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Introduction

This thesis concerns the topological conjugacy problem for diffeomorphisms on a closed
manifold M . A diffeomorphism f on M is called structurally stable if any diffeomorphism
g close to f is topologically conjugate to f . The structural stability for diffeomorphisms
are well studied by many authors. In particular, R. Mañé (1987) and others proved that,
in the C1 category, f is structurally stable if and only if f is an Axiom A diffeomorphism
with the strong transversality condition. On the other hand, if f has a basic set which
has a homoclinic tangency, then it is never structurally stable. So, if f has a homoclinic
tangency, then any neighborhood of f in the space of diffeomorphisms contains both
diffeomorphisms g which are topologically conjugate and non-conjugate to f . Thus, we
need topological conjugacy invariants to decide whether a given g is topologically conjugate
to f or not.

A modulus m(f) for a diffeomorphism f is a topological conjugacy invariant for f ,
that is, m(f) = m(g) holds for any g : M → M which is contained in a certain class
of diffeomorphisms on M and topologically conjugate to f . The aim of this thesis is to
present new moduli for diffeomorphisms of dimensions two and three.

This thesis is organized as follows.
In Chapter 1, we present definitions, notions and concepts needed in this thesis. Be-

sides, we introduce several preceding results on moduli.
In Chapter 2, we study moduli for 2-dimensional diffeomorphisms with cubic homo-

clinic tangencies (two-sided tangencies of the lowest order) under certain open conditions.
Ordinary arguments used in previous studies of conjugacy invariants associated with one-
sided tangencies do not work in the two-sided case. We present a new method which is
applicable to the two-sided case.

In Chapter 3, we investigate moduli of a 3-dimensional diffeomorphism f with a sadldle
focus p and a homoclinic quadratic tangency q. It is shown there that, for most of such
diffeomorphisms, all the eigenvalues of Df(p) are moduli and the restriction of a conjugacy
homeomorphism to a local unstable manifold is a uniquely determined linear conformal
map.
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Chapter 1

Basic definitions and concepts

In this chapter, we present some of definitions, notions and concepts needed in this thesis.
Refer to [De, Ro1, Ro2] and so on for other standard results on dynamical systems.

1.1 Hyperbolic fixed points of diffeomorphisms

Let M be a Cr (1 ≤ r ≤ ∞) manifold and Diffr(M) the space of Cr diffeomorphisms on
M with Cr topology. Suppose that f is an element of Diffr(M). For a point x ∈ M , the
orbit O(x) of x for f is defined as O(x) = {fn(x) ; n ∈ Z}, where f0 is the identity map
on M , fn is the composition of f with itself n times if n > 0 and fn is the composition
of f−1 with itself −n times if n < 0. A point p ∈ M is called a periodic point for f if
p = fn(p) holds for some positive integer n. The minimum of such an n is called the
period of p. A point p ∈ M is called a fixed point for f if p = f(p) holds, that is, a fixed
point is a periodic point with period one.

Suppose that p is a fixed point for f . Then the derivativeDf(p) of f at p is a linear map
on the tangent space Tp(M) at p. By an identification of Tp(M) with Rm as vector spaces,
one can regard the linear map on Tp(M) with that on Rm, where m is the dimension of
M .

Definition 1.1. A fixed point p for f is called hyperbolic if the absolute value |λ| of any
eigenvalue λ of Df(p) is different from one. The hyperbolic fixed point p is called a sink if
the absolute value |λ| of any eigenvalue λ of Df(p) is less than one. The hyperbolic fixed
point p is called a source if the absolute value |λ| of any eigenvalue λ of Df(p) is greater
than one. A hyperbolic fixed point which is neither a sink nor a source is said to be a
saddle.

Figures 1.1 and 1.2 illustrate hyperbolic fixed points in the case of dimM = 2 and
dimM = 3, respectively, where all the eigenvalues of Df(p) are real.

We also consider the case that some of eigenvalues are non-real. If Df(p) have non-real

eigenvalues re±
√
−1θ, then f acts on a neighborhood of p as the combination of a rotation

and an expansion or contraction. In the case of dimM = 3, we have several phase portraits
of f near p. The hyperbolic fixed point p is a sink if Df(p) has a real eigenvalue 0 < λ < 1
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Figure 1.1: The case of dimM = 2. p is a sink in (1), a source in (2) and a saddle in (3).

Figure 1.2: The case of dimM = 3. p is a sink in (1), a source in (2) and a saddle in (3).

and non-real eigenvalues re±
√
−1θ with r < 1. The hyperbolic fixed point p is a source if

Df(p) has a real eigenvalue λ > 1 and non-real eigenvalues re±
√
−1θ with r > 1. If the

hyperbolic fixed point p is neither a sink nor source, then it is called a saddle focus. See
Figure 1.3. In Section 3, we study moduli of 3-dimensional diffeomorphisms having saddle
foci with a real eigenvalue 0 < λ < 1 and non-real eigenvalues re±

√
−1θ with r > 1. See

Figure 1.3 (3).
The following linearization theorem is called the Hartman-Grobman theorem. See the

Chapter 5 in [Ro1] for the proof.

Theorem 1.2 (Hartman-Grobman Theorem). Let f : M → M be a Cr diffeomorphism
with a hyperbolic fixed point p. Then, there exist neighborhoods U , V of p with U ∪f(U) ⊂
V and a homeomorphism h : V → Tp(M) with h(p) = 0 and such that the following
diagram is commutative.

U
f−−−−→ f(U)

h|U
y yh|f(U)

Tp(M) −−−−→
Df(p)

Tp(M)

By Theorem 1.2, we can call the linear map Df(p) a linearized map or linearization of
f at p. Moreover, by Taylor’s theorem, we know that the linear map Df(p) approximates
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Figure 1.3: The case of dimM = 3. p is a sink in (1), a source in (2) and a saddle focus
in (3).

f near p.

1.2 Heteroclinic and homoclinic tangencies

Let f be a Cr diffeomorphism on M and p ∈ M a fixed point for f . The stable and
unstable manifolds W s(p) and W u(p) of p are defined as

W s(p) = {x ∈ M ; fn(x) → p (n → ∞)},
W u(p) = {x ∈ M ; f−n(x) → p (n → ∞)}.

Moreover, we define the local stable and local unstable manifolds W s
loc(p) and W u

loc(p) of p
as

W s
loc(p) = {x ∈ U(p) ; fn(x) ∈ U(p) for any n ∈ N, lim

n→∞
fn(x) = p},

W u
loc(p) = {x ∈ U(p) ; f−n(x) ∈ U(p), for any n ∈ N, lim

n→∞
f−n(x) = p},

where U(p) is a sufficiently small neighborhood of p in M .
The following theorem is called the Stable Manifold Theorem. This theorem shows that

the local stable manifold W s
loc(p) and local unstable manifold W u

loc(p) are C
r submanifolds

of M . See the Chapter 5 in [Ro1] for the proof.

Theorem 1.3 (Stable Manifold Theorem). Let f : M → M be a diffeomorphism and
let p ∈ M be a saddle fixed point for f . Then the local stable manifold W s

loc(p) of p is
a Cr submanifold of M tangent to the subspace of Tp(M) spanned by the eigenvectors
with contracting eigenvalues. Similarly, the local unstable manifold W u

loc(p) of p is a Cr

submanifold of M tangent to the subspace of Tp(M) spanned by the eigenvectors with
expanding eigenvalues.

We say that the dimension of W s
loc(p) is the stable index of p and denote it by inds(p).

Then indu(p) = dimM − inds(p) is called the unstable index of p. For the definitions of
stable and unstable manifolds,

W s(p) =
∪
n≥1

f−n(W s
loc(p)), W u(p) =

∪
n≥1

fn(W u
loc(p)).
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This implies that W s(p) and W u(p) are the images of injective Cr immersions from Rs

and Ru to M , respectively, where s = inds(p) and u = indu(p).
Let p1 and p2 are two distinct saddle type fixed points of a diffeomorphism f on M . A

point q ∈ M is called a heteroclinic point associated with p1 and p2 if q ∈ W s(p1)∩W u(p2),
i.e., limn→∞ fn(q) = p1, limn→∞ f−n(q) = p2. We say that the point q is a transverse
heteroclinic point if W s(p1) and W u(p2) intersect transversely at q, namely, Tq(M) =
Tq(W

s(p1))⊕Tq(W
u(p2)) holds. When q is a non-transverse intersection point, q is called

a heteroclinic tangency associated with p1 and p2. See Figure 1.4.

Figure 1.4: q is one of heteroclinic tangencies associated with p1 and p2.

Let p is a saddle fixed point of a diffeomorphism f on M . A point q ∈ M is
called a homoclinic point associated with p if q ∈ W s(p) ∩ W u(p) \ {p}, i.e., q ̸= p
and limn→∞ fn(q) = p and limn→∞ f−n(q) = p. We say that the point q is called a
transverse homoclinic point if W s(p) and W u(p) intersect transversely at q. When q is a
non-transverse intersection point, q is called a homoclinic tangency associated with p. See
Figure 1.5.

Let f be a Cr (n ≤ r ≤ ∞) diffeomorphism with a heteroclinic or homoclinic tangency
q. We fix a Riemannian metric on M and define the order of tangency as follows. The
tangency is of order n if the limit

lim
w∈W s

loc(p),
w→q

d(w,W u(p))

[d(w, q)]n

exists and is not zero, where d is the distance onM induced from this metric. If n = 2 (resp.
n = 3), then the tangency q is called quadratic (resp. cubic). If n is even, then the tangency
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q is said to be one-sided. If n is odd, then the tangency q is two-sided. See Figures 1.5 and
1.6. Homoclinic tangencies have been studied by Newhouse, Palis and Takens and so on
since the seventies. For example, see [dM, dMP, dMvS, KS1, KS2, NPT, Ni, Pa, Po, PT].

Figure 1.5: The case of inds(p) = indu(p) = 1. q is a homoclinic quadratic tangency in
(1) and a homoclinic cubic tangency in (2).

Figure 1.6: The case of inds(p) = 1 and indu(p) = 2. p is a saddle point and q is a
homoclinic quadratic tangency associated with p.

Now, we define hyperbolic invariant sets for a diffeomotphism f . A subset S of M is
said to be positively invariant if f(x) ∈ S for all x ∈ S, i.e., f(S) ⊂ S. On the other hand,
a subset S of M is said to be negatively invariant if f−1(S) ⊂ S. Such an S is said to
be an invariant set of f if f(S) = S. Notice that any periodic orbit and the orbit of a
heteroclinic or a homoclinic point are typical examples of invariant sets for f . We denote
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by ∥ · ∥x the norm on the tangent space Tx(M) at x ∈ M induced from the Riemannian
metric on M . A closed invariant set Λ for f is said to be hyperbolic if it satisfies the
following conditions.

(1) At each point x ∈ Λ, the tangent space to M splits as the direct sum of subspaces
Eu
x and Es

x, i.e., Tx(M) = Eu
x ⊕ Es

x.

(2) The splitting is invariant under the action of the derivative map, i.e., Dfx(Eu
x) =

Eu
f(x) and Dfx(Es

x) = Es
f(x).

(3) There exist 0 < λ < 1 and C > 0 independent of x such that, for all n ≥ 0,

∥Dfn
x (v

s)∥fn(x) ≤ Cλn∥vs∥x for vs ∈ Es
x,

∥Df−n
x (vu)∥f−n(x) ≤ Cλn∥vu∥x for vu ∈ Eu

x

hold.

Notice that the closure of the orbit of a transverse heteroclinic or homoclinic point is a
simple example of a hyperbolic invariant set for f . For a Morse-Smale diffeomorphism,
the set Per(f) of all periodic points is a finite hyperbolic invariant set. For an Anosov
diffeomorphism, e.g. the toral Anosov automorphisms, the ambient manifold M itself is
a hyperbolic invariant set. We have many curious examples of hyperbolic invariant sets
other than them, e.g. horseshoes, the Plykin attractor, the solenoid, or some invariant sets
of Hénon-like maps. For example, see [De, Ro2].

As in the case of hyperbolic fixed points, we can define the stable and unstable man-
ifolds for a hyperbolic invariant set as follows. Let Λ be a hyperbolic invariant set for f .
The stable and unstable manifolds W s(x) and W u(x) of x ∈ Λ are defined as

W s(x) =
{
y ∈ M ; lim

n→∞
d(fn(x), fn(y)) = 0

}
,

W u(x) =
{
y ∈ M ; lim

n→∞
d(f−n(x), f−n(y)) = 0

}
.

The unions
W s(Λ) =

∪
x∈Λ

W s(x), W u(Λ) =
∪
x∈Λ

W u(x)

are called the stable and unstable manifolds for Λ, respectively. For ε > 0, we identify
the neighborhoods of each point x ∈ Λ in M with Uε(x) = Es

x(ε)× Eu
x(ε), where Es

x(ε) =
{v ∈ Es

x ; ∥v∥x < ε} and Eu
x(ε) = {v ∈ Eu

x ; ∥v∥x < ε}. We define the local stable and local
unstable manifolds W s

ε (x) and W u
ε (x) of x ∈ Λ of size ε as

W s
ε (x) =

{
y ∈ Uε(x) ; f

j(y) ∈ Uε(f
j(x)) for j ≥ 0

}
,

W u
ε (x) =

{
y ∈ Uε(x) ; f

−j(y) ∈ Uε(f
−j(x)) for j ≥ 0

}
.

Now, we extend Stable Manifold Theorem to the case of hyperbolic invariant sets. See the
Chapter 8 in [Ro1] for the proof.
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Theorem 1.4 (Stable Manifold Theorem for hyperbolic invariant sets). Let f be a Cr (1 ≤
r ≤ ∞) diffeomorphism on M and let Λ be a compact hyperbolic invariant set for f . Then
there is an ε > 0 such that, for each x ∈ Λ, there are two Cr embedded disks W s

ε (x) and
W u

ε (x) which are tangent to Es
x and Eu

x, respectively, and satisfy the following conditions.

• W s
ε (x) is represented by the graph of a Cr function σs

x : Es
x(ε) → Eu

x(ε) with σs
x(0x) =

0x and Dσs
x(0) = 0:

W s
ε (x) =

{
(σs

x(v),v) ; v ∈ Es
x(ε)

}
.

Besides, the function σs
x and its derivatives vary continuously on x. Similarly, there

is a Cr function σu
x : Eu

x(ε) → Es
x(ε) with σu

x(0x) = 0x and Dσu
x(0) = 0:

W u
ε (x) =

{
(u, σu

x(u)) ; u ∈ Eu
x(ε)

}
.

The function σu
x and its derivatives also vary continuously on x.

• There exist 0 < λ < 1 and C ≥ 1 such that

W s
ε (x) ⊂

{
y ∈ Uε(x) ; d(f

j(x), f j(y)) ≤ Cλjd(x, y) for j ≥ 0
}
,

W u
ε (x) ⊂

{
y ∈ Uε(x) ; d(f

−j(x), f−j(y)) ≤ Cλjd(x, y) for j ≥ 0
}
.

By Theorem 1.4, we have

W s(x) =
∪
n≥0

f−n(W s
ε (f

n(x))), W u(x) =
∪
n≥0

fn(W s
ε (f

−n(x))).

Notice that W s(x) and W u(x) are just the images of injective Cr immersions from Rs and
Ru to M but not necessarily the images of embeddings, where s = dimEs

x and u = dimEu
x.

Horseshoes or toral Anosov automorphisms are typical examples of such diffeomorphisms.
See the Chapter 8 in [Ro1].

1.3 Topological conjugacy and structural stability

For two diffeomorphisms f and g, if the orbits for f one-to-one correspond to those for g
with the same behavior, then we regard that f and g have essentially the same dynamical
systems. For example, mutually conjugate linear maps satisfy the property. For classifying
such diffeomorphisms, we introduce the notion of topological conjugacy.

Definition 1.5. We say that two diffeomorphisms f and g on a Cr(1 ≤ r ≤ ∞) manifold
M are topologically conjugate to each other if there exists a homeomorphism h : M → M
with h◦f = g ◦h. This homeomorphism h is called a topological conjugacy between f and
g.
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Let p be a periodic point for f with period n and set p′ = h(p). Then p′ satisfies
gn(p′) = gn(h(p)) = h(fn(p)) = h(p) = p′. Thus, the point p′ is also a periodic point for
g with the same period n.

A subset D of M is called a fundamental domain of f if any non-periodic orbit of
f intersects D exactly in one point. Fundamental domains are often used to construct
topological conjugacies between diffeomorphisms. For example, let f be a linear map
on R2 with real contracting eigenvalues and g another linear map on R2 with non-real
contacting eigenvalues. Take a unit circle C on R2, then one can have a pair of annuli Af

and Ag in Rm bounded by C ∪ f(C) and C ∪ g(C), respectively. See Figure 1.7. Then
A′

f = Af \ f(C) and A′
g = Ag \ g(C) are fundamental domains for f and g, respectively.

There exists a homeomorphism h̃ : Af → Ag with

Figure 1.7: Fundamental domains A′
f of f and A′

g of g.

(1.1) h̃(f(x)) = g(h̃(x))

for any x ∈ C. Extend h̃ to the map h : R2 → R2 defined by

h(x) = g−n(x)(h̃(fn(x)(x)))

for x ∈ R2\ {0} and h(0) = 0 for 0 ∈ R2, where n(x) is a uniquely determined integer with
fn(x)(x) ∈ A′

f . By (1.1), h is a well defined homeomorphism on R2, which is a topological
conjugacy between f and g.

For a given diffeomorphism f , we are interested in the topological conjugacy class
constructed by diffeomorphisms close to f . Thus we introduce the notion of the structural
stability for diffeomorphisms. A diffeomorphism f ∈ Diffr(M) is called structurally stable
if there exists a neighborhood N ⊂ Diffr(M) of f such that, for any g ∈ N , f and g are
topologically conjugate.

Remark 1.6. In this definition of structural stability, the condition that h is a homeomor-
phism is crucial. We suppose that h is a diffeomorphism. Then h is called a Cr (1 ≤ r ≤ ∞)
conjugacy between f and g. If f has a fixed point p, then, by the chain rule of compo-
sition maps, Dh(p)Df(p) = Dg(h(p))Dh(p) holds. This shows that Df(p) and Dg(h(p))
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are similar matrices via the matrix Dh(p). Thus they have the same eigenvalues. On the
other hand, for any f ∈ Diffr(M) and any fixed point p of f , there exists g ∈ Diffr(M)
arbitrarily Cr close to f such that the eigenvalues of Dg(p′) are different from those of
Df(p), where p′ is the fixed point of g corresponding to p. Namely, any neighborhood of
f ∈ Diffr(M) contains an element which is not Cr conjugate to f . Thus, any diffeomor-
phism with a fixed point is not structurally stable with respect to Cr conjugacy.

1.4 Cr convergence of unstable manifolds

Let p be a hyperbolic fixed point of a diffeomorphism f on M and U(p) a sufficiently
small neighborhood of p in M . Take a disk D embedded in M of dimension indu(p) which
intersects transversely the local stable manifoldW s

loc(p) at a single point z0. For any n ∈ N,
let Dn be the component of fn(D) ∩ U(p) containing fn(z0). Then, Dn uniformly Cr

converges to W u
loc(p) as n → ∞. Figure 1.8 illustrates the cases of inds(p) = indu(p) = 1

and inds(p) = 1, indu(p) = 2. More precisely, we have the following theorem called
Inclination Lemma. See the Chapter 5 in [Ro1] for the proof.

Figure 1.8: (1) The case of inds(p) = indu(p) = 1. (2) The case of inds(p) = 1 and
indu(p) = 2.

Theorem 1.7 (Inclination Lemma). Let f be a Cr (1 ≤ r ≤ ∞) diffeomorphism on
M and p ∈ M a saddle fixed point. Assume that M has a coordinate neighborhood of
p such that W s

loc(p) ⊂ Rs × {0} and W u
loc(p) ⊂ {0} × Ru, where s = inds(p) and u =

indu(p), if necessary by changing the coordinates suitably. Then, for any Cr submanifold
D with dim(D) = u intersecting W s

loc(p) transversely at z0 = (x0, 0) ∈ W s
loc(p)× {0}, the

component Dn of fn(D) ∩ U(p) containing fn(z0) uniformly Cr converges to W u
loc(p) as

n → ∞.
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We consider the case that a diffeomorphism f has a homoclinic tangency r associated
with a saddle fixed point p. First, suppose that dimM = 2 and r is either a quadratic
or cubic homoclinic tangency. It is not hard to show that W u(p) and W s(p) have a
transverse intersection point z in a neighborhood of r under suitable open conditions of f .
For example, see [GS1, GS2] if r is a quadratic tangency and Lemma 1.2 in [KS1] if r is a
cubic tangency. Figure 1.9 illustrates the situations. Take an arc Du in W u(p) such that
the interior of Du contains z. Then there exists an integer N such that fN (z) ∈ U(p).
Let Du

0 be the connected component of fN (Du) ∩ U(p) containing fN (z). Let Du
n be the

component of fN+n(Du) ∩ U(p) containing fN+n(z). By Inclination Lemma (Theorem
1.7), Du

n Cr converges to W u
loc(p) as n → ∞.

Next, we consider the case that dimM = 3 and inds(p) = 1, indu(p) = 2. By [Ni],
under certain open conditions of f , there exists a transverse intersection point z of W u(p)
and W s(p) near r. As in the case of dimM = 2, there exists a disk D̃u in W u(p) such that
the interior of D̃u contains z. Again by Inclination Lemma, we can take the disk D̃u

n Cr

converging to W u
loc(p) as n → ∞. The sequences {Du

n} and {D̃u
n} are crucial in arguments

of Chapters 2 and 3, respectively.

Figure 1.9: (1) r is a homoclinic quadratic tangency. (2) r is a homoclinic cubic tangency.

1.5 Motivation and preceding results

Structurally stable diffeomorphisms have no heteroclinic or homoclinic tangencies. On
the other hand, diffeomorphisms with heteroclinic or homoclinic tangencies are typical
examples of structurally unstable diffeomorphisms. For such a diffeomorphism f , we need
topological conjugacy invariants to dicide whether a given diffeomorphism g is topological
conjugate to f or not. See Figure 1.10. Such topological conjugacy invariants are called
modulus.

Definition 1.8. For a subspace N of the diffeomorphism space Diffr(M) with r ≥ 1, we

14



Figure 1.10: (1) The case that f is a structurally stable diffeomorphism. (2) The case that
f is structurally unstable diffeomorphism.

say that a value m(f) determined by f ∈ Diffr(M) is a modulus in N if m(g) = m(f)
holds for any g ∈ N topologically conjugate to f .

The topological classification of structurally unstable diffeomorphisms on a manifold
M is an important subject in the study of dynamical systems. Palis [Pa] suggested that
moduli play important roles in such a classification. The research of dynamical systems
with moduli have been originated by Palis, de Melo and Takens. Subsequently, Posthumus,
van Strien and others have studied enthusiastically this subject. See [dM, dMP, dMvS,
GPvS, NPT, Pa, PT, Ta]. Our study in this thesis is based on results of Palis [Pa], de
Melo [dM] and Posthumus [Po].

We will finish this section by introducing their results. First, we consider the case of
dimM = 2. Suppose that fi (i = 0, 1) are elements of Diff2(M) with two saddle fixed
points pi, qi such that W u(pi) and W s(qi) have a quadratic heteroclinic tangency ri and
there exists a homeomorphism h : M → M with f1 = h ◦ f0 ◦ h−1, h(p0) = p1, h(q0) = q1
and h(r0) = r1. See Figure 1.11 (1). Then, under some moderate conditions, Palis [Pa]

proved that
log |λ0|
log |µ0|

=
log |λ1|
log |µ1|

, where λi is the contracting eigenvalue of Df(pi) and µi is

the expanding eigenvalue of Df(qi). This means that m(fi) =
log |λi|
log |µi|

is one of moduli.

Following his result, de Melo [dM] studied the moduli of the stability of two-dimensional
diffeomorphisms f , that is, a minimal set of moduli which parametrizes the topological
conjugacy classes of f in Diffr(M). He detected moduli of stability for some classes
of two-dimensional diffeomorphisms. In [dM], he also showed that the restrictions of
the conjugacy homeomorphism h on each W s(p0) \ {p0} and W u(q0) \ {q0} are local

diffeomorphisms if
log |λ0|
log |µ0|

is irrational.

Subsequently, Posthumus [Po] proved that the homoclinic version of Palis and de Melo’s
results. In fact, he proved that, if fi (i = 0, 1) has a saddle fixed point pi with a homoclinic
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Figure 1.11: (1)The situation in Palis’ case. (2)The situation in Posthumus’ case.

quadratic tangency ri, then
log |λ0|
log |µ0|

=
log |λ1|
log |µ1|

holds, where λi and µi are the contracting

and expanding eigenvalues of Df(pi), respectively. See Figure 1.11 (2). Moreover, if
log |λ0|
log |µ0|

is irrational, then the eigenvalues are also moduli, that is, λ0 = λ1 and µ0 = µ1.

For 2-dimensional diffeomorphisms, various results related to moduli concerning eigen-
values are obtained by some authors; see for example [dMP, dMvS, GPvS, PT]. However,
in all of these results, the assumption that the tangency is quadratic or one-sided is crucial.
In fact, some of their arguments do not work in the case that q is a two-sided tangency,
see Remark 2.9 for the reason.
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Chapter 2

Moduli of surface diffeomorphisms
with cubic tangencies

In this chapter, we study conjugacy invariants for 2-dimensional diffeomorphisms with
cubic homoclinic tangencies (two-sided tangencies of the lowest order) under certain open
conditions. Some of arguments used in previous works of conjugacy invariants associated
with one-sided tangencies do not work in the two-sided case. We present a new method
which is applicable to the two-sided case.

2.1 Moduli of surface diffeomorphisms with cubic tangen-
cies

The following is the main result in this chapter.

Theorem 2.1. Suppose that M is a closed surface with Riemannian metric. Let fi (i =
0, 1) be elements of Diff3(M) each of which has a saddle fixed point pi and a homoclinic
cubic tangency qi associated with pi and satisfies the following conditions.

(A1) For i = 0, 1, there exists a neighborhood U(pi) of pi in M such that f |U(pi) is linear.

(A2) f0 is topologically conjugate to f1 by a homeomorphism h : M → M with h(p0) = p1
and h(q0) = q1.

(A3) Each fi (i = 0, 1) satisfies the small expanding condition and one of the adaptable
conditions with respect to (pi, qi) in Section 2.8.

Then (M1) and (M2) hold, where λi, µi are the eigenvalues of Df0(pi) with 0 < |λi| <
1 < |µi|.

(M1)
log |λ0|
log |µ0|

=
log |λ1|
log |µ1|

.

(M2) Moreover, if
log |λ0|
log |µ0|

is irrational, then µ0 = µ1 and λ0 = λ1.
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Here we say that f0 satisfies the small expanding condition at p0 if |µ0| = 1 + ε with
0 < ε < ε0 for the constant ε0 given in Lemma 2.6. Note that this condition depends
on local expressions of f0 such as (2.2) near p0 and (2.5) near fm0

0 (q0). In Section 2.2,
we present a codimension two submanifold C of Diff3(M) such that any element of C
sufficiently close to f0 also satisfies (A3). In the case that f is of class C∞, we know from
Sternberg [St] and Takens [Ta] that (A1) is an open dense condition in Diff∞(M).

Though we only consider the case of cubic tangencies, we believe that our method still
works in the case of two-sided tangencies of higher order. So we propose the following
question.

Question 2.2. Is it possible to generalize our theorem to the case where diffeomorphisms
have two-sided homoclinic tangencies of higher order ?

We will finish the introduction by outlining the proof of the main theorem. Let f0 be
a diffeomorphism satisfying the conditions of Theorem 2.1. We may assume that q0 and
r0 = φ(q0) are contained in W u

loc(p0) and W s
loc(p0) respectively, where φ = fm0

0 for some
positive integer m0. For the proof of Theorem 2.1, we need to find out a useful connection
between the eigenvalues µi and λi for i = 0, 1. By applying Inclination Lemma (Lemma
1.7), we have a sequence {αu

n} of arcs in W u(p0) which meet W s
loc(p0) transversely at single

points z0λ
n
0 and C3 converge to a sub-arc of W u

loc(p0). See Figure 2.5. Then φ(αu
n) contains

an S-shaped arc γ′0,n framed by the rectangle Sn as illustrated in Figure 2.1. We note that

Figure 2.1: γ′0,n is an S-shaped arc. γ̂1 and γ̂k are compressed S-shaped arcs near q0
induced from γ′0,n.

such arcs γ′0,n are subtle and vanish eventually as n → ∞. See Figures 2.6 and 2.13. Since
h is not supposed to be smooth, one can not expect that h sends γ′0,n to an S-shaped curve
in W u(p1). However Intersection Lemma (Lemma 2.7) shows that it actually holds, which
is a key lemma in our argument. For the proof, we send γ′0,n to a curve γ̂1 in a small
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neighborhood of q0 by fu0
0 for some u0 ∈ N and pull it back near r0 by φ. Repeating this

process many times, one can amplify γ̂1 and finally have a compressed S-shaped curve γ̂k
near q the diameter of which is substantial so that it can be distinguished by h. From
this fact, we know that h(γ̂k) intersects a compressed S-shaped curve γ̂∗k in W u(p1). It
follows that there exists a sequence {rn} with rn ∈ γ′0,n as illustrated in Figure 2.1 such
that r̄n = h(rn) is contained in the corresponding S-shaped curve γ̄′0,n in W u(p1). We
note that the images of rn, r̄n by the orthogonal projections to the first coordinates are
represented as az0λ

n
0 + o(λn

0 ), āz̄0λ
n
1 + o(λn

1 ) respectively for some non-zero constants a,

ā. One can take subsequences {n(k)}, {m(k)} of N such that f
m(k)
0 (rn(k)) converges to

a point x0 ∈ W u
loc(p0). Then f

m(k)
1 (r̄n(k)) also converges to h(x0) ∈ W u

loc(p1). By using

this fact, we will show that limk→∞
m(k)

n(k)
= − log λ0

logµ0
and limk→∞

m(k)

n(k)
= − log λ1

logµ1
. This

proves the assertion (M1). The assertion (M2) is proved by (M1) together with standard
arguments in [dM, Po].

2.2 Preliminaries

Let {an}, {bn} be sequences with non-zero entries. Then an ≈ bn means that
an
bn

→ 1 as

n → ∞, and an ∼ bn means that there exist constants C and C ′ independent of n with

0 < C ′ < 1 < C and satisfying C ′ ≤ an
bn

≤ C for any n. Suppose next that {an}, {bn} are

sequences with non-negative entries. If there exists a constant C ′ > 0 independent of n
and satisfying an ≤ C ′bn for any n, then we denote the property by an ≾ bn.

Throughout the remainder of this chapter, we suppose that M is a closed connected
surface and f : M → M is a C3 diffeomorphism with a saddle fixed point p. Let µ, λ be
the eigenvalues of Df(p) with

(2.1) 0 < |λ| < 1 < |µ|.

Suppose moreover that f is C3 linearizable in a neighborhood U(p) of p in M . Then there
exists a C3 coordinate (x, y) on U(p) satisfying the following condition:

(2.2) f(x, y) = (µx, λy)

for any (x, y) ∈ U(p). In particular, this implies that p = (0, 0), W u
loc(p) := {(x, y) ∈

U(p); y = 0} ⊂ W u(p) and W s
loc(p) := {(x, y) ∈ U(p); x = 0} ⊂ W s(p).

Let C be the subspace of Diff3(M) consisting of elements f ∈ Diff3(M) satisfying the
following conditions (C1)–(C3).

(C1) f has a saddle periodic point p.

(C2) There exists a homoclinic cubic tangency q associated with p.

(C3) f satisfies the adaptable conditions in the sense of Section 2.8 with respect to p, q.
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Note that C is a codimension two submanifold of Diff3(M).
Let q be a cubic tangency of W u(p) and W s(p). We assume that q is contained in

W u
loc(p) ⊂ U(p) if necessary replacing q by f−n(q) with sufficiently large n ∈ N. For the

point q, there exists m0 ∈ N such that r := fm0(q) ∈ W s
loc(p) ⊂ U(p). Then one can

rearrange the linearizing coordinate on U(p) so that q = (1, 0), r = (0, 1). Moreover, we
may suppose that

U(p) = [−2, 2]× [−2, 2], W u
loc(p) = [−2, 2]× {0}, W s

loc(p) = {0} × [−2, 2].

Let U(q), U(r) be sufficiently small neighborhoods of q, r in U(p) respectively. Then the
component Ls(q) of W s(p) ∩ U(q) containing q is represented as

Ls(q) = {(x+ 1, y) ∈ U(q); y = v(x)},

where v is a C3 function satisfying

(2.3) v(0) = v′(0) = v′′(0) = 0 and v′′′(0) ̸= 0.

Similarly, the component Lu(r) of W u(p) ∩ U(r) containing r is represented as

Lu(r) = {(x, y + 1) ∈ U(r); x = w(y)},

where w is a C3 function satisfying

(2.4) w(0) = w′(0) = w′′(0) = 0 and w′′′(0) ̸= 0,

see Figure 2.2

Figure 2.2: q and r are homoclinic cubic tangencies associated with p.

Recall that q = (1, 0), r = (0, 1) are cubic tangencies between W s(p) and W u(p) and
fm0(q) = r for some m0 ∈ N. We set fm0 = φ for short. By (2.3) and (2.4), φ is
represented in U(q) as follows for some constants a, b, c, d, e.

(2.5) φ(x+ 1, y) = (ay + bxy + cx3 +H1(x+ 1, y), 1 + dx+ ey +H2(x+ 1, y)),
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where H1, H2 are C3 functions satisfying the following conditions.

H1(1, 0) = ∂xH1(1, 0) = ∂yH1(1, 0) = ∂xxH1(1, 0) = ∂xyH1(1, 0)

= ∂xxxH1(1, 0) = 0,

H2(1, 0) = ∂xH2(1, 0) = ∂yH2(1, 0) = 0.

(2.6)

Since φ is a diffeomorphism,
a, d ̸= 0.

The fact that q is a cubic tangency implies

c ̸= 0.

Here we put the following extra open condition.

(2.7) b ̸= 0.

By (2.5) and (2.6), the Jacobian matrix of φ at (x+ 1, y) is given as follows.

Dφ(x+ 1, y) =

[
by + 3cx2 + ∂xH1(x+ 1, y) a+ bx+ ∂yH1(x+ 1, y)

d+ ∂xH2(x+ 1, y) e+ ∂yH2(x+ 1, y)

]
=

[
by + 3cx2 + o(x2) + o(y) +O(xy) a+ bx+ o(x) +O(y)

d+O(x) +O(y) e+O(x) +O(y)

]
.

(2.8)

Here we only consider the case satisfying the following condition, which belongs to Case
II++ in Section 2.8.

(2.9) 0 < λ < 1, µ > 1, a > 0, b < 0, c > 0, d < 0.

See Figure 2.3 for the situation of W u
loc(p) and W s

loc(p) in the case of (2.9). Note that (2.9)
implies the extra condition (2.7).

One can set µ = 1 + ε for some ε > 0. We only consider the case that ε is sufficiently
small.

Consider the rectangle Rε = [1 + ε, (1 + ε)3]× [0, ε3] in U(q). By (2.5),

φ(1 + ε, 0) = (cε3 + o(ε3), 1 + dε+ o(ε)),

φ(1 + ε, ε3) = ((a+ c)ε3 + o(ε3), 1 + dε+ o(ε)),

φ((1 + ε)3, 0) = (27cε3 + o(ε3), 1 + 3dε+ o(ε)),

φ((1 + ε)3, ε3) = ((a+ 27c)ε3 + o(ε3), 1 + 3dε+ o(ε)).

(2.10)

Let prx : U(p) → W u
loc(p) and pry : U(p) → W s

loc(p) be the orthogonal projections with
respect to the linearizing coordinate on U(p). Then there exist constants τ0, τ1 with
0 < τ0 < τ1 independent of ε and satisfying

(2.11) prx(φ(Rε)) ⊂ [τ0ε
3, τ1ε

3].
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Figure 2.3: The case of II++.

Since d < 0 by (2.9), it follows from (2.10) that

(2.12) pry(φ(Rε)) ⊂ [1 + 3.5dε, 1 + 0.5dε] ⊂ [1 + 4dε, 1].

For any x ∈ Rε, let u0 = u0(x) be a uniquely determined positive integer such
that f i(φ(x)) ∈ U(p) for i = 1, . . . , u0 and prx(f

u0(φ(x))) ⊂ ((1 + ε)2, (1 + ε)3]. Since
prx(f

u0(φ(x))) = µu0prx(φ(x)),

1 < (1 + ε)2 < µu0prx(φ(x)) < τ1µ
u0ε3.

Since pry(φ(x)) < 1 by (2.12), it follows that

pry(f
u0(φ(x))) = λu0pry(φ(x)) < λu0 .

Consider the following conditions for ε > 0:

(2.13) τ1 < ε−1 and (1 + ε)
3
2 = µ

3
2 < λ−1.

If these conditions are satisfied, then the following inequalities

(2.14) 1 < 1 + ε < µu0prx(φ(x)) < τ1µ
u0ε3 < µu0ε2

hold. This implies that

pry(f
u0(φ(x))) = λu0pry(φ(x)) < λu0 < µ− 3

2
u0 < ε3.

Thus the positive integer u0(x) satisfies

(2.15) fu0(x)(φ(x)) ∈ Rε

for all x ∈ Rε. See Figure 2.4.
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Figure 2.4: The rectangles Rε and fu0(x)(φ(Rε)) for x ∈ Rε.

2.3 Sequence of Rectangles

Let f : M → M be a C3 diffeomorphism given in Section 2.2. In particular, f satisfies
the linearizing condition (2.2) on U(p). As is seen in Subsection 1.4, W u(p) and W s(p)
have a transverse intersection point other than p. Let δu be a segment in W u

loc(p) with
Intδu ⊃ {p, q}. Then, by Inclination Lemma (Theorem 1.7), there exists a sequence
{αu

n}∞n=0 of arcs in W u(p) C3 converging to δu and satisfying the following conditions:

• αu
0 meets W s

loc(p) transversely in a single point z0 = (0, z0).

• Each αu
n contains fn(z0) = (0, z0λ

n), and the intersection α̃u
n = αu

n ∩ U(q) is an arc
meeting Ls(q) transversely in a single point cn for any sufficiently large n > 0.

See Figure 2.5. Note that αu
0 is represented by the graph of a C3-function y0 : δu → R+,

Figure 2.5: A sequence {αu
n}∞n=0 C3-converging to δu.

that is, αu
0 = {(x, y0(x)) ; x ∈ δu}. Then each αu

n is represented by the graph of the
function yn : δu → R+ with

(2.16) yn(x) = λny0(µ
−nx) for x ∈ δu.
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We parametrise α̃u
n in [(1 + ε)−3, (1 + ε)3] by αn(t) = (t + 1, ỹn(t)) with (1 + ε)−3 − 1 ≤

t ≤ (1 + ε)3 − 1, where ỹn(t) = yn(t+ 1). By (2.5) and (2.8),

φ(αn(t)) = (aỹn(t) + btỹn(t) + ct3 + h.o.t., 1 + dt+ eỹn(t) + h.o.t.),(2.17)

Dφ(αn(t))(α
′
n(t)) = (aỹ′n(t) + bỹn(t) + btỹ′n(t) + 3ct2 + h.o.t.,(2.18)

d+ eỹ′n(t) + h.o.t.),

where the primes represent the derivative on t and ‘h.o.t.’ denotes the sum of the higher
order terms on t. By (2.16),

|ỹ′n(t)| = |y′n(t+ 1)| = λnµ−n|y′0(µ−n(t+ 1))|.

Suppose that σ is the maximum of |y′0(x)| on δu. Then

|ỹ′n(t)| = |y′n(t+ 1)| = λnµ−n|y′0(µ−n(t+ 1))| ≤ λnµ−nσ

for any n ∈ N. This implies that

(2.19) |ỹ′n(t)| ≾ λnµ−n.

Suppose that dφαn(t)(α
′
n(t)) is vertical at t = tn. Then limn→∞ tn = 0 and, by (2.18),

bỹn(tn) + (a+ btn)ỹ
′
n(tn) ≈ −3ct2n.

Since ỹn(t) ≈ λnz0 and |ỹ′n(t)| ≾ λnµ−n, this condition is equivalent to

(2.20) 3ct2n ≈ −bỹn(tn) ≈ −bλnz0.

It follows that, for all sufficiently large n, dφαn(t)(α
′
n(t)) is vertical at two points tn,± with

(2.21) tn,± ≈ ±
√

−bz0
3c

λ
n
2 .

Let t̃n,± be the elements of [(1 + ε)−3 − 1, (1 + ε)3 − 1] with t̃n,− < tn,−, tn,+ < t̃n,+ such
that φ(αn(t̃n,±)) is the intersection point of φ(αn(t)) and the vertical line Ln,± tangent to
φ(αn(t)) at φ(αn(tn,∓)). Let Sn be the smallest orthogonal rectangle in U(r) containing
the four points φ(αn(t̃n,−)), φ(αn(tn,−)), φ(αn(tn,+)), φ(αn(t̃n,+)). See Figure 2.6.

Now we will estimate the size of Sn. Let Dn be the distance between Sn and W s
loc(p).

Then

Dn ≈ aỹn(tn,+) + btn,+ỹn(tn,+) + ct3n,+

≈ az0λ
n + bz0

√
−bz0
3c

λ
3
2
n − bz0

3

√
−bz0
3c

λ
3
2
n ∼ λn.

(2.22)

By (2.5), the width W0,n of Sn is represented as

W0,n ≈ (aỹn(tn,−) + btn,−ỹn(tn,−) + ct3n,−)− (aỹn(tn,+) + btn,+ỹn(tn,+) + ct3n,+)

= a(ỹn(tn,−)− ỹn(tn,+)) + b(tn,−ỹn(tn,−)− tn,+ỹn(tn,+)) + c(t3n,− − t3n,+).
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Figure 2.6: The smallest orthogonal rectangle Sn.

It follows from Mean Value Theorem together with (2.19) that

|ỹn(tn,−)− ỹn(tn,+)| ≾ λnµ−n|tn,− − tn,+| ∼ λ
3
2
nµ−n.

Moreover, by (2.21), we have

c(t3n,− − t3n,+) ≈ c

(
tn,−

(
−bỹn(tn,−)

3c

)
− tn,+

(
−bỹn(tn,+)

3c

))
= − b

3
(tn,−ỹn(tn,−)− tn,+ỹn(tn,+)).

Since

tn,−ỹn(tn,−)− tn,+ỹn(tn,+) = (tn,− − tn,+)ỹn(tn,−) + tn,+(ỹn(tn,−)− yn(tn,+))

≈ −
√

−bz0
3c

λ
n
2 · z0λn +O

(
λ

n
2 · λ

3
2
nµ−n

)
∼ −λ

3
2
n,

we have

W0,n ≈ O(λ
3
2
nµ−n) +

2b

3
(tn,−ỹn(tn,−)− tn,+ỹn(tn,+)) ∼ λ

3
2
n.(2.23)

Next we estimate the height H0,n of Sn. For that, we estimate W0,n again by using
t̃n,+ and tn,+ instead of tn,− and tn,+. Since t̃n,+ > tn,+, one can set t̃n,+ = tn,+ + ρnλ

n
2

for some ρn > 0.

W0,n ≈ a(ỹn(t̃n,+)− ỹn(tn,+)) + b(t̃n,+ỹn(t̃n,+)− tn,+ỹn(tn,+)) + c(t̃3n,+ − t̃3n,−)

= (a+ bt̃n,+)(ỹn(t̃n,+)− ỹn(tn,+)) + b(t̃n,+ − tn,+)ỹn(tn,+) + c(t̃3n,+ − t3n,−).
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Again by Mean Value Theorem together with (2.19),

|ỹn(t̃n,+)− ỹn(tn,+)| ≾ λnµ−n · ρnλ
n
2 = ρnλ

3
2
nµ−n.

Moreover, we have

(t̃n,+ − tn,+)ỹn(tn,+) ∼ ρnλ
n
2 · λn = ρnλ

3
2
n

and

t̃3n,+ − t3n,+ = 3ρ2nλ
ntn,+ + 3ρnλ

n
2 t2n,+ + ρ3nλ

3
2
n

≈

(
3ρn

√
−bz0
3c

− 3bz0
c

+ ρ2n

)
ρnλ

3
2
n.

This shows that

W0,n ∼

(
aµ−n + bz0 + 3ρn

√
−bz0
3c

− 3bz0
c

+ ρ2n

)
ρnλ

3
2
n.

Since W0,n ∼ λ
3
2
n, it follows that ρn ∼ 1 and hence t̃n,+ ∼ λ

n
2 . Similarly −t̃n,− ∼ λ

n
2 .

This implies that

(2.24) |t̃n,±| ∼ λ
n
2 .

Therefore we have

H0,n = (1 + dt̃n,− + eỹn(t̃n,−))− (1 + dt̃n,+ + eỹn(t̃n,+))

= d(t̃n,− − t̃n,+) + e(ỹn(t̃n,−)− ỹn(t̃n,+)) ∼ λ
n
2 +O(λ

3
2
nµ−n) ∼ λ

n
2 .

(2.25)

In particular, {Sn} is a sequence of rectangles converging to the cubic tangency r.

2.4 Slope Lemma

Let v =

[
u
v

]
∈ Tx(M) be a tangent vector at x ∈ U(p) with u ̸= 0. Then we say that

|vu−1| is the (absolute) slope of v and denote it by Slope(v).

Consider any tangent vector v0 =

[
1
δ

]
∈ Tx(M) at x = (x+ 1, y) ∈ Rε with |δ| ≤ ε

5
2 .

We set v′
0 = Dφ(x+ 1, y)(v0) and v1 = Dfu0(φ(x+ 1, y))(v′

0). By (2.8),

Slope(v′
0) ≈

|d+ eδ|
|3cx2 + aδ|

.

Since ε ≤ x and |δ| ≤ ε
5
2 ,

Slope(v′
0) ≈

|d+ eδ|
|3cx2 + aδ|

≤ |d|+ |eδ|
|3cx2| − |aδ|

≤ |d|+ |eε
5
2 |

|3cε2| − |aε
5
2 |

=
|d|+ |eε

5
2 |

|3c| − |aε
1
2 |
ε−2 =

|d|+ |eε
5
2 |

|3c| − |aε
1
2 |
ε

1
2 · ε−

5
2 .
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By taking ε1 > 0 sufficiently small, for any 0 < ε ≤ ε1, we have

Slope(v′
0) ≤ 2

|d|+ |eε
5
2 |

|3c| − |aε
1
2 |
ε

1
2 · ε−

5
2 ≤ |3d|

|2c|
ε

1
2 · ε−

5
2 ≤ 1 · ε−

5
2 .

Then,by (2.13) and (2.14), we have

Slope(v1) = Slope(v′
0)λ

u0µ−u0 ≤ ε−
5
2λu0µ−u0 ≤ ε−

5
2µ− 5

2
u0 ≤ ε−

5
2 ε5 = ε

5
2 .

Thus we get the following lemma. See Figure 2.7.

Figure 2.7: The tangent vectors v0, v
′
0 and v1.

Lemma 2.3 (Slope Lemma I). Suppose that f satisfies the conditions (2.13). Then there
exists a constant ε1 > 0 such that, if ε ∈ (0, ε1], then

(2.26) Slope(v′
0) ≤ ε−

5
2 and Slope(v1) ≤ ε

5
2

for any tangent vector v0 ∈ Tx(M) at x = (x+ 1, y) ∈ Rε with Slope(v0) ≤ ε
5
2 .

Fix a sufficiently small s > 0 and set prx(Sn) = [s−n , s
+
n ] for n ∈ N. If n is sufficiently

large, then [s−n , s
+
n ] ⊂ (0, s]. Let βu

n(s) be the component of φ(αu
n)∩pr−1

x ((0, s]) containing
φ(αn([t̃n,−, t̃n,+])). For any x ∈ βu

n(s), let jn(x) be a positive integer such that f j(x) ∈
U(p) for j = 1, . . . , jn(x) and prx(f

jn(x)(x)) ∈ [1 + ε, (1 + ε)3]. For any ε > 0, one can
take s so that prx(f

jn(x)(x)) ∈ Rε for any x ∈ βu
n(s). Let v(x) be a unit vector tangent

to βu
n(s) at x.
The following result is applied to f1 in the proof of Theorem 2.1.

Lemma 2.4 (Slope Lemma II). Let ε1 be the constant given in Lemma 2.3. For any
ε ∈ (0, ε1], there exist s > 0 and n0 ∈ N such that

Slope(Df jn(x)(x)(v(x))) < ε
5
2

if n ≥ n0 and x ∈ βu
n(s) \ Sn.
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Proof. We only consider the case where x is an element of βu
n(s) \ Sn with prx(x) ≥ s+n .

Then t ≥ t̃n,+ holds if φ(αn(t)) = x. The proof in the case of prx(x) ≤ s−n is done quite
similarly. Since ρn ∼ 1 and t̃n,+ = tn,+ + ρnλ

n
2 , t− tn,+ ≥ t̃n,+ − tn,+ ∼ λ

n
2 . This implies

that

(2.27) t2 − t2n,+ ∼ t2 ≿ λn.

In fact, if t− tn,+ ≥ t
2 , then t2− t2n,+ = (t− tn,+)(t+ tn,+) >

t2

2 and hence (2.27) holds. On

the other hand, if t− tn,+ ≤ t
2 , then t ≤ 2tn,+ and so t ∼ λ

n
2 . It follows that t+ tn,+ ∼ λ

n
2

and t− tn,+ ∼ λ
n
2 . Then t2 − t2n,+ ∼ λn ∼ t2. Thus (2.27) holds.

We set ξn(t) = prx(x) = prx(φ(αn(t))). By (2.17),

ξn(t) = aỹn(t) + btỹn(t) + ct3 + h.o.t.,

ξ′n(t) = aỹ′n(t) + bỹn(t) + btỹ′n(t) + 3ct2 + h.o.t..
(2.28)

From the definition of jn(x),

µjn(x)ξn(t) = µjn(x)prx(x) = prx(f
jn(x)(x)) ∈ [1 + ε, (1 + ε)3].

This implies that µjn(x)ξn(t) ∼ 1. We note that ξ′n(tn,+) = 0. By Mean Value Theorem,
ỹn(t) − ỹn(tn,+) = ỹ′n(c)(t − tn,+) for some tn,+ < c < t. From this fact together with
(2.16), (2.19), (2.27) and (2.28), we know that

ξ′n(t) = ξ′n(t)− ξ′n(tn,+) ∼ t2 − t2n,+ ∼ t2.

By (2.18), Slope(v(x)) ∼ t−2. Hence we have

(2.29) Slope(Df jn(x)(x)(v(x))) = Slope(v(x)) · λ
jn(x)

µjn(x)
∼ t−2λjn(x)ξn(t).

Now we need to consider the following two cases.
Case 1. ct3 ≤ aỹn(t). By (2.28), ξn(t) ∼ λn. Since t−2 ≾ λ−n by t ≿ λ

n
2 , it follows from

(2.29) that
Slope(Df jn(x)(x)(v(x))) ≾ λ−nλjn(x)λn = λjn(x).

Case 2. ct3 ≥ aỹn(t). Again by (2.28), we have ξn(t) ∼ t3. Then, by (2.29),

Slope(Df jn(x)(x)(v(x))) ∼ t−2λjn(x)t3 = tλjn(x) ≾ λjn(x).

Let n0(s) be the minimum positive integer with s+n0(s)
< s. Since n0(s) goes to infinity

as s → +0, one can take s = s(ε) > 0 such that our desired inequality holds for any
x ∈ βu

n(s) \ Sn.
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2.5 Sequence of rectangle-like boxes

Now we will define a sequence {Bk,n}∞k=1 of rectangle-like boxes and estimate the sizes of
them.

Recall that prx(Sn) = [s−n , s
+
n ]. Let in be the positive integer with (1 + ε)2 < µins+n ≤

(1 + ε)3. By (2.15), f in(Sn) is contained in Rε for any sufficiently large n. We set
f in(Sn) = B1,n = B1 for short. Since s+n ∼ λn by (2.22) and (2.23), we have

(2.30) µinλn ∼ 1.

We denote the width and height of B1 and the distance between B1 and W u
loc(p) by

W1,n = W1, H1,n = H1 and L1,n = L1 respectively. It follows from (2.22), (2.23) and
(2.25) that

(2.31) W1,n ∼ λ
3
2
nµin ∼ λ

n
2 , H1,n ∼ λ

n
2
+in , L1,n ∼ λin .

Note that, for any sufficiently large n, H1 ≪ L1 ≪ W1. Consider a closed interval δ1 in
W u

loc(p) which is a small neighborhood of prx(B1).

Let v
(1)
i , e

(1)
i (i = 0, 1, 2, 3) be the vertices and edges of B1 as illustrated in Figure

2.8 (a). We consider the image φ(B1). By Lemma 2.3, for i = 0, 2,

Figure 2.8: The rectangle B1 and the parallelogram-like box B′
1.

diam(prx(φ(e
(1)
i ))) ≿ ε

5
2W1 ∼ ε

5
2λ

n
2 .

On the other hand, for i = 1, 3,

diam(prx(φ(e
(1)
i ))) ≾ H1 ∼ λ

n
2
+in .
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Since λinε−
5
2 can be supposed to be arbitrarily small for all sufficiently large n,

x
(1)
+ − x

(1)
− ≿ ε

5
2W1 −O(λ

n
2
+in) ∼ ε

5
2λ

n
2 −O(λ

n
2
+in)

= ε
5
2λ

n
2

(
1− O(λin)

ε
5
2

)
∼ ε

5
2λ

n
2 .

(2.32)

where x
(1)
+ = prx(φ(v

(1)
1 )) and x

(1)
− = prx(φ(v

(1)
3 )), see Figure 2.8 (b). Let B′

1 be the

intersection pr−1
x

(
[x

(1)
− , x

(1)
+ ]
)
∩ φ(B1). Any compact region in U(p) like B′

1 is called a
parallelogram-like box.

Let u1 be the positive integer with (1+ ε)2 < µu1x
(1)
+ ≤ (1+ ε)3. By (2.15), fu1(B′

1) is
contained in Rε for any sufficiently large n. We denote fu1(B′

1) by B2. We call that any
compact region in U(p) like B2 is a rectangle-like box.

Let B be either a parallelogram-like or rectangle-like box. The horizontal width of B
is the diameter of the interval prx(B). The vertical height of B is the maximum of the
lengths of η(x0) with x0 ∈ prx(B), where η(x0) is the intersection of B and the vertical
line x = x0. See Figure 2.9 in the case of B = B′

1. Suppose that B is a rectangle-like

Figure 2.9: A vertical segment η(x0) connecting the opposite pair of edges of the
parallelogram-like box B′

1.

box and δ is an almost horizontal arc in U(q) with B ∩ δ = ∅ and prx(B) ⊂ prx(δ). Then
the vertical distance between B and δ is the maximum of σ(x1) with x1 ∈ prx(B), where
σ(x1) is the length of the shortest segment in the vertical line x = x1 connecting B with
δ.

Let δ2 be a sub-arc of fu1(φ(δ1)) ⊂ W u(p) such that prx(δ2) is a small neighborhood of
prx(B2) in W u

loc(p). See Figure 2.10. We denote the horizontal width and vertical height
of B2 and the vertical distance between B2 and δ2 by W2, H2 and L2 respectively. By
(2.14), (2.31) and (2.32),

(2.33) W2 = (x
(1)
+ − x

(1)
− )µu1 ≿ ε

5
2λ

n
2 µu1 ≥ ε−

1
2 τ−1

1 λ
n
2 ∼ ε−

1
2W1.
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For any x0 with x
(1)
− ≤ x0 ≤ x

(1)
+ , η(x0) is a vertical segment connecting φ(e

(1)
0 ) with

φ(e
(1)
2 ). By this fact together with (2.26), one can show the vertical height H ′

1 of B′
1

satisfies H ′
1 ≾ H1ε

− 5
2 . It follows from (2.13) and (2.14) that

(2.34) H2 = λu1H ′
1 ≾ µ− 3

2
u1ε−

5
2H1 < (ε2)

3
2 ε−

5
2H1 = ε

1
2H1.

Let L2 be the vertical distance between B2 and δ2. By using an argument similar to that
for the estimation (2.34), we have

(2.35) L2 ≾ ε
1
2L1.

The following lemma is obtained immediately from (2.33), (2.34) and (2.35).

Lemma 2.5. Let ε1 > 0 be the constant given in Lemma 2.3. Then there exists a constant
ε0 ∈ (0, ε1] such that, for any ε ∈ (0, ε0), the inequalities

W2 ≥ 10W1, H2 ≤ 10−1H1 and L2 ≤ 10−1L1

hold.

If µ = 1+ε for an ε ∈ (0, ε0), then we say that f satisfies the small expanding conditions
at p.

We repeat the process as above. Let B′
2 be the subset of φ(B2) cobounded by the

vertical lines x = x
(2)
− and x = x

(2)
+ passing through two of the four vertices of φ(B2) and

satisfying [x
(2)
− , x

(2)
+ ] ⊂ Int(prx(φ(B2))). Let u2 be the positive integer with (1 + ε)2 <

µu2x
(2)
+ ≤ (1 + ε)3 and fu2(B′

2) ⊂ Rε for sufficient large n ∈ N. Set B3 = fu2(B′
2). Let δ3

be a sub-arc of fu2(φ(δ2)) such that prx(δ3) is a small neighborhood of prx(B3) in W u
loc(p).

We denote the horizontal width and vertical height of B3 and the vertical distance between
B3 and δ3 by W3, H3 and L3 respectively.

The objects B′
k, uk, Bk+1, δk, Wk+1, Hk+1, Lk+1 (k = 3, 4, 5, . . . ) are defined induc-

tively if

(2.36) Bj ⊂ Rε

for j = 1, 2, . . . , k.
The top and bottom sides of the rectangle B1 are horizontal and γ1 = B1 ∩ W u(p)

consists of three proper arcs in B1. By Slope Lemma I (Lemma 2.3), for k = 2, 3, · · · ,
the top and bottom sides of the rectangle-like box Bk are almost horizontal and γk =
Bk ∩ W u(p) consists of three proper arcs in Bk. See Figure 2.12. Thus we have the
following lemma.

Lemma 2.6. Let ε0 > 0 be the constant given in Lemma 2.5. For any ε ∈ (0, ε0], there
exists the maximum integer k0 = k0(ε, n) satisfying (2.36). Moreover,

(2.37) Wk+1 ≥ 10Wk, Hk+1 ≤ 10−1Hk and Lk+1 ≤ 10−1Lk

hold for any k = 1, 2, . . . , k0.

See Figure 2.10 for the situation of Lemma 2.6. We note that, since W1 = W1,n ∼ λ
n
2

by (2.31), limn→∞ k0(ε, n) = ∞ for a fixed ε with 0 < ε ≤ ε0.

31



Figure 2.10: The pairs of the rectangle-like box Bk and the sub-arc δk of W u(p) for
k = 1, 2, . . . , k0 + 1.

2.6 Intersection Lemma

Recall that C is the codimension two submanifold of Diff3(M) defined in Section 2.2. Let
f0, f1 be elements of C satisfying the conditions (A1)–(A3) in Theorem 2.1. In particular,
ε > 0 is taken so that Slope Lemmas I and II (Lemmas 2.3 and 2.4) hold. Moreover, we
suppose that f0, f1 satisfy the condition (2.9), which is one of the adaptable cases given
in Section 2.8.

From now on, we set f0 = f and use the notations in Sections 2.2–2.5. Here the
subscription ‘0’ is omitted from the notations. For example, λ0 = λ, µ0 = µ, p0 = p,
q0 = q and so on. We also set f1 = f and represent the notations for f by adding bars to
the corresponding notations for f , e.g. λ, µ, p, q, m0, Sn, Bk, W k and so on.

Let h : M → M be a homeomorphism with f = h ◦ f ◦ h−1. Here we note that h(r)
is not necessarily equal to r. In fact, h(r) = r if and only if m0 = m0 or equivalently
φ = h ◦ φ ◦ h−1. We may assume that m0 ≤ m0 if necessary replacing f and f . Then
h(fm0−m0(r)) = r. Since the constants appeared in (2.5) depend on the coordinate on
U(p), one can not replace the coordinates on U(p) or U(p) so as to satisfy h(r) = r.

For any C1 arc α in U(p), the union of the end points of α is denoted by ∂α. When
any vector tangent to α is not vertical, the maximum Slope(α) of Slope(v(x)) for vectors
v(x) tangent to α at x ∈ α is well defined.

If s > 0 is small enough, then γ′0,n = βu
n(s)∩Sn is equal to αu

n ∩Sn for any sufficiently
large n ∈ N.

The following is a key lemma for the proof of Theorem 2.1.

Lemma 2.7 (Intersection Lemma). Let γ′0,n = βu
n(s) ∩ Sn and γ′0,n = β

u
n(s) ∩ Sn. Then

there exists an n0 ∈ N such that, for any n ≥ n0,

(2.38) h(fm0−m0(γ′0,n)) ∩ γ′0,n ̸= ∅.

Proof. We suppose that, for any n0 ∈ N, there would exist n > n0 such that

γ′ ∗0,n ∩ γ′0,n = ∅,

where γ′ ∗0,n = h ◦ fm0−m0(γ′0,n), and introduce a contradiction.
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Recall that in ∈ N satisfies (1+ ε)2 < f in(s+n ) ≤ (1+ ε)3 and f in(Sn) ⊂ Rε. For short,
we set

γ1 = γ1,n := f in(γ′0,n) and γ∗1 = γ∗1,n := h(γ1).

Then γ∗1 = f
in−(m0−m0)

(γ∗0,n). Since h(q) = q and f = h◦f ◦h−1, we have h(1) = 1, h(1+

ε) = 1 + ε, h
(
(1 + ε)2

)
= (1 + ε)2, h

(
(1 + ε)3

)
= (1 + ε)3 and 1 + ε < prx(γ

∗
1) ≤ (1 + ε)3.

Strictly, γ∗1 may slightly exceed Rε. Then we may rearrange our argument so that Lemmas
2.3 and 2.4 for f still hold if γ∗1 is contained in a sufficiently small neighborhood of Rε.
Then, by applying Lemma 2.4 to f , one can show that γ∗1 is a sub-arc almost parallel to

δ1 ⊂ W u
loc(p) and Slope(γ∗1) < ε

5
2 for any sufficiently large n.

The intersection γ′1 = φ(γ1) ∩ B′
1 consists of mutually disjoint three arcs connecting

the vertical sides of B′
1. See Figure 2.11. We set γ2 = fu1(γ′1) and γ∗2 = h(γ2). Note that

Figure 2.11: γ′1 is a disjoint union of arcs connecting the vertical sides of B′
1 and γ2 is a

disjoint union of three proper arcs connecting the vartical sides of B2.

γ2 is a disjoint union of three proper arcs in B2 connecting the vertical sides of B2. Let
γ̂∗2 be the smallest arc in W u(p) containing γ∗2 . By applying Lemma 2.4 to f , we have

Slope(γ̂∗2) < ε
5
2 . In particular, γ̂∗2 is almost parallel to δ2. Repeating the same argument,

one can have sequences {γk} satisfying the following conditions.

• Each γk is a disjoint union of three proper arcs in Bk connecting the vertical sides of
Bk.

• For each γ∗k = h(γk), the smallest arc γ̂∗k in W u(p) containing γ∗k is almost parallel to δk.

See Figure 2.12.
Take x ∈ γk arbitrarily and set x∗ = h(x) ∈ γ∗k . Since h is uniformly continuous on Rε,

for any l > 0, there exists l > 0 independent of x such that h ◦ fm0−m0(Nl(x)) ⊂ Nl(x
∗),

where Nl(x) is the l-neighborhood of x and Nl(x
∗) is the l-neighborhood of x∗ inM . If n is

sufficiently large, thenNl(x) must intersect the three arcs of γk. However, Nl(x
∗) intersects

only one arc of γ∗k . This gives a contradiction. Thus (2.38) holds for all sufficiently large
n.
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Figure 2.12: Nl(x) intersects the three arcs of γk, but Nl(x
∗) intersects only one arc of

γ∗k .

2.7 Proof of Theorem 2.1

Now we are ready to prove Theorem 2.1. The proof is done by using our Intersection
Lemma (Lemma 2.7) together with arguments in [dM, Pa, Po] and so on. We only consider
the case where both f and f satisfy the condition (2.9), which belongs to Case II++ in
Section 2.8, and the small expanding condition at p and p respectively. The proof of any
other adaptable case is done similarly.

Proof of (M1) of Theorem 2.1. By Intersection Lemma (Lemma 2.7), one can take rn ∈
γ′0,n∩h◦fm0−m0(γ′0,n). Since rn converges to r as n → ∞, rn = (h◦fm0−m0)−1(rn) ∈ γ′0,n
converges to r as n → ∞. See Figure 2.13.

Figure 2.13: For rn ∈ γ′0,n ∩ h ◦ fm0−m0(γ′0,n), rn = (h ◦ fm0−m0)−1(rn) ∈ γ′0,n converges
to r as n → ∞.

Let W u
loc,+(p) be the component of W u

loc(p) \ {p} containing q. Take a fundamental
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domain D for f in W u
loc,+(p). Then there exist subsequences {rn(k)} ⊂ {rn}, {m(k)} of N

and x0 ∈ D satisfying the following conditions.

• rn(k) converges to r as k → ∞.

• xn(k) := fm(k)(rn(k)) converges to x0 = (x0, 0) as k → ∞.

• qn(k) := φ−1(rn(k)) converges to q as k → ∞.

Then

x0 = lim
k→∞

prx(xn(k)) = lim
k→∞

prx(rn(k))µ
m(k)

= lim
k→∞

az0

(
λn(k) +O

(
λ

3
2
n(k)
))

µm(k)

= lim
k→∞

az0λ
n(k)µm(k).

It follows that limk→∞ λn(k)µm(k) =
x0
az0

. Then there exist constants C0 and C1 with

0 < C0 < C1 and such that
C0 < λn(k)µm(k) < C1

for any k. Taking the logarithms of this inequalities, we have

logC0

n(k) log µ
<

log λ

logµ
+

m(k)

n(k)
<

logC1

n(k) log µ
.

This shows that lim
k→∞

m(k)

n(k)
= − log λ

logµ
. By applying a similar argument to f , one can prove

lim
k→∞

λ̄n(k)µ̄m(k)−(m0−m0) =
h(x0)

āz̄0

and hence lim
k→∞

m(k)

n(k)
= lim

k→∞

m(k)− (m0 −m0)

n(k)
= − log λ̄

log µ̄
. Consequently,

log λ

logµ
=

log λ̄

log µ̄
holds.

Lemma 2.8. If
log λ

logµ
is irrational, then the restriction h|Wu

+(p) is locally C1 diffeomorphic,

where W u
+(p) is the component of W u(p) \ {p} containing q.

Proof. Let sn be the real number with prx(rn) = µ−sn . Since prx(rn) ≈ az0

(
λn +O

(
λ

3
2
n
))

by (2.17) and (2.21), we have

1 = prx(rn)µ
sn ≈ az0

(
λn +O

(
λ

3
2
n
))

µsn ≈ az0λ
nµsn .

Thus cn = az0λ
nµsn satisfies limn→∞ cn = 1. Moreover,

(2.39) sn =
log cn
logµ

− log(az0)

logµ
− n

log λ

logµ
.
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Since − log λ

logµ
is irrational, the set

{
− log(az0)

logµ
− n

log λ

logµ
mod 1 ; n = 1, 2, . . .

}
is dense in the interval [0, 1]. Since limn→∞ log cn = 0, the set S = {sn mod 1 ; n =
1, 2, . . . } is also dense in [0, 1].

Take a point x0 of [µ−1, 1] arbitrarily, and let σ ∈ [0, 1] be the real number with µ−σ =
x0. Since [µ

−1, 1] is a fundamental domain for f in W u
loc,+(p), it follows from the density of

S that there exist subsequences {n(k)}, {m(k)} of N such that limk→∞(sn(k)−m(k)) = σ.
Then

x0 = µ−σ = lim
k→∞

µ−sn(k)+m(k) = lim
k→∞

prx(rn(k))µ
m(k)

= lim
k→∞

az0

(
λn(k) +O(λ

3
2
n(k))

)
µm(k) = lim

k→∞
az0λ

n(k)µm(k).

Thus we have lim
k→∞

λn(k)µm(k) =
x0
az0

.

Since f is conjugate to f via h, prx(rn(k))µ̄
m(k)−(m0−m0) converges to h(x0). As above,

we have

lim
k→∞

λ̄n(k)µ̄m(k)−(m0−m0) =
h(x0)

āz̄0
.

If we set τ =
log µ̄

logµ
=

log λ̄

log λ
, then µ̄ = µτ and λ̄ = λτ . It follows that

xτ0
aτzτ0

=
h(x0)

āz̄0
µ̄m0−m0 .

Thus h|Wu
loc,+(p) is a C1 diffeomorphism represented as

h(x) =
āz̄0

aτzτ0 µ̄
m0−m0

xτ ,

whereW u
loc,+(p) is the component ofW u

loc(p)\{p} containing q. SinceW u
+(p) =

∪∞
n=0 f

n(W u
loc,+(p))

and both f and f are C3 diffeomorphisms, h|Wu
+(p) is locally C1 diffeomorphic. This com-

pletes the proof.

Proof of (M2) of Theorem 2.1. Take a sequence {qj} on W u
loc,+(p) converging to q and set

tj = φ(qj). See Figure 2.14. Let t′j be the image of tj by the horizontal projection to
W s

loc(p). Obviously, both tj and t′j converge to r as k → ∞. There exist subsequences

{tj(k)} of {tj}, {l(k)} of N and a point x1 of W u
loc(p) with lim

k→∞
f l(k)(tj(k)) = x1. Then the

following approximations

x1 ∼ prx(tj(k))µ
l(k) ∼ [d(t′j(k), r)]

3µl(k) ∼ [d(qj(k), q)]
3µl(k)
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Figure 2.14: The case of II++.

hold. It follows that µ−l(k) ∼ [d(qj(k), q)]
3. Similarly, we have µ̄−l(k)+(m0−m0) ∼ [d(q̄j(k), q̄)]

3,
where q̄j(k) = h(qj(k)). Since h|Wu

+(p) is locally C1-diffeomorphic by Lemma 2.8,

d(q̄j(k), q̄) ∼ d(qj(k), q).

Thus (
µ̄

µ

)−l(k)

∼
(
d(q̄j(k), q̄)

d(qj(k), q)

)3

µ̄−(m0−m0) ∼ 1.

This implies that µ = µ̄. By (M1), we also have λ = λ̄. This completes the proof of the
part (M2).

Remark 2.9. Some arguments used in the case that the tangency between W s(p) and
W u(p) is one-sided (for example [dM, Pa, Po]) can not be applicable to the two-sided case.
Here we explain the reason.

Suppose that a homoclinic tangency q0 is one-sided, say a quadratic tangency. Take an
arc γ in U(q0) meeting W u

loc(p0) orthogonally at q0. Let {wi} be a sequence in γ converging
to q0 from above. Then

(2.40) d(wi,W
s(p0)) ≈ d(wi,W

u
loc(p0))

holds. On the other hand, their images by the conjugacy homeomorphism h satisfy

(2.41) d(h(wi),W
s(p1)) ≤ d(h(wi),W

u
loc(p1)).

See Figure 2.15 (a). By using (2.40) and (2.41), one can show that
log λ1

logµ1
≤ log λ0

logµ0
. By
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Figure 2.15: (a) The case of quadratic tangencies. (b) The case of cubic tangencies.

applying the same argument to h−1, we also have
log λ1

logµ1
≥ log λ0

logµ0
, and hence

log λ1

logµ1
=

log λ0

logµ0
.

Now we consider the case of two-sided tangencies, say cubic tangencies, and {wi} is
a sequence as above. Then the approximation (2.40) still holds. However, the inequality
(2.41) would not hold as is suggested in Figure 2.15 (b). So it might be difficult to get the

inequality
log λ1

logµ1
≤ log λ0

logµ0
only by arguments in [dM, Pa, Po]. Thus we need another idea

in the study of moduli associated with two-sided homoclinic tangencies.

2.8 Adaptable conditions

In this section, we will present conditions on the signs of a, bc, λ and µ under which any
arguments presented throughout the previous sections are valid.

Recall that we have set

U(p) = [−2, 2]× [−2, 2], W u
loc(p) = [−2, 2]× {0}, W s

loc(p) = {0} × [−2, 2].

The union W u
loc(p) ∪ W s

loc(p) divides U(p) to four components. The closures of these
components containing (1, 1), (−1, 1), (−1,−1) and (1,−1) are called the first, second,
third and fourth quadrants of U(p) and denoted by Q1, Q2, Q3 and Q4, respectively. In
our argument it is required that φ(Rε) or some substitution is in Q1. If Rε lies in Q2,
then we may use

R−
ε = [(1 + ε)−3, (1 + ε)−1]× [0, ε3]

instead of Rε. Then φ(R−
ε ) is in Q1. See Figure 2.16. Thus one can arrange the placement

of φ(Rε) suitably under any conditions on the signs of a, bc, λ and µ.
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Figure 2.16: (1) φ(Rε) is in Q1. (2) φ(R
−
ε ) is in Q1.

Definition 2.10 (Adaptable condition). f satisfies the adaptable condition with respect
to (p, q) if, for all sufficiently large positive integers n (or positive even or odd integers),
there exists a rectangle Sn defined as in Section 2.3 and either Sn or its image f(Sn) lies
in Q1.

As was seen in Section 2.3, Sn exists if and only if there exists tn satisfying the condition

(2.20’) 3ct2n ≈ −bλnz0

which corresponds to (2.20). Here z0 is the positive constant as illustrated in Figure 2.5.
Now we will see that the existence of Sn and the placements of Sn and f(Sn) are

strictly determined by the signs of a, bc, λ and µ, which are classified to the sixteen cases
as in Table 2.1

First we suppose that λ > 0. Then there exists tn satisfying (2.20’) if and only if
bc < 0. Moreover, if a > 0, then Sn is in Q1, which belongs to Case II+. See Figure
2.17 (1). If a < 0, then Sn is in Q2. Hence f(Sn) is Q1 if µ < 0, which is in Case IV+−.
See Figure 2.17 (2).

Figure 2.17: (1) The case of II+ or II−. (2) The case of IV+− or IV−−.
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Case a bc λ µ

I+ I++ + +

I I+− + + −
I− I−+ − +AAAAAAAAAAI−− −
II+ AAAAAAAAAAII++ + +

II AAAAAAAAAAII+− + − −
II− AAAAAAAAAAII−+ − +AAAAAAAAAAII−− −
III+ III++ + +

III III+− − + −
III− AAAAAAAAAAIII−+ − +AAAAAAAAAAIII−− −
IV+ IV++ + +

IV AAAAAAAAAAIV+− − − −
IV− IV−+ − +AAAAAAAAAAIV−− −

Table 2.1: The shaded cells are the cases in which f satisfies the adaptable conditions.

Next we suppose that λ < 0. Then there exists tn satisfying (2.20’) if and only if either
(i) bc < 0 and n is even or (ii) bc > 0 and n is odd. In the case (i), Sn is in Q1 if a > 0,
which belongs to Case II−. See Figure 2.17 (1). If a < 0 and µ < 0, then f(Sn) is in Q1,
which belongs to Case IV−−. See Figure 2.17 (2). On the other hand, in the case (ii), Sn

is in Q1 if a < 0, which belongs to Case III−. See Figure 2.18 (1). If a > 0 and µ < 0,
then f(Sn) is in Q1, which belongs to Case I−−. See Figure 2.18 (2).
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Figure 2.18: (1) The case of III−. (2) The case of I−−.

Thus we have the following proposition.

Proposition 2.11. If one of Cases I−−, II, III−, IV+− and IV−− holds, then f satisfies
the adaptable condition with respect to (p, q).

It follows from the proposition that f satisfies the adaptable condition in nine of the
sixteen cases in Table 2.1.
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Chapter 3

Moduli of 3-dimensional
diffeomorphisms with saddle foci

In this chapter, we investigate moduli of a 3-dimensional diffeomorphism f with a sadldle
focus p and a homoclinic quadratic tangency q associated with p. We show that, for most
of such diffeomorphisms, all the eigenvalues of Df(p) are moduli and the restriction of a
conjugacy homeomorphism to a local unstable manifold is a uniquely determined linear
conformal map.

3.1 Moduli of 3-dimensional diffeomorphisms with saddle
foci

First, we prove the following theorem.

Theorem 3.1. Let M be a 3-manifold and fj (j = 0, 1) elements of Diffr(M) for some r ≥
3 which have hyperbolic fixed points pj and homoclinic quadratic tangencies qj positively
associated with pj and satisfy the following conditions.

• For j = 0, 1, there exists a neighborhood U(pj) of pj in M such that fj |U(pj) is linear

and Dfj(pj) has non-real eigenvalues rje
±
√
−1θj and a real eigenvalue λj with rj > 1,

θj ̸= 0 mod π and 0 < λj < 1.

• f0 is topologically conjugate to f1 by a homeomorphism h : M → M with h(p0) = p1
and h(q0) = q1.

Then the following (D1) and (D2) hold.

(D1)
log λ0

log r0
=

log λ1

log r1
.

(D2) Either θ0 = θ1 or θ0 = −θ1 mod 2π.

Here we say that a homoclinic quadratic tangency q0 is positively associated with p0
if both fn

0 (q0) and f−n
0 (α) lie in the same component of U(p0) \W u

loc(p0) for a sufficiently
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large n ∈ N and any small curve α in W s(p0) containing q0. Theorem 3.1 holds also in
the case when θ0 = 0 mod π or −1 < λj < 0 except for some rare case, see Remark 3.4
for details.

Remark 3.2. Assertion (D1) of Theorem 3.1 is implied in the case (D) of Theorem 1.1
in [NPT, Chapter III]. Assertion (D2) is also proved by Dufraine [Du2] under weaker
assumptions. The author used non-spiral curves in W u

loc(p) emanating from p. On the
other hand, we employ unstable bent disks defined in Section 3.2 which are originally
introduced by Nishizawa [Ni]. By using such disks, we construct a convergent sequence
of mutually parallel straight segments in W u

loc(p) which are mapped to straight segments
in W u

loc(h(p)) by h, see Figure 3.9. An advantage of our proof is that these sequences are
applicable to prove our main theorem, Theorem 3.3 below.

Results corresponding to Theorem 3.1 for 3-dimensional flows with Shilnikov cycles
are obtained by Togawa [To], Carvalho-Rodrigues [CR] and for those with connections of
saddle-foci by Bonatti-Dufraine [BD], Dufraine [Du1], Rodrigues [Rod] and so on. See
the Section 2 in [Rod] for details. Moreover Carvalho-Rodrigues [CR] present results on
moduli of 3-dimensional flows with Bykov cycles.

The following theorem is the main theorem in this chapter.

Theorem 3.3. Under the assumptions in Theorem 3.1, suppose moreover that θ0/2π is
irrational. Then the following conditions hold.

(E1) λ0 = λ1 and r0 = r1.

(E2) The restriction h|Wu
loc(p0)

: W u
loc(p0) → W u

loc(p1) is a uniquely determined linear
conformal map.

In contrast to Posthumus’ results for 2-dimensional diffeomorphisms, the eigenvalues

λ0 and r0 are proved to be moduli without the assumption that
log λ0

log r0
is irrational.

The restriction h|Wu
loc(p0)

is said to be a linear conformal map if h|Wu
loc(p0)

is represented

as h|Wu
loc(p0)

(z) = ρe
√
−1ωz (z ∈ W u

loc(p0)) for some ρ ∈ R \ {0} and ω ∈ R under the
natural identification of W u

loc(p0), W
u
loc(p1) with neighborhoods of the origin in C via their

linearizing coordinates.
For any rj > 1 and θj ∈ R (j = 0, 1), let φj : C → C be the map defined by φj(z) =

rje
√
−1θjz. Then there are many choices of conjugacy homeomorphisms on C for φ0 and φ1.

For example, we take two-sided Jordan curves Γj in C with φj(Γj)∩Γj = ∅ and bounding
disks in C containing the origin arbitrarily. Then there exists a conjugacy homeomorphism
h : C → C for φ0 and φ1 with h(Γ0) = Γ1. On the other hand, Theorem 3.3 (E2)
implies that we have severe constraints in the choice of conjugacy homeomorphisms for
3-dimensional diffeomorphisms as above. Intuitively, it says that only a homeomorphism
h with h|Wu

loc
(p) linear and conformal can be a candidate for a conjugacy between f0 and

f1. As an application of the linearity and conformality of h|Wu
loc
(p), we will present a new

modulus for f0 other than θ0, λ0, r0, see Corollary 3.9 in Section 3.5.
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3.2 Front curves and folding curves

For j = 0, 1, let fj be a diffeomorphism and qj a quadratic tangency associated with a
hyperbolic fixed point pj satisfying the conditions of Theorem 3.1. We will define in this
section front curves in W u(pj) and folding curves in W u

loc(pj) and show in the next section
that these curves converge to straight segments which are preserved by any conjugacy
homeomorphism between f0 and f1.

We set f0 = f , p0 = p, q0 = q, r0 = r, θ0 = θ and λ0 = λ for short. Similarly, let
f1 = f ′, p1 = p′, q1 = q′, r1 = r′, θ1 = θ′ and λ1 = λ′. Suppose that (z, t) = (x, y, t)
with z = x +

√
−1y is a coordinate around p with respect to which f is linear. For a

small a > 0, let Da(p) be the disk {z ∈ C ; |z| ≤ a}. We may assume that q is contained
in the interior of Da(p) × {0} ⊂ W u

loc(p) and q̂ = fN (q) is in the interior of the upper
half W s+

loc (p) = {0} × [0, a] of W s
loc(p) for some N ∈ N. See Figure 3.1. Let Ua(p) be

Figure 3.1: A saddle-focus p and a homoclinic quadratic tangency q in Da(p).

the circular column in the coordinate neighborhood defined by Ua(p) = Da(p) × [0, a]
and Vq̂ a small neighborhood of q̂ in Ua(p). Suppose that Ua(p) has the Euclidean metric
induced from the linearizing coordinate on Ua(p). By choosing the coordinate suitably and
replacing θ by −θ if necessary, we may assume that the restriction f |Da(p) is represented

as re
√
−1θz for z ∈ C with |z| < a. Similarly, one can suppose that f ′|Da′ (p

′) is represented

as r′e
√
−1θ′z for some a′ > 0. The orthogonal projection pr : Ua(p) → Da(p) is defined by

pr(x, y, t) = (x, y).
In this section, we construct an unstable bent disk H̃0 in W u(p) ∩ Ua(p), the front

curve γ̃0 in H̃0 and the folding curves γ0 in Ua(p). We also define the sequence of unstable
bent disks H̃m in W u(p) ∩Ua(p) converging to H̃0, which will be used in the next section
to construct the sequence of front curves converging to γ̃0.
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3.2.1 Construction of unstable bent disks, front curves and folding curves

We set q̂ = (0, t0). Let H̃ be the component of W u(p) ∩ Vq̂ containing q̂. One can retake
the linearizing coordinate on C if necessary so that the line in Vq̂ passing through q̂ and

parallel to the x-axis in Ua(p) meets H̃ transversely. Then H̃ is represented as the graph
of a Cr function x = φ(y, t) with

(3.1) φ(0, t0) = 0,
∂φ

∂t
(0, t0) = 0 and

∂2φ

∂t2
(0, t0) ̸= 0.

By the implicit function theorem, there exists a Cr−1 function t = η(y) defined in a small
neighborhood V of 0 in the y-axis and satisfying η(0) = t0 and ∂φ(y, η(y))/∂t = 0. Then
the curve γ̃ in Vq̂ parametrized by

(
φ(y, η(y)), y, η(y)

)
divides H̃ into two components and

γ = pr(γ̃) is a Cr−1 curve embedded in Da(p). Let H̃+ (resp. H̃−) be the closure of the
upper (resp. lower) component of H̃ \ γ̃. For a sufficiently large n0 ∈ N, the component
H̃0 of fn0(H̃) ∩ Ua(p) containing q0 = fn0(q̂) is an unstable bent disk in Ua(p) such that
∂H̃0 is a simple closed Cr curve in ∂sideUa(p), where

∂sideUa(p) = {(x, t) ∈ C× R ; |z| = a, 0 ≤ t < a} ⊂ ∂Ua(p).

See Figure 3.2. We set γ̃0 = fn0(γ̃) ∩ H̃0, H̃
+
0 = fn0(H̃+) ∩ H̃0, H̃

−
0 = fn0(H̃−) ∩ H̃0,

H0 = pr(H̃+
0 ) = pr(H̃−

0 ) and γ0 = pr(γ̃0). Then γ̃0 is called the front curve of H̃0 and γ0
is the folding curve of H0.

Figure 3.2: The front curve γ̃0 divides H̃0 into the two sheets H̃+
0 and H̃−

0 . The folding
curve γ0 of H0 is the orthogonal image of γ̃0.

We note that Nishizawa [Ni] has studied unstable bent disks similar to H̃0 as above
in a different situation. In fact, he considered a 3-dimensional diffeomorphism g which

45



has a saddle fixed point s such that all the eigenvalues of Dg(s) are real and has a
homoclinic quadratic tangency associated with s. Here we consider the component H̃−

0;u of

fu(H̃−
0 )∩Ua(p) containing fu(q0) for u ∈ N. Since the homoclinic tangency q is positively

associated with p, one can show that there exists H̃−
0;u which meets W s(p) transversely at

a point ẑ near q by using an argument similar to that in [Ni, Lemma 4.4]. See Figure 3.3.
To show the claim, the assumption of θ0 ̸= 0 mod π in Theorem 3.1 is crucial. In fact,

Figure 3.3: The half disk H̃−
0;u meets W s(p) transversely at two points near q, one of which

is ẑ.

the condition implies that the following property:

(P) There exists an arbitrarily large u such that the interior of H0;u = pr(H̃−
0;u) in Da(p)

contains q.

Remark 3.4. (1) We here suppose θ = 0 mod π. Even in this case, if f has the property
(P), then the component of W s(p) containing q and W u(p) have a homoclinic transverse
intersection point. Then Theorems 3.1 and 3.3 will be proved quite similarly. Since θ = 0
mod π, all fu(γ0) are tangent to a unique straight segment γ∞ in Da(p) at p. Thus the
property (P) is satisfied if γ∞ does not pass through q.

(2) Even in the case of −1 < λ < 0, one can show that f has the property (P) similarly by
using f2 instead of f if 2θ ̸= 0 mod π. Moreover, since either q or f(q) is a homoclinic
tangency positively associated with p, Theorems 3.1 and 3.3 hold without the assumption
that q is positively associated with p.

3.2.2 Construction of convergent sequence of unstable bent disks

Take v ∈ N such that ẑ0 = fv(ẑ) is a point (0, t̂ ) contained in Ua(p), where ẑ is the
transverse intersection point of H̃−

0;u and W s(p) given in the previous subsection. Let D
be a small disk in W u(p) ∩Ua(p) whose interior contains ẑ0. The absolute slope σ(v) of a
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vector v = (v1, v2, v3) in Ua(p) with (v1, v2) ̸= (0, 0) is given as

σ(v) =
|v3|√
v21 + v22

.

The maximum absolute slope σ(D) of D is defined by

σ(D) = max{σ(v) ; unit vectors v in Ua(p) tangent to D}.

Fix m0 ∈ N such that, for any m ∈ N ∪ {0}, the component Dm of fm0+m(D) ∩ U(p)
containing fm0+m(ẑ0) is a properly embedded disk in Ua(p) with ∂Dm ⊂ ∂sideUa(p). Note
that Dm intersects W s

loc(p) transversely at (0, λmt0), where t0 = λm0 t̂. See Figure 3.4.

Figure 3.4: Trip from H̃−
0 to H̃m: fu+v(H̃−

0 ) ⊃ D, fm0(D) ⊃ D0, f
m(D0) ⊃ Dm and

fN+n0(Dm) ⊃ H̃m, where N , n0 are the positive integers with fN (q) = q̃ and fn0(q̃) = q0.
The dotted line passing through q represents a straight segment tangent to ρ̃ at q.

The maximum absolute slope of Dm satisfies

(3.2) σ(Dm) ≤ σ0λ
mr−m,

where σ0 = σ(D)λm0r−m0 . Consider a short straight segment ρ in Ua(p) meeting H̃0

orthogonally at q0. Then ρ̃ = f−(N+n0)(ρ) is a Cr curve meeting Da(p) transversely at q,
where N , n0 are the positive integers given as above. One can choose m0 ∈ N so that,
for any m ∈ N ∪ {0}, ρ̃ meets Dm transversely at a single point wm = (zm, sm). Then
(3.2) implies that |t0λm − sm| ≤ ãσ0λ

mr−m, where ã = supm≥0{|zm|} < ∞. It follows
that sm = t0λ

m+O(λmr−m). Since ρ̃ has a tangency of order at least two with a straight
segment at q,

(3.3) dist(wm, q) = t̃0λ
m +O(λmr−m) +O(λ2m) = t̃0λ

m + o(λm)

for some constant t̃0 > 0. By the inclination lemma, Dm uniformly Cr converges to
Da(p). A short curve in W s(p) containing q as an interior point meets Dm transversely in
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two points for all sufficiently large m. Let H̃m be the component of fN+n0(Dm) ∩ Ua(p)
containing fN+n0(wm). Then H̃m Cr converges to H̃0 as m → ∞. By (3.1), there
exist Cr functions φm(y, t) Cr converging to φ and representing H̃m as the graph of
x = φm(y, t). Then the front curve γ̃m in H̃m is defined as the front curve γ̃0 in H̃0. Since
∂φm(y, t)/∂t Cr−1 converges to ∂φ(y, t)/∂t, γ̃m also Cr−1 converges to γ̃0. Note that γ̃m
divides H̃m into the upper surface H̃+

m and the lower surface H̃−
m with γ̃m = H̃+

m∩ H̃−
m and

Hm = pr(H̃m) = pr(H̃+
m) = pr(H̃−

m). The image γm = pr(γ̃m) is called the folding curve
of Hm.

3.3 Limit straight segments

A curve γ in Da(p) is called a straight segment if γ is a segment with respect to the
Euclidean metric on Da(p). In this section, we will construct a proper straight segment

γ♮0 in Da(p) with p ̸∈ γ♮0 which is mapped to a straight segment in Ua′(p
′) by h.

3.3.1 Sequences of folding curves converging to straight segments

Let α be an oriented Cr−1 curve in Da(p) of bounded length. Since r− 1 ≥ 2, there exists
the maximum absolute curvature κ(α) of α. If α passes near the center 0 of Da(p) and
satisfies κ(α) < 1/a, then α has a unique point z(α) with dist(0, z(α)) = dist(0, α). In
fact, if α had two points zi (i = 1, 2) with dist(0, zi) = dist(0, α), then for a point z3 in α
with the maximum dist(0, z3) between z1 and z2, the curvature of α at z3 is not less than
1/dist(0, z3) ≥ 1/a, a contradiction. We denote by ϑ(α) mod 2π the angle between α̂ and
the positive direction of the x-axis at 0, where α̂ is the oriented curve in Da(p) obtained
from α by the parallel translation taking z(α) to 0.

By (3.3), there exists a constant d̃0 > 0 such that

(3.4) dist(γ̃m, the t-axis) = d̃0(t̃0λ
m + o(λm)) + o(λm) = d̃0t̃0λ

m + o(λm).

Since γm Cr−1 converges to γ0, κ(γm) also converges to κ(γ0) as m → ∞. This shows that

(3.5) sup
m

{κ(γm)} = κ0 < ∞.

It follows that, for all sufficiently large m, there exists a unique point cm of γm with

dist(cm, 0) = dist(γm, 0) = dist(c̃m, the t-axis) = dist(γ̃m, the t-axis),

where c̃m is the point of γ̃m with pr(c̃m) = cm.
Fix w with 0 < w < a/2 arbitrarily. For any n ∈ N, let m(n) be the minimum positive

integer such that fn(cm) is contained in Dw(p) for any m ≥ m(n). Then limn→∞m(n) =
∞ holds. For any m ≥ m(n), the component H̃m,n of fn(H̃m) ∩ Ua(p) containing c̃m,n =

fn(c̃m) is a proper disk in Ua(p) with ∂H̃m,n ⊂ ∂sideUa(p). Then γ̃m,n = fn(γ̃m) ∩ H̃m,n

is the front curve of H̃m,n and γm,n = pr(γ̃m,n) is the folding curve of Hm,n = pr(H̃m,n).
Then cm,n = pr(c̃m,n) is a unique point of γm,n closest to 0. Here we orient γ̃m = γ̃m,0 so
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that γ̃m,0 Cr−1 converges as oriented curves to γ̃0 as m → ∞. Suppose that γm,n has the
orientation induced from that on γ̃m,0 via pr ◦ fn. In particular, it follows that

(3.6) lim
m→∞

ϑ(γm,0) = ϑ(γ0).

We set dm,n = dist(cm,n, 0). By (3.4),

(3.7) dm,n = rn(d̃0t̃0λ
m + o(λm)).

There exist subsequences {mj}, {nj} of N and wλ/2 ≤ w0 ≤ w such that

(3.8) lim
j→∞

d̃0t̃0λ
mjrnj = w0.

If necessary taking subsequences of {mj} and {nj} simultaneously, we may also assume

that ϑ(γmj ,nj ) has a limit θ♮. Since f(z) = re
√
−1θz on Da(p), by (3.5) we have

κ(γmj ,nj ) ≤ r−njκ(γmj ,0) ≤ r−njκ0 → 0 as j → ∞.

Thus the following lemma is obtained immediately.

Lemma 3.5. The sequence γmj ,nj uniformly converges as oriented curves to an oriented

straight segment γ♮0 in Da(p) with ϑ(γ♮0) = θ♮ and dist(γ♮0, 0) = w0.

We say that γ♮0 is the limit straight segment of γmj ,nj .

3.3.2 Limit straight segments preserved by the conjugacy

Let Ua′(p
′), Ub′(p

′) be the circular columns defined as Ua(p) for some 0 < a′ < b′ which
are contained in a coordinate neighborhood around p′ with respect to which f ′ is linear.
One can retake a > 0 and choose such a′, b′ so that Ua′(p

′) ⊂ h(Ua(p)) ⊂ Ub′(p
′).

Let H̃ ′
m,n be the component of h(H̃m,n)∩Ua′(p

′) defined as H̃m,n and pr(H̃ ′
m,n) = H ′

m,n.

One can define the front and folding curves γ̃′m,n, γ
′
m,n in H̃ ′

m,n and H ′
m,n as γ̃m,n, γm,n in

H̃m,n and Hm,n respectively. See Figure 3.5.
Since h is only supposed to be a homeomorphism, h(γ̃m,n)∩Ua′(p

′) would not be equal
to γ̃′m,n. We will show that this equality holds in the limit. For the sequences {mj}, {nj}
given in Section 3.3, we set H̃mj ,nj = H̃(j), Hmj ,nj = H(j), H̃

′
mj ,nj

= H̃ ′
(j) and H ′

mj ,nj
=

H ′
(j) for simplicity. Similarly, suppose that Ĥ ′

(j) is the component of W u(p′) ∩ Ub′(p
′)

containing H̃ ′
(j) and γ̂′mj ,n1

is the front curve of Ĥ ′
(j). The distance between x, y in Ua(p)

is denoted by d(x,y) and that between x′, y′ in Ua′(p
′) by d′(x′,y′).

The path metric on H̃(j) is denoted by d
H̃(j)

. That is, for any x, y ∈ H̃(j), dH̃(j)
(x,y)

is the length of a shortest piecewise smooth curve in H̃(j) connecting x with y. The path

metrics d
H̃′

(j)
on H̃ ′

(j) and d
Ĥ′

(j)
on Ĥ ′

(j) are defined similarly.

Lemma 3.6. (i) For any ε > 0, there exists a constant η(ε) > 0 independent of j ∈ N
and satisfying the following conditions.
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Figure 3.5: The image h(H̃(j)) is contained in Ĥ ′
(j), but h(H̃

±
(j)) is not necessarily contained

in Ĥ ′±
(j).

• limε→0 η(ε) = 0.

• Let x, y be any points of H̃(j) both of which are contained in one of H̃+
(j) and

H̃−
(j). If d(x,y) < η(ε), then d

H̃(j)
(x,y) < ε.

(ii) For any ε > 0, there exists a constant δ(ε) > 0 independent of j ∈ N and satisfying
the following conditions.

• limε→0 δ(ε) = 0.

• Let x, y be any points of H̃(j) both of which are contained in one of H̃+
(j) and

H̃−
(j). If d

H̃(j)
(x,y) < δ(ε) and x′ = h(x) and y′ = h(y) are contained in H̃ ′

(j),

then d
H̃′

(j)
(x′,y′) < ε.

One can take these constants η(ε), δ(ε) so that they work also for d
H̃′

(j)
and d

Ĥ′
(j)
.

Proof. (i) The assertion is proved immediately from the fact that H̃±
(j) uniformly converges

to a disk H♮ in Da(p) such that d(x,y) = dH♮(x,y) for any x,y ∈ H♮.

(ii) Suppose that x,y ∈ H̃+
(j). First we consider the case that both x′ and y′ are contained

in one of H̃ ′+
(j) and H̃ ′−

(j), say H̃ ′+
(j). If dH̃′

(j)
(x′,y′) ≥ ε, then it follows from the assertion (i)

that d′(x′,y′) ≥ η(ε). Since h is uniformly continuous on Ua(p), there exists a constant
δ1(ε) > 0 with limε→0 δ1(ε) = 0 and d(x,y) ≥ δ1(ε). Hence, in particular, d

H̃(j)
(x,y) ≥

δ1(ε). Thus dH̃(j)
(x,y) < δ1(ε) implies d

H̃′
(j)
(x′,y′) < ε.

Next we suppose that x′ ∈ H̃ ′+
(j) and y′ ∈ H̃ ′−

(j). Consider a shortest curve α in H̃(j)

connecting x and y. Since α′ = h(α) is contained in Ĥ ′
(j), α

′ intersects γ̂′mj ,nj
non-trivially.
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Figure 3.6: The case of x,y ∈ H̃+
(j), x

′ ∈ H̃ ′+
(j) and y′ ∈ H̃ ′−

(j).

Let z be one of the intersection points of α with h−1(γ̂′mj ,nj
). See Figure 3.6. Suppose

that d
H̃(j)

(x,y) < δ1(ε/2). Since d
H̃(j)

(x,y) = d
H̃(j)

(x,z) + d
H̃(j)

(z,y),

d
H̃(j)

(x, z) < δ1(ε/2) and d
H̃(j)

(z,y) < δ1(ε/2).

Since x′, z′ ∈ Ĥ ′+
(j) and z′,y′ ∈ Ĥ ′−

(j), by the result in the previous case we have d
Ĥ′

(j)
(x′, z′) <

ε/2 and d
Ĥ′

(j)
(z′,y′) < ε/2, and hence

d
H̃′

(j)
(x′,y′) = d

Ĥ′
(j)
(x′,y′) < ε.

Thus δ(ε) := δ1(ε/2) satisfies the conditions of (ii).

The following result is a key of this section.

Lemma 3.7. For any ε > 0, there exists j0 ∈ N such that, for any j ≥ j0,

h(γ̃mj ,nj ) ∩ H̃ ′
(j) ⊂ Nε(γ̃

′
mj ,nj

, H̃ ′
(j)),

where Nε(γ̃
′
mj ,nj

, H̃ ′
(j)) is the ε-neighborhood of γ̃′mj ,nj

in H̃ ′
(j).

Figure 3.7 illustrates the situation of Lemma 3.7.

Proof. For σ = ±, we will show that h−1(H̃ ′σ
(j) \Nε(γ

′
mj ,nj

, H̃ ′
(j))) ⊂ H̃σ

(j) for all sufficiently

large j. Since h−1|Ua′ (p
′) is uniformly continuous, there exists ν(ε) > 0 such that, for

any x′,y′ ∈ Ua′(p
′) with d′(x′,y′) < ν(ε), the inequality d(x,y) < η(δ(ε)) holds, where

x = h−1(x′), y = h−1(y′). Since both H̃ ′+
(j) and H̃ ′−

(j) uniformly converge to the same half

disk H ′♮ in Da′(p
′), there exists j0 ∈ N such that, for any j ≥ j0 and any x′ ∈ H̃ ′σ

(j) \
Nε(γ̃

′
(j), H̃

′
(j)), d

′(x′,y′) is less than ν(ε), where y′ is the element of H̃ ′−σ
(j) with pr(x′) =

pr(y′). Then we have d(x,y) < η(δ(ε)). If both x and y were contained in one of H̃σ
(j)
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Figure 3.7: The shaded region represents Nε(γ̃
′
mj ,nj

, H̃ ′
(j)).

and H̃−σ
(j) , then by Lemma 3.6 (i) d

H̃(j)
(x,y) < δ(ε). Then, by Lemma 3.6 (ii), d

H̃′
(j)
(x′,y′)

would be less than ε. This contradicts that x′ ∈ H̃ ′σ
(j) \ Nε(γ̃

′
mj ,nj

, H̃ ′
(j)) and y′ ∈ H̃ ′−σ

(j) .

See Figure 3.8. Thus, if y is contained in H̃σ
(j), then x is not in H̃σ

(j). In particular, x is

Figure 3.8: The situation which does not actually occur. d1 := dist(x′,y′) < ν(ε), d2 :=
dist

H̃(j)
(x,y) < δ(ε) and d3 := dist

H̃′
(j)
(x′,y′) < ε.

not contained in γ̃mj ,nj = H̃+
(j)∩H̃−

(j), and so γ̃mj ,nj ∩h−1(H̃ ′σ
(j) \Nε(γ̃

′
m,n, H̃

′
(j))) = ∅. Since

h−1(H̃ ′σ
(j) \ Nε(γ̃

′
m,n, H̃

′
(j))) is connected, it follows that h−1(H̃ ′σ

(j) \ Nε(γ̃
′
m,n, H̃

′
(j))) ⊂ H̃σ

(j)

for σ = ±, and hence h−1(Nε(γ̃
′
mj ,nj

, H̃ ′
(j))) ⊃ γ̃mj ,nj ∩ h−1(H̃ ′

(j)). This completes the
proof.

From the proof of Lemma 3.7, we know that there exists a simple curve in h(γ̃mj ,nj )∩
H̃ ′

(j) connecting the two components of ∂H̃ ′
(j) ∩ ∂Nε(γ̃

′
mj ,nj

, H̃ ′
(j)). The following corollary

says that the images of certain straight segments in Da(p) by the homeomorphism h are
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naturally straight segments in Da′(p
′).

Corollary 3.8. For the limit straight segment γ♮0 of γmj ,nj , h(γ
♮
0) ∩ Da′(p

′) is the limit

straight segment of γ′mj ,nj
, i.e. h(γ♮0) ∩Da′(p

′) = γ′ ♮0 .

Proof. Since γ♮0 is the limit straight segment of γ̃mj ,nj and h is uniformity continuous,

h(γ♮0)∩Da′(p
′) is the limit of h(γ̃mj ,nj )∩H̃ ′

(j). It follows from Lemma 3.7 that h(γ♮0)∩Da′(p
′)

is also the limit of pr(γ̃′mj ,nj
) = γ′mj ,nj

, that is, h(γ♮0)∩Da′(p
′) is equal to the limit straight

segment of γ′mj ,nj
.

For any straight segment l in Da(p) such that h(l) is also a straight segment in Db′(p
′),

we denote h(l) ∩Da′(p
′) simply by h(l). In particular, Corollary 3.8 implies that h(γ♮0) =

γ′ ♮0 .

3.4 Proof of Theorem 3.1

Suppose that Sta(p) is the set of oriented proper straight segments in Da(p) passing
through 0, that is, each element of Sta(p) is an oriented diameter of the disk Da(p).
For any l ∈ Sta(p) and n ∈ N, the component of fn(l) ∩ Ua(p) containing 0 is also an
element of Sta(p). We denote the element simply by fn(l).

Since fn|Da(p) preserves angles on Da(p), by (3.6), for any k, n ∈ N,

ϑ(γm,n)− ϑ(γm+k,n) = ϑ(γm,0)− ϑ(γm+k,0) → ϑ(γ0)− ϑ(γ0) = 0

as m → ∞. Moreover it follows from (3.7) that limj→∞ dmj+k,nj
= w0λ

k. By these facts
together with Lemma 3.5, one can show that γmj+k,nj

uniformly converges as m → ∞ to

a straight segment γ♮k in Ua(p) with

(3.9) ϑ(γ♮k) = θ♮ and d(0, γ♮k) = w0λ
k.

Thus we have obtained the parallel family {γ♮k} of oriented straight segments in Da(p). See

Figure 3.9. By Corollary 3.8, {γ′ ♮k } with γ′ ♮k = h(γ♮k) is also a parallel family of oriented

straight segments in Da′(p
′). Since γ′♮k is the limit of γ′mj+k,nj

as j → ∞, we have the
equations

(3.10) ϑ(γ′ ♮k ) = θ′ ♮ and d(0, γ′ ♮k ) = w′
0λ

′k.

corresponding to (3.9) for some θ′ ♮ and w′
0 > 0. Let γ♮∞ ∈ Sta(p) (resp. γ

′ ♮
∞ ∈ Sta′(p

′)) be

the limit of γ♮k (resp. γ′ ♮k ).

Proof of Theorem 3.1. By Lemma 3.5 and (3.7), w0 = limj→∞ d̃0t̃0λ
mjrnj . This implies

that

lim
j→∞

(
mj

nj
log λ+ log r

)
= lim

j→∞

1

nj
log

w0

d̃0t̃0
= 0
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Figure 3.9: The images of the parallel straight segments γ♮k in Da(p) by h.

and hence limj→∞
mj

nj
= − log r

log λ
. Applying the same argument to γ′ ♮mj ,nj , we also have

limj→∞
mj

nj
= − log r′

log λ′ . This shows the part (D1) of Theorem 3.1.

Now we will prove the part (D2). For any n ∈ N ∪ {0}, we set fn(γ♮∞) = γ♮∞,n and

f ′n(γ′ ♮∞) = γ′ ♮∞,n. By Corollary 3.8,

(3.11) h(γ♮∞,n) = h(fn(γ♮∞)) = f ′n(h(γ♮∞)) = f ′n(γ′ ♮∞) = γ′ ♮∞,n.

We identify Sta(p) with the unit circle S1 = {z ∈ C ; |z| = 1} by corresponding l ∈ Sta(p)

to e
√
−1ϑ(l). Then the action of f on Sta(p) is equal to the θ-rotation Rθ on S1 defined by

Rθ(z) = e
√
−1θz.

If θ/2π = v/u for coprime positive integers u, v with 0 ≤ v < u. Since h(γ♮∞) = γ′ ♮∞, we

have f ′k(γ′ ♮∞) ̸= γ′ ♮∞ for k = 1, . . . , u−1 and f ′u(γ′ ♮∞) = γ′ ♮∞. This implies that θ′/2π = v′/u
for some v′ ∈ N with 0 ≤ v′ < u. Since h|Da(p) : Da(p) → Da′(p

′) is a homeomorphism with

the correspondence h(Rk
θ(γ

♮
∞)) = Rk

θ′(γ
′♮
∞) (k = 0, 1, . . . , u−1), there exists an orientation-

preserving homeomorphism η0 : S1 → S1 with η0(e
√
−1(θ♮+kθ)) = e

√
−1(θ′♮+kθ′) for k =

0, 1, . . . , u− 1. We set Γ =
{
e
√
−1(θ♮+kθ); k = 0, 1, . . . , u− 1

}
and Γ′ =

{
e
√
−1(θ′♮+kθ′); k =

0, 1, . . . , u − 1
}
. Then

[
e
√
−1θ♮ , e

√
−1(θ♮+θ)

)
∩ Γ consists of v points, where [a, b) denotes

the positively oriented half-open interval in S1 for a, b ∈ S1 with a ̸= b. Since moreover
η0
([
e
√
−1θ♮ , e

√
−1(θ♮+θ)

)
∩ Γ
)
=
[
e
√
−1θ′♮ , e

√
−1(θ′♮+θ′)

)
∩ Γ′ consists of v′ points, it follows

that v = v′, and hence θ = θ′.
Next we suppose that θ/2π is irrational. Then, for any l ∈ Sta(p), there exists a

subsequence {nk} of N such that the sequence γ♮∞,nk uniformly converges to l as k → ∞.

By (3.11), γ′ ♮∞,nk uniformly converges to l′ = h(l). Since γ′ ♮∞,nk ∈ Sta′(p
′), l′ is also

an element of Sta′(p
′). Thus we have a homeomorphism η : S1 → S1 with respect to

which Rθ and Rθ′ are conjugate. Since the rotation number is invariant under topological
conjugations, θ/2π = θ′/2π mod 1 holds. This completes the proof of the part (D2).
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3.5 Proof of Theorem 3.3

In this section, we will prove Theorem 3.3. Suppose that f, f ′ are elements of Diffr(M)
satisfying the conditions of Theorems 3.1 and θ/2π is irrational.

Since θ = θ′ mod 2π, for any k, j ∈ N,

(3.12) ϑ(γ♮∞,k)− ϑ(γ♮∞,j) = ϑ(γ′ ♮∞,k)− ϑ(γ′ ♮∞,j) = (k − j)θ mod 2π.

Let lj (j = 1, 2) be any elements of Sta(p). As in the proof of Theorem 3.1, there exist

subsequences {nk}, {nj} of N such that the sequencers {γ♮∞,nk}, {γ
♮
∞,nj} uniformly con-

verge to l1 and l2 respectively. Then, {γ′ ♮∞,nk}, {γ
′ ♮
∞,nj} also uniformly converge to the

elements l′1 = h(l1) and l′2 = h(l2) of Sta′(p
′) respectively. Then, by (3.12),

(3.13) ϑ(l2)− ϑ(l1) = ϑ(l′2)− ϑ(l′1) mod 2π.

For the proof of Theorem 3.3, we need another family of straight segments in Da(p).
Fix an integer a0 with

a0 > max

{
log(2r)

log(λ−1)
,
log(2r′)

log(λ′−1)

}
.

For any k ≥ 0, we consider the straight segment ξ♮k = fk(γ♮a0k) ∩Da(p). By (3.9),

(3.14) ϑ(ξ♮k)− ϑ(ξ♮0) = kθ mod 2π and d(0, ξ♮k) = w0λ
a0krk < 2−kw0.

Similarly, by (3.10), ξ′ ♮k = h(ξ♮k) is a straight segment in Da′(p
′) with

(3.15) ϑ(ξ′ ♮k )− ϑ(ξ′ ♮0 ) = kθ mod 2π and d(0, ξ′ ♮k ) = w′
0λ

′a0kr′k < 2−kw′
0.

Proof of Theorem 3.3. Let α be the element of Sta(p) with ϑ(ξ♮0)− ϑ(α) = π/2 and α′ =

h(α) ∈ Sta′(p
′). We will show that θα′ := ϑ(ξ′ ♮0 ) − ϑ(α′) is also equal to π/2 mod 2π.

See Figure 3.10. In fact, since θ/2π is irrational, by (3.14) there exists a subsequence

Figure 3.10: Correspondence of straight segments via h.
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ξ♮kj uniformly converges to α. Since h|Da(p) is uniformly continuous, ξ′ ♮kj also uniformly

converges to α′. On the other hand, since ϑ(ξ♮kj )−ϑ(α) = kjθ+π/2 mod 2π and ϑ(ξ′ ♮kj )−
ϑ(α′) = kjθ + θα′ mod 2π,

θα′ − π

2
=
(
ϑ(ξ′ ♮kj )− ϑ(α′)

)
−
(
ϑ(ξ♮kj )− ϑ(α)

)
→ 0 mod 2π

as j → ∞. Thus we have θα′ = π/2 mod 2π.
We denote by z(x) ∈ C the entry of x ∈ Da(p) with respect to the linearizing coor-

dinate on Da(p). Similarly, the entry of x′ ∈ Da′(p
′) is denoted by z′(x′). Let x0 be the

intersection point of α and ξ♮0, and let x′
0 = h(x0). One can set z(x0) = ρ0e

√
−1ω0 and

z′(x′
0) = ρ′0e

√
−1ω′

0 for some ρ0 > 0, ρ′0 > 0 and ω0, ω
′
0 ∈ R. We define the new linearizing

coordinate on Da′(p
′) by using the linear conformal map such that, for any x′ ∈ Da′(p

′),

z′new(x′) = ρ0ρ
′−1
0 e

√
−1(ω0−ω′

0)z′(x′). Then z(x0) = z′ new(x′
0) holds.

For any x ∈ ξ♮0, there exists l ∈ Sta(p) with {x} = ξ♮0 ∩ l. Then x′ = h(x) is the

intersection of ξ′ ♮0 and l′ = h(l). By (3.13), ϑ(l)−ϑ(α) = ϑ(l′)−ϑ(α′) mod 2π and hence

z(x) = z′ new(x′). We say the property that h is identical on ξ♮0. Since θ/2π is irrational,
there exists k∗ ∈ N satisfying

π

3
≤ ϑ(ξ♮k∗)− ϑ(ξ♮0) ≤

π

2
mod 2π.

Then ξ♮k∗ meets ξ♮0 at a single point xk∗ in Da(p). For αk∗ = fk∗(α) and α′
k∗

= h(αk∗), we

have ϑ(ξ♮k∗)− ϑ(αk∗) = ϑ(ξ′ ♮k∗)− ϑ(α′
k∗
) = π/2. Since h is identical at xk∗ , h is proved to

be identical on ξ♮k∗ by an argument as above. Then one can show inductively that, for any

n ∈ N, h is identical on ξ♮nk∗ . See Figure 3.11. By (3.14), limn→∞ d(0, ξ♮nk∗) = 0. Since

Figure 3.11: Correspondence via h with respect to the new coordinate on Da′(p
′).

moreover k∗θ/2π is irrational,
∪∞

n=1 ξ
♮
nk∗

is equal to Da(p). This shows that h is identical
on Da(p). In particular, this implies that h|Da(p) is a linear conformal map with respect

to the original coordinates. We write z(q) = ρ1e
√
−1ω1 and z′(q′) = ρ′1e

√
−1ω′

1 . It follows
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from the assumption of h(q) = q′ in our theorems that h(z) = ρ′1ρ
−1
1 e

√
−1(ω′

1−ω1)z for any
z ∈ C with |z| ≤ a. In particular, this implies that h|Wu

loc(p)
is a linear conformal map. Let

h̃ be any other conjugacy homeomorphism between f and f ′ satisfying the conditions in
Theorems 3.1 and 3.3. In particular, h̃(p) = p′ and h̃(q) = q′ hold. Since z(q) = ρ1e

√
−1ω1

and z′(q′) = ρ′1e
√
−1ω′

1 , one can show as above that h̃(z) = ρ′1ρ
−1
1 e

√
−1(ω′

1−ω1)z for any

z ∈ C with |z| ≤ a and hence h̃|Da(p) = h|Da(p). This shows the assertion (E2) of Theorem
3.3 and r = r′. Then, by the assertion (D1) of Theorem 3.1, we also have λ = λ′. This
completes the proof.

Let ẑ be the homoclinic transverse point of W u(p) and W s(p) given in Subsection
3.2.1. Fix a sufficiently large n ∈ N with s = f−n(ẑ) ∈ Dp(a). Then s′ = h(s) is contained
in Db′(p

′). The following corollary shows that z(s)/z(q) is a modulus for f . Recall that
z(x) ∈ C is the entry of x with respect to the complex linearizing coordinate on Da(a).
The complex number z′(x′) is defined similarly for x′ ∈ Da′(p

′).

Corollary 3.9. Let f , f ′ be elements of Diffr(M) satisfying the conditions of Theorems
3.1 and 3.3, and let h be a conjugacy homeomorphism between f and f ′ with h(p) = p′ and
h(q) = q′. If h|Wu

loc(p)
is orientation-preserving, then z(s)/z(q) = z′(s′)/z′(q′). Otherwise,

z(s)/z(q) = z′(s′)/z′(q′).

Proof. Here we only consider the case that h is orientation-preserving. Since h|Da(p) is a
linear conformal map, the triangle with vertices 0, z(q), z(s) is similar to that with vertices
0, z′(q′), z′(s′) with respect to Euclidean geometry. This shows z(s)/z(q) = z′(s′)/z′(q′).
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