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Abstract

Optimization refers to “the act of selecting an option (solution) that produces the

optimum result for a purpose from a large number of options under certain constraints”.

Optimization has been applied in a wide range of fields such as engineering, economics,

and sociology, and its importance is widely recognized. Especially in engineering, it is

possible to mathematically describe “problems that maximize or minimize the results

(objective functions) for the objectives set for each problem” such as planning problems

and product design problems as optimization problems. is there. Specific examples

include the optimal design problem of dimensions, shape, and topology of industrial

products, the optimization problem of factory production plans in the production field,

the optimal operation problem of equipment in the energy field, the learning problem

of neural networks in the machine learning field, and the financial engineering field.

The problem of portfolio optimization is mentioned. These optimization problems are

replaced as problems that determine the input (solution) so that the output (objective

function) of the system has the optimum value for the purpose. A system refers to “a

collection of multiple elements that interact with each other.” Optimization for general

systems (system optimization) has been established as one of the basic technologies of

modern engineering.

In addition, in recent years, in light of the increasing scale and complexity of sys-

tems, the sophistication of system design, operation, control, and the sophistication of

requirements for the performance of industrial products, new optimization problems

and optimization methods with a strong awareness of practical applications have been

introduced. Construction has become an important issue. For example, in the short-
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est path search problem as a practical application of single-objective optimization, it

may be required to present not only the optimal solution that gives the shortest path

but also multiple alternatives that take into account unexpected situations such as

accidents and traffic jams. However, it is difficult to present multiple alternatives be-

cause the conventional single-objective optimization aims to search for only one global

optimum solution or semi-optimal solution. Further, in the practical application of

multi-objective optimization, for example, it may be required to consider the purpose

for which it is difficult to evaluate the design, which is the subjective evaluation of the

designer in the optimum design. However, conventional multi-objective optimization

mainly deals with objectives that can be evaluated objectively, and it is difficult to

consider objectives that are difficult to evaluate objectively. Due to the sophistication

of requirements for practical applications of such optimization, there are requirements

that are difficult to meet sufficiently with conventional optimization.

In order to consider these requirements, we propose and formulate a “superior solution

set search problem” that aims to search for a solution set that meets the user’s desire

level and is composed of various solutions whose properties differ greatly from each

other. The desired level in optimization is that the objective function value is superior

to a certain level or more, and the difference in the properties of the solution can

be evaluated by the degree of difference in the determinants (distance in the solution

space). Based on the above, we propose a concept and define it based on it so that a

superior solution set is constructed from solutions whose objective function values are

superior to the criteria set by the user and whose solutions are far apart from each

other. By giving the final solution from this superior solution set, it is expected that

the requirements in practical application will be taken into consideration.

On the other hand, in actual optimization, there is a great need to find a solution

(quasi-optimal solution) having sufficient optimization within a practical time, rather

than finding only an exact optimal solution over a long period of time. Furthermore, in

recent years, the dramatic increase in computer power has made a great contribution to

numerical calculations such as optimization algorithms and simulations. In this way, the

need for practical and new optimization methods is increasing in response to changes
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in the environment surrounding the optimization field (larger and more complicated

actual systems, restrictions on calculation time, development of peripheral technolo-

gies). In recent years, metaheuristics (discovery approximate solution method) have

been attracting attention as a framework of optimization methods that can respond to

the above-mentioned “problems of conventional optimization methods in practical use”

and “changes in the environment in the optimization field”. There is. Metaheuristics

is a framework of a solution direct search method that optimizes using only solution

information and the corresponding evaluation value information of the target, and it is

possible to obtain an approximate solution corresponding to it within a practical time.

Does not require a mathematical model that guarantees differentiability and continuity.

In addition, many metaheuristics are developed by taking inspiration from biological

and physical phenomena, and are methods for searching for optimal or semi-optimal

solutions. For example, Particle Swarm Optimization is a method based on foraging

behavior as a school of birds and fish, and Firefly Algorithm (FA) is a method based

on the blinking behavior of fireflies. In addition, metaheuristics have adjustable pa-

rameters, and the search can be performed efficiently by utilizing the degree of freedom

of the parameters and setting them appropriately according to the problem structure

and search conditions. In this way, metaheuristics with excellent versatility and search

performance are attracting attention as optimization methods with high engineering

value. Based on these backgrounds, this paper deals with the development of superior

solution set search methods based on metaheuristics.

Based on the above, the optimization method for the superior solution set search

problem in this paper is based on (1) the multimodality problem in single-objective

optimization, and is a subset of all global and local optimal solutions. Inspired by the

approach of indirectly solving the superior solution set search problem by acquiring

the superior solution set, and (2) the solution update using the “superior relation” in

the research field of multi-objective optimization, the superior solution we have taken

the approach of directly acquiring the superior solution set by defining and using the

superior relation by the desire level in the set search problem and explicitly including

the definition of the superior solution set, and updating the solution using this superior
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relation. We proposed a superior solution set search method based on these approaches.

This paper is composed of 6 Chapters, and the outline of each chapter and the results

obtained are as follows:

In Chapter 1, the background of the need for the proposals in this research, the

purpose and outline of this research, and the structure of this paper were described.

In Chapter 2, it was stated that there are requirements in practical applications of

optimization that are difficult to fully consider in usual optimization problems. In

order to satisfy the above requirements, based on the single-objective optimization

problem, a superior solution set is defined by a mathematical formula as a set of local

optimal solutions whose evaluation values are superior by a certain amount or more

and the distances between the solutions are separated by a certain amount or more.

We proposed the “superior solution set search problem” with the goal of discovering

this excellent solution set. A superior solution set search problem is novel in that it

finds a solution as a set in a single-objecive optimization problem, and is expected

to satisfy requirements that cannot be considered or are difficult to consider by usual

optimization. It has usefulness in terms of points.

In Chapter 3, we analyzed the search structure of metaheuristics and extracted search

strategies common to metaheuristics. Furthermore, while comparing typical meta-

heuristics, it was clarified that FA, which has a group of search points divided into

multiple when applied to a multimodal function, has an affinity with the superior solu-

tion set search problem.

Chapter 4 proposes diversification and intensification for the superior solution set

search problem in the approach of indirectly solving the superior solution set, and

evaluates the realization state of diversification and intensification based on the analysis

result of FA. Proposed. Based on diversification and centralization, we proposed an

adaptive FA with an adaptive parameter adjustment function to make the evaluation

index of the search state follow the preset target value schedule. Numerical experiments

using several benchmark functions confirmed excellent search performance compared to

the original FA.

In Chapter 5, we analyzed the properties of the superior solution set search problem
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in the approach of directly acquiring the superior solution set, and pointed out the

structural similarities between the superior solution set search problem and the multi-

objective optimization problem. We proposed a search strategy based on the “superior

relation” that searches for a superior solution set by utilizing the analyzed proper-

ties and the user’s desire level for the search. The definition of the superior solution

set based on the superior relation is explicitly included, and the superior solution set

search method is proposed. Then, we conducted numerical experiments on the superior

solution set search problem and showed the usefulness of the proposed method while

comparing the performance of the proposed method and the original FA.

Chapter 6 is the conclusion of this paper, and summarizes the research results and

future research topics obtained in this paper.
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1 Introduction

1.1 Background

Optimization refers to the act of selecting an option (solution) that produces the op-

timum result for the purpose from a large number of options under certain constraints.

Optimization has been applied in a wide range of fields such as engineering, economics,

and sociology, and its importance is widely recognized. Especially in engineering, it is

possible to mathematically describe the optimization problem such as planning prob-

lems and product design problems that maximizes or minimizes the results (objective

functions) for the objectives set for each problem. As specific examples, the size / shape

/ topology optimization design problem of industrial products［1］［2］, the production

plan optimization problem of factories in the production field［3］［4］［5］, equipment

optimization operation problem in the energy field［6］［7］［8］, neural network learning

problem in the machine learning field［9］, portfolio optimization problem in the finan-

cial engineering field［10］［11］and so on. These optimization problems are replaced as

problems that determine the input (solution) so that the output (objective function) of

the system has the optimum value for the objective. A system is an aggregate of multi-

ple elements that interact with each other. Historically, since the simplex method［12］

was developed by Dantzig, the development and improvement of optimization methods

and the expansion of the scope of application have been promoted. In modern times,
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optimization for general systems (system optimization) has been established as one of

the basic technologies of modern engineering.

The form of optimization in engineering consists of the following elements.

(1) Target real system

(2) Mathematical model representing a real system

(3) Optimization techniques applicable to mathematical models

Originally, in the above optimization form, it is a normal road that (2) formulates the

mathematical model so that an effective optimization method can be applied, and (3)

selects the optimization method that is effective for the target problem. Therefore, (2)

and (3) are closely related.

After the theory of optimization evolved from the field of mathematics called convex

analysis［13］, important concepts related to optimization such as solution optimization

and optimization problem duality are developed. Even today, it plays an important role

in the analysis of optimization problems and the design of optimization methods. In

this way, the optimization method constructed and designed under the methodology for

deriving the optimum solution for the optimization problem based on the above theory

is called the mathematical programming method［14］［15］［16］［17］［18］［19］［20］［21］.

The mathematical programming method follows the theory of optimization and uses

analytical information (gradients, Hessian, etc.) of mathematical models to find math-

ematically guaranteed solutions. As typical mathematical programming methods, the

simplex method for linear programming problems and the Newton-Raphson method for

nonlinear programming problems are historically well known. Since many mathemat-

ical findings and properties such as the convergence and optimality of solutions have

been clarified for mathematical programming, in the above optimization form (3), the

mathematical programming method has been used conventionally.

However, since the mathematical programming method requires analytical informa-

tion on the optimization problem, the applicable optimization problem class is defined

by the type of method. This is because when the mathematical programming method

is adopted in (3) of the above optimization form, the dependencies of (2) and (3) are
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strong with each other, so the applicable classes of (2) and (3) are It shows that it is

limited.

• Because various conditions such as the actual system can be expressed in a math-

ematical model by the specification of the method and differentiability and con-

tinuity of the mathematical model of various conditions are required, the scope

of application of optimization is limited.

• As a result of expressing the mathematical model so as to match the method,

there is a gap between the real system and the mathematical model, and the

usefulness and feasibility of the solution become insufficient.

In this way, in optimization based on mathematical programming, there are many

problems in putting it into practical use because the method imposes constraints on

the form of optimization.

Recently, owing to large-scale and complex actual systems, the demand for obtaining

a solution with sufficient optimality for practical use has increased. Meanwhile, with

the tremendous development in computer technology and improvement of optimization

algorithms and modeling / simulation technologies, the demand for not only practical

but also new optimization methods is increasing in the field of optimization. Moreover,

in actual optimization, there is a great need to find a solution (quasi-optimal solution)

having sufficient optimization within a practical time, rather than finding only an exact

optimal solution over a long period of time. In this way, there is an increasing need

for practical and new optimization methods in response to changes in the environment

(large-scale / complex actual systems, limitation of calculation time, development of

peripheral technology) surrounding the optimization field.

In recent years, metaheuristics (heuristic-approximate optimization methods)［22］

［23］［24］［25］［26］have been attracting attention as a framework of optimization meth-

ods that can respond to the above-mentioned problems of conventional optimization

methods in practical use and changes in the environment of the optimization field.

Metaheuristics are characterized by a direct solution search method, a practical ap-

proximation method, and a discovery method. The solution direct search method is a
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method of optimizing using only the solution information of the optimization problem

and the objective function value information. When metaheuristics, which is a direct so-

lution search method, are adopted in the form of optimization (3), the method does not

impose constraints on the mathematical model, unlike the mathematical programming

method. Therefore, the form of optimization becomes flexible, such as high-precision

modeling and acquisition of objective function values directly from simulators and mea-

suring instruments. In addition, a highly optimal approximate solution can be obtained

according to the practical calculation time. n addition, many methods search for subop-

timal solutions based on empirically superior mechanisms such as biological and physical

phenomena. For example, Particle Swarm Optimization［27，28，29，30］is a foraging

behavior as a school of birds and fish, Genetic Algorithm is inspired by the process

of natural selection that belongs to the larger class of Evolutionary Algorithms［33］,

Differential Evolution［34，35］is a method based on the mechanism of evolution of

living organisms that belongs to Evolutionary Algorithms, Artificial Bee Colony Algo-

rithm［36，37］is an optimization algorithm based on the intelligent foraging behaviour

of honey bee swarm, and Firefly Algorithm［38，39，40］is inspired by the flashing

behavior of fireflies. In addition, metaheuristics have adjustable parameters, and the

search can be performed efficiently by utilizing the degree of freedom of the parameters

and setting them appropriately according to the problem structure and search condi-

tions. In this way, metaheuristics with excellent versatility and search performance are

attracting attention as optimization methods with high engineering value. Based on

these backgrounds, this paper also deals with metaheuristics as research subjects.

In recent years, as the requirements for the performance of industrial products of

large-scale and complex actual systems, the design, operation and control of systems

［23，41，42］, the construction of a new optimization problem and a optimization

method with a strong awareness of practical applications has become an important

issue. For example, in the shortest path search problem as a practical application of

single-objective optimization, it may be required to present not only the optimal solu-

tion that gives the shortest path but also multiple alternatives that take into account

unexpected situations such as accidents and traffic jams［43］, and production plan-
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ning problems as a practical application of single-objective optimization may require

a combination of multiple processes (presentation of alternatives) so that a change in

the operating environment can be dealt with promptly［44］. However, it is difficult

to present multiple alternatives because the conventional single-objective optimization

aims to search for only one global optimal solution or semi-optimal solution［19］. More-

over, in the practical application of multi-objective optimization, the objectives that

are difficult to formulate or objectively evaluate, such as the evaluation of the design

that is the subjective evaluation of the designer in the optimum design［45］, and the

evaluation of the driver’s preference in the shortest path search problem［46］. However,

conventional multi-objective optimization mainly deals with objectives that can be eval-

uated objectively, and it is difficult to consider objectives that are difficult to formulate

or objectively evaluate. For example, both aircraft optimization［47］and jet engine

optimization［48］deal with physical properties that can be objectively evaluated, and

do not consider objectives that are difficult to formulate or objectively evaluate. Due to

the sophistication of requirements for practical applications of such optimization, there

are requirements that are difficult to meet sufficiently with conventional optimization.

In order to consider these requirements, it is considered that the acquisition of various

solution sets that satisfy the user’s desire level is an effective means. The above solution

set is, for example, an alternative in unforeseen circumstances. It is expected to meet

requirements that are difficult to fully consider with conventional single-objective opti-

mization. In addition, by giving a solution that considers the purpose that is difficult to

formulate or objectively evaluate from various solution sets that satisfy the user’s desire

level. It is expected to meet requirements that are difficult to consider in conventional

multi-objective optimization. Since the desire level in optimization can be evaluated

based on the objective function value and the difference in properties between solutions

can be evaluated based on the distance in the determinant space, various solution sets

that are defined as a set composed of solutions with excellent objective function values

and distances between solutions.

Until now, attempts have been made to obtain multiple solutions with excellent eval-

uation of the purpose based on the single-objective optimization problem［49，50，51，
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52］. The document［49］seeks multiple solutions with excellent objective evaluation

in order for the user to select the final solution from multiple options in the module

optimal placement problem of the notebook PC. In the document［50］, after pointing

out that a solution that meets the specifications is not uniquely determined for design

problems in the engineering field, in order to present multiple alternatives to the de-

signer for LSI module placement problems, we propose an optimization method based

on the Genetic Algorithm that searches for multiple optimal solutions. In the docu-

ment［51］and the document［52］, Particle Swarm Optimization has been proposed for

efficiently searching for multiple optimal solutions. However, in any of the documents,

the definition of the required solution set remains ambiguous, and a mathematically

strict definition by mathematical formula is not made.

By the way, for the multi-modal optimisation problem, it is empirically known that

there is a case where the objective function value is excellent and there are multiple local

optimum solutions at different distances in the determinant space. It is highly similar

to a set composed of solutions with excellent objective function values and distances

between solutions. Such a multimodal problem appears in the modeling of a compli-

cated real system, but the complexity of the real system cannot be fully considered on

the premise of applying an optimization algorithm that constrains the modeling［23］.

From the viewpoint of linking the modeling of the actual system and the optimization

algorithm, it is important to assume the application of metaheuristics.

1.2 Purpose and Positioning of This Paper

The general metaheuristics for single-objective optimization problem, such as Particle

Swarm Ptimization, Differential Evolution, and Artificial Bee Colony Algorithm etc.,

search for the only global solution or suboptimal solution, which are not suitable to

search for multiple excellent solution sets. On the other hand, the Firefly Algorithm,

which is a method of metaheuristics and simulates the courtship behavior of firefly, can
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search for multiple excellent solution sets because the search point group is divided into

multiple search points. Therefore, it is considered that Firefly Algorithm has a basic

property for the superior solution set search problem.

Then, with the superior solution set search problem as a new optimization problem,

the approach to search for the only optimal solution by conventional single-objective

optimization and the multi-objective optimization approach create requirements that

are difficult to fully consider. In this paper, we propose an approach to search for the

superior solution set for the following two items. Then, we develop the superior solution

set search method based on these two approaches.

(a) In acquiring the superior solution set, we aim for an approach that indirectly

achieves the purpose by acquiring all local solutions including the superior so-

lution set.　 The approach dose not use parameters δ and ε, which define the

superior solution set search problem, explicitly for evaluation of search points.

(b) We aim for an approach that directly achieves the purpose by acquiring the

superior solution set. The approach uses parameters δ and ε, which define the

superior solution set search problem, explicitly for evaluation of search points.

For approach (a), when applying FA to the superior solution set search, we propose

an FA that utilizes cluster information by adding a mechanism (cluster) for dividing

into multiple groups that is clearer. However, the adaptability of this algorithm is

insufficient, and it is possible to consider the adaptability and further improve the

adaptability by using a diversification and intensification strategy. In order to improve

the search performance of metaheuristics in single-objective optimization problem, it is

important to appropriately realize the search guideline of the diversification and intensi-

fication［19，22，23，53］. In addition, by utilizing the diversification and intensification

of single-objective optimization problems, it is possible to improve the adjustability of

metaheuristics adjusting adaptive parameters based on the evaluation and control of

search states. By applying the above-mentioned concept of diversification and intensi-

fication to the superior solution set search problem, efficient search and improvement

of search performance can be realized at the same time. However, the superior solution
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set search problem searches for multiple local optimal solutions, in which the evalua-

tion values of the objective functions are excellent and the solutions are separated from

each other. Based on this, the search dynamics differ depending on the optimization

problem, so the metaheuristics search strategy also differs in concreteness and construc-

tion. However, in order to search multiple promising regions in parallel in the superior

solution set search problem, it is desirable that (1) while maintaining diversification

among clusters, (2) the property of diversification and intensification within clusters

like the conventional single-objective optimization. Based on the above, this paper de-

velops an adaptive FA in which the parameter adjustment rule based on the evaluation

and control of diversification and intensification is added to the FA by analyzing the

parameters of the FA from the viewpoint of diversification and intensification.

For approach (b), it is the first proposal of a strict superior solution set search problem

and the construction of a research base mainly for method development of the superior

solution set search problem by defining a superior relation for the superior solution set

search problem. As approach (a), in acquiring the superior solution set, we have taken

an approach that indirectly achieves the purpose by acquiring all the local solutions

including the superior solution set. However, approach (a) does not explicitly include a

definition of the superior solution set in its algorithm, it cannot be said to be a strictly

superior solution set search method because it does not reflect the user’s desire level.

This approach proposes a superior relation for the superior solution set, inspired by

multi-objective optimization. This superior relation is applied to FA to develop the

superior solution set search method.

1.3 Structure of This Paper

The structure of this paper is described below. Fig. 1.1 shows the chapter structure

of this paper.

• Chapter 1 describes the background of this research, the purpose and outline of
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Fig. 1.1: Outline of Dissertation

this research, and the structure of this paper.

• Chapter 2 describes that there are requirements in the practical application of

optimization that are difficult to fully consider in conventional optimization prob-

lems and optimization methods. Furthermore, we propose a “ superior solution

set search problem” that satisfies the above requirements and aims to search for

a superior solution set with an excellent objective function value and a distance

in the determinant space.

• In Chapter 3, we analyze the search structure of metaheuristics and extract

search strategies common to metaheuristics. Furthermore, while comparing with

typical metaheuristics such as Particle Swarm Optimization and Differential Evo-

lution, we discuss Firefly Algorithm in which the search point group is divided

into multiple parts when applied to a multimodal function in a single-objective

optimization problem to clarify an affinity with a superior solution set search
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problem.

• In Chapter 4, from the analysis of the search structure of Firefly Algorithm, it is

stated that Firefly Algorithm has the property of searching multiple promising

regions in parallel, and it is clear that it has a high affinity for the superior

solution set search problem. I made it. By taking advantage of this property

and incorporating a cluster structure, we propose a parameter adjustment rule for

Firefly Algorithm. Then, assuming a basic case in the superior solution set search

problem, a numerical experiment is performed for a benchmark function having

multiple optimal solutions that are separated from each other. We compare

the Firefly Algorithm with Firefly Algorithm based on cluster information and

adaptive Firefly Algorithm, and examine the usefulness of the proposed method.

In addition, from the viewpoint of diversification and intensification and practical

optimization, the adaptability and search performance for the superior solution

set search problem are improved by the approach based on the search strategy

in metaheuristics for the superior solution set search problem. We propose an

adaptive Firefly Algorithm. Then, assuming a basic case in a superior solution

set search problem, a numerical experiment is performed for a benchmark func-

tion having multiple optimal solutions that are separated from each other. We

compare the adaptive Firefly Algorithm with Firefly Algorithm and Firefly Al-

gorithm based on cluster information to examine the usefulness of the proposed

method.

• In Chapter 5, we propose the superior relation in the superior solution set search

problem. It starts with the definition of the superior solution set search problem

and the superior relation, and goes through the consideration of the superior

solution set search problem in applying the superior relation to the application

to the conventional single-objecive optimization method. Then, the numerical

experiment is described. It is shown not only theoretically but also experimen-

tally that the superior solution set can be searched directly by comparing the

superior solution set search performance before and after the application of the

superior relation. Then, the usefulness of the proposed method is shown.
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• Chapter 6 describes the achievements obtained in this paper and future issues

and prospects.





2
Usual Optimization

Problem and

Superior Solution Set

Search Problem

2.1 Introduction

As a preparation for the analysis of metaheuristics, which is the subject of this pa-

per, the basic structure of general optimization methods is mathematically organized

and described in a unified manner［54］［55］［56］［57］［58］. First, we give a concrete

formulation of the optimization problem dealt with in this paper. Next, the structure

of the optimization method for solving the optimization problem is mathematically de-

scribed. An overview of the optimization method forms the basis for the analysis of the

metaheuristic search structure performed in the Chapter 3.

2.2 Optimization Problem

2.2.1 Formulation of Optimization Problem

The optimization problem is formulated as a problem to find the value of the decision

variable that maximizes or minimizes the objective function under the given constraints.
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� �
Definition 2.1（Optimization Problem） In N -dimensional real space X ∈ RN ,

give a real space function whose domain is f : RN → R1 and the non-empty closed

set S ∈ RN . The problem of minimizing the objective function f(x) on the set S

defines as the Eq.(2.1).

min
x

f(x) (2.1a)

subj.to x ∈ S (2.1b)

S ⊆ X (2.1c)

Here, S is the feasible region. x ∈ S is called an feasible solution, and x /∈ S is

called an infeasible solution.� �
For the solution y and the small positive number ε > 0 in the basic space, the open

set is called the neighborhood B(x, ε) of x in the Eq.(2.2). The schematic diagram of

neighborhood B(x, ε) is shown in Fig.2.1.

B(x, ε) = {x ∈ X| ∥x− y∥ < ε} (2.2)

For any solution x ∈ S, the solution x∗ ∈ S that satisfies the condition of the

Eq.(2.3) is called the global optimal solution.

∀x ∈ S, f(x∗) ≤ f(x) (2.3)

For a global optimal solution x∗, exist a neighborhood B(x′, ε) of a viable solution

x′ and the local optimal solution x′ satisfies the condition of the Eq.(2.4).

∀x ∈ B(x′, ε) ∩ S, f(x′) ≤ f(x) (2.4)
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2.2.2 Classification of Optimization Problem

Optimization problem is classified into several types as follows, depending on the

properties of the feasible region S by the Eq.(2.1) and the objective function f(·).

Linearity (or Non-linearity) of Objective Function (or Constraint Function):

Linear Programming Problem, Nonlinear Programming Problem (High-dimensional,

Multimodal)

With (or Without) Constraint Function:

Unconstrained Optimization Problem, Constrained Optimization Problem

Objective Function Scalar (or Vector):

Single-objective Optimization Problem, Multi-objective Optimization Problem

Continuous (or Discrete) Decision Variables:

Continuous Optimization, Combinatorial Optimization Problem, Mixed Integer

Programming Problem

For a specific type of problem, a powerful optimization method for obtaining a global

optimal solution is known. In particular, when solving an optimization problem, if

the class of the problem is known, it is possible to apply an appropriate optimization

algorithm for that class.

2.3 Usual Optimization Problem

2.3.1 Single-Objective Optimization Problem and Multimodal

Optimization Problem

In this paper, we will introduce various problems based on continuous and unre-

stricted optimization problem. First, we introduce the continuous optimization problem

through the following Definition 2.2.
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� �
Definition 2.2（Continuous Optimization Problem） Objective function f(x)

with m ≥ 0 inequality constraints gi(x) and l ≥ 0 equality constraints hj(x) is

formulated as follows:

min
x

f(x) (2.5a)

subj.to gi(x) ≤ 0 i = 1, · · · , m (2.5b)

hj(x) = 0 j = 1, · · · , l (2.5c)

Where f : RN → R1 is the objective function to be minimized over the N -variable

vector x ∈ S ⊂ RN . S represents the feasible region.� �
If m = l = 0, it is called an unconstrained optimization problem. Without loss

of generality, we discuss a single-objective optimization problem and a multimodal

optimization problem based on the unconstrained and continuous optimization problem

in this paper. In the single-objective optimization problem, the main purpose is to find

the global optimal solution x∗ is given as the Eq.(2.6) in objective function space［19］.

The schematic diagram of global optimal solution is shown in Fig.2.1.

x∗ = {f(x∗) ≤ f(x) (∀x ∈ S)} (2.6)

In the multimodal optimization problem, the main purpose is to find multiple optimal

solutions set OS (global and local) given as the Eq.(2.7), so that the user can have a

better knowledge about different optimal solutions in the search space and as and when

needed, the current solution may be switched to another suitable optimum solution.

The schematic diagram of OS is shown in Fig.2.1.

OS = {x′ | f(x′) ≤ f(x) (∀x ∈ B(x′, ε))} (2.7)
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Fig. 2.1: Overview of Various Definitions of Optimization Problem

2.3.2 Multi-Objective Optimization Problem

(a) Overview of Multi-Objective Optimization Problem

When humans make decisions, many need to consider multiple indicators at the same

time. For example, when choosing an apartment, we consider from many perspectives

such as “rent”, “distance from the station”, and “floor plan”. In product design, it is

necessary to balance conflicting criteria such as “durability” and “lightness”. Such a

problem that makes the best choice (determination of a solution) by considering multiple

objectives at the same time is formulated as a multi-objective optimization problem

［59］. In the following, the definitions of the multi-objective optimization problem are

described for the case of minimizing all objective functions.
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� �
Definition 2.3（Multi-objective Optimization Problem） When the N -variable

vector is x ∈ RN and the feasible region is S ⊆ RN , the multi-objective optimization

problem that minimizes the r objective function vector f(x) = [f1(x), · · · , fr(x)]⊤

is defined as follows:

min
x

f(x) = [f1(x), · · · , fr(x)]
⊤ (2.8a)

subj.to x ∈ S (2.8b)

� �
The superiority or inferiority of the solution in multi-objective optimization is judged

by the dominance relation. When the Eq.(2.9) is satisfied, the solution x dominates

the solution y (x ≺ y). Hereafter, k = 1, 2, · · · , r.

x ≺ y ⇐⇒ ∀k, fk(x) ≤ fk(y) ∧ ∃k, fk(x) < fk(y) (2.9)

The optimal solution in multi-objective optimization is defined as the Pareto solu-

tions, which is not superior to all other solutions. Pareto solutions generally are a set

where is no objective superiority or inferiority relationship between Pareto solutions.

The Pareto solutions set PS is given as in the Eq.(2.10). The schematic diagrams of

PS in determination variable space and objective function space are shown in Figs.2.2

and 2.3.

PS = {x ∈ X | ∀y ∈ X,y ̸≺ x} (2.10)

(b) Request for Multi-Objective Optimization

In multi-objective optimization, the superiority or inferiority of Pareto solutions can-

not be objectively determined, and Pareto solutions generally exist as a set. Due to this

property, the following two approaches can be considered as solutions to multipurpose

optimization problems. Each of these approaches has its advantages.
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(1) By using the user’s preference information, the only Pareto solution according

to the preference is obtained. It is a solution to traditional multi-objective opti-

mization problems and requires user preference. Typical methods include linear

scalarization［59］and ϵ-constraint method［59］.

(2) Find a large number of Pareto solution sets that approximate the Pareto frontier.

This is a method that applies the multipoint search type discovery approximation

method to multi-objective optimization, and does not require user preference

information.

From the viewpoint of engineering application, in addition to finding the “optimal

solution” itself, there is a demand for “information that supports decision-making” such

as trade-off relationships between objectives and dependencies between objectives and
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decision-making variables［48］. Since the method (2) requires a large number of Pareto

solutions by combining the method (2) with knowledge extraction techniques such as

data mining. Research is conducting on “multi-objective optimization for decision-

making support” that extracts useful knowledge for decision-making from the Pareto

solution set and utilizes it for decision-making.

2.4 Superior Solution Set Search Problem

2.4.1 Requirements for Practical Application of Optimization

In the practical application of optimization, presentation of multiple alternatives

assuming unforeseen circumstances that is difficult to fully consider in general single-

objective optimization and consideration of objectives that are difficult to formulate

or objectively evaluate that are difficult to fully consider in general multi-objective

optimization are required.

As an example where it is necessary to present an alternative plan assuming an

unforeseen situation, (1) consideration of accidents and traffic jams in the shortest

path search problem［43］, (2) response to changes in the operating environment in the

production planning problem［44］, (3) consideration of technical problems in the shape

design optimization problem.

(1) In the shortest path search problem as a practical application of single-objective

optimization, multiple routes (candidates) may be required to avoid the effects of

accidents and traffic jams. However, it is difficult to present multiple alternatives

because the usual single-objective optimization searches for the only combination

of routes with the shortest distance among the innumerable routes from the

starting point to the target point.

(2) In the production planning problem as a practical application of single-objective

optimization, it may be necessary to combine multiple processes so that it can
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respond quickly when a change in the operating environment occurs. However, it

is difficult to present multiple alternatives in the usual single-objective optimiza-

tion because it searches for the only combination of processes that can reduce

the production cost most.

(3) In the example of the shape design optimization problem as a practical applica-

tion of single-objective optimization, if a technical problem occurs at the design

stage, an alternative design plan is required. However, in usual single-objective

optimization, it is difficult to present multiple alternatives in order to search for

the only combination of dimensions that optimizes physical properties.

In this way, usual single-objective optimization aims to search for only one global op-

timal solution or semi-optimal solution, so it is difficult to present multiple solutions

that can be alternatives required in practical applications.

In addition, examples that require consideration of objectives are difficult to formulate

or objectively evaluate. Design consideration in the shape design optimization problem

［45］and taste consideration in the driver’s in the shortest path search problem［46］

can be mentioned. Considering the morphological optimization of the free-form surface

shell structure as an example of the shape design optimization problem, it is desirable

that the design and structural rationality can be considered at the same time in the

morphological optimization of such a free-form surface shell structure. In the shortest

path search problem, it is desirable to be able to consider the distance to the destination

and the preference of the person traveling (a route with a wide road, a route with

many straight lines, etc.) at the same time. However, in the usual multi-objective

optimization, since the purpose that can be evaluated objectively is mainly dealt with,

it is difficult to consider the design and structural rationality, and the distance to the

destination and the preference of the moving person at the same time. Therefore, it can

be said that it is difficult to consider the purpose for which formulation and objective

evaluation are difficult with the usual multi-objective optimization. As described above,

in the practical application of optimization, there are multiple requirements that are

difficult to meet with the usual optimization approach.
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2.4.2 Overview of Superior Solution Set Search Problem

In single objective optimization, if a variable decision (solution) is given, it is deter-

mined as the objective function value corresponding to the performance of the solution

value. However, it is possible that solutions that are away from each other may have

different characteristics in terms of performance and properties, even if their evaluated

values (objective function values) are about the same. Therefore, various solution sets

are expected having excellent objective function values and considerably large mutual

distances in the solution space apart for meeting the demands of practical application.

We explain the superior solution set search problem［60］［61］proposed to search for

various solution sets with similar evaluated values and long solution distances. Ob-

taining the superior solution set makes it possible to present alternatives for accidents

and technical problems, which are very important in engineering research. In actual

optimization, for example, as seen in industrial design, there are objects that can be

objectively evaluated (such as product performance) and those that can be subjectively

evaluated (such as design). Moreover, there are optimization problems having multiple

purposes and different properties.

Based on the above description, we propose a concept and define it based on a solution

in which the objective function value is superior to the criterion determined by the user,

and the superior solution set is constructed from solutions that are far apart from each

other in the solution space. By choosing the final solution from the superior solution

set, we expect to satisfy the requirements of actual application. Furthermore, there are

parameters that can be arbitrarily determined by the user from the excellent solution

set. Because it is possible to adjust the objective function value of the solutions included

in the superior solution set and the distance between solutions, it is expected that users

can respond to different demands.
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Fig. 2.4: An Example of the Superior Solution Set in a Multimodal Function of One-

dimensional (N = 1)
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2.4.3 Proposal of Superior Solution Set Search Problem

Based on the Section 2.4.2, we define a superior solution set proposed in this paper.

However, this paper deals with the minimization problem of the objective function

f(x) (x ∈ RN). Fig.2.4 shows an example of a superior solution set in a multimodal

function of one-dimensional. The horizontal axis represents the decision variable and

the vertical axis represents the objective function value.� �
Definition 2.4（Solution Set L(δ) Considering the Objective Function Value）

Define a solution set L(δ) that takes into account the objective function value.

The Eq.(2.11) defines a set L(δ) ⊆ X of solution x ∈ X levels that satisfy the

constraints δ ≥ 0 of the objective function value based on the objective function

value of the global optimal solution f(x∗). Where X represents the feasible region.

L(δ) = {x ∈ X | f(x) ≤ f(x∗) + δ} (2.11)

From the Eq.(2.11) and Fig.2.4(a), L(δ) is a solution set considering the objective

function value, which is determined by the global optimum solution x∗ and the

parameter δ defined by the user.� �� �
Definition 2.5（Solution Set B(y, ε) Considering Distance） Define a solution

set B(y; ε) considering the distance. Define ε-neighborhood B(y, ε) (open sphere

with radius ε > 0 centered on y) for any solution y ∈ RN in the Eq.(2.12).

B(y, ε) = {x ∈ RN | ∥x− y∥ < ε} (2.12)

From Eq.(2.12) and Fig.2.4(b), B(y, ε) is a solution set considering the distance in

the solution space, which is determined by the any solution y and the parameter ε

defined by the user.� �
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� �
Definition 2.6（Superior Solution Set Q(δ, ε)） The superior solution set Q(δ, ε)

is defined from L(δ) and B(y; ε). Eq.(2.13) defines the superior solution set Q(δ, ε)

as a superior solution y ∈ L(x∗, δ) satisfies f(y) ≤ f(x) (∀x ∈ L(x∗, δ)∩B(y, ε)).

Q(δ, ε) = {y ∈ L(δ) | f(y) ≤ f(x) (∀x ∈ L(δ) ∩B(y, ε))} (2.13)

� �
A superior solution belongs to L(δ) ∩ B(y; ε), but L(δ) ∩ B(y; ε) depends on the

central y of the ε-neighborhood. As shown in Fig.2.4(c), if y ∈ L(x∗; δ) satisfies the

condition of f(y) ≤ f(x) in the Eq.(2.13), y is a superior solution. On the other

hand, if y is not the local optimal solution as shown in Fig.2.4(d), f(y) ≤ f(x) in

the Eq.(2.13) does not meet the condition and is not a superior solution. Also, as

shown in Fig.2.4(e), if y is a local optimal solution but does not belong to L(δ), the

Eq.(2.13) does not satisfy y ∈ L(δ) and is not a superior solution. Therefore, as shown

in Fig.2.4(f), the superior solution set Q(δ, ε), which is a set of diverse local optimal

solutions, has the difference between from the objective function value of the global

optimal solution is within δ and has various local solutions with distances of ε or more.

We propose an optimization problem that aims to search for the superior solution set

as the superior solution set search problem. From the above, it is possible to define

various solution sets that satisfy the demand level described at the beginning of this

Section by the user setting the parameters δ and ε appropriately.

2.4.4 Comparison of Each Usual Optimization Problem and

Superior Solution Set Search Problem

In usual optimization problems, both the multi-objective optimization and the mul-

timodal optimization problem are searching for multiple solutions, which can present

multiple options for user. For the multi-objective optimization problem, multiple solu-

tions are objectively presented based on the superiority or inferiority of the evaluation
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Table 2.1: Comparison of Each Usual Optimization Problem and Superior Solution Set

Search Problem

Optimization Problem Coefficient Space Objective Function Space

Superior Solution Set Search Problem Constrained by Distance Constrained by Constant

{x|∀y ∈ L(δ) ∩B(x, ε), f(x) ≤ f(y)} ∀y ∈ B(x, ε), 0 < ε < ∞ ∀y ∈ L(δ), f(x) ≤ f(y)

Single-objective Optimization Problem Unconstrained Superiority by Fitness

{x|∀y ∈ X, f(x) ≤ f(y)} ∀y ∈ X f(x) ≤ f(y)

Multimodal Optimization Problem Unconstrained Superiority by Fitness

{x|∀y ∈ B(x, ε), f(x) ≤ f(y)} ∀y ∈ B(x, ε), ε ≫ 0 f(x) ≤ f(y)

Multi-objective Optimization Unconstrained Dominance Relationship by Fitness

{x|∀y ∈ X,y ̸≺ x}　 ∀y ∈ X y ̸≺ x

values. Similarly, for the multimodal optimization problem, all optimization solutions

are objectively presented based on the evaluation values. Here, both the multi-objective

optimization and the multimodal optimization problem are only setting in objective

function space by superiority of the evaluation values, and are unconstrained in coeffi-

cient space (see Table 2.1).

The superior solution set search problem is also seaching for the multiple solutions,

which not only have excellent objective function values but also are separated from

each other. However, compared with the multi-objective optimization and the multi-

modal optimization problem, the superior solution set search problem is constrained by

constant (δ) in objective function space and constrained by distance (ε) in coefficient

space. For the superior solution set search problem, we propose that other optimiza-

tion problems do not have distance constraints between the solutions in coefficient space

(see Table 2.1). Therefore, when proposing multiple alternatives, make a subjective or

objective assessment of the target.

From the Eq.(2.13), when changing parameters δ and ε which define superior solution

set Q(δ, ε) can adjuste the distribution transition of the superior solution set search

problem. Especially, when δ = 0 and ε ≫ 0, the superior solution set search problem
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Fig. 2.5: Containment Diagrams of Various Optimization Problems

becames to the single-objective optimization problem. when δ ≫ 0 and ε ≫ 0, the

superior solution set search problem becames to the multimodal optimization problem.

Containment diagrams of various optimization problems is shown in Fig.2.5.

2.4.5 Properties of Algorithm Suitable for Searching the Su-

perior Solution Set Problem

As described above, the superior solution set is composed of a plurality of locally

optimal solutions with excellent objective function values and distances from each other.

In order to search for the superior solution set with such characteristics, an algorithm

that can search in parallel near multiple local optimal solutions (promising regions)

with excellent objective function values and distances between solutions is required. In

order to search multiple promising areas in parallel, it is desirable to have properties

that (a) maintain diversity among clusters, (b) diversify and intensify within the cluster

as in the usual single-objective optimization method. In addition, since it is desirable to
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be able to maintain the complexity of the actual system during modeling, it is desirable

to use metaheuristics, which are less restrictive to modeling because they are direct

search types. On the other hand, many of the metaheuristics proposed so far aim to

search for the only global optimal solution or quasi-optimal solution, so it is difficult

to search multiple promising regions in parallel. In Chapter 3, we list several typical

metaheuristics and consider each method of metaheuristics from the above viewpoint.

In Chapter 4, the optimization method for the superior solution set search problem is

based on the multimodal optimization problem in single-objective optimization, and is

a subset of all global and local optimal solutions. Inspired by the approach of indirectly

solving the superior solution set search problem by acquiring the superior solution set.

In Chapter 5, the solution update using the ”superior relation” in the research field

of multi-objective optimization, we have taken the approach of directly acquiring the

superior solution set by defining and using the superior relation by the desire level in

the set search problem and explicitly including the definition of the superior solution

set, and updating the solution using this superior relation.

2.5 Summary

In this chapter, based on the single-objective optimization problem, a superior so-

lution set was defined by a mathematical formula as a set of local optimal solutions

whose evaluation values are superior by a certain amount or more and the distance

between solutions is a certain distance or more. We proposed the superior solution set

search problem with the goal of finding this solution set. It is useful to meet difficult

requirements that cannot be considered by conventional optimization.



3 Metahuristics

3.1 Introduction

In this Chapter, the search strategies and search structures common to metaheuris-

tics are extracted from the search structure analysis of typical metaheuristic algorithm.

Furthermore, while comparing with typical metaheuristics such as Particle Swarm Op-

timization and Differential Evolution etc., we clarify that the Firefly Algorithm has an

affinity with the superior solution set search problem, in which the search point swarm is

divided into multiple parts when applied to a multimodal function in a single-objective

optimization problem.

3.2 Metaheuristics Search Structure and Search Strat-

egy

3.2.1 Interpretation of Metaheuristics

Metaheuristics are generally based on analogies with various phenomena such as

biological and physical. To adaptively adjust the parameters in accordance with the

structure of the problem to be optimized and the search situation and develop a practical
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optimization method with excellent search performance, it is necessary to not only

analyze the essential parts of many metaheuristics but also extract and use the search

structures and search strategies of ordinary metaheuristics. In this Section, we discuss

an important search structure and search strategy used in many metaheuristics.

3.2.2 Metaheuristics Search Structure

Metaheuristics are focused on biological phenomena, and it is important to consider

the essential search structure of metaheuristics by abstracting out the viewpoint based

on analogy and excellent mechanisms［19］［22］［23］. We analyze various metaheuristics

and there are two common operations below.

Neighborhood generation: from the current search point, it is an operation to

generate destination candidates using information such as interaction between

search points and search history.

Updating Search Point: the search point operation is moved based on a certain

rule of the generated mobile destination candidate.

Neighborhood generation is a mechanism / operation that creates the next search

point, and updating search point is a mechanism / operation that selects search in-

formation. The neighborhood generation and the updating search point affect each

other, and the search of metaheuristics is performed by repeating these two operations.

In metaheuristics, each search point or the entire search point group holds and stores

useful information (best solution information, search history, etc.) obtained so far, and

aims to obtain a good solution. In other words, the search process in the direction

and area where the solution is improved by using the useful information obtained by

the search, is repeating to find a better solution. The metaheuristic search structure is

shown in Fig. 3.1. In this paper, we consider that these operations are used to analyze

the search structure of metaheuristics.
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Fig. 3.1: Metaheuristics Search Cycle and Search Structure

3.2.3 Metaheuristics Search Strategy

Bias structure is known to exist in optimization problems in the field of engineering.

Many metaheuristics use the bias solution structure in the algorithm. The proximity

optimality principle (POP)［19］［22］is a vague principle based on the experience that

“good solutions have some similar structure.” For many optimization problems, it is

very likely that a better solution can be efficiently searched for using a good solution

with a similar structure. Here, “good solution” and “similar structure” of POP are

interpreted as follows.
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Good solution: a solution with good evaluated values.

Similar structure: distance between solutions is short.

Furthermore, diversification and intensification are always applied as search guidelines

for metaheuristics that utilize the effects of the proximity optimization principle.

3.2.4 Diversification and Intensification

In metaheuristics, there is diversification and intensification［19，22，23，53］as a

search guideline for effectively performing the cycle of neighborhood generation and

selection. Diversification and intensification are an important guideline for realizing an

ideal search process. Intensification has a strong meaning of convergence that collects

search points, and diversification has a meaning of convergence suppression that does

not collect search points more than necessary or divergence that separates search points.

It is an important issue that maintains an appropriate balance between diversification

and intensification to improve the search performance of metaheuristics.

In this paper, in order to reduce the influence between mechanisms and operations, we

independently develop the mechanisms and operations for diversification and intensifi-

cation. By independently providing the function of diversification and intensification,

it is possible to easily formulate guidelines for subsequent diversification and intensifi-

cation. Fig. ?? shows the metaheuristic cycle and the basic concept of diversification

and intensification. The important functions in the optimization search are roughly

divided into “wide area search” and “narrow area search”. Interpret diversification and

intensification from each function of wide area search and narrow area search.

• Intensification is a search guideline that aims to strongly advance the search in

a good direction / region based on the proximity optimality principle to improve

the short-term solution in a narrow range of the solution space, that is, to perform

a local search.

• Diversification is a search guideline that aims to avoid the search from staying in
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a local region / space and incorporat more information into the search in a wide

space to improve the long-term solution, that is, to perform a global search.

In wide-area search, a mechanism for searching in a wide range is constructed, es-

pecially from the viewpoint of suppressing intensification. The main means of con-

centrating suppression in existing metaheuristics is to suppress the movement of the

search point in a good direction / region by adjusting parameters. On the other hand,

in narrow-area search, a mechanism for searching in a narrow range is constructed,

especially from the viewpoint of suppressing diversification. Diverse suppression in ex-

isting metaheuristics is a means to contribute to the discovery of better solutions by

mutual search using the good solution information found by the search by adjusting

parameters. The distribution of search points is important for diversification and in-

tensification. The process from diversification and intensification so far can be thought

of as changing the search range of the search point from a wide range to a narrow

range. The necessary conditions for an excellent search structure from the viewpoint

of diversification and intensification extracted through the above analysis are shown

below.

• Directivity for a specific area / direction. Furthermore, the adjustment of its

directivity in the search process. In particular, by setting a good solution for a

specific area, it becomes a search that effectively utilizes the proximity optimiza-

tion principle.

• Region of perturbation / search point distribution. In addition, the adjustment

of that area during the search process. In particular, by narrowing the area

to a good solution, it becomes a search that effectively utilizes the proximity

optimization principle.

• Use of random numbers. The role of alleviating excessive “directivity toward a

specific area / direction” and “reduction of perturbation / search point distribu-

tion” in the search process.

From the above, it is considered that the search structure of metaheuristics is embedded
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Fig. 3.2: Image of Metaheuristics Search Strategy of Diversification and Intensification

with operations for realizing diversification and intensification, especially in the neigh-

borhood generation. And image of metaheuristics search strategy of diversification and

intensification shows in Fig.3.2.

Furthermore, in excellent metaheuristics, it is considered that each operation embed-

ded in the search structure has the ability to realize the search strategy by adjusting

the realization state of diversification and centralization in the search process. On the

other hand, it is considered that some methods do not have the ability to adjust diver-

sification and intensification, although the operations for realizing diversification and

intensification are embedded. Therefore, in order to improve the search performance

of metaheuristics and realize high search performance, it is extremely important what

kind of relationship does the search structure of metaheuristics, especially the gen-

eration of neighborhoods, have with the search strategy based on diversification and

intensification.
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3.3 Particle Swarm Optimization

3.3.1 Overview of Particle Swarm Optimization

Particle Swarm Optimization (PSO)［27，28，29，30］is a metaheuristic as it makes

few or no assumptions about the problem being optimized and can search very large

spaces of candidate solutions. PSO is originally attributed to Kennedy, Eberhart and

Shi［28］and was first intended for simulating social behaviour［29］, as a stylized repre-

sentation of the movement of organisms in a bird flock or fish school. The algorithm was

simplified and it was observed to be performing optimization. The book by Kennedy

and Eberhart describes many philosophical aspects of PSO and swarm intelligence. An

extensive survey of PSO applications is made by Poli［30］. Recently, a comprehensive

review on theoretical and experimental works on PSO has been published by Bonyadi

and Michalewicz.

PSO is a computational method that optimizes a problem by iteratively trying to im-

prove a candidate solution with regard to a given measure of quality. It solves a problem

by having a population of candidate solutions, here dubbed particles, and moving these

particles around in the search-space according to simple mathematical formulae over the

particle’s position and velocity. Each particle’s movement is influenced by its local best

known position, but is also guided toward the best known positions in the search-space,

which are updated as better positions are found by other particles. This is expected to

move the swarm toward the best solutions.

3.3.2 Algorithm of Particle Swarm Optimization

In this Section, in order to outline each operation of PSO, we set the number of

search points m ∈ N1, i-th search point xi ∈ RN (i = 1, 2, · · · ,m), and the number of

iterations t ∈ N1.

First, in t-th iteration, the particle’s best known position pbestti and the swarm’s

best known position gbestt is defined by the Eqs.(3.1) and (3.2).
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pbestti =

{
pbestti f(pbestti) < f(xt−1

i )
xt−1
i otherwise

(3.1)

gbestt = pbesttig , ig = argmin
i

f(pbesti
t) (3.2)

From the current particle’s position xt
i, each the particle’s position refers to the

particle’s best known position pbestti and the swarm’s best known position gbestt to

generate the particle’s velocity vt+1
i by the Eq.(3.3).

vt+1
i = w · vt

i + c1 · rand1 · (pbestti − xt
i) + c2 · rand2 · (gbestt − xt

i) (3.3)

However, rand1 and rand2 are uniform random numbers of [0, 1] ∈ R1, and w, c1,

and c2 are weight parameters for each argument.

Update the particle’s position by the Eq.(3.4).

xt+1
i = xt

i + vt+1
i (3.4)

Particle Swarm Optimization for the minimization problem of the objective function

f(x) (x ∈ RN) is shown by Algorithm 3.1.
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Algorithm 3.1 Particle Swarm Optimization（PSO）
1: procedure PSO(m,w, c1, c2, Tmax)

Step 1: Preparation

2: Set the maximum number of iterations Tmax, the number of particles 2 ≤ m ∈ N1, particle

parameters 0 < w ∈ R1, 0 < c1 ∈ R1, 0 < c2 ∈ R1, and let t = 1.

Step 2: Initialization

3: Set initial position x1
i ∈ RN (i = 1, 2, · · · ,m) and initial velocity v1

i ∈ RN (i = 1, 2, · · · ,m) of

each particle randomly in the feasible region.

4: for i = 1 to m do

5: pbesti
1 = xi

1, i = 1, 2, · · · ,m
6: gbest1 = pbest1ig
7: Where ig = argmin

i
f(pbest1i ).

8: end for

Step 3: Updating vi and xi

9: for i = 1 to m do

10: vt+1
i = w · vt

i + c1 · rand1 · (pbestti − xt
i) + c2 · rand2 · (gbestt − xt

i)

11: xt+1
i = xt

i + vt+1
i

12: end for

Step 4: Updating pbesti and gbesti

13: Let I = {i | f(xt+1
i ) < f(pbestti), i = 1, 2, · · · ,m}.

14: for i = 1 to m do

15: if i ∈ I then

16: pbesti
t+1 = xi

t+1

17: else

18: pbesti
t+1 = pbesti

t

19: gbesti
t+1 = pbestig

t

20: Where ig = argmin
i

f(pbesti
t+1).

21: end for

Step 7: Termination

22: if t = Tmax then

23: The algorithm is terminated.

24: else

25: Return to Step 3, set t := t+ 1.

26: end procedure



Chaper 3 Metahuristics 38

1

1
+1

1
−1

2
+1

2

2
−1

1

2

1

2

Fig. 3.3: Movement of the Search Point in Particle Swarm Optimization

3.3.3 Analysis of Particle Swarm Optimization Search Struc-

ture

In this paper, we consider the neighborhood generate of PSO that shows in Fig. 3.3

according to the update formula (see the Eq.(3.3). The moving vector vt+1 (the neigh-

borhood generate) is represented as a linear combination of the moving vectors vt and

the difference vectors from xt
i to pbestti and gbestt.

Also, because PSO is an absolute movement, the search point must be updated to

the neighborhood solution. The search point xt
i does not always move in the direction

of improvement, but the Eqs.(3.1) and (3.2) mean that pbest and gbest mean that

always move in the direction of improvement. In other words, since the weak descent

condition is satisfied for pbest and gbest, the search point swarm moves in the descent

direction.

Fig. 3.4 shows the each search state when PSO is applied to the 2N minima function.

In the Fig. 3.4, ◦ represents each search point. It can be confirmed that the PSO search

point swarm is finally concentrated in one promising area. From the above analysis, it

can be confirmed that PSO is suitable for the single-objective optimization problem.



Chaper 3 Metahuristics 39

-5 0 5
x1

-5

0

5
x
2

(a) t = 1

-5 0 5
x1

-5

0

5

x
2

(b) t = 10

-5 0 5
x1

-5

0

5

x
2

(c) t = 30

-5 0 5
x1

-5

0

5
x
2

(d) t = 50

-5 0 5
x1

-5

0

5

x
2

(e) t = 100

-5 0 5
x1

-5

0

5

x
2

(f) t = 500

Fig. 3.4: Transition of Search by Particle Swarm Optimization (w = 0.729, c1 = c2 =

1.4955)
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3.4 Differential Evolution

3.4.1 Overview of Differential Evolution

Differential Evolution (DE)［34，35］is one of the Evolutionary Algorithm［33］de-

vised by K. Price and R. Storn in 1995. It is similar to the basic operation of the

evolutionary optimization method, the search is performed by repeating differential

mutation, crossover, and selection.

3.4.2 Algorithm of Differential Evolution

This Section outlines each operation of DE and describes the algorithm of DE. DE

searches by three evolutionary operations: mutation, crossover, and selection［32］.

Since there are multiple types of DE depending on the method of differential muta-

tion and crossover as follows:

DE/Base/Numpair/Crossover

Base indicates how to select a basic individual at the time of differential mutation,

Numpair indicates the number of individual pairs selected at the time of difference,

and Crossover indicates the crossover method. In general, binomial crossover is written

as Bin, and exponential crossover is written as Exp.

The number of individuals in the solution group is m, the number of generations is t,

the number of the solution individual is i, and the individual vector is xt
i (i = 1, 2, . . .m).

First, the mutation vector vt
i is generated by each individual vector xt

i. Several

generation methods of the mutation vector vt
i have already been proposed are shown

below. One of generation example is shown in the Fig. 3.5.

・ DE/rand/1

vt
i = xt

r1
+ F · (xt

r2
− xt

r3
) (3.5)
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Fig. 3.5: Example of Differential Mutation Generation

・ DE/best/1

vt
i = xt

best + F · (xt
r1
− xt

r2
) (3.6)

・ DE/rand/2

vt
i = xt

r1
+ F · (xt

r2
− xt

r3
+ xt

r4
− xt

r5
) (3.7)

・ DE/best/2

vt
i = xt

best + F · (xt
r1
− xt

r2
+ xt

r3
− xt

r4
) (3.8)

・ DE/rand-to-best/1

vt
i = xt

i + F · (xt
i − xt

best + xt
r1
− xt

r2
) (3.9)

Here, F is called a scale factor, which is a parameter that actually determines the

region where the mutation vector is generated. The size of F ∈ [0, 1] is often set to

a real number［34］. The above xt
best is an individual vector with the best evaluation
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Fig. 3.6: Example of Crossover Generation

value in the solution group of the t-th generation, and xt
rk

(k ∈ {1, 2, 3, 4, 5}) is a

different individual vector randomly selected from the solution population, except for

the reference vectors xt
i and xt

best.

Generate test vector ut
i by replacing the elements of individual vector xt

i and the

mutation vector vt
i at the crossover generation. An example of crossover generation is

shown in the Fig. 3.6. Several crossover generations have already been proposed, but

two typical crossover generations are shown below.

・ Binomial Crossover

ut
i,j =

{
vti,j randj ≤ CR or j = n
xt
i,j otherwise

(3.10)

・ Exponential Crossover

ut
i,j =

{
vti,j j = ⟨n⟩N , ..., ⟨n+ l⟩N
xt
i,j otherwise

(3.11)

Here, CR is a parameter of the crossover probability,which determines the number to

replace the element of xt
i with the element of vt

i . CR is set to a real number in the range
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[0, 1] ∈ R1 like F . In binomial crossover, from the crossover start point n, depending

on the magnitude of the crossover probability CR, determine the xt
i,j (j = 1, 2, · · · , N)

element of xt
i to replace with the element of vt

i . On the other hand, exponential crossover

starts from the crossover start point n when CR satisfies a condition larger than a

uniform random number to replace the consecutive l elements of the xt
i elements with

the vt
i elements. However, the probability Pr(k) that the elements up to the n + k th

are replaced is given by the Eq.(3.12).

Pr(k = l) = CRk (3.12)

In the final selection, the crossover generated test vector ut
i is compared to the solution.

The next-generation individual vector xt+1
i is determined by the following equation, and

the individual vector group is updated by the Eq.(3.13).

xt+1
i =

{
ut

i f(ut
i) ≤ f(xt

i)
xt
i otherwise

(3.13)

The above is an overview of the three major evolutionary operations that make up DE.

DE/rand/1/Bin for the minimization problem of the objective function f(x) (x ∈

RN) is shown by Algorithm 3.2.
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Algorithm 3.2 Differential Evolution（DE/rand/1/Bin）

1: procedure DE/rand/1/Bin(m,F,CR, Tmax)

Step 1: Preparation

2: Set the number of dimensions of solution vector N ∈ N1, the number of solutions 2 ≤ m ∈ N1,

scale factor F ∈ R1 , crossover probability CR ∈ R1 and the maximum generation Tmax ∈ N1.

Step 2: Initialization

3: Set the number of iterations t = 1.

4: In the feasible area, randomly generate solution x1
i (i = 1, 2, · · · ,m)

Step 3: Mutation

5: for i = 1 to m do

6: Randomly selecte solutions xt
r1, xt

r2, xt
r3 ∈ RN which are different from each other.

7: Use scale factor F to generate the mutation vector vt
i ∈ RN in the following equation.

8: vt
i := xt

r1 + F · (xt
r2 − xt

r3)

9: end for

Step 4: Crossover

10: for i = 1 to m do

11: Determine the crossover start point n, and the crossover determination is performed using

the crossover probability CR for each of the operation vector elements xij (j = 1, 2, · · · , N).

12: The elements of xt
ij and vtij are replaced as in the following equation, and generate the test

solution ut
i ∈ RN .

13: ut
ij : =

{
vtij randj ≤ CR or j = n

xt
ij otherwise

14: end for

Step 5: Selection

15: Each solution xt
i is compared with test solution ut

i to update solutions in the following equation.

16: for i = 1 to m do

17: xt+1
i : =

{
ut
i f(ut

i) ≤ f(xt
i)

xt
i otherwise

18: end for

Step 6: Termination

19: if t = Tmax then

20: The algorithm is terminated.

21: else

22: Return to Step 2, set t := t+ 1.

23: end procedure

3.4.3 Analysis of Differential Evolution Search Structure

Focus on the neighborhood generate consists of the mutation (see the Eq.(3.5)) and

the crossover (see the Eq.(3.10)) according to the update formula. In the mutation, the
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solution vi is generated by the difference vector between the search points xr2 and xr3

with the search point xr1 as the reference. In the crossover, the neighborhood solution

ui is generated by combining the search point xi and the solution vi for each element.

Since the mutation generates a solution vi from a excellent search point swarm,

it is highly possible that the solution vi is excellent. Furthermore, in crossover, by

combining the excellent search point xi and the solution vi, the neighborhood solution

ui is generated in an even better region. Also since DE is an improvement movement,

the search point xi updates when the objective function value improves. In other

words, movement of DE is performed only when each search point xi satisfies the

descent condition, and the excellent search point saves to the next search point swarm.

Therefore, DE moves the search point xi that satisfies the descent condition and utilizes

the difference vector between the search points to generate an excellent neighborhood,

which gathers in a good area (one place).

Fig. 3.7 shows the each search state when DE is applied to the 2N minima function.

In the Fig. 3.7, ◦ represents each search point. It can be confirmed that the DE search

point swarm is finally concentrated in one promising area. From the above analysis, it

can be confirmed that DE is suitable for the single-objective optimization problem.
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Fig. 3.7: Transition of Search by Differential Evolution (F = 0.5, CR = 0.5)
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3.5 Artificial Bee Colony Algorithm

3.5.1 Overview of Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) Algorithm［36，37］proposed by Karaboga is a

metaheuristic with an analogy to the foraging behavior of honey bees. In a natural bee

swarm, there are three kinds of honey bees to search foods generally, which include the

employed bees, the onlookers, and the scouts.

The employed bees: The employed bees search the food around the food source in

their memory, meanwhile they pass their food information to the onlookers.

The onlookers： The onlookers tend to select good food sources from those founded

by the employed bees, then further search the foods around the selected food

source.

The scouts： The scouts are translated from a few employed bees, which abandon

their food sources and search new ones.

In a word, the food search of bees is collectively performed by the employed bees, the

onlookers, and the scouts.

3.5.2 Algorithm of Artificial Bee Colony Algorithm

In this Section, in order to outline each operation of ABC algorithm, we set the

number of the employed bees ne ∈ N1, the number of the onlookers no ∈ N1, the

number of iteration t ∈ N1, and the number of dimensions N ∈ N1. In the ABC

algorithm, the search is performed by repeating the three stages of “Employed bees

stage”, “Onlookers stage”, and “Scouts stage”. Therefore, the units of the basic ABC

algorithm can be explained by each stage as follows:.
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(a) Employed Bees Stage

Each employed bee is only related to one food source site. Therefore, the number of

employed bees and food source sites are equal (ne = no). The employed bee changes the

location of the food source (solution) in her memory based on local information (visual

information), finds a nearby food source and evaluates its quality. The movement rule

of the i-th employed bee satisfies the Eq.(3.14).

vi,j =

{
xi,j + ϕ(xi,j − xk,j) j = h

xi,j otherwise
(3.14)

Here, ϕ ∈ [−1, 1] ∈ R1 is a uniform random number, and k is a dimension number

randomly selected from {1, 2, . . . , N}. j is an individual number randomly selected

from {1, 2, . . . , ne} excluding i. The selection rule of the candidate solution vi satisfies

the Eq.(3.15).

xi :=

{
vi, f(vi) < f(xi)

xi, otherwise
(3.15)

si is the number of times the position of the i-th individual was not updated by the

search. If the evaluation value of the candidate solution deteriorates, do not update the

position of the employed bee and add 1 to si as in the Eq.(3.16).

si :=

{
si, f(vi) < f(xi)

si + 1, otherwise
(3.16)

(b) Onlookers Stage

After all the employed bees complete the search, they share information about the

amount of nectar. The onlookers evaluate the nectar information obtained from all the

employed bees and select a food source related to their nectar amount. This choice

of probability depends on the fitness value of the solution in the population. In basic

ABC algorithm, roulette wheel selection scheme in which each slice is proportional in
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size to the fitness value fiti is employed by the Eq.(3.17).

fiti :=


1

1 + f(xi)
, 0 ≤ f(xi)

1 + |f(xi)|, otherwise
(3.17)

Calculate the probability of being selected pi that the employed bee is selected for

roulette wheel selection by the Eq.(3.18).

pi =
fiti

me∑
n=1

fitn

(3.18)

The update of onlookers are used in the same way as the update of employed bees

following to the Eqs.(3.14) and (3.15). If the onlooker does not update, the trial counter

updates with the Eq.(3.16).

(c) Scouts Stage

In one cycle, the ABC algorithm checks if any source needs renew after all employed

bees and onlookers have completed the search. In order to decide if a food source site

needs renew, the ABC algorithm uses the counter si which is used during search process

to count the stagnation number of food source site. If the value of the counter si is

greater than the limit parameter limit, then initialize the counter si = 0 and renew

food source site by the Eq.(3.19).

xi,j = xmin + ϕi,j(xmax − xmin) (3.19)

However, xmax is the maximum value of the domain of the search space, xmin is the

minimum value of the domain, and ϕ ∈ [0, 1] ∈ R1 is a random uniform number

uniform.

Artificial Bee Colony Algorithm for the minimization problem of the objective func-

tion f(x) (x ∈ RN) is shown by Algorithm 3.3.



Chaper 3 Metahuristics 50

Algorithm 3.3 Artificial Bee Colony Algorithm (ABC Algorithm)

1: procedure ABC Algorithm(ne, no, Limit, Tmax)

Step 1: Preparation

2: Set the number of employed bees ne > 0, the number of onlooker bees no > 0, the limit count

limit > 0, and the maximum number of iterations Tmax.

Step 2: Initialization

3: In the feasible area, randomly generate solution xi ∈ RN (i = 1, 2, · · · , ne)

4: Let limit count si = 0 and iteration count t = 1.

Step 3: Searching of Employed Bee

5: For every individual xi(i = 1, 2, · · · , ne), generate the neighborhood vi(i = 1, 2, · · · , ne).

6: for i = 1 to ne do

7: vi,j =

xi,j + ϕ(xi,j − xk,j) j = h

xi,j otherwise

8: Here, k is randomly selected from {1, 2, · · · , ne} and h is randomly selected from

{1, 2, · · · , N}.
9: ϕ is a uniform random number of [−1 1] ∈ R1.

10: Evaluate the generated neighborhood and perform the following formulas.

11: xi :=

vi f(vi) < f(xi)

xi otherwise

12: si :=

0 f(vi) < f(xi)

si + 1 otherwise

13: end for

Step 4: Searching of Onlooker Bee

14: Calculate the fitness fiti of all individuals by the following formula.

15: fiti :=

 1
1+f(xi)

0 ≤ f(xi)

1 + |f(xi)| otherwise

16: Use roulette selection based on fiti to selecte individual for searching by the following formula.

17: for i = 1 to no do

18: vi,j =

xi,j + ϕ(xi,j − xk,j) j = h

xi,j otherwise

19: xi :=

vi f(vi) < f(xi)

xi otherwise

20: si :=

0 f(vi) < f(xi)

si + 1 otherwise

21: end for

Step 5: Searching of Scout Bee

22: if si ≥ limit(i = 1, 2, · · · , ne) then

23: Move the individual randomly in the feasible area and set si := 0.

Step 6: Termination

24: if t = Tmax then

25: The algorithm is terminated.

26: else

27: Return to Step 3, set t := t+ 1.

28: end procedure
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Fig. 3.8: Movement of the Search Point in Artificial Bee Colony Algorithm

3.5.3 Analysis of Artificial Bee Colony Algorithm Search Struc-

ture

Neighborhood generation of the ABC algorithm is done by changing only one element

of the solution. After deciding the elements to change, select one reference vector from

the other solutions and select one. Move the element closer to or further away from the

reference vector (move to a random point on the arrow in the Fig. 3.8).

Since the ABC algorithm is an improvement movement, the search point xi moves

to the neighborhood solution vi when the objective function value improves. In other

words, the ABC algorithm moves only when each search point satisfies the descent

condition, and saves the excellent search point to the next search point swarm. The

neighborhood solution vi can be expected to be generated in an excellent region because

a perturbation along a single axis is applied by the excellent search point swarm. There-

fore, the ABC algorithm moves the search point xi that satisfies the descent condition

and utilizes the difference vector between the search points to generate an excellent

neighborhood, which gathers in a good area (one place).
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Fig. 3.9: Transition of Search by Artificial Bee Colony Algorithm (limit = 10)
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Fig. 3.9 shows the each state of the search when ABC algorithm is applied to the

multimodal 2N minima function. In the Fig. 3.9, ◦ represents each search point. It can

be confirmed that the search point swarm of ABC algorithm is finally concentrated in

one promising area. From the above analysis, it can be confirmed that ABC algorithm

is suitable for the single-objective optimization problem.

3.6 Firefly Algorithm

3.6.1 Overview of Firefly Algorithm

Firefly Algorithm (FA)［38］［39］［40］is an optimization method based on the analogy

of firefly activity. In actual firefly activity, each individual communicates with other

fireflies by emitting light, feeding, and applying courtship behavior. Generally, bright

firefly is attractive and each firefly is attracted to fireflies that emit bright light around

themselves. Xin-She Yang proposed FA in 2007, which is a multi-point search type

metaheuristic, and is abstracted as above phenomenon. Xin-She Yang idealized the

courtship of fireflies in developing FA by the following three rules［40］.

• All Fireflies are unisex so that any individual firefly will be attracted to all other

fireflies.

• The attractiveness is proportional to their brightness, and for any two fireflies,

the less bright one will be attracted to the brighter one. However, the intensity

decreases as their mutual distance increases.

• If there are no fireflies brighter than a given firefly, it will move randomly.

In FA, each search point moves so as to approach another search point. At this

time, FA determines the search point to be referred to and the movement amount to

be referred to based on the light intensity (evaluation value of the search point) and

attractiveness (coefficient for determining the movement amount).

First, in FA, each search point refers to a search point having a light intensity superior
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to itself and moves. The best search points move randomly. Next, each search point

determines the amount of movement based on the appeal of the search point to be refer-

enced. In actual firefly communication, the intensity of light is inversely proportional to

the square of the distance, so far away fireflies can not be visually observed. Likewise,

the attractiveness of search points in FA decreases with increasing distance between

search points. And when moving, the stronger the attractiveness of the reference point,

the greater the degree of movement.

3.6.2 Algorithm of Firefly Algorithm

In this Section, in order to outline each operation of FA, set the number of search

points m, i-th search point xi (i = 1, 2, · · · ,m), the point group P t = {xt
i | i =

1, 2, · · · ,m}, and the number of iterations t. First, xt
cbest is the search point having the

best evaluation value in the search point group according to the Eq.(3.20).

xt
cbest = arg min

xt
i∈P t

{f(xt
i) | i = 1, 2, · · · ,m} (3.20)

Then, the reference point zi and the reference point group V are saved according to

the Eqs.(3.21) and (3.22).

zi = xt
i (i = 1, 2, · · · ,m) (3.21)

V = {zi | i = 1, 2, · · · ,m} (3.22)

Each operation of FA will be described as follows. To grasp the light intensity and

attractiveness quantitatively, we define the light intensity Ii of FA and attractiveness

βi,j by the Eqs.(3.23) and (3.24).

Ii =
( ∣∣f(xt

cbest)− f(xt
i)
∣∣+ 1

)−1

(3.23)

βi,j = β0e
−γ∥zj−xt

i∥2

(3.24)
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Here β0 is the maximum value of attraction, and γ is a parameter related to attenu-

ation of light. Each firefly is attracted by all fireflies within stronger light intensity to

move. The movement equation is defined by the Eq.(3.25), when firefly i is sucked into

firefly j.

xt
i := xt

i + βi,j(zj − xt
i) + αR (3.25)

Here α is a parameter corresponding to the scale of the random number term and R

represents a uniform random number vector to be changed in the range of [−0.5, 0.5]N .

The brightest firefly xt
cbest moves randomly according to the following Eq.(3.26).

xt
cbest := xt

cbest + αR (3.26)

Firefly Algorithm for the minimization problem of the objective function f(x) (x ∈

RN) is shown by Algorithm 3.4.
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Algorithm 3.4 Firefly Algorithm（FA）
1: procedure FA(x,m, α, β0, γ, Tmax)

Step 1: Preparation

2: Set the maximum number of iterations Tmax, the number of search pointsm, and the parameters

α > 0, β0 > 0, and γ > 0.

Step 2: Initialization

3: Set the number of iterations t = 1.

4: In the feasible area X ⊆ RN , randomly generate search point x1
i (i = 1, 2, · · · ,m), and the

swarm set P 1 = {x1
i | i = 1, 2, · · · ,m}.

Step 3: Calculation of light intensity

5: Calculate the light intensity Ii of each search point xt
i ∈ P t.

6: xt
cbest = argmin

xt
i∈P t

{f(xt
i) | i = 1, 2, · · · ,m}

7: Ii =
(
|f(xt

cbest)− f(xt
i)|+ 1

)−1

8: Each search point xt
i ∈ P t is sorted in descending order of Iti .

9: Save the reference solution zi and solution set V .

10: zi = xt
i (i = 1, 2, · · · ,m), V = {zi | i = 1, 2, · · · ,m}

11: Set i = 1 and j = 1.

Step 4: Movement of the search point

12: for i = 1 to m do

13: if Ii < Ij then

14: xt
i := xt

i + β0e
−γ∥zj−xt

i∥2

(zj − xt
i) + αR

15: Here, R ∈ [−0.5, 0.5]N is a uniform random vector.

16: Let j := j + 1.

17: if j = m then

18: xt
cbest := xt

cbest + αR

19: Set j := 1.

20: end for

Step 5: Updating search points

21: Update the search point xt
i ∈ P t and the swarm set P t.

22: xt+1
i = xt

i (i = 1, 2, · · · ,m), P t+1 = {xt+1
i | i = 1, 2, · · · ,m}

Step 6: Termination

23: if t = Tmax then

24: The algorithm is terminated.

25: else

26: Return to Step 3, set t := t+ 1.

27: end procedure
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Fig. 3.10: Movement of the Search Point in Firefly Algorithm

3.6.3 Analysis of Firefly Algorithm Search Structure

Focus on the neighborhood generate according to the update formula shows in Fig. 3.10.

As represented by the update formula of the Eq.(3.27), the neighborhood solution xt′
i

generates as a linear combination of the difference vector βi,j(zj −xt
i) and the uniform

random number vector αR. Since FA is an absolute move, the search point xt
i always

moves to the neighborhood solution xt′
i .

xt′

i := xt
i + βi,j(zj − xt

i) + αR (3.27)

Furthermore, from the Eq.(3.24), if the distance between xt
i and zj is small, βi,j is

large, and if the distance between xt
i and zj is large, βi,j is small. In other words, if

the distance between xt
i and zj is extremely small, βi,j ≃ β0, when β0 = 1 movement

closer to zj − xt
i. On the other handm if the distance between xt

i and zj is extremely

large, βi,j ≃ 0, it has almost no effect on the movement of the first argument xt
i and

zj. In other words, the amount of movement is small when the distance between the

search point and the reference point is long, and the amount of movement is large when

the distance is short. Therefore, FA is a dynamic that gathers search points that are
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Fig. 3.11: Transition of Search by Firefly Algorithm (β0 = 1, γ = 0.5, α = 0.05)
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close to each other, and the search point swarm has the property of being divided into

multiple swarms.

Fig. 3.11 shows the each state of the search when FA is applied to the multimodal

2N minima function. In the Fig. 3.11, ◦ represents each search point. From the above

analysis, it can be confirmed that FA is suitable for the superior solution set search

problem.

3.7 Comparison of Each Method

3.7.1 Analyze the Characteristics of the Superior Solution Set

Search Problem

In Chapter 2, We proposed the superior solution set search problem. We analyzed the

structure and characteristics of the superior solution set search problem, the superior

solution set is a diverse set of solutions with different properties between solutions. So

we know the requirements of the superior solution set search method as follows:

（1） the method has a mechanism for searching multiple promising regions in parallel.

（2） the method is a multi-point search type and can apply multimodal structure

optimization.

（3） the method has the search mechanism of the distance.

（4） the method can handle versatility for Black-Box optimization for practical opti-

mization which changes in the surrounding environment.

Based on the above requirements, we analyze several representative algorithms and find

out which methods are suitable for superior solution search.
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3.7.2 Analysis of Each Method

All the methods introduced in this chapter meet the requirements of (2) and (4)

above, but only FA is the only method that meets all requirements. Therefore, I think

FA is most suitable for the development of superior solution set search problem.

In response to requirements (1) and (3), we conduct a specific analysis of the FA.

From the updated formula of FA (see Eq.(3.24)), we can see that when the search point

of FA is moving, the distance between the search point and the reference point must be

considered. So FA meets the requirement (3), the method has the search mechanism of

the distance.

At the same time, FA adjusts the magnitude of the difference vector according to the

distance. When the distance is long, the magnitude of the difference vector becomes

small and the search point does not approach the reference point. When the distance

is short, the magnitude of the difference vector does not decrease and the search point

approaches the reference point. So that, the search point group is divided into multiple

groups, and each group searches for a local optimum solution. Therefore, FA also meets

requirement (1), the method has a mechanism for searching multiple promising regions

in parallel.

Since there is a high possibility that the superior solution can be obtained by finding

multiple local optimum solutions, FA has excellent properties to search for the superior

solution set. In the following Chapters 4 and 5, we have proposed two methods based

on FA for the superior solution set search problem.

3.8 Summary

In this chapter, we compared typical metaheuristics such as Particle Swarm Opti-

mization, Differential Evolution, Firefly Algorithm etc. and pointed out that Firefly

Algorithm has a mechanism for adjusting the amount of movement based on the dis-

tance from the reference point. From this feature, it was clarified that Firefly Algorithm
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can obtain multiple local optimum solutions and has a basic method for searching for

the superior solution set, which is a subset of the local optimum solution set.





4 Superior Solution Set

Search Method Based

on Clustering

4.1 Introduction

In this Chapter, from the analysis of the search structure of the Firefly Algorithm

(FA), FA has the property of searching multiple promising regions in parallel. It was

clarified that FA has a high affinity for the superoir solution set search problem. By

taking advantage of this property and incorporating a cluster structure, we propose a

parameter adjustment rule for FA. Then, assuming a basic case in the superior solution

set search problem, a numerical experiment is performed for a benchmark function

having multiple optimal solutions that are separated from each other. Compare the

proposed method with the original FA and examine the usefulness of the proposed

method.

I add an adaptive mechanism (diversification and intensification) to the above pro-

posed method to further improve search performance.　 In addition, by analyzing the

FA search dynamics from the perspective of diversification and intensification, we clar-

ify the diversification and intensification of FA and the ability to adjust parameters.

Based on the evaluation and control of the FA search state in the superior solution set

search problem, an FA with high adaptability is constructed. Then, assuming a basic

case in the superior solution set search problem, a numerical experiment is performed

for a benchmark function having multiple optimal solutions that are separated from
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Fig. 4.1: Inclusion Relation of Global Optimal Solution, Superior Solution Set, and

Local Optimal Solution Set

each other. We compare the original FA and FA based on cluster information with the

adaptive FA, and examine the usefulness of the adaptive FA.

4.2 Research Approaches

The superior solution set is part of the local optimal solution set that contains the

global optimal solution (see Fig. 4.1). Therefore, if we get all the local optimal solutions,

we can get all superior solutions. However, it is difficult to obtain all local optimal

solution sets in numerical calculation, so I obtain the superior solution set approximately

by acquiring a part of the local optimal solution set.

Then, there are various cases when obtaining some solutions of the local optimal

solution set in numerical calculation. For example, there is a case such as “A” that
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does not include the superior solution at all. There is a case such as “B” that includes

some superior solutions, but does no include the global optimal solution. There is a

case such as “C” that includes the global optimal solution and some superior solutions.

There is a case such as “D” that includes only the global optimal solution and some

superior solutions. Fig. 4.1 shows a schematic diagram of each case.

I developed two approaches, one directly acquires the superior solution, and the other

indirectly acquires the superior solution. In order to search for the superior solution

set in indirectly approach, it is necessary to find more local optimal solutions with

higher optimization. In this way, there may be more superior solutions in obtaining

the local optimal solutions. On the other hand, in directly approach, it is necessary to

use parameters δ and ε, which are defined the superior solution set search problem, to

clearly evaluate the search points, so that the obtained solution meets the constraints

of the superior solution.

In this Chapter, the purpose is to efficiently obtain “C”, which is a part of the superior

solution set, to indirectly acquire the superior solution. In next Chapter, the purpose is

to efficiently obtain “D”, which is a part of the superior solution set, to directly acquire

the superior solution.

4.3 Firefly Algorithm Based on Cluster Information

Many of the metaheuristics proposed so far aim to search for the only global optimal

solution or quasi-optimal solution, and since each search point performs a global search.

It is difficult to search multiple promising regions in parallel. On the other hand, a

superior solution set is composed of a plurality of locally optimal solution sets in which

the evaluation value of the objective function is superior by a certain value or more

and the distances between the solutions are separated by a certain value or more. In

order to search for a superior solution set, it is necessary to have the ability to search

for promising regions in parallel.
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The characteristics of FA are the reference of the solution based on the light intensity

of the firefly and the movement by the difference vector toward the referenced solution.

This amount of movement decreases as the distance between the search point and the

referenced search point increases. In other words, the amount of movement is small

when the distance between the moving search point and the reference point is long. On

the other hand, when the distance is short, the amount of movement is large. FA has

the properties of an algorithm for basic superior solution set search, in which the search

point group is divided into multiple by these properties［88，92，94］.

Also, at low dimensions, FA can simultaneously find multiple local optimal solutions

in the search process. However, as dimensions increases, the ability of FA to search for

superior solution set in parallel is weakening. Therefore, it is an important issue that the

development of an algorithm to further improve low-dimensional search performance

for the superior solution set search problem, and add the ability to search for high-

dimensional superior solution set.

From the analysis in Chapter 3, compared to other metaheuristics, FA has the prop-

erty that it is divided into multiple groups in the search process of the superior solution

set in parallel. Therefore, unlike many single-purpose optimization methods, it is ex-

pected that the superior solution set can be searched efficiently by utilizing the proper-

ties of FA. On the other hand, there is still much room for improvement in applying FA

to the search for the superior solution set. Further improvement in FA performance can

be expected by adding a mechanism (cluster) for dividing into multiple clearer groups.

4.3.1 Analysis of Firefly Algorithm Parameter

In this Section, we focus on the following operations in the FA algorithm and analyze

the search dynamics of FA.

• The neighborhood solution is generated from the difference vector by the Eu-

clidean distance between the search point xi and the reference point zj and the

perturbation by random number.
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• The search point xi is always updated to the generated neighborhood.

First, since the update of the search point of FA allows the deterioration of the search

point, it is difficult to improve the search point only by perturbation of the random

number term. On the other hand, the random number term in FA is considered to

contribute to the local search after the search points have converged.

It is considered that the major contribution to the improvement of the FA search

point is the movement of the update point xi toward the better reference point zj.

However, when this movement is small, efficient improvement cannot be made. On the

other hand, when the movement is large, all the search points converge around the best

solution without dividing into multiple groups. In order to solve the superior solution

set search problem efficiently, it is necessary to properly adjust the movement toward

the excellent reference point. In addition, in a search divided into multiple clusters, it

is considered difficult to control all clusters uniformly because the search status for each

cluster is different. FA performance can be expected to improve by making appropriate

adjustments according to the status of each cluster.

FA converges to multiple local optimal solutions (subsets of superior solutions) be-

cause of the mechanism for adjusting the amount of movement based on the distance

between the search point and the reference point. The parameter γ affects the mecha-

nism of movement adjustment. If you set γ large, the amount of movement will decrease.

If you set γ small, the amount of movement will increase.

I did experiments that change the parameter γ of FA to confirm the number of local

optimal solutions obtained. So I changed γ from 0.05 to 1.0 in 20 runs of 0.05 for bench-

mark functions Function 1 (F1), Function 2 (F2), Function 3 (F3), and Function 4 (F4)

are given in Table 4.1, as given in Table 4.2 ∼ Table 4.5. From the experimental results,

I know that the adjustment of the parameter γ has a huge impact on the results. In

FA, it is extremely important to set the parameter γ in order to realize a search divided

into many clusters.



Chaper 4 Superior Solution Set Search Method Based on Clustering 68

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
=1
=0.1
=0.01

Fig. 4.2: Variations of β

4.3.2 Proposal of Parameter Adjustment Rule Based on Clus-

ter Information

From the analysis so far, it can be seen that γ is a parameter that expresses the

firefly analogy that is the basis of FA, and has a great influence on the performance

of searching for the superior solution set. Furthermore, FA automatically divides into

multiple clusters in the process of searching for the superior solution set. Therefore, we

propose an adjustment rule for the parameter γ, which takes into account the property

that FA divides into multiple clusters in the process of searching for the superior solution

set. The proposed γ adjustment rule is shown in Algorithm 4.1 below.

FA brings β closer to β0 when it refers to a search point that is closer. On the

other hand, FA divides the search point group into multiple points by bringing β closer

to zero when referring to a search point that is far away. In this paper, the search

point xt
i(i = 1, 2, · · · ,m) is used as a clustering method to divide K clusters U =

{U1,U2, · · · ,UK}. Here, various methods can be used to divide each cluster, but this

time, the k-means clustering［62，63，64］(seeAlgorithm B.1 in Appendix B), which is
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Algorithm 4.1 Gamma Adjustment Rule

1: procedure Gamma Adjustment Rule(m,K,C, P, β0)

Step 1: Preparation

2: Set the number of clusters K and the parameters C and β0.

3: Give a set of search points (x1,x2, · · · ,xm) and reference points (z1, z2, · · · , zm).

4: zi = xi(i = 1, 2, · · · ,m)

Step 2: Cluster assignment

5: Partition the search points (x1,x2, · · · ,xm) into K(≤ m) clusters U = {U1,U2, · · · ,UK}.
6: {U1,U2, · · · ,UK}=k-means algorithm(x1,x2, · · · ,xm,K) ▷ See Algorithm B.1

7: Find the best point Gbestk(k = 1, · · · ,K) of each cluster Uk(k = 1, 2, · · · ,K).

8: Gbestk = argmin
xt

l∈Uk

{f(xi)|i = 1, 2, · · · , |Uk|}

Step 3: Calculation of γ

9: for i = 1 to m do

10: Calculation parameter γi of search point xi ∈ Uk by reference point zj .

11: γi =

{
− ln(Ct/β0)/||Gbesttk − xt

i||2 zj ∈ Uk

− ln(P t/β0)/||Gbesttk − xt
i||2 zj /∈ Uk

12: Here, k refers to the cluster number to which the search point xi is assigned.

13: end for

14: end procedure

easy to implement, is used. The Eq.(4.1) can be derived by transforming the Eq.(3.24).

Variations of β is shown by Fig. 4.2.

γ = − ln(β/β0)/
∥∥zj − xt

i

∥∥2
(4.1)

Then, when the search point xt
i ∈ Uk refers to the reference point zj ∈ Uk, the

parameter C is used to adjust γ by replacing the reference point zj ∈ Uk with the best

solution Gbestk = argmin
xt
l∈Uk

{f(xt
l)|l = 1, 2, · · · , |Uk|} and replacing β with C according

to the Eq.(4.2). On the other hand, when the search point xt
i /∈ Uk refers to the

reference point zj /∈ Uk, the parameter P is used to adjust γ by replacing the reference

point zj /∈ Uk with the best solution Gbestk and replacing β with P according to the

Eq.(4.2). For the proposed adjustment rule of γ, refer to the following Algorithm 4.1,

and the image of adjustment of γ is shown in Fig. 4.3.

γi =

{
− ln(C/β0)/||Gbesttk − xt

i||2 zj ∈ Uk

− ln(P/β0)/||Gbesttk − xt
i||2 zj /∈ Uk

(4.2)
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At the same time, the parameter α is the step width of the random perturbation to

control the range of the search area in FA. Considering the stability of each group, it is

difficult to converge when the perturbation is strong, and it is easy to converge when

the perturbation is weak in the superior solution set search problem. Therefore, a wide

area is searched at the beginning of the search, and a narrow area is searched at the end

of the search. In FA, the distribution of perturbations gradually shrinks as the search

points move even if they deteriorate. Therefore, the scheduling adjustment rule is used,

and the concrete adjustment rule of α is shown in the Eq.(4.3).

αt = αmax −
t

Tmax

· (αmax − αmin) (4.3)

Firefly Algorithm based on cluster information for the minimization problem of the

objective function f(x) (x ∈ RN) is shown by Algorithm 4.2.
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Algorithm 4.2 Firefly Algorithm based on Cluster Information（FA-CI）
1: procedure FA-CI(m,αmax, αmin, β0,K,C, P, Tmax)

Step 1: Preparation

2: Set the maximum number of iterations Tmax, the number of search points m, β0 > 0, K, C, P ,

αmax, and αmin. Set the number of iterations t = 1, α1 = αmax.

Step 2: Initialization

3: In the feasible area X ⊆ RN , randomly generate search point x1
i (i = 1, 2, · · · ,m), and the

swarm set D1 = {x1
i | i = 1, 2, · · · ,m}.

Step 3: Calculation of light intensity

4: Calculate the light intensity Ii of each search point xt
i ∈ Dt.

5: xt
cbest = argmin

xt
i∈V t

{f(xt
i) | i = 1, 2, · · · ,m}

6: Ii =
(
|f(xt

cbest)− f(xt
i)|+ 1

)−1

7: Each search point xt
i ∈ P t is sorted in descending order of Iti .

8: Save the reference solution zi and solution set V .

9: zi = xt
i (i = 1, 2, · · · ,m), V = {zi | i = 1, 2, · · · ,m}

10: Assign each search point xt
i to K clusters U = {U1, U2, · · · , UK}.

11: {U1,U2, · · · ,UK}=k-means algorithm(x1,x2, · · · ,xm,K) ▷ See Algorithm B.1

12: Find the best point Gbestk(k = 1, · · · ,K) of each cluster Uk(k = 1, 2, · · · ,K).

13: for k = 1 to K do

14: Gbestk = argmin
xt

l∈Uk

{f(xt
l)|l = 1, 2, · · · , |Uk|}

15: end for

16: Set i = 1 and j = 1.

Step 4: Movement of the search point

17: for i = 1 to m do

18: if Ii < Ij then

19: γi=Gamma Adjustment Rule(xt
i ∈ Uk,Gbesttk, C, P ) ▷ See Algorithm 4.1

20: Move the search point xt
i referring solution zi ∈ V .

21: xt
i := xt

i + β0e
−γi∥zj−xt

i∥2

(zj − xt
i) + αR

22: Here, R ∈ [−0.5, 0.5]N is a uniform random vector.

23: Let j := j + 1.

24: if j = m then

25: Move the best search point xt
cbest ∈ Dt.

26: xt
cbest := xt

cbest + αR

27: Set j := 1.

28: end for

Step 5: Updating search points and each parameter

29: Update the search point xt
i ∈ Dt and the swarm set Dt.

30: xt+1
i = xt

i (i = 1, 2, · · · ,m), Dt+1 = {xt+1
i | i = 1, 2, · · · ,m}

31: αt+1 = αmax − t
Tmax

· (αmax − αmin)

Step 6: Termination

32: if t = Tmax then

33: The algorithm is terminated.

34: else

35: Return to Step 3, set t := t+ 1.

36: end procedure
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Table 4.1: Benchmark Function (See Appendix A)

Functions Definitions Search Space

Function 1 min
(
f(x+ Y ), f(x− Y ), f(x+Z), f(x−Z)

)
[−5, 5]

Function 2 min
(
f(x+ Y ), g(x+Z), f(x− Y ), g(x−Z)

)
Function 3 min

(
f(x+ Y ) + E, g(x+Z)− E, f(x− Y ) + F, g(x−Z)− F

)
Function 4 min

(
g(x+ Y ), f(x+Z), g(x− Y ), f(x−Z)

)
f(x) Sphere Function :

∑n
i=1(xi)

2

g(x) Schwefel′s Function :
∑n

i=1

(∑i
j=1 xj

)2

Vectors Definitions

Y [2.5, 2.5, · · · , 2.5, 2.5]n

Z [2.5,−2.5, · · · , 2.5,−2.5]n

Constants Definitions

E 2.5

F 5

4.3.3 Numerical Experiment

(a) Numerical Experiment Conditions

In the numerical experiment, we compared the fixed parameter γ of FA with the

proposed γ adjustment rule of FA which obtains superior solutions x∗ ∈ Q(δ, ε) to

evaluate the performance. However, it is impossible to obtain a strict superior solu-

tions x∗, which xTmax
i satisfies ∥xTmax

i − x∗∥ ≤ η, and we determine that the x∗ has

been found. In this paper, we set up the problem so that the superior solution set

Q(δ, ε) is determined regardless of δ and ε for basic study. The benchmark functions

Function 1 (F1), Function 2 (F2), Function 3 (F3), and Function 4 (F4) are given in

Table 4.1, and they have multiple global optimal solutions x⋆ far apart from each other

for 5, 10, and 20 dimensions. In this case, we have x∗ = x⋆(∀δ ≥ 0 ∧ ∀ε > 0).

We compare the proposed method with the original Firefly Algorithm and evaluate
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the performance of the proposed method (FA-CI) for the basic case of the superior

solution set search problem. As a shared experiment condition, the number of trials

was set to 50. The maximum number of iterations was 1000 and η was 0.5. In addition,

the recommended values of other parameters β0 was 1.0, α was using the Eq.(4.8) where

αmax was 1.0 and αmin was 0.01. The parameters of original FA, we changed γ from

0.05 to 1.0 in 20 runs of 0.05, as given in Table 4.2 ∼ Table 4.5. The parameters of

FA-CI were C = 10−7 referring to points in same cluster, P = 10−9 referring to points

in different clusters, cluster number K = 4, αmax = 0.1, and αmin = 0.01.

We determine the evaluation indicates by the number of superior solutions acquired

in one trial. “Best” denotes the best evaluation value of 50 runs, “Worst” refers to

the worst value of 50 runs, “Mean” denotes the average value of 50 runs, and “S.D.”

denotes the standard deviation of 50 runs. Moreover, the ranking of the FA-CI in the

results of the original FA (OFA) is expressed as “Rank.” The value of “Rank” indicates

the order of the FA-CI in the results.

(b) Results of the Numerical Experiment

Table 4.2 ∼ Table 4.5 show the results of numerical experiment. In the case of the

given dimensions in F1, FA-CI has almost the same performance as other comparison

methods, but it ranked 16 out of the 20 types in the original FA. In the case of 10

and 20 dimensions in F1, the performance of FA-CI is superior to the results of the 1st

compared to 20 types in the original FA. In the case of 5, 10, and 20 dimensions in F2,

F3, and F4, the performance of AFA is superior to that achieved with 20 types in the

original FA. From the above, it is verified that FA-CI has excellent performance.
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4.4 Adaptive Firefly Algorithm Based on Evalua-

tion and Control of Search State for Superior

Solution Set Search Problem

Metaheuristics can efficiently search through adjustable parameters of each method.

However, it is necessary to consider the problem structure and the search condition

for setting appropriate parameters, and doing so requires considerable expertise and

experience. Meanwhile, it is looking forward that can also realize a high-performance

search for various problems and search conditions with the optimization field of the

external environment changing. Therefore, considering the application of metaheuristics

to real systems, development of the adaptive parameter adjustment rule is important.

Furthermore, actual optimization problems are generally either single objective or

multi-objective optimization problems, and to extend the degree of freedom of the

choice of solutions for decision makers, the development of a method that yields multi-

ple solutions at the same time for multimodal functions is important. From the above

viewpoints, we proposed a superior solution set search problem［60，61］in a previous

study, which searches for various solution sets whose evaluated values are similar and

the solution distance is far away. It is expected to present alternative proposals to solve

problems when accidents or technical problems occur. Compared with other meta-

heuristics for single objective optimization problems, FA can be divided into multiple

groups in the search process of the superior solution set search problem, and the search

for multiple promising regions can be performed in parallel. Therefore, FA expected to

be able to efficiently search for the superior solution set, which has different properties

compared to many single objective optimization methods.

To improve the search performance of metaheuristics for a single objective optimiza-

tion problem, it is important to appropriately realize search guidelines for diversification

and intensification［22，23，24，53］. Based on the universal search structure and strat-

egy of many metaheuristics in single objective optimization problems, we introduce the

approach “cluster diversification and intensification” for the superior solution set search
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problem. In addition, from the viewpoint of diversification and intensification, we an-

alyze the parameters of FA and cluster diversification and intensification to develop a

parameter adjustment rule for FA. We show that it is possible to improve the perfor-

mance of finding the superior solution set by adaptive control of cluster diversification

and intensification.

4.4.1 Analysis of Firefly Algorithm Parameters and Diversifi-

cation and Intensification

In this Section, we analyze FA parameters and diversification / intensification, and

clarify the relationship between the action of each FA operation and diversification

/ intensification. If the movement β of each search point increases, then the search

points gather into a single cluster earlier. This is not conducive to search points that

are divided into separate clusters and is inefficient for finding the superior solution set.

However, if the movement β of each search point decreases, the search point group

becomes more similar to random exploration. This is not conducive to exploring the

evolution of points and is also inefficient for finding the superior solution set. Therefore,

from the viewpoint of an optimization method that can search efficiently, determining

the movement amount is extremely important. Determination of the amount of move-

ment is directly related to the parameter γ. When the parameter γ, which adjusts the

amount of movement increases, the movement of each search point decreases. Con-

versely, when γ decreases, the movement of the search points increases. This parameter

can efficiently adjust the movement of the search points, including movement between

the clusters, and can improve the performance of searching for the superior solution set.

At the same time, in Section 4.3, we proposed a new adjustment rule for the parameter

γ. In the adjustment rule, we use the parameters C and P to adjust the parameter γ

to achieve the effect of grouping and adjusting the search state.

At the same time, parameter α is the step size quantization factor of the random

movement term in FA, and it controls the range of exploration areas in FA. Considering
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the stability of each cluster in the superior solution set search, convergence is difficult

when perturbation is strong, and it is easy when perturbation is weak. Therefore, it is

expected to be adjusted appropriately according to the state of each cluster.

In the superior solution set search problem, it is desirable that diversification and

intensification cerate clusters similar to those in conventional single-objective optimiza-

tion methods while maintaining diversity between the clusters. We define diversification

and intensification for the superior solution set search problem as follows. Diversifica-

tion is defined as “searching a large area within a cluster”, “suppressing attraction of

solutions between clusters” and “expansion of perturbation.” Intensification is defined

as “searching a narrow area within a cluster”, “promotion of attraction between so-

lutions in different clusters” and “reduction of perturbation.” The attraction in the

solution to FA is controlled by the parameter γ. From the γ adjustment rule, we set

parameters C and P to adjust the parameter γ. So, parameter C controls diversifica-

tion and intensification within the cluster, and parameter P controls diversification and

intensification between clusters.

From the above parameter analysis, i) the movement for approaching an excellent

reference point weakens when γ is small (diversification), and the movement for ap-

proaching an excellent reference point becomes stronger when γ is large (intensifica-

tion). As we know, when parameters C and P are small, γ is large. So, the movement

for approaching an excellent reference point weakens when parameters C and P are

large (diversification), and the movement for approaching an excellent reference point

becomes stronger when parameters C and P are small (intensification). Moreover, ii)

the perturbation becomes wider when α is large (diversification), and the perturba-

tion becomes narrow when α is small (intensification). The relationship between FA

parameters and diversification / intensification in this paper is shown in the Table 4.6.

Moreover, to efficiently search in a finite time search problem, “each cluster is di-

versified at the initial stage of searching”, and “each cluster is intensified in the final

searching stage.” “All search clusters are close at the initial of search”, and “each clus-

ter is separated from the others at the end of search” with the aim of realizing a search

strategy. Fig.4.4 shows an image of the search strategy used in the Function 1 in two-
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Table 4.6: Relationship Between Firefly Algorithm Parameters and Diversification /

Intensification

Parameters Definition

γ Small ⇐⇒ Large

C Large ⇐⇒ Small

P Large ⇐⇒ Small

Search Strategy Diversification ⇐⇒ Intensification

Fig. 4.4: Effective Search Strategy of Metaheuristics for Superior Solution Set Search

Problem

dimensional space. Thus, a search strategy that appropriately realizes diversification

and intensification in the search process is important in metaheuristics.
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4.4.2 Evaluation Indicators of Diversification and Intensifica-

tion for the Superior Solution Set Search

Generally, it is important to properly realize diversification and intensification for

improving the performance of metaheuristics［19，22，23，53，65，66，67，68］, and in

analysis of Section 4.4.1 for the superior solution set search problem, it is pointed out

that FA does not have the adjustment ability of diversification and intensification. In

this Section, we define evaluation indicators for the diversification and intensification

for the superior solution set search problem newly. Furthermore, we show that the

evaluation indicators can evaluate the search state of diversification and intensification

for the superior solution set search problem by conducting numerical experiments.

(a) Evaluation Indicators

To realize diversification and intensification, 1) the strength of the interaction be-

tween the clusters, and 2) the magnitude of perturbation are adjusted. In this Section,

we evaluate the realization state of diversification and intensification by “promotion /

suppression of actions in the cluster and between clusters” and “expansion / reduction

of perturbation” based on the analysis of parameters in Section 4.4.1.

Based on the above, we consider the evaluation indicators of actions by the cluster

information (U = {U1,U2, · · · ,UK}). In this paper, we evaluate the intensification

state of search points within clusters and the degree of separation between clusters

based on cluster information. It is desirable that diversification and intensification

create cluster similar to those in conventional single-objective optimization methods

while maintaining diversity between clusters. Therefore, the evaluation indicator A of

a cluster is defined as the mean value of the distances between the search points in

each cluster based on the Eq.(4.4), which can be used to evaluate the search area. The

evaluation indicator B between clusters can be defined as the mean value of the centroid

Gk = 1
|Uk|

∑
x∈Uk

x (k = 1, · · · , K) distances between each cluster based on the Eq.(4.5),

which can evaluate the degree of separation between clusters. Fig.4.5 presents example
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Fig. 4.5: Image of Evaluation indicators A and B

images of the evaluation indicators A and B.

A =
1√
nl

K∑
k=1

mk−1∑
i=1

mk∑
j=i+1

∥xk,i − xk,j∥ (4.4)

B =
1√
nL

K−1∑
i=1

K∑
j=i+1

∥Gi − Gj∥ (4.5)

l =
K∑
k=1

mk
C2 (4.6)

L = KC2 (4.7)

Here, xk,i is the search point xi in the k-th cluster, Gk is the center of gravity of the

k-th cluster, mk is the number of search points in the k-th cluster, K is the number of

clusters, A and B divided by
√
n to remove the influence of dimension n.
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Fig. 4.6: Transitions of A and B in Original Firefly Algorithm

If A is large, the average distance between the search points in the cluster is large

(the search point distribution is wide). If A is small, the average distance between the

search points in the cluster is small (the search point distribution is narrow). If the

fluctuation in B is large, the degree of separation between clusters varies greatly. An

image of the search strategy for the superior solution set search problem is presented in

Fig.4.4. While maintaining a constant distance between clusters, the search is performed

by progressing from a wide area to a narrow area within the clusters. To facilitate

this search strategy, the evaluation indicator A should be gradually reduced while the
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evaluation indicator B remains relatively constant.

(b) Numerical Experiment on Evaluation Indicators

In this Section, we show that the evaluation indicators A and B for diversification and

intensification of clusters, respectively, can be evaluated through numerical experiments.

First, we show the values and transitions of A and B when the number of superior

solutions obtained S is different. Applying FA to benchmark function Function 1 (refer

to Table 4.1), changes in the evaluation indicators for each number of superior solutions

obtained are shown. As common experimental conditions, the number of search points

m was set to 50, number of dimensions n was set to 5, α was set to 0.05, attenuation

parameter γ was set to 0.25, and the maximum number of iterations Tmax was set to

1000.

Fig.4.6 illustrates the transitions in the evaluation indicators A and B as the number

of obtained superior solutions S changes. The evaluation indes A of a cluster decreases

earlier and converges for each cluster during searching. The number of superior solutions

obtained S is four in Fig.4.6(a). The evaluation indicator between clusters B tends to

maintain a certain level and each cluster performs a parallel search while maintaining

a certain distance between clusters. The numbers of superior solutions obtained S are

two and one in Fig.4.6(b) and (c) respectively. The evaluation indicator B between

clusters shows large fluctuations within the black box and it was confirmed that the

clusters merged. Therefore, through numerical experiments, we have confirmed that

the evaluation indicators A and B defined in this paper can accurately evaluate the

clustering in a given search state.
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4.4.3 Proposal of Adaptive Firefly Algorithm

(a) Parameter Adjustment Strategy

Metaheuristics have tunable parameters, and it is possible to perform a search by

exploiting the degrees of freedom of the parameters and appropriately setting them

according to the search conditions and problem structure. Considering the problem

structure and search condition for appropriate parameter setting, which requires expert

knowledge and considerable experience, is necessary. Meanwhile, metaheuristics in the

field of optimization of the external environment is being developed to realize high-

performance search for various problems and search conditions. Therefore, for applying

metaheuristics to real systems, extracting effective knowledge on parameter setting /

adjustment and systematic classification / organization and development of adaptive

parameter adjustment are required.

Thus far, several studies on the adaptation of metaheuristics and parameter adjust-

ment methods have been reported［27，34，36，38，69，70，71，72，73，74，75］. The

authors believe that classification can be made from the viewpoint of adaptability of op-

timization algorithms. Based on this, parameter adjustment methods for metaheuristics

can be classified as follows.

• Parameter fixed rule: Reference［27，34，36，38］

A mechanism for presetting parameters and searching without changing the

search process.

• Scheduling Adjustment Rule: Reference［69，70，71］

A mechanism for preliminarily adjusting parameters according to a schedule by

a user.

• Reactive adjustment rule: Reference［72］

A mechanism for adjusting parameters when some predetermined condition is

satisfied in the search process.

• Adaptive adjustment rule: Reference［73］

A mechanism for adjusting parameters that follows the search guidelines from the
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information obtained in the search process after giving some type of information,

which is the guideline for the search from outside in advance.

• Autonomous adaptive adjustment rule［74，75］

A mechanism that creates and improves guidelines based only on internal infor-

mation obtained in the search process and adjusts parameters.

(b) Rule for the Adjustment of Adaptive Firefly Algorithm Pa-

rameters

In this Section, we propose an Adaptive FA based on the evaluation and control of

the cluster search state. We proposed diversification and intensification evaluation in-

dicators for the superior solution set search based on FA, and quantitatively confirmed

the evaluation of the diversification and intensification of clusters through numerical

experiments in Section 4.4.2. Moreover, the relationship between parameter perfor-

mance analysis and diversification and intensification was clarified in Section 4.4.1.

Therefore, it is possible to control diversification and intensification so that the evalua-

tion indicators follow a preset target value while evaluating the realization state of FA

diversification and intensification in the search process.

In this paper, we adapt FA using clustering for application to the superior solution

set search problem. Using the clustering algorithm, we divide the search point group

into the k-th clusters Uk (k = 1, · · · , K). In addition, although arbitrary clustering

methods can be used, we obtain cluster information using k-means clustering (see Al-

gorithm B.1 in Appendix B), which is one of the representative clustering methods.

We then exploit the cluster information to improve the search capability for a superior

solution set. Additionally, it is expected that the adjustment ability of diversification

and intensification can be improved by adding adjustment rules for α and γ to FA.

First, we describe the adjustment rule of α. The search point moves even if it is worse

at the time of “neighborhood generation” in FA, and it is desirable that distribution

of the perturbation gradually shrinks. Therefore, we show the scheduling adjustment
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rule, and a concrete rule for adjusting α in the Eq.(4.8).

αt = αmax −
t

Tmax

· (αmax − αmin) (4.8)

Next, we describe the adjustment rule of γ. The adjustment rule for γ follows that

proposed by the authors［88］in Section 4.3.2. The search point xi belonging to the k-

th cluster Uk holds its own γi. By the way, the Eq.(3.24) of γ in FA can be transformed

into the Eq.(4.9). The distance ||zj − xt
i||2 from the search point xt

i to the reference

point zj is replaced with ∥Gbesttk − xt
i∥, and β is replaced with C and P . Here,

Gbestk (= argmin
xt
l∈Uk

{f(xt
l)|l = 1, 2, · · · , |Uk|}) is the best search point belonging to the

cluster Uk.

γi = − ln(β/β0)/||zt
j − xt

i||2 (4.9)

We use the Eq.(4.10) as the adjustment rule of γi with reference to the Eq.(4.9).

γi =

{
− ln(Ct/β0)/||Gbesttk − xt

i||2, zj ∈ Uk

− ln(P t/β0)/||Gbesttk − xt
i||2, zj /∈ Uk

(4.10)

Additionally, the new parameters C and P are adjusted according to adjustment

rules based on diversification and intensification between clusters and within a cluster.

First, we describe the adjustment rule for C. The Eq.(4.11) shows the adjustment rule

of concrete C when the search point xt
i refers to the search point in the same cluster.

Given an advance target schedule I tA (t = 1, 2, · · · , Tmax) for comparison with the value

of the evaluation indicator A, A can be adjusted by C based on the adjustment width

∆C following I tA. If the evaluation indicator A is smaller than the target schedule

I tA, the search points of the cluster become diversification and adjustment makes C

decrease. If the evaluation indicator A is larger than the target schedule I tA, the search

points of the cluster become intensification and adjustment makes C increase.

Ct =

{
min{Ct−1 +∆C, Cmax}, At ≥ I tA
max{Ct−1 −∆C, Cmin}, At < I tA

(4.11)

Next, we describe the adjustment rule of P . By contrast, the Eq.(4.12) shows the

specific adjustment rule of P when the search point xt
i refers to a search point in different
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Fig. 4.7: Target Schedule IA

clusters. We adjust the parameter P such that the average value B of the center of

gravity of each cluster does not fluctuate significantly. If the variation amount θ is

greater than the average of fluctuations ∆B in T times (see the Eq.(4.13)), the search

points between clusters are intensified and adjustment causes P to increase. If the

variation amount θ is smaller than the average of fluctuations ∆B in T times (see the

Eq.(4.13)), the search points within the clusters are diversified and adjustment causes

P to decrease. We adjust P by the defined adjustment width ∆P .

P t =


min{P t−1 +∆P, Pmax}, ∆Bt > θ

P t−1, (−θ ≤ ∆Bt ≤ θ)

max{P t−1 −∆P, Pmin}, ∆Bt < −θ

(4.12)

∆Bt =

{(
1
T

∑t−1
i=t−(T+1) Bi

)
− Bt, t > T + 1

0, 0 < t ≤ T + 1
(4.13)

It is possible to control the search conditions at each search stage using this adjust-

ment rule when target value schedules IA is appropriately set. Moreover, to efficiently

solve within a reasonable period, we aim to realize a search strategy; that is the search
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points in each cluster are in various states at the beginning of the search, and the search

points in each cluster are concentrated at the end of the search. In this paper, we use

exponential schedule of the target value I t, as shown in Fig.4.7, and the exponential

schedule expression is expressed by the Eq.(4.14).

I t = Istart

( Iend
Istart

)t/Tmax

(4.14)

There are several ways to choose Istart. In this paper, based on our numerical exper-

iments, we adopt a value of approximately 2
K

on one side of the search area, which is

represented by the hypercube in the benchmark problem. We simply set Iend to 0 or a

sufficiently small positive value so that intensification of searching within clusters near

the end of the search process is realized. The recommended values of Istart and Iend are

5 and 0.001, respectively, for the evaluation indicator A.

Adaptive Firefly Algorithm for the minimization problem of the objective function

f(x) (x ∈ RN) is shown by Algorithm 4.3.
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Algorithm 4.3 Adaptive Firefly Algorithm（AFA）
1: procedure AFA(m,β0, Tmax, T,K, θ, αmax, αmin, Istart, Iend, Cmax, Cmin,∆C,Pmax, Pmin,∆P )

Step 1: Preparation

2: Set the maximum number of iterations Tmax, number of search points m, the number of clusters

K, each parameter β0, T , and θ, the target schedule parameters αmax, αmin, Istart, and Iend.

3: Set parameters Cmax, Cmin, ∆C, Pmax, Pmin, and ∆P .

4: Set t = 1, α1 = αmax, C
1 = (Cmax + Cmin)/2, and P 1 = (Pmax + Pmin)/2.

Step 2: Initialization

5: In the feasible area, randomly generate search point x1
i (i = 1, 2, · · · ,m).

6: Save the solution as zi = x1
i (i = 1, 2, · · · ,m), and set i = 1.

Step 3: Calculation of light intensity

7: Calculate the light intensity Ii of each search point xt
i using the following equations.

8: f t
min = min{f(xt

i)|i = 1, 2, · · · ,m}, Ii =
(
|f t

min − f(xt
i)|+ 1

)−1

9: Each search point xt
i is sorted in descending order of Iti and set i = 1 and j = 1.

Step 4: Calculation of evaluation indicators

10: Assign each search point xt
i to each cluster Uk (k = 1, 2, · · · ,K).

11: Find the best solution Gbesttk = argmin{f(yt) | yt ∈ Uk} among the respective clusters Uk.

12: Calculate the evaluation indicators A and B by the following equations.

13: A = 1√
nl

∑K
k=1

∑mk−1
i=1

∑mk

j=i+1 ∥xk,i − xk,j∥ , l =
∑K

k=1 mk
C2

14: B = 1√
nL

∑K−1
i=1

∑K
j=i+1 ∥Gi − Gj∥ , L = KC2

15: mk is the number of search points in cluster Uk, and Gk is the center of gravity of cluster Uk.

Step 5: Movement of search points

16: for i = 1 to m do

17: if Ii < Ij then

18: γi =

{
− ln(Ct/β0)/||Gbesttk − xt

i||2, zj ∈ Uk

− ln(P t/β0)/||Gbesttk − xt
i||2, zj /∈ Uk

19: xt
i := xt

i + β0e
−γi∥zj−xt

i∥2

(zj − xt
i) + αR

20: Let j := j + 1, until j = m and move the search point xt
i by the following equation.

21: xt
i := xt

i + αR

22: Set j := 1.

23: end for

Step 6: Updating search points and each parameter

24: Update the search point xt+1
i = xt

i, and save the solution zj = xt+1
i .

25: αt+1 = αmax − t
Tmax

· (αmax − αmin)

26: Ct+1 =

{
min{Ct +∆C, Cmax}, At+1 ≥ It+1

A

max{Ct −∆C, Cmin}, At+1 < It+1
A

27: P t+1 =


min{P t +∆P, Pmax}, ∆Bt+1 > θ

P t, (−θ ≤ ∆Bt+1 ≤ θ)

max{P t −∆P, Pmin}, ∆Bt+1 < −θ

28: ∆Bt+1 =

{(
1
T

∑t
i=t−T Bi

)
− Bt+1, t > T + 1

0, 0 < t ≤ T + 1
Step 7: Termination

29: if t = Tmax then

30: The algorithm is terminated.

31: else

32: Return to Step 3, set t := t+ 1.

33: end procedure
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4.4.4 Numerical Experiment

(a) Numerical Experiment Conditions

In the numerical experiment, we compared the fixed parameter γ of FA with the

proposed γ adjustment rule of FA which obtains superior solutions x∗ ∈ Q(δ, ε) to

evaluate the performance. However, it is impossible to obtain a strict superior solu-

tions x∗, which xTmax
i satisfies ∥xTmax

i − x∗∥ ≤ η, and we determine that the x∗ has

been found. In this paper, we set up the problem so that the superior solution set

Q(δ, ε) is determined regardless of δ and ε for basic study. The benchmark functions

Function 1 (F1), Function 2 (F2), Function 3 (F3), and Function 4 (F4) are given in

Table 4.1, and they have multiple global optimal solutions x⋆ far apart from each other

for 5, 10, and 20 dimensions. In this case, we have x∗ = x⋆(∀δ ≥ 0 ∧ ∀ε > 0).

In this paper, we examined the features of FA as they relate to the superior solution

set search problem described in Section 4.4.1. FA has the property of searching in

parallel while separating clusters, which means that the search points between clusters

and within clusters can not be appropriately adjusted. Based on the concept of diversi-

fication and intensification, we proposed evaluation indicators A and B. We proposed

an adaptive FA (AFA) that adjusts the search points in clusters and between clusters

based on the evaluation indicators. To illustrate the effects of adjusting the search

points in clusters and between clusters, we compared the original FA, FA that adjusts

by cluster information (FA-CI), an FA that only adjusts A (FA-test), and the proposed

adaptive FA. We compared the original FA, FA-CI, and the FA that only adjusts A to

confirm the effects of adjusting the search points within the clusters. We compare the

FA that only adjusts A to the proposed adaptive FA to confirm the effects of adjusting

the search points between clusters.

As a shared experiment condition, the number of trials was set to 50. The maximum

number of iterations was 1000 and η was 0.5. In addition, the recommended values of

other parameters β0 was 1.0, α was using the Eq.(4.8) where αmax was 1.0 and αmin was

0.01. The other conditions for the original FA, FA-CI, FA-test, and AFA were shown
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below.

• The parameters of original FA, we changed γ from 0.05 to 1.0 in 20 runs of 0.05,

as given in Table 4.7 ∼ Table 4.10.

• The parameters of FA-CI were C = 10−7 referring to points in same cluster, P =

10−9 referring to points in different clusters, cluster number K = 4, αmax = 0.1,

and αmin = 0.01.

• The parameters of FA-test were Cmax = 10−6, Cmin = 10−8, ∆C = 10−8 referring

to points in same cluster, P = 10−6 referring to points in different clusters, cluster

number K = 4, αmax = 0.1, and αmin = 0.01.

• The parameters of AFA were Cmax = 10−6, Cmin = 10−8, ∆C = 10−8 referring

to points in same cluster, Pmax = 10−8, Pmin = 10−10, ∆P = 10−10 referring to

points in different clusters, cluster number K = 4, θ = 0.3, and T = 5.

We determine the evaluation indicates by the number of superior solutions acquired

in one trial. “Best” denotes the best evaluation value of 50 runs, “Worst” refers to

the worst value of 50 runs, “Mean” denotes the average value of 50 runs, and “S.D.”

denotes the standard deviation of 50 runs. Moreover, the ranking of the AFA in the

results of the all comparison methods is expressed as “Rank.” The value of “Rank”

indicates the order of the AFA in the results of the all comparison methods.

(b) Results of the Numerical Experiment

Table 4.7 ∼ Table 4.10 show the results of the numerical experiment. The subscript in

the results of the proposed method (AFA) indicates the order of the proposed method,

including the case of fixed γ (OFA), FA that only adjusts A (FA-test), and FA that

adjusts by cluster information (FA-CI). In addition, Fig.4.8 shows the transition of

the diversification and intensification evaluation indicators A and B for the benchmark

functions F1, F2, F3, and F4 (n = 10). According to Fig.4.8, the evaluation indicator

A follows target values I tA and the evaluation indicator B keeps a certain size (keeping
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Fig. 4.8: Transitions of A and B in Adptive Firefly Algorithm

diversification) in the Adaptive FA. In the case of the given dimensions in F1, AFA has

almost the same performance as other comparison methods, but it ranked 15 out of the

23 types in all comparison methods. In the case of 10 and 20 dimensions in F1, the

performance of AFA is superior to the results of the 1st compared to 23 types in the

all comparison methods. In the case of 5, 10, and 20 dimensions in F2, F3, and F4, the

performance of AFA is superior to that achieved with 23 types in the all comparison

methods.

From Table 4.7 ∼ Table 4.10, the performance of AFA can be confirmed to be slightly
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better than that of FA that only adjusts A (FA-test). It can also be confirmed that the

performance of FA-test is slightly better than OFA. It can be said that AFA has excellent

performance, and it reduces the effort involved in parameter setting. In particular, it

can be concluded that as the number of dimensions increases, the performance of AFA

improves. Therefore, by introducing the parameter adjustment rule based on evaluation

and control of the search state of the cluster, the ability to adjust diversification and

intensification of the cluster was improved, and the adaptability and search performance

of AFA were improved. Furthermore, we illustrated the effects of adjusting search points

within clusters and between clusters.

4.5 Summary

In this chapter, we proposed the diversification and intensification for the superior

solution set search, and based on this search strategy , we proposed an adaptive FA

based on the evaluation and control of the search state for the superior solution set

search. The superior search performance of the proposed adaptive FA was verified by

numerical experiments.
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5
Superior Relation

Based Superior

Solution Set Search

Method

5.1 Introduction

In this Chapter, we analyze the properties of the superior solution set search prob-

lem, and we point out the structural similarities between the superior solution set search

problem and multi-objective optimization problem. Based on the analyzed properties,

we propose an superior solution fitness, which is an index that is inspired by a method

based on superior relation in multi-objective optimization problems and includes param-

eters to judge the goodness of the search point. We propose an Firefly Algorithm (FA)

with this index and an Genetic Algorithm (GA)［32］with this index for the superior

solution set problem. Numerical experiments are then conducted using the superior so-

lution set search problem, and the usefulness of the proposed methods are demonstrated

while comparing the performance of the proposed methods with the conventional FA

and the conventional GA.
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5.2 Analysis and New Interpretation of Superior So-

lution Set Search Problem

5.2.1 Analysis Interpretation of Superior Solution Set Search

Problem

It seems that the foundation of heuristic approximate optimization methods is a

structure that finds even better solution by using information regarding a desirable so-

lution. This is a major premise that is used to compare the solutions; single objective

optimization solution is compared using some evaluation values, and multi-objective

optimization solutions are compared using superior relations. In multi-objective opti-

mization, a strategy［76，77］has been proposed to converge the entire search point

to the Pareto frontier by comparing search points using superior relations and pass-

ing superior search points to the next generation of solutions. The superiority of the

solution in multi-objective optimization is determined using superior relation in K ob-

jective functions f : p ∈ RN 7→ [f1, f2, · · · , fK ]⊤ ∈ RK . When satisfying the following

Eq.(5.1), the solution p dominates the solution q (p ≺ q).

p ≺ q ⇔ ∀k, fk(p) ≤ fk(q) ∧ ∃k, fk(p) < fk(q) (5.1)

The optimal solution in multi-objective optimization is defined as a Pareto solution,

which is a solution that is not superior to all other solutions.

In order to meet the needs of practical applications, the superior solution set is defined

as “the difference between the evaluation values and the global optimal solution falls

within a certain range” and “the distance from other local optimal solutions that is

greater than a certain distance”
(
please refer to the Eqs.(2.11), (2.12), and (2.13)

)
.

Here, a constraint on the evaluation value provided by the user is δ ≥ 0. A constrain

on the distance between the solutions is ε > 0, which consists of local optimal solutions

that satisfy the condition “the difference between the evaluation value and the global

optimal solution falls within δ” and “the distance to other local optimal solution is more

than ε”. This method is based on the aforementioned properties. Since relationships
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for comparing solutions are also defined in the definition of a superior solution set, there

is a possibility that a method (superior relationship based on the evaluation value and

distance) similar to that used in multi-objective optimization may be proposed, even

when searching for the superior solution set.

The superior solution set search problem is similar to the multi-objective optimization

problem from the definition of the solution set. Specifically, the superior solution and

the Pareto solution have the following properties in common.

(1) It is defined by the relationship (allowing incomparable cases) for comparing

solutions.

(2) It is defined as a solution for which the above relationship does not hold with all

feasible solutions.

(3) One or more optimal solutions can always be defined in any non-empty subset

Y ⊆ X of the feasible region X.

In multi-objective optimization, a strategy has been proposed in which the search

points are compared according to the superiority relationship, and the excellent search

points are positively left for the next generation, so that the entire search points are

converged to the Pareto frontier. Based method). This method is based on the above

properties. On the other hand, since the relationship for comparing solutions is defined

in the definition of the superior solution set, a method equivalent to the method based

on the superior relation in multi-objective optimization can be proposed even in the

search of the superior solution set.

5.2.2 New Interpretation of Superior Solution Set Search Prob-

lem

The superior solution set was defined for the first time in section ??. However, two

new superior relations for the superior solution set are defined in order to analyze

and exploit the superior solution set search problem described below, which are not
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mentioned in the definition of the ranking operation based on superior relation
(
see the

Eq.(5.1)
)
in multi-objective optimization.� �

Definition 5.1（Relationship Definition Using Constraints on Evaluation Value）

The following relation is defined in order to capture constraints on the evaluation

value as the following Eq.(5.2). For two solutions x1 and x2 ∈ X, when x1 excels

under the constraints of evaluation value than x2 (x1 ≺δ x2).

x1 ≺δ x2 ⇔ f(x1) + δ < f(x2) (5.2)

� �
x ∈ X is inferior to all feasible solutions using the above relationship. In other

words, when satisfying y ⊀δ x (∀y ∈ X), x is a solution when the difference between

the evaluation value and the global optimal solution is within δ. This corresponds to the

requirement that “a solution’s evaluation value is within a certain range of the global

optimum solution”� �
Definition 5.2（Relationship Definition Using Constraints on Distance） To

capture the constraints on the distance between the solutions, we define the

distance function dist(·, ·) as the following Eq.(5.3).

N (x; ε) = {y ∈ RN | dist(x,y) < ε} (5.3)

For the two solutions x1，x2 ∈ X, when x1 excels under the constraints of distance

than x2 (x1 ≺ε x2).

x1 ≺ε x2 ⇔ f(x1) < f(x2) ∧ x1 ∈ N (x2; ε) (5.4)

� �
x ∈ X is inferior to all feasible solutions using the above relationship, i.e., when

satisfying ∀y ∈ X, y ⊀ε x, x is a local optimal solution in which there is no superior

solution closer than the distance ε. This corresponds is “a local optimal solution more
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than a certain distance apart”. Hereafter, Euclidean distance is used as the distance.� �
Definition 5.3（New Interpretation of Superior Solution Set Q(X; δ, ε)）

Using the relationships defined so far, the superior solution set Q(X; δ, ε) is defined

as the following Eq.(5.5).

Q(X; δ, ε) = {x⋆ ∈ X | ∀x ∈ X,x ⊀ε x
⋆ ∧ x ⊀δ x

⋆} (5.5)

� �
The superior solution set Q(X; δ, ε) is a set of local optimal solutions, where the

difference between the evaluation value and the global optimal solution within δ, and

other solutions are at least some distance away from ε. We formulate a problem for

determining the superior solution set Q(X; δ, ε) as a superior solution set search prob-

lem.

5.3 Proposal of Superior Relation in Superior Solu-

tion Set Search Problem

In proposing a search method based on the superior solution fitness, we pay attention

to multi-objective optimization. The multi-objective optimization method that can

consider multiple purposes at the same time and is used to support user decision-

making. In this respect, it can be said that this characteristic has a high affinity

with the superior solution set search problem. There are two types of multi-objective

optimization methods: a method that searches for a unique solution by acquiring and

using user preference information in advance, and a discovery approximation method

that obtains multiple and diverse solution sets. The discovery approximation method

of multi-objective optimization method corresponds to the latter, and is being actively

researched as a promising optimization method. We focused on this evolutionary multi-

objective optimization method from the viewpoint of affinity with the purpose of the
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Fig. 5.1: Fitness Ranking in Multi-objective Optimization Problem

superior solution set search problem of acquiring multiple and diverse solution sets.

Multi-objective optimization methods can be broadly classified into three types. There

are three methods: “method based on superior superior relation”, “method based on

division”, and “method based on Indicator”. Above all, this time, we focus on the

method based on superior relation. Typical methods based on superior relation include

NSGA-II［76］and SPEA2［77］. In these methods, a non-inferior solution set is searched

by giving an ranking relation according to superior relation or inferiority to the search

points and performing survival selection using the superior relation. An image of fitness

ranking in multi-objective optimization problem is shown in Fig. 5.1.

In this paper, we propose an optimization method for the superior solution set search

problem that explicitly includes the parameters (δ, ε). Specifically, first, the superior

solution fitness is defined as an index that gives the superior relation of the solution

using δ and ε. Next, we propose a superior solution set search method that follows the

superior solution fitness.
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5.3.1 Definition of Superior Solution Fitness

A superior solution fitness is defined utilizing the superior solution set search problem-

specific parameters δ and ε and knowledge of multi-objective optimization. The superior

solution fitness that gives superior relation to the solutions using the superior solution

set search problem-specific parameters δ and ε based on the definitions in the superior

solution set search problem is shown below.� �
Definition 5.4（Superior Solution Fitness fit(x ∈ P , δ, ε)） Let P be the set of

search points. Based on the definitions of the sets (definition of relations using con-

straints on evaluation values and definition of relations using distance constraints)

for each search point x ∈ P , let superior solution fitness be the number of search

points y ∈ P that are superior to x.

fit(x ∈ P , δ, ε) := Card{y ∈ P | y ≺δ x ∨ y ≺ε x, y ̸= x ∈ P } (5.6)

Here, Card(A) is the cardinality of a finite set A, which is the number of elements

of a finite set. The above equation corresponds to the case where “the number of

search points superior to itself” is given as the light intensity in multi-objective

optimization. However, if there are duplicate search points, duplicate search points

excluding one search point are counted as f(x) = ∞. The smaller the value of

superior solution fitness fit(x ∈ P , δ, ε), the better the solution. When the superior

solution fitness fit(x ∈ P , δ, ε) values of two solutions are equal, the solution with

the smaller evaluation is chosen (in minimazation problem).� �
fit(x ∈ P , δ, ε) includes parameters (δ, ε) specific to the superior solution set search

problem in its definition. Therefore, the research task of utilizing parameters is achieved.

This fit(x ∈ P , δ, ε) gives the solutions a superior relation. Utilizing the knowledge

of multi-objective optimization, we can propose a superior solution set search method

based on this fit(x ∈ P , δ, ε).
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5.4 Superior Relation Based Firefly Algorithm for

Superior Solution Set Search Problem

5.4.1 Proposal of Superior Relation Based Firefly Algorithm

From the discussions so far, it has been clarified that the superior solution set and the

Pareto solution set share many properties. The multi-objective optimization method

based on the superior relation is expected to converge to the Pareto frontier of the entire

search point set by performing the ranking operation based on the superior relation. The

method based on the superior relation solves the multi-objective optimization problem

by utilizing the properties of the superior relation and the Pareto solution. On the other

hand, the superior solution set is similar to the Pareto solution set, it is considered

possible to apply the method based on the superior relation to the superior solution set

search.

Based on Section 5.3.1, this paper proposes a superior solution set search method

as a fundamental examination to search for a superior solution set based on superior

relations. In FA, light intensity
(
see the Eq.(3.23)

)
is defined in terms of the objec-

tive function value. However, in the superior solution set searching method, the light

intensity was defined based on relationships (≺δ,≺ε), such as the superior relation in

multi-objective optimization. In the above definition, we are trying to improve the

performance of the superior solution set search problem by ranking the search points.

On the other hand, in the superior solution set searching method based on the light

intensity considering the distance, the light intensity was defined based on the relation-

ships (≺δ,≺ε), such as the superior relation of the multi-objective optimization method.

In the above definition, we are trying to improve the performance of superior solution

set search problem by ranking the search points while strengthening the analogy of

fireflies by the light intensity considering the distance.

In the proposed method, when ranking based on the relationships (≺δ,≺ε), we define

the light intensity I(x ∈ P ) of the search point x ∈ P ⊆ RN according to the superior
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Fig. 5.2: Light Intensity Ranking in Superior Solution Set Search Problem

solution fitness fit(x ∈ P , δ, ε) (see the Eq.(5.6)) by the Eq.(5.7).

I(x ∈ P ) = fit(x ∈ P , δ, ε) (5.7)

In multi-objective optimization based on superior relations, superiority and inferior-

ity are compared using a contribution degree for maintaining diversity when there is no

difference in the superior relations. However, in the superior solution set search, the re-

lationship ≺ε already has embedded functions for maintaining diversity. Furthermore,

since the superior solution set search problem is based on single objective optimiza-

tion, you can judge superiority with the absolute evaluation value |f(x)| if there is no

difference in I.

This paper calculates the light intensity I of the search point using superior rela-

tions. An image of ranking the light intensity I in the search process is shown in Fig.

5.2. Then, the proposed method generates the best search point set C based on the

information of the search point group P in each iteration, and shows it in the Eq.(5.8).

C = {xi ∈ P | I(xi ∈ P ) = 0, i = 1, 2, · · · ,m} (5.8)
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While advancing the search, the best search point set C gradually approaches the

superior solution set Q(X; δ, ε). Here, not only all the best search point x ∈ C are

always I(x ∈ C) = 0, but all superior solutions x̂ ∈ Q(X; δ, ε) are always I(x̂ ∈ X) =

0.

Superior relation based FA for the superior solution set search problem of the objective

function f(x) (x ∈ RN) is shown by Algrithm 5.1.
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Algorithm 5.1 Superior Relation Based Firefly Algorithm (SR-FA)

1: procedure SR-FA(m,α, β0, γ, Tmax, δ, ε)

Step 1: Preparation

2: Set the maximum number of iterations Tmax, the number of search pointsm, and the parameters

α > 0, β0 > 0, and γ > 0.

3: Set the parameters δ ≥ 0 and ε ≥ 0 of superior solution set search problem.

Step 2: Initialization

4: Set the number of iterations t = 1.

5: In the feasible area X ⊆ Rn, randomly generate search point x1
i (i = 1, 2, · · · ,m), and the

swarm set P 1 = {x1
i | i = 1, 2, · · · ,m}.

Step 3: Calculation of light intensity

6: Calculate the light intensity I(xt
i ∈ P t) of each search point xt

i and the best search point set

Ct following equations.

7: I(xt
i ∈ P t) = Card{x ∈ P t | x ≺δ xt

i ∨ x ≺ε x
t
i,x ̸= xt

i ∈ P t}
8: Ct = {xt

i ∈ P t | I(xt
i ∈ P t) = 0, i = 1, 2, · · · ,m}

9: Each search point xt
i ∈ P t is sorted in increasing order of I(xt

i ∈ P t).

10: Save the reference solution zi and solution set V following equations.

11: zi = xt
i (i = 1, 2, · · · ,m), V = {zi | i = 1, 2, · · · ,m}

12: Set i = 1 and j = 1.

Step 4: Movement of search points

13: for i = 1 to m do

14: if I(xt
i ∈ P t) < I(xt

j ∈ P t) then

15: Move the search point xt
i ∈ P t referring solution zj ∈ V by the following equation.

16: xt
i := xt

i + β0e
−γ∥zj−xt

i∥2

(zj − xt
i) + αR

17: Here, R ∈ [−0.5, 0.5]n is a uniform random vector.

18: Let j := j + 1, until j = m and move the search point xt
cbest ∈ Ct according to the

following formula.

19: xt
cbest := xt

cbest + αR

20: Set j := 1.

21: end for

Step 5: Updating search points

22: Let U = P t ∪ V , and calculate the light intensity I(us ∈ U) (s = 1, 2, · · · , 2m) and the elite

solution set B according to the following equations.

23: I(us∈ U) = Card{y∈ U |y ≺δ us∨ y ≺ε us,y ̸= us∈ U}
24: B = {us ∈ U | ranks ≤ m, s = 1, 2, · · · , 2m}
25: Here, ranks is the rank of solution based on I(us ∈ U).

26: Update the search point xt
i to elite solutions ui ∈ B and the swarm set P t according to

following equations.

27: xt+1
i = ui ∈ B (i = 1, 2, · · · ,m), P t+1 = {xt+1

i | i = 1, 2, · · · ,m}
Step 6: Termination

28: if t = Tmax then

29: The algorithm is terminated.

30: else

31: Return to Step 4, set t := t+ 1.

32: end procedure
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5.4.2 Numerical Experiment

(a) Numerical Experiment Conditions

Through numerical experiments, we compare the superior relation based FA (pro-

posed method) with the original FA to evaluate its properties and performance for the

superior solution set search problem. Please refer to Shekel’s function in Appendix A

for details of the benchmark function used in this experiments.

In this paper, we set the usable situation of benchmark function to verify the tempo-

rary setup with the proposed method, which is tentatively set up to correspond to the

user’s desired level. There are six types of (δ, ε) and superior solution set Q(X; δ, ε),

where (δ, ε)=(7.5, 1), (7.5, 2), (8.5, 2), (10, 1), (10, 2), and (10, 5.5). We regard them

as Cond. 1 ∼ Cond. 6. The criteria for setting parameters (δ, ε) are explained as

follow.

• In the case of relatively allowing solution proximity and not allowing deterioration

of evaluation value (Cond. 1)

• In the case of requiring relatively large solution diversity and allowing deteriora-

tion of the evaluation value (Cond. 4)

• In the case of requiring moderate diversity and evaluation values in the above

two cases (Cond. 2, 3, 5, and 6)

The common conditions are as follows: the number of search points m = 60; and FA

patemeters α = 0.05, β0 = 1.0; the maximum iteration time Tmax = 100; dimension

N = 2 and 5. The initial solution was set randomly within the executable area [−5, 5]N .

The proposed method uses γ = 1 according to recommended parameter values, while

the original FA uses the best γ of 20 types in the range γ = 0.1, 0.2, · · · , 2.0.

In addition, we also did numerical experiments to compare AFA and the superior

relation based FA on the Shekel’s Function for 2, and 5 dimensions. The parameters of

AFA were Cmax = 10−6, Cmin = 10−8, ∆C = 10−8 referring to points in same cluster,

Pmax = 10−8, Pmin = 10−10, ∆P = 10−10 referring to points in different clusters, cluster
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number K = 6, θ = 0.3, and T = 5. The number of trials was set to 50. The maximum

number of iterations was 1000 and η was 0.5. In addition, the recommended values of

other parameters β0 was 1.0, αmax was 1.0 and αmin was 0.01. The other conditions for

the original FA, FA-CI, FA-test, and AFA were shown below.

(b) Evaluation Index

In this numerical experiments, we evaluate the search performance of the superior

solution using two evaluation indices Peak Ratio (PR)［78］and Convergence Ratio

(CR).

Peak Ratio: PR is an index for evaluating the ratio of the acquired superior solution

proposed by the authors and is expressed by the Eq.(5.9).

PR = Card{hg | ||hg − x̂g|| ≤ η, g = 1, 2, · · · , G} (5.9)

Here, η > 0 is a threshold parameter, we set η = 10−1 in all conditions, x̂g ∈

Q(X; δ, ε) (g = 1, 2, · · · , G) is the superior solution, G = Card
(
Q(X; δ, ε)

)
is

the number of superior solutions, hg is the search point xTmax
i ∈ P Tmax locating

the nearest by x̂g at the last generation following by the Eq.(5.10).

hg = argmin
xTmax
i ∈P Tmax

||xTmax
i − x̂g|| (5.10)

PR indicates that it is assumed that the superior solution x̂g has been acquired

if hg exists satisfying ||hg − x̂g|| ≤ η.

Convergence Ratio: CR is an index for evaluating convergence ratio of superior

solution and is expressed by the Eq.(5.11).

CR =
1

G

G∑
g=1

||hg − x̂g|| (5.11)

CR has a large value if there are search points converging to the solutions that do

not sufficiently converge to the superior solutions or is not the superior solution.
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The mean (Mean) and the standard deviation (S.D.) of each index are compared after

50 runtimes using different initial solutions. The indices are described as follows:

• PRMean and PRS.D.: The mean and standard deviation of PR.

• CRMean and CRS.D.: The mean and standard deviation of CR.

(c) Results of the Numerical Experiment

Table 5.1 shows the results of numerical experiments to compare the proposed method

with the original FA. The best of PRMean and CRMean are shown in bold. In Figs.

5.3∼5.8 show the search transition in the proposed method in six types of (δ, ε) in two-

dimensional problem. In Figs. 5.3∼5.8, the ⋆ in the figure is the superior solution,

while ⃝ indicates the search point.

In all conditions, the proposed method shows higher PR values than the original

FA. That is, the proposed method has found more superior solutions than the original

FA. Moreover, under many initial conditions, the proposed method shows smaller CR

values than the original FA. That is, in the original FA, many search points converge

to the superior solution when the search point convergence of is not sufficient or is not

the superior solution, whereas the proposed method is one in which many search points

can be superior solutions. In this way, since the proposed method shows excellent

results both in terms of PR and CR values for the superior solution, the proposed

method acquires more superior solutions, and it can be said that the search point does

not converge to any local optimal solution other than the superior solution. This can

also be inferred from the transition of the search point. In the proposed method, the

converged solution varies with changes in the parameters δ and ε, and many search

points converge to the superior solution to be acquired.

Also, Table 5.2 shows the results of numerical experiments to compare the proposed

method with AFA. The best of PRMean and CRMean are shown in bold. In all conditions,

the proposed method shows higher PR values than the AFA. That is, the proposed

method has found more superior solutions than the AFA. Moreover, under many initial
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conditions, the proposed method shows smaller CR values than the AFA. That is, in

the AFA, many search points converge to the superior solution when the search point

convergence of is not sufficient or is not the superior solution, whereas the proposed

method is one in which many search points can be superior solutions. In this way, since

the proposed method shows excellent results both in terms of PR and CR values for

the superior solution, the proposed method acquires more superior solutions, and it can

be said that the search point does not converge to any local optimal solution other than

the superior solution.

(d) Discussion

From the numerical experiment results, it can be seen that the original FA has lower

search performance than the proposed method in the two-dimensional problem and five-

dimensional problem. In addition, the original FA has much lower search performance

in the five-dimensional problem than the two-dimensional problem. This is considered

to be caused by the fact that the original FA moves the search point using Euclidean

distance. That is, the original FA using Euclidean distance originally has a problem

that the search performance is degraded for high dimensional problems. The proposed

method also has lower search performance in the five-dimensional problem than the two-

dimensional problem, but the decrease in performance is lower than in the original FA.

Since the proposed method is based on the original FA, the Euclidean distance is used to

move the search point. Furthermore, in the proposed method, the “superior relations”

for strictly considering the parameters δ and ε that determine the superior solution set

is evaluated based on the Euclidean distance. This is considered to be the cause of the

decrease in the search performance in the high-dimensional problem of the proposed

method as in the original FA. In order to improve the decrease in search performance in

high-dimensional problems, improvement such as using something other than Euclidean

distance for evaluation of the movement of the search point and the superior relations

will be required.
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Fig. 5.3: Transition of Search Points for Search State of Cond. 1 (δ, ε= 7.5, 1) in

Superior Relation Based Firefly Algorithm (N = 2)
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Fig. 5.4: Transition of Search Points for Search State of Cond. 2 (δ, ε= 7.5, 2) in

Superior Relation Based Firefly Algorithm (N = 2)
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Fig. 5.5: Transition of Search Points for Search State of Cond. 3 (δ, ε= 8.5, 2) in

Superior Relation Based Firefly Algorithm (N = 2)
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Fig. 5.6: Transition of Search Points for Search State of Cond. 4 (δ, ε= 10, 1) in

Superior Relation Based Firefly Algorithm (N = 2)
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Fig. 5.7: Transition of Search Points for Search State of Cond. 5 (δ, ε= 10, 2) in

Superior Relation Based Firefly Algorithm (N = 2)
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Fig. 5.8: Transition of Search Points for Search State of Cond. 6 (δ, ε= 10, 5.5) in

Superior Relation Based Firefly Algorithm (N = 2)
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5.5 Superior Relation Based Genetic Algorithm for

Superior Solution Set Search Problem

5.5.1 Proposal of Superior Relation Based Genetic Algorithm

In a multi-objective optimization problem, there is no single optimal solution that is

optimal for all objectives. Instead, there is a Pareto optimal solution set that forms the

Pareto front, which is the optimal trade-off between objectives. The superior solution

set is defined as the difference between the evaluation values and the global optimal

solution falls within a certain range and the distance from other local optimal solu-

tions that is greater than a certain distance. So the structural similarities between the

superior solution set search problem and multi-objective optimization problem.

Evolutionary computation is attracting attention as a means to obtain a Pareto op-

timal solution set in the multi-objective optimization problem［79，80］. Evolutionary

computation is a general term for probabilistic multipoint search methods based on

solution populations, such as Differential Evolution, Particle Swarm Optimization, and

Artificial Bee Colony Algorithm, starting with Genetic Algorithm (seeAlgorithm C.4)

and Evolution Strategy. Beginning with the proposal of VEGA (Vector Evaluated Ge-

netic Algorithm)［81］by Schaffer in 1985, NSGA-II (Fast Elitist Non-dominated Sorting

Genetic Algorithm)［76］by Deb et al. Has been applied as the most famous algorithm.

It is frequently used in. Thus, evolutionary multi-objective optimization is maturing

for some of the multi-objective optimization problems. So we can also propose a new

superior solution set search method based on GA. Specifically, first, the superior solu-

tion fitness is defined as an index that gives the superior relation of the solution using

δ and ε in Section 5.5. Next, we propose a GA with the superior solution fitness.

Superior relation based GA for the superior solution set search problem of the objec-

tive function f(x) (x ∈ RN) is shown by Algrithm 5.2.
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Algorithm 5.2 Superior Relation Based Genetic Algorithm (GA-4S)

1: procedure GA-4S(m, pc, pm, δ, ε, Tmax)

Step 1: Initialization

2: Give initial solutions P 1 (|P 1| = m), Set t = 1

Step 2: Generation of New Solutions

3: Qt = ∅
4: for i = 1 . . .m do

5: Choose randomly xa,xb ∈ P t (a ̸= b)

6: {ya,yb} = Simulated Binary Crossover(xa,xb) ▷ See Algorithm C.1

7: Choose randomly y ∈ {ya,yb}
8: q = Polynomial Mutation(y) ▷ See Algorithm C.3

9: Qt := Qt ∪ {q}
10: end for

Step 3: Superior Solution Fitness Assignment

11: U t = P t ∪Qt (|U t| = 2m)

12: for each x ∈ U t do

13: for each z ∈ U t do

14: fit(x ∈ P t, δ, ε) = Card{z | z ≺δ x ∨ z ≺ε x}
15: end for

16: end for

Step 4: Superior Solution Fitness Based Selection

17: Sort U t in ascending order using fit(x ∈ U t, δ, ε)

18: P t+1 := U t[1 : m]

Step 5: Termination

19: if t < Tmax then

20: t := t+ 1

21: Go to Step 2

22: else

23: end procedure

5.5.2 Numerical Experiment

(a) Numerical Experiment Conditions

Through numerical experiments, we solved the superior solution set search problem

which consist of aforementioned target function with a fit(x ∈ P , δ, ε)-based elite

selection GA called “GA-4S”. We evaluated the usefulness of GA-4S compared with a

basic GA. Please refer to Shekel’s function inAppendix A for details of the benchmark
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function used in this experiments.

In each experiment, we used Simulated Binary Crossover (SBX)［76，86］(see Al-

gorithm C.1 and Algorithm C.2) and Polynomial Mutation (PM)［76，86］(see

Algorithm C.3). The parameters for these operations were crossover rate pc = 1 and

mutation rate pm = 0.5. The values of the distribution adjustment variables for these

operations were set to 25 different values of ηc and ηm = [2, 5, 10, 20, 50]. The number

of search points m was 30 and the initial solution was randomized within a feasible

region([−5, 5]N). The maximum number of generations Tmax was 100 and the dimen-

sion N was 2. We ran 50 trials with different initial solutions for each trials under the

above conditions.

In this paper, we set the usable situation of benchmark function to verify the tempo-

rary setup with the proposed method, which is tentatively set up to correspond to the

user’s desired level. There are six types of (δ, ε) and superior solution set Q(X; δ, ε),

where (δ, ε)=(7.5, 1), (7.5, 2), (8.5, 2), (10, 1), (10, 2), and (10, 5.5). We regard them

as Cond. 1 ∼ Cond. 6. The criteria for setting parameters (δ, ε) are explained as

follow.

• In the case of relatively allowing solution proximity and not allowing deterioration

of evaluation value (Cond. 1)

• In the case of requiring relatively large solution diversity and allowing deteriora-

tion of the evaluation value (Cond. 4)

• In the case of requiring moderate diversity and evaluation values in the above

two cases (Cond. 2, 3, 5, and 6)

(b) Evaluation Index

In this numerical experiments, we evaluate the search performance of the superior

solution using two evaluation indices Peak Ratio (PR) and Convergence Ratio (CR),

which are defined in Section 5.4.2 by the Eqs.(5.9) and (5.10). Here, we set the threshold
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parameter η = 10−1 in all conditions to obtain a superior solution in the Eq.(5.10).

The mean (Mean) and the standard deviation (S.D.) of each index are compared after

50 runtimes using different initial solutions. The indices are described as follows:

• PRMean and PRS.D.: The mean and standard deviation of PR.

• CRMean and CRS.D.: The mean and standard deviation of CR.

(c) Results of the Numerical Experiment

Table 5.3 shows the results of numerical experiments. The best of PRMean and CRMean

are shown in bold. In Figs. 5.9∼5.14 show the search transition in the proposed method

in six types of (δ, ε) in two-dimensional problem. In Figs. 5.9∼5.14, the ⋆ in the

figure is the superior solution, while ⃝ indicates the search point. In all conditions,

the GA-4S shows higher PR values than the basic GA. That is, the GA-4S has found

more superior solutions than the basic GA. Moreover, under many initial conditions,

the proposed method shows smaller CR values than the basic GA. That is, in the

basic GA, many search points converge to the superior solution when the search point

convergence of is not sufficient or is not the superior solution, whereas the GA-4S is one

in which many search points can be superior solutions. In this way, since the GA-4S

shows excellent results both in terms of PR and CR values for the superior solution, the

GA-4S acquires more superior solutions, and it can be said that the search point does

not converge to any local optimal solution other than the superior solution. This can

also be inferred from the transition of the search point. In the GA-4S, the converged

solution varies with changes in the parameters δ and ε, and many search points converge

to the superior solution to be acquired.
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(d) Discussion

From the numerical experiment results, it can be seen that the basic GA has lower

search performance than the proposed method. This is considered to be caused by the

fact that the basic GA is a group of search points gathered in one promising area.



Chaper 5 Superior Relation Based Superior Solution Set Search Method 129

T
ab

le
5.
3:

E
x
p
er
im

en
t
R
es
u
lt
s

D
im

en
si
on

P
ro
b
le
m

G
A
-4
S

G
en
et
ic

A
lg
or
it
h
m

C
on

d
it
io
n

δ
ε

S
u
p
er
io
r
S
ol
u
ti
on

P
R

M
ea

n
P
R

S
.D

.
C
R

M
ea

n
C
R

S
.D

.
P
R

M
ea

n
P
R

S
.D

.
C
R

M
ea

n
C
R

S
.D

.

N
=

2

C
on

d
.
1

7.
5

1
A
,
B
,
C

2
.9
8

0.
32
8

0
.0
0
5
6

0.
00
21

1.
02

0.
18
2

0.
10
62

0.
07
38

C
on

d
.
2

7.
5

2
A
,
C

1
.9
6

0.
19
8

0
.0
0
8
7

0.
00
15

0.
98

0.
14
1

0.
11
80

0.
06
80

C
on

d
.
3

8.
5

2
A
,
C
,
D
,
E

3
.9
2

0.
28
5

0
.0
1
0
3

0.
00
31

1
0

0.
08
92

0.
07
65

C
on

d
.
4

10
1

A
,
B
,
C
,
D
,
E
,
F

5
.8
8

0.
23
8

0
.0
1
2
0

0.
00
32

1.
04

0.
19
8

0.
08
48

0.
08
53

C
on

d
.
5

10
2

A
,
C
,
D
,
E
,
F

4
.9
6

0.
19
8

0
.0
1
4
5

0.
00
52

1
0

0.
06
43

0.
07
85

C
on

d
.
6

10
5.
5

A
,
C
,
D
,
F

3
.9
4

0.
27
4

0
.0
1
6
7

0.
00
38

0.
96

0.
15
3

0.
08
65

0.
06
85



Chaper 5 Superior Relation Based Superior Solution Set Search Method 130

-5 0 5
x1

-5

0

5

x
2

(a) t = 1

-5 0 5
x1

-5

0

5

x
2

(b) t = 30

-5 0 5
x1

-5

0

5

x
2

(c) t = 50

-5 0 5
x1

-5

0

5
x
2

(d) t = 100

Fig. 5.9: Transition of Search Points for Search State of Cond. 1 (δ, ε= 7.5, 1) in

Superior Relation Based Genetic Algorithm (N = 2)
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Fig. 5.10: Transition of Search Points for Search State of Cond. 2 (δ, ε= 7.5, 2) in

Superior Relation Based Genetic Algorithm (N = 2)
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Fig. 5.11: Transition of Search Points for Search State of Cond. 3 (δ, ε= 8.5, 2) in

Superior Relation Based Genetic Algorithm (N = 2)
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Fig. 5.12: Transition of Search Points for Search State of Cond. 4 (δ, ε= 10, 1) in

Superior Relation Based Genetic Algorithm (N = 2)
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Fig. 5.13: Transition of Search Points for Search State of Cond. 5 (δ, ε= 10, 2) in

Superior Relation Based Genetic Algorithm (N = 2)
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Fig. 5.14: Transition of Search Points for Search State of Cond. 6 (δ, ε= 10, 5.5) in

Superior Relation Based Genetic Algorithm (N = 2)

5.6 Summary

In this chapter, we pointed out the structural similarities between the superior solu-

tion set search problem and the multi-objective optimization problem. We proposed a
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search strategy based on the superior relation of the superior solution set by utilizing

the analyzed properties and the user’s desire level for the search. The proposed superior

solution set search method explicitly includes the definition of the superior solution set

based on the superior relation. Numerical experiments verified the usefulness of FA

based on the proposed superior relation.



6 Conclusion

This Chapter summarizes the content of the paper and describes future issues and

research prospects.

6.1 Summary

The results of this research are shown below.

• The superior solution set was defined based on the single-objective optimization

problem by a mathematical formula as a set of local optimal solutions whose eval-

uation values are superior by a certain value and the distance between solutions

is more than a certain distance, and the superior solution set search problem was

defined based on this set. The superior solution set search problem can meet

difficult requirements, which cannot be considered in usuals optimization, were

useful.

• We compared typical metaheuristics such as Particle Swarm Optimization, Dif-

ferential Evolution, and Artificial Bee Colony Algorithm. Then, we pointed out

Firefly Algorithm (FA) has a mechanism for adjusting the amount of movement

based on the distance from the reference point. From this feature, it was clarified

that FA can obtain multiple local optimum solutions. FA was a basic method
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for searching for the superior solution set, which is a subset of the local optimum

solution set.

• It is effective to utilize cluster information for the superior solution set search

problem, we proposed an FA-based superior solution set search method (FA-CI)

that utilizes the search points with the best objective function values in each

cluster. The proposed FA-CI has verified the excellent search performance by

numerical experiments.

• Discuss the differences in the problem structure between the superior solution set

search problem and the single-objective optimization problem from the viewpoint

of the search strategy (diversification and intensification) obtained through struc-

tural analysis for the conventional single-objective optimization problem. Based

on that discussion, we constructed a search strategy (diversification and inten-

sification) for the superior solution set search problem. From the viewpoint of

diversification and intensification for the superior solution set search problem,

the relationship between FA parameters and diversification and intensification

was clarified. After the above analysis, we proposed an Adaptive FA that pre-

liminarily performs parameter adjustment according to set target value schedule,

evaluated indicators of diversification and intensification for the superior solu-

tion set search problem, and verified their usefulness by conducting a numerical

experiment using benchmark functions.

• We analyzed the properties of the superior solution set search problem, and we

pointed out the structural similarities between the superior solution set search

problem and multi-objective optimization problem. Based on the analyzed prop-

erties, we proposed a new FA based on superior relations, which can search for

the superior solution set by using the user’s quantitative desire level as a search

strategy. By introducing the distance of the problem space into the moving

mechanism, FA makes it possible to search for multiple local optimal solutions

by dividing the solution set into multiple groups. By analyzing this property

possessed of FA, we clarified the affinity between FA and the superior solution

set search problem. We subsequently analyzed the superior solution set search
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problem and FA, and we discussed its properties together with a similar problem

setting. We proposed an FA based on superior relations as a new optimization

technique for the superior solution set problem based on these analyses. Nu-

merical experiments are then conducted using the superior solution set search

problem, and the usefulness of the proposed method was demonstrated while

comparing the performance of the proposed method with the conventional FA.

6.2 Future Issues

In addition, the following items can be mentioned as future major issues in this field.

Outline of future issues is shown in Fig.6.1.

(a) Issues 1

The research approach so far has developed the superior solution set search method

based on the Firefly Algorithm (FA). From the viewpoint of the FA search mechanism

and search performance, we point out the lack of FA for high-dimensional superior

solution set problems. The neighborhood generation of FA is expressed by the Eq.(3.25).

From the Eq.(3.25), the neighborhood generation is combining the difference vector

between the search point xt
i and the reference point zj, which is better than xt

i, and

the perturbed random number αR.

Here, FA uses the Euclidean distance (the L2 norm) to generate the neighborhood.

The Lk norm distance function, which is defined as the Eq.(6.1), is also susceptible to

the dimensionality curse for many classes of data distributions. Reference［82］discusses

the general behavior of the commonly used Lk norm in high dimensional space.

Lk(x,y) =
N∑
i=1

(
∥∥xi − yi

∥∥k
)1/k, x,y ∈ RN , k ∈ Z (6.1)
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Table 6.1: Notations and Basic Defintions

Notation Defintion

N Dimensionality of the data space

m Number of data points

F 1-dimensional data distribution in [0, 1]

RN Data point from Fd with each coordinate drawn from F

distkN(x,y) Distance between (x1, · · · , xN) and (y1, · · · , yN)

∥·∥k Distance of a vector to the origin (0, · · · , 0) using the function distkN(·, ·)

Dmaxk
N Farthest distance of the m points to the origin using the distance metric Lk

Dmink
N Nearest distance of the m points to the origin using the distance metric Lk

E [R] , var [R] Expected value and variance of a random variable R

Y →p c A vector sequence (Y1, · · · , YN) converges in probability to

a constant vector c if : ∀ϵ > 0 limit
d→∞

P [distN(Yd, c) ≤ ϵ] = 1

� �
Theorem6.1（Adapted for Lk metric）

If lim
d→∞

var

(
∥RN∥k

E [∥RN∥k]

)
= 0, then

Dmaxk
d −Dmink

N

Dmink
N

→p 0

� �
See Reference［83］for proof of a more general version of this result. Table 6.1 shows

notations and basic defintions of Theorem 6.1.

According to the result of Theorem 6.1, the distance Lk is the distance between m

search points, the distance Dmaxk
N between the two search points is the farthest in m

search points, and the distance Dmink
N between the two search points is the nearest

in m search points. The higher the number of dimensions N , the closer the distance

Dmaxk
N and the distance Dmink

N is. In other words, when the number of dimensions

N becomes infinite, the distance Lk between all search points tends to be the same,

and the distance Lk between search points is meaningless and unstable.
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Superior Solution Set Search Problem

Single Objective

Superior Solution Set Search Problem

Improved applicability and search 

performance of methods for high-

dimensional problem

• Discrete Superior Solution Set Search Problem

• Multi-objective Superior Solution Set Search Problem

• Constraint Superior Solution Set Search Problem

⟹ Expand the Framework 

Future Outlook

Future Outlook

Fig. 6.1: Outline of Future Issues

In this paper, it is difficult to adjust the movement amount of the difference vector in

the high-dimensional search space by the parameter γ because the Euclidean distance

(the norm L2) is the same. In other words, the distance between each search point xt
i

and each reference point zj in the high-dimensional search space is almost the same,

so the adjustment of the movement amount becomes almost the same according to the

distance. By this effect, the norm L2 of the difference vector is almost the same as

the effect of reducing the coefficient βi,j (= β0e
−γ||zj−xt

i||22). It is conceivable to lose the

property for basic superior solution set search that the search point group is divided

into multiple parts.

On the other hand, since FA moves absolutely, the search point xt
i is sure to update

to the neighborhood solution x̂t
i (= xt

i+βi,j(zj−xt
i)+αR). This does not always move

the search point to the position where it improves, and allows deterioration. Further,

since the L2 norm of the difference vector in high-dimensional search space is extremely

large, even if somewhat large difference vector, since the coefficient βi,j is exponentially
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small, the difference vector is approximately 0, and the substantially depends only on

the random vector. Due to this effect, it is also considered bad to search for the superior

solution set.

So we need propose a new superior solution set search method that enables more effi-

cient search and examination of superior solution set search problem in high dimension

to deal with the issues 1.

(b) Issues 2

We proposed the most basic superior solution set search method that uses the same

selection operation as the multi-objective optimization method based on the superior

relation. Through basic numerical experiments, it was shown that the proposed method

has the property that the local solution that converges changes according to the change

of the parameters that determine the superior solution set. However, the experiment

only using one benchmark problem were performed. The evaluation indexes for the

search performance of the superior solution set search method and proposals for bench-

mark problems are also required to evaluate the superior solution set search method.

(c) Issues 3

We think that there is room for consideration in formulating the superior solution set

search problem. The superior solution set search problem and the superior solution set

search method proposed in this study are closely linked, and by conducting research

focusing on both the problem and the method, the development of an optimization

method that meets the needs of practical applications can be expected.

The approach of superior relation used this time can be applied to all of the multi-

objective optimization method based on the superior relation proposed so far. In this

study, we have completed the examination of one of the most basic methods, but the

application of the multi-objective optimization method based on other superior relation

to the superior solution set search problem is a future task.
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(d) Issues 4

Based on the multi-objective optimization problem, discrete optimization problem,

or constraint optimization problem, a multi-objective superior solution set, a discrete

superior solution set, or a constraint superior solution set is defined by a mathematical

formula as a set of Pareto solutions whose evaluation values are superior to the objective

function space by a certain amount or more and the solutions are separated from each

other by a certain value or more in the determinant variable space. Based on the defined

problem, the development of method is also an important issue to extend the framework

of superior solution set search problems / methods.





A Benchmark Function

The benchmark function used in this paper is described.

1. Sphere Function

f(x) =
N∑
i=1

x2
i

x∗[0, 0, · · · , 0]N f(x∗) = 0

(a) Outline

-5 0 5
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5

(b) Contour

Fig. A.1: Sphere Function
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2. Schwefel Functuon

g(x) =
N∑
i=1

( i∑
j=1

xj

)2

x∗ = [0, 0, · · · , 0]N g(x∗) = 0
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Fig. A.2: Schwefel Functuon

3. Functuon 1

F1(x) = min
(
f(x+ Y ), f(x− Y ), f(x+Z), f(x−Z)
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Fig. A.3: Functuon 1
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4. Functuon 2

F2(x) = min
(
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Fig. A.4: Functuon 2

5. Functuon 3

F3(x) = min
(
f(x+ Y ) + E, g(x+Z)− E, f(x− Y ) + F, g(x−Z)− F

)
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Fig. A.5: Functuon 3
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6. Functuon 4
F4(x) = min

(
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Fig. A.6: Functuon 4

7. 2N minima Function

h(x) =
N∑
i=1

{x4
i − 16x2

i + 5xi}

x∗ ≈ [−2.90,−2.90, · · · ,−2.90]N h(x∗) ≈ −78n
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Fig. A.7: 2N minima Function
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8. Shekel’s Functionl(x) = −
6∑

i=1

[
(x− ai)(x− ai)

⊤ + ci
]−1

x∗ = ai, l(x∗) ∼= 1
ci

(A.1)
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Fig. A.8: Shekel’s Function

Table A.1: Each Parameter of the Eq.(A.1)

i ai ci Superior Solution l(ai)

1 [−4,−1, · · · ,−4,−1]N 0.1 A −10.47

2 [−2.5,−1.5, · · · ,−2.5,−1.5]N 0.2 B −5.52

3 [−1, 4, · · · ,−1, 4]N 0.2 C −5.16

4 [1,−4, · · · , 1,−4]N 0.4 D −2.65

5 [2, 1, · · · , 2, 1]N 0.4 E −2.79

6 [4, 2.5, · · · , 4, 2.5]N 0.7 F −1.66

Table A.1 shows the parameters ai, ci (i = 1, 2, · · · , 6), and Fig. A.8 shows a contour

line of this function. This function has superior solution set changing for the parameters

δ and ε. In Fig. A.8, this function has six local optimal solutions with A ∼ F marked

by ⋆, and the global optimal solution is A.





B k-means Clustering

B.1 Overview of k-means Clustering

Clustering is the division of a set to be classified into subsets that achieve internal

cohesion and external isolation［62，63，64］. Classification is to make the similarity

of elements belonging to the same cluster as large as possible, while the similarity of

elements between different clusters is as small as possible.

The k-means clustering is one of the typical algorithms for clustering proposed by

Macqueen belonging to the hard clustering method［62］. The definition of hard clus-

tering refers to dividing a database X consisting of m objects into K clusters, and each

cluster Uk(k = 1, 2, · · · , K) satisfies as follows conditions.

• All objects always belong to one cluster.

• An object cannot belong to more than one cluster.

• There is no cluster that contains no objects.

Furthermore, the hard clustering can be described by the following Eq.(B.1).

X = U1 ∪U2 ∪ · · · ∪UK , Ui ∩Uj = ϕ (i ̸= j) (B.1)
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B.2 Algorithm of k-means Clustering

Given a set of observations (x1,x2, · · · ,xn), where each observation is a d-dimensional

real vector, k-means clustering aims to partition the n observations into k(≤ n) sets

U = (U1,U2, · · · ,UK) so as to minimize the within-cluster sum of squares (WCSS).

Formally, the objective is to find by Eq.(B.2)

WCSS = argmin
U

K∑
k=1

∑
xp∈Uk

||Gk − xp||2 (B.2)

where Gk is the mean of points in Uk according to Eq.(B.3).

Gk =
1

|Uk|
∑

xp∈Uk

xp (B.3)

Assign each observation xp into the cluster Uk with the nearest centroid Gk according

to Eq.(B.4).

Uk =
{
xp| ∥xp − Gk∥2 ≥ ∥xp − Gj∥2 ∀j, 1 ≤ j ≤ K

}
(B.4)

The following Algorithm B.1 shows the k-means clustering.
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Algorithm B.1 k-means clustering

1: procedure k-means clustering(K, ϵ)

Step 1: Preparation

2: Set the number of clusters K and the termination condition ς.

3: Set the number of iterations t = 1.

Step 2: Initialization

4: Give a set of observations (x1,x2, · · · ,xm).

5: Randomly select K observations from the set of observations as the centroid G1
k(k = 1, · · · ,K)

of each cluster U1
k (k = 1, 2, · · · ,K).

Step 3: Cluster assignment

6: for k = 1 to K do

7: for p = 1 to m do

8: Assign each observation xp into the cluster U t
k with the nearest centroid Gt

k.

9: U t
k =

{
xp| ∥xp − Gt

k∥
2 ≥

∥∥xp − Gt
j

∥∥2 ∀j, 1 ≤ j ≤ K
}

10: end for

11: end for

Step 4: Update

12: for k = 1 to K do

13: Recalculate centroid Gt+1
k for observations assigned to each cluster.

14: Gt+1
k = 1

|Ut
k|

∑
xp∈Ut

k

xp

15: end for

Step 6: Termination

16: Calculate the minimize the within-cluster sum of squares WCSS.

17: WCSS = argmin
U

K∑
k=1

∑
xp∈Ut

k

||Gt
k − xp||2

18: if ϵ ≤ WCSS then

19: The algorithm is terminated.

20: else

21: Return to Step 3.

22: end procedure

In this paper, numerical experiments were conducted with the value of ϵ as 10−6.

In addition, the k-means clustering requires the user to set the number of clusters in

advance. Since the x-means clustering［85］that does not require this has been proposed,

please refer to it when using the clustering method in advancing the research.





C Crossover and

Mutation for Real

Genetic Algorithm

C.1 Simulated Binary Crossover

Simulated Binary Crossover (SBX)［86］is a crossover method proposed by Deb

et al. There are various implementation methods, but in this paper, according to

nsga2-gnuplot-v1.1.6 published in the Reference［87］, the implementation considers the

constraints of the coefficient of determination. The algorithm of Simulated Binary

Crossover is shown in Algorithm C.1 and Algorithm C.2.

C.2 Polynomial Mutation

Polynomial Mutation (PM)［76］is also a mutation method proposed by Deb et al. In

this paper, the implementation takes into account the constraints of the coefficient of

determination according to nsga2-gnuplot-v1.1.6 published in the Reference［87］. The

algorithm of Polynomial Mutation is shown in Algorithm C.3.
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Algorithm C.1 Simulated Binary Crossover I (SBX I)

1: procedure SBX I(parent1,parent2, pc, ηc,xl,xu)

%parent1,parent2：Parent individual, pc：Crossover rate, ηc：Distribution parameter

%xl：Lower limit vector, xu：Upper limit vector, rand()∈ [0, 1]：a uniform random number

2: child1 = child2 = 0 ▷ Initialization of child

3: if rand() < pc then

4: for j = 1, . . . , n do

5: if rand() < 0.5 then

6: if parent1j = parent2j then

7: child1j = parent1j

8: child2j = parent2j

9: else

10: if parent1j < parent2j then

11: y1 = parent1j

12: y2 = parent2j

13: else

14: y1 = parent2j

15: y2 = parent1j

16: (c1, c2)=SBX II(y1, y2, xlj , xuj , ηc) ▷ See Algorithm C.2

17: if rand()< 0.5 then

18: child1j = c2

19: child2j = c1

20: else

21: child1j = c2

22: child2j = c1

23: else

24: child1j = parent1j

25: child2j = parent2j

26: end for

27: else

28: child1 = parent1

29: child2 = parent2

30: end procedure



Appendix C Crossover and Mutation for Real Genetic Algorithm 157

Algorithm C.2 Simulated Binary Crossover II (SBX II)

1: procedure SBX II(y1, y2, pc, ηc, xl, xu)

2: r = rand()

3: β = 1 + 2 ∗ c1−xlj

y2−y1

4: α = 2− β−ηc+1

5: if r ≤ 1
α then

6: βq = (r × α)
1

ηc+1

7: else

8: βq = ( 1
2−r×α)

1
ηc+1

9: c1 = 0.5((y1 + y2)− βq(y2 − y1))

10: β = 1 + 2 ∗ xuj−y2
y2−y1

11: α = 2− β−ηc+1

12: if r ≤ 1
α then

13: βq = (r × α)
1

ηc+1

14: else

15: βq = ( 1
2−r×α)

1
ηc+1

16: c2 = 0.5((y1 + y2)− βq(y2 − y1))

17: if c1 < xl then

18: c1 = xl

19: if c2 < xl then

20: c2 = xl

21: if c1 > xu then

22: c1 = xu

23: if c2 > xu then

24: c2 = xu

25: end procedure
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Algorithm C.3 Polynomial Mutation

1: procedure Polynomial Mutation(parent, pm, ηm,xl,xu)

%parent：Parent individual, pm：Mutation rate, ηm：Distribution parameter

%xl：Lower limit vector, xu：Upper limit vector, rand()∈ [0, 1]：a uniform random number

2: for j = 1, . . . , n do

3: if rand() < pm then

4: y = parentj

5: δ1 =
y−xlj

xuj−xlj

6: δ2 =
xuj−y
xuj−xlj

7: r = rand()

8: if r ≤ 0.5 then

9: a = 2r + (1− 2r)× (1− δ1)
ηm+1

10: δq = a
1

ηm+1 − 1

11: else

12: a = 2(1− r) + 2(r − 0.5)× (1− δ2)
ηm+1

13: δq = 1− a
1

ηm+1

14: y = y + δq(xuj − xlj)

15: if y < xlj then

16: y = xlj

17: if y > xuj then

18: y = xuj

19: parentj = y

20: end for

21: end procedure
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C.3 Real Genetic Algorithm

Genetic Algorithm (GA) with Simulated Binary Crossover and Polynomial Mutation

for the minimization problem of the objective function f(x) (x ∈ RN) is shown by

Algorithm C.4.

Algorithm C.4 Genetic Algorithm (GA)

1: procedure GA(m, pc, pm, Tmax)

Step 1: Initialization

2: Give initial solutions P 1 (|P 1| = m), Set t = 1

Step 2: Generation of New Solutions

3: Qt = ∅
4: for i = 1 . . .m do

5: Choose randomly xa,xb ∈ P t (a ̸= b)

6: {ya,yb} = Simulated Binary Crossover(xa,xb) ▷ See Algorithm C.1

7: Choose randomly y ∈ {ya,yb}
8: q = Polynomial Mutation(y) ▷ See Algorithm C.3

9: Qt := Qt ∪ {q}
10: end for

Step 3: Fitness Assignment

11: U t = P t ∪Qt (|U t| = 2m)

12: for each xt ∈ U t do

13: for i = 1 . . . 2m do

14: fitti = f(xt
i)

15: end for

16: end for

Step 4: Selection

17: Sort U t in ascending order using fitti
18: P t+1 := U t[1 : m]

Step 5: Termination

19: if t < Tmax then

20: t := t+ 1

21: Go to Step 2

22: else

23: end procedure
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