 3.2.6. By Theorem 3.2.7, we easily know that
#.,d #,d
1w~ [ 1] + 151 = 1],

Since M f € M2 (R™) for some 0 < py < oo and ¢j € (0,00)", we have Zlim ms(2°Q) =
—00

0. Thus, we are in position to use Theorem 3.2.8. Since s < min(qy,...,qn,p), com-
bining Theorems 3.2.7 and 3.2.8, we have

#.d _ #,d #.,d
T 17 i N VIV BV & R IV 1.7 6 I
q q N—_—— q
n times
Hence we obtain the left equivalence in (3.2). Meanwhile, the right inequality in (3.2)
follows from the pointwise estimate (3.1). il
We move on to the proofs of Theorems 3.2.7 and 3.2.8. First, we prepare some

lemmas to show Theorem 3.2.7 and give its proof. After that, we prove Theorem 3.2.8.

The following estimates are significant for the proof of Theorem 3.2.7. First, we
show that the dyadic local sharp maximal operator is bounded on mixed Morrey spaces.

Proposition 3.2.10. Let 0 < §< 0o and 0 < p < oo satisfy
n
1
< DR
B Z qj

n
p
and 0 < X\ < 271, Then, for f € L°(R™), we have

#7d <
[pe ], S 10y

Proof. In [104], it is known that
MPf(x) SMD f(z) (v R

for any n > 0. By virtue of Theorem 2.1.21, taking 7 < min(qy, ..., qn,p), we have

|aetts| , < |y, = nasem — e

1
S S A
.Mf}i M

1
I
M

STSIRSS]
SISTRS]S)

To prove ”<” part of Theorem 3.2.7, we evaluate | fxgl|s using the dyadic local

sharp maximal operator. Here and below, let A, = 27772,
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Theorem 3.2.11. Let 0 < § < coand 0 < p,r < 0o satisfy
n
Pey
P

and Qo € Q. Then, for all f € L°(R™), we have

1sw 1 /] :
L 1QoF P ( |f<x>|’“dm)
q |Qol Jo,

Proof. We take a median m¢(Qo) and use the quasi-triangle inequality to get

Ixaulls S | (M6, 1) v

1£x@ollz S ILF = mp(@o)lxao iz + Qo™ =" mp(Qo)

First, we estimate the first term. Applying Theorem 3.2.5, we obtain

10 = ms@o)xaolly < || (MF0,7) xau |+ ||| 22 20 wn (7 @xax | xes

keNo jeJ g

Since {Qf}keijeJk is a sparse family, we have |Q§| < 2|Q§? N Q5. | by Lemma 3.2.4.
This implies a pointwise estimate

Xos () < 2Mxgirgy, (@)

k+1

Let n > max(1, qfl, ..., q; ). By Proposition 2.1.24, it follows that

Do won(f@Dxgr | xao| S| 2o Do wn (@) Mixgrnas, 1" | xau

keNo jeJi keNp jeJy =

Z Z wx, (f Q?)XkaQerl

keNg jeJi

<y
[}

N

7

We deduce from the disjointness of {Q;g N Qz_‘_l}keNoJejk and the definition of w) that

Wi, (f; QJ )XQk =M onf’ Z Z XQknag < XQo-
keNg jeJi

Then we obtain

S wnf@xgr | xao| S H( Fion) xa

keNg jeJi
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Next, we evaluate the second term. For, 0 < A < 27!, we have
1

1 AlQol
Ims(Qo)l < (f - XQo)" (AlQol) < (MQol/o (f‘XQo)*(t)Tdt>

1 Y
s(w NICI dx) |

Thus, combining the two estimates gives the desired result. il

By virtue of Theorem 3.2.11, we have the following norm estimate.

Corollary 3.2.12. Let 0 < §< 00 and 0 < s < 0o. Moreover, let 0 < p < oo satisfy

n
1
< § —, 0<s<p.
qj

n
p
Then, for f € L°(R™), we have

,d
fller < [[a2s] |, + 1L
q

So we turn to the proofs of Theorems 3.2.7 and 3.2.8.

Proof of Theorem 3.2.7. First, Since 0 < s < min{qi,...,qn,p}, we have
#.,d
I£aey 5 M7+ W
by Corollary 3.2.12. Conversely, combining Proposition 3.2.10, and embedding
ME(R™) < ME(R™),

we obtain
,d
|25+ 17 S 1 + 1 ez S 1 e
q

as desired. 1
Next, we give the proof of Theorem 3.2.8.

Proof of Theorem 3.2.8. Fix any Qp € Q. Then,

1 1 n 1 1 1 n 1

@) g s o H ) i =mseQolxa|

+1Qol 7 [my (2°Qo).
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By the assumption, it follows that

(o 2) . -2 (o ) g
Qol £ xqulls  lim sup| Qo | = ms2'Qo)xan - (33)
—00 S
We use Theorem 3.2.5, and obtain
H[f—mf@on)]XQo ;
d
<[ () xao |+ || 2 X entfs@xgr | xa|| - (3.4)

keNg jedi 7

Here, we remark that the family {Q}“}kere 7, C D(2°Qy) is a sparse family generated

by 2¢Qo. To evaluate the second term of (3.4), we have only to calculate the following
two terms:

=11 > 2 @xi@)xg | xal -

keNo jGJkiQfCQo

S

o= > > wA(f;Qf)XQ;? XQo

keNo jeJi:Q¥2Qo

S

We can handle this with a similar argument to the proof of Theorem 3.2.11, that is,
due to Lemma 3.2.4 and the boundedness of the Hardy-Littlewood maximal operator.
Thus, we have

k
IS Z Z wa(f; Qj)XQ;?sz_H XQo

keNg jeJi, 7

Note that the summation is taken over the cubes contained in (). Then, we have
d
IS H(ij\éE f) XQo

thanks to the disjointness of {Q;~C N Qz+1}keNO7jeJk.

)
s

Meanwhile, by recalling that Q;‘-‘ C 2Qq and the dyadic property, we can rewrite
the summation of II as follows.

(Z wx(f; Qf)m))xQém)) XQo

m=1

II<

S

Here, Qém) denotes the dyadic m-th ancestor of Q)g. Namely, Qém) is a unique dyadic
cube with respect to 2¢Qg whose side length is 274(Qo) and containing Qy. Then, by
Example 2.1.32, we see that

I < [Ixqolls Y wa(f;Q5™)
m=1

(%) > \ng‘i(Z?—l 5) [ (wr(r:Q6™) xgm |

g
m=1

47



By virtue of the definition of the local sharp maximal operator M j\% ’d, we have

_1
P

Homd) &
1< flﬂ>£\@ém> L
> _lyifywm 1 _igifgwm o1
(B ) g, ]
m=1 5 3

Thus, combining estimates I and II, we obtain

H[f — mg(2°Qo)]xqo

(S d
) a1 O g

Therefore, by (3.3) and (3.5), we obtain the desired result. il

3.2.3 The relation to commutators and the sharp maximal function
on mixed Morrey spaces

First, we check that the commutator [b, I,]f is well defined for any f € M‘?(R”) and
b € BMO(R™).

n
1
Lemma 3.2.13. Let0<oz<n,1<(f<oo,1<p<ﬁ,1<r<oo, andﬁg g —.
«Q p — 4

7j=1

Also, assume that

For any f € qui(]R"), b e BMO(R"), z € R™ and Q € Q containing x, we have

b —b 1
/ o) =51 )1y < 1Q1 11 FlLyee (lbllmnio + () — bal).
R™\2Q |z —y| a

Proof. By the triangle inequality, it follows that

JI
R

moq |T —y[r

</ [bz) = bal, ¢ p1ay + / 1by) = bal, )1y

rr\2Q [T —y["m® Re\20 [T — Y|
=I1+1L

Note that if z € Q and y € 2771 Q\27Q for each j > 1, then we have |z —y| < 2/114(Q).
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We shall estimate 1. By the above observation, we estimate

- rb<x>—bQ\Z/

ri\ig | — Yyl y|” °

1
— bq Z /HIQ\2JQ Wﬁ(yﬂdy

< bz *bQIZW“QI e / F()ldy.

20+1Q

£ (y)ldy

Since MZ(R”) — ML (R™), we obtain

. o _1
1< |b(x) — bo| Y |27 QI a2/t Q) v 11l g
j=1

> . 1 _1
> 20D N (b(z) —bol - 1QI T 1 lae
j=1

< Jb(@) = bl - QI /1L wez:

oo
Here we use the convergence of the series Z 9UG+D(=7),
j=1

Next, we consider the second term II. Using Holder’s inequality, we have

1= Z )l Wy

21+1Q\27Q |CE -

3T L ) bl

2J+

1
o7

> @ 1 ]_ s
1271Q|n | ——— b(y) — bol*'d ) < °d >
<Xwo (g g P =o)L Py
for some s > 1. Since |byj+1 — bg| < j||bl[BMO, We get

1
—_— b(y) — bol*'d
(9101 P00l a0)

1
S7

1
7

1 p s
) (—— — by 1 —
= <|2J+1Q’ 2410 b(y) b2J+1Q| dy) + |b2]+1Q bQ|
S (1 +5)bllBMmo- (3.6)
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Furthermore, since M(®) is bounded on Mg(R”), we have

1

L Ixeriol pe
<? If(y)lsdy) < EME G MO f(a)

‘2]4‘1@’ 2j+1Q - HX2J+1QHMP 162]+1Q

< ol M1,

- _1
< 127QIF | fll e
Thus,
DS Z 27 QI (1 +)lbllevoll fll ez

7j=1

o0

" _1
22 F0 1 4 5) | o) “lollevoll 1l ae-

Since Z 9= U+ (1+ j) converges, we obtain

_1
TS [QI [bllmo | /lLve

Combining these two estimates, we conclude
[b(z) — b(y)| 1
/ o [T Wy S ([b(2) = bal + [[bllByo) 1@ [f | e
R™\2Q |z — | q

Remark 3.2.14. Let f € Mg(R”), b € BMO(R"), z € R", and Q € Q containing z.
Then, we can show that fxg € LI(R") and (bf)xg € L"(R™) for any 1 <r<q In
fact, by the definition of the mixed Morrey norm, it is clear that fxgo € LY(R"™). On
the other hand,

10f)xallz < (0 = b)) fxallr+ Ibe Xl

1 1
By Holder’s inequality, for § satisfying — 4+ —, =
s q

Sy

16 = bg) fxallx < (b = bo)xellsll fxallg

xells
QU (b — b@mngnfmuq

 xells
» Z e n T'L: %7l
< HbHBMo Q™ 7 % HfHMPIQ! e

1
NlQI =t pl\bllBMollfHMga

20



where

S

1
1bllBMmo; = sup T——I[I(b — bo)xalls
e [xall

and since mixed Lebesgue space is a ball Banach function space, we use the character-
ization of BMO via ball Banach function spaces [68]:

l1bllBMmoO; ~ [Ibl[BMO-

Note that other characterizations of BMO can be found in [67, 69] and [59, Theorem
4.11]. Furthermore,

1 n 1 1

Ibosxallr < 1QI™ =775 7 bl fll e

Thus, (bf)xq € L7(R™). Since |x — y|*~™ is integrable on 2Q), we see that

’f(y)’XQ a—n
’Ia(fXZQ)($)’ < /]R” ‘.’IJ — y‘n_Qady < HfXQQH(j’H’x - ‘ XQQ‘ q’ < o0
and
b(y)f(y)Ixa a—n
110 (bfx2q)] S/R W)/ W)lxaq |(x>_;|l|_any < Ibfx2ll7 |||z — 1*"x20]| 7 < o

Hence, I (fx20) and I,(bfx2q) are well defined.

Using this fact and Lemma 3.2.13, we can justify the definition of [b, I,]f.

Finally, we evaluate the sharp maximal function of the commutator [b, I,]f. The
following estimate is also important to show the main theorem.

Lemma 3.2.15. Let 0 < a<n and 1 <n < oo. Then,
(b, Lol ) (@) S [Bllm3t0 (MO (L f)(2) + M f(2))

for all b € BMO(R™), f € Mg(]R”) and x € R™.

Note that similar estimates to Lemma 3.2.15 were proved in [8, 140]. Shirai showed
this estimate for f € C2°(R") [140, Lemma 4.2], while Arai and Nakai showed a similar
estimate for the element of generalized Campanato spaces and generalized Morrey
spaces [8, Proposition 5.2].

Proof of Lemma 3.2.15. Note that since
1
h* ( Nsupinf/ h(y) — c|dy,
(@)~ sup ing oo [ Ih(y)

for any locally integrable function h in general, to prove this lemma, we only show that
1
@l /Q .21 (0) — €l dy < [bllmvio (MO (Lo f)(x) + MED ()

o1



for some ¢ € C. Let Q = Q(x,4(Q)). First, we decompose

F=h+f2 = Fxeq+ fxre\20-

For, y € Q, we define

where Cg = I,[(b — bag) f2](x). Then,
[b,[a]f + CQ = [(b - bQQ), Ia]f + CQ =F, — 5 — F3.

Thus, we should evaluate

1 o
ol /Q Fi(y)ldy (i=1,2,3).

First, we estimate F;. By Holder’s inequality, we obtain

i Jy P < (g [ o0 dy) (2 L tornran)’

< [IbllBvo M (I f)(x). (3.7)

Next, we estimate F5. By Holder’s inequality and the boundedness of the fractional
integral operator, we get

1 1 o
@/Q |[F2(y)ldy < @”XQ”T’HFQHT <1QITH (b = bag) il

1 1 1 1 1
where 1 < v < 7 satisfies - = —— —. L t —=— —|— —. By virtue of Holder’s inequality
rov o on n

again, we have

1 11 1
_— < v [ —— — u 77
|Q|/Q\Fz(y)ldyNI2Q| (|2Q| /2Q!b(y) baq| dy) <|2Q|/ y)| dy>

1 %
< bllsmo (w L If(y)I"dy> < bllpvo M2 S (). (33)

Finally, we estimate F3. If we write out fully the definition of I,

Fy(y) = 1a[(b = b2) f2l(y) — Tal(b = b20) fo] ()
1 1
N /]Rn <|y —zne r— z‘n—a) (b(2) = bag) f2(2)dz

02



Since z € R™\2Q and y € @, we get |z — z| < |y — z|. Hence,

ly—2l 1
)/|:E—Z| tn+17adt

|)—n—1+o¢|x

1 1

ly — 2"z —zfne

=(n—a«a

< min(jy — 2|, |z — 2
Therefore,

|z — |
Fy(y)| < _ T I ip2)—b d
| s(y)!N/Rn\m |1:—z|"+1*°“ (2) = bagl|f(2)|d2

- Z /wm;@ ‘x_z,m‘lalb(z) — bagllf(=)ldz

S 3 QT Jyrguue M)~ PN

Next, Holder’s inequality yields

1) e
BT 1 M)~ P2l

1
i/ Es

< g ([ e —atfas) " ([ rma:)’

1
1 1 / o 1
= — —_— b —_ b n d —_— T]d
2j+1 <|23+1Q| 2j+1Q’ (2) 20| Z) <|2j+1Q|1]n /yﬂ@ |f(2)] Z)

By the definition of M, we have

1 ! (n)

Moreover, in the same way as (3.6), we obtain

=

\\H

1 .

: 1+
Since Z 5771 converges, we conclude
j=1

1Bs(y)] S Ibllemo - M f(x).

Since estimate (3.9) is independent of y, we have
1
o1 [ 1By < [blo - M2 (o)
QI Jg
Combining estimates (3.7), (3.8), and (3.10) provides the desired result. il
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3.3 Proof of the main theorem (Theorem 3.1.4)
Let us show Theorem 3.1.4.

Proof. (a) = (b): Let 1 < n < min(sy,...,S,,7) and f € MZ(R”). Put sg =

min(sy,...,S,) and go = min(qy,...,q,). Since f € M’qi(R") — MY (R™), [b,1,)f €

M (R") = (50, - .. 80)(R”) by the result for classical Morrey spaces. Then, we
b b

n times
see that M([b,I,]f) € Mo, ... 80)(R”). Thus, the assumption of Corollary 3.2.6 is
) 9y

n times
satisfied. By virtue of Corollary 3.2.6 and Lemma 3.2.15, we have

15 Tl (Dllag S [, 2l * ], S Wolosso [ 4P 11as) + 22521

< [lbllBmo {HMWIafHMz * HM 2, }

S lIblleyo 4 [Ha DIl + [[na (£

E 3|
Sy 3|3

Using Theorem 2.1.22, we conclude

1
116, L] (F)llaez < Hbllmmo § [l + AN 2 ¢ = llbllsnmoll fllae-

<
SIS

(b) = (c): It is clear since only the domain is restricted.

(¢c) = (d): Using the embedding ME(R™) < MY (R") and (c), we have
Ib; Ll Fllpay < M- Lol fllaee < £l o

for f € Mg(R”). Thus we obtain (d).

(d) = (a): We use the same method as Janson [70]. Choose zp € R"™ such that
|zo] = 5. Since 0 ¢ Q(20,2), |z|"™* € C®(Q(20,2)) for x € Q(20,2). Hence, we
choose a function ¢ € C*>°(R™) with a 7 periodicity and satisfying ¢(x) = |z["~¢ for all
x € Q(20,2). Then, we can expand this function into the absolutely convergent Fourier
series on Q(zp,2);

’x"l’b—a’ 2072) Z ame XQ(Z(),Q)(I.)7 (311)

meZ™
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with Z |am| < co. For any g € R™ and ¢ > 0, let Q = Q(z0,t) and Q' = Q(z¢ +
mezn
20t,t). Let

s(o) =sn ([ (06 - o))y )

IferandyGQ’,theny_x

€ Q(z0,2). Hence, we have

/Q |b(z) — bgr|dx = /Q(b(x) —bgr)s(x)dx

31 L5 (] o) = bay ) as

-5 3@ ( | (bla) = bl — gl

By (3.11) and the triangle inequality, we get

:Et_y‘ dy> dzx.

5@ ([ 06) ~ bl = o ey ) 2

<t |am / s(@)[b, L) (™ T xqr) (z)xq()e 2™ T da
mezZ™ "
<0 Y fanl [ B Ll xg) @) do
mezZ" Q
1 . .
<t 3 Janl Q1[I0 L™ x|,
mezZ"
_ _1
<t 37 Jaml 1B Zadll gy e gzl Q1™
mezZ" !
<t ZZ: | 106, Tl gtp gy 1% - 677~ 2™ 111D, Lol s -
mezm”

Thus, we have

1 2
= _ il —boldr < -
‘Q|/Q|b(w) boldz < ,Q‘/le(x) bq |dxm”[b>Ia]HM§—>M{'

This implies that b € BMO(R") since @ is an arbitrary cube. Il
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Chapter 4

A characterization of Morrey
spaces associated with Banach
lattice in terms of pointwise
multiplier spaces

4.1 Introduction and theorems

In [58], Ho defined vector-valued Morrey spaces. In this chapter, inspired these ideas,
we will define Morrey spaces associated to general Banach lattices and establish that
these spaces arise naturally as multiplier spaces from microlocal Besov spaces to Banach
lattices. Recall that a Banach (function) lattice on R™ is a Banach space (E, | - ||g)
contained in L°(R™), the linear space of all measurable functions, such that, for all
f,g € E, the implication “|f| < |g| = ||f|le < ||g||g” holds.

To define Morrey spaces associated to general Banach lattices, we assume the fol-

lowing;:

Assumption 4.1.1. The Banach lattice E(R"™) is translation invariant, that is, let
E(R™) be a Banach lattice be such that

1fC=2)le=1fle
for all f € E(R") and x € R™.

A direct consequence of the translation invariance is that || x3gl|r S l|xollg for all
cubes ), where 3@ denotes the triple of ), that is, 3Q) is a cube which is concentric to @
and has volume 3"|@Q|. With a natural modification we can include the case of variable
exponents but here for the sake of simplicity we do not do this. These assumptions
are postulated so as to simplify matters. Nevertheless, as our examples show, we have
translation invariant many function spaces.
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Based on [58, Definition 2.6], we define M%(R™) to be the set of all measurable
functions f for which

1 1
1l = sup QI (fo HE)
=0 xals ! xe

is finite, where @) moves over all cubes whose edges are parallel to the coordinate axes.
As we will show in Section 4.3, Morrey spaces associated to general Banach lattices
realize mixed Morrey spaces [106], Morrey—Lorentz spaces [118] and Orlicz—Morrey
spaces (of the third kind) [26].

From Assumption 4.1.1, we learn that the following dyadic Morrey norm is equiv-
alent to the original norm

1 1
11~ sup 11 (I xalle).
QeD Ixelle
where D denotes the set of all dyadic cubes (see Section 1.3 (6)).

With the definition of dyadic cubes in mind, we formulate the definition of microlo-
cal Besov spaces. Although we gave it in Section 2.2.2, we will adopt Theorem 2.2.10
([74, Theorem 1)) withp=¢ =1, s =0, K = [ag + 1] and L = [ay + 1] as a definition
of the microlocal Besov space (we write Bl (R™)) in this chapter.

Definition 4.1.2. Let w = {w;}°° C R be a positive sequence, and let F(R") be

j=—00
a Banach function lattice satisfying

IXQmllF S wjlQjol (j €Z,meZ")

and ‘ 4
27"w; <wjpr < 2%w; (§ € Z),

where oy and a9 are fixed parameters. One defines the microlocal homogeneous Besov
space B} (R™) by the set of all f € F(R™) for which it can be written as

@)= Y Ajmajm(x)
j=—ocomezZn

for almost every x € R", where for all j € Z and m € Z", we have a collection
{ajm}jez,mezn of C*-functions and a collection {\j,}jez mezn of complex constants
satisfying

o
|aaajm| < 2j|a‘X3Qjmv / :E/Ba’jm(aj)dx =0, Z 2_jnwj ( Z )\jm|> < 00
R™ j=—00 mezZm"

for all multiindices o with |a] < [ag + 1] and for all multiindices 8 with || < [ag + 1].
Then the microlocal Besov norm HfHBi,J1 is defined as the infimum of

i 277w, ( > Wm\)

j=—00 mezmn

where A = {\j;,}jez,mezn moves over all possible expressions.
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In the above, the convergence in §’'(R"™) is guaranteed thanks to the condition on
A. The functions aj,, are called atoms. Note also that in terms of Definition 2.2.9,

B (R") = BY™¢(R™, w).

Finally, to state our main results, we turn to the definition of pointwise multipliers
spaces. Given Banach spaces E1(R"™) and E2(R"™) of measurable functions defined on
R"™, we define PWM(E, (R™), E2(R™)) as follows: A measurable function g is a pointwise
multiplier from E1(R™) to Eo(R"™) if the pointwise product f - g belongs to Fa(R"™) for
each f € E1(R™) and there exists a constant M > 0 such that

1f - gllzsany < MIIF Ly - (4.1)
One defines a norm on PWM(E;(R"), E2(R™)) by
lgllpww(e, By = inf{M >0 : (4.1) holds for all f € Ey(R")}
for g € PWM(E1(R™), E2(R™)).
A simple example is the case of Lebesgue spaces.

1 1 1

Example 4.1.3. Let 1 < py,po2,p3 < oo satisfy — + — = —. Then, by Holder’s
p1 P2 p3

inequality, we have

PWM(LP! (R™), LP*(R™)) = LP2(R™).

We also refer to [83, 99| for the case where E;(R"™) and E2(R"™) are Morrey spaces.

Our main result in this chapter is the following assertion (This is the same one as
Theorem 1.2.5).

Theorem 4.1.4. Let E(R™) and F(R™) be Banach lattices such that

1 .
IXQm 7 S IXQymlIEIQj0l 7 (j € Z,m € Z7).
Set

_1-1 X
wj = lIxQullelQjol 7 (j € Z).
Then BY (R™) is continuously embedded into F(R™) and
PWM(BY; (R"), E(R")) ~ Mp(R")

with equivalence of norms.

In connection with Theorem 4.1.4, we consider the result by Lemarié-Rieusset.
Lemarié-Rieusset showed that Morrey spaces arises naturally when we consider the

pointwise multipliers from B;l (R™) to LP(R™) with 0 < s < n
p

Theorem 4.1.5 (cf. [82]). Let 1 <p < oo and 0 < s < " Then
p

PWM(B}, (R"), IP(R™)) ~ M; (R")

with equivalence of norms.
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Lemarié-Rieusset obtained Theorem 4.1.5 for n = 3 and p = 2 [82, Lemma 6]. A
passage to the general case is a minor modification. Here for the sake of completeness,
we give a proof in Subsection 4.2.1.

Furthermore, we can generalize the result of Lemarié-Rieusset (Theorem 4.1.5) to
multiplier spaces from homogeneous Besov spaces to Morrey spaces. This proof is also
given in Subsection 4.2.1.

n
Theorem 4.1.6. Let 1 < g<p< oo and 0 < s < — satisfy
q

0<

Sl

Let

Then with equivalence norms

PWM ( 'gl(R”),M{;(R”)) ~ M (R™) = MG (R™).

The structure of Chapter 4 is as follows: In Section 4.2, we prove our results.
Subsection 4.2.1 is devoted to the proof of results for generalized 2-microlocal Besov
spaces (Theorem 4.1.4). In Subsection 4.2.2, we prove the results for the pointwise
multiplier spaces from classical Besov spaces to Lebesgue spaces (Theorem 4.1.5) and
from Besov spaces to Morrey spaces (Theorem 4.1.6). Finally, we give the examples
for our results in Section 4.3. We apply our results to Orlicz spaces (Subsection 4.3.1),
Lorentz spaces (Subsection 4.3.2), mixed Lebesgue spaces (Subsection 4.3.3), and mixed
Morrey spaces (Subsection 4.3.4), respectively.

4.2 Proofs of the main theorems

4.2.1 Pointwise multipliers from generalized 2-microlocal Besov spaces
to Banach lattices (Theorem 4.1.4)

We will show the former half of Theorem 4.1.4 to check that PWM(BY (R™), E(R™))
is well defined.

Lemma 4.2.1. Let F(R™) be a Banach function lattice satisfying
IxQmllF S 277 w;  (j € Z,m e Z").

Then BY(R") < F(R").
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Proof. Let [ € Bi“l (R™) be a decomposition as in Definition 4.1.2. By the triangle
inequality, we have

Yo D Aimtym| < D D Mimtymllp

Jj=—0c0o meZ" F j=—00mezZn

S Z Z H/\J'WX?’QijF

Jj=—00 mezZn"
m .
<y (z wmr)-
j=—00 meZ™

- We prove the latter half of Theorem 4.1.4. Let f € ME(R™). Let also g €
B} (R™), so that there exist a collection {ajm}jez mezn of C*-functions and a col-
lection {Ajm}jezmezn of complex constants satisfying

(o) 0
g = Z <Z )\jmajm> s Z Q*jnwj ( Z P‘]m‘) < 0
j=—00 \mezZm j=—00 meZ"
and [0%ajm| < 2jla‘X3Qjm for all j € Z and m € Z". Then
1fajmlle < 1fx3Q;. |12

1 1
= |Qjm?

Q

3@

_1
1 X3Q;m | Bl X3@j0 [l 2| Q|7

_1
S 1A llaag lIx@sol 21Qj0] -

Consequently,

I1F-glle < (Z l/\jmlllfaijE>

j=—00 \mezm
s 1
SUfllae, D IxQuollzlQuol ™ (Z P\jml>-
j=—00 mezn

If we take the infimum over all possible expressions of g, we obtain
. < .
1F - gl S 1 ey Nl -
Thus, f € PWM(BE (R), BE®") and || lpwarse 2 S 1 Flla

Conversely, we let f € PWM(BY (R"), E(R")). Choose a smooth function €
C(R™) so that x(x) = 0 for any € R™ \ 3Qqo, that k(z) = 1 for any = € Qo and

that
/ 2P r(z)dr =0

60



for any 8 with |8| < [ 4 1]. Define kjm(z) = K (272 — m) for each j € Z and m € Z".

_1
Then since 277" w]HfHPWM(B = Ixq,ll2l@j0l» Hf”PWM(BiupE)y we have

117

11XQimllE < W imlle < fllpwnisy, g [Fiml e S 1XQ0llEIQs0] prpran, B)-

(4.2)
Thus, f € ML (R").

4.2.2 Pointwise multipliers from Besov spaces to Lebesgue spaces and
Morrey spaces (Theorems 4.1.5 and 4.1.6)

Let us prove Theorem 4.1.5.

Proof of Theorem 4.1.5. Let f € PVVM(]E?;’1 (R™), LP(R™)). Then define x;,, as before
for all m € Z™ and j € Z. Thus, by Example 2.2.7 and the same argument of (4.2),

1 lzo@m) S 27777 1 low B3, L?
)

Consequently, f € Mp% (R™).

To show the opposite estimate, by Theorem 2.2.6, it suffices to show that

'f Z Ajm@jm Z )\]mXQJm

mezn mezn
for all sequences {ajm }jczmezr of C*°-functions satisfying [0%an,| < 2j|a|X3Qjm with
|a] < [s+ 1]; once this is achieved, we have only to add this estimate over j € Z.

S 2°0A

Lp p

We calculate

Hf Z )‘jmajm

mezZ”

1
p
S ( > Mjmlplle:stmHLv”)

mezn"

Lr

IN

1

P
sup || fx3Q;.m Iz ( > IAjmp>
mezn

mezm™

Z AjmXQjm

mezZm™

S2°011,,

Lp

Thus, the proof of Theorem 4.1.5 is complete.
|

We move on to the proof of Theorem 4.1.6.
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Proof of Theorem 4.1.6. 1f we write out the norm of M » (R™) using the dyadic Mor-
q
rey norm, then we obtain

1_1 1_1
[fllms, = sup sup |Q= 7 [R[7 7| fxqnrl|La-
% QeDReD

Let @, R be dyadic cubes. In order that |Q|ff z ]R|P : || fxonrllLe is not zero, @ and
R must intersect. Since

1111 11 1_1
QI 7|R[»" ¢ <|QNR[7 ?|QNR[P 1,

it follows that

1 llamts, = = sup QI 71QI 7 fxglle = s Q17 I fxellze = 1 /llmg-
Let f € PWM < '21(}1%”), Mg(]R”)). As in the proof of Theorem 4.1.5, we obtain

js—j2
HfXQijM{,’ S2 ¢ HfHPWM(Bgl,Mg)-
Thus, f € M‘/’\A,Z(R”).
To prove the opposite inclusion, it sufficies to show that

(f Z Ajmajm> XQ

mez™

1.1
Q7 S 2JS”fHM"

Z AimXQjm

mez"™

La La

for all cubes @ and sequences {ajm}jezmezr of C*-functions satisfying |0%ajm| <
23|a|X3Qjm with |a| < [s+ 1]; once this is achieved, we have only to take the supremum
over all cubes and to add this estimate over j € Z.

We calculate

<f Z )‘jmajm> XQ

mezZmn

N

1
QP

Qi (z Al (Frso) el )

mezn

La

IN

sup |Q17 7 || (Fx30,m) Xal s ( > \Amw)

mezZm™ mezn

i
< sup [ xs@pmllae [ Y Pjml?
mezr mezZn"
S YU llmagy | D2 Aomxaim
mezZmn La

Thus, we obtain the desired result. il
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4.3 Examples

We will consider various special cases. We suppose that £ = L®(R"), the Orlicz space
in Section 4.3.1, E = LP4(R™), the Lorentz space in Section 4.3.2, E = LI(R"), the
mixed Lebesgue space in Section 4.3.3 and F = Méﬁ(]R”), the mixed Morrey space in
Section 4.3.4.

4.3.1 Pointwise multipliers from Besov spaces to Orlicz spaces

As an example of E(R"), we first take up the case of E(R") = L®(R"). Then, it
seems that the spaces M%(R™) coincide Orlicz-Morrey spaces. However, there are
at least three kinds of generalized Orlicz—Morrey spaces. In this time, we consider
Orlicz—Morrey spaces of the third kind defined in [50].

Definition 4.3.1. Let 1 < p < co. Suppose that ® is a Young function. Also let ® be
bijective. Then, the Orlicz-Morrey space M, »(R™) of the third kind is defined as the
set of all measurable functions f for which the norm

1
1,0 = sup |QF@ ( ) I fxell e
QeQ |Q’
is finite.

Generalized Orlicz—Morrey spaces of the first kind date back to 2004; see the paper
[100] by Nakai, while the one of the second kind date back to 2012; see the paper [135] by
Sawano, Sugano and Tanaka. See [26] for the definition of generalized Orlicz—Morrey
spaces. In [101], Nakai showed the boundedness of the Hardy—Littlewood maximal
operator for the Orlicz—Morrey spaces. As was shown in [39, Theorems 1.4 and 1.6],
generalized Orlicz—Morrey spaces of the first kind and the one of the second kind
are different. Deringoz, Guliyev, Hasanov, Noi, Samko and Sawano investigated the
decomposition of Orlicz—Morrey spaces of the third kind [50]. See [27, 47] for vanishing
generalized Orlicz—Morrey spaces of the third kind. We refer to [25] for the weighted
Orlicz-Morrey spaces of the third kind. See [25] for the maximal operator and its
commutator generated by BMO for the weighted Orlicz—-Morrey spaces of the third
kind. Finally, see [46] for the fractional integral operators together with commutators
for the Orlicz—Morrey spaces of the third kind.

Thanks to Lemma 2.2.18, we can check the coincidence of MY 4 (R") and M, o (R™).
Indeed,

£y, = s foQHm:sup@ricb-l( )ufoquufuM,,@
L QeQ Q|

||XQ||

From these observations, we can apply Theorem 4.1.4 to Orlicz spaces and obtain
the following result.
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Theorem 4.3.2. Let 1 < p < oo and ® be as in Definition 4.53.1. Set

gt N e
Wy =0 <|Q]D|> |Q]0‘ (] EZ)

Then .
PWM(BY (R"), L*(R™)) ~ M, 5(R")

with equivalence of norms.

4.3.2 Pointwise multipliers from Besov spaces to Lorentz spaces

As an example of E(R"™), we take up the case of E(R™) = LP4(R™). Then, we see that
the space M4, (R") coincides the Morrey—Lorentz space M4 .(R™). We define

11
1, = Sup QP [l fxqllLer

for 0 < ¢ < p < o0,0<r <oo. The Morrey-Lorentz space MY ,(R") denotes the
set of all f € L°(R™) for which || f]| e, 1s finite. This space is introduced by Ragusa
in [118]. Later, this space of characterizations and applications are investigated in
[5,36]. If 1 < ¢ <p<ooand 1l <r < oo, then M} (R") is a Banach space since
above argument. The weak Morrey space WMY(R™) denotes M} o (R™). We note that
1l = ili%)‘HX{|f|>>\}HM‘q’ for any f € LO(R™).

When we replace E and F by L®"(R™) and L*"(R") respectively in Theorem 4.1.4,
we obtain the following result by using the embeddings of Lorentz spaces (Theorem
2.2.13).

Theorem 4.3.3. Let 1 <g<p<oo,1<rv<o0,1<u<oo. Assume that

n,mn
7

Lot
Then B{; “ (R™) is continuously embedded into L*™*(R"™) and

v n
d !

oy
PWM(By; * (R"), L2"(R")) ~ M ,.(R")
with equivalence of norms. In particular,

PWM(BL, 7 (R™), WLY(R™)) ~ WM (R™)

with equivalence of norms.

We now extend Theorem 4.1.5 to Morrey-Lorentz spaces as follows.
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Theorem 4.3.4. Let 1 <p<oo,1<qg<oo0and0<s< L Assume
min(p, q)

0<
Define o > 0 by

Then '
PWM(Byin(p.gn1 (R™), LP4(R™)) = M7 (R"™)

with equivalence of norms.

Theorem 4.3.5. Let 1 <g<p<oo,1<r<ocoandl<s< L Assume
min(q, )
s 1 1 1
0<——— +—-< -
n  min(g,r)  p " p
Define o by
1 s 1
e + —_
o n min(qg,r) p
Then '
PWM(Bgogry1 (R ME(B")) & Moy (") = MG, (B")

with equivalence of norms.
Theorem 4.3.4 is included in Theorem 4.3.5. So we prove Theorem 4.3.5.

Proof of Theorem 4.3.5. As in the proof of Theorem 4.1.6, we obtain
T (B = MG, (R™).

Let f € PWM(Bfnin(qyr)l(R”),MZ,T(R”)). Then define xj,, as before. Similar to the

proof of Theorem 4.1.5, then we have

Hf”MdMS,T S, HfHPWM(B;in(qMI,Mg,T)‘

Consequently, [ € Mgvlé’,r (R™).
To show the opposite estimate, it suffices to show that

(f Z Ajmajm> XQ

mezZmn

1

Qv

S YN fllasg,,
Lar

> AmXQsm

mezZn

Lmin(q,'r)

for all sequences {am }jez mezn of C*°-functions satisfying |[0%ajm| < 2j|a|X3Qjm with
|a] < [s+ 1]; once this is achieved, we have only to add this estimate over j € Z.
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Let r < ¢. By using Minkowski’s inequality,

(f > /\jmajm> XQ

meZ™

o SIQP ( > Dol I xsqum)xallz0e” )
Lar

meZ™

1
< sup HfXSQijM;T< > !Ajm\r>
mezZ"

meZ™

Z )‘JmXQJm

S 2JS”fHM”
2" lmezn

7‘

Conversely, let ¢ < r. Note that, each cube @ ;; intersects 3" cubes 3Qim, .,k =
Y. q J Jmik

1,2,...,3™. Therefore, using Lemma 2.2.14, we have
q
q_q
‘Q|p (f Z )\jmajm> XQ
mezmn LT
3n q
4-1
S Q[ Z (fz)\jml,kajml,k> XQ
lezn k=1 La7(Q1)
. 3n 3n q
4_q
SIS Pl (m S o, |) ‘o
lezZ" k=1 k=1 L97(Qj1)
Ssup (| fxqu e | D Al
tezr " \iezn
Hence
Hf > Ajmajm S 2Js\\f\|MU Z AjIXQj
mezn M, lezn La

Thus, f is a pointwise multiplier from Bmm(q 1 (R™) to Mg (R™). B

4.3.3 Pointwise multipliers from Besov spaces to mixed Lebesgue
spaces

Applying Theorem 4.1.4 for mixed Lebesgue spaces, we obtain the following result:

Theorem 4.3.6. Let 1 < q¢1,...,q, < 00, and suppose that p satisfies

n
Lol b
na— 4

b

Define r by

S|



Then B] (R") is continuously embedded into L" (R™) and

n

>
PWM [ BT

1
Tk

(R™), LIR") | = M7;(R") = ME(R").

Proof. Simply observe that E(R") = LI(R") and F(R") = L"(R") satisfy the condition
of Theorem 4.1.4. i

4.3.4 Pointwise multipliers from Besov spaces to mixed Morrey spaces

As an example of E(R™), we take up the case of E(R"™) = Mg(]R”).

Remark 4.3.7. In the definition of M7, let E(R") = M;;i(]R”). Then

1 1 1
[fllame , =sup|QlP | ————fx@llrme | =sup|Q|»
ME Ixoll e 7 Q

1

Q7

IIfXQIIMf;> = £l vz

Thus, we see that
M%Z(R") = Mg(R").
Keeping this remark in mind, we apply Theorem 4.1.4 for this space.

Theorem 4.3.8. Let 1 < p < oo and 1 < §< oo satisfy

"1 n
>ist
ek
Then .
PWM (B;q (R™), M@(Rn)) = M (B") = ME(R").
Also we extend Theorem 4.1.5 to mixed Morrey spaces.

Theorem 4.3.9. Let §= (q1,...,qn) € [1l,00)",1 < p< o0 and 0 < s < o Suppose
qn

that o is given by

Then with equivalence norms

PWM (5;,1(B"), MYE")) ~ M7 (B") = ME(R")

Proof. Let f € PWM <B;’n1(Rn),M3(R")). As in the proof of Theorem 4.1.5, we
obtain o
Js—jo-
||fXQijMf11 S2 an HfHPWM(Bgnl,MfIL)‘
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Thus, f € M7, (R™).
USf Mg( )

To establish the opposite inclusion, it suffices to show that

(f Z Ajma]m> XQ

mezZmn

[/

S 2JstHw
La M

Z AjmXQjm

mezZn

Lan

for all cubes @ and sequences {ajm}jezmezr of C*-functions satisfying [0%ajm| <
27lel X3Q,m With |a] < [s + 1]; once this is achieved, again we have only to take the
supremum over all cubes and to add this estimate over j € Z.

We calculate

1_
QI =

L
1

1151 ”
’Q|p = <Z |)\Jm’qn H(fX?’QJm) XQHLq )

mezn

AN

1

< 2319 5 v a5 )

meZ™
a1
an
sup ||fX3Qjm||M€( E |>\jm|q">
meZn q

mezZm™

Z AjmXQjm

mezZm™

A
0
=
T
O
D=
£
]L
=
=

IN

<2 flmr,,

q

Lan

Thus, f is a pointwise multiplier from Bgﬂl(R”) to M?(R”). |
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Chapter 5

Atomic decomposition for mixed
Morrey spaces

5.1 Introduction and theorems

One of the characterizations of function spaces is to decompose an element of function
spaces into good functions. The most important example is the Fourier series for L?
functions. In addition, there are the Littlewood—Paley decomposition (cf. Subsection
2.2.1), the molecular decomposition, and the wavelet decomposition. In this thesis, we
focus our interest on atomic decompositions, which were introduced by Coifman in 1974
to characterize the functions belonging to Hardy spaces. Here, an atom is a function
which has a support on a cube (support condition), a norm estimate with respect to
the cube (size condition), and moment condition. This decomposition is applied to
characterize many function spaces.

The aim of this chapter is to develop a theory of decompositions for mixed Morrey
spaces. Furthermore, we can extend these results to Hardy-mixed Morrey spaces. Our
results are extension of the results for classical Morrey spaces and Hardy-Morrey spaces
in [66].

First, we will prove the following boundedness of the maximal operator on mixed
Lebesgue spaces.

Theorem 5.1.1. Assume that
1 <t <min{q,...,q} <oo (k=1,...,n).

Define

X X
MO f(z) = sup XL ey
oco lIxall

for a measurable function f. Then for all measurable functions f

IMDF) 1z S 1F1] e
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Based on this boundedness, we prove the following construction theorem. This is
the same one as Theorem 1.2.6 in Chapter 1.

Theorem 5.1.2. Suppose that the parameters p,q,s,t satisfy

l<p<s<oo, 1<max{qi,...,qx}<tp<oo (k=1,...,n),

n "1 n
—<y = =<
P*Z%" s~

J
Assume that {a;}32, C MER"™), {A;}52, C [0,00), and {Q;}52, C QR") fulfill

"1
ti

=1 J

o
1
lajllms <1Qs1%,  supp(ay) € Q| D Nixg,|| < oo
i=1 MP.
q

[ee]
Then [ = Z Ajaj converges in S'(R™) N L

loc

(R™) and satisfies
j=1

(oo}
1A llmz < Cp i > Aixe;
7=l MP.
q

In connection with Theorem 5.1.2, we refer to [2, 40, 107] for more recent charac-
terizations of the predual spaces of classical and mixed Morrey spaces.

Before we state the next results, we recall the some notation. For d > 0, denote by

P4(R™) the set of all polynomial functions with degree less than or equal to d, so that
(o]

PR") = |J Py(R™). It is clear that P_{(R"”) = {0}. The set Px(R")* denotes the
d=0

set of measurable function f for which (-\¥ f € L'(R") and / % f(x)dz = 0 for any

a € NJ with |o| < K, where (-) = (1 +]- |2)% Such a function f is said to satisfy the
moment condition of order K. In this case, one also writes f L Px(R").

The next assertion concerns the decomposition of functions in Mg(R"). This the-
orem is the same one as Theorem 1.2.7 in Chapter 1.

Theorem 5.1.3 (cf. [60]). Suppose that the real parameters p, §, K satisfy

n
1 n
< —, KGNOH(—n—l,oo>,
qu q0

R n
l<p<oo, 1<qg<oo, 5

where qo = min(q1,...,q,). Let [ € Mg(R”). Then there ezists a triplet {a;}32; C
L®(R™) NP (R™), {2352, C [0,00), and {Q;}32, C Q(R") such that f = Y Aja; in
j=1
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S'(R™) and that, for any v >0

S|

o

laj| < XQj> Z()‘jXQj)v < CvaH./\/l’qi' (5.1)
j=1
v

Here the constant C,, > 0 is independent of f.

We rephrase Theorems 5.1.2 and 5.1.3 in the case of mixed Lebesgue spaces.

Corollary 5.1.4. Suppose that the parameters q,t satisfy

1 <max{qi,...,q} <tp <oo (k=1,...,n).
Assume that {a;}32, C LF(]R”), A58, € [0,00), and {Q;}52, C Q(R™) fulfill
> >
lagll 7 < Q1" =™, supp(a;) € Qs ||D_ Ajxg,|| < oo

3=

1
t

o0
Then f = Z Aja; converges in LI(R™) and satisfies
j=1

o
[fllz < Cpg,sit Z AjXQ;

Jj=1 LT

Corollary 5.1.5 (cf. [60]). Let 1 < §< oo and K € Ng. Let f € LY(R"™). Then there
exists a triplet {a;}32,; C L>(R") N Px(RY), {Aj1524 € [0,00), and {Q;}52, C QR")
such that f = Y Aja; in LYR") and that, for any v >0

j=1

00 v

la;] < xq; > (ixe,)’ < Collfllza
j=1
La

Here the constant C,, > 0 is independent of f.

Next, we generalize Theorems 5.1.2 and 5.1.3. Based on [126], we define Hardy-
mixed Morrey spaces.

n
1
Definition 5.1.6. For 0 < ¢,p < oo satisfying n < Z —, the Hardy-mixed Morrey
j=1"
space H Mg(R”) is defined as the set of any f € §’'(R™) for which the quasi-norm

1l = supremﬂH
a t>0 M2
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is finite, where e*® f stands for the heat extension of f;

r—?
emf(x):<@1m)nexp<—| 4t’>’f> (t>0,zeR").

See [150] for the equivalent norms of Hardy—Morrey spaces. We rephrase Theorem
5.1.2 and 5.1.3 in full generality in terms of Hardy-mixed Morrey spaces.

Theorem 5.1.7. Suppose that the parameters p,q,s,t satisfy

l<p<s<oo, O<max{l,q,...,q} <tpr<oo (k=1,...,n),

nnlﬁnl
s

1
7_) - 1)] . Assume that a triple

v(q
({a3521, 1320 {Q51521) € (MAHR™) N Py, (R™)) x [0,00) x Q(R™)
fulfills

Write v(¢) = min{l,q1,...,qn} and dy = [n (

5 @
1
lajllame < 1Qjl%,  supp(a;) C Qj, > (ixg,)"@ < 0.

p
M(T

o0
Then f = Z Aja; converges in S'(R™) and satisfies
j=1

_1_
[e'e) v(q)

Hf”HMg < Cp J,s,t Z(A]XQ])’L)(@)

j:l
P
M‘j‘

Theorem 5.1.3 has the following counterpart.
Theorem 5.1.8 (cf. [60]). Suppose that the real parameters p,q, K satisfy

D<p<oo, 0<qF<oo, E<Z K€N0ﬁ<—n—1oo>
p q] q0

where go = min(1,q1,...,qn). Let f € HM?(]R”). Then there exists a triplet {%‘}?L -

L®(R™) N PE(RM), {) 1524 C[0,00), and {Q;}52, C Q(R") such that f = >_ Aja; in
j=1

S'(R™) and that, for any v > 0,

[e'e] v

la;| < xq;» Z iXQ;)" < Collfll e (5.2)

P
Mti

Here the constant Cy, is a constant that is independent on v but not on f.
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As we said in Subsection 1.2.3, although Theorems 5.1.3 and 5.1.8 are given as
corollaries of the results in [60], we prove these theorems directly without using Hertz
spaces which were used in [60].

Finally, we survey the classical results of this section. In fact, atomic decompositions
are roughly classified into two types. One is the decomposition by smooth atoms, and
the other is the decomposition by non-smooth atoms. Our results correspond to the
non-smooth case. Concerning non-smooth results for Morrey spaces, Jia and Wang
considered non-smooth atomic decompositions for Hardy-Morrey spaces in [72]. After
that in [66], Tlida, Sawano, and Tanaka investigated non-smooth atomic decompositions
for Morrey spaces, which include results of Jia and Wang. So, our results for mixed
Morrey spaces are extension of these results. At last, with respect to smooth results
for Morrey spaces, we refer to [92, 131].

The remaining parts of this chapter is as follows. In Section 5.2, we establish the
boundedness result for the maximal operator to prove Theorem 5.1.2. In Section 5.3,
we give characterizations of Hardy-Morrey spaces. Section 5.4 is devoted to showing
the main theorems. In Subsections 5.4.1 and 5.4.2, we consider the reconstruction
theorems for mixed Morrey spaces (Theorem 5.1.2) and Hardy-mixed Morrey spaces
(Theorem 5.1.7), respectively. Meanwhile in Subsection 5.4.3, we prove the decompo-
sition theorems for mixed Morrey spaces (Theorem 5.1.3) and Hardy-mixed Morrey
spaces (Theorem 5.1.8). As an application, we concern Olsen’s inequality for mixed
Morrey spaces in Section 5.5.

5.2 The boundedness of the maximal operator M () (The-
orem 5.1.1)

In this section, we prove the boundedness property of the maximal operator M ® on
mixed Morrey spaces. This theorem is applied to the proof of Theorem 5.1.2. We
invoke a result due to Bagby [10].

Lemma 5.2.1. Let1 < q1,...,qm <00 and1 <p < oo. Fori=1,2...,m, let (4, p;)
be o-finite measure spaces, and 2 = Qq X --- x Q. For f € LO(R™ x ),

The following lemma is used in the induction step.
Lemma 5.2.2. Let = (q1,92,---,qn) € (1,00)™ and let
t’n, S [17 min{qla qz, . - . 7qn})'

Then
(RN I i P

for all f € LI(R™).
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For the proof we use the following notation for h € LY(R"):

||h||L(q1 77777 am) (xm+17--'a$ = H[Hh”L(ql »»»»» Im— 1):|HL<qm> (merl’"'?xn)

and when m = 1, we define

1

q1

Dl oy (@2 s = (/ |h(x1,...,:rn)\q1dx1> .
R

Proof. Thanks to Lemma 5.2.1, we obtain

i

L(‘h ----- an—1)

= / HManP"](-,:cn)H?"ﬂ w1y Ay
R (& )

,,,,, 7

< [Ny oy don = 1512

,,,,,

Thus, we obtain the desired result. il

Proof of Theorem 5.1.1. We start with a preliminary observation for maximal opera-

tors. Let x € R™. Let @ = Iy x --- x I,, where each I; is an interval in R with the same
length. Then,

Q@) ooy = B,
olr Tt |

- ® 2X1 (T2, 7$n)
H!I\

X [(Xh /|f |t1XI1(yl)dy1> ]Xﬁ I

Jj=2 L(t2 ««««« tn)

1
t;

Qo x1; (2, ..., Tn) [M(tl)f} y

<

1
t;

fin |
H2 K i=2 || gt
J:

Continuing this procedure, we have

X
XQ(T) ool < MO () @),
Ixoll-

Thus, it follows that
MO f(a) < M)y (f)(@).
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Therefore, it suffices to show that

| )| S0 (5.3)

We proceed by induction on n. For n = 1, the result follows by the classical case of the
boundedness of the Hardy—Littlewood maximal operator.
Suppose that the result holds for n = m — 1 with m > 1 in N: assume that

yeeey —1) ~o 177 (a1,

for 1 < tx < min{q,...,qx} < oo for each k = 1,...,m — 1, and for h € LO(R™1!).
Since t,, < min{qy,...,qn}, for g € L°(R™), we have

(tm
22557 = T8l ]

M,[|g* G

H [H (gl ]HL(% ,,,,, qmw:1)] L(%)

S gl o tm—1] | £ amy = 191 Larsam) -
Thus, by the induction assumption, letting g = Mﬁ’f{l) . 'Ml(tl)(f), we obtain
(tm) ... ap(t2) H _ H (tm)ragtm=1)  qs(t1) H
HMm Ml (f) L(a1 e sam) Mm [Mm—l Ml (f)] L(@1sesam)
< m=1)  py(t1) H

S ]

tm— t
*HHM VM)

Hence, inequality (5.3) holds for any dimension n. We obtain the desired result.

One can show that the condition

tk < min{Qla q2, ... 7Qk}
is sharp.
Proposition 5.2.3. In Theorem 5.1.1, for each k = 1,2,...,n, the condition t <

min{qi, g2, ...,qx} can not be removed.

Proof. We induct on n. The base case n = 1 is clear since the Hardy—Littlewood
maximal operator is bounded on LP(R) if and only if p > 1. Assume that the conclu-
sion of Proposition 5.2.3 is true for n = m — 1 and that M®1#2--m) is hounded on
L(91:82-9m) (R™) . Let h € L{tt2tm=1)(R™=1) and N € N. Then

X[~ N,N]m (M(tl’t2""’tm_1) [X[—n,Njm-1h] © X[—N,N])
< MUEttn) [ Npme1h) @ X)) -
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Consequently,

0 e M550 ]

(41,925 9m—1)

= [ Btz [ ] @ 31w

[
< [|artestartnd) [y pmsh] @ X
< C [ (xi-v.nvpm—1h) @ XN s )
< CE@N) Al (o1 a0rm-

L(a1,92;--,am)

So, we are led to

(tl,m,...,tmfl)[X[mem_lh]H < Clhtarazam 1)

(41,925 am—1) —

HX[—N,N]'"—lM
Letting N — oo, we obtain

] =] /[ F——

(1,925 9m—1) —

By the induction assumption, we have t; < min{qi,q2,...,qx} forallk =1,2,...,m—1.
If we start from the inequality

X[—N,N]™ <X[_N,N] @ M ttzetm=1) [X[,NyN]m—lh])
< MOttn) [y @ (X meh)]

and argue similarly, we obtain

HM(tz,ts,...,tm)hH < OBl farsassmsam)-

(a2,93,--.am)
Thus ¢, < min(g2,qs3,-..,¢m) by the induction assumption. It remains to show that
tm < q1. To this end, we consider the function of the form:

oo

F@n, 2, m) = > XN, GHON NN (T T2, - ) (),
j=—00

where h; € L% (R). Then for all (z1,z2,...,%m)

X(RX[_N7N]m71)(.CE1, L2y« - - ,xm)M({jf(xl, L2y vy xm)

> Y XN GONX NNy (@1 22, ) M [y ] (@)

j==o0

We abbreviate
Hm(xm) = M(tm) [X[—N,N]hj] (iL‘m)
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Hence, we obtain

> XN GO ENNm-y MO [y ahy]
Jj=—o00 La
1
oo a1
=l > /X[jN,(j+1)N] (Hm(-m))" dz1 | X=n,npm—
j=—o0 /R
(a2, am)
L+...+# > a
~ N (S ()"
jz*oo Lam
In the same way, we deduce
HX(RX[fN,N]m—l)M@f‘ L
L+...+# © %
SN T S (e nvangh Ca)) ;
j=—o00
Lam

since M® is bounded. Thus, letting N — oo, we obtain

| artngyse

_OO‘ Lam (g21) = H{hj}?i_ooHL‘lm(qu)'

This forces q1 > t,,.

5.3 Some observations of Hardy-mixed Morrey spaces

In this section, we consider the characterizations of Hardy-Morrey spaces. Concerning
Mf;(R”) and H Mg(R”) when ¢ > 1, we have the following assertion:

Proposition 5.3.1. Let 1 <p < oo and 1 < § < oo satisfy

"1
szq—j.

n
p
1. If f € MIUR™), then | € HMYR™).

2. If f € HM?(R"), then f can be represented by a locally integrable function and
the representative belongs to qui(R”).

Proposition 5.3.1 was investigated in [66, 72] when ¢; = ¢ for all j =1,...,n. To
prove Proposition 5.3.1, we need the description of the predual spaces of mixed Morrey
spaces (see Subsection 2.1.4).
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Proof of Proposition 5.3.1.

1. Denote by B(R) = {x € R" : |z| < R} for R > 0. Since

1 £l ) < CRT> "l llaez:

we have f € S'(R™). As is described in [29], we have a pointwise estimate
et f| < M f, where M denotes the Hardy-Littlewood maximal operator. Since

M is shown to be bounded in [19], we have f € HM?(R”).

2. Let f € HM(R"). Then {e!® f}4=0 is a bounded set of MZ(R™), which admits
a separable predual as we have seen in Lemma 2.1.30. Therefore, there exists a
sequence {t;}22; decreasing to 0 such that {etiD f }324 converges to a function g
in the weak-* topology of M‘g(R”). Meanwhile, it can be shown that 1ti¢%l eBf=f

in the topology of 8'(R™) [126]. Since the weak-* topology of ./\/lg(R") is stronger

than the topology of §'(R"), it follows that f = g € MZ(R").

Furthermore, Hardy-mixed Morrey spaces admit a characterization by using the
grand maximal operator. To formulate the result, we recall the following two funda-

mental notions.

1. Topologize S(R™) by norms {pn}nen given by

pn(p) = Y sup (1+ [z))V|0%p ()]

|a‘§Nx€R”
for each N € N. Define Fy = {p € S(R") : py(p) < 1}

2. Let f € S'(R™). The grand maximal operator M f is given by
Mf(z) =sup{|t "t ) x f(z)] : t >0, € Fy} (z€R"),

where we choose and fix a large integer V.

The following proposition can be proved.

Proposition 5.3.2. Let 0 < §< 00,0 < p < 00, and % <3 Then

n
i.
=z
Ml ~ 1 e

for all f € S'(R™).
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When p <1 and g1 = ¢ = - -+ = @, this proposition represents the result for classical
Morrey spaces which is in [72].

Meanwhile the proof of Proposition 5.3.2 is similar to Hardy spaces with variable
exponents [21, 102]. We content ourselves with stating two fundamental estimates (5.5)
and (5.6).

We define the (discrete) maximal function with respect to e/ by

Mpeat f () = sup [e? 2 f ()] (x € R™).
JEZ

Suppose that we are given an integer K > 1. We write

jez \yern (1+ 47|z —y|2)K

27A
Mf;eatf(x)zsup(sup le” /()] ) (x € B,

The next lemma connects M,

maximal operator M.

Lemma 5.3.3 ([102, Lemma 3.2], [125, §4]). For 0 < 0 < 1, there exists Ky so that
for all K > Ky, we have

ot With Myeqt in terms of the usual Hardy-Littlewood

Mo f () < CMO[Myen f](z) = OM [Sup 62kAf!0] ()7 (z€R") (5.5)
kEZ

for any f € S'(R™), where MO s the powered mazimal operator given by
1 n
MOg(x) = M[jg/")(x)? (v € R")

for measurable functions g.

In the course of the proof of [102, Theorem 3.3], it can be shown that
Mf(x) ~  sup Z\Tj * f(2)] S Myea f (%) (5.6)

TEFN,JE
once we fix an integer K > 1 and N > 1.
With the fundamental pointwise estimates (5.5) and (5.6), Proposition 5.3.2 can be

proved with ease.

Proof of Proposition 5.3.2. Take 6§ € (0,1) with § < min{q,...,¢n,p}. Then, using
the pointwise estimates (5.5) and (5.6) and the boundedness of the Hardy-Littlewood
maximal operator, we have

Ml S 1M Tl S IO M fllsgn S [ Miens 1l e

Since it is known that sup [/ f(x)| < Mf(x) (see [141, p. 98]), we obtain
>0

HMfHM]qi 5 ||Mheatf||/\/l§ <

up e ]| UMl
t>0 MPE B
This is the desired result. §
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5.4 Proofs of the main theorems (Theorems 5.1.2, 5.1.3,
5.1.7, and 5.1.8)

5.4.1 Reconstruction of mixed Morrey spaces by atoms (Theorem
5.1.2)

Before we show the main theorems, we observe the relation to the maximal operator
M@ and blocks.

Example 5.4.1. Suppose that 1 < ¢, < min(q},¢5,...,q,) < co. If we let k be the
operator norm of the maximal operator M #) on L7’ (R™), whose finiteness is guar-
anteed by Theorem 5.1.1, then we obtain /ﬁ*lXQM(E/)g is a (p/,q’)-block modulo a
multiplicative constant for any (p’,¢’)-block g. Indeed, it is supported on a cube @
and it satisfies

=

PE -
HH XQM gH = < lixqgllpa = llgllza < 1Q| =11

~|

/
5 p

Keeping in mind this observation, we turn to the proof.
Proof of Theorem 5.1.2. By decomposing @; suitably, we may suppose each @; is

dyadic.

To prove this theorem, we resort to the duality. For the time being, we assume that
there exists N € N such that A\; = 0 whenever j > N. Let us assume in addition that

a;j are non-negative. Fix a non-negative (p', ¢")-block g € ”Hgl, (R™) with the associated
cube Q.

Assume first that each @); contains () as a proper subset. If we group j’s such that
Q; are identical, we can assume that (Q; is the j-th dyadic parent of ) for each j € N.
Then by the Hélder inequality [11]

[ <M—ZA/ 2)g(@)do < 3" Mlaslla 9l )
=1

o0
from f = > Aja;. Due to the size condition of a; and g, we obtain

j=1
PR FX ey
[ @) <M<ZA@|:%\@H@Fﬂ
<warﬂ@r
Note that

e 1
Z/\jXQj > H)\joXQjO AP = ’Qjo’p/\jo

j=1

M
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for each jg. Consequently, it follows from the condition p < s that
© 1 1 1 1 © ©
D)de <3 QPTHIQT D Axa,| S O|D dixe
=1 7=t M, i=1 M?
q q

Conversely assume that () contains each @;. Then by the Holder inequality

oo
7)de = Z A / a;(@)g(@)de < 3 Nl g 9l o,
j=1
Thanks to the condition of a;, we obtain

1 n
2

_1
s

Qi1 llgll (g

‘*‘»—A

f(z)g(z)dz < Z)\ Q]

Rn

Thus, in terms of the maximal operator M (#) defined in Theorem 5.1.1, we obtain

f(2x)g(x dx<2)\ 1Q;| x 1nf M) g(y)
Rn

j=1

S/R > " Aixe, W) | MTg(y) dy
=1

S/Rn Z:)\jXQj(y) xoy)MPg(y) dy.

Hence, by Example 5.4.1, we obtain

| f@g@rds < k|3 Ao,

j=1 p
Mg

This is the desired result. Finally, we can remove the assumption that A\; = 0 for large
j. Thus, the proof is complete. il

5.4.2 Reconstruction of Hardy-mixed Morrey spaces by atoms (The-
orem 5.1.7)

Before we move on the proof of Theorem 5.1.7, we prepare the estimate on the grand
maximal operator M. Recall again that the grand maximal operator M was given by

M[(x) = sup{ler * f(z)] - p € Fn, >0} (z €RY).

Then we know that

n+dg+1

Maj(z) S X3, () Maj(x) + (Mxq, (), (5.7)
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where d, = [n <v(1(j') — 1)] and v(¢) = min(1,q1,...,qn). See [102, (5.2)] for more

details. The first term can be controlled by an argument similar to Theorem 5.1.2.
The second term can be handled by using the Fefferman—Stein maximal inequality for
mixed Morrey spaces (see Proposition 2.1.24).

Let us show Theorem 5.1.7. Using Proposition 5.3.2 and (5.7), we have

1A ez ~ M Fllaee

<> AMay
j=1

P
Mq”

N

e n+dq+1

DA (X3QjMaj+(MXQj) " )

7=l ME,
q

s e n+dg+1
ZAngQjMaj + Z)\j(MXQJ) n =1L+ bs.
i=1 me 1971 MP,

q q

A

First, we consider I;. The proof is similar to Theorem 5.1.2. For the sake of com-
pleteness, we supply the proof. Thanks to decomposing (); suitably, we may suppose
each @); is dyadic. We will use duality again. We assume that there exists NV € N such

that A; = 0 whenever j > N. Let r = P and @ = L, so that r,w > 1. Then,

v(q) v(q)

00 00 ﬁ
> Nixse,Masl| < | [Nxse, May] '@
1 1
J ij)‘ J Ms
_1
[e'e) v(q)
= Z X3QJ Ma’] (_)
Jj=1 Mrw"

Fix a non-negative (r,’)-block g € H7,(R") with the associated cube Q. Assume
first that each @; contains @) as a proper subset. If we group j’s such that Q; are
identical, we can assume that (); is the j-th dyadic parent of @ for each j € N. Then,
we calculate

|3 Poxa, @)May(@)] @ oyt = S XD [ {ara; ) D g
" =1 j=1 Q
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Using the Holder inequality twice, we obtain

/Rn Z [/\jX3Qj (1‘)Maj (x)] v(q) g(x)dx

SO

ooy 191770

< ZA”@ 1M ot )

) v(q)

:\»—‘

& 1 1
= (5%

7j=1
o
}:”@{AﬂwU@)Q lgll ()

Using the boundedness of the Hardy-Littlewood maximal operator on M?(R”), we

have

L3 ixa, (0)Ma ()] @ gy
R" S5

se (-0

J

N[ May)l 7o) 1Q1"

é%g

J HQHLW(Q)
Jj=1
Dy e Ty o(@
<> XPIQ (1017 1Myl pga] T gl
j=1
Dy T [y o(@
SN 10 F laglyge] gl g
j=1

Thus, using the size condition of a; and g, we obtain

v(@)

/‘EZPMMmAxMﬂM@H“QMme
R"

3=

< ZA g E e R T

1
) o v(q)
Q;i<zI%Qﬁ_@> .

j=1

Note that

1
Ao ’Qjo E

oo v(q)

. v(q) A -
Z;(AJXQj) ! = H)‘JOXQJ‘O M

J]=
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for each jg € N. Thus,

oS v(q)
3" Do, @)May(@)] " g(a)da
_1
e 11 > v
SR TEQR TR [ D (g, @
k=1 j=1
e
_1
v(q)

M
Conversely assume that () contains each @);. Then by the Holder inequality,

/n Z [)\jX?)Qj (x)MaJ(x)]U(zj') g(x)dl'
= Z NP | Mag(a D glada
S0

7j=1

(e,
@
S Z ‘;} I HMa]HLt 3Q ||g||L?/(3Q]')'
i=1

Il
‘@
~

LF(3Qj)"g”L?/(3Qj) <T v(q)

Additionally, by virtue of the boundedness of the Hardy-Littlewood maximal operator
on LY(R™), we have

o
/ Z Ao, () May ()] "? gla)de £ S ND 1oy [P gl s g .
7j=1
Considering the condition of a;, we obtain

/Z AixaQ, (#)Ma;(2)]" P g(z)de

o [ 1 zn: 11 v(@
) P2
SN Q1" aJMS] l9ll 7 30,)
=
- n v(q)
00 1 L
v n Z tj
< STND 1y 191127 3q,)
J=1 L
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Thus, in terms of the maximal operator M (#) defined in Theorem 5.1.1, we obtain

@
| Z Ao, (9) My (@] g(2)da
_1
00 v(q)
< @ (7
< (> X Qs % inf MTg(y)
7j=1
1
00 v(q)
< / > (ixe,ly MTg(y) dy
n j:l
_1
00 v(q)
: /n (Aixa, )" | xew)MTg(y) dy

—_

Jj=

As in Example 5.4.1, /fleM(Tﬂ)g is a (r’,w’)-block as long as & is the operator norm
of M) on L7 (R™). Hence, we obtain

v(q)
| Z xag, () May ()] P gla)ds
1 _1
N oo U(fT) ) 00 v(q)
g ko@D Z()\]XQ‘])U(@ =K@ Z ]XQJ
i=1 M J=1 MP
v 7

Next, we consider I5. Put

n+dy;+1 L n+dg+1,
U= ——.p, UT=—"—"-14.
n n

Then, by Proposition 2.1.24 and the embedding ¢*(9) < ¢!, we have

ntdg+1

n

n

n+dq+1

AN

Z )\jXQj

M N Mz

Z (A iXQ;) v(ti)
7j=1

o0
ntdg+1
2= Z (Mxq;)™

_1
v(q)

IN

p
Mg

Thus, we obtain the desired result.
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5.4.3 Atomic decomposition for mixed Morrey spaces and Hardy-
mixed Morrey spaces (Theorems 5.1.3 and 5.1.8)

Theorem 5.1.3 is included in Theorem 5.1.8 so that we concentrate in the proof of
Theorem 5.1.8.

We invoke the following lemma. We refer to [66, Lemma 3.2] and [141, p.101-105].

Lemma 5.4.2. Let f € S'(R"), K € {0,1,2,...} and j € Z. Then, there are collections
of cubes {Q] ;tkek,; and functions {n;itrex; C C°(R™), which are all indexed be a
set Kj for every j, and a decomposition

f=gj+bi, b= b

kEKj

such that

(i) Define O; = {y € R" : Mf(y) > 27} and consider its Whitney decomposition.
Then, the cubes {QOOQ;k}kGKj have the bounded intersection property, and

0;=J @r= U 200Q;,. (5.8)

kEK; keK;

(i) Consider the partition of unity with respect to the collections of cubes {Q;’k}ke](j.
Denote it by {nj7k}k€Kj. Then each function ;. is supported in Q;k and

Z Mk = X{yeRr: Mf(y)>27}, 0 =mjr <1
kGKj

(111) The distribution g; satisfies the inequality:

gn-&-K—H

Mgj(x) < C | Mf(z)x0:(x 2ﬂ§j

_ n+K+1
kekK,; ]k+|x Z k“
for all x € R™.

() Each distribution by, is given by bjr = (f — ¢jr)njr with a certain polynomial
¢k € Pr(R™) satisfying

[ bistaaterar =0
.

for all ¢ € P (R™), and

n+K—+1
i k
Mb;p(x) < C (Mf(a:)XQJk(m) + 27 z _;: k’n-i-K-&-lXR"\Q* ) (5.9)
for all x € R™.
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In the above x; and {;} denote the center and the side-length of Q;’k, respectively,
and the implicit constants are dependent only on n.

Observe that (5.8) together with the bounded overlapping property, that is, every
point is contained in at most a fixed number (we denote it by N) of the {Q;k}, yields

<) XQr, <> x200q:, (2) < Nxo,(z) (z € R"). (5.10)
KeK; keK;

For the proof of Theorem 5.1.8, we need the following embedding.

3

n
Lemma 5.4.3. Let 0 < § < 00,0 < p < 00,— < Z and qo = min(qi,...,qn).

1
14

=

Choose T to bel—q—0<7'<1. Then
b

MER?) = MG (R") — L (Mxpa)")(R"),

where L1(w) denotes the weighted Lebesque space with respect to the measure w-dz for
a non-negative measurable function w.

Proof. The first embedding follows from Proposition 2.1.17. We shall show the second
embedding. Let f € M¥ (R"). Then, we have

o0

1050007 < I sty xs) + Do g
k=1

MXB(l)T'XB(Qk:)\B(Qk—l))

O nkr
SD2 o [If lLao sy
k=0

o0

_L’W_A'_Lk_i
<3 2R Sl
k=0
Since 1 - L <7 <1, =L+ 2 o0 Thus, f € L(Mypu)")(R"). B
P % @ P

Recall that a non-negative measurable function w is Aj-weight if w satisfies
Muw(z) < Cw(z) (xe€R").

Lemma 5.4.4. Let p € S(R™). Keep to the same notation as Lemmas 5.4.2 and 5.4.5.
Then we have

(b5, 0) < Clixo; MF Il oo (it ) (5.11)

and

(g5, )| < C ||min(M f,27)

- (5.12)

where the constants in (5.11) and (5.12) depend on ¢ but not on j or k.
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Proof. By the subadditivity of M given by (5.4), we have

(b, @)l < C inf Mbj(z) <C inf > Mbju(z).
keK

z€B(1) veB(1) £
J

Observe also that
Q)

> )
QI + [z — zq[”

CMxq(z)

/
if () is a cube centered at zg. Take a and 0 satisfying gy > a and (6 — 7) (q—o) >1. It
a

follows from (5.9) and Holder’s inequality that

inf Mb; p(x
xeBu)k%;j k()

a

§/Rn Z Mbji(x) | Xpa)(z)dz

kEKj
a
< ] n+K+1 0
S Mf(x)xo, (@) +27 Y Mxg:, (z)" Mxpa)(r)’ds
R keK;
a
. ntK+1 _r
S MbHxo, +27 > Mxgq;, HMXB(UQ (@)
hER; L%I(MXB(UT)

Using the triangle inequality and the Fefferman—Stein weighted vector-valued inequality
for Aj-weights (see [6]), we obtain

a

xenéfl)keKj Mbj(z)
a
a . nt+K+1
S H ((Mf)XO]) HL%l(MXB(l)T) + 2] kg[; MXQ;JC " a0
j L& (Mxs™)
. XB(1)
a )
g H((Mf)XOy) |‘L%1(MXB(1)T) + 2] kng;,k “
J La (Mxp1)T)

S H(Mf)xoj H(llﬂO(MXB(l)T) '

Thus, (5.11) is proved.

In the same way we can prove (5.12). In fact, using the Fefferman—Stein inequality
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for Aj-weighted Lebesgue spaces, we obtain

( inf Mg;(z ))a

z€B(1)
€n+K+1 @
D e ) .
L'a (Mxp(1)™)
a
< (wner)| 2 S g, =
(MXB(I)T) bk, 7k a0
7 L'a (Mxp(1)™)
< [ (Mmrvor)” + [ @7x0,)"
L@ (MxB(1)T) ( J) L%O(MXB(UT)
a
< M f)xos + 2 xo;
( ) L9 (Mxp1)7)

= ||min(M, 2j)HLq0(MXB(1)T) '

Thus, (5.12) is proven. Il

Lemma 5.4.5. In the notation of Lemmas 5.4.2 and 5.4.3, in the topology of 8'(R™),
we have g; — 0 as j — —o0 and bj — 0 as j — oo. In particular,

[e.o]

F=Y (9419

j==o0

in the topology of S'(R™).

Proof. By Lemma 5.4.3, since
Ml ao rrmyrs M FlLage ~ 1L rage < o0
for f € HM?(R”), we have Mf € LY(Mxpau)7).

Let us show that b; — 0 as j — o0o. Once this is proved, then we have f = lim g;
j—)OO

in §'(R™). Let us choose a test function ¢ € S(R™). Then by (5.11) we have
‘<bj>‘:0>’ 5 onjMfHL‘IO(MXB<1>T))'
Hence it follows that b; — 0 as j — oo. Likewise by (5.12),

(g7, 0)| S ITmin(MF, 2 o (aryc0,7))-

o0
Thus, g; — 0 as j — —oo. Consequently, we have f = lim (gj—g9—;) = > (9j+1—9;)
J]—00 jzfoo

in §'(R"). A

To prove Theorem 5.1.8, we first assume f € L}
theorem for all f € HM’;(R”).

(R™). After that, we show this

loc
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Lemma 5.4.6. Theorem 5.1.8 holds for f € LL _(R").

loc

Proof. Assume that f € LL _(R™). For each j € Z, consider the level set O; as in

loc

Lemma 5.4.2. Then it follows immediately from the definition that
Oj+1 C Oj.
If we invoke Lemma 5.4.2, then f can be decomposed;
F=gi+bi, b= bk bix=(f—cipn
k

where each bj ; is supported in a cube Q;k as is described in Lemma 5.4.2.

We know that

o0

f=> (g41—9)),

j=—00
in §’'(R™). Here, going through the same argument as the one in [141, p.108-109], we
have an expression;

F=Y Ak gi1—9i=> Ay (FET)
4.k k

in the sense of distributions, where each A, satisfies the pointwise estimate |A; ;(x)| <

Co2’ XQ;k(x)a and belongs to Px (R™)*. With these observations in mind, let us set

Ajg -

L= D L= J

ajr = Co2i’ kjk = Co2’.

Then we automatically obtain that each a;; belongs to Pr(R™)* and satisfies that
@ikl < Xas3,»

and that f = Zﬁj’kaﬂ in the topology of S'(R™), once we prove the estimate of
j7k

coefficients. Put A = {(j,k) : j € Z,k € K;} and fix a bijection p : A — N. Then, we

put

— OF . — \* . — a*
Quik) = Qi AuGk) = Aiko  Qu(ik) = Gk

To establish (5.2) we need to estimate

00 v
a= Z A k) XQuis |
q
Since { (k. Q1) ik = {(Auir)» Quiik)}Gken, we have
o v
a=|I{ 2 D Imiwxay,l”
j=—o0 k‘GKj
Mg
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If we insert the definition of k; into the definition of «, then we have

1

v

e =

0o [o.¢]
a=Gl|l[ 3 3 2xe, I =Gl 22 2" D xay,

j=—o0 kEK; j=—00  keK;
p P
M, M

Thus, by (5.10), we obtain

8
<l

a<C Z (szOj)v

M
Since O; D Oj41 for each j € Z, for x € R" we have
o0 _ logy Mf(@)l+1
3 (Pvo, ()" < S (2o, (@)’ ~2lE M@ L A f ().
j=—o0 j=—00

Hence, we conclude o < C||Mf| e ~ || fl maee- This is the desired result. Il
q q

Note that by Lemma 5.4.6, for f € HMZ(;(R") N L (R™), there exists a decompo-

sition:
oo
=Y Naj,
j=1

where a; € P(R"), A\; > 0 and

oo
ol < xq, |D_Nixe,| S Ml
7=l MP,
q

By replacing each ); by a dyadic cube suitably, we have a decomposition:

f= Aag,

Q'eD
where ag € Pi(R"), Agr > 0 and
o0
lag/| < X3y || D Aarxser|| S Ml
Q€D M,
q
Here, D denotes the set of all dyadic cubes in R™.

Let us prove Theorem 5.1.8.
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Proof of Theorem 5.1.8. Let f € HM?(R"). Then we consider the decomposition:
2= Aoag
QeD

in the topology of S'(R"), where ag € Pr(RM), /\b >0 and

A
lagl < xses || D Aoxse|| S IMIEE llae < IMFll e
@D MP,
q

Due to the weak-* compactness of the unit ball of L*(R"™), there exists a sequence
{t;}72, that converges to 0 such that

Ag = llggo /\g, ag = hm aQ

l—00

exist for all @ € D in the sense that
lim aQ( x)p(x)de = /n ag(x)p(z)dx

for all ¢ € L'(R™). We claim

f= Z AQaq

QeD

in the topology of §'(R™). Let ¢ € S(R™) be a test function. Then we have

(o) = Jim ("8 f.) = i S [ aly@)plas

QeD R

from the definition of the convergence in S'(R™). Once we fix m, we have

Mg
])\tl] <—F1 (5.13)
HXOQ m) ”MP
and
/ ol (z)p(z)de| < / o(@)lda.
Since

HMfHMg . M f HM”
QEDy, X[0,2—m)n ML J3Q X[0,2—m)n ME

we are in the position of using the Fubini theorem to have

Z/ = > Mab@) | e@)de=>" Y /\”/ ag)(z)p(z)da.

MmEZ mEZ QEDm,
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With this in mind, let us set

U, = Z /\t’/ ag x)p(z)dz

Q€EDm

for each m € Z and [ € N. Then we have
jam| < €27 [ MFlpellells (m e Z) (5.14)

thanks to (5.13).

Let m € Z. Then we have

U = Z )\g/ ag(x)cp(:v)dm

QEDy, 3Q

Z )\tl/ ag Z —8’3 Q) (z —c(Q))’ | dz

QeDy, pix?

since aQ € Pz (R™). Thus, by the mean-value theorem, we have

1
lam.1| < C(e ])\tl 10(Q)" HEH sup ————. (5.15)
: Qezbm yes L+ [yl"
Here C(y) is a constant depending on .
Meanwhile, for each m € Z™, we have
t
S Mvo| S IMfle
QED e(Q)—1in|<n s
which implies
t
> Aoxe|  SIMSlae
QEDnm,|c(Q)—m|<n 1,90
or equivalently
a0
- t
> 27 A | S IMF e

QEDm,|c(Q)—m|<n

Since (90 (Z™) s (Y(Z"),

> Nl S 20 IMF [ -
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Combining this estimate with (5.15), we obtain

1
t n+K+1
S > RYIE(®) SUD { T

MEL™ QEDm,|c(Q)—m|<n ye3Q
y oy b
MEL™ QEDm,|c(Q)—m|<n

S 20 DT A F g (5.16)

L+ [

1
Since K +1>n ( — 1), we obtain
40

n+K+1>2%
q0

Thus by (5.14) and (5.16), we obtain

|am| S min(z%—(nJrKﬂ)m, 25,
Since
3 = mn
Z min(2 w0 (n+K+1)m’27) <1
m=—0o0

we are in the position of using the Lebesgue convergence theorem to have

o
lim E Am.l =
=00 ’
m=—00

i (zlggo am’l> ’

m=—0oQ

That is,

— 00
m=—00 QeD

(Fph=fim () = 3 [l 350 [ djfe)ete)da

Hence, using Fubini’s theorem again, we obtain

[e.9]

o= > (Jim [ | 3 dsabo) | el
m=—o0 QEDm,
= 3 im b gl z)dz
_mz_:oerzr; ll_m (/"AQ “q(r)p(@)d >
= Z > / Auaq(x)p(x)dr = <Z AQaqQ; 90>
m=—00 QEDy, QeD

Consequently, we obtain the desired result. il
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5.5 Application: Olsen’s inequality on mixed Morrey spaces

As an application of Theorem 5.1.2, we can prove the following Olsen inequality about
the fractional integral operator I,. Based upon Proposition 2.1.22, we can prove the
following result.

Theorem 5.5.1. Suppose that the parameters o, p,q,p*, 7, s,t satisfy

j=1 j=11J j=1 7
1 « 1 «
ax{ti,...,t;} <q;, —->—, —<—,
mX{]_ ]} C.I] p n p*—n
for each j =1,2,...,n, and that
1 1 1 o t q; .
7:7*—1_7_77 7]_7] (.]:1727 an)
s p p n ] p

Pimn p* n
Then for all f € M(T(R ) and g € MJ*(R )
g Tafllae: < Clal g 1lLvg

where the constant C is independent of f and g.

This result recaptures [134, Proposition 1.8]. Note that a detailed calculation in
[133, p.6] shows that Theorem 5.5.1 is not just a combination of Proposition 2.1.22 and
Lemma 5.5.2.

Lemma 5.5.2. Suppose that the parameters p,q,p*, 7, s,t satisfy

1<ppts<oo, 1<q,q%t< oo,
n n n
ESZL’ %S i*j ESZl
pPTiHG P THG s T Y
Assume
L1111
s pt Pt 4 g
Then

1f - gllatz < Ifllaeligll e (f € MER™), g € ME.(R™)).

We can prove this lemma easily by using Holder’s inequality. So we omit the proof.
s

We write oo’ =1 and s’ =

1 for 1 < s < co. We have the following proposition:

95



Proposition 5.5.3. In addition to the assumption in Theorem 5.5.1, suppose that
u € (1,00] satisfies v < min{qi,qo,...,qn,p}. Let Q € L5(S"1) be homogeneous of
degree zero, that is, Q satisfies, for any A > 0, Q(A\x) = Q(x). Then,

9 Toa(Dll s < Clgllygr 190 uns 17 ags
q

where

lnaf@)= [ UE=Y) piay,

n |z =yl

Proposition 5.5.3 is a direct consequence of Theorem 5.5.1, the next lemma and the
boundedness of the Hardy—Littlewood maximal operator M.

Lemma 5.5.4. [64] If 1 < u < 0o, then we have

Haof(@)] < C QU pugn-1y LaF ()],

where F(x) = M (|f]“/> (:1;)5

First, we prove two lemmas. We invoke an estimate from [30, Lemma 2.2] and [31
Lemma 2.1].

Lemma 5.5.5. There exists a constant depending only on n and a such that, for every
cube Q, we have Inxq(z) > CUQ)*xq(x) for all z € Q.

To prove the next estimate, we use Proposition 2.1.22. We invoke another estimate
from [66, Lemma 4.2].

Lemma 5.5.6. Let K =0,1,2,.... Suppose that A is an L=(R"™) NP (R™)*-function
supported on a cube Q. Then,
« - 1 n
[ I A(z)| < Co k|| All L 4(Q) kz WX2kQ($) (z € R").
=1

Now we prove Theorem 5.5.1. We may assume that f € L°(R") is a positive
measurable function in view of the positivity of the integral kernel. We decompose f

according to Theorem 5.1.3 with K > a—— 1; f= Z Ajaj, where {Q;}22, C D(R"),
p*

{aj}j:1 C LOO(R")HPK(R”) and {)\; } °, C0,00) fulﬁll (5.1). Then by Lemma 5.5.6,
we obtain

9(2) L f(2)] < ZZ k(MH 5 (€@ 9@ Pz, ()
: 1 k=1

Therefore, we conclude

n

AR
lg -1 f”/\/ls < CHQHMP Z 2k(n+K+1 ’ gl ’ . igiX?kQ;‘
j=1 k=1 g M.
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For each (j,k) € N x N, write

U NIRRT b))

Fik = = ormarin 0 Uik = W|9|X2kczj-
M,
Then,
ONL(2RQ) T 0(28Q;) v e
Z kKD gl o l9Ixarg, = Z Kjkbj,
Jj=1k=1 le* 7,k=1

each bjj, is supported on a cube Zij and

n
PF

k
HkaHMP* < {(2 QJ)
Observe that XokQ; < 2k”MXQj. Hence, if we choose 1 < 6 so that
K>a—%—1+9n—n,
p

then we have

- 20(25Q
DD Rl = ZZIMX%@

j=1 k=1

= D7 A00Q) 7 (Mxq,)’
Jj=1 M
<C i (M [)\jéf(Qj)%(a_ 3 )XQ]])G
j=1

Thanks to Proposition 2.1.24 with

£ = X70Q;)7

we can remove the maximal operator and we obtain

Q:,\»—A

*)XQj,

I+ Lo ot < Clll 3 M@ xg,
=1 M
t

We distinguish two cases here.
n -
1. If o = —, then p = s and ¢'= t. Thus, we can use (5.1).
p
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2. If a > ﬁ*, then, by Proposition 2.1.22 and Lemma 5.5.5, we obtain
p

D> NUQN P xg, <ClMa-zn > A,
j=1 j=1

M M

o0
<C Z AjiXQ;
7=l ME,
q

Thus, we are still in the position of using (5.1).

Consequently, we obtain
o0 o0
Z Z KjkX2kQ; S ||f”M§ < 0. (5.17)
i=1 k=1 .
J M

Observe also that p* > s and that ¢* > ¢. Thus, by Theorem 5.1.2 and (5.17), it follows
that

oo o
lg - Lafllaz < Cligll e 12D wikxarg,|| < Cllgllyr
=1 k=1 M g
t

f”/\/lf]l‘
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