Moduli of diffeomorphisms with homoclinic tangencies

ホモクリニック接触を持つ微分同相写像の モジュライ（英文）

2019

Shinobu Hashimoto
橋本 忍
Department of Mathematics and Information Sciences Tokyo Metropolitan University

Acknowledgements

The author would like to express his deepest gratitude to his adviser Professor Teruhiko Soma for his support, encouragements and endurances. He is very grateful to Meisei Junior and Senior High School, his workplace, for giving him a chance for study in the doctoral course of Tokyo Metropolitan University. He also would like to gratitude to his family for continuing support and encouragements.

Contents

1 Basic definitions and concepts 5
1.1 Hyperbolic fixed points of diffeomorphisms 5
1.2 Heteroclinic and homoclinic tangencies 7
1.3 Topological conjugacy and structural stability 11
$1.4 C^{r}$ convergence of unstable manifolds 13
1.5 Motivation and preceding results 14
2 Moduli of surface diffeomorphisms with cubic tangencies 17
2.1 Moduli of surface diffeomorphisms with cubic tangencies 17
2.2 Preliminaries 19
2.3 Sequence of Rectangles 23
2.4 Slope Lemma 26
2.5 Sequence of rectangle-like boxes 29
2.6 Intersection Lemma 32
2.7 Proof of Theorem 2.1 34
2.8 Adaptable conditions 38
3 Moduli of 3-dimensional diffeomorphisms with saddle foci 42
3.1 Moduli of 3-dimensional diffeomorphisms with saddle foci 42
3.2 Front curves and folding curves 44
3.2.1 Construction of unstable bent disks, front curves and folding curves 45
3.2.2 Construction of convergent sequence of unstable bent disks 46
3.3 Limit straight segments 48
3.3.1 Sequences of folding curves converging to straight segments 48
3.3.2 Limit straight segments preserved by the conjugacy 49
3.4 Proof of Theorem 3.1 53
3.5 Proof of Theorem 3.3 55

Introduction

This thesis concerns the topological conjugacy problem for diffeomorphisms on a closed manifold M. A diffeomorphism f on M is called structurally stable if any diffeomorphism g close to f is topologically conjugate to f. The structural stability for diffeomorphisms are well studied by many authors. In particular, R. Mañé (1987) and others proved that, in the C^{1} category, f is structurally stable if and only if f is an Axiom A diffeomorphism with the strong transversality condition. On the other hand, if f has a basic set which has a homoclinic tangency, then it is never structurally stable. So, if f has a homoclinic tangency, then any neighborhood of f in the space of diffeomorphisms contains both diffeomorphisms g which are topologically conjugate and non-conjugate to f. Thus, we need topological conjugacy invariants to decide whether a given g is topologically conjugate to f or not.

A modulus $m(f)$ for a diffeomorphism f is a topological conjugacy invariant for f, that is, $m(f)=m(g)$ holds for any $g: M \rightarrow M$ which is contained in a certain class of diffeomorphisms on M and topologically conjugate to f. The aim of this thesis is to present new moduli for diffeomorphisms of dimensions two and three.

This thesis is organized as follows.
In Chapter 1, we present definitions, notions and concepts needed in this thesis. Besides, we introduce several preceding results on moduli.

In Chapter 2, we study moduli for 2-dimensional diffeomorphisms with cubic homoclinic tangencies (two-sided tangencies of the lowest order) under certain open conditions. Ordinary arguments used in previous studies of conjugacy invariants associated with onesided tangencies do not work in the two-sided case. We present a new method which is applicable to the two-sided case.

In Chapter 3, we investigate moduli of a 3-dimensional diffeomorphism f with a sadldle focus p and a homoclinic quadratic tangency q. It is shown there that, for most of such diffeomorphisms, all the eigenvalues of $D f(p)$ are moduli and the restriction of a conjugacy homeomorphism to a local unstable manifold is a uniquely determined linear conformal map.

Chapter 1

Basic definitions and concepts

In this chapter, we present some of definitions, notions and concepts needed in this thesis. Refer to [De, Ro1, Ro2] and so on for other standard results on dynamical systems.

1.1 Hyperbolic fixed points of diffeomorphisms

Let M be a $C^{r}(1 \leq r \leq \infty)$ manifold and $\operatorname{Diff}^{r}(M)$ the space of C^{r} diffeomorphisms on M with C^{r} topology. Suppose that f is an element of $\operatorname{Diff}^{r}(M)$. For a point $x \in M$, the orbit $\mathcal{O}(x)$ of x for f is defined as $\mathcal{O}(x)=\left\{f^{n}(x) ; n \in \mathbb{Z}\right\}$, where f^{0} is the identity map on M, f^{n} is the composition of f with itself n times if $n>0$ and f^{n} is the composition of f^{-1} with itself $-n$ times if $n<0$. A point $p \in M$ is called a periodic point for f if $p=f^{n}(p)$ holds for some positive integer n. The minimum of such an n is called the period of p. A point $p \in M$ is called a fixed point for f if $p=f(p)$ holds, that is, a fixed point is a periodic point with period one.

Suppose that p is a fixed point for f. Then the derivative $D f(p)$ of f at p is a linear map on the tangent space $T_{p}(M)$ at p. By an identification of $T_{p}(M)$ with \mathbb{R}^{m} as vector spaces, one can regard the linear map on $T_{p}(M)$ with that on \mathbb{R}^{m}, where m is the dimension of M.

Definition 1.1. A fixed point p for f is called hyperbolic if the absolute value $|\lambda|$ of any eigenvalue λ of $D f(p)$ is different from one. The hyperbolic fixed point p is called a sink if the absolute value $|\lambda|$ of any eigenvalue λ of $D f(p)$ is less than one. The hyperbolic fixed point p is called a source if the absolute value $|\lambda|$ of any eigenvalue λ of $D f(p)$ is greater than one. A hyperbolic fixed point which is neither a sink nor a source is said to be a saddle.

Figures 1.1 and 1.2 illustrate hyperbolic fixed points in the case of $\operatorname{dim} M=2$ and $\operatorname{dim} M=3$, respectively, where all the eigenvalues of $D f(p)$ are real.

We also consider the case that some of eigenvalues are non-real. If $D f(p)$ have non-real eigenvalues $r e^{ \pm \sqrt{-1} \theta}$, then f acts on a neighborhood of p as the combination of a rotation and an expansion or contraction. In the case of $\operatorname{dim} M=3$, we have several phase portraits of f near p. The hyperbolic fixed point p is a sink if $D f(p)$ has a real eigenvalue $0<\lambda<1$

Figure 1.1: The case of $\operatorname{dim} M=2 . p$ is a sink in (1), a source in (2) and a saddle in (3).

Figure 1.2: The case of $\operatorname{dim} M=3 . p$ is a sink in (1), a source in (2) and a saddle in (3).
and non-real eigenvalues $r e^{ \pm \sqrt{-1} \theta}$ with $r<1$. The hyperbolic fixed point p is a source if $D f(p)$ has a real eigenvalue $\lambda>1$ and non-real eigenvalues $r e^{ \pm \sqrt{-1} \theta}$ with $r>1$. If the hyperbolic fixed point p is neither a sink nor source, then it is called a saddle focus. See Figure 1.3. In Section 3, we study moduli of 3-dimensional diffeomorphisms having saddle foci with a real eigenvalue $0<\lambda<1$ and non-real eigenvalues $r e^{ \pm \sqrt{-1} \theta}$ with $r>1$. See Figure 1.3 (3).

The following linearization theorem is called the Hartman-Grobman theorem. See the Chapter 5 in [Ro1] for the proof.

Theorem 1.2 (Hartman-Grobman Theorem). Let $f: M \rightarrow M$ be a C^{r} diffeomorphism with a hyperbolic fixed point p. Then, there exist neighborhoods U, V of p with $U \cup f(U) \subset$ V and a homeomorphism $h: V \rightarrow T_{p}(M)$ with $h(p)=\mathbf{0}$ and such that the following diagram is commutative.

By Theorem 1.2, we can call the linear map $D f(p)$ a linearized map or linearization of f at p. Moreover, by Taylor's theorem, we know that the linear map $D f(p)$ approximates

Figure 1.3: The case of $\operatorname{dim} M=3 . p$ is a sink in (1), a source in (2) and a saddle focus in (3).
f near p.

1.2 Heteroclinic and homoclinic tangencies

Let f be a C^{r} diffeomorphism on M and $p \in M$ a fixed point for f. The stable and unstable manifolds $W^{s}(p)$ and $W^{u}(p)$ of p are defined as

$$
\begin{aligned}
& W^{s}(p)=\left\{x \in M ; f^{n}(x) \rightarrow p(n \rightarrow \infty)\right\}, \\
& W^{u}(p)=\left\{x \in M ; f^{-n}(x) \rightarrow p(n \rightarrow \infty)\right\} .
\end{aligned}
$$

Moreover, we define the local stable and local unstable manifolds $W_{\text {loc }}^{s}(p)$ and $W_{\text {loc }}^{u}(p)$ of p as

$$
\begin{aligned}
& W_{\mathrm{loc}}^{s}(p)=\left\{x \in U(p) ; f^{n}(x) \in U(p) \text { for any } n \in \mathbb{N}, \lim _{n \rightarrow \infty} f^{n}(x)=p\right\}, \\
& W_{\mathrm{loc}}^{u}(p)=\left\{x \in U(p) ; f^{-n}(x) \in U(p), \text { for any } n \in \mathbb{N}, \lim _{n \rightarrow \infty} f^{-n}(x)=p\right\},
\end{aligned}
$$

where $U(p)$ is a sufficiently small neighborhood of p in M.
The following theorem is called the Stable Manifold Theorem. This theorem shows that the local stable manifold $W_{\text {loc }}^{s}(p)$ and local unstable manifold $W_{\text {loc }}^{u}(p)$ are C^{r} submanifolds of M. See the Chapter 5 in [Ro1] for the proof.

Theorem 1.3 (Stable Manifold Theorem). Let $f: M \rightarrow M$ be a diffeomorphism and let $p \in M$ be a saddle fixed point for f. Then the local stable manifold $W_{\text {loc }}^{s}(p)$ of p is a C^{r} submanifold of M tangent to the subspace of $T_{p}(M)$ spanned by the eigenvectors with contracting eigenvalues. Similarly, the local unstable manifold $W_{\mathrm{loc}}^{u}(p)$ of p is a C^{r} submanifold of M tangent to the subspace of $T_{p}(M)$ spanned by the eigenvectors with expanding eigenvalues.

We say that the dimension of $W_{\text {loc }}^{s}(p)$ is the stable index of p and denote it by $\operatorname{ind}^{s}(p)$. Then $\operatorname{ind}^{u}(p)=\operatorname{dim} M-\operatorname{ind}^{s}(p)$ is called the unstable index of p. For the definitions of stable and unstable manifolds,

$$
W^{s}(p)=\bigcup_{n \geq 1} f^{-n}\left(W_{\mathrm{loc}}^{s}(p)\right), \quad W^{u}(p)=\bigcup_{n \geq 1} f^{n}\left(W_{\mathrm{loc}}^{u}(p)\right) .
$$

This implies that $W^{s}(p)$ and $W^{u}(p)$ are the images of injective C^{r} immersions from \mathbb{R}^{s} and \mathbb{R}^{u} to M, respectively, where $s=\operatorname{ind}^{s}(p)$ and $u=\operatorname{ind}^{u}(p)$.

Let p_{1} and p_{2} are two distinct saddle type fixed points of a diffeomorphism f on M. A point $q \in M$ is called a heteroclinic point associated with p_{1} and p_{2} if $q \in W^{s}\left(p_{1}\right) \cap W^{u}\left(p_{2}\right)$, i.e., $\lim _{n \rightarrow \infty} f^{n}(q)=p_{1}, \lim _{n \rightarrow \infty} f^{-n}(q)=p_{2}$. We say that the point q is a transverse heteroclinic point if $W^{s}\left(p_{1}\right)$ and $W^{u}\left(p_{2}\right)$ intersect transversely at q, namely, $T_{q}(M)=$ $T_{q}\left(W^{s}\left(p_{1}\right)\right) \oplus T_{q}\left(W^{u}\left(p_{2}\right)\right)$ holds. When q is a non-transverse intersection point, q is called a heteroclinic tangency associated with p_{1} and p_{2}. See Figure 1.4.

Figure 1.4: q is one of heteroclinic tangencies associated with p_{1} and p_{2}.
Let p is a saddle fixed point of a diffeomorphism f on M. A point $q \in M$ is called a homoclinic point associated with p if $q \in W^{s}(p) \cap W^{u}(p) \backslash\{p\}$, i.e., $q \neq p$ and $\lim _{n \rightarrow \infty} f^{n}(q)=p$ and $\lim _{n \rightarrow \infty} f^{-n}(q)=p$. We say that the point q is called a transverse homoclinic point if $W^{s}(p)$ and $W^{u}(p)$ intersect transversely at q. When q is a non-transverse intersection point, q is called a homoclinic tangency associated with p. See Figure 1.5.

Let f be a $C^{r}(n \leq r \leq \infty)$ diffeomorphism with a heteroclinic or homoclinic tangency q. We fix a Riemannian metric on M and define the order of tangency as follows. The tangency is of order n if the limit

$$
\lim _{\substack{w \in W_{\text {loc }}^{s}(p) \\ w \rightarrow q}} \frac{d\left(w, W^{u}(p)\right)}{[d(w, q)]^{n}}
$$

exists and is not zero, where d is the distance on M induced from this metric. If $n=2$ (resp. $n=3$), then the tangency q is called quadratic (resp. cubic). If n is even, then the tangency
q is said to be one-sided. If n is odd, then the tangency q is two-sided. See Figures 1.5 and 1.6. Homoclinic tangencies have been studied by Newhouse, Palis and Takens and so on since the seventies. For example, see [dM, dMP, dMvS, KS1, KS2, NPT, Ni, Pa, Po, PT].

(1)

(2)

Figure 1.5: The case of $\operatorname{ind}^{s}(p)=\operatorname{ind}^{u}(p)=1 . q$ is a homoclinic quadratic tangency in (1) and a homoclinic cubic tangency in (2).

Figure 1.6: The case of $\operatorname{ind}^{s}(p)=1$ and $\operatorname{ind}^{u}(p)=2 . \quad p$ is a saddle point and q is a homoclinic quadratic tangency associated with p.

Now, we define hyperbolic invariant sets for a diffeomotphism f. A subset S of M is said to be positively invariant if $f(x) \in S$ for all $x \in S$, i.e., $f(S) \subset S$. On the other hand, a subset S of M is said to be negatively invariant if $f^{-1}(S) \subset S$. Such an S is said to be an invariant set of f if $f(S)=S$. Notice that any periodic orbit and the orbit of a heteroclinic or a homoclinic point are typical examples of invariant sets for f. We denote
by $\|\cdot\|_{x}$ the norm on the tangent space $T_{x}(M)$ at $x \in M$ induced from the Riemannian metric on M. A closed invariant set Λ for f is said to be hyperbolic if it satisfies the following conditions.
(1) At each point $x \in \Lambda$, the tangent space to M splits as the direct sum of subspaces \mathbb{E}_{x}^{u} and \mathbb{E}_{x}^{s}, i.e., $T_{x}(M)=\mathbb{E}_{x}^{u} \oplus \mathbb{E}_{x}^{s}$.
(2) The splitting is invariant under the action of the derivative map, i.e., $D f_{x}\left(\mathbb{E}_{x}^{u}\right)=$ $\mathbb{E}_{f(x)}^{u}$ and $D f_{x}\left(\mathbb{E}_{x}^{s}\right)=\mathbb{E}_{f(x)}^{s}$.
(3) There exist $0<\lambda<1$ and $C>0$ independent of x such that, for all $n \geq 0$,

$$
\begin{aligned}
\left\|D f_{x}^{n}\left(\boldsymbol{v}^{s}\right)\right\|_{f^{n}(x)} & \leq C \lambda^{n}\left\|\boldsymbol{v}^{s}\right\|_{x} \text { for } \boldsymbol{v}^{s} \in \mathbb{E}_{x}^{s} \\
\left\|D f_{x}^{-n}\left(\boldsymbol{v}^{u}\right)\right\|_{f^{-n}(x)} & \leq C \lambda^{n}\left\|\boldsymbol{v}^{u}\right\|_{x} \text { for } \boldsymbol{v}^{u} \in \mathbb{E}_{x}^{u}
\end{aligned}
$$

hold.
Notice that the closure of the orbit of a transverse heteroclinic or homoclinic point is a simple example of a hyperbolic invariant set for f. For a Morse-Smale diffeomorphism, the set $\operatorname{Per}(f)$ of all periodic points is a finite hyperbolic invariant set. For an Anosov diffeomorphism, e.g. the toral Anosov automorphisms, the ambient manifold M itself is a hyperbolic invariant set. We have many curious examples of hyperbolic invariant sets other than them, e.g. horseshoes, the Plykin attractor, the solenoid, or some invariant sets of Hénon-like maps. For example, see [De, Ro2].

As in the case of hyperbolic fixed points, we can define the stable and unstable manifolds for a hyperbolic invariant set as follows. Let Λ be a hyperbolic invariant set for f. The stable and unstable manifolds $W^{s}(x)$ and $W^{u}(x)$ of $x \in \Lambda$ are defined as

$$
\begin{aligned}
W^{s}(x) & =\left\{y \in M ; \lim _{n \rightarrow \infty} d\left(f^{n}(x), f^{n}(y)\right)=0\right\} \\
W^{u}(x) & =\left\{y \in M ; \lim _{n \rightarrow \infty} d\left(f^{-n}(x), f^{-n}(y)\right)=0\right\}
\end{aligned}
$$

The unions

$$
W^{s}(\Lambda)=\bigcup_{x \in \Lambda} W^{s}(x), \quad W^{u}(\Lambda)=\bigcup_{x \in \Lambda} W^{u}(x)
$$

are called the stable and unstable manifolds for Λ, respectively. For $\varepsilon>0$, we identify the neighborhoods of each point $x \in \Lambda$ in M with $U_{\varepsilon}(x)=\mathbb{E}_{x}^{s}(\varepsilon) \times \mathbb{E}_{x}^{u}(\varepsilon)$, where $\mathbb{E}_{x}^{s}(\varepsilon)=$ $\left\{\boldsymbol{v} \in \mathbb{E}_{x}^{s} ;\|\boldsymbol{v}\|_{x}<\varepsilon\right\}$ and $\mathbb{E}_{x}^{u}(\varepsilon)=\left\{\boldsymbol{v} \in \mathbb{E}_{x}^{u} ;\|\boldsymbol{v}\|_{x}<\varepsilon\right\}$. We define the local stable and local unstable manifolds $W_{\varepsilon}^{s}(x)$ and $W_{\varepsilon}^{u}(x)$ of $x \in \Lambda$ of size ε as

$$
\begin{aligned}
& W_{\varepsilon}^{s}(x)=\left\{y \in U_{\varepsilon}(x) ; f^{j}(y) \in U_{\varepsilon}\left(f^{j}(x)\right) \text { for } j \geq 0\right\} \\
& W_{\varepsilon}^{u}(x)=\left\{y \in U_{\varepsilon}(x) ; f^{-j}(y) \in U_{\varepsilon}\left(f^{-j}(x)\right) \text { for } j \geq 0\right\}
\end{aligned}
$$

Now, we extend Stable Manifold Theorem to the case of hyperbolic invariant sets. See the Chapter 8 in [Ro1] for the proof.

Theorem 1.4 (Stable Manifold Theorem for hyperbolic invariant sets). Let f be a $C^{r}(1 \leq$ $r \leq \infty)$ diffeomorphism on M and let Λ be a compact hyperbolic invariant set for f. Then there is an $\varepsilon>0$ such that, for each $x \in \Lambda$, there are two C^{r} embedded disks $W_{\varepsilon}^{s}(x)$ and $W_{\varepsilon}^{u}(x)$ which are tangent to \mathbb{E}_{x}^{s} and \mathbb{E}_{x}^{u}, respectively, and satisfy the following conditions.

- $W_{\varepsilon}^{s}(x)$ is represented by the graph of a C^{r} function $\sigma_{x}^{s}: \mathbb{E}_{x}^{s}(\varepsilon) \rightarrow \mathbb{E}_{x}^{u}(\varepsilon)$ with $\sigma_{x}^{s}\left(\mathbf{0}_{x}\right)=$ $\mathbf{0}_{x}$ and $D \sigma_{x}^{s}(\mathbf{0})=\mathbf{0}$:

$$
W_{\varepsilon}^{s}(x)=\left\{\left(\sigma_{x}^{s}(\boldsymbol{v}), \boldsymbol{v}\right) ; \boldsymbol{v} \in \mathbb{E}_{x}^{s}(\varepsilon)\right\}
$$

Besides, the function σ_{x}^{s} and its derivatives vary continuously on x. Similarly, there is a C^{r} function $\sigma_{x}^{u}: \mathbb{E}_{x}^{u}(\varepsilon) \rightarrow \mathbb{E}_{x}^{s}(\varepsilon)$ with $\sigma_{x}^{u}\left(\mathbf{0}_{x}\right)=\mathbf{0}_{x}$ and $D \sigma_{x}^{u}(\mathbf{0})=\mathbf{0}$:

$$
W_{\varepsilon}^{u}(x)=\left\{\left(\boldsymbol{u}, \sigma_{x}^{u}(\boldsymbol{u})\right) ; \boldsymbol{u} \in \mathbb{E}_{x}^{u}(\varepsilon)\right\} .
$$

The function σ_{x}^{u} and its derivatives also vary continuously on x.

- There exist $0<\lambda<1$ and $C \geq 1$ such that

$$
\begin{aligned}
& W_{\varepsilon}^{s}(x) \subset\left\{y \in U_{\varepsilon}(x) ; d\left(f^{j}(x), f^{j}(y)\right) \leq C \lambda^{j} d(x, y) \text { for } j \geq 0\right\}, \\
& W_{\varepsilon}^{u}(x) \subset\left\{y \in U_{\varepsilon}(x) ; d\left(f^{-j}(x), f^{-j}(y)\right) \leq C \lambda^{j} d(x, y) \text { for } j \geq 0\right\} .
\end{aligned}
$$

By Theorem 1.4, we have

$$
W^{s}(x)=\bigcup_{n \geq 0} f^{-n}\left(W_{\varepsilon}^{s}\left(f^{n}(x)\right)\right), \quad W^{u}(x)=\bigcup_{n \geq 0} f^{n}\left(W_{\varepsilon}^{s}\left(f^{-n}(x)\right)\right) .
$$

Notice that $W^{s}(x)$ and $W^{u}(x)$ are just the images of injective C^{r} immersions from \mathbb{R}^{s} and \mathbb{R}^{u} to M but not necessarily the images of embeddings, where $s=\operatorname{dim} \mathbb{E}_{x}^{s}$ and $u=\operatorname{dim} \mathbb{E}_{x}^{u}$. Horseshoes or toral Anosov automorphisms are typical examples of such diffeomorphisms. See the Chapter 8 in [Ro1].

1.3 Topological conjugacy and structural stability

For two diffeomorphisms f and g, if the orbits for f one-to-one correspond to those for g with the same behavior, then we regard that f and g have essentially the same dynamical systems. For example, mutually conjugate linear maps satisfy the property. For classifying such diffeomorphisms, we introduce the notion of topological conjugacy.

Definition 1.5. We say that two diffeomorphisms f and g on a $C^{r}(1 \leq r \leq \infty)$ manifold M are topologically conjugate to each other if there exists a homeomorphism $h: M \rightarrow M$ with $h \circ f=g \circ h$. This homeomorphism h is called a topological conjugacy between f and g.

Let p be a periodic point for f with period n and set $p^{\prime}=h(p)$. Then p^{\prime} satisfies $g^{n}\left(p^{\prime}\right)=g^{n}(h(p))=h\left(f^{n}(p)\right)=h(p)=p^{\prime}$. Thus, the point p^{\prime} is also a periodic point for g with the same period n.

A subset D of M is called a fundamental domain of f if any non-periodic orbit of f intersects D exactly in one point. Fundamental domains are often used to construct topological conjugacies between diffeomorphisms. For example, let f be a linear map on \mathbb{R}^{2} with real contracting eigenvalues and g another linear map on \mathbb{R}^{2} with non-real contacting eigenvalues. Take a unit circle C on \mathbb{R}^{2}, then one can have a pair of annuli A_{f} and A_{g} in \mathbb{R}^{m} bounded by $C \cup f(C)$ and $C \cup g(C)$, respectively. See Figure 1.7. Then $A_{f}^{\prime}=A_{f} \backslash f(C)$ and $A_{g}^{\prime}=A_{g} \backslash g(C)$ are fundamental domains for f and g, respectively. There exists a homeomorphism $\tilde{h}: A_{f} \rightarrow A_{g}$ with

Figure 1.7: Fundamental domains A_{f}^{\prime} of f and A_{g}^{\prime} of g.

$$
\begin{equation*}
\tilde{h}(f(x))=g(\tilde{h}(x)) \tag{1.1}
\end{equation*}
$$

for any $x \in C$. Extend \tilde{h} to the map $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
h(x)=g^{-n(x)}\left(\tilde{h}\left(f^{n(x)}(x)\right)\right)
$$

for $x \in \mathbb{R}^{2} \backslash\{0\}$ and $h(0)=0$ for $0 \in \mathbb{R}^{2}$, where $n(x)$ is a uniquely determined integer with $f^{n(x)}(x) \in A_{f}^{\prime}$. By (1.1), h is a well defined homeomorphism on \mathbb{R}^{2}, which is a topological conjugacy between f and g.

For a given diffeomorphism f, we are interested in the topological conjugacy class constructed by diffeomorphisms close to f. Thus we introduce the notion of the structural stability for diffeomorphisms. A diffeomorphism $f \in \operatorname{Diff}^{r}(M)$ is called structurally stable if there exists a neighborhood $\mathcal{N} \subset \operatorname{Diff}^{r}(M)$ of f such that, for any $g \in \mathcal{N}, f$ and g are topologically conjugate.

Remark 1.6. In this definition of structural stability, the condition that h is a homeomorphism is crucial. We suppose that h is a diffeomorphism. Then h is called a $C^{r}(1 \leq r \leq \infty)$ conjugacy between f and g. If f has a fixed point p, then, by the chain rule of composition maps, $D h(p) D f(p)=D g(h(p)) D h(p)$ holds. This shows that $D f(p)$ and $D g(h(p))$
are similar matrices via the matrix $D h(p)$. Thus they have the same eigenvalues. On the other hand, for any $f \in \operatorname{Diff}^{r}(M)$ and any fixed point p of f, there exists $g \in \operatorname{Diff}^{r}(M)$ arbitrarily C^{r} close to f such that the eigenvalues of $D g\left(p^{\prime}\right)$ are different from those of $D f(p)$, where p^{\prime} is the fixed point of g corresponding to p. Namely, any neighborhood of $f \in \operatorname{Diff}^{r}(M)$ contains an element which is not C^{r} conjugate to f. Thus, any diffeomorphism with a fixed point is not structurally stable with respect to C^{r} conjugacy.

1.4 C^{r} convergence of unstable manifolds

Let p be a hyperbolic fixed point of a diffeomorphism f on M and $U(p)$ a sufficiently small neighborhood of p in M. Take a disk D embedded in M of dimension ind ${ }^{u}(p)$ which intersects transversely the local stable manifold $W_{\text {loc }}^{s}(p)$ at a single point z_{0}. For any $n \in \mathbb{N}$, let D_{n} be the component of $f^{n}(D) \cap U(p)$ containing $f^{n}\left(z_{0}\right)$. Then, D_{n} uniformly C^{r} converges to $W_{\text {loc }}^{u}(p)$ as $n \rightarrow \infty$. Figure 1.8 illustrates the cases of $\operatorname{ind}^{s}(p)=\operatorname{ind}^{u}(p)=1$ and $\operatorname{ind}^{s}(p)=1, \operatorname{ind}^{u}(p)=2$. More precisely, we have the following theorem called Inclination Lemma. See the Chapter 5 in [Ro1] for the proof.

(1)

(2)

Figure 1.8: (1) The case of $\operatorname{ind}^{s}(p)=\operatorname{ind}^{u}(p)=1$. (2) The case of $\operatorname{ind}^{s}(p)=1$ and $\operatorname{ind}^{u}(p)=2$.

Theorem 1.7 (Inclination Lemma). Let f be $a C^{r}(1 \leq r \leq \infty)$ diffeomorphism on M and $p \in M$ a saddle fixed point. Assume that M has a coordinate neighborhood of p such that $W_{\text {loc }}^{s}(p) \subset \mathbb{R}^{s} \times\{0\}$ and $W_{\text {loc }}^{u}(p) \subset\{0\} \times \mathbb{R}^{u}$, where $s=\operatorname{ind}^{s}(p)$ and $u=$ $\operatorname{ind}^{u}(p)$, if necessary by changing the coordinates suitably. Then, for any C^{r} submanifold D with $\operatorname{dim}(D)=u$ intersecting $W_{\text {loc }}^{s}(p)$ transversely at $z_{0}=\left(x_{0}, 0\right) \in W_{\text {loc }}^{s}(p) \times\{0\}$, the component D_{n} of $f^{n}(D) \cap U(p)$ containing $f^{n}\left(z_{0}\right)$ uniformly C^{r} converges to $W_{\mathrm{loc}}^{u}(p)$ as $n \rightarrow \infty$.

We consider the case that a diffeomorphism f has a homoclinic tangency r associated with a saddle fixed point p. First, suppose that $\operatorname{dim} M=2$ and r is either a quadratic or cubic homoclinic tangency. It is not hard to show that $W^{u}(p)$ and $W^{s}(p)$ have a transverse intersection point z in a neighborhood of r under suitable open conditions of f. For example, see [GS1, GS2] if r is a quadratic tangency and Lemma 1.2 in [KS1] if r is a cubic tangency. Figure 1.9 illustrates the situations. Take an arc D^{u} in $W^{u}(p)$ such that the interior of D^{u} contains z. Then there exists an integer N such that $f^{N}(z) \in U(p)$. Let D_{0}^{u} be the connected component of $f^{N}\left(D^{u}\right) \cap U(p)$ containing $f^{N}(z)$. Let D_{n}^{u} be the component of $f^{N+n}\left(D^{u}\right) \cap U(p)$ containing $f^{N+n}(z)$. By Inclination Lemma (Theorem 1.7), $D_{n}^{u} C^{r}$ converges to $W_{\text {loc }}^{u}(p)$ as $n \rightarrow \infty$.

Next, we consider the case that $\operatorname{dim} M=3$ and $\operatorname{ind}^{s}(p)=1$, $\operatorname{ind}^{u}(p)=2$. By [Ni], under certain open conditions of f, there exists a transverse intersection point z of $W^{u}(p)$ and $W^{s}(p)$ near r. As in the case of $\operatorname{dim} M=2$, there exists a disk \widetilde{D}^{u} in $W^{u}(p)$ such that the interior of \widetilde{D}^{u} contains z. Again by Inclination Lemma, we can take the disk $\widetilde{D}_{n}^{u} C^{r}$ converging to $W_{\text {loc }}^{u}(p)$ as $n \rightarrow \infty$. The sequences $\left\{D_{n}^{u}\right\}$ and $\left\{\widetilde{D}_{n}^{u}\right\}$ are crucial in arguments of Chapters 2 and 3 , respectively.

Figure 1.9: (1) r is a homoclinic quadratic tangency. (2) r is a homoclinic cubic tangency.

1.5 Motivation and preceding results

Structurally stable diffeomorphisms have no heteroclinic or homoclinic tangencies. On the other hand, diffeomorphisms with heteroclinic or homoclinic tangencies are typical examples of structurally unstable diffeomorphisms. For such a diffeomorphism f, we need topological conjugacy invariants to dicide whether a given diffeomorphism g is topological conjugate to f or not. See Figure 1.10. Such topological conjugacy invariants are called modulus.

Definition 1.8. For a subspace \mathcal{N} of the diffeomorphism space $\operatorname{Diff}^{r}(M)$ with $r \geq 1$, we

Figure 1.10: (1) The case that f is a structurally stable diffeomorphism. (2) The case that f is structurally unstable diffeomorphism.
say that a value $m(f)$ determined by $f \in \operatorname{Diff}^{r}(M)$ is a modulus in \mathcal{N} if $m(g)=m(f)$ holds for any $g \in \mathcal{N}$ topologically conjugate to f.

The topological classification of structurally unstable diffeomorphisms on a manifold M is an important subject in the study of dynamical systems. Palis [Pa] suggested that moduli play important roles in such a classification. The research of dynamical systems with moduli have been originated by Palis, de Melo and Takens. Subsequently, Posthumus, van Strien and others have studied enthusiastically this subject. See [dM, dMP, dMvS, GPvS, NPT, Pa, PT, Ta]. Our study in this thesis is based on results of Palis [Pa], de Melo [dM] and Posthumus [Po].

We will finish this section by introducing their results. First, we consider the case of $\operatorname{dim} M=2$. Suppose that $f_{i}(i=0,1)$ are elements of $\operatorname{Diff}^{2}(M)$ with two saddle fixed points p_{i}, q_{i} such that $W^{u}\left(p_{i}\right)$ and $W^{s}\left(q_{i}\right)$ have a quadratic heteroclinic tangency r_{i} and there exists a homeomorphism $h: M \rightarrow M$ with $f_{1}=h \circ f_{0} \circ h^{-1}, h\left(p_{0}\right)=p_{1}, h\left(q_{0}\right)=q_{1}$ and $h\left(r_{0}\right)=r_{1}$. See Figure 1.11 (1). Then, under some moderate conditions, Palis [Pa] proved that $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}=\frac{\log \left|\lambda_{1}\right|}{\log \left|\mu_{1}\right|}$, where λ_{i} is the contracting eigenvalue of $D f\left(p_{i}\right)$ and μ_{i} is the expanding eigenvalue of $D f\left(q_{i}\right)$. This means that $m\left(f_{i}\right)=\frac{\log \left|\lambda_{i}\right|}{\log \left|\mu_{i}\right|}$ is one of moduli.

Following his result, de Melo [dM] studied the moduli of the stability of two-dimensional diffeomorphisms f, that is, a minimal set of moduli which parametrizes the topological conjugacy classes of f in $\operatorname{Diff}^{r}(M)$. He detected moduli of stability for some classes of two-dimensional diffeomorphisms. In [dM], he also showed that the restrictions of the conjugacy homeomorphism h on each $W^{s}\left(p_{0}\right) \backslash\left\{p_{0}\right\}$ and $W^{u}\left(q_{0}\right) \backslash\left\{q_{0}\right\}$ are local diffeomorphisms if $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}$ is irrational.

Subsequently, Posthumus [Po] proved that the homoclinic version of Palis and de Melo's results. In fact, he proved that, if $f_{i}(i=0,1)$ has a saddle fixed point p_{i} with a homoclinic

Figure 1.11: (1) The situation in Palis' case. (2) The situation in Posthumus' case.
quadratic tangency r_{i}, then $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}=\frac{\log \left|\lambda_{1}\right|}{\log \left|\mu_{1}\right|}$ holds, where λ_{i} and μ_{i} are the contracting and expanding eigenvalues of $D f\left(p_{i}\right)$, respectively. See Figure 1.11 (2). Moreover, if $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}$ is irrational, then the eigenvalues are also moduli, that is, $\lambda_{0}=\lambda_{1}$ and $\mu_{0}=\mu_{1}$.

For 2-dimensional diffeomorphisms, various results related to moduli concerning eigenvalues are obtained by some authors; see for example [dMP, dMvS, GPvS, PT]. However, in all of these results, the assumption that the tangency is quadratic or one-sided is crucial. In fact, some of their arguments do not work in the case that q is a two-sided tangency, see Remark 2.9 for the reason.

Chapter 2

Moduli of surface diffeomorphisms with cubic tangencies

In this chapter, we study conjugacy invariants for 2-dimensional diffeomorphisms with cubic homoclinic tangencies (two-sided tangencies of the lowest order) under certain open conditions. Some of arguments used in previous works of conjugacy invariants associated with one-sided tangencies do not work in the two-sided case. We present a new method which is applicable to the two-sided case.

2.1 Moduli of surface diffeomorphisms with cubic tangencies

The following is the main result in this chapter.
Theorem 2.1. Suppose that M is a closed surface with Riemannian metric. Let $f_{i}(i=$ $0,1)$ be elements of $\operatorname{Diff}^{3}(M)$ each of which has a saddle fixed point p_{i} and a homoclinic cubic tangency q_{i} associated with p_{i} and satisfies the following conditions.
(A1) For $i=0,1$, there exists a neighborhood $U\left(p_{i}\right)$ of p_{i} in M such that $\left.f\right|_{U\left(p_{i}\right)}$ is linear.
(A2) f_{0} is topologically conjugate to f_{1} by a homeomorphism $h: M \rightarrow M$ with $h\left(p_{0}\right)=p_{1}$ and $h\left(q_{0}\right)=q_{1}$.
(A3) Each $f_{i}(i=0,1)$ satisfies the small expanding condition and one of the adaptable conditions with respect to $\left(p_{i}, q_{i}\right)$ in Section 2.8.

Then (M1) and (M2) hold, where λ_{i}, μ_{i} are the eigenvalues of $D f_{0}\left(p_{i}\right)$ with $0<\left|\lambda_{i}\right|<$ $1<\left|\mu_{i}\right|$.
(M1) $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}=\frac{\log \left|\lambda_{1}\right|}{\log \left|\mu_{1}\right|}$.
(M2) Moreover, if $\frac{\log \left|\lambda_{0}\right|}{\log \left|\mu_{0}\right|}$ is irrational, then $\mu_{0}=\mu_{1}$ and $\lambda_{0}=\lambda_{1}$.

Here we say that f_{0} satisfies the small expanding condition at p_{0} if $\left|\mu_{0}\right|=1+\varepsilon$ with $0<\varepsilon<\varepsilon_{0}$ for the constant ε_{0} given in Lemma 2.6. Note that this condition depends on local expressions of f_{0} such as (2.2) near p_{0} and (2.5) near $f_{0}^{m_{0}}\left(q_{0}\right)$. In Section 2.2, we present a codimension two submanifold \mathcal{C} of $\operatorname{Diff}^{3}(M)$ such that any element of \mathcal{C} sufficiently close to f_{0} also satisfies (A3). In the case that f is of class C^{∞}, we know from Sternberg [St] and Takens [Ta] that (A1) is an open dense condition in Diff ${ }^{\infty}(M)$.

Though we only consider the case of cubic tangencies, we believe that our method still works in the case of two-sided tangencies of higher order. So we propose the following question.

Question 2.2. Is it possible to generalize our theorem to the case where diffeomorphisms have two-sided homoclinic tangencies of higher order?

We will finish the introduction by outlining the proof of the main theorem. Let f_{0} be a diffeomorphism satisfying the conditions of Theorem 2.1. We may assume that q_{0} and $r_{0}=\varphi\left(q_{0}\right)$ are contained in $W_{\text {loc }}^{u}\left(p_{0}\right)$ and $W_{\text {loc }}^{s}\left(p_{0}\right)$ respectively, where $\varphi=f_{0}^{m_{0}}$ for some positive integer m_{0}. For the proof of Theorem 2.1, we need to find out a useful connection between the eigenvalues μ_{i} and λ_{i} for $i=0,1$. By applying Inclination Lemma (Lemma 1.7), we have a sequence $\left\{\alpha_{n}^{u}\right\}$ of arcs in $W^{u}\left(p_{0}\right)$ which meet $W_{\text {loc }}^{s}\left(p_{0}\right)$ transversely at single points $z_{0} \lambda_{0}^{n}$ and C^{3} converge to a sub-arc of $W_{\text {loc }}^{u}\left(p_{0}\right)$. See Figure 2.5. Then $\varphi\left(\alpha_{n}^{u}\right)$ contains an S-shaped arc $\gamma_{0, n}^{\prime}$ framed by the rectangle S_{n} as illustrated in Figure 2.1. We note that

Figure 2.1: $\gamma_{0, n}^{\prime}$ is an S-shaped arc. $\widehat{\gamma}_{1}$ and $\widehat{\gamma}_{k}$ are compressed S-shaped arcs near q_{0} induced from $\gamma_{0, n}^{\prime}$.
such arcs $\gamma_{0, n}^{\prime}$ are subtle and vanish eventually as $n \rightarrow \infty$. See Figures 2.6 and 2.13. Since h is not supposed to be smooth, one can not expect that h sends $\gamma_{0, n}^{\prime}$ to an S-shaped curve in $W^{u}\left(p_{1}\right)$. However Intersection Lemma (Lemma 2.7) shows that it actually holds, which is a key lemma in our argument. For the proof, we send $\gamma_{0, n}^{\prime}$ to a curve $\widehat{\gamma}_{1}$ in a small
neighborhood of q_{0} by $f_{0}^{u_{0}}$ for some $u_{0} \in \mathbb{N}$ and pull it back near r_{0} by φ. Repeating this process many times, one can amplify $\widehat{\gamma}_{1}$ and finally have a compressed S-shaped curve $\widehat{\gamma}_{k}$ near q the diameter of which is substantial so that it can be distinguished by h. From this fact, we know that $h\left(\widehat{\gamma}_{k}\right)$ intersects a compressed S-shaped curve $\widehat{\gamma}_{k}^{*}$ in $W^{u}\left(p_{1}\right)$. It follows that there exists a sequence $\left\{r_{n}\right\}$ with $r_{n} \in \gamma_{0, n}^{\prime}$ as illustrated in Figure 2.1 such that $\bar{r}_{n}=h\left(r_{n}\right)$ is contained in the corresponding S-shaped curve $\bar{\gamma}_{0, n}^{\prime}$ in $W^{u}\left(p_{1}\right)$. We note that the images of r_{n}, \bar{r}_{n} by the orthogonal projections to the first coordinates are represented as $a z_{0} \lambda_{0}^{n}+o\left(\lambda_{0}^{n}\right), \bar{a} \bar{z}_{0} \lambda_{1}^{n}+o\left(\lambda_{1}^{n}\right)$ respectively for some non-zero constants a, \bar{a}. One can take subsequences $\{n(k)\},\{m(k)\}$ of \mathbb{N} such that $f_{0}^{m(k)}\left(r_{n(k)}\right)$ converges to a point $x_{0} \in W_{\text {loc }}^{u}\left(p_{0}\right)$. Then $f_{1}^{m(k)}\left(\bar{r}_{n(k)}\right)$ also converges to $h\left(x_{0}\right) \in W_{\text {loc }}^{u}\left(p_{1}\right)$. By using this fact, we will show that $\lim _{k \rightarrow \infty} \frac{m(k)}{n(k)}=-\frac{\log \lambda_{0}}{\log \mu_{0}}$ and $\lim _{k \rightarrow \infty} \frac{m(k)}{n(k)}=-\frac{\log \lambda_{1}}{\log \mu_{1}}$. This proves the assertion (M1). The assertion (M2) is proved by (M1) together with standard arguments in [dM, Po].

2.2 Preliminaries

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences with non-zero entries. Then $a_{n} \approx b_{n}$ means that $\frac{a_{n}}{b_{n}} \rightarrow 1$ as $n \rightarrow \infty$, and $a_{n} \sim b_{n}$ means that there exist constants C and C^{\prime} independent of n with $0<C^{\prime}<1<C$ and satisfying $C^{\prime} \leq \frac{a_{n}}{b_{n}} \leq C$ for any n. Suppose next that $\left\{a_{n}\right\},\left\{b_{n}\right\}$ are sequences with non-negative entries. If there exists a constant $C^{\prime}>0$ independent of n and satisfying $a_{n} \leq C^{\prime} b_{n}$ for any n, then we denote the property by $a_{n} \precsim b_{n}$.

Throughout the remainder of this chapter, we suppose that M is a closed connected surface and $f: M \rightarrow M$ is a C^{3} diffeomorphism with a saddle fixed point p. Let μ, λ be the eigenvalues of $D f(p)$ with

$$
\begin{equation*}
0<|\lambda|<1<|\mu| \tag{2.1}
\end{equation*}
$$

Suppose moreover that f is C^{3} linearizable in a neighborhood $U(p)$ of p in M. Then there exists a C^{3} coordinate (x, y) on $U(p)$ satisfying the following condition:

$$
\begin{equation*}
f(x, y)=(\mu x, \lambda y) \tag{2.2}
\end{equation*}
$$

for any $(x, y) \in U(p)$. In particular, this implies that $p=(0,0), W_{\text {loc }}^{u}(p):=\{(x, y) \in$ $U(p) ; y=0\} \subset W^{u}(p)$ and $W_{\text {loc }}^{s}(p):=\{(x, y) \in U(p) ; x=0\} \subset W^{s}(p)$.

Let \mathcal{C} be the subspace of Diff ${ }^{3}(M)$ consisting of elements $f \in \operatorname{Diff}^{3}(M)$ satisfying the following conditions (C1)-(C3).
(C1) f has a saddle periodic point p.
(C2) There exists a homoclinic cubic tangency q associated with p.
(C3) f satisfies the adaptable conditions in the sense of Section 2.8 with respect to p, q.

Note that \mathcal{C} is a codimension two submanifold of $\operatorname{Diff}^{3}(M)$.
Let q be a cubic tangency of $W^{u}(p)$ and $W^{s}(p)$. We assume that q is contained in $W_{\text {loc }}^{u}(p) \subset U(p)$ if necessary replacing q by $f^{-n}(q)$ with sufficiently large $n \in \mathbb{N}$. For the point q, there exists $m_{0} \in \mathbb{N}$ such that $r:=f^{m_{0}}(q) \in W_{\text {loc }}^{s}(p) \subset U(p)$. Then one can rearrange the linearizing coordinate on $U(p)$ so that $q=(1,0), r=(0,1)$. Moreover, we may suppose that

$$
U(p)=[-2,2] \times[-2,2], W_{\mathrm{loc}}^{u}(p)=[-2,2] \times\{0\}, W_{\mathrm{loc}}^{s}(p)=\{0\} \times[-2,2] .
$$

Let $U(q), U(r)$ be sufficiently small neighborhoods of q, r in $U(p)$ respectively. Then the component $L^{s}(q)$ of $W^{s}(p) \cap U(q)$ containing q is represented as

$$
L^{s}(q)=\{(x+1, y) \in U(q) ; y=v(x)\}
$$

where v is a C^{3} function satisfying

$$
\begin{equation*}
v(0)=v^{\prime}(0)=v^{\prime \prime}(0)=0 \quad \text { and } \quad v^{\prime \prime \prime}(0) \neq 0 . \tag{2.3}
\end{equation*}
$$

Similarly, the component $L^{u}(r)$ of $W^{u}(p) \cap U(r)$ containing r is represented as

$$
L^{u}(r)=\{(x, y+1) \in U(r) ; x=w(y)\},
$$

where w is a C^{3} function satisfying

$$
\begin{equation*}
w(0)=w^{\prime}(0)=w^{\prime \prime}(0)=0 \quad \text { and } \quad w^{\prime \prime \prime}(0) \neq 0, \tag{2.4}
\end{equation*}
$$

see Figure 2.2

Figure 2.2: q and r are homoclinic cubic tangencies associated with p.
Recall that $q=(1,0), r=(0,1)$ are cubic tangencies between $W^{s}(p)$ and $W^{u}(p)$ and $f^{m_{0}}(q)=r$ for some $m_{0} \in \mathbb{N}$. We set $f^{m_{0}}=\varphi$ for short. By (2.3) and (2.4), φ is represented in $U(q)$ as follows for some constants a, b, c, d, e.

$$
\begin{equation*}
\varphi(x+1, y)=\left(a y+b x y+c x^{3}+H_{1}(x+1, y), 1+d x+e y+H_{2}(x+1, y)\right), \tag{2.5}
\end{equation*}
$$

where H_{1}, H_{2} are C^{3} functions satisfying the following conditions.

$$
\begin{align*}
H_{1}(1,0) & =\partial_{x} H_{1}(1,0)=\partial_{y} H_{1}(1,0)=\partial_{x x} H_{1}(1,0)=\partial_{x y} H_{1}(1,0) \\
& =\partial_{x x x} H_{1}(1,0)=0 \tag{2.6}\\
H_{2}(1,0) & =\partial_{x} H_{2}(1,0)=\partial_{y} H_{2}(1,0)=0
\end{align*}
$$

Since φ is a diffeomorphism,

$$
a, d \neq 0
$$

The fact that q is a cubic tangency implies

$$
c \neq 0
$$

Here we put the following extra open condition.

$$
\begin{equation*}
b \neq 0 \tag{2.7}
\end{equation*}
$$

By (2.5) and (2.6), the Jacobian matrix of φ at $(x+1, y)$ is given as follows.

$$
\begin{align*}
D \varphi(x+1, y) & =\left[\begin{array}{cc}
b y+3 c x^{2}+\partial_{x} H_{1}(x+1, y) & a+b x+\partial_{y} H_{1}(x+1, y) \\
d+\partial_{x} H_{2}(x+1, y) & e+\partial_{y} H_{2}(x+1, y)
\end{array}\right] \\
& =\left[\begin{array}{cc}
b y+3 c x^{2}+o\left(x^{2}\right)+o(y)+O(x y) & a+b x+o(x)+O(y) \\
d+O(x)+O(y) & e+O(x)+O(y)
\end{array}\right] \tag{2.8}
\end{align*}
$$

Here we only consider the case satisfying the following condition, which belongs to Case II_{++}in Section 2.8.

$$
\begin{equation*}
0<\lambda<1, \mu>1, a>0, b<0, c>0, d<0 \tag{2.9}
\end{equation*}
$$

See Figure 2.3 for the situation of $W_{\text {loc }}^{u}(p)$ and $W_{\text {loc }}^{s}(p)$ in the case of (2.9). Note that (2.9) implies the extra condition (2.7).

One can set $\mu=1+\varepsilon$ for some $\varepsilon>0$. We only consider the case that ε is sufficiently small.

Consider the rectangle $R_{\varepsilon}=\left[1+\varepsilon,(1+\varepsilon)^{3}\right] \times\left[0, \varepsilon^{3}\right]$ in $U(q)$. By (2.5),

$$
\begin{align*}
\varphi(1+\varepsilon, 0) & =\left(c \varepsilon^{3}+o\left(\varepsilon^{3}\right), 1+d \varepsilon+o(\varepsilon)\right) \\
\varphi\left(1+\varepsilon, \varepsilon^{3}\right) & =\left((a+c) \varepsilon^{3}+o\left(\varepsilon^{3}\right), 1+d \varepsilon+o(\varepsilon)\right) \tag{2.10}\\
\varphi\left((1+\varepsilon)^{3}, 0\right) & =\left(27 c \varepsilon^{3}+o\left(\varepsilon^{3}\right), 1+3 d \varepsilon+o(\varepsilon)\right) \\
\varphi\left((1+\varepsilon)^{3}, \varepsilon^{3}\right) & =\left((a+27 c) \varepsilon^{3}+o\left(\varepsilon^{3}\right), 1+3 d \varepsilon+o(\varepsilon)\right)
\end{align*}
$$

Let $\operatorname{pr}_{x}: U(p) \rightarrow W_{\text {loc }}^{u}(p)$ and $\operatorname{pr}_{y}: U(p) \rightarrow W_{\text {loc }}^{s}(p)$ be the orthogonal projections with respect to the linearizing coordinate on $U(p)$. Then there exist constants τ_{0}, τ_{1} with $0<\tau_{0}<\tau_{1}$ independent of ε and satisfying

$$
\begin{equation*}
\operatorname{pr}_{x}\left(\varphi\left(R_{\varepsilon}\right)\right) \subset\left[\tau_{0} \varepsilon^{3}, \tau_{1} \varepsilon^{3}\right] \tag{2.11}
\end{equation*}
$$

Figure 2.3: The case of II_{++}.

Since $d<0$ by (2.9), it follows from (2.10) that

$$
\begin{equation*}
\operatorname{pr}_{y}\left(\varphi\left(R_{\varepsilon}\right)\right) \subset[1+3.5 d \varepsilon, 1+0.5 d \varepsilon] \subset[1+4 d \varepsilon, 1] . \tag{2.12}
\end{equation*}
$$

For any $\boldsymbol{x} \in R_{\varepsilon}$, let $u_{0}=u_{0}(\boldsymbol{x})$ be a uniquely determined positive integer such that $f^{i}(\varphi(\boldsymbol{x})) \in U(p)$ for $i=1, \ldots, u_{0}$ and $\operatorname{pr}_{x}\left(f^{u_{0}}(\varphi(\boldsymbol{x}))\right) \subset\left((1+\varepsilon)^{2},(1+\varepsilon)^{3}\right]$. Since $\operatorname{pr}_{x}\left(f^{u_{0}}(\varphi(\boldsymbol{x}))\right)=\mu^{u_{0}} \operatorname{pr}_{x}(\varphi(\boldsymbol{x}))$,

$$
1<(1+\varepsilon)^{2}<\mu^{u_{0}} \operatorname{pr}_{x}(\varphi(\boldsymbol{x}))<\tau_{1} \mu^{u_{0}} \varepsilon^{3} .
$$

Since $\operatorname{pr}_{y}(\varphi(\boldsymbol{x}))<1$ by (2.12), it follows that

$$
\operatorname{pr}_{y}\left(f^{u_{0}}(\varphi(\boldsymbol{x}))\right)=\lambda^{u_{0}} \operatorname{pr}_{y}(\varphi(\boldsymbol{x}))<\lambda^{u_{0}} .
$$

Consider the following conditions for $\varepsilon>0$:

$$
\begin{equation*}
\tau_{1}<\varepsilon^{-1} \quad \text { and } \quad(1+\varepsilon)^{\frac{3}{2}}=\mu^{\frac{3}{2}}<\lambda^{-1} . \tag{2.13}
\end{equation*}
$$

If these conditions are satisfied, then the following inequalities

$$
\begin{equation*}
1<1+\varepsilon<\mu^{u_{0}} \operatorname{pr}_{x}(\varphi(\boldsymbol{x}))<\tau_{1} \mu^{u_{0}} \varepsilon^{3}<\mu^{u_{0}} \varepsilon^{2} \tag{2.14}
\end{equation*}
$$

hold. This implies that

$$
\operatorname{pr}_{y}\left(f^{u_{0}}(\varphi(\boldsymbol{x}))\right)=\lambda^{u_{0}} \operatorname{pr}_{y}(\varphi(\boldsymbol{x}))<\lambda^{u_{0}}<\mu^{-\frac{3}{2} u_{0}}<\varepsilon^{3} .
$$

Thus the positive integer $u_{0}(\boldsymbol{x})$ satisfies

$$
\begin{equation*}
f^{u_{0}(\boldsymbol{x})}(\varphi(\boldsymbol{x})) \in R_{\varepsilon} \tag{2.15}
\end{equation*}
$$

for all $\boldsymbol{x} \in R_{\varepsilon}$. See Figure 2.4.

Figure 2.4: The rectangles R_{ε} and $f^{u_{0}(\boldsymbol{x})}\left(\varphi\left(R_{\varepsilon}\right)\right)$ for $\boldsymbol{x} \in R_{\varepsilon}$.

2.3 Sequence of Rectangles

Let $f: M \rightarrow M$ be a C^{3} diffeomorphism given in Section 2.2. In particular, f satisfies the linearizing condition (2.2) on $U(p)$. As is seen in Subsection 1.4, $W^{u}(p)$ and $W^{s}(p)$ have a transverse intersection point other than p. Let δ^{u} be a segment in $W_{\text {loc }}^{u}(p)$ with $\operatorname{Int} \delta^{u} \supset\{p, q\}$. Then, by Inclination Lemma (Theorem 1.7), there exists a sequence $\left\{\alpha_{n}^{u}\right\}_{n=0}^{\infty}$ of arcs in $W^{u}(p) C^{3}$ converging to δ^{u} and satisfying the following conditions:

- α_{0}^{u} meets $W_{\text {loc }}^{s}(p)$ transversely in a single point $\boldsymbol{z}_{0}=\left(0, z_{0}\right)$.
- Each α_{n}^{u} contains $f^{n}\left(\boldsymbol{z}_{0}\right)=\left(0, z_{0} \lambda^{n}\right)$, and the intersection $\tilde{\alpha}_{n}^{u}=\alpha_{n}^{u} \cap U(q)$ is an arc meeting $L^{s}(q)$ transversely in a single point c_{n} for any sufficiently large $n>0$.

See Figure 2.5. Note that α_{0}^{u} is represented by the graph of a C^{3}-function $y_{0}: \delta^{u} \rightarrow \mathbb{R}_{+}$,

Figure 2.5: A sequence $\left\{\alpha_{n}^{u}\right\}_{n=0}^{\infty} C^{3}$-converging to δ^{u}.
that is, $\alpha_{0}^{u}=\left\{\left(x, y_{0}(x)\right) ; x \in \delta^{u}\right\}$. Then each α_{n}^{u} is represented by the graph of the function $y_{n}: \delta^{u} \rightarrow \mathbb{R}_{+}$with

$$
\begin{equation*}
y_{n}(x)=\lambda^{n} y_{0}\left(\mu^{-n} x\right) \quad \text { for } \quad x \in \delta^{u} . \tag{2.16}
\end{equation*}
$$

We parametrise $\tilde{\alpha}_{n}^{u}$ in $\left[(1+\varepsilon)^{-3},(1+\varepsilon)^{3}\right]$ by $\alpha_{n}(t)=\left(t+1, \tilde{y}_{n}(t)\right)$ with $(1+\varepsilon)^{-3}-1 \leq$ $t \leq(1+\varepsilon)^{3}-1$, where $\tilde{y}_{n}(t)=y_{n}(t+1)$. By (2.5) and (2.8),

$$
\begin{array}{r}
\varphi\left(\alpha_{n}(t)\right)=\left(a \tilde{y}_{n}(t)+b t \tilde{y}_{n}(t)+c t^{3}+\text { h.o.t., } 1+d t+e \tilde{y}_{n}(t)+\text { h.o.t. }\right) \\
D \varphi\left(\alpha_{n}(t)\right)\left(\alpha_{n}^{\prime}(t)\right)=\left(a \tilde{y}_{n}^{\prime}(t)+b \tilde{y}_{n}(t)+b t \tilde{y}_{n}^{\prime}(t)+3 c t^{2}+\right.\text { h.o.t., } \tag{2.18}\\
\left.d+e \tilde{y}_{n}^{\prime}(t)+\text { h.o.t. }\right)
\end{array}
$$

where the primes represent the derivative on t and 'h.o.t.' denotes the sum of the higher order terms on t. By (2.16),

$$
\left|\tilde{y}_{n}^{\prime}(t)\right|=\left|y_{n}^{\prime}(t+1)\right|=\lambda^{n} \mu^{-n}\left|y_{0}^{\prime}\left(\mu^{-n}(t+1)\right)\right| .
$$

Suppose that σ is the maximum of $\left|y_{0}^{\prime}(x)\right|$ on δ^{u}. Then

$$
\left|\tilde{y}_{n}^{\prime}(t)\right|=\left|y_{n}^{\prime}(t+1)\right|=\lambda^{n} \mu^{-n}\left|y_{0}^{\prime}\left(\mu^{-n}(t+1)\right)\right| \leq \lambda^{n} \mu^{-n} \sigma
$$

for any $n \in \mathbb{N}$. This implies that

$$
\begin{equation*}
\left|\tilde{y}_{n}^{\prime}(t)\right| \precsim \lambda^{n} \mu^{-n} \tag{2.19}
\end{equation*}
$$

Suppose that $d \varphi_{\alpha_{n}(t)}\left(\alpha_{n}^{\prime}(t)\right)$ is vertical at $t=t_{n}$. Then $\lim _{n \rightarrow \infty} t_{n}=0$ and, by (2.18),

$$
b \tilde{y}_{n}\left(t_{n}\right)+\left(a+b t_{n}\right) \tilde{y}_{n}^{\prime}\left(t_{n}\right) \approx-3 c t_{n}^{2}
$$

Since $\tilde{y}_{n}(t) \approx \lambda^{n} z_{0}$ and $\left|\tilde{y}_{n}^{\prime}(t)\right| \precsim \lambda^{n} \mu^{-n}$, this condition is equivalent to

$$
\begin{equation*}
3 c t_{n}^{2} \approx-b \tilde{y}_{n}\left(t_{n}\right) \approx-b \lambda^{n} z_{0} \tag{2.20}
\end{equation*}
$$

It follows that, for all sufficiently large $n, d \varphi_{\alpha_{n}(t)}\left(\alpha_{n}^{\prime}(t)\right)$ is vertical at two points $t_{n, \pm}$ with

$$
\begin{equation*}
t_{n, \pm} \approx \pm \sqrt{\frac{-b z_{0}}{3 c}} \lambda^{\frac{n}{2}} \tag{2.21}
\end{equation*}
$$

Let $\tilde{t}_{n, \pm}$ be the elements of $\left[(1+\varepsilon)^{-3}-1,(1+\varepsilon)^{3}-1\right]$ with $\tilde{t}_{n,-}<t_{n,-}, t_{n,+}<\tilde{t}_{n,+}$ such that $\varphi\left(\alpha_{n}\left(\tilde{t}_{n, \pm}\right)\right)$ is the intersection point of $\varphi\left(\alpha_{n}(t)\right)$ and the vertical line $L_{n, \pm}$ tangent to $\varphi\left(\alpha_{n}(t)\right)$ at $\varphi\left(\alpha_{n}\left(t_{n, \mp}\right)\right)$. Let S_{n} be the smallest orthogonal rectangle in $U(r)$ containing the four points $\varphi\left(\alpha_{n}\left(\tilde{t}_{n,-}\right)\right), \varphi\left(\alpha_{n}\left(t_{n,-}\right)\right), \varphi\left(\alpha_{n}\left(t_{n,+}\right)\right), \varphi\left(\alpha_{n}\left(\tilde{t}_{n,+}\right)\right)$. See Figure 2.6.

Now we will estimate the size of S_{n}. Let D_{n} be the distance between S_{n} and $W_{\text {loc }}^{s}(p)$. Then

$$
\begin{align*}
D_{n} & \approx a \tilde{y}_{n}\left(t_{n,+}\right)+b t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right)+c t_{n,+}^{3} \\
& \approx a z_{0} \lambda^{n}+b z_{0} \sqrt{\frac{-b z_{0}}{3 c}} \lambda^{\frac{3}{2} n}-\frac{b z_{0}}{3} \sqrt{\frac{-b z_{0}}{3 c}} \lambda^{\frac{3}{2} n} \sim \lambda^{n} \tag{2.22}
\end{align*}
$$

By (2.5), the width $W_{0, n}$ of S_{n} is represented as

$$
\begin{aligned}
W_{0, n} & \approx\left(a \tilde{y}_{n}\left(t_{n,-}\right)+b t_{n,-} \tilde{y}_{n}\left(t_{n,-}\right)+c t_{n,-}^{3}\right)-\left(a \tilde{y}_{n}\left(t_{n,+}\right)+b t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right)+c t_{n,+}^{3}\right) \\
& =a\left(\tilde{y}_{n}\left(t_{n,-}\right)-\tilde{y}_{n}\left(t_{n,+}\right)\right)+b\left(t_{n,-} \tilde{y}_{n}\left(t_{n,-}\right)-t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right)\right)+c\left(t_{n,-}^{3}-t_{n,+}^{3}\right)
\end{aligned}
$$

Figure 2.6: The smallest orthogonal rectangle S_{n}.

It follows from Mean Value Theorem together with (2.19) that

$$
\left|\tilde{y}_{n}\left(t_{n,-}\right)-\tilde{y}_{n}\left(t_{n,+}\right)\right| \precsim \lambda^{n} \mu^{-n}\left|t_{n,-}-t_{n,+}\right| \sim \lambda^{\frac{3}{2} n} \mu^{-n} .
$$

Moreover, by (2.21), we have

$$
\begin{aligned}
c\left(t_{n,-}^{3}-t_{n,+}^{3}\right) & \approx c\left(t_{n,-}\left(\frac{-b \tilde{y}_{n}\left(t_{n,-}\right)}{3 c}\right)-t_{n,+}\left(\frac{-b \tilde{y}_{n}\left(t_{n,+}\right)}{3 c}\right)\right) \\
& =-\frac{b}{3}\left(t_{n,-} \tilde{y}_{n}\left(t_{n,-}\right)-t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right)\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
t_{n,-} \tilde{y}_{n}\left(t_{n,-}\right)-t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right) & =\left(t_{n,-}-t_{n,+}\right) \tilde{y}_{n}\left(t_{n,-}\right)+t_{n,+}\left(\tilde{y}_{n}\left(t_{n,-}\right)-y_{n}\left(t_{n,+}\right)\right) \\
& \approx-\sqrt{\frac{-b z_{0}}{3 c}} \lambda^{\frac{n}{2}} \cdot z_{0} \lambda^{n}+O\left(\lambda^{\frac{n}{2}} \cdot \lambda^{\frac{3}{2} n} \mu^{-n}\right) \sim-\lambda^{\frac{3}{2} n},
\end{aligned}
$$

we have

$$
\begin{equation*}
W_{0, n} \approx O\left(\lambda^{\frac{3}{2} n} \mu^{-n}\right)+\frac{2 b}{3}\left(t_{n,-} \tilde{y}_{n}\left(t_{n,-}\right)-t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right)\right) \sim \lambda^{\frac{3}{2} n} . \tag{2.23}
\end{equation*}
$$

Next we estimate the height $H_{0, n}$ of S_{n}. For that, we estimate $W_{0, n}$ again by using $\tilde{t}_{n,+}$ and $t_{n,+}$ instead of $t_{n,-}$ and $t_{n,+}$. Since $\tilde{t}_{n,+}>t_{n,+}$, one can set $\tilde{t}_{n,+}=t_{n,+}+\rho_{n} \lambda^{\frac{n}{2}}$ for some $\rho_{n}>0$.

$$
\begin{aligned}
& W_{0, n} \approx a\left(\tilde{y}_{n}\left(\tilde{t}_{n,+}\right)-\tilde{y}_{n}\left(t_{n,+}\right)\right)+b\left(\tilde{t}_{n,+} \tilde{y}_{n}\left(\tilde{t}_{n,+}\right)-t_{n,+} \tilde{y}_{n}\left(t_{n,+}\right)\right)+c\left(\tilde{t}_{n,+}^{3}-\tilde{t}_{n,-}^{3}\right) \\
& \quad=\left(a+b \tilde{t}_{n,+}\right)\left(\tilde{y}_{n}\left(\tilde{t}_{n,+}\right)-\tilde{y}_{n}\left(t_{n,+}\right)\right)+b\left(\tilde{t}_{n,+}-t_{n,+}\right) \tilde{y}_{n}\left(t_{n,+}\right)+c\left(\tilde{t}_{n,+}^{3}-t_{n,-}^{3}\right) .
\end{aligned}
$$

Again by Mean Value Theorem together with (2.19),

$$
\left|\tilde{y}_{n}\left(\tilde{t}_{n,+}\right)-\tilde{y}_{n}\left(t_{n,+}\right)\right| \precsim \lambda^{n} \mu^{-n} \cdot \rho_{n} \lambda^{\frac{n}{2}}=\rho_{n} \lambda^{\frac{3}{2} n} \mu^{-n} .
$$

Moreover, we have

$$
\left(\tilde{t}_{n,+}-t_{n,+}\right) \tilde{y}_{n}\left(t_{n,+}\right) \sim \rho_{n} \lambda^{\frac{n}{2}} \cdot \lambda^{n}=\rho_{n} \lambda^{\frac{3}{2} n}
$$

and

$$
\begin{aligned}
\tilde{t}_{n,+}^{3}-t_{n,+}^{3} & =3 \rho_{n}^{2} \lambda^{n} t_{n,+}+3 \rho_{n} \lambda^{\frac{n}{2}} t_{n,+}^{2}+\rho_{n}^{3} \lambda^{\frac{3}{2} n} \\
& \approx\left(3 \rho_{n} \sqrt{\frac{-b z_{0}}{3 c}}-\frac{3 b z_{0}}{c}+\rho_{n}^{2}\right) \rho_{n} \lambda^{\frac{3}{2} n}
\end{aligned}
$$

This shows that

$$
W_{0, n} \sim\left(a \mu^{-n}+b z_{0}+3 \rho_{n} \sqrt{\frac{-b z_{0}}{3 c}}-\frac{3 b z_{0}}{c}+\rho_{n}^{2}\right) \rho_{n} \lambda^{\frac{3}{2} n}
$$

Since $W_{0, n} \sim \lambda^{\frac{3}{2} n}$, it follows that $\rho_{n} \sim 1$ and hence $\tilde{t}_{n,+} \sim \lambda^{\frac{n}{2}}$. Similarly $-\tilde{t}_{n,-} \sim \lambda^{\frac{n}{2}}$. This implies that

$$
\begin{equation*}
\left|\tilde{t}_{n, \pm}\right| \sim \lambda^{\frac{n}{2}} \tag{2.24}
\end{equation*}
$$

Therefore we have

$$
\begin{align*}
H_{0, n} & =\left(1+d \tilde{t}_{n,-}+e \tilde{y}_{n}\left(\tilde{t}_{n,-}\right)\right)-\left(1+d \tilde{t}_{n,+}+e \tilde{y}_{n}\left(\tilde{t}_{n,+}\right)\right) \\
& =d\left(\tilde{t}_{n,-}-\tilde{t}_{n,+}\right)+e\left(\tilde{y}_{n}\left(\tilde{t}_{n,-}\right)-\tilde{y}_{n}\left(\tilde{t}_{n,+}\right)\right) \sim \lambda^{\frac{n}{2}}+O\left(\lambda^{\frac{3}{2} n} \mu^{-n}\right) \sim \lambda^{\frac{n}{2}} \tag{2.25}
\end{align*}
$$

In particular, $\left\{S_{n}\right\}$ is a sequence of rectangles converging to the cubic tangency r.

2.4 Slope Lemma

Let $\boldsymbol{v}=\left[\begin{array}{l}u \\ v\end{array}\right] \in T_{\boldsymbol{x}}(M)$ be a tangent vector at $\boldsymbol{x} \in U(p)$ with $u \neq 0$. Then we say that $\left|v u^{-1}\right|$ is the (absolute) slope of \boldsymbol{v} and denote it by Slope (\boldsymbol{v}).

Consider any tangent vector $\boldsymbol{v}_{0}=\left[\begin{array}{l}1 \\ \delta\end{array}\right] \in T_{\boldsymbol{x}}(M)$ at $\boldsymbol{x}=(x+1, y) \in R_{\varepsilon}$ with $|\delta| \leq \varepsilon^{\frac{5}{2}}$. We set $\boldsymbol{v}_{0}^{\prime}=D \varphi(x+1, y)\left(\boldsymbol{v}_{0}\right)$ and $\boldsymbol{v}_{1}=D f^{u_{0}}(\varphi(x+1, y))\left(\boldsymbol{v}_{0}^{\prime}\right)$. By (2.8),

$$
\operatorname{Slope}\left(\boldsymbol{v}_{0}^{\prime}\right) \approx \frac{|d+e \delta|}{\left|3 c x^{2}+a \delta\right|}
$$

Since $\varepsilon \leq x$ and $|\delta| \leq \varepsilon^{\frac{5}{2}}$,

$$
\begin{aligned}
\operatorname{Slope}\left(\boldsymbol{v}_{0}^{\prime}\right) & \approx \frac{|d+e \delta|}{\left|3 c x^{2}+a \delta\right|} \leq \frac{|d|+|e \delta|}{\left|3 c x^{2}\right|-|a \delta|} \leq \frac{|d|+\left|e \varepsilon^{\frac{5}{2}}\right|}{\left|3 c \varepsilon^{2}\right|-\left|a \varepsilon^{\frac{5}{2}}\right|} \\
& =\frac{|d|+\left|e \varepsilon^{\frac{5}{2}}\right|}{|3 c|-\left|a \varepsilon^{\frac{1}{2}}\right|} \varepsilon^{-2}=\frac{|d|+\left|e \varepsilon^{\frac{5}{2}}\right|}{|3 c|-\left|a \varepsilon^{\frac{1}{2}}\right|} \varepsilon^{\frac{1}{2}} \cdot \varepsilon^{-\frac{5}{2}}
\end{aligned}
$$

By taking $\varepsilon_{1}>0$ sufficiently small, for any $0<\varepsilon \leq \varepsilon_{1}$, we have

$$
\text { Slope }\left(\boldsymbol{v}_{0}^{\prime}\right) \leq 2 \frac{|d|+\left|e \varepsilon^{\frac{5}{2}}\right|}{|3 c|-\left|a \varepsilon^{\frac{1}{2}}\right|} \varepsilon^{\frac{1}{2}} \cdot \varepsilon^{-\frac{5}{2}} \leq \frac{|3 d|}{|2 c|} \varepsilon^{\frac{1}{2}} \cdot \varepsilon^{-\frac{5}{2}} \leq 1 \cdot \varepsilon^{-\frac{5}{2}}
$$

Then, by (2.13) and (2.14), we have

$$
\operatorname{Slope}\left(\boldsymbol{v}_{1}\right)=\operatorname{Slope}\left(\boldsymbol{v}_{0}^{\prime}\right) \lambda^{u_{0}} \mu^{-u_{0}} \leq \varepsilon^{-\frac{5}{2}} \lambda^{u_{0}} \mu^{-u_{0}} \leq \varepsilon^{-\frac{5}{2}} \mu^{-\frac{5}{2} u_{0}} \leq \varepsilon^{-\frac{5}{2}} \varepsilon^{5}=\varepsilon^{\frac{5}{2}}
$$

Thus we get the following lemma. See Figure 2.7.

Figure 2.7: The tangent vectors $\boldsymbol{v}_{0}, \boldsymbol{v}_{0}^{\prime}$ and \boldsymbol{v}_{1}.

Lemma 2.3 (Slope Lemma I). Suppose that f satisfies the conditions (2.13). Then there exists a constant $\varepsilon_{1}>0$ such that, if $\varepsilon \in\left(0, \varepsilon_{1}\right]$, then

$$
\begin{equation*}
\text { Slope }\left(\boldsymbol{v}_{0}^{\prime}\right) \leq \varepsilon^{-\frac{5}{2}} \quad \text { and } \quad \text { Slope }\left(\boldsymbol{v}_{1}\right) \leq \varepsilon^{\frac{5}{2}} \tag{2.26}
\end{equation*}
$$

for any tangent vector $\boldsymbol{v}_{0} \in T_{\boldsymbol{x}}(M)$ at $\boldsymbol{x}=(x+1, y) \in R_{\varepsilon}$ with $\operatorname{Slope}\left(\boldsymbol{v}_{0}\right) \leq \varepsilon^{\frac{5}{2}}$.
Fix a sufficiently small $s>0$ and set $\operatorname{pr}_{x}\left(S_{n}\right)=\left[s_{n}^{-}, s_{n}^{+}\right]$for $n \in \mathbb{N}$. If n is sufficiently large, then $\left[s_{n}^{-}, s_{n}^{+}\right] \subset(0, s]$. Let $\beta_{n}^{u}(s)$ be the component of $\varphi\left(\alpha_{n}^{u}\right) \cap \operatorname{pr}_{x}^{-1}((0, s])$ containing $\varphi\left(\alpha_{n}\left(\left[\tilde{t}_{n,-}, \tilde{t}_{n,+}\right]\right)\right)$. For any $\boldsymbol{x} \in \beta_{n}^{u}(s)$, let $j_{n}(\boldsymbol{x})$ be a positive integer such that $f^{j}(\boldsymbol{x}) \in$ $U(p)$ for $j=1, \ldots, j_{n}(\boldsymbol{x})$ and $\operatorname{pr}_{x}\left(f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})\right) \in\left[1+\varepsilon,(1+\varepsilon)^{3}\right]$. For any $\varepsilon>0$, one can take s so that $\operatorname{pr}_{x}\left(f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})\right) \in R_{\varepsilon}$ for any $\boldsymbol{x} \in \beta_{n}^{u}(s)$. Let $\boldsymbol{v}(\boldsymbol{x})$ be a unit vector tangent to $\beta_{n}^{u}(s)$ at \boldsymbol{x}.

The following result is applied to f_{1} in the proof of Theorem 2.1.
Lemma 2.4 (Slope Lemma II). Let ε_{1} be the constant given in Lemma 2.3. For any $\varepsilon \in\left(0, \varepsilon_{1}\right]$, there exist $s>0$ and $n_{0} \in \mathbb{N}$ such that

$$
\operatorname{Slope}\left(D f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})(\boldsymbol{v}(\boldsymbol{x}))\right)<\varepsilon^{\frac{5}{2}}
$$

if $n \geq n_{0}$ and $\boldsymbol{x} \in \beta_{n}^{u}(s) \backslash S_{n}$.

Proof. We only consider the case where \boldsymbol{x} is an element of $\beta_{n}^{u}(s) \backslash S_{n}$ with $\mathrm{pr}_{x}(\boldsymbol{x}) \geq s_{n}^{+}$. Then $t \geq \tilde{t}_{n,+}$ holds if $\varphi\left(\alpha_{n}(t)\right)=\boldsymbol{x}$. The proof in the case of $\operatorname{pr}_{x}(\boldsymbol{x}) \leq s_{n}^{-}$is done quite similarly. Since $\rho_{n} \sim 1$ and $\tilde{t}_{n,+}=t_{n,+}+\rho_{n} \lambda^{\frac{n}{2}}, t-t_{n,+} \geq \tilde{t}_{n,+}-t_{n,+} \sim \lambda^{\frac{n}{2}}$. This implies that

$$
\begin{equation*}
t^{2}-t_{n,+}^{2} \sim t^{2} \succsim \lambda^{n} \tag{2.27}
\end{equation*}
$$

In fact, if $t-t_{n,+} \geq \frac{t}{2}$, then $t^{2}-t_{n,+}^{2}=\left(t-t_{n,+}\right)\left(t+t_{n,+}\right)>\frac{t^{2}}{2}$ and hence (2.27) holds. On the other hand, if $t-t_{n,+} \leq \frac{t}{2}$, then $t \leq 2 t_{n,+}$ and so $t \sim \lambda^{\frac{n}{2}}$. It follows that $t+t_{n,+} \sim \lambda^{\frac{n}{2}}$ and $t-t_{n,+} \sim \lambda^{\frac{n}{2}}$. Then $t^{2}-t_{n,+}^{2} \sim \lambda^{n} \sim t^{2}$. Thus (2.27) holds.

We set $\xi_{n}(t)=\operatorname{pr}_{x}(\boldsymbol{x})=\operatorname{pr}_{x}\left(\varphi\left(\alpha_{n}(t)\right)\right)$. By (2.17),

$$
\begin{align*}
& \xi_{n}(t)=a \tilde{y}_{n}(t)+b t \tilde{y}_{n}(t)+c t^{3}+\text { h.o.t. } \tag{2.28}\\
& \xi_{n}^{\prime}(t)=a \tilde{y}_{n}^{\prime}(t)+b \tilde{y}_{n}(t)+b t \tilde{y}_{n}^{\prime}(t)+3 c t^{2}+\text { h.o.t.. }
\end{align*}
$$

From the definition of $j_{n}(\boldsymbol{x})$,

$$
\mu^{j_{n}(\boldsymbol{x})} \xi_{n}(t)=\mu^{j_{n}(\boldsymbol{x})} \operatorname{pr}_{x}(\boldsymbol{x})=\operatorname{pr}_{x}\left(f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})\right) \in\left[1+\varepsilon,(1+\varepsilon)^{3}\right] .
$$

This implies that $\mu^{j_{n}(\boldsymbol{x})} \xi_{n}(t) \sim 1$. We note that $\xi_{n}^{\prime}\left(t_{n,+}\right)=0$. By Mean Value Theorem, $\tilde{y}_{n}(t)-\tilde{y}_{n}\left(t_{n,+}\right)=\tilde{y}_{n}^{\prime}(c)\left(t-t_{n,+}\right)$ for some $t_{n,+}<c<t$. From this fact together with (2.16), (2.19), (2.27) and (2.28), we know that

$$
\xi_{n}^{\prime}(t)=\xi_{n}^{\prime}(t)-\xi_{n}^{\prime}\left(t_{n,+}\right) \sim t^{2}-t_{n,+}^{2} \sim t^{2} .
$$

By (2.18), Slope $(\boldsymbol{v}(\boldsymbol{x})) \sim t^{-2}$. Hence we have

$$
\begin{equation*}
\operatorname{Slope}\left(D f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})(\boldsymbol{v}(\boldsymbol{x}))\right)=\operatorname{Slope}(\boldsymbol{v}(\boldsymbol{x})) \cdot \frac{\lambda^{j_{n}(\boldsymbol{x})}}{\mu^{j_{n}(\boldsymbol{x})}} \sim t^{-2} \lambda^{j_{n}(\boldsymbol{x})} \xi_{n}(t) . \tag{2.29}
\end{equation*}
$$

Now we need to consider the following two cases.
Case 1. $c t^{3} \leq a \tilde{y}_{n}(t)$. By (2.28), $\xi_{n}(t) \sim \lambda^{n}$. Since $t^{-2} \precsim \lambda^{-n}$ by $t \succsim \lambda^{\frac{n}{2}}$, it follows from (2.29) that

$$
\operatorname{Slope}\left(D f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})(\boldsymbol{v}(\boldsymbol{x}))\right) \precsim \lambda^{-n} \lambda^{j_{n}(\boldsymbol{x})} \lambda^{n}=\lambda^{j_{n}(\boldsymbol{x})} .
$$

Case 2. $c^{3} \geq a \tilde{y}_{n}(t)$. Again by (2.28), we have $\xi_{n}(t) \sim t^{3}$. Then, by (2.29),

$$
\operatorname{Slope}\left(D f^{j_{n}(\boldsymbol{x})}(\boldsymbol{x})(\boldsymbol{v}(\boldsymbol{x}))\right) \sim t^{-2} \lambda^{j_{n}(\boldsymbol{x})} t^{3}=t \lambda^{j_{n}(\boldsymbol{x})} \precsim \lambda^{j_{n}(\boldsymbol{x})} .
$$

Let $n_{0}(s)$ be the minimum positive integer with $s_{n_{0}(s)}^{+}<s$. Since $n_{0}(s)$ goes to infinity as $s \rightarrow+0$, one can take $s=s(\varepsilon)>0$ such that our desired inequality holds for any $\boldsymbol{x} \in \beta_{n}^{u}(s) \backslash S_{n}$.

2.5 Sequence of rectangle-like boxes

Now we will define a sequence $\left\{B_{k, n}\right\}_{k=1}^{\infty}$ of rectangle-like boxes and estimate the sizes of them.

Recall that $\operatorname{pr}_{x}\left(S_{n}\right)=\left[s_{n}^{-}, s_{n}^{+}\right]$. Let i_{n} be the positive integer with $(1+\varepsilon)^{2}<\mu^{i_{n}} s_{n}^{+} \leq$ $(1+\varepsilon)^{3}$. By (2.15), $f^{i_{n}}\left(S_{n}\right)$ is contained in R_{ε} for any sufficiently large n. We set $f^{i_{n}}\left(S_{n}\right)=B_{1, n}=B_{1}$ for short. Since $s_{n}^{+} \sim \lambda^{n}$ by (2.22) and (2.23), we have

$$
\begin{equation*}
\mu^{i_{n}} \lambda^{n} \sim 1 \tag{2.30}
\end{equation*}
$$

We denote the width and height of B_{1} and the distance between B_{1} and $W_{\text {loc }}^{u}(p)$ by $W_{1, n}=W_{1}, H_{1, n}=H_{1}$ and $L_{1, n}=L_{1}$ respectively. It follows from (2.22), (2.23) and (2.25) that

$$
\begin{equation*}
W_{1, n} \sim \lambda^{\frac{3}{2} n} \mu^{i_{n}} \sim \lambda^{\frac{n}{2}}, \quad H_{1, n} \sim \lambda^{\frac{n}{2}+i_{n}}, \quad L_{1, n} \sim \lambda^{i_{n}} . \tag{2.31}
\end{equation*}
$$

Note that, for any sufficiently large $n, H_{1} \ll L_{1} \ll W_{1}$. Consider a closed interval δ_{1} in $W_{\text {loc }}^{u}(p)$ which is a small neighborhood of $\operatorname{pr}_{x}\left(B_{1}\right)$.

Let $v_{i}^{(1)}, e_{i}^{(1)}(i=0,1,2,3)$ be the vertices and edges of B_{1} as illustrated in Figure 2.8 (a). We consider the image $\varphi\left(B_{1}\right)$. By Lemma 2.3 , for $i=0,2$,

Figure 2.8: The rectangle B_{1} and the parallelogram-like box B_{1}^{\prime}.

$$
\operatorname{diam}\left(\operatorname{pr}_{x}\left(\varphi\left(e_{i}^{(1)}\right)\right)\right) \succsim \varepsilon^{\frac{5}{2}} W_{1} \sim \varepsilon^{\frac{5}{2}} \lambda^{\frac{n}{2}}
$$

On the other hand, for $i=1,3$,

$$
\operatorname{diam}\left(\operatorname{pr}_{x}\left(\varphi\left(e_{i}^{(1)}\right)\right)\right) \precsim H_{1} \sim \lambda^{\frac{n}{2}+i_{n}}
$$

Since $\lambda^{i_{n}} \varepsilon^{-\frac{5}{2}}$ can be supposed to be arbitrarily small for all sufficiently large n,

$$
\begin{align*}
x_{+}^{(1)}-x_{-}^{(1)} & \succsim \varepsilon^{\frac{5}{2}} W_{1}-O\left(\lambda^{\frac{n}{2}+i_{n}}\right) \sim \varepsilon^{\frac{5}{2}} \lambda^{\frac{n}{2}}-O\left(\lambda^{\frac{n}{2}+i_{n}}\right) \\
& =\varepsilon^{\frac{5}{2}} \lambda^{\frac{n}{2}}\left(1-\frac{O\left(\lambda^{i_{n}}\right)}{\varepsilon^{\frac{5}{2}}}\right) \sim \varepsilon^{\frac{5}{2}} \lambda^{\frac{n}{2}} . \tag{2.32}
\end{align*}
$$

where $x_{+}^{(1)}=\operatorname{pr}_{x}\left(\varphi\left(v_{1}^{(1)}\right)\right)$ and $x_{-}^{(1)}=\operatorname{pr}_{x}\left(\varphi\left(v_{3}^{(1)}\right)\right)$, see Figure $2.8(\mathrm{~b})$. Let B_{1}^{\prime} be the intersection $\operatorname{pr}_{x}^{-1}\left(\left[x_{-}^{(1)}, x_{+}^{(1)}\right]\right) \cap \varphi\left(B_{1}\right)$. Any compact region in $U(p)$ like B_{1}^{\prime} is called a parallelogram-like box.

Let u_{1} be the positive integer with $(1+\varepsilon)^{2}<\mu^{u_{1}} x_{+}^{(1)} \leq(1+\varepsilon)^{3}$. By $(2.15), f^{u_{1}}\left(B_{1}^{\prime}\right)$ is contained in R_{ε} for any sufficiently large n. We denote $f^{u_{1}}\left(B_{1}^{\prime}\right)$ by B_{2}. We call that any compact region in $U(p)$ like B_{2} is a rectangle-like box.

Let B be either a parallelogram-like or rectangle-like box. The horizontal width of B is the diameter of the interval $\operatorname{pr}_{x}(B)$. The vertical height of B is the maximum of the lengths of $\eta\left(x_{0}\right)$ with $x_{0} \in \operatorname{pr}_{x}(B)$, where $\eta\left(x_{0}\right)$ is the intersection of B and the vertical line $x=x_{0}$. See Figure 2.9 in the case of $B=B_{1}^{\prime}$. Suppose that B is a rectangle-like

Figure 2.9: A vertical segment $\eta\left(x_{0}\right)$ connecting the opposite pair of edges of the parallelogram-like box B_{1}^{\prime}.
box and δ is an almost horizontal arc in $U(q)$ with $B \cap \delta=\emptyset$ and $\operatorname{pr}_{x}(B) \subset \operatorname{pr}_{x}(\delta)$. Then the vertical distance between B and δ is the maximum of $\sigma\left(x_{1}\right)$ with $x_{1} \in \operatorname{pr}_{x}(B)$, where $\sigma\left(x_{1}\right)$ is the length of the shortest segment in the vertical line $x=x_{1}$ connecting B with δ.

Let δ_{2} be a sub-arc of $f^{u_{1}}\left(\varphi\left(\delta_{1}\right)\right) \subset W^{u}(p)$ such that $\mathrm{pr}_{x}\left(\delta_{2}\right)$ is a small neighborhood of $\operatorname{pr}_{x}\left(B_{2}\right)$ in $W_{\text {loc }}^{u}(p)$. See Figure 2.10. We denote the horizontal width and vertical height of B_{2} and the vertical distance between B_{2} and δ_{2} by W_{2}, H_{2} and L_{2} respectively. By (2.14), (2.31) and (2.32),

$$
\begin{equation*}
W_{2}=\left(x_{+}^{(1)}-x_{-}^{(1)}\right) \mu^{u_{1}} \succsim \varepsilon^{\frac{5}{2}} \lambda^{\frac{n}{2}} \mu^{u_{1}} \geq \varepsilon^{-\frac{1}{2}} \tau_{1}^{-1} \lambda^{\frac{n}{2}} \sim \varepsilon^{-\frac{1}{2}} W_{1} . \tag{2.33}
\end{equation*}
$$

For any x_{0} with $x_{-}^{(1)} \leq x_{0} \leq x_{+}^{(1)}, \eta\left(x_{0}\right)$ is a vertical segment connecting $\varphi\left(e_{0}^{(1)}\right)$ with $\varphi\left(e_{2}^{(1)}\right)$. By this fact together with (2.26), one can show the vertical height H_{1}^{\prime} of B_{1}^{\prime} satisfies $H_{1}^{\prime} \precsim H_{1} \varepsilon^{-\frac{5}{2}}$. It follows from (2.13) and (2.14) that

$$
\begin{equation*}
H_{2}=\lambda^{u_{1}} H_{1}^{\prime} \precsim \mu^{-\frac{3}{2} u_{1}} \varepsilon^{-\frac{5}{2}} H_{1}<\left(\varepsilon^{2}\right)^{\frac{3}{2}} \varepsilon^{-\frac{5}{2}} H_{1}=\varepsilon^{\frac{1}{2}} H_{1} . \tag{2.34}
\end{equation*}
$$

Let L_{2} be the vertical distance between B_{2} and δ_{2}. By using an argument similar to that for the estimation (2.34), we have

$$
\begin{equation*}
L_{2} \precsim \varepsilon^{\frac{1}{2}} L_{1} . \tag{2.35}
\end{equation*}
$$

The following lemma is obtained immediately from (2.33), (2.34) and (2.35).
Lemma 2.5. Let $\varepsilon_{1}>0$ be the constant given in Lemma 2.3. Then there exists a constant $\varepsilon_{0} \in\left(0, \varepsilon_{1}\right]$ such that, for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the inequalities

$$
W_{2} \geq 10 W_{1}, \quad H_{2} \leq 10^{-1} H_{1} \quad \text { and } \quad L_{2} \leq 10^{-1} L_{1}
$$

hold.
If $\mu=1+\varepsilon$ for an $\varepsilon \in\left(0, \varepsilon_{0}\right)$, then we say that f satisfies the small expanding conditions at p.

We repeat the process as above. Let B_{2}^{\prime} be the subset of $\varphi\left(B_{2}\right)$ cobounded by the vertical lines $x=x_{-}^{(2)}$ and $x=x_{+}^{(2)}$ passing through two of the four vertices of $\varphi\left(B_{2}\right)$ and satisfying $\left[x_{-}^{(2)}, x_{+}^{(2)}\right] \subset \operatorname{Int}\left(\operatorname{pr}_{x}\left(\varphi\left(B_{2}\right)\right)\right)$. Let u_{2} be the positive integer with $(1+\varepsilon)^{2}<$ $\mu^{u_{2}} x_{+}^{(2)} \leq(1+\varepsilon)^{3}$ and $f^{u_{2}}\left(B_{2}^{\prime}\right) \subset R_{\varepsilon}$ for sufficient large $n \in \mathbb{N}$. Set $B_{3}=f^{u_{2}}\left(B_{2}^{\prime}\right)$. Let δ_{3} be a sub-arc of $f^{u_{2}}\left(\varphi\left(\delta_{2}\right)\right)$ such that $\operatorname{pr}_{x}\left(\delta_{3}\right)$ is a small neighborhood of $\operatorname{pr}_{x}\left(B_{3}\right)$ in $W_{\text {loc }}^{u}(p)$. We denote the horizontal width and vertical height of B_{3} and the vertical distance between B_{3} and δ_{3} by W_{3}, H_{3} and L_{3} respectively.

The objects $B_{k}^{\prime}, u_{k}, B_{k+1}, \delta_{k}, W_{k+1}, H_{k+1}, L_{k+1}(k=3,4,5, \ldots)$ are defined inductively if

$$
\begin{equation*}
B_{j} \subset R_{\varepsilon} \tag{2.36}
\end{equation*}
$$

for $j=1,2, \ldots, k$.
The top and bottom sides of the rectangle B_{1} are horizontal and $\gamma_{1}=B_{1} \cap W^{u}(p)$ consists of three proper arcs in B_{1}. By Slope Lemma I (Lemma 2.3), for $k=2,3, \cdots$, the top and bottom sides of the rectangle-like box B_{k} are almost horizontal and $\gamma_{k}=$ $B_{k} \cap W^{u}(p)$ consists of three proper arcs in B_{k}. See Figure 2.12. Thus we have the following lemma.
Lemma 2.6. Let $\varepsilon_{0}>0$ be the constant given in Lemma 2.5. For any $\varepsilon \in\left(0, \varepsilon_{0}\right]$, there exists the maximum integer $k_{0}=k_{0}(\varepsilon, n)$ satisfying (2.36). Moreover,

$$
\begin{equation*}
W_{k+1} \geq 10 W_{k}, \quad H_{k+1} \leq 10^{-1} H_{k} \quad \text { and } \quad L_{k+1} \leq 10^{-1} L_{k} \tag{2.37}
\end{equation*}
$$

hold for any $k=1,2, \ldots, k_{0}$.
See Figure 2.10 for the situation of Lemma 2.6. We note that, since $W_{1}=W_{1, n} \sim \lambda^{\frac{n}{2}}$ by (2.31), $\lim _{n \rightarrow \infty} k_{0}(\varepsilon, n)=\infty$ for a fixed ε with $0<\varepsilon \leq \varepsilon_{0}$.

Figure 2.10: The pairs of the rectangle-like box B_{k} and the sub-arc δ_{k} of $W^{u}(p)$ for $k=1,2, \ldots, k_{0}+1$.

2.6 Intersection Lemma

Recall that \mathcal{C} is the codimension two submanifold of $\operatorname{Diff}^{3}(M)$ defined in Section 2.2. Let f_{0}, f_{1} be elements of \mathcal{C} satisfying the conditions (A1)-(A3) in Theorem 2.1. In particular, $\varepsilon>0$ is taken so that Slope Lemmas I and II (Lemmas 2.3 and 2.4) hold. Moreover, we suppose that f_{0}, f_{1} satisfy the condition (2.9), which is one of the adaptable cases given in Section 2.8.

From now on, we set $f_{0}=f$ and use the notations in Sections 2.2-2.5. Here the subscription ' 0 ' is omitted from the notations. For example, $\lambda_{0}=\underline{\lambda}, \mu_{0}=\mu, p_{0}=p$, $q_{0}=q$ and so on. We also set $f_{1}=\bar{f}$ and represent the notations for \bar{f} by adding bars to the corresponding notations for f, e.g. $\bar{\lambda}, \bar{\mu}, \bar{p}, \bar{q}, \bar{m}_{0}, \bar{S}_{n}, \bar{B}_{k}, \bar{W}_{k}$ and so on.

Let $h: M \rightarrow M$ be a homeomorphism with $\bar{f}=h \circ f \circ h^{-1}$. Here we note that $h(r)$ is not necessarily equal to \bar{r}. In fact, $h(r)=\bar{r}$ if and only if $m_{0}=\bar{m}_{0}$ or equivalently $\bar{\varphi}=h \circ \varphi \circ h^{-1}$. We may assume that $m_{0} \leq \bar{m}_{0}$ if necessary replacing f and \bar{f}. Then $h\left(f^{m_{0}-m_{0}}(r)\right)=\bar{r}$. Since the constants appeared in (2.5) depend on the coordinate on $U(p)$, one can not replace the coordinates on $U(p)$ or $U(\bar{p})$ so as to satisfy $h(r)=\bar{r}$.

For any C^{1} arc α in $U(p)$, the union of the end points of α is denoted by $\partial \alpha$. When any vector tangent to α is not vertical, the maximum $\operatorname{Slope}(\alpha)$ of $\operatorname{Slope}(\boldsymbol{v}(\boldsymbol{x}))$ for vectors $\boldsymbol{v}(\boldsymbol{x})$ tangent to α at $\boldsymbol{x} \in \alpha$ is well defined.

If $s>0$ is small enough, then $\gamma_{0, n}^{\prime}=\beta_{n}^{u}(s) \cap S_{n}$ is equal to $\alpha_{n}^{u} \cap S_{n}$ for any sufficiently large $n \in \mathbb{N}$.

The following is a key lemma for the proof of Theorem 2.1.
Lemma 2.7 (Intersection Lemma). Let $\gamma_{0, n}^{\prime}=\beta_{n}^{u}(s) \cap S_{n}$ and $\bar{\gamma}_{0, n}^{\prime}=\bar{\beta}_{n}^{u}(\bar{s}) \cap \bar{S}_{n}$. Then there exists an $n_{0} \in \mathbb{N}$ such that, for any $n \geq n_{0}$,

$$
\begin{equation*}
h\left(f^{\bar{m}_{0}-m_{0}}\left(\gamma_{0, n}^{\prime}\right)\right) \cap \bar{\gamma}_{0, n}^{\prime} \neq \emptyset \tag{2.38}
\end{equation*}
$$

Proof. We suppose that, for any $n_{0} \in \mathbb{N}$, there would exist $n>n_{0}$ such that

$$
\gamma_{0, n}^{\prime *} \cap \bar{\gamma}_{0, n}^{\prime}=\emptyset
$$

where $\gamma_{0, n}^{\prime *}=h \circ f^{\bar{m}_{0}-m_{0}}\left(\gamma_{0, n}^{\prime}\right)$, and introduce a contradiction.

Recall that $i_{n} \in \mathbb{N}$ satisfies $(1+\varepsilon)^{2}<f^{i_{n}}\left(s_{n}^{+}\right) \leq(1+\varepsilon)^{3}$ and $f^{i_{n}}\left(S_{n}\right) \subset R_{\varepsilon}$. For short, we set

$$
\gamma_{1}=\gamma_{1, n}:=f^{i_{n}}\left(\gamma_{0, n}^{\prime}\right) \quad \text { and } \quad \gamma_{1}^{*}=\gamma_{1, n}^{*}:=h\left(\gamma_{1}\right) .
$$

Then $\gamma_{1}^{*}=\bar{f}^{i_{n}-\left(\bar{m}_{0}-m_{0}\right)}\left(\gamma_{0, n}^{*}\right)$. Since $h(q)=\bar{q}$ and $\bar{f}=h \circ f \circ h^{-1}$, we have $h(1)=1, h(1+$ $\varepsilon)=1+\bar{\varepsilon}, h\left((1+\varepsilon)^{2}\right)=(1+\bar{\varepsilon})^{2}, h\left((1+\varepsilon)^{3}\right)=(1+\bar{\varepsilon})^{3}$ and $1+\bar{\varepsilon}<\operatorname{pr}_{x}\left(\gamma_{1}^{*}\right) \leq(1+\bar{\varepsilon})^{3}$. Strictly, γ_{1}^{*} may slightly exceed $R_{\bar{\varepsilon}}$. Then we may rearrange our argument so that Lemmas 2.3 and 2.4 for \bar{f} still hold if γ_{1}^{*} is contained in a sufficiently small neighborhood of $R_{\bar{\varepsilon}}$. Then, by applying Lemma 2.4 to \bar{f}, one can show that γ_{1}^{*} is a sub-arc almost parallel to $\bar{\delta}_{1} \subset W_{\text {loc }}^{u}(\bar{p})$ and Slope $\left(\gamma_{1}^{*}\right)<\bar{\varepsilon}^{\frac{5}{2}}$ for any sufficiently large n.

The intersection $\gamma_{1}^{\prime}=\varphi\left(\gamma_{1}\right) \cap B_{1}^{\prime}$ consists of mutually disjoint three arcs connecting the vertical sides of B_{1}^{\prime}. See Figure 2.11. We set $\gamma_{2}=f^{u_{1}}\left(\gamma_{1}^{\prime}\right)$ and $\gamma_{2}^{*}=h\left(\gamma_{2}\right)$. Note that

Figure 2.11: γ_{1}^{\prime} is a disjoint union of arcs connecting the vertical sides of B_{1}^{\prime} and γ_{2} is a disjoint union of three proper arcs connecting the vartical sides of B_{2}.
γ_{2} is a disjoint union of three proper arcs in B_{2} connecting the vertical sides of B_{2}. Let $\widehat{\gamma}_{2}^{*}$ be the smallest arc in $W^{u}(\bar{p})$ containing γ_{2}^{*}. By applying Lemma 2.4 to \bar{f}, we have Slope $\left(\widehat{\gamma}_{2}^{*}\right)<\bar{\varepsilon}^{\frac{5}{2}}$. In particular, $\widehat{\gamma}_{2}^{*}$ is almost parallel to $\bar{\delta}_{2}$. Repeating the same argument, one can have sequences $\left\{\gamma_{k}\right\}$ satisfying the following conditions.

- Each γ_{k} is a disjoint union of three proper arcs in B_{k} connecting the vertical sides of B_{k}.
- For each $\gamma_{k}^{*}=h\left(\gamma_{k}\right)$, the smallest arc $\widehat{\gamma}_{k}^{*}$ in $W^{u}(\bar{p})$ containing γ_{k}^{*} is almost parallel to $\bar{\delta}_{k}$.

See Figure 2.12.
Take $\boldsymbol{x} \in \gamma_{k}$ arbitrarily and set $\boldsymbol{x}^{*}=h(\boldsymbol{x}) \in \gamma_{k}^{*}$. Since h is uniformly continuous on R_{ε}, for any $\bar{l}>0$, there exists $l>0$ independent of \boldsymbol{x} such that $h \circ f^{\overline{m_{0}}-m_{0}}\left(N_{l}(\boldsymbol{x})\right) \subset N_{\bar{l}}\left(\boldsymbol{x}^{*}\right)$, where $N_{l}(\boldsymbol{x})$ is the l-neighborhood of \boldsymbol{x} and $N_{\bar{l}}\left(\boldsymbol{x}^{*}\right)$ is the \bar{l}-neighborhood of \boldsymbol{x}^{*} in M. If n is sufficiently large, then $N_{l}(\boldsymbol{x})$ must intersect the three arcs of γ_{k}. However, $N_{\bar{l}}\left(\boldsymbol{x}^{*}\right)$ intersects only one arc of γ_{k}^{*}. This gives a contradiction. Thus (2.38) holds for all sufficiently large n.

Figure 2.12: $N_{l}(\boldsymbol{x})$ intersects the three arcs of γ_{k}, but $N_{\bar{l}}\left(\boldsymbol{x}^{*}\right)$ intersects only one arc of γ_{k}^{*}.

2.7 Proof of Theorem 2.1

Now we are ready to prove Theorem 2.1. The proof is done by using our Intersection Lemma (Lemma 2.7) together with arguments in [dM, Pa, Po] and so on. We only consider the case where both f and \bar{f} satisfy the condition (2.9), which belongs to Case II_{++}in Section 2.8, and the small expanding condition at p and \bar{p} respectively. The proof of any other adaptable case is done similarly.

Proof of (M1) of Theorem 2.1. By Intersection Lemma (Lemma 2.7), one can take $\bar{r}_{n} \in$ $\bar{\gamma}_{0, n}^{\prime} \cap h \circ f^{\bar{m}_{0}-m_{0}}\left(\gamma_{0, n}^{\prime}\right)$. Since \bar{r}_{n} converges to \bar{r} as $n \rightarrow \infty, r_{n}=\left(h \circ f^{\bar{m}_{0}-m_{0}}\right)^{-1}\left(\bar{r}_{n}\right) \in \gamma_{0, n}^{\prime}$ converges to r as $n \rightarrow \infty$. See Figure 2.13.

Figure 2.13: For $\bar{r}_{n} \in \bar{\gamma}_{0, n}^{\prime} \cap h \circ f^{\bar{m}_{0}-m_{0}}\left(\gamma_{0, n}^{\prime}\right), r_{n}=\left(h \circ f^{\bar{m}_{0}-m_{0}}\right)^{-1}\left(\bar{r}_{n}\right) \in \gamma_{0, n}^{\prime}$ converges to r as $n \rightarrow \infty$.

Let $W_{\text {loc, },}^{u}(p)$ be the component of $W_{\text {loc }}^{u}(p) \backslash\{p\}$ containing q. Take a fundamental
domain D for f in $W_{\text {loc },+}^{u}(p)$. Then there exist subsequences $\left\{r_{n(k)}\right\} \subset\left\{r_{n}\right\},\{m(k)\}$ of \mathbb{N} and $\boldsymbol{x}_{0} \in D$ satisfying the following conditions.

- $r_{n(k)}$ converges to r as $k \rightarrow \infty$.
- $\boldsymbol{x}_{n(k)}:=f^{m(k)}\left(r_{n(k)}\right)$ converges to $\boldsymbol{x}_{0}=\left(x_{0}, 0\right)$ as $k \rightarrow \infty$.
- $q_{n(k)}:=\varphi^{-1}\left(r_{n(k)}\right)$ converges to q as $k \rightarrow \infty$.

Then

$$
\begin{aligned}
x_{0} & =\lim _{k \rightarrow \infty} \operatorname{pr}_{x}\left(\boldsymbol{x}_{n(k)}\right)=\lim _{k \rightarrow \infty} \operatorname{pr}_{x}\left(r_{n(k)}\right) \mu^{m(k)} \\
& =\lim _{k \rightarrow \infty} a z_{0}\left(\lambda^{n(k)}+O\left(\lambda^{\frac{3}{2} n(k)}\right)\right) \mu^{m(k)} \\
& =\lim _{k \rightarrow \infty} a z_{0} \lambda^{n(k)} \mu^{m(k)}
\end{aligned}
$$

It follows that $\lim _{k \rightarrow \infty} \lambda^{n(k)} \mu^{m(k)}=\frac{x_{0}}{a z_{0}}$. Then there exist constants C_{0} and C_{1} with $0<C_{0}<C_{1}$ and such that

$$
C_{0}<\lambda^{n(k)} \mu^{m(k)}<C_{1}
$$

for any k. Taking the logarithms of this inequalities, we have

$$
\frac{\log C_{0}}{n(k) \log \mu}<\frac{\log \lambda}{\log \mu}+\frac{m(k)}{n(k)}<\frac{\log C_{1}}{n(k) \log \mu}
$$

This shows that $\lim _{k \rightarrow \infty} \frac{m(k)}{n(k)}=-\frac{\log \lambda}{\log \mu}$. By applying a similar argument to \bar{f}, one can prove

$$
\lim _{k \rightarrow \infty} \bar{\lambda}^{n(k)} \bar{\mu}^{m(k)-\left(\bar{m}_{0}-m_{0}\right)}=\frac{h\left(x_{0}\right)}{\bar{a} \bar{z}_{0}}
$$

and hence $\lim _{k \rightarrow \infty} \frac{m(k)}{n(k)}=\lim _{k \rightarrow \infty} \frac{m(k)-\left(\bar{m}_{0}-m_{0}\right)}{n(k)}=-\frac{\log \bar{\lambda}}{\log \bar{\mu}}$. Consequently, $\frac{\log \lambda}{\log \mu}=\frac{\log \bar{\lambda}}{\log \bar{\mu}}$ holds.

Lemma 2.8. If $\frac{\log \lambda}{\log \mu}$ is irrational, then the restriction $\left.h\right|_{W_{+}^{u}(p)}$ is locally C^{1} diffeomorphic, where $W_{+}^{u}(p)$ is the component of $W^{u}(p) \backslash\{p\}$ containing q.

Proof. Let s_{n} be the real number with $\operatorname{pr}_{x}\left(r_{n}\right)=\mu^{-s_{n}}$. Since $\operatorname{pr}_{x}\left(r_{n}\right) \approx a z_{0}\left(\lambda^{n}+O\left(\lambda^{\frac{3}{2} n}\right)\right)$ by (2.17) and (2.21), we have

$$
1=\operatorname{pr}_{x}\left(r_{n}\right) \mu^{s_{n}} \approx a z_{0}\left(\lambda^{n}+O\left(\lambda^{\frac{3}{2} n}\right)\right) \mu^{s_{n}} \approx a z_{0} \lambda^{n} \mu^{s_{n}}
$$

Thus $c_{n}=a z_{0} \lambda^{n} \mu^{s_{n}}$ satisfies $\lim _{n \rightarrow \infty} c_{n}=1$. Moreover,

$$
\begin{equation*}
s_{n}=\frac{\log c_{n}}{\log \mu}-\frac{\log \left(a z_{0}\right)}{\log \mu}-n \frac{\log \lambda}{\log \mu} \tag{2.39}
\end{equation*}
$$

Since $-\frac{\log \lambda}{\log \mu}$ is irrational, the set

$$
\left\{-\frac{\log \left(a z_{0}\right)}{\log \mu}-n \frac{\log \lambda}{\log \mu} \bmod 1 ; n=1,2, \ldots\right\}
$$

is dense in the interval $[0,1]$. Since $\lim _{n \rightarrow \infty} \log c_{n}=0$, the set $S=\left\{s_{n} \bmod 1 ; n=\right.$ $1,2, \ldots\}$ is also dense in $[0,1]$.

Take a point x_{0} of $\left[\mu^{-1}, 1\right]$ arbitrarily, and let $\sigma \in[0,1]$ be the real number with $\mu^{-\sigma}=$ x_{0}. Since $\left[\mu^{-1}, 1\right]$ is a fundamental domain for f in $W_{\text {loc, }+}^{u}(p)$, it follows from the density of S that there exist subsequences $\{n(k)\},\{m(k)\}$ of \mathbb{N} such that $\lim _{k \rightarrow \infty}\left(s_{n(k)}-m(k)\right)=\sigma$. Then

$$
\begin{aligned}
x_{0} & =\mu^{-\sigma}=\lim _{k \rightarrow \infty} \mu^{-s_{n(k)}+m(k)}=\lim _{k \rightarrow \infty} \operatorname{pr}_{x}\left(r_{n(k)}\right) \mu^{m(k)} \\
& =\lim _{k \rightarrow \infty} a z_{0}\left(\lambda^{n(k)}+O\left(\lambda^{\frac{3}{2} n(k)}\right)\right) \mu^{m(k)}=\lim _{k \rightarrow \infty} a z_{0} \lambda^{n(k)} \mu^{m(k)} .
\end{aligned}
$$

Thus we have $\lim _{k \rightarrow \infty} \lambda^{n(k)} \mu^{m(k)}=\frac{x_{0}}{a z_{0}}$.
Since \bar{f} is conjugate to f via $h, \operatorname{pr}_{x}\left(\bar{r}_{n(k)}\right) \bar{\mu}^{m(k)-\left(\bar{m}_{0}-m_{0}\right)}$ converges to $h\left(x_{0}\right)$. As above, we have

$$
\lim _{k \rightarrow \infty} \bar{\lambda}^{n(k)} \bar{\mu}^{m(k)-\left(\bar{m}_{0}-m_{0}\right)}=\frac{h\left(x_{0}\right)}{\bar{a} \bar{z}_{0}} .
$$

If we set $\tau=\frac{\log \bar{\mu}}{\log \mu}=\frac{\log \bar{\lambda}}{\log \lambda}$, then $\bar{\mu}=\mu^{\tau}$ and $\bar{\lambda}=\lambda^{\tau}$. It follows that

$$
\frac{x_{0}^{\tau}}{a^{\tau} z_{0}^{\tau}}=\frac{h\left(x_{0}\right)}{\bar{a} \bar{z}_{0}} \bar{\mu}^{\bar{m}_{0}-m_{0}} .
$$

Thus $\left.h\right|_{W_{\text {loc },+}^{u}(p)}$ is a C^{1} diffeomorphism represented as

$$
h(x)=\frac{\bar{a} \bar{z}_{0}}{a^{\tau} z_{0}^{\tau} \bar{\mu}^{\bar{m}_{0}-m_{0}}} x^{\tau},
$$

where $W_{\text {loc },+}^{u}(p)$ is the component of $W_{\text {loc }}^{u}(p) \backslash\{p\}$ containing q. Since $W_{+}^{u}(p)=\bigcup_{n=0}^{\infty} f^{n}\left(W_{\text {loc, },+}^{u}(p)\right)$ and both f and \bar{f} are C^{3} diffeomorphisms, $\left.h\right|_{W_{+}^{u}(p)}$ is locally C^{1} diffeomorphic. This completes the proof.

Proof of (M2) of Theorem 2.1. Take a sequence $\left\{q_{j}\right\}$ on $W_{\text {loc, }+}^{u}(p)$ converging to q and set $t_{j}=\varphi\left(q_{j}\right)$. See Figure 2.14. Let t_{j}^{\prime} be the image of t_{j} by the horizontal projection to $W_{\text {loc }}^{s}(p)$. Obviously, both t_{j} and t_{j}^{\prime} converge to r as $k \rightarrow \infty$. There exist subsequences $\left\{t_{j(k)}\right\}$ of $\left\{t_{j}\right\},\{l(k)\}$ of \mathbb{N} and a point x_{1} of $W_{\text {loc }}^{u}(p)$ with $\lim _{k \rightarrow \infty} f^{l(k)}\left(t_{j(k)}\right)=x_{1}$. Then the following approximations

$$
x_{1} \sim \operatorname{pr}_{x}\left(t_{j(k)}\right) \mu^{l(k)} \sim\left[d\left(t_{j(k)}^{\prime}, r\right)\right]^{3} \mu^{l(k)} \sim\left[d\left(q_{j(k)}, q\right)\right]^{3} \mu^{l(k)}
$$

Figure 2.14: The case of II_{++}.
hold. It follows that $\mu^{-l(k)} \sim\left[d\left(q_{j(k)}, q\right)\right]^{3}$. Similarly, we have $\bar{\mu}^{-l(k)+\left(\bar{m}_{0}-m_{0}\right)} \sim\left[d\left(\bar{q}_{j(k)}, \bar{q}\right)\right]^{3}$, where $\bar{q}_{j(k)}=h\left(q_{j(k)}\right)$. Since $\left.h\right|_{W_{+}^{u}(p)}$ is locally C^{1}-diffeomorphic by Lemma 2.8,

$$
d\left(\bar{q}_{j(k)}, \bar{q}\right) \sim d\left(q_{j(k)}, q\right) .
$$

Thus

$$
\left(\frac{\bar{\mu}}{\mu}\right)^{-l(k)} \sim\left(\frac{d\left(\bar{q}_{j(k)}, \bar{q}\right)}{d\left(q_{j(k)}, q\right)}\right)^{3} \bar{\mu}^{-\left(\bar{m}_{0}-m_{0}\right)} \sim 1
$$

This implies that $\mu=\bar{\mu}$. By (M1), we also have $\lambda=\bar{\lambda}$. This completes the proof of the part (M2).

Remark 2.9. Some arguments used in the case that the tangency between $W^{s}(p)$ and $W^{u}(p)$ is one-sided (for example [$\left.\mathrm{dM}, \mathrm{Pa}, \mathrm{Po}\right]$) can not be applicable to the two-sided case. Here we explain the reason.

Suppose that a homoclinic tangency q_{0} is one-sided, say a quadratic tangency. Take an arc γ in $U\left(q_{0}\right)$ meeting $W_{\text {loc }}^{u}\left(p_{0}\right)$ orthogonally at q_{0}. Let $\left\{w_{i}\right\}$ be a sequence in γ converging to q_{0} from above. Then

$$
\begin{equation*}
d\left(w_{i}, W^{s}\left(p_{0}\right)\right) \approx d\left(w_{i}, W_{\mathrm{loc}}^{u}\left(p_{0}\right)\right) \tag{2.40}
\end{equation*}
$$

holds. On the other hand, their images by the conjugacy homeomorphism h satisfy

$$
\begin{equation*}
d\left(h\left(w_{i}\right), W^{s}\left(p_{1}\right)\right) \leq d\left(h\left(w_{i}\right), W_{\mathrm{loc}}^{u}\left(p_{1}\right)\right) . \tag{2.41}
\end{equation*}
$$

See Figure 2.15 (a). By using (2.40) and (2.41), one can show that $\frac{\log \lambda_{1}}{\log \mu_{1}} \leq \frac{\log \lambda_{0}}{\log \mu_{0}}$. By

(a)

Figure 2.15: (a) The case of quadratic tangencies. (b) The case of cubic tangencies.
applying the same argument to h^{-1}, we also have $\frac{\log \lambda_{1}}{\log \mu_{1}} \geq \frac{\log \lambda_{0}}{\log \mu_{0}}$, and hence $\frac{\log \lambda_{1}}{\log \mu_{1}}=$ $\frac{\log \lambda_{0}}{\log \mu_{0}}$.

Now we consider the case of two-sided tangencies, say cubic tangencies, and $\left\{w_{i}\right\}$ is a sequence as above. Then the approximation (2.40) still holds. However, the inequality (2.41) would not hold as is suggested in Figure 2.15 (b). So it might be difficult to get the inequality $\frac{\log \lambda_{1}}{\log \mu_{1}} \leq \frac{\log \lambda_{0}}{\log \mu_{0}}$ only by arguments in [dM, Pa, Po]. Thus we need another idea in the study of moduli associated with two-sided homoclinic tangencies.

2.8 Adaptable conditions

In this section, we will present conditions on the signs of $a, b c, \lambda$ and μ under which any arguments presented throughout the previous sections are valid.

Recall that we have set

$$
U(p)=[-2,2] \times[-2,2], W_{\mathrm{loc}}^{u}(p)=[-2,2] \times\{0\}, W_{\mathrm{loc}}^{s}(p)=\{0\} \times[-2,2] .
$$

The union $W_{\text {loc }}^{u}(p) \cup W_{\text {loc }}^{s}(p)$ divides $U(p)$ to four components. The closures of these components containing $(1,1),(-1,1),(-1,-1)$ and $(1,-1)$ are called the first, second, third and fourth quadrants of $U(p)$ and denoted by Q_{1}, Q_{2}, Q_{3} and Q_{4}, respectively. In our argument it is required that $\varphi\left(R_{\varepsilon}\right)$ or some substitution is in Q_{1}. If R_{ε} lies in Q_{2}, then we may use

$$
R_{\varepsilon}^{-}=\left[(1+\varepsilon)^{-3},(1+\varepsilon)^{-1}\right] \times\left[0, \varepsilon^{3}\right]
$$

instead of R_{ε}. Then $\varphi\left(R_{\varepsilon}^{-}\right)$is in Q_{1}. See Figure 2.16. Thus one can arrange the placement of $\varphi\left(R_{\varepsilon}\right)$ suitably under any conditions on the signs of $a, b c, \lambda$ and μ.

Figure 2.16: (1) $\varphi\left(R_{\varepsilon}\right)$ is in Q_{1}. (2) $\varphi\left(R_{\varepsilon}^{-}\right)$is in Q_{1}.

Definition 2.10 (Adaptable condition). f satisfies the adaptable condition with respect to (p, q) if, for all sufficiently large positive integers n (or positive even or odd integers), there exists a rectangle S_{n} defined as in Section 2.3 and either S_{n} or its image $f\left(S_{n}\right)$ lies in Q_{1}.

As was seen in Section $2.3, S_{n}$ exists if and only if there exists t_{n} satisfying the condition

$$
3 c t_{n}^{2} \approx-b \lambda^{n} z_{0}
$$

which corresponds to (2.20). Here z_{0} is the positive constant as illustrated in Figure 2.5.
Now we will see that the existence of S_{n} and the placements of S_{n} and $f\left(S_{n}\right)$ are strictly determined by the signs of $a, b c, \lambda$ and μ, which are classified to the sixteen cases as in Table 2.1

First we suppose that $\lambda>0$. Then there exists t_{n} satisfying (2.20') if and only if $b c<0$. Moreover, if $a>0$, then S_{n} is in Q_{1}, which belongs to Case II_{+}. See Figure 2.17 (1). If $a<0$, then S_{n} is in Q_{2}. Hence $f\left(S_{n}\right)$ is Q_{1} if $\mu<0$, which is in Case IV ${ }_{+-}$. See Figure 2.17 (2).

(1)

Figure 2.17: (1) The case of II_{+}or II_{-}. (2) The case of IV_{+-}or IV_{-}.

Case			a	$b c$	λ		μ
I	I_{+}	I_{++}	+	+			+
		I_{+-}					-
	I_	I_{-+}			-		+
		I					-
II	II_{+}	II	+	-	+		+
		H. ${ }_{\text {. }}$.					-
	II_	11.			-		+
		II. ${ }^{\text {a }}$.					-
III	III_{+}	III_{++}	-	+	+		+
		III_{+-}					-
	III-	III			-		+
		III					-
IV	IV_{+}	IV_{++}	-	-	$+$		+
		IV					-
	IV_	IV ${ }_{-+}$			-		+
		IV					-

Table 2.1: The shaded cells are the cases in which f satisfies the adaptable conditions.

Next we suppose that $\lambda<0$. Then there exists t_{n} satisfying (2.20') if and only if either (i) $b c<0$ and n is even or (ii) $b c>0$ and n is odd. In the case (i), S_{n} is in Q_{1} if $a>0$, which belongs to Case II_. See Figure 2.17 (1). If $a<0$ and $\mu<0$, then $f\left(S_{n}\right)$ is in Q_{1}, which belongs to Case IV__. See Figure 2.17 (2). On the other hand, in the case (ii), S_{n} is in Q_{1} if $a<0$, which belongs to Case III_. See Figure 2.18(1). If $a>0$ and $\mu<0$, then $f\left(S_{n}\right)$ is in Q_{1}, which belongs to Case I__. See Figure 2.18 (2).

Figure 2.18: (1) The case of III_. (2) The case of I_-.
Thus we have the following proposition.
Proposition 2.11. If one of Cases I__ , II, $^{\text {III_, }}$ IV $_{+-}$and IV_- holds, then f satisfies the adaptable condition with respect to (p, q).

It follows from the proposition that f satisfies the adaptable condition in nine of the sixteen cases in Table 2.1.

Chapter 3

Moduli of 3-dimensional diffeomorphisms with saddle foci

In this chapter, we investigate moduli of a 3 -dimensional diffeomorphism f with a sadldle focus p and a homoclinic quadratic tangency q associated with p. We show that, for most of such diffeomorphisms, all the eigenvalues of $D f(p)$ are moduli and the restriction of a conjugacy homeomorphism to a local unstable manifold is a uniquely determined linear conformal map.

3.1 Moduli of 3-dimensional diffeomorphisms with saddle foci

First, we prove the following theorem.
Theorem 3.1. Let M be a 3-manifold and $f_{j}(j=0,1)$ elements of $\operatorname{Diff}^{r}(M)$ for some $r \geq$ 3 which have hyperbolic fixed points p_{j} and homoclinic quadratic tangencies q_{j} positively associated with p_{j} and satisfy the following conditions.

- For $j=0,1$, there exists a neighborhood $U\left(p_{j}\right)$ of p_{j} in M such that $\left.f_{j}\right|_{U\left(p_{j}\right)}$ is linear and $D f_{j}\left(p_{j}\right)$ has non-real eigenvalues $r_{j} e^{ \pm \sqrt{-1} \theta_{j}}$ and a real eigenvalue λ_{j} with $r_{j}>1$, $\theta_{j} \neq 0 \bmod \pi$ and $0<\lambda_{j}<1$.
- f_{0} is topologically conjugate to f_{1} by a homeomorphism $h: M \rightarrow M$ with $h\left(p_{0}\right)=p_{1}$ and $h\left(q_{0}\right)=q_{1}$.

Then the following (D1) and (D2) hold.
(D1) $\frac{\log \lambda_{0}}{\log r_{0}}=\frac{\log \lambda_{1}}{\log r_{1}}$.
(D2) Either $\theta_{0}=\theta_{1}$ or $\theta_{0}=-\theta_{1} \bmod 2 \pi$.
Here we say that a homoclinic quadratic tangency q_{0} is positively associated with p_{0} if both $f_{0}^{n}\left(q_{0}\right)$ and $f_{0}^{-n}(\alpha)$ lie in the same component of $U\left(p_{0}\right) \backslash W_{\text {loc }}^{u}\left(p_{0}\right)$ for a sufficiently
large $n \in \mathbb{N}$ and any small curve α in $W^{s}\left(p_{0}\right)$ containing q_{0}. Theorem 3.1 holds also in the case when $\theta_{0}=0 \bmod \pi$ or $-1<\lambda_{j}<0$ except for some rare case, see Remark 3.4 for details.

Remark 3.2. Assertion (D1) of Theorem 3.1 is implied in the case (D) of Theorem 1.1 in [NPT, Chapter III]. Assertion (D2) is also proved by Dufraine [Du2] under weaker assumptions. The author used non-spiral curves in $W_{\text {loc }}^{u}(p)$ emanating from p. On the other hand, we employ unstable bent disks defined in Section 3.2 which are originally introduced by Nishizawa [Ni]. By using such disks, we construct a convergent sequence of mutually parallel straight segments in $W_{\text {loc }}^{u}(p)$ which are mapped to straight segments in $W_{\text {loc }}^{u}(h(p))$ by h, see Figure 3.9. An advantage of our proof is that these sequences are applicable to prove our main theorem, Theorem 3.3 below.

Results corresponding to Theorem 3.1 for 3-dimensional flows with Shilnikov cycles are obtained by Togawa [To], Carvalho-Rodrigues [CR] and for those with connections of saddle-foci by Bonatti-Dufraine [BD], Dufraine [Du1], Rodrigues [Rod] and so on. See the Section 2 in [Rod] for details. Moreover Carvalho-Rodrigues $[\mathrm{CR}]$ present results on moduli of 3 -dimensional flows with Bykov cycles.

The following theorem is the main theorem in this chapter.
Theorem 3.3. Under the assumptions in Theorem 3.1, suppose moreover that $\theta_{0} / 2 \pi$ is irrational. Then the following conditions hold.
(E1) $\lambda_{0}=\lambda_{1}$ and $r_{0}=r_{1}$.
(E2) The restriction $\left.h\right|_{W_{\mathrm{loc}}\left(p_{0}\right)}: W_{\mathrm{loc}}^{u}\left(p_{0}\right) \rightarrow W_{\mathrm{loc}}^{u}\left(p_{1}\right)$ is a uniquely determined linear conformal map.

In contrast to Posthumus' results for 2-dimensional diffeomorphisms, the eigenvalues λ_{0} and r_{0} are proved to be moduli without the assumption that $\frac{\log \lambda_{0}}{\log r_{0}}$ is irrational.

The restriction $\left.h\right|_{W_{\text {loc }}^{u}\left(p_{0}\right)}$ is said to be a linear conformal map if $\left.h\right|_{W_{\text {loc }}\left(p_{0}\right)}$ is represented as $\left.h\right|_{W_{\text {loc }}^{u}\left(p_{0}\right)}(z)=\rho e^{\sqrt{-1} \omega} z\left(z \in W_{\text {loc }}^{u}\left(p_{0}\right)\right)$ for some $\rho \in \mathbb{R} \backslash\{0\}$ and $\omega \in \mathbb{R}$ under the natural identification of $W_{\text {loc }}^{u}\left(p_{0}\right), W_{\text {loc }}^{u}\left(p_{1}\right)$ with neighborhoods of the origin in \mathbb{C} via their linearizing coordinates.

For any $r_{j}>1$ and $\theta_{j} \in \mathbb{R}(j=0,1)$, let $\varphi_{j}: \mathbb{C} \rightarrow \mathbb{C}$ be the map defined by $\varphi_{j}(z)=$ $r_{j} e^{\sqrt{-1} \theta_{j}} z$. Then there are many choices of conjugacy homeomorphisms on \mathbb{C} for φ_{0} and φ_{1}. For example, we take two-sided Jordan curves Γ_{j} in \mathbb{C} with $\varphi_{j}\left(\Gamma_{j}\right) \cap \Gamma_{j}=\emptyset$ and bounding disks in \mathbb{C} containing the origin arbitrarily. Then there exists a conjugacy homeomorphism $h: \mathbb{C} \rightarrow \mathbb{C}$ for φ_{0} and φ_{1} with $h\left(\Gamma_{0}\right)=\Gamma_{1}$. On the other hand, Theorem 3.3 (E2) implies that we have severe constraints in the choice of conjugacy homeomorphisms for 3 -dimensional diffeomorphisms as above. Intuitively, it says that only a homeomorphism h with $\left.h\right|_{W_{\text {loc }}^{u}}(p)$ linear and conformal can be a candidate for a conjugacy between f_{0} and f_{1}. As an application of the linearity and conformality of $\left.h\right|_{W_{\text {loc }}^{u}} ^{u}(p)$, we will present a new modulus for f_{0} other than $\theta_{0}, \lambda_{0}, r_{0}$, see Corollary 3.9 in Section 3.5.

3.2 Front curves and folding curves

For $j=0,1$, let f_{j} be a diffeomorphism and q_{j} a quadratic tangency associated with a hyperbolic fixed point p_{j} satisfying the conditions of Theorem 3.1. We will define in this section front curves in $W^{u}\left(p_{j}\right)$ and folding curves in $W_{\text {loc }}^{u}\left(p_{j}\right)$ and show in the next section that these curves converge to straight segments which are preserved by any conjugacy homeomorphism between f_{0} and f_{1}.

We set $f_{0}=f, p_{0}=p, q_{0}=q, r_{0}=r, \theta_{0}=\theta$ and $\lambda_{0}=\lambda$ for short. Similarly, let $f_{1}=f^{\prime}, p_{1}=p^{\prime}, q_{1}=q^{\prime}, r_{1}=r^{\prime}, \theta_{1}=\theta^{\prime}$ and $\lambda_{1}=\lambda^{\prime}$. Suppose that $(z, t)=(x, y, t)$ with $z=x+\sqrt{-1} y$ is a coordinate around p with respect to which f is linear. For a small $a>0$, let $D_{a}(p)$ be the disk $\{z \in \mathbb{C} ;|z| \leq a\}$. We may assume that q is contained in the interior of $D_{a}(p) \times\{0\} \subset W_{\text {loc }}^{u}(p)$ and $\widehat{q}=f^{N}(q)$ is in the interior of the upper half $W_{\text {loc }}^{s+}(p)=\{0\} \times[0, a]$ of $W_{\text {loc }}^{s}(p)$ for some $N \in \mathbb{N}$. See Figure 3.1. Let $U_{a}(p)$ be

Figure 3.1: A saddle-focus p and a homoclinic quadratic tangency q in $D_{a}(p)$.
the circular column in the coordinate neighborhood defined by $U_{a}(p)=D_{a}(p) \times[0, a]$ and $V_{\widehat{q}}$ a small neighborhood of \widehat{q} in $U_{a}(p)$. Suppose that $U_{a}(p)$ has the Euclidean metric induced from the linearizing coordinate on $U_{a}(p)$. By choosing the coordinate suitably and replacing θ by $-\theta$ if necessary, we may assume that the restriction $\left.f\right|_{D_{a}(p)}$ is represented as $r e^{\sqrt{-1} \theta} z$ for $z \in \mathbb{C}$ with $|z|<a$. Similarly, one can suppose that $\left.f^{\prime}\right|_{D_{a^{\prime}}\left(p^{\prime}\right)}$ is represented as $r^{\prime} e^{\sqrt{-1} \theta^{\prime}} z$ for some $a^{\prime}>0$. The orthogonal projection pr : $U_{a}(p) \rightarrow D_{a}(p)$ is defined by $\operatorname{pr}(x, y, t)=(x, y)$.

In this section, we construct an unstable bent disk \widetilde{H}_{0} in $W^{u}(p) \cap U_{a}(p)$, the front curve $\widetilde{\gamma}_{0}$ in \widetilde{H}_{0} and the folding curves γ_{0} in $U_{a}(p)$. We also define the sequence of unstable bent disks \widetilde{H}_{m} in $W^{u}(p) \cap U_{a}(p)$ converging to \widetilde{H}_{0}, which will be used in the next section to construct the sequence of front curves converging to $\widetilde{\gamma}_{0}$.

3.2.1 Construction of unstable bent disks, front curves and folding curves

We set $\widehat{q}=\left(0, t_{0}\right)$. Let \widetilde{H} be the component of $W^{u}(p) \cap V_{\widehat{q}}$ containing \widehat{q}. One can retake the linearizing coordinate on \mathbb{C} if necessary so that the line in $V_{\widehat{q}}$ passing through \widehat{q} and parallel to the x-axis in $U_{a}(p)$ meets \widetilde{H} transversely. Then \widetilde{H} is represented as the graph of a C^{r} function $x=\varphi(y, t)$ with

$$
\begin{equation*}
\varphi\left(0, t_{0}\right)=0, \quad \frac{\partial \varphi}{\partial t}\left(0, t_{0}\right)=0 \quad \text { and } \quad \frac{\partial^{2} \varphi}{\partial t^{2}}\left(0, t_{0}\right) \neq 0 . \tag{3.1}
\end{equation*}
$$

By the implicit function theorem, there exists a C^{r-1} function $t=\eta(y)$ defined in a small neighborhood V of 0 in the y-axis and satisfying $\eta(0)=t_{0}$ and $\partial \varphi(y, \eta(y)) / \partial t=0$. Then the curve $\widetilde{\gamma}$ in $V_{\widetilde{q}}$ parametrized by $(\varphi(y, \eta(y)), y, \eta(y))$ divides \widetilde{H} into two components and $\gamma=\operatorname{pr}(\widetilde{\gamma})$ is a C^{r-1} curve embedded in $D_{a}(p)$. Let \widetilde{H}^{+}(resp. $\left.\widetilde{H}^{-}\right)$be the closure of the upper (resp. lower) component of $\widetilde{H} \backslash \widetilde{\gamma}$. For a sufficiently large $n_{0} \in \mathbb{N}$, the component \widetilde{H}_{0} of $f^{n_{0}}(\widetilde{H}) \cap U_{a}(p)$ containing $q_{0}=f^{n_{0}}(\widetilde{q})$ is an unstable bent disk in $U_{a}(p)$ such that $\partial \widetilde{H}_{0}$ is a simple closed C^{r} curve in $\partial_{\text {side }} U_{a}(p)$, where

$$
\partial_{\text {side }} U_{a}(p)=\{(x, t) \in \mathbb{C} \times \mathbb{R} ;|z|=a, 0 \leq t<a\} \subset \partial U_{a}(p) .
$$

See Figure 3.2. We set $\widetilde{\gamma}_{0}=f^{n_{0}}(\widetilde{\gamma}) \cap \widetilde{H}_{0}, \widetilde{H}_{0}^{+}=f^{n_{0}}\left(\widetilde{H}^{+}\right) \cap \widetilde{H}_{0}, \widetilde{H}_{0}^{-}=f^{n_{0}}\left(\widetilde{H}^{-}\right) \cap \widetilde{H}_{0}$, $H_{0}=\operatorname{pr}\left(\widetilde{H}_{0}^{+}\right)=\operatorname{pr}\left(\widetilde{H}_{0}^{-}\right)$and $\gamma_{0}=\operatorname{pr}\left(\widetilde{\gamma}_{0}\right)$. Then $\widetilde{\gamma}_{0}$ is called the front curve of \widetilde{H}_{0} and γ_{0} is the folding curve of H_{0}.

Figure 3.2: The front curve $\widetilde{\gamma}_{0}$ divides \widetilde{H}_{0} into the two sheets \widetilde{H}_{0}^{+}and \widetilde{H}_{0}^{-}. The folding curve γ_{0} of H_{0} is the orthogonal image of $\widetilde{\gamma}_{0}$.

We note that Nishizawa [Ni] has studied unstable bent disks similar to \widetilde{H}_{0} as above in a different situation. In fact, he considered a 3-dimensional diffeomorphism g which
has a saddle fixed point s such that all the eigenvalues of $D g(s)$ are real and has a homoclinic quadratic tangency associated with s. Here we consider the component $\widetilde{H}_{0 ; u}^{-}$of $f^{u}\left(\widetilde{H}_{0}^{-}\right) \cap U_{a}(p)$ containing $f^{u}\left(q_{0}\right)$ for $u \in \mathbb{N}$. Since the homoclinic tangency q is positively associated with p, one can show that there exists $\widetilde{H}_{0 ; u}^{-}$which meets $W^{s}(p)$ transversely at a point \widehat{z} near q by using an argument similar to that in [Ni, Lemma 4.4]. See Figure 3.3. To show the claim, the assumption of $\theta_{0} \neq 0 \bmod \pi$ in Theorem 3.1 is crucial. In fact,

Figure 3.3: The half disk $\widetilde{H}_{0 ; u}^{-}$meets $W^{s}(p)$ transversely at two points near q, one of which is \widehat{z}.
the condition implies that the following property:
(P) There exists an arbitrarily large u such that the interior of $H_{0 ; u}=\operatorname{pr}\left(\widetilde{H}_{0 ; u}^{-}\right)$in $D_{a}(p)$ contains q.

Remark 3.4. (1) We here suppose $\theta=0 \bmod \pi$. Even in this case, if f has the property (P), then the component of $W^{s}(p)$ containing q and $W^{u}(p)$ have a homoclinic transverse intersection point. Then Theorems 3.1 and 3.3 will be proved quite similarly. Since $\theta=0$ $\bmod \pi$, all $f^{u}\left(\gamma_{0}\right)$ are tangent to a unique straight segment γ_{∞} in $D_{a}(p)$ at p. Thus the property (P) is satisfied if γ_{∞} does not pass through q.
(2) Even in the case of $-1<\lambda<0$, one can show that f has the property (P) similarly by using f^{2} instead of f if $2 \theta \neq 0 \bmod \pi$. Moreover, since either q or $f(q)$ is a homoclinic tangency positively associated with p, Theorems 3.1 and 3.3 hold without the assumption that q is positively associated with p.

3.2.2 Construction of convergent sequence of unstable bent disks

Take $v \in \mathbb{N}$ such that $\widehat{z}_{0}=f^{v}(\widehat{z})$ is a point $(0, \widehat{t})$ contained in $U_{a}(p)$, where \widehat{z} is the transverse intersection point of $\widetilde{H}_{0 ; u}^{-}$and $W^{s}(p)$ given in the previous subsection. Let D be a small disk in $W^{u}(p) \cap U_{a}(p)$ whose interior contains \widehat{z}_{0}. The absolute slope $\sigma(\boldsymbol{v})$ of a
vector $\boldsymbol{v}=\left(v_{1}, v_{2}, v_{3}\right)$ in $U_{a}(p)$ with $\left(v_{1}, v_{2}\right) \neq(0,0)$ is given as

$$
\sigma(\boldsymbol{v})=\frac{\left|v_{3}\right|}{\sqrt{v_{1}^{2}+v_{2}^{2}}}
$$

The maximum absolute slope $\sigma(D)$ of D is defined by

$$
\sigma(D)=\max \left\{\sigma(\boldsymbol{v}) ; \text { unit vectors } \boldsymbol{v} \text { in } U_{a}(p) \text { tangent to } D\right\}
$$

Fix $m_{0} \in \mathbb{N}$ such that, for any $m \in \mathbb{N} \cup\{0\}$, the component D_{m} of $f^{m_{0}+m}(D) \cap U(p)$ containing $f^{m_{0}+m}\left(\widehat{z}_{0}\right)$ is a properly embedded disk in $U_{a}(p)$ with $\partial D_{m} \subset \partial_{\text {side }} U_{a}(p)$. Note that D_{m} intersects $W_{\text {loc }}^{s}(p)$ transversely at $\left(0, \lambda^{m} t_{0}\right)$, where $t_{0}=\lambda^{m_{0}} \widehat{t}$. See Figure 3.4.

Figure 3.4: Trip from \widetilde{H}_{0}^{-}to $\widetilde{H}_{m}: f^{u+v}\left(\widetilde{H}_{0}^{-}\right) \supset D, f^{m_{0}}(D) \supset D_{0}, f^{m}\left(D_{0}\right) \supset D_{m}$ and $f^{N+n_{0}}\left(D_{m}\right) \supset \widetilde{H}_{m}$, where N, n_{0} are the positive integers with $f^{N}(q)=\widetilde{q}$ and $f^{n_{0}}(\widetilde{q})=q_{0}$. The dotted line passing through q represents a straight segment tangent to $\widetilde{\rho}$ at q.

The maximum absolute slope of D_{m} satisfies

$$
\begin{equation*}
\sigma\left(D_{m}\right) \leq \sigma_{0} \lambda^{m} r^{-m} \tag{3.2}
\end{equation*}
$$

where $\sigma_{0}=\sigma(D) \lambda^{m_{0}} r^{-m_{0}}$. Consider a short straight segment ρ in $U_{a}(p)$ meeting \widetilde{H}_{0} orthogonally at q_{0}. Then $\widetilde{\rho}=f^{-\left(N+n_{0}\right)}(\rho)$ is a C^{r} curve meeting $D_{a}(p)$ transversely at q, where N, n_{0} are the positive integers given as above. One can choose $m_{0} \in \mathbb{N}$ so that, for any $m \in \mathbb{N} \cup\{0\}, \widetilde{\rho}$ meets D_{m} transversely at a single point $\boldsymbol{w}_{m}=\left(z_{m}, s_{m}\right)$. Then (3.2) implies that $\left|t_{0} \lambda^{m}-s_{m}\right| \leq \widetilde{a} \sigma_{0} \lambda^{m} r^{-m}$, where $\widetilde{a}=\sup _{m \geq 0}\left\{\left|z_{m}\right|\right\}<\infty$. It follows that $s_{m}=t_{0} \lambda^{m}+O\left(\lambda^{m} r^{-m}\right)$. Since $\widetilde{\rho}$ has a tangency of order at least two with a straight segment at q,

$$
\begin{equation*}
\operatorname{dist}\left(\boldsymbol{w}_{m}, q\right)=\widetilde{t}_{0} \lambda^{m}+O\left(\lambda^{m} r^{-m}\right)+O\left(\lambda^{2 m}\right)=\widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right) \tag{3.3}
\end{equation*}
$$

for some constant $\widetilde{t}_{0}>0$. By the inclination lemma, D_{m} uniformly C^{r} converges to $D_{a}(p)$. A short curve in $W^{s}(p)$ containing q as an interior point meets D_{m} transversely in
two points for all sufficiently large m. Let \widetilde{H}_{m} be the component of $f^{N+n_{0}}\left(D_{m}\right) \cap U_{a}(p)$ containing $f^{N+n_{0}}\left(\boldsymbol{w}_{m}\right)$. Then $\widetilde{H}_{m} C^{r}$ converges to \widetilde{H}_{0} as $m \rightarrow \infty$. By (3.1), there exist C^{r} functions $\varphi_{m}(y, t) C^{r}$ converging to φ and representing \widetilde{H}_{m} as the graph of $x=\varphi_{m}(y, t)$. Then the front curve $\widetilde{\gamma}_{m}$ in \widetilde{H}_{m} is defined as the front curve $\widetilde{\gamma}_{0}$ in \widetilde{H}_{0}. Since $\partial \varphi_{m}(y, t) / \partial t C^{r-1}$ converges to $\partial \varphi(y, t) / \partial t, \widetilde{\gamma}_{m}$ also C^{r-1} converges to $\widetilde{\gamma}_{0}$. Note that $\widetilde{\gamma}_{m}$ divides \widetilde{H}_{m} into the upper surface \widetilde{H}_{m}^{+}and the lower surface \widetilde{H}_{m}^{-}with $\widetilde{\gamma}_{m}=\widetilde{H}_{m}^{+} \cap \widetilde{H}_{m}^{-}$and $H_{m}=\operatorname{pr}\left(\widetilde{H}_{m}\right)=\operatorname{pr}\left(\widetilde{H}_{m}^{+}\right)=\operatorname{pr}\left(\widetilde{H}_{m}^{-}\right)$. The image $\gamma_{m}=\operatorname{pr}\left(\widetilde{\gamma}_{m}\right)$ is called the folding curve of H_{m}.

3.3 Limit straight segments

A curve γ in $D_{a}(p)$ is called a straight segment if γ is a segment with respect to the Euclidean metric on $D_{a}(p)$. In this section, we will construct a proper straight segment γ_{0}^{\natural} in $D_{a}(p)$ with $p \notin \gamma_{0}^{\natural}$ which is mapped to a straight segment in $U_{a^{\prime}}\left(p^{\prime}\right)$ by h.

3.3.1 Sequences of folding curves converging to straight segments

Let α be an oriented C^{r-1} curve in $D_{a}(p)$ of bounded length. Since $r-1 \geq 2$, there exists the maximum absolute curvature $\kappa(\alpha)$ of α. If α passes near the center 0 of $D_{a}(p)$ and satisfies $\kappa(\alpha)<1 / a$, then α has a unique point $z(\alpha)$ with $\operatorname{dist}(0, z(\alpha))=\operatorname{dist}(0, \alpha)$. In fact, if α had two points $z_{i}(i=1,2)$ with $\operatorname{dist}\left(0, z_{i}\right)=\operatorname{dist}(0, \alpha)$, then for a point z_{3} in α with the maximum $\operatorname{dist}\left(0, z_{3}\right)$ between z_{1} and z_{2}, the curvature of α at z_{3} is not less than $1 / \operatorname{dist}\left(0, z_{3}\right) \geq 1 / a$, a contradiction. We denote by $\vartheta(\alpha) \bmod 2 \pi$ the angle between $\widehat{\alpha}$ and the positive direction of the x-axis at 0 , where $\widehat{\alpha}$ is the oriented curve in $D_{a}(p)$ obtained from α by the parallel translation taking $z(\alpha)$ to 0 .

By (3.3), there exists a constant $\widetilde{d}_{0}>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(\widetilde{\gamma}_{m}, \text { the } t \text {-axis }\right)=\widetilde{d}_{0}\left(\widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right)\right)+o\left(\lambda^{m}\right)=\widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right) \tag{3.4}
\end{equation*}
$$

Since $\gamma_{m} C^{r-1}$ converges to $\gamma_{0}, \kappa\left(\gamma_{m}\right)$ also converges to $\kappa\left(\gamma_{0}\right)$ as $m \rightarrow \infty$. This shows that

$$
\begin{equation*}
\sup _{m}\left\{\kappa\left(\gamma_{m}\right)\right\}=\kappa_{0}<\infty . \tag{3.5}
\end{equation*}
$$

It follows that, for all sufficiently large m, there exists a unique point c_{m} of γ_{m} with

$$
\operatorname{dist}\left(c_{m}, 0\right)=\operatorname{dist}\left(\gamma_{m}, 0\right)=\operatorname{dist}\left(\widetilde{c}_{m}, \text { the } t \text {-axis }\right)=\operatorname{dist}\left(\widetilde{\gamma}_{m}, \text { the } t \text {-axis }\right),
$$

where \widetilde{c}_{m} is the point of $\widetilde{\gamma}_{m}$ with $\operatorname{pr}\left(\widetilde{c}_{m}\right)=c_{m}$.
Fix w with $0<w<a / 2$ arbitrarily. For any $n \in \mathbb{N}$, let $m(n)$ be the minimum positive integer such that $f^{n}\left(c_{m}\right)$ is contained in $D_{w}(p)$ for any $m \geqq m(n)$. Then $\lim _{n \rightarrow \infty} m(n)=$ ∞ holds. For any $m \geq m(n)$, the component $\widetilde{H}_{m, n}$ of $f^{n}\left(\widetilde{\widetilde{H}}_{m}\right) \cap U_{a}(p)$ containing $\widetilde{c}_{m, n}=$ $f^{n}\left(\widetilde{c}_{m}\right)$ is a proper disk in $U_{a}(p)$ with $\partial \widetilde{H}_{m, n} \subset \partial_{\text {side }} U_{a}(p)$. Then $\widetilde{\gamma}_{m, n}=f^{n}\left(\widetilde{\gamma}_{m}\right) \cap \widetilde{H}_{m, n}$ is the front curve of $\widetilde{H}_{m, n}$ and $\gamma_{m, n}=\operatorname{pr}\left(\widetilde{\gamma}_{m, n}\right)$ is the folding curve of $H_{m, n}=\operatorname{pr}\left(\widetilde{H}_{m, n}\right)$. Then $c_{m, n}=\operatorname{pr}\left(\widetilde{c}_{m, n}\right)$ is a unique point of $\gamma_{m, n}$ closest to 0 . Here we orient $\widetilde{\gamma}_{m}=\widetilde{\gamma}_{m, 0}$ so
that $\widetilde{\gamma}_{m, 0} C^{r-1}$ converges as oriented curves to $\widetilde{\gamma}_{0}$ as $m \rightarrow \infty$. Suppose that $\gamma_{m, n}$ has the orientation induced from that on $\widetilde{\gamma}_{m, 0}$ via pr $\circ f^{n}$. In particular, it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \vartheta\left(\gamma_{m, 0}\right)=\vartheta\left(\gamma_{0}\right) . \tag{3.6}
\end{equation*}
$$

We set $d_{m, n}=\operatorname{dist}\left(c_{m, n}, 0\right)$. By (3.4),

$$
\begin{equation*}
d_{m, n}=r^{n}\left(\widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m}+o\left(\lambda^{m}\right)\right) . \tag{3.7}
\end{equation*}
$$

There exist subsequences $\left\{m_{j}\right\},\left\{n_{j}\right\}$ of \mathbb{N} and $w \lambda / 2 \leq w_{0} \leq w$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m_{j}} r^{n_{j}}=w_{0} \tag{3.8}
\end{equation*}
$$

If necessary taking subsequences of $\left\{m_{j}\right\}$ and $\left\{n_{j}\right\}$ simultaneously, we may also assume that $\vartheta\left(\gamma_{m_{j}, n_{j}}\right)$ has a limit θ^{\natural}. Since $f(z)=r e^{\sqrt{-1} \theta} z$ on $D_{a}(p)$, by (3.5) we have

$$
\kappa\left(\gamma_{m_{j}, n_{j}}\right) \leq r^{-n_{j}} \kappa\left(\gamma_{m_{j}, 0}\right) \leq r^{-n_{j}} \kappa_{0} \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty .
$$

Thus the following lemma is obtained immediately.
Lemma 3.5. The sequence $\gamma_{m_{j}, n_{j}}$ uniformly converges as oriented curves to an oriented straight segment γ_{0}^{\natural} in $D_{a}(p)$ with $\vartheta\left(\gamma_{0}^{\natural}\right)=\theta^{\natural}$ and $\operatorname{dist}\left(\gamma_{0}^{\natural}, 0\right)=w_{0}$.

We say that γ_{0}^{\natural} is the limit straight segment of $\gamma_{m_{j}, n_{j}}$.

3.3.2 Limit straight segments preserved by the conjugacy

Let $U_{a^{\prime}}\left(p^{\prime}\right), U_{b^{\prime}}\left(p^{\prime}\right)$ be the circular columns defined as $U_{a}(p)$ for some $0<a^{\prime}<b^{\prime}$ which are contained in a coordinate neighborhood around p^{\prime} with respect to which f^{\prime} is linear. One can retake $a>0$ and choose such a^{\prime}, b^{\prime} so that $U_{a^{\prime}}\left(p^{\prime}\right) \subset \underset{\tilde{H}}{\underset{H}{r}} \underset{a}{ }\left(U_{a}(p)\right) \subset U_{b^{\prime}}\left(p^{\prime}\right)$.

Let $\widetilde{H}_{m, n}^{\prime}$ be the component of $h\left(\widetilde{H}_{m, n}\right) \cap U_{a^{\prime}}\left(p^{\prime}\right)$ defined as $\widetilde{H}_{m, n}$ and $\operatorname{pr}\left(\widetilde{H}_{m, n}^{\prime}\right)=H_{m, n}^{\prime}$. One can define the front and folding curves $\widetilde{\gamma}_{m, n}^{\prime}, \gamma_{m, n}^{\prime}$ in $\widetilde{H}_{m, n}^{\prime}$ and $H_{m, n}^{\prime}$ as $\widetilde{\gamma}_{m, n}, \gamma_{m, n}$ in $\widetilde{H}_{m, n}$ and $H_{m, n}$ respectively. See Figure 3.5.

Since h is only supposed to be a homeomorphism, $h\left(\widetilde{\gamma}_{m, n}\right) \cap U_{a^{\prime}}\left(p^{\prime}\right)$ would not be equal to $\widetilde{\gamma}_{m, n}^{\prime}$. We will show that this equality holds in the limit. For the sequences $\left\{m_{j}\right\},\left\{n_{j}\right\}$ given in Section 3.3, we set $\widetilde{H}_{m_{j}, n_{j}}=\widetilde{H}_{(j)}, H_{m_{j}, n_{j}}=H_{(j)}, \widetilde{H}_{m_{j}, n_{j}}^{\prime}=\widetilde{H}_{(j)}^{\prime}$ and $H_{m_{j}, n_{j}}^{\prime}=$ $H_{(j)}^{\prime}$ for simplicity. Similarly, suppose that $\widehat{H}_{(j)}^{\prime}$ is the component of $W^{u}\left(p^{\prime}\right) \cap U_{b^{\prime}}\left(p^{\prime}\right)$ containing $\widetilde{H}_{(j)}^{\prime}$ and $\widehat{\gamma}_{m_{j}, n_{1}}^{\prime}$ is the front curve of $\widehat{H}_{(j)}^{\prime}$. The distance between $\boldsymbol{x}, \boldsymbol{y}$ in $U_{a}(p)$ is denoted by $d(\boldsymbol{x}, \boldsymbol{y})$ and that between $\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}$ in $U_{a^{\prime}}\left(p^{\prime}\right)$ by $d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$.

The path metric on $\widetilde{H}_{(j)}$ is denoted by $d_{\widetilde{H}_{(j)}}$. That is, for any $\boldsymbol{x}, \boldsymbol{y} \in \widetilde{H}_{(j)}, d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})$ is the length of a shortest piecewise smooth curve in $\widetilde{H}_{(j)}$ connecting \boldsymbol{x} with \boldsymbol{y}. The path metrics $d_{\tilde{H}_{(j)}^{\prime}}$ on $\widetilde{H}_{(j)}^{\prime}$ and $d_{\widehat{H}_{(j)}^{\prime}}$ on $\widehat{H}_{(j)}^{\prime}$ are defined similarly.
Lemma 3.6. (i) For any $\varepsilon>0$, there exists a constant $\eta(\varepsilon)>0$ independent of $j \in \mathbb{N}$ and satisfying the following conditions.

Figure 3.5: The image $h\left(\widetilde{H}_{(j)}\right)$ is contained in $\widehat{H}_{(j)}^{\prime}$, but $h\left(\widetilde{H}_{(j)}^{ \pm}\right)$is not necessarily contained in $\widehat{H}_{(j)}^{\prime \pm}$.

- $\lim _{\varepsilon \rightarrow 0} \eta(\varepsilon)=0$.
- Let $\boldsymbol{x}, \boldsymbol{y}$ be any points of $\widetilde{H}_{(j)}$ both of which are contained in one of $\widetilde{H}_{(j)}^{+}$and $\widetilde{H}_{(j)}^{-}$. If $d(\boldsymbol{x}, \boldsymbol{y})<\eta(\varepsilon)$, then $d_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\varepsilon$.
(ii) For any $\varepsilon>0$, there exists a constant $\delta(\varepsilon)>0$ independent of $j \in \mathbb{N}$ and satisfying the following conditions.
- $\lim _{\varepsilon \rightarrow 0} \delta(\varepsilon)=0$.
- Let $\boldsymbol{x}, \boldsymbol{y}$ be any points of $\widetilde{H}_{(j)}$ both of which are contained in one of $\widetilde{H}_{(j)}^{+}$and $\widetilde{H}_{(j)}^{-}$. If $d_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta(\varepsilon)$ and $\boldsymbol{x}^{\prime}=h(\boldsymbol{x})$ and $\boldsymbol{y}^{\prime}=h(\boldsymbol{y})$ are contained in $\widetilde{H}_{(j)}^{\prime}$, then $d_{\tilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon$.

One can take these constants $\eta(\varepsilon), \delta(\varepsilon)$ so that they work also for $d_{\widetilde{H}_{(j)}^{\prime}}$ and $d_{\widehat{H}_{(j)}^{\prime}}$.
Proof. (i) The assertion is proved immediately from the fact that $\widetilde{H}_{(j)}^{ \pm}$uniformly converges to a disk H^{\natural} in $D_{a}(p)$ such that $d(\boldsymbol{x}, \boldsymbol{y})=d_{H^{\natural}}(\boldsymbol{x}, \boldsymbol{y})$ for any $\boldsymbol{x}, \boldsymbol{y} \in H^{\natural}$.
(ii) Suppose that $\boldsymbol{x}, \boldsymbol{y} \in \widetilde{H}_{(j)}^{+}$. First we consider the case that both \boldsymbol{x}^{\prime} and \boldsymbol{y}^{\prime} are contained in one of $\widetilde{H}_{(j)}^{\prime+}$ and $\widetilde{H}_{(j)}^{\prime-}$, say $\widetilde{H}_{(j)}^{\prime+}$. If $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \geq \varepsilon$, then it follows from the assertion (i) that $d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right) \geq \eta(\varepsilon)$. Since h is uniformly continuous on $U_{a}(p)$, there exists a constant $\delta_{1}(\varepsilon)>0$ with $\lim _{\varepsilon \rightarrow 0} \delta_{1}(\varepsilon)=0$ and $d(\boldsymbol{x}, \boldsymbol{y}) \geq \delta_{1}(\varepsilon)$. Hence, in particular, $d_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y}) \geq$ $\delta_{1}(\varepsilon)$. Thus $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta_{1}(\varepsilon)$ implies $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon$.

Next we suppose that $\boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime+}$ and $\boldsymbol{y}^{\prime} \in \widetilde{H}_{(j)}^{\prime-}$. Consider a shortest curve α in $\widetilde{H}_{(j)}$ connecting \boldsymbol{x} and \boldsymbol{y}. Since $\alpha^{\prime}=h(\alpha)$ is contained in $\widehat{H}_{(j)}^{\prime}, \alpha^{\prime}$ intersects $\widehat{\gamma}_{m_{j}, n_{j}}^{\prime}$ non-trivially.

Figure 3.6: The case of $\boldsymbol{x}, \boldsymbol{y} \in \widetilde{H}_{(j)}^{+}, \boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime+}$ and $\boldsymbol{y}^{\prime} \in \widetilde{H}_{(j)}^{\prime-}$.

Let \boldsymbol{z} be one of the intersection points of α with $h^{-1}\left(\widehat{\gamma}_{m_{j}, n_{j}}^{\prime}\right)$. See Figure 3.6. Suppose that $d_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta_{1}(\varepsilon / 2)$. Since $d_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})=d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{z})+d_{\tilde{H}_{(j)}}(\boldsymbol{z}, \boldsymbol{y})$,

$$
d_{\tilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{z})<\delta_{1}(\varepsilon / 2) \quad \text { and } \quad d_{\tilde{H}_{(j)}}(\boldsymbol{z}, \boldsymbol{y})<\delta_{1}(\varepsilon / 2) .
$$

Since $\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime} \in \widehat{H}_{(j)}^{\prime+}$ and $\boldsymbol{z}^{\prime}, \boldsymbol{y}^{\prime} \in \widehat{H}_{(j)}^{\prime-}$, by the result in the previous case we have $d_{\widehat{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}\right)<$ $\varepsilon / 2$ and $d_{\widehat{H}_{(j)}^{\prime}}\left(\boldsymbol{z}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon / 2$, and hence

$$
d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)=d_{\widehat{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon .
$$

Thus $\delta(\varepsilon):=\delta_{1}(\varepsilon / 2)$ satisfies the conditions of (ii).
The following result is a key of this section.
Lemma 3.7. For any $\varepsilon>0$, there exists $j_{0} \in \mathbb{N}$ such that, for any $j \geq j_{0}$,

$$
h\left(\widetilde{\gamma}_{m_{j}, n_{j}}\right) \cap \widetilde{H}_{(j)}^{\prime} \subset \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right),
$$

where $\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$ is the ε-neighborhood of $\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}$ in $\widetilde{H}_{(j)}^{\prime}$.
Figure 3.7 illustrates the situation of Lemma 3.7.
Proof. For $\sigma= \pm$, we will show that $h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\gamma_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right) \subset \widetilde{H}_{(j)}^{\sigma}$ for all sufficiently large j. Since $\left.h^{-1}\right|_{U_{a^{\prime}}\left(p^{\prime}\right)}$ is uniformly continuous, there exists $\nu(\varepsilon)>0$ such that, for any $\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime} \in U_{a^{\prime}}\left(p^{\prime}\right)$ with $d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\nu(\varepsilon)$, the inequality $d(\boldsymbol{x}, \boldsymbol{y})<\eta(\delta(\varepsilon))$ holds, where $\boldsymbol{x}=h^{-1}\left(\boldsymbol{x}^{\prime}\right), \boldsymbol{y}=h^{-1}\left(\boldsymbol{y}^{\prime}\right)$. Since both $\widetilde{H}_{(j)}^{\prime+}$ and $\widetilde{H}_{(j)}^{\prime-}$ uniformly converge to the same half disk $H^{\prime \dagger}$ in $D_{a^{\prime}}\left(p^{\prime}\right)$, there exists $j_{0} \in \mathbb{N}$ such that, for any $j \geq j_{0}$ and any $\boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime \sigma} \backslash$ $\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{(j)}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right), d^{\prime}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ is less than $\nu(\varepsilon)$, where \boldsymbol{y}^{\prime} is the element of $\widetilde{H}_{(j)}^{\prime-\sigma}$ with $\operatorname{pr}\left(\boldsymbol{x}^{\prime}\right)=$ $\operatorname{pr}\left(\boldsymbol{y}^{\prime}\right)$. Then we have $d(\boldsymbol{x}, \boldsymbol{y})<\eta(\delta(\varepsilon))$. If both \boldsymbol{x} and \boldsymbol{y} were contained in one of $\widetilde{H}_{(j)}^{\sigma}$

Figure 3.7: The shaded region represents $\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$.
and $\widetilde{H}_{(j)}^{-\sigma}$, then by Lemma 3.6 (i) $d_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta(\varepsilon)$. Then, by Lemma 3.6 (ii), $d_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ would be less than ε. This contradicts that $\boldsymbol{x}^{\prime} \in \widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$ and $\boldsymbol{y}^{\prime} \in \widetilde{H}_{(j)}^{\prime-\sigma}$. See Figure 3.8. Thus, if \boldsymbol{y} is contained in $\widetilde{H}_{(j)}^{\sigma}$, then \boldsymbol{x} is not in $\widetilde{H}_{(j)}^{\sigma}$. In particular, \boldsymbol{x} is

Figure 3.8: The situation which does not actually occur. $d_{1}:=\operatorname{dist}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\nu(\varepsilon), d_{2}:=$ $\operatorname{dist}_{\widetilde{H}_{(j)}}(\boldsymbol{x}, \boldsymbol{y})<\delta(\varepsilon)$ and $d_{3}:=\operatorname{dist}_{\widetilde{H}_{(j)}^{\prime}}\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)<\varepsilon$.
not contained in $\widetilde{\gamma}_{m_{j}, n_{j}}=\widetilde{H}_{(j)}^{+} \cap \widetilde{H}_{(j)}^{-}$, and so $\widetilde{\gamma}_{m_{j}, n_{j}} \cap h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m, n}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right)=\emptyset$. Since $h^{-1}\left(\widetilde{H}_{(j)}^{\prime \sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m, n}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right)$ is connected, it follows that $h^{-1}\left(\widetilde{H}_{(j)}^{\sigma} \backslash \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m, n}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right) \subset \widetilde{H}_{(j)}^{\sigma}$ for $\sigma= \pm$, and hence $h^{-1}\left(\mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)\right) \supset \widetilde{\gamma}_{m_{j}, n_{j}} \cap h^{-1}\left(\widetilde{H}_{(j)}^{\prime}\right)$. This completes the proof.

From the proof of Lemma 3.7, we know that there exists a simple curve in $h\left(\widetilde{\gamma}_{m_{j}, n_{j}}\right) \cap$ $\widetilde{H}_{(j)}^{\prime}$ connecting the two components of $\partial \widetilde{H}_{(j)}^{\prime} \cap \partial \mathcal{N}_{\varepsilon}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}, \widetilde{H}_{(j)}^{\prime}\right)$. The following corollary says that the images of certain straight segments in $D_{a}(p)$ by the homeomorphism h are
naturally straight segments in $D_{a^{\prime}}\left(p^{\prime}\right)$.
Corollary 3.8. For the limit straight segment γ_{0}^{\natural} of $\gamma_{m_{j}, n_{j}}, h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is the limit straight segment of $\gamma_{m_{j}, n_{j}}^{\prime}$, i.e. $h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)=\gamma_{0}^{\prime \dagger}$.

Proof. Since γ_{0}^{\natural} is the limit straight segment of $\widetilde{\gamma}_{m_{j}, n_{j}}$ and h is uniformity continuous, $h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is the limit of $h\left(\widetilde{\gamma}_{m_{j}, n_{j}}\right) \cap \widetilde{H}_{(j)}^{\prime}$. It follows from Lemma 3.7 that $h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is also the limit of $\operatorname{pr}\left(\widetilde{\gamma}_{m_{j}, n_{j}}^{\prime}\right)=\gamma_{m_{j}, n_{j}}^{\prime}$, that is, $h\left(\gamma_{0}^{\natural}\right) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ is equal to the limit straight segment of $\gamma_{m_{j}, n_{j}}^{\prime}$.

For any straight segment l in $D_{a}(p)$ such that $h(l)$ is also a straight segment in $D_{b^{\prime}}\left(p^{\prime}\right)$, we denote $h(l) \cap D_{a^{\prime}}\left(p^{\prime}\right)$ simply by $h(l)$. In particular, Corollary 3.8 implies that $h\left(\gamma_{0}^{\natural}\right)=$ $\gamma_{0}^{\prime 4}$.

3.4 Proof of Theorem 3.1

Suppose that $\mathrm{St}_{a}(p)$ is the set of oriented proper straight segments in $D_{a}(p)$ passing through 0 , that is, each element of $\operatorname{St}_{a}(p)$ is an oriented diameter of the disk $D_{a}(p)$. For any $l \in \operatorname{St}_{a}(p)$ and $n \in \mathbb{N}$, the component of $f^{n}(l) \cap U_{a}(p)$ containing 0 is also an element of $\operatorname{St}_{a}(p)$. We denote the element simply by $f^{n}(l)$.

Since $\left.f^{n}\right|_{D_{a}(p)}$ preserves angles on $D_{a}(p)$, by (3.6), for any $k, n \in \mathbb{N}$,

$$
\vartheta\left(\gamma_{m, n}\right)-\vartheta\left(\gamma_{m+k, n}\right)=\vartheta\left(\gamma_{m, 0}\right)-\vartheta\left(\gamma_{m+k, 0}\right) \rightarrow \vartheta\left(\gamma_{0}\right)-\vartheta\left(\gamma_{0}\right)=0
$$

as $m \rightarrow \infty$. Moreover it follows from (3.7) that $\lim _{j \rightarrow \infty} d_{m_{j}+k, n_{j}}=w_{0} \lambda^{k}$. By these facts together with Lemma 3.5, one can show that $\gamma_{m_{j}+k, n_{j}}$ uniformly converges as $m \rightarrow \infty$ to a straight segment γ_{k}^{\natural} in $U_{a}(p)$ with

$$
\begin{equation*}
\vartheta\left(\gamma_{k}^{\natural}\right)=\theta^{\natural} \quad \text { and } \quad d\left(0, \gamma_{k}^{\natural}\right)=w_{0} \lambda^{k} . \tag{3.9}
\end{equation*}
$$

Thus we have obtained the parallel family $\left\{\gamma_{k}^{\natural}\right\}$ of oriented straight segments in $D_{a}(p)$. See Figure 3.9. By Corollary 3.8, $\left\{\gamma_{k}^{\prime \dagger}\right\}$ with $\gamma_{k}^{\prime \natural}=h\left(\gamma_{k}^{\natural}\right)$ is also a parallel family of oriented straight segments in $D_{a^{\prime}}\left(p^{\prime}\right)$. Since $\gamma_{k}^{\prime \natural}$ is the limit of $\gamma_{m_{j}+k, n_{j}}^{\prime}$ as $j \rightarrow \infty$, we have the equations

$$
\begin{equation*}
\vartheta\left(\gamma_{k}^{\prime \boldsymbol{\natural}}\right)=\theta^{\prime \text { Ł }} \quad \text { and } \quad d\left(0, \gamma_{k}^{\prime \text { Ø }}\right)=w_{0}^{\prime} \lambda^{\prime k} . \tag{3.10}
\end{equation*}
$$

corresponding to (3.9) for some $\theta^{\prime \natural}$ and $w_{0}^{\prime}>0$. Let $\gamma_{\infty}^{\natural} \in \operatorname{St}_{a}(p)$ (resp. $\gamma_{\infty}^{\prime \natural} \in \operatorname{St}_{a^{\prime}}\left(p^{\prime}\right)$) be the limit of γ_{k}^{\natural} (resp. $\gamma_{k}^{\prime \natural}$).

Proof of Theorem 3.1. By Lemma 3.5 and (3.7), $w_{0}=\lim _{j \rightarrow \infty} \widetilde{d}_{0} \widetilde{t}_{0} \lambda^{m_{j}} r^{n_{j}}$. This implies that

$$
\lim _{j \rightarrow \infty}\left(\frac{m_{j}}{n_{j}} \log \lambda+\log r\right)=\lim _{j \rightarrow \infty} \frac{1}{n_{j}} \log \frac{w_{0}}{\widetilde{d}_{0} \widetilde{t}_{0}}=0
$$

Figure 3.9: The images of the parallel straight segments γ_{k}^{\natural} in $D_{a}(p)$ by h.
and hence $\lim _{j \rightarrow \infty} \frac{m_{j}}{n_{j}}=-\frac{\log r}{\log \lambda}$. Applying the same argument to $\gamma_{m_{j}, n_{j}}^{\dagger}$, we also have $\lim _{j \rightarrow \infty} \frac{m_{j}}{n_{j}}=-\frac{\log r^{\prime}}{\log \lambda^{\prime}}$. This shows the part (D1) of Theorem 3.1.

Now we will prove the part (D2). For any $n \in \mathbb{N} \cup\{0\}$, we set $f^{n}\left(\gamma_{\infty}^{\natural}\right)=\gamma_{\infty, n}^{\natural}$ and $f^{\prime n}\left(\gamma_{\infty}^{\prime 4}\right)=\gamma_{\infty, n}^{\prime \natural}$. By Corollary 3.8,

$$
\begin{equation*}
h\left(\gamma_{\infty, n}^{\natural}\right)=h\left(f^{n}\left(\gamma_{\infty}^{\natural}\right)\right)=f^{\prime n}\left(h\left(\gamma_{\infty}^{\natural}\right)\right)=f^{\prime n}\left(\gamma_{\infty}^{\prime \natural}\right)=\gamma_{\infty, n}^{\prime} . \tag{3.11}
\end{equation*}
$$

We identify $\operatorname{St}_{a}(p)$ with the unit circle $S^{1}=\{z \in \mathbb{C} ;|z|=1\}$ by corresponding $l \in \operatorname{St}_{a}(p)$ to $e^{\sqrt{-1} \vartheta(l)}$. Then the action of f on $\operatorname{St}_{a}(p)$ is equal to the θ-rotation R_{θ} on S^{1} defined by $R_{\theta}(z)=e^{\sqrt{-1} \theta} z$.

If $\theta / 2 \pi=v / u$ for coprime positive integers u, v with $0 \leq v<u$. Since $h\left(\gamma_{\infty}^{\natural}\right)=\gamma_{\infty}^{\prime}$, we have $f^{\prime k}\left(\gamma_{\infty}^{\prime 4}\right) \neq \gamma_{\infty}^{\prime}$, for $k=1, \ldots, u-1$ and $f^{\prime \prime}\left(\gamma_{\infty}^{\prime \prime}\right)=\gamma_{\infty}^{\prime \prime}$. This implies that $\theta^{\prime} / 2 \pi=v^{\prime} / u$ for some $v^{\prime} \in \mathbb{N}$ with $0 \leq v^{\prime}<u$. Since $\left.h\right|_{D_{a}(p)}: D_{a}(p) \rightarrow D_{a^{\prime}}\left(p^{\prime}\right)$ is a homeomorphism with the correspondence $h\left(R_{\theta}^{k}\left(\gamma_{\infty}^{\natural}\right)\right)=R_{\theta^{\prime}}^{k}\left(\gamma_{\infty}^{\prime}\right)(k=0,1, \ldots, u-1)$, there exists an orientationpreserving homeomorphism $\eta_{0}: S^{1} \rightarrow S^{1}$ with $\eta_{0}\left(e^{\sqrt{-1}\left(\theta^{\natural}+k \theta\right)}\right)=e^{\sqrt{-1}\left(\theta^{\text {h }}+k \theta^{\prime}\right)}$ for $k=$ $0,1, \ldots, u-1$. We set $\Gamma=\left\{e^{\sqrt{-1}\left(\theta^{\natural}+k \theta\right)} ; k=0,1, \ldots, u-1\right\}$ and $\Gamma^{\prime}=\left\{e^{\sqrt{-1}\left(\theta^{\natural}+k \theta^{\prime}\right)} ; k=\right.$ $0,1, \ldots, u-1\}$. Then $\left[e^{\sqrt{-1} \theta^{\natural}}, e^{\sqrt{-1}\left(\theta^{\natural}+\theta\right)}\right) \cap \Gamma$ consists of v points, where $[a, b)$ denotes the positively oriented half-open interval in S^{1} for $a, b \in S^{1}$ with $a \neq b$. Since moreover $\eta_{0}\left(\left[e^{\sqrt{-1} \theta^{\natural}}, e^{\sqrt{-1}\left(\theta^{\natural}+\theta\right)}\right) \cap \Gamma\right)=\left[e^{\sqrt{-1} \theta^{\natural}}, e^{\sqrt{-1}\left(\theta^{\natural}+\theta^{\prime}\right)}\right) \cap \Gamma^{\prime}$ consists of v^{\prime} points, it follows that $v=v^{\prime}$, and hence $\theta=\theta^{\prime}$.

Next we suppose that $\theta / 2 \pi$ is irrational. Then, for any $l \in \operatorname{St}_{a}(p)$, there exists a subsequence $\left\{n_{k}\right\}$ of \mathbb{N} such that the sequence $\gamma_{\infty, n_{k}}^{\natural}$ uniformly converges to l as $k \rightarrow \infty$. By (3.11), $\gamma_{\infty, n_{k}}^{\prime \emptyset}$ uniformly converges to $l^{\prime}=h(l)$. Since $\gamma_{\infty}^{\prime \natural}, n_{k} \in \operatorname{St}_{a^{\prime}}\left(p^{\prime}\right), l^{\prime}$ is also an element of $\mathrm{St}_{a^{\prime}}\left(p^{\prime}\right)$. Thus we have a homeomorphism $\eta: S^{1} \rightarrow S^{1}$ with respect to which R_{θ} and $R_{\theta^{\prime}}$ are conjugate. Since the rotation number is invariant under topological conjugations, $\theta / 2 \pi=\theta^{\prime} / 2 \pi \bmod 1$ holds. This completes the proof of the part (D2).

3.5 Proof of Theorem 3.3

In this section, we will prove Theorem 3.3. Suppose that f, f^{\prime} are elements of $\operatorname{Diff}^{r}(M)$ satisfying the conditions of Theorems 3.1 and $\theta / 2 \pi$ is irrational.

Since $\theta=\theta^{\prime} \bmod 2 \pi$, for any $k, j \in \mathbb{N}$,

$$
\begin{equation*}
\vartheta\left(\gamma_{\infty, k}^{\natural}\right)-\vartheta\left(\gamma_{\infty, j}^{\natural}\right)=\vartheta\left(\gamma_{\infty, k}^{\prime \natural}\right)-\vartheta\left(\gamma_{\infty, j}^{\prime \natural}\right)=(k-j) \theta \quad \bmod 2 \pi . \tag{3.12}
\end{equation*}
$$

Let $l_{j}(j=1,2)$ be any elements of $\mathrm{St}_{a}(p)$. As in the proof of Theorem 3.1, there exist subsequences $\left\{n_{k}\right\},\left\{n_{j}\right\}$ of \mathbb{N} such that the sequencers $\left\{\gamma_{\infty, n_{k}}^{\natural}\right\},\left\{\gamma_{\infty, n_{j}}^{\natural}\right\}$ uniformly converge to l_{1} and l_{2} respectively. Then, $\left\{\gamma_{\infty, n_{k}}^{\prime \natural}\right\},\left\{\gamma_{\infty}^{\prime}, n_{j}\right\}$ also uniformly converge to the elements $l_{1}^{\prime}=h\left(l_{1}\right)$ and $l_{2}^{\prime}=h\left(l_{2}\right)$ of $\mathrm{St}_{a^{\prime}}\left(p^{\prime}\right)$ respectively. Then, by (3.12),

$$
\begin{equation*}
\vartheta\left(l_{2}\right)-\vartheta\left(l_{1}\right)=\vartheta\left(l_{2}^{\prime}\right)-\vartheta\left(l_{1}^{\prime}\right) \quad \bmod 2 \pi . \tag{3.13}
\end{equation*}
$$

For the proof of Theorem 3.3, we need another family of straight segments in $D_{a}(p)$. Fix an integer a_{0} with

$$
a_{0}>\max \left\{\frac{\log (2 r)}{\log \left(\lambda^{-1}\right)}, \frac{\log \left(2 r^{\prime}\right)}{\log \left(\lambda^{\prime-1}\right)}\right\} .
$$

For any $k \geq 0$, we consider the straight segment $\xi_{k}^{\natural}=f^{k}\left(\gamma_{a_{0} k}^{\natural}\right) \cap D_{a}(p)$. By (3.9),

$$
\begin{equation*}
\vartheta\left(\xi_{k}^{\natural}\right)-\vartheta\left(\xi_{0}^{\natural}\right)=k \theta \quad \bmod 2 \pi \quad \text { and } \quad d\left(0, \xi_{k}^{\natural}\right)=w_{0} \lambda^{a_{0} k} r^{k}<2^{-k} w_{0} . \tag{3.14}
\end{equation*}
$$

Similarly, by (3.10), $\xi_{k}^{\prime \natural}=h\left(\xi_{k}^{\natural}\right)$ is a straight segment in $D_{a^{\prime}}\left(p^{\prime}\right)$ with

$$
\begin{equation*}
\vartheta\left(\xi_{k}^{\prime 4}\right)-\vartheta\left(\xi_{0}^{\prime \boldsymbol{4}}\right)=k \theta \quad \bmod 2 \pi \quad \text { and } \quad d\left(0, \xi_{k}^{\prime 4}\right)=w_{0}^{\prime} \lambda^{\prime a_{0} k} r^{\prime k}<2^{-k} w_{0}^{\prime} . \tag{3.15}
\end{equation*}
$$

Proof of Theorem 3.3. Let α be the element of $\operatorname{St}_{a}(p)$ with $\vartheta\left(\xi_{0}^{\natural}\right)-\vartheta(\alpha)=\pi / 2$ and $\alpha^{\prime}=$ $h(\alpha) \in \mathrm{St}_{a^{\prime}}\left(p^{\prime}\right)$. We will show that $\theta_{\alpha^{\prime}}:=\vartheta\left(\xi_{0}^{\prime \natural}\right)-\vartheta\left(\alpha^{\prime}\right)$ is also equal to $\pi / 2 \bmod 2 \pi$. See Figure 3.10. In fact, since $\theta / 2 \pi$ is irrational, by (3.14) there exists a subsequence

Figure 3.10: Correspondence of straight segments via h.
$\xi_{k_{j}}^{\natural}$ uniformly converges to α. Since $\left.h\right|_{D_{a}(p)}$ is uniformly continuous, $\xi_{k_{j}}^{\prime \natural}$ also uniformly converges to α^{\prime}. On the other hand, since $\vartheta\left(\xi_{k_{j}}^{\natural}\right)-\vartheta(\alpha)=k_{j} \theta+\pi / 2 \bmod 2 \pi$ and $\vartheta\left(\xi_{k_{j}}^{\prime}\right)-$ $\vartheta\left(\alpha^{\prime}\right)=k_{j} \theta+\theta_{\alpha^{\prime}} \bmod 2 \pi$,

$$
\theta_{\alpha^{\prime}}-\frac{\pi}{2}=\left(\vartheta\left(\xi_{k_{j}}^{\prime \natural}\right)-\vartheta\left(\alpha^{\prime}\right)\right)-\left(\vartheta\left(\xi_{k_{j}}^{\natural}\right)-\vartheta(\alpha)\right) \rightarrow 0 \bmod 2 \pi
$$

as $j \rightarrow \infty$. Thus we have $\theta_{\alpha^{\prime}}=\pi / 2 \bmod 2 \pi$.
We denote by $z(\boldsymbol{x}) \in \mathbb{C}$ the entry of $\boldsymbol{x} \in D_{a}(p)$ with respect to the linearizing coordinate on $D_{a}(p)$. Similarly, the entry of $\boldsymbol{x}^{\prime} \in D_{a^{\prime}}\left(p^{\prime}\right)$ is denoted by $z^{\prime}\left(\boldsymbol{x}^{\prime}\right)$. Let \boldsymbol{x}_{0} be the intersection point of α and ξ_{0}^{\natural}, and let $\boldsymbol{x}_{0}^{\prime}=h\left(\boldsymbol{x}_{0}\right)$. One can set $z\left(\boldsymbol{x}_{0}\right)=\rho_{0} e^{\sqrt{-1} \omega_{0}}$ and $z^{\prime}\left(\boldsymbol{x}_{0}^{\prime}\right)=\rho_{0}^{\prime} e^{\sqrt{-1} \omega_{0}^{\prime}}$ for some $\rho_{0}>0, \rho_{0}^{\prime}>0$ and $\omega_{0}, \omega_{0}^{\prime} \in \mathbb{R}$. We define the new linearizing coordinate on $D_{a^{\prime}}\left(p^{\prime}\right)$ by using the linear conformal map such that, for any $\boldsymbol{x}^{\prime} \in D_{a^{\prime}}\left(p^{\prime}\right)$, $z^{\prime \text { new }}\left(\boldsymbol{x}^{\prime}\right)=\rho_{0} \rho_{0}^{\prime-1} e^{\sqrt{-1}\left(\omega_{0}-\omega_{0}^{\prime}\right)} z^{\prime}\left(\boldsymbol{x}^{\prime}\right)$. Then $z\left(\boldsymbol{x}_{0}\right)=z^{\prime \text { new }}\left(\boldsymbol{x}_{0}^{\prime}\right)$ holds.

For any $\boldsymbol{x} \in \xi_{0}^{\natural}$, there exists $l \in \operatorname{St}_{a}(p)$ with $\{\boldsymbol{x}\}=\xi_{0}^{\natural} \cap l$. Then $\boldsymbol{x}^{\prime}=h(\boldsymbol{x})$ is the intersection of $\xi_{0}^{\prime \dagger}$ and $l^{\prime}=h(l)$. By (3.13), $\vartheta(l)-\vartheta(\alpha)=\vartheta\left(l^{\prime}\right)-\vartheta\left(\alpha^{\prime}\right) \bmod 2 \pi$ and hence $z(\boldsymbol{x})=z^{\prime \text { new }}\left(\boldsymbol{x}^{\prime}\right)$. We say the property that h is identical on ξ_{0}^{\natural}. Since $\theta / 2 \pi$ is irrational, there exists $k_{*} \in \mathbb{N}$ satisfying

$$
\frac{\pi}{3} \leq \vartheta\left(\xi_{k_{*}}^{\natural}\right)-\vartheta\left(\xi_{0}^{\natural}\right) \leq \frac{\pi}{2} \quad \bmod 2 \pi .
$$

Then $\xi_{k_{*}}^{\natural}$ meets ξ_{0}^{\natural} at a single point $\boldsymbol{x}_{k_{*}}$ in $D_{a}(p)$. For $\alpha_{k_{*}}=f^{k_{*}}(\alpha)$ and $\alpha_{k_{*}}^{\prime}=h\left(\alpha_{k_{*}}\right)$, we have $\vartheta\left(\xi_{k_{*}}^{\natural}\right)-\vartheta\left(\alpha_{k_{*}}\right)=\vartheta\left(\xi_{k_{*}}^{\prime \prime}\right)-\vartheta\left(\alpha_{k_{*}}^{\prime}\right)=\pi / 2$. Since h is identical at $\boldsymbol{x}_{k_{*}}, h$ is proved to be identical on $\xi_{k_{*}}^{\natural}$ by an argument as above. Then one can show inductively that, for any $n \in \mathbb{N}, h$ is identical on $\xi_{n k_{*}}^{\natural}$. See Figure 3.11. By (3.14), $\lim _{n \rightarrow \infty} d\left(0, \xi_{n k_{*}}^{\natural}\right)=0$. Since

Figure 3.11: Correspondence via h with respect to the new coordinate on $D_{a^{\prime}}\left(p^{\prime}\right)$.
moreover $k_{*} \theta / 2 \pi$ is irrational, $\overline{\bigcup_{n=1}^{\infty} \xi_{n k_{*}}^{\natural}}$ is equal to $D_{a}(p)$. This shows that h is identical on $D_{a}(p)$. In particular, this implies that $\left.h\right|_{D_{a}(p)}$ is a linear conformal map with respect to the original coordinates. We write $z(q)=\rho_{1} e^{\sqrt{-1} \omega_{1}}$ and $z^{\prime}\left(q^{\prime}\right)=\rho_{1}^{\prime} e^{\sqrt{-1} \omega_{1}^{\prime}}$. It follows
from the assumption of $h(q)=q^{\prime}$ in our theorems that $h(z)=\rho_{1}^{\prime} \rho_{1}^{-1} e^{\sqrt{-1}\left(\omega_{1}^{\prime}-\omega_{1}\right)} z$ for any $\underset{\sim}{z} \in \mathbb{C}$ with $|z| \leq a$. In particular, this implies that $\left.h\right|_{W_{\text {loc }}^{u}(p)}$ is a linear conformal map. Let \widetilde{h} be any other conjugacy homeomorphism between f and f^{\prime} satisfying the conditions in Theorems 3.1 and 3.3. In particular, $\widetilde{h}(p)=p^{\prime}$ and $\widetilde{h}(q)=q^{\prime}$ hold. Since $z(q)=\rho_{1} e^{\sqrt{-1} \omega_{1}}$ and $z^{\prime}\left(q^{\prime}\right)=\rho_{1}^{\prime} e^{\sqrt{-1} \omega_{1}^{\prime}}$, one can show as above that $\widetilde{h}(z)=\rho_{1}^{\prime} \rho_{1}^{-1} e^{\sqrt{-1}\left(\omega_{1}^{\prime}-\omega_{1}\right)} z$ for any $z \in \mathbb{C}$ with $|z| \leq a$ and hence $\left.\widetilde{h}\right|_{D_{a}(p)}=\left.h\right|_{D_{a}(p)}$. This shows the assertion (E2) of Theorem 3.3 and $r=r^{\prime}$. Then, by the assertion (D1) of Theorem 3.1, we also have $\lambda=\lambda^{\prime}$. This completes the proof.

Let \widehat{z} be the homoclinic transverse point of $W^{u}(p)$ and $W^{s}(p)$ given in Subsection 3.2.1. Fix a sufficiently large $n \in \mathbb{N}$ with $s=f^{-n}(\widehat{z}) \in D_{p}(a)$. Then $s^{\prime}=h(s)$ is contained in $D_{b^{\prime}}\left(p^{\prime}\right)$. The following corollary shows that $z(s) / z(q)$ is a modulus for f. Recall that $z(\boldsymbol{x}) \in \mathbb{C}$ is the entry of \boldsymbol{x} with respect to the complex linearizing coordinate on $D_{a}(a)$. The complex number $z^{\prime}\left(\boldsymbol{x}^{\prime}\right)$ is defined similarly for $\boldsymbol{x}^{\prime} \in D_{a^{\prime}}\left(p^{\prime}\right)$.

Corollary 3.9. Let f, f^{\prime} be elements of $\operatorname{Diff}^{r}(M)$ satisfying the conditions of Theorems 3.1 and 3.3, and let h be a conjugacy homeomorphism between f and f^{\prime} with $h(p)=p^{\prime}$ and $h(q)=q^{\prime}$. If $\left.h\right|_{W_{\text {loc }}^{u}(p)}$ is orientation-preserving, then $z(s) / z(q)=z^{\prime}\left(s^{\prime}\right) / z^{\prime}\left(q^{\prime}\right)$. Otherwise, $z(s) / z(q)=\overline{z^{\prime}\left(s^{\prime}\right) / z^{\prime}\left(q^{\prime}\right)}$.

Proof. Here we only consider the case that h is orientation-preserving. Since $\left.h\right|_{D_{a}(p)}$ is a linear conformal map, the triangle with vertices $0, z(q), z(s)$ is similar to that with vertices $0, z^{\prime}\left(q^{\prime}\right), z^{\prime}\left(s^{\prime}\right)$ with respect to Euclidean geometry. This shows $z(s) / z(q)=z^{\prime}\left(s^{\prime}\right) / z^{\prime}\left(q^{\prime}\right)$.

Bibliography

[BD] C. Bonatti and E. Dufraine, Équivalence topologique de connexions de selles en dimension 3, Ergodic Theory Dynam. Sys. 23 (2003), No. 5, 1347-1381.
[CR] M. Carvalho and A. Rodrigues, Complete set of invariants for a Bykov attractor, Regular Chaotic Dynam. Sys. 23 (2018), No. 3, 227-247.
[De] R. L. Devaney, An introduction to chaotic dynamical systems, Second edition, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1980.
[dM] W. de Melo, Moduli of stability of two-dimensional diffeomorphisms, Topology 19 (1980), No. 1, 9-21.
[dMP] W. de Melo and J. Palis, Moduli of stability for diffeomorphisms, Global Theory of Dynam. Sys. Proc. Internat. Conf., Northwestern Univ., Evanston, Ill. (1979), pp. 318-339, Lecture Notes in Math., 819, Springer, Berlin, (1980).
[dMvS] W. de Melo and S. J. van Strien, Diffeomorphisms on surfaces with a finite number of moduli, Ergodic Theory Dynam. Sys. 7 (1987), No. 3, 415-462.
[Du1] E. Dufraine, Some topological invariants for three-dimensional flows, Chaos 11 (2001), 443-448.
[Du2] E. Dufraine, Un critère d'existence d'invariant pour la conjugaison de difféomorphismes et de champs de vecteurs, C. R. Math. Acad. Sci. Paris 334 (2002), No. 1, 53-58.
[GPvS] V. Z. Grines, O. V. Pochinka and S. J. van Strien, On 2-diffeomorphisms with onedimensional basic sets and a finite number of moduli, Mosc. Math. J. 16 (2016), No. 4, 727-749.
[GS1] N. Gavrilov and L. Silnikov, On 3-dimensional dynamical systems close to systems with a structurally unstable homoclinic curves I, Math. USSR Sb. 88 (1972), 467485.
[GS2] N. Gavrilov and L. Silnikov, On 3-dimensional dynamical systems close to systems with a structurally unstable homoclinic curves II, Math. USSR Sb. 90 (1973), 139156.
[KKY] I. Kan, H. Koçak and J. Yorke, Antimonotonicity: concurrent creation and annihilation of periodic orbits, Ann. of Math. 136 (1992), No. 2, 219-252.
[KS1] S. Kiriki and T. Soma, Persistent antimonotonic bifurcations and strange attractors for cubic homoclinic tangencies, Nonlinearity 21 (2008), No. 5, 1105-1140.
[KS2] S. Kiriki and T. Soma, Existence of generic cubic homoclinic tangencies for Hénon maps, Ergodic Theory Dynam. Sys. 33 (2013), No. 4, 1029-1051.
[MP1] T.M Mitryakova and O.V. Pochinka, On necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency, Proc. Steklov Inst. Math. 270 (2010), No. 1, 194-215.
[MP2] T. M Mitryakova and O. V. Pochinka, Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies, Trans. Moscow Math. Soc. 77 (2016), 69-86.
[NPT] S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5-71.
[Ni] Y. Nishizawa, Existence of horseshoe sets with nondegenerate one-sided homoclinic tangencies in \mathbb{R}^{3}, Hokkaido Math. J. 37 (2008), No. 1, 133-145.
[Pa] J. Palis, A differentiable invariant of topological conjugacies and moduli of stability, Dynam. Sys. Vol. III-Warsaw, pp. 335-346, Astérisque, No. 51, Soc. Math. France, Paris, 1978.
[Po] R. A. Posthumus, Homoclinic points and moduli, Ergodic Theory Dynam. Sys. 9 (1989), No. 2, 389-398.
[PT] R. A. Posthumus and F. Takens, Homoclinic tangencies: moduli and topology of separatrices, Ergodic Theory Dynam. Sys. 13 (1993), No. 2, 369-385.
[Ro1] C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics, and Chaos, Second edition (Studies in Advanced Mathematics), CRC Press, Boca, Raton, FL, 1999.
[Ro2] C. Robinson, An intoroduction to dynamical systems, Continuous and Discrete, Second edition (Pure and Applied Undergraduate Texts, 19), American Mathematical Society, Providence, RI, 2012.
[Rod] A. Rodrigues, Moduli for heteroclinic connections involving saddle-foci and periodic solutions, Discrete Cont. Dynam. Sys. 35 (2015), No. 7, 3155-3182.
[St] S. Sternberg, On the structure of local homeomorphisms of euclidean n-space II, Amer. J. Math. 80 (1958), 623-631.
[Ta] F. Takens, Heteroclinic attractors: Time averages and moduli of topological conjugacy, Bol. Soc. Brasil. Mat. 25 (1994), 107-120.
[To] Y. Togawa, A modulus of 3-dimensional vector fields, Ergodic Theory Dynam. Sys. 7 (1987), No. 2, 295-301.

List of papers by Shinobu Hashimoto

[1] S. Hashimoto, Moduli of surface diffeomorphisms with cubic tangencies, to appear in Tokyo J. Math.
[2] S. Hashimoto, S. Kiriki, and T. Soma, Moduli of 3-dimensional diffeomorphisms with saddle foci, Discrete Cont. Dynam. Sys. 38 (2018), No. 10, 5021-5037.

