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Abstract

Physical failure analysis (PFA) specifies layout designs that affect large-

scale integration (LSI) failure. Because of their capability and cost effec-

tiveness, convolutional neural networks (CNNs) have been applied to LSI

layout analysis. However, the information on failure for root cause analyses

is generally limited. Moreover, information over a large area, which includes

many geometries, is required to understand the effects of a layout on failure.

These problems pose challenges in training the CNN models to achieve high

accuracy for layout segment classification. In this study, a scheme for layout

segment classification is proposed, which uses CNN to analyze the effects of

layout on failure. Thus, multiple segment images of LSI layouts are used as

inputs, and the outputs of CNN models are used to classify the input images

as either risk or non-risk segments. First, a simple 3-layer model was evalu-

ated, and then a 15-layer model fine-tuned using the transfer learning of the

VGG16 model was evaluated. The 15-layer model outperformed the 3-layer

model for classifying the LSI layout segments. From a cross-validation of

the 15-layer model, a true positive rate of >80% and a false positive rate

of <10% are obtained for extracting layout regions related to actual defects.

The outputs of the CNN models from the input layout segment demonstrate

similarity with the defective layouts. In the regional layouts across the LSI

chips, the contour plot of model outputs is visualized as a hazard map of

failures. This information is necessary for additional failure cause analyses.

Root cause analysis (RCA) of failures is mandatory to obtain the relia-

bility and productivity of LSIs. Although analyzing layout-induced defects
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is crucial to optimize design rules and to predict unknown defects, it is a

challenging task due to the difficulty in explaining the relationship between

defects and circuit layouts. CNNs were applied to classify LSI layout images

to perform the RCA of layout-induced defects in a former study. However,

due to the low resolution of images, actual defect positions were not clearly

distinguished. In the next study, image segments of different sizes and reso-

lutions were used for the CNN classification. Experimental results indicate

that the validity of the extracted layout features depends on the resolution

of image segments. Using the visual explanation technique GradCAM++,

the features of defective layouts can be accurately captured in local areas

including a group of patterns with their surroundings when CNN models are

trained on smaller image segments with higher resolution. Conversely, utiliz-

ing smaller-size segments deteriorates the classification accuracy due to the

incorporation of less information from the images. In the conducted experi-

ments, even in the case of using smaller segmentI s, acceptable performance

(the detection rate of defect positions DTR ∼=90%, and the risk-image classi-

fication rate RCR ∼=10%) can be obtained by increasing the size of training

datasets. Partial layouts extracted as features of defective layouts can then

be used in RCA and in designing future products.

Test quality is critical to eliminate test escapes and to achieve high-

reliability LSI devices. A new concept called“ physical test coverage” is

proposed to verify test coverage based on the physical layout of LSI circuits.

The physical test coverage is calculated as the ratio between the critical area

of all wires in a device and that of wires undetected by LSI tests. From the

critical area of undetected wires and the defect density of a manufacturing
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line, the risk of test escapes can be predicted. To effectively develop LSI

tests that can minimize the number of test patterns, undetected wires are

prioritized by the critical area related to each wire. Even when the conven-

tional“logical”test coverage is high enough to satisfy the coverage criterion,

some LSI devices investigated in this study showed low physical test coverage

depending on the physical layout of the LSI circuit. The concept of physical

coverage was applied in the test development of some LSI products, and the

test quality was substantially improved, such that 90% of test escapes of a

device were eliminated.
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1 Introduction

1.1 Background

LSI is important in electronic devices. With the rapid advancements in

IT digital technology, LSI is being increasingly employed in several electronic

applications. Here, we briefly review the various types of LSIs presently used

worldwide. In 2018, the ownership of mobile devices in Japanese households

exceeded 95%. A smartphone, which is the most common mobile device and

is possessed by 80% of the households, comprises approximately 20 LSI cir-

cuits. Because of the advancements in LSI integration, there are only a few

LSIs on the motherboard of a PC, apart from memory LSIs in the CPU.

Although the consolidation of LSIs in LCD TVs has also been advancing,

new image processing LSIs for 4 K and 8 K high-definition images have

been introduced to the market. Such devices usually employ a system-on-a-

chip (SoC), which is a high-performance LSI that integrates several different

functional blocks in a single package to perform complex computational pro-

cesses. In addition, microcontrollers are LSIs with functions to achieve spe-

cific operations and are often installed in most home appliances. SoCs and

microcontrollers are used in many parts of automobiles. Automotive LSIs

are being developed to realize new functions such as automatic driving, and

their reliability must be ensured to safeguard passengers and people around

the vehicle. Meanwhile, the use of information and communication systems

via the Internet is expanding every year, and the society is gradually trans-

forming into a digital society. Digital authentication, such as in the form of

self-identification cards and cashless decision making, has become inevitable
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in our daily life. The authentication of these IC cards and mobile terminals

uses LSI. Thus, LSI plays a leading role in the social infrastructure of a smart

society. The fundamental role of LSIs in protecting authentication, personal

information, and security in these new lifestyles is crucial.

As described above, the current LSIs widely used in society must have

a high reliability [1]. In general, the reliability of LSIs is quantitatively

indicated by the occurrence rate of failures during long endurance tests at the

start of mass production. However, there is a non-zero risk of failure after the

product has been distributed because of defects in the manufacturing process

or unobserved issues in design. LSI manufacturers have need to demonstrate

the reliability of their products; thus, they may have to maintain records

without any defective products to adhere to a stringent requirement called

“ zero-defect requests” from users (customers and society).

Multiple tests are conducted to examine the operation and performance

of the LSI at the time of manufacture and upon acceptance of the product

and thus guarantee the reliability of LSIs. These tests include functional

tests to verify whether the logic circuit operates according to the designed

specifications, scan tests to check for open and short failures in the wiring,

and quiescent power supply current (IDDQ) tests to check for leakage. These

tests are performed in a normal environment as well as a harsh environment

with a high temperature and humidity. Reliability is also examined through

burn-in testing, in which durability (degradation) is verified through tem-

perature cycling under high-temperature and high-pressure conditions, and

destructive testing, in which excessive voltage is applied. In the burn-in pro-

cess, initial defects (defects detected in the pre-shipment stage) are screened

2



to prevent the shipping of defective products.

The information on defects detected in the test process is used to iden-

tify good products as well as to determine the normality and abnormality

of the process. If abnormal processes are determined, the defective products

are fed back to the manufacturing process to ensure stable production. De-

fective LSI products can be selected in the test process because of various

reasons, but most of these causes can be traced back to the manufacturing

process. Among them, an important aspect to consider is whether the pro-

cess conditions set at the time of development are optimal. If the margin of

variation for process conditions (process window) can be set wide and the

actual manufacturing conditions are in the center of that window, the process

can be considered optimal. However, if the window is narrow and the actual

conditions applied are closer to the edge of that window, the specifications

of the product chips may most likely deviate from the required specifications

(acceptance threshold). Owing to environmental issues during the process,

foreign particles and defects that do not normally occur on a silicon wafer

may occur. Owing to these problems, the structure (dimensions and shape)

of the device formed on the wafer surface changes, and normal functions

cannot be obtained, which results in defects.

There may be issues in the design of the circuit, rather than in the man-

ufacturing process. Even if the design rules are followed, the process window

may become narrower owing to the shape and dimensions of the circuit lay-

out. With advancements in LSIs, design dimensions (wiring and transistor

gate widths and spaces) have decreased and process margins have become

narrower for integration. Meanwhile, lithography and other manufacturing
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processes have been developed to achieve process margins that can withstand

manufacturing costs. The areas of the layout that have narrow windows in

the lithography process are called hot spots. The hot spots should be re-

moved at the design stage because they may cause defects on silicon. Hot

spots can be identified with an optical simulation. Another issue that is

relevant to layouts is related to the chemical mechanical polishing (CMP)

process. In CMP, the surface of stepped interconnections and insulating lay-

ers after forming a film is polished using a special chemical solution and a

polishing slurry such as silica. The polishing speed is affected by the den-

sity, size, and shape of the layout pattern. Simulation studies have been

conducted to predict the polishing results, but accurate results have not yet

established owing to several factors that must be taken into account. It can

also be assumed that the size, shape, and configuration of the layout pattern

affect the mechanical stresses caused by the pattern at different locations on

the chip. If different materials are stacked on top of each other, a stress is

generated owing to different thermal expansion coefficients of the materials.

Localized stress may accumulate and lead to the destruction of the device

structure and materials.

Design for manufacturing (DFM) refers to the steps taken to simplify

the manufacturing process by considering the impact of the abovementioned

layout designs on the process. DFM considers hot spots, CMP, and critical

area analysis (CAA). The DFM is described in detail in Chapter 2.

Finally, the most important factor in LSI development is the yield, which

can be calculated from the results obtained in the test process. The yield

is simply expressed as the ratio of the number of LSI chips that passed the
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test to the total number of LSI chips on a silicon wafer in the manufacturing

process. The complement of this yield is the defect rate, which represents

the number of defective chips detected through the test. It is not feasible to

achieve 100% yield in the case of microcontrollers and SoCs used in consumer

and automotive products because there are thousands of steps involved in

the manufacturing process. A few defective products may not be detected

during testing. Predicting the occurrence of such defects, that is, the yield

rate, is important for examining the production plan of LSI products and to

further enhance the reliability of LSI products. Furthermore, predicting the

failure factors at an early stage, such as the development stage, is important

to prevent the defects from passing the screening test (which are called test-

escapes).

1.2 Objectives of this work

This study focuses on failure caused by the LSI layout, proposes a method

for analyzing the layout of LSI, and evaluates a method for quantifying the

risk of test escape due to layout-related failure. In this thesis, the research

results are summarized based on the following: (1) techniques to determine

the LSI layout induced defects, (2) techniques to identify the cause of the

defects, and (3) techniques to quantify the risk of test escapes based on layout

analysis.

In certain cases, such as logic function tests, it is feasible to obtain infor-

mation that identifies the related wire nets for phenomena that are defective

in the test. In some cases, the information obtained from the test is used
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for identifying the location of the net of defects or even the location of the

circuit responsible for the defect, and in many cases, the location of the de-

fect cannot be identified. The information from this test is combined with

other related information to determine the causes of the failure. Then, the

estimated points on the LSI chip that are determined to be defective are

observed and analyzed to investigate the situation in detail. The actual ob-

servation and analysis of the estimated defective locations is called physical

analysis or physical failure analysis (PFA). The primary objective of this

work is to propose a scheme to analyze the circuit layout of a defective area

as an information to estimate the location of the defective area on the chip,

which will help improve the physical analysis.

Physical analysis is used to estimate the cause and mechanism of defect

formation in defective products by observing the position of the occurrence

of defective products. Furthermore, the ultimate goal of this research is

to address the causes of defects in cooperation with the manufacturing and

design departments to eliminate defects. However, it is difficult to identify the

defective part itself, and unknown (unexpected) defects are rarely detected;

hence, it is sometimes difficult to analyze and estimate the cause of defects.

However, it is desirable to be able to identify and address the causes of defects

at an early stage when they are detected. Therefore, the second objective of

this work is to propose a method of extracting information to estimate the

cause of defects, especially relevant to LSI layout, based on the information

of a small number of defects.

The third objective of this work is to propose a method to quantitatively

understand the risk of test escape by analyzing the layout. As mentioned
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above, the test escape is a serious problem that reduces the reliability of

LSI products (and the manufacturer itself). The critical area (CA) is a

concept used to describe the relationship between the LSI layout and the risk

of failure. This concept simplifies the cause of defects and assumes short-

circuit defects between wirings and between open defects that cause wire

breakage. The critical area analysis (CAA) is explained in detail in Chapter

2. The CAs in the layout can be estimated and the risk for each shape,

configuration, and size of the layout pattern is quantified. To ensure the

reliability of LSIs, all faults must be detected by testing. Nevertheless, the

wiring cannot be completely tested owing to cost and efficiency. In addition,

the degree of reliability ensured by testing is traditionally assessed by test

coverage. However, traditional test coverage is not reliable to discuss the

magnitude of the actual risk of failure. In this work, a method is proposed

for calculating test coverage using CA to express the probability that a defect

will slip through the test by linking the risk of defect occurrence to the test.

Using this new index (physical coverage), we can efficiently generate test

patterns and reduce the risk of test escape by increasing the effective test

coverage, thus ensuring the reliability of the LSI products.

1.3 Structure of this dissertation

The remainder of this dissertation is organized as follows:

In Chapter 2, the technologies related to the analysis of LSI defects are

reviewed. First, in section 2-1, the analysis methods for LSI defects are sum-

marized. The purpose of physical analysis is to identify, observe, and analyze
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the points that cause defects, and each technique is discussed in detail. Sec-

tion 2-2 describes the yield models and calculation algorithms for predicting

the failure rate and yield. The CAA calculation method for analyzing the

layout and predicting the yield is explained. Section 2-3 summarizes the is-

sues on DFM from the design stage to improve yields and reliability. Circuit

redundancy, optical proximity correction (OPC), hot spot countermeasures

for lithography process-margin expansion, CMP, and CAA analysis are dis-

cussed. In Section 24, an overview of machine learning and AI technologies

is provided.

In Chapter 3, we discuss a method to estimate the defective locations by

analyzing the layout of a certain LSI product. The defects were identified by

PFA, focusing on the defects that were presumed to be caused by the layout

of the product. Here, the image of the circuit layout is cut into squares of

a specific size (called“ segment”) and used as the data for analysis. We

propose a method to classify each segment with the computational model

generated by learning the image data with a convolutional neural network

(CNN), which is a type of neural network (NN), and to identify the layout

that has a risk of defect occurrence. Models with 3 and 15 CNN computa-

tional layers were generated to compare the classification performance of the

layout images. This study verifies whether the computational model learned

by cross-validation can classify layout images near actual defects as having

a risk of failure. A prototype of a hazard map to identify the defective loca-

tions in the layout of an entire LSI product chip is created using the output

values of the calculation model.

In Chapter 4, the feature extraction of the layout images, which is the
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basis of the classification performance of the circuit layout images of LSI

using the CNN model in Chapter 3, is mainly explored. It is shown that

the extracted features of layout images are affected by the resolution of the

image data. The layout of feature points extracted from high-resolution

images is investigated in detail, and the features of the layouts of defective

points are shown. In addition, the amount of data to train the models is

increased to compensate for the degradation of classification performance of

high-resolution images owing to the limitation of the input size of the model.

Chapter 5 presents a method to quantify the risk of LSI test escape by

applying CAA analysis using a layout. Test coverage using CAA is referred

to as physical coverage. The details of CAA and physical coverage calculation

are described in this section. The physical coverage analysis focuses on wires

that are undetected in tests. The risk of test escape is estimated using the

CA of undetected wires. Investigating the CA of each net and applying the

test pattern to particularly long lines reduces the CA of undetected wires,

and test escape is effectively reduced. The conventional test coverage and

physical coverage for multiple LSI products were compared. Examples of

test pattern development schemes using physical coverage are estimated to

effectively reduce the rate of test escapes.

Finally, Chapter 6 concludes the thesis and summarized the work pre-

sented.
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2 Preliminaries

2.1 LSI failure analysis

An LSI failure is a condition in which an LSI product cannot be operated

as designed.　Most failures are caused by defects in manufacturing. The

failure to form the expected normal circuit pattern on the silicon substrate

due to foreign particles in the manufacturing equipment, abnormalities in the

process, or fluctuations in manufacturing conditions can cause current leakage

in the wiring or gates, as well as signal interruptions due to wire breakage.

In certain cases, the expected performance cannot be achieved because the

manufacturing process window is extremely narrow. The design (layout) of

the circuits formed on the silicon substrate as well as the manufacturing

process is related to the margins. For example, the layout of hot spots in the

lithography process is complicated for LSI developers who follow the design

rules and have a small margin for error during manufacturing. It is extremely

important to identify the location of the defect in the chip, observe the state

of the location, and determine the reason for the failure; thus, measures must

be taken to prevent similar failures from occurring in the future. The method

is described in the following section.

An LSI has a logic circuit that is uniquely designed according to the

specifications of each product. Logic circuits are made up of wires and tested

for defects through functional tests based on the functions required for the

product. First, the relationship between the test pattern and the defective

behavior (e.g., in a functional test) is analyzed using special software prior to

physical analysis, and then the defective locations are narrowed down. This
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is called software analysis [2]. Soft analysis can narrow down the wiring (net)

that causes the defective operation. However, subsequent physical analysis

is used to narrow down the candidate wires, and then the point of defect

(anomaly), which is the true cause of the defect, is identified in the wires.

The main analysis methods used for the identification of defects are emis-

sion analysis, optical beam induced resistance change method (OBIRCH),

and electron beam irradiation analysis (EBAC).

Luminescence analysis is mainly used to monitor the current abnormality

and estimate the location of the failure [3, 4, 5, 6]. A high-sensitivity camera

detects light generated when hot carriers recombine, which is caused by gate

leakage and localized electric field concentration in the insulator film when

a voltage is applied to an LSI circuit. Defective areas were identified by su-

perimposing the luminescent areas and the layout pattern. However, light

emission may occur in locations other than the abnormality. When a wiring

short occurs, a large amount of light may be emitted from multiple transis-

tors connected to the shorted wires. OBIRCH is a technique for identifying

defective locations by monitoring the change in current due to the change

in resistance of the wiring heated by laser beam irradiation [7, 8, 9]. If the

defective part is composed of a material with a different thermal conductiv-

ity than that of the normal part, the laser light is scanned along the wiring

while a constant voltage is applied to the circuit, and the current change is

continuously measured. When the laser light scans the defective area, a dif-

ferent change in the current value from the previously measured value can be

observed, and anomalies can be detected. The near-infrared light (λ = 1.3

µm) used in OBIRCH penetrates the silicon substrate and can be observed
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nondestructively from the backside of the substrate. Because many wires

are located on the surface of the silicon, it is sometimes difficult to observe

them; moreover, since the backside is closer to the substrate surface, anal-

ysis from the backside is often more effective. By connecting the OBIRCH

to the LSI tester, the area of interest can be set to a potential state suit-

able for observation and analysis. For example, by switching the potential

of the gate with a test pattern (such as the IDDQ pattern), it is easy to find

the current abnormality in the wiring to be observed. EBAC [10, 11] and

resistive contrast imaging (RCI) are technologies that lead the defective posi-

tions to a narrower range than in OBIRCH, which results in semi-destructive

analysis (in OBIRCH, the analysis is essentially non-destructive). When the

prober terminal is placed in contact with the suspected defective wiring and

the electron beam is irradiated onto the device surface, the contrast caused

by the difference in the current absorbed is used to form an SEM image.

The area where the probe terminals are electrically connected to the wiring

in contact with the probe terminals appears brighter than the surrounding

area, making it possible to identify open and short defects.

These techniques, which use electron beams, can also monitor the po-

tential status of the circuit. An EB tester applies a test signal to the LSI

circuit in the SEM system and monitors the wiring potential chronologi-

cally in the SEM image. Abnormal areas can be identified by comparing

potential contrast images with normal areas. The wiring to be observed is

identified beforehand from the net information obtained by software anal-

ysis and the results of non-destructive OBIRCH analysis. By connecting a

prober with the wiring in the circuit and applying an electric potential to it,
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the wiring disconnection and gate operation characteristics can be directly

checked. Similarly, a nanoprober is a device that can monitor electrical char-

acteristics by connecting probe terminals to contacts around the wires and

gates in an SEM system.

Another analysis method for locating defects is the detection of abnormal

IDDQ [12, 13, 14], which monitors the current leakage (through current) be-

tween the power supply and GND in the non-operating state. Because IDDQ

testing can detect failures in modes that cannot be detected by logic testing,

the IDDQ test is used in conjunction with logic testing to improve the failure

detection rate, remove initial defects before shipping, and prevent defective

products from test escaping. Using this technique, the heat generation and

the current in the defective area can be observed, and the defective location

can be identified. It is also possible to identify the defective nets without

physical analysis by analyzing the combination of detected patterns using

the IDDQ test pattern.

A method for finding the locations of common causes of defects (abnor-

malities) is described here. As mentioned above, it is important to investigate

the location of the cause of failure and thus improve the reliability. However,

in many cases, the location of failure cannot be identified by these tech-

niques (e.g., when the wiring that is narrowed down by software calculation

is long; or when the analysis is difficult; or when the position determined by

emission, OBIRCH, or EB analysis is not a direct defective location). The

present study aims to obtain information for identifying defective locations

and apply it to these techniques so that defective locations can be accurately

identified.
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2.2 Prediction of LSI failure rate and yields

LSIs are classified as defective or normal through various tests at the time

of manufacture, before shipment, and at the time of customer acceptance.

The percentage of LSIs passing the normal tests corresponds to the yield, and

its complement is the defect rate. The yield (defect rate) depends mainly

on the quality and accuracy of the manufacturing process, but it varies from

product to product, even if the same manufacturing process is used. This is

because the design (layout) as well as the manufacturing process affect the

yield. Thus, it is important to estimate (predict) the yield of each product

in advance at the LSI development stage.

The yield prediction model employs a formula to calculate the predicted

value of yield based on the factors affecting the yield loss and their influence

(weight) on the yield. The following two types of defects are assumed to be

the causes of lower yields. The first is margin failure, in which the voltage and

resistance values vary depending on the dimensions and shape of the compo-

nents (e.g., gate pattern) formed on the silicon, resulting in deviations from

the required specifications for the LSI’s operating speed and noise margin.

Margin failure, also called parametric failure, affects both the circuit design

and the manufacturing process; therefore, it is necessary to take fundamental

measures to identify the causes of failure and correct the design and process.

The other defect type is a random failure that occurs randomly and affects

logic operations, such as open wiring defects and short-circuit defects. The

factors that generally affect the risk of random defects (probability of occur-

rence) are chip area, pattern size, and defect occurrence level (defect density)
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in each process. When the number of defects is relatively large and the chip

area is small, the defect occurrence can be approximated to a Poisson dis-

tribution. Poisson distribution is widely used for yield prediction because it

requires few parameters, and the formula is simple and easy to understand

intuitively. As an addendum, it has been confirmed that this Poisson dis-

tribution is different from the actual distribution at large chip areas; thus,

the negative binominal distribution is closer to reality. This is because the

actual distribution of defects is not completely random but rather occurs in

a pattern in which defects are in close proximity to each other (clustering).

The yield model is described in detail in the following references [15, 16, 17].

Yield prediction is also important in manufacturing. In many cases, yield

enhancement activities are carried out simultaneously in multiple manufac-

turing processes, and the concept of limited yield [18], which considers the

yield impact of each process, is useful for yield prediction. The yield of the

final product is expressed as the product of the yields of the individual pro-

cesses. Since yield improvement activities in manufacturing are performed

at each process level, estimating the yield of each process is effective. By

focusing on the process with high yield impact first and repeating the yield

improvement cycle within a short period of time, the yield of the product can

be efficiently improved. The simplest yield model assumes that electrical de-

fects occur randomly (Monte Carlo simulation), and the yield is determined

from the area and defect density as parameters for calculation. However,

in reality, the yield is related to the complexity of the process, congestion

(density) of the layout pattern, and the dimensions (from the following ref-

erences). The concept of critical area analysis (CAA), which quantifies the
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congestion of this layout pattern, is described as follows. Two models of

defects are assumed for the occurrence of defects in the layout pattern of the

LSI wiring layer: one is an open defect that causes an open failure, in which

a defect occurs on the wiring in such a way that the formation of the wiring

is inhibited; the other is a short defect that exists between the wirings and

causes a short-circuit failure between the wires. The locations where these

defects occur are not completely randomly selected but are related to the

shape and dimensions of the layout pattern and defect size. Open defects are

more likely to occur at narrower interconnect widths. Short-circuit defects

are more likely to occur between narrower spaces between wires. The larger

the size of the defects, the easier it is for both open and short-circuit defects

to occur. To express these relationships, the CA is defined as the place or

area where open and short defects occur when a defect of a set size is placed

on the layout (e.g., wiring layer layout). The CA is used to quantitatively

indicate the risk of defects in the product and the wiring layer and is there-

fore used to predict the yield rate. Using the CA in the Poisson model, the

following yield prediction equation can be formulated.

Y = exp(−D0 · Ac) (1)

where Ac is the critical area, and D0 is the dedicated defect density value

for the critical area. The differences in yield due to differences in product

design, process, and interconnection structure for various uses of CMOS can

be efficiently estimated using CA [19]. However, the yield estimated by CAA

cannot ignore the differences in processes [20]. When Al is replaced with Cu
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in the wiring process, it is not possible to predict the yield of one product

from the yield of the other product based on the CA alone. Regarding the

modeling of defects for CAA, the modeling of the shape of defects when

assuming defect generation in CAA is not yet established; this is because

the defects are not circular or square-shaped, but their shapes are indefinite

[21, 22]. It is reasonable to calculate CA according to the shape of the defect;

however, owing to the problem of computation load, a rectangular shape is

often considered. In addition, defects have a size distribution. The following

studies were conducted to estimate the size distribution of defects [23, 24, 25].

It is possible to estimate the incidence of open and short defects (failure rate)

with a pattern for evaluation called TEG, which uses two long wires placed

in close proximity. By preparing test patterns with different wiring widths

and spaces, the size of the defective part can be estimated from the pattern

dimensions. In practice, it is effective to check the defective area with SEM

to obtain information such as size, shape, and the material used (estimated)

to accurately estimate the size distribution of defects and to estimate the

causes of defects that occur in manufacturing. CAA can also be applied to

the prediction of the risk of degradative defects, and the yield estimation

method for soft faults (a defect that is not completely defective but may

become defective) is reported in the following literature [26]. The method

involves re-reading the yield, assuming that the product of the defect size

distribution and the CA relative to the defect size (called the probability of

failures (POF) curve) decreases compared to the product obtained using the

actual size. This method is also expected to be used to obtain a reliability

evaluation index, and trials to quantify the risk of gate leakage degradation
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defects have been reported [27]. Chapter 5 of this thesis proposes a method

to quantify the risk of defect escaping in LSI testing by a yield prediction

model with CAA.

2.3 Design for manufacturing(DFM) and layout anal-

ysis

Innovative techniques must be employed to simplify the manufacturing

process in the design stage and mass-production of products with fewer de-

fects and higher yields, lower manufacturing costs, and higher quality and

reliability. This approach at the design stage is called DFM, and it has

been applied in LSI development and manufacturing. The gap between the

progress of manufacturing process technology development and the specifi-

cations required for LSI product devices must be addressed to realize new

functions (changes in product generations). Future design nodes will further

increase the amount and scope of DFM applications for products that require

high reliability with a narrow margin of variation allowed in manufacturing.

The first DFM (still in implementation) was implemented to optimize

the wiring, the design dimensions of the holes, the location of the layout

patterns, and the shape of the patterns. Then, the wiring width was reduced

to increase the integration of LSIs. For this, an improved pattern resolu-

tion was required, and the auxiliary pattern sub-resolutional assist features

(SRAF) and OPC related to super-resolution optics were applied to expand

the process margin. In OPC, the shapes and dimensions of the design layout

patterns were derived to achieve the expected final shape based on optical
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simulations[28, 29, 30, 31].

Redundant circuit patterns are often used to revive a product by switching

the wiring to the redundant circuit in case of an emergency that renders

the product inoperable because of a defect [32]. The presence or absence

of redundant circuits has a significant impact on yield, and methods for

predicting yield have been studied for such a redundancy system.

Recently, machine learning is expected to be applied to the problem of

the computational cost of optical simulation to optimize OPC. Layout pat-

terns are classified based on the similarity of the layouts, and the same OPC

is applied to similar layouts. The following literature on algorithms for clas-

sification of layouts is available [33, 34, 35, 36, 37, 38].

The layout area with a small process margin in the lithography process

is called a hotspot. Hotspots can also be detected by optical simulation,

but it is not realistic to search for hotspots in the entire LSI product (or

even just the logic circuit part) by simulation when considering the cost

(time) of the calculation. Extensive research has been conducted with the

expectation of applying machine learning in this field, as described below

[39, 40, 41, 42, 43, 44, 45].

In recent years, CMP has been playing an important role in the forma-

tion of the stacked structure of LSI [46, 47]. CMP combines chemical and

mechanical (physical) actions to flatten the substrate; for example, polish-

ing the wiring layer on which tungsten or copper are deposited, which are

used as the wiring materials for LSIs. The surface of the insulating film that

fills the space between the wiring layers and between the wiring layer and

the substrate surface is polished and flattened. However, the surface to be
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polished contains a mixture of different materials formed along the circuit

pattern, and it is extremely difficult to obtain a flat surface by polishing

these materials at different speeds at the same time. The optimal polishing

conditions can be set by considering the polishing speed of each material

simultaneously. However, the situation becomes further complicated by the

influence of the circuit layout. Because the polishing speed is affected by

the pattern’s density (occupancy), pattern size, and shape, it is difficult to

predict the shape of the pattern after polishing if these variables are taken

into account. Machine learning is also expected to optimize the CMP pro-

cess conditions. CAA is a layout analysis method used to quantify the risk

of failure of a layout. CAA is commonly used in the semiconductor industry.

Defects in LSI products do not occur in a completely uniform distribution

of chips, but the risk of defect occurrence varies depending on the degree

of congestion in the layout pattern. The narrower the space between the

wires, the higher the risk of short-circuit defects. In addition, the narrower

the wiring width, the higher the risk of open defects, and the higher the risk

in areas where there are many thin wires. CAA analyzes the wiring width,

space, pattern shape, and configuration of the layout pattern and quantifies

the risk of short-circuit and open defects as an area called the CA.

The application of AI technology to the field of DFM has been discussed

for a long time [48], and it was expected that it could counter the unrealistic

cost of obtaining exact solutions through CAD and simulation.
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2.4 Machine learning and Artificial intelligence(AI)

Machine learning is a technique that uses machines (computers) to an-

alyze the relationship between input information and the outputs. Unlike

methods that use formulas based on physical theories to predict phenomena

such as manufacturing processes, machine learning uses variable parameters,

which are presumed to affect the occurrence of a phenomenon (output), to

construct models that derive the most easily explainable laws according to

the input-output relationships based on the actual phenomena. Therefore,

events that represent the relationship between input and output (data) are

important for prediction accuracy; the greater the number of such data, the

more accurate the prediction of events that actually occur. The usefulness

of machine learning has expanded in recent years as advances in information

technology have made it possible to handle large amounts of data quickly

and efficiently.

Machine learning can be divided into two types depending on the method

of handling training data, which is information that we possess in advance to

train a model. They are unsupervised learning, which does not use training

data, and supervised learning, which uses training data. K-means clustering

is the main unsupervised learning method. This sets up k random hypo-

thetical cluster centers and assigns the data to be classified to each of them

appropriately. The hypothetical cluster center and the center of gravity of

the assigned data are determined. The data assignment is modified so that

the distance between the data and the center of gravity is the smallest. By

repeating this process, the data are finally classified into k clusters according
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to the similarity between them. This technique can be applied without using

training data, which makes it effective for predicting events for which it is

difficult to prepare information in advance.

The training data used in supervised learning are the input data for which

the resultant event (output) is known in advance, that is, if the input data

are used, the expected resultant event will occur. In supervised learning, a

model is trained to predict outcome events using pre-labeled training data.

New methods for training models are being studied extensively to achieve

a higher prediction accuracy. The basic representative supervised learning

methods are the k-neighborhood method and support vector machine (SVM).

The k-neighbor method prepares several input data for which the resulting

event (output) is known, and k events are selected from the data that are

close to the new input data (the Euclidean distance in feature space) to be

predicted. The most common events among them are predicted as the out-

put. Although the output of the new input data is not known, this method

allows us to determine the group to which the input data are classified in

the training data. This type of calculation is called classification. SVM is a

calculation method that is mainly used for this classification, where a group

of data with distinct categories (classes) is used as training data, and the

boundaries (lines) are set such that they have the largest margin when they

are divided in the feature space. In other words, a boundary must be de-

termined such that the distance between the boundary plane (line) and the

data elements in each category that is closest to it is the largest. The data

that are closest to these boundaries are called support vectors. According

to the set boundaries, the category to which the data belong is determined.
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The k-neighborhood method, SVM, and neural networks can be used not

only for classification but also for regression analysis using input and output

data of continuous values. One of the methods for calculating classification is

neural network (NN). A NN is a computational architecture with a network

structure that mimics the function of the neurons and synapses that make up

the human brain. It has been widely used in recent years owing to enhance-

ments in the performance of general-purpose computers, lower computation

costs, and the performance of distributed processing machines called GPUs.

NNs can be used for both classification and regression analysis purposes,

both with and without training data, depending on the training method. In

particular, its image classification performance has been greatly improved

compared to conventional algorithms, and it is expected to be used for face

recognition, object detection, character recognition, image classification, and

a wider range of applications in the future. Many of these are commonly

referred to as artificial intelligence (AI) technologies. The NN computational

method is also called deep learning because of the depth of its computational

hierarchy (repetition).

Machine learning and AI technologies are also widely used in LSI man-

ufacturing. Recently, machine learning has been used to classify the wafer

map, which shows the position of a defective chip in LSI tests (logic oper-

ation test and analog value measurement test), and a number of research

results have been reported [49, 50, 51, 52, 53, 54, 55, 56]. It is also be-

ing studied for the purpose of automatically classifying images (optical and

SEM photographs) of defects on LSI chips detected in the inspection process

that is carried out during the manufacturing process [57, 58, 59, 60]. It is
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also realized by using sensor measurements to monitor the state of manu-

facturing equipment and processes to detect abnormalities (fault detection

and correction (FDC)) that have been overlooked by conventional threshold

judgments [61]. The controlled coordination of production planning with AI

is also being investigated [62, 63]. These types of production sites using AI

technology are called“ smart factories”. Machine learning is also used to

identify the optimal conditions for the manufacturing process [64]. A study

reported the optimization of CMP conditions using a technique called re-

inforcement learning, which uses NN [52]. This method has been used for

predicting hotspots in the lithography process where the resolution margin is

low [65]. In addition, methods to generate OPCs and SRAFs to expand the

lithomargin by utilizing NNs called generative adversarial networks (GANs)

are being studied [66, 67]. OPC is the mask pattern deformation based on

optical simulations. These methods are expected to provide a solution to

the problem of forecasting calculations due to the expansion of the level of

integration of LSIs, the increasing complexity of micro-processes applied to

advanced products, and the development of multiple processes. In Chapters

3 and 4 of this thesis, the circuit layout images of LSI using CNNs, which

have been reported to have exhibit a performance in image classification, and

their application to the analysis of defective factors are examined.
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3 CNN-based layout segment classification for

analysis of LSI layout-induced failures

3.1 Introduction

Defective chips, identified in LSI tests by manufacturers or customers,

are used to investigate the cause of failure using PFA to improve production

quality[68, 69]. Process conditions, equipment, materials, and the LSI layout

are the major factors affecting LSI failure (Figure 1). They are closely related

to each other and affect the quality, reliability, and yield of LSI products. For

example, random particles from either equipment[70, 71] or human operation

and the perturbation of process conditions[72, 73] may change the shape or

dimensions of device structures (such as poly-Si gate or metal lines) from

their optimal ranges or specifications, leading to defects.

Figure 1: Major elements in LSI manufacturing related to failures.

The layout of the LSI circuits affects failure. In the lithography process,

hotspots are a systematic failure related to the LSI layout[74, 75]. In the

LSI chips, mechanical stresses induced by the layout can cause defects in Si

substrates[76, 77]. To prevent failures, DFM rules are adopted in the lay-
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out design to consider manufacturability[78, 79]. To estimate the impact of

the LSI layout on failures, optical lithography simulation[80, 81] and stress

simulation[82, 83, 84] have been used; however, these techniques have high

calculation costs and operational difficulties, particularly for processes in

high-end device manufacturing (e.g., multi-patterning). Therefore, simula-

tions are conducted for a local region of an LSI chip layout; however, it is

difficult to determine specific layout segments that may cause failure. Fig-

ure 2(a) shows the layout of the LSI chip used in this study. Using PFA,

some defects were identified in Si substrates under specific standard (STD)

cells with the same layout design at different coordinates in different chips.

Figures2(b) and 2(c) show the diagrams of the layout of the STD cell and a

defect in the Si substrate, respectively. Generally, defects in the Si substrate

are formed by defect seeds that grow because of mechanical stresses[85]. Be-

cause the defects were identified in cells with the same layout, the failures

are attributed to the layout design. The STD cells designed with a layout

identical to that of the defective cells were loaded at over 1,000 locations

in the LSI chip. Although all these STD cells may cause failure, the risk

level is different for each cell in different regions because of differences in the

surrounding layout design. The STD cells in which actual defects exist can

be considered to have been subjected to relatively high mechanical stresses

from the neighboring blocks in the layout. To clarify the reason why the de-

fects were generated in the specific STD cells, it is crucial to distinguish the

difference in the risk of failure for each layout design. Thus, layout analysis

methods for quantifying the impact of a layout on failures are required.

Machine learning (ML), a statistical technique, is extensively used in ap-
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Figure 2: Layouts of an LSI circuit and defects in a Si substrate. (a) LSI chip
layout used in this study. The 30 defects identified by PFA in the logic circuit
area on different chips were all for the same chip layout. All the defects were
in a specific STD cell with the same layout design. (b) Sketch of the layout
of STD cell with defects. (c) Cross-sectional view of a defect in a Si substrate
below STD cell.

plications such as image recognition[86, 87, 88, 89, 90] and manufacturing

process optimization[91, 92]. In the semiconductor sector, various compu-

tational techniques that use Big Data have been developed, which can be

used for smart factories[93, 94, 95], process optimization[96, 97, 98, 99],

testing cost reduction[100, 101, 102, 103], and other applications[104, 105,

106, 107]. Moreover, convolutional neural networks (CNNs) belong to a

supervised learning method in which the models are trained with training

data, which indicate the target values or features to optimize the data for

prediction[108, 109, 110]. CNNs can extract image features without addi-

tional data having to be prepared in advance. They can classify images at a
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reasonable cost and are thus strong candidates for root cause analyses suit-

able for the LSI failures[111, 112]. However, in most cases, information on

failures in the LSI chips is limited; thus, there is a small amount of training

data for a CNN classifier. Furthermore, at the position of each defect de-

tected by PFA, the contribution of a layout segment to failure is different,

which reduces the efficiency of model learning when the layout segments are

used as the training data. In [113, 114, 115, 116, 117], the CNN has been

applied for hotspot detection and excellent classification accuracy has been

reported. Because the hotspot detection requires exact recognition of the

location of the layout patterns, especially pattern edges, the layout images

used in the classification are small and contain a few rectangles. However,

the images used in proposed method are larger, containing more rectangles,

than those used in hotspot detection. I intend to analyze the impact of the

layout in a wide area surrounding the defect position, but large images com-

plicate the classification. To address these challenges, I propose a method

for the LSI layout analysis based on a CNN and evaluate its feasibility. The

chip layout is divided into rectangular segments and the impact of the layout

segments on failures is quantified using the CNN classifier. The final aim of

this study, in general, is to clarify the cause of defects generated in the spe-

cific STD cells and take countermeasures to avoid failures. Specifically, the

target of this study is to properly detect the candidate layouts of unknown

defects, which are classified as false positives using CNN with small training

datasets. However, training the model with small datasets is a constraint

because information of defects is always limited during the early stages of

the PFAs. For the layout analysis, I propose a scheme to distinguish the risk

30



level of each layout segment and determine unsuitable layouts. Using cross-

validation, the capability of the CNN models to classify the layout segments

is confirmed.

The contributions of this study are as follows.

• Framework for the analysis of LSI layouts using a CNN is proposed.,

which classifies the layout segments and quantifies the layout’s impact

on failures.

• Index to quantify the ability of CNN models to classify LSI layout seg-

ments is introduced from the viewpoint of failure analysis. Using this

index, the performance of the models can be quantitatively compared

to optimize the model training method.

The remainder of this chapter is organized as follows. In Section 3.2,

the concept of the CNN model is explained. In Section 3.3, the proposed

scheme for image classification for analyzing the impact of the LSI layouts

on failures is described. In Section 3.4, the experiments and results of the LSI

chip image classification are described, and issues related to layout segment

classification are discussed from the viewpoint of failure analysis. Finally, in

Section 3.5, the conclusion of this work is presented.

3.2 CNN models

Figure 3 shows the conceptual diagram of a CNN model for the classifi-

cation of images of the LSI layout segments. The intensity of each pixel of

the input image {xi} is numerically processed in the convolution (conv) and

pooling layers, which are used for the conversion and compaction of image
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data, respectively. The filters during image processing are slid over the entire

image by a specified number of pixels called a stride. The outputs of image

processing are computed using sum-product arithmetic in each node of the

fully connected (FC) layers.

Figure 3: Conceptual diagram of CNN model for classifying the LSI layout
segments (Conv: convolutional layer; FC: fully connected layer).

Then, the outputs of the layers are passed via a non-linear activation

function in the output layer to produce the model outputs (i.e., the outputs of

the entire network). The outputs y1 and y0 are numerical values that express

the probability of classifying the input images into predefined classes 1 and

0. During the learning process, to obtain high classification accuracy, the

models were trained multiple times with the training dataset. Generally, one

cycle of training the model with the whole training dataset is called an epoch.
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Furthermore, during the learning process, I adjusted the parameters of the

models, filters of conv layers, and weights and biases of the sum-product

arithmetic in the FC layers to minimize the difference between the model

outputs and the target values using backpropagation. Before training, the

parameters were initialized with random values to avoid the poor convergence

of parameters during the training[118, 119]. Therefore, the parameters of

the models were different after each learning process and produced different

outputs, although the models were trained with the same training data. To

observe variation in the model, an evaluation set comprising the learning

process was repeated 100 times in the experiments. In this study, I used

two types of CNN models: models that comprise 3 layers and 15 layers.

Using the 3-layer model, the model ’s capability to classify the LSI layout

segments under various training datasets were evaluated. Then, using the

15-layer model, the classification accuracy was confirmed. Figure 4 shows

the configurations of the models. The 3-layer model comprises a conv layer,

a pooling layer, and two FC layers. In the conv layer, a filter of 3 × 3 pixels

and 32 channels was used with stride 1; in the pooling layer, a max-pooling

of 2 × 2 pixels was also used. The output sizes of FC layers were as follows:

256 nodes for the first layer and 100 nodes for the second layer. For all the

FC layers, sigmoid function was used as the activation function, whereas a

softmax function was used for the output layer. For the 15-layer model, I

used the transfer learning method of the VGG16 model, which is a part of

the Keras library, i.e., the high-level API of TensorFlow[120, 121, 122]. In

the VGG16 model ’s configuration, a 16-layer model trained with an image

dataset was slightly modified. The original top FC layers were replaced using

33



a series of layers that included an FC layer with 256 channels, a dropout layer,

and another FC layer that outputs two classes. The last three conv and two

FC layers were fine-tuned during the learning process.

Figure 4: The 3- and 15-layer CNN models used in the experiments (transfer
learning was applied with the VGG16 model to generate the 15-layer model).

3.3 Proposed scheme

3.3.1 Overview of layout segment classification

Figure 5 shows the proposed scheme for classifying the LSI layout seg-

ments using CNN to analyze the root cause of failures. The image data were

prepared from the layout data (e.g., GDS-II) using a layout viewer. The

training data comprised two types of image data labeled as“ risk segments”
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and“non-risk segments.”The risk segments in the training data are regions

of the layout that include the coordinates of chip defects identified by the

PFA. The non-risk segments in the training data are regions of the layout

without defects. Note that the image data used for the evaluation were pre-

pared from the LSI layout data, and all the data used for the evaluation were

classified into either the“ risk” or“ non-risk” class based on the model

outputs. Finally, I plotted a contour plot of the model outputs to visualize

the layout regions using the outputs of the CNN classification.

LSI chip layout

Generation of PNG images 
via layout viewer

CNN model

Classification 
(Risk or non-risk)

“Learning”
Training data 

Data for evaluation

Failure analyses

Risk segments

Non-risk segments
“Evaluation”

Coordinates of defects

Quantify risk of failure

Hazard map

Analyze root cause of 
failure

x [μm]

y [μm]

px [pixels]

py [pixels]

Figure 5: Proposed scheme of CNN-based layout segment classification for
root cause analyses of LSI failures.
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3.3.2 Input data for classification

To prepare the image data, the images of the LSI layout were cut into

segments in a rectangular grid with a size of x [µm] × y [µm]. The size x

× y should be determined based on the geometries in the LSI design. The

images were quantized into a pixel block size of px × py [pixels] before the

learning and evaluation of the models. Then, all the image data were used

for the evaluation. For model training, the images of the logic circuit without

defects were used as non-risk segments. In my experiments, the logic circuit

of an LSI chip in another design was used. Moreover, the images with a size

of x × y centered on the defect coordinates were separately cut and included

in the training data as risk segments. Therefore, the image data used for the

evaluation were not the same as those used for model training. The design

layers used to generate the layout images should be selected by considering

the relationship between the layouts and failures. In this study, the active

area (AA), gate (Gate), and second metal (M2) layers were used to make

datasets of images because the failures considered in this study were those

in the Si substrates.

3.3.3 Learning process (model training)

The training dataset that I used to train the CNN models comprised im-

ages of risk segments and non-risk segments. The risk and non-risk segments

were selected from the segments that included defect coordinates and those

that excluded defect coordinates, respectively. The ratio of the numbers of

risk to non-risk segments was ∼1:2 (Figure 6). To increase the number of
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training images, images in the training dataset were modified using data

augmentation techniques such as image flipping and magnification. Since in-

formation on defects is limited in the early stage of failure analyses and the

number of images in the training dataset is small, overfitting in the model

training must be considered. In my experiments, the training with an ap-

propriate number of epochs showed acceptable classification ability of the

15-layer model (Figs. 10 and 11).

Figure 6: Training dataset preparation in the learning process of the CNN
models. The ratio of risk to non-risk segments was 1:2 approx. All the
segments in the dataset were processed with data augmentation to increase
the size of datasets before the model training.

3.3.4 Outputs of CNN models

Generally, the outputs of CNN models range from 0 to 1, indicating the

probability of each input image being classified as either“ risk”or“ non-

risk.”In this study, the outputs for the class of risk segments yRisk are defined

as the model outputs. When yRisk is ≥0.5 (<0.5), the input segments are

determined to be risk (non-risk) segments. For analyzing the impact of a
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layout on failures, I examined images classified as risk segments by the CNN

models.

3.4 Experiments and results

3.4.1 Datasets for model training

Table 1 shows the datasets used for the CNN model training. I used the

layouts of the LSI chips based on a 130-nm design node. To prepare RGB

images for the input, the chip layout was divided into segments with sizes of x

= 50 µm and y = 50 µm. To prepare the datasets for the model training, the

images of risk segments were arbitrarily selected from the 30 images centered

on defects as identified by the PFA. The images of non-risk segments were

then selected from the images without defects, and the ratio of the numbers

of risk to non-risk segment images was ∼1:2. The datasets G100-#, which

are sets of the images of Gate layer (px = 100, py = 100), comprise # = 3,

10, and 30 images of risk segments and 7, 20, and 60 non-risk segments. The

datasets ##224-30 with ## = M, A, and G contain the images of M2, AA,

and Gate layers (px = 224, py = 224).

3.4.2 Definition to judge“Risk” in defect positions

To review confusion matrices, I defined a rule for judging“ Risk” in

defect positions. As shown in Figure 7, the defect positions were determined

as“ Risk”when at least one segment among the segments attached to a

segment’s corner nearest the defect coordinates (UL, UR, LL, and LR) was

determined as a risk segment by the CNN models. The number of the defect
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Table 1: Datasets used for CNN Model Training

positions determined as“ risk”was set in the row“Defect Position = Yes”
and the column“CNN judgment = Risk”in the matrices. The total of the

row“Defect Position = Yes”was 30, which is the number of defects detected

by the PFA. Then, 1312 segments in the row“Defect Position = No,”which

excludes the four segments (UL, UR, LL, and LR) neighboring each defect

position, were classified into risk and non-risk classes in the“CNN judgment”
columns. The concept of the risk judgment of defect positions is discussed

in Section 3.4.5.

Figure 7: Layout segments UR to LR attached to a segment corner nearest
the defect position (the defect position is defined to have been detected when
at least one among these four segments is classified as a risk segment).
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3.4.3 Comparison of 3- and 15-layer CNN classification

First, I used a CNN model with a simple three-layer configuration to

investigate the influence of the number of images in the training datasets.

The model was trained for 100 epochs in a learning process with the images of

the Gate layer (px = 100, py = 100). I then developed an evaluation set that

comprised the learning and evaluation of the CNN model 100 times. Figure

8(a) shows the confusion matrices of the 3-layer model classifications. The

columns“CNN judgment = Risk”show the numbers of images and defect

positions that the models judged as risk. Each segment was judged as a risk

when the segment was classified as a risk >50 times in every 100 evaluation

trials (threshold of risk judgment = 50%). The 3-layer model trained with

a dataset of 10 segments, for 3 risk and 7 non-risk segments (G100-3), did

not show enough ability to classify layout segments. The models trained

with datasets of G100-10/30 (10 risk and 20 non-risk segments / 30 risk and

60 non-risk segments) determined more segments as “risk.” As mentioned in

Section 3.3.3, the images in the training datasets were augmented to increase

the dataset volume for model training. Moreover, I applied a 15-layer model

(a deeper and more practical neural network) for the image classification.

The model was trained for 20 epochs with the same datasets used for the 3-

layer model. The threshold of risk judgment was adjusted to 95% to compare

the classification capability in a similar condition of a true positive detection.

As shown by the confusion matrix for the 15-layer model in Figure 8(b), the

model trained with 3 risk and 7 non-risk segments (G100-3) could not identify

risk segments at all. However, when the model was trained with datasets
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G100-10/30, the model showed better classification capability (i.e., less false

positives) compared to the 3-layer model. The 15-layer model trained with a

dataset of 30 risk and 60 non-risk segments (G100-30) demonstrated the best

classification capability. The standard metrics of classification indicates that

the accuracy was 92% ((1203 + 28)/(1312 + 30) = 0.92), the false positive

rate (FPR) was 8% (109/(1203 + 109) = 0.08), and the false negative rate

was 7% (2/(2 + 28) = 0.07).

Figure 8: Confusion matrices of (a) 3- and (b) 15-layer models trained with
datasets of the Gate-layer images in 100 pixels (G100-3/10/30). The 3-
and 15-layer models were trained for 100 and 20 epochs, respectively, in
a classification trial, which was repeated 100 times. The thresholds of the
CNN judgment were set to 50% for the 3-layer model and 95% for the 15-layer
model (test samples were finally judged as“Risk”when they were classified
as risk segments more than 50 times or 95 times in 100 trials.) “ Defect
position = Yes” is a class including four segments nearest each defect ’s
coordinates and“ No” is a class of segments excluding those.

Figures 9(a) and 9(b) show the locations of the images classified as risk

segments by the 3- and 15-layer CNN models using the same training dataset

in the LSI chip layout. Many images classified by the 3-layer model as risk

segments are located far from the logic circuit area where STD cells that
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Figure 9: Locations of layout segments in LSI chip classified as risk segments
by the (a) 3- and (b) 15-layer CNN models trained with the　G100-30　
dataset.

may cause failures to exist. However, the images classified by the 15-layer

model as the risk segments are concentrated in the logic circuit area. Fig-

ures 10 and 11 show the histograms and confusion matrices of the results

of classifications using the 15-layer model trained with various numbers of

training epochs, respectively. The model was trained with 30 risk and 60

non-risk datasets of M2 layer segments. When the model was trained for

20 epochs (Figure 10(a)), most segments were judged as non-risk (i.e., the

segments were classified as risk for <50 times in 100 trials). The segments of

defect positions concentrated around the 50-times risk classification. They

are the segments with the highest model outputs among the four segments

around the defect coordinates. Then, when the model was trained for 100

and 200 epochs, more images were classified as risk segments with true pos-

itive rates (TPRs) of 83% (25/30 = 0.83) and 100% (30/30 = 1) and FPRs

of 9.6% (126/(1186 + 126) = 0.096) and 9.5% (125/(1187 + 125) = 0.095),

respectively. These results show that the 15-layer model trained for 100 and
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200 epochs can be used to classify the layout segments. However, as shown

in the histogram of the model trained for 200 epochs (Figure 10(c)), some

segments were concentrated at 100 on the x-axis, which suggests weak over-

fitting. Thus, I utilized the 15-layer model trained for 100 epochs to confirm

the model ’s performance using cross-validation.

Figure 10: Histograms of the layout segment classification by the 15-layer
model trained with training dataset M244-30 for (a) 20, (b) 100, and (c) 200
epochs. Top charts show whole data and bottom charts show enlarged views.

3.4.4 Cross-validation of 15-layer CNN classification

For image classification, cross-validation, a method generally used to eval-

uate the CNNmodel[123, 124] are applied and the performance of the 15-layer

model is validated. From the dataset of M224-30 which comprises segments

(px = 224, py = 224) of the M2 layer, 5 risk segments were randomly removed
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Figure 11: Confusion matrices of the 15-layer model trained with training
dataset M244-30 for (a) 20, (b) 100, and (c) 200 epochs.

to prepare training datasets. Thus, the modified dataset consists of 25 risk

and 60 non-risk segments. After the model was trained with each training

dataset for 100 epochs, 30 defect positions and 1312 segment images without

defect positions were classified, and the trial was conducted 300 times. Figure

12 shows the full prediction confusion matrix for the 300 trials. Among the

30 defect positions, 28 defects were determined as risk. The average TPR for

the 300 trials was 93%. Furthermore, 101 segments without defect positions

were determined as risk segments (FPR = 7.7%). In this work, false positives

were not a problem; rather, they are the target that I hope to find. Because,

unknown defects might exist in the area other than the area of defects which

had been detected in PFA.

Table 2 summarizes the probabilities of judging defect positions by the

CNN model trained with datasets that excluded each defect position. The
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Table 2: Summary of Cross-validation of Layout Segment Classification us-
ing the 15-layer CNN model. aProbability of the risk classification of layout
images in upper-right (UR), upper-left (UL), lower-left (LL), and lower-right
(LR) regions around defect coordinates. The cells are shaded in green ac-
cording to the probability. bR indicates that the defect position was judged
by the CNN models as“Risk.”cNumber of evaluation sets, where the models
were trained with datasets that excluded images with defects in each row.
dProbability of judging the input images as risk segments in all the 30 defect
positions.
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Figure 12: Confusion matrix of the 15-layer model trained with the M244-
30 dataset for 100 epochs using cross-validation. The threshold of the risk
judgment is 50% (test samples were judged as risk when they were classified
as risk segments in more than 150 times in 300 evaluation trials).

UR to LR are the segments around the corners of segments closest to the

defect coordinates (Figure 7). The“ R” in the column“ Risk Judgment”
shows that the layout at the defect position was determined as a risk segment,

where at least one of the four images around the defect position was classified

as a risk segment. The positions of 25 defects (83% of the 30 defect positions)

were classified as risk segments by the model when trained with datasets

excluding each defect position. This result indicates that the 15-layer model

can predict risk segments with a TPR of >80%. Figure 13 shows locations

of the top 100 images determined as risk segments in the cross-validation

using the 15-layer CNN model and indicated by small squares. Most squares

are in the logic circuit area, and the actual defect positions are indicated by

small dots. The positions of most squares determined to be a risk are close

to the actual defect positions, depicting that the CNN model did not directly

recognize the positions of defects; rather, it selected the neighboring sites of

defects.
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Figure 13: Locations of top 100 layout segments judged as risk segments in
the LSI chip (small squares).

3.4.5 Visualization of impact on failures in the LSI layout

E. Visualization of impact on failures in the LSI layout I visualized the

regional layout ’s impact on failures as a contour plot (hazard map) of the

model outputs across the LSI chip. Because all the layout segments were

classified by the model trained with layout segments that included defect

positions, the contour plot indicates the regions of the layout with a risk

of failure. the contour lines were determined from the slopes between the

model outputs of the neighboring image segments. In Figure 14, the defect

positions identified by the PFA are indicated by the flags in the contour plot.

Most flags are between the peaks and valleys of the contours (i.e., not on

the peaks where the risk is locally higher). This trend is consistent with the

results in the previous sections, where most images classified by the CNN

model as risk segments were neighboring to the defect positions.

Next, from the viewpoint of failure analysis, I present the results of the

layout segment classification in this section and introduce an index for quan-
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Figure 14: Contour plots of the 15-layer CNN model outputs in part of the
LSI chip. The output of each segment was calculated from the average of
the cross- validation results. A warmer color indicates higher output (i.e.,
higher risk of failure). Flags indicate coordinates of defects found by physical
failure analysis.

tifying the classification capabilities of the CNN model. For the layout images

used as training data labeled as risk segments, the defects are centered in

the images, as shown in Figure 15(a). The images used for evaluation were

cut in a rectangular grid without considering defect positions; therefore, the

positions of defects where the failure occurred are not always in the center of

the images. Instead, as shown in Figure 15(b), the defects are located close

to the edges of the images. When a part of the layout image with a feature

related to failure was far away from a defect, the region with these features

might not exist in the images that include the defects; rather, it might exist

in neighboring images. Therefore, most of the images that included defects

48



were determined as non-risk layouts by the 15-layer CNN model.

Figure 15: Examples of the layout segments used in the CNN classification
and a criterion to judge the extraction of defect positions. (a) A layout
segment centered in a defect position for the dataset used in model training.
(b) A layout segment cut in a rectangular grid used for the dataset in model
evaluation. (c) The layout segments for evaluation and a criterion for judging
the extraction of defect position (dotted square). Four grayed segments, of
which the centers are included in the dotted square of a criterion, from the
center to bottom-right are the candidates to be judged as risk segments.

A general target of classification is a high TPR and a low FPR; however,

in this work, the target of the FPR is not zero because the risk of defect

generation is observed in the segments labeled as“ Defect Position = No.”
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To analyze defect candidates, the segments classified as risk segments with

higher model outputs should be prioritized. Furthermore, the impact of the

layouts on defect generation is related to the distance from the source of

the defect generation. Considering these elements, I define a metric that

focuses on segments with high model outputs and combines the distance

between defect coordinates and layout segments to monitor the classification

performances. Thus, to quantify the ability of the model to extract images

of risk segments, I define the limited hit rate Ra(D) as follows:

Ra(D) =
na(D)

N
, (2)

where a is an arbitrary number used to limit the high-ranked images se-

quentially sorted by the outputs of the CNN model; na(D) is the number of

defects extracted from the limited number (=a) of high-ranked layout im-

ages classified as risk segments by the CNN model within distance D from

the defect coordinates; and N is the number of all images that include de-

fect positions used for the model training. If a square of size 2D × 2D, in

which a defect is located at the center, includes at least one of the centers

of risk segments which was extracted by CNN, then I say that the defect

is successfully detected (Figure 15(c)). Figure 16 shows the limited hit rate

R50(D) for the top 50 risk segments determined by the CNN model using the

layout images of M2, Gate, and AA layers. The limited hit rate increases

with increasing distance D, and the trials with the model trained with the

layout images of the M2 layer showed the highest capability for extracting

risk segments among trials with the model trained with the three design lay-
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ers at the specified distances. At distance D = 80 µm, the limited hit rate,

which depends on the conditions of model training, was 0.9 when the model

was trained with the M2 layer. Furthermore, the limited hit rate is used to

compare model capability and optimize the learning conditions for extracting

risk segments in the layouts.

Figure 16: Limited hit rates of top 50 layout segments extracted by the 15-
layer CNN model in cross-validation using images of three design layers (M2,
Gate, and AA).

3.5 Conclusions

In this study, to determine the impact of a regional layout design on

failure, I proposed a scheme for LSI layout segment classification based on

CNNs. From the experimental results, the size of the training data influenced

the classification performance. A 15-layer model with transfer learning using
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90 images (i.e., 30 risk and 60 non-risk images) for 100 and 200 epochs showed

the capability of classifying layout images that included real failures. The risk

of failure was visualized in a hazard map based on the outputs of the CNN

model. Thus, using limited hit rates, the conditions of model training can

be compared and optimized. In the next chapter, based on the results of the

present investigation, the layout features extracted by the CNN model are

explored to clarify the root causes of failures using advanced neural network

techniques[125, 126].
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4 Layout feature extraction using CNN clas-

sification in root cause analysis of LSI de-

fects

4.1 Introduction

ML and AI techniques are widely applied to various fields in semicon-

ductor manufacturing. In particular, ML has been adopted to analyze wafer

maps and root causes corresponding to LSI failures in the processes or tools

[127, 128, 129]. Wafer maps indicate the positions of particles or defects in

silicon wafers generated during production or the positions of failure chips in

wafers, detected by LSI tests. Image classification techniques are used to an-

alyze defect images captured during wafer inspection. Implementation of the

automatic classification of defect images increases the operational efficiency.

Moreover, providing high accuracy of defect identification can facilitate the

solving of problems in the early production and save costs associated with

losses in process optimization [104, 130]. In addition to the field of semi-

conductor manufacturing, ML has been applied to the field of DFM. LSI

circuits are analyzed in DFM by conducting simulations aiming to reveal

the weaknesses in layout designs that affect the quality of manufacturing

[131, 132, 78].“ Hotspots,”which are defined as the layouts with a risk to

induce defects during the lithography process, can be detected by lithogra-

phy simulation using circuit layouts. However, conducting such simulations

is time-consuming, and the cost of analyzing an entire LSI chip is unfeasible.

Thus, ML has been applied to predict hotspots as a method substituting
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simulations [111, 110, 133, 134]. As hotspots may be generated due to prox-

imity effects, the positions and/or shapes of layout patterns, such as gates or

metal-lines, need to be accurately recognized during image processing to per-

form defect prediction. Therefore, as model inputs, layout images used in ML

must be split into small layout images (segments) including few geometries.

In this chapter, I investigate the applicability of an ML scheme to analyze

the layouts of LSI circuits to conduct the root cause analysis (RCA) of LSI

failures. This study aims to search defects that may be generated in silicon

substrates due to the stress of layout patterns in the isolation layer [85, 135].

I use the layout segments including relatively large areas that impact the de-

fect generation instead of employing small segments, as suggested in hotspot

detection. Utilizing a convolutional neural network (CNN), a deep learning

algorithm that is commonly used in image analysis [136, 137, 138], ILayout

segments are classified according to the prediction of the risk of defect gen-

eration and the defective layouts causing failures are specified. In general,

ML-based methods require a large amount of data to train models. However,

in my previous study [139], I demonstrated that a transfer-learning-based

CNN model pretrained on large image datasets achieves acceptable classifi-

cation performance concerning LSI layout images even though the training

datasets included only 90 images. However, due to the low resolution of the

input images including the large areas, I could not accurately predict the po-

sitions of defects using the classification results. I concluded that changing

the size or resolution of image segments was one of the key elements affect-

ing the performance of feature extraction in CNN models [140]. The partial

layouts extracted using the models as the features of defective layouts could
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provide valuable information for understanding the reasons underlying the

occurrence of failures. In this chapter, I propose a scheme of image classifica-

tion in LSI layouts using CNN models to analyze the root causes of failures.

Moreover, the visualization of the layout features extracted by the models is

realized. Then, layout images of different resolution are utilized to train the

CNN models as well as to visualize the features extracted from the layout

images.

The main contributions of this study can be summarized as follows.

• The impact of the resolution of image segments used to train CNN

models on the resulting layout features outputted by these models is

analyzed.

• A partial area within a layout segment can be accurately extracted as

a common feature in the layout with the risk of defects using of small

image segments of high resolution. Then, the extracted layout features

can be used as references to infer the root causes of failures.

• It is proved that increasing the number of layout images in training

datasets improves the classification performance of models even if image

segments are small. The outputs of reliable models can be used to

generate hazard maps with the purpose of supporting the search of

unknown defects in physical failure analysis (PFA).

The remainder of this chapter is organized as follows. In Section 4.2, a

scheme of image classification including the feature extraction step is pro-

posed and the experimental conditions are outlined. In Section 4.3, the
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results of feature extraction are presented and the effect of image resolution

is discussed. In Section 4.4, the results of classifying defective layout images

are demonstrated and the hazard maps derived based on the model outputs

are discussed. Finally, I summarize this chapter in Section 4.5.

4.2 Overview of experiments

4.2.1 Proposed scheme of the layout analysis based on CNN clas-

sification

A flowchart of the proposed scheme is presented in Figure 17. Using CNN

image classification, I extract the features of defective layouts to conduct

RCA and to specify the locations with a risk of defects in an LSI chip to

search unknown defects. The images of chip layouts (for example, GDS-

II) are cut using a layout viewer into square grids to afford layout image

segments (PNG files). Using the layouts of multiple LSIs having different

designs is possible. The positions of particular defects that occur in LSIs

corresponding to silicon wafers can be identified through PFA. The segments

including defect positions and those excluding defect positions are denoted

as“ risk images”and“non-risk images,”respectively. Defect positions are

defined as the coordinates of the defects detected in LSI chips by OBIRCH

[68, 69]. The datasets including the risk and non-risk image segments are

used to train CNN models. Other segments denoted as“ images for tests”
in Figure 17 are classified using CNN models into two classes: risk images

and non-risk images. The features of risk images are visualized in the form

of saliency maps using GradCAM++, a computational technique used to
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explain the outcomes of model classification. Saliency maps are utilized to

analyze the layouts of root causes of defects. The outputs of CNN models are

real numbers from 0 to 1 representing the probability to classify test images

for each target class. When the output is close to 1, the corresponding test

image is similar to the images of a particular class, such as risk images. The

contours of model outputs, referred to as hazard maps, are then utilized in

PFA to identify the positions of unknown defects causing failures.

Figure 17: Proposed scheme of CNN classification for failure analysis.

In previous studies, I applied VGG16 transfer learning to develop a CNN

model, which demonstrated excellent image classification capability [121,
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122]. The top layers of the model were customized for fine-tuning using

the specified“ flat” layer to flatten multi-dimensional data. The top layer

was customed into the sequence of dense layer composed of 256 nodes with

a rectified linear unit (ReLu) [141] as the activation function, 50% dropout

layer and dense layer of two nodes with softmax function. The parameters,

weights, and biases of these layers were optimized by conducting additional

trainings. To visualize the features extracted by CNN models, I applied

GradCAM++ [142, 143]. This technique affords a saliency map that is a

heat map of Lcij, denoting the importance of each spatial location (i, j)

for a particular class c. The model outputs for class c, Yc, is calculated us-

ing a linear combination of k-th feature maps Ak corresponding to the last

convolutional layer and weights for class c wk
c as follows:

Y c =
∑
k

wc
k

∑
i

∑
j

Ak
ij. (3)

Class-specific saliency map Lcij is calculated as follows:

Lc
ij =

∑
k

wc
kA

k
ij, (4)

where weights wck are calculated as

wc
k =

∑
i

∑
j

αkc
ij · relu( ∂Y

c

∂Ak
ij

). (5)

Here, αkc
ij denotes the coefficients introduced to level off the importance of

each spatial location in all k-th feature maps in the last convolutional layer.

Finally, Lc
ij expresses the visual explanation of the class prediction of CNN
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models. Saliency maps indicate the locations of the features with high Lc
ij in

an image, which highly impacts the results of image classification, concerning

its correspondence to particular class (risk or non-risk images). When CNN

models are trained on the layout images of defects, the map indicates the

common features of the layouts exhibiting the risk of defects.

4.2.2 Experimental conditions

The layouts of an active area (AA) layer in a 130 nm design LSI prod-

uct were used as the input images. The results of LSI tests before shipping

detected leakage failures in several chips in a wafer, and PFA identified the

defects in the silicon substrate in different locations within several chips.

Most of the identified defects were detected within an identical STD cell,

while the locations of cells differed from each other; thus, they were consid-

ered as layout-induced defects. The datasets used in the experiments are

listed in Table 3. Dataset A was used to compare the performance of models

with different image sizes. The subset of Dataset A used to train the mod-

els (the training set) comprises 30 risk images and 60 non-risk images. The

CNN models trained on different datasets were named as A50, A30, and A20,

based on the size of image segments: 50, 30, and 20 µm, respectively. In this

study,“ the image of s µm”denotes the image segment with the width and

the height of s [µm]. The risk images in Dataset A were clipped centering at

each position of the 30 defects, which were identified by PFA. Dataset B was

used for the evaluation of the CNN models trained on the images of 20 µm.

I compared the performance estimates of the models denoted as B60B600

based on the number of risk images used in training. The risk images in
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Dataset B were clipped at random locations and included defect positions to

increase the size of datasets.

Table 3: Numbers of layout images used in the training and testing datasets
for CNN models.

To avoid overfitting in CNN model training, the training datasets were

extended by applying data augmentation procedures, such as horizontal and

vertical flipping and magnifications. In the previous study [139], the mod-

els were not overfitted in this experimental condition based on the training

curves and the histograms of the model outputs. Therefore, in all the exper-

iments on each training dataset, the models were trained in 100 epochs same

as the previous study.
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4.3 Feature extraction using high-resolution images

4.3.1 Visualization of the circuit layout features extracted by the

CNN models

I visualized the results of image classification outputted by the CNN mod-

els using GradCAM++. In Figure 18, the saliency maps of the two models,

A50 and A20, are compared. Figure 18(a) represents a layout segment used

to generate saliency maps. Within this segment, a position of a defect identi-

fied by PFA is located at the center (marked by x). The width and height of

the segment are 50 µm, and the square in the middle of the segment indicates

the boundary of the image of 20 µm. Figures 18(b) and 18(c) represent the

saliency maps corresponding to the image segments of 50 µm and 20 µm,

respectively. In these maps, the locations marked in yellow or orange (red)

are the features explaining the prediction of the outcomes of risk image’s

classification, by which model outputs are strongly affected. On the con-

trary, dark blue (purple) area the impacts are relatively small. And sky-blue

area is in the middle. Figure 18(b) illustrates that the features extracted

by the model A50 are mainly located at the low pattern-density area of the

image. The area in which several relatively large patterns are condensed is

also highlighted. On the contrary, as shown in Figure 18(c), the feature of

the layout is extracted by the model A20 at the center of the image in which

an actual defect has been identified. These results indicated that the features

in the layout images varied from the area of pattern density (macro) to the

individual objects (micro) depending on the size of input images. Therefore,

according to the aim of this study, selecting appropriate image sizes is cru-
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cial. To accurately capture the features of layouts with a risk of defects, the

images of 20 µm were deemed preferable in this study.

Figure 18: Layout segment and the saliency maps of the CNN models trained
on the layout images of different size. (a) Input image segment centered on
a defect position; (b), (c) The saliency maps of the images of 50 µm and 20
µm, respectively. In these maps, the locations marked in yellow or orange
(red) are the features explaining the prediction of the outcomes of risk image
classification. The CNN models trained on the images of 20 µm extracted
the features in the center of the input images, which was close to the position
at which a defect was detected by PFA.

Figure 19 represents the saliency map corresponding to an image of 20

µm. By carefully analyzing the area of the feature extracted near the center

of this image, I noted that specific circuit patterns (polygons) were located

at the feature location. These patterns (L- and T-shape, as marked in the

figure) were common in most saliency maps obtained from the image seg-

ments including defect positions. I considered that the area including these

patterns in the layout was related to failures. The size of the datasets used
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in model training also impacted the results of image features extraction. The

CNN models B600 and B150 trained on Dataset B, comprising 600 and 150

risk images, respectively, were applied to obtain saliency maps. The image

features observed in these maps were investigated using three input images

(#1-#3) centered on the defect positions (Figure 20). The defect positions

at the center of images were almost completely extracted by each model.

As shown in Figure 20(b), the sky-blue areas were widely spread in the seg-

ments. However, the sky-blue areas represented in Figure 20a are small.

In addition, the location of the feature in segment #1 in Figure 20(b) was

slightly shifted from the center of the segment. However, the features in all

three segments represented in Figure 20(a) were constantly centered in the

segments. These results indicate that with an increase in the number of risk

images in the datasets, the image features were more accurately extracted,

and the positions of defects were precisely captured.

4.3.2 Extracting layout features using a virtual layout image

I attempted to investigate the details of feature extraction in a layout

segment. As mentioned in the previous section, the areas including the L- and

T-shape patterns were extracted as the common feature of the layouts with

a risk of failures. The various areas including such patterns in a risk image

segment were cut and pasted together to generate a virtual layout segment, as

shown in Figure 21(a). The L- and T- patterns cut with small surroundings

were placed at the positions of red rectangles in an empty segment. Relatively

large areas including both patterns and their surroundings were cut and

placed in the positions of blue dot rectangles in the same segment. The
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Figure 19: Saliency map obtained based on the input of a layout image of 20
µm.

spaces between the blue and red rectangles in the segment were filled with

small-cut portions of dummy patterns. A saliency map was generated using

the CNN model A20 (Figure 21(b)). The map demonstrated that the model

accurately recognized the area in which the L- and T-shape patterns were

close to each other in the image (the red dotted ovals). On the contrary, the

intensities of the heat map were weak (marked in blue in the map) in the

areas in which the L- and T- patterns solely existed and the areas in which

the patterns did not exist. These results indicate that the CNN models

recognized the feature in the layout images not according to a single pattern

but based on a group of multiple patterns including their surroundings.

64



Figure 20: Saliency maps of the CNN models trained on 20 µm images. The
CNN models of (a) B600 and (b) B150, which were trained on Dataset B,
comprising 600 and 150 risk images, respectively, were utilized. The image
segments that centered the defect positions were used to generate saliency
maps. The location of the feature in segment #1 in (b) was slightly shifted
from the center of the image.

4.3.3 Effect of image resolution on the results of feature extraction

As mentioned above, the CNN models trained on the 50 µm images clas-

sified according to the density of layout patterns, and not on the patterns

themselves, when the layout of the AA layer in the 130 nm design was used.

In turn, the models trained on the 20 µm images were capable of recognizing

particular patterns (polygons). I considered that this variation in the results

of feature recognition occurred due to the improvement of the resolution of
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Figure 21: Visualization of the layout feature extracted by the CNN model
in a virtual layout: (a) a virtual layout in which partial layouts of various
sizes around the patterns extracted by a CNN model were assembled; (b) a
saliency map derived from the input image (a).

layout patterns by more than approximately 10 pixels in both x and y di-

rections. For comparison with the pixel sizes of the images, the dimensions

of the L- and T-shape patterns and relatively large spaces between layout

patterns (Figure 22), recognized by the CNN models as the features in the

image segments, are listed in Table 4. Layout patterns corresponding to the

shapes similar to the L- and T-shape patterns also existed in the non-risk

images in the training datasets. However, those patterns were recognized as

a common feature of the risk images, as they were distinguished by recogniz-

ing the differences in layout configurations including their surroundings. As

the resolution of layout images increased, the results of image classification

would be close to those of pattern matching, recognizing smaller patterns

in images and extracting patterns of the same target shapes. However, the

CNN models captured the features of the images and estimated the similarity
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using not only particular patterns but also the groups of patterns in wider

areas. This indicates that the use of CNN classification made it possible to

distinguish the layouts with higher risk of defects and clarify the root causes

of unknown defects.

Figure 22: Dimensions of layout patterns of (a) L- and T- shape, and (b)
spaces in the layout of STD cells.

4.4 Classification of layout images

4.4.1 Performance of CNN models in classifying layout images

The image segments for testing were cut into square grids from the entire

logic circuit area in an LSI chip. Four segments that were the nearest to

each position of all 30 defects were denoted as defect-neighboring segments

and were used to evaluate the correctness of the detection of the defect po-

sitions through CNN classification. All other image segments, except defect-

neighboring ones, were named test segments and were classified by CNN

models. The test segments were classified into two categories: risk images
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Table 4: Pixel sizes and pattern dimensions. (a) Sizes of pixels in the images
of three sizes: 50, 30, and 20 µm; (b) approximate dimensions of the patterns
extracted as features by the CNN models and the corresponding numbers of
pixels.

that have higher probability to generate defects and non-risk images exhibit-

ing less probability of defects according to the CNN model outputs. The

performance estimates of the models A50, A30, and A20 trained on Dataset

A, comprising images of 50, 30, and 20 µm, respectively, are summarized

in Table 5. I plotted the following indicators, the detection rate of defect

positions (DTR), and the risk-image classification rate (RCR) in Figure 23.

The number of test segments used to evaluate each model is listed in Table

3. DTR and RCR are defined as follows:

DTR =
Numberofdefectpositionswhicharejudgedasbeingdetected

Numberofalldefectpositions
,
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and

RCR =
Numberoftestsegmentsclassifiedasriskimages

Numberofalltestsegments
.

The image segments used in mode testing were cut from an LSI chip layout

without considering the defect positions; thus, most of the defect positions

were not located in the center of the segments but were close to the edge of the

segments. When the layout features extracted by the CNN models were far

from the defect positions, the features could be located not in the segments

including the defect position but in those next to such segments. I formulated

a rule to judge the detection of defect positions in each classification as

follows.

Rule to judge the detection of defect positions A defect position was

judged as detected when at least one of the defect-neighboring segments (the

four nearest image segments with respect to the defect position) was classified

as risk images.

Table 5: Results of judging the defect position detection and test-segment
classifications using the CNN models (a) A50, (b) A30, and (c) A20 trained
on the layout images of different sizes.
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Figure 23: Classification performance of the CNN models: (a) A50, (B) A30,
and (c) A20 trained on the layout images of different sizes. The CNN models
A50, A30, and A20 were evaluated using the images of 50, 30, and 20 µm, re-
spectively. The rule of defect position detection was applied. Defect positions
were judged as detected when at least one of the defect-neighboring segments
(the four nearest image segments with respect to the defect position) were
classified as risk images.

DTR drastically declined when the image size was decreased. The model

A50 trained on the images of 50 µm classified test segments with the DTR

of 0.87. The indicator decreased to 0.33 and 0.27 when using the models

A30 and A20 trained on the images of 30 and 20 µm, respectively. RCR also

decreased when the A30 and A20 models were used. To recognize the features

of LSI layouts with a risk of failures, the models trained on the 20 µm images

were deemed preferable, as mentioned in the previous section. However,

searching for the defects in silicon was difficult using the classification results
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of the model A20 due to the low DTR. Then, I attempted to improve the

classification performance of the CNN models trained on the images of 20

µm by increasing the size of training datasets.

4.4.2 Improvement of model classification results by increasing

the size of training datasets

In the previous section, using a dataset of smaller image sizes resulted

in decreasing DTR. When the image size was decreased, the number of

layout patterns in an image decreased as well, implying that the volume

of information from the images was reduced. In addition, smaller volume

of datasets might not provide sufficient information to train the models.

Therefore, I increased the size of the risk image datasets used for training by

cutting the layout images in any location including defect positions, and not

by cutting the images limitedly centering the defect positions. A maximum

of 600 images (20 images for each of 30 defect positions) was generated to

use as the training dataset. The impact of the dataset volume on the results

of classification was investigated using Dataset B comprising the images of

20 µm (Table 6, Figure 24).

As shown in Table 6, the model (a) B600 trained on 600 risk images

classified all 30 test segments including defect positions as risk images (DTR

= 100%). However, the number of all images classified as risk images (similar

to false positives) were equal to 673, and therefore, model performance was

inadequate in terms of searching defects in silicon. Then, the model was

trained on Dataset B with (b) 300, (c) 150, (d) 100, and (e) 60 risk images.

Using the model (c), DTR was still 90%, and the number of test-segments
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Table 6: Results of analyzing defect positions’ detection and test segment
classification using the CNN models: (a) B600(e) B60 trained on the layout
images of 20 µm using the datasets of different volumes.

classified as risk images decreased to 223 (RCR ≒ 10%). When the risk

images in the datasets were decreased to 100 and below, DTR declined below

80% (model (d) B100 and (e) B60). Based on these results, the training

dataset including 150 risk images was considered as preferable to obtain high

DTR and low RCR.

4.4.3 Hazard maps of defect generation

All outputs of the models corresponding to the test segments were as-

signed the coordinates of the center of the segments within the LSI chip

layout. Contour lines were determined based on the slope between the out-

puts of the neighboring segments. I referred to these contour lines as hazard

maps. As the model outputs for the class of risk images expressed the simi-

larities to the risk images in the training datasets, these plots were equivalent
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Figure 24: Classification of the CNN models (a) B600 to (e) B60 trained on
different datasets of 20 µm images; the plots of RCR and DTR of the models
trained on different training datasets. The special rule to judge on detecting
defect positions was applied.

to the hazard maps representing the risk of defect generation. The hazard

maps converted from the outputs of the CNN models A50, A30, and A20 were

compared. The area of logic circuits in the LSI chip was drawn out as a map,

as represented in Figure 25. The positions corresponding to higher risk of

failures were highlighted in the map. As mentioned in Section 4.4.1, when the

size of images in the dataset was reduced, DTR and RCR declined, meaning

that the number of segments classified as risk images decreased. This result

could be seen in the obtained hazard maps as well. Model A20 (Figure 25(a))

had the lower high-risk areas than model A50 (Figure 25(c)). The positions

of the high-risk areas differed from each other in these maps. However, some

parts of these areas were constant in all three models (dotted rectangles).
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These areas, which were commonly highlighted in multiple maps, became

the candidates to search unknown defects in silicon. Low high-risk areas are

preferred in hazard mapsso that the positions of those areas could be utilized

to search defects in silicon using PFA in conjunction with other information,

such as the paths of critical nets determined by failure analysis [144].

Figure 25: Contour plots of the outputs of models (a) A20, (b) A30 and (c)
A50 which were trained on Dataset A of different image sizes.

Figure 26 represents the hazard maps obtained based on the outputs of

the models B100 to B600. As mentioned in the previous section, when the

models were trained on fewer risk images, fewer segments were classified as

risk images. As indicated in the maps shown in Figures 26(b) to 26(d), most

defect positions indicated as flags in the figures overlapped with the orange

(or red) colored areas. This indicates that almost all defect positions could be

detected by the models trained on the datasets including no less than 150 risk

images. However, particular defect positions were not detected as a result
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of the classification using the model B100 (Figure 26(a)). The hazard maps

generated based on the outputs of the CNN models trained in an optimum

condition to obtain high DTR and low RCR can serve as references to infer

unknown defect positions and support the search of defects in PFA.

Figure 26: Contour plots of the outputs of the models (a) B100(d) B600.
Layout images of 20 µm were used in the training and evaluation datasets.
The number of risk images in training datasets was (a) 100, (b) 150, (c) 300,
and (d) 600.

4.4.4 Using model outputs in root cause analysis

The hazard maps indicating the local areas with a risk of generating

defects within the LSI layouts were determined based on the outputs of the

CNN models. High model outputs indicated the high-risk areas in a map.

However, even in the case of the images centered on the defect positions,

the CNN models could output small values indicating that the images were

classified as non-risk images. In other words, the input image exhibited little

similarity with respect to the risk images in training datasets. For example,
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the model trained on 150 risk images outputted <0.5 to the input images #1

and #2 in Figure 20(b) in which defect positions were located in the center of

images. I consider the following two points as the reason of this inconsistency.

First, I assume that the models cannot precisely capture the features located

in the center of images when the models are trained on the risk images in

which the defect positions are far from the center. Second, I assume that the

model outputs may vary as the risk levels of generating defects are originally

different among all 30 defects detected by PFA. To accurately capture the

layout features, increasing the volume of training datasets is found to be

effective. Although false positives can increase if the models trained on a

large number of risk images in the datasets, specific layout patterns can be

accurately captured by the models as the features of risk images (Figure

20(a)). The model performance depends on the resolution of images and the

volume of training datasets. Thus, considering the ways of processing the

information regarding defects and optimizing the model training procedure

is crucial.

4.5 Conclusions

In this study, I proposed a scheme of layout image classification using

CNN to infer the root causes of LSI defects. Si-substrate defects induced by

the layouts of the isolation layer were the target of this study. CNN models

based on VGG16 were trained on the image datasets comprising risk images

including the positions of real defects and non-risk images excluding the po-

sitions of those defects. Then, these models were used to classify the test seg-
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ments that were cut from the layout of a logic circuit area into square grids.

The classification included two classes: risk images with a risk of defects

and non-risk images exhibiting less risk of defects. The accuracy of the fea-

tures extracted using the CNN models varied according to image resolution.

In the case of low-resolution images, the models were capable of recogniz-

ing the local density of patterns in layouts. Using higher-resolution images,

the models accurately captured the features of LSI layouts corresponding to

defect positions and recognized the layout patterns as the features associ-

ated with particular shapes including their surrounding area. These layout

features could be further used to infer the root causes of the layouts gen-

erating defects and could serve as inputs while developing future designs.

However, note that even when images of higher resolution were employed,

the use of images of smaller size deteriorated the classification performance

of CNN models. This limitation was mitigated by cutting image segments

in an arbitrary position including real defect positions to increase the size

of the training datasets, which afforded a better performance (the detection

rate of defect positions DTR ∼= 90%, and the risk-image classification rate

RCR ∼= 10%) even in the case when the models were trained on small-sized

segments. The risk of defects in a layout was visualized as a hazard map

predicting the locations of defect candidates. The model outputs, which in-

dicated the similarity of test images to the risk or non-risk images in the

training datasets, were used to generate a hazard map. For models with low

RCR, the number of the predicted high-risk image segments was limited.

In other words, the number of predicted defective positions in the hazard

maps was limited, which facilitated the search of unknown defects through
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PFA. This study demonstrated the feasibility of CNN classification of layout

images for analyzing LSI failures. For the future practical usage, to train the

CNN models on fewer dataset of defective layouts and to predict unknown

defects is a challenge.
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5 Layout-based test coverage verification for

high-reliability devices

5.1 Introduction

Reliability and quality are the prerequisites of LSI devices, which are now

widely adopted in everyday appliances, especially automobiles, healthcare

equipment, and security devices. LSI manufacturers have developed supe-

rior processes to reduce variation in production and highly sensitive tests

to detect abnormalities. However, in reality, a small number of chips con-

taining defects still manage to pass pre-shipment tests and are delivered to

customers. To eliminate the distribution of defective chips, a great deal of

effort, including failure analysis, is spent on defect reduction. Defective LSI

chips with failures that are detected after shipping have been categorized into

two failure mode types. The first is a defect that gradually degrades the chip

performance during use, such as a dielectric breakdown in gate oxides. The

second is a test escape, which is a defect that passes shipping tests because of

a lack of test patterns. Test escapes are one of the critical problems for LSI

quality assurance because they are difficult to identify through failure analy-

sis. Additional patterns are generally implemented to eliminate test escapes,

but their addition increases design and test costs. An effective solution is

necessary to improve the test coverage and achieve zero-defect LSI quality.

The fault coverage for a specified failure mode is defined as the ratio of the

number of faults detected by tests to the number of all assumed faults in

a fault simulation. For example, stuck-at fault coverage is determined from
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the ratio of the number of detectable fault-assuming ports to the number of

ports where the circuit nodes are tied to 0 or 1 independent of the switching

sequence. Fault coverage has been adopted to measure the test coverage of

quality assurance tests. The Automotive Electronics Council (AEC) defines

test coverage as a test quality metric that is the ratio of the number of de-

tected faults to the number of all possible faults excluding undetectable faults

[145]. These values of test coverages do not accurately represent the failure

detectability or the risk of test escapes, because the sensitivity of each net

for defects can vary substantially with the large variation in the lengths of

wires and the spaces between them on actual LSI devices. Test escapes have

been estimated from the fault coverage [146], but this method is also based

on the same assumption that faults in each net occur equally. In this paper,

the conventional test coverage was calculated from the numbers of faults, as

shown in Equation (6).

Clogic =
ndetected

nassumed − nundetected

. (6)

Here, the number of detected faults divided by the substitution of the number

of assumed faults minus the number of undetected faults is called the logical

test coverage Clogic to clarify the difference between this quantity and the

newly proposed physical test coverage.
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5.2 Physical test coverage

To compensate for the shortcomings of logical test coverage in estimating

test escapes, a new parameter called physical test coverage is proposed to

analyze the test coverage based on the physical layout of LSI circuits. The

physical test coverage is calculated by critical areas (CAs), which are deter-

mined from the physical layout of LSI circuits. In the following section, the

concept of the CA is described.

5.2.1 Critical area (CA)

Figure 27: Critical areas of short and open defects in a wiring layer of a logic
circuit.

The CA is the quantitative scale for area in an LSI circuit layout in which

a particle of a specified size creates an open or a short defect. This defect

breaks or connects wires on each mask layer when it falls onto the LSI wafer

surface (Figure 27). Electronic design automation (EDA) tools can be used

to compute the CA from the physical layout data of an LSI. The CA indicates

the inherent potential of the layout to cause defects. Now, let us define I

as the set of all layers in an LSI, and i as its variable. In the CA, Ai(x) is
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the quantity of a function of defect size x in each layer i(i ∈ I). Ai(x) is

combined with a defect size distribution density function hi(x) to calculate

the probability of the device failing or yielding [16]. The average CA of layer

i, Ai, is given by the integral of the product of Ai(x) and hi(x) as

Ai =

∫ ∞

0

Ai(x) · hi(x)dx. (7)

The number of faults, λi in layer i, is obtained by multiplying the Ai and the

average defect density Di in layer i.

λi = Di · Ai. (8)

Following Poisson ’s yield model, the yield Yi of layer i is

Yi = exp(−λi). (9)

The total device yield Y is the product of the yield Yi of each mask layer,

denoted as

Y =
∏
i∈I

Yi

= exp(−
∑
i∈I

λi)

= exp(−
∑
i∈I

Di · Ai).

(10)
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This can be further simplified by using some approximation, that is,

Y = exp(−D0 ·
∑
i∈I

Ai)

= exp(−D0 · Ac),

(11)

where D0 and Ac are the average of the defect densities and the sum of the

Ai of all mask layers, respectively.

5.2.2 Calculation of physical test coverage to estimate the risk of

test escapes

The physical test coverage Cphys is defined as the residual probability for

the ratio of the CA of undetected wires, Aundetected, to the CA of all wires,

Aall, in the LSI layout, as follows:

Cphys = 1−
Aundetected

Aall

. (12)

The Aundetected is obtained by the CA calculation using the physical layout

of undetected wires. The physical layout of undetected wires is extracted

from the entire circuit layout by referring to the information of undetected

nets. This information is described in a faults list. The fault list is a text

file output from design for testability (DFT) tools or fault simulators, which

lists the names of nets and the fault types. In contrast to the CA compu-

tation mentioned above, an extra layout operation is required to determine

the Aundetected. When the defects are relatively large, the CA of undetected

wires can be partly eliminated, because some faults caused by defects on the
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undetected wires are detectable by the neighboring detected wires. A layout

configuration was considered to calculate the CA of undetected wires in this

study. An example of the localization of Aundetected of a test layout is de-

scribed in Section 5.4.2. The probability Pi of a test escape occurring in each

layer i (i ∈ I) is calculated as Equation (13) [147]. The CA of undetected

wires in layer i, Ai,undetected, is multiplied by the defect density of the same

layer.

Pi = 1− exp (−(1− Cphys) · λi)

= 1− exp (−(1− Cphys) ·Di · Ai)

= 1− exp (−Di · Ai,undetected).

(13)

Finally, the probability P of the test escape of a device is a product of Pi, as

follows.

P = 1−
∏
i∈I

(1− Pi). (14)

5.2.3 Flow of physical test coverage calculation

The flowchart of the physical test coverage calculation is shown in Figure

28.

1. Extraction of physical layout of undetected wires: By referring to the

net description in a fault list, the layout polygons of the undetected

wires are extracted. In addition, the entire set of polygons of wires in

an LSI device is extracted. New layout files including the extracted

polygons are then generated. Basically, the nets described in the fault

lists are the wires in random logic circuits. Therefore, the object of this
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coverage evaluation is the wires of random logic circuits.

2. Critical area calculation: The CA of each mask layer is calculated by

using the new layout files and an EDA tool (Calibre of Mentor Graphics

Corp.). After generating the CA of undetected wires, the portion of

the CA, in which the faults are detected by neighboring detected wires,

is subtracted by the layout operation. The CA of undetected wires, the

result from the layout operation and the CA of all wires are used to

calculate the physical test coverage Cphys.

3. Physical test coverage calculation: Finally, the physical test coverage

is estimated from the ratio of the CA of the undetected wires to that

of all wires.

5.3 Comparison of logical and physical test coverages

The physical and logical test coverages of pilot devices of 40 nm design

nodes were investigated. The logical test coverage Clogic was calculated by

the number of faults in the faults list as shown in Equation (6). The physical

test coverage Cphys was calculated by using the same fault lists used for

calculating logical test coverages. The physical test coverage was lower than

the logical test coverage for all investigated devices (A to M), as shown in

Figure 29. The logical test coverage of all devices was higher than 97%,

which is the minimum value satisfying the test coverage criterion specified

in [145]. However, the physical test coverage of some devices did not reach

the same level. In addition, the physical test coverage varied among the
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Figure 28: Flowchart of physical test coverage calculation using critical area
analysis (CAA).

devices, whereas the logical test coverage remained nearly constant. No

clear relation was seen between the two types of test coverage. This result

indicated that even though the logical test coverage of a device was high

enough to satisfy the test criterion, the physical test coverage might be low

and have an unexpected risk of generating test escapes.
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Figure 29: Physical and logical test coverages of LSI devices (A to M).

5.4 Discussion

5.4.1 CA and length of undetected wires

In this section, the physical layout of the wires extracted from LSI circuits

is discussed. In investigations of the wire length distribution in the layouts

of LSI devices, it was reported that approximately 80% of the total wire

length was occupied by 20% of the total nets in a device [148], as shown in

Figure 30. This indicates that long wires are used only for specified nets in an

LSI layout. Therefore, development of test patterns, especially for physically

long nets, is crucial to raise the physical test coverage. Even though the

logical test coverage calculated from the number of ports in a circuit is high

enough to assure test quality, the physical test coverage remains low when

the test patterns are assigned only to physically short nets, and so long nets

are undetected. The lower physical test coverage represents a higher risk of
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test escapes.

Figure 30: Wire-length distribution in an LSI logic circuit.

In most of the design processes of LSI logic circuits, DFT tools are used

to improve the test coverage. When using these tools, the wires connecting

functional blocks or hard macros tend to be long and remain undetected.

LSI designers prioritize the specification of an LSI function and manually

develop test patterns of the functional blocks that are most intensively used

by their customers. As a result, long wires at the boundaries of circuit blocks

are ignored when assigning test patterns and so are left undetected.

5.4.2 Relation between physical test coverage and lengths of un-

detected wires

In four LSI devices (N to Q) developed for the same design nodes, the

relation between the physical test coverage and the average length of unde-
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tected wires was investigated (Figure 31). The average length of undetected

wires in each of the devices was longer than the average length of all wires

in their logic circuits. Devices O and Q, which showed relatively low phys-

ical test coverage, had undetected wires longer than those in the other two

devices. These results indicate that long wires tend to remain undetected

and reduce the physical test coverage, and thereby increase the risk of test

escapes.

Figure 31: Average lengths of undetected wires and all wires, and the physical
test coverages for four LSI devices (N to Q).

5.4.3 Relation between length and critical area of undetected

wires

The relation between the total length of undetected wires and the crit-

ical area on the layout of various LSI devices was investigated (Figure 32).
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Because the CA of open failure correlates with the wire length, the CA in-

creases as the total length of the undetected wires increases. However, the

variation in the CA is very wide (e.g. Device 1 and 2) so that the CA of

the investigated devices could not be predicted from the wire length. Some

devices had small CAs despite having long undetected wires.

Figure 32: Relation between total length and critical area of undetected wires
in logic circuits of LSI devices.

The probability of failure θ, which is the CA of all short or open failures,

Aall, divided by logic circuit area S, was evaluated as an index of the wiring

layout density as shown in Equation (15). This index shows the layout con-

gestion of active wires excluding dummy and redundant figures. The 2nd to

5th metal layers were used to calculate the CAs.

θ =
Aall

S
. (15)
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The θs of short and open failures of devices 1 and 2 in Figure 32 are compared

in Figure 33. Although these devices had undetected wires in similar lengths,

the θs of device 2 were higher than those of device 1. This result indicates

that the wiring layout density of the logic circuit in device 2 is higher than

that of device 1.

Figure 33: The short and open θs of metal layers in logic circuits of LSI
devices that had undetected wires of similar lengths.

In high-layout density devices, the spaces between adjacent wires are

so narrow that some CAs of undetected wires are eliminated, because the

faults on undetected wires could be detected by the neighboring detected

wires. This detection is only possible for some layout configurations. An

example is the CAs of undetected wires in a small logic layout, generated by

the Aundetected layout operation in the workflow of the physical test coverage

calculation (Figure 34). The test layouts consisted of (a) two neighboring

undetected wires, and (b) both undetected and detected wires. The short

and open CAs are simply merged and create the CA figures when both wires

are undetected (Figure 34(a)). However, the CAs of a short failure and a

91



part of an open failure on the undetected wire were not generated, because

of the fault detection by the neighboring detected wire (Figure 34(b)). As

this example shows, the CA generation of undetected wires depends on the

physical layout of the wires on the LSI device. To accurately predict the risk

of test escapes, both the wire lengths and the physical configuration of the

wires, such as their positions and shapes, must be considered.

Figure 34: Examples of CA generation for undetected wires in a logic circuit.

5.4.4 Case studies of physical test coverage

The physical test coverage of three LSI devices (R, S, and T) in develop-

ment was investigated. To provide some background, the relative values of

the physical coverage and the probability of test escape of each device are

shown in Figure 35. The logical test coverage (not shown) of the three de-

vices was sufficiently high, but the physical test coverage of the devices was
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low because of the long undetected wires in their layouts. When using the

physical test coverage as an indicator, the test quality of these devices was

improved by developing extra test patterns. In the best case, an estimated

90% of the test escapes were eliminated after the test pattern improvement.

To effectively improve the test coverage by adding a minimum number of test

patterns, the test patterns should be assigned to specified undetected wires

that are prioritized by the CA [149].

Figure 35: Test quality improvement using physical test coverage.

A workflow of the test development, including physical test coverage ver-

ification, is shown in Figure 36. The physical test coverage can be easily

adopted into the LSI design workflow. Furthermore, this addition does not

change the lead time of LSI design development, because the physical test

coverage is calculated in parallel with an existing step in the test coverage

verification process.
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Figure 36: Test quality improvement using physical test coverage.
aAutomatic test pattern generation.

5.5 Conclusions

This paper proposed a new parameter called physical test coverage to

estimate the test quality of LSI devices based on their physical layout in

order to eradicate test escapes. The physical test coverage is calculated

from the CAs of wires undetected by tests. The CAs of undetected wires,

Aundetected are determined by not only the wire lengths but also the physical

configurations of the LSI circuit layout. The risk of test escapes is also

quantified by using the Aundetected. Developing additional test patterns that

are clearly prioritized by the Aundetected effectively improves the test quality.
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6 Conclusions

This dissertation has discussed the techniques of LSI layout analysis to

search and evaluate the risk of failure in LSI devices. LSIs are used in many

applications of modern society and thus require reliability. It is very vital

to predict failures in early manufacturing processes and thus obtain reliable

LSI products. The LSI layout is one of the factors that may become the root

cause of failure. To address the layout-induced failure, new methods of LSI

layout analysis are proposed and investigated. First, a scheme is proposed

for classifying LSI circuit layout images using an AI technique and a CNN to

identify the defective layout regions. Second, using CNN models, the image

features of defective layout segments were extracted, which can be utilized

to infer the root causes of failure. Third, to predict the risk of failure chips

that could not be filtered in the shipping test (test escapes), a new concept

of the indicator evaluating test performances is proposed using critical areas

of the wirings undetected.

In Chapter 3, a scheme is proposed for LSI layout segment classification

based on CNNs to determine the impact of a regional layout design on failure.

CNN models were trained with layout segments, which are the images of LSI

layouts cut into small square grids. CNNs showed the ability to classify the

images of the LSI circuit layout. The size of the training dataset influenced

the classification performance. Basically, it is difficult to train CNN models

using small datasets. However, the experimental results showed that a 15-

layer model based on VGG16 with transfer learning showed the capability

of classifying layout images and identifying the segments that included real

95



failures using only 90 images (i.e., 30 risk and 60 non-risk images) in the

training dataset. The risk of failure was visualized in a hazard map based on

the outputs of the CNN model. Thus, using limited hit rates, the conditions

of model training can be compared and optimized.

In Chapter 4, another scheme is proposed for layout image classification

using CNN for the root cause analysis of LSI defects. Si-substrate defects

induced by the layouts of the isolation layer were the targets of this study.

CNN models trained on the datasets comprising risk and non-risk segments of

the layout of isolation layer were used to classify the test segments that were

cut from a logic circuit area. The accuracy of the features extracted using

the CNN models varied according to the image resolution. Using higher-

resolution images, the models accurately captured the features of LSI layouts

corresponding to defect positions and recognized the layout patterns as the

features associated with particular shapes, including their surrounding area.

These layout features could be further used to infer the root causes of the

layouts generating defects and could serve as inputs while developing future

designs. However, owing to the limitation of the input size of the CNN model

used in this study, a higher resolution requires smaller image segments, which

deteriorate the classification performance of CNN models. We mitigated this

limitation by cutting image clips in an arbitrary position, including real defect

positions to increase the size of the training datasets, which provided a better

performance even in the case when the models were trained on small-sized

segments. Upon selecting the valance of training datasets, the number of

predicted defective positions in the hazard maps decreased, which facilitated

the search for unknown defects through PFA.
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In Chapter 5, a new indicator called physical test coverage is proposed

to estimate the test quality of LSI devices based on their layout and thus

eradicate test escapes. To achieve zero defect, i.e., no test escape, LSI man-

ufacturers must demonstrate their product reliability. Physical test coverage

is calculated from the CAs of wirings undetected by tests. CA is a DFM tool

used to estimate the impact of the layout on the occurrence of defects for

predicting failure. Therefore, the risk of test escapes can be quantified using

the CA of undetected wires, Aundetected. Aundetected is determined by not only

the wire lengths but also the configurations of the LSI circuit layout, which

realizes the risk evaluation of LSI products in different designs. Developing

additional test patterns that are clearly prioritized by Aundetected effectively

improve the test quality and show product reliability.

The research to identify the defective regions was the first to demon-

strate the feasibility of CNN classification of layout images for analyzing LSI

failures. For more practical applications, training CNN models on a small

dataset of defective layouts and predicting unknown defects are the next chal-

lenges. The concept of physical coverage is widespread in the LSI industry,

and techniques for test pattern generation considering CAs of undetected

wiring are discussed [150, 151]. The collaboration of design that reduces the

risk of failure based on the DFM rules and physical analysis, which deter-

mines the cause of previously unknown failures, is the key to ensuring future

LSI reliability. Layout analysis plays an important role in determining LSI

reliability.
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