南硫黄島における標高別の気象環境

朱宮丈晴1、加藤英寿2、高山浩司3

Weather and soil moisture conditions along an altitudinal gradient on Minami-Iwo-To Island

Takeharu Shumiya¹, Hidetoshi KATO² & Koji TAKAYAMA³

- 公益財団法人自然保護協会(〒104-0033 東京都中央区新川 1-16-10 ミトヨビル 2F) The Nature Conservation Society of Japan, 2F Mitoyo Bldg., 1-16-10 Shinkawa, Chuou-ku, Tokyo, 104-0033
- 2. 首都大学東京理工学研究科(〒192-0397 東京都八王子市南大沢 1-1)

Tokyo Metropolitan University, Makino Herbarium, Minami-ohsawa 1-1, Hachioji, Tokyo 192-0397 3. 京都大学理学部生物学科(〒606-8502 京都府京都市 左京区北白川追分町)

Kyoto University, Oiwakecho kitashirakawa, Sakyoku, Kyoto, 606-8502

要旨

南硫黄島における標高別の気象環境を明らかにするため、6月17日~24日の8日間の気 温、相対湿度、土壌水分をS1(17)908m、S2(17)736m、S3(17)513m、S4(17)258m、S5(17)3mの 5箇所において測定し、解析を行った。気温は標高が上がるにつれて減少し、相対湿度と土 壌水分は高くなった。調査期間中の変化をみると、前半の17日~19日の悪天時は昼夜とも 湿度が高く、20日~24日の晴天時は昼間の相対湿度が低下すること、雲霧のかかる悪天時 と比べ晴天時に標高別の気温差が大きくなること、S4(17)より低標高域で有意に相対湿度が 低下するが、晴天時の方が悪天時よりさらに相対湿度が低下すること、S4(17)以上で全期間 通じて相対湿度が90%以上となる時間がもっとも長かったことなど10年前と同様の傾向が 見られた。気温の逓減率から400m付近を境に低標高では1.12℃/100mの乾燥断熱減率から 0.56℃/100mの湿潤断熱減率を示したことから、高標高域で雲霧帯が形成されることが示唆 された。海岸部の露点温度から推定された雲底高度の変動をみると、600m以上では安定し て雲霧が発生する安定帯であるが、200mから600m範囲では天気や昼夜によって上下する 変動帯であると推定された。

キーワード:

平均気温、相対湿度、逓減率、雲霧帯、雲底高度

1. はじめに

南硫黄島(916m)や北硫黄島(792m)を含む火山列島は、硫黄島(161m)を除き小笠原 諸島内でもっとも標高の高い海洋島であり山岳島である。特に、南硫黄島は小笠原諸島内の 他の島々と比較して人の手が入らず、原生的な自然環境が保存されているため海洋島におけ る生態系の成立過程を知る上でたいへん貴重な場所となっている。500m以上の高標高域は、 年間を通じて雲霧が発生する雲霧帯となっておりコブガシを主要な優占種とする雲霧林が 形成され(梶・滝口、1984)、空中湿度が高く湿潤な環境が維持されていることから、エダウ チヘゴのような固有種が島内で最も多く見られ、希少種や絶滅危惧種だけでなく絶滅したと 考えられていたシマクモキリソウが再発見されるなど生物多様性保全上たいへん重要な場 所となっている(藤田ら、2009;東京都、2017)。一方で、山頂部へのアプローチが困難なこ とから南硫黄島や北硫黄島における気象環境の把握は十分ではない(梶・滝口、1984;朱宮 ら、2008;朱宮・千葉 2009;東京都小笠原支庁、2012)。東京都小笠原支庁(2012)は、北 硫黄島において標高別に設置した温湿度ロガーを1年間(2008年6月から2009年6月)設 置し、初めて高標高域における年間の気温と相対湿度データを得た。その結果、年間の気温 変化のパターン、600m以上では年間9割以上90%以上の相対湿度が保たれていることなど が明らかになった(朱宮、私信)。しかし、南硫黄島では、定期的な観測が困難であり観測機 器の設置を行うことができないことから現在まで継続的なモニタリングは行われていない。

本研究では、2007年に行った同様の方法で簡易温湿度データロガーを期間中に設置し、標 高別の気温と湿度を測定し、南硫黄島における気象環境の基礎データを得ることを目的とし て調査を行った。

2. 方法

2-1. 気象観測及び土壌水分の測定

ベースキャンプが置かれた地点(標高2.7m)、登頂ルートに沿った標高258m、513m、736m、 908m 地点に温湿度データロガー(HOBO prov2, Onset Inc. USA)(温度精度±0.2℃、湿度精度 ±3.5%RH)を設置した。ベースキャンプは金属ポールに設置し、他は樹木にロープや結束バ ンドで固定した(図1、図2)。測定は10分ごとに気温と相対湿度を計測し、6月17日~6月 26日まで(約10日間)計測した(表1)。前回のS4(07)は、標高368mに設置したが、今回 の調査ではS4(17)は258mに設置し、前回に比べて100m以上低い標高に設置した。これは 前回の計測から368mでは、雲霧の中にあることが多く、より境界(雲底)に近い標高にお ける変化を把握するため前回より低い標高に設置した。

標高別の土壌水分に関しては、携帯土壌水分センサー Hydrosense Campbell Scientific Inc. USA)を用いて、各標高別に5回反復し計測した。

2-2. 解析

設置のタイミングが標高ごとに異なることから山頂部に設定した日時から山頂部を回収

した日時までを全標高を通じた共通期間(6月17日14:00~6月24日11:00)として解析 を行った。標高別の土壌水分データに関しては、一元分散分析を行い標高間の有意差を検定 した。さらに標高間の有意差が認められた場合にはScheffeを用いて多重比較検定を行った。 また、調査期間中の前半17日~19日は天気が悪く300m以上では雲霧が見られたが、後半 20日~26日以降は天気がよかった。このため、調査は18日に一時撤退し、19日休養とし20 日から再度調査を開始した経緯がある。したがって、測定期間中、前半と後半の2時期で異 なる温湿度パターンが見られたことから解析の一部はこの2時期を分けて行った。

3. 結果

3-1.標高別の環境変化

3-1-1. 気温、相対湿度の変化

標高ごとに共通してデータが得られた6月17日14:00~6月24日11:00までの標高ご との気温と相対湿度の変化パターンを示す(図3)。気温は太い線で、湿度は細い線で示す。 全体的なパターンとして、昼間に気温が上昇し、逆に湿度は低下するのに対して、夜間は気 温が低下し、湿度は高くなっていた。S1(17)(908m)、S2(17)(736m)、S3(17)(513m)の湿 度のパターンを見ると、20日以前は、湿度がほぼ100%を維持しているが、20日以降は、日 中の湿度が低下しており、20日前後で天気が悪天から晴天に変化した観察記録と合致してい た。S5(17)(0m)、S4(17)(258m)では、昼夜のパターンは同様であるが、高標高域と比較し て全体的に湿度が低下する傾向を示した。一方、標高が低下するにしたがって、全体的に気 温は上昇していた。

標高別の気温と湿度の属性を表 2 に示す。S1(17)の山頂付近の最高気温は 27.3℃、最低気 温は 17.9℃、平均気温は 22.4℃であった。標高が低下するにしたがって、気温は上昇し、S5(17) の海岸では、最高気温が 39.3℃、最低気温は 25.2℃、平均気温は 30.5℃となった。最高気温 が 30℃以上になったのは、S4(17)で 31.7℃を記録し、真夏日となった。一方、湿度は、S4(17)、 S5(17)の低標高域において低い湿度を示した。すなわち、最大値は S5(17)のみ 97.7%となり 他は 100%を示し、最小値は S5(17)で 66.4%だった。平均値も S5(17)で 82.1%となり、他の標 高と比較して低い値を示した。

3-1-2.2時期の平均気温

17日から19日は天気が比較的悪く全島を雲霧が覆うこともあったのに対し、20日から24日は山頂部でも雲霧がかからず、晴天であったことから前半と後半の2時期で区分し、気温と湿度の違いを比較した(図4)。平均気温は2時期とも標高が低くなるにつれて上昇するが、悪天であった前半は標高別の有意な気温差が見られなかったのに対して、晴天であった後半はS1(17)とS2(17)の高標高域とS3以下の低標高で有意に気温が異なっていた(ANOVA, p<0.01)。

一方、相対湿度に関しては、気温とは異なり高標高域である S1(17)、S2(17)、S3(17)で有意

に高く、S4(17)、S5(17)は有意に低かった(ANOVA, p<0.01)。ただし、平均値でみると晴天 であった後半の方がより低い相対湿度を示した。

3-1-3. 相対湿度の頻度分布

17日14:00から24日11:00まで(166時間)の1時間ごとに計測した相対湿度の5%階級 ごとの標高別の頻度分布を図5に示す。S1(17)~S4(17)までは95%から100%を最大とする 逆J字型の頻度分布であったが、S5(17)は80~85%を最大値とする一山形の頻度分布を示し た。S1(17)の相対湿度95~100%は全期間の81.3%の時間に及ぶ。S2(17)における95~100% は全期間の90.4%となり、山頂部よりも高い湿度を示す時間が長かった。S4(17)以上の標高 では、最低でも80~85%以上を示しており全期間を通じて高い湿度が維持されていた。

3-1-4. 土壤水分

標高別の土壌水分を測定すると高標高域で土壌水分量が高く、標高が下がるにつれて低くなった(表3)。測定日は調査期間の前半であったため、悪天の条件での測定となったことに注意が必要である。表層土壌(12cm)は597m以上で22.8-28.4%と有意に高く、521m以下では6.0%-15.4%と低かった(ANOVA, p<0.01**)。同様に表層土壌(20cm)においても521m以上で21.8%-28.0%と有意に高く、375m以下では5.2%-12.4%と低かった(ANOVA, p<0.01**)。

4. 考察

今回の調査は、2007年に実施した気象観測とほぼ同様の方法を用いて調査期間中の標高別 の気温、相対湿度、土壌水分を測定した。調査期間中の前半と後半で悪天から晴天へ変わっ た気象条件も同様であった(朱宮ら、2008)。したがって、同様の手法を用いて解析を行った ところ、悪天期間中は昼夜とも湿度が高く、晴天では昼間に相対湿度が低下すること、土壌 水分は 500m 以上の高標高域で高くなること、悪天時と比べ晴天時に標高別の気温差が大き くなること、S4(17)より低標高域で有意に相対湿度が低下し、晴天時の方が悪天時より相対 湿度が低下すること、S4(17)以上の高標高域で全期間通じて相対湿度が 90%以上となる時間 がもっとも長くなっていたことなど前回と同様の傾向が見られた (cf.朱宮ら、2008)。したが って、10年前と同様に高標高域では雲霧が形成され、相対湿度が高くなっていたと考えられ た。

期間中の標高別の平均気温から標高による気温の逓減率を求めた(図6)。雲霧の発生する 400m 付近を境に低標高域と高標高域では、逓減率の違いが想定されたことから(朱宮ら、 2008)、全体の逓減率を求めるとともに低標高域(S3~S5)と高標高域(S1~S3)を分けて 相関をみた。全標高を通じた相関係数は R²=0.94 であり、逓減率は 0.83℃/100m となった。 低標高域は、R²=0.95 であり、逓減率は 1.12℃/100m となった。高標高域は、R²=0.98 であり、 逓減率は 0.56℃/100m となり、もっとも低くなった。したがって、雲霧の発生する高標高域 では、湿潤断熱減率に伴う低い逓減率を示し、雲霧がかからず比較的乾燥している低標高域 は乾燥断熱減率に伴い高い逓減率を示したと考えられた。

実際にどこに雲底(雲霧の下限)があるのかについては、測定点も少なく常に変動してい ることから逓減率からだけでは雲底高度を推定することが難しい。そこで、雲底高度につい ては、S5(17)の海岸部の露点温度を元に雲底高度を推定した。すなわち、海岸部における気 温と露点温度 (Dew point) (水蒸気を含む空気を冷却したとき、凝結が始まる温度) から、 低標高域における気温の逓減率(1.12℃/100m)を用いて、海岸部の空気が露点温度に達する までの標高を雲底高度とした。ただし、実際に常時雲底高度を観察していたわけではなく、 風の影響などで露点温度に達したからといって必ず雲霧が発生するとは限らないので、より 発生しやすい条件にある目安として推定値であることに注意が必要である。図7に調査期間 中の1時間ごとに雲底高度の推定値の変化を示す。雲底高度は、日により大きく変動し、ま た1日の中でも昼と夜で大きく変化した。悪天が続いた19日までは1日の変化は比較的少 なく、300m 付近を上下していたが、20 日以降の晴天時には昼間は 600m 付近まで上昇し、 夜間に 300m 付近まで下降するパターンを示した。南硫黄島の雲霧帯は 500m 以上に発生す るとされるが、厳密には 600m 以上では常時雲霧が発生する安定帯であるが、200m~600m は雲底が上下する変動帯に相当するといえた。また、北硫黄島における年間の気象環境の測 定からも推定されるように年間を通した気象環境も変動している可能性がある(朱宮・千葉、 2008:東京都小笠原支庁、2012:朱宮、私信)。雲霧による水分供給は古くは「horizontal precipitation」と呼ばれ、通常の降水量を補完するあるいはそれ以上の水分量となりうること から南硫黄島の生態系にとって大変重要な要素である。既往研究によれば、霧による年間の 降水量は、通常の降水量の 7.2%~158.5%と場所や測定方法などにより大きく異なるとされ る(Stadtmüller, 1987)。最近の研究では、直接雲霧を捕獲し水分量を計測する手法が発達し、 正確に把握することができるようになってきた(Marzol-Jaén et al., 2010 など)。その結果、雲 霧による水分供給は降水量に匹敵する量であり、テネリフェ島のアナガ山地では夏季の乾季 には雲霧による水分供給により、年間を通して安定した水分が供給されていることが示され た。北硫黄島における観測でも年間9割以上90%以上の相対湿度を示すことが報告されてい る(朱宮、私信)。したがって、南硫黄島における年間を通しての水分供給や気象環境の把握 は、長期の生態系モニタリングや生物多様性保全上の基礎的なデータとして重要であると考 えられる。もし、南硫黄島における直接的な観測が困難であれば、雲霧帯が形成される北硫 黄島において定期な気象観測モニタリングを行う必要がある。

5. 引用文献

- 藤田卓・高山浩司・加藤英寿(2009)南硫黄島における絶滅危惧種の分布と個体群の変遷、 分類 9(2)131-142.
- 梶幹男・滝口正三(1983)南硫黄島の植物群落の構造について. 南硫黄島の自然、環境庁自 然保護局(編)日本野生生物研究センター、pp.191-221.

Marzol-Jaén MV, Sanchez-Megia J, Garcia-Santos G (2010) Effect of fog on climatic conditions at a sub-

tropical montane cloud forest site in northern Tenerife (Canary Islands, Spain) In:Tropical Montane Cloud Forests (Ed. By L.A.Bruijizeel, F.N.Scatena, L.S.Hamilton).pp.39-56. Cambridge University Press.

- 朱宮丈晴・高山浩司・藤田卓・加藤英寿(2008)南硫黄島における垂直分布に沿った雲霧の 形成と植生パターン. Ogasawara Research 33,pp.63-87.
- 朱宮丈晴・千葉勇人(2009) 北硫黄島における標高傾度にともなう植生パターン. NPO 法人 小笠原自然文化研究所編「北硫黄島動物調査報告書」、東京都小笠原支庁.
- Stadtmüller T(1987) Cloud forests in the humid tropics: A bibliographical review. Tokyo and Turrialba, The United Nations University and Centro Agronomico Tropical de Investigacion y Ensenanza.
- 東京都小笠原支庁(2012)北硫黄島自然環境調查報告書.小笠原支庁土木課自然 公園係.
- 東京都小笠原支庁(2008)北硫黄島度物調查報告書. NPO 法人小笠原自然文化研究所.
- 東京都 (2017) 世界自然遺産の小笠原諸島南硫黄島で10 年ぶりの自然環境調査 の結果について. http://www.metro.tokyo.jp/tosei/hodohappyo/press/2017/09 /12/05.html (2018 年 3 月 30 日確認)

SUMMARY

Weather and soil moisture conditions along an altitudinal gradient on Minami-Iwo-To Island

Takeharu Shumiya¹, Hidetoshi KATO² & Koji TAKAYAMA³

- The Nature Conservation Society of Japan, 2F Mitoyo Bldg., 1-16-10 Shinkawa, Chuou-ku, Tokyo, 104-0033
- 2. Tokyo Metropolitan University, Makino Herbarium, Minami-ohsawa 1-1, Hachioji, Tokyo 192-0397
- 3. Kyoto University, Oiwakecho kitashirakawa, Sakyoku, Kyoto, 606-8502

Weather conditions (air temperature, relative humidity) and soil moisture along an altitudinal gradient were monitored in relation to the development of a cloud zone on Minami-Iwo-To Island. The maximum temperature was 39.3°C (at 3 m a.s.l.) and the minimum temperature was 17.9°C (at 908 m a.s.l, the summit). The difference in the mean temperatures at 3 m and 908 m was 8.1°C. Relative humidity and soil moisture at 3 m and 258 m were lower than those at 513 m or above. During the period from June 17 to 24 the weather changed from foggy (June 17–19) to clear (June 20–24). Altitudinal differences in the mean temperatures were relatively small (22.1–28.2°C) on foggy days, but larger when the weather was clear. Lapse rates were estimated from mean temperatures at five altitudes (3, 258, 513, 738, and 908 m). The lapse rate for altitudes >500 m (cloud zone) was 0.56°C/100 m with wet adiabatic loss, while the lapse rate for altitudes <500 m was 1.12°C/100 m with dry adiabatic loss. The elevation of the cloud base fluctuated between 200 and 600 m depending on weather conditions and the time of day.

Key words

Cloud zone, Elevation of cloud base, Lapse rate, Mean temperature, Relative humidity.

表1. 気象測器設置箇所

Table 1. Latitudinal and longitudinal position of the temperature and humidity data loggers.

	緯度	経度	標高	補正標高	設置日	回収日
S1(17)	24.14024	141.27486	917.9	907.9	2017/6/17	2017/6/24
S2(17)	24.13563	141.27414	745.8	735.8	2017/6/17	2017/6/24
S3(17)	24.135	141.2732	522.5	512.5	2017/6/16	2017/6/25
S4(17)	24.13401	141.27337	267.9	257.9	2017/6/14	2017/6/25
S5 (17)	24.13316	141.27369	12.7	2.7	2017/6/14	2017/6/26

表2. 気温(上)と湿度(下)の属性

Table 2. Attributes of the temperature (upper) and humidity (lower).

	標高伽)	最高気温	最低気温	平均気温
S1(17)	908	27.3	17.9	22.4
S2(17)	736	28.7	20.1	23.7
S3(17)	513	28.6	22.0	24.7
S4(17)	258	31.7	23.0	26.4
\$5(17)	3	39.3	25.2	30.5
2017年	6月17日140)0から24日	1100までの)気温 ℃)

	標高伽)	最大	最小 3	平均
S1 (17)	908	100.0	82.2	97.9
S2(17)	736	100.0	82.4	98.9
S3(17)	513	100.0	83.7	97.7
S4(17)	258	100.0	82.4	94.8
S5(17)	3	97.7	66.4	82.1
2017年6	6月17日1400	から24日1	100までの湿度	E %)

表3. 標高別の土壌水分

Table 3. Soil moisture of topsoil around data loggers.

気象測定点	調査プロット	標高	深度		水分	量	\$6)		平均 %)		標準偏差	測定日	天気
S1(17)	P1-90(17)	908	12cm	18	19	29	23	30	23.8	а	4.96	6月17日	雲
S2(17)	P2-75 (17	736	12cm	34	28	32	23	25	28.4	а	4.13	6月17日	雲
	P3-60(17)	597	12cm	27	27	24	19	26	24.6	а	3.01	6月20日	晴れ
\$3(17)	P4-50(17)	521	12cm	16	15	15	13	18	15.4	b	1.62	6月16日	雲
S4(07)	P4-30(07)	375	12cm	9	10	11	12	13	11.0	bc	1.41	6月15日	雲
S4(17)		268	12cm	5	7	6	5	7	6.0	С	0.89	6月16日	雲
ANOVA, F (4.	66)=13.60, p<0	0.01**	posthoc	test=S	che	ffe							

気象測定点	調査プロット	標高	深度		水分	量	\$6)		平均 %)		標準偏差	測定日	天気
S1(17)	P1-90(17)	908	20cm	16	24	11	29	29	21.8	а	7.19	6月17日	雲
S2(17)	P2-75 (17	736	20cm	25	34	30	26	25	28.0	а	3.52	6月17日	雲
	P3-60(17)	597	20cm	18	26	25	24	20	22.6	а	3.07	6月20日	晴れ
\$3(17)	P4-50(17)	521	20cm	15	16	9	10	12	12.4	ab	2.73	6月16日	雲
S4(07)	P4-30(07)	375	20cm	6	9	10	11	10	9.2	b	1.72	6月15日	雲
S4(17)		268	20cm	4	5	5	6	6	5.2	b	0.75	6月16日	雲

ANOVA, F (7.71)=16.96, p<0.01** post hoc test=Scheffe

図1. 気象測器設置箇所

Figure 1. Location map of the temperature and humidity data loggers.

図2. 736mに設置した温湿度データロガー

Figure 2. Temperature and humidity data logger which was set on 736m along climbing route.

Figure 3. Temperature and relative humidity during research period (17th, 14:00-24th, 11:00, June).

Figure 4. Differences of temperature and relative humidity between bad weather (17th-19th) and fine weather period (20th-24th).

図 5. 標高別の相対湿度階級ごとの頻度分布(時間) Figure 5. Relative humidity class distribution accumulated the hours on each elevation.

Figure 6. Lapse rate along altitudinal gradients.

図7. 雲底高度の推定

Figure 7. Estimate of the elevation of cloud base (condensation altitude of the 3m air) during the research periods.