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Chapter 1

Introduction

1.1 Brief History of Ultrasound

Sound wave technology has been used to detect objects for a long time. In 1912, the

English meteorologist L. F. Richardson [1] was the first person who suggested using

sound wave to detect underwater objects. Inspired by that, P. Langevin [2] proposed

using sound wave to find ships, submarines and mines, which started the application of

the low frequency sound wave transmission and reception. During World War II, the

first radar system was developed by U.S. Navy, which used the electromagnetic waves

in a pulse-echo mode to detect enemy aircrafts [3].

During the same period, an important development about ultrasonic technology started:

the pulsed-echo ultrasonic metal flaw detection. The purpose of this development was to

check the integrity of the metal hulls of large ships and the armor plates of battle tanks.

The concept of ultrasonic metal flaw detection was first suggested by Soviet scientist S.

Y. Sokolov in 1928 at the Electro Technical Institute of Leningrad [4].

Since then, ultrasonic researches have been rapidly conducted all over the world, and

the medical ultrasonography technology also entered a new phase. In 1951, Dr. Wild

[5] performed the first medical ultrasound diagnostic, assessing the thickness of bowel

tissue by using the amplitude mode (A-mode) imaging. Later in 1956, T. Ciezynski

[6] developed the first single element transducer catheter and measured a canine heart

chamber. Just two years later, I. Donald and engineer T. G. Brown [7] produced a

prototype of the first compound brightness mode (B-mode) contacting sector-scanner

manually and automatically. In 1971, the linear array transducers were designed by a

Dutch team under the direction of N. Born [8].

1
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There is no doubt that medical ultrasonic imaging is a young technology, but it is also

one of the fastest-growing medical techniques. In the last half century, medical ultrasonic

imaging has been clinically tested and has progressed from barely interpretable images

to one of the top choices to noninvasively image internal soft tissue structures and blood

flow, such as mammography [9], laparoscopy [10], endoscopy [11], endorectal [12] and

vascular diagnosis [13].

1.2 Basic Knowledge

1.2.1 The nature of ultrasound

The various sounds that people can hear are caused by the vibrations of air particles

next to the source, then the vibrations reach the ear drum. Whether the ear drum can

react or not depends on the frequency and amplitude of the sound. The ear drum can

respond to the incoming frequencies from 20 Hz to roughly 20 kHz. Variations in the

audible frequencies can be perceived, while sounds with frequencies below 20 Hz are not

perceived as sound, and sounds in this range are described as infrasound. Infrasound

can be dangerous for the human body due to the fact that physical damage to the

ear and some loss of hearing has been found after being exposed to infrasound at the

level above 140 dB. Just like infrasound, sounds with frequencies above 20 kHz are also

not perceivable, and these sounds are called ultrasound. Ultrasound has a very wide

use in medical and industrial applications. Fig. 1.1 presents the frequency ranges for

infrasound and ultrasound.

Ultrasound waves are mechanical vibrations that typically propagate as acoustic pressure

waves, through a transmission medium such as gas, liquid or solid. They are coupled

modes between medium particles oscillating about equilibrium positions and a traveling

Figure 1.1: Frequency ranges for infrasound and ultrasound.
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ultrasonic wave. For industrial inspection, ultrasound in solid can support the propaga-

tion of both longitudinal and transverse waves. But for medical diagnostic ultrasounds,

as human body is almost entirely composed of water, only longitudinal waves can be

used to probe the human body. Transverse waves may be generated in bone due to

mode conversion, but those transverse waves are not easy to propagate, and the energy

will be rapidly released due to the high attenuation of the bone. Therefore, transverse

waves are not of great importance to the medical ultrasound [14].

1.2.2 Ultrasound imaging principles

Ultrasound imaging is built up from scan lines. Generally, ultrasonic waves propagate

in every straight line, each line is based on “pulse-echo” principle [15], as shown in

Fig. 1.2. First, ultrasonic waves are generated by a transducer containing a ceramic

crystal which is excited by a short electrical pulse that has a typical form of several

sine cycles (Fig. 1.2(a)). Through the piezoelectric effect, this electrical energy will be

converted to a mechanical wave and propagated into the medium (Fig. 1.2(b)). After a

complex combination of reflection, refraction, scattering and attenuation, some reflected

and diffused waves will rise. Finally, these echoes are propagated back to the transducer,

which will translate them into electrical signals again (Fig. 1.2(c)).

Figure 1.2: The principle of ultrasound imaging: (a) an electrical pulse (excitation) is
transmitted to the piezoelectric transducer, transforming the pulse into an ultrasound
wave; (b) the wave propagates and interacts with the medium; (c) the reflected waves
received by the transducer are transformed in electrical signals.
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Until now, we have explained the basic principle of ultrasound imaging. For a better

understanding of the principle, we will also describe the mathematical equation. The

wave equation is typically written and solved in terms of pressure, displacement, or

velocity potentials [16].

As a wave in homogeneous medium without attenuation is at a position (x, y, z) of

the propagating space and at a time t can be described by a second-order differential

equation:
1

c2

∂2P (x, y, z, t)

∂t2
= ∇2P, (1.1)

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.2)

is the Laplacian operator. P and c are the sound pressure and velocity, respectively.

In the medium, the wave velocity c has the expression:

c =

√
E

ρ
, (1.3)

where ρ is the medium density and E is the bulk modulus. The average velocity of sound

in the human body is 1540 m/s. Table 1.1 lists the typical values of acoustic parameters

for some relevant tissues [17]. The other parameters of the Table 1.1 will be defined in

the following subsection.

Any wave can be mathematically regarded as one of the solutions that satisfy the Eq. 1.1

and the boundary condition, in a steady state. In the case of this study, the plane wave

Table 1.1: Some parameters include the velocity, acoustic impedance and attenuation
coefficients for common biological materials

Material c [m/s] Z [kg ·m-2 · sec-1]× 10-4 α [dB/cm] at 1 MHz

Air 330 0.0004 12
Water 1480 1.48 0.0022
Fat 1450-1460 1.34-1.38 0.52
Brain 1560 1.55 0.85
Liver 1555-1570 1.65 0.96
Kidney 1560 1.62 1.0
Spleen 1570 1.64 1.0
Blood 1550-1560 1.61-1.65 0.167
Muscle 1550-1600 1.62-1.71 1.3-3.3
Lens of eye 1620 1.85 2.0
Skull bone 3360-4080 6.0-7.8 11.3
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propagates in the x direction, and the result is given by:

P (x, t) = Aej(kx−ωt), (1.4)

where A is the amplitude of the propagating signal, ω is the angular frequency, and k =

ω/c is the wavenumber. In fact, the plane wave equation can calculate the displacement

at any point in a one-dimensional (1D) medium as waves travel in it at velocity c.

1.2.3 Reflection and transmission

When a wave occurs at an interface between two dissimilar media, some of the waves

are reflected in the specular direction, some of the waves are scattered in all directions

of the incident medium, and some of them are transmitted through the interface. The

behavior of the wave’s interaction with an interface is illustrated in Fig. 1.3.

In engineering, it is common to consider that the plane wave in the Eq. 1.4 propagates

through the medium and is reflected, thereby the measured signal at the transducer can

be defined as:

y(t) = Aej(kx−ωt). (1.5)

The acoustic properties of the medium are characterized by acoustic impedance. Usually,

the acoustic impedance is the ratio of acoustic pressure to the associated particle velocity.

It allows us to calculate the reflection and transmission at boundaries. We have the

acoustic impedance, Z :

Z = P/µ = ρcµ/µ = ρc, (1.6)

where µ is an associated particle velocity. Through the propagation of the wave in

the medium, a portion of the incident energy is reflected, while the other portion is

transmitted, as illustrated in Fig. 1.4. The reflection coefficient R is used to measure

the reflection between two adjacent tissues with different impedances:

Figure 1.3: The behavior of the wave at an interface and in a small scatterer.
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Figure 1.4: Reflection and transmission for non-perpendicular incidence of an ultrasound
wave on a planar interface between two media with different acoustic impedances.

R =
Pr
Pi

= (
Z2

cos θt
− Z1

cos θi
)2/(

Z2

cos θt
+

Z1

cos θi
)2. (1.7)

The transmission coefficient can be calculated by:

T =
Pt
Pi

= 1−R. (1.8)

The degree of bending the sound wave undergoes as it travels through media of different

velocities is dictated by Snell’s Law [18]. This law states that the index of refraction of

the incident medium multiplied by the sine of the incident angle is equal to the index of

refraction of the refracting medium multiplied by the sine of the refracted angle.

θi = θr,

sin θi
sin θt

=
c1

c2
, (1.9)

where θi, θr and θt are the angles of incidence, reflection, and transmission, respectively.

Especially, when θi = θt = 0, we can rewrite Eq. 1.7 as follows:

R =
(Z2 − Z1)2

(Z2 + Z1)2
. (1.10)

Considering a soft tissue as the interface, the acoustic impedance of some common

biological tissues is presented in Table 1.1. It can be seen that the intensity of the

reflected ultrasound wave at some interfaces can reach 0.1% of the incident intensity.

The reflection on other types of interfaces (e.g., skull bone) can be higher due to the

higher specific acoustic impedance.
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1.2.4 Scattering, absorption and attenuation

If there are microscopic irregularities when ultrasonic waves propagate through the in-

terface, it will generate diffuse scattering instead of specular reflection. As illustrated

in the Fig. 1.3. The same goes for ultrasound waves passing through the medium of

a human body: if there are irregularities, roughness and density fluctuations, some of

the waves will deviate from their original trajectory. Scattering also occurs when the

dimension of the target is negligible in relation to the wavelength (e.g., blood cells).

In a physical description of the phenomenon, we distinguish between two types of scat-

tering, namely elastic and inelastic. Elastic scattering involves no (or a very small) loss

or gain of energy, whereas inelastic scattering does involve some changes in energy. If the

wave is substantially or completely extinguished by the interaction (losing a significant

proportion of its energy), the process is known as absorption.

The echo energy reflected from deeper structures will be weaker than that reflected

from more superficial ones. This happens because the deeper the wave travels, the

more energy is lost due to the scattering and absorption. Typically, the attenuation

depends on the type of the tissue and is proportional to the frequency. Mathematically,

attenuation can be defined as:

P = P0e
−αx,

α = α0f
n, (1.11)

where x is acoustic path length in the attenuating medium, α0 is a constant and n is

the power of frequency dependence of α.

As seen from these equations, attenuation increases with increasing frequency, which

limits the maximum frequency that can be used to scan the particular depth of tissue

or region of body; the working frequency range is typically 1-5 MHz for scanning the

abdomen, heart, or head, and 5-20 MHz for scanning the eyes. Thus, by limiting the

maximum frequency, the attenuation also limits the range resolution indirectly. Since

range resolution is important for image quality, it will be discussed in detail in Chapter

4 and Chapter 5.

1.2.5 Ultrasound techniques and classifications

The echo principle forms the basis of all common ultrasound techniques. The distance

between the transducer and the reflector or scatterer in the tissue is measured by the

time between the emission of a pulse and reception of its echo. Additionally, the intensity

of the echo can be measured. Some definitions of ultrasonic echo display modes are [19]:
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(1) A-mode: is the display of intensity (amplitude) information of signal from the receiver

versus a time (distance). A-mode consists of an x and y axis, where x represents the

distance and y represents the amplitude. This mode is rarely used today, as it conveys

only 1D information and cannot display the shape of the scatterer.

(2) B-mode: is the most common technique for ultrasound imaging. It is obtained by

physically moving the scan line to multiple adjacent locations and converts A-mode

information into brightness-modulated dots. Therefore, B-mode will display an image

composed of two-dimensional (2D) information. And those large and small dots repre-

sent strong and weak echoes, respectively.

(3) Motion mode (M-mode) [20]: uses B-mode information to display the echoes from a

moving organ. This can be accomplished by recording the amplitude and rate of motion

in real time by repeatedly measuring the distance of an object from a single transducer

at a given moment. M-mode can be useful when imaging adult and fetal hearts.

(4) Doppler mode [21]: this mode uses the doppler effect to measure and visualize blood

flow. In ultrasound, the doppler effect is associated with relative motions between the

source of sound wave and the receiver, resulting in an apparent difference in frequency

between that emitted by the source and that perceived by the receiver. In other words,

an approaching wave is perceived to be emitting sound at a higher frequency than it

actually is, while a retreating wave appears to emit at a lower frequency. Doppler mode

is usually utilized in the clinical adjusting to evaluate and estimate blood flow in both

the major and the minor vessels of the body.

(5) Harmonic mode [22]: on the basis of the non-linear properties of ultrasound, a deep

penetrating fundamental frequency is emitted into the media and a harmonic component

can be detected. In this way, the noises and artifacts caused by reverberation and

aberration are greatly reduced. Some researchers also believe that harmonic imaging can

improve spatial resolution compared to fundamental imaging at the original frequency.

Thus, tissue harmonic imaging (THI) has become the default imaging mode for most

abdominal imaging examinations.

(6) Three and four-dimensional mode [23]: nowadays, we use linear arrays to produce

images. Three-dimensional (3D) mode requires methods to determine the position and

orientation of the 2D images within the 3D image volume, as illustrated in Fig. 1.5.

However, generating a four-dimensional (4D) mode (4D = 3D + real time), it is necessary

to process the collected data at high speed, so that the real-time imaging presentation on

the screen is possible. Currently, 3D and 4D modes have been developed and researched

in two major ways. One is to overcome the limitations of 2D technique and allows the

clinician to view the anatomy in 3D; the other is to provide better spatial guidance
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Figure 1.5: 3D scanning approaches: (a) free-hand scanning; (b) mechanical scanning
with a fan type motor-driven mechanical transducer; (c) electronic scanning with a 2D
matrix array transducer.

for various interventional procedures, such as biopsy, focal ablative therapy, and image-

guided surgery.

1.3 Transducers

1.3.1 Piezoelectric effect

In most cases, the working principle for an ultrasonic transducer is based on a phe-

nomenon called piezoelectric effect (see Fig. 1.6). The piezoelectric effect was first

discovered by Jacques and Pierre Curie in 1880 [24]. This effect can be divided into

direct piezoelectric effect and inverse piezoelectric effect. When a mechanical stress is

applied to some certain materials, an electrical potential difference is generated across

the material. This process is called the direct piezoelectric effect. Conversely, when an

electrical energy across the material is applied to generate the mechanical stress. This

process is called the inverse piezoelectric effect.
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1.3.2 Piezoelectric materials

Some materials hold the piezoelectricity property naturally (see Table 1.2), such as

single crystals. Additionally, certain ceramics, polymers and composites are also have

piezoelectric property and can be used to design an ultrasound transducer. A typical

piezoelectric material is lead zirconate titanate (PbZrTiO3), called PZT [25]. The per-

formances of transducers are strongly related to the piezoelectric materials. For instance,

the strength of the electro-mechanical vibrations is dependent on the coupling factors,

kt for thickness mode and k33 for length-extensional mode. The acoustic impedance Z

reflects the efficiency of energy transferred outwards from the piezoelectric layer, thus

determining the matching and backing layers. Relative permittivity εS33 is useful in the

design of electrical driving or receiving circuit of the transducer.

1.3.3 Transducer design

Ultrasound transducer is the core technology of ultrasound imaging. The major ap-

proaches to fabricate it include piezoelectric, magnetostrictive, electromagnetic, laser

conversion and so on [26]. Among them, the most common transducer is made by the

piezoelectric approach, which is based on the piezoelectric effect. This effect allows the

transducer to convert electricity into mechanical waves in transmission, or convert the

energy in mechanical waves into electricity at reception.

There are many different types of piezoelectric ultrasound transducers. The most com-

mon types are single-element, dual-element and array. The basic structure comes from

the respective components. In a transducer stack, piezoelectric material is surrounded

by matching layer and backing material for mechanical damping and absorbing residual

Figure 1.6: Piezoelectric effect: (a) inverse piezoelectric effect; (b) direct piezoelectric
effect.
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Table 1.2: Properties of piezoelectric materials commonly used in ultrasonic transducer

Material PZT4 PZT5H PbNbO3 PVDF LiNbO3 AIN PMN-PT

Thickness mode

coupling coefficient kt 0.47 0.52 0.33 0.19 0.16 0.24 0.57

Length-extensional

coupling coefficient k33 0.69 0.75 0.33 0.13 0.16 0.31 0.9

Piezoelectric strain

constant d33 (pm/V) 290 590 85 25 5.9 5.5 1400

Piezoelectric voltage

constant g33 (mV · m/N) 26 20 32 230 22 52 30

Longitudinal speed c (m/s) 4600 4800 3100 2200 7400 11400 4040

Acoustic impedence Z (MRayl) 35 34 19 3.9 34 37 32

Mechanical quality

factor Qm High Medium Low Low Very high Very high Low

Relative permittivity at

constant stress εT33 1270 3430 300 8.4 29.8 12 3950

Relative permittivity at

constant strain εS33 640 1470 270 10-12 29 10.7 818

Curie temperature Tc (◦C) -350 -200 -400 -150 -1200 -1150 -90

Usual form Bulk Bulk Bulk Thin Bulk Thin Bulk

Figure 1.7: Details of piezoelectric ultrasound transducers: (a) single-element trans-
ducer; (b) dual-element transducer; (c) array transducer.

ultrasound energy that reverberates in the piezoelectric materials. Additional compo-

nents include electric cable, electrical impedance matching, and physical casing. Details

of different piezoelectric ultrasound transducers are described in Fig. 1.7.
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Figure 1.8: Typical electronic scanning with (a) linear array; (b) convex array; (c)
phased array.

1.3.4 Transducer imaging

Today, array transducer is a ubiquitous transducer for ultrasonic imaging. The array

transducer consists of an ensemble of arranged individual single transducers, or elements

that can be controlled in groups or clusters to create pulse echo lines. Typically, array

transducer can be divided into three main categories: linear, convex, and phased arrays.

The array configuration also plays a major role in dynamic focusing and electronic

beamforming. Fig. 1.8 illustrates the three configurations and the electronic scanning

for each case.

1.4 Ultrasound Imaging Quality Factors

It is well known that the quality of an ultrasound image is very important, so an accurate

representation of the image is necessary [27]. However, the image is subjected to a

variety of distortions in various processes, from transmission to acquisition and back to

reconstruction. Therefore, image quality is not a single factor, but a combination of many

different factors, which depends on the characteristics of the equipment, the operators

proficiency, reconstruction method and so on. The most common quality factors used

in ultrasound image assessment will be discussed in the following subsections.

1.4.1 Signal to noise (SNR)

Noise is a random variation of image density. It arises from the effect of the propagation

nature of wave and the thermal and electronic noise at the transducer. The SNR is the

ratio of the reference target peak signal to the ultrasonic noise level. If the SNR is in a

high level, it indicates that more useful information can be obtained compared to noise.

Thus, in ultrasound imaging, the greater value of SNR is required [28].
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Figure 1.9: Concept of resolution.

1.4.2 Resolution

The resolution of ultrasound imaging can be simply defined in four categories:

(1) Axial resolution or range resolution: is the ability to distinguish between two objects

lying in the direction of the propagation of the ultrasound beam. Axial resolution

depends on the wavelength/frequency. Thus, the speed of the sound, the frequency and

the physical length of pulses used to form the ultrasound beam are all related to it.

(2) Lateral resolution: is the ability to distinguish between two objects lying in the

direction perpendicular to the ultrasound beam. Objects will only be resolved if the

separation between them is greater than the beam width. Therefore, the thinner the

beam, the better the lateral resolution.

As we can see in the Fig. 1.9, the lateral resolution can be optimized by using the

dynamic focusing beamforming. Thence, the lateral resolution depends on the geometry

of the transducer, the frequency, the focal distance and so on.

(3) Contrast resolution: refers to the minimum contrast that makes an object in the

region of interest (ROI) more detectable than the background noise in an image. The

loss of contrast resolution comes from acoustic clutter, mainly referring to side lobes and

grating lobes. In particular, the side lobes results from a finite aperture size and the

received signals out of the main beam, which seriously reduce the contrast resolution.

Contrast resolution can be enhanced with various methods, such as compression and

compounding techniques.
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(4) Temporal resolution: is the time from the beginning of one frame to the next, and it

refers to the ability of the ultrasound system to visualize moving objects. Temporal

resolution is quantified by temporal bandwidth, and determined by frame rate and

bandwidth of temporal filters. However, there is a trade-off in the relationship between

the temporal resolution and its spatial resolution. Here, the spatial resolution is referred

to both the axial resolution and lateral resolution.

1.4.3 Uniformity

Image uniformity is usually defined as the variation of the system’s point spread func-

tion throughout the entire image. In a medical ultrasound system, it is defined as the

equipment ability to give ultrasound echos with the same amplitude and deepness when

the brightness is fixed. It is reasonable to expect brightness uniformity in ultrasound

image. However, sometimes non-uniformity happens among scan lines (due to piezo-

electric element failure) and horizontal bands (due to acoustic energy distribution over

the field of view). Factors of image uniformity include depth of field, pulse shapes and

variations due to lateral displacement.

1.4.4 Sensitivity

Sensitivity is an important parameter to describe the electro-acoustic energy conversion

efficiency of ultrasonic transducer, which is defined in the context of the detection of weak

signals. In principle, the frequency response function of a transducer is the spectrum

of its sensitivity. For a given energy input, the greater the signal that is received from

these scatterers, the higher the receiving sensitivity. Sensitivity is related to transducer

design and system’s dynamic range.

1.4.5 Penetration

Penetration is determined by ultrasonic power delivered to the scatterer on the trans-

mitting side and the dynamic range of the system on the receiving side. At a higher

penetration, the transducer needs to cover a longer distance (which is needed to lower

the frequency), therefore the frame rate and the spatial resolution are not good enough.

Conversely, to improve spatial resolution, one strategy is to increase the frequency ac-

companied by a loss of penetration.
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Table 1.3: Useful and nonuseful artifacts

Useful artifacts

Distal acoustic enhancement

Acoustic shadowing
·dirty shadowing

·clean shadowing

Nonuseful artifacts

Side or grating lobe artifact

Refraction artifact

Transmission speed errors

Mirror image artifact

Contact artifact

1.4.6 Artifacts

Another important quality factor of ultrasound imaging is the identification of artifacts.

In many situations, artifacts do not significantly influence the visibility and diagnostic

accuracy of objects. But artifacts can obscure a part of an image or they may be

interpreted as an anatomical feature. Various factors associated with each imaging

method may cause image artifacts, such as the inherent errors of ultrasonic beam’s

characteristics, the existence of multiple echo paths, velocity errors, and attenuation

errors.

Now that many of the common artifacts occurring in ultrasound images have been iden-

tified, but we still need to learn how to overcome or minimize them and to definitively

recognize them as artifactual echoes rather than real echoes. Understanding the under-

lying physics of ultrasound and the assumptions used for ultrasound image formation is

important for understanding ultrasound artifacts.

As an alternative, certain artifacts may offer useful diagnostic information in some cer-

tain respects. Acoustic shadowing can be very useful clinically, is often seen with cal-

cifications, bone, and gas, and appears as clean or dirty shadowing. Clean shadowing

as an example commonly occurs distal to larger calculi and bone and appears as a dark

anechoic band. In this case, the presence of shadowing is critical for their recognition.

Table 1.3 gives more insights into the useful and nonuseful artifacts.

1.5 Advantages and Disadvantages

Ultrasound imaging is widely used as an effective and intuitive method in medical di-

agnosis and non-destructive testing (NDT). In particular, ultrasound imaging plays an
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Table 1.4: Comparison of imaging modalities

Modality Ultrasound X-ray CT MRI

Principle Mechanical properties Mean tissue absorption Tissue absorption Biochemistry

Resolution Frequency dependent 1 mm 1 mm 1 mm

Penetration Frequency dependent Excellent Excellent Excellent

Safety Very good Ionizing radiation Ionizing radiation Very good

Speed 100 frames/s Minutes 0.5-1 minute 10 frames/s

Cost Less expensive Less expensive Expensive Very expensive

Portability Excellent Good Poor Poor

important role in medical diagnosis due to its safety, little discomfort, inexpensiveness

and speed compared with other medical imaging techniques. There is no ionizing radi-

ation from ultrasounds, unlike an X-ray or computerized tomography (CT) scan, and

no harm to the patient from the ultrasound scan has been reported. In addition, ul-

trasound images can be displayed in real-time much faster than magnetic resonance

imaging (MRI), and provides valuable real-time diagnostic information to the surgeon.

Furthermore, the instrument for an ultrasound system is relatively portable and less

expensive than other instruments such as MRI, CT or X-ray scanners. All the features

reviewed in this section are compared to the others popular medical imaging modalities

in Table 1.4.

Despite these advantages, there are several disadvantages. First, ultrasound image gen-

erally has more speckles and less clarity than the CT and MRI image. Second, in terms

of the mechanism of ultrasound scanning, a relatively larger wavelength will result in

a comparatively less directional beam and weak focusing as well as higher sidelobes.

This will distort the image and reduce the image quality since some artifacts which are

not from the scanning area are displayed. In contrast, reducing the wavelength means

increasing the center frequency of the transducer. This will decrease the SNR, since the

attenuation of the medium is to some extent directly proportional to the transmission

frequency. Thus, a compromise has to be found when performing ultrasound imaging

improvement.

1.6 Motivations and Objectives

As stated above, the main limitation of ultrasound in medical applications is keeping a

balance between spatial resolution and diagnosable depth. The spatial resolution along

the range direction increases as the pulse width decreases. To attain high resolution, it

is necessary to widen the frequency bandwidth of transmitting and receiving. Therefore,

the resonance frequency of the transducer used to generate ultrasound must be high.
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Figure 1.10: Schematic of medical ultrasound imaging.

However, the diagnosable depth decreases as the frequency increases, because there is

less attenuation of ultrasound propagation when the frequency is low. To attain a large

diagnosable depth, it is necessary to obtain a higher transmitting efficiency so that

ultrasonic waves can propagate to deeper regions. Also higher receiving sensitivity is

need to detect very small ultrasonic signals, which means the improvement of the SNR.

Overall, it is difficult to accomplish the high spatial resolution and the large diagnosable

depth simultaneously.

Increased ultrasound technology satisfied the growing medical needs and raised pos-

siblities for new imaging solutions to medical problems. Fig. 1.10 shows a simplified

schematic of medical ultrasound imaging. Advances in medical ultrasound imaging have

been involving the combination of system architecture, transducer development, digital

electronics, signal processing and display technology.

The purpose of this thesis is to improve the quality of ultrasound imaging. As every

source of information comes from the transducer employed in the system. Therefore,

the exploitation of transducer is necessary. Once the accuracy of the developed trans-

ducer has been assessed through experimental validation, the signal processing can be

employed to improve the performance of ultrasound imaging display.

The specific objectives are outlined as follows:

1. Conduct some fundamental experiments to reveal the performance of a receiver

called the PZT-FET.
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2. Explore small scatterer-based restoration in ultrasound imaging.

3. Explore strong scatterer-based super-resolution in ultrasound imaging.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we will present an extensive survey of medical ultrasound improvements

in literature, including the research of improvements in ultrasound imaging based on

ultrasound transducer and signal processing.

2.2 Recent Improvements in Ultrasound Imaging Based

on Ultrasonic Transducers

Ultrasonic transducers have two functions: transmission and reception. Depending on

the system and its mission, there may be separate transducers for each function or there

may be a single transducer for both functions. A transducer array may be used in either

function.

Many researchers consider that the key to successful design of diagnostic and therapeutic

ultrasound system is closely related to ultrasonic transducers properties. This is because

the task for the ultrasonic transducers is not merely to detect ultrasound, as intelligent

transducers, they should be efficiently extract the information carried by the ultrasonic

signals with significance (accuracy, resolution, repeatability). Therefore, a summary of

the development of recent transducers would help us judge its impact on the progress of

medical ultrasound.

19
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2.2.1 Basic ultrasound transducer

As mentioned above, the piezoelectric or crystal resonator was developed by the Curie

brothers as early as 1880 [24]. Later, in 1894, Voigt et al. discovered that quartz crystal

vibrating at resonance produces an electrical signal with a very precise, stable frequency.

These characteristics were found to be suited for use in stabilization of transmitting and

receiving signals [29]. Interestingly, B. Jaffe et al. [30] discovered PZT ceramics in 1954,

which have better piezoelectricity than BaTiO3 ceramics found in 1946 [31].

After that, there are so many explorations of novel piezoelectric materials for ultrasonic

transducers [32], such as PZT-4, PZT-5H, polyvinylidene difluoride (PVDF) [33], alu-

minum nitride (AlN) [34], gallium nitride (GaN) [35] , zinc oxide (ZnO) [36], lithium nio-

bate (LiNbO3) [37], (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) [38], Pb(In1/2Nb1/2)O3-

PMN-PT (PIN-PMN-PT) [39], K0.5Na0.5NbO3 (KNN) [40], Bi1/2Na1/2TiO3(BNT) [41],

BiFeO3 (BFO) [42] and so on. All of those materials have received much attention in the

past decade because some significant progresses in their physical properties, and great

breakthroughs in the manufacture of ultrasonic transducers have been made.

The following literature reviews outline some of the major breakthroughs in the devel-

opment of ultrasonic transducers in recent years.

Manufacturing piezoelectric materials for ultrasonic transducers needs high pressure and

high temperature. In order to improve the temperature stability of piezoelectricity, H. J.

Lee et al [43] and M. J. Zipparo et al [44] reported a piezoelectric composites structure

that have improved thermal stability and mechanical quality factor.

To achieve a linear response to an alternating electric drive, those piezoelectric materials

must be polarized. S. Saitoh et al [45] and C. Y. Park et al [46] proposed a design and

fabrication of an ultrasound linear array transducer based on polarization inversion

technique for increasing the center frequency and bandwidth of the transducer.

Harmonic imaging shows favorable potentials for high spatial and contrast resolution,

and better delineation of borders and other structures compared to fundamental imaging.

For the high sensitivity of different frequency ranges in harmonic imaging, many studies

of transducers which can generate the fundamental frequency and the second-order har-

monic frequency at the same time based on double peak type frequency characteristics

have been reported [47–49]. Presently, J. Lee et al [50] reported a developed dual-element

focused intravascular ultrasound (IVUS) [51] transducer for measuring third harmonic.

In this case, multi-frequency array transducers are selected and have different center

frequencies for transmission and reception.
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Besides the piezoelectric deformation in the d33 mode [52], there are many other modes

of ultrasonic transducer. A number of approximate methods have been employed to

analyze the response of transducers using other models, and the related transducers

have been fabricated. Such as d31 mode [53], d15 mode [54], d24 mode [55] and d36 mode

[38, 56]. It should be noted that except the d33 and d31 mode, the other modes are used

to generate shear waves.

Over the years, ultrasonic transducer technology has been mainly based on 1D line

transducer arrays, because of the convenience of low cost and real-time operation. While

extending to 1.25D [57], 1.5D [57, 58], 1.75D [59] and 2D [60, 61] transducer arrays have

also been successfully addressed.

On the other hand, it is difficult to achieve full focusing capabilities in 1D linear or 2D

array transducers at high frequencies. As a result, a number of researchers have explored

annular array transducers [62, 63], which the beam focusing is done by addressing the

inner rings with a time delay with respect to the outer rings.

2.2.2 FET-based ultrasound transducer

Electronics fabricated by using inner-crystal piezopotential as a “gate” voltage to tune

or control the charge transport behavior is named piezotronics. Piezotronics concept was

first introduced by Z. L. Wang group in 2006 [64, 65]. One common use of piezotronics

is based on electrically gated field effect transistor (FET). By trial and error, many

problems in traditional ultrasound transducers can be potentially overcome by FET-

based ultrasound transducers. This type of transducer offers significant advantages in

terms of high energy, high sensitivity and biocompatibility.

It is clear that, if the work function of the gate metal can be controlled by an external

parameter, the piezotronics device is a direct sensor for this parameter. As ultrasonic

transducers, the most nature choice is piezoelectricity. For this purpose, some materials,

such as PZT, ZnO and GaN have been chosen[66, 67].

Fundamental understanding about this device is that the source and drain are located

at the two ends of the device, and the gate voltage is applied to the channel and the

substrate [68–70]. By applying a source to drain driving voltage, VDS , the charge carrier

transport process in the semiconductor device is tuned or gated by the gate voltage VG,

which is an externally applied potential. Alternatively, the gate voltage can be replaced

by the piezopotential generated inside the crystal (inner potential), so that the charge

carrier transport process in FET can be tuned or gated by applying pressure to the

device [71].
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Figure 2.1: Cross section of (a) p-MOSFET; (b) amorphous silicon top-gate TFT.

Some related researches began early in 1980, P. Bergveld [72] discussed the development

and application of FET-based biosensors, as well as a prediction with respect to future

developments of FET-based biosensors. After that, ongoing efforts continue to develop

this area. Today, monolithic integration of a FET in close proximity to piezoelectric

materials has advantages for signal conditioning and processing due to the early con-

version of the signal impedance into the low output impedance of the FET. It must be

pointed out that the FET-based transducer is possible to excite and acquire the signals

with high sensitivity. But honestly, the commercial manufacturing of reliable FET-based

ultrasound transducer still has a long way to go.

2.2.3 TFT-based ultrasound transducer

Thin-film transistors (TFTs) can be seen as a class of FETs [73]. The main emphasis for

TFTs is on large area and low temperature processing; Conversely, FETs are essentially

focused on high performance at the cost of considerably larger processing temperature.

Besides, FETs use a silicon wafer as a substrate; while TFTs use an insulator substrate,

such as glass, which is not an active element for device operation (Fig. 2.1). Furthermore,

the operation mode is also different between the FETs and the TFTs. The former is

based on inversion, while the latter relies on accumulation. Table 2.1 lists the differences

in the two technologies.

Flexible TFTs offer a new direction for innovative ultrasound transducers. Similarly,

some materials such as PVDF [74], ZnO [75] and AlN [76] have been investigated with

TFTs extensively. These materials are chosen for their electrical properties, particularly

the electron mobility and the stability of the threshold voltage. Therefore, TFT-based

ultrasound transducers can control transport of charge carriers, emission of wave and so

on which also provide a solution for fully integrated flexible devices.
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Before the publication of T. P. Brody’s 1973 paper, very few publications has been

reported on TFTs. In this paper, Brody first demonstrated a liquid crystal display

(LCD) based on CdSe TFTs [77]. Then, the breakthrough in this field came from a

report in 1979 of the first functional TFT made from hydrogenated amorphous silicon

(a-Si:H) with a silicon nitride gate dielectric layer [78].

To comprehend the recent ultrasound transducer development of TFTs, S. Kim et al.

described an electrostatic actuator based on a-Si:H TFT driver. The single actuator

emits ultrasonic waves at 25 kHz and pressure of 27 dB sound pressure level (SPL), and

a 1 × 2 array emits up to 34.6 dB SPL at 1cm distance [79].

To mention another interesting piece of research, organic TFT devices or circuits have

been developed for purposes such as flexible sensors [80, 81], actuators [82] and in vivo

medical diagnostics [83].

2.2.4 Micromachined ultrasound transducer (MUT)

With the development of micro electro mechanical systems (MEMS), micromachined

ultrasound transducers (MUTs) have become a very promising alternative to replace

traditional bulk ceramic transducers. Arrays with high element density, small element

size and high resonant frequency are easy to realize through MUTs. Moreover, the

MUTs array and external circuit can be integrated in a chip. MUTs work on either

electrostatic or piezoelectric approaches, and they can be classified as capacitive MUTs

(cMUTs) and piezoelectric MUTs (pMUTs). cMUTs based on flexural vibrations are

caused by a field-induced electrostatic attraction between suspended membrane and the

substrate (Fig. 2.2(a)); while pMUTs based on flexural vibrations are caused by d33 or

d31 mode excitation of a piezoelectric membrane (Fig. 2.2(b)-(c)). In summary, the key

comparisons between the two MUTs technologies are shown in Table 2.2.

Table 2.2: Comparison of the main differences between cMUT and pMUT

Comparison Parameters cMUT pMUT

DC bias Yes No

Frequency range > 200 kHz > 1 kHz

Bandwidth High Low

Electromechanical coupling > 50% � 50%

Fabrication techniques Micromachined and wafer bonding Micromachineds

IC integration Easy Difficult
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In recent years, increasing attention has been paid to MUTs because of their advantages

over conventional ultrasound transducers, such as miniaturization, low impedance, high

bandwidth, high sensitivity, high electromechanical coupling coefficients, also with po-

tential for automated large batch production and integration with front-end electronics.

O. Oralkan et al. fabricated a 128 × 128 element 2D cMUT array with a 420 µm element

pitch [84]. As an experimental prototype, results demonstrated that 2D CMUT array

could be fabricated with high yield using silicon IC-fabrication processes, individual

electrical connections could be provided using through-wafer vias, and flip-chip bonding

could be used to integrate these dense 2D arrays with electronic circuits for practical

3D imaging applications.

Dausch et al. reported the design and fabrication of 2D pMUT arrays [85]. They

also described the vibrational modes for operation of flexure-mode pMUT elements,

transmit output pressures, receive and pulse-echo characteristics, and B-mode imaging

performance of the 81 element 2D arrays at a center frequency of 7.1 MHz [86].

Besides the above progress in MUTs, combination of MEMS technology with FETs or

TFTs have certainly encouraged the innovation and development of ultrasound trans-

ducers [87, 88].

A zero-bias complementary metal oxide semiconductor (CMOS)-based cMUT was pro-

posed in 2013, which is implemented based on TSMC 0.35 µm CMOS-MEMS 2P4M

process [89]. The collapse voltage is lowered down to 150 V by scarifying the thinnest

Figure 2.2: Micromachined ultrasound transducers: (a) cMUT; (b) d33 mode pMUT;
(c) d31 mode pMUT.
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layer (polysilicon) as a gap and sealing the device by depositing a thin film of parylene

C. The receiving sensitivity is proved to be as high as the conventional operation with

a DC bias. It is believed that the injection of charges on CMUTs due to the AC pulses

can improve the sensitivity of the device.

Reger designed a pMUT-based ultrasonic imaging sensor which relies on post-CMOS

monolithic integration rather than MEMS-to-CMOS wafer-to-wafer bonding. Device

characterization demonstrated that a range of frequencies from 100kHz to 800 kHz with

varying electrode coverage [90].

2.3 Recent Improvements in Ultrasound Imaging Based

on Signal Processing

2.3.1 For small scatterer

The reflection and distribution of small scatterers in living tissue make the echo signals

interfere with each other to generate speckle patterns, which causes the noisy nature of

medical ultrasound images, and its presence in the image may obscure small structures,

degrade the edge definition and limit the contrast resolution. Thus, various suppression

methods have been proposed. At the same time, some other researchers are considering

the speckle not as a noise term to be suppressed, but rather as a precious source of

information.

The principles for analyzing the speckles are exploited in a wide range of applications

as classification, segmentation, deconvolution and tracking. In this literature review, we

will only address the major problems encountered in medical ultrasound tackling with

statistically inspired approaches: the deconvolution related to our study.

Deconvolution in medical imaging is commonly employed for the purpose of visual quality

improvement, which provides physicians with better contrast and resolved data for easier

interpretation. As long as the improvement of image quality is concerned, deconvolution

schemes exploit simple models for tissue reflectivity will be continue.

Deconvolution problem, or equivalently, restoration or deblurring problem, was first in-

troduced by J. A. Jensen for ultrasound imaging [91, 92]. According to a convolution

model, the radio-frequency (RF) image, obtained from the raw data after the beamform-

ing operation, can be represented as a convolution between the point spread function

(PSF) of ultrasound system and the tissue reflectivity function (TRF). Ultrasound imag-

ing with limited spatial resolution can be improved by deconvolution.
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Since 1990s, the deconvolution problem has been tackled in two ways. The first is carried

out through estimating the PSF and TRF simultaneously, called blind deconvolution

[93]. The second is to restore the TRF following the PSF estimate. This is called

non-blind deconvolution [94, 95].

To solve the deconvolution problem, a number of methods have been employed, such

as through the inverse filter, n-length least-squares deconvolution filter (Wiener filter)

[96], weighted least squares (WLS) filter [97], minimum variance deconvolution (MVD)

[98], Oldenburgs frequency domain deconvolution algorithm [99], l1-norm deconvolution

[100, 101], l2-norm deconvolution, lp-norm deconvolution, matching pursuit (MP) [102,

103], basis pursuit (BP) [104, 105], and some others [106, 107].

To briefly summarize the methods described above, we herein give the comparison pre-

sented in M. Alessandri PhD thesis [108], which is about the result of the Wiener and the

l1-norm deconvolution based on ultrasound imaging in vivo (see Fig. 2.3). The increased

information associated with the Laplacian prior is evident, along with the oversmooting

effect caused by Wiener deconvolution.

It is also clear that many classical models have been widely assumed for medical ul-

trasound restoration, such as Bayesian model [109–111], Gaussian model [112, 113],

Rayleigh model [114], Laplacian model [112, 115], autoregressive (AR) model [116] and

autoregressive moving average (ARMA) model [117, 118].

Figure 2.3: Results from a prostate ultrasound image: (a) observed B-mode image; (b)
wiener deconvolution; (c) l1-norm deconvolution.



28

After the landmark study by J. A. Jensen [91, 92, 95, 117, 118] at medical ultrasound

restoration. N. Testoni [119] addressed an extensive dissertation on the employment of

predictive deconvolution techniques and adaptive filters, which can be used for medical

ultrasound restoration. And recently, S. Maggio et al. [116, 120] reported predictive

deconvolution for the computer-aided detection of prostate cancer.

Deconvolution relies on the image restoration of an estimate of the true images. In fact,

many existing researches in the medical ultrasound area [121–123] have shown its worth.

The feasibility of deconvolution in our study is tackled by maximum a posteriori (MAP)

estimate, in which tissue reflectivity is restored along with an estimate of the associated

scale and shape parameter. An expectation maximization (EM) step is designed to

address this task [124].

Overall, the preliminary investigation based on deconvolution of the microstructure and

fundamental properties of small scatterers in living tissue is a major objective in our

work, and also one of the most interesting and fruitful developing applications for medical

ultrasound.

2.3.2 For strong scatterer

At present, the improvement on ultrasound imaging for strong scatterer can be achieved

by numerous signal processing methods. However, in this literature review, we investi-

gated the methods of strong scatterers based on beamforming for ultrasound imaging.

First, the most basic non-adaptive beamforming method is called delay-and-sum (DAS)

[125]. Several other techniques such as coherence factor (CF) [126] and phase coherence

factor (PCF) [127] can be combined with DAS to further reduce sidelobes, resulting in

improved contrast of the beamformed image.

In reception, one idea of adaptive beamformings is to use the received echoes (raw

channel data) to calculate the weights. The most widely used method is Capon method,

also known as minimum variance (MV) method [128]. Capon beamforming applied to

medical ultrasound imaging can improve lateral resolution and contrast. The original

Capon method for ultrasound imaging is based on element-space (ES) signal processing

[129–131]. ES signal processing requires the inversion of large matrices, which severely

increases the complexity. To reduce the complexity associated with calculating the

inverse matrices, beam-space (BS) Capon method has been reported [129, 132, 133].

This method uses a few orthogonal beams to reduce the matrix size.

Another class of adaptive beamformings has attracted significant interest, that is mul-

tiple signal classification (MUSIC) beamforming [134], which commonly relies on noise
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subspaces, also konwn as orthogonal subspaces, for evaluation of imaging function. Re-

sult of such beamforming leads to satisfactory performance as long as signal subspace

dimension does not occupy entire data space dimension. There are three common tech-

niques to further improve the robustness of the MUSIC beamforming: TR-MUSIC [135],

root-MUSIC [136] and unitary root-MUSIC [137].

Maximum likelihood (ML) beamforming is based on models containing parameters to

be estimated and a variety of assumptions need to be taken into account [138, 139]. One

possible assumption can be the shape of the signals, that can be modeled as deterministic

or using statistical assumptions. The benefit of the ML beamforming is the ability to

resolve coherent signals.

Compared to conventional DAS beamforming, delay multiply and sum (DMAS) beam-

forming utilizes multiplicative coupling of channel pairs for spatial coherence of receiving

aperture to improve image resolution and contrast [140, 141]. However, present DMAS

beamforming is based on the radio-frequency (RF) channel signals and thus requires

large oversampling to avoid the corresponding spectral components for imaging. Base-

band (BB)-DMAS in C. C. Shen study [142] has indicated that the proposed BB-DMAS

requires less computational load and performs higher flexibility compared to RF-DMAS.

Further researches have focused on the application of filtered-delay multiply and sum

(F-DMAS) beamforming to high frame rate imaging [143, 144].

More recently, a new class of deconvolution algorithms has emerged and is called com-

pressive sensing (CS) [145, 146], which can exploit the sparsity of RF signal. In con-

trast to classical inversion-based methods, these sparse deconvolution methods (SDMs)

directly estimate the RF and provide significant resolution gains. However, SDMs gen-

erally assuming the ultrasound pulse is invariant throughout the propagation path. Al-

though convenient, this assumption is not completely realistic in medical ultrasound

due to the frequency dependent absorption and scattering. Therefore, echoes degrade

severely compromises the performance of SDMs and leads to inaccurate estimations of

the RF.

It is worth noting that numerical algorithms that are combined with each other have

been developed. Proposed technique uses a modified DMAS + CF approach [147] to

receive lateral resolution enhancement and sidelobes reduction. Similarly, MV + CF

[148], MV + DMAS [149] and DAS + DMAS [150] have also been developed to improve

ultrasound image quality.

The reconstructed images in M. Mozaffarzadeh study [149] using some mentioned beam-

formings are shown in Fig. 2.4. As can be seen, the reconstructed image using DAS

contains high levels of sidelobe and artifacts, and the quality of reconstructed image
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Figure 2.4: Simulated point targets using linear array. (a) DAS; (b) MV; (c) DMAS;
(d) MV-DMAS. All images are shown with a dynamic range of 60 dB. 50 dB noise was
added to detected signals.

is low. MV improves the quality of the reconstructed image in comparison with DAS.

However, the levels of sidelobe are annoying and degrading the quality of image. The

formed image using DMAS is shown in Fig. 2.4(c), and it can be seen that DMAS results

in lower levels of sidelobe compared to DAS and MV. However, the resolution of point

targets are still low. Using MV-DMAS as a beamforming algorithm leads to the low

levels of sidelobe of DMAS and the high resolution of MV beamforming.



Chapter 3

Development and Measurement of

FET-Based Ultrasound Receiver

3.1 Introduction

Over the past few decades, ultrasound imaging has been widely used in medical diagnosis

and NDT. In these applications, it is very important to enhance image accuracy. High-

frequency ultrasound waves (which have short wavelengths) generally generate images

with high resolution and thus ultrasound reception performance must be improved to let

high-sensitivity detection of very weak echoes in the high-frequency domain. In partic-

ular, the harmonics that are generated by nonlinear propagation of an ultrasound beam

through a medium under test and its echo are effective for use in high-resolution imaging

but the signals are very weak [151]. The high quality image based on those methods

require the detection of weak signals. However, it is becoming increasingly difficult for

traditional technology based on bulk ceramic transducers to simultaneously achieve the

high resolution and large diagnosable depths required for these measurements, as the

trade-off in the relationship between the spatial resolution and the diagnosable depth.

At present, researchers in various studies using novel piezoelectric materials in MUTs,

which have demonstrated a certain increase in the reception sensitivity. In this study,

we demonstrate a novel piezotronics device with an attempt to produce a much more

sensitive ultrasound receiver. Piezotronics are those which consist of FET [152] and

piezoelectric material for its gate layer. This is recently developed in a trend of smart

device, for example, a sensor is directly coupled with a semiconductor to form a mono-

lithic chip. Attributing to a property of mechanoelectric conversion of the piezomaterial,

broad applications are known including sensors for humidity [153], pressure [154], acous-

tics [155], cantilevered- [156] and surface [157] forces.

31
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Signal output against piezotronics responses is driven by direct charge injection into

semiconductor to form a conductive channel by electric field effect, where source-drain

current is observed depending on stress applied to the piezoelectric material. This prin-

ciple eliminating use of long wiring between piezoelectric material and metal oxide tran-

sistor and of efficient charge usage output by piezoelectricity [158] results in improved

SNR, sensitivity and dynamic range, when compared with a conventional piezoelectric

transducer. Piezoelectric materials such as PZT crystals, PVDF, ZnO and AlN piezo-

electric films have been investigated with FET extensively. However, few were found

for the ultrasound receiving sensor in piezotronic device applications, particularly with

measuring a sensitivity by minimum detectable sound pressure and frequency property.

This might come from a difficulty in optimizing the device structure and its charge

injection condition.

As a general tendency for measurable output of the piezotronic device, decrease of

electric capacity of the piezomaterial is a considerable way for contribution of the efficient

charge injection, the amount of which is to exceed that of parasitic capacity between the

piezoelectric material and the FET gate linkage. For the first attempt to prototype for

observing the piezotronic device characteristics for an ultrasonic use, we have designed

a piezoelectric gated FET structure in which a bulk PZT body is connected directly on

the gate of a MOSFET, called PZT-FET. This paper reports the frequency properties

through the FET output conducted by simply thickening the piezoelectric structure of

a certain area. The specific structural fabrication of PZT-FET will be briefly depicted

in the next section.

3.2 PZT-FET Design

In most cases, the basic working principle of an ultrasound transducer for reception is

that PZT crystal functions piezoelectric effect to convert either random or generated

vibrations that are present in the environment into usable amounts of electrical energy

that can then be detected by a receiving circuitry. Therefore, in this study, we demon-

strate the first piezoelectric FET fabricated using a bulk PZT element for ultrasonic

receiver.

The proposed PZT-FET device is depicted in Fig. 3.1, which consists of a FET with a

piezo-body combined on the gate of the FET. To take advantages of the piezoelectric

phenomena, bulk PZT element [159] was selected. Since it not only has a good driving

capability and piezoelectric characteristics that can inject sufficient charge to drive the

FET, but also it has very high resistivity, which prevents leakage of the charges in the

gate metal layer. The FET used here is a commercially available N-MOSFET having a
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(a)

(b)

PZT

GND

10 M�

VD (+3.5V)

OUT

VS (-3.5V)

Figure 3.1: Structure of the PZT-FET structure. (a) schematic diagram; (b) its equiv-
alent circuit.

N-channel region between source and drain, and the substrate is P-type. The PZT-FET

was prepared by wiring the anode of a 40-µm-thick PZT to the gate of the N-MOSFET.

To realize the proposed design as shown in Fig. 3.1(a), the size and the dielectric constant

of the PZT that are critical to the observation with a certain property, were tuned to

optimal values of 8×40×0.04mm3 and 800, respectively. In addition, Fig. 3.1(b) shows

the quivalent circuit model of the PZT-FET, which suggests that the effective output

of the PZT-FET was recorded in the form of its drain voltage, and was determined via

current-voltage (I-V) conversion of the source-drain current using a 10 MΩ resistor.

3.3 Device Operating

Fig. 3.2 shows the working principle of the proposed PZT-FET mechanism. As we can

see, in response to a change in applied pressure, the change in the bound surface charge

density at the piezo-body directly results in a change in the vertical electric field at the

gate oxide, which modulates the channel and hence the source-drain current that flows
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with a given source-drain bias applied in the FET. As a result, the device will going

through the accumulation, depletion and inversion. The typical capacitance-pressure

(C-P) response curve of the PZT-FET is shown in Fig. 3.2(b), and the dotted curve

indicates low frequency whereas the black curve illustrates the high-frequency.

On the basis of the early observations, we confirmed the operation of the device, and

found that the equivalence of the pressure to the voltage applied to the gate was in-

dicative of the formation of accumulation, depletion and inversion layers between the

source and drain with increasing pressure. Therfore, such a novel PZT-gated FET de-

sign provides the potential for high performance ultrasonic transducer systems with high

sensitivity and high frequency. This is because the device can theoretically amplify elec-

trical signals, and it is easy to measure weak signals. However, even if the operating

characteristics of the PZT-FET are well known, the ability of the device to operate as

a sensor and obtain an output that is dependent on the sound pressure when an ultra-

sound wave is received at the gate is not yet known. Therefore, we need to specifically

analyze the performance of the PZT-FET based on ultrasonic experiments.

(a) (b)

Figure 3.2: Working principle of the proposed PZT-FET mechanism. (a) voltage-
pressure characteristics; (b) capacitance-pressure characteristics at low and high fre-
quencies.
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3.4 Device Characteristics

3.4.1 Evaluation method

In this study, the performance of the PZT-FET as a receiver was further evaluated in

terms of the following three aspects and compared with those aspects of a conventional

PZT-based ultrasound receiver:

• Minimum detectable sound pressure (MDSP) [160]

The minimum detectable sound pressure defines pressure detection threshold at which

the received signal corresponding to the pressure can be distinguished from the electrical

noise level. This can be used as an index for evaluation of the sensitivity. The recently

published sensitivities of pressure sensors are represented in Table 3.1. The minimum

detectable sound pressure for a typical ultrasound transducer is approximately 2000 Pa.

In this study, we are aiming to achieve a high sensitivity that is similar to or greater

than the values listed in Table 3.1.

• Dynamic range (DR) [161]

The DR is a representation of the ratio of the maximum and minimum values of the

signals that the device can sense and the DR is evaluated in decibels, as follows:

DR (dB) = 20 log10

Vmax(detectable signal)

Vmin(detectable signal)
(3.1)

• -6 dB specific bandwidth [162]

The -6 dB specific bandwidth represents ratio of the device’s bandwidth to its cen-

ter frequency. This index is used to evaluate the device’s wideband characteristics.

Naturally, wideband characteristics are preferable for an imaging with high spatial res-

olution. Therefore, the specific bandwidth refers to a high-performance device. The

specific bandwidth of a typical ultrasound transducer is approximately 60%. The -6 dB

specific bandwidth can be described as follows:

Specific Bandwidth(%) =
Bandwidth

Center frequency
(3.2)
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Table 3.1: MDSP values from recent studies of pressure sensors

Principle MDSP

Ring resonator [163] 590 Pa

Piezoelectric micromachined

ultrasound transducer [164]
116 Pa

Polymer ferroelectret

actuators based on TFT [74]
2 Pa

Piezoelectric FET based

on a ZnO nanowire [64]
17nN

3.4.2 Experimental setup

As a first step in the experimental procedure, using a calibrated hydrophone with 13

nV/Pa sensitivity (HGL0085, ONDA Corp., California, USA; see Fig. 3.3(b)) as a re-

ceiver, the output voltage characteristics in water were measured for each frequency of

(a) (b)

Figure 3.3: Images of: (a) the 15 MHz transmitting transducer used in the sensitivity
test; (b) the hydrophone.

Function Generator
RIGOL DG4062

Oscilloscope
RIGOL DS2202

Spectrum Analyzer
RIGOL DSA815

Transducer Hydrophone

5cm

Figure 3.4: Experimental setup used for the transmitter calibration.
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the transmitter (PA250, Precision Acoustics Ltd., Dorchester, UK; see Fig. 3.3(a)) using

the setup shown in Fig. 3.4. The resonant frequency of the transmitter was 15 MHz,

and the transmitted voltage was measured by using an oscilloscope and regulated to

maintain at a constant level over the observation frequency range by tuning excitation

voltages. The distance between the hydrophone and the transmitter was 5 cm. Contin-

uous ultrasound waves were emitted by the transmitter at frequencies ranging from 1

MHz to 20 MHz.

Fig. 3.5 shows the frequency characteristics of the transmitter that were measured at a

transmitted voltage of 10 V. The sound pressure was then obtained by dividing the out-

put voltage of the ultrasound wave received at the spectrum analyzer by the sensitivity
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Figure 3.5: Frequency spectrum of the transmitter.

Figure 3.6: PZT-FET prototype device.
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Function Generator
RIGOL DG4062

Oscilloscope
RIGOL DS2202

Spectrum Analyzer
RIGOL DSA815

Transducer PZT-FET

5cm DC Power Supply
KIKUSUI PMC35-2A

Figure 3.7: Experimental setup used for measurement of the PZT-FET.

of the hydrophone.

Subsequently, the hydrophone was replaced by the PZT-FET (see Fig. 3.6). and the

reception properties of the PZT-FET were observed in water using the same transmit-

ter. The observation conditions were exactly the same as those used in the previous

experiment, except for ±3 V biasing (source: PMC 35-2A, Kikusui Electronics Corp.,

Kanagawa, Japan) to the PZT-FET, as shown in Fig. 3.7. The output voltage of the

PZT-FET was determined via I-V conversion of the source-drain current using a 10 MΩ

resistor, which was recorded by the spectrum analyzer.

3.4.3 Results and discussion

Fig. 3.8(a) shows the linearity of the receiver outputs with respect to the transmit-

ted acoustic pressure over the observation frequency. These linear proportions ranged

widely particularly from very low initial level. The dynamic range defining the min-

imum and maximum detectable sound pressures are 8 Pa and 11000 Pa, respectively,

from Fig. 3.8(b) and (c). Fig. 3.9 shows the output voltage of the PZT-FET in response

to swept frequencies in the range 10-20 MHz. We found that the resonant frequency

of PZT-FET is almost 14 MHz when the pressure at 1000 Pa. Based on those results,

the receiving performance of the PZT-FET was characterized in terms of the minimum

detectable sound pressure, the linear dynamic range and the -6 dB specific bandwidth,

which were observed to be 8 Pa, 63 dB and 20%, respectively. Because the minimum

detectable pressure was 8 Pa, which was very difficult to measure using a conventional

PZT transducer, this relatively enhanced performance indicated the excellence of the

PZT-FET. Furthermore, the dynamic range of the device has been greatly improved

when compared with that of a conventional device, having increased from normally 40
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Figure 3.8: PZT-FET output vs. acoustic pressure input. (a) whole range with different
frequencies (100-1000 Pa); (b) low pressure range at 14 MHz (4-20 Pa); (c) elevated
pressure range at 14 MHz (1000-17000 Pa).



40

10 12 14 16 18 20

Frequency[MHz]

-30

-25

-20

-15

-10

-5

0

O
u
t
p
u
t
 
V
o
l
t
a
g
e
[
d
B
]

Bandwidth

Figure 3.9: Frequency dependence of the PZT-FET output observed from an input
acoustic pressure of 1000 Pa.

dB to 63 dB. These findings are attributed to the sensitivity of the linearly varying

piezoelectric charges and the channel conductivity.

However, the specific bandwidth remains low because of the dominance of the PZT

resonance at the quarter-wave (1/4λ) resonance frequency, fR (14 MHz) reflecting a

vibration characteristics of bulk thickness mode prone to show single frequency. Thus,

as a potential solution, it may be possible to expand the receiver characteristics and

provide further improvements using a relaxer with higher piezoelectric properties than

the PZT.

Another possible solution to increase device performance is to design an array containing

a number of PZT-FET MUTs, and each array has a different fR. A unit of the PZT-

FET MUTs is shown in Fig 3.10, the structure having a square diaphragm as the gate of

the PZT-FET was simulated and the fR was measured at approximately 20 MHz. The

reason for using the square shape is that it can lengthen source and drain electrodes, and

the width-to-length ratio (in addition to the PZT parameters) is also related to the device

sensitivity. Furthermore, in the MEMS-type processing [165] [166], it was assumed that

a thin diaphragm was used rather than a bulk PZT element. In particular, PZT-FET

MUTs with fR values ranging from 10 MHz to 30 MHz can be obtained by a simple

control of the diaphragms dimensions.
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(a)

(b)

(c)

Figure 3.10: Structure having square diaphragm as a unit of the PZT-FET MUTs:
(a) PZT-FET MUT model; (b) unique electrode structure; (c) epitaxial structure and
configuration.
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3.5 Conclusions

In this study, the PZT-FET receiver was proposed and fabricated for the first time, and

the reception characteristics of the device were analyzed in detail. The experimental

results demonstrated that an almost linear relationship between the input pressure and

output voltage was found at a large region, which demonstrates the PZT-FET is suit-

able for making the ultrasonic receiver. Furthermore, the PZT-FET provided excellent

ultrasound reception characteristics with high sensitivity and high dynamic range with

an expectedly narrow specific band width. It is promising to use this device to obtain

very weak echoes at high frequencies, which demonstrates potential applications to high

frequency ultrasound and harmonic ultrasound. Besides the results described above, we

also consider further device improvements attained by micromachining, one of the ideas

is to fabricate the PZT-FET MUTs array transducers. In future work, we will apply the

techniques proposed in this study to develop a much improved device, which is expected

to lead to high-performance ultrasonic transducer systems, as well as system-on-chip

functionality.



Chapter 4

Small Scatterer-Based Empirical

Bayesian Estimation Applied to

Echo Signals

4.1 Introduction

In ultrasound medical imaging, it is important that the boundaries and edges of organs,

blood vessels and tumors are detected [167–169]. In addition, the reflection and distri-

bution of small scatterers in living tissue has important information for diagnosing tissue

properties. If the bandwidth of the transmitted pulse is sufficiently wide, that is, if very

sharp pulses can be transmitted, high resolution imaging can be carried out and thus,

the distribution of the scatterers producing echoes can be measured exactly. However,

in actual imaging, typical ultrasonic transducers have a narrow band of characteristics.

Furthermore, in order to clearly obtain echoes, the transmitted pulse contains several

cycles of sin waves. As a result, the reflectance distribution is convoluted with the trans-

mitted signal, and the echo whose resolution is greatly reduced is reflected toward the

transducer. These echo signals interfere with each other to generate speckle patterns,

which making the measurement of scatterer distribution difficult.

The speckle patterns are often used efficiently for medical diagnosis based on physi-

cian experience, which results in subjective interpretation and inter-observer variability.

These are also effective for tissue motion analysis using image processing. On the other

hand, since the speckle patterns hinder the detection of small tumors, various sup-

pression methods have been proposed [170–172]. Recently, studies on reducing speckle

observation by actively imaging a small number of strong echo sources attract attention,

which are based on CS or sparse modeling techniques [173–175]. In this strategy, only

43
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the echo intensity is taken into account while the speckle characteristics are ignored.

Contrary to those facts, in this study, we aim at estimating the reflection distribution of

scatterers, which is the source of the speckle pattern, from echoes. If small scatterers can

be accurately restored from the echoes, by subtracting the corresponding echoes from

the entire echo, the images consisting only of sparse scatterers with strong reflection, i.e.,

contours of organs, blood vessels, tumors can be obtained by, for example, our super-

resolution imaging method [176]. Namely, by separately processing small scatterers and

large scatterers, both can be separately imaged, which leads to high resolution imaging.

This scatterers restoration must be treated as an ill-posed problem, because echoes oc-

cur through convolution process. It is impossible to uniquely restore the distribution of

the scatterer from only the observed information, and observation noise is also likely to

influence the solution. In order to solve these problems, it is necessary to (i) increase

observation information and (ii) apply appropriate assumptions and constraints to the

solution. The former can be realized, for example, by using harmonic echoes in ad-

dition to fundamental echoes. For the measurement of harmonic echoes, we proposed

techniques to improve SNR [177] and compensate for distortion caused by frequency de-

pendent attenuation (FDA) [178]. In this study, focusing on the latter, we consider the

reflection distribution of small scatterers as a stochastic sequence arranged in the range

direction, and we model it with AR process usually used in random signal processing.

The parameters of the AR model show correlations inherent in the reflection distribution,

which are expected to parametrize the tissue properties. The ill-posed characteristics in

this restoration problem are very strong when compared with blurred image restoration,

because the frequency band that cannot be observed so wide. Therefore, it is necessary

to investigate the estimation possibility and accuracy of both the AR parameters and

the reflection distribution itself. To realize it, we can apply the algorithm constructed in

the time domain based on empirical Bayesian method [179, 180]. After that, we consid-

ering recovery the reflection distribution in the frequency domain. As a first step of our

future efforts, in this study we evaluate the performance through numerical simulation

using data correctly fitted to the assumed model.

4.2 Problem Definition

Since the echo depends not only on the reflection of the scatterer but also on the trans-

mittance and the diffraction, it is difficult to formulate the echo generation process

considering all these properties. In this study, we define the equivalent reflectance that

generates echo by convolution with the transmitted pulse.
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An N -dimensional vector y is defined as an observed RF echo signal, in which N corre-

sponds to the number of time-sampling. We assume that y contains an additive white

normal random numbers n with zero mean and variance σ2
n as observation noise. By

using the N -dimensional vector h as the above mentioned equivalent reflectance, y can

be formulated as follows:

y = Wh+ n, (4.1)

where W is an N ×N matrix representing convolution with the transmission pulse. As

the width of the transmission pulse increases, the rank ofW approaches zero. Therefore,

we can simply restore h using W+ which is a pseudo-inverse of W .

ĥ = W+y. (4.2)

However, the solution is sensitive to the noise contained in y, and furthermore, the

information contained in h discarded by W can not be restored. Instead, by applying

the AR model to h we consider the method to recover such discarded information by

extrapolation.

The AR model is a general stochastic representation of random time series with corre-

lation between components. Using i to indicate the order of the components, and h is

defined using the white normal noise εi with variance σ2
h, as follows:

hi =

P∑
j=1

ajhi−j + εi, (4.3)

Here, a ≡ {a1, a2, ..., aP } is called the AR coefficient, and P is the order of the AR model

and indicates the number of past components explicitly affecting the current component.

The matrix and vector representation of Eq. 4.3 is listed as follows:

Ah = ε. (4.4)

For example, when P = 2, the matrix A is written as

A =



1 0 0 0 · · ·

−a1 1 0 0 · · ·

−a2 −a1 1 0 · · ·

0 −a2 −a1 1 · · ·
...

...
...

...
. . .


. (4.5)
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From Eq. 4.4, h is a sample from the following multi-dimensional normal distribution.

p(h|a, σ2
h) =

1√
(2πσ2

h)Ndet(A>A)−1
exp

(
−h

>A>Ah

2σ2
h

)
. (4.6)

We can know that the mean of h is 0 and the variance-covariance matrix is V h =

σ2
h(A>A)−1.

4.3 Method in Time Domain

4.3.1 Estimation method based on empirical Bayes

Considering that y contains observation noise, we aim at recovering h in the time do-

main. From Eq. 4.1, the probabilistic density of y under the condition that h is given

forms the following normal distribution.

p(y|h, σ2
n) =

1√
(2πσ2

n)N
exp

[
−(y −Wh)>(y −Wh)

2σ2
n

]
. (4.7)

The joint probability of y and h is derived using Eqs. 4.6 and 4.7 as follows:

p(y,h|a, σ2
n, σ

2
h) =

exp
[
− (y−Wh)>(y−Wh)

2σ2
n

− h
>A>Ah

2σ2
h

]
(2π)N

√
σ2
n
Nσ2

h
N

det(A>A)−1

. (4.8)

In general, {σ2
n, σ

2
h,a} is estimated as the maximum likelihood estimator (MLE) using

the probabilistic density of y obtained by marginalizing Eq. 4.8 with respect to h.

p(y|a, σ2
n, σ

2
h) =

∫
p(y,h|a, σ2

n, σ
2
h)dh

=
1√

(2π)NdetΛ
exp

(
−y
>Λ−1y

2

)
, (4.9)

Λ = σ2
hW (A>A)−1W> + σ2

nI. (4.10)

Assigning the observed value of y to Eq. 4.9 and considering it as a function of the

parameters, Eq. 4.9 is called a likelihood function, and its logarithm is a log-likelihood

function. The value that maximizes the likelihood function, and hence the value that

maximizes the log-likelihood function, is the ML estimate. Using the ML estimate of

{σ2
n, σ

2
h,a}, h can be determined as the maximum a posteriori (MAP) estimator ĥMAP
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, which maximizes the posteriori probability of h as follows:

p(h|y,a, σ2
n, σ

2
h) =

p(y|h, σ2
n)p(h|a, σ2

h)

p(y|a, σ2
n, σ

2
h)

∝ exp

[
−1

2

(
h− ĥMAP

)>
V −1
h|y

(
h− ĥMAP

)]
, (4.11)

ĥMAP =

(
W>W

σ2
n

+
A>A

σ2
h

)−1
W>y

σ2
n

, (4.12)

V h|y =

(
W>W

σ2
n

+
A>A

σ2
h

)−1

. (4.13)

We can use ĥMAP as the recovery result of h by using the ML estimate {σ̂2
n, σ̂

2
h, â} as the

values of the parameters in Eq. 4.12. Thus, the scheme of Bayesian estimation using the

parameters estimated based on marginal likelihood is called empirical Bayesian method.

4.3.2 Algorithm implementation by EM scheme

The MLE based on Eq. 4.9 generally requires iterative calculations, and each calcula-

tion is a little complicated. Instead, we can use an EM algorithm where the MLE of

the parameter and the MAP estimator of the latent variable are alternately updated by

iterative calculation. In the EM algorithm, observation and latent variables are collec-

tively referred to as complete data. The EM algorithm is effectively executed against

the problem that the MLE of the parameter is easy when complete data is observed.

Eq. 4.8 corresponds to the probability of complete data, and the log-likelihood function

of complete data is formulated from Eq. 4.8 as follows:

lnLc(σ
2
n, σ

2
h,a)

= Const.− N lnσ2
n

2
−
N lnσ2

h

2
− ln det(A>A)−1

2

−(y −Wh)>(y −Wh)

2σ2
n

− h
>A>Ah

2σ2
h

. (4.14)

The following E-step and M-step are repeated until convergence.

In the E-step, we derive the expectation of Eq. 4.14 with respect to the posteriori

probability of h, p(h|y, σ̂2
n

(p)
, σ̂2

h

(p)
, â(p)), where Θ̂

(p) ≡ (σ̂2
n

(p)
, σ̂2

h

(p)
, â(p)) is the estimate

determined at the pth iteration. As a result, this expectation of Eq. 4.14, called the Q
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function, can be derived as follows:

Q(Θ|Θ̂(p)
)

= Const.− N lnσ2
n

2
−
N lnσ2

h

2
− ln det(A>A)−1

2

−y
>y + 2y>Wĥ

(p)
+ traceWV̂

(p)
h W

>

2σ2
n

−traceA>AV̂
(p)
h

2σ2
h

, (4.15)

ĥ
(p)

=

W>W

σ̂2
n

(p)
+
Â

(p)>Â
(p)

σ̂2
h

(p)

−1

W>y

σ̂2
n

(p)
, (4.16)

V̂
(p)
h = ĥ

(p)
ĥ

(p)> +

W>W

σ̂2
n

(p)
+
Â

(p)>Â
(p)

σ̂2
h

(p)

−1

. (4.17)

In the M-step, Θ̂ is updated so as to maximize the Q function derived as Eq. 4.15 with

respect to Θ. For a, we need to maximize the 4th and 6th terms on the right side of

Eq. 4.15. When the number of observation is sufficiently large, since the 6th term is

O(N), the 4th term can be neglected when compared with the 6th term. Therefore, in

this study, we update â to satisfy the following equation.

trace
∂(A>A)

∂a
V̂

(p)
h = 0. (4.18)

Both variances are updated as follows:

σ̂2
n

(p+1)
=
y>y + 2y>Wĥ

(p)
+ traceWV̂

(p)
h W

>

N
, (4.19)

σ̂2
h

(p+1)
=

traceÂ
(p+1)>Â

(p+1)
V̂

(p)
h

N
. (4.20)

The above two steps are repeated and the update is stopped when the change of Θ̂

becomes sufficiently small. Θ̂
(p)

obtained when converging corresponds to the MLE,

and also ĥ
(p)

is the MAP estimator.

4.4 Method in Frequency Domain

Considering that observed values in this problem correspond to the convolution of un-

known parameters, we can also recover h in the frequency domain. In the frequency



49

domain, we can rewrite Eq. 4.1 as:

Y F
i = WF

i H
F
i +NF

i . (4.21)

Here, if WF
i is sufficiently large, we can solve h as

ĤF
i = Y F

i /W
F
i . (4.22)

But if WF
i is sufficiently small, we cannot solve h by Eq. 4.22, which means that if only a

part of the frequency band of the scatterer reflectance distribution is observed, we need

to apply the AR model in the frequency band, and further consider a way to estimate

the AR parameters.

The power spectrum density (PSD) P (f) of the AR model, which is the expectation

value of the square of frequency component can theoretically be formulated as follows:

P (f) =
σ2
h

|1−
∑P

i=1 aie
−j2πfi|2

. (4.23)

Note that Eq. 4.22 multiplied by its complex conjugate, we can calculate the value of the

power spectrum, then average for multiple observation sequences to obtain the power

spectrum density P̂i. However, P̂i here is raised by the level of observation noise with

variance σ2
n.

Thus, evaluation function J after logarithmic transformation can be defined as:

J ≡ Σ{lnP̂i − lnP (fi)}2 = Σ{lnP̂i − lnσ2
h − ln|1−

P∑
i=1

aie
−j2πfi|2}2. (4.24)

We can minimize this evaluation function with a and σ2
h. Now that it cannot be solved

theoretically, this time we use an iterative method to alternately update a and σ2
h in the

direction of the steepest descent [181]. Therefore, the estimated overall values {σ̂2
n, σ̂

2
h, â}

are obtained, and h can be recovered by Eq. 4.12 using these parameters.
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4.5 Numerical Evaluation for Time Domain Method

4.5.1 Evaluation method

Numerical performance evaluation of our method was done using ideal data satisfying

Eq. 4.1. As the number of cycles included in the transmission pulse increases, the ob-

served frequency band decreases, and it becomes difficult to estimate the AR parameters

and hence, to recover h. Impulse, 1 cycle of 5 MHz and 5 cycles of 5 MHz were used as

the transmission pulse. Of the above, two 5 MHz pulses were apodized by the Gaussian

window function. Observing the echo generated by impulse transmission, it is expected

that h can be almost completely restored. This is because the entire frequency band

can be observed. Observation data y was prepared by the following procedure.

1. We set a and σ2
h, and use these to generate h as AR time series.

2. h is convoluted with the transmission pulse selected from the above three, and the

result corresponds to y with no noise.

3. We set σ2
n and use it to generate Gaussian noise. This noise is added to y generated

above to obtain observation data.

Transducer characteristics, beam focusing and propagation attenuation were ignored

and data exactly matched to the evaluation model were used for evaluation.

Performance evaluation that depends on the order of AR model and AR coefficient

will be a subject for the future, and we set the order to 2 and fixed the parameters

a = {0.6, 0.3} and σ2
h = 0.02. In that case, each value of generated h remained almost

in the range of ±1. We also set the noise variance σ2
n = 0.02, and the peak amplitude

of the transmission pulse was normalized to 1.0. Under this condition, the standard

deviation of noise was 2.5% of the standard deviation of y when transmitting a pulse

consisting of one cycle, and 1.2% when transmitting a pulse consisting of 5 cycles. Since

it is assumeed that the observation noise is electric noise, we can suppose that σ2
n is

known in advance with no practical problems.

4.5.2 Results

In this study, 10 time series of echo consisting of 1000 sampling values were used. The

time sampling rate is about 100 points per 5 MHz sinusoidal cycle common to all process-

ing. For all trials performed, we confirmed that the EM algorithm had almost converged

by 500 iterative updates, therefore we adopt ĥ
(500)

as an estimation result and simply
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(a) (b)

Figure 4.1: One series of h consisting of 1,000 samples for time domain method is shown
in (a), and its power spectrum is shown in (b). The red curve in (b) indicates the
theoretical power spectrum of the set AR model.

(a) (b)

Figure 4.2: The echo y generated by convolving the impulse with h and adding obser-
vation noise is shown in (a) and its PSD is shown in (b).

write it as ĥ. An example of the setting value of h to be recovered is shown in Fig. 4.1.

Instead of ensemble average, the power spectrum in Fig. 4.1(b) was calculated by taking

the average value of 10 series of h. PSD of the AR model can be formulated as Eq. 4.23

and the theoretical value corresponding to the assumed AR model is shown in Fig. 4.1(b)

as a red curve.

First, we attempted to restore ĥ when the transmission pulse is impulse. In this case, al-

most all frequencies are observed, and only observation noise hinders estimation. Fig. 4.2

shows the echo signal y and its power spectrum. Since the observation noise exists, the

level of high frequency components in Fig. 4.2(b) rise compared to the power spectrum

of h in Fig. 4.1(b). The ĥ corresponding to Fig. 4.1(a) is indicated by a red line in

Fig. 4.3(a), and its power spectrum is also shown in Fig. 4.3(b), in which the red curve

and the green curve show respectively the theoretical values of the set AR model and the

theoretical values of the estimated AR model, both of which are approximately equal.

Estimated AR parameters are â = {0.618, 0.278} and σ̂2
h = 0.0198. From this result, it
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(a) (b)

Figure 4.3: ĥ restored for impulse transmission is indicated by red line in (a) and blue
line is set value. The PSD of the restored result (red line) in (a) is shown in (b) using
blue curve, the red curve corresponds to the theoretical value of the set AR model, and
the green curve corresponds to the theoretical value of the estimated AR model.

can be seen that the AR model can be estimated with extremely high accuracy. Regard-

ing the recovery of h, it is difficult to obtain the white noise component in principle, and

in the high frequency band in Fig. 4.3(b), the restoration error appears conspicuously.

Next, we estimated the AR parameters and restore h from the echo generated by one

cycle pulse transmission. Fig. 4.4 presents one cycle pulse in time and frequency domain.

As in Fig. 4.2, y and its PSD are shown in Fig. 4.5. Comparing Fig. 4.2 and Fig. 4.5,

it can be seen that one cycle pulse transmission restricts the observable frequency band

to a low range. The restored ĥ is shown in Fig. 4.6, and the estimated parameters are

â = {0.589, 0.313} and σ̂2
h = 0.0185, and the estimation error is slightly larger than

that of impulse transmission. Although it can be easily predicted that the restoration

problem from very limited observation is a difficult task, AR model can be estimated

with high accuracy. The reason for this is presumed to be that the local frequency

component has sufficient information to restore the AR model as extrapolation. This

(a) (b)

Figure 4.4: One cycle pulse: (a) time waveform; (b) frequency domain.
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(a) (b)

Figure 4.5: The echo y generated by convolving the one cycle pulse with h and adding
observation noise is shown in (a) and its PSD is shown in (b).

(a) (b)

Figure 4.6: ĥ restored for one cycle pulse transmission is indicated by red line in (a)
and blue line is set value. The PSD of the restored result (red line) in (a) is shown in
(b) using blue curve, the red curve corresponds to the theoretical value of the set AR
model, and the green curve corresponds to the theoretical value of the estimated AR
model.

characteristic seems to be weakened as the order of the AR model increases, that is, the

degree of freedom of the AR model increases. In Fig. 4.6(b), there are little differences

between the red curve showing the theoretical PSD of the true model and the green

curve of the estimated model. Comparing Fig. 4.6(b) with Fig. 4.5(b), it is clear that

the PSD of ĥ becomes obviously a wide band and approaches the PSD of the set value

in Fig. 4.1. In other words, a part not in the high frequency band of the unobservable

frequencies can be effectively restored by assuming the AR model.

Finally, we estimated the AR parameters and restore h from the echo generated by

five cycles pulse transmission. Fig. 4.7 presents five cycles pulse in time and frequency

domain. y and ĥ for 5 cycles pulse transmission are shown in Figs. 4.8 and 4.9. The

parameters are estimated as â = {0.546, 0.365} and σ̂2
h = 0.0168. Since the frequency

band to be observed is further limited, the estimation error of the parameters is slightly
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(a) (b)

Figure 4.7: Five cycles pulse: (a) time waveform; (b) frequency domain.

(a) (b)

Figure 4.8: The echo y generated by convolving the five cycles pulse with h and adding
observation noise is shown in (a) and its PSD is shown in (b).

(a) (b)

Figure 4.9: ĥ restored for five cycles pulse transmission is indicated by red line in (a)
and blue line is set value. The PSD of the restored result (red line) in (a) is shown in
(b) using blue curve, the red curve corresponds to the theoretical value of the set AR
model, and the green curve corresponds to the theoretical value of the estimated AR
model.

larger than the estimation error of the one cycle transmission. However, the theoretical

PSD computed using â and σ̂2
h is sufficiently close to that of the true model.
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The above results are better than expected and it was confirmed that the empirical

Bayesian method is very useful for latent variable estimation where the observation is

limited and the parameters of the prior knowledge of the latent variable are unknown

[182]. Our subject in this chapter can be interpreted as extrapolation problem of PSD

observed in the limited narrow frequency region.

4.6 Numerical Evaluation for Frequency Domain Method

4.6.1 Evaluation method

Like section 4.5.1, the setting value of h to be recovered is the same, which the parame-

ters are a = {0.6, 0.3} and σ2
h = 0.02. In this case, an example of the setting value of h to

be recovered is shown in Fig. 4.10(a), and the power spectrum is shown in Fig. 4.10(b).

For y, the noise variance is σ2
n = 0.02, and we use 1 cycle of 5 MHz and 5 cycles of 5

MHz as the transmission pulse.

4.6.2 Results

We attempted to restore h using frequency domain method. First, we consider that the

transmission pulse is one cycle pulse. In this case, y and its square amplitude of y in

frequency domain are shown in Fig. 4.11. The restored ĥ is shown in Fig. 4.12, and

the estimated parameters are â = {0.6407, 0.6404} and σ̂2
h = 0.0875, and the estimation

error is slightly larger than that of time domain method.

(a) (b)

Figure 4.10: One series of h consisting of 1,000 samples for frequency domain method
is shown in (a), and its power spectrum is shown in (b). The red curve in (b) indicates
the theoretical power spectrum of the set AR model.
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(a) (b)

Figure 4.11: The echo y generated by convolving the one cycle pulse with h and adding
observation noise is shown in (a) and its square amplitude of y in frequency domain is
shown in (b).

(a) (b)

Figure 4.12: ĥ restored for one cycle pulse transmission is indicated by red line in (a)
and blue line is set value. The PSD of the restored result (red line) in (a) is shown in
(b) using blue curve, the red curve corresponds to the theoretical value of the set AR
model, and the green curve corresponds to the theoretical value of the estimated AR
model.

After that, we attempted to restore h when the transmission pulse is five cycles pulse.

In this case, y and its square amplitude of y in frequency domain are shown in Fig. 4.13.

The restored ĥ is shown in Fig. 4.14, and the estimated parameters are â = {0.6753, 0.6757}
and σ̂2

h = 0.0883, and the estimation error is considerably larger than that of the time

domain method.

For comparison, the estimates simply restored by Eq. 4.2 are shown in Fig. 4.15, where

the singular values of W greater than σ2
n are used to define W+. As a result of ob-

servation noise amplification, ĥ shown by a red line has large noisy component. These

results relatively indicate the effectiveness of the application of our method, including

the method in time domain and the method in frequency domain.
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(a) (b)

Figure 4.13: The echo y generated by convolving the five cycles pulse with h and adding
observation noise is shown in (a) and its square amplitude of y in frequency domain is
shown in (b).

(a) (b)

Figure 4.14: ĥ restored for five cycles pulse transmission is indicated by red line in (a)
and blue line is set value. The PSD of the restored result (red line) in (a) is shown in
(b) using blue curve, the red curve corresponds to the theoretical value of the set AR
model, and the green curve corresponds to the theoretical value of the estimated AR
model.

Regarding the results of time domain method, the results of frequency domain method

maintain a relatively large error. The proposed time domain method is a good can-

didate for reflectivity recovery applications at least under the condition adopted this

time. However, since the evaluation is a result only for second order AR model and the

evaluation by statistical analysis is not performed, more quantitative evaluations need

to be conducted.
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(a) (b)

Figure 4.15: ĥ obtained by pseudo-inverse filtering for one cycle pulse transmission is
shown in (a) and that for five cycles pulse transmission is shown in (b). Red line indicates
ĥ and blue line indicates set h.

4.7 Conclusions

In this study, in order to restore scatterer distribution from ultrasonic echo, the empir-

ical Bayesian method was first adopted. Although AR model identification is usually

performed directly on the observed time series, in this problem, it is a latent time series

that model identification should be done, and the identification is impossible with the

well-known Levinson-Durbin algorithm. In identifying and restoring the latent time se-

ries in this study, an ill-posed characteristic is strong, that is, observations are largely

restricted. However, we confirmed through ideal data simulations that the empirical

Bayes could properly solve the problem.

The focus then drifted to the frequency domain technique, which using the evaluation

function J to get the wanted parameters. As a consequence, the restoration of h can

be retrieved from the MAP estimation. Indeed, due to their feasibility, they allow

appropriate modeling the reflectivity to some extent. However, the accuracy of this

method is inferior to the empirical Bayesian-based method in the time domain.

The simulations were carried out only under restricted conditions, and there are still

some important matters deserved to be confirmed. First, the performance of the empiri-

cal Bayes against the higher order AR models should be evaluated. Various complicated

conditions, for example, the characteristics of a transducer and a propagation medium

should be taken into consideration. To do so, we are advancing simulations based on

finite element method (FEM) using PZFlex, a standard FEM code for ultrasound anal-

ysis. For the reason that the echo generation process is complicated and depends not

only on reflection but also on transmittance and diffraction, it is difficult in principle

to restore the reflectance of the scatterers purely. However, the obtained ĥ contains
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information on the tissue, and we expect to be able to diagnose tissue properties from

the change ĥ.

In the next stage, we are going to examine a new imaging system which presents organ

boundaries and inside the organ separately. By subtracting the echo corresponding to

the image of the inside the organ, which is obtained by the method in this study, from the

original echoes, and subsequently applying a method to extract the organ boundaries,

the imaging system above is expected to be constructed.



Chapter 5

Strong Scatterer-Based

Super-Resolution Ultrasound

Imaging

5.1 Introduction

Ultrasound imaging is going through a technology-enabled revolution [183–185]. With

the availability of real-time channel data acquisition and software beamforming, new op-

portunities for improving image quality, more accurate quantification, and higher frame

rates in ultrasound imaging have emerged. For instance, transmitting a long pulse

wave to enhance the SNR such as chirp-coded imaging [186, 187] or maximum-length

sequence (M-sequence)-coded imaging [188, 189]; synthetic aperture (SA) imaging to

achieve dynamic focusing in both transmitting and receiving [190–192]; 2D microma-

chined ultrasound array transducers to generate 3D ultrasound images [193, 194]; com-

pounding imaging to reduce the clutter and artifacts [195–197]; and non-linear imaging

to enhance the resolution and contrast [198–200]. Therefore, by exploiting new flexi-

bility in the channel data combined with increased processing capabilities, there is still

considerable potential for further improvement in ultransound imaging quality.

We proposed the super resolution FM-chirp correlation method (SCM) [201] as a super-

resolution ultrasound imaging technique. In the method, multiple transmission/recep-

tion operations (TRs) for each imaging line are required as a focused beam, which

reduces the frame rate. In order to improve the frame rate, the synthetic aperture-SCM

(SA-SCM) was proposed. In this scheme, a divergent wave is transmitted and it was

demonstrated by simulations that the SA-SCM offers both high frame rate and high

60
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range resolution performance. However, these methods generate the lateral discontinu-

ities, because the SCM processing is performed line by line in the image. On the other

hand, the SCM processing uses the phase information of the different frequency carrier

waves to realize super resolution in the range direction. Hence, high-frequencies are

desired to improve the range resolution. In addition, a high-frequency pulse is desired to

generate a narrower beam, which helps to improve the lateral and contrast resolutions.

However, rapid attenuation and grating lobes are issues which are still to be solved.

In order to solve the lateral discontinuities, in this study, we propose another version

called SCM-weighted SA [202] in which the SCM is performed on each echo received by

each transducer element and the SCM result is used as a weight for DAS beamforming in

the subsequent SA step. The SCM-weighted SA can generate multiple B-mode images

each of them corresponds to each carrier frequency, and the appropriate low frequency

images among them have no grating lobes.

The multiple frequency B-mode images can be generated by the SCM-weighted SA

and the frequency characteristics of the biological tissue are expected to be extracted

from those images. Alternatively, in order to improve the SNR and the contrast, those

images can be integrated into one image. Thereafter in this study, not just simply

averaging multiple frequency images obtained by the SCM-weighted SA, we propose a

new method called SCM-weighted SA-SCM. In the SCM-weighted SA-SCM, the SCM

processing is applied again to the image lines of the multiple frequency images from the

SCM-weighted SA instead of the application of simple average processing. We show the

experimental results and indicate that the SCM-weighted SA-SCM further improves the

spatial resolution and removes the grating lobes shown in the high frequency images

derived by the SCM-weighted SA.

5.2 Methods

5.2.1 SA beamforming method

One of the major methods for beamforming is focusing. In transmission, delays are

applied to control the contributions coming from all transducer’s elements to achieve a

given point, called focal point in tranmission. In reception, the echoes received by the

elements (raw channel data) are delayed so that they sum contributions coming from the

same given point of the medium, called the focal point in the reception. Beamforming

is more extensive in reception than in transmission. During reception, the raw channel

data can be stored, and the algorithms can be selected to improve the results according
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Figure 5.1: Schematic of synthetic aperture imaging.

to the postprocessing. However, in transmission, once the elements have been excited,

we cannot control the process of beamforming anymore and preprocessing is limited.

We use hereafter the DAS [203] as a reception beamformer, which is the most conven-

tional method. As shown in the Fig. 5.1, a spherical diverging wave is emitted by one

element in a linear array, and after a complex combination of reflection, refraction, scat-

tering and attenuation, the echo is received by all elements in the linear array. As a

reception dynamic focus, the amount of delay time applied to each array element with

respect to the focus point (x, y) can be calculated by:

τ =

√
(xi − x)2 + (y0 − y)2 +

√
(xj − x)2 + (y0 − y)2

c
, (5.1)

where (xi, y0) is the coordinate of the ith element in the transmitting array, (xj , y0) is

the coordinate of the jth element in the receiving array and c is the speed of sound in

the propagation medium.

5.2.2 Original SCM

MUSIC algorithm [204, 205] is the most known method in the category of eigenspace-

based beamformers. Its main development is based on the idea of separating the

eigenspace of the covariance matrix of the raw channel data into signal and noise com-

ponents using prior information about the covariance of the noise. The original SCM

based on the MUSIC algorithm will be introduced.

In transmission, an FM-chirp pulse s(t) = Re[x(t)ejω0t] with a center frequency of ω0

is transmitted, and in reception, the echo signal y(t) in the RF (radio-frequency)-band



63

received from D point scatterers, which can be formulated as:

y(t) =

∫ ∞
−∞

h(τ)s(t− τ)dτ, (5.2)

h(t) =

D∑
i=1

hiδ(t− τi), (5.3)

where {hi} is the set of all scatterers reflectances, {τi} is the set of the propagation delay

times for the echoes of all scatterers, and δ(·) is the Dirac delta function. For the sake

of generality, we consider the frequency characteristics of both the transducers and the

propagation paths are omitted. The received FM-chirped echo is expressed in the form

of a baseband IQ (in-phase/quadrature) signal ν(t), and a compressed signal z(t), can

be described:

ν(t) =
D∑
i=1

hix(t− τi)e−jω0τi + n(t), (5.4)

z(t) =

D∑
i=1

hir(t− τi)e−jω0τi +m(t), (5.5)

where r(t) is the auto-correlation function of x(t) in the base band that takes complex

values. The observation noise n(t) is assumed to be Gaussian white noise with variance

σ2, and m(t) is the complex-valued cross-correlation of x(t) and n(t).

Note that in the form of Eq. 5.5, we assume that the echo from each scatterer has a

phase that depends on both the carrier frequency ω0 and the scatterer’s position. To

make the scatterer separation based on the phase information possible, different car-

rier frequencies were applied. In this case, the sets of {z(t)} are obtained by vary-

ing ω0. Further simplifying Eq. 5.5 by a discrete representation, we use the com-

pressed echo vector z ≡ [z(t1), z(t2), · · · , z(tM )]>; the steering vector ri ≡ [r(t1 −
τi), r(t2 − τi), · · · , r(tM − τi)]

> to indicate the compressed echo of the ith scatterer,

and the noise vector m ≡ [m(t1),m(t2), · · · ,m(tM )]>, where M is the number of sam-

pling time. Using the array manifold matrix Γ ≡ [r1, r2, · · · , rD] and the gain vector

g ≡ [h1e
−jω0τ1 , h2e

−jω0τ2 , · · · , hDe−jω0τD ]>, z and its variance-covariance matrix R can

be formulated as follows:

z = Γg +m, (5.6)

R = ΓGΓ> +Rn, (5.7)

where G ≡ Eω0

[
ggH

]
, Rn ≡ En

[
mmH

]
= σ2R0, E[·] denotes the expectation op-

erators, the superscript > and H denote the transpose of a vector or matrix and the

conjugate transpose, respectively. It is clearly seen that the echoes and the observation

noise are statistically independent. The symmetrical matrix R0 consists of r(t), and its
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(k, l)th element is r(tk− tl). The covariance matrix R that can be decomposed by using

the eigenvalues {λi} and the eigenvectors {ei}, which can be expressed as follows:

Rei = λiR0ei, i = 1, 2, · · · ,M. (5.8)

When M > D, the column vectors of Γ are linearly independent, and thus the rank of

R−Rn = ΓGΓH is D. Therefore, R has D generalized eigenvalues that are greater than

σ2 and M −D generalized eigenvalues that are equal to σ2. The set of D eigenvectors

{ei}Di=1 that corresponds to the D largest eigenvalues spans the signal subspace. The

remaining M −D eigenvectors {ei}Mi=D+1 thus span the noise subspace.

The SCM estimates the true delay using the MUSIC algorithm, the orthogonality be-

tween the steering vector and the noise subspace can be evaluated by varying the delay

time of the steering vector as per a super-resolution delay profile S(ti), which is defined

as:

S(ti) ≡
rHi R

−1
0 ri∑M

j=D+1 |rHi ej |2
. (5.9)

If ti matches the actual scatterer position, the corresponding ri is then orthogonal to

{ej}Mj=D+1, and the results of Eq. 5.9 thus become sharp peaks. In this scheme, D must

be the number of scatterers, and in practical applications, e.g., the Akaike’s information

criterion (AIC) [206–208] or minimum description length (MDL) criterion [209, 210] are

used to determine D. In estimating R, the implicit estimation of Rn can be stabilized

by performing multiple transmissions, known as snapshots, all of which have the same

carrier frequency. However, when the real-time processing requirements are considered,

it is better that the number of TRs is small; therefore, in this study, we omitted the

snapshot step. In addition, to prevent artifacts being caused through periodicity, we

changed the transmission carrier frequency at random. Using the K transmissions with

the randomly shifted frequency band, we then estimate R as an ensemble average of

R̂ = (
∑K

k=1 zkz
H
k )/K. Here, zk represents a compressed echo vector that corresponds

to the kth transmission.

5.2.3 SA-SCM

The SCM performs super-resolution processing of each imaging line. Therefore, it is

necessary to transmit multiple FM chirp pulses with different frequency bands in each

direction that correspond to an imaging line; see Fig. 5.2(a). If an image consisting of N

lines and K transmissions is formed for each direction, then N ×K transmissions must

be made to generate the complete image. This greatly reduces the frame rate of the

moving image obtained. To reduce the number of transmission and reception processes

that are required, the SCM is extended to an SA-based version, called SA-SCM. In
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(a)

(b)

Figure 5.2: Transmission procedures for super-resolution FM-chirp correlation method
(SCM) and synthetic aperture SCM (SA-SCM): (a) focused pulse transmission for SCM;
(b) unfocused pulse transmission for SA-SCM.

SA, unfocused pulses are transmitted over a wide range from the sub-aperture elements

[Fig. 5.2(b)], and for each of these transmission events, echoes from the entire imaging

area are received simultaneously by all elements. Dynamic focusing is performed, e.g.,

using DAS beam forming. By randomly changing the frequency band for each transmit-

ted FM-chirp pulse in the SA process, the total number of transmissions can be reduced.

The N×K times transmission events in the SCM described above are reduced K-fold in

the SA-SCM. The echo signals with different frequencies that were obtained by dynamic

focusing processes corresponding to each line are used as the inputs of the SCM.

To avoid frequency deviations related to the positioning of the sub-aperture used for

transmission, a frequency band is assigned randomly to the position of this sub-aperture.

For super-resolution imaging, the SCM algorithm uses the carrier phase information

along the imaging line. The carrier that is contained in the compressed echo signal may

be disturbed by dynamic focusing and this would cause super-resolution performance

degradation.

5.2.4 SCM-weighted SA

In the SCM and SA-SCM, the ultrasound image is a collection of all the frequencies

formed by each line. Therefore, discontinuities of the image brightness are likely to
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occur in the lateral direction. Besides, for the SCM and SA-SCM, the effect of the

grating lobes is unavoidable because the results from all the carrier frequencies are used

to synthesis the final result. To avoid these lateral discontinuities and reduce the number

of SA processing steps, we can reverse the processing order of the SCM and the SA in

the SA-SCM method; this reversal processing causes the SCM to be applied firstly to

each echo that is measured at each transducer element, and the results from the SCM

are then used as the input for SA processing. However, the SCM results at each element

contain no phase information and are simply positively-valued signals. Therefore, the

cancellation of the positive and negative signals, which is expected to reduce the number

of unwanted signals, is less likely to occur. For further improvements, a strategy in which

the SCM results are used as weights for SA processing can be considered, and this version

is called SCM-weighted SA [202].

As the SCM processing is performed first for each element, the number of SA operations

can be reduced. Therefore, SCM-weighted SA also offers the potential to reduce the

computation time required for each image. But it should be noted that in the SCM-

weighted SA method, in contrast to the SA-SCM, the transmission position at the

transducer must be fixed. When different frequency pulses are transmitted from different

positions, the positions of the corresponding reflected waves are shifted between the

echoes of the different frequencies received by each element, and SCM processing then

cannot be executed in the SCM-weighted SA.

5.2.5 SCM-weighted SA-SCM

As stated above, in order to reduce the lateral discontinuities, the SCM-weighted SA

method was proposed. In the SCM-weighted SA, it can generate multiple frequency

images, and the grating lobes can be suppressed in the low frequency images. When

the multiple frequency images are averaged to generate high SNR B-mode image, its

spatial resolution becomes an intermediate value of the original multiple images and

the grating lobe remains. Instead of simple averaging, we adopt the SCM method to

integrate the multiple images obtained by the SCM-weighted SA. Namely, the SCM is

applied again to each line signals in the results of the SCM-weighted SA. We call it SCM-

weighted SA-SCM, which gives more favorite features such as suppression of grating

lobes, reduction of noise and further improvement of the range resolution compared to

the existing methods. Unlike the SCM-weighted SA, the computational complexity of

the SCM-weighted SA-SCM has dramatically increased.
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5.3 Experiments

5.3.1 Experimental setup

In the experiments, the transmission and reception sequences were generated by using an

experimental platform for medical ultrasound (RSYS0003, Microsonic Inc., Japan) with

a sampling rate of 31.25 MHz, as shown in Fig. 5.3. The number of transducer elements

used for both transmission and reception is 64, while the element pitch is 0.315 mm.

A linear array probe (T0-1599, Nihon Dempa Kogyo Co., Ltd., Japan) was also used.

This probe’s center frequency is 7.5 MHz and its specific bandwidth is 70%. The signal

processing required was performed offline by using MATLAB software.

(a)

(b) (c)

Figure 5.3: Experimental conditions: (a) experimental system used for the measure-
ments; (b) ultrasound experimental platform RSYS0003; (c) illustration of the probe.
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Table 5.1: Parameter settings for transmitted FM-chirp pulse

Parameter Value

Frequency band width 2 MHz

Chirp pulse duration 5 µs

Variation range of center freq. 6.5 to 8.5 MHz

Applied voltage 20 V

Number of transmission 15

Apodization Hanning window

5.3.2 Experiment using vinyl-coated metal wire

Considering the low reflectance of biological tissue, we used a vinyl-coated metal wire

instead of a pure metal wire for the imaging target in this experiment. The vinyl-coated

metal wire with a diameter of 1.5 mm that was placed in the water at a distance of

10 mm from the transducer as an imaging target, as shown in Fig. 5.4. In fact, the

reflection coefficient of the vinyl coated metal wire used in this study was not so high,

and we confirmed that saturation of the echo signal did not occur. The divergent waves

were transmitted by using a central sub-array composed of 8 elements with a focal point

of −0.63 mm with respect to the sub-array width of 2.52 mm. Because the probe element

spacing is wider, it is likely that grating lobes will be formed. The frequency band of

the FM chirp pulse that is used in the experiment is set at a relatively narrow 2 MHz,

as described in the Table 5.1. Although the frequency band that is used is not the

most effective band for all the transmissions, it was confirmed that it can be performed

appropriately.

Figure 5.4: Experiment using vinyl-coated metal wire.
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5.3.3 Experiment using phantom

Subsequently, we present the experimental results obtained by using a soft tissue-

mimicking phantom (US-2 multi-purpose phantom N-365; Kyoto Kagaku Co., Ltd.,

Japan, see Fig. 5.5), with a speed of sound of 1, 432 m/s, acoustic impedance of 1.38

Rayl and attenuation of 0.59 dB/cm/MHz at 25◦C. As shown in Fig. 5.6, the phantom

includes six nylon wires which will be used for experiments, each of which has a diameter

of 0.05 mm. The distances between these wires are 0.5 mm, 1.0 mm, 2.0 mm, 3.0 mm

and 4.0 mm, as measured from the side that is near to the phantom’s surface. The

(a)

(b)

Figure 5.5: Phantom N-365: (a) schematic diagram; (b) target layout.
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Figure 5.6: Experiment using soft tissue-mimicking phantom (the black line part of the
Fig. 5.5(b)).

transmission condition, including the frequency band and the number of transmission,

is also as same as that in the experiments using the vinyl-coated metal wire.

5.4 Experimental Results and Discussion

5.4.1 Results of vinyl-coated metal wire

Based on the original SCM reviewed above, the dimension D of the signal subspace

theoretically corresponds to the number of point scatterers. Therefore, we set D = 1

uniformly for all SCM processing in the wire experiments.

As mentioned in Introduction, we want to detect a strong scatterer with high resolution

and suppress unnecessary signals such as speckles. In the radar signal processing, a

technique called CFAR (Constant False Alarm Rate) [211] is often used to keep the false

alarm probability constant by making the fluctuation of the unnecessary signal uniform.

Therefore, in this study, we also show the B mode imaging result normalized in ampli-

tude by the fluctuation range of grating lobes and speckles by each method (adopting

standard deviation). The results of the metal wire experiment by this normalization

method are shown in Fig. 5.7. In the case of the SA and SCM-weighted SA, the images

that were acquired by using the average of 15 pulse transmissions, with each transmis-

sion correspondings to each frequency. In Fig. 5.7(b), the SA-SCM produces the result

with high range resolution and lateral discontinuity. Although the SCM-weighted SA

(Fig. 5.7(c)) offers good continuity in the lateral direction, the artifacts corresponding to

the grating lobes are remarkable. Clearly, the SCM-weighted SA-SCM (Fig. 5.7(d)) pro-

posed in this study presents superiority over the SCM-weighted SA in terms of improving

the range resolution and lowering the artifacts of the final image.
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To quantitatively examine the range resolution, Fig. 5.8 shows the cross-sectional view

in the range direction near the target. In this figure, we using standard deviation

normalization, specifically by subtracting the corresponding noise from the signal, and

then normalizing via dividing by the corresponding standard deviation. From the figure,

it can be confirmed that the SCM-weighted SA-SCM has a very high resolution in the

range direction and that the resolution is somewhat higher than both the SA-SCM and

SCM-weighted SA.

To confirm artifacts corresponding to grating lobes, the results of the SA for different

frequencies are shown in Figs. 5.9(a) and (b). From the results, we can observe that as the

frequency grows higher, grating lobes stand out conspicuously in the SA. Since the SA-

SCM uses these information line-by-line to perform the SCM processing, these grating

lobes cause artifacts. The SCM-weigthed SA can similarly generate B-mode images for

each transmission, so the results for different frequencies of the SCM-weighted SA are

shown in Figs. 5.9(c) and (d), the grating lobe was not so noticeable in Fig. 5.9(c),

but there is a concern when using a higher frequency as shown in Fig. 5.9(d). For

(a) (b)

(c) (d)

Figure 5.7: B-mode images of metal wire acquired by (a) averaged SA; (b) SA-SCM; (c)
averaged SCM-weighted SA; and (d) SCM-weighted SA-SCM. Color bar shows in linear
range, not in dB.
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Figure 5.8: Comparison of range resolution corresponds to Fig. 5.7.

(a) (b)

(c) (d)

Figure 5.9: B-mode images of metal wire acquired by: (a) SA with 6.5 MHz; (b) SA
with 8.5 MHz; (c) SCM-weighted SA with 6.5 MHz; and (d) SCM-weighted SA with
8.5 MHz. Color bar shows in linear range, not in dB.

further improvements, the SCM-weighted SA-SCM is considered, and from the result, it

is confirmed that the proposed method has the high range resolution and less artifacts

in the final image.



73

5.4.2 Results of phantom

As explained in Sec. 5.2.2, in theory, D = 6 is should be used to calculate the signal

subspace via SCM processing in the phantom experiments, so we set D = 6 uniformly

for all the SCM processing.

Fig. 5.10 shows the B-mode images using the SA, the SA-SCM, the SCM-weighted

SA and the SCM-weighted SA-SCM, respectively. The B-mode images of the SA

and the SCM-weighted SA were generated as average of 15 images. For the SA-SCM

(Fig. 5.10(b)), the result shows a significant improvement of the range resolution com-

pared with the SA (Fig. 5.10(a)). However, the deepest scatterer in the phantom can not

be clearly detected in the SA-SCM. This observation is coherent with the fact that SA-

SCM is capable of improving the range resolution with the signal and noise components

which are clearly decomposed. In this experiment, the intensity of the distant scatterers

is greatly reduced due to the attenuation of the propagation medium, and the propa-

gating pulses are distorted by the effect of scattering by the scatterers existing before

them. Because of the large number of scatterers in the phantom, the signal components

of the last scatterer can hardly be guaranteed in the SCM processing. Therefore, the

SA-SCM improved range resolution of the SA image, at the cost of diagnosable depth.

The resolution of the target points is offered by the SCM-weighted SA (Fig. 5.10(c))

that perfectly detects the six scatterers, but the range resolution of the final image is

not improved as strong as the SA-SCM. Moreover, by using the SCM-weighted SA-SCM,

the range resolution can be further improved, but like SA-SCM, the last scatterer was

not clearly detected. Compared with the SA-SCM and the SCM-weighted SA methods,

the SCM-weighted SA-SCM highly improved the range resolution at the cost of a slight

lateral resolution degradation.

Fig. 5.11 compares the performances of the SA, the SA-SCM, the SCM-weighted SA,

and the SCM-weighted SA-SCM to detect scaterers located at range direction. As we all

known, in ultrasound imaging systems, transmission of a short pulse can easily improve

the range resolution. Therefore, comparisons were made with the results for a wide band

pulse when using the entire effective band of the probe at one time. The amplitude profile

result acquired using a 4 MHz wide band pulse without FM modulation with the center

frequency of 7.5 MHz is also superimposed in Fig. 5.11. From these results, the range

resolution using the wide band pulse is better than using the SCM-weighted SA-SCM,

however, this is only for the first few scatterers, and the deep scatterers are completely

undetectable in the wide band pulse as shown in Fig. 5.10(e). Overall, we can state that

the best range resolution of the phantom experiment is obtained by the SCM-weighted

SA-SCM.
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(a) (b)

(c) (d)

(e)

Figure 5.10: B-mode images of phantom acquired by: (a) averaged SA; (b) SA-SCM; (c)
averaged SCM-weighted SA; (d) SCM-weighted SA-SCM; and (e) SA with wide band.
Color bar shows in linear range, not in dB.
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Figure 5.11: Comparison of range resolution corresponds to Fig. 5.10.
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5.5 Conclusions

In this study, we investigated the use of SCM-weighted SA and SCM-weighted SA-SCM

in metal wire and phantom through simple experiments without moving the sub-array

in transmission. Through the experiments, we confirmed their effectiveness and fine

imaging is effectively performed by using our methods compared to conventional B-

mode imaging.

In the SCM-weighted SA, the current results revealed that the proposed method SCM-

weighted SA was able to avoid grating lobes in low frequency images. Furthermore, it

may have more potential for constructing the image with low computational calculation

costs.

In the SCM-weighted SA-SCM, although the method using the phantom did not detecte

all scatterers as expected, all of the results indicated that the proposed method SCM-

weighted SA-SCM may have potential to achieve super resolution in the range direction

with properly lowering the effects of unwanted artifacts. In the future, it is necessary

to confirm the effectiveness of the proposed method by conducting experiments with

moving the sub-array in transmission.

The super-resolution method, which is based on the SCM-weighted SA-SCM, is a method

which theoretically provides an idea that this processing can be repeated indefinitely

until the optimal result is obtained. However, in practical applications, the rationality

of the indefinitely repetitions has not yet been confirmed. Because of the limitations

of the ultrasonic system, the attenuation of the propagation, and the loss of the noise

components during the algorithm calculation.

The SCM-weighted SA-SCM requires high computational cost compared with other pro-

posed methods, it is suitable for imaging scatterers with high reflectance and relatively

stationary, such as targeting boundaries of organs or blood vessel walls. Furthermore,

small scatterers within the tissue appear as speckle patterns in the B-mode image and are

useful not only for the diagnosis of tissue characteristics but also for image processing

such as motion analysis. We are currently investigating a method for small scatter-

ers based on empirical Bayes deconvolution [124]. By combining this method with the

SCM-weighted SA-SCM, it is possible to realize a new imaging scheme.



Chapter 6

Conclusions and Future Works

6.1 Conclusions and Statement of Contributions

We first investigated the use of PZT-FET receiver in medical ultrasound by creating

a structure that enables direct coupling of a PZT element to the gate of a MOSFET.

Through the experimental observation, the performances of the proposed device have

been shown, which demonstrated that it could offer high sensitivity and wide dynamic

range compared to a typical transducer.

Second, we proposed a new estimation for small scatterers in medical ultrasound, by

modeling AR processes with unknown parameters. Under this assumption, scatterer

distribution can be restored based on empirical Bayesian learning. Concretely, in the

time domain, the AR parameters are estimated by maximizing the marginal likelihood

function, and the scatterers are estimated as a MAP estimator using these parameters.

Such a scheme is stably realized by the EM algorithm. In the frequency domain, the

method of steepest descent [181] is used for the evaluation function, and the recovered

results could be calculated by the MAP estimator. The proposed framework taking the

aforementioned distribution into account and evaluated on simulated data, the results

demonstrated the recovery of small scatters could be performed accurately.

Finally, the third contribution is the improvement of ultrasound medical imaging based

on the SCM framework for strong scatterers. The proposed methods have advantages

in range resolution and suppression of grating lobes. Also, we considered that in com-

bination with the second contribution, a new scheme could simultaneously image small

scatterers and strong scatterers.

Overall, we have studied high resolution and high sensitivity imaging of scatterers distri-

bution in medical ultrasound. To the best of our knowledge, this is the first attempt to
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specifically consider both the small scatterers distribution and strong scatterers beam-

forming from received echoes in medical ultrasound imaging. Moreover, the newly pro-

posed device PZT-FET was evaluated, and found it can improve the image accuracy

and solve the echo’s energy problem.

6.2 Suggestions for Future Research

6.2.1 Exploration of other piezoelectric materials

The specific bandwidth remains low because of the dominance of the PZT resonance

at the quarter-wave (1/4 λ) resonance frequency, fR (14 MHz). Thus, as a potential

solution, it may be possible to expand the receiver characteristics and provide further

improvements using a relaxer with higher piezoelectric properties than the PZT material.

6.2.2 Further design for PZT-FET MUTs

Another possible solution to enable increased the device performance is to design an

array transducer containing many PZT-FET MUTs. In this case, the device may amplify

the electrical signal efficiently with a wide frequency bandwidth.

6.2.3 Examination for more AR models

For small scatterers, the empirical Bayesian estimation is applied to echoes; we have

confirmed its effectiveness through a second-order AR model. After that, high-order AR

models should be assumed, and the most suitable AR model needs to be confirmed.

6.2.4 Evaluation on other types of ultrasonic data

In the empirical Bayesian method, it should be noticed that the validation of the pro-

posed methods is performed only on simulation data. It is very important to evaluate

its performance on other types of in vivo data, such as healthy and pathological carotid

artery data. In the future, we should conduct experiments on living tissue.

6.2.5 Application in harmonic processing

The SCM framework is based on the carrier phase information, which is useful for funda-

mental imaging to receive super resolution and statistical stability. Since the harmonic



79

envelope becomes narrower and the wavelength becomes shorter, the harmonic with the

SCM framework is expected to be superior to the fundamental with the SCM frame-

work. It is necessary for further researches to adapt and utilize the SCM technique for

harmonic imaging.

6.2.6 Compensation for frequency dependent attenuation

Ultrasound imaging of deep parts in a living body with high resolution and high SNR

is strongly required. However, living body has the property of FDA. FDA is a problem

that cannot be ignored when using high frequency or harmonic imaging. In the future,

we should examine the attenuation characteristics of the steering vector for the SCM

framework.

6.2.7 Combination with other processing techniques

In the SCM frame work, our approach is to apply the DAS for the beamforming. How-

ever, there are many other beamforming techniques in ultrasound imaging that can

be combined with the proposed SCM framework. For further improve the quality of

ultrasonic image, methods such as MV or F-DMAS [212] can be considered.

6.2.8 Improvement of new system for ultrasound imaging

By substracting corresponding small scatterers echo from the entire echo, the strong

scatterers can be stably detected. After that, we can use the SCM framework for strong

scatterers. In summary, new system that images organ boundary and organ inside

separately should be developed.
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