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Abstract

Representation learning aims to learn grammatical and semantic information from raw
datasets as vectors and models. Representation learning is the foundation of natural lan-
guage processing, where deep learning is the mainstream tool because it can effectively
represent textual information as dense numerical data. Representation learning allows
to obtain word embeddings and language representations that model word and sentence
information. Existing representation learning techniques use information such as co-
occurrence of tokens from large scale raw data to learn useful representations. On the
other hand, it is known that raw data contains various biases due to an imbalance of
grammatical and semantic information, which adversely affects the results of represen-
tation learning. In this thesis, [ work on resolving the grammatical and semantic biases

of representation learning.

(1) Grammatical bias: Most raw datasets written by native speakers are grammatically
correct, and there are few grammatical errors contained. Representation learning is not
effective in tasks that involve grammatically incorrect text, such as grammatical error
detection and grammatical error correction, due to this bias between grammatically cor-

rect and incorrect sentences.

(2) Semantic bias: Representation learning is based on co-occurrences, and the bias
of co-occurrences of tokens is the cause of learned discriminatory relationships. For
example, the doctor is more like “he” than “she”, and the nurse is more like “she” than

“he”. This is problematic from fairness and ethical point of view.

In this study, I propose a method for learning word embeddings and language repre-
sentations to solve grammatical bias, taking into account grammatical correctness and
incorrectness of the data. Besides, I propose a method of calculating attentiveness for

each layer to use the information in the language representation more effectively in the



task of dealing with erroneous sentences. For semantic biases, I propose a debiasing

method to solve gender discrimination in word embeddings.

The remainder of this thesis is organized as follows: In chapter 1, I describe the back-
grounds of grammatical bias and semantic bias, and related tasks. In chapter 2, I explain
the method of reducing the grammatical bias that is learned by word embeddings. In
chapter 3, I describe a method for reducing the grammatical bias in language represen-
tations. chapter 4 details a method for effectively utilizing grammatical information of
language representations, including grammatical bias. Then, in chapter 5, I explain the
method of removing the semantic bias from word embeddings. Finally, chapter 6 sum-

marizes this dissertation and describes the future prospects of this research.

Keywords— natural language processing, representation learning, word embeddings,
language representation, grammatical error detection, grammatical error correction, dis-

criminative bias
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1| Introduction

1.1 Biases in Representation Learning

In recent years, neural networks have been used in a wide range of natural language
processing (NLP) tasks (Bengio, Ducharme, Vincent, & Jauvin, 2003; Socher,
Pennington, Huang, Ng, & Manning, 2011; Cho et al., 2014). Neural networks in
NLP differ from other fields in that it is discrete. On the other hand, neural net-
work models are constructed with continuous values represented by vectors and
matrices. Therefore, it is necessary to convert grammatical and semantic infor-
mation such as words and sentences handled by NLP into vectors and matrices
that can be processed by neural networks. In doing so, it is useful to acquire vec-
tors and matrices that successfully represent the similarity and relevance of words
and sentences through representation learning based on distributed representation

(Hinton, 1984).

A vector that learns grammatical and semantic word information by representation
learning is called a word embedding. In recent years, most of the word embeddings
learning methods are based on the idea of distributional hypothesis (Harris, 1954),
where information of a word is represented from the context of the word. There-
fore, the model acquires information about a word by learning its co-occurrence
with other words. Word2Vec (Mikolov, Chen, & Dean, 2013) learns word embed-
dings by predicting the central word from the context of the preceding and follow-
ing words (CBoW) or by predicting the preceding and following words from the
central word (skip-gram). GloVe (Pennington, Socher, & Manning, 2014) learns
word embeddings by optimizing for a co-occurrence matrix built from a corpus
with a penalty for high-frequency co-occurrence. It is known to improve the per-

formance of downstream tasks on large data sets by using pre-trained word em-
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Figure 1.1: Grammatical error detection task. The correct part of the input sen-
tence is 0 and the incorrect part is predicted to be 1.

beddings from these methods (Kenter & De Rijke, 2015).

A model that learns the information of a sentence is called a language repre-
sentation. Dramatic performance improvements have been reported for many
tasks by using language representations (Devlin, Chang, Lee, & Toutanova, 2019).
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019) is trained by masking part of the input sentences and predicting the masked
tokens as well as the adjacent sentences. A Robustly Optimized BERT Pretraining
Approach (RoBERTa) (Y. Liu et al., 2019) is a language representation that tunes
BERT more effectively.

While word embeddings and language representations learned from the raw cor-
pora are successful in various tasks, these word embeddings and language repre-
sentations also learn undesirable bias from the raw data. For example, as shown
in Figure 1.1, most of the raw data used for representation learning, such as news
and Wikipedia (Mikolov, Chen, & Dean, 2013; Pennington et al., 2014; Devlin
et al., 2019; Y. Liu et al., 2019), contain mostly grammatically correct sentences
and little grammatically incorrect sentences. Therefore, grammatical bias is the
bias learned from the distribution of raw data (Wikipedia, web news, etc.) that
is biased towards grammatically correct texts so models cannot learn grammati-

cal errors. This bias is not a problem for tasks that involve grammatically correct
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Figure 1.2: Plot of gender bias in GloVe trained on wikipedia corpus.

sentences. Still, it becomes a problem for tasks such as grammatical error detec-
tion and grammatical error correction, where grammatically incorrect sentences
are given as input, as described in section 1.2 and section 1.3, since word embed-
dings and language representations are not learned to take grammatical errors into
account. To solve this problem, I propose a method of considering grammatically
incorrect sentences in word embeddings and language representations for gram-
matical error detection and grammatical error correction tasks. I also propose a
method to handle grammatically incorrect text for language representations more

effectively.

Grammatical bias is not the only bias that can be learned from raw data. Represen-
tation learning learns semantics from co-occurrences, therefore, it also learns dis-
criminatory information from biased co-occurrences, I refer to it as semantic bias.
For example, the word “stylist” frequently co-occurs with female words such as
“she” and “woman”, and the word ”president” with male words such as “he” and
“man”. Thus, “stylist” is more similar to a female word and “president” is more

similar to a male word. It is crucial to remove semantic biases from word embed-
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Figure 1.3: Grammatical error detection task. The correct part of the input sen-
tence is 0 and the incorrect part is predicted to be 1.

dings because learning discriminatory expressions can have a discriminatory effect
on the downstream tasks (J. Zhao et al., 2019). Figure 1.2 shows the gender bias
in GloVe trained on Wikipedia corpus. Cosine similarity closer to 1 shows higher
similarity to male words, closer to -1 shows higher similarity to female words, and
closer to 0 shows that gender information is not retained. This figure shows that
the stereotyped words contain the same amount of gender information as gender
words. This indicates that the existing word embeddings contain bias and need to
be debiased. On the other hand, we need to keep the non-discriminative semantic
information and remove the discriminative semantic information by debiasing the
word embeddings. This study proposes a debiasing method that preserves non-
discriminative gender-related information while removing stereotypical discrimi-

native gender biases from pre-trained word embeddings.

By removing these biases from the representation learning, it is possible to obtain
models that are are robust to grammatical errors and models that are legally and
socially acceptable. Therefore, this research will lead to the realization of artificial

intelligence that utilize languages in a trusted by humans way.

1.2 Grammatical Error Detection

Grammatical error detection (GED) model can identify the location of errors, which
is useful for second language learners and teachers. Figure 1.3 shows an overview

of the GED task. The GED model, given grammatically incorrect text as input,



predicts its grammatically incorrect parts. It can be seen as a sequence labeling
task, typically solved by a supervised approach (Rei, Felice, Yuan, & Briscoe,
2017; Kasewa, Stenetorp, & Riedel, 2018).

Rei and Yannakoudakis (2016) first proposed the GED model using neural net-
works. Since this study showed that bidirectional long short-term memory (Bi-
LSTM) (Graves & Schmidhuber, 2005) is effective in GED, various Bi-LSTM-
based GED studies have been proposed (Rei et al., 2017; Kasewa et al., 2018).
Bi-LSTM is a neural network model that combines forward and backward LSTM
(Hochreiter & Schmidhuber, 1997), a gated recursive neural network. Because of
the small size of the GED training data, pre-trained word embeddings have been
used in many studies (Rei et al., 2017; Rei & Segaard, 2018). On the other hand,
these word embeddings are trained from the raw data and cannot take into account
grammatical errors. To consider grammatical errors in word embeddings, I pro-

pose a method of learning word embeddings with pseudo-grammatical errors.

Recently, language representations have been used in various tasks in NLP (Devlin
etal., 2019; Y. Liu et al., 2019; Yang et al., 2019; Clark, Luong, Le, & Manning,
2020). Language representations learn sentence information from a large amount
of raw data. Unlike language models, these models use masks (Devlin et al., 2019;
Y. Liuetal., 2019; Clark et al., 2020), and word order swapping (Yang et al., 2019)
to learn text information from both directions. The pre-trained language represen-
tations are fine-tuned in the downstream tasks by replacing only the output layers.
Language representations have been particularly successful in the classification
tasks, and the sequence labeling tasks, therefore, are considered suitable for the

GED.

On the other hand, language representations are also trained on raw corpora with

few grammatical errors, and there is a gap between raw data and GED data for
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Figure 1.4: Grammatical error correction task. The grammatically incorrect word
“at” in the input sentence is corrected to the grammatically correct word “in”.

pre-training and fine-tuning. Therefore, this study aims to effectively learn gram-
matically incorrect texts in language representation in the GED. I propose a method
to obtain the optimal hidden layer for GED by calculating the attention for each
layer of language representations. The results showed that it is effective to com-
pute the attention to the hidden layers of language representations, and it achieved

state-of-the-art results in GED.

1.3 Grammatical Error Correction

GEC is a sequence generation task where a potentially grammatically incorrect text
is given as input, and it is rewritten to be a grammatically correct text. Figure 1.4
illustrates the GEC process. The encoder-decoder (EncDec) (Cho et al., 2014)
architecture is commonly used as a GEC model (W. Zhao, Wang, Shen, Jia, &
Liu, 2019; Grundkiewicz, Junczys-Dowmunt, & Heafield, 2019; Kiyono, Suzuki,
Mita, Mizumoto, & Inui, 2019). EncDec consists of encoder and decoder neural
networks. The encoder encodes a sequence into a hidden representation and the

decoder decodes the representation into another sequence.

The aforementioned language representations are also used in sequence genera-
tion tasks using EncDec. For example, Lample and Conneau (2019) showed that
initializing the weights of EncDec with the weights of language representations
improves the performance of the machine translation. Zhu et al. (2020) proposed

a method to feed the output of language representations to the EncDec model as



additional features and reported an improvement in machine translation perfor-

mance.

However, it is not obvious whether these methods can be used in GEC as they
are. For example, the distribution of the inputs to a GEC model can be consid-
erably different (erroneous, clumsy, etc.) from that of the corpora used for train-
ing language representations; however, this issue is not addressed in the previous
methods. Therefore, I investigate a method to combine language representations
and the GEC EncDec model. Experiments show that the proposed method, where
I first fine-tune language representations with a given GED corpus and then use
the output of the fine-tuned language representations as additional features in the

GEC model, maximizes the benefit of the language representations.

1.4 Main Contributions

The main contributions of this study are summarized as follows:

* I proposed a training method for word embeddings that takes grammatical
errors into account and showed its effectiveness in the GED task in chap-
ter 2. Furthermore, the state-of-the-art GED model initialized with these
word embeddings achieved the state-of-the-art results of its time. The code'

used in the experiments and the demonstration” are publicly available.

* I proposed an effective method for removing grammatical bias from pre-
trained language representations in chapter 3. The experiments show that
debiased language representations obtained by fine-tuning on GED and com-

bining them with the GEC EncDec model is effective. Furthermore, this

"https://github.com/kanekomasahiro/grammatical-error-detection
’http://kanekomasahiro.sakura.ne.jp/revision_support/
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model achieved state-of-the-art in GEC. The code’ used in the experiments

1s publicly available.

* [ proposed a method to learn the most appropriate grammatical information
from the language representations by calculating the attention of each layer
of the language representations to reduce the influence of grammatical bias
in chapter 4. And the analysis revealed that it is effective to use the infor-
mation of all layers of language representations for GED. Furthermore, this

method achieved state-of-the-art in four GED data sets.

* I proposed a method for pre-trained word embeddings that retains useful
information and removes discriminatory gender information in chapter 5.
Experimental results showed that the proposed method was the most debi-
asing while retaining the pre-trained information such as word similarity and
analogy. The code and debiased word embeddings* used in the experiments

are publicly available.

*https://github.com/kanekomasahiro/bert-gec
“https://github.com/kanekomasahiro/gp_debias
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2| Error- and Grammaticality-Specific Word
Embeddings

The aim of this chapter is to reduce grammatical bias in GED by learning word em-
beddings that take into account grammaticality and error patterns. Most GED stud-
ies using neural networks initialize the model with pre-trained word embeddings
to take advantage of large scale data. For example, Rei and Yannakoudakis (2016)
achieved the state-of-the-art accuracy in English grammatical error detection us-
ing a Bi-LSTM. Their approach uses word embeddings learned from a large-scale

native corpus to address the data sparseness problem of learner corpora.

However, most of the word embeddings, including the one used by Rei and Yan-
nakoudakis (2016), model only the context of the words from a raw corpus written
by native speakers, and do not consider specific grammatical errors of language
learners. This leads to the problem wherein the word embeddings of correct and
incorrect expressions tend to be similar so that the classifier must decide gram-

maticality of a word from contextual information with a similar input vector.

To address this problem, I introduce two methods: 1) grammaticality-specific
word embeddings (GWE), which employ grammatical error patterns, that is to say
the word pairs that learners tend to easily confuse; 2) error-specific word embed-
dings (EWE), which consider grammatical correctness of n-grams. In this thesis,
I use the term grammaticality to refer to the correct or incorrect label of the target
word given its surrounding context. I also combine these methods, which I will

refer to as error-and grammaticality-specific word embeddings (E&GWE).

Furthermore, I conducted experiments using the large-scale Lang-8' English learner

Thttp://lang-8.com/



corpus. The results demonstrated that representation learning is crucial for exploit-

ing a noisy learner corpus for GED.

2.1 Related Works

Many studies on GED try to address specific types of grammatical errors (Tetreault
& Chodorow, 2008; Han, Chodorow, & Leacock, 2006; Kochmar & Briscoe,
2014). In contrast, Rei and Yannakoudakis (2016) target all errors using a Bi-
LSTM, whose embedding layer is initialized with word2vec. I also address un-
restricted GED; however, I focus on learning word embeddings that consider a
learner’s error pattern and grammaticality of the target word. In this dissertation,
subsequently, the word embeddings give statistically significant improvements

over their method using exactly the same training data.

Several studies considering grammatical error patterns in language learning have
been performed. For example, Sawai, Komachi, and Matsumoto (2013) suggest
correction candidates for verbs using the learner error pattern, and X. Liu, Han,
Li, Stiller, and Zhou (2010) automatically correct verb selection errors in English
essays written by Chinese students learning English, based on the error patterns
created from a synonym dictionary and an English-Chinese bilingual dictionary.
The main difference between these previous studies and mine is that the previous

studies focused only on verb selection errors.

As an example of research on learning word embeddings that consider grammat-
icality, Alikaniotis, Yannakoudakis, and Rei (2016) proposed a model for con-
structing word embeddings by considering the importance of each word in pre-
dicting a quality score for an English learner’s essay. Their approach learns word
embedding from a document-level score using the mean square error whereas I

learn word embeddings from a word-level binary error information using the hinge

10



loss.

The use of a large-scale learner corpus on GEC is described in works such as
Z. Xie, Avati, Arivazhagan, Jurafsky, and Ng (2016) and Chollampatt, Hoang,
and Ng (2016); Chollampatt, Taghipour, and Ng (2016). These studies used the
Lang-8 corpus as training data for phrase-based machine translation (Z. Xie et al.,
2016) and neural network joint models (Chollampatt, Hoang, & Ng, 2016; Chol-
lampatt, Taghipour, & Ng, 2016). In this study, Lang-8 was used to extract error
patterns that were then utilized to learn word embeddings. The experiments show
that Lang-8 cannot be used as a reliable annotation for LSTM-based classifiers.
Instead, I need to extract useful information as error patterns to improve the per-

formance of error detection.

2.2 C&W Embeddings

These models extend an existing word embedding learning algorithm called C&W
Embeddings (Collobert & Weston, 2008) and learn word embeddings that consider
grammatical error patterns and grammaticality of the target word. I first describe

the well-known C&W embeddings, and then explain the extensions.

Collobert and Weston (Collobert & Weston, 2008; Collobert et al., 2011) proposed
a window-based neural network model that learns distributed representations of
target words based on the local context. Here, target word w; is the central word
in the window sized sequence of words S = (wy,...,wy,...,w,). The rep-
resentation of the target word w; is compared with the representations of other
words that appear in the same sequence (Vw,; € S|w; # w;). A negative sample
S = (wy,...,w,, ..., w,|lw. ~ V) is created by replacing the target word wy,
where w; # w,, with a randomly selected word from the vocabulary V to distin-

guish between the negative sample S’ and the original word sequence S. In their

11



method, the word sequence S and the negative sample S’ are converted into vec-
tors in the embedding layer, which are fed as embeddings. They concatenate each
converted vector and treat it as input vector . The input vector a is then subjected
to a linear transformation (Eq. 2.1) to calculate the vector ¢ of the hidden layer.
Then, the resulting vector is subjected to another linear transformation (Eq. 2.2)

to obtain the output f(x).

T = O’(thw—l-bh) (2.1)

fl®) = Wui+b, (2.2)

Here, W, is the weight matrix between the input vector and the hidden layer, W,
is the weight matrix between the hidden layer and the output layer, b, and b, are

biases, and o is an element-wise nonlinear function tanh.

This model for word representation learns distributed representations by making
the ranking of the original word sequence S higher than that of the negative sam-
ples S’, which includes noise due to replaced words. The difference between the
original word sequence and the word sequence including noise is optimized to be
at least 1.

loss.(S,8’) = max(0,1 — f(x) + f(z')) (2.3)
Here, &’ is an embedding of the word w..

The proposed models learn distributed representations using the same hinge loss (
Equation 2.3) so the model could distinguish between correct and incorrect phrase

pairs.

12
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Figure 2.1: Architecture of the learning methods for word embeddings (a) EWE
and (b) GWE. Both models concatenate the word vectors of a sequence for window
size and feed them into the hidden layer. Then, EWE outputs a scalar value, and
GWE outputs a prediction of the scalar value and the label of the word in the
middle of the sequence.

2.3 Grammaticality-Specific Word Embeddings

GWE learns word embeddings using the same model as C&W embeddings. How-
ever, rather than creating negative samples randomly, I created them by replacing
the target word w; with words w, that learners tend to easily confuse with the

target word w;. In such a case, w, is sampled by the conditional probability:

count(w,, w;)

Plw.|w,) =
(welaw) >, count(w, wy)

(2.4)

where, w, is a target word, w’, is a set of w,. regarding w;, count function calculates

the frequency of their co-occurrence.

This model learns to distinguish between a correct and an incorrect word by con-
sidering grammatical errors of learners. Replacement candidates, treated as error

patterns, are extracted from a learner corpus annotated with correction. Figure 2.1

13



(a) represents architecture of GWE.
The bus will pick you up right at your hotel entery/*entrance.

The above sentence is a simple example from the test data of FCE-public corpus.
In this sentence, the word “entery” is incorrect and the “entrance” is the correct
word. In this case, w; is “entrance” and w. is “entery”. Note that I use only

one-to-one (substitution) error patterns.

Due to the data sparseness problem, the context of infrequent words cannot be
properly learned. This problem is solved by using a large corpus to pre-train
word2vec. By fine-tuning vectors whose contexts have already been learned, it
is possible to learn word embeddings with no or few replacement candidates in a

learner corpus.

2.4 Error-Specific Word Embeddings

Similar to the approach of Alikaniotis et al. (2016) for essay score prediction, I ex-
tend C&W embeddings to distinguish between correct words and incorrect words
by considering errors in distributed representations (Figure 2.1 (b)). For that pur-
pose, I add an additional output layer to predict correct score of word sequences,

and extend Equation 2.3 to calculate following two error functions.

Sorammar(®) = Wgpi + by (2.5)
g = sofmax( fuamm(T)) (2.6)
loss,(S) = — ) y-log(y) 2.7)
10ss(S,8") = a-loss,(S,S') + (1 — a) - loss,(S) (2.8)

14



In Equation 2.5, fgammar 1S the predicted label of the original word sequence S.
W, 1s the weight matrix and b, is the bias. In Equation 2.6, the prediction prob-
ability ¢ is computed using the softmax function for fy,4mmaer. The error loss,
is computed using the cross-entropy function using the gold label’s vector y of
the target word (Equation 2.7). Finally, two errors are combined to calculate loss
(Equation 2.8). Here, «v is a hyperparameter that determines the weight of the two

error functions.

I use the original tag label (0/1) of the FCE-public data as the correct score of
word sequences for learning. Note that I do not use label information from Lang-
8, because the error annotation of Lang-8 error annotations are too noisy to train
an error detection model directly from the corpus. Negative examples of EWE are

created randomly, that are similar to the case with C&W.

2.5 Error- and Grammaticality-Specific Word Em-
beddings

E&GWE is a model that combines EWE and GWE. In particular, E&GWE model
creates negative examples using an grammatical error as in GWE and outputs score

and predicts correct score as in EWE.

2.6 Bidirectional LSTM

I use bidirectional LSTM (Bi-LSTM) (Graves & Schmidhuber, 2005) as a classi-
fier for all these experiments for English grammatical error detection, because Bi-
LSTM demonstrates the state-of-the-art accuracy for this task compared to other

architectures such as CRF and CNNs (Rei & Yannakoudakis, 2016).
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Figure 2.2: A bidirectional LSTM network. The word vectors e; enter the hidden
layer to predict the labels of each word.

The LSTM calculation is expressed as follows:

iy = 0(Wieer + Winhi_y + Wiceio1 + b;) (2.9)
fo = o(Wieer+ Wonhet + Wree,1 + b)) (2.10)
¢ = 4O g(Weer +Weohi 1 +b) + f,0 ¢4 (2.11)
o, = 0(Weeer + Wy by 1+ W, +b,) (2.12)
he = 0,0 h(c) 2.13)

Here, e, is the word embedding of word w;, and W;., W¢., W, and W, are
weight matrices. Each b;, by, b, and b, are biases. An LSTM cell block has an
input gate 7;, a memory cell ¢;, a forget gate f, and an output gate o; to control
information flow. In addition, g and A are the sigmoid function and o is the tanh.

© is the pointwise multiplication.
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I apply a bidirectional extension of LSTM, as shown in Figure 2.2, to encode the

word embedding e; from both left-to-right and right-to-left directions.

y, = Wy(hf @ ) + b, (2.14)

The Bi-LSTM model maps each word w; to a pair of hidden vectors b and h”,
i.e., the hidden vector of the left-to-right LSTM and right-to-left LSTM, respec-
tively. & is the concatenation. W, 1s a weight matrix and b, is a bias. I also added
an extra hidden layer for linear transformation between each of the composition

function and the output layer, as discussed in the previous study.

2.7 Experiments

2.7.1 Settings

I used the FCE-public dataset and the Lang-8 English learner corpus to train clas-
sifiers and word embeddings. For this evaluation, I used the test set from the FCE-

public dataset (Yannakoudakis, Briscoe, & Medlock, 2011) for all experiments.

FCE-public dataset. First, | compared the proposed methods (EWE, GWE, and
E&GWE) to previous methods (W2V and C&W) relative to training word em-
beddings (see Table 2.1). For this purpose, I trained the word embeddings and
a classifier, which were initialized using pre-trained word embeddings, with the

training set from the FCE-public dataset.

This dataset is one of the most famous English learner corpus in grammatical error
correction. It contains essays written by English learners. It is annotated with
grammatical errors along with error classification. I followed the official split of

the data: 30,953 sentences as a training set, 2, 720 sentences as a test set, and
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2,222 sentences as a development set. In the FCE-public dataset, the number of
target words of error patterns is 4,184, the number of tokens of the replacement
candidates is 9,834, and the number of types (unique words) is 6,420. All manually
labeled words in the FCE-public dataset were set as the gold target to train the
EWE. For a missing word error, an error label is assigned to the word immediately
after the missing word (see Table 2.4 (c)). To prevent overfitting, singleton words

in the training data were taken as unknown words.

Lang-8 corpus. Furthermore, I added the large-scale Lang-8 English learner cor-
pus to the FCE-public dataset to train word embeddings (FCE+GWE-LS8 and
FCE+E&GWE-LS) to explore the effect of a large data on the proposed methods.
I used a classifier trained using only the FCE-public dataset whose word embed-
dings were initialized with the large-scale pre-trained word embeddings to com-
pare the results with those of a classifier trained directly using a noisy large-scale
data whose word embeddings were initialized using word2vec (FCE&L8+W2V,
see Table 2.2).

Lang-8 learner corpus has over 1 million manually annotated English sentences
written by ESL learners. Extraction of error patterns from Lang-8 in the process

of creating negative samples to train word embeddings was performed as follows:

1. Extract word pairs using the dynamic programming from a correct sentence

and an incorrect sentence.

2. Ifthe learner’s word of the extracted word pair is included in the vocabulary

created from FCE-public, include it to the error patterns.

In the Lang-8 dataset the number of types of target words of the replacement can-
didates is 10,372, the number of tokens of the replacement candidates is 272,561,

and the number of types is 61,950.
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The experiments on FCE+GWE-L8 and FCE+E&GWE-L8 were conducted by
combining error patterns from all of Lang-8 corpus and the training part of FCE-
public corpus to train word embeddings. However, since the number of error pat-
terns of Lang-8 is larger than that of FCE-public, I normalized each frequency so

that the ratio was 1:1.

I use Fy 5 as the main evaluation measure, following a previous study (Rei & Yan-
nakoudakis, 2016). This measure was also adopted in the CoNLL-14 shared task
on error correction task (Ng et al., 2014). It combines both precision and re-
call, while assigning twice as much weight to precision because accurate feedback
is often more important than coverage in error detection applications (Nagata &
Nakatani, 2010). Nagata and Nakatani (2010) presented a precision-oriented error
detection system for articles and numbers that demonstrated precision of 0.72 and
arecall of 0.25 and achieved a learning effect that is comparable to that of a human

tutor.

2.7.2 Word Embeddings

I set parameters for word embeddings according to the previous study (Rei & Yan-
nakoudakis, 2016). The dimension of the embedding layer of C&W, GWE, EWE
and E&GWE is 300 and the dimension of the hidden layer is 200. I used a pub-
licly released word2vec vectors (Chelba et al., 2013) trained on the News crawl
from Google news” as pre-trained word embeddings. I set other parameters in this
model by running a preliminary experiment in which the window size is 3, the
number of negative samples is 600, the linear interpolation « is 0.03, and the op-
timizer is the Adam algorithm (Kingma & Ba, 2015) with the initial learning rate
of 0.001. GWE is initialized randomly and EWE is initialized using pre-trained

word2vec

Zhttps://github.com/mmihaltz/word2vec-GoogleNews-vectors
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Bi-LSTM + embeddings P R Fos

FCE + W2V (R&Y, 2016) 46.1 28.5 41.1

FCE + W2V (our reimplementation of (R&Y, 2016)) | 45.840.1  27.8£0.4  40.5£0.3
FCE + C&W 45.1£0.3  26.7+£0.4  39.6£0.3
FCE + GWE 46.1+£0.1x  28.0+£0.1x  40.8£0.1x
FCE + EWE 46.5£0.1x 28.340.4x 41.240.2%
FCE + E&GWE 46.7+0.1x 28.6+0.1x 41.4+0.1%

Table 2.1: LSTM and word embeddings are trained only using FCE-public.

Bi-LSTM + embeddings | P R Fys
FCE&LS + W2V 123£2.6 328422 14.0+2.6
FCE + GWE-L8 50.5£3.4% 30.1+1.2x 44.442.7%
FCE + EEGWE-LS 50.8+3.6x 30.0£1.2%x 44.6+2.8%

Table 2.2: Either FCE-public and a large-scale Lang-8 corpus are used to train
LSTM or word embeddings.

2.7.3 Classifier

Iuse EWE, GWE, and E&GWE word embeddings to initialize the Bi-LSTM neu-
ral network, and predict the correctness of the target word in the input sentence.
I update initialized weights of embedding layer while training classifiers, since it
showed better results. The parameters and settings of the network are the same as
in a previous study (Rei & Yannakoudakis, 2016). Specifically, in Bi-LSTM the
dimensions of the embedding layer, the first hidden layer, and the second hidden
layer are 300, 200, and 50, respectively. The Bi-LSTM model was optimized using
the Adam algorithm (Kingma & Ba, 2015) with an initial learning rate of 0.001,

and a batch size of 64 sentences.

2.7.4 Results

Table 2.1 shows experimental results comparing Bi-LSTM models trained on FCE-
public dataset initialized with two baselines (FCE+W2V and FCE+C&W) and the
proposed word embeddings (FCE+GWE, FCE+EWE and FCE+E&GWE) in the
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Error type Verb Missing-article Noun Noun type
(a) FCE + W2V 56 48 26 9
FCE + C&W 53 46 24 7
FCE + GWE 60 37 29 12
(b) | FCE + EWE 62 43 29 11
FCE + E&GWE 64 40 31 14
(©) FCE + GWE-L8 66 36 37 19
FCE + E&GWE-L8 67 40 39 18
Total number of errors | 131 112 77 32

Table 2.3: Numbers of correct instances for typical error types.

Bi-LSTM + embeddings | Detection result
Gold The bus will pick you up right at your hotel entrance.
(a) | FCE+ W2V The bus will pick you up right at your hotel entery.
FCE + E&GWE-L8 The bus will pick you up right at your hotel entery.
Gold There are shops which sell clothes, food, and books - - -
(b) | FCE + W2V There are shops which sales cloths, foods, and books - - -
FCE + E&GWE-L8 There are shops which sales cloths, foods, and books - - -
Gold All the buses and the MTR have air-condition.
(¢) | FCE + W2V All the buses and MTR have air-condition.
FCE + E&GWE-L8 All the buses and MTR have air-condition.

Table 2.4: Examples of error detection by FCE+W2V and FCE+E&GWE-LS.
Gold corrections in italic, and detected errors in bold.

error detection task. I used two models for FCE+W2V: FCE+W2V (R&Y 2016) is
the experimental result reported in a previous study (Rei & Yannakoudakis, 2016),
and FCE+W2V (my reimplementation of (R&Y, 2016)) is the experimental result
of my reimplementation of Rei and Yannakoudakis (2016). FCE+E&GWE is a
model combining FCE+GWE and FCE+EWE. I conducted Wilcoxon signed rank
test (p < 0.05) 5 times.

Table 2.2 shows the result of using additional large-scale Lang-8 corpus. Com-
pared to FCE&L8+W2V, FCE+GWE-LS has better results within the three evalu-
ation metrics. From this result, it can be seen that it is better to extract and use error
patterns than simply using Lang-8 corpus as a training data to train a classifier, as

it contains noise in the correct sentences. Furthermore, by combining with EWE
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method, accuracy was improved as in the above experiment.

In terms of precision, recall, and F 5, the methods in this study were ranked as
FCE+E&GWE-L8 > FCE+GWE-L8 > FCE+E&GWE > FCE+EWE > FCE+GWE
> FCE+W2V > FCE+C&W. Error patterns and grammaticality consistently im-
proved the accuracy of grammatical error detection, showing that the proposed
methods are effective. Also, the proposed method has a statistically significant
difference compared with previous research even without using large-scale Lang-
8 corpus. It outperformed the preceding state-of-the-art (Rei & Yannakoudakis,

2016) in all evaluation metrics.

2.8 Discussion

Table 2.3 shows the number of correct answers of each model for some typical

errors. Error types are taken from the gold label of the FCE-public dataset.

First, I analyze verb errors and missing articles, which have the largest differences
between the numbers of correct answers of baselines and the proposed methods
(see Table 2.3 (a) and (b)). The proposed methods gave more correct answers for
verb errors, whereas FCE+W2V and FCE+C&W gave more correct answers for
missing article errors. A possible explanation is that unigram-based error patterns
are too powerful for word embeddings to learn other errors that can be learned

from the contextual clues.

Second, I examine the difference made by adding the error patterns extracted from
Lang-8 (see Table 2.3 (b) and (¢)): FCE+GWE and FCE+GWE-LS have the great-
est difference in the number of correct answers in noun and noun type errors.
FCE+GWE-L8 has more correct answers for noun errors such as suggestion and

advice and noun type errors such as time and times. The reason is that Lang-8
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includes a wide variety of lexical choice errors of nouns while FCE-public covers

only a limited number of error variations.

Table 2.4 demonstrates the examples of error detection of the baseline FCE+W2V
and the best proposed method FCE+-E&GWE-LS on the test data. Table 2.4 (a)
shows an example of a noun error, and as it can be seen, FCE+E&GWE-LS8 de-
tected the error in contrast to FCE+W2V. Noun type errors are presented in Table
2.4 (b). Here, FCE+W2V did not detect any error, while FCE+E&GWE-LS could
detect the mass noun error, frequently found in a learner corpus. Detection of
“sale” and “cloths” was failed in both models, but they are hard to detect since the
former requires syntactic information and the latter involves common knowledge.
In Table 2.4 (c), FCE+W2V succeeded in detection of a missing article error, but
FCE+E&GWE-L8 did not. Even though proposed word embeddings learn substi-
tution errors effectively, they cannot properly learn insertion and deletion errors.
It is a future work to extend word embeddings to include these types of errors and
focus on contextual errors that are difficult to deal with the model, for example,

missing articles.
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3| Errorand Grammaticality-Specific Language

Representations

In this chapter, we propose a method to reduce the grammatical bias of language
representations in GEC by fine-tuning. Numerous studies on GEC have success-
fully used EncDec based models, and in fact, most current state-of-the-art neural
GEC models employ this architecture (W. Zhao et al., 2019; Grundkiewicz et al.,
2019; Kiyono et al., 2019). Language representations are generally used in down-
stream tasks (Y. Liu, 2019; H. Zhang et al., 2019). For example, in neural machine
translatoion, Zhu et al. (2020) demonstrated that it is more effective to provide the
output of the final layer of a language representation to the EncDec model as fea-

tures.

In light of this trend, one natural, intriguing question is whether neural EncDec
GEC models can benefit from the recent advances of language representations
since language representations such as BERT (Devlin et al., 2019) have been
shown to yield substantial improvements in a variety of NLP tasks (Qiu et al.,
2020). BERT, for example, builds on the Transformer architecture (Vaswani et
al., 2017) and is trained on large raw corpora to learn general representations of
linguistic components (e.g., words and sentences) in context, which have been
shown useful for various tasks. Inrecent years, language representations have been
used not only for classification and sequence labeling tasks but also for language
generation, where combining a language representation with EncDec models of
a downstream task makes a noticeable improvement (Lample & Conneau, 2019).
However, grammatical biases are also learned in language representations, indi-
cating that they are not robust to grammatical errors (Yin, Long, Meng, & Chang,

2020). Therefore, it is necessary to reduce the grammatical bias of language rep-
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resentations and combine them with the EncDec model.

To combine the EncDec model with the language representations, I use the fusion
(fuse) method, which has shown the best performance in machine translation (Zhu
et al., 2020). In the fuse method, pre-trained representations of a language rep-
resentation are used as additional features during the training of a task-specific
model. When applying this method for GEC, what the language representations
has learned in pre-training will be preserved; however, the language representa-
tions will not be adapted to either the GEC task or the task-specific distribution of
inputs (i.e., erroneous sentences in a learner corpus), which also preserve grammat-
ical bias. It may hinder the GEC model from effectively exploiting the potential of
the language representations. Given these drawbacks, it is not as straightforward
to gain the advantages of language representations in GEC as one might expect.
Therefore, I propose a method to reduce the grammatical bias of language repre-

sentations, and aim to improve the performance of the GEC model.

In this investigation, I employ BERT, which is a widely used language represen-
tation (Qiu et al., 2020), and evaluate the following three methods: (a) initial-
ize an EncDec GEC model using pre-trained BERT as in Lample and Conneau
(2019) (BERT-init), which is initialized with the parameters of a pre-trained lan-
guage representations and then is trained over a task-specific training set (Lample
& Conneau, 2019; Rothe, Narayan, & Severyn, 2019), as a baseline, (b) pass the
output of pre-trained BERT into the EncDec GEC model as additional features
(BERT-fuse) (Zhu et al., 2020), and (c) combine the best parts of (a) and (b).

In this new method (c), I first fine-tune BERT with the GEC corpus and then use the
output of the fine-tuned BERT model as additional features in the GEC model. To
implement this, I further consider two options: (c1) additionally train pre-trained

BERT with GEC corpora (BERT-fuse mask) for removing grammatical bias, and
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(c2) fine-tune pre-trained BERT by way of the grammatical error detection (GED)
task (BERT-fuse GED). In (c2), I expect that the GEC model will be trained so that
it can leverage both the representations learned from large general corpora (pre-
trained BERT) and the debiased task-specific information useful for GEC induced
from the GEC training data.

These experiments show that using the output of the fine-tuned BERT model with
removed grammatical bias as additional features in the GEC model (method (c)) is
the most effective way of using BERT in most of the GEC corpora that [ used in the
experiments. I also show that the performance of GEC improves further by com-
bining the BERT-fuse mask and BERT-fuse GED methods. The best-performing
model achieves state-of-the-art results on the BEA-2019 and CoNLL-2014 bench-

marks.

3.1 Related Work

Studies have reported that a language representation can improve the performance
of GEC when it is employed either as a re-ranker (Chollampatt, Wang, & Ng,
2019; Kaneko, Hotate, Katsumata, & Komachi, 2019) or as a filtering tool (Asano,
Mita, Mizumoto, & Suzuki, 2019; Kiyono et al., 2019). EncDec-based GEC
models combined with language representations can also be used in combination
with these pipeline methods. Kantor et al. (2019) and Awasthi, Sarawagi, Goyal,
Ghosh, and Piratla (2019) proposed sequence labeling models based on correction
methods. The proposed method can utilize the existing EncDec GEC knowledge,
but these methods cannot be utilized due to the different architecture of the model.
Besides, to the best of my knowledge, no research has yet been conducted that
incorporates information of language representations for effectively training the

EncDec GEC model.
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Language representations are generally used in downstream tasks by fine-tuning
(Y. Liu, 2019; H. Zhang et al., 2019), however, Zhu et al. (2020) demonstrated
that it is more effective to provide the output of the final layer of a language rep-
resentation to the EncDec model as contextual embeddings. Recently, Weng, Yu,
Huang, Cheng, and Luo (2019) addressed the mismatch problem between contex-
tual knowledge from pre-trained models and the target bilingual machine trans-
lation. Here, I also claim that addressing the gap between grammatically correct

raw corpora and GEC corpora can lead to the improvement of GEC systems.

3.2 Methods for Using Pre-trained language repre-
sentation in GEC Model

In this section, I describe these approaches for incorporating a pre-trained language
representation into a GEC model. Specifically, I chose the following approaches:
(1) initializing a GEC model using BERT; (2) using BERT output as additional
features for a GEC model, and (3) using the output of BERT fine-tuned with the
GEC corpora as additional features for a GEC model.

3.2.1 BERT-init

I create a GEC EncDec model initialized with BERT weights. This approach is
based on Lample and Conneau (2019). Most recent state-of-the-art methods use
pseudo-data, which is generated by injecting pseudo-errors to grammatically cor-
rect sentences. However, note that this method cannot initialize a GEC model with

pre-trained parameters learned from pseudo-data.
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3.2.2 BERT-fuse

I use the model proposed by Zhu et al. (2020) as a feature-based approach (BERT-
fuse). This model is based on Transformer EncDec architecture. It takes an input
sentence X = (21, ..., ,, ), where n is its length. x; is i-th token in X. First, BERT
encodes it and outputs a representation B = (b1, ..., b,). Next, the GEC model
encodes X and B as inputs. h. € H is the i-th hidden representation of the I-th
layer of the encoder in the GEC model. h" stands for word embedding of an input

sentence X. Then I calculate fzi as follows:

~1

h, = %(Ah(h,ﬁ.‘l,Hl‘l) + Ay(hH BITY) (3.1)

7

where Aj, and A, are attention models for the hidden layers of the GEC encoder
H and the BERT output B, respectively. Then each fNLi is further processed by the
feedforward network I which outputs the [-th layer H' = (F (ﬁll), o F(ﬁ;))

The decoder’s hidden state si € S is calculated as follows:

& = Ay(s;'S54) (32)
1

8l = §(Ah(g§*1, H™) + A, (37 BY) (3.3)

sl = F(3) (3.4)

Here, A, represents the self-attention model. Finally, s” is processed via a linear
transformation and softmax function to predict the ¢-th word y,. I also use the
drop-net trick proposed by Zhu et al. (2020) to the output of BERT and the encoder
of the GEC model.

Zhu et al. (2020) proposes a drop-net trick to utilize both the output of BERT and
the encoder of the GEC model. The drop-net will affect Eq 3.1 and Eq 3.3 as
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described as follows; the BERT dropout ratio is set to pgop € [0,0.5]. At each
training iteration, for any layer I, I randomly sample p!, € [0, 1] and compare it to
Ddrop- In encoder, if pﬁl is smaller than pg,p,, I calculate Ah(hi_l, Hl_l), ifitis larger
than 1 — pgrop, then I calculate Ay(h B'™)). If parop < Pl < 1 — Darops then
Eq 3.1 is calculated as hﬁ. In the decoder, if pfs is smaller than pgrop, I calculate
Ap(871 HI7Y), if it is larger than 1 — pgrp, then I calculate A,(30 ", B'™1)). If

Parop < DL < 1 — Purop, then Eq 3.3 is calculated as 5.

3.2.3 BERT-fuse Mask and GED

The advantage of the BERT-fuse is that it can preserve pre-trained information
from raw corpora, however, it may not be adapted to either the GEC task or the
task-specific distribution of inputs. The reason is that in the GEC model, unlike the
data used for training BERT, the input can be an erroneous sentence. To fill the gap
between corpora used to train GEC and BERT, I additionally train BERT on GEC
corpora (BERT-fuse mask) or fine-tune BERT as a GED model (BERT-fuse GED)
and use it for BERT-fuse. GED is a sequence labeling task that detects grammat-
ically incorrect words in input sentences (Rei & Yannakoudakis, 2016; Kaneko,
Sakaizawa, & Komachi, 2017). Since BERT is also effective in GED (Bell, Yan-
nakoudakis, & Rei, 2019; Kaneko & Komachi, 2019), it is considered to be suit-

able for fine-tuning to take into account grammatical errors.

29



GEC model

Model Architecture Transformer (big)
Number of epochs 30
Max tokens 4096
Optimizer Adam
(81 =0.9,5, =098, =1 x 1079)
Learning rate 3x107°
Min learning rate 1x10°¢
Loss function label smoothed cross-entropy
(els = 01)
(Szegedy, Vanhoucke, loffe, Shlens, & Wojna, 2016)
Dropout 0.3
Gradient Clipping 0.1
Beam search 5
GED model
Model Architecture BERT-Base (cased)
Number of epochs 3
Batch size 32
Max sentence length 128
Optimizer Adam
(61 = 0.9, 5, =0.999, ¢ =1 x 10~%)
Learning rate de — 5
Dropout 0.1

Table 3.1: Hyperparameters values of GEC model and Fine-tuned BERT.

3.3 Experimental Setup

3.3.1 Train and Development Sets

I use the BEA-2019 workshop' (Bryant, Felice, Andersen, & Briscoe, 2019) offi-
cial shared task data as training and development sets. Specifically, to train a GEC
model, [ use W&I-train (Granger, 1998; Yannakoudakis, Andersen, Ardeshir, Ted,
& Diane, 2018), NUCLE (Dahlmeier, Ng, & Wu, 2013), FCE-train (Yannakoudakis

'https://www.cl.cam.ac.uk/research/nl/bea2019st/
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etal.,2011) and Lang-8 (Mizumoto, Komachi, Nagata, & Matsumoto, 2011) datasets.
[use W&I-dev as a development set. Note that I excluded sentence pairs that were
not corrected from the training data. To train BERT for BERT-fuse mask and GED,
I use W&I-train, NUCLE, and FCE-train as training, and W&I-dev was used as

development data.

3.3.2 Evaluating GEC Performance

In GEC, it is important to evaluate the model with multiple datasets (Mita, Mizu-
moto, Kaneko, Nagata, & Inui, 2019). Therefore, [ used GEC evaluation data such
as W&lI-test, CONLL-2014 (Ng et al., 2014), FCE-test and JFLEG (Napoles, Sak-
aguchi, & Tetreault, 2017). Iused ERRANT evaluation metrics (Felice, Bryant, &
Briscoe, 2016; Bryant, Felice, & Briscoe, 2017) for W&I-test, M? score (Dahlmeier
& Ng, 2012) for CONLL-2014 and FCE-test sets, and GLEU (Napoles, Sakaguchi,
Post, & Tetreault, 2015) for JFLEG. All the results (except ensemble) are the av-

erage of four distinct trials using four different random seeds.

3.3.3 Models

Hyperparameter values for the GEC model is listed in Table 3.1. For the BERT
initialized GEC model, I provided experiments based on the open-source code’.
For the BERT-fuse GEC model, I use the code provided by Zhu et al. (2020)°.
While the training the GEC model, the model was evaluated on the development
set and saved every epoch. If loss did not drop at the end of an epoch, the learning
rate was multiplied by 0.7. The training was stopped if the learning rate was less
than the minimum learning rate or if the learning epoch reached the maximum

epoch number of 30.

’https://github.com/facebookresearch/XLM
Shttps://github.com/bert-nmt/bert-nmt
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Training BERT for BERT-fuse mask and GED was based on the code from Wolf et
al. (2019)*. The additional training for the BERT-fuse mask was done in the Devlin
et al. (2019)’s setting. Hyperparameter values for the GED model is listed in Table
3.1. I used the BERT-Base cased model, for consistency across experiments’. The

model was evaluated on the development set.

3.3.4 Pseudo-data

I also performed experiments utilizing BERT-fuse, BERT-fuse mask, and BERT-
fuse GED outputs as additional features to the pre-trained on the pseudo-data GEC
model. The pre-trained model using pseudo-data was initialized with the Pret-
Large+SSE model used in the Kiyono et al. (2019)° experiments. This pseudo-data
is generated by probabilistically injecting character errors into the output (Lichtarge
et al., 2019) of a backtranslation (Z. Xie, Genthial, Xie, Ng, & Jurafsky, 2018)
model that generates grammatically incorrect sentences from grammatically cor-

rect sentences (Kiyono et al., 2019).

3.3.5 Right-to-left (R2L) Re-ranking for Ensemble

I describe the R2L re-ranking technique incorporated in these experiments pro-
posed by Sennrich, Haddow, and Birch (2016), which proved to be efficient for
the GEC task (Grundkiewicz et al., 2019; Kiyono et al., 2019). Standard left-to-
right (L2R) models generate the n-best hypotheses using scores with the normal
ensemble and R2L models re-score them. Then, I re-rank the n-best candidates
based on the sum of the L2R and R2L scores. I use the generation probability as

a re-ranking score and ensemble four L2R models and four R2L models.

“https://github.com/huggingface/transformers
Shttps://github.com/google-research/bert
®https://github.com/butsugiri/gec-pseudodata
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BEA-test (ERRANT) CoNLL-14 (M?)  FCE-test(M?)  JFLEG
P R Fos P R Fps P R Fys GLEU

w/o BERT 51.5 432 49.6 592 312 502 61.7 464 579 52.7
BERT-init 55.1 437 524 613 31.5 514 624 469 585 53.0
BERT-fuse 57.5 449 544 623 313 520 640 476 598 54.1
BERT-fuse mask 57.1 447 541 629 322 528 643 481 60.2 54.2
BERT-fuse GED 58.1 4438 548 63.6 33.0 53.6 650 49.6 61.2 54.4
w/o BERT 66.1 59.9 64.8 685 448 619 565 481 549 61.0
BERT-fuse 66.6 60.0 652 683 457 62.1 59.7 485 57.0 61.2
BERT-fuse mask 67.0 60.0 654 688 453 623 597 47.1 56.6 61.2
BERT-fuse GED 67.1 60.1 65.6 69.2 456 62.6 59.8 469 56.7 61.3
Lichtarge et al. (2019) - - - 655 37.1 568 - - - 61.6
Awasthi et al. (2019) - - - 66.1 43.0 59.7 - - - 60.3
Kiyono et al. (2019) 65.5 59.4 642 679 441 o613 - - - 59.7
BERT-fuse GED + R2L 723 614 69.8 72.6 464 652 628 488 594 62.0
Lichtarge et al. (2019) - - - 66.7 439 604 - - - 63.3
Grundkiewicz et al. (2019) 72.3  60.1 69.5 - - 642 - - - 61.2
Kiyono et al. (2019)* 74.7 56.7 702 724 46.1 65.0 - - - 61.4

Table 3.2: Results of the GEC models. The top group shows the results of the sin-
gle models without using pseudo-data and/or ensemble. The second group shows
the results of the single models using pseudo-data. The third group shows ensem-
ble models using pseudo-data. Bold indicates the highest score in each column. *
reports the state-of-the-art scores for BEA test and CoNLL 2014 for two separate
models: models with and without SED. I filled out a single line with the results
from such two separate models.

3.4 Results

Table 3.2 shows the experimental results of the GEC models. A model trained on
Transformer without using BERT is denoted as “w/o BERT.” In the top group of
results, it can be seen that using BERT consistently improves the accuracy of the
GEC model. Also, BERT-fuse, BERT-fuse mask, and BERT-fuse GED outper-
formed the BERT-init model in almost all cases. Furthermore, I can see that using
BERT considering GEC corpora as BERT-fuse leads to better correction results.
And the BERT-fuse GED always gives better results than the BERT-fuse mask.
This may be because the BERT-fuse GED is able to explicitly consider grammati-

cal errors. In the second group, the correction results are improved by using BERT
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Figure 3.1: Hidden representation visualization for encoded grammatically correct
and incorrect words.

as well. Also in this setting, BERT-fuse GED outperformed other models in all
cases except for the FCE-test set, thus, achieving state-of-the-art results with a
single model on the BEA2019 and CoNLL14 datasets. In the last group, the en-
semble model yielded high scores on all corpora, improving state-of-the-art results

by 0.2 points in CoNLL14.

3.5 Analysis

3.5.1 Visualizing Hidden Layers of Language Representation

I investigate the characteristics of the hidden representations of vanilla (i.e., with-
out any fine-tuning) BERT and BERT fine-tuned with GED. I visualize the hidden
representations of the same words from the last layer of BERT HX. They were
chosen depending on correctness in a different context, using the above models.
These target eight words (1. the 2. , 3. in4. to 5. of 6. a 7. for 8. is) that have
been mistaken more than 50 times, were chosen from W&I-dev. I sampled the

same number of correctly used cases for the same word from the corrected side of
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Error type BERT-fuse GED w/o BERT

PUNCT 40.2 36.8
OTHER 204 19.1
DET 48.8 45.4
PREP 36.7 34.8
VERB:TENSE 36.0 34.1

Table 3.3: The result of single Fine-tuned BERT-fuse and w/o BERT models with-
out using pseudo-data on most error types including all the top-5 frequent types of
error in W&I-dev

W&l-dev.

Figure 3.1 visualizes hidden representations of BERT and fine-tuned BERT. It can
be seen that the vanilla BERT does not distinguish between correct and incorrect
clusters. The plotted eight words are gathered together, and it can be seen that
hidden representations of the same word gather in the same place regardless of
correctness. On the other hand, fine-tuned BERT produces a vector space that
demonstrates correct and incorrect words on different sides, showing that hidden
representations take grammatical errors into account when fine-tuned on GEC cor-
pora. Moreover, it can be seen that the correct cases are divided into 8 clusters,

implying that BERT’s information is also retained.

3.5.2 Performance for Each Error Type

I investigate the correction results for each error type. I use ERRANT (Felice et
al., 2016; Bryant et al., 2017) to measure F s of the model for each error type.
ERRANT can automatically assign error types from source and target sentences. |
use single BERT-fuse GED and w/o BERT models without using pseudo-data for

this investigation.

Table 3.3 shows the results of single BERT-fuse GED and w/o BERT models with-
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out using pseudo-data on most error types including all the top-5 frequent error
types in W&I-dev. I see that BERT-fuse GED is better for all error types com-
pared to w/o BERT. I can say that the use of BERT fine-tuned by GED for the

EncDec model improves the performance independently of the error type.
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4| Multi-Head Multi-Layer Attention to Lan-

guage Representations

In this chapter, I propose a method to effectively reduce the effect of grammatical
bias in downstream tasks, instead of debiasing pre-trained language representa-
tions in advance. It has been demonstrated that utilizing language representation
models pre-trained with large-scale data is effective for various downstream tasks.
For example, recent studies have shown a significant improvement using large-
scale data to train large deeper models for natural language understanding tasks

(M. E. Peters et al., 2018; Alec, Karthik, Tim, & Ilya, 2018; Devlin et al., 2019).

Moreover, neural networks learn different representations for each layer. For ex-
ample, Belinkov, Durrani, Dalvi, Sajjad, and Glass (2017) demonstrated that in
a machine translation task, the lower layers of the network learn to represent the
word structure, while higher layers are more focused on word meaning. M. E. Pe-
ters et al. (2018) showed that in learning deep contextualized word representations,
constructing representations of layers corresponding to each task by a weighted
sum improved the accuracy of six NLP tasks. M. Peters, Neumann, Zettlemoyer,
and Yih (2018) empirically showed that lower layers are best-suited for local syn-
tactic relationships, that higher layers better model longer-range relationships, and

that the top-most layers specialize at the language modeling.

For tasks that emphasize the grammatical nature, such as grammatical error detec-
tion, the usual way of using language representations, using only the final layer
of information, is considered to be more susceptible to grammatical bias, as it
does not allow for effective learning of grammatical information. Therefore, I
propose a model that uses multi-head multi-layer attention in order to construct

hidden representations from different layers suitable to reduce grammatical bias
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for grammatical error detection.

4.1 Related Works

4.1.1 Grammatical Error Detection with Language Represen-

tations

Often, in sequence labeling tasks, recent supervised neural grammatical error de-
tection models are built upon Bi-LSTM (Rei & Yannakoudakis, 2016; Kaneko
et al.,, 2017; Rei et al., 2017; Rei, 2017; Kasewa et al., 2018; Rei & Segaard,
2019). Rei and Segaard (2019) used token-level predictions by Bi-LSTM for self-
attention to predict sentence-level labels for grammatical error detection. How-
ever, | adopt a transformer model for token-level grammatical error detection due
to the expressiveness and better performance of transformer model over LSTM

model.

Several studies have exploited large quantities of raw data to create additional
artificial data. Rei et al. (2017) artificially generated writing errors in order to
create additional resources to learn a neural sequence labeling model following
Rei (2017). Kasewa et al. (2018) employed a neural machine translation system
to create error-filled artificial data for grammatical error detection. By contrast, I
directly adopt a pre-trained language representation model trained with large-scale
raw data. This way, there is no need to train an additional generation model and
generate pseudo-data. It also eliminates the need for long training runs on large

pseudo-data.
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4.1.2 Using the Layer Representations

Contextualized Word Representations (ELMo) (M. E. Peters et al., 2018) used
large-scale data for a language representation model. Their model learns task-
specific weighting from all fixed hidden layers of the pre-trained Bi-LSTM to
construct contextualized word embeddings optimized to a given task. In other
words, ELMo learns task-specific representations exclusively in the first layer,
whereas other parameters of a pre-trained model remain unchanged. On the con-
trary, I construct representations suited for given tasks by fine-tuning all parame-
ters of the proposed pre-trained model, using multi-head multi-layer attention. All
parameters and constructed representations of proposed model are trained to be

best-suited for the given task.

Takase, Suzuki, and Nagata (2018) employed intermediate layer representations,
including input embeddings, to calculate the probability distributions in order to
solve a ranking problem in language generation tasks. Similarly, I considered the
information of each layer, but my motivation is to seize the optimal information
from each layer suitable for a given task using a multi-head multi-layer attention.
Moreover, their model estimated probability distributions from each layer, whereas

mine constructs hidden representations from each layer for the output layer.

Furthermore, there is a study that predicts information from the middle layer of
the language model and learns the errors occurring owing to the model (Al-Rfou,
Choe, Constant, Guo, & Jones, 2019). The use of the information of the middle
layer of transformer_block is the same as in my research, however the infor-
mation of each layer is not taken into account at the time of evaluation and is used
only for learning. Furthermore, the information on the surface layer is less use-
ful and learning is undertaken so that the influence of the surface layer decreases

as learning progresses. In contrast, as the proposed method uses attention, it also
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learns which layer is utilized in the model itself.

4.2 Language Representations for Grammatical Er-
ror Detection

I propose a model that applies multi-head attention to each layer (multi-head multi-
layer attention, MHMLA) to fine-tune pre-trained BERT (Devlin et al., 2019).
Architectures of BERT and MHMLA for the grammatical error detection task are
illustrated in Figure 4.1. In this section, I first introduce BERT and then explain

the proposed model, MHMLA.

4.2.1 BERT

BERT is designed to learn deep bidirectional representations by jointly condition-
ing both the left and right contexts in all layers (Figure 4.1(a)). It is based on a
multi-layer bidirectional transformer encoder (Vaswani et al., 2017). Insofar it is
a language representation model pre-trained on large-scale data, it can be used for
fine-tuning. It achieved state-of-the-art results for a wide range of tasks such as
natural language understanding, name entity recognition, question answering, and

grounded commonsense inference (Devlin et al., 2019).

BERT has a multi-layer bidirectional transformer encoder and can be used for
different architectures, such as in classification and sequence-to-sequence learning

tasks. Here, I explain the BERT’s architecture for sequence labeling tasks. Given

asequence S = wy, - -+ , Wy, - -+ , wy as input, BERT is formulated as follows:
h) = W.w,+W, 4.1)
h! = transformer block(h!™") (4.2)
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Figure 4.1: Architectures of BERT and MHMLA for grammatical error detection.

yBERD - —  softmax(W,h” + b,) (4.3)

n

Where w,, is a current token, and /N denotes the sequence length. Equation 4.1 thus
creates an input embedding. Here, transformer_block includes self-attention
and fully connected layers (Vaswani et al., 2017), and outputs k' . [ is the number
of the current layer, [ > 1. L is the total number of layers of BERT. Equation 4.3
denotes the output layer. W, is an output weight matrix, b, is a bias for the output

RT)

layer, and y%BE is a prediction.

The parameters W, W, and transformer_block are pre-trained on a large document-
level corpus using a masked language model (Taylor, 1953) and predicting a next
sentence. Then, BERT uses a different task-specific matrix W, of the output layer
(Equation 4.3) for a given sequence labeling task. To adapt BERT for specific
tasks, all parameters of BERT are fine-tuned jointly by predicting a task-specific
label with the task-specific output layer to maximize the log-probability of the

correct label.
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4.2.2 Multi-Head Multi-Layer Attention to Acquire Task-Specific

Representations

Multi-head attention (Vaswani et al., 2017) is more beneficial than a single atten-
tion function. MHMLA on a sequence labeling model applies attention to each
layer [ of the output of transformer_block hﬁl of Equation 4.2 (Figure 4.1(b)).
First, I calculate attention value v!:

vl =Wy hl +bl, (4.4)

vi'tn

Here, W, is a weight matrix, b, is a bias, and j is a head number. I apply a non-
linear layer to h', to acquire k. Attention score a!, is as follows:

k;, ; = relu(Wih, + b)) (4.5)

J

a,, ; = Wikl + bl (4.6)

aj'vn

where Wy and W, are weight matrices, and by and b, are biases. Multi-heads are

then calculated as follows:

. exp(al)) 47
n?j - L t ( * )
Zt:1 eXp(a’n,j>
L
head,, ; = ) _a!, vl ; (4.8)
t=1

where @' is the attention weight, normalized to sum up to 1 over all values in the
layers. These weights are then used to combine the context-conditioned hidden

representations from Equation (5) into a single-token representation c,,:

¢, = concat(head,, , - - - ,head, ;) (4.9)
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corpus train  dev test

FCE 28,731 2,222 2,720
CoNLL14 - - 1,312
JFLEG - - 747

Table 4.1: Sentence statistics of used corpora.

where J is the total number of heads. Finally, I return task-specific predictions

based on this representation:
y12e) — softmax(Woc,, + b,) (4.10)

W, is an output weight matrix and b, is a bias of output layer. The proposed model

is optimized by minimizing cross-entropy loss on the token-level annotation.

4.3 Experiments

4.3.1 Datasets

I focus on a supervised sequence labeling task: viz., grammatical error detection.
Grammatical error detection is the task of identifying incorrect tokens that need to
be edited in order to produce a grammatically correct sentence. I evaluated these
approach on the three different grammatical error detection datasets. Table 4.1

shows statistics for each corpus.

FCE. I fine-tuned and searched the parameters of the model and evaluated the
system on the First Certificate in English (FCE) dataset (Yannakoudakis et
al., 2011), which contains error-annotated short essays written by language
learners. The FCE dataset is a popular English learner corpus for grammat-

ical error detection. I followed the official split of the data.
CoNLL14. Iadditionally used dataset from the CONLL 2014 shared task (CoNLL14)

43



dataset (Ng et al., 2014) in evaluation. This dataset was written by higher-
proficiency learners on different technical topics. It was manually corrected
by two separate annotators, and I report results on each of these annotations

(CoNLL14-{1,2}).

JFLEG. I also evaluated this approach with the JHU FLuency-Extended GUG
(JFLEG) corpus (Napoles et al., 2017). It contains a broad range of language-
proficiency levels and focuses more on fluency edits and making the text
more native-sounding, in addition to grammatical corrections. JFLEG is
not labeled for grammatical error detection. Therefore, I used dynamic pro-
gramming to label tokens in sentences as correct or incorrect. Because JF-
LEG is a recently developed corpus, there is only one prior study with ex-
perimental results (Rei & Segaard, 2019). JFLEG is tagged by multiple
annotators, like CONLL14, so I followed Rei and Segaard (2019) to build a
version that combines the references: if a token is labeled as an error by any

annotator, it is marked as an error’'.

4.3.2 [Experimental Details

I used a publicly available pre-trained language representation model, namely
the BERTgase uncased model’. This model has 12 layers, 768 hidden size, and
16 heads of self-attention. Layer attention has 12 heads (J = 12). I fine-tuned
the model over 5 epochs with a batch size of 32. The maximum training sen-
tence length was 128 tokens. I used the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 5e-05. I applied dropout (Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014) to h!, k!, ., and dﬁw- with a dropout rate of

n,J°

! Although JFLEG’s experimental settings are not described in the paper, I confirmed them with
the authors of the paper over e-mail.
*https://github.com/google-research/bert
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0.3. dﬁw- is referred to as attention dropout. I also used WordPiece embeddings
(Wuetal., 2016). To make this compatible with sub-token tokenization, I inputted
each tokenized word into the WordPiece tokenizer and used the hidden state cor-
responding to the first sub-token as input to the output layer, as with the original

BERT.

I used Fy ;5 as the main evaluation measure. This measure was also adopted in the
CoNLL14 shared task for the grammatical error correction task (Ng et al., 2014).
It combines both precision and recall, while assigning twice as much weight to
precision, because accurate feedback is often more important than coverage in

error detection applications (Nagata & Nakatani, 2010).

4.3.3 Baselines and Comparisons

I compare with models of Rei (2017), Rei and Segaard (2019), Rei et al. (2017),
and Kasewa et al. (2018) which are based on the Bi-LSTM architecture. The first
group, Rei (2017) and Rei and Segaard (2019), was trained exclusively on the
FCE dataset. The second group, Rei et al. (2017) and Kasewa et al. (2018) used

additional artificial data along with the FCE dataset for training.

The baseline and the proposed models were trained on the transformer architecture.
The first three are the descriptions of the baselines, and the fourth is a description

of the proposed model:

BERTgsg W/0 pre-train. This model is trained using only the FCE dataset and
with random initialization. This baseline did not use any other corpus for

training.

BERTgsg. This is the original pre-trained model described in Section 4.3.2 fine-
tuned on the FCE dataset. This baseline uses original BERT model (Devlin

et al., 2019) and can be seen as surrogated version of the proposed method
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FCE CoNLL14-1 CoNLL14-2 JFLEG

P R Fos P R Fos P R Fos P R Fos
Rei (2017) 58.88 2892 4848 | 17.68 19.07 17.86 | 2522 1925 23.62 - - -
Rei and Segaard (2019) | 65.53  28.61  52.07 | 25.14 1522 22.14 | 37.72 1619 29.65 | 72.53 25.04  52.52
Rei et al. (2017) 60.67 28.08 49.11 | 2328 18.01 21.87 | 3528 19.42 30.13 - - -
Kasewa et al. (2018) - - 55.6 - - 28.3 - - 355 - - -
BERTgase W/0 pre-train | 48.85 1130 2934 | 1145 780 1047 | 1824 931 1530 | 5885 1322 3438l
BERTgase 69.80 3737  59.47 | 3408 33.56 3397 | 46.01 33.89 4293 | 78.06 3628  63.45
AvgL 68.09 41.14 6020 | 3497 32.02 3433 | 4533 3527 42.88 | 7735 37.05  63.52
MHMLA 68.87" 43.45*" 61.65*" | 35.74* 33.501 35.26* | 46.45" 3547 43.747 | 77.74 38.85'T 64.77

Table 4.2: Results of grammatical error detection. These results are averaged over
five runs. * and { indicate that there is a significant difference against BERTgasg
and AvgL, respectively.

J | FCE CoNLL14-1 CoNLLI14-2 JFLEG
1|61.16 33.75 42.89 63.98
2] 61.62 33.44 42.42 63.72
3 161.90 34.50 43.17 64.45
4| 61.55 33.74 42.80 64.37
6 | 61.22 34.26 43.29 64.48
8 | 61.27 34.72 43.02 64.10
12 | 61.65 35.26 43.74 64.77

Table 4.3: F 5 scores of MHMLA using different number of heads .J. These results
are averaged over five runs.

without multi-layer attention.

AvgL. This model is called averaged layers, which averages representations after
linear transformation of k', (Equation 4.2) for the output layer of BER Tgasg

model instead of using an attention.

MHMLA. This is the proposed model that is an extension of BERTgsg, With
MHMLA to the pre-trained model while fine-tuning on the FCE dataset.

4.4 Results

Table 4.2 shows the grammatical error detection results for the FCE, CoNLL14-
{1,2}, and JFLEG datasets. Scores for Rei (2017), Rei and Segaard (2019), Rei

et al. (2017), and Kasewa et al. (2018) were taken from their respective papers.
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Figure 4.2: Attention visualization of MHMLA on each dataset using a different
number of heads. MHMLA with 8 and 12 heads tends to attend to all layers more
or less equally for all datasets.

In FCE, CoNLL14, and JFLEG, the BERTgssg model significantly outperformed
existing methods and the baseline (without pre-training) in terms of precision, re-
call, and Fy 5. This demonstrates that using a pre-trained language representation
model is highly effective for grammatical error detection. Furthermore, MHMLA
achieved the highest F; s on all datasets, outperforming BERTgasg by 2.18 points,
1.29 points, 0.81 points, and 1.32 points on FCE, CoNLL14-{1,2}, and JFLEG,
respectively. The scores for the AvgL model were lower than that for the proposed
MHMLA model, meaning that naively using information from layers is not as ef-
fective as using MHMLA. These results show that using MHMLA and learning
task-specific representations improves the accuracy. These results show that the
proposed method is able to make more effective use of language representations

in which grammatical biases are learned.
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To verify the effect of MHMLA, I examined the F, 5 value for each head number.
I investigated 1, 2, 3, 4, 6, 8, and 12 heads (i.e. the number of heads up to 12
by which the hidden layer size of 768 can be divided). Table 4.3 shows the Fy 5
values for each number of heads on FCE, CoNLL14-{1,2}, and JFLEG datasets.
Regarding FCE, the highest Fy, 5 score was achieved with 3 heads. For CoNLL14-
{1,2} and JFLEG, the F, 5 values were highest with 12 heads, demonstrating that

adopting multi-head leads to improved accuracy.

4.5 Analysis of the Effect of MHMLA

The purpose of MHMLA is to construct representations not only from the final
layer but also from various layers to reduce the effect of grammatical bias. Multi-
head attention allows the model to jointly attend to information from different
representation subspaces at different positions. Therefore, it is considered that
increasing the number of heads leads to utilization of information from various
layers. Hence, I investigate the effect of the number of heads on each layer by
visualizing the averaged score of MHMLA that was calculated by considering
the heads j of Equation 4.7 for all layers on test sets of the three datasets: FCE,
CoNLL14, and JFLEG.

Figure 4.2 visualizes the average attention score to each layer of MHMLA for each
head. The average attention score is calculated by averaging head,, in Equation
(4.8). For all datasets, when there were a fewer numbers of heads, the multi-head
attentions learned to attend to different layers but tended to focus on particular
layers. For example, as shown in Figure 4.2(b), multi-head attention with heads
of 2, 3, and 4 heads focused more on layers 2 and 3 while hardly attending to
layers 5 and 6. Figure 4.2(b) shows that the same amount of attention is attended

to each layer when the number of heads are 8 and 12. In Figure 4.2(c), attention is
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sharp, especially with the number of heads being 1, 2, 3, and 4. In contrast, with
there are more heads, viz. 8 and 12, attention tended to attend to all layers more
or less equally for all datasets. From this visualization, I conclude that the goal
of utilizing the information from various layers has been achieved. Therefore, the
proposed method effectively extracts information from language representations
in which grammatical biases have been learned by exploiting information from

various layers.
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5| Gender-Preserving Debiasing for Word Em-
beddings

In this chapter, we propose a method to remove semantic bias, especially gender
bias, from word embeddings. Despite the impressive success stories behind word
representation learning (Pennington et al., 2014; Devlin et al., 2019; M. E. Pe-
ters et al., 2018; Mikolov, Yih, & Zweig, 2013; Mikolov, Chen, & Dean, 2013),
further investigations into the learnt representations have revealed several worry-
ing issues. The semantic representations learnt, in particular from social media,
have shown to encode significant levels of racist, offensive and discriminative lan-
guage usage (Bolukbasi, Chang, Zou, Saligrama, & Kalai, 2016; J. Zhao, Zhou,
Li, Wang, & Chang, 2018; Elazar & Goldberg, 2018; Rudinger, Naradowsky,
Leonard, & Van Durme, 2018; J. Zhao, Wang, Yatskar, Ordonez, & Chang, 2018).
For example, Bolukbasi et al. (2016) showed that word representations learnt from
a large (300GB) news corpus to amplify unfair gender biases. Microsoft’s Al
chat bot 7ay learnt abusive language from Twitter within the first 24 hours of
its release, which forced Microsoft to shutdown the bot (The Telegraph, 2016).
Caliskan, Bryson, and Narayanan (2017) conducted an implicit association test
(IAT) (Greenwald, McGhee, & Schwatz, 1998) using the cosine similarity mea-
sured from word representations, and showed that word representations computed
from a large Web crawl contain human-like biases with respect to gender, profes-

sion and ethnicity.

Given the broad applications of pre-trained word embeddings in various down-
stream NLP tasks such as machine translation (Zou, Socher, Cer, & Manning,
2013), sentiment analysis (Shi, Fu, Bing, & Lam, 2018), dialogue generation (S. Zhang

et al., 2018) etc., it is important to debias word embeddings before they are applied
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in NLP systems that interact with and/or make decisions that affect humans. I be-
lieve that no human should be discriminated on the basis of demographic attributes
by an NLP system, and there exist clear legal (European Union, 1997), business
and ethical obligations to make NLP systems unbiased (Holstein, Vaughan, III,
Dudik, & Wallach, 2018).

Despite the growing need for unbiased word embeddings, debiasing pre-trained
word embeddings is a challenging task that requires a fine balance between remov-
ing information related to discriminative biases, while retaining information that
is necessary for the target NLP task. For example, profession-related nouns such
as professor, doctor, programmer have shown to be stereotypically male-biased,
whereas nurse, homemaker to be stereotypically female-biased, and a debiasing
method must remove such biases. On the other hand, one would expect!, beard
to be associated with male nouns and bikini to be associated with female nouns,
and preserving such gender biases would be useful, for example, for a recommen-
dation system (Garimella, Banea, & Mihalcea, 2017). As detailed later in sec-
tion 5.1, existing debiasing methods can be seen as embedding word embeddings
into a subspace that is approximately orthogonal to a gender subspace spanned
by gender-specific word embeddings. Although unsupervised, weakly-supervised
and adversarially trained models have been used for learning such embeddings,
they primarily focus on the male-female gender direction and ignore the effect of

words that have a gender orientation but not necessarily unfairly biased.

To perform an extensive treatment of the gender debiasing problem, I split a given
vocabulary V' into four mutually exclusive sets of word categories: (a) words
wy € Vy that are female-biased but non-discriminative, (b) words w,,, € V,, that

are male-biased but non-discriminative, (c) words w,, € V), that are gender-neutral,

IThis indeed is the case for pre-trained GloVe embeddings
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and (d) words w, € V, that are stereotypical (i.e., unfairly’ gender-biased). Given
a large set of pre-trained word embeddings and small seed example sets for each
of those four categories, I learn an embedding that (i) preserves the feminine infor-
mation for the words in V, (ii) preserves the masculine information for the words
in V,,, (iii) protects the neutrality of the gender-neutral words in V,,, while (iv) re-
moving the gender-related biases from stereotypical words in V. The embedding
is learnt using an encoder in a denoising autoencoder, while the decoder is trained
to reconstruct the original word embeddings from the debiased embeddings that
do not contain unfair gender biases. The overall model is trained end-to-end to

dynamically balance the competing criteria (i)-(iv).

I evaluate the bias and accuracy of the word embeddings debiased by the pro-
posed method on multiple benchmark datasets. On the SemBias (J. Zhao, Zhou,
et al., 2018) gender relational analogy dataset, the proposed method outperforms
previously proposed hard-debiasing (Bolukbasi et al., 2016) and gender-neural
Global Vectors (GN-GloVe) (J. Zhao, Zhou, et al., 2018) by correctly debiasing
stereotypical analogies. Following prior work, I evaluate the loss of information
due to debiasing on benchmark datasets for semantic similarity and word analogy.
Experimental results show that the proposed method can preserve the semantics
of the original word embeddings, while removing gender biases. This shows that
the debiased word embeddings can be used as drop-in replacements for word em-
beddings used in NLP applications. Moreover, experimental results show that the
proposed method can also debias word embeddings that are already debiased us-
ing previously proposed debiasing methods such as GN-GloVe to filter out any
remaining gender biases, while preserving semantic information useful for down-
stream NLP applications. This enables to use the proposed method in conjunction

with existing debiasing methods.

2] use the term unfair as used in fairness-aware machine learning.
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5.1 Related Work

Bias in Static Word Embeddings: Bolukbasi et al. (2016) proposed a post-
processing approach that projects gender-neutral words into a subspace, which is
orthogonal to the gender direction defined by a list of gender-definitional words.
They refer to words associated with gender (e.g., she, actor) as gender-definitional,
and the remainder as gender-neutral. They proposed a hard-debiasing method
where the gender direction is computed as the vector difference between the em-
beddings of the corresponding gender-definitional words, and a soft-debiasing
method, which balances the objective of preserving the inner-products between the
original word embeddings, while projecting the word embeddings into a subspace
orthogonal to the gender definitional words. They use a list of gender-definitional
words to train a support vector machine classifier, and use it to expand the initial set
of gender-definitional words. However, their method ignores gender-definitional
words during the subsequent debiasing process, and focus only on words that are
not predicted as gender-definitional by a classifier. Therefore, if the classifier er-
roneously predicts a stereotypical word as gender-definitional, it would not get
debiased. J. Zhao, Zhou, et al. (2018) modified the original GloVe (Pennington et
al., 2014) objective to learn gender-neutral word embeddings (GN-GloVe) from a
given corpus. They maximise the squared ¢, distance between gender-related sub-
vectors, while simultaneously minimising the GloVe objective. GN-GloVe learns
gender-debiased word embeddings from scratch from a given corpus, and cannot
be used to debias pre-trained word embeddings. Moreover, similar to hard and soft
debiasing methods described above, GN-GloVe uses pre-defined lists of feminine,

masculine and gender-neutral words and does not debias words in these lists.

Adversarial learning (Q. Xie, Dai, Du, Hovy, & Neubig, 2017; Elazar & Goldberg,
2018; Li, Baldwin, & Cohn, 2018) for debiasing first encode the inputs and then
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two classifiers are jointly trained — one predicting the target task (for which we
must ensure high prediction accuracy) and the other for protected attributes (that
must not be easily predictable). Elazar and Goldberg (2018) showed that although
it is possible to obtain chance-level development-set accuracy for the protected at-
tributes during training, a post-hoc classifier trained on the encoded inputs can still
manage to reach substantially high accuracies for the protected attributes. They
conclude that adversarial learning alone does not guarantee invariant representa-
tions for the protected attributes. Ravfogel, Elazar, Gonen, Twiton, and Goldberg
(2020) found that iteratively projecting word embeddings to the null space of the

gender direction to further improve the debiasing performance.

Benchmarks for biases in Static Embeddings: Word Embedding Association
Test (WEAT; Caliskan et al., 2017) quantifies various biases (e.g. gender, race
and age) using semantic similarities between word embeddings. Word Association
Test (WAT) measures gender bias over a large set of words (Du, Wu, & Lan, 2019)
by calculating the gender information vector for each word in a word association
graph created in the Small World of Words project (SWOWEN; Deyne, Navarro,
Perfors, Brysbaert, & Storms, 2019) by propagating masculine and feminine words
via a random walk (D. Zhou, Bousquet, Lal, Weston, & Scholkopf, 2003). Sem-
Bias dataset (J. Zhao, Zhou, et al., 2018) contains three types of word-pairs: (a)
Definition, a gender-definition word pair (e.g. hero — heroine), (b) Stereotype, a
gender-stereotype word pair (e.g., manager — secretary) and (c) None, two other
word-pairs with similar meanings unrelated to gender (e.g., jazz — blues, pen-
cil — pen). It uses the cosine similarity between the gender directional vector,
(Eg - %), and the offset vector (a — b) for each word pair, (a,b), in each set
to measure gender bias. WinoBias (J. Zhao, Wang, et al., 2018) uses the abil-

ity to predict gender pronouns with equal probabilities for gender neutral nouns
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such as occupations as a test for the gender bias in embeddings. WinoBias dataset
contains two types of sentences that require linking gendered pronouns to either
male or female stereotypical occupations. In Type 1, co-reference decisions must
be made using world knowledge about some given circumstances. However, in
Type 2, these tests can be resolved using syntactic information and understanding
of the pronoun. It involves two conditions: the pro-stereotyped (pro) condition
links pronouns to occupations dominated by the gender of the pronoun, and the
anti-stereotyped (anti) condition links pronouns to occupations not dominated by
the gender of the pronoun. For a correctly debiased set of word embeddings, the

difference between pro and anti is expected to be small.

Bias in Contextualised Word Embeddings: May, Wang, Bordia, Bowman, and
Rudinger (2019) extended WEAT using templates to create a sentence-level bench-
mark for evaluating bias called SEAT. In addition to the attributes proposed in
WEAT, they proposed two additional bias types: angry black woman and double
binds (when a woman is doing a role that is typically done by a man that woman
is seen as arrogant). They show that compared to static embeddings, contextu-
alised embeddings such as BERT, GPT and ELMo are less biased. However, sim-
ilar to WEAT, SEAT also only has positive predictive ability and cannot detect
the absence of a bias. Bommasani, Davis, and Cardie (2020) evaluated the bias
in contextualised embeddings by first distilling static embeddings from contextu-
alised embeddings and then using WEAT tests for different types of biases such as
gender (male, female), racial (White, Hispanic, Asian) and religion (Christianity,
Islam). They found that aggregating the contextualised embedding of a particular
word in different contexts via averaging to be the best method for creating a static

embedding from a contextualised embedding.

J. Zhao et al. (2019) showed that contextualised ELMo embeddings also learn
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gender biases present in the training corpus. Moreover, these biases propagate to
a downstream coreference resolution task. They showed that data augmentation
by swapping gender helps more than neutralisation by a projection. However, data
augmentation requires re-training of the embeddings, which is often costly com-
pared to fine-tuning. Kurita, Vyas, Pareek, Black, and Tsvetkov (2019) created
masked templates such as “  is a nurse” and used BERT to predict the masked
gender pronouns. They used the log-odds between male and female pronoun pre-
dictions as an evaluation measure and showed that BERT to be biased according
to it. Karve, Ungar, and Sedoc (2019) learnt conceptor matrices using class defi-
nitions in the WEAT and used the negated conceptors to debias ELMo and BERT.

Although their method was effective for ELMo, the results on BERT were mixed.

Dev, Li, Phillips, and Srikumar (2020) used natural language inference (NLI) as a
bias evaluation task, where the goal is to ascertain if one sentence (i.e. premise)
entails or contradictions another (i.e. hypothesis), or if neither conclusions hold
(i.e. neutral). The premise-hypothesis pairs are constructed to elicit various types
of discriminative biases. They showed that orthogonal projection to gender direc-
tion (Dev & Phillips, 2019) can be used to debias contextualised embeddings as
well. However, their method can be applied only to the noncontextualised layers

(ELMo’s Layer 1 and BERT’s subtoken layer).

5.2 Gender-Preserving Debiasing

5.2.1 Formulation

Given a pre-trained set of d-dimensional word embeddings {wi}pjl, over a vo-
cabulary V, I consider the problem of learning a map F : R? — R’ that projects

the original pre-trained word embeddings to a debiased [-dimensional space. I
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do not assume any knowledge about the word embedding learning algorithm that
was used to produce the pre-trained word embeddings is given. Moreover, I do not
assume the availability or access to the language resources such as corpora or lex-
icons that might have been used by the word embedding learning algorithm. De-
coupling the debiasing method from the word embedding learning algorithm and
resources increases the applicability of the proposed method, enabling to debias
pre-trained word embeddings produced using different word embedding learning

algorithms and using different types of resources.

I propose a debiasing method that models the interaction between the values of the
protected attribute (in the case of gender 1 consider male, female and neutral as
possible attribute values), and whether there is a stereotypical bias or not. Given
four sets of words: masculine (V,,,), feminine (Vy), neutral (V,,) and stereotypi-
cal (Vs), our proposed method learns a projection that satisfies the following four

criteria:
(1) forw; € Vy, I protect its feminine properties,
(i1) for w,, € V., I protect its masculine properties,
(ii1) for w, € V,, I protect its gender neutrality, and
(iv) for ws € Vs, I remove its gender biases.

By definition the four word categories are mutually exclusive and the total vocab-
ulary is expressed by their disjunction V = V,,, UV, UV, U V,. A key feature
of the proposed method that distinguishes it from prior work on debiasing word
embeddings is its ability to differentiate between undesirable (stereotypical) bi-
ases from the desirable (expected) gender information in words. The procedure I
follow to compile the four word-sets is described later in subsection 5.3.1, and the

words that belong to each of the four categories are shown in the supplementary
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material.

To explain the proposed gender debiasing method, let’s first consider a feminine
regressor C; : R — [0, 1], parameterised by 0, that predicts the degree of femi-
nineness of the word w. Here, highly feminine words are assigned values close to
1. Likewise, let’s consider a masculine regressor C,, : Rl — [0, 1], parametrised
by 0,,, that predicts the degree of masculinity of w. I then learn the debiasing
function as the encoder £ : R? — R’ of an autoencoder (parametrised by 6,),

where the corresponding decoder (parametrised by ) is given by D : Rl — R<,

For feminine and masculine words, I require the encoded space to retain the gender-
related information. The squared losses, Ly and L,,, given respectively by (5.1)

and (5.2), express the extent to which this constraint is satisfied.

Ly =Y [ICi(E@w) =15+ Y lIC/(Ew)) (5.1)
weVy weV\Vy

L= Y [ICu(B(w)) = 1|3+ Y [|ICu(Ew))|l; (5.2)
WEVm, wEV\Vm

Here, for notational simplicity, I drop the dependence on parameters.

For the stereotypical and gender-neutral words, I require that they are embedded
into a subspace that is orthogonal to a gender directional vector, v,, computed
using a set, 2, of feminine and masculine word-pairs (wy, w,,)(€ €2) as given by
(5.3).

vg:ﬁ S (B — E(wy)) (5.3)

(wg,wm)€EQ

Prior work on gender debiasing (Bolukbasi et al., 2016; J. Zhao, Zhou, et al., 2018)
showed that the vector difference between the embeddings for male-female word-

pairs such as he and she accurately represents the gender direction in Word2Vec
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and GloVe embeddings. When training, I keep v, fixed during an epoch, and re-
estimate v, between every epoch. I consider the squared inner-product between
v, and the debiased stereotypical or gender-neutral words as the loss, L, as given

by (5.4).

Ly= Y (vgw)’ (5.4)

It is important that I preserve the semantic information encoded in the word em-
beddings as much as possible when I perform debiasing. If too much information
is removed from the word embeddings, not limited to gender-biases, then the debi-
ased word embeddings might not be sufficiently accurate to be used in downstream
NLP applications. For this purpose, I minimise the reconstruction loss, L,., for the

autoencoder given by (5.5).

L, = |[ID(E(w)) — wll; (5.5)

wey

Finally, I define the total objective as the linearly-weighted sum of the above-

defined losses as given by (5.6).
L=XLy+ ANpLpy +AgLg+ ALy (5.6)

Here, the coefficients A ¢, A, Ay, A, are nonnegative hyper-parameters that add to
1. They determine the relative importance of the different constraints I consider
and can be learnt using training data or determined via cross-validation over a

dedicated validation dataset. In the experiments, I use the latter approach.
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5.2.2 Implementation and Training

C' and C),, are both implemented as feed forward neural networks with one hidden
layer and the sigmoid function is used as the nonlinear activation. Increasing the
number of hidden layers beyond one for C; and C,,, did not result in a significant
increase in accuracy. Both the encoder £ and the decoder D of the autoencoder are
implemented as feed forward neural networks with two hidden layers. Hyperbolic

tangent is used as the activation function throughout the autoencoder.

The objective (5.6) is minimised w.r.t. the parameters ¢, 6,,, 8. and 8, for a given
pre-trained set of word embeddings. During optimisation, I used dropout with
probability 0.01 and use stochastic gradient descent with initial learning rate set to
0.1. The hyper-parameters A¢, A,,,, Ay, A, are estimated using a separate validation

dataset as described later in subsection 5.3.1.

Note that it is possible to pre-train C'y and (), separately using V; and V,, prior
to training the full objective (5.6). In the preliminary experiments, I found that
initialising 8 ¢ and 8, to the pre-trained versions of C'y and (), to be helpful for the
optimisation process, resulting in early convergence to better solutions compared
to starting from random initialisations for 8¢ and 0,,. For pre-training C'y and
Cy, I used Adam optimiser (Kingma & Ba, 2015) with initial learning rate set
to 0.0002 and a mini-batch size of 512. Autoencoder is also pre-trained using a
randomly selected 5000 word embeddings and dropout regularisation is applied

with probability 0.05.

I note that V; and V), are separate word sets, not necessarily having correspond-
ing feminine-masculine pairs as in €2 used in (5.4). It is of course possible to
re-use the words in 2 in Vy and V,,, and I follow this approach in the experi-

ments, which helps to decrease the number of seed words required to train the
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proposed method. Moreover, the number of training examples across the four
categories V¢, Vp,, Vy, Vs were significantly different, which resulted in an im-
balanced learning setting. I conduct one-sided undersampling (Kubat & Matwin,
1997) to successfully overcome this data imbalance issue. The code and the debi-

ased embeddings are publicly available”.

5.3 Experiments

5.3.1 Training and Development Data

I use the feminine and masculine word lists (223 words each) created by J. Zhao,
Zhou, et al. (2018) as V¢ and V,,, respectively. To create a gender-neutral word
list, V,,, I select gender-neutral words from a list of 3000 most frequent words in
English*. Two annotators independently selected words and subsequently verified
for gender neutrality. The final set of V contains 1031 gender-neutral words. I use
the stereotypical word list compiled by Bolukbasi et al. (2016) as Vs, which con-
tains 166 professions that are stereotypically associated with one type of a gender.
The four sets of words used in the experiments are shown in the supplementary

material.

I train GloVe (Pennington etal., 2014) on 2017 January dump of English Wikipedia
to obtain pre-trained 300-dimensional word embeddings for 322636 unique words.
In the experiments, I set both d and [ to 300 to create 300-dimensional de-biased
word embeddings. I randomly selected 20 words from each of the 4 sets V¢, V,,,,
V,, and V, and used them as a development set for pre-training C'y and C,, and
to estimate the hyperparameters in (5.6). The optimal hyperparameter values es-

timated on this development dataset are: Ay = \,,, = A\; = 0.0001, and A\, = 1.0.

Shttps://github.com/kanekomasahiro/gp_debias
“https://bit.1ly/2SvBINY
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In the preliminary experiments I observed that increasing Af, A, and A, relative
to A, results in higher reconstruction losses in the autoencoder. This shows that
the ability to accurately reconstruct the original word embeddings is an important

requirement during debiasing.

5.3.2 Baselines and Comparisons

I compare the proposed method against several baselines.

GloVe: is the pre-trained GloVe embeddings described in subsection 5.3.1. This

baseline denotes a non-debiased version of the word embeddings.

Hard-GloVe: Iuse the implementation® of hard-debiasing (Bolukbasi etal., 2016)
method by the original authors and produce a debiased version of the pre-trained

GloVe embeddings.°

GN-GloVe : I use debiased GN-GloVe embeddings released by the original au-

thors’, without retraining myself as a baseline.

AE (GloVe): 1 train an autoencoder by minimising the reconstruction loss de-
fined in (5.5) and encode the pre-trained GloVe embeddings to a vector space with
the same dimensionality. This baseline can be seen as surrogated version of the
proposed method with Ay = A\, = A\, = 0. AE (GloVe) does not perform de-
biasing and shows the amount of semantic information that can be preserved by

autoencoding the input embeddings.

Shttps://github.com/tolga-b/debiaswe

®Bolukbasi et al. (2016) released debiased embeddings for word2vec only and for comparison
purposes with GN-GloVe, I use GloVe as the pre-trained word embedding and apply hard-debiasing
on GloVe

"https://github.com/uclanlp/gn_glove
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SemBias SemBias-subset

Embeddings
Definition 1 Stereotype | None| Definition T Stereotype | None |

GloVe 80.2 10.9 8.9 57.5 20 22.5
Hard-Glove 84.1 9.5 6.4 25 47.5 27.5
GN-GloVe 97.7 1.4 0.9 75 15 10
AE (GloVe) 82.7 8.2 9.1 62.5 17.57 20
AE (GN-GloVe) 98.01* 1.6 0.5 77.5 17.51 5t
GP (GloVe) 84.3* 8.0 7.7* 657 157 20
GP (GN-GloVe) 98.4"* 1.1 0.5 82.5™ 12.5™ 5t

Table 5.1: Prediction accuracies for gender relational analogies. * and { indicate
statistically significant differences against respectively GloVe and Hard-GloVe.

AE (GN-GloVe): Similar to AE (GloVe), this method autoencodes the debiased
word embeddings produced by GN-GloVe.

GP (GloVe): 1apply the proposed gender-preserving (GP) debiasing method on

pre-trained GloVe embeddings to debias it.

GP (GN-GloVe): To test whether I can use the proposed method to further debias
word embeddings that are already debiased using other methods, I apply it on GN-
GloVe.

5.3.3 Evaluating Debiasing Performance

I use the SemBias dataset created by J. Zhao, Zhou, et al. (2018) to evaluate
the level of gender bias in word embeddings. Each instance in SemBias con-
sists of four word pairs: a gender-definition word pair (Definition; e.g. “waiter -
waitress”), a gender-stereotype word pair (Stereotype; e.g., “doctor - nurse”) and
two other word-pairs that have similar meanings but not a gender relation (None;

e.g., “dog - cat”, “cup - lid”). SemBias contains 20 gender-stereotype word pairs

and 22 gender-definitional word pairs and use their Cartesian product to generate
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440 instances. Among the 22 gender-definitional word pairs, 2 word-pairs are not
used as the seeds for training. Following, J. Zhao, Zhou, et al. (2018), to test the
generalisability of a debiasing method, I use the subset (SemBias-subset) of 40
instances associated with these 2 pairs. I measure relational similarity between
(he, she) word-pair and a word-pair (a, b) in SemBias using the cosine similarity
between the he — she gender directional vector and a — b using the word embed-
dings under evaluation. For the four word-pairs in each instance in SemBias, 1
select the word-pair with the highest cosine similarity with he — she as the pre-
dicted answer. In Table 5.1, I show the percentages where a word-pair is correctly
classified as Definition, Stereotype, or None. If the word embeddings are cor-
rectly debiased, I would expect a high accuracy for Definitions and low accuracies

for Stereotypes and Nones.

From Table 5.1, I see that the best performances (highest accuracy on Defini-
tion and lowest accuracy on Stereotype) are reported by GP (GN-GloVe), which
is the application of the proposed method to debias word embeddings learnt by
GN-GloVe. In particular, in both SemBias and SemBias-subset, GP (GN-
GloVe) statistically significantly outperforms GloVe and Hard-Glove according
to Clopper-Pearson confidence intervals (Clopper & Pearson, 1934). Although
GN-GloVe obtains high performance on SemBias, it does not generalise well to
SemBias-subset. However, by applying the proposed method, I can further re-
move any residual gender biases from GN-GloVe, which shows that the proposed
method can be applied in conjunction with GN-GloVe. I see that GloVe contains
a high percentage of stereotypical gender biases, which justifies the need for de-
biasing methods. By applying the proposed method on GloVe (corresponds to
GP (GloVe)) I can decrease the gender biases in GloVe, while preserving useful
gender-related information for detecting definitional word-pairs. Comparing cor-

responding AE and GP versions of GloVe and GN-Glo Ve, I see that autoencoding
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Embeddings sem syn total MSR  SE

GloVe 80.1 62.1 703 53.8 388
Hard-GloVe 80.3 62.7 70.7 54.4 39.1
GN-GloVe 77.8 609 68.6 51.5 39.1
AE (GloVe) 81.0 619 705 52.6 389
AE (GN-GloVe) 78.6 613 692 512 39.1
GP (GloVe) 80.5 61.0 699 513 385

GP (GN-GloVe) 783 613 69.0 51.0 39.6

Table 5.2: Accuracy for solving word analogies.

alone is insufficient to consistently preserve gender-related information.

5.3.4 Bias in Downstream Task

5.3.5 Preservation of Word Semantics

It is important that the debiasing process removes only gender biases and preserve
other information unrelated to gender biases in the original word embeddings. If
too much information is removed from word embeddings during the debiasing
process, then the debiased embeddings might not carry adequate information for

downstream NLP tasks that use those debiased word embeddings.

To evaluate the semantic accuracy of the debiased word embeddings, following
prior work on debiasing (Bolukbasi et al., 2016; J. Zhao, Wang, et al., 2018),
I use them in two popular tasks: semantic similarity measurement and analogy
detection. I recall that I do not propose novel word embedding learning methods
in this dissertation, and what is important here is whether the debiasing process

preserves as much information as possible in the original word embeddings.
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Datasets #Orig #Bal

WS 353 366
RG 65 77
MTurk 771 784
RW 2,034 2,042

MEN 3,000 3,122
SimLex 999 1,043

Table 5.3: Number of word-pairs in the original (Orig) and balanced (Bal) simi-
larity benchmarks.

Analogy Detection

Given three words a, b, ¢ in analogy detection, I must predict a word d that com-
pletes the analogy “a is b as c is to d”. I use the CosAdd (Levy & Goldberg,
2014) that finds d that has the maximum cosine similarity with (b — a + c).
I use the semantic (sem) and syntactic (syn) analogies in the Google analogy
dataset (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) (in total contains
19,556 questions), MSR dataset (7,999 syntactic questions) (Mikolov, Yih, &
Zweig, 2013) and SemEval dataset (SE, 79 paradigms) (Jurgens, Mohammad,
Turney, & Holyoak, 2012) as benchmark datasets. The percentage of correctly
solved analogy questions is reported in Table 5.2. I see that there is no significant

degradation of performance due to debiasing using the proposed method.

Semantic Similarity Measurement

The correlation between the human ratings and similarity scores computed using
word embeddings for pairs of words has been used as a measure of the quality of
the word embeddings (Mikolov, Yih, & Zweig, 2013). I compute cosine similar-
ity between word embeddings and measure Spearman correlation against human
ratings for the word-pairs in the following benchmark datasets: Word Similar-

ity 353 dataset (WS) (Finkelstein et al., 2001), Rubenstein-Goodenough dataset
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WS RG MTurk RW MEN SimLex

Embeddings Orig Bal Orig Bal Orig Bal Orig Bal Orig Bal Orig Bal
GloVe 61.6 629 753 755 649 639 373 375 73.0 72.6 347 359
Hard-GloVe 61.7 63.1 764 7677 651 64.1 374 374 728 725 350 36.1
GN-GloVe 62.5 63.7 74.1 7377 662 655 40.0 40.1 749 745 37.0 38.1
AE (GloVe) 613 626 771 768 649 64.1 357 358 719 715 347 359
AE (GN-GloVe) 613 62.6 73.0 740 663 655 387 389 738 734 367 377
GP (GloVe) 59.7 61.0 754 755 639 63.1 347 348 708 704 339 350

GP (GN-GloVe) 63.2 643 722 722 679 674 432 433 759 755 384 395

Table 5.4: Spearman correlation between human ratings and cosine similarity
scores computed using word embeddings for the word-pairs in the original and
balanced versions of the benchmark datasets.

(RG) (Rubenstein & Goodenough, 1965), MTurk (Halawi, Dror, Gabrilovich, &
Koren, 2012), rare words dataset (RW) (Luong, Socher, & Manning, 2013), MEN
dataset (Bruni, Boleda, Baroni, & Tran, 2012) and SimLex dataset (Hill, Reichart,
& Korhonen, 2015).

Unfortunately, existing benchmark datasets for semantic similarity were not cre-
ated considering gender-biases and contain many stereotypical examples. For ex-
ample, in MEN, the word sexy has high human similarity ratings with /ady and
girl compared to man and guy. Furthermore, masculine words and soldier are in-
cluded in multiple datasets with high human similarity ratings, whereas it is not
compared with feminine words in any of the datasets. Although prior work study-
ing gender bias have used these datasets for evaluation purposes (Bolukbasi et al.,
2016; J. Zhao, Wang, et al., 2018), I note that high correlation with human ratings

can be achieved with biased word embeddings.

To address this issue, I balance the original datasets with respect to gender by
including extra word pairs generated from the opposite gender with the same hu-
man ratings. For instance, if the word-pair (baby, mother) exists in the dataset,

I add a new pair (baby, father) to the dataset. Ideally, I should re-annotate this
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Figure 5.1: Cosine similarity between gender, gender-neutral, stereotypical words
and the gender direction.

balanced version of the dataset to obtain human similarity ratings. However, such
a re-annotation exercise would be costly and inconsistent with the original ratings.
Therefore, I resort to a proxy where I reassign the human rating for the original
word-pair to its derived opposite gender version. Table 5.3 shows the number of

word-pairs in the original (Orig) and balanced (Bal) similarity benchmarks.

As shown in Table 5.4, GP (GloVe) and GP (GN-GloVe) obtain the best perfor-
mance on the balanced versions of all benchmark datasets. Moreover, the per-

formance of GP (GloVe) on both original and balanced datasets is comparable to
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that of GloVe, which indicates that the information encoded in GloVe embeddings
are preserved in the debiased embeddings, while removing stereotypical gender
biases. The autoencoded versions report similar performance to the original input

embeddings.

Overall, the results on the analogy detection and semantic similarity measurement
tasks show that the proposed method removes only gender-biases and preserve

other useful gender-related information.

5.3.6 Visualising the Effect of Debiasing

To visualise the effect of debiasing on different word categories, I compute the
cosine similarity between the gender directional vector he — EL_é, and selected
gender-oriented (female or male), gender-neutral and stereotypical words. In
Figure 5.1, horizontal axises show the cosine similarity with the gender direc-
tional vector (positive scores for masculine words) and the words are alphabeti-

cally sorted within each category.

From Figure 5.1, I see that the original GloVe embeddings show a similar spread of
cosine similarity scores for gender-oriented as well as stereotypical words. When
debiased by hard-debias (Hard-GloVe) and GN-GloVe, I see that stereotypical
and gender-neutral words get their gender similarity scores equally reduced. In-
terestingly, Hard-Glo Ve shifts even gender-oriented words towards the masculine
direction. On the other hand, GP (GloVe) decreases gender bias in the stereotyp-
ical words, while almost preserving gender-neutral and gender-oriented words as

in GloVe.

Considering that a significant number of words in English are gender-neutral, it
is essential that debiasing methods do not adversely change their orientation. In

particular, the proposed method’s ability to debias stereotypical words that carry
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Embeddings OntoNotes Tl-p Tl-a AVG |Difff T2-p T2-a AVG |Diff]

GloVe 60.4 69.2 526 609 166 794 682 73.8 112
Hard-GloVe 60.5 642 587 615 55 609 632 621 23
GN-GloVe 60.6 68.7 505 596 182 761 662 712 99
GP (GloVe) 60.8 68.6 543 615 143 733 690 712 43

GP (GN-GloVe) 61.0 69.0 534 612 156 724 713 719 1.1

Table 5.5: F; on OntoNotes and WinoBias test sets.

unfair gender-biases, while preserving the gender-orientation in feminine, mascu-
line and neutral words is important when applying the debiased word embeddings
in NLP applications that depend on word embeddings for representing the input

texts.

5.3.7 Measuring Bias with Coreference Resolution

Finally, I verify the effectiveness of the proposed method in the downstream task.
Specifically, I evaluate whether I can debias coreference resolution model, which
finds all expressions that refer to the same entity in a text, using the WinoBias data
set (J. Zhao, Wang, et al., 2018). It contains two types of sentences that require
linking gendered pronouns to either male or stereotypical female occupations. A
system is considered to be gender-biased if it links pronouns to occupations dom-
inated by the gender of the pronoun (which is pro-stereotyped condition) more
accurately than occupations not dominated by the gender of the pronoun (which
is anti-stereotyped condition). I used the model implemented in AllenNLP?. I ini-
tialized word embeddings of the model by these five word embeddings: GloVe,
Hard-GloVe, GN-GloVe, GP (GloVe), and GP (GN-GloVe). Additionally, I also
use OntoNotes data (Weischedel et al., 2013) to show that the pre-trained infor-

mation is not forgotten after debiasing.

8http://docs.allennlp.org/v0.9.0/api/allennlp.models.coreference
_resolution.html
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Table 5.5 shows the results on OntoNotes and Winobias test sets. In T1, coref-
erence decisions must be made using the world knowledge about given circum-
stances. T2 can be resolved using syntactic information and understanding of
the pronoun. Here, p and a stand for pro-stereotyped and anti-stereotyped con-
ditions. A system passes if, for both T1 and T2 examples, pro-stereotyped and
anti-stereotyped coreference decisions are made with the same accuracy. It can be

seen that my proposed method can debias both T1 and T2 without loss of precision.
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6| Conclusions

6.1 Conclusions

In this thesis, I studied the problems of grammatical and semantic biases learned
from raw datasets in representation learning. A grammatical bias is a bias learned
from the raw corpus, which mostly consists of grammatically correct text but in-
cludes very little erroneous text, which has a negative effect on tasks that deal
with grammatically incorrect data. Semantic bias is learned from the biased co-
occurrence of words in the raw corpora. As a result, discriminatory information
is learned in the meanings of some words. I resolved these biases in word embed-

dings and language representations.

First, I solved the problem of grammatical bias in word embeddings by using
pseudo-errors for word embeddings in chapter 2. Therefore, by assigning pseudo-
errors to the raw corpus and learning word embeddings from it, grammatically
correct and grammatically incorrect information can be considered equally. Ex-
perimental results showed that these grammatical error-aware word embeddings

improve the performance of GED for grammatical errors.

In chapter 3, I proposed a method of considering grammatical errors in language
representations to remove grammatical bias for GEC. Experiments showed that
fine-tuning pre-trained language representations with GED corpus was the best
way to account for grammatical errors. Furthermore, experiments showed that the
language representations fine-tuned by the GED can distinguish between gram-

matically correct and grammatically incorrect texts.

In chapter 4, I proposed a method which effectively use language representations

with learned grammatical bias. In a neural network model, different information
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is learned at each layer, and my method allowed the model to dynamically select
the information from the layer that is best suited to handle grammatically incorrect
information. I showed that the proposed method that uses each layer’s information
is better than the previous method using only the information of the final layer. The
analysis results showed that it is important to use information from all layers in

the GED.

Finally, I addressed removing gender discrimination information in word embed-
dings due to semantic bias in chapter chapter 5. Furthermore, I showed that de-
biased word embeddings retain useful information such as analogy and semantic

similarity.

In this thesis, I have shown that biases are learned from raw data unintentional to
humans, and that we must explicitly remove or effectively exploit them. In addi-
tion to the biases discussed in this thesis, many other biases are learned that may
cause poor performance of the model or cause socially problematic behavior in
natural language processing systems. Therefore, in order for artificial intelligence
to be accepted by humans, we need to be aware of known and unknown biases in

our research and development of representation learning.

6.2 Future Work

Here, I address the issue of bias as future work, which has not been addressed in

this dissertation or in existing research.

Grammatical bias in languages other than English: Cross-lingual GEC (Yamashita,
Katsumata, Kaneko, Imankulova, & Komachi, 2020) models have been pro-
posed using language representations, and they reported improvements in

correction performance for low-resource languages. On the other hand, it
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is not obvious that the methods discussed in this dissertation for removing
grammatical bias in word embeddings and language representations are ef-

fective for languages other than English.

Using grammatical bias for building robust NLP models: Iresolved the gram-
matical bias in the language teaching and language learning tasks. Gram-
matical bias causes significant performance degradation in various NLP
tasks, such as machine translation (S. Zhou, Zeng, Zhou, Anastasopoulos,
& Neubig, 2019) and sentiment analysis (Pruthi, Dhingra, & Lipton, 2019),
when grammatically incorrect text is given as input. Therefore, the proposed
techniques for reducing grammatical bias may be used to build robust mod-

els for other tasks.

Semantic bias in language representations: Itis known that language represen-
tations also contain semantic bias (Kurita et al., 2019; May et al., 2019). In
order to adapt the proposed methods to language representations, we need to
define a gender vector that takes the context into account. It is an interesting
question whether the debiasing by orthogonality with the gender vector will

work for more expressive language representations with more parameters.
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