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Abstract

Machine translation (MT) is the task of translating input text from a source language
into a target language. The practical use of MT will enable smooth communication
between different languages. In the real world, the MT research results are applied as
various services such as Google translation and DeepL. One of the breakthroughs in MT
in recent years is the arrival of neural machine translation (NMT). NMT models have
been reporting significant performance improvements. On the other hand, neural MT

models require a large number of parallel sentences for training.

The biggest issue with low-resource languages is the extreme difficulty of obtaining
enough resources. MT has proven successful for several language pairs. However, each
language comes with its challenges. Low-resource languages have largely been left out
of the MT revolution. For instance, there are often very few written texts, and even
the languages that have monolingual text do not always have a parallel text in another

language.

We research to what extent it is possible to improve MT systems’ performance in a low-
resource scenario using other pseudo-parallel data, other helping language pairs, and
other modality data to increase the training data size for different language pairs and

domains.

Previously, additional training data has been augmented by pseudo-parallel corpora ob-
tained by using MT models to translate monolingual corpora into the source language.
However, in low-resource language pairs, in which only low accuracy MT systems can
be used, translation quality degrades when a pseudo-parallel corpus is naively used.
Therefore, we consider data selection and filtering of the generated pseudo-parallel cor-

pora using different similarity metrics.

Another way to improve low-resource MT would be to use out-of-domain data. How-
ever, merely using MT systems trained on out-of-domain data for in-domain transla-
tion is known to perform poorly. To effectively use large-scale out-of-domain data for
low-resource tasks, we need to utilize domain adaptation and multilingual transfer ap-
proaches. In order to do that, we propose a multistage fine-tuning method, which com-

bines two types of transfer learning, i.e., domain adaptation and multilingual transfer



from other language pairs with conventional fine-tuning, where an NMT system trained
on out-of-domain data is fine-tuned only on in-domain data, or mixed fine-tuning, where
pre-trained out-of-domain NMT system is fine-tuned using a mixture of in-domain and

out-of-domain data.

Different from conventional full-sentence MT, simultaneous MT is also considered to
be one of the low-resource scenarios due to involving translating a sentence before the
speaker’s utterance is completed in order to realize real-time understanding. This task
is significantly more laborious than the general full sentence translation because of the
shortage of input information during decoding. To alleviate this shortage, we propose to
leverage visual clues as an additional modality to help MT systems predict translations

from richer information.

The main contribution of this thesis is improving MT performance for low-resource lan-
guage pairs by effectively using additional information from different resources. To
improve MT performance with low-resource language pairs, we propose methods to ef-
fectively expand the training data via filtering the pseudo-parallel corpus based on back-
translation and round-trip translation. Furthermore, we propose a novel multilingual
multistage fine-tuning approach for low-resource NMT, taking a challenging Japanese—

Russian pair for benchmarking.

By using additional modality to simultaneous MT, we verified the importance of visual
information during decoding by performing throughout the evaluation and analyzing its

effect on different low-resource language pairs.
This thesis is organized as follows:

Chapter 1 gives an overview of MT and its challenges in low-resource scenario. It de-
scribes aim and objectives of improving MT performance for low-resource language

pairs by effectively using additional information from different resources.

Chapter 2 introduces methods of creating and filtering pseudo-parallel corpora by back-
translation and round-trip translation. Here, I show that using filtered pseudo-parallel
corpora as additional training data improves NMT performance compared to using unfil-
tered pseudo-parallel corpora for both back-translation and round-trip translation meth-
ods. The proposed method achieved up to 3.46 BLEU points in the Russian—Japanese
translation and up to 5.25 BLEU points in the Japanese—Russian translation.



Chapter 3 addresses the research questions of the advantages and disadvantages of out-
of-domain data for low-resource language pairs. To effectively exploit out-of-domain
parallel data, I propose a multistage fine-tuning method, which combines domain adapta-
tion multi-lingual transfer approaches. The proposed method achieved up to 2.72 BLEU
points in the Russian—Japanese and up to 3.06 BLEU points in the Japanese—Russian

translation.

Chapter 4 introduces a novel technique of utilizing different modality for low-resource
simultaneous MT. In this chapter, I propose to combine multimodal and simultane-
ous NMT to enrich incomplete text input information using a visual clue. As a re-
sult, the proposed method significantly outperformed text-only baselines in all exper-
imented language-pairs, especially for language pair with different word orders such as
English—Japanese.

Chapter 5 concludes this thesis, discusses insights and limitations, and describes poten-
tial future work for low-resource MT.

Keywords— Natural language processing, machine translation, low-resource, data spar-
sity, additional information, additional modality, pseudo-parallel corpus, filtering, mul-

tistage fine-tuning, visual information
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1| Introduction

1.1 Machine Translation

Since we live in an increasingly connected world, translation became an essential
tool, allowing us to connect and share information, no matter what the language.
However, translating vast amounts of content could bring complications around
cost, quality, and time. Therefore, machines have come to our help in order to

remedy some of these potential issues.

Machine Translation (MT) is the field of Natural Language Processing (NLP)
which aims to translate text from one language to another. MT is used to im-
prove the capacity of translation, allowing for more content to be translated by

reducing financial, human, and time costs.

Currently there are two major approaches: Phrase Based Statistical Machine Trans-
lation (PBSMT) (Koehn et al., 2003) and Neural Machine Translation (NMT)
(Bahdanau et al., 2014; Cho et al., 2014; Sutskever et al., 2014; Luong and Man-
ning, 2015). Both approaches rely on parallel text corpora, which contain source
language texts X = (z1, ..., x,) of length n and their translations Y = (y1, ..., 4)
of length ¢ in target language.

PBSMT tries to learn a probabilistic model from data using Bayes rule:

argmaxy P(Y|X) = argmax, P(X|Y)P(Y) (L.1)

Here, P(X]Y) is called the translation model, trained on parallel corpus. P(Y) is
called the language model, trained on monolingual target language corpus only.

NMT is an end to end deep learning approach which mainly uses a single neural
network architecture. Most NMT models are deep consisting of several layers of
neurons to process input sequences. Opposed to PBSMT, it directly calculates
P(Y|X):
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Y|

P(YX) = [ [ P(veX, y<r) (12)

t=1

Conventionally, translation is performed after receiving full input text sequence,
as known as full-sentence MT. However, one can achieve the translation in a si-
multaneous way, as known as simultaneous MT, which starts translation before
the full input sequence is received (Matsubara et al., 2000; Grissom Il et al., 2014;
Guetal.,2017; Maetal., 2019). Also, one can operate not only with text modality
but also use other modalities, such as image, video, or speech, as inputs to improve
MT accuracy, as known as multimodal MT (Elliott et al., 2016; Specia et al., 2016;
Elliott et al., 2017).

1.2 Evaluation Methods

Progress of machine translation relies on assessing a new system’s quality to show
that the new system can perform better than previous systems. However, human
evaluation is also a very costly activity similar to human translation, especially
considering how fast new systems and their intermediate versions are created and
tested. One may want to evaluate tens or hundreds of systems a day, for example,
to find the best model within models created at each epoch of training or to find
the best hyper-parameters that lead to better MT models. Therefore, it is crucial
to find automatic MT evaluation metrics since performing evaluation manually is
not remotely feasible (Papineni et al., 2002). In the following sections, we will
describe some MT evaluation metrics used in this work.

1.2.1 BLEU

Bilingual Evaluation Understudy Score (BLEU) (Lin and Och, 2004a,b) is the
current widespread standard for automatic MT evaluation, mostly because it is
quick, inexpensive, and language-independent. The BLEU score of system output
is calculated by counting the number of n-grams in the system output, matched
with the set of n-grams in reference translations. The highest n-gram order is
defined commonly to be four. Precision is calculated separately for each n-gram
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order, and the precisions are combined via a geometric averaging as follows:

ZCECn Count ;p(c)
Y wecr Count(c)

Here, C,, indicates a set of n-grams, C'ount;, truncates each word’s count, if

Pn = (1.3)

necessary, not to exceed the largest count observed in any single reference for that

word.

As a result BLEU score is calculated as follows:

N
BLEU = exp() _ wy logp,) (1.4)

n=1

Here, w,, denotes positive weights summing to one. The result is typically mea-
sured on a 0 to 1 scale, with 1 as the hypothetical ”perfect” translation. Since
the human reference, against which MT is measured, is always made up of mul-
tiple translations, even a human translation would not score a 1. In this work, we

express BLEU by multiplying it by 100.

1.2.2 RIT score

This evaluation metric is specific to the e-commerce domain. RIT score (Mu-
rakami et al., 2017) uses external vocabulary such as product information reg-
istered in a United States E-commerce company Rakuten.com' to calculate how
many words have appeared in the equivalent categories. It is based on the hypoth-
esis that English words appearing on the Rakuten.com site are necessary words to
sell products of that category. Therefore, the sentence-level RIT score (RIT score)
is a weighted sum of precision of all correct n-grams in the external vocabulary.
It was calculated as:

RIT score = 4p; + 9ps + 3ps. (1.5)

"https://www.rakuten.com
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1.2.3 Average Lagging

Average Lagging (AL) latency metric that evaluates simultaneous MT systems’
outputs, which was proposed by Ma et al. (2019). ? It calculates the degree of out

of sync time with the input, in terms of the number of source tokens as follows:

A C
ALy(X, Y) = g(t) - (1.6
! 74 (IX1) ; r
where r = |Y|/|X| is the target-to-source length ratio and 7, is the decoding step

when source sentence finishes:

7o(IX]) = min{t[g(¢) = [X|} (1.7)

1.3 Challenges in Low-resource Machine Translation

Large-scale parallel corpora are essential for training high-quality machine trans-
lation systems; however, such corpora are not freely available for many language

translation pairs.

In this research, we focus on low-resource machine translation. We define two

aspects of low-resource machine translation:

* Limited availability of data during training. This aspect represents situations
where we have only 10,000-30,000 parallel sentences for the language pair
of interest, such as Japanese<+>Russian, in order to train desired M T systems.
This problem can also relate to broadly known high-resource language pairs,
such as English<+French, English<+Russian, English<»Chinese, because of
the limited availability of parallel data in some specific domains, such as
e-commerce, news, spoken domains, etc. One of the solutions is to use

additional resources, such as monolingual data or out-of-domain data.

* Limited availability of data during translation. This aspect represents situ-
ations, where given input information is not sufficient in order to generate

the translation accurately. This problem can be related to all languages and

’https://github.com/SimulTrans-demo/STACL
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domains in such scenarios as simultaneous MT or MT of noisy input. One

of the solutions is to use information from an additional modality.

In the following sections, we will describe the challenges of using the mentioned
additional resources.

1.3.1 Monolingual Corpora

A large-scale parallel corpus is an essential resource for training PBSMT and NMT
systems. Creating a high-quality, large-scale parallel corpus requires time, finan-
cial resources, and expert translation of a large amount of text. Resultingly, many
existing large-scale parallel corpora are limited to specific languages and domains.
Contrastingly, large monolingual corpora are easier to obtain.

Various approaches have been proposed to create a pseudo-parallel corpus from
a monolingual corpus. For example, Zhang and Zong (2016) proposed a method
to generate a pseudo-parallel corpus based on a monolingual corpus of the source
language and its automatic translation. Sennrich et al. (2016a) obtained substan-
tial improvements by automatically translating a monolingual corpus of the target
language into the source language, referred to as synthetic source sentences, and
treating the obtained pseudo-parallel corpus as additional training data. They used
monolingual data of the target language to learn the conditional language model
more effectively. However, they experimented on language pairs for which rela-
tively large-scale parallel corpora are available. Thus, they did not fully exploit

the training corpus or address the quality of the pseudo-parallel corpus.

The pseudo-parallel corpus quality is critical because low-quality parallel sen-
tences will degrade NMT performance more than SMT (Koehn and Knowles,
2017). Accordingly, our motivation is to filter out low-quality synthetic sentences
that might be included in such a pseudo-parallel corpus to obtain a high-quality
pseudo-parallel corpus for low-resource language pairs.

1.3.2 Out-of-Domain Corpora

Another way to improve low-resource MT would be to use out-of-domain data.
However, simply using MT systems trained on out-of-domain data for in-domain
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translation is known to perform poorly (Haddow and Koehn, 2012; Koehn and
Knowles, 2017). For example, the conventional method is fine-tuning, in which
a model trained on out-of-domain data is further trained on in-domain data (Lu-
ong and Manning, 2015; Chu et al., 2017). However, fine-tuning tends to overfit
quickly due to the small size of the in-domain data. Another challenge appears
when there is not any available out-of-domain data for the language pair of in-
terest. Therefore, there is a need to use out-of-domain data from other language

pairs.

To effectively use large-scale out-of-domain data for low-resource tasks, we need
to utilize domain adaptation, and multilingual transfer approaches in multiple stages.

1.3.3 Additional modality

Unlike conventional full-sentence MT, simultaneous MT is considered one of
the low-resource scenarios due to involving translation of a sentence before the
speaker’s utterance is completed to realize real-time understanding. It is widely
used in international summits and conferences where real-time comprehension is
one of the most important aspects. Simultaneous translation is already a difficult
task for human interpreters because the message must be understood and translated
while the input sentence is still incomplete, especially for language pairs with dif-
ferent word orders (e.g., SVO-SOV) (Seeber, 2015). Consequently, simultaneous
translation is more challenging for machines. Previous works attempt to solve this
task by predicting the sentence-final verb (Grissom II et al., 2014), or predicting
unseen syntactic constituents (Oda et al., 2015). Given the difficulty of predicting
future inputs based on existing limited inputs, Ma et al. (2019) proposed a simple
simultaneous neural machine translation (SNMT) approach wait-k which gener-
ates the target sentence concurrently with the source sentence, but always k tokens

behind, satisfying low latency requirements.

Simultaneous interpreters often consider various additional information sources
such as visual clues or acoustic data while translating (Seeber, 2015). Therefore,
we hypothesize that using supplementary information, such as visual clues, can
also be beneficial for simultaneous MT.

However, previous approaches solve the given task by solely using the text modal-
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ity, which may be insufficient to produce a reliable translation. To alleviate this
shortage, we propose to leverage visual information as an additional modality to
help simultaneous MT systems predict translations from richer information, de-
spite the fact that the improvement brought by visual features for full sentence MT
is moderate (Hitschler et al., 2016; Specia et al., 2016; Elliott and Kadar, 2017).

1.4 Aim and Objectives

The aim of this thesis is to improve machine translation performance for low-
resource language pairs by effectively using additional information from different

resources.

To improve machine translation performance with low-resource language pairs,
we propose methods to effectively expand the training data via filtering the pseudo-
parallel corpus based on back-translation and round-trip translation. Furthermore,
we propose a novel multilingual multistage fine-tuning approach for low-resource
neural MT (NMT), taking a challenging Japanese—Russian pair for benchmarking.

By using an additional modality for simultaneous MT, we verified the importance
of visual information during decoding by performing throughout the evaluation

and analyzing its effect on different low-resource language pairs.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 — introduces methods of creating and filtering pseudo-parallel
corpora by back-translation and round-trip translation. Here, we show that
using filtered pseudo-parallel corpora as additional training data improves
NMT performance compared to using unfiltered pseudo-parallel corpora
for both back-translation and round-trip translation methods. The proposed
method achieved up to 3.46 BLEU points in the Russian—Japanese trans-
lation and up to 5.25 BLEU points in the Japanese— Russian translation.

Chapter 3 — addresses the research questions of the advantages and dis-

advantages of out-of-domain data for low-resource language pairs. To ef-




fectively exploit out-of-domain parallel data, we propose a multistage fine-
tuning method, which combines domain adaptation multilingual transfer ap-
proaches. The proposed method achieved up to 2.72 BLEU points in the
Russian— Japanese and up to 3.06 BLEU points in the Japanese— Russian

translation.

Chapter 4 — introduces a novel technique of utilizing different modality
for low-resource simultaneous MT. This chapter proposes to combine mul-
timodal and simultaneous NMT to enrich incomplete text input informa-
tion using a visual clue. As a result, the proposed method significantly out-
performed text-only baselines in all experimented language-pairs, especially
for language pair with different word orders such as English—Japanese.

Chapter 5 — concludes this thesis, discusses insights and limitations, and

describes potential future work for low-resource MT.
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Pseudo-Parallel Corpora for Low-Resource
NMT

2.1 Introduction

In this chapter, we propose two ways of creating and filtering pseudo-parallel

corpora. The proposed methods involve filtering a pseudo-parallel corpus by (1)

back-translation and (2) round-trip translation of a monolingual corpus for low-

resource language pairs.

The main contributions are as follows:

* To establish a high-quality pseudo-parallel corpus, we filter a pseudo-parallel

corpus generated by round-trip translation using three sentence-level simi-
larity metrics: sentence-level Bilingual Evaluation Understudy Score (sent-
BLEU) (Lin and Och, 2004a,b), average alignment similarity (AAS), and
maximum alignment similarity (MAS) (Song and Roth, 2015). We also use
a sentence-level language model (sent-LM) and RIT score (Murakami et al.,
2017) to filter a pseudo-parallel corpus generated by back-translations and
only considering synthetic source sentences.

We observe that bootstrapping using our proposed filtering method signif-
icantly improves the BLEU score; however, the gains in BLEU decrease
gradually over several iterations.

We show that the proposed filtering method, along with bootstrapping, is

useful for low-resource language pairs.

We publicly released the obtained filtered pseudo-parallel corpora generated
by round-trip translation.'

'https://github.com/aizhanti/filtered-pseudo-parallel-corpora


https://github.com/aizhanti/filtered-pseudo-parallel-corpora

2.2. RELATED WORK

2.2 Related Work

To address data sparsity in machine translation, many methods use monolingual
data to improve translation quality (Ueffing et al., 2007; Schwenk, 2008; Bertoldi
and Federico, 2009; Hsieh et al., 2013; Zhang and Zong, 2016; Zhang et al., 2018;
Edunov et al., 2018). Specifically, Bertoldi and Federico (2009) addressed the
problem of domain adaptation by training a translation model from a generated
pseudo-parallel corpus created from a monolingual in-domain corpus. Hsieh et al.
(2013) created a pseudo-parallel corpus from patterns learned from source and
monolingual target in-domain corpora for cross-domain adaptation. They man-
ually conducted filtration of “relatively more accurate” translated sentences and
used them to revise the language model. Several methods use iterative approaches
to improve NMT using pseudo-parallel corpora (Hoang et al., 2018; Cotterell and
Kreutzer, 2018). Zhang et al. (2018) used both source and target monolingual cor-
pora to improve an NMT system iteratively. Edunov et al. (2018) improved high-
resource NMT using synthetic sources generated by sampling or adding noise to
beam outputs. Imamura et al. (2018) sampled multiple sources for each target sen-
tence to enhance the encoder and attention mechanism, leading to an improvement
of translation quality. However, experiments were conducted on relatively high-
resource language pairs. Cheng etal. (2016) presented a semi-supervised approach
to training bidirectional neural machine translation models using autoencoders on
the monolingual corpora with high-resource source-to-target and target-to-source
translation models as encoders and decoders. Their settings are different from
ours in terms of (1) the available size of parallel data to train their round-trip trans-
lation models and (2) using created pseudo-parallel data as is without filtration.
Niu et al. (2018) improved bi-directional NMT by continuously training on aug-
mented parallel data. Similarly, in this study, we used a pseudo-parallel corpus
created by translating a monolingual corpus from the target language rather than
from the source language. Contrastingly, automatic filtering is applied to the ob-
tained pseudo-parallel corpus. We conducted experiments on low-, medium- and
high-resource language pairs to demonstrate the accuracy of the filtered pseudo-

parallel corpora created by the NMT.

Data filtering is often used in domain adaptation (Moore and Lewis, 2010; Axelrod

10
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et al., 2011) for phrase-based SMT systems. Sentences are extracted from large
corpora to optimize the language model and the translation model (Wang et al.,
2014; Yildiz et al., 2014). The work most closely related to our study is that of
Yildiz et al. (2014), in which a quality estimator was built to obtain high-quality
parallel sentence pairs using a bilingual dictionary. They achieved improved trans-
lation performance and reduced the time complexity with a small high-quality cor-
pus. This method filters data by calculating the similarity between the source and
target sentences. The similarity is calculated between monolingual and synthetic

target sentences without relying on any external dictionaries in our work.

Recently, van der Wees et al. (2017) performed dynamic data selection in the train-
ing of an NMT model. To sort and filter the training data, they used language
models from the source and target sides of in-domain and out-of-domain data to
calculate cross-entropy scores. However, in the present study, round-trip transla-

tion is employed to filter data while taking into consideration their meaning.

Meanwhile, He et al. (2016a) presented a dual-learning approach. It simultane-
ously trains two models through a reinforcement learning process. Monolingual
data of both source and target languages are used, and informative feedback sig-
nals are generated to train the translation models. The dual-learning approach was
shown to alleviate the issue of noisy data by increasing its quality. In our approach,
on the other hand, we attempt to remove noisy data. In addition, He et al. (2016a)
assumed a high-resource language pair to “warm-start” the reinforcement learn-
ing process, whereas we target low-resource language pairs, wherein high-quality
seed NMT models are difficult to obtain.

A completely unsupervised approach (Artetxe et al., 2018; Lample et al., 2018a)
has been useful in a zero-shot scenario by exploiting only monolingual corpora
and back-translation. Nevertheless, we focus on maximizing the utility of existing
small parallel corpora, leaving the application of recent unsupervised MT methods

for future work.

2.3 Pseudo-Parallel Corpora by Back-Translation

In this section, we investigate the effect of pseudo-parallel corpora created and

11
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filtered by a back-translation approach using RIT score (Murakami et al., 2017).
Here, we deal with challenging Japanese— English e-commerce product titles cor-
pus, which contains noisy translations and a different set of vocabulary for each
e-commerce product category. Data in each category is low-resource and has dif-

ferent domains.

E-commerce product sales are dramatically rising around the world, so are selling
e-commerce products abroad. However, to successfully sell e-commerce prod-
ucts abroad, overcoming the language barrier becomes one of the important steps.
Therefore, machine translation could be a solution in translating a great amount of

e-commerce product texts.

E-commerce product data are different from those used in academia. Below are
the differences between Rakuten Ichiba Japanese— English parallel e-commerce
product titles and academia-wise data: 1) E-commerce product data were created
by individual stores that have translated and registered text about their products.
However, some Japanese sentences were translated using machine translation tools
without any proofreading. This resulted in low-quality, noisy parallel data with
mistranslated proper names and erroneous grammar, which required transcreation.
2) The amount of created parallel data in Rakuten Ichiba is small in comparison
to the existing Japanese monolingual e-commerce product data. 3) E-commerce
product data are divided into many categories, and each category has a different
set of vocabulary. This kind of parallel data includes a wide range of products,
proper names, and descriptions, which leads to the data sparseness problem with
too many unique word types, especially in NMT. All of these factors adversely
affect the performance of a low-resource NMT.

We compare several Japanese—English corpora which are used in academia (NT-
CIR, ASPEC, Tanaka) to train NMT systems and Rakuten Ichiba parallel e-commerce
product titles corpus (Rakuten), which is a concatenation of all available Rakuten
Ichiba parallel data from different categories. Table 2.1 shows the ratio of the num-
ber of unique word types to the number of total tokens in the Japanese— English
parallel corpora. The higher the ratio, the more difficult to train an NMT model
using a given parallel corpus.

Under these restricted conditions, it is necessary to consider how NMT should be

12
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Corpus #of sent Ratio for Ja Ratio for En

NTCIR 1,169,201 0.002 0.005
ASPEC 3,008,500 0.004 0.011
Tanaka 148,835 0.018 0.016
Rakuten 1,228,207 0.023 0.025

Table 2.1: Ratio for Japanese— English parallel corpora.

applied to translate e-commerce product titles. Therefore, we first investigate how
to handle low-frequency words in e-commerce product data; and if one general
NMT model could be enough for all e-commerce categories or if we should train an
NMT model for each category. Then we propose to select data with better quality
from given parallel data to train an NMT model for e-commerce products using
RIT score. Next, we show the effect of data augmentation by back-translating and
filtering those pseudo-parallel data using RIT score in order to further improve
NMT for e-commerce product titles (Figure 2.1).

Yes Ja-En
Selected data

En: RIT
score > 3

(s

Train Train
No
Ja-En Ja: Translate | Ja: Translate Ja-En
All Selected
NMT NMT
Synth En Synth En
Yes |
Y
Ja-En
Augmented data
Train

Ja-En
Augmented
NMT

Figure 2.1: Flow of creating pseudo-parallel corpus by back-translation and filter-
ing by RIT score.
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2.3.1 Experimental Setup

Translation Model
In this section, for all experiments, we translate from Japanese into English.

We used an open source OpenNMT toolkit® described by Klein et al. (2017) for
experiments. We used recommended methods by Denkowski and Neubig (2017)
such as Byte Pair Encoding (BPE) (Sennrich et al., 2016b) and annealing Adam
optimization (Kingma and Ba, 2015). Adam has a maximum step size of 0.0002.
A bi-directional encoder and decoder with a single LSTM layer have 1,024 units,

and for word representations, we used 512 units.

For evaluation we used BLEU (Papineni et al., 2002) and RIT scoring system
(Murakami et al., 2017).

We tokenized English sentences using the NLTK script and removed non-letter
characters. For Japanese sentences, we removed meta-tags and used MeCab 0.996
with the mecab-ipadic-NEologd® dictionary for word segmentation. We elimi-
nated the sentence pairs exceeding 50-word length from all data, with length ratio
bigger than 3 and duplicated pairs. For data selection, we used the RIT score.

Dataset

We experimented with Japanese— English translation using in-house e-commerce
product titles, which are spread across different categories with different size. We
chose 9 separate categories to experiment with: Breadmaker, Microwave, Pen-
dant, Rice cooker, Shampoo, Shoes, Skirt, Socks, and Tops. In our case, data of
the Rakuten e-commerce product titles have a tree structure: each leaf represents
one category; nodes represent combined categories (Table 2.2, Tools and Clothes),
and root contains data from all listed categories (Table 2.2, Rakuten). Tools contain
data from Breadmaker, Microwave, Pendant, Rice cooker, and Shampoo. Clothes
contain data from Shoes, Skirt, Socks, and Tops. These make up for the 12 datasets
we experimented on. For development and test sets, we randomly sampled sen-

tences from each dataset that have RIT score > 3 (for Breadmaker, which has little

http://opennmt.net
Shttps://github.com/neologd/mecab-ipadic-neologd
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data, we set RIT score > 2.5) in order to calculate BLEU scores on more reliable
data. Table 2.2 shows the data statistics after preprocessing for 12 datasets, which

we used in our experiments.

Dataset # of sentence pairs Word frequency for Japanese =~ Word frequency for English
Train Dev  Test # of types 1 2 # of types 1 2
Breadmaker 500 91 100 1,076 423 171 1,091 535 146
Microwave 1,065 199 200 1,825 704 257 1,948 905 271
Pendant 140,390 1,000 1,000 72,193 39,409 9,811 60,392 35238 7,595
Rice cooker 3,049 600 600 3,480 1,461 594 4,370 2,246 787
Shampoo 32,368 1,000 1,000 14,731 5,434 2,089 11,901 4,640 1,621
Tools 177,372 2,890 2,900 85,089 44,190 11,586 71,337 40,423 9,078
Shoes 414,316 2,000 2,000 192,080 87,571 30,077 185,211 100,383 28,996
Skirt 52,007 1,000 1,000 48,544 29,030 6,263 36,955 22,793 4,134
Socks 34,356 1,000 1,000 25,748 11,707 3,958 20,698 9,787 3,035
Tops 550,156 2,000 2,000 264,140 148,776 35,502 239347 158,349 27,388
Clothes 1,050,835 6,000 6,000 427,737 231,182 60,239 411,161 259,819 53,307

Rakuten 1,228,207 8,890 8,900 479,034 259,430 67,345 457,342 289,244 59,113

Table 2.2: Data statistics for 12 category. Columns “1” and “2” show the number
of unique word types with 1 and 2 occurrence frequency, respectively.

2.3.2 Proposed Methods and Results

Handling Unknown Words

E-commerce product data have many low-frequency words, which leads to the
problem of large vocabularies for NMT. Table 2.2 shows the number of unique
word types of 1 and 2 frequency. Up to 66% of unique word types occur only once
in training corpora. Recently, NMT systems trained on sub-words are widely used
to deal with the data sparseness problem.

We examined the impact of sub-words (Sennrich et al., 2016b) on the e-commerce
NMT model and compared the results with the output of NMT model trained on
word-level. We trained BPE models for each language using Rakuten data, setting
BPE merge operations to 16K for each language. Then we tokenized the data from
each category using a pre-trained BPE model. For the word-level NMT model,
we limited the vocabulary to the top 50K source words and 50K target words by
frequency. We set others as an unknown token <unk>.

15



2.3. PSEUDO-PARALLEL CORPORA BY BACK-TRANSLATION

As shown in Table 2.3, the Rakuten BPE-level model displays better performance
than the Rakuten word-level model on BLEU score (+6.8 BLEU) and on average
RIT score (+0.07 RIT score). For that reason, we decided to train all models on
BPE-level”.

NMT model BLEU RIT score
Rakuten all Word — 53.77 6.83
Rakuten all BPE ~ 60.67 6.90

Table 2.3: BLEU and average RIT scores of Rakuten word-level and BPE-level
NMT models on Rakuten test set.

Granularity

Here, we investigate how granular a translation model should be in order to effec-
tively translate data from each category. Table 2.2 shows that training data size is
too small for some categories, especially for Breadmaker, Microwave, and Rice
cooker. Rakuten Ichiba contains around 30K categories (Cevahir and Murakami,
2016). It would be nearly impossible to create a translation model for each cate-
gory; however, in case of an insufficient volume of domain-specific data, adding
generic content may help to improve the quality of NMT. Therefore, we concate-
nate similar in terms of domain datasets to 1) increase the size of training data
and 2) to decrease the amount of created NMT models to translate data from each
category. To investigate its effect, we trained 4 fine-granular models for differ-
ent categories with different size of training data from Table 2.2: Rice cooker all,
Shampoo all, Pendant all and Tops all. We also trained medium-granular 7ools all
and Clothes all models, that consist of similar domain data, and a coarse-granular
Rakuten all model using all training data. Then we compared the ability of each
model to translate the data from each category.

Table 2.4 shows the BLEU scores of each NMT model on test data of each cate-
gory. All models demonstrate the best results on their own in-domain data (test
data with the same name), except fine-granular Rice cooker all model, which was
trained on very small data and failed on translating out-of-domain data. On the
other hand, medium-granular Tools all and Clothes all models show the best and

“In this section, from now on, we do not include the word “BPE” to the names of models for
the sake of simplicity.
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the second-best results on in-domain and sub-in-domain (which training data was
included in medium-granular training data) datasets. A coarse-granular Rakuten
all model outperforms Tools all on 2 (Breadmaker and Microwave) and Clothes all
on 3 (Shoes, Skirt and Socks) sub-in-domain datasets. From this point onwards,

we experimented with medium-granular and coarse-granular models only.

Pendant  Rice cooker Shampoo Tops Tools Clothes Rakuten

Testdata all all all  al  all all

Breadmaker 7.4l 5.93 473 661 3266 1004 4531
Microwave 415 1.24 303 668 1795 1204  43.58
Pendant 61.72 0.00 063 791 5979 12.83  46.19
Rice cooker  4.91 33.80 371 176 4759 747 30.99
Shampoo 7.43 412 6376 440 5558 653  28.18
Tools 19.99 1060 1911 473 5873 896 3721
Shoes 5.08 0.15 043 1645 583 6215  64.27
Skirt 5.92 0.00 0.00 3189 663 5039 5159
Socks 5.84 0.63 088 1723 565 5412  56.66
Tops 7.63 0.00 030 6240 668 5453 5247
Clothes 5.99 022 048 3262 616 6034 5658
Rakuten 10.14 3.04 414 2512 1736 4462  60.57

Table 2.4: BLEU scores of NMT models on 12 test data. Bold: indicates the
highest BLEU scores for each test data category.

Data Selection

The quality of the training data plays an important role in training NMT systems.
Therefore, selecting high-quality data from a noisy parallel corpus (Imankulova
et al., 2017) is considered to be one of the solutions. In this section, we applied
data selection from training data and its contribution to the quality of translation for
Tools, Clothes, and Rakuten dataset from Table 2.2. For that purpose, we sampled
from these training datasets only sentence pairs with RIT score > 3 and trained
Tools sel, Clothes sel and Rakuten sel models using the selected data. The sizes of
the selected training sets are shown in Table 2.5 (Selected). Development and test
sets are the same as in Table 2.2.

The results are shown in Table 2.7 (columns: sel). Compared to the results of
NMT models trained on all data (all) from Table 2.4, NMT models trained on the
selected data (sel) performed slightly better on an in-domain case and much worse

on out-of-domain cases, except for Rakuten sel model.
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Training data Selected Augmented

Tools 132,192 175,687
Clothes 807,307 1,034,577
Rakuten 939,494 1,207,445

Table 2.5: Number of sentence pairs for Selected and Augmented training data.

Additional data # ofsent orig all  sel

Tools 45,155 4.12 429 5.48
Clothes 242,989 4.56 4.72 517
Rakuten 288,677 4.68 4.86 5.36

Table 2.6: Comparison of average RIT scores. # of sent: number of sentences of
additional data; orig: the original English sentences; all: output of NMT models
trained on all data; sel: output of NMT models trained on the selected data.

Data Augmentation

Rakuten Ichiba has a great amount of Japanese monolingual data. Here, we in-
vestigate how to effectively use Japanese monolingual data to further improve the
quality of NMT models for e-commerce product titles. For that purpose, we used
all and sel models to translate in-domain Japanese sentences from Tools, Clothes,
and Rakuten training data (Table 2.2) which have RIT score < 3. Table 2.6 shows
the size of obtained pseudo-parallel data and the average RIT scores for the original
English sentences (orig) and for outputs of all and sel models. In all cases, outputs
of sel models are better than that of a/l and original target sentences. Furthermore,
we selected sentences from the pseudo-parallel data to use as additional data to the
selected training data from Table 2.5 (Selected). Sentences with the highest RIT
score among the outputs of orig, all, and sel were kept, and sentences with the
RIT score < 3 were eliminated. The sizes of the obtained augmented training data
are shown in Table 2.5 (Augmented). Finally, we trained NMT models using the

created augmented training data (aug).

BLEU scores of aug models are shown in Table 2.7 (columns: aug). Compared to
the results of sel models, aug models are worse for in-domain datasets. However,

they demonstrate better results for out-of-domain datasets.
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Test data Tools Clothes Rakuten

sel aug sel aug sel aug

Tools 57.32 36.04 195 1098 36.47 37.24
Clothes 2.60 747 60.79 57.06 57.59 57.12
Rakuten  9.41 22.85 29.70 4797 6098 60.93

Table 2.7: BLEU scores of NMT models trained on the selected and augmented
data.

Testdata orig all sel aug

Tools 6.12 6.17 6.32 6.73
Clothes 6.87 6.90 6.89 7.01
Rakuten 6.88 6.90 6.97 7.00

Table 2.8: Average RIT scores of NMT models on in-domain test data.

2.3.3 Discussion

Table 2.8 illustrates the calculated average RIT scores for in-domain data, where
we can see that all NMT outputs are better than the original target sentences, which
we could not evaluate using BLEU. Also, in contrast to BLEU results (Table 2.7),
we can conclude that aug models outperform all other models. We assume that the
reasons for such discrepancy between these scores are: 1) NMT models are trying
to recreate original data, so they do not correlate with RIT score at some parts;
2) RIT score cares more about how many words, which appear in the equivalent
categories on Rakuten.com, are contained in each sentence, while BLEU uses the
original data (noisy pair) as the reference; 3) BLEU evaluates from the originally

incorrectly translated title, so the “correct” NMT outputs are considered “wrong”.

Table 2.9 shows an example of original and translated sentences from the Rakuten
test set. The original target translation of the Japanese word V) 7 >/ is “ribon”,
which is the erroneous translation. Rakuten all Word model output <unk> word
translating “V JR> ¥ 7+ > ¥ ¥ Y T 5 7 A”. Rakuten all and Rakuten sel
models, which were trained on BPE-level, translated all words, however, output
an erroneous translation such as “ribon”. Finally, Rakuten aug correctly translated

it to “ribbon”.
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Model Model output

Source sentence BMRRBHEENNEV RV Y T AT Y Y TITIA
Original target sentence rakuten great thanksgiving ! florets ribon chiffon shirt blouse
Rakuten all Word rakuten great thanksgiving ! flower <unk>

Rakuten all rakuten great thanksgiving ! florets ribon chiffon shirt blouse
Rakuten sel rakuten great thanksgiving ! floret ribon chiffon shirt blouse
Rakuten aug rakuten great thanksgiving ! florets ribbon chiffon shirt blouse

Table 2.9: Example from Rakuten test data translated by NMT models.

2.3.4 Summary

In this section, we have explored the possibility of using NMT on e-commerce
product titles and demonstrated the effectiveness of using pseudo-parallel corpora
created by back-translation and filtering it using RIT score.

2.4 Pseudo-Parallel Corpora by Round-Trip Trans-

lation

Since RIT score is a unique evaluation metric that concentrates specifically on En-
glish and e-commerce product domain, allowing to evaluate the correctness of the
back-translated sentence, such evaluation metrics are not available for most lan-
guages and domains. Therefore, in this section, we propose a method to create a
pseudo-parallel corpus by translating a monolingual corpus in the target language
and filtering it using round-trip translation to address the quality of the parallel
corpus. If the target sentence and its round-trip translation are similar, we assume
that the synthetic source sentence is appropriate with respect to its monolingual
target sentence; moreover, this pair can be included in the filtered pseudo-parallel
corpus. The filtration can be iteratively applied using a new upgraded NMT sys-
tem. Thus, the size of a high-quality pseudo-parallel corpus can be increased. To
the best of our knowledge, this study comprises the first attempt to (1) filter a
pseudo-parallel corpus using round-trip translation and (2) bootstrap NMT.

Here, we conducted experiments on three different language pairs which have a
varying amount of available parallel data. Japanese<+Russian was used as the low-

resource language pair, French—Malagasy as medium-resource language pair,
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and German—English as the high-resource language pair. We demonstrated that
the baseline method (Sennrich et al., 2016a) is effective for high-resource language
pairs; however, in the case of low-resource language pairs, it is more effective to
use a filtered pseudo-parallel corpus as additional training data. With the filtered
pseudo-parallel corpus, up to 3.46 BLEU point improvement was achieved in the
Russian—Japanese translation, and up to 5.25 BLEU points in the Japanese—Russian

translation.

2.4.1 Proposed methods

Filtering

Targetsyn[h

How are you doing?
| am waiting a meeting.

@ round-trip

@ calculate metric score translate

Targetmono /

0.9 How are you?
02 | have a meeting-

3
2

@ back-translate

@ sort corpus
by metric score

l@ Filtered pseudo-parallel corpus

Sourcesynth
1 1

How are you? FTLTTe?

Figure 2.2: Creating and filtering a pseudo-parallel corpus using round-trip trans-
lation.

As shown in Figure 2.2, the proposed method includes the following steps:

1. Back-translate monolingual target sentences (Target,,.,,,) using a “Model;,”
model trained in the target—source direction to produce synthetic source
sentences (Source,,,;;,). Here, an “Unfiltered” pseudo-parallel corpus is
obtained as additional data without filtration, similar to the approach used
in Sennrich et al. (2016a).
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2. Round-trip translate the synthetic source sentences usinga “M odel ; ” model
trained in the source—target direction to obtain a synthetic target sentence
(Targetsynth)'

3. Calculate sentence-level similarity metric scores using the monolingual tar-
get sentences as references and the 1-best synthetic target sentences gener-
ated via beam-search as candidates.

4. Sortthe monolingual target sentences and the corresponding synthetic source
sentences in descending order of sentence-level similarity metric scores and

filter out sentences with low scores.

5. Use the filtered synthetic source sentences as the source side and the mono-
lingual target sentences as the target side of the pseudo-parallel corpus; this
is referred to as a “Filtered” pseudo-parallel corpus: it is used as training
data in addition to the parallel corpus to train a new “Filtered” model.

Bootstrapping
Bootstrap 1

Targetsynm
How are you doing?
| am waiting a meeting.

v @ round-trip

@ calculate metric score translate
Targetmono / Sourcesynn BOOtS‘tFBp 2
Targetsynn

@ back-translate

@ sort corpus
by metric score

0.9 How are you?

Targetmeno

I have a meeting.

® Filte @ round-trip

@ calculate metric score translate

Targetmono é/

1.0 | have a meeting.

Sourcesynty

@ back-translate
— B =lrs )27,
@ sort corpus
by metric score

l@ Filtered pseudo-parallel corpus

How are you?

Targetono

Sourcesynm
) )

How are you?

B
| have a meeting. #h

Figure 2.3: Bootstrapping NMT with a pseudo-parallel corpus.

Each bootstrapping iteration involves the following steps (Figure 2.3, Algorithm

1):
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Algorithm 1: Bootstrapping NMT using filtered pseudo-parallel corpus

Input: Parallel data src, <+ trg, and monolingual target data ¢rg,,, if needed
ScoringM odel: word2vec or LM

Output: The best source to target Modely.

Modely < train(src,, trg,)

Modely < train(trg,, src,)

baseScore < 0

bestScore < eval(Modely)

Bootstrap iteration < 0

metric < choose(sent-LM, sent-BLEU, AAS, M AS)

while bestScore > baseScore do
Bootstrap _iteration <— Bootstrap iteration + 1

baseScore < bestScore
srcg < backTranslate(trg,,) using Model,
trgs <— roundTripTranslate(src,) using Model
thresholds < filter(metric, src, trg, trg,,, ScoringModel)
for each thr in thresholds do
sreg[thr] <= sre, + sres with scores > thr
/I parallel + “Filtered” source sentences
trg,[thr| < trg, + trg.,, with scores > thr
// parallel + “Filtered” target sentences
Models[thr] < train(src,[thr], trg,[thr])
/I “Filtered” source to target models
bleuScores|thr] <— eval(Model;[thr])

end

thr < argmax, [blueScores| // Select thr based on highest BLEU score
bestScore «+ bleuScores[thr]

Modely <— Modely[thr] // new best “Filtered” source to target model

Modely «+ train(trg,[thr|, src,[thr))
// new best “Filtered” target to source model
trgm < trgm — trg,[thr] // Update with filtered out monolingual data
end
return Model s

1. “Model training”: Train “Filtered” NMT models using a parallel corpus
and additional “Filtered” pseudo-parallel corpora created by the proposed
filtering method.

2. “Model selection”: Select the best model on the development set from the
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previous iteration and use it instead of the source—target “Models ” model
from the previous iteration. Additionally, train its target—source “Model;,”
model.

3. “Bootstrapping”: Use target sentences from the pseudo-parallel corpus that
have been filtered out from training data of the previous best model to create
new “Filtered” pseudo-parallel corpora to bootstrap the NMT. If there is no
improvement over the previous iteration, terminate the bootstrapping pro-
cess and return to the “Filtered” pseudo-parallel corpus and the translation

model as output.
4. Repeat steps 1 to 3.

To create a new pseudo-parallel corpus for a new bootstrap iteration, we use those
monolingual target sentences that were not included in the “Filtered” pseudo-
parallel corpus of the previous iteration. Consequently, the already created “Fil-
tered” pseudo-parallel corpus from the previous iteration does not change’ in the
next bootstrap iteration. Even if the filtered out monolingual target sentences re-
main the same, its synthetic source sentences are refreshed at each iteration. Thus,
the translation quality of both the “Unfiltered” and “Filtered” pseudo-parallel cor-
pus is improved via the bootstrapping process until the stopping criterion is met.

Sentence-level similarity metrics for filtering

Three sentence-level similarity metrics are used for filtering: sent-BLEU, AAS,
and MAS proposed by Song and Roth (2015), which showed effective results in
the Semantic Textual Similarity task (Kajiwara et al., 2017). These metrics re-
quire round-trip translation of target monolingual data for the proposed filtration
method. Sent-BLEU calculates the similarity of the synthetic and monolingual
target sentences based on only surface information, whereas AAS and MAS use

distributed representations of the sentences.

The AAS score is the average cosine similarity between vectors of all words in

3The attempt to update the entire pseudo-parallel corpus in each bootstrap iteration, instead of
using only filtered out monolingual data to create a new pseudo-parallel corpus for a new bootstrap
iteration, led to degraded performance.
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monolingual and synthetic target sentences:

Iyl 1y']

ZZCOS yzy] (2.1)

\yHy!“J -

AAS(y.y)

The MAS score is the cosine similarity between the most similar word from the
monolingual target sentence and each word from the synthetic target sentence:

1 Y]

MASsym (¥, y) |y| Z maz cos(yzyj) (2.2)

Note that this similarity is not symmetric. A symmetric similarity can be computed

by averaging two similarities:

1 1
MAS(y,y') = GMASasym(y, ¥') + 5MASasym(y’ y) (2.3)
Here, y = (v1,...,y;) are word vectors for a monolingual target sentence, and

Y = (v}, .-, y;) are word vectors for a synthetic target sentence.

Sentence-level language model scoring for filtering

We also used the sent-LM metric, which, in contrast to the other three sentence-
level similarity metrics, performs filtration by scoring only synthetic source sen-

tences without round-trip translation.

Thresholds for the pseudo-parallel corpus

Accordingly, the translation performance increases as the number of parallel sen-
tences increase (Koehn, 2002). However, for a pseudo-parallel corpus, the trans-
lation performance does not necessarily increase with the number of sentences.
To determine the effects of the quantity and quality of the pseudo-parallel corpus
in NMT, thresholds of metric scores are set with increment steps of 0.1. Thus,
pseudo-parallel sentences included as additional data have sentence-level similar-
ity scores greater than or equal to some threshold (e.g., sent-BLEU > 0.1,..., sent-
BLEU > 0.9, ...). Sentences scored and filtered by filtering metrics were used to
train the “Filtered” models. For example, sentences with filtering metric scores
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(e.g., sent-BLEU) greater than or equal to 0.1 were used to train the “sent-BLEU
> 0.1 model. Moreover, the NMT system was trained using different thresholds,
and their respective performances were compared with development and test sets.
Only source—target NMT models with the highest BLEU score on the develop-
ment set were reported.

2.4.2 Experimental Setup

Toolkits

For the conducted experiments, we used the OpenNMT toolkit® (Klein et al., 2017)
to train all translation models. For the Russian<»Japanese and French—Malagasy
experiments, the following parameters were used: The number of recurrent lay-
ers of the encoder and decoder was one, BILSTM was used with concatenation,
the maximum batch size was 32, and the Adadelta optimization method was ap-
plied. For the German— English experiments, OpenNMT default settings were
used to match the hyper-parameters used for pre-trained German—English mod-
els (without back-translation) distributed by OpenNMT.” The vocabulary size in
all experiments was 50,000.

All French, English, German, and Russian sentences were tokenized and true-
cased using Moses scripts.® For all Japanese sentences, MeCab 0.996 was used
with the IPAdic dictionary’ for word segmentation. For all languages, duplicate
sentences and sentences with more than 50 words were eliminated. To compare
the translation results, the BLEU scores (Papineni et al., 2002) were recorded.
Additionally, Moses’s bootstrap-hypothesis-difference-significance.pl script was
used to perform statistical significance tests on the translations (p < 0.05).

The sent-BLEU scores were calculated using the M7eval-sentence of the MTeval
toolkit.!” Word2vec (Mikolov et al., 2013a) models were trained using the Gen-
sim library to calculate AAS and MAS metrics. The KenLM Language Model

®http://opennmt.net/OpenNMT/
"http://opennmt.net/Models/
8https://github.com/moses-smt/mosesdecoder/
‘http://taku910.github.io/mecab
Yhttps://github.com/odashi/mteval
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Toolkit'" was used to build a 5-gram language model with Kneser-Ney smoothing.
To extract the scores, the filtering metric scores were normalized to be between
[0, 1] using a feature-scaling preprocessing. MinM axScaler method from the
scikit-learn library, which transforms features by scaling each feature within the
designated min and max range. The LM log probability scores are normalized by
dividing the log probability scores by the sentence length.

Dataset

Parallel and target monolingual data The parallel corpora for low-resource
Russian<+Japanese'” and for medium-resource French—Malagasy'? experiments
were downloaded from OPUS.!* For the medium-resource French-Malagasy lan-
guage pair, the news domain GlobalVoices corpus was used, which differs from
the Tatoeba'” daily-conversations domain corpus used in the Russian<sJapanese
experiments. The GlobalVoices corpus has more available parallel data (107,406

sentence pairs compared with 11,231 available through Tatoeba).

The duplicate Tatoeba parallel corpus was divided for the Russian<+Japanese ex-
periments as follows: 10,231 sentences comprised the training set, 500 sentences
the development set, and 500 sentences the test set. Additionally, to perform
Japanese—Russian—Japanese round-trip translation for the Russian to Japanese
experiment, all available 165,742 Japanese monolingual sentences were sampled
from in-domain Tatoeba. All available 75,402 Russian monolingual sentences
from in-domain Tatoeba were also sampled for Japanese— Russian translation to
facilitate Russian— Japanese— Russian round-trip translation. None of the utilized

monolingual data overlapped with the parallel data.

Experiments for the French—Malagasy language pair were conducted with data
from the GlobalVoices corpus. Parallel data were divided as follows: 106,406
sentences comprised the training set, 1,000 sentences the development set, and
1,000 sentences the test set. From GlobalVoices, 105,573 Malagasy monolingual
sentences were used to create a French—Malagasy pseudo-parallel corpus.

"https://kheafield.com/code/kenlm/
http://opus.lingfil.uu.se/Tatoeba.php
Bhttp://opus.lingfil.uu.se/GlobalVoices.php
“http://opus.lingfil.uu.se/
Bhttps://tatoeba.org/eng
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For the German— English experiments, pre-trained German<+English models and
4,535,522 parallel sentences provided by OpenNMT were downloaded. The de-
fault OpenNMT settings were used to preprocess all data. 4,208,439 German— English
sentences from automatically back-translated monolingual data'® were downloaded;
the synthetic German side was translated back to English using the pre-trained
German—English model to filter this pseudo-parallel corpus. For the development

set, newtest2013 (3,000 sentence pairs) was used, and for the test set, newtest2014
(3,003 sentence pairs). Table 2.10 shows the data statistics.

Corpus Russian<+Japanese French—Malagasy German— English
Train parallel 10,231 106,406 4,535,522
Dev 500 1,000 3,000

Test 500 1,000 3,003
Monolingual target ~ 75,402<+165,742 105,570 4,208,439

Table 2.10: Data statistics.

Data to train word2vec models To train word2vec models for the Russian<+Japanese
experiments, the OpenSubtitles2018 corpus'’” was chosen, as its domain is most
similar to the Tatoeba domain, with high-resource data. Japanese and Russian
monolingual OpenSubtitles2018 corpora were downloaded from OPUS.'® After
tokenizing and removing sentences with less than 2 and more than 100 words,
2,728,314 Japanese monolingual sentences were obtained to train Japanese word2vec.
Similarly, Russian monolingual sentences were cleaned, and the same 2,728,314
sentences were sampled to match Japanese monolingual data for fair compari-
son on low-resource settings. To train the Malagasy word2vec model for the
French—Malagasy experiments, data was used from the Leipzig Corpora Col-
lection for Under-resourced Languages'® (Goldhahn et al., 2016) and from Glob-
alVoices for all Malagasy monolingual data. The total size of the employed data
was 296,440 Malagasy monolingual sentences. For the German—English exper-
iments, the English side of parallel and monolingual data used in the previous
Section 2.4.2 was concatenated, resulting in 8,743,962 English monolingual sen-

tences.

http://data.statmt.org/rsennrich/wmt16_backtranslations/de-en/
"http://opus.nlpl.eu/OpenSubtitles2018.php/
¥http://opus.nlpl.eu/index.php
Yhttp://curl.corpora.uni-leipzig.de/languages/mlg
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Data to train language models To train the language models for the Japanese— Russian
and Russian—Japanese experiments, the same Japanese and Russian sentences
were used that were used to train the word2vec models. For the French—Malagasy
experiments, 2,190,579 French monolingual sentences were used from the Eu-
roparl.’’ For the German— English experiments, German monolingual sentences
were downloaded from automatically back-translated data’! and concatenated with
the German side of parallel data, resulting in 8,115,406 German monolingual sen-

tences.

Baselines

Sennrich et al. (2016a) obtained additional training data by automatically translat-
ing monolingual target sentences into the source language with their “Parallel”
baseline systems.

The baseline systems used herein were 1) the “Parallel” systems trained on a par-
allel corpus in both directions, which were then used to create a pseudo-parallel
corpus, and 2) an “Unfiltered” system, which was trained on a concatenated par-
allel corpus with all pseudo-parallel corpora without any filtration.

Filtering and bootstrapping

The parallel sentence pairs (Section 2.4.2) were used to train the baseline “Paral-
lel” models in both directions for all language pairs. Then, these models were used
to create a pseudo-parallel corpus by round-trip translation of the target monolin-
gual sentences (Section 2.4.1). A concatenation of parallel and pseudo-parallel
sentences was used to train the “Unfiltered” models for each bootstrapping itera-
tion. Because of training variance, all “Unfiltered” models were trained 10 times
with different seeds, as well as one time for each threshold; the scores of the best
model on the development set is then reported. For each filtering metric, after
filtration and selection of the best model on the development set and its data, the
filtered out target monolingual sentences are used for round-trip translation with

the chosen model. Since different models are used, “Unfiltered” data is created

Mnhttp://www.statmt.org/wmt14/training-monolingual-europarl-v7/
europarl-v7.fr.gz
2lhttp://data.statmt.org/rsennrich/wmt16_backtranslations/en-de/
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with different quality for each filtering metrics. Here, for each filtering metric, the
BLEU scores are compared for the development sets. Iterating was halted if the
current score was lower than the previous score. Accordingly, the BLEU scores
for development and test sets (Tables 2.11-2.14) for “Parallel”, “Unfiltered”, and
“Filtered” models with their data sizes and thresholds (columns “>") are reported.

2.4.3 Results

In this section, the results on three different language pairs are described: Japanese<»Russian,

French —Malagasy, and German— English.

Russian—Japanese
Metri Unfiltered Filtered
etne Size Dev  Test| > Size Dev Test
Parallel 10,231 | 17.47 | 18.17 - - - -
sent-LM 0.9 | 175,821 | 18.59 | 17.27
sent-BLEU 02| 72,264 | *20.93 | 18.59
Bootstrap 11\ 1826 | 1787 | 69 | 34814 | £20.00 | *20.04
MAS 0.7 | 48,584 | *19.95 | *19.48
sent-LM 17.03 | 1727 | 0.8 | 175,951 | ,18.42 | 18.04
sent-BLEU 1874 | 17.76 | 0.9 | 72,291 | *21.18 | *19.64
Bootstrap 2 |\ 175973 | 1974 | 1734 | 1.0 | 35.032 | ©21.33 | *20.60
MAS 18.55 | 15.48 | 0.9 | 48,593 | *20.81 | *20.55
sent-BLEU 1825 | 18.15 | 0.5 | 73,430 | 220.67 | 18.67
Bootstrap 3 | AAS 17.88 | 16.68 | 1.0 | 35,182 | *19.93 | ,19.04
MAS 18.39 | 18.61 | 0.8 | 55,513 | *21.41 | *21.13
Bootstrap 4 | MAS 18.95 | 19.11 | 0.9 | 55,637 | *21.23 | *20.18

Table 2.11: Russian—Japanese translation BLEU scores. There is a statistically
significant difference for *: against the “Parallel” system, and for ,: against the
“Unfiltered” system of that Bootstrap iteration. Bold indicates the highest BLEU
scores for each filtering metric.

Table 2.11 outlines the results of all bootstrap iterations and filtering metrics for
the Russian—Japanese language pair. The results obtained using the “Unfiltered”
model demonstrate that none of the “Unfiltered” models significantly outper-
formed the “Parallel” model.

Contrastingly, “Filtered” models significantly outperformed both “Parallel” and
their “Unfiltered” baselines. In most cases, the difference between the BLEU
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scores of “Filtered” and “Parallel” on the development set is around +3 points.
Generally, these results suggest that using filtered pseudo-parallel data rather than
all sentences containing incorrect sentence pairs leads to increased machine trans-

lation accuracy for both baselines.

The model trained using data scored by a sent-LM metric stopped improving after
the first bootstrap iteration. However, using sentence-level similarity metrics sig-
nificantly increased the performance over baselines, even when much fewer data
were used for the training. The best “MAS > 0.8 model outperformed the “Par-
allel” and its “Unfiltered” model in terms of BLEU scores on the development
set by +3.94 and +3.02 points, respectively.

Japanese—Russian

Metric Unfiltered Filtered
Size Dev Test | > Size Dev Test
Parallel 10231 | 1013 | 953 | - - - -
sent-LM 0.9 | 84,338 | *15.30 | *14.66
sent-BLEU . . 0.3 | 35811 | *14.81 | 13.20
Bootstrap 1|\ x g 1431171396 1 ) | 84934 | *15.04 | 1343
MAS 0.4 | 84,762 | *15.38 | 14.24
sent-LM *14.22 [ *14.00 | 1.0 | 84,935 | *15.89 | *14.87
Bootsiran 2 | SSMBLEU | 85,633 | *13.69 | *14.05 | 0.2 | 62,519 | 51554 | $15.56
OOBHAP = 1 AAS *14.60 | *14.63 | 0.4 | 85,101 | *15.61 | *15.42
MAS 1424 | 11.92 | 0.5 | 85,152 | *14.88 | *14.51
sent-LM *14.89 [ *14.20 | 0.7 | 85,226 | *14.89 | *14.20
Bootstrap 3 | sent-BLEU 1470 | *13.08 | 0.4 | 62,747 | *15.35 | *15.03
AAS *14.73 | *14.32 | 0.8 | 85,110 | *15.24 | *15.07

Table 2.12: Japanese—Russian translation BLEU scores. There is a statistically
significant difference, for *: against the “Parallel” system, and for ,: against the
“Unfiltered” system of that Bootstrap iteration. Bold indicates the highest BLEU
scores for each filtering metric.

The effect of the proposed filtering method on Japanese— Russian translations was
examined, with the results given in Table 2.12. Most of the “Unfiltered” models
performed significantly better than the “Parallel” model.

However, all “Filtered” models still returned better BLEU scores than the “Par-
allel” and “Unfiltered” models. The difference between the BLEU scores of the
“Filtered” and “Parallel” models on development and test sets are generally more
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than +4 points. The “sent-LM > 1.0 model in Bootstrap 2 outperformed the
“Parallel” and its “Unfiltered” model in terms of BLEU scores on the devel-
opment set by +5.76 and +1.67 points, respectively. However, its BLEU score
on the test set was low compared to other metrics’ models. In Bootstrap 3, The
BLEU scores of “sent-LM > (.7 were the same as that of its “Unfiltered” model.
We assume that the relatively weak models from the previous iteration generated
low-quality pseudo-parallel data, which led to weaker “Filtered’” models that used
nearly the same amount of data as the “Unfiltered” model.

French—Malagasy

Metri Unfiltered Filtered
etne Size Dev Test | > Size Dev Test
Parallel 106,406 | 16.78 | 15.18 | - - - -
sent-LM 0.8 | 211,823 | *17.44 | 15.72
sent-BLEU 0.3 | 124,756 | *17.43 | 14.39
Bootstrap 11 4 s g 17.06 1 14901 o | 175386 | *17.50 | *16.87
MAS 0.7 | 210,851 | *17.43 | 15.67
sent-LM 211979 | 17:00 [ 16.06 1 0.9 [211,949 [ 1735 [ 15.65
Bootstrap 2 | SEM-BLEU ’ 16.69 | 1532 0.6 | 125,176 | ¢17.69 | 15.71
P2l AAS 17.31 | 15351 0.9 | 189,929 | *17.77 | *16.26
MAS 16.80 | 15.52 | 0.5 | 211,840 | *17.38 | 16.06
Bootstrap 3 | SCBLEU 16.87 | 16.03 | 0.9 | 125,185 | 17.19 | 15.64
P21 AAS 17.07 | *16.21 | 0.8 | 204,817 | *17.52 | 15.62

Table 2.13: French—Malagasy translation BLEU scores. There is a statistically
significant difference, for *: against the “Parallel” system, and for ,: against the
“Unfiltered” system of that Bootstrap iteration. Bold indicates the highest BLEU
scores for each filtering metric.

The results for French—Malagasy are shown in Table 2.13. Here, only some of
the “Unfiltered” models slightly outperformed the “Parallel” model. Despite the
fact that “Filtered” models showed higher BLEU scores than both baselines, only
some showed significant improvements. On the development set, the best “4A4S >
0.9” model from Bootstrap 2 yielded better results up to +0.99 BLEU points and
+0.46 BLEU points over the “Parallel” and “Unfiltered” baselines, respectively.

We assume that since French—Malagasy “Parallel” models were trained using
medium-resource data, they generated a pseudo-parallel corpus with better qual-
ity than low-resource language pairs. Even though the filtration method improved
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baseline models, improvements were not as significant as in low-resource scenar-

10S.
German— English
Metric Unfiltered Filtered
Size Dev Test | > Size Dev Test
Parallel 4,535,522 | 22.33 | 20.58 - - -
sent-LM 0.9 | 8,722,498 | ®25.98 | *26.07
sent-BLEU . R 0.2 | 7,345,367 | ®24.87 | *24.13
Bootstrap 1 AAS 8,743,961 | °26.35 | °26.23 03 | 8.693.417 | *2627 | *26.13
MAS 0.4 | 8,742,920 | *26.14 | *25.90

Table 2.14: German—English translation BLEU scores. There is a statistically
significant difference, for *: against the “Parallel” system, and for ,: against the
“Unfiltered” system of that Bootstrap iteration. Bold indicates the highest BLEU
scores for each filtering metric.

Table 2.14 shows the BLEU scores of German—English experiments. All models
that used additional pseudo-parallel corpora achieved significant improvements
over the “Parallel” baseline. However, none of the “Filtered” models outper-
formed the “Unfiltered” baseline on the development and test sets, regardless of

filtering metrics.

We assume, in this case, that the “Parallel” models were strong enough to generate
a large amount of high-quality pseudo-parallel sentences. Thus, using all pseudo-
parallel corpus without any filtration improved the “Parallel” baseline the most.
Additionally, filtering out some noisy pseudo-parallel sentences resulted in weaker
models than in the “Unfiltered” baseline.

Human evaluation

Additionally, we used the human evaluation of Russian— Japanese translation of
the four bootstrap models created using the MAS metric. Two human evaluators
were asked to evaluate the translations of 100 source sentences randomly sampled
from the test set. Each evaluator chose the best candidate based on adequacy and
fluency without knowing which bootstrap system produced the respective transla-

tion (ties and “none” were allowed). The final decision was made by voting. The
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number of times each bootstrap model was selected as the best translation by the
evaluators was then calculated.

Table 2.15 shows the results of the human evaluation. The highest number of
correct answers for adequacy and fluency was obtained by the “MAS > 0.8 model

in Bootstrap 3. Thus, bootstrapping had a positive effect on the NMT model.

Iteration Model Adequacy |, Fluency
Bootstrap 1 | MAS > 0.7 21 56
Bootstrap 2 | MAS > 0.9 16 43
Bootstrap 3 | MAS > 0.8 22 57
Bootstrap 4 | MAS > 0.9 17 48

Table 2.15: Human evaluation of Russian—Japanese translation adequacy and
fluency of the bootstrapped models.

2.4.4 Discussion

The results of all experiments showed that, rather than using all additional pseudo-
parallel data, the proposed filtering method improved the translation performance
in nearly all experiments conducted for low-resource language pairs. The exten-
sive experiments using four different filtering metrics showed that filtering itself
significantly impacts low-resource language pairs, as the improvements across dif-
ferent filtering metrics were consistent with the insignificant differences.

Table 2.16 shows examples of Russian—Japanese pseudo-parallel sentences scored
by the MAS metric for every bootstrapping iteration. In the first example, the
synthetic Russian sentence from Bootstrap 1 was an incorrect translation of its
Japanese monolingual sentence. However, by Bootstrap 3, the synthetic Russian
and its synthetic Japanese translation improved. By the final Bootstrap 4 itera-
tion, the translation output was sufficient. Finally, these synthetic Russian and
Japanese monolingual sentences were used to train the best “MAS > 0.9” model
from Bootstrap 4. Accordingly, the Japanese—Russian and Russian— Japanese
models filtered by the MAS metric used to create the pseudo-parallel corpora im-
proved with each bootstrap iteration. Example 2 shows that the synthetic Russian
sentence from Bootstrap 3 was an adequate translation of its Japanese monolingual
sentence, whereas its round-trip translation was not. As a result, these pseudo-

parallel sentences were filtered out, resulting in a slightly worse synthetic Russian
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sentence, in terms of adequacy, in Bootstrap 4. Therefore, such noisy sentences
are still present in the filtered pseudo-parallel corpus used as additional training
data for the best model, which led to the decreased translation quality of the Rus-
sian—Japanese NMT model.

Boot Synthetic Russian Sentence Synthetic Japanese Sentence MAS score

Example 1 - Japanese Monolingual Sentence: 3 )L 27 % —F\ V0223, (how about a cup of milk ?)

Bootstrap 1  He kode , moxkanyiicra . It — %<3, 0.63
| (no coffee , please .) | (coffee , please .) |
Bootstrap 2 " He xode , noxKanyicra . O b ABATLEIL, C 054
(no coffee , please .) (please , drink coffee.)
Bootstrap 3 | He MOIIH J11 YaIIKy MOJIOKa ? FHE L HRNEETEEAN, 0.67
(couldn’t a cup of milk ?) (could I have a glass of milk ?)
Bootstrap 4 | He XOTHTE M 9aIIKy MOJIOKa ? T E—FRORBTE A, 0.92

(would you like a cup of milk ?) | (would you like a cup of milk ?)

Example 2 - Japanese Monolingual Sentence: N AIEA 7V —IZDWTHARZIZEEL H U ZW,
(did Tom talk to you about Mary ?)

Bootstrap 1 ~ Tom roeopus , uto Tei ropoput ? M AIE2 5o TWSDEEF A ? 0.64
(Tom said what did you say ?) (did you say what Tom is saying?)

Bootstrap 2 | Tom rosopui ¢ Bamu ? MARHEZEEFEUE L b, 0.76
(did Tom talk to you ?) (did Tom talk to you ?)

Bootstrap 3 | Tom ropopusi ¢ Bamu o Mapu . | M AIE— ATHARZIZEZ- 7, 0.74
(Tom spoke to you by Mary . ) (Tom saw you by yourself .)

Bootstrap 4 | Tom roeopun ¢ Bamu ? NAEHRIZEFELE UM, 0.91
(did Tom talk to you ?) (did Tom tell you ?)

Table 2.16: Examples from the Russian—Japanese pseudo-parallel corpus scored
by the MAS metric and their changes on every bootstrapping iteration.

Sennrich et al. (2016a) showed that using a pseudo-parallel corpus as additional
data greatly improved the performance over the “Parallel” baseline. Furthermore,
our experiments demonstrated that for a high-resource language pair (Table 2.14),
the proposed filtering method was unable to improve the performance over the
“Unfiltered” baseline; additionally, it was not as effective as it was for a low-
resource language pair. The experiments showed that a better “Parallel” system
resulted in the creation of a better pseudo-parallel corpus. Thus, the weaker the
“Parallel” system, the more effective the proposed filtration method.

For some filtration metrics in the experiments of Tables 2.11-2.13, removing only
very few of the training data improved BLEU scores over the “Unfiltered” base-
lines. After manual inspection, the removed data were particularly noisy. For
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example, in Bootstrap 1 of Table 2.12 for the Japanese—Russian experiments,
“sent-LM>(0.9” removed pairs with a score of 0.55 as follows:

Synthetic Japanese source sentence: “” FAD SUFFAD 1] 1% [] 1%
V= < I 2= < V2= < I 2= S = S Y= o I = S = S = S = S
= < o= < = Y = I = A = Y =« = < 2= S = G =
N = < = I = S = 2= I = = < = S = S = S
= I = S = o = S T = S W =S

Monolingual Russian target sentence: “ofHa 13 MOUX JTFOOUMBIX ITECEH .

We assume that such noisy data greatly affects already poor NMT quality, espe-
cially in low-resource scenarios; the NMT system “unlearns” its conditioning on
the source context when the training data are noisy. This phenomenon could be ad-
dressed as the low-resource case of the work by Sennrich et al. (2016a) with their
“Dummy Source Sentences” experiments. It is also known that in low-resource
settings, neural networks tend to experience overfitting (Srivastava et al., 2014).
Considering the number of parameters, NMT systems tend to overfit on small
training data: i.e., they learn both the correct and the noisy information from the
given data. The “Unfiltered” models are greatly influenced by the training data
with respect to the noisy data removed by filtering. However, with filtering, sen-
tences containing such noise can be successfully removed, leading to increased
BLEU scores. From this, the utility of filtering is established: the noisy data can
be correctly removed from the experiment settings when systems are susceptible
to the training data.

The experimental results showed that bootstrapping for multiple iterations im-
proved NMT in terms of the BLEU score. However, the quality ceases to improve
after several steps. This could be attributed to the systems used to create new

pseudo-parallel corpora, which become weaker at each bootstrap iteration.

The low-resource NMT systems depend not only on the amount of training data but
also on the data’s quality. Therefore, even if the number of removed sentences is
relatively small, it is more appropriate to define the threshold as an absolute value,

rather than a percentage of the data, because the result may change significantly.
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2.4.5 Summary

In this section, we showed that we could obtain high-quality pseudo-parallel cor-
pora created by round-trip translation by filtration and bootstrapping for low-resource
language pairs. The models trained using the filtered pseudo-parallel corpus as
additional data yielded better BLEU scores than the baselines for low-resource
language pairs. We also showed that the translation performance could be further
improved by bootstrapping, although bootstrapping has its limitations with regard
to the BLEU score. These findings suggest that translation accuracy depends on
both the size and quality of the training data. The weaker the “Parallel” system
used in the creation of a pseudo-parallel corpus, the lower the quality of the created
pseudo-parallel corpus. In this scenario, the proposed filtration method can be the

most useful for obtaining an improved pseudo-parallel corpus.

Further experimental investigations are required to estimate the limitations of the
proposed filtration method.
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3| Out-of-Domain Corpora for Low-Resource
NMT

3.1 Introduction

In this chapter, we focus on a linguistically distant and thus challenging language
pair Japanese<>Russian which has only 12k lines of news domain parallel corpus
and hence is extremely resource-poor. Furthermore, the amount of indirect in-
domain parallel corpora, i.e., Japanese<>English and Russian<+English, are also
small. As we demonstrate in Section 3.4, this severely limits the performance of
prominent low-resource techniques, such as multilingual modeling, back-translation,
and pivot-based PBSMT. To remedy this, we propose a novel multistage fine-
tuning method for NMT that combines multilingual modeling (Johnson et al.,
2017) and domain adaptation (Chu et al., 2017).

The main contributions are as follows:

* We have made extensive comparisons with multiple architectures and MT
paradigms to show how difficult the problem is. We have also explored
the utility of back-translation and show that it is ineffective given the poor
performance of base MT systems used to generate pseudo-parallel data. Our
systematic exploration shows that multilingualism is extremely useful for
in-domain translation with very limited corpora (see Section 3.4). This type

of exhaustive exploration has been missing from most existing works.

* Our proposal is to first train a multilingual NMT model on out-of-domain
Japanese<«>English and Russian<+English data, then fine-tune it on in-domain
Japanese<>English and Russian<+English data, and further fine-tune it on
Japanese<»Russian data (see Section 3.5). We show that this stage-wise
fine-tuning is crucial for high-quality translation. We then show that the
improved NMT models lead to pseudo-parallel data of better quality. This
data can then be used to improve the performance even further, thereby en-
abling the generation of better pseudo-parallel data. By iteratively gener-
ating pseudo-parallel data and fine-tuning the model on said data, we can

achieve the best performance for Japanese<>Russian translation.
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* We show that in-domain pivot parallel corpora increase the coverage of
Japanese and Russian vocabulary, and it is clarified that the new tokens
introduced from in-domain pivot corpora could be translated successfully
(see Section 3.6).

To the best of our knowledge, we are the first to perform such an extensive eval-
uation of an extremely low-resource MT problem and propose a novel multilin-
gual multistage fine-tuning approach involving multilingual modeling and domain

adaptation to address it.

3.2 Japanese—Russian Setting

In this chapter, we deal with Japanese<+Russian news translation. This language
pair is very challenging because the languages involved have completely different
writing systems, phonology, morphology, grammar, and syntax. Among various
domains, we experimented with translations in the news domain, considering the
importance of sharing news between different language speakers. Moreover, the
news domain is one of the most challenging tasks due to the large presence of
out-of-vocabulary (OOV) tokens and long sentences.! To establish and evaluate
existing methods, we also involved English as the third language. As direct paral-
lel corpora are scarce, involving a language such as English for pivoting is quite

common (Utiyama and Isahara, 2007).

There has been no clean held-out parallel data for Japanese<+Russian and Japanese<++English
news translation. Therefore, we manually compiled development and test sets us-

ing News Commentary data’ as a source.
Specifically, we carried out the following procedure.

1. Given Japanese<>Russian and Japanese<»English data share many Japanese

lines; we thus first compiled tri-text data.

2. From each line, corresponding parts across languages were manually iden-
tified, and unaligned parts were split off into a new line. Note that we have
never merged two or more lines. As a result, we obtained 1,654 lines of data

"News domain translation is also the most competitive task in WMT, indicating its importance.
*http://opus.nlpl.eu/News-Commentary-v1il.php
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comprising trilingual, bilingual, and monolingual segments (mainly sen-

tences) as summarized in Table 3.1. Among created 1,086 Japanese<>Russian

sentence pairs and 1189 English<+>Japanese sentence pairs, 913 pairs were

trilingual.

3. We randomly chose 600 trilingual sentences to create a test set for compa-

rability. Then, we concatenated the rest of them and bilingual sentences to

form development sets.

Usage
Ru Ja En | dsent. test development
v vV 913 | 600 313
v v 173 173
v v 276 276
v v 0 -
v 4
v 287
v 1
Total 1,654

Table 3.1: Manually aligned News Commentary data.

Our manually aligned development and test sets are publicly available.’

3.3 Related Work

Koehn and Knowles (2017) showed that NMT is unable to handle low-resource
language pairs as opposed to PBSMT. Transfer learning approaches (Firat et al.,

2016; Zoph et al., 2016; Kocmi and Bojar, 2018) work well when a large helping

parallel corpus is available. This restricts one of the sources or the target lan-

guages to be English, which, in our case, is not possible. Approaches involving

bi-directional NMT modeling is shown to drastically improve low-resource trans-

lation (Niu et al., 2018). However, like most other, this work focuses on translation

from and into English.

Remaining options include (a) unsupervised MT (Artetxe et al., 2018; Lample

et al., 2018b; Marie and Fujita, 2018), (b) parallel sentence mining from non-

parallel or comparable corpora (Utiyama and Isahara, 2003; Tillmann and Xu,

*https://github.com/aizhanti/JaRulC
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2009), (c) generating pseudo-parallel data (Sennrich et al., 2016a), and (d) MT
based on pivot languages (Utiyama and Isahara, 2007). The linguistic distance be-
tween Japanese and Russian makes it extremely difficult to learn bilingual knowl-
edge, such as bilingual lexicons and bilingual word embeddings. Unsupervised
MT is thus not promising yet, due to its heavy reliance on accurate bilingual word
embeddings. Neither does parallel sentence mining, due to the difficulty of ob-
taining accurate bilingual lexicons. Pseudo-parallel data can be used to augment
existing parallel corpora for training, and previous work has reported that such
data generated by so-called back-translation can substantially improve the qual-
ity of NMT. However, this approach requires base MT systems that can generate
somewhat accurate translations. It is thus infeasible in our scenario because we
can obtain only a weak system, which is the consequence of an extremely low-
resource situation. MT-based on pivot languages requires large in-domain parallel
corpora involving the pivot languages. This technique is thus infeasible because
the in-domain parallel corpora for Japanese<>English and Russian<+English pairs
are also extremely limited, whereas there are large parallel corpora in other do-

mains. Section 3.4 empirically confirms the limit of these existing approaches.

Fortunately, there are two useful transfer learning solutions using NMT: (e) multi-
lingual modeling to incorporate multiple language pairs into a single model (John-
son et al., 2017) and (f) domain adaptation to incorporate out-of-domain data (Chu
et al., 2017). In this section, we explore a novel method involving step-wise fine-
tuning to combine these two methods. By improving the translation quality in this
way, we can also increase the likelihood of pseudo-parallel data being useful to
further improve translation quality.

3.4 Limit of Using only In-domain Data

This section is about the translation quality that we can achieve using existing
methods and in-domain parallel and monolingual data. We then use the strongest
model to conduct experiments on generating and utilizing back-translated pseudo-
parallel data for augmenting NMT. Our intention is to empirically identify the most
effective practices as well as recognize the limitations of relying only on in-domain

parallel corpora.
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3.4.1 Data

To train MT systems among the three languages, i.e., Japanese, Russian, and En-
glish, we used all the parallel data provided by Global Voices,* more specifically
those available at OPUS.> Table 3.2 summarizes the size of train/development/test
splits used in our experiments. The number of parallel sentences for Japanese<>Russian
is 12k, for Japanese<>English is 47k, and for Russian<+English is 82k. Note
that the three corpora are not mutually exclusive: 9k out of 12k sentences in the
Japanese<+»Russian corpus were also included in the other two parallel corpora,
associated with identical English translations. This puts a limit on the positive
impact that the helping corpora can have on the translation quality.

Lang.pair Partition #sent. #tokens #types
train 12,356 | 341k /229 22k / 42k

Jae»Ru development 486 16k / 11k 2.9k / 4.3k
test 600 22k / 15k 3.5k / 5.6k

train 47,082 | 1.27M/ 1.01M | 48k / 55k
Jac>En development 589 21k / 16k 3.5k /3.8k
test 600 22k / 17k 3.5k /3.8k

train 82,072 | 1.61M / 1.83M | 144k / 74k
Ru+En | development 313 7.8k / 8.4k 3.2k /2.3k
test 600 15k / 17k 5.6k / 3.8k

Table 3.2: Statistics on our in-domain parallel data.

Even when one focuses on low-resource language pairs, we often have access to
larger quantities of in-domain monolingual data of each language. Such mono-
lingual data are useful to improve the quality of MT, for example, as the source
of pseudo-parallel data for augmenting training data for NMT (Sennrich et al.,
2016a) and as the training data for large and smoothed language models for PB-
SMT (Koehn and Knowles, 2017). Table 3.3 summarizes the statistics on our
monolingual corpora for several domains, including the news domain. Note that
we removed from the Global Voices monolingual corpora those sentences that are
already present in the parallel corpus.

“nttps://globalvoices.org/
Shttp://opus.nlpl.eu/GlobalVoices-v2015.php
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Corpus Ja Ru En

Global Voices® 26k 24k 842k
Wikinews® 37k 243k -
News Crawl’ - 72M  194M
Yomiuri (2007-2011) | 19M - ;
IWSLT’ 411k 64k 66k
Tatoeba'’ 5k 58k 208k

Table 3.3: Number of lines in our monolingual data. Whereas the first four are
from the news corpora (in-domain), the last two, i.e., “IWSLT” and “Tatoeba,” are
from other domains.

We tokenized English and Russian sentences using tokenizer.perl of Moses (Koehn
etal., 2007)."" To tokenize Japanese sentences, we used MeCab'? with the IPA dic-
tionary. After tokenization, we eliminated duplicated sentence pairs and sentences

with more than 100 words for all the languages.

3.4.2 MT Methods Examined

We began with evaluating standard MT paradigms, i.e., PBSMT (Koehn et al.,
2007) and NMT (Sutskever et al., 2014). As for PBSMT, we also examined
two advanced methods: pivot-based translation relying on a helping language
(Utiyama and Isahara, 2007) and induction of phrase tables from monolingual data
(Marie and Fujita, 2018) (Figure 3.1).

As for NMT, we compared two types of encoder-decoder architectures: attentional
RNN-based model (RNMT) (Bahdanau et al., 2014) and the Transformer model
(Vaswani et al., 2017). In addition to standard uni-directional modeling, to cope
with the low-resource problem, we examined two multi-directional models: bi-
directional model (Niu et al., 2018) and multi-to-multi (M2M) model (Johnson
et al., 2017).

After identifying the best model, we also examined the usefulness of a data aug-

®https://dumps.wikimedia.org/backup-index.html (20180501)
"http://www.statmt.org/wmt18/translation-task.html
$https://www.yomiuri.co.jp/database/glossary/
‘http://www.cs.jhu.edu/~kevinduh/a/multitarget-tedtalks/
Ohttp://opus.nlpl.eu/Tatoeba-v2.php
"https://github.com/moses-smt/mosesdecoder
http://taku910.github.io/mecab, version 0.996.
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RNMT or
Mansiormer RNMT or
or PBSMT . L1 Transformer| Japanese
English English
Uni-directional Multilingual (M2M)
Russian Russian
RNMT or p -
T — [ Russian ] [ English ] [ Japanese ]
Japanese |- '[W
Bi-directional Pivot-based (Cascade, Synthesize, Triangulate

Induced)

Figure 3.1: Examined models.

mentation method based on back-translation (Sennrich et al., 2016a).

PBSMT Systems

First, we built a PBSMT system for each of the six translation directions. We ob-
tained phrase tables from parallel corpus using SyMGIZA++"* with the grow-diag-final
heuristics for word alignment, and Moses for phrase pair extraction. Then, we
trained a bi-directional MSD (monotone, swap, and discontinuous) lexicalized re-
ordering model. We also trained three 5-gram language models, using KenLM'
on the following monolingual data: (1) the target side of the parallel data, (2) the
concatenation of (1) and the monolingual data from Global Voices, and (3) the

concatenation of (1) and all monolingual data in the news domain in Table 3.3.

Subsequently, using English as the pivot language, we examined the following
three types of pivot-based PBSMT systems (Utiyama and Isahara, 2007; Cohn
and Lapata, 2007) for each of Japanese—Russian and Russian— Japanese.

Cascade: 2-step decoding using the source-to-English and English-to-target sys-
tems.

Synthesize: Obtain a new phrase table from synthetic parallel data generated by
translating the English side of the target—English training parallel data to the
source language with the English-to-source system.

Bhttps://github.com/emjotde/symgiza-pp
“https://github.com/kpu/kenlm
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Triangulate: Compile a new phrase table combining those for the source-to-English
and English-to-target systems.

Among these three, triangulation is the most computationally expensive method.
Although we had filtered the component phrase tables using the statistical signif-
icance pruning method (Johnson et al., 2007), triangulation can generate an enor-
mous number of phrase pairs. To reduce the computational cost during decoding
and the negative effects of potentially noisy phrase pairs, we retained for each
source phrase s only the k-best translations ¢ according to the forward translation
probability ¢(t|s) calculated from the conditional probabilities in the component
models as defined in Utiyama and Isahara (2007). For each of the retained phrase
pairs, we also calculated the backward translation probability, ¢(s|t), and lexical
translation probabilities, ¢y (t|s) and ¢, (s|t), in the same manner as ¢(t|s).

We also investigated the utility of recent advances in unsupervised MT. Even
though we began with a publicly available implementation of unsupervised PB-
SMT (Lample et al., 2018b), " it crashed due to unknown reasons. We, therefore,
followed another method described in Marie and Fujita (2018). Instead of short 7-
grams (Artetxe et al., 2018; Lample et al., 2018b), we collected a set of phrases in
Japanese and Russian from respective monolingual data using the word2phrase
algorithm (Mikolov et al., 2013b),'® as in Marie and Fujita (2018). To reduce the
complexity, we used randomly selected 10M monolingual sentences, and 300k
most frequent phrases made of words among the 300k most frequent words. For
each source phrase s, we selected 300-best target phrases ¢ according to the trans-
lation probability as in Lample et al. (2018b): p(t|s) = <Rl costemb(t) emb(s)

T Yo exp(Beos(emb(t),emb(s))?
where emb(-) stands for a bilingual embedding of a given phrase, obtained through

averaging bilingual embeddings of constituent words learned from the two mono-
lingual data using fastText'” and vecmap.'® For each of the retained phrase pair,
p(s|t) was computed analogously. We also computed lexical translation probabil-
ities relying on those learned from the given small parallel corpus.

Up to four phrase tables were jointly exploited by the multiple decoding path abil-

Bhttps://github.com/facebookresearch/UnsupervisedMT
®https://code.google.com/archive/p/word2vec/
"https://fasttext.cc/
Bhttps://github.com/artetxem/vecmap
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ity of Moses. Weights for the features were tuned using KB-MIRA (Cherry and
Foster, 2012) on the development set; we took the best weights after 15 itera-
tions. Two hyper-parameters, namely, & for the number of pivot-based phrase pairs
per source phrase and d for distortion limit, were determined by a grid search on
k € {10,20,40,60,80,100} and d € {8,10, 12,14, 16, 18,20}. In contrast, we
used predetermined hyper-parameters for phrase table induction from monolin-
gual data, following the convention: 200 for the dimension of word and phrase
embeddings and 3 = 30.

NMT Systems

We used the open-source implementation of the RNMT and the Transformer mod-
els in tensor2tensor.” A uni-directional model for each of the six translation
directions was trained on the corresponding parallel corpus. Bi-directional and
M2M models were implemented by adding an artificial token that specifies the
target language to the beginning of each source sentence and shuffling the entire
training data (Johnson et al., 2017).

D Svstem Parallel data Total size of Vocabulary

Y Jac>Ru JacsEn  Ru<En | training data size

Ja—Ru or Ru—Ja 12k - - 12k 16k

(al), (b1) | Ja—En or En—Ja - 47k - 47k 16k
Ru—En or En—Ru - - 82k 82k 16k

Ja—Ru and Ru—Ja 12k - - 24k 16k

(a2), (b2) | Ja—En and En—Ja - 47k - 94k 16k
Ru—En and En—Ru - - 82k 164k 16k

(a3), (b3) | M2M systems 12k—82k | 47k—82k 82k 492k 32k

Table 3.4: Configuration of uni-, bi-directional, and M2M NMT baseline systems.
Arrows in “Parallel data” columns indicate the over-sampling of the parallel data
to match the size of the largest parallel data.

Table 3.4 contains some specific hyper-parameters® for our baseline NMT mod-
els. The hyper-parameters not mentioned in this table used the default values in
tensor2tensor. For M2M systems, we over-sampled Japanese—Russian and

Japanese—English training data so that their sizes match the largest Russian—English

Yhttps://github.com/tensorflow/tensor2tensor, version 1.6.6.
20We compared two mini-batch sizes, 1024 and 6144 tokens, and found that 6144 and 1024
worked better for RNMT and Transformer, respectively.
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data. To reduce the number of unknown words, we used tensor2tensor’s inter-
nal sub-word segmentation mechanism. Since we work in a low-resource setting,
we used shared sub-word vocabularies of size 16k for the uni- and bi-directional
models and 32k for the M2M models. The number of training iterations was deter-
mined by early-stopping: we evaluated our models on the development set every
1,000 updates and stopped training if the BLEU score for the development set was
not improved for 10,000 updates (10 check-points). Note that the development set
was created by concatenating those for the individual translation directions with-

out any over-sampling.

Having trained the models, we averaged the last 10 check-points and decoded the
test sets with a beam size of 4 and a length penalty (Wu et al., 2016) which was
tuned by a linear search on the BLEU score for the development set.

Similarly to PBSMT, we also evaluated “Cascade” and “Synthesize” methods with
uni-directional NMT models.

3.4.3 Results

We evaluated the MT models using case-sensitive and tokenized BLEU (Papineni
et al., 2002) on test sets, using Moses’s multi-bleu.perl. Statistical significance
(p < 0.05) on the difference of BLEU scores was tested by Moses’s bootstrap-
hypothesis-difference-significance.pl.

ID System Ja—+Ru Ru—Ja Ja—En En—Ja Ru—En En—Ru
(al) Uni-directional RNMT 0.58 1.86 241 7.83 18.42 13.64
(a2) Bi-directional RNMT 0.65 1.61 6.18 8.81 19.60 15.11
(a3) M2M RNMT 1.51 4.29 5.15 7.55 14.24 10.86
(bl) Uni-directional Transformer 0.70 1.96 436 7.97 20.70 16.24
(b2) Bi-directional Transformer 0.19 0.87 6.48 10.63 22.25 16.03
(b3) M2M Transformer 3.72 835 1024 1243 22.10 16.92

(cl) Uni-directional supervised PBSMT 2.02 4.45 8.19 10.27 22.37 16.52

Table 3.5: BLEU scores of baseline systems. Bold indicates the best BLEU score
for each translation direction.

Tables 3.5 and 3.6 show BLEU scores of all the models, except the NMT systems
augmented with back-translations. Whereas some models achieved reasonable
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BLEU scores for Japanese<>English and Russian<>English translation, all the re-

sults for Japanese<>Russian, which is our main concern, were abysmal.

Among the NMT models, Transformer models (bx) were proven to be better than
RNMT models (ax). RNMT models could not even outperform the uni-directional
PBSMT models (c1). M2M models (a3) and (b3) outperformed their correspond-
ing uni- and bi-directional models in most cases. It is worth noting that in this
extremely low-resource scenario, BLEU scores of the M2M RNMT model for the
largest language pair, i.e., Russian<>English, were lower than those of the uni-
and bi-directional RNMT models as in Johnson et al. (2017). In contrast, with the
M2M Transformer model, Russian<>English also benefited from multilingualism.

System Ja—Ru Ru—Ja
PBSMT: Cascade 3.65 7.62
PBSMT: Synthesize 3.37 6.72
PBSMT: Synthesize / Gold 2.94 6.95
PBSMT: Synthesize + Gold 3.07 6.62
PBSMT: Triangulate 3.75 7.02
PBSMT: Triangulate / Gold 3.93 7.02
PBSMT: Synthesize / Triangulate / Gold 4.02 7.07
PBSMT: Induced 0.37 0.65
PBSMT: Induced / Synthesize / Triangulate / Gold 2.85 6.86
RNMT: Cascade 1.19 6.73
RNMT: Synthesize 1.82 3.02
RNMT: Synthesize + Gold 1.62 3.24
Transformer NMT: Cascade 2.41 6.84
Transformer NMT: Synthesize 1.78 543
Transformer NMT: Synthesize + Gold 2.13 5.06

(c1) Uni-directional supervised PBSMT in Table 3.5 2.02 4.45

Table 3.6: BLEU scores of pivot-based systems. “Gold” refers to the phrase table
trained on the parallel data. Bold indicates the BLEU score higher than the best
one in Table 3.5. “/” indicates the use of separately trained multiple phrase tables,
whereas so does “+” training on the mixture of parallel data.

Standard PBSMT models (c1) achieved higher BLEU scores than uni-directional
NMT models (al) and (b1), as reported by Koehn and Knowles (2017), whereas
they underperform the M2M Transformer NMT model (b3). As shown in Ta-
ble 3.6, pivot-based PBSMT systems always achieved higher BLEU scores than
(c1). The best model with three phrase tables, labeled “Synthesize / Triangulate
/ Gold,” brought visible BLEU gains with substantial reduction of OOV tokens
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(3047—1180 for Japanese— Russian, 4463— 1812 for Russian— Japanese). How-
ever, further extension with phrase tables induced from monolingual data did not
push the limit, despite their high coverage; only 336 and 677 OOV tokens were
left for the two translation directions, respectively. This is due to the poor quality
of the bilingual word embeddings used to extract the phrase table, as envisaged in
Section 3.3.

None of the pivot-based approaches with uni-directional NMT models could even
remotely rival the M2M Transformer NMT model (b3).

3.4.4 Augmentation with Back-translation

Given that the M2M Transformer NMT model (b3) achieved the best results for
most of the translation directions and competitive results for the rest, we further

explored it through back-translation.

We examined the utility of pseudo-parallel data for all the six translation directions,
unlike the work of Lakew et al. (2017) and Lakew et al. (2018), which concentrate
only on the zero-shot language pair, and the work of Niu et al. (2018), which com-
pares only uni- or bi-directional models. We investigated whether each translation
direction in M2M models will benefit from pseudo-parallel data, and if so, what
kind of improvement takes place.

First, we selected sentences to be back-translated from in-domain monolingual
data (Table 3.3), relying on the score proposed by Moore and Lewis (2010) via the
following procedure.

1. For each language, train two 4-gram language models, using KenLM: an
in-domain one on all the Global Voices data, i.e., both parallel and monolin-
gual data, and a general-domain one on the concatenation of Global Voices,
IWSLT, and Tatoeba data.

2. For each language, discard sentences containing OOVs according to the in-

domain language model.

3. For each translation direction, select the 7-best monolingual sentences in
the news domain, according to the difference between cross-entropy scores
given by the in-domain and general-domain language models.
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Whereas Niu et al. (2018) exploited monolingual data much larger than parallel
data, we maintained a 1:1 ratio between them (Johnson et al., 2017), setting 7" to
the number of lines of parallel data of given language pair.

Selected monolingual sentences were then translated using the M2M Transformer
NMT model (b3) to compose pseudo-parallel data. Then, the pseudo-parallel data
were enlarged by over-sampling as summarized in Table 3.7. Finally, new NMT
models were trained on the concatenation of the original parallel and pseudo-
parallel data from scratch in the same manner as the previous NMT models with

the same hyper-parameters.

D System Parallel data To.taq size of
Pseudo Jac>Ru Ja>En Ru<En | training data
Jax—Ru and/or Rux—Ja 12k—82k 12k—82k 47k—82kx2 | 82kx2 984k
#1-#10 Jax—En and/or Enx—Ja 47k—82k 12k—82kx2 | 47k—82k 82kx2 984k
Rux—En and/or Enx—Ru 82k 12k—82kx2 | 47k—82kx2 | 82k 984k
All All of the above | 12k—82k 47k—82k 82k 984k

Table 3.7: Over-sampling criteria for pseudo-parallel data generated by back-
translation.

D Pseudo-parallel data involved BLEU score

Jax—Ru Rux—Ja Jax—En Enx—Ja Rux—En Enx—Ru|Ja—Ru Ru—Ja Ja—En En—Ja Ru—En En—Ru
(b3) - - - - - - 3.72 8.35 10.24 12.43 22.10 16.92
#1 v - - - - - °4.59 8.63 10.64 12.94 22.21 17.30
#2 - v - - - - 3.74 *8.85 10.13  13.05 22.48 17.20
#3 v v - - - - *4.56 °9.09  10.57 °13.23 2248 °17.89
#4 - - v - - - 3.71 8.05 °11.00  12.66 22.17 16.76
#5 - - - v - - 3.62 8.10 9.92  °14.06 21.66 16.68
#6 - - v v - - 3.61 7.94 °11.51 °14.38 22.22 16.80
#7 - - - - v - 3.80 837 10.67 13.00 2251 *17.73
#8 - - - - - v 3.77 8.04  10.52 1243 °*22.85 17.13
#9 - - - - v v 3.37 8.03 10.19  12.79 22.77 17.26
#10 v v v v v v °4.43 °9.38  °12.06 °14.43  °23.09 17.30

Table 3.8: BLEU scores of M2M Transformer NMT systems trained on the
mixture of given parallel corpus and pseudo-parallel data generated by back-
translation using (b3). Six “Xx—Y” columns show whether the pseudo-parallel
data for each translation direction is involved. Bold indicates the scores higher
than (b3) and “*” indicates statistical significance of the improvement.

Table 3.8 shows the BLEU scores achieved by several reasonable combinations
of six-way pseudo-parallel data. We observed that the use of all six-way pseudo-
parallel data (#10) significantly improved the base model for all the translation

50



3.5. EXPLOITING LARGE OUT-OF-DOMAIN DATA INVOLVING A HELPING

LANGUAGE

directions, except English—Russian. A translation direction often benefited when
the pseudo-parallel data for that specific direction was used.

3.4.5 Summary

We have evaluated an extensive variation of MT models®! that rely only on in-
domain parallel and monolingual data. However, the resulting BLEU scores for
Japanese—Russian and Russian—Japanese tasks do not exceed 10 BLEU points,
implying the inherent limitation of the in-domain data as well as the difficulty of

these translation directions.

3.5 Exploiting Large Out-of-Domain Data Involving
a Helping Language

The limitation of relying only on in-domain data demonstrated in Section 3.4 moti-
vates us to explore other types of parallel data. Therefore, we considered effective
ways to exploit out-of-domain data.

Domain \ language pair | Direct One-side shared

in-domain A,V B,v
out-of-domain C, x D, v

Table 3.9: Classification of parallel data. “Direct” column indicates the same lan-
guage pair of interest, here, Japanese<>Russian. “One-side shared” column indi-
cates helping language pairs, such as Japanese<+English and Russian<+>English.

According to language pair and domain, parallel data can be classified into four
categories in Table 3.9. Among all the categories, out-of-domain data for the
language pair of interest have been exploited in the domain adaptation scenarios
(C—A) (Chu et al., 2017). However, for Japanese<»Russian, no out-of-domain
data is available. To exploit out-of-domain parallel data for Japanese«>English

21Other conceivable options include transfer learning using parallel data between English and
one of Japanese and Russian as either source or target language, such as pre-training an En-
glish—Russian model and fine-tuning it for Japanese—Russian. Our M2M models conceptually
subsume them, even though they do not explicitly divide the two steps during training. On the
other hand, our method proposed in Section 3.5 explicitly conduct transfer learning for domain
adaptation followed by additional transfer learning across different languages.
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and Russian<>English pairs instead, we propose a multistage fine-tuning method,
which combines two types of transfer learning, i.e., domain adaptation for Japanese<«+English
and Russian<>English (D—B) and multilingual transfer (B—A), relying on the
M2M model examined in Section 3.4 (Figure 3.2). We also examined the utility

of fine-tuning for iteratively generating and using pseudo-parallel data.

{ Out-of-Domain ’ ‘{ QOut-of-Domain ’

Stage 0 < Russian M2M English
Out-of-Domain | / Transformer | - |  Out-of-Domain
English Japanese

~
Domain adaptation

r

[ In-Domain Russian ]—- ‘
Stage 1 < o
[ In-Domain English ] 4

M2M
Transformer

' { In-Domain English ]

A [ In-Domain Japanese]

w

Multilingual transfer

M2M
—[ In-Domain Japanese ]

Stage 2 < [ In-Domain Russian Transformer

—

“

Figure 3.2: Overall illustration of multi-stage fine-tuning.

3.5.1 Multistage Fine-tuning

Simply using NMT systems trained on out-of-domain data for in-domain transla-
tion is known to perform badly (Haddow and Koehn, 2012; Koehn and Knowles,
2017). In order to effectively use large-scale out-of-domain data for our extremely
low-resource task, we propose to perform domain adaptation through either (a)
conventional fine-tuning, where an NMT system trained on out-of-domain data
is fine-tuned only on in-domain data, or (b) mixed fine-tuning (Chu et al., 2017),
where pre-trained out-of-domain NMT system is fine-tuned using a mixture of in-
domain and out-of-domain data. The same options are available for transferring

from Japanese<>English and Russian<+English to Japanese<»Russian.

We inevitably involve two types of transfer learning, i.e., domain adaptation for
Japanese<+»English and Russian<>English and multilingual transfer for Japanese<»>Russian
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pair. Among several conceivable options for managing these two problems, we
examined the following multistage fine-tuning (Figure 3.3).

Stage 0. Out-of-domain pre-training: Pre-train a multilingual model only on the
Japanese<+English and Russian<>English out-of-domain parallel data (I),
where the vocabulary of the model is determined on the basis of the in-
domain parallel data in the same manner as the M2M NMT models exam-
ined in Section 3.4.

Stage 1. Fine-tuning for domain adaptation: Fine-tune the pre-trained model
(I) on the in-domain Japanese<>English and Russian<+»English parallel data
(fine-tuning, IT) or on the mixture of in-domain and out-of-domain Japanese<>English
and Russian«>English parallel data (mixed fine-tuning, III).

Stage 2. Fine-tuning for Japanese<>Russian pair: Further fine-tune the mod-
els (each of II and III) for Japanese<>Russian on in-domain parallel data
for this language pair only (fine-tuning, IV and VI) or on all the in-domain
parallel data (mixed fine-tuning, V and VII).

(I) M2M
out-of-domain
(Jao En, Ru~ En)

Conv Mixed
Domain adaptation

(I1) M2M (I11) M2M
in-domain out- and in-domain
(Ja<~En, Ru« En) (Ja<~En, Ru« En)
Conv Mixed Multilingual transfer Conv Mixed
(IV) M2M (V) M2M (VI) M2M (VID M2M
in-domain a=ilonsetin in-domain fa=lmsen
(Ja. Ru) (JaoRuy,JaoEn, (Ja. Ru) (JaoRuy,JaoEn,
“ Ru - En) “ Ru - En)

Figure 3.3: Variants of fine-tuning methods.

We chose this way due to the following two reasons. First, we need to take a
balance between several different parallel corpora sizes. The other reason is a

division of labor; we assume that solving each sub-problem one by one should
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enable a gradual shift of parameters.

3.5.2 Data Selection

As an additional large-scale out-of-domain parallel data for Japanese<>English,
we used the first 1.5M sentences from the Asian Scientific Paper Excerpt Corpus
(ASPEC) (Nakazawa et al., 2016).”> As for Russian<+English, we used the UN
and Yandex corpora released for the WMT 2018 News Translation Task.”> We
retained Russian<+>English sentence pairs that contain at least one OOV token in
both sides, according to the in-domain language model trained in Section 3.4.4.

Table 3.10 summarizes the statistics on the remaining out-of-domain parallel data.

Lang.pair Corpus #sent. #tokens #types
Ja>En ASPEC 1,500,000 42.3M/34.6M 234k/1.02M

UN 2,647,243 90.5M/92.8M 757k / 593k
Yandex 320,325 8.5IM/9.26M  617k/407k

Ru<En

Table 3.10: Statistics on our out-of-domain parallel data.

3.5.3 Results

Table 3.11 shows the results of our multistage fine-tuning, where the IDs of each
row refer to those described in Section 3.5.1. First of all, the final models of our
multistage fine-tuning, i.e., V and VII, achieved significantly higher BLEU scores
than (b3) in Table 3.5, a weak baseline without using any monolingual data, and
#10 in Table 3.8, a strong baseline established with monolingual data.

The performance of the initial model (I) depends on the language pair. For Japanese<>Russian
pair, it cannot achieve a minimum level of quality since the model has never seen
parallel data for this pair. The performance on Japanese<>English pair was much
lower than the two baseline models, reflecting the crucial mismatch between train-
ing and testing domains. In contrast, Russian<+English pair benefited the most and
achieved surprisingly high BLEU scores. The reason might be due to the proxim-

ity of out-of-domain training data and in-domain test data.

Znttp://lotus.kuee.kyoto-u.ac. jp/ASPEC/
Bhttp://www.statmt.org/wmt18/translation-task.html
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ID  Initialized Out-of-domain data In-domain data BLEU score
Ja<sEn  Ru<En  Ja>Ru JaesEn Ru<En Ja—Ru Ru—Ja Ja—En En—Ja Ru—En En—Ru
(b3) - - - v v v 3.72 8.35 10.24 12.43 22.10 16.92
1 - v v - - - 0.00 0.15 4.59 4.15  *2522  °*2037
I 1 - - - v v 0.20 0.70 °14.10 °17.80  °28.23  °24.35
I 1 v v - v v 0.23 1.07 °13.31 *°17.74  °*28.73  °25.22
v 11 v - *5.44  *10.67 0.12 3.97 0.11 3.66
A% I v v v °6.90 °11.99 °14.34 °16.93  *27.50  °23.17
VI I v *591 °10.83 0.26 2.18 0.18 1.10
viI 11 v v v *7.49  °12.10 °14.63 °17.51 °28.51 °24.60
r - v v v v v °5.31  °10.73  °1441 °16.34 2746  °23.21
1 1 - v v v °6.30 °11.64 °14.29 °16.83  *27.53  *23.00
ar I v v v v v *7.53  °12.33  °14.19 °*16.77  *27.94  °23.97

Table 3.11: BLEU scores obtained through multistage fine-tuning. “Initialized”
column indicates the model used for initializing parameters that are fine-tuned on
the data indicated by v'. Bold indicates the best BLEU score for each translation
direction. “*” indicates statistical significance of the improvement over (b3).

The first fine-tuning stage significantly pushed up the translation quality for Japanese<+English
and Russian«>English pairs, in both cases with fine-tuning (II) and mixed fine-

tuning (I1I). At this stage, both models performed only poorly for Japanese<>Russian

pair as they have not yet seen Japanese<>Russian parallel data. Either model had

a consistent advantage over the other.

When these models were further fine-tuned only on the in-domain Japanese<»Russian
parallel data (IV and VI), we obtained translations of better quality than the two
baselines for Japanese<»Russian pair. However, as a result of complete igno-
rance of Japanese«+>English and Russian<+English pairs, the models only pro-
duced translations of poor quality for these language pairs. In contrast, mixed
fine-tuning for the second fine-tuning stage (V and VII) resulted in consistently
better models than conventional fine-tuning (IV and V1), irrespective of the choice
at the first stage, thanks to the gradual shift of parameters realized by in-domain
Japanese<«>English and Russian<>English parallel data. Unfortunately, the trans-
lation quality for Japanese«+English and Russian«+English pairs sometimes de-
graded from II and III. Nevertheless, the BLEU scores still retain a large margin

against two baselines.

The last three rows in Table 3.11 present BLEU scores obtained by the meth-
ods with fewer fine-tuning steps. The most naive model I’, trained on the bal-
anced mixture of whole five types of corpora from scratch, and the model II’,

55



3.5. EXPLOITING LARGE OUT-OF-DOMAIN DATA INVOLVING A HELPING
LANGUAGE

obtained through a single-step conventional fine-tuning of I on all the in-domain

data, achieved only BLEU scores consistently worse than VII. In contrast, when we

merged our two fine-tuning steps into a single mixed fine-tuning on I, we obtained

amodel III” which is better for the Japanese<+Russian pair than VII. Nevertheless,

they are still comparable to those of VII, and the BLEU scores for the other two

language pairs are much lower than VII. As such, we conclude that our multistage

fine-tuning leads to a more robust in-domain multilingual model.

3.5.4 Further Augmentation with Back-translation

Having obtained a better model, we examined again the utility of back-translation.

More precisely, we investigated (a) whether the pseudo-parallel data generated by

an improved NMT model leads to a further improvement and (b) whether one more

stage of fine-tuning on the mixture of original parallel and pseudo-parallel data

will result in a model better than training a new model from scratch as examined

in Section 3.4.4.

Given an NMT model, we first generated six-way pseudo-parallel data by translat-

ing monolingual data. For the sake of comparability, we used the identical mono-

lingual sentences sampled in Section 3.4.4. Then, we further fine-tuned the given

model on the mixture of the generated pseudo-parallel data and the original parallel

data, following the same over-sampling procedure in Section 3.4.4. We repeated

these steps five times.

Table 3.12 shows the results. “new #10” in the second row indicates an M2M

Transformer model trained from scratch on the mixture of six-way pseudo-parallel
data generated by VII and the original parallel data. It achieved higher BLEU
scores than #10 in Table 3.8 thanks to the pseudo-parallel data of better quality but

underperformed the base NMT model VII. In contrast, our fine-tuned model VIII

successfully surpassed VII, and one more iteration (IX) further improved BLEU

scores for all translation directions, except Russian—English. Although further

iterations did not necessarily gain BLEU scores, we came to a much higher plateau

compared to the results in Section 3.4.
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BLEU score
Ja—wRu Ru—Ja Ja—En En—Ja Ru—En En—Ru

No Initialized BT

#10 - (b3) 4.43 9.38 12.06 14.43 23.09 17.30
new #10 - Vil °6.55 °11.36 °13.77 °1559 2491  °20.55
VI VII Vil °7.83  °12.21 °15.06 °17.19  °*28.49  °23.96
IX VIII Vil °8.03  °12.55 °15.07 °17.80  °*28.16  °24.27

X IX IX °7.76  *12.59 °15.08 °18.12  °*28.18  °24.67
XI X X *7.85 *1297 °15.26 °17.83  *2849  °24.36
XII XI XI °8.16  °13.09 °1496 °17.74 2845 °24.35

Table 3.12: BLEU scores achieved through fine-tuning on the mixture of the orig-
inal parallel data and six-way pseudo-parallel data. The “Initialized” column in-
dicates the model used for initializing parameters, and so does the “BT” column
the model used to generate pseudo-parallel data. “*” indicates the statistical sig-
nificance of the improvement over #10.

3.5.5 Summary

We conducted a throughout comparison of the existing methods on our target task
using only in-domain data. However, experiment results showed the limitations
of using just restricted in-domain data. Therefore we proposed a multistage fine-
tuning approach to practically involve large-scale out-of-domain data.

Table 3.13 summarizes the progression of BLEU scores at each investigation step

over our in-domain data.

Investigation step Ja—Ru Ru—Ja
Uni-directional Transformer: (b1) in Table 3.5 0.70 1.96
M2M Transformer: (b3) in Table 3.5 3.72 8.35
+ six-way pseudo-parallel data: #10 in Table 3.8 4.43 9.38
M2M multistage fine-tuning: VII in Table 3.11 7.49 12.10

+ six-way pseudo-parallel data: XII in Table 3.12 8.16 13.09

Table 3.13: Summary of our investigation: BLEU scores of the best NMT systems
at each step.

We demonstrated that incorporating multistage multilingual domain adaptation
significantly boost the performance on our language pair of interest (VII and XX).

57



3.6. LEVERAGING IN-DOMAIN DATA FROM OTHER LANGUAGES

3.6 Leveraging In-domain Data From Other Lan-
guages

In this chapter, we focus on only the news domain of additional Japanese<>English
and Russian<+English auxiliary parallel corpora, which we will refer to as pivot
parallel corpora. We investigate how translation results are improved by using in-
domain pivot parallel corpora (Japanese<+>English and Russian<»>English) in M2M

Transformer (also see Section 3.4) modeling.

3.6.1 Experimental Settings

Data

To train M2M Transformer systems, we used the news domain data provided

by WAT2019%*. More specifically, we used Global Voices® as training data for
Japanese<»Russian, Japanese<»English and Russian<»English, and manually aligned,
cleaned, and filtered News Commentary data was used as development and test

sets.”® Additionally, we utilized Jiji*” and News Commentary”® data for Japanese<»English
and Russian<English, respectively. Table 3.14 summarizes the size of train/development/test

splits used in our experiments.

Lang.pair Source Partition #sent. #tokens #types
Global Voices train 12,356 341k /229k 22k / 42k
Ja<>Ru News Commentary development 486 16k / 11k 2.9k / 4.3k
News Commentary test 600 22k / 15k 3.5k / 5.6k
Global Voices train 47,082 1.27M/1.01M 48k / 55k
JacsEn Jiji train 200,000 5.84M/5.11M 45k / 78k
News Commentary development 589 21k / 16k 3.5k / 3.8k
Global Voices train 82,072 1.61M/1.83M 144k / 74k
RucsEn News Commentary train 279,307 7.00M/7.41M 214k /89

News Commentary development 313 7.8k / 8.4k 3.2k /2.3k

Table 3.14: Statistics on our in-domain parallel data.

Z4http://lotus.kuee.kyoto-u.ac.jp/ WAT/WAT2019/index.html

Zhttps://globalvoices.org/

6https://github.com/aizhanti/JaRuNC

2Thttp://lotus.kuee.kyoto-u.ac.jp/ WAT/jiji-corpus/

Z8http://lotus.kuee.kyoto-u.ac.jp/ WAT/News-Commentary/news-commentary-v14.en-
ru.filtered.tar.gz
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We tokenized English and Russian sentences using tokenizer.perl of Moses (Koehn
etal., 2007).” To tokenize Japanese sentences, we used MeCab’’ with the IPA dic-
tionary. After tokenization, we eliminated duplicated sentence pairs and sentences
with more than 100 words for all the languages.

Systems

This section describes our MultiCorpora system and our baseline, which are based
on the same M2M Transformer architecture (Johnson et al., 2017) but trained on
different training corpora (Table 3.14). Here, M2M Transformer translates from
multiple source languages into different target languages within a single model.
Since we have 3 language pairs, we concatenate all pairs in both directions with
over-sampling to match the biggest parallel data. We add a target language token

to the source side of each pair and treat it like a single language-pair case.
We experiment with the following systems:

* MultiCorpora: Our system is trained on a balanced concatenation of Global
Voices, Jiji, and News Commentary corpora on 6 translation directions.

* Only GV: This is our baseline system, which is trained on only Global
Voices data on 6 translation directions, the same as in Imankulova et al.
(2019).

Only GV is used as a comparative model to investigate the effect of additional

pivot corpora.

Although we train our models on 6 translation directions, we only report the BLEU
scores on Japanese— Russian and Russian—Japanese test sets.

3.6.2 Results

Table 3.15 demonstrates the BLEU scores of our baseline Only GV model and pro-
posed MultiCorpora model on News Commentary Japanese—Russian®! and Rus-
sian—Japanese™ test data for News Commentary shared task. Our MultiCorpora

2 https://github.com/moses-smt/mosesdecoder
3Ohttp://taku910.github.io/mecab, version 0.996.

3 http://lotus.kuee kyoto-u.ac.jp/ WAT/evaluation/list.php?t=660=4
3Zhttp://lotus kuee.kyoto-u.ac.jp/ WAT/evaluation/list.php?t=670=1
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Models Ja—Ru Ru—Ja

Only GV 3.66 8.79
MultiCorpora 6.59 11.00

Table 3.15: Evaluation results: BLEU scores. Bold indicates the best BLEU score
for each translation direction.

system trained on additional pivot parallel corpora exceeded the baseline Only GV
model trained without additional pivot parallel corpora by approximately 3 BLEU
points on both Japanese—Russian and Russian—Japanese.

3.6.3 Discussion

We investigate the effect of adding Jiji and News Commentary corpora as pivot
parallel corpora to original Global Voices training data. In extremely low-resource
machine translation in the news domain, unknown tokens become a serious issue
due to vocabulary coverage. Adding the pivot parallel corpora to training data can

be expected to increase vocabulary coverage.

Therefore, we investigate how much vocabulary coverage was improved by using
pivot parallel corpora. For that purpose, we investigate the following vocabulary
sets A and B:

A = Tng (3.1)
B = TnN(GUP) (3.2)

T is aset of unknown tokens from test data not included in the direct Japanese<>Russian
12k training data, G is pivot Global Voices vocabulary set, and P is Jiji and News
Commentary training vocabulary set. By comparing the number of tokens and
types of distinct words of .4 and B, you can see how much the coverage has in-
creased. In addition, we investigate how correctly the tokens added by the Jiji
corpus, and News Commentary are translated. If a token from the vocabulary set
of A or B appeared in both the gold sentence and the translated sentence of the

system, it was counted as being correctly translated.

Table 3.16 shows token and type coverage and correctly translated tokens and
types of distinct words on test data for A and B, respectively. It can be seen that
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Ja—Ru Ru—Ja
A (Only GV) B (MultiCorpora) A (Only GV) B (MultiCorpora)
#tokens #types #tokens #types #Htokens #Htypes #Htokens —#types

Coverage in data 1,467 1,220 2,072 1,751 481 362 596 450
Correctly translated 85 65 191 147 26 21 31 24

Table 3.16: The coverage of tokens from additional pivot parallel data and the
number of correctly translated tokens and types of distinct words by each system
calculated for the test set.

both Russian and Japanese have improved B coverage compared to 4. In par-
ticular, the coverage of Russian is greatly improved. And by adding Jiji corpus
and News Commentary to the training data, you can see that the number of cor-
rectly translated tokens has increased. This shows that vocabulary coverage has
increased and translation accuracy has improved. On the other hand, the number
of correctly translated tokens is few compared to increased coverage from addi-
tional parallel data. This is considered to be due to difficulty of directly learning
Japanese<»Russian translation from added indirect Japanese<»English and Rus-
sian<+English pivot corpora.

Furthermore, in order to deepen the knowledge about the tokens covered using
pivot corpora, we analyze the cases where the newly added tokens by Jiji and
News Commentary corpora are translated correctly and incorrectly. By adding Jiji
and News Commentary corpora, we define the vocabulary set newly covered by

the test data vocabulary as C as follows:

C=(TNP) -G (3.3)

Table 3.17 shows translation examples of only GV and MultiCorpora systems. The
[unknown tokens] in each sentence belong to C. The first sentence is an example
(a) where MultiCorpora was able to correctly translate “#£ 3> compared to Only
GV. On the other hand, the second example shows that neither MultiCorpora nor
Only GV could correctly translate an unknown token “Z%37 - included in pivot
parallel corpora. It is considered that it cannot be translated because the whole

sentence was translated incorrectly.
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Source JI0JKHBI M aKIIMOHEPHI OBITH KOPOJSIMH ?
Target [BRE] A5, ERRIZAR DR EN?
(Should [shareholders] be kings ?)
(a) Onmly GV Z D akuponep MEZDHLE L S>TWVWDEDZA DM T

(Is this akmonep the center of society?)
MultiCorpora [FRE] I EEZ ORI LOMN?
(Should [shareholders] have a king?)

Source TIpeeMCTBEHHOCTh BCEIId OCTABANACH Cyry0O CEMEHHBIM JeNOM , H BCE CIIOpEI
OCTaBaITHCh 33 3aKPBITHIMH JIBEPSIMH .
Target INFET, MAEIL BEICEERNSEIEINDIEDE IN, WKL

8 [RILD]TIND Z L IF BNz,

(The succession was always strictly a family affair, and no disputes have [emerged].)
Only GV FIRED RS A 2V ==V JET, BHNAEEIZIEE > TR,

(It is a family-run dry cleaning shop, and it has not become a regular business.)
MultiCorpora Z D & D RJERHIH % < VIBIN TV,

(Such abuse was repeated every day.)

(b)

Table 3.17: Examples of translating [unknown tokens] included in pivot parallel
data C from Russian into Japanese.

3.6.4 Summary

The difficult part of Japanese<+Russian news translation task is unknown tokens
due to difficult news domain covering various topics and extremely low-resource
available parallel data. To address this issue, we investigated the coverage of trans-
latable tokens by training M2M Transformer using an in-domain pivot parallel cor-
pora. As a result, we found out that our system MultiCorpora, can translate more

tokens by taking advantage of additional pivot parallel corpora.
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4.1 Introduction

Generally, studies tackle the low-resource simultaneous translation problem of in-
complete input by optimizing the timing of reading and translating the input text.
On the other hand, in this study, we aim to improve the quality of translation by
using additional modalities, in this case, visual modality. The situation where an
image is given as an input is specific as a setting for simultaneous translation.
However, if we demonstrate that image information is effective for simultaneous
translation, humans can perform simultaneous translation using visual information
as well. We hope that this will lead to the development of such systems and the

development of simultaneous translation using information outside the given text.

To this end, we propose Multimodal Simultaneous Neural Machine Translation
(MSNMPT) that supplements the incomplete textual modality with visual informa-
tion, in the form of an image. It will predict still missing information to improve

translation quality during the decoding process.

Our approach in the future can be applied in various situations where visual infor-
mation is related to the content of speech, such as presentations with slides (e.g.,
TED Talks') and news video broadcasts®. Our experiments show that the proposed
MSNMT method achieves higher translation accuracy than the SNMT model that
does not use images by leveraging image information. To the best of our knowl-
edge, we are the first to propose the incorporation of visual information to solve
the problem of incomplete text information in SNMT.

The main contributions are as follows:

* We propose to combine multimodal and simultaneous NMT, therefore, dis-
covering cases where such multimodal signals are beneficial for the end-
task. Our MSNMT approach brings significant improvement in the quality
of low-resource simultaneous translation by enriching incomplete text input

information using visual clues.

Thttps://interactio.io/
Zhttps://www.a.nhk-g.co.jp/bilingual-english/broadcast/nhk/index.html
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» As aresult of a thorough analysis, we conclude that the proposed method is
able to predict tokens that have not appeared yet for source-target language
pairs with different word order (e.g., English—Japanese).

* By providing an adversarial evaluation, we showed that the models indeed

utilize visual information.

4.2 Related Work

For simultaneous translation, it is crucial to predict the words that have not ap-
peared yet. For example, it is important to distinguish nouns in SVO-SOV trans-
lation and verbs in SOV-SVO translation (Ma et al., 2019). SNMT can be imple-
mented with two types of policy: fixed and adaptive policies (Zheng et al., 2019a).
Adaptive policy decides whether to wait for another source word or emit a target
word in one model. Previous models with adaptive policies include explicit pre-
diction of the sentence-final verb (Grissom II et al., 2014; Matsubara et al., 2000)
and unseen syntactic constituents (Oda et al., 2015). Most dynamic models with
adaptive policies (Gu et al., 2017; Dalvi et al., 2018; Arivazhagan et al., 2019;
Zheng et al., 2019b,c, 2020) have the advantage of exploiting input text informa-
tion as effectively as possible due to the lack of such information in the first place.
Meanwhile, Ma et al. (2019) proposed a simple wait-k method with fixed policy,
which generates the target sentence only from the source sentence that is delayed
by k tokens. However, their model for simultaneous translation relies only on the
source sentence. In this research, we concentrate on the wait-k approach with the
fixed policy so that the amount of input textual context can be controlled to better

analyze whether multimodality is effective in SNMT.

Multimodal NMT (MNMT) for full-sentence machine translation has been devel-
oped to enrich text modality by using visual information (Hitschler et al., 2016;
Specia et al., 2016; Elliott and Kadar, 2017). While the improvement brought by
visual features is moderate, their usefulness is proven by Caglayan et al. (2019).
They showed that MNMT models are able to capture visual clues under limited
textual context, where source sentences are synthetically degraded by color depri-
vation, entity masking, and progressive masking. However, they use an artificial

setting where they deliberately deprive the models of source-side textual context
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by masking. However, our research has discovered an actual end-task and has
shown the effectiveness of using multimodal data for it. Compared with the entity
masking experiments (Caglayan et al., 2019), where they use a model exposed to
only k words, our model starts by waiting for the first k source words and then gen-
erates each target word after receiving every new source token, eventually seeing

all input text.

In MNMT, visual features are incorporated into standard machine translation in
many ways. Doubly-attentive models are used to capture the textual and visual
context vectors independently and then combine these context vectors in a con-
catenation manner (Calixto et al., 2017) or hierarchical manner (Libovicky and
Helcl, 2017). Some studies use visual features in a multitask learning scenario (EI-
liott and Kadar, 2017; Zhou et al., 2018). Also, recent work on MNMT has partly
addressed lexical ambiguity by using visual information (Elliott et al., 2017; Lala
and Specia, 2018; Gella et al., 2019) showing that using textual context with visual

features outperform unimodal models.

In our study, visual features are extracted using image processing techniques and
then integrated into an SNMT model as additional information, which is supposed
to be useful to predict missing words in a simultaneous translation scenario. To the
best of our knowledge, this is the first work that incorporates external knowledge
into an SNMT model.

4.3 Multimodal Simultaneous Neural Machine Trans-

lation Architecture

Our main goal is to investigate if image information would bring improvement
to a low-resource SNMT. As a result, two tasks could benefit from each other by

combining them.

In this section, we describe our MSNMT model, which is composed by combin-
ing an SNMT framework wait-k (Ma et al., 2019) and a multimodal model (Li-
bovicky and Helcl, 2017) (Figure 4.1, MSNMT (wait-k)). We base our model on
the RNN architecture, which is widely used in MNMT research (Libovicky and
Helcl, 2017; Caglayan et al., 2017a; Elliott and Kadar, 2017; Zhou et al., 2018;
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Hirasawa et al., 2019). The model takes a sentence and its corresponding image
as inputs. The decoder of the MSNMT model outputs the target language sentence
in a simultaneous and multimodal manner by attaching attention not only to the

source sentence but also to the image related to the source sentence.’

SNMT (full)
black  dog and brown dog with a ball

schwarzer und brauner hund mit  einem  ball

SNMT (wait-k)

black  dog and brown dog with a ball

o o o
L L L

P ¥ 3 ¥ f 3
-0-0-0-0-0

schwarzer hund springt {iber zaun bauch

A
A
\
Y

MSNMT (wait-k)
black  dog and brown dog with a ball

Y

schwarzer hund brauner hund auf einem feld

Figure 4.1: Example of multimodal simultaneous machine translation based on
wait-k approach incorporating visual clues for better English—German transla-
tion.

30ur code is publicly available at: https://github.com/toshohirasawa/mst.
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4.3.1 Simultaneous Translation

We first briefly review standard NMT to set up the notations (see also Figure 4.1,
SNMT (full)). The encoder of standard NMT model always takes the whole input
sequence X = (21, ..., ) of length n where each x; is a word embedding and pro-
duces source hidden states H = (hy, ..., h,,). The decoder predicts the next output
token y; using H and previously generated tokens, denoted Yo; = (y1, ..., ¥1—1)-
The final output is calculated using the following equation:

Y|

p(YIX) = [ [ p(wl X, yr) (4.1)

t=1

Different from standard neural translation, in which each y; is predicted using the
entire source sentence X, the simultaneous translation requires the model to trans-
late concurrently with the growing source sentence. We incorporate the wait-k
approach (Ma et al., 2019) for our simultaneous translation model (Figure 4.1,
SNMT (wait-k)). Instead of waiting for the whole sentence before translating,
this model waits for only the first k tokens and starts to generate each target to-
kens after taking every new source token one by one. It stops taking new input
tokens once the whole input sentence is on board. For example, if k = 3, the first
target token is predicted using the first 3 source tokens, and the second target token

using the first 4 source tokens. The wait-k decoding probability pya;4-x 1S:

Y|

pwait—k<Y‘X) = HP(Z/t ’XSg(t)7 y<t) (42)

t=1

Where ¢(t) is the wait-k policy function which decides how much input text to
read and translate, X< ) = (@1, ..., Z4()). g(t) is defined as follows:

g(t) =min{k +t—1,n} (4.3)

When k+t—1 is over source length n, g(t) is fixed to n, which means the remaining
target tokens (including current step) are generated using the full source sentence.

For full sentence translation, ¢(t) is constant g(¢) = n.
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4.3.2 Multimodal Translation

We use a hierarchical attention combination technique (Libovicky and Helcl, 2017)
to incorporate visual and textual features into an MNMT model. This model calcu-
lates the independent context vectors from the textual features h™ = (R, ..., hX)
and the visual features h'™¢ = (hilmg, ..., him#) "which are extracted by the textual
encoder and the image processing model, respectively. It then combines the re-
sulting two vectors using a second attention mechanism, which helps to perform

simultaneous translation taking into account visual information.

Specifically, we compute the context vectors ¢! for each image (f = img) and text

(f = txt) modality independently using the following equations:

el = Qfs;, h) (4.4)
f
exple,
o{j — # (4.5)
Do exp(erJ)
')
d = > afnl (4.6)
j=1

where Q) is a feedforward network for each modality f; s, is i-th decoder hidden

state.

We project these image and text context vectors into a common space and compute
another distribution over the projected context vectors and their corresponding

weighted average using the second attention:

e = W(s;,c) (4.7)
>t
g = exp(é;) _ “8)
Zre{img,txt} eXp(Gi)
& o= Y BWYd (4.9)
re{img,txt}

where U is a feedforward network. Equation 4.8 calculates the second attention
to combine the image and text vectors. I¥/" is a weight matrix used to compute the
context vector ¢; calculated from image and text features. The final hypothesis Y
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has the probability:

Y|
Pt (YX, Z) = [ [ p(0i/X, Z, y1) (4.10)

t=1

where Z represents input image features.

4.3.3 Multimodal Simultaneous Neural Machine Translation

In this subsection, we describe the structure of the MSNMT model, which is a
combination of the models described in Sections 4.3.1 and 4.3.2. The method for
calculating the image context vector is the same as for MNMT; however, the text

context vector (Equation 4.6) for the ¢-th step is calculated as follows:
Atxt Z CY;X; h;xt (4 1 1)

Thus ¢ is calculated from the input text prefix determined by wait-k policy func-
tion g(t). Then we apply the second attention to ¢ and ™ in order to calculate
¢; (Equation 4.9).

The decoding probability becomes as follows:

Y|
Pmsnmt Y’X Z Hp yt|X<g Jy<t> (412)

4.4 Experimental Setup

4.4.1 Dataset

We experiment with our model in four translation directions consisting of 5 lan-
guages: English (En), German (De), French (Fr), Czech (Cs), and Japanese (Ja).
All language pairs include English on the source side.

We used the train, development, and test sets from the Multi30k (Elliott et al.,
2016) dataset published in the WMT16 Shared Task, which is a benchmark dataset
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generally used in MNMT research (Libovicky and Helcl, 2017; Caglayan et al.,
2019; Elliott and Kadar, 2017; Zhou et al., 2018; Hirasawa et al., 2019) for En-
glish—German, English—French and English—Czech.

Nakayama et al. (2020) released F30kEnt-JP dataset* which contains Japanese
translations of first two original English captions for each image of the Flickr30k
Entities dataset (Plummer et al., 2017). They follow the same annotation rules as
the Flickr30k Entities dataset using exactly the same tags with entity types and
IDs.

We preprocessed this data as follows: 1) The parallel English— Japanese data was
created by taking alignment using corresponding IDs assigned to each Japanese
translation entities with the IDs of Flickr30k entities.” 2) The created parallel data
was aligned with its corresponding images using text files named (image_id).txt
corresponding to each image in Flickr30k. 3) Finally, the created multimodal data
was split to train, dev, and test following data splits of Multi30k using the same
Multi30k image IDs. Note that the English side of English—Japanese parallel
data extracted from F30kEnt-JP and English side of Multi30k data are thought
to be somewhat comparable but not strictly the same while their corresponding

images are the same.

Data splits and average sentence length for each language are shown in Table 4.1.

Parallel data  #sent. Avg. sent. length

English German French Czech Japanese

Train 29,000 13 12 14 10 20
Dev 1,014 13 12 14 10 20
Test 1,000 12 12 13 10 20

Table 4.1: Dataset statistics.

We limit the vocabulary size of the source and the target languages after concate-
nating them to 10,000 sub-words (Sennrich et al., 2016b). All sentences are pre-
processed with lower-casing, tokenizing, and normalizing the punctuation using
the Moses script’. To tokenize Japanese sentences, we used MeCab’ with the IPA

“https://github.com/nlab-mpg/F1ickr30kEnt-JP

SWe used the second translations due to some empty translations of the first captions.

“We applied preprocessing using task1-tokenize.sh from https:/github.com/multi30k/dataset.
"http://taku910.github.io/mecab, version 0.996.
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dictionary.

Visual features are extracted using pre-trained ResNet (He et al., 2016b). Techni-
cally, we encode all images in Multi30k with ResNet-50 and pick out the hidden
state in the pool5 layer as a 2,048-dimension visual feature.

4.4.2 Systems

We compare the following models: 1. SNMT: We use only text modality for
training data as a baseline for each wait-k model. 2. MSNMT: We use image

modality along with text modality for training data for each wait-k model.

To train the above models, we utilize attention NMT (Bahdanau et al., 2014) with
a 2-layer unidirectional GRU encoder and a 2-layer conditional GRU decoder. We
use the open-source implementation of the nmtpytorch toolkit v3.0.0 (Caglayan
et al., 2017b). We first pre-train the MSNMT model for each k until convergence
using only text data and use zeros for visual features. Then we continue training
MSNMT on multimodal data for each k. We employ early-stopping: the training
was stopped when the BLEU score did not increase on the development set for
10 epochs for MSNMT pre-training, 5 epochs for MSNMT fine-tuning, and 15
epochs for SNMT training.

In order to keep our experiments as pure as possible, we will not use additional
data or other types of models. It will allow us to control the amount of input textual
context, so we can easily analyze the relationship between the amount of textual

and visual information.

4.4.3 Hyperparameters

We use the same hyperparameters for SNMT and MSNMT for a fair compari-
son as follows. All models have word embeddings of 200 and recurrent layers of
dimensionality 400 units with 2way sharing of embeddings in the network. We
used Adam (Kingma and Ba, 2015) with a learning rate of 0.0004. Decoders were
initialized with zeros. We used a minibatch size of 64 for training and 32 for fine-
tuning. Rates of dropout applied on source embeddings, source encoder states,

and pre-softmax activations were 0.4, 0.5, and 0.5, respectively. We set the max
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length of the input to 100. wait-k experiments were conducted for 1, 3, 5, 7,
and Full settings. For MSNMT only hyperparameters, sampler type was set to ap-
proximate, and channels were set to 2048. The fusion type was set to hierarchical

mode.

4.4.4 Evaluation

We report BLEU scores, which is a widely used evaluation metric in MT, on our
test sets for each wait-k model.® Note that reported BLEU scores were calculated
using the whole generated target sentence. Statistical significance (p < 0.05)
on the difference of BLEU scores was tested by Moses’s bootstrap-hypothesis-
difference-significance.pl. “Full” means that the whole input sentence is used as
an input for the model to start translating. All reported results are the average of

four runs using four different random seeds.

Additionally, we use the open-sourced Average Lagging (AL) latency metric pro-
posed by Ma et al. (2019) to evaluate the latency for SNMT and MSNMT systems.

4.5 Results

Table 4.2 illustrates the BLEU scores of MSNMT and SNMT models on the test
set. For all language pairs, MSNMT systems show significant improvements over
SNMT systems when input textual information is limited. Note that the differ-
ence of BLEU scores between MSNMT and SNMT becomes larger as the k gets
smaller, especially when the target language is distant from English in terms of
word order (e.g., Czech and Japanese). On the other hand, the availability of more
tokens during the decoding process (k > 5) leads to the text information becoming

sufficient in some cases.

Figure 4.2 shows translation quality against AL for four language directions. In
all these figures, we observe that, as k increases, the gap between BLEU scores
for MSNMT and SNMT decreases. We also observe that AL scores are better for
MSNMT as k decreases. From these results, it can be seen that in terms of latency,
the smaller k is, the more beneficial the visual clues become.

8Due to space constraints, we show results only for test sets.
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. En—De En—Fr En—Cs En—Ja
wait-k
S M S M S M S M
1 19.18 °19.90 31.23 °32.49 7.78 °9.07 21.95 °23.45
3 28.22 °28.75 43.85 4399 1891 °19.39 27.35 °27.74
5 30.38 °31.48 48.01 °48.40 2335 23,50 31.71 31.72

7 31.72  32.14 50.14 50.16 25.65 25.83 33.70 33.93
Full 34.64 34.84 5355 53.78 27.22 2685 3593 35.62

Table 4.2: BLEU scores of SNMT (S) and MSNMT (M) models for four trans-
lation directions on test set. Results are the average of four runs. Bold indicates

the best BLEU score for each wait-k for each translation direction. “*” indicates
statistical significance of the improvement over SNMT.
54 AFull
511
481
- o 457
H H 421
o o
39
L SNMT
331 . —a— MSNMT
T T T T A——
o 1 2 3 4 5 6 7i5 16
Average lagging Average lagging
(a) English—German (b) English—French
36 :
k=7 Full
34
32
) > 30
1) 1)
@ @ 28
26
241k=1 SNMT
—4— MSNMT
- 22 .
0 1 2 3 4 5 6 711 12 0 1 2 3 4 5 6 722 23
Average lagging Average lagging
(c) English—Czech (d) English—Japanese

Figure 4.2: Average Lagging scores. Results are the average of four runs.

4.6 Analysis

In this section, we provide a thorough analysis to further investigate the effect of
visual data to produce a simultaneous translation by (a) providing adversarial eval-
uation; and (b) analyzing the effect of different word order for English—Japanese
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language pair.

4.6.1 Adversarial Evaluation

In order to determine whether MSNMT systems are aware of the visual context (El-
liott, 2018), we perform the adversarial evaluation on the test set. We present our
system with correct visual data with its source sentence (Congruent) as opposed to
random visual data as an input (Incongruent) (Elliott, 2018). For that purpose, we
reversed the order of 1,000 images of the test set, so there will be no overlapping
congruent visual data. Then we reconstruct image features for those images to use

as an input to a model.

Results of image awareness experiments are shown in Table 4.3. We can see the
large difference in BLEU scores between MSNMT congruent (C columns) and
incongruent (I columns) settings when k are small. This implies that our proposed
model utilizes images for translation by learning to extract needed information
from visual clues. The interesting part is for a full translation, where scores for the
incongruent setting outperform or are very close to those of the congruent setting.
The reason is that when textual information is enough, visual information becomes

not that relevant in some cases.

. En—De En—Fr En—Cs En—Ja
wait-k
C I C 1 C 1 C 1
1 1990 8.19 3249 18.00 9.07 683 2345 17.57
3 28.75 26.78 43.99 4231 19.39 18.78 27.74 24.51
5 31.48 31.08 48.40 48.19 23.50 22.81 31.72 28.57

7 32.14 32.04 50.16 50.15 25.83 25.09 33.93 31.03
Full 34.84 3440 53.78 53.10 26.85 26.84 35.62 35.59

Table 4.3: Image Awareness results on test set. BLEU scores of MSNMT Con-
gruent (C) and Incongruent (I) settings for four translation directions. Results are
the average of four runs. Bold indicates the best BLEU score for each wait-k for
each translation direction.

4.6.2 How Source-Target Word Order Affects Translation

In wait-k translations, for the English—Japanese language pair with different
word orders (SVO vs. SOV), some source tokens should be translated before they
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are presented to the decoder for grammaticality and fluency purposes. Hence,
the model also needs to handle such cases well apart from the “usual” order. We
hypothesize that MSNMT models given additional visual information are able to
translate such cases better than SNMT models. Therefore, we investigated how

many tokens were correctly translated that are not given as input yet.

t 1 2 3 4 5 6 7 8 9 10 11

Source a person rappelling above a body of water

Target, k=3 W o Lk T Hd Y T was — Ao B,
Entity count v X X

Table 4.4: Example of English—Japanese translation to count entities that should
be translated before introducing it to a model in case of wait-3 (see Figure 4.3(a)).
A wait-k model starts translating after k tokens are inputted. Colors represent the
same entities. v indicates entities that are not presented to the model at timestep
t yet, and X indicates entities that are already seen by the model at timestep ¢. We
count only those entities marked with v for # total entities (Table 4.5).

First, we quantitatively analyze how well we can translate entities that are not
presented from the source yet but should exist in target sentences. To align the
source and target entities, we use the annotation of the entities attached to both
the source and target sentences. Given that annotated entities have the same IDs
and tags for both English and Japanese, we can align, calculate, and extract those
entities from source and target sentences. If the index of the first token of the
aligned target entity is not given as input at timestep k yet, we count them for
each k scenario as # total entities (Table 4.5). For example, in Table 4.4 a wait-3
model should start translating after a token “rapelling” is presented to the model.
And if an ID of the entity of “#§ (a body of water)” is in the target sentences but
not in the inputted part yet, we count it as an entity that should be translated before
being inputted into the model. Similarly, an entity of “Wi & (cliff)” is already
presented to the model at timestep 5, so we do not count those entities. If the same
entity ID appears more than once in one sentence, we exclude those entities due to
the impossibility of alignments. Finally, for each model during decoding, if those
entities are included in the translation results of the model with a perfect match
from pre-calculated # total entities, we consider them as correctly translated.”

9We can not create # total entities from decoded tokens directly due to unavailability of entity
annotations.

75



4.6. ANALYSIS

.. # correct entities by S # correct entities by M
k # total entities 1Hes by 168 by

wait-k Full wait-k Full
1 1,343 251 716 270 707
3 852 229 433 242 432
5 502 147 247 151 243
7 320 106 160 106 159

Table 4.5: Number of entities that were correctly translated before being presented
to the model by SNMT (S) and MSNMT (M) models with their for each k. Results
are the average of four runs.

Table 4.5 demonstrates the results. k column is to determine how many tokens a
model waits before starting translating. Note that k=Full is not included because all
entities are given at the time of translation. The reason that the total number of enti-
ties that were not inputted yet decreases when k increases (# total entities column)
is that more entities are already available for the model for translation. wait-k
columns show how many entities were correctly translated by wait-k SNMT and
MSNMT models from # total entities for each k scenario. Columns Full show
upper-bounds of how many entities can be correctly translated if the models were
trained with full sentences for entities from each k. Comparing Full results to
wait-k for both SNMT and MSNMT shows that it is hard to correctly translate
entities when k is small. Furthermore, comparing wait-k results of SNMT to
MSNMT, it can be seen that the smaller value of k, the better MSNMT can handle
different source-target word order than SNMT.

(a) A person rappelling a cliff. (b) Eight men on motorcycles.

Figure 4.3: Images presented in translation examples (Table 4.6).
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4.6. ANALYSIS

Source a person rappelling a cliff above a body of water .

Target MmO LEIZHDWEZBED TWE — AD B,

Swait-3 | MW, HOD LT % &S, (someone climbs a cliff on a rock.)

Mwait-3 | A ED E T % YD TUWa, (aperson is rappelling a cliff above the sea.)

S Full KNI D LD % &> TWb, (aperson is climbing a cliff above a body of water.)
M Full NDIKIK D T % BEY TWd, (aperson is rappelling a cliff above a body of water.)

Source eight men on motorcycles dressed in are all lined up on the side of the street .
Target OMEZEL AN IZES>T WD 8 ADBENEY OBIZTHD LA TWD,
Swait-3 ik = #& T DODfkEHL 1T ANOBED, @Y DOHICIA TV,
(a man in white and black and black is standing beside the street.)
Muwait-3 | FHZHIIZ 3R> TWD DR %E &~ 8 AD BN, @Y OMHEIZHD,
(eight men in red and black clothes riding a bicycle are on the side of the street.)
S Full DO EE, A=A IZE> 722 ADO BN, 8Y O TIHATND,
(two men on motorcycles, dressed in red and black, line up by the side of the street.)
M Full D& EHFL, A= NS IZFD> 2 8 ADBEMED, @Y O WiH IZIA TWVWD,

(eight men on motorcycles, dressed in red and black, line the side of the street.)

Table 4.6: Examples of English—Japanese translations from test set using SNMT
(S) and MSNMT (M) models (also refer to Figure 4.3). In () are shown their
English meanings. The same colors indicate the same entity types.

As an example, we sampled sentences and their images from English—Japanese
test set (Figure 4.3) to compare the outputs of our systems. Table 4.6 lists their
translations generated by SNMT (S) and MSNMT (M) models. In the first ex-
ample, an SNMT model with wait-3 could not predict “## (sea, a body of wa-
ter)” which appears at the end of the source sentence and generated an erroneous
“4= (rock)” which is not present neither in source text nor in a corresponding im-
age. Contrarily, the MSNMT model with wait-3 was able to correctly predict
“¥# (body of water)” even before it was inputted by capturing visual information.
When a full sentence is given as an input, MSNMT translated it correctly using
more information, unlike SNMT, which translated only from the given text and
generated incorrect “& > T (climbing)” instead of “F& ) T (rappelling)”. Inter-
estingly, in the second example, the MSNMT model with wait-3 predicted “H ¥z
Hi (bicycles)” instead of “— K /31 (motorcycles)” at the beginning of the sen-
tence, while the SNMT model with wait-3 was not able to generate any vehicles.
Also, both MSNMT models with wait-3 and Full correctly captured that there
were eight men, whilst both SNMT models incorrectly predicted about one and
two men. From these results, we can conclude that visual clues positively impact
generated translations where there is still a lack of textual information, especially
when we deal with language pairs with different word order.
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4.7. SUMMARY

4.7 Summary

This chapter showed that our proposed approach of multimodal simultaneous neu-
ral machine translation takes advantage of visual information as an additional
modality to improve the low-resource simultaneous neural machine translation.
We showed that in a wait-k setting, our model significantly outperformed its text-
only counterpart in situations where only a few input tokens are available to begin
translation. We showed the importance of the visual information for simultane-
ous translation, especially in the low latency setup and for a language pair with

word-order differences.
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5| Conclusions and Future Implications

In this thesis, we improved the performance of low-resource NMT by using addi-
tional information. For this purpose, we used two types of additional information
with regard to text and image modalities.

In this work, different language pairs were considered, wherein each contained a

different amount of available parallel data with different domains.

First, we proposed advanced pseudo-parallel corpora filtration methods that yield
high-quality pseudo-parallel corpora, which further can be used to train more ac-
curate MT systems for low-resource language pairs in Chapter 2. Our findings
suggest that translation accuracy depends on both the size and quality of the train-
ing data.

Then we introduced Japanese<>Russian NMT system using out-of-domain parallel
data in Chapter 3. The difficult part of this task was unknown tokens due to the dif-
ficult news domain covering various topics and extremely low-resource available
parallel data. To address this issue, we investigated the coverage of translatable
tokens by training M2M Transformer using an in-domain pivot parallel corpora.
As a result, we found out that the proposed system can translate more tokens by

taking advantage of additional pivot parallel corpora.

In the news domain, there is also a problem of completely new tokens, which is
a type of unknown tokens, that cannot be dealt with by simply increasing training
data coverage since new information is out every day. Therefore, we plan to tackle

the problem of new tokens that cannot be introduced by using additional corpora.

We also empirically confirmed the limited success of well-established solutions
when restricted to in-domain data. Then, as a result, to incorporate out-of-domain
data, we proposed a multilingual multistage fine-tuning approach and observed
that it substantially improves Japanese<»Russian translation compared to strong
baselines.

In the future, we plan to confirm further fine-tuning for each of the specific trans-
lation directions. We will also explore the way to exploit out-of-domain pseudo-
parallel data, better domain-adaptation approaches, and additional challenging lan-
guage pairs.
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Finally, we proposed a multimodal simultaneous neural machine translation ap-
proach that takes advantage of visual information as an additional modality to
compensate for the shortage of input text information in the simultaneous neural
machine translation in Chapter 4. We showed that in a wait-k setting proposed
model significantly outperformed its text-only counterpart in situations where only
a few input tokens were available to begin translation. We showed the importance
of the visual information for simultaneous translation, especially in the low latency

setup and for a language pair with word-order differences.

We created a separate model for each value of wait-k. However, in future work,
we plan to experiment with having a single model for all k values (Zheng et al.,
2019a). Furthermore, we acknowledge the importance of investigating MSNMT
effects on more realistic data (e.g., TED), where the utterance does not necessarily
match a shown image while speaking and/or where its context can not be guessed

from the shown image.

In the future, we will combine all proposed methods to further create more robust
models for low-resource language pairs. We also plan to address zero-resource
languages that have almost no written resources and create a robust model for
unrelated information from other modalities such as video and audio.

This work was mostly concentrated on Japanese<»Russian MT. Since I can speak
both Russian and Japanese, I was able to analyze this low-resource language pair
and create a new benchmark dataset for future research of such low-resource long-
distance language pair. Until this work, research on Russian and Japanese lan-
guages and multimodal translation have been mainly related to Western languages.
Showing that image information plays a greater role between very different lan-
guages such as Japanese and English, this work made it possible to develop mul-
timodal, simultaneous translation for the other languages outside of mainstream

languages of Europe and the United States.
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