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Abstract

We show a method to construct a special Lagrangian submanifold L′

from a given special Lagrangian submanifold L in a Calabi-Yau manifold
with the use of generalized perpendicular symmetries. We use moment
maps of the actions of Lie groups, which are not necessarily abelian. By
our method, we construct some non-trivial examples in non-flat Calabi-Yau
manifolds T∗Sn which equipped with the Stenzel metrics.
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1 Introduction

In 1982, Harvey and Lawson introduced a special class of submanifolds, namely
calibrated submanifolds in their paper [4]. Calibrated submanifolds has a strong
property that they realize volume minimizing submanifolds in the homological
class. Particularly, in Calabi-Yau manifolds M , there are calibrations ℜe

√
−1θΩ

for the holomorphic volume form Ω which is compatible with the Calabi-Yau
structure on M and θ ∈ R. Submanifolds which are calibrated by ℜe

√
−1θΩ are

called special Lagrangian submanifolds. Because special Lagrangian submani-
folds play an important role for understanding mirror symmetries and the SYZ-
conjecture, which asserts that for a complex 3-dimensional compact Calabi-Yau
manifold M and its mirror M̃ , there exist special Lagrangian torus fibrations
π : M → B and π̃ : M̃ → B, many mathematicians pay attention to their
constructions and singularities.

Let us review the history of constructions of special Lagrangian submanifolds,
regarding their ambient spaces and methods of constructions. At first Cn was
chosen for an ambient space and in there various examples and methods of con-
structing special Lagrangian submanifolds were given by Joyce in a series of his
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papers [10]–[14]. On the other hand, Stenzel gave examples of non-flat Calabi-
Yau structures on the conormal bundles over compact rank one symmetric spaces.
Next special Lagrangian submanifolds are constructed in those spaces (first in
T∗Sn, and recently in T∗CP n).

One of the useful method of constructing special Lagrangian submanifolds
is called the moment map technique which was introduced by Joyce in [13].
This method needs large symmetries, and by using these symmetries we can
reduce PDEs for being special Lagrangian submanifolds to ODEs on the orbit
spaces. Using this method, Joyce constructed special Lagrangian submanifolds
in Cn(∼= T∗Rn) invariant under a subgroup of SU(n). With this method special
Lagrangian submanifolds were also studied in T∗Sn by Anciaux [1], Ionel and
Min-Oo [9], Hashimoto and Sakai [6], Hashimoto and Mashimo [5], and in T∗CP n

by Arai and Baba [2]. All of these examples were cohomogeneity one.
Another method was introduced by Harvey and Lawson [4] which is called

the bundle technique. With the use of this method, Karigiannis and Min-Oo [15]
constructed special Lagrangian submanifolds in T∗Sn, and Ionel and Ivey [8] in
T∗CP n.

Aside from these two typical methods, Joyce [13] showed a way to construct a
special Lagrangian submanifold L′ in Cn from another given special Lagrangian
submanifold L by using actions of an abelian group which acts perpendicularly
to L. This method has advantage that we need not deal with the PDE for
L′ to be a special Lagrangian submanifold (it is “already achieved” by the given
special Lagrangian submanifold L), and that large symmetries are not necessarily
needed.

In this paper we generalize this Joyce’s result above using “perpendicular
symmetries” in three points. Firstly we generalize ambient spaces to general
Calabi-Yau manifolds from Cn. Secondly we do not assume the commutativity
of Lie groups. Thirdly we generalize the condition that the group acts perpen-
dicularly to a given special Lagrangian submanifold. By this method we also
construct non-trivial examples of special Lagrangian submanifolds in Calabi-Yau
manifolds T∗Sn equipped with the Stenzel metrics.

The method to construct special Lagrangian submanifolds in this paper is
summarized as follows: Let (M, I, ω,Ω) be a connected Calabi-Yau manifold and
H a connected Lie group which acts on M preserving I. Here, we denote a
complex structure, a Kähler form and a holomorphic volume form on M by I, ω
and Ω respectively. Let h, h∗ and Z(h∗) be the Lie algebra of H, its dual and the
center of h∗ respectively. Assume the H-action is Hamiltonian, i.e. (M,ω,H)
has a moment map µ : M → h∗. Let L be a special Lagrangian submanifold of
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(M, I, ω,Ω). Suppose that for c ∈ Z(h∗), Vc is a submanifold ofM which satisfies
Vc ⊂ µ−1(c) ∩ L and dimH + dimVc =

1
2
dimM . Assume that the actions of H

are “(generalized) perpendicular actions” to L on Vc (not necessarily on whole of
L). Then H · Vc is a special Lagrangian submanifold.

Konno [16] showed, in general Calabi-Yau manifolds, a method of constructing
Lagrangian mean curvature flows by using perpendicular actions of abelian groups
for given special Lagrangian submanifolds, and constructed some examples. This
paper is inspired from the study by Konno.

2 Preliminaries

In this section, we review some fundamental facts about Calabi-Yau manifolds,
their special Lagrangian submanifolds, group actions, and moment maps.

2.1 Special Lagrangian submanifolds

We begin with the definition of Lagrangian submanifolds in symplectic manifolds.
Let (M,ω) be a symplectic manifold. A submanifold L of (M,ω) is isotoropic

if ω|L ≡ 0. If an isotropic submanifold L is of half-dimension of M , it is called a
Lagrangian submanifold.

Next we see the definition of special Lagrangian submanifolds. It is a partic-
ular submanifold of a Calabi-Yau manifold which is defined as follows:

Definition 2.1. A Calabi-Yau manifold is a quadruple (M, I, ω,Ω) such that
(M, I) is a complex manifold equipped with a Kähler form ω and a holomorphic
volume form Ω which satisfy the following relation:

ωn

n!
= (−1)

n(n−1)
2

(√
−1

2

)n
Ω ∧ Ω.

If L is an oriented Lagrangian submanifold of a Calabi-Yau manifold (M, I, ω,
Ω), there exists a function θ : L → R/2πZ, which is called the Lagrangian angle
satisfying

ι∗Ω = e
√
−1θvolι∗g.

Here g is the Kähler metric, ι : L→M is the embedding, and volι∗g is the volume
form on L with respect to the induced metric ι∗g. Even if L is not orientable,
we can locally define the Lagrangian angle with the formula above. With the use
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of the Lagrangian angle θ of a Lagrangian submanifold L, the mean curvature
vector Hp at p ∈ L is expressed as follows:

Hp = Iι(p)(ι∗p(∇ι∗gθ)p) ∈ T⊥
ι(p)ι(L),

where ∇ι∗gθ is the gradient of the function θ with respect to the induced metric
ι∗g.

The definition of a special Lagrangian submanifold is given by the following:

Definition 2.2. Let (M, I, ω,Ω) be a Calabi-Yau manifold. A special Lagrangian
submanifold of (M, I, ω,Ω) is a Lagrangian submanifold such that its Lagrangian
angle is constant θ ≡ θ0. θ0 is called the phase of the special Lagrangian sub-
manifold.

From the formula of the mean curvature vector above, we can see that a special
Lagrangian submanifold is a minimal submanifold. More strongly it is known that
a special Lagrangian submanifold is homologically volume minimizing.

2.2 Group actions and moment maps

In this subsection we review the fundamental notions of group actions and mo-
ment maps.

Let H be a Lie group which acts on M . We denote the translation of h ∈ H
by Lh : M → M . For each p ∈ M , the orbit and the isotropy subgroup at p are
denoted by H · p and Hp respectively.

Letting h denote the Lie algebra of H, any ξ ∈ h induces a fundamental vector
field ξ# on M , defined as follows:

ξ#p =
d

dt

∣∣∣∣
t=0

exp(tξ)p (p ∈M),

where exp(tξ) denotes the 1-parameter subgroup of H associated to ξ.
H acts on h∗ by the coadjoint action:

Ad∗
h : h

∗ → h∗,

where h ∈ H, and for c ∈ h∗, Ad∗
hc is defined as follows:

⟨Ad∗
hc, ξ⟩ = ⟨c,Adh−1ξ⟩ (ξ ∈ h).

Here ⟨·, ·⟩ is the pairing of h and h∗. We call

Z(h∗) = {c ∈ h∗ | Ad∗
hc = c, h ∈ H}

the center of h∗. If H is abelian, then it holds that Z(h∗) = h∗.
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Definition 2.3. Let H be a Lie group acting on a symplectic manifold (M,ω).
A moment map µ :M → h∗ is an H-equivariant map that satisfies, for any ξ ∈ h,
the following:

−i(ξ#)ω = d⟨µ(·), ξ⟩,
where i is the interior product.

If (M,ω,H) has a moment map, theH-action is called Hamiltonian. A Hamil-
tonian action preserves the symplectic form ω.

Proposition 2.4. Let (M,ω) be a symplectic manifold, H a Lie group with a
moment map µ : M → h∗, p a point in M . If there exists a point q ∈ H · p
such that µ(q) is in Z(h∗), then µ is constant on H · p and the H-orbit H · p is
isotropic. Conversely, if the H-orbit H · p is connected and isotropic, then µ is
constant on H · p and µ(p) is in Z(h∗).

Proof. First we assume that µ(q) ∈ Z(h∗) for q ∈ H · p. Let r be an arbitrary
point in H · p and h ∈ H such that r = hq. Since H · p is homogeneous, it holds
that Tr(H · p) = {ξ#r | ξ ∈ h}. For any ξ1, ξ2 ∈ h, we have

ωr((ξ1)
#
r , (ξ2)

#
r ) =⟨(dµ)r(ξ1)#r , ξ2⟩

=

⟨
d

dt

∣∣∣∣
t=0

µ(exp(tξ1)r), ξ2

⟩
=

⟨
d

dt

∣∣∣∣
t=0

µ(exp(tξ1)hq), ξ2

⟩
=

⟨
d

dt

∣∣∣∣
t=0

(
Ad∗

exp(tξ1)h

)
µ(q), ξ2

⟩
=0.

Hence, we see that H · p is isotropic. The map µ is constant on H · p since for
any r′ = h′q (h′ ∈ H) it holds that µ(r′) = Ad∗

h′µ(q) = µ(q).
Next we assume that H · p is connected and isotropic. For any ξ ∈ h, define

µξ :M → R by
µξ(p) := ⟨µ(p), ξ⟩.

Then we have
dµξ = d⟨µ(·), ξ⟩ = −ω(ξ#, ·).

Fix an arbitrary q ∈ H · p and let q = hp for h ∈ H. For any Y ∈ Tq(H · p), we
have

Y (µξ) = (dµξ)q(Y ) = −ωq(ξ#q , Y ) = 0.
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Hence, noting that H · p is connected, we see that µξ is constant on H · p for any
ξ ∈ h, i.e., ⟨µ(·), ξ⟩ is constant on H · p for any ξ ∈ h. Therefore, we see that µ
is constant on H · p, i.e., H · p ⊂ µ−1(µ(p)). Then since it holds that

Ad∗
hµ(p) = µ(hp) = µ(p) (∀h ∈ H),

we see that µ(p) ∈ Z(h∗).

3 The Stenzel metrics

In this section we overview the method by Stenzel [23] for constructing Ricci-
flat Kähler metrics on the cotangent bundles of compact rank one symmetric
spaces, using the cohomogeneity one group actions. We also construct practically
the Stenzel metrics on T∗Sn and T∗CP n. Particularly, the Stenzel metrics gStz
on T∗Sn are used later for constructing special Lagrangian submanifolds in the
Calabi-Yau manifolds T∗Sn which are equipped with them.

3.1 General constructions of Ricci-flat Kähler metrics by
cohomogeneity one actions

Generally, for a Kähler potential ψ on a complex manifold (M, I), its Ricci form
Ric(ψ) is given by the following:

Ric(ψ) = −
√
−1∂∂̄ log det

∂2ψ

∂zi∂z̄j
.

Here, (z1, · · · , zn) is an arbitrary holomorphic coordinates with respect to the
complex structure I and n = dimCM . Therefore, Ric(ψ) = 0, the condition for
the Ricci-flatness is given as a fourth order partial differential equation.

Suppose that the determinant of the Hessian of ψ has the form of “a positive
constant × the square of the absolute value of some holomorphic function”. That
is, for some C > 0 and some holomorphic function hol, suppose it holds that

det
∂2ψ

∂zi∂z̄j
= C|hol|2. (3,1)

Generally, for the product f1 · · · fk of finite numbers of holomorphic or anti-
holomorphic functions fi (i = 1, · · · , k), we have ∂∂̄ log f1 · · · fk = 0. Hence,
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we see that such ψ satisfies Ric(ψ) = 0. Therefore, the second order partial
differential equation (3,1) gives us one of the classes that satisfy the condition of
the Ricci-flatness.

The Ricci-flat Kähler metrics which were constructed by Stenzel [23] are given
as the solutions for the partial differential equations (3,1). Stenzel showed that
the second order partial differential equations (3,1) can be reduced to the second
order ordinary differential equations with the use of the symmetries of cohomo-
geneity one actions which the compact rank one symmetric spaces have. The
compact rank one symmetric spaces are classified as follows:

G/K G K dimRG/K
Sn (n ≥ 2) SO(n+ 1) SO(n) n

RP n (n ≥ 2) SO(n+ 1) O(n) n
CP n (n ≥ 1) SU(n+ 1) S(U(1)× U(n)) 2n
HP n (n ≥ 1) Sp(n+ 1) Sp(1)× Sp(n) 4n

CaP 2 F4 Spin(9) 16

It is known that in the case of M = T∗S2, the Stenzel metric coincides with
the hyperkähler metric on T∗S2 discovered by Eguchi and Hanson [3]. Lee [17]
explicitly described the Stenzel metrics on each cotangent bundle of compact
rank one symmetric spaces except for the case of G/K = CaP 2.

The principle of the constructions by Stenzel is based on the following theo-
rem.

Theorem 3.1. Let (M, I) be a complex manifold with the complex dimension n
which satisfies the following conditions:

(i) there exists a Lie group G which acts on M with cohomogeneity one pre-
serving I,

(ii) there exists a G-invariant, nonvanishing, holomorphic volume form Ω on
M, and

(iii) there exists a G-invariant, strictly plurisubharmonic function ρ : M →
[0,∞) such that the induced function ρ : M/G → [0,∞) on the G-orbit
space M/G is injective.

Let Σ = ρ(M). Then, the followings hold:
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(1) there exist G-invariant functions ν1 and ν2 on M given by the followings:

ν1 = ∂∂̄ρ(gradCρ, gradCρ),

|hol|2ν2 = det
∂2

∂zi∂z̄j
ρ.

Here, gradCρ is the complex gradient of ρ which is defined by the following:

∂∂̄ρ(gradCρ, ·) = ∂̄ρ(·).

The function hol is a nonvanishing local holomorphic function on holomor-
phic coordinates (z1, · · · , zn) of M . The function ν1 is non-negative valued.
The function ν2 is positive valued and is determined up to the product of
the square of the absolute value of some local holomorphic function on M
which is G-invariant. In addition, for an arbitrary real valued function f
which is defined on some open set Σ̃ ⊂ R such that Σ ⊂ Σ̃, the following
holds on M :

det
∂2(f ◦ ρ)
∂zi∂z̄j

= |hol|2
{
(f ′ ◦ ρ)n + (f ′ ◦ ρ)n−1(f ′′ ◦ ρ)(ν1 ◦ ρ)

}
(ν2 ◦ ρ). (3,2)

(2) Let f be the solution of the ordinary differential equation with variable ρ{
(f ′(ρ))n + (f ′(ρ))n−1f ′′(ρ)ν1(ρ)

}
ν2(ρ) = C (C > 0) (3,3)

which is smoothly defined on some open set Σ̃ ⊂ R such that Σ ⊂ Σ̃. Then,
the function ψ = f ◦ ρ is a Ricci-flat Kähler potential on M if and only if
0 < f ′ on Σ.

The existences of G-actions and a strictly plurisubharmonic function ρ which
satisfy the conditions above are crucial important for this method. For the lat-
ter, Patrizio and Wong [22] studied such functions on the cotangent bundles of
compact rank one symmetric spaces in detail.

We prepare the following lemma for the proof of this theorem.

Lemma 3.2. Let (M, I) be a complex manifold, Ω a nonvanishing holomorphic
volume form on M , and ψ :M → R a strictly plurisubharmonic function. Then,
there exists a positive valued function Fψ :M → (0,∞) such that

(
√
−1∂∂̄ψ)n = (

√
−1)n

2

FψΩ ∧ Ω.

9



In addition, Fψ satisfies the following relation for some holomorphic function hol:

det
∂2ψ

∂zi∂z̄j
= |hol|2Fψ. (3,4)

Proof of Lemma 3.2. By direct calculations, we have

(
√
−1∂∂̄ψ)n = (

√
−1)n

2

n! det
∂2ψ

∂zi∂z̄j
dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

On the other hand, since there exists a local holomorphic function h̃ol such that
Ω = h̃ol dz1 ∧ · · · ∧ dzn, we have

Ω ∧ Ω = |h̃ol|2dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

Hence, we have

(
√
−1∂∂̄ψ)n = (

√
−1)n

2

n!|h̃ol|−2 det
∂2ψ

∂zi∂z̄j
Ω ∧ Ω.

Note that the function h̃ol is nonvanishing because Ω is nonvanishing and that
det ∂2ψ

∂zi∂z̄j
> 0 because ψ is strictly plurisubharmonic. Let Fψ := n!|h̃ol|−2 det ∂2ψ

∂zi∂z̄j
,

then Fψ is the function which satisfies the claim of the Lemma 3.2. In fact, we
have

0 < det
∂2ψ

∂zi∂z̄j
= |hol|2Fψ

with hol = (n!)−1/2h̃ol.

Proof of Theorem 3.1. On an arbitrary holomorphic coordinates (z1, · · · , zn), it
holds that

gradCρ = ρi
∂

∂zi
.

Here, ρi =
∑n

k=1
∂ρ
∂z̄k
ρkī and

∑n
i=1 ρ

kī ∂2ρ
∂zi∂z̄l

= δkl with the Kronecker delta δkl.
First, we show that there exist the functions ν1 and ν2 in the theorem. Since G

preserves I, and ρ is G-invariant, the function ∂∂̄ρ(gradCρ, gradCρ) is G-invariant
on M . Since ρ is a strictly plurisubharmonic function and gradCρ is a (1, 0)-
differential form, this function is non-negative valued. Thus we can define the G-
invariant non-negative valued function ν1 = ∂∂̄ρ(gradCρ, gradCρ) : M → [0,∞).
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Since the positive valued function Fρ which is obtained by Lemma 3.2 satisfies
the relation

(
√
−1∂∂̄ρ)n = (

√
−1)n

2

FρΩ ∧ Ω

and ρ and Ω are G-invariant, the function Fρ is also G-invariant. We define
ν2 := Fρ. Then, from the relation (3,4) in Lemma 3.2, it holds that

det
∂2ρ

∂zi∂z̄j
= |hol|2ν2.

Note that Fρ is determined depending on Ω. Let Ω̃ be another G-invariant,
nonvanishing, holomorphic volume form on M . Let F̃ρ be the positive valued
function which corresponds to Ω̃ in Lemma 3.2. Then, there exists some holo-
morphic function h̃ol such that Ω̃ = h̃olΩ. Since Ω and Ω̃ are G-invariant and
nonvanishing, h̃ol is also G-invariant and nonvanishing. We have

(
√
−1)n

2

FρΩ ∧ Ω = (
√
−1∂∂̄ρ)n =(

√
−1)n

2

F̃ρΩ̃ ∧ Ω̃

=(
√
−1)n

2

F̃ρh̃olΩ ∧ h̃olΩ

=(
√
−1)n

2 |h̃ol|2F̃ρΩ ∧ Ω.

Thus we see that
Fρ = |h̃ol|2F̃ρ

and |h̃ol|2 is G-invariant positive valued function. Hence we have verified that ν2
in the theorem exists.

Since ρ is injective on the G-orbit space, ν1 and ν2 can be seen as a ρ-variable
functions: νi = νi(ρ) for i = 1, 2. Let f : Σ̃ → R be a smooth function which is
defined on some open set Σ̃ ⊂ R such that Σ ⊂ Σ̃. Then, by direct calculations,
we have

∂2

∂zi∂z̄j
det(f ◦ ρ)

=
{
(f ′ ◦ ρ)n + (f ′ ◦ ρ)n−1(f ′′ ◦ ρ)∂∂̄ρ(gradCρ, gradCρ)

}
det

∂2ρ

∂zi∂z̄j

=|hol|2
{
(f ′ ◦ ρ)n + (f ′ ◦ ρ)n−1(f ′′ ◦ ρ)(ν1 ◦ ρ)

}
(ν2 ◦ ρ)

on M . Thus we have shown (1) of the theorem.
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Next we show the claim of (2). Since the two functions

ρ :M → Σ,

f : Σ̃ → R

are smooth, ψ = f ◦ρ :M → R is also smooth. Hence, it is sufficient for verifying
the claim of (2) to confirm the followings:

(I) The function ψ is strictly plurisubharmonic on M ,

(II) Ric(ψ) ≡ 0 on M .

First we show the condition (I). The condition (I) means that
√
−1∂∂̄ψ(·, I·) is

positive definite on TpM for each p ∈ M , and it is equivalent to that ∂∂̄ψ(·, ·)
is positive definite on T

(1,0)
p M for each p ∈ M . Here, T

(1,0)
p M is the space of all

(1, 0)-vectors in TpM
C.

Define the complex (n−1)-dimensional vector space ann(∂ρ)p for each p ∈M
by the following:

ann(∂ρ)p =
{
v ∈ T(1,0)

p M | ∂ρ(v) = 0
}
.

We take a basis (Z1, · · · , Zn) in T
(1,0)
p M such that

� (Z1, · · · , Zn) is orthonormal with respect to the Hermitian inner product
(∂∂̄ρ)p, and

� (Z1, · · · , Zn−1) is a basis in ann(∂ρ)p.

Here, we note that ∂∂̄ρ is positive definite since ρ is strictly plurisubharmonic.
Since it holds that

∂∂̄(f ◦ ρ) = f ′′∂ρ ∧ ∂̄ρ+ f ′∂∂̄ρ,

we have, for j, k ∈ {1, · · · , n− 1},

∂∂̄ψ(Zj, Z̄k) = f ′∂∂̄ρ(Zj, Z̄k) = f ′δjk,

∂∂̄ψ(Zj, Z̄n) = f ′∂∂̄ρ(Zj, Z̄n) = 0.

Hence, we have the expression of the quadratic form ∂∂̄ψ(·, ·̄) with respect to
(Z1, · · · , Zn) as follows:

∂∂̄ψ(·, ·̄) =


f ′

. . . 0
f ′

0 αn

 (αn ∈ R).
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If f ′ > 0 on Σ, we see that αn > 0 since it holds that

(f ′)n−1αn = det
∂2ψ

∂zi∂z̄j
= C|hol|2 > 0

by the ordinary differential equation (3,3) in the theorem. Hence, we see that
each of n eigenvalues of ∂∂̄ψ(·, ·̄) is positive, i.e., ∂∂̄ψ(·, ·̄) is positive definite if
and only if f ′ > 0 on Σ. Thus we have shown the condition (I).

The condition (II) clearly holds since

Ric(ψ) = −
√
−1∂∂̄ log det

∂2ψ

∂zi∂z̄j

and

det
∂2ψ

∂zi∂z̄j
= C|hol|2

due to the ordinary differential equation (3,3) and the relation (3,2) in the theo-
rem.

Remark 3.3. When ρ(M) ⊂ [1,∞) (and it is always possible to consider ρ̃ :=
ρ + c with some c > 0 instead of ρ), by the variable change u = cosh−1 ρ, the
ordinary differential equation (3,3) with variable ρ{(

f ′(ρ)
)n

+
(
f ′(ρ)

)n−1
f ′′(ρ)ν1(ρ)

}
ν2(ρ) = C

is deformed into the equation with variable u

d
du
(

�
F (u))n

coshu sinhn−1 u
(ν2 ◦ cosh)(u) = nC.

Here,
�
F denotes the differentiation of F by u. In particular, if f ′ > 0 and u > 0,

we have
�
F > 0 by

�
F = f ′ sinhu. From the ordinary differential equation with

respect to F , we also have( �
F (u)

)n−1 ��
F (u)

coshu sinhn−1 u
(ν2 ◦ cosh)(u) = C.

Hence,
��
F > 0 if f ′ > 0 and u > 0. This is used when we construct special

Lagrangian submanifolds later.
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The following lemma gives us a way to calculate f ′(ρ).

Lemma 3.4. Let ν1, ν2 be the functions in Theorem 3.1 (1). Let λ : Σ1 → R be
the solution defined on some open set Σ1 ⊂ R of the following ordinary differential
equation with variable ρ:

{λ(ρ)ν1(ρ)ν2(ρ)}′ = nλ(ρ)ν2(ρ).

Define the function Λ by

Λ(ρ) =

nC

∫ ρ

c

λ(s)ds

λ(ρ)ν1(ρ)ν2(ρ)
,

where C > 0 is the constant in the ordinary differential equation (3,3) in the
Theorem 3.1 and c ∈ Σ1. Then if Λ is defined on an open set Σ2 ⊂ R, it holds
that

(f ′(ρ))n = Λ(ρ)

on Σ1 ∩ Σ2.

Proof of Lemma 3.4. We have

nλ{ν2(f ′)n + ν1ν2(f
′)n−1f ′′} = nλν2(f

′)n + nλν1ν2(f
′)n−1f ′′

=

{
d

dρ
(λν1ν2)

}
(f ′)n + nλν1ν2(f

′)n−1f ′′ =
d

dρ
{(λν1ν2)(f ′)n}

on Σ1. Hence, the ordinary differential equation (3,3) in Theorem 3.1 is deformed
into the following:

nCλ = {(λν1ν2)(f ′)n}′ .

Integrating the both sides with the initial condition zero, we have

nC

∫ ρ

c

λds = λν1ν2(f
′)n.

Hence, we have

(f ′(ρ))n =

nC

∫ ρ

c

λds

λν1ν2

on Σ1 ∩ Σ2.
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3.2 The Stenzel metrics on the cotangent bundles of com-
pact rank one symmetric spaces

Stenzel [23] showed that the Theorem 3.1 can be applied to the compact rank
one symmetric spaces T∗G/K as follows.

By Helgarson [7], the following holds:

Lemma 3.5. A compact Riemannian manifold X is a rank one symmetric space
if and only if its linear isotropy subgroup at a point p ∈ X acts on the unit sphere
of T∗

pX transitively.

This indicates that G acts on the cotangent bundle of a compact rank one
symmetric space G/K with cohomogeneity one. Hence, T∗G/K satisfies the
condition (i) of Theorem 3.1.

Generally, it is known that for a compact connected Lie group G, there exists
a unique complex connected Lie group GC such that its Lie algebra gC coincides
the complexification of the real Lie algebra g of G and that G is a maximal
compact subgroup of GC. Similarly, we can consider KC for any closed subgroup
K of G. Then, KC is isomorphic to some complex closed subgroup of GC. Hence,
we can consider GC/KC. By Matsushima [18], Morimoto and Nagano [19], and
Nagano [21], if G is a semisimple Lie group additionally, then the following holds:

Lemma 3.6. Let G be a compact connected semisimple Lie group, K a closed
subgroup of G. Then, the complex manifold GC/KC is G-equivariantly diffeomor-
phic to T∗G/K. In addition, GC/KC is a Stein manifold, that is, for a sufficiently
large number N ∈ N, the complex manifold GC/KC is embedded into CN as a
complex manifold.

By this lemma, T∗G/K has the canonical complex structure derived from its
corresponding Stein structure (M = GC/KC, I).

By Stenzel [23], the following holds:

Lemma 3.7. Let G be a compact semisimple Lie group, K a connected closed
subgroup, M := GC/KC. Then, there exists a GC-invariant nonvanishing holo-
morphic volume form Ω on M .

When G/K = RP n, since K = O(n) is disconnected, this lemma does not
hold. However, it does not matter because the Stenzel metrics on T∗RP n are
constructed from the ones on T∗Sn. By this lemma, we see that the condition
(ii) of Theorem 3.1 holds in T∗G/K.

According to Theorem 2.1 in [22] the following holds:
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Lemma 3.8. Let (M, I) be a complex n-dimensional Stein manifold which corre-
sponds to the cotangent bundle of a compact rank one symmetric space T∗G/K,
B the submanifold in M which corresponds to the zero section of T∗G/K. Then
there exists a real analytic, strictly plurisubharmonic exhaustion ρ : M → [1,∞)
which has the following properties:

(1) ρ(p) = 1 ⇔ p ∈ B,

(2) the variable change u = cosh−1 ρ satisfies the homogeneous Monge-
Ampère equation (∂∂̄u)n = 0 on M\B.

Since Patrizio and Wong [22] explicitly exhibited ρ for each G/K, we can
consider whether this ρ is G-invariant and injective on the G-orbit space. We
show that these conditions hold in each cases of T∗Sn and T∗CP n.

3.3 The Stenzel metrics on T∗Sn and T∗CP n

We identify the tangent bundle and the cotangent bundle of the n-sphere Sn by
the canonical Riemannian metric of Sn, and describe it by

T∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1 | ∥x∥ = 1, x � ξ = 0},

where “ � ” is the canonical real inner product on the Euclidean space Rn+1 and
∥x∥ =

√
x � x for each x ∈ Rn+1. We occasionally denote t(x1, · · · , xn+1),

t(ξ1, · · · ,
ξn+1) by x, ξ respectively. SO(n + 1) acts on T∗Sn by h · (x, ξ) = (hx, hξ) for
h ∈ SO(n + 1) with cohomogeneity one. The principal orbit at a point (x, ξ)
equals a sphere bundle with a radius of ∥ξ∥.

Let Qn be a complex quadric hypersurface in Cn+1 as follows:

Qn =

{
z = t(z1, · · · , zn+1) ∈ Cn+1

∣∣∣∣∣
n+1∑
i=1

z2i = 1

}
.

Szöke [24] gave an SO(n+1)-equivariant diffeomorphism Φ : T∗Sn → Qn defined
by:

Φ(x, ξ) = cosh(∥ξ∥)x+
√
−1

sinh(∥ξ∥)
∥ξ∥

ξ.

We can induce a complex structure to Qn from Cn+1.
By [22], the following holds:
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Lemma 3.9. In the Stein manifold (Qn, I), corresponding to T∗Sn, the function
ρ : Qn → [1,∞) defined by

ρ(z1, · · · , zn+1) =
n+1∑
i=1

|zi|2

is a strictly plurisubharmonic function which satisfies the conditions of Lemma
3.8.

Note that Σ = ρ(M) = [1,∞).
By Lemma 3.5, we can directly verify that this ρ is G-invariant and injective

on the G-orbit space. Therefore, (Qn, I) satisfies the conditions (i), (ii), and (iii)
of Theorem 3.1.

We can construct a Ricci-flat Kähler metric by applying Theorem 3.1 to
(Qn, I). Define

Un+1 = {(z1, · · · , zn+1) ∈ Qn | zn+1 ̸= 0},

and take the following holomorphic coordinates

Un+1 ∋ (z1, · · · , zn+1) 7→ (
z1
zn+1

, · · · , zn
zn+1

) =: (w1, · · · , wn) ∈ Cn.

Then, by direct calculations, we have

det
∂2ρ

∂wi∂w̄j
=

1

|zn+1|2
ρ.

Hence, we define ν2(ρ) = ρ.
Next we consider about ∂∂̄ρ(gradCρ, gradCρ). For this, the following lemma

by Patrizio and Wong [22] is useful:

Lemma 3.10. Let (M, I) be a complex manifold, τ a real valued function with one
variable, ρ the real valued function on M . Then, τ ◦ ρ satisfies the homogeneous
Monge-Ampère equation if and only if the following equation holds:

∂∂̄ρ(gradCρ, gradCρ) = − τ ′(ρ)

τ ′′(ρ)
.

By this lemma and Lemma 3.8, we have

∂∂̄ρ(gradCρ, gradCρ) =
ρ2 − 1

ρ

17



on Σ◦ = (1,∞). Since ∂∂̄ρ(gradCρ, gradCρ) is a smooth G-invariant function
on M , it is differentiable with the variable ρ at ρ = 1 from right. Hence, it is
smoothly extendable to an open set Σ̃ such that [1,∞) ⊂ Σ̃. In particular, we
have ∂∂̄ρ(gradC, gradCρ) = (ρ2 − 1)/ρ on Σ = [1,∞).

Applying ν1, ν2 which we obtained above to Theorem 3.1, we have

det
∂2

∂wi∂w̄j
(f ◦ ρ) = 1

| zn+1 |2
{
ρ(f ′ ◦ ρ)n + (f ′ ◦ ρ)n−1(f ′′ ◦ ρ)(ρ2 − 1)

}
.

The ordinary differential equation in Lemma 3.4 is given by the following:

d

dρ
{λ(ρ2 − 1)} = nλρ.

Solving this equation with the initial condition zero, we have

λ(ρ) = (ρ2 − 1)
n−2
2 .

Integrating the both sides of Lemma 3.4 with the initial condition zero, we have

f ′(ρ) = (nC)
1
n

{∫ ρ
1
(s2 − 1)

n−2
2 ds

(ρ2 − 1)
n
2

} 1
n

.

Let F1 :=
∫ ρ
1
(s2 − 1)(n−2)/2ds and F2 := (ρ2 − 1)n/2. Then we have

d

dρ
F1 = (ρ2 − 1)

n−2
2 ,

d

dρ
F2 = nρ(ρ2 − 1)

n−2
2 .

Hence, by the l’Hôpital’s rule, we have f ′(ρ) → C1/n > 0 (ρ → 1). Thus we see
that f ′(ρ) > 0 on [1,∞).

Consequently, we have the following result:

Proposition 3.11. In (Qn, I), corresponding to T∗Sn, for the solution f of the
following ordinary differential equation, ψ = f ◦ ρ is a Ricci-flat Kähler potential
on G · Σ ∼= Qn:

ρ(f ′(ρ))n + (f ′(ρ))n−1f ′′(ρ)(ρ2 − 1) = C > 0. (3,5)

Next we construct the Stenzel metrics on T∗CP n.
Firstly, based on [22], we show a Stein manifold which corresponds to T∗CP n.

18



CP n is embedded into CP n × CP n as follows: For z ∈ Cn+1, define [z] :=
{αz | α ∈ C}. Then, the embedding is

[z] 7→ ([z], [z̄]).

The image of CP n by this embedding is the following fixed point set to the
involution ([z], [w]) 7→ ([w̄], [z̄]) in CP n × CP n:

{([z], [w]) ∈ CP n × CP n | [z] = [w̄]}.

CP n × CP n is embedded into CPN(N = (n + 1)2 − 1) by the map S called
the Segre embedding as follows: We denote ([z], [w]) ∈ CP n×CP n by the homo-
geneous coordinates ((z0 : · · · : zn), (w0 : · · · : wn)). Then S is defined by

S([z], [w]) = (ζαβ).

Here, ζαβ = zαwβ(0 ≤ α, β ≤ n) and (ζαβ) are the homogeneous coordinates in
CPN . Then, it holds that

S(CP n × CP n) = {ζ ∈ CPN | ζijζkl − ζilζkj = 0, i, j, k, l = 0, 1, · · · , n}.

Define the hyperplane CPN−1
∞ in CPN by the following:

CPN−1
∞ =

{
ζ ∈ CPN

∣∣∣∣∣
n∑

α=0

ζαα = 0

}
.

CPN−CPN−1
∞ is isomorphic to CN as a complex manifold. By [22], the following

holds:

Lemma 3.12. S(CP n × CP n) − CPN−1
∞ is a Stein manifold which corresponds

to T∗CP n.

Let M II
2n := S(CP n × CP n)− CPN−1

∞ . Then, we have the following:

Lemma 3.13. Define the function N :M II
2n → [1,∞) by the following:

N (ζ) =

∑
0≤α,β≤n

|ζαβ|2∣∣∣∣∣ ∑
0≤α≤n

ζαα

∣∣∣∣∣
2 .
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Then, the function
ρ = 2N − 1 :M II

2n → [1,∞)

is a strictly plurisubharmonic function which satisfies the conditions of Lemma
3.8.

We show that ρ is G = SU(n+1)-invariant and injective on the G-orbit space.
First, we define an action of SL(n+ 1,C) on CP n × CP n − S−1(CPN−1

∞ ) by

g · ([z], [w]) = ([gz], [tg−1w]),

where g ∈ SL(n+ 1,C), and ([z], [w]) ∈ CP n × CP n − S−1(CPN−1
∞ ).

On the other hand, N is described on CP n × CP n − S−1(CPN−1
∞ ) by the

following:

N ([z], [w]) =

( ∑
0≤α≤n

|zα|2
)( ∑

0≤α≤n

|wα|2
)

∣∣∣∣∣ ∑
0≤α≤n

zαwα

∣∣∣∣∣
.

By this expression, we directly verify that N is invariant with respect to the
actions of SU(n+ 1). Hence, ρ = 2N − 1 is also SU(n+ 1)-invariant.

Noting that the isotropy subgroup of SU(n + 1) at the point [e1] ∈ CP n is
S(U(1)×U(n)), we can directly verify that the following set O is an orbit space
with respect to the actions of SU(n+ 1):

O =
{
([e1], [cos θe1 + sin θe2]) ∈ CP n × CP n − S−1(CPN−1

∞ )
∣∣∣ 0 ≤ θ <

π

2

}
.

Here, e1 =
t(1, 0, · · · , 0), e2 = t(0, 1, 0, · · · , 0) ∈ Cn+1. Then, since

N ([e1], [cos θe1 + sin θe2]) = 1/ cos2 θ,

we see that N is injective on O, and so is ρ.
By direct calculations, we have

det
∂2

∂zi∂z̄j
ρ = ρ(ρ+ 1)n−1|hol|2.

By Lemma 3.10, we also have

∂∂̄ρ(gradCρ, gradCρ) =
ρ2 − 1

ρ
.
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Hence, we have ν1(ρ) = ρ(ρ+1)n−1 and ν2(ρ) = (ρ2−1)/ρ on Σ = [1,∞) similarly
as in the case of T∗Sn.

Then the ordinary differential equation of Lemma 3.4 is given by the following:

λρ(ρ+ 1)n−1 =
d

dρ

{
1

2n
λ(ρ− 1)(ρ+ 1)n

}
.

Solving this equation with the initial condition zero, we have λ = (ρ − 1)n−1.
Then, it holds that{

1

2n
λ(ρ− 1)(ρ+ 1)n(f ′)2n

}′

=
C

n
{(ρ− 1)n}′.

Integrating the both sides with the initial condition zero, we have

1

2
(ρ− 1)n(ρ+ 1)n(f ′)2n = C(ρ− 1)n.

Hence, we have

f ′ =
2

1
2n

√
ρ+ 1

> 0

on Σ. Consequently, we obtain the following result by Theorem 3.1:

Proposition 3.14. In M II
2n, corresponding to T∗CP n, for the solution f of the

following ordinary differential equation, ψ = f ◦ ρ is a Ricci-flat Kähler potential
on G · Σ ∼= M2n

II :

ρ(ρ+ 1)n−1(f ′(ρ))2n + (ρ− 1)(ρ+ 1)n(f ′(ρ))2n−1f ′′(ρ) = C > 0.

4 Transformations of holomorphic volume forms

In this section, we retain the notation as in Section 2. We show a formula
(Proposition 4.2) corresponding to transformations of holomorphic volume forms
L∗
hΩ. We use this formula to calculate the Lagrangian angle of a Lagrangian

immersion which we finally construct in Theorem 5.5.
Let (M, I) be a complex manifold and Ω a holomorphic volume form on M .

Let H be a Lie group which acts on M preserving I. Then the map

(Lh)
∗ : Ak(M)C → Ak(M)C
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defined by
ω 7→ L∗

hω

preserves types of complex differential k-forms (k ∈ N), where Ak(M)C is the
complex vector space which consists of all complex k-forms on M . Hence L∗

hΩ
is an (n, 0)-form. Therefore there exists a holomorphic function fh that satisfies
L∗
hΩ = fhΩ.
Next we introduce a Calabi-Yau structure intoM , and assume that H-actions

preserve its Kähler structure. Then we can see that the holomorphic function fh
satisfies |fh| ≡ 1 as follows.

Proposition 4.1. Let (M, I, ω,Ω) be a 2n-dimensional Calabi-Yau manifold and
H a Lie group which acts on M preserving I and ω. Then fh satisfies that |fh|
equals a constant 1 on M .

Proof. The quadruple (M, (Lh∗)
−1 ◦ I ◦ (Lh∗), L∗

hω, L
∗
hΩ) is also a Calabi-Yau man-

ifold for any h ∈ H, since H preserves I and ω. Therefore, we have

(−1)
n(n−1)

2

(√
−1

2

)n
Ω ∧ Ω =

ωn

n!
=

(L∗
hω)

n

n!

=(−1)
n(n−1)

2

(√
−1

2

)n
L∗
hΩ ∧ L∗

hΩ = (−1)
n(n−1)

2

(√
−1

2

)n
|fh|2Ω ∧ Ω.

Comparing the both sides, we obtain |fh| ≡ 1.

By Proposition 4.1 we know the following: Because a holomorphic function
which has a constant norm on a connected space has to be constant, fh is a
U(1)-valued constant function on a connected Calabi-Yau manifold. Therefore
we can define a map

c : H → U(1)

by
c(h) = ch := fh.

The map c is a homomorphism between Lie groups. In fact for h1, h2 ∈ H,
we have

ch2ch1Ω = L∗
h2
(L∗

h1
Ω) = L∗

h1h2
Ω = ch1h2Ω.

Therefore ch2h1 = ch1ch2 = ch2ch1 , and c is a homomorphism.
Using this fact, the next Proposition 4.2 expresses transformations of a holo-

morphic volume form in a connected Calabi-Yau manifold in terms of a Lie
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algebra. We assume H to be connected so that we express any h ∈ H as
h = exp η1 · · · exp ηl by η1, · · · , ηl ∈ h. For h, such η1, · · · , ηl ∈ h are not unique,
however the following holds for any of them.

Proposition 4.2. Let (M, I, ω,Ω) be a connected Calabi-Yau manifold and H
a connected Lie group which acts on M preserving I and ω. Then there exists
aH ∈ h∗ such that for any h ∈ H, it holds that

L∗
hΩ = e

√
−1⟨aH ,η1+···+ηl⟩Ω,

where
η1, · · · , ηl ∈ h such that h = exp η1 · · · exp ηl.

Proof. Because c : H → U(1) defined above is a homomorphism, the following
commutative relation holds between c and (dc)e : h ∼= TeH → u(1):

c ◦ exp ξ = e(dc)eξ.

In fact, since cmakes a one-parameter subgroup exp(tξ) ofH into a one-parameter
subgroup c(exp(tξ)) of U(1), there exists

√
−1α ∈ u(1) (α ∈ R) such that

c(exp(tξ)) = expU(1)(t(
√
−1α)) = e

√
−1tα. By differentiating the both sides, we

obtain

√
−1α =

d

dt

∣∣∣∣
t=0

e
√
−1tα =

d

dt

∣∣∣∣
t=0

c(exp(tξ)) = (dc)e
d

dt

∣∣∣∣
t=0

exp(tξ) = (dc)eξ.

Thus we see
√
−1α = (dc)eξ and (c ◦ exp)(tξ) = et(dc)eξ. When t = 1, we obtain

c ◦ exp(ξ) = e(dc)eξ.
Because H is connected, for each h ∈ H, there exist finite η1, · · · , ηl ∈ h such

that h = exp η1 · · · exp ηl. Then, we have

ch = c(exp η1 · · · exp ηl) = c(exp η1) · · · c(exp ηl) = e(dc)eη1 · · · e(dc)eηl

=e
√
−1⟨−

√
−1(dc)e,η1⟩ · · · e

√
−1⟨−

√
−1(dc)e,ηl⟩ = e

√
−1⟨−

√
−1(dc)e,η1+···+ηl⟩.

Therefore noting u(1) = {
√
−1φ ∈ C | φ ∈ R} and letting aH := −

√
−1(dc)e, we

can define a linear map aH : h → R, i.e., aH ∈ h∗ and the claim of the proposition
holds.

By Proposition 4.2, transformations of a holomorphic volume form are ex-
pressed in terms of a Lie algebra. This enables us to explicitly show the La-
grangian angle of a Lagrangian immersion (H/K)× V →M which we construct
in the next section in terms of the Lie algebra h at each (hK, p) ∈ (H/K) × V .
Here K is a closed Lie subgroup of H and V is a submanifold in M .
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Corollary 4.3. Let (M, I, ω,Ω, H) be same as Proposition 4.2. Then aH =
0 if and only if the H-action preserves Ω, namely it preserves the Calabi-Yau
structure.

5 Special Lagrangian construction

In this section we show a construction of special Lagrangian submanifolds by
“(generalized) perpendicular symmetries”, using the formula (Proposition 4.2)
which we proved in the previous section. We construct an isotropic immersion,
especially a Lagrangian immersion in Proposition 5.3. We give a formula that
express the Lagrangian angle of this Lagrangian immersion in Theorem 5.5. We
finally construct a special Lagrangian immersion in Corollary 5.7 by considering
a condition to have constant Lagrangian angle.

5.1 Immersions

First with the use of group actions, we construct an immersion which is funda-
mental for our constructions. This immersion has a form H ·V for a submanifold
V in M . When H is abelian, it might be natural to assume that the action is
free. Otherwise, we may need to consider singular orbits. To control them, we
add a condition that the isotropy subgroup Hp at each point p ∈ V is a constant
K. Lemma 5.2 is one of important properties that these immersions have.

Proposition 5.1. Let M be a manifold and H a Lie group which acts on M .
Let h be the Lie algebra of H and V a submanifold of M . Assume the followings:

(Imm-H) ξ#p /∈ TpV \{0} for any p ∈ V and any ξ ∈ h, and

(Imm-istp) the isotropy subgroup at p is a constant K for any p ∈ V .

Define a map ϕ : (H/K)× V →M by ϕ(hK, p) = hp. Then ϕ is an immersion.

Lemma 5.2. Assume the conditions of Proposition 5.1. For any (hK, p) ∈
(H/K)× V , any ξ ∈ h, and any v ∈ TpV , the following holds:

ϕ∗(hK,p)

(
d

dt

∣∣∣∣
t=0

h exp(tξ)K, v

)
= (Lh)∗p(ξ

#
p + v).
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Proof of Lemma 5.2. By (Imm-istp), the map ϕ is well-defined.
Fix an arbitrary point (hK, p) ∈ (H/K)× V . First we show the following:

ThK(H/K) =

{
d

dt

∣∣∣∣
t=0

h exp(tξ)K

∣∣∣∣∣ ξ ∈ h

}
.

For g ∈ H, define
τg : (H/K) → (H/K)

by
τg(hK) = ghK.

The map τg is an element of Diff(H/K), here Diff(H/K) is the space of all
diffeomorphisms on H/K. We have TK(H/K) = { d

dt

∣∣
t=0

exp(tξ)K | ξ ∈ h}. We
also have

(τh)∗K
d

dt

∣∣∣∣
t=0

exp(tξ)K =
d

dt

∣∣∣∣
t=0

h exp(tξ)K.

The linear map (τh)∗K : TK(H/K) → ThK(H/K) is an isomorphism. Therefore
the claim above holds.

Let γ(t) be a curve in V that satisfies γ(0) = p and γ′(0) = v. Then we have

(ϕ∗)(hK,p)

(
d

dt

∣∣∣∣
t=0

h exp(tξ)K, 0

)
=

d

dt

∣∣∣∣
t=0

h exp(tξ)p = (Lh)∗pξ
#
p ,

(ϕ∗)(hK,p)(0, v) =
d

dt

∣∣∣∣
t=0

hγ(t) = (Lh)∗pv.

Thus Lemma 5.2 has been proved.

Proof of Proposition 5.1. To prove Proposition 5.1, it is sufficient to show that
if for any ξ ∈ h and any v ∈ TpV ,

ϕ∗(hK,p)

(
d

dt

∣∣∣∣
t=0

h exp(tξ)K, v

)
= (Lh)∗p(ξ

#
p + v) = 0,

then
d

dt

∣∣∣∣
t=0

h exp(tξ)K = 0, v = 0.

Since (Lh)∗p is an isomorphism, if (Lh)∗p(ξ
#
p + v) = 0, then ξ#p + v = 0. By

(Imm-H), a pair (ξ#p , v) is linearly independent. Hence we have ξ#p = 0 and
v = 0 from ξ#p + v = 0. If we define a map

j : (H/K) → (H · p)
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by
j(hK) 7→ hp,

the map j is a diffeomorphism. With the isomorphism j∗hK : ThK(H/K) →
Thp(H · p), we have

d

dt

∣∣∣∣
t=0

h exp(tξ)K 7→ d

dt

∣∣∣∣
t=0

h exp(tξ)p = Lh∗pξ
#
p .

Thus we see that d
dt

∣∣
t=0

h exp(tξ)K = 0 if and only if ξ#p = 0.

5.2 Isotropic immersions

Next we introduce a symplectic structure to a manifoldM , and show a condition
for the immersions of Proposition 5.1 to be isotropic in Proposition 5.3.

Proposition 5.3. Let (M,ω) be a 2n-dimensional symplectic manifold and H a
Lie group which acts on M and has a moment map µ. Let h be the Lie algebra of
H and c an element of h∗. Let Vc be a submanifold ofM that satisfies Vc ⊂ µ−1(c).

Assume (Imm-H), (Imm-istp), and the followings:

(Istp-Vc) Vc is isotropic, and

(Istp-cnt) c is an element of Z(h∗), the center of h∗.

Define a map ϕc : (H/K)× Vc → M by ϕ(hK, p) = hp. Then ϕc is an isotropic
immersion.

In addition, if the following condition holds, ϕc is a Lagrangian immersion:

(Lag-dim) dimH/K + dimVc = n.

Lemma 5.4. Assume the settings of Proposition 5.3 except the conditions (Imm-
H), (Imm-istp), (Istp-Vc), (Istp-cnt), and (Lag-dim). Then ωp(ξ

#
p , v) = 0 for any

p ∈ Vc, any v ∈ TpVc, and any ξ ∈ h.

Proof of Lemma 5.4. Noting (dµ)pv = 0, we have

ωp(ξ
#
p , v) = −d(⟨µ(·), ξ⟩)pv = −⟨(dµ)pv, ξ⟩ = 0.

Thus we have shown Lemma 5.4.
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Proof of Proposition 5.3. Since the map ϕc is an immersion by Proposition 5.1,
it is sufficient for proving Proposition 5.3 to show that ϕ∗

cω is a constant 0 on
(H/K)× Vc. For two arbitrary elements ( d

dt

∣∣
t=0

h exp(tξi)K, vi) ∈ ThK(H/K)×
TpVc(i = 1, 2), we have

(ϕ∗
cω)(hK,p)

(
(
d

dt

∣∣∣∣
t=0

h exp(tξ1)K, v1), (
d

dt

∣∣∣∣
t=0

h exp(tξ2)K, v2)

)
=ωhp

(
(ϕc)∗(hK,p)(

d

dt

∣∣∣∣
t=0

h exp(tξ1)K, v1), (ϕc)∗(hK,p)(
d

dt

∣∣∣∣
t=0

h exp(tξ2)K, v2)

)
=ωhp

(
(Lh)∗p{(ξ1)#p + v1}, (Lh)∗p{(ξ2)#p + v2}

)
=ωp((ξ1)

#
p + v1, (ξ2)

#
p + v2)

=ωp((ξ1)
#
p , (ξ2)

#
p ) + ωp((ξ1)

#
p , v2) + ωp(v1, (ξ2)

#
p ) + ωp(v1, v2).

The first term is equal to zero by (Istp-cnt) and Proposition 2.4, the second and
third terms are zero by Lemma 5.4, and the forth term is zero by (Istp-Vc). Thus
we see that ϕ is an isotropic immersion. In addition, if (Lag-dim) holds, this
immersion is Lagrangian by the definition of Lagrangian submanifolds.

5.3 Lagrangian angle and special Lagrangian construction

We constructed a Lagrangian immersion in Proposition 5.3. We show a condition
for this immersion to be a special Lagrangian immersion by using the Lagrangian
angle. In Theorem 5.5, with the use of a formula for transformations of holomor-
phic volume forms (Proposition 4.2), we give explicitly the Lagrangian angle of
a Lagrangian immersion of Proposition 5.3.

Lemma 5.8 is used for calculations of the Lagrangian angle.

Theorem 5.5. Let (M, g, I, ω,Ω) be a connected 2n-dimensional Calabi-Yau
manifold and H a connected Lie group which acts on M preserving I and has a
moment map µ. Let h be the Lie algebra of H and L a Lagrangian submanifold
of M that has a local Lagrangian angle θ. Let c be an element of h∗ and Vc a
submanifold of M that satisfies Vc ⊂ µ−1(c)∩L. Assume (Imm-istp), (Istp-cnt),
(Lag-dim), and the following (LagAng-H):

(LagAng-H) For any p ∈ Vc and any ξ ∈ h, the following (i) and (ii) hold:

(i) ξ#p ∈ T⊥
p L⊕ TpVc,
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(ii) ξ#p /∈ TpVc\{0}.

Define ϕc : (H/K) × Vc → M as in Proposition 5.3. Then locally the following
holds:

(ϕ∗
cΩ)(hK,p) = ±e

√
−1θcvolϕ∗cg,

where θc : (H/K)× Vc →M is defined by

θc(hK, p) = ⟨aH , η1 + · · ·+ ηl⟩+ θ(p)− π

2
dim(H/K),

and
η1, · · · , ηl ∈ h such that h = exp η1 · · · exp ηl.

Remark 5.6. In Theorem 5.5, we do not assume the conditions (Imm-H) and
(Istp-Vc) in Proposition 5.3 to make ϕc a Lagrangian immersion. However under
the conditions of Theorem 5.5, they hold. In fact, (Imm-H) holds by (LagAng-
H). Since L is a Lagrangian submanifold and Vc ⊂ L, (Istp-Vc) holds.

From Theorem 5.5 we immediately obtain the following corollary. Construc-
tions of special Lagrangian submanifolds are directly based on this corollary.

Corollary 5.7. Assume the conditions of Theorem 5.5. In addition, if θ is
constant on Vc (e.g. L: a special Lagrangian submanifold) and the H-actions
preserve the Calabi-Yau structure on M , i.e., aH = 0, then ϕc is a special La-
grangian immersion.

We prepare the next Lemma 5.8 for the proof of Theorem 5.5.

Lemma 5.8. Under the conditions of Theorem 5.5, for any p ∈ Vc there exist

ξ1, · · · , ξm ∈ h, v1, · · · , vn−m, w1, · · · , wm ∈ TpVc

that satisfy the followings:

(1) For any h ∈ H,(
(
d

dt

∣∣∣∣
t=0

h exp(tξ1)K,w1), · · · , (
d

dt

∣∣∣∣
t=0

h exp(tξm)K,wm), (0, v1), · · · , (0, vn−m)
)

is an orthonormal basis in T(hK,p)((H/K)× Vc) with respect to ϕ∗
cg,

(2) (ξj)
#
p + wj ∈ T⊥

p L for j = 1, · · · ,m, and
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(3)

(
Ip{(ξ1)#p +w1}, · · · , Ip{(ξm)#p +wm}, v1, · · · , vn−m

)
is an orthonormal

basis in TpL with respect to ι∗g.

Here m = dim(H/K), and ι : L→M is the embedding.

Proof of Lemma 5.8. First we show Lemma 5.8 (1) and (2). By Lemma 5.2, we
have(
ϕc∗(hK,p)(

d

dt

∣∣∣∣
t=0

h exp(tξj)K,wj), ϕc∗(hK,p)(0, vi)

)
= (Lh∗p{(ξj)#p + wj}, Lh∗pvi).

Since Lh∗p is isometric, it is enough for showing (1) and (2) to verify that there
exist ξj, vi, and wj (i = 1, · · · , n−m, j = 1, · · · ,m) such that ((ξj)

#
p +wj, vi) is

an orthonormal system of TpM and (ξj)
#
p + wj ∈ T⊥

p L.
Noting (Lag-dim), let (vi) (i = 1, · · · , n − m) be an orthonormal basis of

TpVc with respect to the metric on V induced from g. By (LagAng-H), it
holds that Tp(H · p) ∩ TpL = {0}. Hence, noting (Lag-dim) again, we can
take ηj ∈ h (j = 1, · · · ,m) such that ((ηj)

#
p ) is a basis of Tp(H · p) and

((η1)
#
p , · · · , (ηm)#p , v1, · · · , vn−m) is linearly independent in TpM .

By (LagAng-H), there exist uj ∈ T⊥
p L\{0} and zj ∈ TpVc (j = 1, · · · ,m)

that decompose (ηj)
#
p into direct summations as follows:

(ηj)
#
p = uj + zj (j = 1, · · · ,m).

(uj) is linearly independent. In fact, if u1 is expressed by u1 = b2u2+· · ·+bmum
for bj ∈ R such that t(b2, · · · , bm) ̸= 0, we have

(η1)
#
p − z1 = b2((η2)

#
p − z2) + · · ·+ bm((ηm)

#
p − zm)

⇔ (η1)
#
p − {b2(η2)#p + · · ·+ bm(ηm)

#
p } = z1 − (b2z2 + · · ·+ bmzm).

Because the left-hand side belongs to Tp(H · p), there exists η ∈ h such that η#p
equals the left-hand side. If η#p ̸= 0, then η#p ∈ TpVc\{0} because the right-hand
side belongs to TpVc. This is contrary to (LagAng-H). On the other hand, if
η#p = 0, this is contrary to that (ηj)

#
p is linearly independent because the left-

hand side equals 0. For j = 2, · · · ,m, we can verify the same assertion. Thus
(uj) is linearly independent.

Therefore, noting uj ∈ T⊥
p L, there exists A ∈ GL(m,R) such that (ũ1 · · · , ũm)

= (u1, · · · , um)A is an orthonormal system in T⊥
p L. Because T

⊥
p L ⊥ TpVc, (vi, ũj)

is an orthonormal system in TpM .
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Thus, if we define ξj ∈ h and wj ∈ TpVc by

((ξ1)
#
p , · · · , (ξm)#p ) =((η1)

#
p , · · · , (ηm)#p )A,

(w1, · · · , wm) =(−z1, · · · ,−zm)A,

then ũj = (ξj)
#
p + wj and Lemma 5.8 (1) and (2) hold.

Next we show Lemma 5.8 (3). By (1) and (2), it is enough for showing the
claim of (3) to verify Ip{(ξj)#p + wj} ∈ T⊥

p Vc (j = 1, · · · ,m).
Ip(ξj)

#
p ∈ T⊥

p Vc because 0 = ωp((ξj)
#
p , vi) = gp(Ip(ξj)

#
p , vi) by Lemma 5.4.

On the other hand, Ipwj ∈ T⊥
p Vc because Vc is isotropic and 0 = ωp(wj, vi) =

gp(Ipwj, vi). Thus Lemma 5.8 (3) has been verified.

Proof of Theorem 5.5. Let X (0,1)(M) be the set of complex vector fields of type
(0, 1) on M . For any η ∈ h, it holds that η# +

√
−1Iη# ∈ X (0,1)(M). Since Ω is

a complex differential form of type (n, 0) on M , we have

i(η#)Ω = −
√
−1i(Iη#)Ω.

Take (ξj, vi, wj) in Lemma 5.8 for i = 1, · · · , n−m and j = 1, · · · ,m. Then,

noting (L∗
hΩ) = e

√
−1⟨aH ,η1+···+ηl⟩Ω, we have

(ϕ∗
cΩ)(hK,p)

(
· · · , ( d

dt

∣∣∣∣
t=0

h exp(tξj)K,wj), · · · ; · · · , (0, vi), · · ·
)

=Ωhp(· · · , (Lh)∗p{(ξj)#p + wj}, · · · ; · · · , (Lh)∗pvi, · · · )
=(L∗

hΩ)p(· · · , (ξj)#p + wj, · · · ; · · · , vi, · · · )
=(−

√
−1)m(L∗

hΩ)p(· · · , Ip{(ξj)#p + wj}, · · · ; · · · , vi, · · · )
=(−

√
−1)me

√
−1⟨aH ,η1+···+ηl⟩Ωp(· · · , Ip{(ξj)#p + wj}, · · · ; · · · , vi, · · · )

=(−
√
−1)me

√
−1⟨aH ,η1+···+ηl⟩(ι∗Ω)p(· · · , Ip{(ξj)#p + wj}, · · · ; · · · , vi, · · · )

=(−
√
−1)me

√
−1⟨aH ,η1+···+ηl⟩e

√
−1θ(volι∗g)p(· · · , Ip{(ξj)#p + wj}, · · · ; · · · , vi, · · · )

=± e
√
−1(⟨aH ,η1+···+ηl⟩+θ−π

2
m).

By Lemma 5.8 (1), we have

volϕ∗cg

(
· · · , ( d

dt

∣∣∣∣
t=0

h exp(tξj)K,wj), · · · ; · · · , (0, vi), · · ·
)

= ±1.

Thus Theorem 5.5 has been proved.
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Joyce pointed out in [13] that the commutativity of a Lie group is a necessary
condition for the group action to be perpendicular to whole of L. However, to
construct a special Lagrangian submanifold, we need for a group action to be
perpendicular to L on Vc. Similarly the condition that L is a special Lagrangian
submanifold, that is, the condition that the Lagrangian angle is constant on L is
reduced to on Vc. The perpendicular condition is also weakened as above. This
situation, roughly speaking, indicates that a special Lagrangian submanifold may
be constructed by Corollary 5.7, if H ·Vc (not necessarily each fundamental vector
ξ#p at p ∈ Vc) is perpendicular to L for some c ∈ Z(h∗).

As a special case of the condition (LagAng-H) if we assume that each fun-
damental vector ξ#p is perpendicular to L, we obtain the next corollary. In this
case we need not assume (Istp-cnt).

Corollary 5.9. Let (M, g, I, ω,Ω) be a connected 2n-dimensional Calabi-Yau
manifold and H a connected Lie group which acts on M preserving I and has a
moment map µ. Let h be the Lie algebra of H and L a Lagrangian submanifold of
M with a local Lagrangian angle θ. Let c be an element of h∗ and Vc a submanifold
of M such that Vc ⊂ µ−1(c) ∩ L. Assume (Imm-istp), (Lag-dim), and (LagAng-
H)′ as follows:

(LagAng-H)′ ξ#p ⊥ TpL for any p ∈ Vc, and any ξ ∈ h.

Define ϕc : (H/K) × Vc → M as in Proposition 5.3. Then locally the following
holds:

(ϕ∗
cΩ)(hK,p) = ±e

√
−1θcvolϕ∗cg,

where θc : (H/K)× Vc →M is defined by

θc(hK, p) = ⟨aH , η1 + · · ·+ ηl⟩+ θ(p)− π

2
dim(H/K),

and
η1, · · · , ηl ∈ h such that h = exp η1 · · · exp ηl.

Proof. It is sufficient to verify that under the conditions of Corollary 5.9, (Imm-
H), (Istp-Vc), and (Istp-cnt) hold.

(Imm-H) holds by (LagAng-H)′. (Istp-Vc) holds as in Remark 5.6. Finally
to show (Istp-cnt), we fix an arbitrary point hp ∈ H · p (h ∈ H). We have

Thp(H · p) =
{
d

dt

∣∣∣∣
t=0

h exp(tξ)p

∣∣∣∣ ξ ∈ h

}
= {(Lh)∗pξ#p | ξ ∈ h}.
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Noting Ipξ
#
p ∈ TpL and η#p ∈ T⊥

p L because of the assumption that L is La-
grangian and (LagAng-H)′, we have

ωhp((Lh)∗pξ
#
p , (Lh)∗pη

#
p ) = (L∗

hω)p(ξ
#
p , η

#
p ) = gp(Ipξ

#
p , η

#
p ) = 0.

Therefore H · p is isotropic. This is equivalent to µ(p) ∈ Z(h∗).

Corollary 5.10. Assume the conditions of Corollary 5.9. In addition, if θ is
constant on Vc (e.g. L: a special Lagrangian submanifold) and the H-actions
preserve the Calabi-Yau structure on M , i.e., aH = 0, then ϕc is a special La-
grangian immersion.

6 Examples in T∗Sn

In this section, with the use of the results above, we construct non-trivial exam-
ples of special Lagrangian submanifolds in non-flat Calabi-Yau manifolds T∗Sn

which equipped with the Stenzel metrics. In Subsection 6.1, we review some
notions about the Stenzel metrics on T∗Sn, and make sure some facts that is
used to construct our examples. In Subsection 6.2, we construct two examples
by using the actions of an abelian group. One of them is based on Corollary
5.5 of generalized perpendicular conditions. In Subsection 6.3, we construct an
example based on Corollary 5.10 by using the actions of a non-abelian group.

Through this section, we use some notations. We denote ei the column k-
vector whose i-th element equals one and the any other element equals to zero
in k-dimensional real or complex Euclidean space for some k ∈ N. We define

ξij := Eji − Eij ∈M(k,R),

where Eij denotes the k×k-matrix whose (i, j)-component is 1 and all the others
are 0 for some k ∈ N.

6.1 Stenzel metric on T∗Sn

In [23], Stenzel constructed complete Ricci-flat Kähler metrics on the cotangent
bundles of compact rank one symmetric spaces. This gives us examples of non-
flat Calabi-Yau manifolds. In this paper, we denote this Calabi-Yau structure by
(T∗Sn, I, ωStz,ΩStz). We construct our examples of special Lagrangian submani-
folds in (T∗Sn, I, ωStz,ΩStz).
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As seen in Subsection 3.3, we identify the tangent bundle and the cotangent
bundle of the n-sphere Sn:

T∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1 | ∥x∥ = 1, x � ξ = 0}.

SO(n+ 1) acts on T∗Sn by h · (x, ξ) = (hx, hξ) for h ∈ SO(n+ 1) with cohomo-
geneity one. The principal orbit at a point (x, ξ) equals to a sphere bundle with
a radius of ∥ξ∥.

A complex quadric hypersurface Qn is defined by the following:

Qn =

{
z = t(z1, · · · , zn+1) ∈ Cn+1

∣∣∣∣∣
n+1∑
i=1

z2i = 1

}
.

Qn is SO(n + 1)-equivariantly diffeomorphic to T∗Sn with the Szöke’s map Φ :
T∗Sn → Qn in [24] defined by

Φ(x, ξ) = cosh(∥ξ∥)x+
√
−1

sinh(∥ξ∥)
∥ξ∥

ξ.

We can induce a complex structure to Qn from Cn+1. Stenzel constructed Ricci-
flat Kähler metrics with respect to these complex structures. We denoted this
by I above. Therefore when we use the complex structure for studying the
perpendicular conditions later, we do the calculations not in T∗Sn but in Qn.
The Kähler form ωStz that Stenzel constructed is given as follows:

ωStz =
√
−1∂∂̄f(ρ) =

√
−1

n+1∑
i,j=1

∂2

∂zi∂z̄j
f(ρ)dzi ∧ dz̄j,

here ρ = ∥z∥2 =
∑n+1

i=1 ziz̄i is the strictly plurisubharmonic function defined in
Lemma 3.9 and f is a smooth real function satisfies the ordinary differential
equation (3,5) in Proposition 3.11:

ρ(f ′(ρ))n + (f ′(ρ))n−1f ′′(ρ)(ρ2 − 1) = C > 0.

Through this section, we retain the notation as in Remark 3.3. By Remark 3.3,

the functions f and F with f = F ◦ cosh−1 have properties that
�
F> 0,

��
F> 0 on

T∗Sn\Sn and f ′ > 0 on T∗Sn.
The actions of SO(n+1) preserve the Calabi-Yau structure of (T∗Sn, I, ωStz,

ΩStz). Hence, for aH = aSO(n+1) ∈ h∗ = so(n+ 1)∗ of Proposition 4.2 determined
by (T∗Sn, I, ωStz,ΩStz, SO(n+ 1)), we have aH = 0 by Corollary 4.3.
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A moment map µ : Qn → so(n+ 1)∗ with respect to (T∗Sn, ωStz, SO(n+ 1))
is given in [1] as follows:

(µ(z))(X) = f ′(ρ)Iz �Xz, (z ∈ Qn, X ∈ so(n+ 1)), (6,1)

here “ � ” denotes the canonical real inner product on Cn+1.
Finally, we give a basic fact for preparing an original special Lagrangian sub-

manifold to construct a new one: Karigiannis and Min-Oo showed in [15] that a
conormal bundle T∗⊥N in T∗Sn for a submanifold N in Sn is a special Lagrangian
submanifold if and only if N is an austere submanifold of Sn. Especially, a totally
geodesic submanifold of Sn is an austere submanifold.

6.2 The case of H = U(1), L1 = T∗⊥S2, L2 = T∗⊥S1 ⊂ T∗S5

Let M be the cotangent bundle of 5-sphere T∗S5, L1 the conormal bundle of a
totally geodesic submanifold S2 of S5, and L2 the conormal bundle of a totally
geodesic submanifold S1 of S5 as follows:

L1(∼= T∗⊥S2) =


(


x1
0
x3
0
x5
0

 ,


0
ξ2
0
ξ4
0
ξ6

)
∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1, ξj ∈ R (j = 2, 4, 6)


,

L2(∼= T∗⊥S1) =


(


x1
0
x3
0
0
0

 ,


0
ξ2
0
ξ4
ξ5
ξ6

)
∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1, ξj ∈ R (j = 2, 4, 5, 6)


.

Because these S2 and S1 are totally geodesic submanifolds of S5, they are
austere submanifolds. Hence their conormal bundles T∗⊥S2 and T∗⊥S1 are
special Lagrangian submanifolds of T∗S5. We use the polar coordinates x1 =
cosφ1 cosφ2, x3 = cosφ1 sinφ2, x5 = sinφ1 for L1 and x1 = cosφ, x3 = sinφ for
L2.
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Let H be the U(1)-action of the Hopf-fibration S5 → CP 2, that is, the diag-
onal U(1) ∼= SO(2)-action represented as follows:

H(∼= SO(2)) =


 h

h
h

 ∈ GL(6,R)

∣∣∣∣∣∣ h ∈ SO(2)

 .

The Lie algebra h is given as follows:

h(∼= so(2)) = span{η},

here η = ξ12 + ξ34 + ξ56 and ξij is as mentioned at the beginning of this section.
Note that the isotropy subgroup of this SO(2)-action is trivial at any point p ∈ L1

and L2. Hence the condition (Imm-istp) holds for any point p ∈ L1 and L2.
We obtain an explicit expression of the moment map (6,1) by direct calcula-

tions.

Lemma 6.1. Define µη by µη(z) = ⟨µ(z), η⟩ for z ∈ Φ(Lj) (j = 1, 2). Then
µη(z) equals{

−K(∥ξ∥)(cosφ1 cosφ2ξ2 + cosφ1 sinφ2ξ4 + sinφ1ξ6) onΦ(L1)\{∥ξ∥ = 0},
−K(∥ξ∥)(cosφξ2 + sinφξ4) onΦ(L2)\{∥ξ∥ = 0}.

Here,

K(∥ξ∥) = f ′(cosh(2∥ξ∥)) sinh(2∥ξ∥)
∥ξ∥

,

and f is the solution of the ordinary differential equation (3,5) in Proposition
3.11.

Under these preparations, we obtain the following:

Proposition 6.2. Let (M, I, ωStz,ΩStz, Lj, H) be as above. Let V
(j)
c := Lj∩µ−1(c)

for each c ∈ h∗ and j = 1, 2.

(1) H · V (1)
c is a special Lagrangian submanifold for any c ∈ h∗ such that

V
(1)
c ̸= ∅.

(2) H · V (2)
c is a special Lagrangian submanifold for any c ∈ h∗ such that

V
(2)
c ̸= ∅.
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Proof. Note that Z(h∗) = h∗ because H is abelian. Thus (Istp-cnt) automatically
holds. The condition (Imm-istp) also holds as mentioned above. Therefore we
see that (Istp-cnt) and (Imm-istp) hold in the any case of (1) and (2).

(1) First we show the proposition above for j = 1. This proof is based
on Corollary 5.10. We will show in order (1-I) the perpendicular condition:
the H-action satisfies (LagAng-H)′ on L1, and (1-II) the submanifold condition:

V
(1)
c ̸= ∅ is a submanifold of M and (Lag-dim) holds for (V

(1)
c , H,K).

(1-I) First we assume ∥ξ∥ ̸= 0. By direct calculations, for z ∈ Φ(L1), the
fundamental vector η#z and Izη

#
z are given as follows:

η#z = cosh(∥ξ∥)


0

cosφ1 cosφ2

0
cosφ1 sinφ2

0
sinφ1

+
√
−1

sinh(∥ξ∥)
∥ξ∥


−ξ2
0

−ξ4
0

−ξ6
0

 ,

Izη
#
z =

sinh(∥ξ∥)
∥ξ∥


ξ2
0
ξ4
0
ξ6
0

+
√
−1 cosh(∥ξ∥)


0

cosφ1 cosφ2

0
cosφ1 sinφ2

0
sinφ1

 .
On the other hand, using the coordinates above, we have a basis of TzΦ(L1) as
follows:

∂

∂φ1

= cosh(∥ξ∥)(− sinφ1 cosφ2e1 − sinφ1 sinφ2e3 + cosφ1e5),

∂

∂φ2

= cosh(∥ξ∥)(− cosφ1 sinφ2e1 + cosφ1 cosφ2e3),

∂

∂ξj
=

sinh(∥ξ∥)
∥ξ∥

ξjx+
√
−1

{
ξj

∥ξ∥2
Fξ + sinh(∥ξ∥)

∥ξ∥
ej

}
(j = 2, 4, 6),

where

F = F(∥ξ∥) = cosh(∥ξ∥)− sinh(∥ξ∥)
∥ξ∥

.

Since L1 is a Lagrangian submanifold of a Kähler manifold M , it is sufficient
for verifying η#z ∈ T⊥

z Φ(L1) to show Izη
#
z ∈ TzΦ(L1). For generating the imag-

inary part of Izη
#
z by

(
∂
∂ξj

)
(j = 2, 4, 6), the following is necessary: there exists
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(a2, a4, a6) ∈ R3\{0} which satisfies

A

 a2
a4
a6

 =

 cosh(∥ξ∥) cosφ1 cosφ2

cosh(∥ξ∥) cosφ1 sinφ2

cosh(∥ξ∥) sinφ1

 , (6,2)

where

A =


ξ22

∥ξ∥2F + sinh(∥ξ∥)
∥ξ∥

ξ2ξ4
∥ξ∥2F

ξ2ξ6
∥ξ∥2F

ξ2ξ4
∥ξ∥2F

ξ24
∥ξ∥2F + sinh(∥ξ∥)

∥ξ∥
ξ4ξ6
∥ξ∥2F

ξ2ξ6
∥ξ∥2F

ξ4ξ6
∥ξ∥2F

ξ26
∥ξ∥2F + sinh(∥ξ∥)

∥ξ∥

 .
We verify that rankA = 3 if ∥ξ∥ ̸= 0 as follows. By elementary transformations
of matrices, we have

A→ 1

F1F2
2

 F1 ∗ ∗
0 sinh(∥ξ∥)

∥ξ∥ F2 ∗
0 0 sinh(∥ξ∥)

∥ξ∥ F3

 ,
where

F1 =
ξ22

∥ξ∥2
F +

sinh (∥ξ∥)
∥ξ∥

,

F2 =
ξ22 + ξ24
∥ξ∥2

F +
sinh (∥ξ∥)

∥ξ∥
,

F3 =

{
ξ22 + ξ24
∥ξ∥2

F +
sinh (∥ξ∥)

∥ξ∥

}{
ξ22 + ξ26
∥ξ∥2

F +
sinh (∥ξ∥)

∥ξ∥

}
− ξ24ξ

2
6

∥ξ∥4
F2.

With the use of series expansions

F(x) = coshx− sinhx

x
=

∞∑
n=1

{
1

(2n)!
− 1

(2n+ 1)!

}
x2n,

we see that F > 0 if ∥ξ∥ ̸= 0. This indicates that F1, F2 > 0 if ∥ξ∥ ̸= 0. By
direct calculations, we also obtain

F3 =
F2

∥ξ∥4
ξ22(ξ

2
2 + ξ24 + ξ25) +

F sinh(∥ξ∥)
∥ξ∥3

(2ξ22 + ξ24 + ξ25) +
sinh2(∥ξ∥)

∥ξ∥2
,
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and thus we see that F3 > 0 if ∥ξ∥ ̸= 0. Hence, we see that rankA = 3 if ∥ξ∥ ̸= 0.
Therefore, (6,2) has a non-trivial solution for each ∥ξ∥ ̸= 0. For this solution

(a2, a4, a6), we can verify that there exists (b1, b2) ∈ R2 which satisfies

b1
∂

∂φ1

+ b2
∂

∂φ2

+ a2
∂

∂ξ2
+ a4

∂

∂ξ4
+ a6

∂

∂ξ6
= Izη

#
z =

sinh(∥ξ∥)
∥ξ∥


ξ2
0
ξ4
0
ξ6
0

 .

In fact, the left-hand side is also written as follows:

b1 cosh(∥ξ∥)(p⊥)1 + b2 cosh(∥ξ∥)(p⊥)2 +
sinh(∥ξ∥)

∥ξ∥
(a2ξ2 + a4ξ4 + a6ξ6)p,

where

p =


cosφ1 cosφ2

0
cosφ1 sinφ2

0
sinφ1

0

 , (p
⊥)1 =


− sinφ1 cosφ2

0
− sinφ1 sinφ2

0
cosφ1

0

 , (p
⊥)2 =


− cosφ1 sinφ2

0
cosφ1 cosφ2

0
0
0

 .

Since (p, (p⊥)1, (p
⊥)2) is an orthonormal basis of R3 with respect to the canonical

real inner product, the condition to verify is reduced to the following condition:
ξ2
0
ξ4
0
ξ6
0

 � p =


ξ2
0
ξ4
0
ξ6
0

 �


a2
0
a4
0
a6
0

 .

By using the relation (6,2), we see that the left-hand side equals

1

cosh(∥ξ∥)


ξ2
0
ξ4
0
ξ6
0

 � A


a2
0
a4
0
a6
0

 =
1

cosh(∥ξ∥)
A


ξ2
0
ξ4
0
ξ6
0

 �


a2
0
a4
0
a6
0

 =


ξ2
0
ξ4
0
ξ6
0

 �


a2
0
a4
0
a6
0

 .
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Thus we see that Izη
#
z ∈ TzΦ(L1). Hence, (LagAng-H)′ holds if ∥ξ∥ ≠ 0.

When ∥ξ∥ = 0, by taking a limit ∥ξ∥ → 0, we have

∂

∂ξj
→

√
−1ej (j = 2, 4, 6).

Thus we can also verify that Izη
#
z ∈ TzΦ(L1) when ∥ξ∥ = 0.

(1-II) Note that µ(L1 ∩ {∥ξ∥ = 0}) = 0. When ∥ξ∥ ̸= 0, we use the following

fact: There exists a neighborhood Up around p ∈ V
(1)
c in L1 such that V

(1)
c ∩Up is

a submanifold of L1 (therefore ofM), if (∇µη)p ̸= 0 ∈ TpL1, and then dimV
(1)
c =

dimL1−1 = 5−1 = 4. Here ∇ is the gradient with respect to the induced metric
ι∗gStz by the inclusion map ι : L1 →M . By direct calculations, we obtain

∇ηµ =


K(sinφ1 cosφ2ξ2 + sinφ1 sinφ2ξ4 − cosφ1ξ6)

K(cosφ1 sinφ2ξ2 − cosφ1 cosφ2ξ4)
−Gξ2(cosφ1 cosφ2ξ2 + cosφ1 sinφ2ξ4 + sinφ1ξ6)−K cosφ1 cosφ2

−Gξ4(cosφ1 cosφ2ξ2 + cosφ1 sinφ2ξ4 + sinφ1ξ6)−K cosφ1 sinφ2

−Gξ6(cosφ1 cosφ2ξ2 + cosφ1 sinφ2ξ4 + sinφ1ξ6)−K sinφ1

 ,
with respect to ( ∂

∂φ1
, ∂
∂φ2

, ∂
∂ξ2
, ∂
∂ξ4
, ∂
∂ξ6

). Here K = K(∥ξ∥) is as defined above and

G = G(∥ξ∥) =
1

∥ξ∥

{
2f ′′(cosh(2∥ξ∥)) sinh2(2∥ξ∥) + f ′(cosh(2∥ξ∥))

(
2 cosh(2∥ξ∥)− sinh(2∥ξ∥)

∥ξ∥

)}
.

By the assumption, t(ξ2, ξ4, ξ6) ̸= 0. If sinφ1 cosφ2ξ2+sinφ1 sinφ2ξ4−cosφ1ξ6 ̸=
0 or cosφ1 sinφ2ξ2 − cosφ1 cosφ2ξ4 ̸= 0, the first or second component of ∇µη
cannot be zero because K > 0 if ∥ξ∥ ̸= 0. Hence, ξ � (p⊥)1 = ξ � (p⊥)2 = 0 is
necessary for ∇µη = 0, that is, ξ = αp for some α ∈ R\{0} is necessary. Clearly,
G ̸= 0 is also necessary. Then, noting α2 = ∥ξ∥2, we have

∇µη =


0
0

− cosφ1 cosφ2(G∥ξ∥2 +K)
− cosφ1 sinφ2(G∥ξ∥2 +K)

− sinφ1(G∥ξ∥2 +K)

 .
By direct calculations, we also have

G∥ξ∥2 +K =
��
F (2∥ξ∥).
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By the properties of Stenzel’s Kähler potential that
��
F> 0 if ∥ξ∥ ̸= 0 (see Remark

3.3), we thus see that ∇µη ̸= 0 on L1\{∥ξ∥ = 0}. When ∥ξ∥ = 0, it is sufficient

to verify V
(1)
0 is a submanifold of M . By the expression of the moment map in

Lemma 6.1, we have

V
(1)
0 =


(


x1
0
x3
0
x5
0

 ,


0
ξ2
0
ξ4
0
ξ6

)
∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1,

 x1
x3
x5

 �

 ξ2
ξ4
ξ6

 = 0


.

This is diffeomorphic to TS2. Therefore V
(1)
c ̸= ∅ is a submanifold of M for any

c ∈ h∗, and (Lag-dim) holds for (V
(1)
c , H,K). Thus we have proven (1) of the

proposition.
(2) This proof is based on Corollary 5.7. (2-I) the generalized perpendicular

condition: the H-action satisfies (LagAng-H) on L2. To show it, first we assume
∥ξ∥ ̸= 0. By direct calculations, we have

η#z = cosh(∥ξ∥)


0

cosφ
0

sinφ
0
0

+
√
−1

sinh(∥ξ∥)
∥ξ∥


−ξ2
0

−ξ4
0

−ξ6
ξ5

 .

We set the following strategy. First we decompose Izη
#
z as follows:

Izη
#
z = Iz(η

#
z )1 + Iz(η

#
z )2,

where

Iz(η
#
z )1 =

sinh(∥ξ∥)
∥ξ∥


ξ2
0
ξ4
0
0
0

+
√
−1 cosh(∥ξ∥)


0

cosφ
0

sinφ
0
0

 , Iz(η
#
z )2 =

sinh(∥ξ∥)
∥ξ∥


0
0
0
0
ξ6
−ξ5

 .
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Then assume that Iz(η
#
z )1 ∈ TzΦ(L2). Since Iz(η

#
z )2 clearly has no TzΦ(L2)-

components, we see that the decomposition above is a direct decomposition with
respect to TzQ

n = TzΦ(L2)⊕ T⊥
z Φ(L2). Since

(η#z )2 =
√
−1

sinh(∥ξ∥)
∥ξ∥


0
0
0
0

−ξ6
ξ5


and µ depend neither on fifth nor sixth component of the imaginary part of
Cn+1 ∼= TzCn+1 ⊃ TzQ

n, we have

⟨(dµη)z, (η#z )2⟩ = 0,

namely (η#z )2 ∈ Tzµ
−1(µ(z)). Hence we have that (η#z )2 ∈ Tzµ

−1(µ(z)) ∩
TzΦ(L2) = TzΦ(V

(2)
µ(z)). Noting that (η#z )1 ̸= 0 for any z ∈ Φ(L2), we thus see

that (LagAng-H) holds if Iz(η
#
z )1 ∈ TzΦ(L2). We can actually verify Iz(η

#
z )1 ∈

TzΦ(L2) as follows. For generating the imaginary part of Iz(η
#
z )1 by

(
∂
∂ξj

)
(j =

2, 4, 5, 6), the following is necessary: there exists (a2, a4, a5, a6) ∈ R4\{0} which
satisfies

B


a2
a4
a5
a6

 =


cosh(∥ξ∥) cosφ
cosh(∥ξ∥) sinφ

0
0

 , (6,3)

where

B =
ξ22

∥ξ∥2F + sinh(∥ξ∥)
∥ξ∥

ξ2ξ4
∥ξ∥2F

ξ2ξ5
∥ξ∥2F

ξ2ξ6
∥ξ∥2F

ξ2ξ4
∥ξ∥2F

ξ24
∥ξ∥2F + sinh(∥ξ∥)

∥ξ∥
ξ4ξ5
∥ξ∥2F

ξ4ξ6
∥ξ∥2F

ξ2ξ5
∥ξ∥2F

ξ4ξ5
∥ξ∥2F

ξ25
∥ξ∥2F + sinh(∥ξ∥)

∥ξ∥
ξ5ξ6
∥ξ∥2F

ξ2ξ6
∥ξ∥2F

ξ4ξ6
∥ξ∥2F

ξ5ξ6
∥ξ∥2F

ξ26
∥ξ∥2F + sinh(∥ξ∥)

∥ξ∥

 .

We can verify that rankB = 4 if ∥ξ∥ ̸= 0 as follows. By elementary transforma-
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tions of matrices, we have

B → 1

(F1)3(F2)2F̃3


F1 ∗ ∗ ∗
0 sinh(∥ξ∥)

∥ξ∥ F2 ∗ ∗
0 0 sinh(∥ξ∥)

∥ξ∥ F̃3 ∗
0 0 0 F4

 ,
where

F̃3 =

{
ξ22 + ξ24
∥ξ∥2

F +
sinh (∥ξ∥)

∥ξ∥

}{
ξ22 + ξ25
∥ξ∥2

F +
sinh (∥ξ∥)

∥ξ∥

}
− ξ24ξ

2
5

∥ξ∥4
F2,

F4 = F3F̃3 −
{
ξ5ξ6
∥ξ∥2

F1F
}2

,

F1, F2 and F3 are same as the proof of (1). The functions F1, F2 and F3 satisfy
> 0 if ∥ξ∥ > 0 as we verified them there. We have

F4 ={
ξ42 + ξ22ξ

4
4 + ξ22ξ

2
6

∥ξ∥4
F2 +

sinh(∥ξ∥)
∥ξ∥3

(2ξ22 + ξ24 + ξ26)F +
sinh2(∥ξ∥)

∥ξ∥2

}
×
{
ξ42 + ξ22ξ

4
4 + ξ22ξ

2
5

∥ξ∥4
F2 +

sinh(∥ξ∥)
∥ξ∥3

(2ξ22 + ξ24 + ξ25)F +
sinh2(∥ξ∥)

∥ξ∥2

}
−
{
ξ42ξ

2
5ξ

2
6

∥ξ∥8
F4 + 2

sinh(∥ξ∥)
∥ξ∥7

ξ22ξ
2
5ξ

2
6F3 +

sinh2(∥ξ∥)
∥ξ∥6

ξ25ξ
2
6F2

}
.

For the sake of ease, we denote this formula above by

F4 = {l1 + l2 + l3} × {r1 + r2 + r3} − {t1 + t2 + t3}.

We can see that li × rj, ti ≥ 0 if ∥ξ∥ ̸= 0 for i, j = 1, 2, 3 and that l3 × r3 =
sinh4(∥ξ∥)

∥ξ∥4 > 0 if ∥ξ∥ ̸= 0. Since l1 × r1 ≥ t1, l1 × r2 + l2 × r1 ≥ t2 and l2 × r2 ≥ t3,

we thus see that F4 > 0 if ∥ξ∥ ̸= 0. Hence, rankB = 4 and the equation (6,3)
has a non-trivial solution if ∥ξ∥ ̸= 0. We can verify in the same way of the proof
of (1) that for this solution (a2, a4, a5, a6), there exists b ∈ R\{0} which satisfies

b
∂

∂φ
+ a2

∂

∂ξ2
+ a4

∂

∂ξ4
+ a5

∂

∂ξ5
+ a6

∂

∂ξ6
= Iz(η

#
z )1.

Therefore, (LagAng-H) holds at any point p ∈ L2\{∥ξ∥ = 0}. When ∥ξ∥ = 0,
we can also compute Izη

#
z ∈ TzΦ(L2) by taking a limit ∥ξ∥ → 0. This indicates
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that the stronger condition (LagAng-H)′ holds at any point p ∈ L2 ∩ {∥ξ∥ = 0}.
Thus we see that (2-I) holds.

(2-II) the submanifold condition: V
(2)
c ̸= ∅ is a submanifold of M and (Lag-

dim) holds for (V
(2)
c , H,K). We first prove this for c ̸= 0 in the same way of the

proof of (1) which show that ∇µη ̸= 0 on L2\{∥ξ∥ = 0}. We note that ∥ξ∥ ̸= 0
if µ(z) ̸= 0. By direct calculations, we have

∇ηµ =


K(sinφξ2 − cosφξ4)

−ξ2G(cosφξ2 + sinφξ4)−K cosφ
−ξ4G(cosφξ2 + sinφξ4)−K sinφ

−ξ5G(cosφξ2 + sinφξ4)
−ξ6G(cosφξ2 + sinφξ4)

 ,

with respect to ( ∂
∂φ
, ∂
∂ξ2
, ∂
∂ξ4
, ∂
∂ξ5
, ∂
∂ξ6

). Here K = K(∥ξ∥) and G = G(∥ξ∥) are as

defined in the proof of (1). We can see that for ∇µη = 0, it is necessary (i)
ξ2 = ξ4 = 0, (ii)t(ξ2, ξ4) � t(− sinφ, cosφ) = 0, that is, ξ = α · t(cosφ, sinφ) for
some α ∈ R\{0}, (iii) G ̸= 0, and (iv) ξ5 = ξ6 = 0. Then, noting α2 = ∥ξ∥2, we
have

∇µη =


0

− cosφ(G∥ξ∥2 +K)
− sinφ(G∥ξ∥2 +K)

0
0

 .
Since G∥ξ∥2 + K =

��
F (2∥ξ∥) and

��
F> 0 if ∥ξ∥ ̸= 0, we thus see that ∇µη ̸= 0 on

L2\{∥ξ∥ = 0}. For c = 0, V
(2)
0 is expressed as follows:

V
(2)
0 =


(


x1
0
x3
0
0
0

 ,


0
ξ2
0
ξ4
ξ5
ξ6

)
∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1,

[
x1
x3

]
�
[
ξ2
ξ4

]
= 0


.

Ignoring fifth and sixth components, this is diffeomorphic to TS1 ∼= S1×R. Fifth
and sixth components constitute a plane unrelated to the base manifold. Thus
we see V

(2)
0

∼= S1 × R3 and (V
(2)
0 , H,K) satisfies (Lag-dim). Thus we see that

(2-II) holds.
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6.3 The case of H = SO(2)×SO(2)×SO(3), L = T∗⊥S2 ⊂ T∗S6

Let M be the cotangent bundle of 6-sphere T∗S6 and L the conormal bundle of
a totally geodesic submanifold S2 of S6 as follows:

L(∼= T∗⊥S2) =


(



x1
0
x3
0
x5
0
0


,



0
ξ2
0
ξ4
0
ξ6
ξ7


)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1, ξj ∈ R (j = 2, 4, 6, 7)


.

Define H as follows:

H(∼= SO(2)× SO(2)× SO(3))

=


 h1 0 0

0 h2 0
0 0 h3

 ∈ GL(7,R)

∣∣∣∣∣∣ h1, h2 ∈ SO(2), h3 ∈ SO(3)

 .

Note that H is non-abelian. The Lie algebra h of H is given as follows:

h(∼= so(2)⊕ so(2)⊕ so(3)) = span{ξ12, ξ34, ξ56, ξ57, ξ67},

here ξij is as mentioned at the beginning of this section.
We obtain an explicit expression of the moment map of (6,1) by direct cal-

culations. Define µij for the basis (ξ12, ξ34, ξ56, ξ57, ξ67) of h and z ∈ Φ(L) by
µij(z) = ⟨µ(z), ξij⟩.

Lemma 6.3. For (M, I, ω,H, µ) above, and z ∈ Φ(L)\{∥ξ∥ = 0}, we have

µ12(z) = −K(∥ξ∥) cosφ1 cosφ2ξ2,

µ34(z) = −K(∥ξ∥) cosφ1 sinφ2ξ4,

µ56(z) = −K(∥ξ∥) sinφ1ξ6,

µ57(z) = −K(∥ξ∥) sinφ1ξ7,

µ67(z) ≡ 0.

Here, we use the polar coordinates x1 = cosφ1 cosφ2, x3 = cosφ1 sinφ2, x5 =
sinφ1, and

K(∥ξ∥) = f ′(cosh(2∥ξ∥)) sinh(2∥ξ∥)
∥ξ∥

.
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We obtain the following result:

Proposition 6.4. Let (M, I, ωStz,ΩStz, L,H) be as above. Define a rank two
subbundle L̂ of L as follows:

L̂ =


(



x1
0
x3
0
x5
0
0


,



0
ξ2
0
ξ4
0
0
0


)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1, ξj ∈ R (j = 2, 4)


.

Let L̂pr be the set of all points p ∈ L̂ such that the isotropy subgroup Hp satisfies

Hp ⊂ Hq for all q ∈ L̂. For (c1, c2) ∈ R2, define V(c1,c2) and V̂(c1,c2) by

V(c1,c2) = L̂pr ∩ {p ∈M | µ12(p) = c1, µ34(p) = c2, µij(p) = 0},
V̂(c1,c2) = L̂ ∩ {p ∈M | µ12(p) = c1, µ34(p) = c2, µij(p) = 0},

where (i, j) = (5, 6), (5, 7), (6, 7). Then for any (c1, c2) ̸= (0, 0) ∈ R2 such that
V(c1,c2) ̸= ∅, H ·V(c1,c2) is a special Lagrangian submanifold of M , and H · V̂(0,0) is
a union of five connected special Lagrangian submanifolds of M .

Proof. The proof for V(c1,c2) is based on Corollary 5.10, and one for V̂(0,0) on direct
calculations. As we saw in the proof of Corollary 5.9, V(c1,c2) has to be included
in the inverse image of the center Z(h∗) of h∗ with the moment map µ. Hence,
noting the so(3)-part of h ∼= so(2)⊕ so(2)⊕ so(3), we see that we can apply our
construction for the part such that µij(p) = 0 ((i, j) = (5, 6), (5, 7), (6, 7)) in L.
This indicates that ξ6 = ξ7 = 0 is necessary. That is, the place in where we have
to check the conditions of Corollary 5.9 is L̂ ⊂ L.

By the definition of V(c1,c2), at any point p ∈ V(c1,c2), the isotropy subgroup
Hp is the following one-parameter subgroup K generated by ξ67:

K(∼= SO(2)) =

{[
E5

h

] ∣∣∣∣ h ∈ SO(2)

}
,

here E5 is the unit 5× 5-matrix. Thus we see that (Imm-istp) holds.
First we prove the proposition for V(c1,c2) for (c1, c2) ̸= (0, 0). Since µ(L̂ ∩

{∥ξ∥ = 0}) = 0, we can assume ∥ξ∥ ̸= 0 in this case. As same in Proposi-
tion 6.2, conditions we have to check are the followings: (I) the perpendicular
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condition: the H-action satisfies (LagAng-H)′ on L̂\{∥ξ∥ = 0}, and (II) the sub-
manifold condition: V(c1,c2) ̸= ∅ is a submanifold of M and (Lag-dim) holds for
(V(c1,c2), H,K). We can verify these in the same way as Proposition 6.2.

Finally we study V̂(0,0) generally rather than V(0,0), including non-principal
points. By Lemma 6.3, We obtain that

V̂(0,0) =


(



x1
0
x3
0
x5
0
0


,



0
ξ2
0
ξ4
0
0
0


)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1,
ξ2, ξ4 ∈ R,

x1ξ2 = x3ξ4 = 0


.

V̂(0,0) is not a smooth manifold. However it is a union, which is not disjoint, of
the following five connected manifolds:

V̂(0,0) = V̂ S2

(0,0) ∪ V̂ S1×R
(0,0),(1) ∪ V̂

S1×R
(0,0),(3) ∪ V̂

R2

(0,0),(1) ∪ V̂ R2

(0,0),(−1),

here

V̂ S2

(0,0) =


(



x1
0
x3
0
x5
0
0


,0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1


, V̂ S1×R

(0,0),(1) =


(



0
0
x3
0
x5
0
0


,



0
ξ2
0
0
0
0
0


)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1,
ξ2 ∈ R


,

V̂ S1×R
(0,0),(3) =


(



x1
0
0
0
x5
0
0


,



0
0
0
ξ4
0
0
0


)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∥x∥ = 1,
ξ4 ∈ R


, V̂ R2

(0,0),(ϵ) =


(



0
0
0
0
ϵ
0
0


,



0
ξ2
0
ξ4
0
0
0


)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ2, ξ4 ∈ R


,

and ϵ = ±1. We can see that each set V̂ W
(0,0) is a 2-dimensional connected sub-

manifold of M diffeomorphic to W . Each V̂ W
(0,0) has non-principal orbits with
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respect to the action of H on H · V̂ W
(0,0). Hence it does not satisfy (Imm-istp).

However we can directly verify that each H · V̂ W
(0,0) for V̂

S2

(0,0), V̂
S1×R
(0,0),(j)(j = 1, 3),

and V̂ R2

(0,0),(ϵ)(ϵ = ±1) is a special Lagrangian submanifold of M diffeomorphic to

S6, T∗⊥S4, and T∗⊥S2 respectively.

We chose SO(2)×SO(2)×SO(3) as a Lie group H for the special Lagrangian
submanifold L ⊂ T∗S6 of Proposition 6.4 rather than SO(2)× SO(5) because of
two reasons. First, since the center of the Lie algebra h ∼= so(2)⊕so(2)⊕so(3) has
two dimensions, we could obtain two-parameters of special Lagrangian submani-
folds H · V(c1,c2). Second, for p, q ∈ N such that p+ q = n+1, special Lagrangian
submanifolds which are SO(p)×SO(q)-invariant in (T∗Sn, I, gStz, ωStz) have been
already obtained by Hashimoto and Sakai in [6], and they showed that such spe-
cial Lagrangian submanifolds are cohomogeneity one with respect to SO(p) ×
SO(q). In the case of Proposition 6.4, we can verify that SO(2)×SO(2)×SO(3)
acts on H · V(c1,c2) with cohomogeneity two.
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