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Abstract

An extra dimension was introduced for the first time by Kaluza and Klein in 1926, in
order to unify gravitational field and electromagnetic field. More extra dimensions
are often required by modern unified theories such as string theory. Another way of
dealing with extra dimensions is the brane-world whose extra dimensions can only
be checked by gravity. In the thesis, the ideas of extra dimensions and brane-world
are applied for a description of cosmological inflation in the early Universe in the
context of the f(R) gravity theory. In order to cause the inflationary expansion
of the Universe, a scalar field called inflaton is necessary. The f(R) gravity is
the modified gravitational theory in which the standard (Einstein-Hilbert) action is
replaced by a function f of Ricci scalar R. The special case, known as Starobinsky
model of R+R2 gravity, is the very successful inflationary model in four dimensions,
in line with all current observations of the Cosmic Microwave Background (CMB)
radiation. We unified the Randall-Sundrum brane-world with the Starobinsky model
in five dimensions and found that Starobinsky modified gravity does not destroy the
Randall-Sundrum solution. Next, we considered the function f(R) = R+ γRn− 2Λ
in higher (D) spacetime dimensions with the cosmological constant Λ, and described
spontaneous compactification down to four spacetime dimensions, as the inflationary
model. We found that it requires D = n/2, whereas the extra gauge (p − 1)-form
is needed for consistent (spontaneous) Freund-Rubin-type compactification. The
cases of D = 8 and D = 12 were studied in detail, and the predictions for the CMB
tensor-to-scalar ratio were calculated.
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Introduction

The appearance of Einstein’s general relativity has greatly changed thinking of physi-
cists in two ways. One is to describe the laws of physics in terms of geometry.
Einstein formulated gravitational theory by using Riemannian geometry with grav-
ity as spacetime geometry. This made a great influence on physicists at that time,
it became a trigger to consider the unified theory, to geometrically and physically
describe the physical laws unifiedly, that is, as the unified theory. The other is to
make the spacetime to be the dynamical object. As a result, the Universe where
we live is not static, but it can be thought as a dynamic object. In fact, Friedmann
derived his equation that represents the expansion and contraction of the Universe,
and then discovered that the Universe continues to expand. It was later confirmed
by observation of Hubble. This is the beginning of the modern cosmology about the
evolution of the Universe.

Currently, it is known that superstring theory and M-theory are promising as
the candidates for unified theory, but the theory first proposed as a unified theory
was a five-dimensional theory by Kaluza [1]. Kaluza considered the gravitational
theory in five-dimensional spacetime with one extra dimension and showed that
four-dimensional gravitational field and electromagnetic field appear from the five-
dimensional metric. However, Kaluza assumed that all fields do not depend on the
extra dimension, and did not explain why the extra dimension is invisible. Klein
showed that the charge of the electromagnetic field is quantized by adding Kaluza’s
theory to the proposal that the extra dimension is small and closed to a circle [2].
Also, this assumption explains that extra dimension can not be seen. It is called
Kaluza-Klein compactification treating the extra dimension that is closed and can
not be seen because it is small. After that, as the unified theory was actively studied
by the development of the gauge theory and the Standard Model of elementary
particles, research to unify the higher-dimensional gravity and general gauge theory
was generalized.

Kaluza-Klein compactification cannot describe why extra dimension is small.
From this reason, research on spontaneous compactification and its stabilization
was conducted. Specific models of the spontaneous compactification use of the
gauge fields [3–5], the higher powers of the scalar curvature [6], compactification by
quantum fluctuations of the scalar field [7], etc. Research of compactfications like
these, is still actively conducted to derive a four-dimensional effective theory from
String theory and M-theory.
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In the Kaluza-Klein compactification, the size of extra dimension and its sta-
bilization become a problem, but in the brane-world picture, the extra dimensions
cannot be seen because particles of Standard Model other than gravity are localized
in three-dimensional brane, so such problems may not occur. The brane-world model
is the alternative to Kaluza-Klein compactification handling the extra dimension,
such as ADD model [8, 9], Randall-Sundrum model [10, 11], and DGP model [12].
The two models proposed by Randall-Sundrum got a lot of attention. The first one
is the two brane model, to solve the hierarchy problem (although the problem of
stabilizing the distance between two branes remains). The second model, the one
brane model, gained a lot of attention as a model allowing infinitely large extra
dimensions.

Meanwhile, cosmology has also been constantly developed along with the devel-
opment of the observation technologies. The current Standard Model of cosmology
is called the ΛCDM model, which is a theory that consistently explains from 10−22s
to the present since the Universe was born. The cosmological constant Λ represents
the dark energy and is necessary to explain the current expansion of the Universe,
CDM stands for cold dark matter, and is required for the formation of the large scale
structure of the Universe. Although ΛCDM is supported from observations, one does
not know the identity of dark energy, dark matter, but also one has fundamental
problems of Big Bang cosmology. It is the flatness problem and the horizon prob-
lem. The inflation theory was proposed independently by Sato [13] and Guth [14] to
make these fundamental solutions. This is the theory that assumes an exponential
expansion in the early Universe, and is considered to be the origin of fluctuations for
making the anisotropy of Cosmic Microwave Background(CMB) and the large scale
structure. This inflation is thought to be caused by a scalar field called inflaton,
and the origins of this inflaton and its potential are still actively studied at present.

Modified gravity is proposed to solve these cosmological problems, and there are
various models according to the problem. In order to explain inflation we need to
introduce a new matter called inflaton. Also, the dark matter is unknown matter,
and the dark energy has properties different from ordinary matter. On the other
hand, modified gravity modifies Einstein’s theory of gravity, so that inflation and
dark energy can be incorporated into theory as geometrical properties of spacetime.

The f(R) theory is a theory replacing Einstein-Hilbert Lagrangian with a func-
tion f(R) of scalar curvature [15,16]. This theory has long been studied extensively
as a model of dark energy and inflation. As a special case, the Starobinsky model is
known as an inflation model that satisfies current observations well [17]. This model
was suggested by Starobinsky when inflation was not yet proposed. He showed that
adding the R2 term as quantum effect of gravity to Einstein-Hilbert action leads to
a de Sitter solution.

We studied the modified gravity in higher-dimensional spacetime. In [18], we
applied the Randall-Sundrum two-brane model to the five-dimensional Starobinsky
model and investigated its stability. As a result of concrete calculation, it was found
that the scalar filed contributing from R2 term is stabilized to minimum by its
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potential, and does not destroy the Randall-Sundrum model.
In [19], we consider the Lagrangian R+γRn−2Λ and the condition to derive the

Starobinsky type inflaton potential which has a plateau. We assume that the spon-
taneous compactification from the D-dimensional spacetime to the four-dimensional
spacetime occurred by some mechanism before the inflation.

S. P. Otero, F. G. Pedro, and C. Wieck developed a model to realize spon-
taneous compactification and stabilization of the volume of extra dimensions by
adding (p− 1)-form gauge field to our model. [20] According to that model, sponta-
neous compactification and modulus stabilization are realized at p = n. In [21], we
analyze the case of D = 8 and consider the possibility of its embedding in D = 8
supergravity as the natural origin of the (p− 1)-form gauge field.

This thesis is organized as follows. Chapter 1 represents the review of the Kaluza-
Klein compactification. In Chapter 2, we review of Randall-Sundrum brane models
and our first work [18]. In Chapter 3, we review the standard cosmology, modified
gravity and our results of the inflation from modified gravity in higher-dimensional
spacetime.

The notation in this thesis is as follows. We use the natural units ℏ = c = 1 and
the D-dimensional spacetime signature (−,+, · · · ,+). We denote spacetime vector
indices in D-dimensions by capital latin letters A,B, . . . = 0, 1, . . . , D−1, and space-
time vector indices in four-dimensions by lower case greek letters α, β, . . . = 0, 1, 2, 3
and spacetime vector indices in extra dimensions by lower latin letters a, b, . . .. The
X means the D-dimensional coordinates, x means the four-dimensional coordinates
and y means the extra coordinates.
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Chapter 1

Kaluza-Klein Theory

It was Kaluza who introduced the extra dimension for the first time in 1921 [1].
He introduced the fifth dimension to unify the gravitational field and the electro-
magnetic field in five-dimensional spacetime. Specifically, as a component of a five-
dimensional metric, the four-dimensional gravitational field and the electromagnetic
field are considered, and under the hypothesis of the cylinder condition that those
fields do not depend on the fourth spatial direction called a extra dimension, he
succeeded in deriving the four-dimensional Einstein-Maxwell equations. (The equa-
tion of scalar field corresponding to dilaton was also derived, but at the time such
scalar was treated as a constant.) But, he didn’t explain why we can’t see the fifth
dimension.

In 1926, Klein suggested the quantum interpretation of the Kaluza’s theory by
assuming the fifth dimension to be a circle and very small [2]. He succeeded to
explain why we can’t see the fifth dimension, and added to validity of Klein’s cylinder
condition. Also, he showed such a small extra space leads to a quantization of charge
of electromagnetic filed. In that case, the charge is quantized depending on the
radius of extra space.

Such spacetime is topologically represented asM4×S1, which can be interpreted
as a circle sticking to each point of the four-dimensional spacetime. For example, the
surface of a straw is a two-dimensional surface, but when viewed from far enough it
looks like a one-dimensional line. In this way, by assuming that the size of the extra
dimension is sufficiently small, we can not see the extra dimension. Such a way of
treating the extra dimension is called Kaluza-Klein theory. At present, the size of
the Kaluza-Klein circle should be much less than 10−15cm, i.e. much less than a
quark size.

Since we can unify U(1) gauge theory with five-dimensional gravity, it is natural
to think about generalizing it and unify the general gauge theory. For that purpose,
we had to think about the higher-dimensional spacetime with more than five di-
mensions. This generalized theory is developed in [22–24]. In [25], Witten gave the
realistic model of Kaluza-Klein theory which can describe SU(3) × SU(2) × U(1)
gauge theory.
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After that, with the development of the unified theory such as superstring theory
or M-theory and supergravity as its effective theory, the necessity of extra dimensions
was uplifted to be debated again. The four-dimensional Kaluza-Klein compactifica-
tion has been extensively studied.

In this Chapter, we describe the Kaluza-Klein theory and its generalizations,
and the spontaneous compactification of extra dimensions.

1.1 Dimensional reduction

First, we describe how we can see the five-dimensional massless scalar field in four-
dimensional spacetime.

The fifth coordinate y is taken on the circle whose radius is r. So, it is required
y to be periodic: y ∼ y + 2πr. Assuming the four-dimensional spacetime to be
Minkowski spacetime M4, this five-dimensional spacetime is written as M4 × S1.

The five-dimensional massless scalar field ϕ(x, y) obeys five-dimensional Klein-
Gordon equation:

∂A∂
Aϕ(x, y) = 0 (1.1.1)

Since y is periodic, we can perform the expansion of ϕ(x, y):

ϕ(x, y) =
∞∑

n=−∞

ϕn(x)e
−in

r
y (1.1.2)

Substituting this to (1.1.1), we obtain(
∂µ∂

µ − n2

r2

)
ϕn(x) = 0 (1.1.3)

This equation looks like the scalar Klein-Gordon equation with mass m2 = n2/r2

in four-dimensional spacetime. So, the massless scalar field in five dimensional
spacetime with compact extra dimension behaves as the massive scalar field in four-
dimensional spacetime. In the equation (1.1.3), if we choose n = 0, this equation
reads:

∂µ∂
µϕ0(x) = 0 (1.1.4)

Then, ϕ0(x) is a massless scalar field. Such the n = 0 mode is called the zero mode,
and the n ̸= 0 modes are called the KK modes. However, KK mode particles have
not been detect in the particle experiments so far until now.

If the radius of extra spacetime is very small, the mass ∼ r−2 (at n ̸= 0) becomes
very large. This means it becomes more difficult to detect the KK mode as the extra
spacetime becomes smaller. So, if we take the size of extra dimension to Planck
length lP , and we can ignore KK modes.

Since KK modes were not detected in experiments, the compactification radius
r can be restricted from above. Their masses would thus have to be greater, n/r >
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1TeV, which implies a strong constraint on r:

r ≤ 10−21cm. (1.1.5)

It is difficult to detect so small extra dimension directly.
This procedure used to derive the effective theory from higher-dimensional funda-

mental theory is called dimensional reduction. In general, lower spin fields appear
from original higher-dimensional fields. For example, the four-dimensional vector
field and scalar field come from the five-dimensional vector field. We describe below
four-dimensional metric, vector and scalar field from the five-dimensional metric.

1.2 Kaluza-Klein theory as a unified theory

1.2.1 Unification of gravitational field and U(1) gauge field

Let us consider the gravitational field in five-dimensional spacetime, which unifies
the four-dimensional gravitational field and electromagnetic field. We assume the
five-dimensional spacetime is M4 × S1. Also, as we mentioned above, the extra
coordinate y is to be a circle whose radius is r.

The five-dimensional Einstein-Hilbert action is

S5 =
1

2κ25

∫
d5X

√
−g5R(5) (1.2.1)

where, subscript ”5” means the five-dimensional quantities. From this action, the
vacuum Einstein equation is derived:

R
(5)
AB = 0 (1.2.2)

The action (1.2.1) is invariant under the five-dimensional general coordinate trans-
formation:

XA → X ′A = XA − ξA(X). (1.2.3)

The five-dimensional metric transforms under this transformation as

δgAB = ∂CgABξ
C + gCB∂Aξ

C + gAC∂Bξ
C (1.2.4)

where ξA(X) is arbitrary vector field parameter.
For the above five-dimensional action, considering the decomposition of the met-

ric and taking the integration over the extra dimension leads to the four-dimensional
effective theory. Before that, in order the four-dimensional theory, to be obtained
from the extra dimension, several physical requirements are imposed on the theory.

The first requirement is that all fields appearing in four-dimensions do not depend
on extra dimensional coordinate (cylinder condition). This may be considered as
taking out the zero mode only by the dimensional reduction explained in the previous
section. This means that the extra dimension is sufficiently small, and KK modes
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of the effective theory at the energy scales lower than its large masses, cannot be
observed in elementary particle experiments.

The second requirement is that the theory is invariant against translating along
the extra coordinate.This means the parameters of general coordinate transforma-
tion ξA(X) satisfy the following requirements:

ξµ = ξµ(xµ), ξy = ay + ϵ(xµ) (1.2.5)

where a is an arbitrary constant and ϵ(x) is a function of four-dimensional coordi-
nates.

Next, let us form the metric decomposition, which was suggested by Kaluza to
satisfy the above requirements:

gAB = eϕ/
√
3

[
gµν + e−

√
3ϕAµAν e−

√
3ϕAµ

e−
√
3ϕAν e−

√
3ϕ

]
(1.2.6)

where gµν(x) is four-dimensional metric, Aµ(x) is vector field, ϕ(x) is scalar field.
Although it is not obvious that Aµ(x) is an Abelian gauge field, by imposing the
above physical requirement, it can be shown that five-dimensional general coordinate
transformation acts as the gauge transformation of Aµ(x). From equation (1.2.5),
calculating and rearranging the transformations for each component of the five-
dimensional metric, we can obtain the transformation laws for each field:

δgµν = ∂ρgµνξ
ρ + gρν∂µξ

ρ + gµρ∂νξ
ρ (1.2.7)

δAµ = ∂µξ
ρAρ + ξρ∂ρAµ + ∂µϵ(x) (1.2.8)

It can be seen that the five-dimensional general coordinate transformation acts as
the U(1) gauge transformation for Aµ. Therefore, Aµ is regarded as a U(1) gauge
field.

By substituting the above metric to the five-dimensional Einstein-Hilbert action
and performing y-integral, it is possible to obtain the four-dimensional effective
action

S4 =
1

2κ24

∫
d4x

√
−g4

(
R(4) − 1

2
∂µϕ∂νϕ− 1

4
e−

√
3ϕFµνF

µν

)
(1.2.9)

where Fµν = ∂µAν − ∂νAµ is the field strength of Maxwell field, and

κ24 = κ25/2πR (1.2.10)

is the four-dimensional gravitational constant. Therefore, the five-dimensional Einstein-
Hilbert action is found to be a sum of Einstein-Hilbert action and Maxwell action
coupled to the scalar ϕ and the scalar field action in four-dimensional spacetime.

If we set the scalar field to be zero, the action becomes the Einstein-Maxwell
action. However, it is not allowed since there is interaction between those lower
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dimensional fields. To consider this, let us focus on field equations. The field
equations are obtained by varying the action with respect to each field:

Rµν −
1

2
Rgµν = κ2Tµν (1.2.11)

∇µ
(
e−

√
3ϕFµν

)
= 0 (1.2.12)

∇µ∇µϕ = −1

2

√
3e−

√
3ϕFµνF

µν (1.2.13)

where Tµν is the energy-momentum tensor of the Maxwell field and the scalar field:

κ2Tµν =
1

2

(
∂µϕ∂νϕ− 1

2
∂ρϕ∂

ρgµν

)
+

1

2
e−

√
3ϕ

(
FµρF

ρ
ν − 1

4
FρσF

ρσgµν

)
(1.2.14)

The field equation (1.2.13) means it is not allowed to set the scalar field to be zero
because there is the field strength of the Maxwell field as the source field on the
right-hand-side of the equation (1.2.13).

1.2.2 Charge quantization

Klein showed the electric charge of electromagnetism is quantized by introducing
the fifth dimension [2]. Let us consider the scalar field in five-dimensional spacetime
again. The action of the scalar field is given by

S = −
∫
d5X

√
−g5

1

2
∂Aϕ(x, y)∂

Aϕ(x, y). (1.2.15)

We can perform the Fourier expansion since the fifth dimension is periodic:

ϕ(x, y) =
∞∑

n=−∞

ϕn(x)e
−i n

R
y (1.2.16)

We consider the general coordinate transformation about fifth dimension

y → y′ = y + ξϵ(x) (1.2.17)

The scalar field transforms under this transformation as

ϕ(x, y) =
∞∑

n=−∞

ϕn(x)e
−i n

R
ye−i n

R
ξϵ(x). (1.2.18)

It is necessary to introduce a gauge field Aµ, in order to make the action invari-
ant under that transformation. We introduce the gauge field via the U(1) gauge
covariant derivative:

S =

∫
d4x

√
−g4

[(
∂µ − i

nkAµ

R

)
ϕn

(
∂µ − i

nkAµ

R

)
ϕn −

n2

R2
ϕn

]
(1.2.19)
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where k a the normalization constant for Aµ we set k = 1 in equation (1.2.6). This
implies the charge quantization as

qn = −nk
R

(1.2.20)

in units of k/R. Since the charged particle with charge qn has the mass mn = n/R,
we assume all charged particles (n ̸= 0) have the masses on the Planck scale.

1.2.3 Scalar-tensor gravity

Let us consider the decomposition of five-dimensional metric as follows:

gAB =

[
gµν 0
0 Φ

]
(1.2.21)

Substituting this metric to five-dimensional Einstein-Hilbert action, the effective
four-dimensional action is obtained as follows:

S4 =
1

2κ24

∫
d4x

√
−g4Φ

1
2R(4). (1.2.22)

To separate the Ricci scalar and Φ, we consider the next transformation called Weyl
transformation:

gµν → Φ− 1
3 gµν (1.2.23)

Φ → Φ
2
3 (1.2.24)

Such parametrization in which action is in the form of Einstein-Hilbert action is
called Einstein frame. Furthermore, to obtain canonical kinetic term of the scalar
field, we rescale the Φ:

ϕ =
1√
3κ

ln

(
Φ

Φ0

)
(1.2.25)

where Φ0 is the vacuum expectation value of Φ. Thus, we obtain the following
four-dimensional effective action:

S4 =
1

2κ2

∫
d4x
√

−g̃R̃−
∫
d4x
√
−g̃1

2
∂µϕ∂

µϕ (1.2.26)

This action is equivalent to Einstein-Hilbert action with the scalar field.

1.3 Generalization to non-Abelian gauge theories

In five-dimensional Kaluza-Klein theory, we can unify four-dimensional gravitational
field and electromagnetic field in five-dimensional gravitational field. However, it
does not include a general gauge field, i.e. a non-Abelian gauge field. That is
because the general coordinate transformation in the S1 compactified spacetime
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corresponded to the U(1) gauge transformation. In other words, we have to assume
that the non-abelian gauge symmetry appears by taking the compact spacetime of
higher dimension.

The transformation that does not change the metric is called the isometry trans-
formation, and this transformation exists when the spacetime has the symmetry. A
consideration of the isometry transformations on a compact n-dimensional manifold
shows that the Lie algebra made by the generators of the isometry transformations
corresponds to the symmetry of the gauge field appearing in the effective action
in four-dimensional spacetime . By doing so, we consider the generalized Kaluza-
Klein theory which can unify the non-Abelian gauge field by assuming spacetime of
(4+n)-dimension and a compactification of n-dimensions on a manifold with certain
symmetry. In this section, we assume a compact manifold Kn of extra dimensions.
This means we don’t consider why extra dimensions are compactified. Why extra
dimensions are compact is solved by considering a spontaneous compaction. We will
describe spontaneous compaction in the next sections.

1.3.1 Isometry transformations

We described above the Kaluza-Klein requirement which is the transformation along
the extra coordinate that doesn’t change the theory. This means

δgmn = 0. (1.3.1)

Such transformation which doesn’t change the metric is called the isometry trans-
formation. Even if the spacetime dimension becomes higher, one imposes the same
requirement, and one considers the isometry transformations for the metric.

We start from the general coordinate transformations.

XA → X ′A = XA −KA
a (X)ϵa(X) (1.3.2)

If the metric is invariant under this transformation, there exist a vector satisfying
the equation:

∇AKB +∇BKA = 0 (1.3.3)

This equation is called Killing equation. And vectors KA which satisfy this equa-
tion are called Killing vectors. The Killing equation means that a change of the
coordinates along the Killing vector does not change the metric. In other words,
the spacetime has a symmetry along the Killing vector. The Killing vector is also
defined by Lie derivative of metric:

LKg = 0 (1.3.4)

Since the Lie bracket of two Killing vectors also becomes the Killing vector, the
Killing vectors form Lie algebra:

Km
b ∂mK

n
c −Km

c ∂mK
n
b = −CabcK

n
a (1.3.5)
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where Cabc are the structure constants.
If we write Ta as the generator of the corresponding infinitesimal isometry trans-

formation, the generators satisfy the relation.

[Ta, Tb] = iCabcTc (1.3.6)

The non-Abelian gauge fields appearing in the four-dimensional effective theory
are determined by the algebra formed by the Killing vectors.

For example, when the extra coordinates are compactified on S2, this spacetime
has symmetry of isometry group SO(3). At this time, the gauge field of SO(3) group
appears in four-dimensional effective theory. In general, symmetry of SO(n + 1)
appears when compactified on Sn.

A compact manifold Kn is arbitrary otherwise. Then, we describe more spe-
cial Einstein manifolds as an example. Einstein manifolds are defined by the real
curvature in the form:

RAB = kgAB (1.3.7)

where k is a constant. We can consider the energy-momentum tensor, which causes
compactification of extra dimensions, by substituting this curvature to Einstein
equations. Before we find the matter which causes compactification, we describe
the Riemann tensor of the n-sphere Sn as:

RABCD = (gACgBD − gADgBC)r
−2 (1.3.8)

where r is radius of the sphere. Here, we assume D = (4+n)-dimensional spacetime
which is compactified to M4 × Sn. M4 is four-dimensional Minkowski spacetime.
From equation (1.3.8), we have

Rαβγδ = 0 (1.3.9)

and
Rabcd = (gacgbd − gadgbc)r

−2 (1.3.10)

Therefore, the Ricci tensor and the scalar curvature on the n-sphere are

Rab = (n− 1)gabr
−2, (1.3.11)

R = n(n− 1)r−2. (1.3.12)

In the next section, we assume that the n-dimensional part of the (4 + n)-
dimensional spacetime is compactified on the manifold Kn.

1.3.2 (4 + n)-dimensional Kaluza-Klein theory

We assume the (4+n)-dimensional spacetime which has the topologyM4×Kn. The
manifold Kn is n-dimensional spacetime which is compactified with some internal
symmetry. We start from the higher-dimensional metric:

gAB =

[
gµν + gmnK

m
a (y)Aa

µ(x)K
n
b (y)A

b
ν(x) Km

a (y)Aa
µ(x)

Kn
a (y)A

a
ν(x) gmn(y)

]
(1.3.13)
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where gµν is four-dimensional metric, gmn(y) is the metric on the Kn, Aµ is the
gauge field, and Kn

a (y) is Killing vector on the Kn.
To consider the isometry transformation on the Kn, we introduce the (4 + n)-

dimensional general coordinate transformations:

δXA = −ξA(x, y) (1.3.14)

where
ξµ(x, y) = 0, ξm(x, y) = Km

a (y)ϵa(x) (1.3.15)

Under this transformations, we investigate how the (µn) component of five-dimensional
metric transform and, obtain the transformation law of the gauge field Aµ:

δAa
µ(x) = ∂µϵ(x)

a − fa
bcAµ(x)

bϵc(x) (1.3.16)

This is the transformation law of the non-Abelian gauge field. So, Aµ is regarded as
the non-Abelian gauge field indeed.

We obtain the effective action by substituting the above metric to the Einstein-
Hilbert action in D-dimensional spacetime,

SD =
1

2κ2D

∫
dDX

√
−gDR(D) (1.3.17)

Then, we have

SD =

∫
dny

√
−gn

1

2κ2D

∫
d4x

√
−g4R(4) (1.3.18)

−
∫
dny

√
−gnKm

a (y)Kn
b (y)gmn(y)

1

8κ2D

∫
d4x

√
−gF a

µν F µνb (1.3.19)

where,
F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcA

b
µA

c
ν (1.3.20)

Here, we assume the volume of compact manifold Kn is

Vn =
1

κ2D

∫
dny
√
−gy ≡

1

κ24
(1.3.21)

and the norm of the Killing vector is

Km
a (y)Kn

b (y)gmn(y) = 2κ24δab (1.3.22)

Substituting the five-dimensional metric to the action (1.3.18) with these assump-
tions, we obtain the four-dimensional effective theory:

S4 =
1

2κ24

∫
d4xR(4) − 1

4

∫
d4xF a

µνF
aµν (1.3.23)

This is the action of Einstein gravity coupled to the non-Abelian gauge field in
four-dimensional spacetime.
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1.3.3 SU(3)×SU(2)×U(1) gauge theory

In the standard model of elementary particles, the gauge fields of strong and elec-
troweak interactions belong to the gauge group of SU(3)×SU(2)×U(1). A compact
manifold Kn that reproduces the symmetries SU(3)×SU(2)×U(1) was considered
by Witten [25]. Witten showed that the compact manifold Kn must have dimension
of more than seven. The reason is that the smallest dimension of a manifold with
isometry group G is given by coset space G/H, where H is the largest submanifold
of G with linearly realized symmetry, when G is given by

SU(3)× SU(2)× U(1), (1.3.24)

it has the dimension 8 + 3 + 1 = 12. This is determined from the number of
generators. The H is given by

H = SU(2)× U ′(1)× U ′′(1) (1.3.25)

and has the dimension 3+1+1 = 5. So, the minimal dimension of G/H is 12−5 = 7,
and hence, D = 4 + 7 = 11.

1.4 Compactification mechanism

We showed the gauge field can be unified with the gravitational field by using com-
pact extra dimensions.However, the spacetimeM4×Kn is not always the vacuum so-
lution of (4+n)-dimensional Einstein equations. It was showed the five-dimensional
pure Kaluza-Klien theory has the M4 × S1 spacetime as a solution, but generally,
the (4 + n)-dimensional (n > 1) Kaluza-Klein theory doesn’t have the n dimen-
sional compact solution [26]. According to [27], after computing quantum effects
in the five-dimensional Kaluza-Klein theory, the fifth dimension becomes small and
compact.

Therefore, in general, for the extra dimensions to be compact, it is necessary to
introduce matter which induces the energy-momentum tensor or a certain modifi-
cation of the Einstein gravity in the higher dimensions.

We start from the (4 + n)-dimensional Einstein equation with matter:

R
(D)
AB − 1

2
gABR

(D) − 1

2
gABΛ

(D) = κ2TAB (1.4.1)

Here, in order to construct the spacetime M4 ×Kn, where M4 is four-dimensional
Einstein spacetime, with n-dimensional compactified spacetime Kn, the components
of the metric do not have to be the Minkowski metric ηαβ. It means that (αβ)
components of the Einstein equation satisfy

Rαβ = 0. (1.4.2)
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The (αβ)-components of the energy-momentum tensor from the Lorentz invariance
are

Tαβ =
α

κ2
ηαβ (1.4.3)

where the α is a constant. Next, if we assume extra dimensions are compactified on
the Einstein manifold (see the definition in the Subsection 1.3.1), the (ab) compo-
nents of Einstein equation satisfy

Rab = kgab, k > 0 (1.4.4)

where k is a constant. Therefore, the (ab) components of the energy-momentum
tensor are

Tab =
α′

κ2
gab. (1.4.5)

Combining with (1.4.3), we can obtain

Rab = (α′ − α). (1.4.6)

This relation means that the condition the spacetime Kn is compactified reads

α′ − α > 0. (1.4.7)

1.4.1 Freund-Rubin compactification

Freund and Rubin suggested spontaneous compactification by p-form gauge fields [3].
In particular, eleven-dimensional supergravity is unique and include the four-form
gauge field strength in its action. Freund and Rubin assumed that the fields F = dA
can cause compactification of extra dimensions.

We start from the D-dimensional action:

SD =

∫
dDX

√
−gD

[
1

2κ2D
R(D) − 1

48
FABCDF

ABCD

]
(1.4.8)

From this action we can obtain field equations of gravitational field and gauge field:

R
(D)
AB − 1

2
gABR

(D) = κ2DTAB (1.4.9)

1√
−gD

∂A
(√

−gDFABCD
)
= 0 (1.4.10)

where TAB is the energy-momentum tensor:

TAB = −1

6

(
FCDEAF

CDE
B − 1

8
FCDEFF

CDEFgAB

)
(1.4.11)

The equation (1.4.10) has a solution

Fαβγδ =
1√
−g4

ϵαβγδF (1.4.12)

16



Here F is constant, ϵαβγδ is Levi-Civita symbol.For this solution, the (αβ)-components
and the (ab)-components of the energy-momentum tensor become

Tαβ =
F 2

2
sgn(g4)gαβ (1.4.13)

Tab = −F
2

2
sgn(g4)gab (1.4.14)

Remembering the requirements of compactification we described above, we obtain

α

κ2
=
F 2

2
(1.4.15)

Using this relation, the scalar curvatures of each manifold M4 and Mn are

R4 = −F
2

κ2
4(n− 1)

n+ 2
, (1.4.16)

Rn =
F 2

κ2
3n

n+ 2
. (1.4.17)

This means the manifold Mn is compactified and its curvature is positive. Also, the
manifold M4 becomes not Minkowski spacetime but AdS spacetime. If we want the
manifold M4 to be Minkowski spacetime, we need to add the cosmological constant
as

Λ = κ24(n− 1)F 2 (1.4.18)

in the action (1.4.8).

1.4.2 Compactification due to the gauge fields

Introducing gauge fields for spontaneous compactification seems to be not inline with
the purpose of Kaluza-Klein theory of unifying the gauge fields in higher-dimensional
gravity. However, this has several advantages. Generally, the action of gauge field
is

SF = −1

4

∫
d4+nX

√
−g4+n(Fa)AB(Fa)

AB (1.4.19)

and the energy momentum tensor is

TAB = −
(
(Fa)AC(Fa)

C
B − 1

4
(Fa)CDF

CD
a gAB

)
(1.4.20)

As we saw in Freund-Rubin’s compactification, the structure of the compact
space is determined by how we choose the solution of the gauge field. For example,
compactification from six dimensions on S2 is done by considering the monopole
solution [4]. Also, the S4 compactification is done by considering the instanton
solution [5]. Ref [28] classifies the seven-dimensional compact spaces for deriving
the four-dimensional effective theory through spontaneous compactification from
D = 11 supergravity.
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1.4.3 Stabilizing the moduli

Compactification by the gauge field gives the curvature to the compact space, but
we do not guarantee that size is stable. It is known that we can stabilize the size
of extra dimensions by introducing a potential of dilaton field, as was demonstrated
by S. Carroll, J. Geddes, M. Hoffman, R. Wald in [29], where the condition of
stabilization on homogeneous compact spaces was discussed.

Here, as a concrete example, we show that six-dimensional spacetime is compact-
ified to four-dimensions with the two-form field strength, the size of extra dimensions
is stabilized by the dilaton potential, and the non-compact spacetime becomes that
of Minkowski.

Also, in order to become a four-dimensional Minkowski spacetime, we show that
we need to include cosmological constant in the six-dimensional action. This method
is also used in our research.

We start from the six-dimensional action:

S =
1

2κ2

∫
d6x

√
−g6 [R6 − Λ6]−

∫
d6x

√
−g6

1

4
FABF

AB (1.4.21)

where Λ6 is a six-dimensional a cosmological constant, FAB is the two-form field
strength, F = dA.

To realize M4 × S2 compactification, we use the ansatz for the metric:

ds2 = gAB(X)dXAdXB = gαβ(x)dx
αdxβ + e2χ(x)gab(y)dy

adyb (1.4.22)

where χ(x) is dilaton depending on four-dimensional spacetime.
Next, we consider the integration over extra coordinates. For this metric, we can

decompose the determinant and the scalar curvature as

√
−g6 =

√
−g4e2χ

√
gy, (1.4.23)

and

R6 = R4 + e−2χRy − 4e−χgαβ∇α∇βe
χ − 2e−2χgαβ∇αe

χ∇βe
χ. (1.4.24)

The gravitational part of the action becomes

Sg =
1

2κ2

∫
d4xd2y

√
−g4

√
gye

2χ
[
R4 + e−2χRy − 2e−2χgαβ∂αe

χ∂βe
χ − 2Λ

]
(1.4.25)

Here we define the volume of compact space V and the four-dimensional gravitational
constant κ4 as follows:

V =

∫
d2y

√
gy, (1.4.26)

1

2κ24
≡ V

2κ26
. (1.4.27)
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So, we obtain the four-dimensional gravitational action with the scalar field χ:

Sg =
1

2κ24

∫
d4x

√
−g4

[
e2χR4 +Ry − 2e2χgαβ∂αχ∂βχ− 2e2χΛ

]
(1.4.28)

However, this is not the minimally coupled action. We have to change the coordinate
system to reproduce the Einstein-like gravitational theory. It can be realized by
applying the Weyl transformation.

The Weyl transformation is the transformation of the metric as follows:

gαβ = Ω−2gg̃αβ,
√
−g4 = Ω−4

√
−g̃4 (1.4.29)

Under this transformation, the scalar curvature transforms:

R4 = Ω2[R̃4 + 6□̃f − 6g̃αβfαfβ] (1.4.30)

where

f = lnΩ, fα =
∂αΩ

Ω
(1.4.31)

Substituting (1.4.29) and (1.4.30) to the action (1.4.28), we obtain

Sg =
1

2κ24

∫
d4x
√

−g̃4[e2χΩ−2(R̃4 − 6g̃αβfαfβ − 2Ω−2e−2χg̃αβ∂αχ∂βχ (1.4.32)

+ Ω−4Ry − 2Ω−4e2χΛ]. (1.4.33)

We choose Ω to obtain the action in the Einstein frame, as follows:

Ω = eχ (1.4.34)

Then
f = χ, fα = ∂αχ (1.4.35)

From these results, we obtain

Sg =
1

2κ24

∫
d4x
√
g̃4[R4 + e−4χRy − 8g̃αβ∂αχ∂βχ− 2e−2χΛ]. (1.4.36)

To make the action of scalar field canonical, we rescale χ,

2
√
2

κ4
χ = ϕ (1.4.37)

Finally, the action of the gravitational part becomes

Sg =
1

2κ24

∫
d4x
√
g̃4R4 +

∫
d4x
√

−g̃4
(
−1

2
g̃αβ∂αϕ∂βϕ− V ′(ϕ)

)
(1.4.38)

where

V (ϕ) =
1

2κ24

(
2e

− κ4√
2
ϕ
Λ− ke

− 2κ4√
2
ϕ
)
, k ≡ Ry (1.4.39)
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This action includes the canonical scalar field with its potential.
Next, let us consider the action of the two-form filed. We apply the dimensional

reduction for that action, as we did for the action of gravitational field,

SF =− 1

4

∫
d6X

√
−g6FABF

AB = −1

4

∫
d6X

√
−g6gACgBDFABF

CD (1.4.40)

= −1

4

∫
d4x

√
−g4d2y

√
gye

−2χgacgbdFabFcd (1.4.41)

= −1

4

∫
d4x

√
−g4e−2χF 2 (1.4.42)

where we have defined the constant F as follows:∫
d2y

√
gyg

acgbdFabFcd = F 2 (1.4.43)

Next, we apply the Weyl transformation:

SF = −1

4

∫
d4x
√

−g̃4Ω−4e−2χF 2 (1.4.44)

= −1

4

∫
d4x
√

−g̃4e−6χF 2 (1.4.45)

= −1

4

∫
d4x
√

−g̃4e−
3κ4√

2
ϕ
F 2 (1.4.46)

Adding this to the potential, we obtain the total potential:

V (ϕ) =
1

2κ24

(
2e

− κ4√
2
ϕ
Λ− ke

− 2κ4√
2
ϕ
+
κ24
2
e
− 3κ4√

2
ϕ
F 2

)
(1.4.47)

We show this potential in Figure 1.1. From this graph, it is obvious this potential has
a minimum and it stabilizes the size of the extra space. Also, the higher dimensional
cosmological constant Λ ̸= 0 is required for the minimum of V (ϕ) to be zero, because
the four-dimensional spacetime is an Anti-de Sitter spacetime when Λ = 0.

Figure 1.1: A sketch of the scalar potential

20



Chapter 2

Brane-world models

The Kaluza-Klein theory described in the previous chapter has the concept that ex-
tra dimensions can’t be seen because they are small and compact. As the alternative
to this compactification, there is another approach called brane world as a concept
of extra dimensions. This is the idea that we can’t see the spatial extra dimensions
because interactions of the standard model of elementary particles, other than grav-
ity are localized in the three dimensional membrane.This development began with
Rubakov showed that there exists a solution for fermions localized on the domain
wall [30].

The first model of brane-world was proposed by Arkani-Hamed, Dimopoulos
and Dvali [8,9]. This model is called the ADD model and was proposed to solve the
hierarchy problem in particle physics. In this model, it is assumed that the extra
dimension is closed like S1, but the particles of the standard model propagate in
four dimensions, only the gravity can propagate in the extra dimension. This time,
the strength of gravity depends on the size of the extra dimension. Since the size of
the extra dimension does not have to be small, it is called the large extra dimension
model.

After that, Randall and Sundrum proposed a new brane model to solve the
problem of hierarchy in a different way, which assumed an extra dimension as an
orbifold S1/Z2, with two branes of opposite tensions (RSI) [10]. Furthermore, by
removing one brane from RSI, they succeeded in introducing an infinitely large extra
dimension(RSII) [11]. This proposal has received much attention.

We considered the RSI model in modified gravity and analyzed its stability. As
a result, we found that coupling of the RSI model to Starobinsky gravity does not
destroy stability of the usual RSI model.

In this Chapter, we consider the brane-world handling of extra dimensions are the
alternative to KK theory with focus on the two brane models proposed by Randall
and Sundrum (RSI). After that, we consider the RSI model and its stability in the
modified gravity which is our research result in [18].
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2.1 Domain wall solution

Rubakov showed that there is a solution confined to the domain wall for the five-
dimensional fermion from the kink solution of the scalar field in the five-dimensional
spacetime [30]. This picture is the key of the assumption in brane-world that the
standard model particles are confined on the brane.

Let us start from five-dimensional scalar field with potential:

S =

∫
d4xdy

√
−g5

(
−1

2
∂Aϕ∂

Aϕ− V (ϕ)

)
(2.1.1)

where

V (ϕ) =
λ

4
(ϕ2 − v2)2 (2.1.2)

and λ is the coupling constant. This scalar filed has the kink solution:

ϕv = v tanh

(√
λv2

2
y

)
(2.1.3)

This solution has asymptotics

ϕv(y → ∞) = +v (2.1.4)

ϕv(y → −∞) = −v (2.1.5)

It describes a domain wall separating two classical vacua at y = 0, thus introducing
five-dimensional fermion to this model. The five-dimensional action of the fermion
interacting with the scalar field ϕ is

S =

∫
d5X

√
−g
(
iΨ̄ΓA∂AΨ− gϕΨ̄Ψ

)
(2.1.6)

where g is Yukawa coupling constant. In the domain wall background, the Dirac
equation is

iΓA∂AΨ− ϕvΨ = 0 (2.1.7)

For this fermion, the mass in four dimension is given by

γµ∂yΨ = −mΨ (2.1.8)

and there is the zero mode solution Ψ0 with m = 0:

γ5∂yΨ0 = gϕv(y)Ψ0 (2.1.9)

The zero mode is left-handed (or right-handed) in the four dimensions. So, we can
write this zero mode as

Ψ0 = e
∫ y
0 dy′gϕv(y′)ψL (R)(p) (2.1.10)

where ψ is the solution of the Weyl equation. This means zero mode is localized
near y = 0 and it decays at large y.
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2.2 ADD model

The first phenomenological model of brane world, whose size of extra dimension is
large, was suggested by N.Arkani-Hamed, S.Dimopoulos and G.Dvali in 1998 [8, 9].
The motivation of this model is to solve the hierarchy problem in the particle physics.
This approach (called ADD model) considers the brane whose tension is neglected
after embedding into the higher dimensions with flat and compact extra dimensions
(Figure 2.1). The large extra dimension is allowed because of confinement of the
matter fields on the brane, and only gravity can propagate in the extra dimensions.
Here, the dimension of spacetime is D-dimensional (D > 4), and the fundamental
mass scale in D-dimensional spacetime is denoted by M , in order to distinguish
it from the Plank mass Mpl in the four-dimensional spacetime. The gravitational
action in the D-dimensional spacetime is:

S =
MD−2

2

∫
dDX

√
−gD

(
R(D)

)
, (2.2.1)

where
MD−2 =Mn+2 (2.2.2)

is the D-dimensional fundamental mass scale, n = D − 4 is the number of extra
dimensions. The subscript (D) denotes D-dimensional geometric quantities. In
this model , the long distance four-dimensional gravity is mediated by the graviton
zero mode, whose wave function is homogeneous over extra dimensions. Hence, the
four-dimensional effective action describing long distance gravity is obtained from
equation (2.2.1) by taking the metric to be independent of extra dimensions and
integrating over extra coordinates:

Seff =
MD−2Vn

2

∫
d4x

√
−g4R(4) , (2.2.3)

where VD ∼ rn is the volume of extra dimensions whose radius is r. So, the four-
dimensional Planck mass is determined by the volume of extra dimensions:

MPl =M(Mr)
n
2 . (2.2.4)

If the size of extra dimensions is large compared to the fundamental length M−1,
the Planck mass is much larger than the fundamental gravity scale M. Then, the
hierarchy betweenMpl andMEW is entirely due to the large size of extra dimensions.
Assuming that M ∼ 1TeV , one calculates from (2.2.4) the value of r:

r ∼M−1(
Mpl

M
)

2
n ∼ 10

32
n · 10−17cm. (2.2.5)
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Figure 2.1: ADD brane model

2.3 Randall-Sundrum I model

In 1999, L.Randall and R.Sundrum suggested two brane-world models (Figure 2.2).
The first one called RSI is two brane model to solve the hierarchy problem [10]. The
second model called RSII is the model removing to the infinity one brane from the
RSI [11]. We describe the geometry of RS models, and their basic idea.

[1]RSI brane model

[2]RSII brane model

Figure 2.2: RS brane models

2.3.1 Warped geometry

The RSI assumes the existence of one extra dimension compactified on a circle
whose upper and lower halves are identified, called S1/Z2 orbifold (Figure 2.3).
The orbifold condition is inspired from Horava-Witten model [31]. This contruction
entails two fixed points, y = 0 and y = πr ≡ L. Randall and Sundrum assumed two
branes which have opposite tensions and they are located at those points.
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Figure 2.3: S1/Z2 orbifold

There is the five-dimensional cosmological constant Λ5 in the action. As it will be
seen later, Λ5 takes a negative value required in order to make flat four-dimensional
spacetime on the brane.

The action of this set-up is

S = Sgravity + Shid + Svis (2.3.1)

Sgravity =

∫
d4x

∫ L

−L

dy
√
−g5(2M3

5R
(5) − Λ5) (2.3.2)

Shid = τhid

∫
d4xdy

√
−ghid

√
gyδ(y) (2.3.3)

Svis = τvis

∫
d4xdy

√
−gvis

√
gyδ(y − L). (2.3.4)

where M5 is the fundamental mass scale in the five-dimensional spacetime, τ is the
absolute tension of branes, the subscript ”5” means five-dimensional values, ”vis”
and ”hid” mean values on the visible brane and hidden brane respectively. The
five-dimensional Einstein equations are

GAB = RAB − 1

2
gABR =

1

2M3
(Λ5 + τvisgαβδ

α(y − L)Aδ
β(y − L)B

+τhidgαβδ
α
A(y)δ

β
B(y)). (2.3.5)

Since the solution of these equations should fit the real world, we require the metric
should preserve the Poincare invariance. This leads to the following Ansatz:

ds2 = e−2A(y)ηαβdx
αdxβ + dy2. (2.3.6)

The prefactor e−2A(y), called the ”warp factor”, is written as the exponential for
convenience. Its dependence on the extra coordinate y causes this metric to be non-
factorizable, which means that, unlike the metrics appearing in the usual Kaluza-
Klein scenarios, it cannot be expressed as a direct product of the four-dimensional
Minkowski spacetime and a manifold of extra dimensions.
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To determine the A(y), we must calculate (2.3.5) with this Ansatz. The corre-
sponding (non-vanishing) Christoffel symbols, Ricci tensor and Ricci scalar are

Γ5
αβ = A′e−2Aηαβ , (2.3.7)

Rαβ =
(
A′′ − 4A′2

)
e−2Aηαβ , (2.3.8)

R55 = 4A′′ − 4A′2 , (2.3.9)

R = 8A′′ − 20A′2 , (2.3.10)

respectively, where the primes denote the derivatives with respect to y.
The (5, 5) component of Einstein equation gives

G55 = 6A′2 =
−Λ5

2M3
≡ k2. (2.3.11)

where the prime means differentiation respect to y. In order for A to have a real
solution, Λ5 must be negative, and it means that the space between the branes is set
to be Anti-de Sitter space. Anti-de Sitter spacetime is defined as the homogenous
spacetime with a negative cosmological constant. Since M and Λ5 are constants, we
denote the RHS of (2.3.11) as k2. Also, (2.3.11) yields l−2 as the curvature radius
of Anti-de Sitter space. So, l means the scale of extra dimension. Integrating over
y and considering the orbifold symmetry, we get

A(y) = k|y|. (2.3.12)

We get the background metric in the Randall-Sundrum model as

ds2 = e−2k|y|ηµνdx
µdxν + dy2 (2.3.13)

with −L ≤ y ≤ L.
Next, we look at the µν components of Einstein equations. The Einstein tensor

is
Gµν = (6A′2 − 3A′′)gµν . (2.3.14)

Also, from (3.8) we have
A′ = sgn(y)k. (2.3.15)

The term sgn(y) may be written as a combination of Heaviside function as

sgn(y) = Θ(y)−Θ(−y). (2.3.16)

The heaviside function is defined as

Θ(y) =

{
1 (y > 0)

0 (y < 0)
(2.3.17)
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Its derivative is the delta function. Let us consider the branes located at y = 0
and y = L:

A′′ = 2k(δ(y)− δ(y − L)) (2.3.18)

Plugging those results into (3.10) gives

Gµν = 6k2gµν − 6k(δ(y)− δ(y − L))gµν . (2.3.19)

Comparing this to the energy-momentum tensor, we get the relations:

−Λ5

2M3
= 6k2 (2.3.20)

τhid = −τvis = 12kM3. (2.3.21)

So, the absolute values of the tension on each brane coincide, but their signatures
are opposite. Moreover, we need the fine-tuning between Λ5 and τ , in order to
reconstruct the four-dimensional Minkowski spacetime.

2.3.2 Exponential hierarchy

Given the metric in the RSI model, we look at how hierarchy problem is solved.
In the Standard Model (SM) of particle physics, the mass of W and Z bosons is
generated by Higgs mechanism. The mass of the weak interaction intermediate
boson determines the range of weak interaction, and its value is determined by the
vacuum expectation value (VEV) of Higgs field. So, if the VEV of Higgs field is
suppressed on the visible brane, the hierarchy is generated.

The RS I model requires our world to have a negative tension brane. In other
words, the SM fields are confined on the visible brane whose tension is negative.
The action of Higgs field on the visible brane is

SHiggs =

∫
d4x

√
−gvis[gαβvisDαH

†DβH − λ(H†H − v2)2], (2.3.22)

where H denotes the Higgs field and v denotes the VEV of Higgs field. Using
gαβ = e−2kLηαβ, the action becomes

S =

∫
d4xe−4kL[e2kLηαβDαH

†DβH − λ(H†H − v2)2], (2.3.23)

Redefining the Higgs field as H = ekLH̃, the action becomes

SHiggs =

∫
d4x[ηαβDαH̃

†DβH̃ − λ(H̃†H̃ − (e−kLv2))2]. (2.3.24)

So, the Higgs VEV is exponentially suppressed on the ”visible” brane as

veff = e−kLv. (2.3.25)
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If the value of the bare Higgs mass is of the order of the Planck scale, the physical
Higgs mass could be warped down to the weak scale. Since MEW ≃ 10−16Mpl, the
appropriate value for the size of the extra dimension is given by

kL ≃ ln1016 ≃ 35. (2.3.26)

It’s necessary to know whether the strength of gravity on the brane is affected
by this mechanism. To check it, we need to get the four dimensional gravitational
action from the five dimensional action,

S =M3
5

1− e−2kL

k

∫
d4x

√
−g0

(4)
R(hαβ) (2.3.27)

where

M2
pl =M31− e−2kL

k
. (2.3.28)

We see that it weakly depends on L. So, if kL becomes large, Mpl is not suppressed.

Figure 2.4: Generating the exponential hierarchy.

2.4 Randall-Sundrum II brane model

The RSII model is a single brane model, which is obtained by removing the negative
tension brane to y → ∞ in the RSI model [11]. This means we are living in the
positive tension brane in the RSII, and this model dose not solve the hierarchy
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problem. On the other hand, this model succeeds in introducing infinitely large
extra dimensions.

In general, introducing the infinitely large extra dimensions breaks Newton’s law.
In the n dimensional spacetime, Newton’s law becomes:

F = GN
mM

rn−2
(2.4.1)

So, introducing the infinitely large extra dimensions appears to be forbidden. But
RSII reconstructs the four-dimensional effective gravity by confinement of the gravi-
ton zero mode on the brane.

It can be verified by considering the metric of RSI and calculating the potential
for the graviton zero-mode and the KK mode. Although detailed calculation is not
carried out here, the zero-mode is localized in the positive tension brane and the KK
mode can be propagated to extra dimensions. Calculating the potential of graviton’s
zero-mode and the KK mode, one can reconstruct the four-dimensional gravity if
the correction of the graviton KK mode is small enough.

Here, we consider the contribution of KK gravitons exchange into gravitational
potential on the brane . Each KK graviton produces the potential of Yukawa type,
so the total contribution is

VKK(r) = −(5)Gm1m2

∫ ∞

0

dm[hmµν(0)]
2 e

−mr

r
(2.4.2)

≈ −const
GNm1m2

r

1

r2k2
(2.4.3)

Since, the graviton zero mode affects the conventional Newton potential, the total
gravitational potential is

V (r) = GN
m1m2

r
(1 +

α

r2k2
) (2.4.4)

where α is a constant.
This means, if r is large, the correction term can be neglected. Also, the cor-

rection term must be neglected in the r ∼ O(mm) scale, because Newton’s law is
confirmed down to the scale of O(mm) from experiments. This fact restricts the
fundamental mass scale. To neglect the correction term, we require

k−1 ≲ 0.1mm. (2.4.5)

In RSII model, the Planck mass is determined from (2.4.5) by removing the brane,
y → ∞:

M2
pl =

M3

k
(2.4.6)

So, using this relation, we get the restriction of the fundamental mass scale:

M ≳ 1010GeV (2.4.7)

29



2.5 Randall-Sundrum Brane-World in Modified

Gravity

The success of brane-world poses the question of its stability against possible modi-
fications of Einstein gravity. Such modifications are inevitable because the Einstein
gravity is known to be non-renormalizable, either in four or higher spacetime di-
mensions. In this section we positively answer this question by modifying gravity
in five spacetime dimensions via adding the simplest higher-order term proportional
to the scalar curvature squared, in the context of the RSI brane-world model.

2.5.1 Setup

Our gravitational action in five dimensions reads

Sgr. =
1

2κ25

∫
d5X

√
−g5(R + αR2 − Λ) , (2.5.1)

where we have introduced the gravitational coupling constant κ5, the spacetime
scalar curvature R, the modified gravity coupling constant α, and a cosmological
constant Λ.

As in the RSI model, we introduce a ’visible’ brane (where SM fields are confined)
located at y = 0 with tension τRS, and a ’hidden’ brane located at y = L and having
the negative tension −τRS, where the coordinate y parametrizes extra dimension
with the orbifold identification −y ∼ y. Accordingly, our full action is given by

S = Sgr. + Svis. + Shid. , (2.5.2)

where

Shid. = −τRS

∫
d4xdy

√
−g δ(y − L) , (2.5.3)

Svis. = τRS

∫
d4xdy

√
−g δ(y) . (2.5.4)

2.5.2 Duality transformation to scalar-tensor gravity

Let us replace R+αR2 by (1+ 2αB)R−αB2 in the gravitational action (2.5.1), by
using a new scalar field B in five dimensions, as

Sgr. =
1

2κ25

∫
d5X

√
−g5[(1 + 2αB)R− αB2 − Λ] . (2.5.5)

The equation of motion of the field B is algebraic and reads B = R. Hence, after
substituting it back to the action (2.5.5) we get the equivalent action (2.5.1).
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The action (2.5.5) can be brought to Einstein frame by a Weyl transformation
in five-dimensions.

gAB = Ω−2g̃AB,
√
−g = Ω−5

√
−g̃ , (2.5.6)

with a suitably chosen factor Ω. By using the induced relation

R = Ω2[R̃ + 8□̃f − 12g̃ABf,Af,B] , (2.5.7)

where the tildes refer to the transformed quantities, and the definitions

f = lnΩ and f,A =
∂AΩ

Ω
, (2.5.8)

we find the gravitational action as follows:

Sgr. =
1

2κ25

∫
d5X

√
−g̃Ω−5[(1+2αϕ)Ω2(R̃+8□̃f−12g̃ABf,Af,B)−αB2−Λ] . (2.5.9)

Hence, to get the transformed gravitational action in Einstein frame, we set

Ω3 = e3f = 1 + 2αB . (2.5.10)

It yields

f =
1

3
ln(1 + 2αB) (2.5.11)

and

Sgr. =
1

2κ25

∫
d5X

√
−g̃[R̃− 12g̃AB∂Af∂Bf − e−5f (αB2 + Λ)] . (2.5.12)

A canonically normalized scalar kinetic term is obtained after rescaling

ϕ = 2
√
3f/κ , (2.5.13)

so that we find

B =
exp

(√
3κϕ
2

)
− 1

2α
(2.5.14)

and the scalar potential

V (ϕ) =
1

8ακ2

[
exp

(
κϕ

2
√
3

)
− 2 exp

(
− κϕ√

3

)
+ (1 + 4αΛ) exp

(
− 5κϕ

2
√
3

)]
.

(2.5.15)
As a result, the gravitational action takes the form

Sgr. =
1

2κ2

∫
d5x
√

−g̃R̃ +

∫
d5x
√

−g̃
[
−1

2
g̃AB∂Aϕ∂Bϕ− V (ϕ)

]
. (2.5.16)

Our main result of this Subsection is the scalar potential (2.5.15) induced by the
modified (R +R2) gravity in five spacetime dimensions.
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2.5.3 Scalar dynamics in RSI brane-world

As is demonstrated in the previous Subsection, the net effect of adding the R2 term
to the gravitational action amounts to the presence of the extra dynamical scalar
field ϕ minimally coupled to gravity and having the scalar potential (2.5.15) in five
dimensions.

Note that the five-dimensional cosmological constant Λ enters both (2.5.15) and
(2.5.16) via the factor

β = 1 + 4αΛ , (2.5.17)

while the scalar potential is bounded from below provided that

β > 0 . (2.5.18)

In addition, demanding the five-dimensional cosmological constant to be negative,
as is needed in the RSI model, we get

β ≤ 1 . (2.5.19)

The profile of the scalar potential at β = 1/2 is given in Figure 2.5.

Figure 2.5: The profile of the scalar potential 8ακ2V (ϕ) = Ṽ (ϕ̃) for ϕ̃ = κ
2
√
3
ϕ and

β = 0.5. The value of the scalar potential at its minimum is given by Ṽ (ϕ̃0) ≈ −0.81.
There are two solutions to V = 0: one at ϕ̃left ≈ −0.4 and another at ϕ̃right ≈ 0.17,
on the left and on the right of the AdS minimum, respectively.

The minimum of the scalar potential (2.5.15) is achieved at

ϕ̃0 =
κ

2
√
3
ϕ0 =

1

3
ln
(
−2 +

√
4 + 5β

)
(2.5.20)

so that, in particular, ϕ̃0 = ϕ0 = 0 for β = 1.
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The value of the scalar potential at its minimum for any 0 < β ≤ 1 is given by

8ακ2V (ϕ0) = Ṽ (ϕ̃0) =
−6
(√

4 + 5β − 2− β
)(

−2 +
√
4 + 5β

)5/3 . (2.5.21)

The Ṽ0(ϕ̃0) is an increasing negative function of β for 0 < β < 1, and it vanishes at
β = 1.

Since β = 1 implies Λ = 0, we assume that 0 < β < 1 in what follows. Then the
value of the scalar potential at its minimum, defined by (2.5.21), is always negative,
which corresponds to an AdS vacuum.

2.5.4 Modified RSI model

The Einstein equations for the action (2.5.16) in five dimensions read

G̃AB = R̃AB − 1

2
g̃ABR̃ = κ2TAB , (2.5.22)

where we have introduced the total energy-momentum tensor

TAB = T ϕ
AB + T vis.

AB + T hid.
AB (2.5.23)

as a sum of three contributions,

T ϕ
AB = ∂Aϕ∂Bϕ+ g̃AB

(
−1

2
g̃MN∂Mϕ∂Nϕ− V (ϕ)

)
, (2.5.24)

T hid.
AB = e

− 5κ
2
√
3
ϕ
g̃ABτRSδ(y − L) , (2.5.25)

T vis.
AB = −e−

5κ
2
√
3
ϕ
g̃ABτRSδ(y) . (2.5.26)

The RS Ansatz for the five-dimensional spacetime metric with the four-dimensional
Poincaré symmetry is given by

ds2 = e−2Aηµνdx
µdxν + dy2 , (2.5.27)

where the warp factor A(y) only depends upon the coordinate y of the hidden (fifth)
dimension,and ηµν is Minkowski metric in four other dimensions.

From equations (2.3.8)∼(2.3.10), the Einstein equations take the form

G55 = 6(A′)2 = κ2T55 = κ2
[
1

2
(ϕ′)2 − V (ϕ)

]
, (2.5.28)

Gµν = −3
(
A′′ + 2A′2

)
e−2Aηµν = κ2Tµν , (2.5.29)

Tµν = g̃µν

[
−1

2
g̃55(ϕ′)2 − V (ϕ)

]
(2.5.30)

+ e
− 5κ

2
√
3
ϕ
e−2AηµντRSδ(y − L) (2.5.31)

− e
− 5κ

2
√
3
ϕ
e−2AηµντRSδ(y) , (2.5.32)
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where we have assumed that the scalar field ϕ only depends upon y, because it is
also required by the four-dimensional Poincaré invariance (on the visible brane).

The equation of motion of the scalar field ϕ(y) coupled to gravity reads

ϕ′′ + 4A′ϕ′ +
V (ϕ)

dϕ
= 0 . (2.5.33)

As is already seen in Figure 2.5, the scalar potential is very (exponentially) steep,
whereas the right-hand-side of equation (2.5.28) must be positive, so that a slow roll
is impossible. Therefore, the scalar field is quickly at its minimum (AdS vacuum)
ϕ0 in five dimensions.

We numerically verified the scalar stabilization with the potential (2.3.18) by
using Runge-Kutta method and the MAXIMA software in application to a system
of two coupled ordinary differential equations (2.5.28) and (2.5.33). When choosing
the parameters as β = 1/2 (as in Figure 2.5) and α = 1/96 (it fixes the scale of
V in equation (2.5.33), the initial conditions ϕ′ = V = A′ = 0 are consistent with
(2.5.28). The corresponding numerical solutions to the functions ϕ̃(y) and A′(y) are
given in Figure 2.6. We conclude that the functions ϕ̃(y) and A′(y) quickly approach
constant values indeed, independently upon their initial conditions.
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Figure 2.6: (a) the functions ϕ̃(y), and (b) the functions A′(y), with the ”left” (red)
and ”right” (blue) initial conditions, respectively.

Once the scalar field is at its minimum (AdS vacuum) ϕ0 in five dimensions, the
standard RSI scenario applies, being described by the solution

A(y) = k|y| , −L ≤ y ≤ L , k > 0 . (2.5.34)

In particular, the size L of the 5th dimension is related to the Planck mass MPl in
four dimensions as

κ2M2
Pl =

1− e−2kL

2k
. (2.5.35)
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All that is consistent with the other Einstein equations provided that

k2 = −κ2V (ϕ0) ≡ −κ2Vmin and τRS = 12k . (2.5.36)

Then the negative cosmological constant in five dimensions is compensated on the
visible brane by its tension, so that we get a Minkowski vacuum there.

It is worth mentioning that the effective value of τRS gets modified in our ap-

proach against the RSI one by the factor of e
− 5κ

2
√
3
ϕ0 , because of equations (2.5.25)

and (2.5.26).
As in [10], the hierarchy between the electro-weak scale and the Planck scale

MPl in four dimensions (on the visible brane) is achieved via the presence of the
exponential factor e−kL induced by the extra dimension in the vacuum expectation
value of Higgs field, so that we must require kL ≈ ln 1016 ≈ 35. Then the exponential
term in equation (2.5.36) becomes very small and can be ignored. The Newtonian
limit of RSI model leads to the similar exponentially small corrections to Newton
law of gravity, which are not in conflict with observations.

2.5.5 Summary of Section 2.5

Given the phenomenological viability of Randall-Sundrum brane world, as the estab-
lished and reasonable alternative to Kaluza-Klein compactification, it makes sense
to analyze stability of the RS brane-world against possible modifications of gravity,
as well as against quantum gravity corrections. In our investigation, we did a small
step in this direction by proving stability of the RSI model against the simplest mod-
ification of the higher-dimensional gravity described by adding the scalar curvature
squared term in five dimensions.

An impact of the R2-modified gravity on the RSI model can be simply de-
scribed in terms of a single dynamical scalar field with the particular scalar potential
(2.5.15). It is clear from our construction that this scalar has the gravitational origin
as spin-0 part of five-dimensional spacetime metric. We found that the value of the
RSI parameter k is determined by dynamics of that scalar in the fifth dimension.
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Chapter 3

Cosmological inflation from higher
dimensions

The purpose of studying cosmology is to explain how the Universe began, and predict
what will happen in the future. Currently, from the observation of CMB etc., the
evolution process from 10−22 seconds to the present time since the Universe began
has been coherently explained from theory and observations. However, in order to
explain the evolution up to the present Universe, it is also known that it is necessary
to introduce things that we do not understand yet (dark energy and dark matter).

Regarding the beginning of the Universe, Big Bang cosmology explains that the
Universe started from a high temperature and high density state, and continued to
expand and reached the present state, but does not explain why expansion started.
As explained below, the inflation theory was introduced to explain some problems
of Big Bang cosmology in the beginning of the expansion of the Universe.

In order to compose the galaxies and get the large scale structure of the Universe,
invisible gravitational source called dark matter is necessary. Since its observation
by electromagnetic waves is not possible, dark matter is expected to be new kind of
matter which does not have electromagnetic interaction.

As regards the future of the Universe, the latest observations found that the
Universe is in the accelerating expansion. From the Friedmann equation, since the
expansion rate should decelerate with the standard matter, the dynamics of the
Universe has the properties that cannot be explained with the known matter. This
phenomenon is called dark energy. Even more surprisingly, it is known that dark
energy occupies about 70% of the energy of the Universe.

The current standard cosmology is called ΛCDM model, where Λ is the cos-
mological constant representing dark energy, and CDM means Cold Dark Matter.
From the current observations, both dark energy and dark matter are considered to
be necessary to reproduce the present Universe.

The Friedmann-Einstein cosmology has the fundamental problems of flatness
and horizon. In order to solve them, the inflation, which is said to have caused an
exponential expansion in the early Universe, was proposed. Although inflation was
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caused by a scalar field called inflaton, the studies to explain inflaton naturally were
actively performed because it is unknown how this scalar field appears.

In chapter 1 we introduced Kaluza-Klein’s higher-dimensional gravitational the-
ory and its problems, chapter 2 focused on Randall-Sudrum model, introducing
how extra dimensions are used instead of Kaluza-Klein theory and examined five-
dimensional corrections. Our research is based on applying Randall-Sundrum ansatz
to modified gravity theory.

In this chapter, we first introduce the standard cosmology and then describe the
inflationary theory which solves the problems mentioned above.

3.1 Standard Cosmology

In Einstein’s general relativity, spacetime is dynamical. As a result, the Universe
becomes dynamical. In research about expansion and contraction, both theory and
observations have made remarkable progress so far. In this Section we describe the
standard model of cosmology that is constructed from the current observations and
theory. In addition, we describe some problems of standard cosmology, describe in-
flation proposed to solve them, and describe the modified gravity as the inflationary
model.

3.1.1 FLRW metric and Friedmann equation

In 1921, Friedmann assumed a homogeneous isotropic spacetime and derived his
equation which describes expansion and contraction of the Universe. The metric,
which represents a homogeneous isotropic spacetime is called Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric, and is written as follows:

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
(3.1.1)

where a(t) is the scale factor, K is the topologically constant:

K =


+1, closed Universe

0, flat Universe

−1, open Universe

(3.1.2)

and
dΩ2 = dθ2 + sin2 θdϕ2 (3.1.3)

The spatial part of FLRW metric (in square brackets) describes the maximally
symmetric three-dimensional space.

The energy-momentum tensor is restricted to the form of perfect fluid:

Tµν = (ρ+ p)uµuν + pgµν (3.1.4)
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where ρ is the energy density, p is the pressure, and uµ is the four-velocity of matter.
The Friedmann equation can be derived from Einstein equations by substitut-

ing the FLRW metric (3.1.1) and the energy-momentum tensor (3.1.4) to Einstein
equations:

Rµν −
1

2
Rgµν + Λgµν = κ2Tµν . (3.1.5)

One obtains from the (0, 0) component and (i, j) components of the Einstein equa-
tions that

H2 =
κ2

3
ρ− K

a2
+

Λ

3
, (3.1.6)

Ḣ = −κ
2

3
(ρ+ 3p) +

Λ

3
. (3.1.7)

The dot represents the time differentiation, and H = ȧ/a is called the Hubble func-
tion which represents the expansion rate of the Universe. Also, from the conservation
law of the energy-momentum ∇µTµν = 0, we obtain the continuity equation

ρ̇+ 3H(ρ+ p) = 0 . (3.1.8)

The energy density related to the evolution of the Universe changes as the scale
factor evolves. This is determined by the equation of state, and is expressed as
follows:

ρ = wp , w = const. (3.1.9)

By the substituting this equation to (3.1.8), we obtain

ρ̇

ρ
= −3(1 + w)

ȧ

a
(3.1.10)

and this means
ρ ∝ a−3(1+w) (3.1.11)

The w depends on the kind of energies: for example, the energy density of a non-
relativistic matter decreases in the inverse proportion to the volume as ρM ∝ a−3.
In summary, the equations of state classified as follows:

w =


0 , matter
1
3
, radiation

−1 , dark energy (cosmological constant)

(3.1.12)

The ρ in the Friedmann equation (3.1.6) includes all of the matter, it can be repre-
sented as ρ = ρm + ρr + ρΛ.
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3.1.2 Cosmological parameters and current observations

The parameters that characterize the Friedmann equation are called cosmological
parameters, and they are determined by current cosmological observations. The
subscript 0 is attached to the amount at the current time, and the current Hubble
parameter H0 is called the Hubble constant. Considering the Friedmann equation at
the current time, assuming Λ = 0, the energy density, when the curvature of space
becomes zero, is

ρc =
3H2

0

κ2
(3.1.13)

and is called the critical density. Due to this critical density, the current energy
density, the cosmological constant, and spatial curvature are conventionally divided
by ρc, in order to get the dimensionless cosmological parameters are defined as
follows:

Ωm =
ρm
ρc
, Ωr =

ρr
ρc
, ΩΛ =

Λ

ρc
, ΩK = − K

(aH0)2
(3.1.14)

From these, Friedmann equation becomes

1− Ω = ΩK (3.1.15)

where Ω = Ωm +Ωr +ΩΛ. These Ω’s correspond to the parts of each type of energy
that exist in the Universe. In addition, in terms of the cosmological parameters, the
Friedmann equation reads

ȧ2 = H2
0

[
Ω0,M

a
+

Ω0,r

a2
+ Ω0,K + Ω0,Λa

2

]
(3.1.16)

Therefore, the expansion of the Universe is determined by the cosmological Ω pa-
rameters.

The values of cosmological parameters are determined by current observations of
type Ia supernova, the Cosmic Microwave Background (CMB) and baryonic acoustic
oscillations with the results [32],

H0 = 67.36± 0.54[km s−1Mpc−1] , Ω0,m = 0.0484 , Ω0,CDM = 0.258 ,

Ω0,Λ = 0.6847± 0.0073 , Ω0,r = 0.0016 (3.1.17)

3.2 Inflation

Sato [13] and Guth [14] independently proposed the inflation paradigm for solving
the problem of Big Bang cosmology. Prior to that, Starobinsky explained that the
Universe could accelerate and expand due to the quantum gravity effects. The last
model is called the Starobinsky model, and even now it is well matched with the
observation. Details of this model will be discussed below.
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3.2.1 Problems of standard cosmology

There were two major problems in the standard Big Bang cosmology such as the
flatness problem and the horizon problem. And inflation was introduced to solve
them. We discuss the mechanism of Inflation in the next section, in order to show
how these problems are solved.

1. Flatness problem
As is shown in the previous section, it is known that the curvature of the
present Universe is almost zero. Let us consider the early Universe and Fried-
mann equation (3.1.14). If Ω is a bit larger than 1, the Universe collapses
immediately, and if it is even smaller than 1 it expands at once. In other
words, in the early Universe, Ω has to take a value very close to 1. This means
the curvature of the Universe also has to take a value very close to zero in the
early Universe. But there is no good reason why the curvature of the Universe
is almost zero without inflation.

An inflationary solution is very effective in erasing memory of what happened
before it, so its initial conditions become irrelevant. The attractor drives Ω to
1 during inflation — it gives a solution to the flatness problem.

2. Horizon problem
When considering the FLRW metric, we assumed that the Universe is ho-
mogeneous and isotropic. This means that there is no special place in the
Universe. It is confirmed by CMB observations that the temperature distri-
bution is isotropic with accuracy of 10−5. However, there is a contradiction
because the regions exceeding the range of causality (Hubble horizon) have
the same information.

Inflation ä > 0 implies
d

dt

(
H−1

a

)
=

−ä
ȧ2

< 0. (3.2.1)

Hence, during inflation, the observed (causally connected) part of the Universe
was inside the Hubble horizon H−1/a, so there was enough time for everything
to be homogenized.

3.2.2 Slow-roll inflation

There are several types of inflation models that solve the above problems, but we
introduce only slow-roll inflation as the best solution.

Inflation is thought to be caused by a scalar field called inflaton. The energy
density and pressure of the scalar field are

ρ =
1

2
ϕ̇2 + V (ϕ) (3.2.2)
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p =
1

2
ϕ̇2 − V (ϕ) (3.2.3)

where V (ϕ) is the potential of inflaton. Substituting this to Friedmann equation
yields

H2 =
κ2

3

[
1

2
ϕ̇2 + V (ϕ)

]
. (3.2.4)

Also, from the equation (3.1.8), the dynamics of the scalar field is governed by

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (3.2.5)

In order to solve the problems we mentioned above, the inflation must continue
long enough. For that purpose, the potential energy should be more dominant than
the kinetic energy, and should be enough time for this. This statement is called
the slow-roll condition and is represented as 1

2
ϕ̇2 ≪ V (ϕ), ϕ̈ ≪ 3Hϕ̇. Under these

conditions, equations (3.2.4) and (3.2.5) can be approximated to the form:

H2 ≃ κ2

3
V (ϕ) (3.2.6)

3Hϕ̇ ≃ −V (ϕ) (3.2.7)

The slow-roll condition can be represented them as the restrictions for inflaton po-
tential as follows:

ϵ ≡ 1

2κ2

(
V ′

V

)2

≪ 1, η ≡ 1

κ2

∣∣∣∣V ′′

V

∣∣∣∣≪ 1 (3.2.8)

So, the potential of slow-roll inflation must satisfy these conditions.
The duration of inflation is measured by the e-folding number as the amount

representing how big the scale factor has become, and it is defined as follows:

Ne ≡ ln
af
ai

=

∫ tf

ti

Hdt = −κ2
∫ ϕf

ϕi

V (ϕ)

V ′(ϕ)
dϕ (3.2.9)

From this, in order for Ne to be sufficiently large, the potential should have a part
with a small inclination (plateau).

There are also the tensor-to-scalar ratio r and the power spectral index ns from
the observations discriminating the models of inflation and related to tensor and
scalar fluctuations respectively, during inflation. According to Planck satellite ob-
servations [33], the tensor-to-scalar ratio and power spectral index are restricted
to

r < 0.064 , ns ≈ 0.9649± 0.0042. (3.2.10)

Any viable inflationary model must satisfy these restrictions. The Starobinsky model
is well known as the inflationary model that well meets these restrictions.

Since inflation requires a scalar field, the origin of this scalar field is widely
discussed. Modified gravity does lead to such new inflaton field. So that, the
inflation in modified gravity has gravitational origin due to geometry of spacetime.
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3.3 Modified gravity

In the Einstein equations, the left-hand side represents the geometry of spacetime
and the right-hand side represents the distribution of matter. The modified gravity is
a theory which has modified Einstien-Hilbert action, and it corresponds to modifying
the left side of the Einstein equation. The advantage to think like this is that we can
incorporate the effects of inflation and dark energy into the theory as a geometric
property of spacetime. Here, we introduce the f(R) theory which is often used for
construction of inflation and dark energy models.

3.3.1 f(R) gravity

The f(R) theory is a theory in which the scalar curvature of Einstein-Hilbert action
is replaced with arbitrary function of scalar curvature, f(R). The model is decided
by what kind of function f(R) to use. For example, as will be specifically described
below,

f(R) = R +
1

6M2
R2 (3.3.1)

is the inflation model called Starobinsky model.
The action of f(R) gravity is

S =
1

2κ2

∫
dDX

√
−gDf(R) + Lm (3.3.2)

where Lm is Lagrangian of matter fields. The energy momentum tensor of the matter
is defined as

TAB =
−2√
−gD

δLm

δgAB
(3.3.3)

The field equation of f(R) gravity can be obtained by varying the action (3.3.2):

f ′(R)RAB − 1

2
f(R)gAB − [∇A∇B − gAB□]f ′(R) = κ2TAB (3.3.4)

where f ′(R) = df/dR, □ ≡ ∇A∇A, and using the relations:

δf(R) =
∂f(R)

∂R
δR (3.3.5)

δ
√
−g = −1

2

√
−ggABδg

AB (3.3.6)

δR = +RABδg
AB + gAB∇C∇Cδg

AB −∇A∇Bδg
AB (3.3.7)
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3.3.2 From f(R) gravity to scalar-tensor gravity

The f(R) gravity can be made to have the same form as Brans-Dicke theory by
introducing an auxiliary field. Consider the following action that introduces a new
field:

S =
1

2κ2

∫
d4x

√
−g[f(χ) + f ′(χ)(R− χ)] + SM(gµν , ψ) (3.3.8)

Here, when we vary this action with respect to χ, we obtain

f ′′(χ)(R− χ) = 0 (3.3.9)

From this equation, if f ′′(χ) ̸= 0, we get χ = R. Substituting this to the action is
equivalent to action (3.3.2), so it can be said that these two actions are classically
equivalent.

We redefine f ′(χ) = ϕ, so that the action becomes

S =
1

2κ2

∫
d4x

√
−g[ϕR− V (ϕ)] + SM(gµν , ψ) (3.3.10)

where V (ϕ) is
V (ϕ) = χ(ϕ)ϕ− f(χ(ϕ)) (3.3.11)

The Brans-Dicke theory is defined by the action

S =
1

2κ2

∫
d4x

√
−g
[
ϕR− ωBD

2ϕ
gµν∂µϕ∂ν − V (ϕ)

]
+ SM (3.3.12)

Here ωBD is called Brans-Dicke parameter, and, hence, f(R) theory is equivalent to
the ωBD = 0 Brans-Dicke action.

Next, we consider the Weyl transformation

gµν = Ω−2g̃µν ,
√
−g = Ω−4

√
−g̃ (3.3.13)

Under this transformation, Ricci scalar transforms [34] as

R = Ω2(R̃ + 6□ω − 6g̃µνωµων) (3.3.14)

where

ω = lnΩ, ωµ =
∂µΩ

Ω
(3.3.15)

Substituting these equations to the action (3.3.10), we obtain

S =
1

2κ2

∫
d4x

√
−g (f ′(χ)R− V (χ)) (3.3.16)

=
1

2κ2

∫
d4x
√

−g̃Ω−4
[
f ′(χ)Ω2(R̃ + 6□f − 6g̃µνfµfν)− V (χ)

]
(3.3.17)
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Then, if we choose
Ω2 = f ′(χ) (3.3.18)

we obtain the action in the Einstein frame:

S =
1

2κ2

∫
d4x
√

−g̃
[
R̃− 6g̃µν∂µω∂νω − f ′(χ)−2V (χ)

]
(3.3.19)

Moreover, to make the scalar field canonical, we rescale the scalar field as

ϕ =

√
6

κ2
ω (3.3.20)

So, we obtain the gravitational action with the canonical scalar field in the Einstein
frame,

S =
1

2κ2

∫
d4x
√

−g̃R̃ +

∫
d4x
√

−g̃
(
−1

2
g̃µν∂µϕ∂νϕ− V (ϕ)

)
, (3.3.21)

where the potential V (ϕ) is

V (ϕ) =
f ′R− f

2κ2f ′2 . (3.3.22)

Therefore, though the f(R) theory is a theory which modified Einstein’s theory of
gravity, by performing the field redefinitions it becomes the theory of the standard
(Einstein) gravity theory with the physical scalar field.

3.3.3 Starobinsky model

Starobinsky considered the quantum effect of gravity and added a correction term
to Einstein-Hilbert action. He showed that de Sitter spacetime will be realized. At
that time there was no inflation theory, but this model still remains strong and
survives as a model consistent with the observations [33].

Here, although it is different from the method of Starobinsky at the time, we
show that this model causes inflation by the method used in f(R) theory, and derive
the observables. Starobinsky model is the f(R) theory with the function chosen as

f(R) = R +
1

6M2
R2 (3.3.23)

We start from the action

S =
1

2κ2

∫
d4x

√
−g
(
R +

1

6M2
R2

)
, (3.3.24)

and perform the following field substitution:

R +
1

6M2
R2 → (1 + χ)R− 3

2
M2χ2. (3.3.25)
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Then, the action becomes

S =
1

2κ2

∫
d4x

√
−g
[
(1 + χ)R− 3

2
M2χ2

]
(3.3.26)

If we take the variation with respect to χ, we obtain

χ =
1

3M2
R . (3.3.27)

The equivalence of the actions (3.3.24) and (3.3.26) can be confirmed by substituting
(3.3.27) to (3.3.26). Next, performing the Weyl transformation g̃µν = Ω2gµν , we
obtain

S =
1

2κ2

∫
d4x
√

−g̃Ω2

[
(1 + χ)(R̃ + 6□f − 6g̃µνωµων)−

3

2
M2χ2

]
(3.3.28)

To make the action to the Einstein frame, we choose

Ω−2 = (1 + χ) (3.3.29)

and after rescaling the scalar field, we find the canonical form

S =
1

2κ2

∫
d4x
√

−g̃R̃ +

∫
d4x
√
−g̃
(
−1

2
g̃µν∂µϕ∂νϕ− V (ϕ)

)
(3.3.30)

where

ϕ =

√
6

κ2
χ (3.3.31)

and

V (ϕ) =
3

4

M2

κ2

(
1− e−

√
2
3
κϕ
)2

(3.3.32)

We show the shape potential in the Figure 3.1. This potential is going to satisfy the
slow-roll condition because it has a plateau, and the slow-roll parameters are less
than one.

Generally, the inflaton potential causing slow-roll inflation can be approximated
to the following form during inflation:

V (ϕ) ≈ V0 − V1e
−αϕ , (3.3.33)

This means, the slow-roll inflation is characterized by three parameters: V0, V1 and
α. The V1 is obviously unimportant because it can be easily changed to any desired
value by a shift of the field ϕ in equation (3.3.33). The V0 determines the scale of
inflation. And the value of α determines the key observational parameter r related
to primordial gravity waves and known as the tensor-to-scalar ratio,

r =
8

α2N2
e

(3.3.34)
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Figure 3.1: The most important feature of Starobinsky inflaton potential is having
a plateau. This plateau is crucial for the slow-roll condition and can cause inflation
for a sufficient time during the inflaton rolls down the plateau. Also, the minimum
value of potential is Minkowski vacuum.

As regards the other CMB spectral tilts (inflationary observables), the scalar
spectral index ns and its running dns/dlnk, their values derived from the potential
(3.3.32) are the same as those in the Starobinsky case, namely

ns ≈ 1− 2

Ne

and
dns

d ln k
≈ −(1− ns)

2

2
≈ − 2

N2
e

. (3.3.35)

The Planck data [33] sets the upper bound on r (with 95% of CL) as

r < 0.064, nS = 0.9649± 0.0042,
dns

d ln k
= −0.005± 0.013. (3.3.36)

It can be confirmed the Starobinsky model satisfies the observed values by sub-

stituting αS =
√

2
3
and the best fit Ne = 55 to (3.3.34), which leads to

r ∼ 0.004, ns ∼ 0.96 (3.3.37)

3.4 Inflation from (R+γRn−2Λ) Gravity in Higher

Dimensions

The higher-dimensional (R+ γRn − 2Λ) gravity models and their spontaneous com-
pactification to four dimensions were systematically studied in Refs. [35–38] that
ruled out their phenomenological applicability to dark energy (because of negative
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cosmological constants) and early Universe inflation (because of low values of the
scalar index ns and the e-foldings number Ne). First, we relax the requirements of
Refs. [35–37] by dropping the condition of spontaneous compactification, i.e. we do
not impose the equations of motion in D dimensions, and ignore all moduli related
to the compact dimensions. The compactification details should be addressed in
a more fundamental framework (like supergravity or superstrings) with more fields
representing extra degrees of freedom and more couplings involved. In this section,
we simply assume that it is possible before inflation. The four-dimensional inflation-
ary models based on a higher-dimensional (R + γRn − 2Λ) gravity were previously
considered in Ref. [38], though only for D < 8 where they were found to be not
viable because of low values of ns and Ne.

We study the (R + γRn − 2Λ) gravity models in higher (D > 4) spacetime
dimensions with the cosmological constant Λ, in an effort to derive some scalar
potentials of the type (3.3.32) or (3.3.33), leading to the very specific values of α
that have their origin in a higher-dimensional modified gravity. We stress that we
do not mean a cosmological inflation in higher dimensions. We assume that our
Universe was born multi-dimensional, and then four spacetime dimensions became
infinite, while the others curled up by some unknown mechanism before inflation.
We exploit the fact that the Weyl transform, as part of the duality transformation
between Jordan and Einstein frames, depends upon D [39,40]. We apply the duality
transformation to f(R) gravity in D dimensions, get the scalaron (inflaton) scalar
potential, and after that dimensionally reduce it (by integrating over flat compact
dimensions) to four (infinite) spacetime dimensions. The cosmological inflation is
assumed to be taking place after compactification (and after moduli stabilization, if
any).

3.4.1 Our setup

We denote spacetime vector indices inD dimensions by capital latin lettersA,B, . . . =
0, 1, . . . , D− 1, and spacetime vector indices in four dimensions by lower case greek
letters α, β, . . . = 0, 1, 2, 3. In this Section we proceed along the lines of Ref. [18],
though in D dimensions and with arbitrary n.

Our starting point is the following gravitational action in aD-dimensional curved
spacetime:

Sgrav. =
1

2κ2

∫
dDx

√
−gD(R + γRn − 2Λ) , (3.4.1)

where κ > 0 is the gravitational coupling constant of (mass) dimension 1
2
(−D + 2),

γ > 0 is the new (modified gravity) coupling constant of (mass) dimension (−2n+2),
and Λ is the cosmological constant of (mass) dimension 2, in D dimensions. Unlike
Refs. [35–38], after the Legendre-Weyl transform of the action (3.4.1) to the (dual)
scalar-tensor gravity in D dimensions (see below), we demand the scalar potential
to have an infinite plateau of a positive height (for large field values).
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After a substitution

R + γRn −→ (1 +B)R−
(

1

γn

) 1
n−1
(
n− 1

n

)
B

n
n−1 , (3.4.2)

where we have introduced the new scalar field B, the action (3.4.1) takes the form

S =
1

2κ2

∫
dDx

√
−gD

[
(1 +B)R−

(
1

γn

) 1
n−1
(
n− 1

n

)
B

n
n−1 − 2Λ

]
. (3.4.3)

The field B enters the action (3.4.3) algebraically, while its ”equation of motion”
reads B = γnRn−1. After substituting the latter back into the action (3.4.3) we
get the original action (3.4.1). Hence, the actions (3.4.1) and (3.4.3) are classically
equivalent.

Next, we apply a Weyl transformation with the space-time-dependent parameter
Ω(x),

gAB = Ω−2g̃AB,
√
−g = Ω−D

√
−g̃ , (3.4.4)

where we have introduced the new spacetime metric g̃AB in D dimensions. As a
result of this transformation, the corresponding scalar curvatures are related by

R = Ω2[R̃ + 2(D − 1)□̃f − (D − 1)(D − 2)g̃ABfAfB] , (3.4.5)

where

f = lnΩ , fA =
∂AΩ

Ω
, (3.4.6)

and the covariant wave operator □̃ = D̃AD̃A in D dimensions.
The Weyl-transformed (and equivalent via the field-redefinition (3.4.4)) action

S is given by

S =
1

2κ2

∫
dDx

√
−g̃DΩ−D[(1 +B)Ω2(R̃ + 2(D − 1)□̃f

−(D − 1)(D − 2)g̃ABfAfB)−
(

1

γn

) 1
n−1 n− 1

n
B

n
n−1 − 2Λ] . (3.4.7)

Hence, in order to get the corresponding action in Einstein frame, we should choose
the local parameter Ω as

ΩD−2 = e(D−2)f = 1 +B . (3.4.8)

We thus find

f =
1

D − 2
ln(1 +B) (3.4.9)
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and

S =
1

2κ2

∫
dDx

√
−g̃D

[
R̃− (D − 1)(D − 2)g̃AB∂Af∂Bf

− e−Df

(
1

γn

) 1
n−1 n− 1

n
B

n
n−1 − 2e−DfΛ

]
. (3.4.10)

As is clear from equation (3.4.10), we should also rescale the scalar field f , in
order to get the canonically normalized scalar kinetic terms, as

ϕ =

√
(D − 1)(D − 2)

κ2
f . (3.4.11)

As a result, in terms of the canonical scalar ϕ, we find

B = e(D−2)κϕ/
√

(D−1)(D−2) − 1 , (3.4.12)

the scalar potential

2κ2V (ϕ) =

(
1

γn

) 1
n−1
(
n− 1

n

)[
e(D−2)κϕ/

√
(D−1)(D−2) − 1

] n
n−1 ×

× e−Dκϕ/
√

(D−1)(D−2) + 2Λe−Dκϕ/
√

(D−1)(D−2) , (3.4.13)

and the standard scalar-tensor gravity action in Einstein frame in D dimensions,

S =
1

2κ2

∫
dDx

√
−g̃DR̃ +

∫
dDx

√
−g̃D

[
−1

2
g̃AB∂Aϕ∂Bϕ− V (ϕ)

]
. (3.4.14)

We assume that the D-dimensional action (3.4.14) is then ”compactified” to four
infinite spacetime dimensions before inflation. Applying dimensional reduction (i.e.
taking all fields to be independent upon compact flat (D− 4) dimensions), we have∫

dDx = VD−4

∫
d4x , ϕ = ϕ4/

√
VD−4 , κ = κ4

√
VD−4 , V = V4/VD−4 ,

(3.4.15)
so that κϕ = κ4ϕ4 and κ2V = κ24V4, where we have introduced the volume VD−4 of
compact dimensions, with the subscripts ”4” referring to four spacetime dimensions.

It gives rise to the standard four-dimensional action (in Einstein frame, and with
a canonical scalar ϕ4)

Sinf.[g̃4, ϕ4] =
1

2

∫
d4x
√

−g̃4R̃4+

∫
d4x
√

−g̃4
[
−1

2
g̃µν4 ∂µϕ4∂νϕ4 − V4(ϕ4)

]
(3.4.16)

that we are going to consider as our inflationary model in four spacetime dimen-
sions. In what follows we stay in four spacetime dimensions. However, the higher
dimension D and the power n enter the four-dimensional scalar potential V4(ϕ4) as
the parameters, according to equations (3.4.13) and (3.4.15).
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3.4.2 The scalar potential

To study our scalar potential in four spacetime dimensions, we rescale the relevant
quantities by introducing the notation

λ =

(
n

n− 1

)(
1

γn

)− 1
n−1

2Λ , (3.4.17)

ϕ̃ =
ϕ4√

(D − 1)(D − 2)
, (3.4.18)

and

Ṽ (ϕ̃) =
2V4(ϕ4)(

1
γn

) 1
n−1 (n−1

n

) . (3.4.19)

Then the scalar potential in D dimensions takes the simple form

Ṽ (ϕ̃) =
[
e(D−2)ϕ̃ − 1

] n
n−1

e−Dϕ̃ + λe−Dϕ̃ , (3.4.20)

where we have also used equations (3.4.13) and (3.4.15). Demanding this scalar po-
tential to have a plateau of a positive height for ϕ̃→ ∞, like that in equation (3.3.32),
we get the condition [

e(D−2)ϕ̃
] n

n−1
e−Dϕ̃ = 1 (3.4.21)

that implies (cf. Refs. [37,39])

n =
D

2
. (3.4.22)

Substituting it back to equation (3.4.20) yields the potential

Ṽ (ϕ̃) =
[
1− e−(D−2)ϕ̃

] D
D−2

+ λe−Dϕ̃ . (3.4.23)

Let us write down the power D/(D − 2) = p/q in terms of mutually prime
positive integers p and q. Should q be even, it leads to the obstruction ϕ̃ ≥ 0 of
the real scalar field ϕ̃ because its scalar potential becomes imaginary for ϕ̃ < 0. For
example, it happens when D = 6 and D = 10. Avoiding such situation puts a severe
restriction on the allowed values of D in our approach. Similarly, since n is also the
power of R in equation (3.4.1), and R can take negative values, we conclude that n
must be integer and, hence, D must be even. The allowed dimensions are thus must
be multiples of four, with the lowest values beyond four being D = 8 and D = 12.
These two cases are studied in more detail in the next section.

Requiring the scalar potential to be bounded from below is needed for stability.
It the limit ϕ̃→ −∞, the leading term in the scalar potential (3.4.23) is given by

lim
ϕ̃→−∞

Ṽ (ϕ̃) ≈
[
(−1)

D
D−2 + λ

]
e−Dϕ̃ , (3.4.24)
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so that we have to restrict the parameter λ as

λ ≥ −(−1)
D

D−2 . (3.4.25)

If we require the existence of a minimum of the scalar potential, describing the
classical vacuum after inflation, we need the existence of a real (finite) solution to
dṼ
dϕ̃

= 0. We find it at

ϕ̃0 =
1

D − 2
ln
(
1 + λ

D−2
2

)
(3.4.26)

with

Ṽ (ϕ̃0) = λ
(
1 + λ

D−2
2

) −2
D−2

. (3.4.27)

It gives rise to a bit stronger condition,

λ > (−1)
2

D−2 , (3.4.28)

and amounts to λ > −1 in the allowed dimensions.
A stronger condition arises by demanding the scalar potential minimum to cor-

respond either a Minkowski or a de Sitter vacuum. According to equation (3.4.27),
Ṽ (ϕ̃0) ≥ 0 implies

λ ≥ 0 . (3.4.29)

Finally, demanding the second derivative of the scalar potential at its minimum
to be finite and positive or, equivalently, requiring a finite positive scalaron mass,
restricts λ by

λ > 0 , (3.4.30)

and implies positive cosmological constants in both D and four dimensions, because
of equations (3.4.17) and (3.4.27). Under the conditions above, with n = D

2
, we find

the four-dimensional scalar potential as

V4(ϕ4) =

(
2

γD

) 2
D−2

(
D − 2

2D

)(
1− e

−
√

D−2
D−1

ϕ4

) D
D−2

+ Λe−
√

D2

(D−1)(D−2)
ϕ4 . (3.4.31)

Taylor expansion of the potential around its minimum at ϕ
(0)
4 ,

V4(ϕ4) = V4(ϕ
(0)
4 ) +

1

2

dV 2
4 (ϕ

(0)
4 )

dϕ2
4

(ϕ4 − ϕ
(0)
4 )2 + . . . , (3.4.32)

yields the cosmological constant δ in four dimensions as

V4(ϕ
(0)
4 ) = Λ

[
1 +

γD

2

(
2D

D − 2
Λ

)D−2
2

] −2
D−2

≡ δ, (3.4.33)

51



and the inflaton mass M as

dV 2
4 (ϕ

(0)
4 )

dϕ2
4

=
2D

(D − 1)(D − 2)
Λ

[
1 +

γD

2

(
2D

D − 2
Λ

)D−2
2

]− 2
D−2

× (3.4.34)

×

[
γD

2

(
2D

D − 2
Λ

)D−2
2

]−1

≡M2 .

Equations (3.4.33) and (3.4.34) can be considered as a system of two equations
on the two parameters Λ and γ of our model, because the observational values of δ
and M are known as δ = O(10−120) and M ≈ 3× 10−6, respectively. We find

Λ
D−2
2 =

2D

(D − 1)(D − 2)
δ

D
2 M−2 + δ

D−2
2 (3.4.35)

and

γ =
4

(D − 1)(D − 2)

(
2D

D − 2

)−D−2
2

δM−2

[
2D

(D − 1)(D − 2)
δ

D
2 M−2 + δ

D−2
2

]−1

.

(3.4.36)
Because of the tiny value of the cosmological constant δ, the solutions can be greatly
simplified to

Λ = δ , (3.4.37)

as expected, and

γ =
4

(D − 1)(D − 2)

(
D − 2

2D

)D−2
2

M−2δ
4−D
2 . (3.4.38)

As a check, when D = 4 and Λ = 0, we recover the Starobinsky model of Sub-
sec. 3.3.3, with γ4 = 1/(6M2) ≈ 1

54
1012. Otherwise, for any D, we find

γ ≈ 4

9(D − 1)(D − 2)

(
D − 2

2D

)D−2
2

1012+60(D−4) . (3.4.39)

The parameter γ in D > 4 generically diverges when Λ → +0 (unless M4δD−4 =
const. > 0), which also implies δ → +0 and M → +∞ because the 2nd derivative
(3.4.34) of the scalar potential (3.4.31) becomes infinite at the minimum in this
limit. It is remarkable that a (finite) positive cosmological constant ensures M to
be finite too.

3.4.3 Examples: D = 8 and D = 12

In this Subsection, we specify our results to the two particular cases, having the
special dimensions D = 8 and D = 12, respectively, and with λ ≥ 0.

52



Figure 3.2: The profile of the four-dimensional scalar potential obtained from D = 8
dimensions. The green line describes the case of λ = 0, the blue line is of λ = 1,
and the red line is of λ = 2, respectively.

• As regards D = 8 and n = 4, the scalar potential (3.4.23) reads

Ṽ (ϕ̃) =
(
1− e−6ϕ̃

) 4
3
+ λe−8ϕ̃ . (3.4.40)

It has the absolute minimum at

ϕ̃0 =
1

6
ln
(
1 + λ3

)
, (3.4.41)

where it has a value (the cosmological constant)

Ṽ (λ) = λ(1 + λ3)−
1
3 . (3.4.42)

A profile of the four-dimensional inflaton scalar potential, originating from
D = 8, is given in Figure 3.2.

According to equation (3.4.39), the parameter γ in D = 8 has the value γ8 ≈
1

28·710
252. Since its (mass) dimension is 2 − D = −6, the relevant scale in

D = 8 is given by
γ
−1/6
8 ≈ 3.485 · 10−42MPl . (3.4.43)
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Figure 3.3: The profile of the scalar potential potential obtained from D = 12
dimensions. The green line describes the case of λ = 0, the blue line is of λ = 1,
and the red line is of λ = 2, respectively.

• As regards D = 12 and n = 6, the scalar potential (3.4.23) reads

Ṽ (ϕ̃) =
(
1− e−10ϕ̃

) 6
5
+ λe−12ϕ̃ . (3.4.44)

It has the absolute minimum at

ϕ̃0 =
1

10
ln
(
1 + λ5

)
, (3.4.45)

where it has a value (the cosmological constant)

Ṽ (λ) = λ(1 + λ5)−
1
5 . (3.4.46)

A profile of the four-dimensional inflaton scalar potential, originating from
D = 12, is given in Figure 3.3.

According to equation (3.4.39), the parameter γ in D = 12 has the value
γ12 ≈ 54

29·37·1110
492. Since its (mass) dimension is 2 − D = −10, the relevant

scale in D = 12 is given by

γ
−1/10
12 ≈ 1.696 · 10−49MPl . (3.4.47)
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3.4.4 Summary of Section 3.4

In this section we derived the inflaton scalar potential from higher (D > 4) dimen-
sions, in the context of the D-dimensional (R + γRn − 2Λ) gravity, by using the
Starobinsky model of chaotic large-field inflation in D = 4 as a prototype. We as-
sumed that a compactification of the extra dimensions took place before inflation.
We found that this requires a positive cosmological constant and n = D/2. We
calculated the corresponding scalar potential and the values of its parameters for
any D, and specified our results to the two special cases, D = 8 and D = 12. Our
models predict the viable values of ns and r for Ne around 55÷ 5.

Our scalar potentials in their slow-roll part fall into the class of the inflationary
plateau-type potentials describing chaotic large-field inflation and having the form
(3.5.70) with

α =

√
D − 2

D − 1
, (3.4.48)

because of equation (3.4.31). In particular, we have α4 = αs =
√
2/3, α8 =

√
6/7

and α12 =
√

10/11.
According to equation (3.5.72), the value of the α-parameter dictates the ob-

servable value of the tensor-to-scalar ratio r as

r =
8(D − 1)

(D − 2)N2
e

. (3.4.49)

In particular, we find r4 = 12
N2

e
, r8 = 28

3N2
e
, and r12 = 44

5N2
e
. All those values are

in agreement with current observations, and give the sharp (though very close)
predictions for future measurements of r.

The microscopic parameters of our higher-dimensional model were tuned to get
the same inflaton mass as that of the original Starobinsky model, in four dimen-
sions. It implies that inflaton oscillations after inflation, near the minimum of the
potential, will be the same too. When a conventional matter action is added to
our modified gravity model, the Weyl rescaling of metric results in the universal
couplings (via the GR covariant derivatives) of inflaton ϕ to all matter fields with
powers of exp (−ακϕ). Since the values of α we found from higher dimensions in
equation (3.4.48) are only slightly higher of the (Starobinsky) value at D = 4, while
all those couplings are suppressed by Planck mass, we expect that the D-dependence
in any reheating process will be (physically) negligible.

The predictions of this inflationary model in D = 8 and D = 12 for the CMB
observables are in agreement with the current observations. However, since dynamics
of the extra dimensions is ignored, their size is not under control, so that stabilization
of extra dimensions is still needed ― this is known as the moduli stabilization
problem in the literature.
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3.5 Inflation from higher dimensions via sponta-

neous compactification

In our previous Section, we proposed a derivation of the viable inflaton scalar po-
tential from the higher (D) dimensional (R + γRn − 2Λ) gravity, by giving up the
condition of spontaneous compactificaton of extra dimensions and ignoring the mod-
uli, i.e. just assuming that the compactification happened before inflation and it
can be made spontaneous by adding some more fields. As a result, the inflaton
scalar potential in four spacetime dimensions turns out to be dependent upon the
parameters (γ,Λ, D, n), while the viable inflationary phenomenology requires

n = D/2 , (3.5.1)

with the dimension D being a multiple of four. The condition (3.5.1) arises by
demanding the existence of a plateau with a positive height for the inflationary scalar
potential, as is apparently favoured by the Planck mission observations [32, 33, 41],
and is the case in the famous Starobinsky inflationary model (in Subsection 3.3.3),
though is in contrast to Refs. [35–38] where the scalar potential was demanded
to vanish before the onset of inflation. Our results were significantly enhanced in
Ref. [20] where a spontaneous compactification and stabilization of the volume of
extra dimensions was achieved by adding a single (p− 1)-form gauge field having a
non-vanishing flux in compact dimensions and obeying the condition

p = n . (3.5.2)

In this section we extend our analysis in the first relevant higher dimension
D = 8, and consider an embedding of the D = 8 modified gravity model into a
(modified) D = 8 supergravity.

3.5.1 The D = 8 model and its D = 4 compactification

It is the demand of having a plateau for the scalar potential in higher D dimensions
that results in the condition (3.5.1) [19, 39]. But it is still insufficient for moduli
stabilization that requires at least one p-form field obeying the condition (3.5.2) [20].

Therefore, our minimal model in D = 8 is defined by the action

S =
M6

8

2

∫
d8X

√
−g8

[
R8 + γ8R

4
8 − 2Λ8 − gA1B1gA2B2gA3B3gA4B4FA1A2A3A4FB1B2B3B4

]
.

(3.5.3)
It depends upon two fields, a metric gAB and a 3-form gauge potential AABC , whose
field strength 4-form is F = dA, and has three parameters: the gravitational mass
scale M8, the (modified gravity) coupling constant γ8 > 0 and the cosmological
constant Λ8 > 0, all in D = 8 dimensions.
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Applying the Legendre-Weyl transform to the action (3.5.3) in D = 8 results in
the dual (classically equivalent) action

Sdual =
M6

8

2

∫
d8X

√
−g̃8

[
R̃8 − 42g̃AB∂Af∂Bf −M2

8 Ṽ (f) (3.5.4)

−g̃A1B1 g̃A2B2 g̃A3B3 g̃A4B4FA1A2A3A4FB1B2B3B4

]
, (3.5.5)

depending upon three fields, the Weyl transformed (new) metric g̃AB, the 4-form
F = dA, and the real scalaron f(X) having the scalar potential

Ṽ (f) = a−2(1− e−6f )
4
3 + 2e−8f Λ̃8 , (3.5.6)

in terms of the (dimensionless) coupling constants

γ8 ≡M−6
8 γ̃8 , Λ8 ≡M2

8 Λ̃8 ,
3

4

(
1

4γ̃8

) 1
3

≡ a−2 . (3.5.7)

Under the Weyl transform (3.4.4), the Ω-factors are cancelled against each other, so
that the action for the 4-form gauge fields in (3.5.3) remains unchanged,

S8[g̃AB, F4] = −M
6
8

2

∫
d8X

√
−g̃8 g̃A1B1 · · · g̃A4B4FA1...A4FB1...B4 . (3.5.8)

The dual action (3.5.4) has the standard form of Einstein’s gravity coupled to the
matter fields (f,A) and having the scalar potential (3.5.6) in D = 8. This scalar
potential has a plateau of the positive height a−2 for large positive values of f .

Let us consider a compactification of the D = 8 theory (3.5.4) on a 4-sphere
S4 with the warp factor χ, down to four spacetime dimensions, i.e. in a curved
spacetime with the local structure

M8 = M4 × e2χS4 . (3.5.9)

The 8-dimensional coordinates (XA) can then be decomposed into the 4-dimensional
spacetime coordinates (xα) with α = 0, 1, 2, 3, and the coordinates (ya) of four
compact dimensions of S4, with a, b, . . . = 1, 2, 3, 4. The compactification ansatz
reads

ds28 = g̃ABdX
AdXB = gαβdx

αdxβ + e2χgabdy
adyb , (3.5.10)

where gαβ = gαβ(x), gab = gab(y) and χ = χ(x), with the normalization∫
d4y

√
gy =M−4

8 . (3.5.11)

Taking into account the S4 Euler number equal to 2, yields∫
d4y

√
gyRy = 2M−2

8 , (3.5.12)
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where Ry is the scalar curvature of the sphere S4. The decomposition (3.5.10) also
implies √

−g̃8 = e4χ
√
−g4

√
gy (3.5.13)

and
R̃8 = R + e−2χRy − 8e−χ□̃eχ − 12e−2χgαβ∂αe

χ∂βe
χ , (3.5.14)

where we have introduced the Ricci scalar R and the generally covariant wave op-
erator □̃ = gαβ∇α∇β in four spacetime dimensions.

The volume V of four (compact) extra dimensions is given by

V =

∫
d4y
√

det(e2χgab) = e4χM4
8 , (3.5.15)

so that the warp factor χ can be identified with the volume modulus of the sphere
S4.

A substitution of equations (3.5.10), (3.5.13) and (3.5.14) into the action (3.4.14),
and an integration over the compact dimensions by using equations (3.5.11) and
(3.5.12), lead to the action

S4[gαβ, f, χ] =
M2

8 e
4χ0

2

∫
d4x

√
−g
(
eχ

eχ0

)4 [
R + 2M2

8 e
−2χ

+12gαβ∂αχ∂βχ− 42gαβ∂αf∂βf −M2
8 Ṽ (f)

]
, (3.5.16)

where we have introduced the vacuum expectation value ⟨χ⟩0 = χ0 = const.
The action (3.5.16) is still in a Jordan frame, so that the wrong sign of the kinetic

term of the field χ is not necessarily a problem. The Weyl transformation with the
parameter h(x) to the Einstein frame is given by

gαβ = e−2hĝαβ, h = 2(χ− χ0) . (3.5.17)

It implies
gαβ = e2hĝαβ,

√
−g = e−4h

√
−ĝ , (3.5.18)

and
R = e2h

[
R̂ + 6ĝαβ∇α∇βh− 6ĝαβ∂αh∂βh

]
. (3.5.19)

Accordingly, the action (3.5.16) gets transformed to

S4[ĝαβ, f, χ] =
M2

8 e
4χ0

2

∫
d4x
√

−ĝ4
{
R̂− 12ĝαβ∂αχ∂βχ

−42ĝαβ∂αf∂βf −
(
eχ

eχ0

)−4

M2
8

[
Ṽ (f)− 2e−2χ

]}
, (3.5.20)

with the physical signs in front of all the kinetic terms. This also fixes the four-
dimensional (reduced) Planck mass as

M2
Pl ≡ κ−2 =M2

8 e
4χ0 . (3.5.21)
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Therefore, we have

S4[ĝαβ, f, χ] =
M2

Pl

2

∫
d4x
√

−ĝ
[
R̂− 12ĝαβ∂αχ∂βχ

− 42ĝαβ∂αf∂βf − e−4χM2
Pl

(
Ṽ (f)− 2e−2χ

)]
. (3.5.22)

Similarly, applying the compactification ansatz (3.5.10) to the 4-form action
(3.5.8) in 8 dimensions yields

S8,F [g̃AB, F ] = −M
6
8

2

∫
d4x

√
−g
∫
d4y

√
gy e

−4χga1b1 · · · ga4b4Fa1...a4Fb1...b4 .

(3.5.23)
After defining the (dimensionless) flux parameter F 2 as∫

d4y
√
gy g

a1b1 · · · ga4b4Fa1...a4Fb1...b4 =M−2
8 F 2 = const. , (3.5.24)

and using the Weyl transformation (3.5.17), the action (3.5.23) reduces to

S4,F [ĝAB, χ] = −M
2
8 e

4χ0

2

∫
d4x

√
−g
(
eχ

eχ0

)4

e−8χM2
8F

2

= −M
2
8 e

4χ0

2

∫
d4x
√

−ĝ e−4h

(
eχ

eχ0

)4

e−8χM2F 2

= −M
4
Pl

2

∫
d4x
√

−ĝ e−12χF 2 . (3.5.25)

The total action in 4 dimensions is given by a sum of equations. (3.5.22) and
(3.5.25),

S4[ĝAB, χ, f ] =
M2

Pl

2

∫
d4x

√
−g
[
R̂− 12ĝαβ∂αχ∂βχ

−42ĝαβ∂αf∂βf −M2
Pl

(
e−4χṼ (f)− 2e−6χ − e−12χF 2

)]
. (3.5.26)

The canonical scalar fields χ̂ and f̂ are thus given by

χ̂ = 2
√
3MPlχ and f̂ =

√
42MPlf , (3.5.27)

and the two-scalar potential in four dimensions reads

M−4
Pl V (χ, f) =

[
a−2(1− e−6f )

4
3 + 2Λ̃8e

−8f
]
e−4χ − 2e−6χ + F 2e−12χ . (3.5.28)

This compactification results in the following D = 4 action :

S4[ĝAB, χ, f ] =
M2

Pl

2

∫
d4x

√
−g
[
R̂− 12ĝαβ∂αχ∂βχ

−42ĝαβ∂αf∂βf −M2
Pl

(
e−4χṼ (f)− 2e−6χ − e−12χF 2

)]
, (3.5.29)
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of three fields: a metric ĝαβ(x), the scalaron f(x) and the S4 (volume) modulus
χ(x), with the scalar potential depending upon the parameters (a, Λ̃8) and the 4-
form gauge field strength flux F defined by the integration∫

d4y
√
gy g

a1b1 · · · ga4b4Fa1...a4Fb1...b4 =M−2
8 F 2 (3.5.30)

over the S4. The full two-scalar potential in D = 4 thus reads

M−4
Pl V (χ, f) =

[
a−2(1− e−6f )

4
3 + 2Λ̃8e

−8f
]
e−4χ − 2e−6χ + F 2e−12χ . (3.5.31)

We have restored the reduced Planck scale MPl in equations. (3.5.29) and (3.5.31)
for reader’s convenience.

3.5.2 The study of scalar potential

In this section we investigate the scalar potential (3.5.28) in four dimensions. It
depends upon two fields, the inflaton f and the modulus χ, and has three parameters
(a−2, F 2, Λ̃8) originating from eight dimensions.

The potential (3.5.28) has a Minkowski vacuum (f0, χ0) defined by the equations

∂V

∂f

∣∣∣∣
f=f0

=
∂V

∂χ

∣∣∣∣
χ=χ0

= V |f=f0, χ=χ0
= 0 . (3.5.32)

The solution to these three equations is given by

e6f0 = 1 + (2Λ̃8a
2)3 and e6χ0 = 2F 2 , (3.5.33)

together with a condition of the parameters,

2

3
Λ̃8 =

(
1

16F 2 − 256γ̃8

)1/3

, (3.5.34)

where we have used the third relation (3.5.7) between γ̃8 and a.
The second derivatives of the scalar potential (3.5.28) at the critical point (3.5.33)

determine the masses of the canonically normalized scalars (3.5.27) as

m2
f̂0

=
∂2V

∂f 2

∣∣∣∣
f=f0

1

42M2
Pl

=
M2

Pl

56F 2

(
F 2

γ̃8
− 16

)
, (3.5.35)

and

m2
χ̂0

=
∂2V

∂χ2

∣∣∣∣
χ=χ0

1

12M2
Pl

=
M2

Pl

F 2
, (3.5.36)

where we have used (3.5.34) also. Equations (3.5.34) and (3.5.35) imply the same
condition

F 2

γ̃8
> 16 (3.5.37)
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for both the existence of a Minkowski vacuum and its stability, respectively.
At the onset of inflation (f = +∞), the scalar potential of the modulus χ is

given by
M−4

Pl V (χ) = a−2e−4χ − 2e−6χ + F 2e−12χ (3.5.38)

that only depends upon two (free) parameters (a−2, F 2).
The critical points of the potential (3.5.38) are determined by the condition

a−2 − 3e2χc + 3F 2e−8χc = 0 (3.5.39)

that has the form of the depressed quartic equation

z4 + qz + r = 0 (3.5.40)

in terms of

z = e−2χc , q =
−1

F 2
< 0 , r =

1

3a2F 2
> 0 . (3.5.41)

The quartic discriminant is given by

∆4

27 · 256
= (r/3)3 − (q/4)4 , (3.5.42)

while writing down an explicit solution to (3.5.40) depends upon the sign of ∆4.
By using the auxiliary (Ferrari’s) resolvent cubic equation

m3 − rm− q2/8 = 0 , (3.5.43)

we can factorize the left-hand-side of the quartic equation (3.5.40) as(
z2 +m+

√
2mz − q

2
√
2m

)(
z2 +m−

√
2mz +

q

2
√
2m

)
= 0 . (3.5.44)

Because each term in the first factor is positive in our case, we get a quadratic
equation from the vanishing second factor whose two roots are given by

z1,2 =

√
m

2

[
1±

√
− q

m
−
√
2m

]
. (3.5.45)

These two roots precisely correspond to the existence of a local (meta-stable) min-
imum and a local maximum of the potential (3.5.38), with −∞ < χmin. < χmax. <
+∞.

The cubic discriminant ∆3 = 4r3 − 27(q2/8)2 of the depressed cubic equation
(3.5.43) is simply related to ∆4 as

∆3

4 · 27
= (r/3)3 − (q/4)4 =

∆4

27 · 256
. (3.5.46)
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When ∆3,4 ≥ 0, three real solutions to the cubic equation (3.5.43) are given by
the Vieté formula

mk = 2
√
r/3 cos θk , k = 0, 1, 2 , (3.5.47)

where

θk =
1

3
arccos

(
3q2

16r

√
3/r

)
− 2πk

3
, (3.5.48)

while we should choose the highest (positive) root. The condition ∆3,4 ≥ 0 implies

F 2

γ̃8
≥ 27 . (3.5.49)

When ∆3,4 ≤ 0 or, equivalently, F 2/γ̃8 ≤ 27, the angle (3.5.48) does not exist.
Instead, we should use the Vieté’s substitution in Ferrari’s equation with

m = w +
r

3w
, r > 0 , (3.5.50)

that yields a quadratic equation for w3,

(w3)2 − q2

8
w3 +

r3

27
= 0 , (3.5.51)

whose roots are

w3
1,2 = (q/4)2

[
1±

√
1− (r/3)3

(q/4)4

]
. (3.5.52)

Going back to the critical condition (3.5.39) in the form

F 2 = e6χc

[
1− 1

3
a−2e2χc

]
, (3.5.53)

and inserting it into the potential (3.5.38) yields the height of the inflationary po-
tential Vplateau at the onset of inflation,

M−4
Pl Vplateau = e−6χc

[
2

3
a−2e2χc − 1

]
. (3.5.54)

Demanding its positivity, Vplateau > 0, gives us the restriction (3.5.37) again.
The second derivative of the potential (3.5.38) at the critical point (3.5.39) is

given by
∂2V

∂χ2

∣∣∣∣
χ=χc

= 8e−6χc
(
9− 4a−2e2χc

)
. (3.5.55)

Its positivity (stability) implies
F 2

γ̃8
< 54 . (3.5.56)
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Taken together with (3.5.37) and (3.5.49), this implies that the values of the ratio
F 2/γ̃8 have to be restricted as follows:

16 <
F 2

γ̃8
≤ 27 , ∆3,4 ≤ 0 ,

27 ≤ F 2

γ̃8
< 54 , ∆3,4 ≥ 0 .

(3.5.57)

Because of 1 < F 2/(16γ̃8) ≡ 1+ δ < (3
2
)3, it is instructive to investigate the case

of 0 < δ ≪ 1 describing the strong stabilization of the modulus χ. In this case,
(3.5.33) and (3.5.53) give rise to

0 < χc − χ0 ≈
1

12
δ ≪ 1 , (3.5.58)

leading to a single-field inflation driven by inflaton (scalaron) f indeed.
The physical hierarchy of scales reads

m
f̂0
< m

χ̂0
≪M

KK
≪M

Pl
. (3.5.59)

The KK scale in our case is given by MKK ≈ e−χ0MPl, where the presence of the
warp factor is dictated by the compactification ansatz (3.5.10).

The condition M
KK

≪M
Pl

implies

2F 2 ≫ 1 (3.5.60)

because of (3.5.33). The condition mχ̂0 ≪M
KK

implies

F 2 ≫
√
2 (3.5.61)

that is slightly stronger than (3.5.60). Both conditions can be easily satisfied by
taking F 2 ≫ 1.

The remaining condition m
f̂0
< m

χ̂0
implies F 2/γ̃8 < 72 that is already satisfied

under the conditions (3.5.57). However, it is not possible to get m
f̂0

≪ m
χ̂0

here. It

has a stable Minkowski vacuum and a plateau with a positive height provided that

1 < F 2/(16γ̃8) = 1 + δ < (
3

2
)3 , (3.5.62)

where the inequality on the right hand side is also needed to ensure a positive mass
squared of the modulus χ at the onset of inflation — see equation (3.5.56).

For generic values of δ in equation (3.5.62) one gets a two-field inflation. However,
the modulus χ is strongly stabilized when δ ≪ 1 that implies only a small shift of
the minimum of χ during inflation, from χc to χ0, as

0 < χc − χ0 ≈
1

12
δ ≪ 1 , (3.5.63)
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Figure 3.4: The profile of the scalar potential (3.5.31) for the numerical input F 2 =
106, γ̃8 = 6 ·104 and Λ̃8 ≈ 0.0174. The bottom line shows the inflationary trajectory.

and results in a single-field inflation driven by the inflaton (scalaron) f in D = 4.
A profile of the scalar potential in D = 4 is given in Figure 3.4. It should be

mentioned that the cosmological constant in D = 8 is given by equation (3.5.34)
that implies

Λ̃8 =
δ−1/3

2a2
, (3.5.64)

where we have used equation (3.5.7) also. In particular, it means that δ cannot
vanish.

3.5.3 Towards supergravity embedding of our model

In this Subsection we explore a possibility of embedding our 8-dimensional model
(3.5.3) into a D = 8 supergravity. First, supergravity may be the natural origin
of the p-form field because higher-dimensional supergravities usually include such
fields. Second, the supergravity extensions of modified gravity certainly exist in
D = 4 [42,43], and they should also exist in higher dimensions D ≤ 11.

Unfortunately, to the best of our knowledge, no fully supersymmetric extension
of any (R + R4) gravity in higher (8 ≤ D ≤ 11) dimensions was ever derived, so
that our investigation in this Subsection cannot be fully consistent and compelling,
unlike that in the previous Subsections. Moreover, any standard (two-derivative)
supergravity theory does not allow a positive cosmological constant in its action
(it would break supersymmetry), so that the origin of the cosmological constant in
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D = 8 can only be either due to a spontaneous supersymmetry breaking or/and
some nonperturbative effects. So, this Section ends up with a conjecture.

A good starting point of this investigation is the maximally supersymmetric
D = 11 supergravity, because of its uniqueness. It can be modified by the quartic
scalar curvature term and then compactified down to D = 8 on a compact manifold
(3-sphere S3) — see Appendix A for details. Moreover, the SO(3) non-abelian
isometries of the S3 can be gauged, thus producing the non-abelian gauge fields and
a scalar potential in D = 8. Taken together, it leads to the bosonic part of the
(modified and gauged) D = 8 supergravity action, having the form (A.14 ),

S8 =

∫
d8x

e

2κ2
[R + γ̃e2κϕR4 − κ2e2κϕFα

µνF
µν
α − 2κ2∂µϕ∂

µϕ− V (T )− PµijP
µij

−1

2
κ2e−4κϕ∂µB∂

µB − κ̃2

12
e2κϕGµνρσG

µνρσ − κ3

432
e−1εµ1...µ8Gµ1...µ4Gµ5...µ8B] + ... ,

(3.5.65)

in terms of the following D = 8 fields: a metric gµν , dilaton ϕ, the SO(3) gauge
field strength Fα

µν , the vector fields Pµij, the 4-form gauge field strength Gµνρσ and
(5 + 1) scalars (T,B) whose scalar potential is

V (T ) =
g2

4κ2
e−2κϕ(TijT

ij − 1

2
T 2) . (3.5.66)

The supergravity (3.5.65) has the required quartic scalar curvature term and the
gauge 3-form kinetic term given by the gauge field strength 4-form squared, while
the abelian vector fields Pµij are merely the spectators here. Hence, (3.5.65) could
be the supersymmetric extension of our action (3.5.3) provided that (i) the dilaton
ϕ is stabilized, and (ii) a positive cosmological constant is generated. One usu-
ally assumes in the literature that the dilaton potential is generated by quantum
non-perturbative corrections beyond the supergravity level. And the cosmological
constant may be generated by the non-perturbative vacuum expectation value⟨

κ2e2κϕFα
µνF

µν
α

⟩
= 2Λ8 . (3.5.67)

Unfortunately, we do not have means to compute the dilaton vacuum expectation
value and the gluon condensate (3.5.67) in D = 8.

3.5.4 Inflation

Once the modulus χ is strongly stabilized, the inflaton potential (3.5.31) takes the
form (MPl = 1)

e4χ0a2V (f) =
(
1− e−6f

) 4
3 + λe−8f − λ(1 + λ3)−

1
3 . (3.5.68)

with λ = 2a2Λ̃8 = δ−1/3. This potential has the absolute minimum at

f0 =
1

6
ln
(
1 + λ3

)
, (3.5.69)
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where it vanishes in the Minkowski vacuum. A profile of the scalar potential (3.5.68)
is given in Figure 3.5.

f

V(f)

Figure 3.5: The profile of the scalar potential (3.5.68) for λ = 1 (green), λ = 2 (red)
and λ = 2.88 (blue).

During inflationary slow roll along the plateau, the scalar potential (3.5.68) can
be approximated as

V (ϕ) = V0 − V1e
−αϕ , (3.5.70)

with

α =

√
6

7
. (3.5.71)

This value of α determines the key observational parameter r related to primordial
gravity waves and known as the tensor-to-scalar ratio,

r =
8

α2N2
e

=
28

3N2
e

. (3.5.72)

The Planck data [33] sets the upper bound on r (with 95% of CL) as r < 0.064.
Our result (3.5.72) is clearly below this bound.

As regards the other CMB spectral tilts (the inflationary observables), the scalar
spectral index ns and its running dns/dlnk, their values derived from the potential
(3.5.70) are

ns ≈ 1− 2

Ne

and
dns

d ln k
≈ −(1− ns)

2

2
≈ − 2

N2
e

, (3.5.73)

i.e. they are the same as in the Starobinsky model (in Subsection 3.3.3).
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The microscopic parameters of our model can be easily tuned to get the same
inflaton mass M , so that our effective inflationary model obtained from the higher
(D = 8) dimensions is almost indistinguishable from the original Starobinsky model
having αs =

√
2/3.

When a conventional matter action is added to our gravity model, Weyl rescaling
of the metric result in the universal couplings (via the GR covariant derivatives) of
inflaton f to all matter fields with powers of exp (−ακ4f). The value (3.5.71) of
α derived from D = 8 is only slightly different from the Starobinsky value αs =√

2/3, while all the matter couplings to the scalaron are suppressed by the Planck
mass. Therefore, the impact of higher dimensions on the inflationary observables
and reheating is very small in our approach.

3.5.5 Summary of Section 3.5

We used the Starobinsky inflationary model of the (R + R2) gravity in four di-
mensions as the prototype for deriving the new inflationary models from higher
dimensions. Among the advantages of this approach are (i) its geometrical nature,
as only gravitational interactions are used, (ii) consistency with the current astro-
nomical observations of CMB, (iii) the clear physical nature of inflaton (scalaron)
as the spin-0 part of metric. In this section we focused on D = 8 dimensions only.
In our scenario, the Universe was born multi-dimensional, and then four spacetime
dimensions became infinite, while the others curled up by some unknown mechanism
before inflation.

In higher-dimensions, it turned out to be necessary to include a cosmological con-
stant and a gauge (form) field, with the strong conditions on the higher dimension,
the power n of the scalar curvature and the rank of the form, see equations (3.5.1)
and (3.5.2). The moduli stabilization and the scale hierarchy are also possible to
achieve, while both are non-trivial in the present context. It may also be possible
to embed our D = 8 modified gravity model into the modified D = 8 supergravity
and, ultimately, into the modified D = 11 supergravity.

As regards the observational predictions of our model, it leads to the certain
sharp value (3.5.72) of the CMB tensor-to-scalar ratio that is, however, only slightly
different from that of the original Starobinsky model.
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Conclusion

In this thesis, our aim was to construct an inflationary model from a higher di-
mensional theory. To that end, it was necessary to (i) describe extra dimensions in
Kaluza-Klein field theory and Randall-Sundrum brane-world, (ii) derive the sponta-
neous compactification of extra dimensions and stabilize the extra dimensions, (iii)
describe slow-roll inflation in modified gravity.

In Chapter 2, we reviewed Randall-Sundrum brane-world and investigated the
Randall-Sundrum brane-world model modified by Starobinsky gravity.

The impact of the R2-modified gravity on the RSI model can be simply de-
scribed in terms of a single dynamical scalar field with the particular scalar potential
(2.5.15). It is clear from our construction that this scalar has the gravitational origin
as spin-0 part of five-dimensional spacetime metric. We found that the value of the
RSI parameter k is determined by dynamics of that scalar in the fifth dimension.

It makes sense to analyze stability of the RS brane-world against possible mod-
ifications of gravity, as well as against quantum gravity corrections. We did a small
step in this direction by proving stability of the RSI model against the simplest mod-
ification of the higher-dimensional gravity described by adding the scalar curvature
squared term in five dimensions. However, this model cannot include the slow-roll
inflation on the brane.

In Chapter 3, we reviewed the standard cosmology and modified gravity as a
model of inflation, and investigated the Starobinsky-type inflationary model from
the D-dimensional (D > 4) modified gravity (R + γRn − 2Λ). There are two steps
in our construction of the consistent inflationary model.

First, in Section 3.4, we derived the inflaton scalar potential from higher (D > 4)
dimensions, in the context of the D-dimensional (R + γRn − 2Λ) gravity, by using
the Starobinsky model of chaotic large-field inflation in D = 4 as a prototype. We
assumed that a compactification of the extra dimensions took place before inflation.
We found that this requires a positive cosmological constant and n = D/2. We
calculated the corresponding scalar potential and the values of its parameters for
any D, and specified our results to the two special cases, D = 8 and D = 12.

Our scalar potentials in their slow-roll part fall into the class of the inflationary
plateau-type potentials describing chaotic large-field inflation and having the form
(3.5.70) with

α =

√
D − 2

D − 1
, (3.5.74)
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because of equation (3.4.31). In particular, we have α4 = αs =
√
2/3, α8 =

√
6/7

and α12 =
√

10/11.
According to equation (3.4.49), we find r4 = 12

N2
e
, r8 = 28

3N2
e
, and r12 = 44

5N2
e
. All

those values are in agreement with current observations, and give the sharp (though
very close) predictions for future measurements of r. However, since dynamics of the
extra dimensions was ignored, their size was not under control, so that stabilization
of extra dimensions was still needed.

Second, in Section 3.5, we investigated the D=8, (R+ γRn− 2Λ) gravity and its
D=4 spontaneous compactification with modulus stabilization. In our scenario, the
Universe was born multi-dimensional, and then four spacetime dimensions became
infinite, while the others curled up by some unknown mechanism before inflation.
The inflation happened after the compactification and the moduli stabilization.

In higher-dimensions, it turned out to be necessary to include a cosmological
constant and a gauge (form) field, with the strong conditions on the higher dimen-
sion, the power n of the scalar curvature and the rank of the form as p = n = D/2.
The moduli stabilization and the scale hierarchy are also possible to achieve, while
both are non-trivial in the present context. It may also be possible to embed our
D = 8 modified gravity model into the modified D = 8 supergravity and, ultimately,
into the modified D = 11 supergravity.

As regards the observational predictions of our model, it leads to the certain value
(3.4.49) of the CMB tensor-to-scalar ratio that is, however, only slightly different
from that of the original Starobinsky model.

Our results may be used for studying inflation and moduli stabilization in more
general frameworks, such as unification of fields and forces, KK theories of gravity,
supergravity and superstrings, and braneworld.
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Appendix A : D = 8 gauged
supergravity

The D = 8 supergravity (with 16 supercharges) received relatively little attention in
the literature versus the supergravities in D = 10 and D = 11. For our purposes, we
need a D = 8 supergravity modified by the quartic scalar curvature term and having
a scalar potential. In this Appendix we recall the SU(2) gauged N = 2 supergravity
in D = 8, which was derived by Salam and Sezgin [44] by using the Scherk-Schwarz-
type dimensional reduction [45] of the 11-dimensional supergravity [46].

The 11-dimensional supergravity [46] is unique, so that it is the good point to
start with. Its standard action is well known, while its existence can be related to
the existence of the 11-dimensional supermultiplet containing the 11-dimensional
spacetime scalar curvature R among its field components. Therefore, there is little
doubt that the (R + R4) supergravity action in D = 11 also exist, though (to the
best of our knowledge) it was never constructed in the literature. So, assuming its
existence, we write down the relevant part of its bosonic terms as

S11 =

∫
d11X

E

2κ̃2

(
R + γ̃R4 − κ̃2

12
GABCDG

ABCD +
8κ̃3

1442
εA1...A11GA1...GA5...V...A11

)
,

(A.1)
where we have simply added the quartic curvature term (with the coupling constant
γ̃) to the standard bosonic action of the 11-dimensional supergravity. Of course,
adding the R4 term also requires adding its supersymmetric completion that is
going to result in more bosonic terms in the action. However, because all extra
terms are going to be the higher-derivative couplings of the bosonic 3-form field,
also non-minimally coupled to gravity, we assume that these extra couplings are
irrelevant for the scalar sector of the theory (see below). 1

As regards our notation, we denote E ≡ detEM
A in terms of an elfbein EM

A in
D = 11. Here we denote the 11-dimensional Lorentz indices by early capital latin
letters as A,B,C, ..., while the middle capital latin letters M,N,P, ... are used for
the 11-dimensional Einstein (curved) indices. The κ̃ is the gravitational constant in

1It is worth mentioning that our approach is apparently different from M-theory, because we
treat the R4 term nonperturbatively, so that its presence leads to the new physical degrees of
freedom in D = 11, which are absent in the standard D = 11 supergravity, similarly to the
(R+R4) gravity in lower dimensions.
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D = 11. The scalar curvature R is defined in terms of the spin connection

ωABC ≡ EM
A ωMBC =

1

2
ηCE(E

M
A E

N
B − EM

B E
N
A )∂ME

E
N − 1

2
ηAE(E

M
B E

N
C − EM

C E
N
B )∂ME

E
N

+
1

2
ηBE(E

M
C E

N
A − EM

A E
N
C )∂ME

E
N (A.2)

as
R = ωABCω

CAB + ωAω
A − 2E−1∂M(EEM

Aω
A) , (A.3)

where ωA ≡ ηBCωBCA and ηAB is Minkowski metric in D = 11. The 4-form field
strength GABCD is defined in terms of the 3-form gauge potential VABC as

GABCD = 4∂[AVBCD] + 12ω[AB
EVCD]E . (A.4)

To dimensionally reduce the modified D = 11 supergravity to eight dimensions
on a sphere S3, we use the ansatz [44]

EM
A =

(
e−κ̃ϕ/3eaµ 0

2κ̃e2κ̃ϕ/3Aα
µL

i
α e2κ̃ϕ/3Li

α

)
, EM

A =

(
eκ̃ϕ/3eµa −2κ̃eκ̃ϕ/3eµaA

α
µ

0 e−2κ̃ϕ/3Lα
i

)
, (A.5)

where we have introduced the 8-dimensional Lorentz indices a, b, c, ... and the 8-
dimensional Einstein indices µ, ν, ρ, ..., as well as the 3-dimensional (compact) Lorentz
and Einstein indices, i, j, k, ... and α, β, γ, ..., respectively. The dilaton ϕ represents
the volume modulus of the 3-sphere, the eaµ is an 8-dimensional achtbein, the Li

α

is the unimodular matrix (detLi
α = 1) having 5 scalars, and the Aα

µ is a set of
8-dimensional vectors.

The Scherk-Schwarz dimensional reduction is used to gauge symmetries of a
compact manifold in the reduced theory by allowing the fields to depend on the
compact coordinates [45]. Let us denote the non-compact coordinates by {x}, and
the compact coordinates by {y}, and then factorize the y-dependence as

eaµ(x, y) = eaµ(x) , Aα
µ(x, y) = U−1α

β(y)A
β
µ(x) , Li

α(x, y) = Uα
β(y)Li

β(x) , (A.6)

where Uα
β(y) are elements of the gauge group SU(2) in our case. The SU(2) struc-

ture constants

fγ
αβ ≡ U−1

α
α′
U−1
β

β′
(∂β′Uα′

γ − ∂α′Uβ′
γ) = − g

2κ̃
εαβδg

δβ (A.7)

are y-independent, where we have introduced the SU(2) gauge coupling constant g
and the 3-dimensional Levi-Civita tensor εαβγ.

Substituting the ansatz (A.5) into (A.2) reduces the spin connection components
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as [44]

ωabc = eκ̃ϕ/3(ω̃abc −
1

3
κ̃ηab∂cϕ+

1

3
κ̃ηac∂bϕ) ,

ωabi = κ̃e4κ̃ϕ/3Fabi ,

ωaij = eκ̃ϕ/3Qaij ,

ωiab = −κ̃e4κ̃ϕ/3Fabi ,

ωija = eκ̃ϕ/3(Paij +
2

3
κ̃δij∂aϕ) ,

ωijk = − g

4κ̃
e−2κ̃ϕ/3(εjklTi

l + εkliTj
l − εlijTk

l) ,

(A.8)

where we have used the notation

Fα
µν = ∂µA

α
ν − ∂νA

α
µ + gεαβγA

β
µA

γ
ν ,

Pµij +Qµij = Lα
i (δ

β
α∂µ − gεα

β
γA

γ
µ)Lβj , (A.9)

T ij = Li
αL

j
βδ

αβ ,

with Pµij representing the symmetric part of the r.h.s. of (A.9), and Qµij represent-
ing the antisymmetric part. The fields Li

α are subject to the relations [44]

Li
αL

j
βδij = gαβ, Li

αL
j
βg

αβ = δij , (A.10)

where gαβ is the metric of the compact manifold (S3).
As regards VABC and GABCD, their relevant components are

εαβγB ≡ e2κ̃ϕLi
αL

j
βL

k
γVijk ,

εαβγ∂µB ≡ e5κ̃ϕ/3eaµL
i
αL

j
βL

k
γGaijk ,

(A.11)

where B is another scalar field.
Equations (A.5), (A.8), and (A.11) allow us to rewrite the 11-dimensional action

(A.1) as

S11 =

∫
d8xd3y U(y)

e

2κ̃2
[R + γ̃e2κ̃ϕR4 − κ̃2e2κ̃ϕFα

µνF
µν
α

− 2κ̃2∂µϕ∂
µϕ− g2

4κ̃2
e−2κ̃ϕ(TijT

ij − 1

2
T 2)

− PµijP
µij − 1

2
κ̃2e−4κ̃ϕ∂µB∂

µB − κ̃2

12
e2κ̃ϕGµνρσG

µνρσ

− κ̃3

432
e−1εµ1...µ8Gµ1...µ4Gµ5...µ8B] + . . . ,

(A.12)
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where U(y) ≡ detUα
β(y), T ≡ Ti

i, R is the 8-dimensional scalar curvature and the
dots stand for irrelevant terms. Since the only y-dependent function is U(y), one
can perform y-integration with ∫

d3yU(y) = V0 , (A.13)

defining the invariant volume V0 of the compact manifold (S3). With the gravita-
tional coupling κ = κ̃/

√
V0 in D = 8, rescaling dilaton as ϕ→ ϕ/

√
V0 (and similarly

for the other fields Aα
µ, B and Vµνρ) and rescaling the gauge coupling as g → g

√
V0

leads to the action

S8 =

∫
d8x

e

2κ2
[R + γ̃e2κϕR4 − κ2e2κϕFα

µνF
µν
α − 2κ2∂µϕ∂

µϕ− V (T )− PµijP
µij

−1

2
κ2e−4κϕ∂µB∂

µB − κ̃2

12
e2κϕGµνρσG

µνρσ − κ3

432
e−1εµ1...µ8Gµ1...µ4Gµ5...µ8B] + ... ,

(A.14)

whose scalar poitential is given by [44]

V (T ) =
g2

4κ2
e−2κϕ(TijT

ij − 1

2
T 2) . (A.15)

The vacuum expectation value of the dilaton ϕ is supposed to be determined by
non-perturbative effects in superstring theory, whereas the vacuum expectation value
of the scalar potential V (T ) vanishes. Therefore, the only possibility of generating
a positive cosmological constant in the action (A.14 ) is via a formation of the non-
perturbative SU(2) gluon condensate in D = 8 dimensions, see Subsection (3.5.3).
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