
On submanifolds in pseudo-Riemannian space forms

Yuichiro Sato



Contents

I Introductions 1

II Preliminaries 3

1 Pseudo-Riemannian geometry 4
1.1 Pseudo-Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Non-degenerate submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Pseudo-Riemannian space forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Lightlike geometry 8
2.1 Reinhart lightlike manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Lightlike submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

III Main results 18

3 Surface theory in a singular pseudo-Euclidean space 19
3.1 Preparations in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Properties of d-minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Representation formula of Weierstrass type for d-minimal surfaces . . . . . . . . 28
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Totally umbilical submanifolds in pseudo-Riemannian space forms 40
4.1 Preparations in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Proof of Theorem 4.8 and 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Observation 1 : Riemannian or Lorentzian cases . . . . . . . . . . . . . . . . . . 45
4.4 Observation 2 : Totally umbilical lightlike submanifolds . . . . . . . . . . . . . . 46
4.5 Application 1 : The moduli space of isometric immersions . . . . . . . . . . . . . 49
4.6 Application 2 : Parallel submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 50



Abstract

We study some submanifolds in pseudo-Riemannian space forms in terms of the degeneracy,
which means that metrics on manifolds are degenerate. More precisely, via d-minimal surface
theory, we classify spacelike flat zero mean curvature surfaces and visualize a deformation of
zero mean curvature surfaces in Minkowski 4-space, and via lightlike geometry, we obtain a
complete list of totally umbilical submanifolds in non-flat space forms, which are pseudo-spheres
or pseudo-hyperbolic spaces with arbitrary index.



Part I

Introductions
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Let Mm be an m(≥ 2)-dimensional manifold, and g a (0, 2)-type symmetric tensor field on
M . For each point x ∈ Mm, the signature (p, q, r) of gx is determined, where p, q, r are the
numbers of negative, positive or zero eigenvalues, respectively. We assume that the signature
(p, q, r) is constant inM . Then, we call p the index and r the nullity of the metric g, respectively,
and we call the pair (M, g) and to study it as follows:

A pseudo-Riemannian manifold Pseudo-Riemannian geometry when r = 0

A Riemannian manifold Riemannian geometry when r = 0, p = 0

A Lorentzian manifold Lorentzian geometry when r = 0, p = 1

An r-lightlike manifold Lightlike geometry when r ≥ 1

Table 1: Kinds of geometries

In Riemannian geometry, geometers actively have studied submanifolds in Riemannian space
forms, not only locally but also globally in detail. In pseudo-Riemannian geometry, subman-
ifolds are studied as well. Some studies are done by using analogical methods in Riemannian
geometry, others detect phenomena which never occur in Riemannian geometry. It is pointed
out that Lorentzian, or lightlike geometries are related to relativity and electromagnetism [5].
For example, a lightcone in a Minkowski space and an event horizon, which are boundaries of
black holes, are known to be lightlike manifolds.

This doctoral thesis is derived as follows. In Part II, we recall fundamental and necessary
notions in pseudo-Riemannian geometry, lightlike geometry and submanifold theory.

Part III proves main results in this thesis. In Chapter 3 of Part III, we investigate surfaces in
a three-dimensional singular pseudo-Euclidean space with the signature (0, 2, 1). The history of
surface theory is very long, and there is a lot of researches. Minimal surfaces attain stationary
values for the volume functional of surfaces. We have many results of the research for minimal
surfaces. In particular, they are characterized by having the mean curvature vector field which
vanishes identically. Recently, Umehara and Yamada et al. [21, 22, 50] studied the zero mean
curvature surfaces in a three-dimensional Minkowski space actively. For such surfaces, they
showed that singularities appear generically, and relate to the topology of surfaces. On the
other hand, the author [40] classified ruled minimal surfaces in pseudo-Euclidean spaces. As a
consequence, it was obtained that certain surfaces are included in a three-dimensional subspaces
whose metrics are degenerate forms. Inspired by this fact, in this work we study a differential
geometry, which allows to have degenerate metrics. In particular, we establish a surface theory.
We introduce a degenerate metric dx2+ dy2+0dz2 to a three-dimensional vector space R3 with
the canonical coordinates (x, y, z). We call the pair E0,2,1 := (R3, dx2 + dy2 + 0dz2) a singular
pseudo-Euclidean space. This is denoted by E0,2,1. Let M2 be a surface in E0,2,1. We assume
that the induced metric of M2 is non-degenerate. Actually, this geometry is equivalent to
simply isotropic geometry, which is one of the Cayley–Klein geometries (See [34]). For isotropic
geometry, the well-known reference is [38]. In terms of the affine geometry with metrics and
connections. we reformulate geometrical objects of surface theory such as induced connections
and second fundamental forms.

In Chapter 4 of Part III, we investigate totally umbilical submanifolds in pseudo-Riemannian
space forms. A totally umbilical submanifold in a pseudo-Riemannian manifold is a fundamen-
tal notion. For example, a complete non-totally geodesic, totally umbilical submanifold in a
Euclidean space is a round sphere. A submanifold is called totally umbilical if the second
fundamental form is proportional to the metric on the submanifold. In the case of Rieman-
nian geometry, there are researches of totally umbilical submanifolds in various ambient spaces
[8, 11, 29, 35, 48].
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Preliminaries
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Chapter 1

Pseudo-Riemannian geometry

In this chapter, we explain fundamental properties for pseudo-Riemannian manifolds and their
non-degenerate submanifolds.

1.1 Pseudo-Riemannian manifolds

LetMm be an m-dimensional connected manifold, and g a (0, 2)-type non-degenerate symmetric
tensor field on M . Since M is connected, the signature (p, q) of g is determined on M , where
p, q are the numbers of negative and positive eigenvalues of g, respectively. We call the pair
(M, g) a pseudo-Riemannian manifold, and the number p the index of (M, g). When p = 0, the
pair (M, g) is nothing but a Riemannian manifold. Namely, the notion of pseudo-Riemannian
manifolds is a generalization of that of Riemannian manifolds. When p = 1, we also call (M, g)
a Lorentzian manifold. It is well known that Lorentzian manifolds play important roles in
Relativity.

Let (M, g) be a pseudo-Riemannian manifold. For each x ∈ M and a tangent vector X ∈
TxM , we call X

spacelike if g(X,X) > 0 or X = 0,

timelike if g(X,X) < 0,

lightlike (or null) if g(X,X) = 0 and X ̸= 0.

These are called causal properties of tangent vectors [33]. As in the case of Riemannian man-
ifolds, there exists a unique torsion-free and metric connection ∇ for a pseudo-Riemannian
manifold. We call ∇ the Levi-Civita connection of (M, g). Hereinafter, a connection for pseudo-
Riemannian manifolds is the Levi-Civita connection.

We define the curvature tensor field R of a pseudo-Riemannian manifold (M, g) as

R(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z (X,Y, Z ∈ Γ(TM)),

where we denote the set consisting of smooth vector fields on M by Γ(TM). Next, for each
x ∈ M , let P be a two-dimensional non-degenerate subspace of the tangent vector space TxM ,
and let {X,Y } be a basis of P . We define the sectional curvature K(P ) of P as

K(P ) :=
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
,

where a subspace P ⊂ TxM is called non-degenerate if the restriction on P of g is a non-
degenerate form and it is called degenerate if otherwise. In particular, when the dimension of
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M is two, the sectional curvature are also called the Gaussian curvature. We denote the set
consisting of smooth functions on M by C∞(M). For each u ∈ C∞(M), we define the gradient
vector field gradu of u as

g(gradu,X) = du(X) (X ∈ Γ(TM)),

where du denotes the exterior derivative of u. Next, for each X ∈ Γ(TM), we define the
divergence divX of X as

divX := tr((X1, X2) 7→ g(∇X1X,X2)) (X1, X2 ∈ Γ(TM)).

For each u ∈ C∞(M), we define the Laplacian ∆gu of u with respect to g as

∆gu := div(gradu).

When ∆gu ≡ 0, we say that u is a harmonic function.
Let {e1, · · · , en} be a local orthonormal frame of (M, g). The gradient vector field, the

divergence and the Laplacian, respectively have the following local expressions

gradu =
n∑

i=1

ϵidu(ei)ei,

divX =
n∑

i=1

ϵig(∇eiX, ei),

∆gu =
n∑

i,j=1

ϵiϵjg(∇eidu(ej)ej , ei)

where ϵi = g(ei, ei) = ±1.

1.2 Non-degenerate submanifolds

Let m and n be positive integers. Let Mm be an m-dimensional manifold, and let M̄n be
an n-dimensional pseudo-Riemannian manifold with index p. Here, when L is a manifold,
Lm
s denotes an m-dimensional pseudo-Riemannian manifold with index s. The notation ∼=pRm

means the existence of an isometric isomorphism between pseudo-Riemannian manifolds. Here,
we assume that a C∞-mapping ϕ :M → M̄ is an immersion. Then, we call ϕ(M) an immersed
submanifold in M̄ . In particular, when ϕ is injective, andM is homeomorphic to the image ϕ(M)
as a subspace of M̄ , ϕ(M) is said to be an embedded submanifold in M̄ . In pseudo-Riemannian
geometry, we remark that the induced metric is not always non-degenerate on M even if ϕ
is an immersion. When the induced metric is non-degenerate, we call ϕ(M) a non-degenerate
submanifold, or a pseudo-Riemannian submanifold in M̄n

p .
As another situation, letMm

s , M̄
n
p be pseudo-Riemannian manifolds, and g, ḡ denote pseudo-

Riemannian metrics of M, M̄ , respectively. When ϕ is an isometric immersion from Mm
s into

M̄n
p , i.e. ϕ

∗ḡ = g, we also call ϕ(M) a non-degenerate submanifold in M̄n
p .

Hereinafter, when we describe submanifolds, we consider immersed, non-degenerate sub-
manifolds unless otherwise stated. For each x ∈ M , a normal vector space T⊥

x M is defined
as

T⊥
x M := {v ∈ Tϕ(x)M̄ | ḡ((ϕ∗)x(w), v) = 0, for all w ∈ TxM}.

Then, we obtain a vector bundle T⊥M =
∪

x∈M T⊥
x M of rank (n −m) over M . This is called

a normal bundle over M . By definition for each x ∈ M , we have an orthogonal direct sum
decomposition

Tϕ(x)M̄ = TxM ⊥ T⊥
x M,
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where ⊥ stands for the orthogonal direct sum, and we identify (ϕ∗)x(TxM) with TxM . In
particular, we see that, as the orthogonal direct sum of vector bundles, it holds

ϕ∗TM̄ = TM ⊥ T⊥M, (1.1)

where ϕ∗TM̄ is the pull-back bundle over M by ϕ. We denote the Levi-Civita connection of
(M̄, ḡ) and that of (M, g) by ∇̄ and ∇, respectively. We define Γ(T⊥M) as the set consisting of
smooth sections of the normal bundle T⊥M , and we call ξ ∈ Γ(T⊥M) a normal vector field.

Let X,Y, · · · , ξ, η, · · · , be tangent and normal vector fields on M , respectively. By using
the orthogonal direct sum decomposition given above (1.1), we have

∇̄XY = ∇XY + h(X,Y ), (1.2)

∇̄Xξ = −AξX +∇⊥
Xξ, (1.3)

where given objects h,Aξ and ∇⊥ are called the second fundamental form, the shape operator
with respect to ξ and the normal connection of ϕ, respectively. We call the formula (1.2) and
(1.3) the Gauss formula and the Weingarten formula of an isometric immersion ϕ, respectively.

1.3 Pseudo-Riemannian space forms

We define an n-dimensional singular pseudo-Euclidean space with the signature (p, q, r) as

Ep,q,r :=

Rn, (·, ·) = −
p∑

i=1

dx2i +

p+q∑
j=p+1

dx2j +
n∑

k=p+q+1

0dx2k

 , (1.4)

where n = p + q + r and (x1, · · · , xn) expresses the canonical coordinates on Rn [49]. We use
the following notations:

• When r = 0, Ep,q,0 is called a pseudo-Euclidean space, and we denote En
p := Ep,q,0 and

⟨·, ·⟩p := (·, ·), respectively.

• When r = 0, p = 1, E1,n−1,0 = En
1 is called a Minkowski n-space and we denote it by Ln.

• When p = r = 0, E0,n,0 = En
0 is nothing but a Euclidean n-space En.

These spaces define flat pseudo-Riemannian space forms if r = 0. We remark that r ≥ 1 if and
only if the metric (·, ·) is degenerate. In the context of isotropic geometry, the notation E0,n−1,1

would be denoted by In [38].
Next, we define non-flat pseudo-Riemannian space forms with index p as

Snp (r2) :=
{
x ∈ En+1

p | ⟨x, x⟩p = r2
}
, Hn

p (−r2) :=
{
x ∈ En+1

p+1 | ⟨x, x⟩p+1 = −r2
}
,

where r > 0. We call Snp (r2) (resp. Hn
p (−r2)) an n-dimensional pseudo-sphere (resp. pseudo-

hyperbolic space). When p = 0, Sn0 (1) and Hn
0 (−1)∩{x1 > 0} are simply a standard sphere Sn(1)

and a hyperbolic space Hn(−1), respectively. When p = 1, Sn1 (1) and Hn
1 (−1) are called a de Sit-

ter n-spacetime and an anti-de Sitter n-spacetime, denoted by dSn(1), AdSn(−1), respectively.
For ε = ±1, 0, we define for brevity

Mn
p (ε) :=


En
p (ε = 0),

Snp (1) ⊂ En+1
p (ε = 1),

Hn
p (−1) ⊂ En+1

p+1 (ε = −1).
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Let Mm
s , M̄

n
p be pseudo-Riemannian manifolds, and g, ḡ denote pseudo-Riemannian metrics

of M, M̄ , respectively. Let ϕ : Mm
s → M̄n

p be an isometric immersion, and h,H the second
fundamental form and mean curvature vector field of ϕ, respectively. Here, we define the mean
curvature vector field H of ϕ by

H =
1

m
tracegh ∈ Γ(T⊥M).

Then, we call ϕ totally geodesic if h identically vanishes, and call ϕ totally umbilical if, for all
X,Y ∈ Γ(TM), it holds

h(X,Y ) = g(X,Y )H.

We call ϕ minimal if H identically vanishes. As an easy observation, we see that ϕ is totally
geodesic if and only if ϕ is totally umbilical and minimal. In addition to these notions, ϕ is
called to be marginally trapped if H ̸= 0 and ḡ(H,H) = 0. Finally, when an isometric immersion
ϕ :Mm

s → M̄n
p is totally geodesic, totally umbilical, minimal or marginally trapped, we call the

image ϕ(M) a totally geodesic, totally umbilical, minimal or marginally trapped submanifold in
M̄ , respectively.

In the following, the ambient M̄n
p will be a pseudo-Riemannian space form Mn

p (ε). Let

ϕ : Mm
s → Mn

p (ε) be an isometric immersion. Let X,Y, Z,W ∈ Γ(TM) and ξ, η ∈ Γ(T⊥M).
The Gauss equation, Codazzi equation and Ricci equation of ϕ are given by the following

⟨R(X,Y )Z,W ⟩ = ε(g(X,W )g(Y, Z)− g(X,Z)g(Y,W ))

+ ⟨h(X,W ), h(Y, Z)⟩ − ⟨h(X,Z), h(Y,W )⟩, (1.5)

(∇̃Xh)(Y, Z) = (∇̃Y h)(X,Z), (1.6)

⟨R⊥(X,Y )ξ, η⟩ = ⟨[Aξ, Aη]X,Y ⟩, (1.7)

where R and R⊥ are curvature tensor fields with respect to connections ∇ and ∇⊥, respectively,
and ∇Xh is the covariant derivative of the second fundamental form h for the tangent vector
field X, i.e. it is defined by

(∇̃Xh)(Y, Z) := ∇⊥
Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

Moreover, the normal bundle T⊥M of M is called flat if R⊥ ≡ 0.
Here, we define two additional classes of submanifolds. LetM and M̄ be pseudo-Riemannian

manifolds, and ϕ : M → M̄ an isometric immersion. We call the immersion ϕ parallel if the
covariant derivative of the second fundamental form h of ϕ vanishes identically. We call the
immersion ϕ symmetric if, for each x ∈M , there exist isometries Φx ∈ Isom(M),Ψx ∈ Isom(M̄)
such that

Φx(x) = x, Ψx ◦ ϕ = ϕ ◦ Φx, (Ψx)∗ϕ∗X = −ϕ∗X, (Ψx)∗(ξ) = ξ,

where X ∈ TxM and ξ ∈ T⊥
x M . We may consider the local version of the above conditions.

Namely, for each x ∈M , Φx and Ψx are local isometries, we call ϕ locally symmetric. When an
isometric immersion ϕ : M → M̄ is parallel or (locally) symmetric, we call the image ϕ(M) a
parallel or (locally) symmetric submanifold in M̄ , respectively.

Two isometric immersions ϕ1 and ϕ2 given by

ϕi :M
m
s → M̄n

p (i = 1, 2)

are said to be congruent if there exists an isometry Ψ of M̄ such that ϕ2 = Ψ ◦ ϕ1. The
congruency defines an equivalence relation on the set consisting of submanifolds.

7



Chapter 2

Lightlike geometry

There exist some generalizations of the notion of Riemannian manifolds. In the previous chapter,
we saw that pseudo-Riemannian manifolds are one of generalizations. In addition, Finsler man-
ifolds or sub-Riemannian manifolds are also well known as generalizations. In this chapter, as
another generalization, we consider lightlike manifolds whose metrics are degenerate everywhere.

2.1 Reinhart lightlike manifolds

Let V be a real n-dimensional vector space, and B a (possibly degenerate) symmetric bilinear
form on V . We define the radical subspace of (V,B) as

RadV := {v ∈ V | B(v, w) = 0, for all w ∈ V }.

Obviously, B is non-degenerate if and only if it holds RadV = {0}.
Let M be an n-dimensional manifold, and g a symmetric (0, 2)-type tensor field on M . For

the pair (M, g), if the mapping

M ∋ x 7−→ RadTxM ⊂ TxM

defines a smooth distribution of constant rank r ≥ 0, we call

RadTM :=
∪
x∈M

RadTxM

the radical distribution on M . Then, the metric g is called r-lightlike, and (M, g) is called an
r-lightlike manifold. In particular, we simply call (M, g) a lightlike manifold when we need
not detect the number r. As an easy observation, 0-lightlike manifolds are pseudo-Riemannian
manifolds.

For an r-lightlike manifold, we assume the radical distribution RadTM is integrable. Then,
an r-dimensional foliation structure is defined on M . We call an r-lightlike manifold (M, g)
Reinhart if for any foliated charts {U ; (x1, · · · , xn)} of M , it holds conditions

∂gij
∂xα

(x1, · · · , xn) = 0 for all i, j ∈ {r + 1, · · · , n}, α ∈ {1, · · · , r},

where {xα}1≤α≤r are local coordinates of leaves of RadTM and gij := g
(

∂
∂xi
, ∂
∂xj

)
. These

conditions do not depend on the choice of foliated charts.
Let (M, g) be an r-lightlike manifold. A vector field X ∈ Γ(TM) is called a Killing vector

field if it satisfies LXg = 0, where LX is the Lie derivative with respect to X defined by

(LXg)(Y, Z) := Xg(Y, Z)− g([X,Y ], Z)− g(Y, [X,Z]) Y, Z ∈ Γ(TM).
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A smooth distribution D of M is called a Killing distribution if any vector fields belonging to
D are Killing.

The following theorem gives characterizations of Reinhart lightlike manifolds.

Theorem 2.1 ([5, Theorem 5.1, Chapter 2]). Let (M, g) be an r-lightlike manifold. The fol-
lowing are equivalent to each other:

(i) (M, g) is Reinhart.

(ii) RadTM is a Killing distribution.

(iii) There exists a torsion-free connection ∇ on M such that the connection is metric parallel
with respect to g, i.e. ∇g = 0.

Remark 2.2. Regarding Theorem 2.1, for Reinhart lightlike manifolds, there exists a connection
which is quite close to the Levi-Civita connection, but the uniqueness does not hold. We call
such connections quasi Levi-Civita connections in this thesis. For two distinct quasi Levi-Civita
connections ∇,∇′, let L be the difference, i.e.

L(X,Y ) := ∇XY −∇′
XY (X,Y ∈ Γ(TM)).

L is a RadTM -valued (0, 2)-type symmetric tensor field on M . Conversely, when we set ∇ as
a quasi Levi-Civita connection and L as a RadTM -valued (0, 2)-type symmetric tensor field on
M , we see that ∇ + L is a quasi Levi-Civita connection. In particular, in the case of pseudo-
Riemannian manifolds, i.e. r = 0, quasi Levi-Civita connections are unique since RadTM = {0}.
Namely, the unique one is just Levi-Civita connection.

From now on, for a Reinhart r-lightlike manifold (M, g), we fix a quasi Levi-Civita connection
∇, and call the triplet (M, g,∇) a Reinhart r-lightlike manifold equipped with ∇. Then, we
define its automorphism group

Aut(M, g,∇) := {F ∈ Diff(M) | F ∗g = g, F ∗∇ = ∇}.

Remark 2.3. The automorphism group Aut(M, g,∇) is finite dimensional Lie group, and acts
on M effectively. When r = 0, it simply coincides with the isometry group Isom(M, g) since
(M, g,∇) is a pseudo-Riemannian manifold equipped with the Levi–Civita connection.

Let (M, g,∇), (M̄, ḡ, ∇̄) be two Reinhart r-lightlike manifolds. We define (M, g,∇) is iso-
morphic to (M̄, ḡ, ∇̄) if there exists a diffeomorphism f :M → M̄ such that

f∗ḡ = g, f∗∇̄ = ∇.

We call such f an isomorphism between Reinhart lightlike manifolds. When we have such
isomorphism, we denote (M, g,∇) ∼=Rlm (M̄, ḡ, ∇̄). In the case that f is locally isomorphic,
we call f a local isomorphism between Reinhart lightlike manifolds, and (M, g,∇) is locally
isomorphic to (M̄, ḡ, ∇̄). By definition, if (M, g,∇) is isomorphic to (M̄, ḡ, ∇̄), we see that

dimM = dim M̄, rk RadTM = rk RadTM̄ = r.

When r = 0, f is an isometry, and M ∼=Rlm M̄ expresses M is isometric to M̄ , i.e. ∼=Rlm

coincides with ∼=pRm.

Proposition 2.4. If f : (M, g,∇) → (M̄, ḡ, ∇̄) is an isomorphism between Reinhart r-lightlike
manifolds, and γ : I →M a geodesic onM with respect to∇, then the composition f◦γ : I → M̄
is also a geodesic on M̄ with respect to ∇̄. In particular, if (M, g,∇) is geodesically complete,
then so is (M̄, ḡ, ∇̄).
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Proof. By definition, it is obvious that geodesics in M are mapped onto geodesics in M̄ by f .
Thus, the proof is completed. 2

Proposition 2.5 ([10, Lemma 1.5, Chapter 1]). If ϕ, ψ : (M, g,∇) → (M̄, ḡ, ∇̄) are two local
isomorphisms between Reinhart r-lightlike manifolds, then, for some point x ∈M , if dϕx = dψx,
then ϕ = ψ.

A motivation of investigation of Reinhart r-lightlike manifolds is that some submanifolds
in a pseudo-Riemannian manifold are r-lightlike manifolds. Among them, Reinhart r-lightlike
submanifolds are remarkable in terms of admitting connections which have the same properties
as Levi-Civita connections. In addition, it would be the first step to expose pseudo-Riemannian
manifold and their degenerate submanifolds.

2.2 Lightlike submanifolds

When we consider a submanifold in a pseudo-Riemannian manifold, the induced metric is not
always non-degenerate. In this section, we deal with submanifolds with a degenerate metric, say
lightlike submanifolds. Bejancu–Duggal [5] and Kupeli [27] constructed a fundamental theory
of lightlike submanifolds. However, there are many unsolvable fundamental problems such as
existence problems and classification problems. Therefore, we would say these studies only just
started.

Incidentally, there exist submanifolds which have both of non-degenerate parts and degen-
erate parts for the induced metric. These submanifolds are called mixed type. There exist some
researches for mixed type surfaces. For example, refer to [21]. We explain this section based on
Bejancu–Duggal’s lightlike submanifold theory.

Let (M̄, ḡ) be an (m + n)-dimensional pseudo-Riemannian manifold, M an m-dimensional
manifold, and f :M → M̄ an immersion. We denote the induced metric on M by g = f∗ḡ. For
each x ∈M , we define

T⊥
x M := {v ∈ TxM̄ | ḡx((f∗)x(v), w) = 0, for all w ∈ TxM}.

If ḡx is degenerate on TxM , then it is also degenerate on T⊥
x M vice versa. Then, there exists a

non-trivial intersection

RadTxM = RadT⊥
x M = TxM ∩ T⊥

x M ⫌ {0}.

However, the dimension of RadTxM may depend on points x ∈M .
Let M̄ be a pseudo-Riemannian manifold, and M a manifold. An immersion f : M → M̄

is called r-lightlike if the pair (M, g) itself is an r-lightlike manifold. In the above situation, we
also call the pair (M, g) an r-lightlike submanifold of (M̄, ḡ). In particular, we simply call M a
lightlike submanifold when we need not detect the metric g and the number r.

Theorem 2.6 ([5, Theorem 1.1, Chapter 5]). Let f :M → M̄ be an immersion from a manifold
M into a pseudo-Riemannian manifold (M̄, ḡ), and g the induced metric by f . The following
are equivalent to each other:

(i) (M, g) is r-lightlike.

(ii) For each coordinate neighborhood U ⊂ M , the mapping U ∋ x 7→ RadTxU defines a
smooth distribution of rank r on U .

(iii) For each coordinate neighborhood U ⊂M , the metric g has constant rank m− r on U .
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Here, r satisfies 1 ≤ r ≤ m.

When (M, g) is an r-lightlike submanifold, we can construct vector bundles TM, T⊥M,RadTM
of rank m,n, r, respectively. More precisely, we define the following objects.

(a) S(TM) is called to be a screen distribution if it is a subbundle of TM over M , and it
holds an orthogonal direct sum

TM = S(TM)⊥RadTM.

It is a non-degenerate vector bundle of rank (m − r), that is, the induced fibre metric is
non-degenerate.

(b) S(T⊥M) is called to be a screen transversally vector bundle if it is a subbundle of T⊥M
over M , and it holds an orthogonal direct sum

T⊥M = S(T⊥M)⊥RadTM.

It is a non-degenerate vector bundle of rank (n− r).

(c) ltr(TM) is called to be a lightlike transversally vector bundle if it is a subbundle of f∗TM̄
over M , and, for each coordinate neighborhood U ⊂ M and local frames {ξi}ri=1 of
RadTM |U , there exist sections {Ni}ri=1 belonging to ltr(TM)|U such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0 (i, j ∈ {1, · · · , r}).

It is a vector bundle of rank r.

(d) B is called to be a complementary screen vector bundle if it is a subbundle of f∗TM̄ over
M , and it is a non-degenerate vector bundle such that

RadTM ⊂ B.

It is a vector bundle of rank 2r.

We should remark that the existence of the above subbundles is ensured but the uniqueness is not
so. Namely, when we do the study of lightlike submanifolds in pseudo-Riemannian manifolds, we
have to see through geometric notions and properties independent of the choice of these vector
bundles.

Next, we classify classes of r-lightlike submanifolds M . We call M

(Case I) : a proper r-lightlike submanifold if 0 < r < min{m,n},

(Case II) : a coisotropic submanifold if 0 < r = n < m,

(Case III) : a isotropic submanifold if 0 < r = m < n,

(Case IV) : a totally lightlike submanifold if 0 < r = m = n.

By definition, when M is a lightlike curve, i.e. m = 1, it is a isotropic submanifold. When
M is a lightlike hypersurface, i.e. n = 1, it is a coisotropic submanifold. We promise a rank zero
subbundle of f∗TM̄ as a vector bundle which consists of zero section {0} of f∗TM̄ . Then, the
following holds:
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Proposition 2.7 ([5, Theorem 1.3, Chapter 5]). If (M, g) is an r-lightlike submanifold in a
pseudo-Riemannian manifold (M̄, ḡ), then, between the set of the pairs (S(TM), S(T⊥M)) and
the set of complementary screen vector bundles B, there exists a one-to-one corresponding such
that

f∗TM̄ = S(TM)⊥S(T⊥M)⊥B

and moreover the following holds

M : coisotropic ⇐⇒ S(T⊥M) = {0} ⇐⇒ f∗TM̄ = S(TM)⊥B,
M : isotropic ⇐⇒ S(TM) = {0} ⇐⇒ f∗TM̄ = S(T⊥M)⊥B,
M : totally lightlike ⇐⇒ S(TM) = S(T⊥M) = {0} ⇐⇒ f∗TM̄ = B.

For an r-lightlike submanifold M , we define a vector bundle over M as

tr(TM) := S(T⊥M)⊥ltr(TM).

Then, it holds
f∗TM̄ = TM ⊕ tr(TM),

where the symbol ⊕ simply expresses a direct sum. We call tr(TM) a transversally vector bundle
over M , and local quasi-orthonormal frames of M̄ along M are given by

{ξi, Ni, Xa,Wα}i,a,α,

where 1 ≤ i ≤ r, r + 1 ≤ a ≤ m, r + 1 ≤ α ≤ n, {ξi}1≤i≤r, {Ni}1≤i≤r are, respectively local
frames of RadTM, ltr(TM) such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0 (1 ≤ i, j ≤ r),

and {Xa}r+1≤a≤m, {Wα}r+1≤α≤n are, respectively local orthonormal frames of S(TM), S(T⊥M).

Remark 2.8. In the case of coisotropic or totally lightlike submanifolds, we define a transver-
sally vector bundle tr(TM) of M as

tr(TM) := ltr(TM)

and we see that
f∗TM̄ := TM ⊕ ltr(TM).

In the case of isotropic submanifolds, we define a transversally vector bundle tr(TM) of M
as

tr(TM) := S(T⊥M)⊥ltr(TM)

and we see that
f∗TM̄ = TM ⊕ tr(TM).

Proposition 2.9 ([5, Theorem 1.2, 1.4, Chapter 5]). If (M, g) is a 1-lightlike submanifold in a
pseudo-Riemannian manifold (M̄, ḡ), then, between the set of the pairs (S(TM), S(T⊥M)) and
the set of ltr(TM), there exists a one-to-one corresponding such that

f∗TM̄ = S(TM)⊥S(T⊥M)⊥ (RadTM ⊕ ltr(TM)) .

In the case r > 1, this result is still valid except for the uniqueness of lightlike transversally
vector bundles.
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In any case, for r-lightlike submanifolds, since we obtain a direct sum as vector bundles

f∗TM̄ = TM ⊕ tr(TM),

we will define some geometric objects by using this decomposition.
Let ∇̄ be the Levi–Civita connection of a pseudo-Riemannian manifold (M̄, ḡ). For any

X,Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), we can decompose as follows

∇̄XY = ∇XY + h(X,Y ) ∈ TM ⊕ tr(TM),

∇̄XV = −A(V,X) +∇t
XV ∈ TM ⊕ tr(TM).

These fomulas are called the Gauss formula and the Weingarten formula of a lightlike subman-
ifold M , respectively. We call ∇,∇t the induced connection and the transversal connection of
M , respectively, and the Γ(tr(TM))-valued symmetric bilinear form h the second fundamental
form of M . Moreover, for each V ∈ Γ(tr(TM)), we define a linear operator as

AV : Γ(TM) → Γ(TM) ; AV (X) := A(V,X)

and call it the shape operator with respect to V of M .
From now on, we assumeM is proper or isotropic. Then, from tr(TM) = ltr(TM)⊕S(T⊥M),

the Gauss formula and the Weingarten formula of M are expressed by

∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ) ∈ TM ⊕ ltr(TM)⊕ S(T⊥M),

∇̄XV = −A(V,X) +Dl
XV +Ds

XV ∈ TM ⊕ ltr(TM)⊕ S(T⊥M)

respectively. Here, we call hl, hs the lightlike second fundamental form and the screen second
fundamental form, respectively. However we remark both Dl and Ds are not linear connections
of tr(TM). So, we set L, S as projective bundle morphisms onto ltr(TM), S(T⊥M) for tr(TM).
For any X ∈ Γ(TM), when we define differential operators as

∇l
X : Γ(ltr(TM)) → Γ(ltr(TM)) ; ∇l

X(LV ) := Dl
X(LV ),

∇s
X : Γ(S(T⊥M)) → Γ(S(T⊥M)) ; ∇s

X(SV ) := Ds
X(SV ),

∇l,∇s are linear connections of ltr(TM), S(T⊥M), respectively. We call them the lightlike
transversal connection and screen transversal connection, respectively.

LetM be an r-lightlike submanifold, and {ξi, Ni, Xa,Wα}1≤i≤r,r+1≤a≤m,r+1≤α≤n local quasi-
orthonormal frames along M . In the case that M is proper or isotropic, we can locally express

∇̄XY = ∇XY +
r∑

i=1

hli(X,Y )Ni +
n∑

α=r+1

hsα(X,Y )Wα.

In the same way, in the case that M is coisotropic or totally lightlike, we can locally express

∇̄XY = ∇XY +

n∑
i=1

hli(X,Y )Ni.

We call family of these symmetric bilinear forms {hli}1≤i≤r, {hsα}r+1≤α≤n locally lightlike second
fundamental forms and locally screen seconf fundamental forms of M , respectively.

Theorem 2.10 ([5, Theorem 2.1, Chapter 5]). If (M, g) is an r-lightlike submanifold in a
pseudo-Riemannian manifold (M̄, ḡ), then locally lightlike second fundamental forms of M do
not depend on the choice of screen distributions, screen transversally vector bundles and lightlike
transversally vector bundles. However, we remark that they depend on the choice of local frames
{ξi}1≤i≤r of the radical distribution RadTM .
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Since we want to consider a situation that the rank of a screen distribution is not zero, we
deal with the case of proper r-lightlike or coisotropic submanifolds. Then, since we know

TM = S(TM)⊥RadTM,

for any X,Y ∈ Γ(TM), ξ ∈ Γ(RadTM), we can decompose

∇XPY =
∗
∇XPY + h∗(X,PY ) ∈ S(TM)⊥RadTM,

∇Xξ = −
∗
A(ξ,X) +

∗
∇t

Xξ ∈ S(TM)⊥RadTM,

where P is the projection bundle morphism P : TM → S(TM). Then,
∗
∇ and

∗
∇t are met-

ric connection of S(TM) and RadTM , respectively, and we call them induced connections
of S(TM) and RadTM , respectively. h∗ is a Γ(RadTM)-valued smooth bilinear form on

Γ(TM)× Γ(S(TM)) and we call it the second fundamental form of S(TM).
∗
A is a Γ(S(TM))-

valued smooth bilinear form on Γ(RadTM)× Γ(TM) and, for any ξ ∈ Γ(RadTM), it defines a
smooth linear operator

∗
Aξ : Γ(TM) → Γ(S(TM)) ;

∗
Aξ(X) =

∗
A(ξ,X) (X ∈ Γ(TM)),

and we call it the shape operator with respect to ξ of S(TM).
We can show the following relation. For any X,Y ∈ Γ(TM), ξ ∈ Γ(RadTM), it holds

ḡ(hl(X,PY ), ξ) = g(
∗
AξX,PY ).

Namely, the shape operator
∗
A and the restriction of hl on Γ(TM) × Γ(S(TM)) are equivalent

each other. For any X,Y ∈ Γ(TM), N ∈ Γ(ltr(TM)), it holds

ḡ(h∗(X,PY ), N) = ḡ(ANX,PY ).

Namely, the shape operator A and the second fundamental form h∗ are equivalent each other.
Let (M, g) be an r-lightlike submanifold in a pseudo-Riemannian manifold (M̄, ḡ), and ∇ the

induced connection of M . We call M totally geodesic if arbitrary geodesics in M with respect
to ∇ are geodesics in M̄ with respect to ∇̄.

Theorem 2.11 ([5, Theorem 2.8, Chapter 5]). Let (M, g) be an r-lightlike submanifold in
a pseudo-Riemannian manifold (M̄, ḡ). When we select vector bundles S(TM), S(T⊥M) and
ltr(TM), the following are equivalent to each other:

(i) M is totally geodesic.

(ii) hl ≡ 0, hs ≡ 0 on M , that is, h ≡ 0 on M .

(iii) For any ξ ∈ Γ(RadTM),
∗
Aξ ≡ 0 on M and, for any W ∈ Γ(S(TM)), AW is a Γ(RadTM)-

valued operator such that Dl(X,SV ) = 0 for any X ∈ Γ(TM), V ∈ Γ(tr(TM)).

For r-lightlike submanifolds, the notion of to being totally geodesic is a geometric condition
independent of the choice of vector bundles S(TM), S(T⊥M) and ltr(TM) because of Theo-
rems 2.10 and 2.11.

Corollary 2.12 ([5, Corollary 2.2, Chapter 5]). The induced connection of a totally geodesic
r-lightlike submanifold is a metric connection and coincides with the restriction on M of the
Levi–Civita connection ∇̄.
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Corollary 2.13 ([5, Corollary 2.3, Chapter 5]). Let (M, g) be a coisotropic submanifold in a
pseudo-Riemannian manifold (M̄, ḡ). The following are equivalent to each other:

(i) M is totally geodesic.

(ii) hl ≡ 0 on M .

(iii) For any ξ ∈ Γ(T⊥M),
∗
Aξ ≡ 0 on M .

(iv) The induced connection ∇ is a metric connection.

Corollary 2.14 ([5, Corollary 2.4, Chapter 5]). Let (M, g) be an isotropic submanifold in a
pseudo-Riemannain manifold (M̄, ḡ). The following are equivalent to each other:

(i) M is totally geodesic.

(ii) hs ≡ 0 on M .

(iii) For any X ∈ Γ(TM), V ∈ Γ(tr(TM)), Dl(X,SV ) = 0.

Corollary 2.15 ([5, Corollary 2.5, Chapter 5]). Any totally lightlike submanifolds are totally
geodesic.

Let W be an m-dimensional degenerate subspace in (m+ n)-dimensional pseudo-Euclidean
space Em+n

p , and v ∈ Em+n
p . We call v + W a lightlike m-plane in Em+n

p , and we define a
canonical r-lightlike m-plane in En

p with signature (s, t, r) as follows

Πm
s,t,r := {(z1, · · · , zr, x1, · · · , xs, 0, · · · , 0︸ ︷︷ ︸

p

, 0, · · · , 0, y1, · · · , yt, zr, · · · , z1︸ ︷︷ ︸
n−p

) ∈ En
p}. (2.1)

Then, we easily can verify that a canonical r-lightlike m-plane Πm
s,t,r is a totally geodesic r-

lightlike submanifold in pseudo-Euclidean space and is isometric to Es,t,r. It holds the converse.

Theorem 2.16. Let m ≥ 2, n ≥ 1, 1 ≤ p ≤
[
m+n
2

]
. If M a connected, m-dimensional totally

geodesic r-lightlike submanifold of Em+n
p , then, up to isometry of Em+n

p , M is an open subset
of Πm

s,t,r. In particular, if M is simply-connected and geodesically complete, it coincides with
Πm

s,t,r. Moreover, M is isomorphic to Es,t,r as a Reinhart r-lightlike manifold.

Proof. The claim follows directly from the fact that any geodesics in pseudo-Euclidean space
are lines. 2

Let ε := ±1 and p̄ := p+ 1−ε
2 . We construct a hypersurface N(ε) in Mm+1(ε) as follows. Let

v := (1, 0, · · · , 0, 1) ∈ Em+2
p̄ . A space consisting of vectors which are orthogonal to v

W := {x ∈ Em+2
p̄ | ⟨x, v⟩p̄ = 0}

is a 1-lightlike (m+ 1)-plane. So, we define

N(ε) := Mm+1
p (ε) ∩W.

Proposition 2.17. N(ε) is a totally geodesic 1-lightlike hypersurface in Mm+1
p (ε).
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Proof. By direct calculations, we see that

RadTN(ε) = Span {ξ := (1, 0, · · · , 0, 1)} .

Thus, we compute

⟨h(X,Y ), ξ⟩p̄ = X⟨Y, ξ⟩p̄ − ⟨Y, dXξ⟩p̄ = 0,

where X,Y ∈ Γ(TN(ε)) and d is the canonical connection of Em+2
p̄ . Since N(ε) is a 1-lightlike

hypersurface in Mm+1
p (ε), we have h(X,Y ) = 0. Namely, N(ε) is a totally geodesic 1-lightlike

hypersurface in Mm+1
p (ε). 2

Moreover, the converse is also true.

Theorem 2.18. Let m ≥ 2, 1 ≤ p ≤ [m+1
2 ], ε = ±1, and M ⊂ Mm+1

p (ε) an r-lightlike hyper-
surface. If M is a totally geodesic lightlike hypersurface in Mm+1

p (ε), then, up to isometry of
Mm+1

p (ε), M is an open subset of N(ε).

Proof. Since lightlike hypersurfaces are coisotropic, by using Corollary 2.12 and 2.13 and ele-
mentary computations, we can show taking a frame field of the radical distribution RadTM as
a constant vector, so that M is contained in the complementary space of the space spanned by
the constant vector. Thus, the proof is completed. 2

Let (M, g) be an r-lightlike submanifold in a pseudo-Riemannian manifold (M̄, ḡ). We call
(M, g) totally umbilical if there exists H ∈ tr(TM) such that

h(X,Y ) = g(X,Y )H

for all X,Y ∈ Γ(TM). This notion is independent of the choice of transversally vector bundles
as well as totally geodesic lightlike submanifolds (See [16]).

Here, we describe relations between lightlike submanifolds and Reinhart lightlike manifolds.

Proposition 2.19 ([5, Theorem 2.4, 2.8, Chapter 5]). Let (M, g) be an r-lightlike submanifold
in a pseudo-Riemannian manifold (M̄, ḡ). If (M, g) is totally geodesic, then it is Reinhart.

Here, an r-lightlike submanifold (M, g) is Reinhart in a pseudo-Riemannian manifold (M̄, ḡ)
if (M, g) is Reinhart itself.

Proposition 2.20 ([5, Corollary 2.2, 2.3, Chapter 5]). Let (M, g) be an r-lightlike submanifold
in a pseudo-Riemannian manifold (M̄, ḡ). If (M, g) is Reinhart, then any induced metrics on M
are quasi Levi-Civita connections.

Proposition 2.21 ([5, Theorem 2.2, Chapter 5]). Let (M, g) be an r-lightlike submanifold in a
pseudo-Riemannian manifold (M̄, ḡ). The r-lightlike submanifold (M, g) is Reinhart if and only
if the lightlike second fundamental form hl vanishes identically on M .

Remark that there are infinitely many Reinhart r-lightlike surfaces which are not congruent
to each other in four-dimensional Minkowski space L4

1 [5]. From Proposition 2.21 and Corol-
lary 2.13, lightlike hypersurfaces are Reinhart if and only if they are totally geodesic. In the
case of higher co-dimension, the converse is not true, i.e. there is an example which is Reinhart
but not totally geodesic. Kupeli [27] pointed out that a manifold does not necessarily admit a
metric with arbitrary signature (p, q, r). Namely, there exists a topological obstruction.

A Reinhart r-lightlike manifold (M, g) is trivial if r = m, i.e. RadTM = TM . Equivalently,
the metric satisfies g = 0. In intrinsic geometry, trivial Reinhart lightlike manifolds have no
information on metrics, however, in extrinsic geometry, there exist trivial Reinhart lightlike sub-
manifolds in pseudo-Riemannian manifolds. Actually, if (M, g) is a isotropic, or totally lightlike
submanifold in a pseudo-Riemannian manifold (M̄, ḡ), then the lightlike second fundamental
form hl of M vanishes identically. Therefore, (M, g) is a trivial Reinhart lightlike manifold.
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Corollary 2.22 ([5, Theorem 2.4, Chapter 5]). If (M, g) is a Reinhart r-lightlike submanifold
in a pseudo-Riemannian manifold (M̄, ḡ), then arbitrary induced connections of M are quasi
Levi-Civita ones.

In summary, we can observe for r-lightlike submanifolds in a pseudo-Riemannian manifold.
Let (M, g) be an r-lightlike submanifold in a pseudo-Riemannian manifold (M̄, ḡ), and ∇ an
induced connection of M . The following are equivalent to each other:

(i) ∇ is metric parallel, i.e. it holds ∇g ≡ 0.

(ii) For any ξ ∈ Γ(RadTM), it holds A∗
ξ ≡ 0 on M .

(iii) The radical distribution RadTM is a Killing distribution.

(iv) The radical distribution RadTM is a parallel distribution with respect to ∇.

(v) The lightlike second fundamental form hl of M vanishes identically on M .

As a conclusion to this chapter, we can summarize it as follows:

• An isotropic submanifold is trivial Reinhart.

• A totally lightlike submanifold is totally geodesic and trivial Reinhart.

• A totally geodesic lightlike submanifold is Reinhart.

• An r-lightlike curve, i.e. m = 1, is Reinhart and r = 1.

• An r-lightlike hypersurface, i.e. n = 1, is coisotropic and r = 1.

• For a coisotropic submanifold, to be totally geodesic if and only if to be Reinhart.

• There exist examples which are Reinhart but not totally geodesic in the case proper r-
lightlike or isotropic submanifolds.

• There exist examples which are totally geodesic, but not trivial Reinhart lightlike subman-
ifolds.

Remark 2.23. For non-flat pseudo-Riemannian space forms, the classification problem of to-
tally geodesic submanifolds is open. In the case of Lorentzian space forms, there exists a clas-
sification theorem via Riemannian submersions (See [20]). In connection with totally geodesic
lightlike submanifolds, the notion of minimal lightlike submanifolds is given by [39].
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Part III

Main results
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Chapter 3

Surface theory in a singular
pseudo-Euclidean space

In this chapter, we consider a three-dimensional singular pseudo-Euclidean space with the sig-
nature (0, 2, 1), whose canonical coordinates are (x, y, z), and study its surfaces.

Here, we remark how to use the terms. First, in the canonical three-dimensional Euclidean
space E3, a surface whose mean curvature vanishes identically gives a stationary value for the
volume functional. In a certain situation, its value is minimal, but not minimum in general.
Historically, we call such surfaces minimal.

Next, in a three-dimensional Minkowski space E3
1, surfaces with vanishing mean curvature

have different properties depending on the causal character of the induced metrics. When the
induced metric is spacelike, i.e. Riemannian, we call such surfaces maximal. This means that,
when we consider the volume functional analytically, such surfaces always give maximal values
unlike the Euclidean case. On the other hand, when timelike, i.e. Lorentzian, we simply call
such surfaces minimal. We should remark that timelike minimal surfaces give stationary values
for the volume functional, but give neither minimal nor maximal values. We can refer these
facts in Remark 32 and Theorem 37 of Chapter 6 of [3]. When connected surfaces have the part
of spacelike maximal surfaces and that of timelike minimal surfaces, we call such surfaces mixed
type [21].

In a four-dimensional Minkowski space E4
1, a surface whose mean curvature vector field

vanishes identically is more complicated. Therefore, in order to treat uniformly, we call all such
surfaces zero mean curvature when the ambient space is E4

1. This is why we have to pay attention
to the terminology.

In Section 3.1, we establish settings to investigate surfaces in a singular pseudo-Euclidean
space. We prepare the Gauss and Weingarten formulas of such surfaces.

In Section 3.2, we define non-degenerate surfaces in E0,2,1 and study their properties in detail.
In addition, we calculate some examples.

In Section 3.3, we consider d-minimal surfaces which we define are analogue objects to
classical minimal surfaces. They are called isotropic minimal surfaces in terms of simply isotropic
geometry [38]. In addition, we show a representation formula of Weierstrass type for d-minimal
surfaces (Theorem 3.15), and claim that d-minimal surfaces allow to have isolated singularities.
Moreover, we see that spacelike flat zero mean curvature (ZMC) surfaces in E4

1 are contained in
a three-dimensional subspace endowed with a degenerate induced metric (Theorem 3.24). In [4]
and [30], some representation formulas are known. However, we should remark that singularities
do not appear. Actually, since the regularity condition are assumed on surfaces, the possibility
of singularities appearing is omitted in the obtained representation formula.

In Section 3.4, we give two applications. Firstly, we prove that d-minimal surfaces and
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spacelike flat ZMC surfaces in four-dimensional Minkowski space are in one-to-one correspon-
dence (Corollary 3.26). In particular, we see that there exist infinitely many spacelike flat ZMC
surfaces in E4

1 which are not congruent to each other. Secondly, we give a visualization of a
deformation of zero mean curvature surfaces in a four-dimensional Minkowski space.

From Table 3.1, we see that d-minimal surfaces in E0,2,1 have intermediate properties between
minimal surfaces in E3 and maximal surfaces in E3

1. Regarding singularities, they do not appear
on minimal surfaces. However, on maximal surfaces, cuspidal edges, swallowtails and cuspidal
crosscaps appear in generic case. Refer to [22] in detail. On the other hand, for d-minimal
surfaces, isolated singularities are allowed. However, in this thesis, these singularities will be
not classified. This chapter is based on [41].

3.1 Preparations in Chapter 3

Let M be a two-dimensional manifold, f : M → E0,2,1 a C∞-immersion, and g the induced
metric by f . We assume that the metric g is positive definite, and we call f a non-degenerate
immersion or a non-degenerate surface. Then, for each x ∈ M , a normal vector space T⊥

x M is
defined by

T⊥
x M := {ξ ∈ R3 | (dfx(v), ξ) = 0, for all v ∈ TxM} = spanR{(0, 0, 1)},

where (·, ·) is the degenerate inner product of E0,2,1 defined by (1.4). So, we have a vector bundle
of rank one over M

T⊥M :=
∪
x∈M

T⊥
x M.

Therefore, we obtain an orthogonal direct sum decomposition

Tf(x)E0,2,1 = TxM ⊥ T⊥
x M

for each x ∈M . In particular, we see, as a vector bundle decomposition,

f∗TE0,2,1 = TM ⊥ T⊥M,

where TM is the tangent bundle over M and f∗TR3 is the pull-back bundle by f over M .

Proposition 3.1. We get an isomorphism as vector bundle

T⊥M ∼=M × R.

Proof. We can take ξ = (0, 0, 1) ∈ Γ(T⊥M) as a non-vanishing global section. So, the claim
holds from the existence of the non-vanishing global section. 2

Remark 3.2. For three-dimensional singular pseudo-Euclidean space with the signature (p, q, r),
where p+ q + r = 3, r ≥ 1, p ≤ q, we can define non-degenerate surfaces when r = 1, i.e.

(p, q, r) = (0, 2, 1), (1, 1, 1).

When r ≥ 2, the metric induced on surfaces is degenerate. We remark that E1,1,1 is equivalent
to the pseudo-isotropic 3-space I31 (Refer to [3, 44, 43]). As the notation, we define

|v| :=
√
(v, v) =

√
v21 + v22

for a vector v = (v1, v2, v3) ∈ E0,2,1.
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On the other hand, how to control null vectors of E0,2,1 is untouched. Since every null vector
is proportional to ξ = (0, 0, 1), it is natural to introduce the co-metric ⟨⟨·, ·⟩⟩ on the set of null
vectors as below

⟨⟨(0, 0, α), (0, 0, β)⟩⟩ := αβ ∈ R.

In addition, E0,2,1 can lead to either doubly isotropic I3(2), Galilean G3, or pseudo-Galilean G3
1

geometries depending on how we deal with null vectors. For example, refer to [18]. On the other
hand, in the case r ≥ 2, this problem is no longer trivial.

Next, we recall affine differential geometry [31]. Let (Rn+1, d) be (n + 1)-dimensional Eu-
clidean space with the canonical connection d, and M an n-dimensional manifold. A C∞-
immersion f : M → Rn+1 is an affine immersion if for any x ∈ M there exists a neighborhood
U at x and a non-vanishing vector field ξ on U over Rn+1 such that

Tf(y)Rn+1 = TyM ⊕ Rξy (y ∈ U),

where ⊕ stands for the direct sum. In particular, when there exists ξ globally on M , it is called
a transversally vector field on M . Then, a torsion-free connection ∇ is induced on M , and it
satisfies

dXY = ∇XY + h(X,Y )ξ

for any X,Y ∈ Γ(TM). This implies that h is a (0, 2)-type symmetric tensor field over M , and
we call h an affine fundamental form (with respect to ξ). In affine differential geometry, we
often assume that h is non-degenerate. Moreover, let f : M → Rn+1 be an affine immersion,
and let ξ be its transversally vector field. We call ξ equiaffine when, for all X ∈ Γ(TM), it holds

dXξ ∈ Γ(TM).

Then, f is called an equiaffine immersion.
In terms of affine differential geometry, we see the following proposition.

Proposition 3.3. Let M be a two-dimensional manifold. A non-degenerate immersion f :
M → E0,2,1 is an equiaffine immersion whose transversally vector field over M is ξ ≡ (0, 0, 1).

Proof. By using the orthogonal direct sum f∗TR3 = TM ⊥ T⊥M , we can show dXξ = 0 for all
X ∈ Γ(TM). Thus, the proof is completed. 2

Hereinafter, let ξ be the constant vector field ξ = (0, 0, 1), and let d be the canonical connec-
tion as a linear connection, i.e. for all X,Y ∈ Γ(TE0,2,1), identifying Y with the vector-valued
function Y = (Y1, Y2, Y3),

dXY := dX(Y ) = (X(Y1), X(Y2), X(Y3)).

The connection d is torsion-free and preserves the degenerate metric (· , · ). Thus, the connection
d plays the role of the Levi-Civita connection.

We define the automorphism group Aut(E0,2,1, d) with respect to E0,2,1 and d as

Aut(E0,2,1, d) := {A ∈ Diff(R3) | A∗d = d, A∗(·, ·) = (·, ·)}
= O(0, 2, 1)⋉R3,

where Diff(R3) is the diffeomorphism group of R3 and

O(0, 2, 1) :=


 T

0

0
a b c


∣∣∣∣∣∣∣ a, b, c ∈ R, c ̸= 0, T ∈ O(2)

 .
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We call Aut(E0,2,1, d) an affine isometry group. In particular, Aut(E0,2,1, d) is a seven-dimensional
Lie group. From the view of Cayley–Klein geometry, this automorphism group is nothing but
the simply isotropic rigid motion group [44]. Da Silva studied invariant surfaces generated by
subgroups of O(0, 2, 1) [45].

By using the decomposition f∗TR3 = TM⊥T⊥M , for each X,Y ∈ Γ(TM), αξ ∈ Γ(T⊥M)
(α ∈ C∞(M)), we have

dXY = ∇XY + h(X,Y )ξ,

dX(αξ) = X(α)ξ.

Then, we see that the connection ∇ is the Levi-Civita connection with respect to the induced
metric g on M . We call the given affine fundamental form h a second fundamental form of the
non-degenerate immersion f .

For all X,Y, Z ∈ Γ(TM), since the connection d is flat, we obtain

0 = dR(X,Y )Z = ∇R(X,Y )Z + {(∇Xh)(Y, Z)− (∇Y h)(X,Z)}ξ,

where dR and ∇R are the curvature tensor fields for d and ∇, respectively, and we define
(∇Xh)(Y, Z) := X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ). Therefore, we get

∇R ≡ 0, (3.1)

(∇Xh)(Y, Z) = (∇Y h)(X,Z). (3.2)

The formula (3.1) implies that the non-degenerate surface is always flat, and we call the formula
(3.2) Gauss-Codazzi equation of the non-degenerate surface. These formulas (3.1) and (3.2) were
obtained by Sachs in [38].

Let f : M → E0,2,1 be a non-degenerate immersion. The image of f is locally expressed by
the form of a graph surface {(u, v, F (u, v)) ∈ E0,2,1 | (u, v) ∈ U}, where F is a smooth function
on an open subset U ⊂ R2. So, we call UR2 a flat coordinate neighborhood. In addition, let
(M2, g) be a two-dimensional Riemannian manifold. It is well-known that, for each x ∈ M2,
there exists a coordinate neighborhood {(x1, x2)} at x such that

g11 = g22 > 0, g12 = 0,

where

gij := g

(
∂

∂xi
,
∂

∂xj

)
.

Such coordinate neighborhoods are called isothermal. In particular, flat coordinates neighbor-
hoods are isothermal.

3.2 Properties of d-minimal surfaces

We define the mean curvature H of a non-degenerate surface as follows

H :=
1

2
tracegh =

1

2
gijhij ,

where gij is the components of the inverse matrix of (gij)1≤i,j≤2 and hij are the coefficients of
the second fundamental form h. So, we define some classes of non-degenerate surfaces. Namely,

(i) d-totally geodesic surface if the second fundamental form satisfies h ≡ 0,
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(ii) d-totally umbilical surface if there exists λ ∈ C∞(M) such that h = λg,

(iii) d-minimal surface if the mean curvature satisfies H = 0.

For (ii), we remark that (ii) is equivalent to (i) when λ = 0.

Proposition 3.4. If M is a two-dimensional manifold, and f : M → E0,2,1 is connected, not
d-totally geodesic and d-totally umbilical surface, that is, there exists a function λ ∈ C∞(M)
such that h = λg and λ ̸= 0, then λ is a constant function, and the image of f is an open subset
of a paraboloid of revolution{(

u, v,
λ

2
(u2 + v2) +Au+Bv + C

)
∈ R3

∣∣∣∣ (u, v) ∈ R2

}
,

where A,B,C ∈ R are constants. In particular, it is, up to affine isometry, an open subset of{
(u, v, u2 + v2) ∈ R3

∣∣ (u, v) ∈ R2
}
.

Proof. Since non-degenerate surfaces satisfy Gauss-codazzi equation (3.2), the function λ is a
constant. Let g be the induced metric by f , and h its second fundamental form. From the
assumption, there exists a non-zero constant number λ ∈ R such that h = λg. Since f is
the non-degenerate immersion, for each point of M , there exists a coordinate neighborhood
{U ; (u, v)} such that

f(u, v) = (u, v, φ(u, v)) ∈ E0,2,1,

where φ is a C∞-function on U . Then, we get

h11 = φuu, h12 = φuv, h22 = φvv.

Therefore, since we have

φuu = λg11 = λ, φuv = λg12 = 0, φvv = λg22 = λ,

there exist constant numbers A,B,C ∈ R such that

φ(u, v) =
λ

2
(u2 + v2) +Au+Bv + C.

Finally, gluing these pieces of surface in the whole of M , we obtain the consequence. 2

In the context of isotropic geometry, d-totally umbilical surfaces are known as spheres of
parabolic type. See [43] in detail.

Here, we define a relative Gaussian curvature K which is introduced in [38] as

K :=
deth

det g
∈ C∞(M).

This quantity expresses the shape of the non-degenerate surface when we look from the ambient
space E3. However, the canonical Gaussian curvature, i.e. the sectional curvature of two-
dimensional Riemannian manifolds with respect to the induced metric, identically vanishes.

Proposition 3.5 ([38, Definition 8.11]). Let M be a two-dimensional manifold, and f : M →
E0,2,1 a non-degenerate immersion. Moreover, let K be its relative Gaussian curvature. In E0,2,1,
we define for each x ∈M ,

x : elliptic point if K(x) > 0,

x : hyperbolic point if K(x) < 0,

x : parabolic point if K(x) = 0.
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If we consider f as an immersion to Euclidean space E3, then the Euclidean Gaussian curvature
does not correspond to the relative Gaussian curvature in general, however the two curvatures
have the same sign.

Proof. Since f is a non-degenerate immersion, for each point of M , there exists a coordinate
neighborhood {U ; (u, v)} such that

f(u, v) = (u, v, φ(u, v)) ∈ E0,2,1,

where φ is a C∞-function on U . When we consider f as an immersion to E3, the Euclidean
Gaussian curvature KG is expressed by

KG =
φuuφvv − φ2

uv

(1 + φ2
u + φ2

v)
2

on U . On the other hand, the relative Gaussian curvature K is expressed by

K = φuuφvv − φ2
uv

on U . Therefore, KG does not correspond to K in general, but the signs are the same. 2

The notion of elliptic, hyperbolic and parabolic points in Euclidean (E3) and singular pseudo-
Euclidean (E0,2,1) geometry are equivalent.

Remark 3.6. We consider the sign of the relative Gaussian curvature for some surfaces. First,
for d-totally geodesic surfaces, since we have h = 0 by definition, it holds

K =
deth

det g
≡ 0.

Next, for d-totally umbilical surfaces, we have, by definition and Proposition 3.4, there exists a
constant number λ ∈ R such that h = λg. We assume λ ̸= 0. Then, we obtain

K =
deth

det g
=
λ2 det g

det g
= λ2 > 0,

that is, all points are elliptic. Finally, for d-minimal surfaces, we make use of isothermal co-
ordinates, that is, we choose the coordinates in which the coefficients of the induced metric
hold

g11 = g22 > 0, g12 = 0.

Then, since the mean curvature identically vanishes, we have

2H = tracegh =
g22h11 + g11h22

g11g22
=
h11 + h22

g11
≡ 0.

Moreover, by using h22 = −h11, we obtain

K =
deth

det g
=
h11h22 − h212

g11g22
= −h

2
11 + h212
g211

≤ 0,

that is, almost all points are hyperbolic. Actually, we immediately see that h = 0 if and only if
K = 0. From Theorem 3.24, umbilic points are isolated.
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Here, we give some descriptions for curves in E0,2,1. For a connected open interval I ⊂ R, let
c be a C∞-map c : I → E0,2,1. We call c a curve in E0,2,1. Moreover, we call c a regular curve if
it holds, for all t ∈ I,

c′(t) ̸= 0.

We call a parameter s of a curve c = c(s) arc-length if it holds

|c′(s)| ≡ 1.

Next, let π be the projection to xy-plane, i.e.

π : E0,2,1 ∋ (x, y, z) 7→ (x, y) ∈ R2.

From the view of isotropic geometry, π is said to be the top view of (x, y, z) [44], [43]. Then, a
direct calculation provides

Proposition 3.7. Let c = c(t) (t ∈ I) be a regular curve in E0,2,1. The following are equivalent
to each other:

(i) The curve c = c(t) admits an arc-length parameter.

(ii) For all t ∈ I, it holds |c′(t)| > 0.

(iii) The mapping π ◦ c is regular as a planar curve in E2.

Let c = c(t) be a regular curve in E0,2,1. We call c null if it holds

|c′(t)| ≡ 0.

Moreover, we call c a spacial line if the image is a line segment in R3.

Proposition 3.8. A regular curve c : I → E0,2,1 is null if and only if it is a spacial line which
is parallel with the z-axis.

Proof. The claim is proved by easy calculations. 2

Proposition 3.9 ([38, Theorem 9.4 and Equation (9.31)]). For any connected surfaces in E0,2,1,

(0) d-totally geodesic surfaces in E0,2,1 are open subsets of non-degenerate planes.

(1) a graph surface in E0,2,1

{(u, v, f(u, v)) ∈ E0,2,1 | (u, v) ∈ U ⊂ R2}

is d-minimal if and only if f is a harmonic function on U .

(2) non-planar, ruled d-minimal surfaces in E0,2,1 are locally, up to affine isometry, open subset
of one of

(a) f(u, v) = (v cosu, v sinu, u) (refer to Figure 3.1),

(b) f(u, v) = (u, v, uv) (refer to Figure 3.1),

where (u, v) ∈ R2 (See [40, Theorem 6]).

25



(3) non-planar, d-minimal rotational surfaces in E0,2,1 are locally, up to affine isometry, open
subset of one of

f(u, v) = (eu cos v, eu sin v, u)

(refer to Figure 3.1), where rotational surfaces are the surfaces invariant by the group of
rotations around the z-axis, which acts on the xy-plane as Euclidean rotations, i.e. they
are SO(2)-invariant surfaces.

Proof. (0) and (1) are proved by easy calculations. In case of (2), we apply the method of
classification described by [40] since E0,2,1 is isometrically embedded in E4

1 as a totally geodesic
lightlike submanifold by the natural way [5]. In fact, the following mapping

ι : E0,2,1 ∋ (x, y, z) 7→ (x, y, z, z) ∈ E4
1 := (R4, dx21 + dx22 + dx23 − dx24) (3.3)

is an isometric embedding. We should remark that causal characters in E0,2,1 are ones in E4
1

because of Eq. (3.3). From the classification of Theorem 6 in [40], non-planar ruled minimal
surfaces in the degenerate subspace ι(E0,2,1) ⊂ E4

1 are locally contained in one of the following:

(a) An elliptic helicoid of the second kind

f(s, t) = (cos se1 + sin se2)t+ se3,

where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0) and e3 = (0, 0, 1, 1).

(b) A minimal hyperbolic paraboloid

f(s, t) = ste1 + se2 + te3,

where e1 = (0, 0, 1, 1), e2 = (1, 0, 0, 0) and e3 = (0, 1, 0, 0).

These lead to the consequence of the case (2).
In case of (3), we explain the meaning of SO(2)-invariant firstly. It is well-known that

SO(2) =

{(
cos θ − sin θ
sin θ cos θ

)
∈M2(R)

∣∣∣∣ θ ∈ R
}
.

We realize SO(2) as a subgroup of Aut(E0,2,1, d) as below.

H :=


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 ∈ Aut(E0,2,1, d)

∣∣∣∣∣∣ θ ∈ R

 .

Then, the group H is isomorphic to SO(2) as a Lie group. We simply denote H as SO(2). A
surface in E0,2,1 is said to be SO(2)-invariant if it is invariant under the action of this group.
Such surfaces are locally parametrized by

f(u, v) = (x(u) cos v, x(u) sin v, y(u)) ∈ E0,2,1,

where x, y are real variable functions satisfying x > 0, (x′)2 + (y′)2 = 1. Then, we have

fu = (x′ cos v, x′ sin v, y′), fv = (−x sin v, x cos v, 0).

Thus, we compute
g11 = (x′)2, g12 = 0, g22 = x2.
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The non-degeneracy implies x′ ̸= 0. Moreover, since ξ = (0, 0, 1) and we compute

fuu = (x′′ cos v, x′′ sin v, y′′) =
x′′

x′
fu +

(
−x

′′

x′
y′ + y′′

)
ξ,

fuv = (−x′ sin v, x′ cos v, 0) = x′

x
fv,

fvv = (−x cos v,−x sin v, 0) = − x

x′
fu +

x

x′
y′ξ,

the coefficients of second fundamental form h hold

h11 = −x
′′

x′
y′ + y′′, h12 = 0, h22 =

x

x′
y′.

Therefore, we compute that the mean curvature of SO(2)-invariant d-minimal surfaces is

2H = gijhij =
1

(x′)3
(−x′′y′ + x′y′′) +

y′

xx′
≡ 0. (3.4)

Since x′ ̸= 0, by the coordinate transformation, we can represent y as a function with respect
to x. Then, the equation (3.4) is equal to the following equation

d2y

dx2
= −1

x

dy

dx
.

By solving the ordinary differential equation, we have

y(x) = C1 log x+ C2 (C1, C2 ∈ R : constants).

Again, when we replace the parameter x with x(w) = ew, we get y(w) = C1w+C2. In particular,
if C1 = 0, then it is a plane. So, if it is not a plane, by an affine isometry, we obtain

f(u, v) = (eu cos v, eu sin v, u).

The proof is completed. 2

Figure 3.1: Upper-left: the minimal hyperbolic paraboloid. Upper-right: the elliptic helicoid of
the second kind. Lower-middle: the d-minimal rotational surface.
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Regarding the surfaces (b) in Proposition 3.9 (2), it is also known as a warped translation
surface with a generating curve. Regarding Proposition 3.9 (3), the obtained revolution surfaces
are special instances of invariant surfaces. Da Silva classified all invariant minimal simply
isotropic surfaces, that is, invariant d-minimal surfaces. See [45] in detail.

Remark 3.10. We recall that non-degenerate surfaces are locally expressed by graph surfaces.
However, (a) of Proposition 3.9 (2) is an example which can not be entirely expressed as a graph
surface.

We consider the canonical connection d as a linear connection for E0,2,1. This connection d
is a torsion-free connection which is parallel with respect to the degenerate metric (·, ·), i.e. d
plays the role of Levi-Civita connection. However, since the metric is degenerate, connections
having such properties are not unique. Vogel [51] characterized linear connections compatible
with a degenerate metric. For example, let λ ∈ R be a real parameter, and we define a tensor
field Lλ ∈ Γ(S2T ∗R3) as

Lλ(X,Y ) := λ
∑
i,j

XiYj ,

where the set Γ(S2T ∗R3) expresses the whole of (0, 2)-type symmetric tensor fields over R3 and
X,Y are vector fields over R3, and we regard X and Y , respectively as vector-valued functions

X = (X1, X2, X3), Y = (Y1, Y2, Y3).

When we put dλ := d+Lλξ, d
λ is a flat connection over E0,2,1 which has the same properties of

Levi-Civita connections. In particular, when λ = 0, dλ coincides with the canonical connection
d. (E0,2,1, d) is a geodesically complete Reinhart 1-lightlike manifold. However, (E0,2,1, dλ) is not
geodesically com plete, but Reinhart 1-lightlike if λ ̸= 0. Actually, in (E0,2,1, dλ) we calculate
the geodesic γ(t) with the initial data γ(0) = (0, 0, 0), γ′(0) = (1, 0, 0) as

γ(t) =

(
t, 0,

1

λ
log |λt+ 1| − t

)
.

Namely, the domain of parameters of the curve γ is not defined in the whole of real numbers
R. For E0,2,1, it would be interesting to consider the geometric meaning of torsion-free, metric
connections. In [43], the issue is taken into account by Da Silva as well. For example, we can
raise the problem of whether a complete connection is limited to d.

3.3 Representation formula of Weierstrass type for d-minimal
surfaces

Let f :M → E0,2,1 be a non-degenerate immersion. When we set f = (f1, f2, f3), we define the
Laplacian ∆gf of f with respect to the induced metric g as the Laplacians of each coordinate
functions fi (i = 1, 2, 3), i.e.

∆gf := (∆gf1,∆gf2,∆gf3).

Proposition 3.11. If H is the mean curvature of a non-degenerate immersion f , then 2Hξ ∈
Γ(T⊥M) is equal to the Laplacian ∆gf of f with respect to the induced metric g. In particular,
the non-degenerate surface is d-minimal if and only if all coordinate functions of f are harmonic
with respect to g.

Proof. Since f is non-degenerate, with respect to a flat coordinate neighborhood U ⊂ R2, f is
locally expressed by

f(u, v) = (u, v, F (u, v)) ∈ E0,2,1,
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where F is a function on U . Thus, we have

2Hξ = (0, 0, Fuu + Fvv) = ∆gf.

The proof is completed. 2

In case of graph surfaces, Proposition 3.11 is equivalent to the formula (8) in [36].
Next, we prepare some simple lemmas.

Lemma 3.12. For a real two variable function f(u, v), we define a complex function F (w) with
respect to the complex variable w = u+ iv as

F (w) :=
∂f

∂u
(u, v)− i

∂f

∂v
(u, v).

Then, F is a holomorphic function if and only if f(u, v) is a harmonic function.

Proof. By using Cauchy–Riemann’s equations, the claim holds. 2

Lemma 3.13. In E0,2,1, we consider a surface determined by

f(u, v) := (x(u, v), y(u, v), z(u, v)) ∈ E0,2,1 ((u, v) ∈ U) ,

where U is a open subset in R2. We define complex functions φ,ψ with respect to the complex
variable w = u+ iv as

φ(w) :=
∂x

∂u
(u, v)− i

∂x

∂v
(u, v), ψ(w) :=

∂y

∂u
(u, v)− i

∂y

∂v
(u, v).

Then, the coordinates (u, v) are isothermal if and only if it holds

φ2 + ψ2 ≡ 0.

Proof. By direct calculations, we have

φ2 + ψ2 = |fu|2 − |fv|2 − 2i(fu, fv).

This completes the proof. 2

See Remark 3.2 in this thesis for the definition of the norm | · |.

Theorem 3.14. Let U be an open subset of uv-plane. In E0,2,1, let f be an immersion on U
which is parametrized by f(u, v) = (x(u, v), y(u, v), z(u, v)). We assume that (u, v) are isother-
mal coordinates and f is d-minimal. Then, complex functions φ1, φ2, φ3 with respect to the
complex variable w = u+ iv defined by

φ1(w) =
∂x

∂u
− i

∂x

∂v
, φ2(w) =

∂y

∂u
− i

∂y

∂v
, φ3(w) =

∂z

∂u
− i

∂z

∂v
(3.5)

are all holomorphic, and it holds

|φ1|2 + |φ2|2 > 0, φ2
1 + φ2

2 = 0. (3.6)

Moreover, it holds

(fu, fu) = (fv, fv) =
1

2
(|φ1|2 + |φ2|2).
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Conversely, let U be a simply-connected domain on C, and we assume that holomorphic functions
φ1(w), φ2(w), φ3(w) satisfy the formula (3.6). When we set w = u + iv ∈ U , there exists a d-
minimal surface satisfying the formula (3.5) such that, for the parametrized expression

f(u, v) = (x(u, v), y(u, v), z(u, v))

=

(
Re

∫
w
φ1(w)dw,Re

∫
w
φ2(w)dw,Re

∫
w
φ3(w)dw

)
the coordinates (u, v) are isothermal.

Proof. Since f is d-minimal, each coordinate function is harmonic from Proposition 3.11. Thus,
by using Lemma 3.12, each φi is holomorphic. Since (u, v) are isothermal coordinates, it holds
φ2
1 + φ2

2 ≡ 0 from Lemma 3.13. Next, we compute

|φ1|2 + |φ2|2 = x2u + y2u + x2v + y2v = |fu|2 + |fv|2 = 2|fu|2 = 2|fv|2.

Since f is an immersion, we have that |fu|2 = |fv|2 ̸= 0. Thus, the former of the claim holds.
For the latter, we assume that holomorphic functions φ1, φ2, φ3 on a simply-connected domain
U satisfy the formula (3.6). We fix a point w0 ∈ U and define a real function x = x(u, v) as

x(u, v) := Re

∫ w

w0

φ1(w)dw (w = u+ iv ∈ U).

This is well-defined since U is simply-connected. When we act on this relation by the differential
operator

∂

∂u
− i

∂

∂v
= 2

∂

∂w
,

we have
∂x

∂u
− i

∂x

∂v
= 2

∂

∂w
Re

∫ w

w0

φ1(w)dw = φ1(w).

As above, when we define y = y(u, v) and z = z(u, v), we have

∂y

∂u
− i

∂y

∂v
= φ2(w),

∂z

∂u
− i

∂z

∂v
= φ3(w).

From Lemma 3.12 again, we see that x(u, v), y(u, v), z(u, v) are harmonic functions on U .
Next, we prove that the mapping f(u, v) = (x(u, v), y(u, v), z(u, v)) gives a surface, i.e. a
two-dimensional manifold. For the purpose of that, we prove that the Jacobi matrix(

xu yu zu
xv yv zv

)
has rank two for any point w ∈ U . We prove by using contradiction, i.e. we assume that there
is a point w′ ∈ U such that the rank of its Jacobi matrix is less than two. Since we have

0 < |φ1|2 + |φ2|2 = (xu)
2 + (xv)

2 + (yu)
2 + (yv)

2,

at the point w′, we see that either of column vectors(
xu
xv

)
,

(
yu
yv

)
is not the zero vector. So, we suppose that the former is not the zero vector. Since we can set
that there exists λ ∈ R such that (

yu
yv

)
= λ

(
xu
xv

)
,
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we compute, by using φ2 = λφ1,

{φ1(w
′)}2 + {φ2(w

′)}2 = (1 + λ2){φ1(w
′)}2 ̸= 0

at w′. This contradicts the formula (3.6). Thus, since f is a C∞-immersion, f(u, v) =
(x(u, v), y(u, v), z(u, v)) gives a surface in E0,2,1, and (u, v) ∈ U are isothermal coordinates
from the condition (3.6). In particular, f is a d-minimal surface satisfying the formula (3.5). 2

In Theorem 3.14, the function φ3 seems not to play any role in the characterization of
isothermal coordinates because of Eq. (3.6). Does this apparent independence bring any kind of
symmetry or freedom to construct d-minimal surfaces? It would be interesting to research the
geometrical interpretation of such a symmetry, or freedom.

Corollary 3.15 (Weierstrass-type representation formula for d-minimal surfaces). Let U ⊂ C
be a simply-connected domain. If F,G are holomorphic and meromorphic functions on U ,
respectively such that F does not have zero points on U and FG is a holomorphic function on
U , then a mapping

f(u, v) = Re

∫
w
(F, iF, 2FG)dw (w := u+ iv ∈ U)

gives a d-minimal surface in E0,2,1, and the coordinates (u, v) ∈ U are isothermal. Moreover, it
holds

(fu, fu) = (fv, fv) = |F |2.

Conversely, a d-minimal surface in E0,2,1 locally has the expression as above.

Proof. For the former of the claims, when we set φ1 := F,φ2 := iF, φ3 := 2FG, it immediately
holds from Theorem 3.14. For the latter of the claims, given a d-minimal surface, it is locally
considered on a simply-connected domain. From Theorem 3.14 again, we have the parametrized
expression

f(u, v) = Re

∫
(φ1, φ2, φ3)dw.

Since it satisfies
|φ1|2 + |φ2|2 > 0, φ2

1 + φ2
2 = 0,

setting F := φ1, G :=
φ3

2F
, we obtain the expression which we want. 2

Regarding the function F in Corollary 3.15, zero points of F correspond to singular points
of d-minimal surfaces. For example, there exist cross-caps on d-minimal surfaces. We remark
that there exist singularities of other types besides cross-caps. Here, we recall the definition of
singular points. Let M,N be manifolds, and f an immersion from M into N . A point x ∈M is
a singular of f if the differential map dfx is not injective. For a d-minimal surface f :M → E0,2,1

and a point x ∈M , we see that F has a zero point at x if and only if f has a singular point at
x by easy calculation. We describe other types in the next section.

At the end of this section, for Weierstrass type expression formula for d-minimal surfaces

f(u, v) = Re

∫
w
(F, iF, 2FG)dw (w := u+ iv ∈ U),

the function F expresses the induced metric g, i.e. it holds

g = |F |2(du2 + dv2).

On the other hand, the function G is concerned with the second fundamental form h by the
following proposition.
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Proposition 3.16 ([46, Lemma 1]). Under the situation stated above, it holds

h = 2Re(FG′)(du2 − dv2)− 4Im(FG′)dudv,

where f ′ represents the derivative of a holomorphic function f .

Proof. By direct calculations, we have

fu = Re(F, iF, 2FG), fv = −Im(F, iF, 2FG)

and

fuu = Re(F ′, iF ′, 2F ′G′), fuv = −Im(F ′, iF ′, 2F ′G′), fvv = −Re(F ′, iF ′, 2F ′G′).

Then, the coefficients of the second fundamental form are

h11 = 2Re(FG′), h12 = −4Im(FG′), h22 = −2Re(FG′).

Thus, the proof is completed. 2

Remark 3.17. The pair (F,G) is called a Weierstrass data. For any θ ∈ R/2πZ,

fθ(s, t) = cos θ

(
Re

∫
(F, iF, 2FG)dw

)
+ sin θ

(
Im

∫
(F, iF, 2FG)dw

)
(3.7)

is a d-minimal surface in E0,2,1. As a remark, it follows

Re

∫ w

w0

(−iF, F,−2iFG)dw = Im

∫ w

w0

(F, iF, 2FG)dw.

Thus, d-minimal surfaces defined by the Weierstrass data (−iF,−iG) corresponds to the imag-
inary part of the formulas defined by the Weierstrass data (F,G). For θ ∈ R/2πZ, when we
consider the d-minimal surface whose Weierstrass data is (e−iθF, e−iθG), the given immersion
is called an associated family and, when we denote fθ, we have the S1-family of mappings.
Moreover, we see that

fθ(u, v) = Re

∫ w

w0

(e−iθF, ie−iθF, 2e−iθFG)dw

= cos θ

(
Re

∫ w

w0

(F, iF, 2FG)dw

)
+ sin θ

(
Im

∫ w

w0

(F, iF, 2FG)dw

)
.

In particular, when θ = 0, π/2, they correspond to the d-minimal surfaces given by the real part
and imaginary part from (F,G), respectively. Moreover, for any θ ∈ R/2πZ, since the induced
metric of fθ satisfies

((fθ)u, (fθ)u) = ((fθ)v, (fθ)v) = |e−iθF |2 = |F |2, ((fθ)u, (fθ)v) = 0,

the mapping (3.7) gives an isometric deformation between f = f0 and fθ. We call fπ/2 a
conjugate surface of f0.

Example.

(0) When (F,G) = (α, β) (α, β ∈ C, α ̸= 0), a non-degenerate plane appears.
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(1) When (F,G) = (w, 1/w), we have

f0(u, v) =

(
1

2
(u2 − v2),−uv, 2u

)
, fπ

2
(u, v) =

(
uv,

1

2
(u2 − v2), 2v

)
.

These are surfaces which have self-intersections and both have singularities called as cross-
caps at (u, v) = (0, 0) (refer to (a) of Figure 3.2).

(2) When (F,G) = (ew, e−w), we have

f0(u, v) = (eu cos v,−eu sin v, 2u), fπ
2
(u, v) = (eu sin v, eu cos v, 2v).

f0 is the d-minimal rotational surface given by Proposition 3.9 (3), and fπ
2
is the elliptic

helicoid of the second kind (refer to Figure 3.1).

(3) When (F,G) = (1, w), we have

f0(u, v) =
(
u,−v, u2 − v2

)
, fπ

2
(u, v) = (u, v, 2uv).

These both are minimal hyperbolic paraboloids (refer to Figure 3.1).

Remark 3.18. The above Weierstrass-type representation formula contains the ones known in
[4] or [30]. However, the formulas stated in [4] or [30] do not give singularities on surfaces. In
this sense, Theorem 3.15 is more complete. On the other hand, we can see that examples of
isotropic minimal surfaces which have isolated singularities in [36].

Here, we recall some Weierstrass(-type) representation formulas [3]. For simplicity, let F,G
be holomorphic functions in a simply-connected domain of the complex plane.

• Case of E3 = (R3, dx2 + dy2 + dz2), i.e. minimal surfaces.

fE3 = Re

∫
w
(F (1−G2), iF (1 +G2), 2FG)dw.

• Case of E3
1 = (R3, dx2 + dy2 − dz2), i.e. maximal surfaces.

fE3
1
= Re

∫
w
(F (1 +G2), iF (1−G2), 2FG)dw.

Thus, among minimal surfaces fE3 , maximal surfaces fE3
1
and d-minimal surfaces fE0,2,1 , we

obtain the relation

fE0,2,1 =
1

2

(
fE3 + fE3

1

)
,

where fE0,2,1 is the mapping given by Theorem 3.15.

3.4 Applications

Theorem 3.19. If (M, g) is a connected, two-dimensional complete Riemannian manifold, and
f : (M, g) → E0,2,1 is an isometric immersion, then (M, g) is isometric to the canonical two-
dimensional Euclidean space E2, and the image of f corresponds to an entire graph

{(u, v, F (u, v)) ∈ E0,2,1 | (u, v) ∈ R2},

where F is a C∞-function on R2.
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Proof. Let α, β, γ be the coordinate functions of f , i.e.

f(x) = (α(x), β(x), γ(x)) (x ∈M).

We assume that E2 is the canonical Euclidean space which treats (u, v) as the coordinates, and
define a C∞-map f0 : (M, g) → E2 as

f0(x) := (α(x), β(x)) (x ∈M).

f0 is an isometric immersion. We prove that f0 is an isometry. We remark that dimM =
dim E2 = 2 and, from the inverse function theorem, f0 is a local diffeomorphism. Thus, in order
to prove that f0 is an isometry, it is sufficient to prove that f0 is bijective.

For the surjectivity, since f0 is a locally homeomorphism, f0 is an open mapping. Thus, Imf0
is an open subset of E2. Next, since isometric mappings preserve the geodesic completeness,
from Hopf-Rinow’s theorem, (Imf0, du

2 + dv2) ⊂ E2 is complete, where we consider Imf0 as the
metric subspace of E2 naturally. Thus, Imf0 is a closed subset of E2. Therefore, since Imf0 is
an open and closed subset of E2, it holds Imf0 = E2, i.e. f0 :M → E2 is surjective.

For the injectivity, we denote the Riemannian distance function with respect to the metric
g by dM . For distinct points x, y ∈M , since (M, g) is complete, there exists a shortest geodesic
δ : [0, 1] → M such that δ(0) = x, δ(1) = y. Moreover, since f0 is isometric, f0 ◦ δ : [0, 1] → E2

is a geodesic in E2 which connects f0(x) and f0(y). For a curve c, when we denote the length of
c by L(c), we see that

0 < dM (x, y) = L(δ) = L(f0 ◦ δ) = |f0(x)− f0(y)|E2 .

This implies f0(x) ̸= f0(y), i.e. f0 :M → E2 is injective. As a consequence, we use the fact that
geodesics in E2 are straight lines for the last equation above.

In summary, since we obtain that f0 :M → E2 is a local isometry and bijection, it is simply
an isometry, that is, (M, g) is isometric to the canonical two-dimensional Euclidean space E2.
We denote the inverse of f0 by ϕ : E2 →M . For any (u, v) ∈ R2, we have

f(ϕ(u, v)) = (α(ϕ(u, v)), β(ϕ(u, v)), γ(ϕ(u, v)))

= ((f0 ◦ ϕ)(u, v), (γ ◦ ϕ)(u, v)) = (u, v, F (u, v)),

where F := γ ◦ϕ is a C∞-function on R2. Therefore, the image of f is the entire graph expressed
by a function F on R2. 2

Corollary 3.20. If f :M2 → E0,2,1 is a connected, complete d-minimal surface, then the image
of f corresponds to the entire graph

{(u, v, ψ(u, v)) ∈ E0,2,1 | (u, v) ∈ R2},

where ψ is a harmonic function on R2.

Proof. From Proposition 3.9 (1), it follows immediately. 2

Corollary 3.21. If M is a connected, compact two-dimensional manifold without boundary,
i.e. a connected closed surface, then there exists no non-degenerate immersion f :M → E0,2,1.

Proof. We prove the corollary by contradiction. We assume that there exists a non-degenerate
immersion f : M → E0,2,1. When we denote the induced metric by g, (M, g) is a connected,
compact Riemannian manifold. In particular, it is complete. From Theorem 3.19, as we have a
homeomorphism M ∼= R2, this contradicts the compactness of M . 2
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Let f :M → E0,2,1 be a non-degenerate immersion, and h its second fundamental form. We
recall that the Gauss-Codazzi equation of the non-degenerate immersion is given by the formula
(3.2), i.e.

(∇Xh)(Y, Z) = (∇Y h)(X,Z) (X,Y, Z ∈ Γ(TM)).

By using the flat local coordinates (u, v), the formula (3.2) is equivalent to

(h11)v = (h12)u, (h22)u = (h12)v, (3.8)

where hij are coefficients of h.

Theorem 3.22 (The fundamental theorem of non-degenerate surfaces, [38, Theorem 8.8]).
If U ⊂ R2 is a simply-connected domain with uv-coordinates, and h11, h12 and h22 are C∞-
functions on U , then there exists, up to affine isometry, a non-degenerate immersion whose
induced metric and second fundamental form are

du2 + dv2 and h11du
2 + 2h12dudv + h22dv

2

respectively, if and only if the functions hij satisfy the Gauss-Codazzi equation (3.8) of the
non-degenerate surface.

From now on, we consider four-dimensional Minkowski space E4
1 equipped with the Lorentzian

metric
⟨·, ·⟩1 := dx21 + dx22 + dx23 − dx24,

where (x1, x2, x3, x4) is the canonical coordinates of R4. We only deal with spacelike surfaces,
i.e. we require that the induced metric of surfaces is positive definite.

A surface M in E4
1 is called zero mean curvature if it holds H ≡ 0, where H is the mean

curvature vector field of M , and a surface M is called flat if it holds K ≡ 0, where K is the
Gaussian curvature of M . We abbreviate zero mean curvature to ZMC.

Remark 3.23. We give one of the motivations of studying flat and ZMC surfaces. We firstly
remark that flat minimal submanifolds in n-dimensional Euclidean space En and spacelike flat
ZMC surfaces in three dimensonal Minkowski space E3

1 are totally geodesic. On the other hand,
there exist timelike flat ZMC surfaces in E3

1 (See [40]). Thus, we are interested in the question
of whether spacelike flat ZMC surfaces in E4

1 should be trivial, that is, totally geodesic surfaces.
Next, spacelike flat ZMC surfaces in four-dimensional Minkowski space E4

1 are not always
planes. We also remark that spacelike flat ZMC surfaces in E4

2 are totally geodesic (See [23]).

Theorem 3.24. Let f :M2 → E4
1 be an immersion which gives a non-totally geodesic, connected

spacelike flat ZMC surface, and let h be the second fundamental form of M . We define a subset
E of M as

E := {x ∈M | hx = 0}.

Then, it holds the following statements:

(1) M \ E is an open dense subset of M , and it is connected.

(2) The normal bundle of M is flat, i.e. the normal curvature R⊥ ≡ 0.

(3) M is, by an isometry of E4
1, immersed in E0,2,1 ⊂ E4

1, and it is a d-minimal surface.
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Proof. For the claim (1), it is easily proved that E is a closed subset of M . Let U be the flat
coordinate neighborhood ofM . We define a C4-valued mapping φ = φ(w) for a complex variable
w = u+ iv ((u, v) ∈ U) as

φ(w) := fuu(u, v)− ifuv(u, v).

Then, by using that f is smooth and harmonic, we compute

∂φ

∂w̄
=

1

2
(fuuu + fuvv) +

i

2
(fuuv − fuvu) = 0,

and φ is a holomorphic mapping on U . Since M is not totally geodesic, we obtain the interior
of E is empty. Moreover, we see that zero points of φ correspond to elements of E. Therefore,
since the set of zero points for a holomorphic function is discrete, the set E is a discrete subset
of M which is made of isolated points. Since M is connected and E is discrete, it is proved for
M \ E to be connected.

For (2), see Corollary 1.2 in [4]. The claim (3) is proved by using Proposition 3.11 and
Proposition 3.5 in [4] 2

Remark 3.25. The set E is a discrete subset ofM consisting of isolated points. As an example
which satisfies E ̸= ∅, when we define a C∞-immersion f : R2 → E0,2,1 ⊂ E4

1 as

f(u, v) := (u, v, u3 − 3uv2, u3 − 3uv2),

it is a spacelike flat ZMC surface which satisfies h = 0 only at the origin (0, 0).

Let f :M → E0,2,1 be a d-minimal surface. By the isometric embedding ι given in Eq. (3.3),
we see that M is a spacelike flat ZMC surface in R4

1. M is a spacelike flat surface since ι is an
isometric embedding. To show that M is ZMC, we directly calculate the mean curvature vector
field of M . By using a harmonic function φ, since we can locally express f by

f(u, v) = (u, v, φ(u, v)),

from the composition of ι, we have

(ι ◦ f)(u, v) = (u, v, φ(u, v), φ(u, v)).

Thus, we compute that the mean curvature vector field H is

2H = (ι ◦ f)uu + (ι ◦ f)vv = (φuu + φvv)(0, 0, 1, 1) ≡ 0.

Therefore, we obtain the following corollary.

Corollary 3.26. Let X be the set of congruent classes of spacelike flat ZMC surfaces in E4
1,

and Y the set of equivalence classes of d-minimal surfaces in E0,2,1 by a subgroup

K :=


 T

0

0
0 0 c


∣∣∣∣∣∣∣ c ̸= 0, T ∈ O(2)

⋉R3 ⊂ Aut(E0,2,1, d).

Except for planes, we have that X and Y are in one-to-one correspondence.

Proof. It is obvious as long as we remark that this subgroup K corresponds to the subgroup
of isometries of E4

1 which preserves the degenerate subspace E0,2,1 ⊂ E4
1. Thus, it follows

immediately from Theorem 3.24. 2
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Notice that all 1-parameter subgroups of simply isotropic isometries have been already de-
scribed by [38] and [45].

Regarding minimal surfaces in E3, maximal surfaces in E3
1 and d-minimal surfaces in E0,2,1,

we have {
minimal, maximal,

and d-minimal surfaces

}
⊊ {spacelike ZMC surfaces in E4

1}.

In fact, for the spaces E3 and E3
1, there exist isometric embeddings defined by

E3 ∋ (x, y, z) 7→ (x, y, z, 0) ∈ E4
1, (3.9)

E3
1 ∋ (x, y, z) 7→ (x, y, 0, z) ∈ E4

1 (3.10)

respectively. Since minimal surfaces in E3 and maximal surfaces in E3
1 are ZMC surfaces in E4

1

via the above embeddings, we see that there quite fruitfully exist ZMC surfaces in E4
1. On the

other hand, there exist spacelike ZMC surfaces in E4
1 which are neither minimal, maximal nor

d-minimal. For example, see Section 4 in [4].
In general, singularity points appear in d-minimal surfaces. Refer to the figures from (a) to

(d) in Figure 3.2 as such examples. From the Whitney’s criterion, a cross-cap appears in (a),
and from the Saji’s criterion [37], a D−

4 -type singularity appears in (c). Other singularities have
been not identified and classified. In summary, we give Table 3.1 which compares properties
among each surfaces. We assume the connectedness of surfaces;

min. max. d-min.

Compact ∄ ∄ ∄ (Cor. 3.21)

Entire graph Planes only Planes only ∃ (Prop. 3.9 (2) (b))

Singularity ∄ ∃ ([22]) ∃
Complete ∃ Planes only ∃ (Thm. 3.19)

Gaussian curvature ≤ 0 ≥ 0 ≡ 0

Table 3.1: In terms of singularity, the symbol ∃ expresses that singularities appear, and in terms
of otherwise, ∃ expresses that there exist such surfaces which are not planes. In addition, the
abbreviations min., max. and d-min. are minimal surfaces in E3, maximal surfaces in E3

1 and
d-minimal surfaces in E0,2,1, respectively.

At the end of this section, we point out that there may exist the relation among minimal
surfaces in E3, maximal surfaces in E3

1 and d-minimal surfaces in E0,2,1.

Theorem 3.27 ([19, p.168]). Let n ≥ 3. If (M, g) is a two-dimensional oriented Riemannian
manifold, and f : (M, g) → En

1 = (Rn, dx21 + · · ·+ dx2n−1 − dx2n) is a ZMC isometric immersion,
then f is locally expressed by the following:

f = Re

∫
w
(ϕ1, · · · , ϕn−1, ϕn)dw,

where ϕ1, · · · , ϕn are holomorphic functions which satisfy

ϕ21 + · · ·+ ϕ2n−1 − ϕ2n = 0, |ϕ1|2 + · · ·+ |ϕn−1|2 − |ϕn|2 > 0.

From Theorem 3.27, we can define an immersion with S1-parameter as

f̃θ(u, v) = Re

∫
w
(F (1− cos 2θG2), iF (1 + cos 2θG2), 2 cos θFG, 2 sin θFG)dw.
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f̃θ implies a spacelike ZMC surface in four-dimensional Minkowski space for arbitrary θ ∈ S1.
In particular, through embeddings of formulas (3.3), (3.9) and (3.10), f̃0, f̃π/2 and f̃π/4 coincide
with the Weierstrass representation formulas of minimal, maximal and d-minimal surfaces in
E3,E3

1 and E0,2,1, respectively. See also Remark 3.18. As a remark, we compute the induced
metric gθ of f̃θ as

gθ = (1 + cos 2θ|G|2)2|F |2(du2 + dv2).

Thus, we should note that this deformation of surfaces is not isometric. However, there may be
applications in the study of singularities of d-minimal surfaces since a classification of singular
points that appear on maximal surfaces is completed in generic situation (See [22]).

In the end of this section, we give a visualization of ZMC surfaces in four-dimensional
Minkowski space.

Let θ ∈ [0, π/2]. We define

R3(θ) := (R3, dx2 + dy2 + cos 2θdz2).

In particular, we see that

R3(0) = (R3, dx2 + dy2 + dz2) = E3,

R3
(π
2

)
= (R3, dx2 + dy2 − dz2) = E3

1,

R3
(π
4

)
= (R3, dx2 + dy2 + 0dz2) = E0,2,1.

We define a three-dimensional subspace in E4
1 as follows

V (θ) := ⟨(0, 0, sin θ, cos θ)⟩⊥R ⊂ E4
1.

Proposition 3.28. As linear spaces with metrics, we have an isometric isomorphism

V (θ) ∼= R3(θ).

Proof. The following map

R3(θ) ∋ (x, y, z) 7→ (x, y, cos θz, sin θz) ∈ V (θ)

is an isometric isomorphism between R3(θ) and V (θ). Thus, the claim holds. 2

From Proposition 3.28, we can prove the following.

Corollary 3.29. Fix θ ∈ [0, π/2]. If U ⊂ C is a simply-connected domain and F,G are
holomorphic functions on U . Then, for any w = u+ iv ∈ U , the mapping

fθ(u, v) = Re

∫
w
(F (1− cos 2θG2), iF (1 + cos 2θG2), 2FG)dw

gives a conformal zero mean curvature surface in R3(θ).

From Corollary 3.29, we realize a visualization of the deformation of ZMC surfaces in E4
1 as

follows

f̃θ(u, v) = Re

∫
w
(F (1− cos 2θG2), iF (1 + cos 2θG2), 2 cos θFG, 2 sin θFG)dw

since R3(θ) is a three-dimensional vector space. Here, we see that the mapping f̃θ is ZMC
because of Theorem 3.27.
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Figure 3.2: (a) Upper-left: (F,G) = (w, 1/w). (b) Upper-right: (F,G) = (w2, 1/w2). (c) Lower-
left: (F,G) = (w2, 1/w). (d) Lower-right: (F,G) = (w,w). Singularities appear at the origin
w = 0. The rank of the Jacobi matrix is one for upper figures and that is zero for lower figures.
The red, green and blue axis correspond to x-axis, y-axis and z-axis, respectively.
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Chapter 4

Totally umbilical submanifolds in
pseudo-Riemannian space forms

In this chapter, we give a complete classification of totally umbilical submanifolds in pseudo-
spheres or pseudo-hyperbolic spaces, that is, we classify congruent classes of full totally umbilical
submanifolds.

There exist researches which characterizes the totally umbilicity of submanifolds in pseudo-
Riemannian space forms [2, 12, 13, 47, 52]. Ahn, Kim and Kim [1] gave a complete classification
of totally umbilical submanifolds in pseudo-Euclidean spaces, which are flat space forms. For
non-flat cases, there exist some recent researches [10] by Chen. In [10, Propositions 3.7, 3.8,
Chapter 3], the following is mentioned: If ϕ : Mm

s → Snp (1) is a totally umbilical isometric
immersion, then it is congruent to an open portion of one of the following submanifolds:

• Sms (r2) → Sm+1
s (1) ; x 7→ (x,

√
1− r2) (0 < r ≤ 1),

• Sms (r2) → Sm+1
s+1 (1) ; x 7→ (

√
r2 − 1, x) (r ≥ 1),

•Hm
s (−r2) → Sm+1

s (1) ; x 7→ (x,
√
1 + r2) (r > 0),

• Em
s → Sm+2

s+1 (1) ; x 7→
(
r⟨x, x⟩s + rb− r

4
, rx,

√
1 + br2, r⟨x, x⟩s − rb+

r

4

)
(r > 0, br2 ≥ −1),

• Em
s → Sm+2

s+2 (1) ; x 7→
(
r⟨x, x⟩s + rb− r

4
,
√
br2 − 1, rx, r⟨x, x⟩s + rb+

r

4

)
(r > 0, br2 ≥ 1).

This classification of totally umbilical submanifolds in Snp (1) is insufficient. In fact, the
following example is not contained in the above list

ψ : Sms (1) → Sm+2
s+1 (1) ; x 7→ (1, x, 1). (4.1)

When we compute the mean curvature vector field H of ψ, we get

H = (1, 0, · · · , 0, 1) ∈ Em+3
s+1 .

Thus, H is a non-zero lightlike vector field. Hence ψ is non-totally geodesic. Moreover, there
are some observations for this example (See Section 4.4). It is obvious that the co-dimension is
two and the co-index is one.

Dajczer and Fornari in [14] showed that let ϕ : Sms (1) → Sm+n
s (1) be an isometric immersion,

then ϕ is totally geodesic, where m ≥ 2 and 1 ≤ n ≤ m − s − 1. In addition, Dajczer and
Rodriguez in [15] showed the following rigidity theorem: If ϕ : Sms (1) → Sm+2

s+1 (1) is an isometric
immersion with m− s ≥ 4. If the set of totally geodesic points does not disconnect Sms (1), then
ϕ is congruent to an isometric immersion of the following type;

Sms (1) ∋ x 7→ (f(x), x, f(x)) ∈ Sm+2
s+1 (1), (4.2)
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where f : Sms (1) → R is a smooth function. For any a ∈ R \ {0}, the following isometric
immersions

ψa : Sms (1) → Sm+2
s+1 (1) ; x 7→ (a, x, a)

are congruent to the above ψ = ψ1. Namely, co-dimension two totally umbilical immersions ψa

are in a special case that f is a non-zero constant function for the mapping (4.2). Moreover, the
set of totally geodesic points is empty since ψa is not totally geodesic but totally umbilical.

Moreover, we consider moduli spaces of totally umbilical submanifolds. As a consequence,
we show that some moduli spaces of isometric immersions between space forms which are of the
same constant curvature are non-Hausdorff.

As applications, we obtain some totally umbilical lightlike submanifolds in non-flat pseudo-
Riemannian space forms. A classification of totally umbilical lightlike submanifolds in pseudo-
Riemannian space forms is an open problem.

At the end of this thesis, we devote in Section 4.6 to the study of parallel isometric im-
mersions. As a consequence, we see that the existence of marginally trapped parallel isometric
immersions from an indefinite symmetric R-space into a pseudo-sphere or a pseudo-hyperbolic
space. An isometric immersion between pseudo-Riemannian manifolds is marginally trapped if
the mean curvature vector field is not zero at arbitrary point, but its norm vanishes identically.
This never occurs in the Riemannian geometry. This chapter is based on [42].

4.1 Preparations in Chapter 4

The followings are well-known results in pseudo-Riemannian geometry.

Theorem 4.1 ([3, Proposition 4, Chapter 1]). Any non-degenerate affine subspace in the
pseudo-Euclidean space En

p is a totally geodesic submanifold. Conversely, any connected non-
degenerate totally geodesic submanifold in En

p is an open subset of a non-degenerate affine
subspace.

Remark 4.2. Let Πm
s,t,r be a canonical r-lightlike m-plane in En

p with signature (s, t, r) given
by the formula (2.1). From Theorem 4.1, arbitrary subspaces V ⊂ En

p are congruent to non-
degenerate subspaces Em

s , or degenerate subspaces Πm
s,t,r up to isometry of En

p .

We define an n-dimensional lightcone with index p in En+1
p+1 as follows

Λn
p := {x ∈ En+1

p+1 \ {0} | ⟨x, x⟩p+1 = 0}.

The lightcone Λn
p is a totally umbilical 1-lightlike hypersurface in En+1

p+1 , that is, the induced
metric on Λn

p is degenerate (See [5]).
We recall totally geodesic submanifolds in non-flat pseudo-Riemannian space forms. We

define a pseudo m-subsphere of Snp (r2) by{
(x1, · · · , xs, 0 · · · , 0, xs+1, · · · , xm+1) ∈ Snp (r2)

} ∼=pRm Sms (r2).

Analogously, we define a pseudo-hyperbolic m-subspace of Hn
p (−r2) by{

(x1, · · · , xs+1, 0 · · · , 0, xs+1, · · · , xm+1) ∈ Hn
p (−r2)

} ∼=pRm Hm
s (−r2).

Then, the following holds:

Theorem 4.3 ([10, Proposition 3.3, 3.4, Chapter 3]). Up to isometry, an m-dimensional non-
degenerate totally geodesic submanifold of an n-dimensional pseudo-sphere Snp (r2) is an open
portion of a pseudo m-subsphere. Up to isometry, an m-dimensional non-degenerate totally
geodesic submanifold of an n-dimensional pseudo-hyperbolic space Hn

p (−r2) is an open portion
of a pseudo-hyperbolic m-subspace.
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Here, we refer the classification of totally umbilical submanifolds in pseudo-Euclidean spaces.

Theorem 4.4 ([1, Proposition 3.1], [28, Theorem 1.4]). If ϕ : Mm
s → En

p is a totally umbilical
isometric immersion, and H is its mean curvature vector field, then the image is congruent to
an open portion of one of the following submanifolds:

(1) a totally geodesic pseudo-Euclidean subspace Em
s ⊂ En

p (H = 0),

(2) a pseudo m-sphere Sms (r2) ↪→ Em+1
s ⊂ En

p (⟨H,H⟩p > 0),

(3) a pseudo-hyperbolic m-space Hm
s (−r2) ↪→ Em+1

s+1 ⊂ En
p (⟨H,H⟩p < 0),

(4) a flat marginally trapped submanifold Um
s defined by

Em
s → Em+2

s+1 ⊂ En
p ; x 7→

(
⟨x, x⟩s +

1

4
, x, ⟨x, x⟩s −

1

4

)
(H ̸= 0, ⟨H,H⟩p = 0).

An isometric immersion ϕ : Mm
s → Mn

p (ε) is called full if the image ϕ(M) is not contained
in any non-degenerate totally geodesic hypersurface in Mn

p (ε).

Lemma 4.5 (Erbacher–Magid Reduction Theorem, [17, Theorem], [28, Theorem 0.2]). Let
ϕ :Mm

s → En
p be an isometric immersion. For each x ∈Mm

s , we define

N0(x) := {ξ ∈ T⊥
x M | Aξ = 0}

and define a first normal space as the orthogonal subspace of N0(x) in T⊥
x M , i.e.

N1(x) = (N0(x))⊥.

If a normal subbundle N1 =
∪

x∈M N1(x) ⊂ T⊥M is parallel with respect to the normal connec-
tion, then there exists a geodesically complete (m + k)-dimensional (possibly lightlike) totally
geodesic submanifold E∗ ⊂ En

p such that ϕ(M) ⊂ E∗, where k = rank N1.

Remark 4.6. If Mm is a geodesically complete m-dimensional (possibly lightlike) totally
geodesic submanifold in a pseudo-Euclidean space En

p , then, up to isometric translation, Mm

coincides with a subspace of En
p because of the completeness. This claim holds by the fact that

any geodesic of Mm is a geodesic of En
p , i.e. a line segment.

Lemma 4.7 ([10, Corollary 3.1, Chapter 3]). Let ϕ :Mm
s → Snp (1) (resp. Hn

p (1)) be an isometric

immersion, and ι : Snp (1) → En+1
p (resp. En+1

p+1 ) the canonical inclusion map. When we set a
mapping f = ι ◦ ϕ, the followings hold:

(1) ϕ has parallel mean curvature vector if and only if f has parallel mean curvature vector,

(2) ϕ is parallel if and only if f is parallel,

(3) ϕ is totally umbilical if and only if f is totally umbilical.

See Section 1.3 in this thesis for the definition of parallel isometric immersions. The followings
are main results in this chapter.

Theorem 4.8. If ϕ :Mm
s → Snp (1) is a full totally umbilical isometric immersion, ḡ is the metric

of Snp (1), and H is its mean curvature vector field, then, up to isometry, the image is congruent
to an open portion of one of the followings:

(1) Sms (1) → Sm+1
s (1) ⊂ Snp (1) ; x 7→ (x, 0) (totally geodesic, H = 0),
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(2) Sms (1) → Sm+1
s+1 (1) ⊂ Snp (1) ; x 7→ (0, x) (totally geodesic, H = 0),

(3) Sms
(
r2
)
→ Sm+1

s (1) ⊂ Snp (1) ; x 7→ (x,
√
1− r2) (0 < r < 1, ḡ(H,H) > 0),

(4) Sms
(
r2
)
→ Sm+1

s+1 (1) ⊂ Snp (1) ; x 7→ (
√
r2 − 1, x) (r > 1, −1 < ḡ(H,H) < 0),

(5) Sms (1) → Sm+2
s+1 (1) ⊂ Snp (1) ; x 7→ (1, x, 1) (H ̸= 0, ḡ(H,H) = 0),

(6) Hm
s

(
−r2

)
→ Sm+1

s+1 (1) ⊂ Snp (1) ; x 7→ (x,
√
1 + r2) (r > 0, ḡ(H,H) < −1),

(7) Em
s → Sm+1

s+1 (1) ⊂ Snp (1) ; x 7→
(
⟨x, x⟩s −

3

4
, x, ⟨x, x⟩s −

5

4

)
(ḡ(H,H) = −1).

Moreover, whenMm
s is geodesically complete, the image globally coincides with one of the above

list (1)–(7).

Theorem 4.9. If ϕ : Mm
s → Hn

p (−1) is a full totally umbilical isometric immersion, ḡ is the
metric of Snp (1), and H is its mean curvature vector field, then, up to isometry, the image is
congruent to an open portion of one of the followings:

(1) Hm
s (−1) → Hm+1

s (−1) ⊂ Hn
p (−1) ; x 7→ (x, 0) (totally geodesic, H = 0),

(2) Hm
s (−1) → Hm+1

s+1 (−1) ⊂ Hn
p (−1) ; x 7→ (0, x) (totally geodesic, H = 0),

(3) Hm
s

(
−r2

)
→ Hm+1

s+1 (−1) ⊂ Hn
p (−1) ; x 7→ (

√
1− r2, x) (0 < r < 1, ḡ(H,H) < 0),

(4) Hm
s

(
−r2

)
→ Hm+1

s (−1) ⊂ Hn
p (−1) ; x 7→ (x,

√
r2 − 1) (r > 1, 0 < ḡ(H,H) < 1),

(5) Hm
s (−1) → Hm+2

s+1 (−1) ⊂ Hn
p (−1) ; x 7→ (1, x, 1) (H ̸= 0, ḡ(H,H) = 0),

(6) Sms
(
r2
)
→ Hm+1

s (−1) ⊂ Hn
p (−1) ; x 7→ (

√
1 + r2, x) (r > 0, ḡ(H,H) > 1),

(7) Em
s → Hm+1

s (−1) ⊂ Hn
p (−1) ; x 7→

(
⟨x, x⟩s +

5

4
, x, ⟨x, x⟩s +

3

4

)
(ḡ(H,H) = 1).

Moreover, whenMm
s is geodesically complete, the image globally coincides with one of the above

list (1)–(7).

4.2 Proof of Theorem 4.8 and 4.9

Since the argument is parallel, we only give a proof in the case of pseudo-spheres. We assume
that ϕ : Mm

s → Snp (1) is a totally umbilical isometric immersion, and ι : Snp (1) ↪→ En+1
p is

the inclusion. Then, f := ι ◦ ϕ : Mm
s → En+1

p is totally umbilical because of Lemma 4.7 (3).

When we set h̃ and H̃ as the second fundamental form and the mean curvature vector field of
f , respectively, we have, for any X,Y ∈ Γ(TM),

h̃(X,Y ) = ⟨X,Y ⟩pH̃.

In other words, when we set Ã as the shape operator of f , we have

Ãξ(X) = ⟨ξ, H̃⟩pX

for any ξ ∈ Γ(T⊥M), X ∈ Γ(TM). Therefore, we have

N1 = Span{H̃}.
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In addition, if ϕ is totally umbilical, then ϕ has parallel mean curvature from the Codazzi
equation (1.6) of ϕ. By using Lemma 4.5, there exists an (m+ 1)-dimensional complete totally
geodesic submanifold E∗ ⊂ En+1

p such that f(M) ⊂ E∗. We see that ϕ(M) ⊂ Snp (1) ∩ E∗. By

Theorems 2.16 and 4.1, the subspace E∗ is congruent to one of Em+1
s ,Em+1

s+1 ,Π
m+1
s,m−s,1. Thus, it

suffices to check these three cases of E∗. Cohesively we use the formal notation s̄ ∈ {s, s + 1}.
Then, we have only to check the two possibilities Em+1

s̄ and Πm+1
s,m−s,1.

Here, if we should take translations of E∗ into account, the direction of translations has to
be transverse to E∗. When E∗ is congruent to Em+1

s̄ , i.e. in the non-degenerate case, taking
a vector v ∈ (Em+1

s̄ )⊥, we have only to consider E∗ = Em+1
s̄ + v. When E∗ is congruent to

Πm+1
s,m−s,1, i.e. in the degenerate case, (Πm+1

s,m−s,1)
⊥ is no longer a complementary of Πm+1

s,m−s,1.

From the viewpoint of lightlike geometry in Chapter 2, by regarding Πm+1
s,m−s,1 as a 1-lightlike

submanifold in En
p , we have decompositions

Πm+1
s,m−s,1 = RadΠm+1

s,m−s,1 ⊕ Em
s ,

(Πm+1
s,m−s,1)

⊥ = trΠm+1
s,m−s,1 ⊕ En−m

p−s−1,

En+1
p = Πm+1

s,m−s,1 ⊕ En−m
p−s−1 ⊕ trΠm+1

s,m−s,1,

where we define

RadΠm+1
s,m−s,1 := SpanR{ξ := (1, 0, · · · , 0, 1) ∈ Πm+1

s,m−s,1},

trΠm+1
s,m−s,1 := SpanR

{
N :=

1

2
(−1, 0, · · · , 0, 1) ∈ (Πm+1

s,m−s,1)
⊥
}

and ξ,N satisfy ⟨ξ, ξ⟩p = ⟨N,N⟩p = 0, ⟨ξ,N⟩p = 1. In the case, taking a vector v ∈ En−m
p−s−1 ⊕

trΠm+1
s,m−s,1, we have only to consider E∗ = Πm+1

s,m−s,1 + v.
Under the above preparation and by isometry of Snp (1), we consider sequences of subspaces

of En+1
p ;

Em+1
s̄ + vS ⊂ Em+2

s̄ ⊂
=

E∗ = Em+1
s̄ + vT ⊂ Em+2

s̄+1 ⊂ En+1
p ,

=

Em+1
s̄ + vL ⊂ Em+3

s̄+1 ⊂

(4.3)

Πm+1
s,m−s,1 + vS ⊂ Em+3

s+1

= ⊂

= Πm+1
s,m−s,1 + vT ⊂ Em+3

s+2 ⊂
E∗ En+1

p ,

= Πm+1
s,m−s,1 + vL ⊂ Em+4

s+2 ⊂

= ⊂

Πm+1
s,m−s,1 +N ⊂ Em+2

s+1

(4.4)

where, by isometry of Snp (1), vS , vT and vL are given by

vS = (0, · · · , 0︸ ︷︷ ︸
s̄

, 0, · · · , 0, ρ) ∈ Em+2
s̄ (ρ ≥ 0), (4.5)

vT = (ρ, 0, · · · , 0︸ ︷︷ ︸
s̄+1

, 0, · · · , 0) ∈ Em+2
s̄+1 (ρ ≥ 0), (4.6)

vL = (1, 0, · · · , 0︸ ︷︷ ︸
s̄+1

, 0, · · · , 0, 1) ∈ Em+3
s̄+1 (4.7)
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in the non-degenerate case (4.3),

vS = (0, 0, · · · , 0︸ ︷︷ ︸
s

, 0, · · · , 0, ρ, 0) ∈ Em+3
s+1 (ρ ≥ 0), (4.8)

vT = (0, ρ, 0, · · · , 0︸ ︷︷ ︸
s+1

, 0, · · · , 0, 0) ∈ Em+3
s+2 (ρ ≥ 0), (4.9)

vL = (0, 1, 0, · · · , 0︸ ︷︷ ︸
s+1

, 0, · · · , 0, 1, 0) ∈ Em+4
s+2 (4.10)

in the degenerate case (4.4). The proof is completed by checking the intersection of Snp (1) and
E∗ in each case (4.5)–(4.10). 2

4.3 Observation 1 : Riemannian or Lorentzian cases

We first restore the classification of totally umbilical submanifolds in spheres and hyperbolic
spaces, i.e. Riemannian case p = 0.

• Totally umbilical submanifolds of Sn(1):

(1) Sm(1) → Sm+1(1) ; x 7→ (x, 0) (totally geodesic);

(2) Sm
(
r2
)
→ Sm+1(1) ; x 7→ (x,

√
1− r2) (0 < r < 1).

• Totally umbilical submanifolds of Hn(−1):

(1) Hm(−1) → Hm+1(−1) ; x 7→ (x, 0) (totally geodesic);

(2) Hm
(
−r2

)
→ Hm+1(−1) ; x 7→ (x,

√
r2 − 1) (r > 1);

(3) Sm
(
r2
)
→ Hm+1(−1) ; x 7→ (

√
1 + r2, x) (r > 0);

(4) Em → Hm+1(−1) ; x 7→
(
||x||2 + 5

4
, x, ||x||2 + 3

4

)
.

In de Sitter and anti-de Sitter spacetimes, i.e. Lorentzian case p = 1, we obtain the followings:

• Totally umbilical submanifolds of dSn(1):

(1) dSm(1) → dSm+1(1) ; x 7→ (x, 0) (totally geodesic);

(2) Sm(1) → dSm+1(1) ; x 7→ (0, x) (totally geodesic);

(3) dSm
(
r2
)
→ dSm+1(1) ; x 7→ (x,

√
1− r2) (0 < r < 1);

(4) Sm
(
r2
)
→ dSm+1(1) ; x 7→ (

√
r2 − 1, x) (r > 1);

(5) Sm(1) → dSm+2(1) ; x 7→ (1, x, 1);

(6) Hm
(
−r2

)
→ dSm+1(1) ; x 7→ (x,

√
1 + r2) (r > 0);

(7) Em → dSm+1(1) ; x 7→
(
||x||2 − 3

4
, x, ||x||2 − 5

4

)
.

• Totally umbilical submanifolds of AdSn(−1):

(1) Hm(−1) → AdSm+1(−1) ; x 7→ (x, 0) (totally geodesic);

(2) AdSm(−1) → AdSm+1(−1) ; x 7→ (0, x) (totally geodesic);

(3) Hm
(
−r2

)
→ AdSm+1(−1) ; x 7→ (

√
1− r2, x) (0 < r < 1);
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(4) AdSm(−r2) → AdSm+1(−1) ; x 7→ (x,
√
r2 − 1) (r > 1);

(5) Hm(−1) → AdSm+2(−1) ; x 7→ (1, x, 1);

(6) dSm
(
r2
)
→ AdSm+1(−1) ; x 7→ (

√
1 + r2, x) (r > 0);

(7) Lm → AdSm+1(−1) ; x 7→
(
⟨x, x⟩1 +

5

4
, x, ⟨x, x⟩1 +

3

4

)
.

Remark that || · || is the canonical Euclidean norm of Em, i.e. ||x||2 := ⟨x, x⟩0.

4.4 Observation 2 : Totally umbilical lightlike submanifolds

As a by-product of the proof of Theorem 4.8 and 4.9, we obtain the following lightlike subman-
ifolds in non-flat space forms.

Proposition 4.10. Let m ≥ 2. The followings are full totally umbilical lightlike submanifolds
in a pseudo-sphere Snp (1).

(1) Sm−1
s (1)× E0,0,1 → Sm+1

s+1 (1) ; (x, t) 7→ (t, x, t) (totally geodesic),

(2) Sm−1
s (r2)× E0,0,1 → Sm+2

s+1 (1) ; (x, t) 7→ (t, x,
√
1− r2, t) (0 < r < 1),

(3) Sm−1
s (r2)× E0,0,1 → Sm+2

s+2 (1) ; (x, t) 7→ (t,
√
r2 − 1, x, t) (r > 1),

(4) Hm−1
s (−r2)× E0,0,1 → Sm+2

s+1 (1) ; (x, t) 7→ (t, x,
√
1 + r2, t) (r > 0),

(5) Λm
s → Sm+1

s+1 (1) ; x 7→ (x, 1),

(6) Λm
s × E0,0,1 → Sm+2

s+2 (1) ; (x, t) 7→ (t, x, 1, t),

(7) Sm−1
s (1)× E0,0,1 → Sm+3

s+2 (1) ; (x, t) 7→ (t, 1, x, 1, t).

We remark that the above (6) is 2-lightlike, and others are 1-lightlike.

Proposition 4.11. Let m ≥ 2. The followings are full totally umbilical lightlike submanifolds
in a pseudo-hyperbolic space Hn

p (−1).

(1) Hm−1
s (−1)× E0,0,1 → Hm+1

s+1 (−1) ; (x, t) 7→ (t, x, t) (totally geodesic),

(2) Hm−1
s (−r2)× E0,0,1 → Hm+2

s+1 (−1) ; (x, t) 7→ (t,
√
1− r2, x, t) (0 < r < 1),

(3) Hm−1
s (−r2)× E0,0,1 → Hm+2

s+2 (−1) ; (x, t) 7→ (t, x,
√
r2 − 1, t) (r > 1),

(4) Sm−1
s (r2)× E0,0,1 → Hm+2

s+1 (−1) ; (x, t) 7→ (t,
√
1 + r2, x, t) (r > 0),

(5) Λm
s → Hm+1

s+1 (−1) ; x 7→ (1, x),

(6) Λm
s × E0,0,1 → Hm+2

s+2 (−1) ; (x, t) 7→ (t, 1, x, t),

(7) Hm−1
s (1)× E0,0,1 → Hm+3

s+2 (−1) ; (x, t) 7→ (t, 1, x, 1, t).

We remark that the above (6) is 2-lightlike, and others are 1-lightlike.
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A classification problem of totally umbilical lightlike submanifolds in pseudo-Riemannin
space forms is open. It is hard to classify totally umbilical submanifolds in pseudo-Riemannian
space forms. We state one of the evidences below. Let s be a non-negative integers. We consider
the following example.

E∗ := Πm+2
s,m−s,2 +N ⊂ Em+4

s+2

=

{(
w − 1

2
, t, u1, · · · , us, v1, · · · , vt, t, w +

1

2

) ∣∣∣∣ t, ui, vj , w ∈ R
}
,

where N = 1
2(−1, 0, · · · , 0, 1) ∈ Em+4

s+2 . Then, we see that

Sm+1 := Sm+3
s+2 (1) ∩ E∗ =

{(
w − 1

2
, x, w +

1

2

) ∣∣∣∣∣ −
(
w − 1

2

)2

+ ⟨x, x⟩s+1 +

(
w +

1

2

)2

= 1

}

=

{(
−1

2
⟨x, x⟩s+1, x, 1−

1

2
⟨x, x⟩s+1

) ∣∣∣∣ x ∈ Πm+1
s,m−s,1

}
∼=Rlm Es,m−s,1,

where we set x = (t, u1, · · · , us, v1, · · · , vt, t) ∈ Πm+1
s,m−s,1 ⊂ Em+2

s+1 . Moreover, it holds

Sm+1 ⊂ Hm+2 :=

{(
−1

2
⟨x̃, x̃⟩s+1, x̃, 1−

1

2
⟨x̃, x̃⟩s+1

) ∣∣∣∣ x̃ ∈ Em+2
s+1

}
∼=pRm Em+2

s+1

⊂ Sm+3
s+2 (1),

where we set x̃ = (u0, u1, · · · , us, v1, · · · , vt, v0) ∈ Em+2
s+1 . Since Πm+1

s,m−s,1 is a flat totally geodesic

1-lightlike hypersurface in Em+2
s+1 , and Hm+2 is a flat totally umbilical hypersurface in Sm+2

s+2 (1),

we can claim that Sm+1 is a flat totally umbilical 2-lightlike submanifold in Sm+3
s+2 (1). We remark

that Hm+2 is congruent to (7) in Theorem 4.8. The submanifold Mm+1 is an example which
cannot be obtained by the proof of Theorem 4.8 and 4.9. If we consider the higher co-dimensional
case, we can construct a 1-parameter family of flat totally umbilical lightlike submanifolds

E0,m,1 → Sm+3
2 (1)

∈ ∈

(x, r) 7→
(
−1

2
||x||2 cos θ − (r − θ) sin θ,−1

2
||x||2 sin θ + (r − θ) cos θ, x

1

2
(2− ||x||2) sin θ + (r − θ) cos θ,

1

2
(2− ||x||2) cos θ − (r − θ) sin θ

)
,

where θ ∈ R and we set (x, r) ∈ E0,m,1 = Em ⊕E0,0,1. When θ = 0, we obtain the case of Sm+1.
Therefore, it is expected that there are many other examples which are given by the intersection
a pseudo-sphere and an affine subspace and a higher dimension in a pseudo-Euclidean space.
On the other hand, the following result is known:

Proposition 4.12 ([5, Proposition 5.3, Chapter 4]). Any lightlike surface M2 of a three-
dimensional Lorentzian manifold is either totally umbilical or totally geodesic.

This is the reason why a classification of totally umbilical lightlike submanifolds is much
more complicated than that of totally umbilical non-degenerate submanifolds.

We will observe co-dimension two and co-index one totally umbilical submanifolds in Theo-
rems 4.4, 4.8 and 4.9. When we define the hyperplane in Em+2

s+1 by

Nm+1(0) :=

{(
t+

1

4
, x, t− 1

4

)
∈ Em+2

s+1

∣∣∣∣ t ∈ R, x ∈ Em
s

}
∼=Rlm Es,m−s,1.
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This is a totally geodesic 1-lightlike hypersurface in Em+2
s+1 . We can regard a flat marginally

trapped submanifold Um
s in Theorem 4.4 as a hypersurface in Nm+1(0) by

Em
s ∋ x 7→

(
⟨x, x⟩s +

1

4
, x, ⟨x, x⟩s −

1

4

)
∈ Nm+1(0) ⊂ Em+2

s+1 . (4.11)

In addition, we can also regard as a hypersurface in the lightcone Λm+1
s by

Em
s ∋ x 7→

(
⟨x, x⟩s +

1

4
, x, ⟨x, x⟩s −

1

4

)
∈ Λm+1

s ⊂ Em+2
s+1 .

For ε = ±1, the hypersurface in Mm+2
s+1 (ε) defined by

Nm+1(ε) := {(t, x, t) ∈ Mm+2
s+1 (ε) | t ∈ R, x ∈ Mm

s (ε)} ∼=Rlm Mm
s (ε)× E0,0,1

is a totally geodesic 1-lightlike hypersurface in Mm+2
s+1 (ε). For the co-dimension two and co-index

one totally umbilical isometric embedding in given (4.1), say ψ, in Theorem 4.8 and 4.9, we can
regard ψ as a hypersurface in Nm+1(1), i.e.

ψ : Mm
s (ε) ∋ x 7→ (1, x, 1) ∈ Nm+1(ε) ⊂ Mm+2

s+1 (ε).

This is an analogue of the consideration of the mapping (4.11).
From Proposition 4.10 and 4.11, isometric embeddings of Λm+1

s into Mm+2
s+1 (ε)

χ : Λm+1
s → Mm+2

s+1 (ε) ;

{
x 7→ (x, 1) (ε = 1),

x 7→ (1, x) (ε = −1)

are totally umbilical 1-lightlike hypersurfaces. On the other hand, non-flat space forms Mm
s (ε)

are isometrically embedded in the lightcone Λm+1
s as follows

ρ : Mm
s (ε) → Λm+1

s ;

{
x 7→ (1, x) (ε = 1),

x 7→ (x, 1) (ε = −1).

For ψ, we can see that there exists a nested structure of space forms via the lightcone

ψ = χ ◦ ρ : Mm
s (ε)

ρ
↪→ Λm+1

s

χ
↪→ Mm+2

s+1 (ε) ; x 7→ (1, x, 1).

In summary, we can find out the following relation among pseudo-Riemannian space forms and
lightcones:

Figure 4.1: Totally umbilical inclusion relations.
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4.5 Application 1 : The moduli space of isometric immersions

Let Mm
s , M̄

n
p be pseudo-Riemannian manifolds, and g, ḡ their pseudo-Riemannian metrics, re-

spectively. We define a mapping space

{ϕ ∈ C∞ (
Mm

s , M̄
n
p

)
| ϕ∗ḡ = g}, (4.12)

where C∞ (
Mm

s , M̄
n
p

)
denotes the set of all smooth mapping from Mm

s into M̄n
p . We introduce

the compact open C∞-topology in the set and consider it as a topological space. The isometric
group of M̄n

p naturally acts on this mapping space (4.12). We call the quotient space by the
action the moduli space for isometric immersions ϕ :Mm

s → M̄n
p , denoted by M(Mm

s , M̄
n
p ). We

shall denote the moduli space for totally umbilical isometric immersions by Mumb(M
m
s , M̄

n
p ).

It is obvious that Mumb(M
m
s , M̄

n
p ) ⊂ M(Mm

s , M̄
n
p ) as a subspace.

Proposition 4.13. If ε = 0,±1, then it holds

Mumb

(
Mm

s (ε),Mn
p (ε)

) homeo∼=

{
{∗} (n = m+ 1, p = s, s+ 1, or n = m+ 2, p = s) ,

(X,OX) (n ≥ m+ 2, p ≥ s+ 1) ,

where {∗} is the one-point space, and a topological space (X,OX) is defined by

X := {g, u}, OX := {∅, {u}, X}.

Here the elements g and u ofX express the congruent classes of totally geodesic isometric immer-
sions and non-totally geodesic, totally umbilical isometric immersions, respectively. Moreover,
the space (X,OX) is connected, non-Hausdorff.

Proof. From Theorem 4.4, 4.8 and 4.9, the set Mumb

(
Mm

s (ε),Mn
p (ε)

)
is a one-point set when

n = m+ 1, p = s, s+ 1 or n = m+ 2, p = s, and a two-point set when n ≥ m+ 2, p ≥ s+ 1. In
the case n ≥ m+2, p ≥ s+1, we consider the following totally umbilical isometric immersions,
for each a ∈ R,

ψa : Mm
s (ε) → Mm+2

s+1 (ε) ; x 7→ (a, x, a) (ε = ±1),

ψa : Mm
s (ε) → Mm+2

s+1 (ε) ; x 7→ (a⟨x, x⟩s, x, a⟨x, x⟩s) (ε = 0).

They are congruent to ψ1 if a ̸= 0, and a totally geodesic isometric immersion ψ0 if a = 0. On
the other hand, it is obvious that

lim
a→0

ψa = ψ0.

Therefore, Mumb

(
Mm

s (ε),Mn
p (ε)

)
is not a discrete space. Since mean curvature vector fields

H0,H1 of ψ0, ψ1 entirely satisfy H0 = 0 (closed condition) and H1 ̸= 0 (open condition), respec-
tively, we obtain the conclusion. 2

Corollary 4.14. If n ≥ m+ 2, p ≥ s+ 1, ε = 0,±1, then the moduli space

M
(
Mm

s (ε),Mn
p (ε)

)
is a non-Hausdorff space.
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4.6 Application 2 : Parallel submanifolds

An isometric immersion ϕ : Mm
s → Mn

p (ε) is called substantial if it is not contained in any
non-degenerate totally umbilical submanifold in Mn

p (ε). By definition, if ϕ is substantial, then
ϕ is full.

When an ambient space M̄ is a pseudo-Riemannian space form, a submanifold M of M̄ is
parallel if and only if it is locally symmetric. Moreover, M is complete and parallel if and only
if it is symmetric [7].

Lemma 4.15. Let M ′ and M̄ be pseudo-Riemannian space forms, and let ϕ : M → M ′ and
ψ : M ′ → M̄ isometric immersions. We assume that ψ is totally umbilical, that is, M ′ is
embedded as a totally umbilical submanifold in M̄ . Then, ϕ is parallel if and only if ψ ◦ ϕ is
parallel.

Proof. In Riemannian case, refer [6, Lemma 3.7.5]. The proof is done by the same argument
since totally umbilical submanifolds in pseudo-Riemannian space forms are of parallel mean
curvature vector fields from Lemma 4.7. 2

Proposition 4.16. If ϕ : Mm
s → Snp (1) is a substantial isometric immersion, and ψ : Snp (1) →

Sn+2
p+1 (1) is a totally umbilical isometric immersion defined by

ψ(x) = (1, x, 1) ∈ Sn+2
p+1 (1) (x ∈ Snp (1)), (4.13)

then the composition ψ ◦ ϕ :Mm
s → Sn+2

p+1 (1) is a full parallel isometric immersion. Moreover, if
ι be the totally geodesic inclusion

ι(x) = (0, x, 0) ∈ Sn+2
p+1 (1) (x ∈ Snp (1)),

then ψ ◦ ϕ is not congruent to ι ◦ ϕ in Sn+2
p+1 (1).

Proof. We prove by contradiction. Assume that ι ◦ ϕ is congruent to ψ ◦ ϕ, that is, there exists
an isometry Ψ ∈ Isom(Sn+2

p+1 (1)) such that

Ψ ◦ ι ◦ ϕ = ψ ◦ ϕ. (4.14)

For any x ∈M , we denote ϕ(x) by

ϕ(x) = (f1(x), · · · , fn+1(x)) ∈ Snp (1) ⊂ En+1
p .

Then, we see, for any x ∈M ,

(ι ◦ ϕ)(x) = (0, f1(x), · · · , fn+1(x), 0), (ψ ◦ ϕ)(x) = (1, f1(x), · · · , fn+1(x), 1).

From the assumption of contradiction, when we denote Ψ by

Ψ = [xij ]0≤i,j≤n+2 ∈ O(p+ 1, n− p+ 2),

the formula (4.14) implies that

x01f1(x) + · · ·+ x0n+1fn+1(x) = 1 (x ∈M).

When we set a non-zero vector w ∈ En+1
p as

w = (−x01, · · · ,−x0p, x0p+1, · · · , x0n+1),

50



the formula (4.6) is equivalent to

⟨w, ϕ(x)⟩p = 1 (x ∈M).

Therefore, when we set
W = {v ∈ En+1

p | ⟨w, v⟩p = 1},

we see that the image ϕ(M) is contained the intersection Snp (1) ∩W . This contradicts that ϕ is
substantial. 2

Remark 4.17. Proposition 4.16 is also valid when the ambient space is a pseudo-hyperbolic
space Hn

p (−1). In case of Riemannian parallel surfaces, this construction is known in [9, Theo-
rem 9.1 (C) and Theorem 10.1 (C)].

Let G and K be a Lie group and its closed Lie subgroup, respectively, and G/K an irre-
ducible indefinite symmetric R-space such as indefinite Grassmann manifolds, indefinite orthog-
onal groups and complex spheres etc [7, 32]. If f : G/K → En+1

p is a standard embedding, then,
by scaling of the metric, f(G/K) is a minimal submanifold of Snp (1) or Hn

p−1(−1). When ψ is
the co-dimension two and co-index one totally umbilical isometric embedding (4.13), considering
the composition ψ ◦ f , we obtain a full complete, parallel isometric embedding in Sn+2

p+1 (1) or

Hn+2
p (−1) by using Proposition 4.16. However, its mean curvature vector field H of ψ ◦ f is

non-zero and satisfies ⟨H,H⟩p+1 = 0. Namely, ψ◦f is a marginally trapped isometric immersion.
On the other hand, a full parallel, minimal isometric immersion of an irreducible Riemannian

symmetric R-space into a unit sphere is rigid, i.e. it is congruent to a standard embedding.
However, in the indefinite case, there exist full parallel, marginally trapped isometric immersions
of irreducible indefinite symmetric R-spaces into unit pseudo-spheres which are not congruent
to standard embeddings. See also Blomstrom’s rigidity theorem [7, Theorem 3].

B. Y. Chen et al. classified Riemannian and Lorentzian parallel surfaces in pseudo-Riemannian
space forms. In [10], he commented that the explicit classifications of parallel submanifolds in
pseudo-Riemannian space forms are much more complicated than that of Riemannian situations.
In fact, it is known that there exist 24 families and 53 families of parallel Lorentzian surfaces
in neutral space forms S42(1) and H4

2(−1), respectively. Some of these surfaces are full but not
substantial. Regarding Riemannian parallel surfaces in Snp (1), we see that in [11] the following
complete, parallel and flat surfaces

f : E2 ∋ (u, v) 7→
(
v2 + a2 − 3

4
, a cosu, a sinu, v, v2 + a2 − 5

4

)
(a > 0).

This parallel surface is full but not substantial. In fact, we set

ϕ : E3 ∋ (x, y, z) 7→
(
x2 + y2 + z2 − 3

4
, x, y, z, x2 + y2 + z2 − 5

4

)
∈ S41(1), (4.15)

ψ : E2 ∋ (u, v) 7→ (a cosu, a sinu, v) ∈ E3 (a > 0).

Then, by direct calculation, we see that ϕ ◦ ψ = f . Since the hypersurface (4.15) is totally
umbilical, f is full but not substantial. Via totally umbilical isometric immersions

En
p ∋ x 7→

(
⟨x, x⟩p −

3

4
, x, ⟨x, x⟩p −

5

4

)
∈ Sn+1

p+1 (1),

Snp (1) ∋ x 7→ (1, x, 1) ∈ Sn+2
p+1 (1),

substantial parallel submanifolds in En
p or Snp (1) induce full parallel ones in Sn+1

p+1 (1) and Sn+2
p+1 (1),

respectively. A classification of full parallel submanifolds may be difficult, but a classification of
substantial complete ones may be possible. As further references, see also [7, 24, 25, 26, 32].
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