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      The process of reconstructing the white matter tracts using Diffusion Tensor 
Imaging (DTI) refers to tractography which is a key to structural connectivity since it is 

the best non-invasive technique to investigate brain networks. The structural networks 

which generate from diffusion may influence by tractography parameters. Thus, examine 

the optimum parameters can be beneficial as it helps to create better connectomes. In this 

study, we examine the tractography parameters of the Connectome Mapper. We aimed to 

optimise parameters including the number of seeds, step size and turning angle in 
tractography of the Connectome Mapper (www.cmtk.org) which is a combination of 

sophisticated neuroimaging tools. Therefore, we could be able to use a better choice of 

tractography parameters in future clinical studies.

DTI and Ti images of ten healthy subjects (3.0T, Philips, Achieva) were 

processed to construct connectivity matrices using the Connectome Mapper. The graph 
theory analysis was applied on connectivity matrices using Brain Connectivity Toolbox. 
Connectivity measures of five different number of seeds per voxel (15, 25, 35, 45, 55), 
step sizes (0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm) and turning angles (40°, 50°, 60°, 70°, 
80°) were analysed for whole brain connectivity by estimating mean network measures 
including degree, betweenness centrality, local efficiency, cluster coefficient, eccentricity, 
strength, small-worldness and characteristic path length.

      Our study emphasised that more connections can be obtained when increasing 

the tractography parameters. We suggested that given parameters are not any more



optimal than another in term of the number of seeds, turning angles or step size. While 

 some cases showed drastic points that were not significant in many cases suggesting that 

the default values of tractography parameters would be appropriate to use in future studies. 

Moreover, future studies should give careful consideration to the choice of tractography 

parameter based upon the network measure that will be analysed.
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                      CHAPTER 1 

                             Introduction 

 1.1 Background of  the  Research 

Magnetic Resonance Imaging (MRI) is a widely available neuroimaging method that 
offers sophisticated structural and diffusion MRI (dMRI), in particular providing 
connectivity information in brain networks. Construction of structural brain connectivity 
based on dMRI which enables white matter structure analysis in vivo '). The novel advances 
in MRI such as Diffusion Tensor Imaging (DTI), tractography and Fractional Anisotropy 

(FA) maps have been evolving to analyse more complex brain networks using excellent 
brain mapping tools and protocols. Technological advancements in neuroimaging are 
increasingly combined with powerful network constructing tools in which is the basis of 
understanding the structural connectivity through the comprehensive map of anatomical 
regions of the human brain 2)• DTI provides microstructural details in the white matter fibre 
tracts using its application and advances technical methods which can cause to improve 
many investigations in neuroimaging than the conventional approach. Understanding 
Structural and functional networks are the essential development that has been gained using 
MRI and neuroimaging analysis tools in the past decade. 

     The concept of the brain networks of interconnected neurons has a far history in 
neurosciences. However, modem neuroimaging technology allows mapping of brain 
networks with interconnecting anatomical regions and pathways at microstructural 
resolution. The connectome derives from large-scale networks and provides a detailed 

description of structural connectivity in the brain 2) The connectome is a network that made 
of nodes to represent anatomical brain regions and edges that can quantify the structural 
brain connectivity. Therefore, connectome is an abstract representation of neural 
connections. Generally, connectome creation based on fibre tracking algorithms which 
estimate trajectories to capture the orientation of maximal diffusion that could be a real 
representation of fibre tracts that shows the linking of various brain regions. Thus 
Tractography is key to connectivity analysis which needs to use diffusion information from 
tractography 3)• 

     In general, mapping brain connectivity is crucial for the understanding of the 
function of the human brain 3)• Structural connectivity refers to anatomical connections 
which linking a set of neural elements. The primary concern of these connections is the white 
matter links with cortical and subcortical brain regions. Functional connectivity describes a 

pattern of statistical dependencies and effective connectivity explains casual effects of 
neural elements. Graph theory is used to interpret brain networks which consist of nodes to 
represent neural elements and edges to represent their mutual connections 2). 

     Tractography-based DTI data is widely used in studies of structural connectome. 
However, the reliability of DTI with its resolution and accuracy is not much apparent. 
Tractography allows to create trajectories of a fibre bundle in the white matter in vivo and 
extract the connectome of the brain 4)• Also, constructing structural and functional 
connections in the connectome is a challenging task when extracts the relevant aspects of 
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 brain networks 2) This challenge guides to apply modem network modelling, numerous tools 

and algorithms in neuroimaging 2) 4). 

In the field of modem neurosciences, there are numerous state-of-the-art packages 

available freely. However, these tools can have some of the limitations and disadvantages at 

the practical level when using for the brain mapping. Therefore, the validation of technical 

parameters in some stages of the connectome creation can help to avoid issues arising in 
neuroimaging tools. On the other hand, results of the connectome analysis largely depend 

on tractography which based on a selection of parameters and algorithms of tractography 5) 

Therefore, a comparison between different groups of parameters may have a possibility to 

alter network structures.

     This study mainly designed with two tools including the Connectome Mapper 
Toolkit and the graph theory-based tool, Brain Connectivity Toolbox (BCT). The 
Connectome Mapper is a user-friendly software package that including dedicated 
neuroimaging tools together. The aim of creating the Connectome Mapper was to support 
researchers through the full processing pipeline for connectome creation using dMRI 2)• 
Graph theory analysis was applied on connectivity matrices which have obtained using the 
Connectome Mapper pipeline. In response, this work aims to investigate about parameters 
of tractography that can make changes on the graph theory analysis. 

     The Connectome Mapper performs full processing pipeline and creates connectivity 
matrices using dMRI data. The workflow of the Connectome Mapper depends on few stages 
and user is able to control parameters that provided in each stage at any time. The 
connectome analysis application can be used for various investigation particularly for brain 

plasticity after stroke. In addition, comparison of structural connectivity in two groups of 
pathological conditions is also possible with the connectome analysis 3) 

     Construction of connectomes and graph theory analysis has become a robust 
approach to understanding structural connectivity and functional connectivity as well. 
Tractography identifies the pathways of the white matter with anatomical regions and their 
networks. Therefore, this combination of graph theory and connectome creation through 
tractography could use to investigate some findings in neurological disorders and to deduce 
the relationship between structures and functions. The graph theory is applied while nodes 

define using anatomical parcellation, the edges define by tractography of the white matter 
for identifying white matter pathways which connect through brain regions 4) Graph theory 
comprises various network measures to describe local and global connectivity in networks. 
These networks are also categorised as weighted and binary and directed and undirected 
networks. Therefore, network measures are used to illustrate these various representations 
of networks. The value of network measure is usually affected by characteristics of networks 
such as the number of nodes and edges 6)

1.2 Objectives 

The objectives of this research were to understand the impact of tractography 

parameters on structural network measures using healthy subjects and to optimise 
tractography parameters related to the Connectome Mapper. Thus, we could be able to use
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 these optimal parameters in future clinical studies when constructing the connectomes using 
the Connectome Mapper. 

1.3 Outline of the Thesis 

Chapter 1 

     This chapter introduces the background of the research, objectives and design of the 
thesis briefly. 

Chapter 2 

    Chapter 2 explains the theoretical background of the MRI with basic pulse sequences. 

Chapter 3 

     The main content of chapter 3 is the theoretical concept of DWI including DTI and 
tractography. 

Chapter 4 

     The concept of graph theory is described in this chapter by introducing network 
measures to describe brain connectivity. 

Chapter 5 

     Chapter 5 presents the description of brain mapping and the descriptive information 
of the Connectome Mapper. 

Chapter 6 

     Chapter 6 describes the tractography parameters. 

Chapter 7 

     Chapter 7 describes the research content and provides the discussion, conclusion and 

present and future directions. 

Chapter 8 

     Chapter 8 is a summary of the research.

3



                      CHAPTER 2 

                  Basics of Magnetic Resonance Imaging 

 2.1 History of MRI 

     The physical principles of MRI underlie Nuclear Magnetic Resonance (NMR) which 
is an analytical chemistry technique based on spin and electrical charge of nuclei. The NMR 

phenomenon rapidly allowed development of clinical applications in medicine. The first 
successful demonstration of NMR was conducted in 1946, simultaneously by two American 
scientists, Felix Bloch and Edward Purcell with two different concepts. Bloch's observation 
was based on water molecule and Purcell studied with paraffin wax. Both Bloch and Purcell 
were jointly awarded the Nobel Prize for physics in 1952 7)• 

     In 1973, Paul Lauterbur invented that Magnetic Resonance can be used to create an 
image. Sir Peter Mansfield developed the utilisation of gradients in the magnetic field. Both, 
Lauterbur and Sir Peter Mansfield were awarded the Nobel Prize in Physiology and 
Medicine in 2013 for their concerns of discovering MRI. Raymond Damadian discovered 
the principles of MRI as a diagnostic tool in 1970 and published a paper in the journal 
Science in 1971, and a patent was granted in 1974. Raymond reported that NMR can be used 
distinguished tumours and normal tissues in vivo. However, construction of MRI was 
completed by 1977. Since then, the medical use of MRI was developed rapidly. In 1975, 

phase and frequency encoding were proposed by Richard Ernst and Ljunggren, and Twieg 
introduced k-space. The first MRI images in clinical were available in 1980. Since then MRI 
is widely available and serves as the primary imaging modality for many clinical issues 7)• 

2.2 Physics Overview of MRI 

     MRI is based on magnetisation properties of nuclei which consist of protons and 
neutrons. In the clinical MRI, Hydrogen (1H) nuclei are used because of its composition of 
the body such as abundance in water and fat. When an external magnetic (BO) field placed 
across protons, they can be aligned with the magnetic field. Nuclei are randomly oriented in 
the absence of magnetic field. Nuclei such as 1H and 13C are nuclear spins (I) which can 

behave as a tiny magnetic bar either parallel or antiparallel to the magnetic when presence 
an external magnetic field. This alignment of the 1H is known as magnetisation which can 
be caused by the precession of the proton. The Larmor equation defines the frequency of 

precision. 

fo = y Bo(2.1) 

fo denotes precession frequency, Bo denotes Strength of the external magnetic field and y is 
the gyromagnetic ratio which is a constant for a specific nucleus or particle. For example; y 
of 1H is 42.57MHzIT. 

     The moment of the parallel and antiparallel nuclei is the net magnetisation vector 
which perturbs with radiofrequency (RF) pulses. RF pulse causes the net magnetisation to 
create a certain angle with the main magnetic field and produce two magnetisation 
components, longitudinal and transverse magnetisation. RF pulse usually lasts in
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microsecond after applying, and nuclei absorb RF energy. Nuclei return to the resting 

alignment through relaxation process and generate free-induction decay (FID) signals. 
Tissues have different relaxation which refers to nuclei returns to thermal equilibrium after 

absorbing energy from RF pulses. There are two kinds of relaxation, longitudinal relaxation 

 (TI) and transverse relaxation (T2) describe according to the time constant. During 
longitudinal relaxation, spins release energy to the surrounding lattice is also known as spin-

lattice relaxation and spins are getting out of phase due to redistribution of energy within the 

spin system in T2 relaxation which is also known as spin-spin relaxation 8) 

2.2.1 Ti Relaxation Time 

Spin-lattice relaxation which is also known as T1 relaxation or longitudinal 

relaxation measures how quickly net magnetisation vector recovers to the ground state with 

the direction of BO. In this relaxation, spins return from high energy to low energy level with 

releasing energy to the surrounding nuclei as spins return to longitudinal magnetisation (Mz) 

exponentially. The rate is governed by the time of T1 which is the time takes to spin recovers 
63% of its maximum magnetisation (Figure 2.1).

Z

 XY

Z

 XY

Z

63% Mz

XY

Z

100% Mz

XY

1. 

2. 

3. 

4.

Mz is 100% before applying the pulse 

Mz is 0 after applying the pulse 

Mz slowly recovers to 63% 

Mz continues to recover until the stating value of 100%

                       Figure 2.1 Longitudinal relaxation 

2.2.2 T2 Relaxation Time 

     T2 relaxation is also known as spin-spin relaxation time or the transverse relaxation 

(Mxy) time. T2 relaxation describes the loss of phase in the transverse plane (Figure 2.3). 
Spins rotate around the z-direction in phase when RF pulse is placed. However, resulting 

from intrinsic effect and magnetic field inhomogeneity (T2*) (Figure 2.2) spins lose their 

coherence, and net magnetisation decreases to zero. T2 relaxation depends on field strength, 

temperature, microviscosity and presence of large molecules.
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 Signal

FID curve

Time

Figure 2.2 Free Induction Decay

Z

 XY

Z

100% Mxy

 XY

Z

37% Mxy

XY

Z

 XY

  1. Mxy is 0 before applying 90 pulse 

  2. Mxy becomes 100% after applying 90 

  3. Mxy slowly decays to 37% and that time is a constant 
  4. The Mxy continues decaying until 0 

                     Figure 2.3 Transverse Relaxation 

2.2.3 Repetition Time and Echo Time 

     Repetition Time (TR) and Echo Time (TE) are basic parameters in MRI pulse 

sequences. TE is the time from the centre of the RF pulse to the centre of echo. TR is the 
length of time between consecutive pulses and echoes. TE controls the amount of T2 

relaxation, and TR determines how much longitudinal magnetisation recovers between each 

pulse. 

2.2.4 Flip Angle 

     The amount of rotation the net magnetisation (M) shifts when applying the RF pulse 

is known Flip angle. On the other hand, flip angle describes by the axis of hydrogen proton 

shifts from longitudinal plane Z axis to its transverse plane of XY by while excitation with 

RF pulses. 
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2.2.5 k-Space 

     k-space refers to an abstract concept of data matrix that comprises the raw MRI data. 

k-space of MRI can be defined as an array of the number of representing spatial frequencies 
in the MR image. The data point of k-space derives from the MR signal directly and contains 

identical information about the scanned object. The advanced mathematical technique, 

Fourier transform (FT) is used to convert into two representation. Each point of k-space 

 contains specific frequency (X, Y) and signal intensity 8)

4.
FT

•

     Figure 2.4 The mathematical Concept of k-space (Source: Reproduced from 
 http://mriquestions.com/what-is-k-space.html) 

     The k-space commonly represents a rectangular grid with axes of Kx and Ky (Figure 
2.5) which are corresponded to the horizontal x-axis and vertical y-axis in the image. 

However, this Kx and Ky do not represent individual pixel values. Each pixel of an image 

is the weighted sum of all the distinct points in the k-space. Generally, central regions of the 

k-space represent contrast information, and peripheral regions of the k-space encode spatial 

resolution.

Ky

FT 

 1mm/

M r

Y

 ÷ Kxx 

   Figure 2.5 The representation of k-space (Source: Reproduced from 

http://mriquestions.com/what-is-k-space.html)
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2.2.6 Free Induction Decay 

 Free induction decay (FO) is a short-lived sinusoidal electromagnetic signal which 
appears immediately after 90° pulse. The amplitude of the FID signal decreases when net 
magnetisation returns to equilibrium. FID signal decays rapidly with a time constant T2 
which is much shorter than T2 (Figure 2.2). 

2.3 MM Pulse Sequences 

MRI pulse sequence describes as a preselected set of RF and gradient pulse, generally, 
repeated many times during a scan. The time interval between two pulses, the amplitude and 
the shape of the gradient can manipulate MRI signal acquisition, and those may affect the 
features of the MR images. These pulse sequences are computer programs that control 
hardware aspect of the MRI measurements. Generally, parameters such as TR, TE, TI or flip 
angle describe pulse sequence. In MRI, the most common sequences are Ti weighted 
imaging and T2 weighted imaging. Broadly, spin echo, inversion recovery, diffusion-
weighted, echo planar imaging and gradient echo pulses are commonly used in the field of 
MRI. Specifically, selection of pulse sequence depends on magnetic field strength, MRI 
manufacturer and the pathological conditions 8) 

2.3.1 Ti Weighted Imaging 

Ti weighted image is one of the primary pulse sequences in MRI. Ti weighted 
imaging refers to longitudinal relaxation of a tissue's net magnetisation vector. Basically, 
spins are aligned with the external magnetic field (Bo) by RF pulses and slide back towards 
the original equilibrium of Bo. However, all tissues do not get back to equilibrium equally. 
Therefore, T1 reflects the portion of time spins realign with the Bo main magnetic field. 

Generally, Ti weighted images have short TE and TR. 

2.3.2 T2 Weighted Imaging 

T2 weighted imaging is also the main pulse sequence in MRI. These images have 
long TR, and long TE. T2 weighted imaging is based on T2 relaxation time of tissues. Each 
tissue belongs to inherent T2 value. However, magnetic field inhomogeneity can increase 
the T2 relaxation time. T2* is also an additional effect of T2 weighted imaging. T2 weighted 
image depends on the transverse relaxation of the net magnetisation vector. Spins undergo 
relaxation from the transverse plane towards the main magnetic field Bo in the Ti weighting 
and at the same time spins are experienced decay from the aligned precession in the 
transverse plane thus the difference in this decay is captured in T2 weighting. 

2.3.3 Spin Echo Sequence 

     The Spin Echo (SE) sequence is one of the earliest developed and commonly used 

pulse sequences. SE is made in series of pulses of 90° pulse and 180° rephasing pulses at 
TE/2. signals are read at TE. SE pulse includes a slice selective 90° pulse after 180° 
rephasing pulses. Figure 2.6 shows the arrangement of 90° pulse and 180° pulse at TE/2.
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 TE/2

90° 

1

180
90°

ITR
I------------------------------------------------------------------------------------------------------------------------------I

TE

Figure 2.6 Th e arrangement in the RF pulses in SE

2.3.4 Inversion Recovery Pulse Sequence 

Inversion recovery (IR) is a conventional SE which preceding an 180° inverting pulse. 

For instance, 90 -180 and echo can be written. Figure 2.7 shows this arrangement of RF 

pulses in IR. The inversion time can be defined as the time between, 180° inverting pulse 
and 90° pulse. The purpose of inverting pulse is to flip the initial longitudinal magnetisation, 

M of tissues in the image slices into —z direction which is opposite to the main magnetisation 

Bo while inversion time interval of the magnetisation of tissues increases under T1 relaxation 

towards the +z direction. Therefore, tissues passing through zero will not generate a signal 

and effectively suppress the signal. This point is called nulled which is occurred when TI at 

0.69 x Ti in generally. IR has some advantages compared to SE due to several reasons; 

longer scan time, flow-related artifacts can emerge, and signal to noise can decrease due to 

tissue suppression.
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RI

 180° 90° 180° 1800

I---------------------------------------------------------------TR I
I--------------------------------------------------------I
II TE

Figure 2.7 The arrangement of RF p ulses in IR

2.15 Gradient Echo Pulse Sequence

     Gradient echo (GRE) is the simplest pulse sequence, basis of many applications of 
modern MRI. Gradient echo pulse sequence differs from SE in two reasons; utilisation of 

 gradient fields to generate transverse magnetisation and a flip angle is less than 90° in GRE. 
The gradient echo that generate by the frequency-encode gradient can be used in succession 

and opposite directions. The gradient echo is used in reverse at first to enforce transverse 

dephasing of spins and the right after, as a readout gradient to realign dephased spins. GRE 

consists of a series of excitation pulses and each pulse separated by a repetition time (TR). 

Figure 2.8 a) shows the arrangement of RF pulses in GRE. These RF pulses are usually 

chosen less than 90°. A signal can be acquired at some characteristic time after applying 

excitation pulses. Signals from free induction decay (FID) is generated in GRE immediately 

after applying each RF pulse.

rFID

RF

 Echo
ti

RF RF  RF

     TR

(a)
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 RF pulse I

Slice nn>

Phase

 Readout I
I-t

Echo

Time

 

I >

0 TE TR

                     (b) 

  Figure 2.8 (a) Series of excitation pulse of GRE (b) Gradient application and signal 
                         formation of GRE 

A bipolar readout gradient is needed to generate echo as a gradient echo which has 
no 180° pulses. Therefore, dephasing gradient is applied before the readout gradient. The 

reason for applying dephasing gradient is to obtain an echo as readout gradient is applied 

and data are acquired. Figure 2.8 b) shows the gradient application and signal formation of 

the GRE. 

     In gradient echo, spins are refocused by reversing the direction of the spin rather than 

flipping spins. Gradient refocusing of spins takes less time than 180° RF pulse refocusing. 

There are some advantages of GRE such as GRE offers fast imaging and use low flip angle 

with less powerful RF pulses. However, GRE unable to generate good T2 contrast, since 

GRE is sensitive to BO inhomogeneity and susceptibility artifacts can emerge feasibly. 

2.3.6 Echo Planar Imaging 

     Echo Planar Imaging (EPI) is one of the advances in MRI gradient pulse sequences. 
EPI enables to obtain individual MR slices in the time frame of 50-100 msec, and this is 

beneficial for minimising the effect of patient motion. EPI can perform with multiple echoes 

of a different phase in steps which are obtained using rephrasing gradients instead of series 
of 180° RF pulses following 90° and 180° in a spin echo sequence. Here EPI uses rapidly 
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reversing readout gradients or frequency-encoding gradients. This switching or reversing 

readout is done in a sinusoidal fashion. The image acquisition of EPI can be completed 

providing a number of excitation pulses (shots) which represent the number of TR periods. 
Figure 2.9 shows the k-space fills by single shot and multi-shot. The k-space data is acquired 

 by a single shot in single shot EPI and in multi-shot echo planar, a portion of the k-space 

data is required with each shot and shots are repeated until collecting a full set of data.

•

Single shot EPI Multi-shot EPI

Figure 2.9 Single shot EPI and multi shot EPI (Source: Reproduced from 

        http://mriquestions.com/echo-planar-imaging.html)

     EPI has advantages such as sensitivity to off-resonance effect is increased, T2 T2* 

imaging and sectional efficiency are improved, and snapshot imaging is possible. Most 

clinical application of EPI is imaging brain that EPI based diffusion imaging is used for 

investigating cerebral ischemia and stroke 8)
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CHAPTER 3

                        Diffusion MRI 

3.1 Diffusion Weighted Imaging 

     Diffusion refers to the random movement of water or nano molecules due to the 

 thermal collision. DWI examines the random motion of  water  molecules in tissues. Diffusion 

is also known as the Brownian motion which is investigated by Scottish botanist Robert 

Brown. Brown observed spontaneous vibration of pollen particles through the microscope 

in 1827.

Since its inception in 1985, Diffusion Weighted Imaging (DWI) has been 
continuously evolved in MRI to scrutinise microscopic motion of water molecule known as 
Brownian motion in tissues. However, the first DWI pulse sequence was determined by 
Stejskal and Tanner in early 1965 9). DWI is an excellent method to evaluate tissue functions 
in many specific organs including the brain, cartilages and liver, kidney and breast. 

3.2 Principles of DWI 

     The human body is approximately 60%-70% composed of water. Diffusion refers to 

the Brownian motion which is driven by the thermal energy of water molecules 1(0. Diffusion 
of the particular tissue depends on the temperature and microstructural architecture which 
diffusion takes place. For example, Diffusion in the cerebrospinal fluid (CSF) is different 
from intracellular and intercellular space. These differences can be used to produce the 
appropriate contrast in MR images by changing the MR sequences 11). The microstructural 
architecture changes when physiological factors occur such as destruction or regeneration 
of tissues that may influence on the diffusion of water molecules within the tissue 9)• 

     The movement of water molecules in biological tissues can have barriers due to 
interaction with cell membrane and macromolecules. The basic foundation of Diffusion 
MRI is Einstein's diffusion equation, and distribution of diffusion obeys the Gaussian law. 
DWI uses the self-diffusion of water molecules is also known as a self-diffusion coefficient, 
which is around 3.0 x 10-9 m2/s at 37° C. In biological tissues, self-diffusion is lower than 
the actual value. However, diffusion-based displacement of water molecules is used to 
encode MRI signals in order to generate DW images 12). 

3.3 DWI Pulse Sequences 

     DWI generates with the readout signals depend on diffusion gradients. Currently, 
single-shot gradient, EPI is the most common gradient scheme in DWI. EPI pulse sequence 
in DWI enables to detect ischemic changes in tissues rapidly after imaging. For example, in 
an ischemic attack, cells absorb water molecules and diffusivity decreases. Motion Probing 
Gradients (MPG) are applied on EPI to detect the level of diffusivity decreases in tissues. 

     DWI generates using two gradients with magnitude, G. Therefore, one gradient 
causes to dephasing and another one is a rephrasing opposite gradient which is applied 
symmetrically to the 180° RF pulse 13) The Stejskal-Tanner equation describes the signal 
attenuation of DWI.
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 Stejskal-Tanner equation: 

S(b) = Soe-6°(3.1) 

S (b) refers to the signal received for that particular gradient value (or b-value `b'), So is the 
signal strength without any diffusion weighting, and D denotes diffusion. 

The following equation defines the b value in dMRI. 

B = y2G2S2{L\ — 8\3}(3.2) 

y is the gyromagnetic ratio of hydrogen proton, a constant, given as 42.58 MHz/T, G is the 
magnitude of applied gradient, 5 is the duration of gradient and A is the time between the 
applications of the two gradients. The unit of b value is s/mm2. 

MPGs are also applied to visualise the degree of diffusivity in different directions. 
MPGs usually detect motion and enhance signal by dephasing moving molecules. In tissues, 
stable molecules rephase at the time of echo. Therefore, tissues with lower diffusivity due 
to pathological condition visualise with higher signal intensity, and healthy tissues observe 
with lower signal intensities. The degree of motion in DWI scan depends on b-factor which 
is determined by the characteristics of MPGs. Figure 3.1 shows the application of gradient 
in DWI to obtain signals.
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Diffusion gradients
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         Figure 3.1 Application of gradient for diffusion weighted images 

Pulse gradient Spin Echo sequence for diffusion weighted images. G represents gradient 

intensity 8 represents gradient duration and I represents gradient spacing 

Generally, DWI scans are performed with at least two b values. The more 

considerable b value determines, the higher degree of signal attenuation from water 

molecules. DWI is usually acquired with a lower b value of b=0 s/mm2 without gradient
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 application 13). Hence image is equal to T2 image contrast that does not carry diffusion 
details and a high b value of 1000 s/mm2 14). DWI is a modified image sequence with Ti 

 and T2 contrast in addition to the diffusion contrast. This high T2 signals can bring 
 hyperintensity signal on diffusion image, is called T2 Shine-through effect. 

 3.4 Apparent Diffusion Coefficient maps 

      Apparent Diffusion Coefficient (ADC) is referred to measuring the magnitude of 
 diffusion of water molecules in tissues. Diffusion images are usually in two types, DWI and 

 ADC calculated images. 

      The concept of ADC was introduced to avoid misinterpretation of hyper-intensities 
due to shine through effect from Ti and T2 contrast with the diffusion MRI 15) 

                                InA)) 
         ADC =------s1(3.3)                                         (b
1-bo) 

So and Si are the signal intensity obtained with the bo and bi values. 

 Usually, ADC values are automatically calculated with the MRI system. The units of ADC 
 is mm2/s. 

 3.5 The Fundamentals of DTI 

      DTI is a non-invasive method for imaging the white matter in vivo and allows to 
 explore microstructural and architectural properties such as integrity and orientation of fibre 

tracts in the human brain 16)17). DTI facilitates signal intensity in each voxel and directional 
 detail (tensor) in which uses the Brownian motion of water molecules in different directions 
 to reconstruct images. The Brownian motion also refers to diffusion that occurs in 

 microscopic molecular motion due to thermal energy. DTI pursue molecular diffusion to 
probe microstructural properties of biological tissues 18). Figure 3.2 shows microstructural 

 properties of different tissues related to diffusivity details in ellipsoids and tensors. 
 Moreover, restrictions of diffusivity in microstructural boundaries such as cell membranes 

 or myelin sheaths in neurons yield anisotropic diffusion which can be used to distinguish 
the pathological tissues and healthy tissues 19)
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Figure 3.2 Diffusivity of water in microstructural boundaries (Source: Reproduced from 
                     Mukherjee P et al. 2008)

     In pure water, molecules move as free motion in all directions which is called 

unrestricted isotropic diffusion, and restricted isotropic occurs with random barriers present 

in organs. The CSF in the brain can have isotropic diffusion. When the mobility of water 

molecules are not equal in all direction, molecules have anisotropic diffusion 16) For 

example, the white matter owns anisotropic diffusion due to cellular membranes, 

myelination and the packing of axons 20) 

     DWI is acquired after applying diffusion gradients in any number of directions to 

measure the water diffusion in the particular tissue. DWI is performed before use of DTI by 

applying diffusion gradients along three orthogonal directions of X, Y, and Z. The diffusion 

tensor illustrates the diffusivity of water molecules with a Gaussian model. This three-

dimensional Gaussian distribution of the matrix is proportional to the displacement of the 
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 molecule 20) Generally, a tensor is a mathematical model with a 3 x 3 matrix of the vector 

that contains information of maximum diffusivity (Figure 3.3). The direction of maximum 

diffusivity corresponds with the orientation of fibre tracts.

 DXx DXY DXz

D = I Dyx Dvv Dvz

Dzx Dzv Dzz

 Figure 3.3 Maximum diffusivity

     DTI uses the shape of three-dimensional tensors and degree of diffusion to analyse 

three-dimensional structure with three kinds of diffusivities, known as eigenvalues of AA, 

X3 associated with perpendicular directions, known as eigenvectors of v1, v2, and v3 21,22) 

(Figure 3.4).
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Figure 3.4 Orientation of eigenvalues corresponded to X, Y, Z axis (Source: Reproduced 
from Jellison BJ et al. 2004)

The largest eigenvector is termed primary eigenvector which associates with Xl to 

indicate the direction of magnitude of largest water diffusion. This kl is also known as 

longitudinal diffusivity. The second and third eigenvectors are associated with eigenvalues 

of X2 and X3. The mean of k2 and X3 is termed as radial diffusivity 20).
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The mean of the three eigenvalues illustrates the diffusivity (Day) of water within a particular 
voxel. Anatomic features in DTI can be measured by parameters such as fractional 

 anisotropy (FA), mean diffusivity (MD) and axial diffusivity. 

                         Day =                Al + A2 + 23(3.4) 

                              3 The degree of directionality is measured by the Fractional Anisotropy (FA) 

                      /0‘1.—X.2)2±(12— 13)2+ (11-13)2     FA =(3
.5) e

112+122+132

3.6 The Basics of Tractography 

     In the white matter, directionality or anisotropy of water establishes with axonal 
alignment. Generally, water diffuses parallel along the longitudinal axis of the axon rather 
than the perpendicular axis which can be relatively restricted. This concept of water 
diffusivity mathematically represented by the tensor. Tensor consists three eigenvalues, and 
the longest axonal direction is Xl, and the small axes are X2 and X3 (Figure 3.4). The main 
axis, X1 represents longitudinal diffusivity, the average of minor axes (X2 and X3) is 
considered as radial diffusivity. Therefore, these parameters are considered to be reflected 
in particular pathology in some neurological diseases 23). 

The tensors of the white matter can be reconstructed in macroscopic fibre orientation, 
three-dimensionally. Thus, the computerised technique in diffusion MRI to reconstruct the 
white matter fibre pathways in the brain is called tractography 24). The transformation of the 
axes in the tensor into fibre trajectories could be attained by different algorithms in 
tractography 23). 

     DTI fibre tracking determines inter-voxel connectivity of anisotropic diffusion water 
18). Tractography uses to identify fibre tracts and connections with different brain regions in 
vivo in which is impossible to identify in conventional MRI. 

Tractography estimates the trajectory of the fibre tracts in the white matter 2O). In 
addition, tractography is a three-dimensional model which shows axonal projections non-
invasively with information on diffusion anisotropy from DTI 11). Fibre tracking determines 
the intravoxel connectivity which based on the anisotropic diffusion of water molecules. 
DTI fibre tracking includes functional and high-resolution information of the white matter 
16) 

3.6.1 Technical Considerations of Tractography 

     In tractography, there is some vital consideration including data acquisition, fibre 
modelling, fibre reconstruction and the number of seeds. The b-value and number of 

gradients are crucial points during DWI acquisition. The b-value represents the amount of 
diffusion weighted and time and strength of gradients. Generally, application of the number 
of directions are 30 or fewer, and b-value is about 1000s/mm2 in the field of diffusion 25).
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     The other important consideration is the method of fibre tracking. There are two 
 methods of DTI fibre tracking; 1.  deterministic tractography 2. probabilistic tractography. 

Deterministic tracking is continuous tracking which starts from user-defined voxels and 
streamline follows primary eigenvector voxel wise in three-dimensionally. The direction of 
tracking changes when the trajectory is taken place an edge of the voxel and match the 
eigenvector of next voxel 19) Deterministic tractography can be visualised as a curve line 
which is the streamline. The output of probabilistic tractography is a map of connection 

probabilities. Tract seeding, tract selection and, stopping threshold are also useful to 
interpret tractography 25) 

     The deterministic tractography has various method in the seeding method. The most 

popular seeding method is Fibre Assignment by Continuous Tracking (FACT) which is able 
to track high-resolution three-dimensional tracking of axonal projections. FACT method 
starts with a seed voxel and steps in principle directions until voxel edge which is known as 

variable step size 26) This process repeats until stopping criteria is met. Euler introduced 
another method that is constant step starts the path in principle direction at a seed, 
interpolating a new tensor at path endpoint. Therefore, next step based on interpolation. 
Figure 3.5 shows the difference between these two seeding methods.
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 Figure 3.5 Deterministic tractography techniques (Source: Reproduced from http://dsi-
             studio.labsolver.org/course/fiber-orientation-distribution) 

3.6.2 Stopping Criteria of the Tractography 

     In a deterministic tractography, the outcome of tracking depends on certain 

parameter including the curvature change threshold (turning angle), anisotropy threshold 
and anatomical criteria. The tracking processes stops when certain criteria are met in the 
tractography. Turning angle avoids crossing of boundaries and bended trajectories which 
enable to impose smoothness criterion. The anisotropy threshold may avoid propagating in 
a region where is meaningless and anatomical criteria stop seeding after reached to the grey 
matter boundary. The choice of stopping criteria is crucial to avoid stepping outside the 
bundle in the white matter 27)

19



                      CHAPTER 4 

                         Graph Theory 

4.1 History of Graph Theory 

     The concept of the network has become popular in many research fields such as 

engineering, social sciences and, neuroscience. This network theory is a part of the 

mathematical concern of analysis of graphs which are a mathematical abstraction of 

 networks 28) The graph theory concept began with the Leonhard Euler's original publication 
in 1736 in which based on one of the particular puzzles related to the problem of the 

Konigsberg bridges. The basic concepts of graph theory were involved in the solutions to 

this problem 29) 

     The old city of Konigsberg in Eastern Prussia had the river of Pregal (Figure 4.1) 

which flowed through the city seven bridges were connecting to different lands in the city. 

It is said that people in Konigsberg used to wonder that possible to find across each of seven 

bridges exactly once. These attempts were failed many times, and people used to believe 

that task was impossible. Leonhard Euler, one of the mathematicians at that time involved 

with the Konigsberg problem and gave some general solutions 30)• Euler's first mathematical 

demonstration of Konigsberg was presented to the Petersburg Academy, named with 
"Solutio Problematis ad Geometriam Situs Pertinentis" (The solution to a problem relating 

to the geometry of position) 31). This demonstration was the foundation of graph theory that 

started from Konigsberg problem. Figure 4.2 shows the graph representation for the 
Konigsberg bridges problem.

 Figure 4.1 Seven bridges in Konigsberg (Source: Reproduced from Wikipedia) 

     Although the roots of graph theory based on Euler's theory, a crucial step forward 

ensued after random graphs were discovered. There were many vital theories were proven 

under the phenomenon of random graphs which is termed random nets 32) 33)• However, in 

1988 Duncan Watts and Steven Strogatz turned out to a new page in graph theory by 

proposing an elementary model of a one-dimensional network on a ring. Furthermore, the 
discovery of small world networks based on their study 33) 34)• This study illustrated many 

theories of graph theory such as clustering coefficient and path length. Barabasi and Albert 
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discovered another important measure, 

 and networks of airports in 1999 32)35). 

novel applications in neuroscience 32)•

the scale-free networks such as the World Wide Web 

These advancements of graph theory cause to inspire

 vi 
A^

C

Figure 4.2 Graph representation of Konigsberg bridges (Source: Reproduced from 

 https://medium.freecodecamp.org)

4.2 Definition of Graph Theory

     Graph (G) is a mathematical theory which represents networks. (Figure 4.3) A graph 

consists of a group of vertices or nodes (V) and a set of edges (E). In a network, a node can 

have interaction with another node when the presence of an edge between two nodes 32)•

a

c 6

d

Figure 4.3 Graph representation

G=(V,E)

V={a,b,c,d}

E={ {a,14, {b,c},{b,d) ,{a,d}}

     Graphs represent as N x N connection matrix where N is the number of nodes in 
which termed the adjacency matrix (A). The adjacency matrix consists information 
connectivity in the graph. Figure 4.3 shows the representation of graph. For example, Graph 

(G) has vI, v2, v3 ....vn and adjacency matrix of N x N matrix (A) whose (i, j) entry denotes 
by this:
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            Figure 4.4 Connectivity Matrix representation by a graph 

     Graphs can have variations such as undirected and directed graphs, weighted and 

unweighted graphs. Figure 4.5 shows a directed and an undirected graph. When information 

flows through both directions along the edges which is termed undirected, and when 

information flow through one direction, called directed graphs. Graphs which have the same 

significance is termed unweighted graphs, and weighted graphs refer to when weights are 

not the same significance, and each edge is assigned the weights in the graph 32)•

Directed graph Undirected graph

Figure 4.5 Directed and U ndirected graph
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4.3 Graph Theory Measures 

     The human brain consists of networks which have anatomical connections to linking 

the neural elements. With the complexity of the brain, neural networks and functions have 

not been fully understood. Therefore, scientists have been focusing on graphs which are an 

abstract model with information about brain networks. Graphs compose nodes and edges to 

represent physical space and network role in topological space. Topological properties of 

 graphs can be measured and compared to other graphs which derive from neural or non-
neural systems 36). Network analysis is based on mathematical principles of graph theory 

and measures of graph theory use to determine the neurobiological interpretation and 

measure brain network properties 37) The graph theory measures such as degree, cluster 

coefficient, small-worldness, local efficiency determine structural and functional 
connectivity in brain graphs 36) 

4.3.1 Degree (d) 

     The degree is the simplest measure among graph theory topological measures. 

Degree determines the number of edges (E) which connected to the particular node. (V) The 

degree is also known as degree centrality which is used to determine that nodes are well 

connected through links in networks. Nodes with high degree play a significant role in a 

network to increase connectivity and flow of information through networks 36)

 V1

                           Figure 4.6 Degree 

Degree of A denotes d (vi) = 4 

4.3.2 The Shortest path length 

     In graph theory, the shortest path is the path which constitutes the minimum number 
of edges in a network graph. 

4.3.3 Betweenness Centrality (BC) 

     Betweenness centrality can be used to measure the extent to which a vertex lies on a 

path between other vertices. For instance, vertices with high betweenness would have 
considerable influence within a network of information passing between different regions or 

vertices 37)•

23



     Betweenness centrality of a node refers to the ratio of the shortest paths between all 

other nodes that pass through a particular node. Therefore, betweenness centrality quantifies 

the control of a node on the communication between other nodes. 

                                    sst (V)  
           C8 (V) = EssvntS

st(4.1) 

 Here, s, t, SA,  List  (V) denote, source, destination, number of the shortest path between (s, t) 
and that pass through V respectively. 

4.3.4 Clustering Coefficient (C) 

     Local connectedness in a network is measured by clustering coefficient that is a 
measure of the degree to which nodes in a graph tends to cluster each other. This proportion 
of a number of nodes are connected to each node is defined as clustering coefficient. 
Clustering coefficient can be varied between 0 and 1. High clustering coefficient determines 
that nodes are well connected to each other in a network 38)• 

     Clustering coefficient (C) of a node is calculated by the ratio between the number of 
closed triplets which observed and the maximum possible closed triplets in the graph.

 C=1C=1/3C=0 

       Figure 4.7 Cluster coefficient (Source: Reproduced from Wikipedia) 

Clustering coefficient is calculated using following equation 

                         =2L                    CUl=d
e9vi(de9Ui — 1) 

Here L is number edges between (VI) neighbours of node. 

Example;

(4.2)

v)

Figure 4.8 Example of cluster coefficient 
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 For this example deg (Vi) = 3 L  =1 

C (vi) = 3 / 3 (3-1) = 0.5 

The Average clustering coefficient in the total graph can be illustrated as 

C = -1 Ec=i C(vl)(4.3) 

4.3.5 Characteristic Path length (L) 

     The characteristic path length (L) indicates the integration of a network and flow of 

information within the network. The distance of the shortest path (a) between two nodes is 

the length of the path with the minimum number of connections. Therefore, the characteristic 

path length of a network is the average minimum number of connection between two nodes 
in the network. The characteristic path length is used to quantify global efficiency 38)

Figure 4.9 Characteristic path length

 This figure 4.9 shows three different paths between VI and Vs, but the shortest path is 2, 

indicates by black arrows. 

The characteristic path length refers to the shortest path length between two nodes averaged 

over all pairs of nodes. 

The characteristic path length can be calculated using following formula. 

L = EtEI Lii(4.4) N(N-1) 

Li denotes the shortest path length between i and j node. 

The network is more likely to be linear, as the network has higher characteristic path length 

and lower characteristic path length would be showed a more compact network.
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4.3.6 Small-Worldness (SW) 

 The concept of Small-worldness (SW) network was introduced by Watts and 

Strogatz in 1998 34) The regular network consists of nodes which are only related to 
neighbour nodes and the random network consists of nodes which are related randomly 39) 

Figure 4.10 shows the arrangement of interconnected nodes in the regular network, small 

world and random network. The concept of small-world consists of clustering which defines 

the extent to which the neighbour nodes are interconnected 40) Small world network has 

shorter characteristic path length than regular networks 38)• A small-world network 

characterises by high local clustering and low minimum path length between a pair of nodes. 

         Regular network Small world Random network

 P=0 P-1

Increasing numbers

Figure 4.10 Small-worldness (Source; Reproduced from Liao X et al., 2017)

SW is calculated using following formula. 

                     SW = C/Crand(4.5) LlL
rand 

Here C is cluster coefficient and L is characteristic path length in the tested network Cram 

and Lrand are cluster coefficient and path length respectively in a random network. Generally, 

small-worldness is less than 1. 

4.3.7 Network Efficiency 

     The efficiency of a network defines how efficiently information exchange between 

nodes 42). This efficiency can be applied to both local and global scales in a network. 

Global efficiency in a graph of G is measured as 

         Eglob(G) = 1/N(N — 1) Ei*je Gd(4.6)
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 Here di1 denotes the shortest path length between node I and j in the G graph. 

The local efficiency is defined as follows.

~~++//                   E[oc(G)=NL6Eglob(GO (4.7)

Egiob is the global efficiency in the graph and G; denotes the subgraph composed of 

neighbours a node of i.

4.3.8 Eccentricity 

The eccentricity (e NO of a connected network can be defined as the maximum 

distance between a particular node to another node. The diameter of the graph is termed as 
the maximum eccentricity of a node 43)• 
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                       Figure 4.11 Eccentricity 

In the figure 4.11 graph, the eccentricity of 'a' is 3 because the maximum distant of the 

graph is 'a' to 'g'. From a to b = 1, a to c is 1, a to d= 1, a to e = 2, a to f = 2, a to g = 3 

4.3.9 Strength (S) 

In a weighted network, strength (S) is defined as the mean of all weights of edges. 
Therefore, the strength of a graph (G) with N number of nodes, from I to j distinct nodes is 
calculated as below. Wij denotes the connection weights of all edges 44). 

            S(G) =NL*jEGWi)(4.8)
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CHAPTER 5

                        The Connectome Mapper 

5.1 Brain Mapping 

     The brain is the most complex organ with 85 to 100 billion neurons 45) in the human 
body with multiple connections from webbing in every possible direction, forming the vast 

brain networks. These huge number of neurons are interconnected anatomically and 

functionally. The abstract version of networks called connectome refers to connection 

matrix of the brain that describes interconnectivity patterns at multiple levels. Recently, 

researchers use connectome in order to understand functional brain states through 

 interconnections in neuroscience 46, 47). The connectome can provide crucial 

neuroinformatics resources that cause to development of neuroscience in theory and 

experiments 47). 

     Brain connectivity derives from anatomical, functional and effective connectivity. 

Anatomical and functional connections between brain regions have organised in order to 

process information optimally. Functional interactions synchronise activities between brain 
regions not only local regions but also peripheral. Anatomical connectivity which is also 

known as structural connectivity creates the connectome via synaptic contacts among 
neurons. The white matter consists of the whole set of fibre tracts in the brain. Functional 

connectivity illustrates statistical dependencies between anatomically separated brain 
regions. Effective connectivity refers to the influence of one neural system over another 46). 

     The goal of brain mapping is to understand hierarchical and complex structural and 

functional network organization of the brain. With the evolution of non-invasive brain 

imaging methods such as functional MRI (fMRI) and dMRI, many neuroscientists have been 

focusing on mapping a detailed picture of brain structural and functional architecture. Brain 

mapping enables to improve understanding of brain connectivity 46). 

     Structural connectivity can be better understood using dMRI which provides 

essential information on structural connectivity in vivo. Diffusion MRI helps to investigate 

complex microstructural information of the white matter in the brain. Although dMRI can 

provide valuable information on structural connectivity, information is not adequate to 
understand brain connectivity. Functional connectivity provides the information of 

directionality, and fMRI can be used to extract complementary information to the better 
understanding of brain connectivity 45). Since structural connectivity in the brain is the basis 

of functional connectivity, linking these two need to be address quantitatively. 

5.2 The Connectome Mapper 

The evolution of MRI has opened up new directions towards studying the structure 

and functions in the brain for neurosciences. MRI allows investigating much invaluable 

information in the brain non-invasively. However, understanding of the brain connectivity 

is a challenge to neuroscientist with its complexity. Both dMRI and fMRI are two main 

techniques in investigating interactions and interconnections between brain regions 3). 

Mainly dMRI allows the white matter in the brain with the demonstration of the location

28



 and trajectory of neuronal tracts in vivo 22) White matter tractography is a useful 
advancement in dMRI to understand many neurological diseases including stroke, dementia, 
traumatic brain injuries and Alzheimer disease. A connectome is a neural connection that 
can be seen as a network. Generally, connectome represents by adjacency matrix which is 
known as connectivity matrix. 

     The Connectome Mapper is a unique software that can use to understand the brain 
connectivity by creating connectivity matrix 3)• The Connectome Mapper is an open source 
software and a user-friendly pipeline that comprises a combination of various state-of-art 
neuroimaging software packages which are freely available. Usually, researchers should use 
these software packages separately, or they have to write their own script to use a 
combination of all software packages for the fulfilment of data processing. Therefore, the 
Connectome Mapper aimed to resolve this kind of inconvenience in neuroimaging in term 

of diffusion pipeline processing. In the field of neurosciences, there could be a very few 
software tools which have been combined several dedicated tools to perform diffusion 

pipeline. The main goal of the Connectome Mapper was to provide some guide and support 
to researchers through all the stages together which are needed for construction of 
connectome. Also, this tool provides custom processing workflow to fulfil specific needs in 
connectome creation. Moreover, pipeline processing is simplified that may cause 
researchers to understand the organisation, image processing and analysis of the data. The 
Connectome Mapper can be used with wide variety of MRI data such as DTI, Q-Ball 
imaging, Diffusion Spectrum and fMRI as well. 

     The Connectome Mapper belongs to the Connectome Mapping Toolkit (CMTK) 

(http://www.connectomics.org/). This tool is written in Python program. The Connectome 
Mapper is sophisticated software that can be compatible with much state-of-art software in 

the neuroscience field. The workflow of the Connectome Mapper is the basis on a wide 
range of software packages including FSL (www.fmrib.ox.ac.uk/fsl), FreeSurfer 

(surfer.nmr.mgh.harvard.edu), and Diffusion Toolkit (www.trackvis.org/dtk) etc. The 
Connectome Mapper owns processing stages and specific task of the workflow with a 
feasible graphical user interface (GUI). Figure 5.1 shows the GUI of the Connectome 
Mapper. 

5.3 Processing Stages of the Connectome Mapper 

The Connectome Mapper is a combination of neuroimaging tool including FSL (https://fsl. 
fmrib.ox.ac.uk/fsl/fslwiki/FSL), FreeSurfer (https://surfer.nmr.mgh.harvard.edu/), and Diff 
usion Toolkit (DTK) (http://trackvis.org/dtk/). Stages of the Connectome Mapper are, pre-

processing, segmentation, parcellation, registration, fibre tracking and connectome creatin 
g. 

     The minimum requirement to implement the Connectome Mapper for structural 
connectivity is diffusion image series and T1 weighted image series which can be in Digital 
Imaging and Communication in Medicine (DICOM) or Neuroimaging Informatics 
Technology Initiative (NIfTI) format. However, DICOM images are internally converted 
into NIfTI format while processing at the beginning of the workflow.
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                 Figure 5.1 The Connectome Mapper GUI 

5.3.1 Pre-processing 

     Diffusion images are more vulnerable to geometric distortion from EPI readout. DTI 

images are distorted by eddy current as well. Pre-processing enables to avoid eddy current 

distortion and motion artifacts. In the connectome mapper pre-processing is supported by 

FUGUE tool of FSL. The correction of non-linear distortions can be performed by additional 

scan called field maps. However, when a user is unable to obtain field maps, linear 

registration would still be improved with the T2 weighted non-EPI acquisition. 

5.3.2 Segmentation and Parcellation 

     The pipeline processing in the Connectome Mapper starts with the segmentation of 

the white matter. In the stage of segmentation, Ti weighted images are processed to extract 

white matter from grey matter, and CSF. The extracted white matter areas are labelled as 

nodes in the connectome later on in the parcellation stage. The segmentation is usually 

performed by FreeSurfer tool, and custom segmentation is also available when user holds a 

custom atlas. The default tool of the parcellation is NativeFreesurfer. Additionally, 

Lausanne2008 or custom options are also available at this stage. FreeSurfer creates brain 

structures and labels based on anatomical atlases which are Desikan-Killiany, and Destrieux. 

The parcellation starts with the Desikan-Killiany atlas and cortical surface further divides 

into parcels using the two-phase portioning technique to form multi-scale parcellation of the
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cortex. The Connectome Mapper uses five different subject-specific atlases to create 1015, 
463, 234, 129 and, 83 labels in the brain. The cortical parcel is an approximately 1.5 cm2 

surface in the smallest scale atlas. The parcellation contributes to the generating of nodes in 
the connectivity based on studies such as structural and functional networks.

5.3.3 Registration to Diffusion Space 

 In this stage, the tissue mask that created in segmentation should be registered to the 
b0 volume in diffusion images. There are three registration options such as linear registration, 
BB registration, and non-linear registration. Linear registration is the simplest method that 
Ti weighted image is linearly registered to the b0 volume. The affine transformation refers 
to intensity based linear registration which can be performed with FSL. For instances, the 
FLIRT option can give fast and optimised results. Additionally, the Connectome Mapper 

provides the possibility to tune all the parameters and check the quality of registration. The 
BB registration is boundary-based registration in FreeSurfer. BB registration is based on 
linear transformations, and this method is more robust than linear registration. The non-

linear registration is also performed with FNIRT in FSL. Ti weighted volume should be 
aligned with T2 weighted non-EPI image with FLIRT. The degrees of freedom are 6°. T2-
weighted volume is non-linearly registered to the b0 volume with FNIRT. 

5.3.4 Diffusion and Fibre Tracking 

     Fibre tracking can be performed using five different tools including DTK, MRtrix 

(http://www.mrtrix.org/), Camino (http://camino.cs.ucl.ac.uk/), FSL, and Gibbs 
(http://docs.mitk.org). MRtrix, Camino, and FSL perform probabilistic tractography, DTK, 
and Gibbs perform only deterministic streamlines, MRtrix and Camino can perform both 
tractography methods. 

     The deterministic streamline with DTK is the most common and easier tractography 
method in the Connectome Mapper which offers parameters such as the number of seeds, 

step size, and turning angle that user is able to choose the value of those. The default number 
of seeds, step size, and turning angle are respectively 32, 1 mm, and 60. Tracking is stopped 
once streamline criteria is met such as after streamline reached the boundary of grey matter 

or not sync with the diffusion direction with nearby voxels. The spline function provides 
filtering which is the basis of fibre length or smoothing to enhance the quality of streamlines. 
Deterministic tractography is more likely to be sensitive to the noise. To overcome this 
limitation, the Connectome Mapper has alternative approaches such as global or 

probabilistic tractography. 

     In the fibre tracking stage, the Connectome Mapper implements either deterministic, 

probabilistic or global tractography and each tool provides different seeding technique. For 
instance, default streamline tracking tool, DTK enables to perform deterministic 
tractography with randomly chosen N seed points per voxel. MRtrix performs both 
deterministic and probabilistic tractography, and it uses N, seed points per seed mask. In the 

probabilistic tractography, tracking starts from the selected ROI and N seeds points per 
region can be randomly selected. However, global tractography does not have seeding 

strategy.
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5.3.5 Connectome Creation

     The final stage in the Connectome Mapper is connectome creation. The connectome 
is constructed by combining results of tractography with segmentation results. The 

Connectome Mapper uses Python package of NETWORKX (networkx.lanl.gov) to create a 
connectome. NETWORKX is a powerful Python package that can be used to create and 
manipulate complex networks. The final result of Connectome Mapper is a connectivity 
matrix. The Connectome Mapper offers various options to store results in different formats 
such as MAT-file, Python pickle, and CFF or graphml files. 

     The fibre trajectory that reconstructed in this stage is intersected to the boundary of 
 the white matter and grey matter which used to assign a pair of anatomical connections R1 

and Rj. This trajectory is represented by a cell Cijin the connectivity matrix. 

5.3.6 The Execution Time of the Connectome

     The execution time of the Connectome Mapper is varied accordingly for each 
algorithm in different stages. Generally, the full processing time is about 12 to 72 hours per 
a subject on an ordinary workstation on the Linux platform. Additionally, segmentation 
takes 12 to 24 hours. While fibre tracking needs up to 48 hours in probabilistic tractography 
with default parameters, deterministic tractography takes only a few minutes to complete 
the task.

5.3.7 Limitations of the Connectome Mapper 

     The Connectome Mapper has mainly experimented with GE and SIEMENS MRI 

images. However, pipeline of the Connectome Mapper cannot be implemented when MRI 

image header stores incorrect information. 

5.4 Literature Review of the Connectome Mapper 

With the revolution of MRI, neuroscience researchers endeavour to understand brain 

networks and neurophysiological mechanism. MRI is a non-invasive imaging modality that 

offers advanced modalities for investigating detailed information of the brain with the new 

perspective. In the field of neuroimaging, dMRI and fMRI are useful imaging technique to 
study how brain regions are interconnected. The advanced technique such as DTI helps to 

map the neuron axonal structure through fibre tracking 3) Brain mapping is a vital method 
for understanding the molecular, cellular and functional mechanism particularly after 

rehabilitation of stroke patients 48k A connectome is a network that can describe as a 

comprehensive map of neural connections of the brain. The Connectome Mapper is a novel 
and useful tool for creating a connectome. The development in the analysis of complex 

networks in the brain mainly based on graph theory. Graph theory illustrates features of the 

complex, local and global network measures in the whole brain scale of a human 49). 

     Some researchers have conducted brain mapping researchers using this dedicated 

pipeline software. Elda and Emma conducted a study to investigate brain networks 
characterisation of high-risk preterm school-age children. In their study, the Connectome 

Mapper pipeline was used to process DWI and T1 weighted images. DWI images were pre-
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processed to correct eddy current and head motion using FSL. In the Connectome Mapper 

pipeline process, registration was accomplished using BB registration tool from FreeSurfer, 

and white matter extraction was performed using FreeSurfer. Tractography was performed 

by the inbuilt method in the tool. Graph theory measures of degree, strength, clustering 

 coefficient and local efficiency were analysed 50).

     Fischi-Gomez et al. have researched on structural brain connectivity in school-age 

infants for the impaired network for cognitive skills and social cognition. In this study 

connectomes were created using the CMTK. DWI and high-resolution TI weighted images 

were used to create streamline tractography in FreeSurfer. In this study, local and global 

connectivity measures were analysed to investigate cognitive functions of children by the 

new approach of whole brain connectome analysis 51) 

    Szalkai et al. have found that small brains showed lack of connectivity and large 

brains in females have the deep connectivity. In this study, graphs were created using the 

CMTK. FreeSurfer has been applied for parcellation with Desikan-Killiany anatomical atlas 

with multi-scale parcellation like 83,129, 234, 463, and 1015. Deterministic tractography 

was performed using MRtrix tool 52)• In our study, deterministic tractography was performed 

using Diffusion Toolkit, and 83 brain regions were analysed for graph measures. 

    Kerepesi et al. have conducted a study on mapping the brain to investigate 

connections between the regions of the brain using CMTK for brain segmentation, 

parcellation, and creation of connectomes. Parcellation was performed for 1015 brain 
regions including cortical and subcortical regions which based on Desikan-Kiliany atlas in 

FreeSurfer. Tractography was performed using the deterministic streamline in MRtrix 

process 53)• In our study, parcellation was fulfilled for 83 brain regions and deterministic 

tractography was performed in DTK. According to the results of their study, frontal lobes 

were conservative and superior temporal, and postcentral gyri were diverse. 

     Szalkai et al. have conducted another study on graph theory analysis to investigate 

that women's brains are better connected than Men's Brains. Connectomes were constructed 

using CMTK. The parcellation was performed for 83, 129 and 234 cortical and subcortical 

brain regions which were based on Desikan-Kiliany brain atlases using FreeSurfer. This 

research concluded that female connectomes have more edges than males' connectomes 54)• 

     Kim et al. have shown structural connectivity difference between healthy controls 

and Parkinson's disease patients using CMTK for DTI and Ti weighted images. The 

Connectome Mapper pipeline was implemented for pre-processing the DTI. Registration 

was done using non-linear registration using FSL. Tractography was performed for fibre 

assignment by continuous tracking from DTK. Structural connectivity of 8 brain regions 

was compared between healthy controls and Parkinson patients 55)
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 6.1 Introduction to Tractography

CHAPTER 6

Tractography

     DTI delineates the white matter microstructure in the brain by tracking the diffusion 

of water in neurons. This technique known as tractography has become an important 

biomarker in the neurodevelopment because it allows white matter structure to examine in 

vivo. In tractography, visualisation and segmentation of these fibre tracts are the most useful 

aspect of clinical neuroscience 56). Tractography is a key in neuroimaging since it is the only 

non-invasive clinical method of reconstructing the white matter to illustrate and visualise 

the brain wiring system in structural connectivity 24).

     Diffusion anisotropy of the water in the white matter based on three axonal 
alignments. Diffusion of the water more likely to be aligned along the axon and relatively 
limited to be aligned with the perpendicular axis which is called ellipsoid or a tensor. The 
method of translation of the longest axis of the tensor into trajectories are achieved by 
different kind of tractography algorithms such as deterministic or probabilistic tractography. 
We focused on deterministic tractography in the present study which is clinically more 
common in the neuroscience 23).

     Tractography assumes that each voxel is represented by single fibre orientation. 

Mathematically this fibre orientation is considered as a three-dimensional vector field is 

known as streamline.

dr (s)/ ds= v[r(s)]

r (s) is 3D position along the streamline and v is the 3D vector field. 

r (s)= .1 so v[r(s)]ds

(6.1)

(6.2)

r (so) = r0 represent the starting point of the streamline which is called as a seed point. This 

process of streamline integrates the streamline which is referred to as streamline tracking 57)

     Generally, two basics tractography approaches are widely applied in clinical and 
research settings; deterministic and probabilistic tractography. The deterministic 
tractography constructs white matter tracts which based on user-specified seed points, the 

principal eigenvector of diffusion and user-specified thresholds that can limit the trajectory. 
Most typical instances are user-specific curvature threshold and the local FA. Deterministic 
streamline is the relatively simpler approach, estimating the fibre tract orientation at every 
voxel is rarely accurate. The deterministic approach considers the mean distribution of 
orientation of fibre tracts. The probabilistic tractography estimates the entire distribution of 

possible orientation of fibre tracts which emerge from the specified seed point in all voxels. 
For instance, if the vast number of tracts are crossing each voxel when probability map 
derives in the streamline, voxels with the most number of tracts passing through include in 
the probability tractography. Broadly, the probabilistic approach is more sophisticated and 
robust, but also harder to compute streamlines compared to deterministic streamlines 561
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Figure 6.1 shows the difference between deterministic tractography and probabilistic 

tractography.

Deterministic tractography Probabilistic tractography

Figure 6.1 Visual representation of deterministic tractography and probabilistic 

    tractography (Source: Reproduced from Rodrigues NB et al. 2017)

 The ability of fibre tracking in dMRI to reconstruct the white matter pathways has 

raised possibilities for numerous clinical applications and offers potential studies in 

structural and functional aspects 57)• In diffusion, tractography is the only method that can 

identify and measure the connections and pathways non-invasively.

     Tractography is one of the essential steps of construction of connectivity matrix as it 

can extract fibre bundles in the white matter in order to investigate features of brain networks. 
Besides, features of structural networks may depend on important tractography parameters 

such as the number of seeds, turning angle, step size or algorithm. Brain networks can be 

analysed using methodology such as graph theory using various network parameters 
including degree, strength, betweenness centrality, local efficiency and cluster coefficient. 

The global network parameters such as characteristics path length and small-worldness also 

can be estimated using graph theory. Brain networks describe a graph which consists of a 

set of nodes and edges that are connected to each node. The main tractography techniques 

are based on the fixed parameters, and the curvature of streamline and the scale can be varied 

in each anatomical region. Therefore, optimal tracking parameters also vary with the Region 

of Interest (ROI). Thus, interpretation of connectivity profiles may become more 

complicated with slightly different parameters 24).

     Tractography has some limitation that has not yet been validated. Moreover, fibre 

tracking has a significant limitation that fibre tracking unable to accurately delineate tracts 

within a single voxel due to fibre orientation such as kissing, crossing, converging and 

diverging 56) However, probabilistic tractography approach has less risk to bring 

underestimation of fibre bundles in the brain 23)
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6.2 Tractography Parameters

     The combination of connectome analysis and graph theory becomes a powerful 

approach to investigate structural connectivity. The use of DTI associated white matter 

tractography provides an ability to study about brain networks. MRI has a number of 

tractography algorithms such as deterministic, probabilistic, local and global tractography. 

Tractography tools offer the possibility to choose the algorithm with user-defined 

 parameters 5) The parameters that can be used to create tractography may influence the 
results of network measures.

     Mostly, researchers use fixed set of parameters in publicly available tractography 
methods. Choice of parameters can be varied according to the region of the brain, subject or 
conditions of the brain such as stroke. Therefore, optimal parameters could be different and, 
these variations may result in different connectivity profiles. Optimising tractography 

parameters are crucial since they may impact on output of the tractography. Therefore, it is 
essential to investigate the features of the parameters of streamline tractography. Besides, 
each technique has its array of parameters that should be adjusted with care, depending on 
the pathological conditions in the study. For instance, the parameters which use for healthy 
subjects may differ from patients with various pathological conditions 24)

     In this study, we briefly reviewed the impact of the number of seeds per voxel, step 

size, and turning angle of tractography related to the Connectome Mapper. These three 

parameters are mainly used in streamline tractography and review how variations would 

lead to different output in graph theory measures.

6.2.1 Turning Angle

     Stopping criteria uses turning angle to terminate the fibre tracking when stepping 
outside the bundle of the white matter. The angular threshold is the maximum bending angle 
that allows for a streamline trajectory. Generally, the angular threshold for deterministic 
tractography is 45°, and probabilistic tractography mostly implements with turning angle of 
80° 58) The maximum turning angle of tractography is calculated as follows. 

a= 2 aresin (step/ 2 curvature)(6.3)

In the equation, a denotes maximum turning angle and once after establishing the step and 

curvature, a can be calculated.

6.2.2 The Number of Seeds

Two types of seeding methods are available in tractography. 1. ROI seeding and 2. 

Complete seeding. In the ROI seeding method, the user can select the starting ROI and 

initiates from the voxel that the same ROI located. The complete seeding method refers to 

track from anywhere in the tracking mask. Thus, it is highly depended on resolution and 

number of seeds are placed in a voxel. The features of the tractography such as geometry, 

length, location, and pathology can be affected by the best choices of parameters 24) The 

selection of the number of seeds per voxel satisfies the threshold in the initial tracking, and 

each seed will start to track fibres. Thus, higher number of seeds per voxel will generate
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more fibres in the brain. However, the number of seeds depends on the size of the voxel size . 
 For instance, with the large voxel size, more seeds have to be chosen 59) 

6.2.3 Step Size 

     Step size is an important parameter as it can affect highly curved regions. The 

primary advantage of choosing the correct step size is creating long fibre trajectories by 
linking fibre orientation in each voxel in the brain 57) Although there is no standard in the 

optimal value of step size, the even small alteration may bring an important effect on fibre 

tracking process. For instance, the too large step size can step outside the bundle, and smaller 

step size can have numerical errors 224)

6.3 Literature Review for Optimisation of Tractography Parameters 

     Bastiani et al. have compared tractography algorithms and parameter to evaluate the 
changes in connectivity matrices using FA and maximum angle between two consecutive 
steps. The voxel size set as 5 x 5 x 5, and the step size set as 1mm to perform to local 
tractography, and the graph-based algorithm has been performed with varying the step sizes. 
Two angular thresholds 30° and 90° which is a common choice in deterministic tractography 
were used in the study 60) 

     In neurosciences, a variety of tractography algorithms are widely used to calculate 
streamlines through different tractography principles. The selection of probabilistic and 
deterministic tractography, local and global tractography are included different 
reconstruction trajectories which based on diffusion signals. Each trajectory can have some 
advantages and disadvantages as well. Moreover, any tractography method needs an optimal 
set of parameters which is essential to obtain maximum and minimum fibre length, seed 
selection and termination of stopping criteria. Thus, the minimum radius curvature would 

allow streamline to build a better connectome. However, parameters cannot be optimal 
across all conditions 27) 

     Chamberland et al. have mentioned that tractography studies mostly conduct with a 
fixed set of parameters. However, the scale and curvature of fibre bundles can vary from 
region to region and pathology of the ROI. The various parameters that use to track the white 
matter may result in different connectivity profiles, and interpretation of the result can be 
varied dramatically. Therefore, Chamberland et al. have reported that investigating optimal 

parameters would be extremely advantageous as it may bring more sensitive streamline 
features through potential converge on optimal setting for the connectome analysis 24). 

     The reliability of tractography for mapping the brain is limited by technical factors 
which can affect the final results of connectome. Therefore, Thomas et al. have conducted a 
study to investigate the anatomical accuracy of the brain connections derived from 
tractography. This study has been focused on possible limitations in the gold standard 
tractography techniques. Moreover, the effect of angular threshold and composition of the 
seed ROI were estimated using DWI data from a rhesus macaque brain ex vivo with different
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MRI imaging techniques to obtain tractography. Specificity and sensitivity of the 

 tractography method were calculated in the precentral gyrus using Youden index 61) 

     Cheng et al. have reported optimisation of seed density in DTI tractography for 

structural networks. This study examined the impact of the number of seeds in tractography 

on a variance of structural connectivity. They have used as a specific standard to measure 

the noise of the image. This research was a comparison of the number of random seeds from 

1 to 40. For instance, tractography was constructed using the number of seeds such as 1, 5, 

10, 15, 20, 25, 30, 35, and 40. The effect of the number of seeds was explored using a set of 

network measures including degree, betweenness centrality, strength, cluster coefficient, 

and small-worldness 62).
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CHAPTER 7

  Impact of Tractography Parameters on Brain Structural Networks; The Connectome 
                             Mapper 

7.1 Background and Objectives 

 DTI is one of the promising and non-invasive techniques in the MRI that can assess 
the microstructural features of the white matter pathways. Mainly, the process of 
reconstructing the major white matter tracts is called tractography, allows mapping the brain 
structural connectivity in vivo. Despite, these advanced MRI techniques, recent studies on 
brain connectivity have proposed that whole-brain white matter networks can be analysed 
using deterministic or probabilistic tractography 63). Tractography creates the axonal fibre 
bundles that connecting anatomically separated brain regions once after estimating fibre 
directions 60)

     In neurosciences, reconstructing the macro scale connectome, to mapping structural 
connections has increasingly become popular in the recent years. Modelling the whole brain 

of the human as a large-scale network is so-called connectome 58). The connectome 
delineates graph which comprises a set of nodes which represent parcellation of brain 
regions and edges to derive their connections 60) Comprehensively, three steps are required 
to compute a connectome from DTI images; 1.A high-resolution Ti image is used to 
segment and obtain the white matter, 2. Neuronal fibre bundles are extracted in tractography, 
3. Reconstructing connectivity matrix by registering T1 images into diffusion image and 
then intersecting the fibre trajectories with segmented brain regions pair-wise 3). 

     Brain networks derive from anatomical or physiological observations which can be 
termed as structural and functional networks. Brain connectivity consists of three kinds of 
connectivity such as structural connectivity, functional connectivity and effective 
connectivity. Structural connectivity refers to anatomical connections which link a set of 
neural elements. In the brain, these connections represent links between cortical and 
subcortical brain regions. Generally, structural connectivity is estimated as a set of 
undirected links. Functional connectivity is referred to as the statistical dependence of 
neuronal elements. Effective connectivity represents casual interactions between neural 
elements. Our study based on structural connectivity since this study utilised only DTI 
images ~). 

     The connectome can be seen as adjacency matrix which is possible to analyse using 

graph theory and network analysis 60) Graph theory analysis examines the white matter 
networks and topological properties such as path length, degree, betweenness centrality, 
cluster coefficient and small-worldness 63). Construction of graphs utilises tractography 
results with node parcellation and connectivity matrix 64)• The degree is the simplest 
approach of graph theory which is the number of edges connected to a node. The strength is 
the sum of neighbouring link weights of a node. The betweenness centrality refers to all 
shortest paths in the network that pass through a particular node 62) Also, global networks 

properties include cluster coefficient, characteristic path length and small-worldness is one 
of the most ubiquitous properties in graph theory 64) The analysis of brain networks is made 

                               39



feasible by developing novel imaging methods combined with tools to perform graph theory 
 such as Brain Connectivity Toolbox 2) 

     Many researchers utilise multiple applications to analyse connectome which are 
needed to be sophisticated and reliable to obtain excellent features in graphs. The 
Connectome Mapper is a useful tool for neuroimaging community since the Connectome 
Mapper incorporates state-of-the-art tools that can use to study brain wiring system. In the 
tool, each stage provides additional options and possible custom functionalities to facilitate 
a flexible, user-friendly environment for connectome reconstruction. The Connectome 
Mapper mainly tested for MRI data from SIEMENS and GE without any issues, except that, 
it allows a user to control parameters and manually correct and modify intermediate data 
such as brain mask. In addition, if something goes wrong, the Connectome Mapper GUI can 
help to tune the parameters and re-process the particular step that gives erroneous results 3)• 

     Diffusion tractography can be influenced by various conditions such as anatomical 

preparations, diffusion acquisition, data processing, tractography algorithms and tracking 
parameters. More importantly, tractography profiles can be varied with parameters such as 
streamline numbers, step size, curvature, fibre orientation, and whole brain versus ROI 
seeding 58). Moreover, optimal tracking parameters can be varied dramatically concerning 
the area of interest or subject or pathological conditions. Thus, the different parameter may 
bring different connectivity profiles. The reliability of connectivity matrices highly depends 
on tractography techniques and parameters. Therefore, setting these parameters of 
tractography is a challenge in order to obtain optimal results in clinical studies. 

     In neurosciences, scrutinising the impact of tractography parameters on connectivity 
analysis has gained much attention because currently, there is no gold-standard set of 

parameters 1) DTI based tractography may have various tracking parameters such as 
tracking mask, step size, interpolation, turning angle, and seeding strategy 24) We examined 
three parameters including seeds per voxel, turning angle and step size used in deterministic 
tractography of the Connectome Mapper using DTK. Although a few studies have been 
addressed the optimisation parameters in tractography, previous literature has not been 
found related to the tracking parameters in the Connectome Mapper to date. Most users have 

performed tracking stage of the Connectome Mapper with randomised seeding and default 
step size and turning angle which are 1 mm and 60° respectively. 

     We aimed to understand the optimal parameters in fibre tracking that can impact on 
the network measures in structural connectivity since optimising parameters in tractography 
highly beneficial in future studies with the Connectome Mapper. To achieve this goal, we 
used DTI and high-resolution Ti data of 10 healthy subjects. The Connectome Mapper 
creates connectivity matrices, and graph theory computes network measures, the 
combination was used to examine tractography parameters using network measures. We 
examined the effect of three tractography parameters with five number of values in each on 
the network measures including degree, betweenness centrality, cluster coefficient, 
eccentricity, local efficiency, strength, characteristic path length and small-worldness. In 
addition, we investigated the relationship of tracking parameters corresponding to the 
network measures.
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7.2 Materials and Methods 

7.2.1 MRI Acquisitions 

 Ten healthy subjects (Age; 43 +15 years) participated in this study. All Subjects were 
healthy volunteers with no history of neurological or psychiatric disorders. MRI data were 
acquired on a 3.0T Philips Achieva scanner (Kikyogahara Hospital, Nagano, Japan). DTI 
images were acquired with b=800 s/mm2 and 34 directions over a matrix 128 x 128 x 55, 
voxel resolution= 1.75 x 1.75 x 3 mm3 and TE=70 ms, TR=5038 ms. High-resolution TI-
weighted MM data were obtained using following parameters; TE= 3ms, TR= 6 ms with a 
matrix size of 240 x 240 x 120 and voxel resolution 1 x 1 x 1.5 mm3. 

7.2.2 Image Processing 

The whole-brain structural connectomes were extracted using CMTK, a Python-
based software (www.cmtk.org) 3). Figure 7.1 shows the stages of creating connectome 
matrix in the Connectome Mapper. Motion corrections and eddy current corrections were 

performed in the pre-processing using an inbuilt method of the Connectome Mapper. The 
high-resolution Ti image was segmented to extract the white matter from the grey matter 
and CSF using FreeSurfer tool. Parcellation of cortical and subcortical structures was 

performed using nativeFreeSurfer tool based on two anatomical atlases, Desikan-Killiany 
and Destrieux. Eighty-three brain regions were further parcels in this stage. TI weighted 
image was registered to the non-diffusion weighted image, b0 volume using linear 
registration in FSL. Deterministic tractography was performed with FACT algorithm using 
DTK. In the Connectome Mapper, tractography was performed with regulating turning angle, 
the number of seeds per voxel and step size. Connectomes were created with altering the 
turning angles of 40°, 50°, 60°, 70°, and 80°, the number of seeds 15, 25, 35, 45, and 55 and 
step sizes of 0.1 mm, 0.5 mm, 1 mm, 1.5 mm and 2 mm. Connectivity matrices were obtained 
in the connectome stage as the MAT-file format in MATLAB.
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 Figure 7.1 Image processing in the Connectome Mapper
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7.2.3 Application of Graph Theory 

     Structural connectomes can be seen as connectivity matrices that are used to define 
brain networks. Graph theory belongs several local network measures including degree, 
betweenness centrality, local efficiency, cluster coefficient, eccentricity strength and global 
network measures such as small world and characteristic path length. The network measures 

 were computed using the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) 
on MATLAB (R2017b). 

7.2.4 Data Analysis 

The mean of each network measure in 83 brain regions of each subject was calculated 
to obtain degree, betweenness centrality, cluster coefficient, local efficiency, strength, small-
worldness, and characteristic path length for each parameter. The mean and SD were 
obtained using Excel 2016. Statistical analysis was performed using IBM SPSS statistics 24. 
Pearson correlation was performed to determine the linear relationship between parameter 
and network measures. One-way analysis of variance (ANOVA) was performed to 
determine if there were differences in the five groups in each parameter. 

7.2.5 Connectome and Tractography visualisation 

     For an interpretation of connectivity matrices, tractography, and brain networks, 
various tools were implemented. Tractography results were observed for examination of 
tracts in different parameters using Trackvis (http://trackvis.org/). Connectivity matrices and 
networks were visualised using BrainNet viewer (https://www.nitrc.org/projects/bnv/) 
which helps to understand structural, and functional connectivity patterns of brain networks.

7.3 Results

     In the Connectome Mapper, the user can tune any control parameter provided in the 

processing stages. In this study, we explored only tractography parameters such as turning 

angle, number of seeds per voxel and step size to investigate the impact of these parameters 

on network properties that contribute to describe structural connectivity. 

7.3.1 The mean and SD of network measures

7.3.1.1. Turning Angle 

     Table 1 shows the mean of network measures in turning angle. While the mean d, C, 
Bloc, e (v), S and L increased with the turning angle, BC decreased gradually when turning 

angle increases. The mean SW increased from 40° to 50° and after that decreased as turning 
angle increases. Thus, the largest SW belonged to 50°.

43



Turning Angle
 mean ±  SD

40° 50° 60° 70° 80°

d 13.20f 0.70 17.1810.75 20.141 0.75 23.141 0.77 26.5310.77

BC 254.79f 11.24 229.04116.57 223.1818.75 203.6615.85 187.3817.25

C 43.0918.29 78.36114.56 110.56120.86 132.36t25.27 151.84131.92

F4°, 84.98115.58 147.79f25.37 202.34t34.52 239.91141.58 271.13150.45

NI/ 1061.2112013.91 1725.561306.09 2328.31f400.92 2949.961498.54 3557.821589.66

S 2701.711532.52 5039.251930.02 7454.7311294.82 9977.93f 1689.29 12826.2512142.48

SW 2.321 0.14 2.42f 0.28 2.351 0.17 2.281 0.25 2.11t 0.27

r. 32.9516.16 61.45110.78 90.91114.98 121.68119.54 156.42t24.77

 Table 1 Mean of network measures in five groups of the turning angle for 10 subjects 

d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, E1oe= Local Efficient, 
e(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length

7.3.1.2. The Number of Seeds per Voxel 

     The mean values of network measures in the whole brain, degree, local efficiency, 
cluster coefficient, eccentricity, strength and characteristic path length increased as the 
number of seeds per voxel increases. Table 2 shows the results of d, C, thee, e (v), S, and L 
increased when the number of seeds per voxel increases. The BC increased when the number 
of seeds changes from 15 to 45 and slightly dropped when seeds per voxel at 55. SW only 
slightly altered while the number of seeds per voxel increased from 15 to 55. However, SW 
was slightly lower in 35 seeds per voxel.

Number of seeds
mean t SD

15 25 35 45 55

d 18.9010.63 19.7710.67 20.3310.62 20.7210.73 21.0410.66

BC 213.9918.64 218.78112.56 219.06f 12.08 226.7015.62 225.14111.74

C 59.53110.38 91.39116.56 118.87123.79 145.94130.75 173.52t36.37

$°° 108.85117.39 166.17127.70 217.49139.17 268.45150.16 318.54f60.08

e(v) 1153.581196.13 1848.721319.04 2530.741439.13 3202.231556.68 3870.211677.25

S 3703.091597.19 5928.421976.19 8102.4911343.81 10254.611701.25 12837.7712067.21

SW 2.3010.19 2.3910.20 2.3610.24 2.4510.19 2.4810.33

L 45.1617.28 72.29111.90 98.81116.39 125.06120.75 151.07125.21

Table 2 Mean of network measures in five groups of the number of seeds per voxel for 10 
subjects 

d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, Eice= Local Efficient, e 

(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length
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7.3.1.3. Step Size

 Table 3 shows the mean of d, and S increased while BC, C, Elm  and SW decreased when 

step size increases. The mean S did not show linear increment, and the rate of increment was 

lower by 2 mm step size.

The mean SW showed a steep drop from 0.1 mm to 0.5 mm, and the rate of decrement was 
lower after 0.5 mm. interestingly, e (v) peaked at 1 mm step size and decreased by 1 mm. 
The mean L increased when step size increases from 0.1 mm to 1.5 mm and decreased by 2 
mm step size.

Step Size (mm)
mean ± SD

0.1 0.5 1.5 2

d 13.18±0.48 17.24±0.67 20.14±0.75 23.01f0.71 25.91f1.06

BC 309.70f22.06 257.49f9.98 222.56±9.04 195.63±8.07 174.46±7.96

C 129.79-116.36 121.08±20.11 110.56±20.86 99.48f17.76 86.56±16.31

234.73±30.51 221.10±35.51 202.34±34.52 183.03±29.91 161.05f26.68

ery 2035.20f330.08 2306.62±399.17 2328.31±400.92 2290.27±387.73 2195.25f366.80

S 5892.54±855.74 7071.77±1174.49 7454.74±1228.37 7689.80±1258.88 7703.41+1289.28

SW 3.06±0.23 2.53f0.16 2.35±0.17 2.25t0.24 2.08±0.19

1. 71.86t10.44 86.24f14.32 90.91f14.98 93.77f15.35 93.44±15.72

Table 3 Mean of network measures in five groups of step size for 10 subjects

d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, E1ee= Local Efficient, e 

(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length

7.3.2 Pearson correlation test results

The Pearson correlation was carried out to look for the relationship between parameters and 
network measures. Table 4 shows the results of the Pearson correlation test in each 

parameter. The results suggested that correlation between the turning angle and degree, 
betweenness centrality, cluster coefficient, local efficiency, eccentricity, and characteristic 

path length were statistically significant and p < 0.01, two-tailed and correlation between 
turning angle and small-woridness was statistically significant and p <0.05. The correlation 
between the number of seeds per voxel and all the network measures except small-worldness 
were statistically significant at p < 0.01, two-tailed and correlation between the number of 
seeds and small-worldness was significant at p<0.05, two-tailed. The correlation between 
step size and all the network measures except eccentricity were significant at p < 0.01 and 
correlation of step size and eccentricity was not statistically significant. The correlation 
between the turning angle and small-worldness (r = -0.317, p= 0.025) was moderate and the 
number of seeds was weakly related to small-worldness (r=0.244, p=0.088). The step size is 
weakly correlated to eccentricity (r= 0.099, p = 0.493) and the correlation between the step 
size and strength (r= 0.434, p=0.002) and characteristic path length (r= 0.434, p = 0.002) 
were moderate.
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Parameters d I  BC C Ee, e(v) I S SW T.

Turning Angle [degree] Pearson Correlation

Sig. (2-tailed)
.986~I-.896
0.000 0.000

.864
0.000

.872 "
0.000

.9011.934
0.000 0.000

- .317
0.025

.934 .
0.000

Number of seeds per voxel Pearson Correlation

Sig. (2-tailed)
.735~I.373
0.000 0.008

.844
0.000

.870 "
0.000

.898 "I .90fi
0.000 0.000

0.244

0.088

.90fi
0.000

Step size [mmi Pearson Correlation

Sig (2-tailed)

.979~I-.944
0.000 0.000

-.640
0.000

-.639
0.000

0.099

0.493

.434 "
0.002

-.793..

0.000

.434 "
0.002

** Correlation is significant at the 0.01 level (2-tailed) 

* Correlation is significant at the 0.05 (2-tailed) 

       Table 4 The results of Pearson correlation test for total sample (N= 50) 

 d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, El.= Local Efficient, e 

(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length 

7.3.3 One-way ANOVA test results 

7.3.3.1Turning Angle 

Table 5 shows the ANOVA test results in turning angle. There was significant difference 
between groups in turning angle as determined by one-way ANOVA in all the network 
measures except small-worldness (F (4, 45) = 2.277, p = 0.076).

Network measures F Sig.

d 430.611 0.000

BC 52.488 0.000

C 35.544 0.000

EloC 39.034 0.000

e(v) 48.788 0.000

S 77.344 0.000

SW 2.277 0.076

L 77.344 0.000

Table 5 The one-way ANOVA results of the turning angle (p<0.05) 

d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, El.= Local Efficient, e 

(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length

7.3.3.2 The number of seeds per voxel 

Table 6 shows the one-way ANOVA results which determined that there was no statistically 
significant difference between the number of seeds per voxel and betweenness centrality 

(p=0.084) and small-worldness (p=0.506).
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Network measures  F Sig.

 d 14.608 0.000

BC 2.199 0.084

 C 27.953 0.000

Ems 35.089 0.000

e(v) 47.039 0.000

S 51.499 0.000

SW 0.842 0.506

L 51.499 0.000

   Table 6 The one-way ANOVA results of the number of seeds per voxel (p<0.05) 

d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, Eioc = Local Efficient, e 

(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length

7.3.3.3 Step size 

Table 7 shows the One-way ANOVA result of step size. The results suggested that there 
was no statistically significant difference between the step size and eccentricity (p = 0.461) 
and all the other network measures showed a significant difference in step size.

Network measures F Sig.

d 385.321 0.000

BC 161.177 0.000

C 7.819 0.000

Eioc 7.804 0.000

e(v) 0.919 0.461

S 3.730 0.011

SW 31.225 0.000

L 3.730 0.011

          Table 7 The one-way ANOVA results of step size (p<0.05) 

d = Degree, BC = Betweenness Centrality, C = Cluster Coefficient, EL.= Local Efficient, e 

(v) = Eccentricity, S = Strength, SW = Small-Worldness, L = Characteristics Path Length
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7.4 Discussion

     In this study, we examined the impact of turning angle, the number of seeds per voxel 
and step size in fibre tracking on the structural networks using DTI of 10 healthy subjects. 
We estimated the mean values of network measures in the whole brain to optimise the 

 parameters in fibre  tracking of the Connectome Mapper.

     We investigated how the different number of seeds, turning angles and step size may 

influence the estimation of several network measures that represent human structural 

connectome including degree, strength, centrality, local efficiency, cluster coefficient, 

eccentricity, and global network measures including small-worldness and characteristics 

path length. We showed that how the choice of parameters in turning angle, number of seeds 

per voxel and step size related to network measures. It is important to examine the most 
useful network measures such as small-worldness, local efficiency, and cluster coefficient.

     The results of degree, local efficiency, cluster coefficient, eccentricity, and strength 

increased when the turning angle, and the number of seeds per voxel increase. This result 

revealed that strong dependence not suggests given parameters are any more optimal than 

another except some few network measures.

     The results of Pearson correlation suggested that turning angle and the number of 

seeds can have less impact on most of the network measures except small-worldness since 

the most of network measures increased when the turning angle and the number of seeds per 

voxel increase. The correlation between the number of seeds per voxel and all the network 

measures except small-worldness were strong or moderate positive correlation which 

determined that the number of seeds did not have an impact on network measures. The step 

size possesses strong negative correlations with betweenness centrality, cluster coefficient, 

local efficiency and small-worldness which emphasized that small step size would be 

appropriate for network measures.

     The one-way ANOVA results of the turning angle showed that there were significant 
difference between five groups in most of the network measures (p< 0.05) except small-
worldness (F (4, 45) = 2.277, p=0.076) that suggested small-worldness only can have an 
effect from the turning angle and there could not be an optimal value in the turning angle 
related to the network measures except small-worldness. The number of seeds per voxel 
also could not have any optimal value in most of the network measures except betweenness 

centrality (F (4, 45) = 14.608, p = 0.084) and small-worldness (F (4, 45) =0.842, p= 0.506). 
The step size also showed that the network measures except eccentricity (F (4, 45) = 0.919, 

p= 0.461) would not have any optimal value in network measures in terms of the step size.

     The degree and the strength had a similar trend. The mean degree increased when 
the turning angle (r= 0.986, p=0.000), number of seeds (r= 0. 735, p= 0.000) and step size 

(r= 0.979, p= 0.000) increase. The strength was also increased when the parameters increase. 
Figure 7.2 shows the graph of degree versus three parameters. This result emphasised that 
more connections can be obtained when increasing these three parameters. However, the
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strength did not follow a linear relationship with the step size. Figure 7.3 (c) shows the 

 strength slightly increased when step size increases (r = 0.434, p=0.002) and the rate of 

increment is lower with larger step size. The strength is the mean value of total weight of 

edges in the particular node. For this reason, the strength value did not follow a linear pattern 

in the graph. The results of the degree and the strength determined that more connections 
were obtained when parameters increase.

Trend line
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Figure 7.2 Mean of the degree increase when turning angle 

step size increase. 
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Figure 7.3 Mean of the strength increased when turning angle and number of seeds per voxel 

increase. (c) The mean strength did not increase linearly when step size increases.

     The betweenness centrality illustrates that nodes along the shortest path to be the 

most central in a brain network. For instance, if a subject has a higher betweenness centrality, 

and if the node is located in the middle between several pairs of nodes, that reveals the flow 

and integrity of information exchange between networks is higher. The betweenness 
centrality deduces that information transfers through the shortest path in a network 27) Figure 

7.4 shows that while the betweenness centrality decreased when turning angle and step size 

increase, the betweenness centrality increased when the number of seeds per voxel increases 

and the highest betweenness centrality belonged to 45 seeds per voxel. Generally, when the 

turning angle and step size increase, there are less shortest path can be seen in networks due 

to longer fibre trajectories. Therefore, betweenness centrality decreased when the turning 

angle and step size increase. However, betweenness centrality increased up to 45 seeds and 

decreased when the number of seeds higher (F (4, 45) =2.199, p = 0.084) which could be 

the optimal group among five groups of the number of seeds in related to the betweenness 

centrality. The higher betweenness centrality can be obtained in smaller turning angle, 

higher number of seeds and smaller step size. Although the highest betweenness centrality 

belonged to 45 seeds per voxel, the value was not emphasised in other network measures.
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Figure 7.4 (a) (c) Betweenness Centrality decreased when turning angle and 

increase. (b) Betweenness Centrality increased when a number of seeds increases .

step size

     Figure 7.5 shows that cluster coefficient increased when turning angle , and the 
number of seeds increases. The cluster coefficient assumes the abundance of the connected 

triangle in brain networks. Moreover, when the length of fibre tracts increases the possibility 

to form clusters also reduces. Therefore, the cluster coefficient (F (4, 45) = 7.819, p = 0.000) 
decreased as the step size increased from 0.1 mm to 2 mm. This result illustrated that turning 

angle (F (4, 45) = 35.544, p = 0.000) and the number of seeds (F (4, 45) = 27.953, p = 0.000) 
did not show any optimal value. The smaller step size is appropriate to obtain higher cluster 

coefficient.
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Figure 7.5 Cluster coefficient increased when turning angle and number of seeds per voxel 

increase. Step size decreased when step size increases.

     The eccentricity refers to the maximum distance of the network graph. The length of 

the fibre tracts dramatically increases when turning angle (F (4, 45) = 35.544, p = 0.000) 

and number of seeds (F (4, 45) = 47.039, p = 0.000) increase. Interestingly the eccentricity 

(F (4, 45) = 0.919, p = 0.461) in the step size did not follow a linear trend. Figure 7.6 (c) 
shows that mean eccentricity decreased from 1 mm to 2 mm step size. The eccentricity 

results illustrated that step size could bring an effect on network measures and the highest 

eccentricity belongs to 1 mm step size. Therefore, this result suggested that I mm could be 

the optimal step size in related to eccentricity.
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Figure 7.6 The mean eccentricity increased with turning angle and number of seeds per voxel. 

(c) The mean eccentricity was highest at lmm step size and decreased when the step size 
increases further.

     Figure 7.7 shows that local efficiency increased when the turning angle and the 
number of seeds per voxel increase. However, local efficiency decreased with the higher 

step size. The local efficiency of a network estimates how efficiently information exchange 
between nodes. The local efficiency (F (4, 45) = 39.034, p = 0.000) increased dramatically 

when turning angle increases. The local efficiency (F, (4, 45) = 35.089, p = 0.000) followed 

linear increment with the number of seeds per voxel. Figure 7.7 (c) shows the local 

efficiency (F (4, 45) = 7.804, p = 0.000) decreased when step size increases. Therefore, 

smaller step size showed a higher local efficiency in the networks.

58



(a)

 400

,.,300 7 

t0 

T V 
C 
0 'V 

200 
IE w 

A 

v O 
J Inc

 40 50 60 70 60

Turning Angle [degree]

(b)

al 

U U 
C 
4) 
U 

l
i W 

vs 

U 0 
J

400

300

200

100

10 20 30  Sc 60

Number of seeds per voxel [a.u.]

59



(c)

300

 170 250 
7 
It 

U 
V C) 

d 'V 200 

W 

It 
U 
O 
J 150

100

.00  so 1.00 

Step size [mm]

1.50 2.00

Figure 7.7 Local efficiency increased when turning 

Mean local efficiency was higher in smaller step size.

angle and number of seeds increase.

     The characteristic path length refers to the average distance from a particular node 

to any other node. In the Figure 7.8 (a), (b) the characteristic path length linearly increased 

when turning angle (F (4, 45) = 77.344, p = 0.000) and number of seeds per voxel (F (4, 45) 
= 51.499, p = 0.000) increase. However, Figure 7.8 (c) shows that the mean characteristic 

path length did not increase linearly with the step size (F (4, 45) = 3.730, p = 0.011).
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Figure 7.8 (a), (b) The characteristic Path length increased linearly with turning angle and 

number of seeds per voxel. (c) The mean characteristic path length increased slightly after 

0.5mm step size.

The small-worldness refers to a balance of efficient information transmission 

between nodes along the shortest path length. The small-worldness is quantified by two 

network measures; the characteristic path length and the clustering coefficient . In the present 
study, the small-worldness responded in various ways for the three different parameters . 
According to the figure 7.9 (a), the peaked small-worldness (F (4, 45) = 2 .277, p = 0.076) 
belonged to 50° among turning angles. The highest small-worldness determines efficient 

information transmission in networks. Therefore, this result suggested that 500 is most likely 

to be optimal turning angle for small-worldness since small-worldness is highest at 50° . 
Figure 7.9 (b), shows small-worldness only fluctuated slightly with the number of seeds per 

voxel (F (4, 45) = 0.842, p = 0.506). Figure 7.9 (c) shows when step size increases small-

worldness (F (4, 45) = 35.225, p = 0.000) continuously decreased. The smallest step size 0.1 
mm showed the highest small-worldness.
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Figure 7.9 (a) The mean Small-worldness peaked at 50° turning angle and decreased when 

turning angle increases. (b) The mean small-worldness was almost similar when the number 

of seeds per voxel increases. (c) Smaller step size has higher small-worldness.

     Small networks facilitate basics insight for functions of complex networks to 

understand interconnections. High clustering coefficient directly involves the small-

worldness of networks that cause to promote information flow in a system. Figure 7.9 (a) 

shows the graph of the turning angle verses small-worldness which determined that the 

highest small-worldness belonged to 50° turning angle, and the small-worldness decreased 

with higher turning angles. Therefore, for the turning angle 500 could be optimal in the 

small-worldness. The small-worldness slightly altered with the number of seeds per voxel. 

Thus, the number of seeds per voxel can have only less impact on the small-worldness. The 

highest small-worldness belongs to 0.1 mm step size, and small-worldness decreased when 

step size increases. Figure 7.10 shows tractography results of various step sizes such as 0.1 

mm, 1 mm, and 2 mm. Tractography results emphasised that the fewer tracts can be extracted 
with a small step size in DTK. Therefore, the average step size likely to be 1 mm which can 

be avoided underestimation or overestimation of fibre tracking.
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 Figure 7.10 Tractography results in step size 0.1 mm 1 mm and 2 nun

     Some of the research findings can be generalised tractography parameters with brain 

network measures in different ways. Thomas et al. have explored the effect of four angles 

(30° 45° 60° and 80°) to examine the specificity and sensitivity of different tractography 
techniques. The findings of the results said that sensitivity would be increased, and 
specificity will be decreased while increasing the angular threshold. These results suggested 

that 45° would be the optimal angular threshold due to its specificity and sensitivity depends 

on the deterministic tractography technique. For instance, results suggested that 60° for DTI 
and Q ball and 45° for constrained spherical deconvolution (CSD) 6!) In the present study, 

small-worldness showed that 50° would be the drastic turning angle. However, this turning 

angle was not significant in other network measures.

     The findings of Cheng et al. revealed that the variance of the networks is inversely 

related to the square root of seed density. Moreover, the author described that stability of 

structural network measures is increased as the number of seeds increased. Despite, DTI 

showed a mixed effect from more number of seeds since more seeds would extract more 

spurious fibres that influence on the nodal degree and edge weights in networks 62) Our 

findings revealed that more connections of networks appeared with the higher number of 

seeds per voxel.

     Chamberland et al. have determined that findings of tractography parameters can 
have an impact on results of graph theory which could be helpful in some clinical settings. 

This study suggested essential results for crossing regions such as the corpus callosum (CC) 

and the cingulum (Cg). The author mentioned that the best maximum angles are 60° and 65° 

and step size, 1.5 mm and I mm for CC and Cg respectively in DTI tractography and these 

parameters are different for NARDI techniques. Moreover, Chamberland et al. have 
determined that curvature of fibre bundles is different in each brain region. Thus, optimal 

tracking parameters can be different for each region. The interpretation of the results could 

be complicated as slightly different parameters brings various connectivity profiles 24) In 

the present study, the whole brain connectivity considered for network measures instead of 

region-wise analysis. In fact, our results did not suggest any optimal parameter for whole 

brain tractography in the Connectome Mapper. Therefore, future study should be considered 
for region-wise analysis. However, the mean eccentricity peaked at 1mm step size in the 

present study which revealed that 1mm step size (Figure 7.6 (c)) would be the appropriate 
step size in DTK tractography of the Connectome Mapper.
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 In the study about the white matter, Tench et al. have mentioned maximum 10° per 
1 mm step size can provide reasonable curvature anatomically while trajectories experience 
unexpected directional changes 65). Bastiani et al. have examined the effect of tractography 

algorithm and parameters on global network density. The results determined that when 
turning angle changes from 30° to 90° tend to double the connections density of networks 
6°). We analysed two global network measures such as characteristic path length and the 
small-worldness for turning angle. While the characteristic path length linearly increased 
when turning angle increases, the small-worldness peaked at turning angle 50° in our study.

The present study suggested that the higher turning angles, higher step size and a 
higher number of seeds per voxel more likely to extract more connections. The degree and 
strength increased with three parameters. The local efficiency, cluster coefficient of 
networks also increased when the number of seeds per voxel and turning angle increase. 
Although more connections were obtained when step size increases, local efficiency, cluster 
coefficient, and small-worldness decreased with larger step sizes. Among all network 
measures, turning angle 50° is most appropriate for small-worldness and more competent 
network measures such as local efficiency or cluster coefficient increased when turning 
angle increases. Therefore, we suggested that default values in turning angle (60°) and the 
number of seeds per voxel (32) would be appropriate for tractography of the Connectome 
Mapper. Although, higher values in important network measures such as cluster coefficient, 
local efficiency, and small-worldness, resulted in smaller step size, average 1 mm step size 
could be acceptable to obtain the better results in tractography since fibre bundles can be 
under-extracted in smaller step size. Chamberland et al. have mentioned that large step size 
would have risk of stepping outside the bundle and smaller step size may bring numerical 
errors and computational burden 24) The maximum eccentricity determines the structural 

quality rather than functions in networks. The highest eccentricity belonged to 1 mm step 
size which is the default step size in tractography in the Connectome Mapper.

     This study had a few limitations. Our study was limited by small sample size. Since 
we used healthy subjects for the study, parameters could be slightly different for patients 
with pathological conditions. The results of graph theory measures would not solely depend 
on tractography parameters. Some parameters in other steps of the pipeline process of the 
Connectome Mapper could interfere with results in networks. The results of network 
measures depend on subjects as well. There is no option to set the FA value in tractography 
of the Connectome Mapper related to deterministic tractography. The sensitivity and 
accuracy of the tractography need to be considered in the future study. Moreover, the brain 
region-wise analysis would be more critical since scale and curvature of fibre bundles are 
different from region to region.

7.5 Conclusion

     We presented three fibre tracking parameters including the turning angle, step size 

and the number of seeds per voxel that can impact tractography through structural brain 
connectivity. Although tractography parameters have exposed to arguments, optimising 
tractography parameters in an automated pipeline process such as Connectome Mapper 
using healthy subjects was a novel study. Most network measures such as degree, strength,
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local efficiency, and cluster coefficient continuously increased when turning angle and the 
number of seeds per voxel increase. We showed that turning angle and number of seeds had 
no optimal value in tractography of the Connectome Mapper except a very few network 

 measures. The results showed that turning angle 50° is optimal for small-worldness and 45 
seeds per voxel is optimal for betweenness centrality. Since these values were not significant 
in many cases, suggesting that default values in turning angle 60° and 32 seeds per voxel can 
be used for connectome analysis using the Connectome Mapper. According to the step size 
results, the most appropriate network measures accomplished with the smaller step size 
except eccentricity. The 1 mm step size showed the highest eccentricity, and also 
tractography determined the better quality of tractography belong to 1 mm step size. 
However, under tracking of white matter fibres can be an issue in smaller step size. Therefore, 

our study proposed that the default values in turning angles, the number of seeds and step 
size in the DTK of the Connectome Mapper more likely to be useful in future studies with 
healthy subjects. Additionally, future study should give careful consideration to the choice 
of parameters based upon the network measures that will be analysed.
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                           Chapter 8 

                              Summary 

     DWI provides crucial information about the white matter structures which can be 
 studied non-invasively and in vivo. The advancement of MRI offers more sophisticated 

protocols such as DTI and tractography which have been led to the possibilities in 
neuroscience to estimate the white matter integrity. Interestingly, combining MRI of the 
human brain and graph theory analysis have been combined as a robust approach for 
investigating large-scale networks through brain connectivity such as functional 
connectivity and structural connectivity. Structural connectivity can be estimated using DTI 
and associated white matter tractography that enables to identify the white matter pathways 
that connected brain regions and construct brain network architecture. Network analysis 
theory such as graph theory is used to form whole brain networks using Tractography. 

     Most of the structural connectivity studies base on most publicly available 
tractography methods with the default tractography parameters. However, the scale and 
curvature of fibre bundles depend on subjects, brain regions, and pathological conditions. 
Therefore, optimal parameters can be varied dramatically, and it can bring different 
connectivity profiles and results in different values in network measures. Therefore, access 
to tractography parameters could be beneficial as it will help to a better understanding of 
sensitive streamline features.

     In this study, we aimed to understand the impact of tractography parameters related 

to the Connectome Mapper which is used to create connectivity matrices for graph theory 

analysis. We mainly focused on parameters including the number of seeds, step size and 

angular threshold in the tractography. Although a few studies have been conducted to 

optimise turning angle in tractography techniques and step size, our study is a novel study, 

slightly different since the parameters are related to the tractography in the Connectome 

Mapper. Additionally, the impact of the number of seeds per voxel on the structural network 

measures also has not yet been understood. 

     DTI data were used to construct connectivity matrices using the Connectome Mapper, 

and the graph theory analysis was applied on connectivity matrices using Brain Connectivity 

MATLAB toolbox. Connectivity measures of five different number of seeds per voxel, step 

sizes, and turning angles were analysed for network measures including degree, betweenness 

centrality, local efficiency, cluster coefficient, eccentricity, strength, small-worldness and 

characteristic path length. 

     The results revealed that more fibre tracts could be extracted when turning angle, the 

number of seeds per voxel and step size increase. Local efficiency, cluster coefficient 

increased with the higher number of turning angles and a greater number of seeds. The step 

size showed slightly different results on network measures. Degree, strength and 

characteristic path length increase with larger step size and betweenness centrality, cluster 

coefficient, local efficiency decreased when step size is smaller.
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     Our study investigated that strong dependence not suggest the number of seeds per 

voxel and turning angle can have more optimal than another. There are more connections 

can be obtained when increases tractography parameters such as turning angle and number 

of seeds per voxel. However, smaller step size would bring most appropriate network 

measures in graph theory rather than larger size step size. Finally, our results suggested that 

default values in fibre tracking parameters could be appropriate for the future studies with 

the Connectome Mapper.
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        Appendix 1 Abbreviations 

Apparent Diffusion Coefficient 

External Magnetic field 

Betweenness Centrality 

Brain Connectivity Toolbox 

Cluster Coefficient 

Corpus Callosum 

Cingulum 

Connectome Mapping Toolkit 

Constrained Spherical Deconvolution 

Cerebrospinal Fluid 

Digital Imaging and Communication in Medicine 

Diffusion Magnetic Resonance Imaging 

Diffusion Toolkit 

Diffusion Tensor Imaging 

Diffusion Weighted Imaging 

Edges 

Echo Planer Imaging 

Eccentricity 

Fractional Anisotropy maps 

Fibre Assignment by Continuous Tracking 

Free-Induction Decay 

Functional Magnetic Resonance Imaging 

Fourier Transform 

Graph 

Gradient echo 

Inversion Recovery 

Characteristic Path length 

Neuroimaging Informatics Technology Initiative
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NMR 

MD 

MPG 

 MRI 

Mxy 

Mz 

RF 

ROI 

S 

SE 

SNR 

SW 

TE 

TR 

V

Nuclear Magnetic Resonance 

Mean diffusivity 

Motion Probing Gradients 

Magnetic Resonance Imaging 

Transverse magnetisation 

Longitudinal magnetisation 

Radio Frequency 

Region of Interest 

Strength 

Spin Echo 

Signal to Noise Ratio 

Small-worldness 

Echo Time 

Repetition Time 

Nodes
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     Appendix 2 The Configuration of the Connectome Mapper 

     The Connectome Mapper was built on Ubuntu 12.04.4 in the virtual machine which 
is VMware vSphere Client. The manual configuration was supported by one of the resources 

available on the http://www.nemotos.net/resources/ubuntu-connectome, and the online 

forum is also available to obtain some help with some feedback, comments and for the 

 asking helps. The latest version of the Connectome Mapper is CMP v2.1.0-beta at 

www.connectomics.org. 

In the first step, VMware VSphere Client 6 should be configured (Figure 1), and Ubuntu can 

be installed on the workstation (Figure2).

t VMware 'Sphere ClientX 

vmware 

VMware vSphere' 

Client 

Al vsphae features ntrodred Ft vrec ere 5.5 and beyond we 
available miy thatch the vsg ere Web Cent The tradtiond 
vSpixre nest vol continue to operate, syqaaq the same 
leave set as v5phere 5.0. 

To drecdy manage a slide best, enter the IP address or host name. 
To ma age multiple bests, enter the IP address or naie of a 
vCenter Server. 

IP address / Name: 1172. 17. 10. 120 
User name:II 
Password: 

r Use Watlbxs session aedentlals 

                   

I LoginC5

 O 1721710.120 - vSphere  Client 
Ale Edit View Inventory Administration Plug-ins Help 

         ,.~Hwned1 Inventoryv~wner 

 • au,~.._CR'~'it I D9 1# S ca
E 12 173.17.l0.120 

    SI BoneRUn..aonu.o.016. 
       LiiMNmraR.a EN 

S1 LinINeam12.04_EN con/ 
th Em414ttnnl4e9 En 
FA Gnw n,nl4. 09 JP

UIwntu12.412w_CMneROmemeppe

.wlE ro t 

wlndews10EN-vrn

   Figure 

vSphere

2. Ubuntu 12.04 on VMware

 Figure 1.VMware vSphere workstation 

     The Connectome Mapper installation begins with NeuroDebian installation. The 

relevant operation system which is Ubuntu 12.04 LTS "Precise Pangolin" (precise) and 

download server of Japan (Kiyotaka Nemoto) should be chosen, and the command appears 

for installation (Figure 3). Therefore the following command can be typed on the terminal 

and user could get the NeuroDebian. 

wget -O- http://neuro.debian.net/lists/precise.ip.full sudo tee 

/etc/apt/sources.list.d/neurodebi an. sources. list 

sudo apt-key adv --recv-keys --keyserver hkp://pool.sks-keyservers.net:80 

OxA5D32F012649A5A9
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To update the package "sudo apt-get update" command can be used on the terminal . 

 Get NeuroDebian 

First select what kind of operating system you are using , and then choose a download server close to you:

Ubuntu 12.04 LTS 'Predse Pangoan' (precise) • 11 Japan (l0yotaka Nemoto)

Select desired components: 

u only software with guaranteed freedoms at patloges are DSFeamplanL with permission to use
, modify. re-distribute under any condition 

  all software 0 
InSvjsi packages may have restrictive licenses and you are required to check lcensecompiance manually

                    Figure 3. NeuroDebian download 

After installation NeuroDebian, other tools can be installed using following commands . 

• Connectome Viewer

suuo apt-get install connectomeviewer

• FSL

 ^ MRtrix

sudo apt-get install mrtrix

•'• Oracle Java 

         doadd- -repos' ory ppa.eupd8team/java 
sudo apt-get update 
sudo apt-get install oracle-java7-installer 
sudo apt-get install oracle-java7-set-default

 ^ Lapack

 •  The lib

sudo apt-get install libblas-dev liblapack-dev libatlas-base-dev

raries which need for the Connectome Mapper 

 sudo apt-get install libboost-program-op" 

lihblitz0-dev

sudo a et install libboost-

     aevn 

tions1.480

^ git

     Stithla
 5 

 et  mstall                    it
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 ^ Diffusion Toolkit and TrackVis

Diffuion toolkit and trackVis can be downloaded in http://trackvis.org/dtk/ 

after signing up to the TrackVis user should register the required information about 

the usage of the trackVis. TrackVis provides licence key by an email to download 

both tools. 

After downloading Diffuion _Toolkit_v0.6.2.2_x86_64.tar.gz and 

TrackVis _v0.5.2.2_x86_64.tar.gz following commands help to installed tools on the 

Ubuntu.

cd /usr/local 

sudo tar xvzf /home/foo/Diffusion _Toolkit_v0.6.2.2_x86_64.tar.g 

/usr/Iocal

 cd /usr/local/dtk 

sudo tar xvzf /home/foo/ TrackVis_v0.5.2.2x8664.tar.gz /usr/local,

•••FreeSurfer •

FreeSurfer for Linux can be downloaded in the following link. 

https://surfernmr.mgh.harvard.edu/fswiki/DownloaciAndInstall

Installation should be done using foil owing.

The below link is used to access the Downloads before installing the FreeSurfer tool. 
F cd/home/senolab/Downloads 

wget ftp://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/5.3.0/ 
freesurfer-Linux-centos4 x86 64-stable-pub-v5.3.0.tar.gz

Installation command is here. 

 cd /usr/local 

sudo tar xvzf /home/senolab/Downloads/ freesurfer-Linux-

         centos4 x86 64-stable-pub-v5.3.0.tar.gz

In the FreeSurfer registration, there is a license which can receive through the emails. 

This licence should be copied to the. license manually.
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#---------------CUT HERE 

ruwanna¢mail.com

1234 
*StOrinGs . 

---------------CUT HERE--------- 

The command is here. 

        cd/usr/local/Freesurfer 

sudo gedit .license

^ Camino

httos://sourcefor e.net/ roi ects/camino/files/latest/d ownload was used to download

the Camino and following command is used for the installation on Ubuntu.

unzip camino-code-xxxx(version number) 
cd camino-code-xxxx(version number) 
make 
cd .. 
my camino-code-xxxx(version number) camino 
sudo cp -r camino /usr/local

•'• Camino-Trackvis • 

https://sourceforge.net/proiects/camino-trackvis/

Camino-Trackvis. 

tar xvjf camino-trackvis-O.2.8.I.tar.bz2 
cd camino-trackvis-0.2.8.I.tar.bz2 

        ./build.sh 
cd .. 
sudo cp -r camino-trackvis-O.2.8. - 

was

/local

used to download the

MITK-Diffusion 

MITK was downloaded and installed using these commands.

cd /home/foo/Downloads 

wget http://mitk.org/download/releases/MITK-Diffusion-

2013.09/Linux/M ITK-Di ffusion-2013.09.04-linux64.tar. gz 

cd /usr/local 

sudo tar xvzf /home/foo/Downloads/MITK-Diffusion-2013.09.04-

linux64.tar.gz
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After all the installation, tools should be 

command on terminal. 

 cd/home/senolab 

gedit / .bashrc

checked for the proper installation using the

#FSL 

. /etc/fsl/fsl.sh 

#MRtrix 

export MRTRIX=/usr/Iib/mrtrix/bin 

#Diffusion toolkit 

export DTDIR=/usr/local/dtk 

export DSI_PATH=/usr/local/dtk/matrices 

#Freesurfer 

Export FREESURFER_HOME=/usr/Iocal/freesurfer 

source $FREESURFER_HOME/SetUpFreeSurfer.sh 

#Camino 

export MANPATH=/usr/Iocal/camino/man:$MANPATH 

export CAMINODIR=/usr/Iocal/camino/bin 

#Camino-trackvis 

export CAMINO2TRK=/usr/Iocal/camino-trackvis-0.2.8.1/bin 

#MITK 

export MITK=/usr/local/MITK-2013.12.00-linux64 

#MITK Diffusion 

export MITKDIFFUSION=/usr/Iocal/MITK-Diffusion-2013.09.04-Iinux64 

#Update PATH 

export PATH="${DTDIR}:${MRTRIX}:${CAMINODIR}:${CAMINO2TRK}: 

${M ITK}:${M ITKDI FFUSION}:${PATH}"
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 ^ Nipype 

  The Connectome Mapper is needed for a modified version of Nipype. 

          cd 

git clone git://github.com/LTS5/nipype.git 
         cd nipype 

          sudo python setup.py install 

^ Connectome Mapper 

https://github.com/LTS5/cmpnipype/releases was used to download the 

Connectome Mapper. 

  Installation can be done by following commands. 

          cd 

git clone git://github.com/LTS5/cmp_nipype.git 
cd cmp_nipype 

          sudo python setup.py install 

The Connectome Mapper installion can be checked by typing following command 

  on the terminal. (Figure 4) 

            connectomemapper 

  The successful installation can be evidenced with the Connectome Mapper graphical 

  use interphase. (Figure 5) 

senoolabpsenootab-virtuat-machine: - 
-------- freesurfer- Linux -centos4 _x8o_o4- stable -pub-v5.3.0 -------- 

     Setting up environment for FreeSurfer/FS-FAST (and FSL) 
FREESURFER HOME /usr/local/freesurfer 
SFAST_HOME/usr/local/freesurfer/fsfast 
SF_OUTPUT_FORMAT nii.gz 

SUBJECTS_DIR/usr/local/freesurfer/subjects 
NI_DIR/usr/local/freesurfer/mni 
SL_DIR/usr/share/fsl/5.0 
enoolab@senoolab-virtual-machine:-5 connectomemapper 

       onnectomemapper 2.1.0-beta 
opyright (C) 2009-2014, Ecole Polytechnique Federale de Lausanne (EPFL) and 

Hospital Center and University of Lausanne (UNIL-CHUV), Switzerland 
All rights reserved. 

              Figure 4. Connectome Mapper code on the terminal 
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Figure 5.GUI of the Connectome Mapper
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  Appendix 3 The Workflow of Pipeline in the Connectome Mapper 

     The minimum requirements for starting the workflow of the Connectome Mapper 

 are one diffusion dataset and high-resolution Ti  weighted images. The image format can 

be DICOM or NIFTI. DICOM data are processed internally into NIFTI for the convenience. 

The folders which image files should be organised as tree folder. Figure 6 shows the the 

folder structure that should be as below.

Myproject

— Subject]

RAWDATA 

    DTI DICOM

DICOM

T1 DICOM

RAWDA 

ueukes 

_ Floppy Dove 
 Computer 

a Nome 
c Desktop 

  r.. Documents 
j Downloads 
anustt 

a Pictures 
aVideos 

fIle System 

U. Trash 
Netmork 

A Drowse Net..,

4 
 on 

4 

 n 

J rz 

NA 
NARDI

RAWDATA

D1COM

Figure 6. Folder arrangement of input data

The hierarchical files are created when starting time at the workflow. Figure 7 shows the 

folders that created at the beginning after started the workflow of the Connectome Mapper.

J 

r a
a~rim on contrail

J V

Figure 7. The files created at the beginning of the workflow

The DTI and TI data can be input into the Connectome Mapper pipeline using the 
'new connectome data' option in the GUI of the Connectome Mapper (Figure 8). The 

browsed data (Figure 9) should be checked for accuracy since the incorrect data will not be
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able to process in the Connectome Mapper . After completing the check input data 
 box will be appeared to notify whether inputs are successful or not (Figure 11). 

urcewuocanon verrormance tvents Consoli j ermissions  

                 File Configuration 

New Connectome data... Connectome Mapper 

Load Connectome data ...—---

                                                                          Preprocessing 

  Quitm           ap 

                   Figure 8. Input new connectome data 

` S
elect type of pipeline and base directory 

            Process type: 0 DiffusionFmri 

Base directory:Browse... 

OK H Cancel 

                    Figure 9. Selection of data type 

Connectome Mapper 

                 `,'r•w~.eee•r'aImsedbatory  I 

                                               m 

                                                                     /lwme/soalab/lmaqeoata/rESi 

j 
Swami.. 

                                                  ILast processing I                         .•-_.,
Pipeline name 

, List date processed: 
                           11/4M14YmLast stageproceisad: 

-" IprocesslnpcoMguranon I 
1t Hurdler otcares: 

•epm.mn 

011teike • InctotaphY 

la 
     • 

                                                          Cansectom 

        III.

 , a dialogue

ICheck Input data I Map Conneatome! Custom maDDunG, 

Figure 10. Checking Input data
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 Inputs check finished successfully. 
Diffusion and morphological data available.

OK 

          Figure 11. Dialogue box which appears after checking inputs 

Once the diffusion type set, pipeline enables to start with pre-processing. The user needs to 

put a check on the options of motion correction and eddy current corrections. 

Edit stage configuration 

Ipreprocessing_stageI 
                       Configuration 

Motion correction: a 

                      Eddy current correction: lig 

Vol: 0 'to: 0 (max: 21) 

                       View outputs 

                        Outputs not available 

OK i I Cancel

                         Figure 12. Pre-processing 

     All the stages, the user can modify by choosing tools in each stage. The default 
option of segmentation is Freesurfer (Figure 13); besides that, the user can select the option 
of custom. The Connectome Mapper facilitates three types of output such as 

(norm/aseg/surf). 

Edit stage configuration- Edit stage configuration

parcellation_stage
Configuration 

Segmentation tool: Freesurfer
Configuration 

Parcellatlon scheme:

         Freesurfer args: 

Use existing freesurfer data: 

Freesurfer subjects din 

Freesurfer subject id:

N ativeFreesurfer 

Lausanne2008 

Custom

View outputs 

  norm/aseg
 brainmask/Ti

norm(aseg/surf OK  Cancel

View outputs 

 Outputs not available

OK Cancel

Fig ure 13. Segmentation Figure 14. Parcellation
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 Parcellation has three options including nativeFreesurfer, Laussane 2008 and custom 

parcellation (Figure 14). Registration has the option of linear registration and BB registration. 
Figure 15 shows the dialogue box of registration. 

In the diffusion and tractography step in the Connectome Mapper, the user should 
browse the MPG file if the relevant gradient file is there. In the present study, MRI images 
were obtained from a Hitachi scanner. Thus, the gradient file was manually browsed using 
the custom option in the DTK (Figure 16).

Il registration stage
, Configuration 

Registration mode: Linear(FSL) 

FLIRTBBregister (FS) 
Uses gform: ̂  

DoF. 6___ 

li Cost i mutuatinfo  
No search V 

"., Flirt ergs: I 

Figure 15.Registration

 diffusion  stage

 mgh dti o06 

mgh dti 01B 
mgh dt _030 

mgh dti 042 

mgh dtl_060 
mgh dti 072 

mgh_dti 090 
mgh dti 120 

mgh dti 144 

slemen 06 

siemens 12 
siemens _20 
siemens _30 
slemens _64 
siemens 256

 Configuration 

Resampbng (x,yt): FO.._] 

Processing tool: 'I DIX

F 2 Interpolatlote interpolate :

Reconstruction

Maximise b value siemens 

Gradient table Me: us om., 

Number oldirections: 6 

Custom gradient table: 

Fgp table: fi x 

Number of averages: 1 

Multiple high values:' 

Number ofbOvobanes:'i

y

Browse... 

i 1

Apply gradient orientation correctIom ^

FBp Input i x yC Z 

OK Cancel 

                     Figure 16. MPG file selection 

     The MPG file has a specific format which can be slightly different from the original 

format. In our study, we used the MPG file (Figure 17) that created by the Hitachi Medical 

system. However, the creating MPG file can be done using dcm2nii or MRIconvert tools .

Tracking 

Deterministic
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 0.00000,0.00000, 0.00000 
                                    —0.00000,1.00000,0.00000 

1.00000,0.00000,0.00000 
—0.00000,0.00000,1.00000 
                                    0.52573,0.00000,-0.85065 
—0.52573,0.00000,-0.85065 
0.85065,0.52573,0.00000 
—0.00000,-0.85065,0.52573 
—0.00000,-0.85065,-0.52573 
—0.80902,0.30902,-0.50000 
                                    0.80902,0.30902, —0.50000 
—0.80902,-0.30902,-0.50000 
                                    —0.80902,0.30902,0.50000 
0.30902,-0.50000,0.80902 
—0.30902,0.50000,0.80902 
0.30902,0.50000,-0.80902 
                                    0.30902,0.50000,0.80902 
0.50000,-0.50902,0.30902 
                                    —0.50000,0.80902,0.30902 
0.50000,0.80902,0.30902 
0.50000,0.80902,-0.30902 

:-0.50000, —0.80902,-0.30902 

                  Figure 17. MPG file of Hitachi DTI 

The user should mention the details which are related to the images in this stages such as 

maximum b-value and the number of gradients. Figure 18 shows the configuration of 

DTK.

diffusion suet

Configuration 

rywnpleq(.y..r FO 2 Fl: 2 

Masan took mll 

Reconstruction 

             Gradient tan411n Cus 

           Humber efelltectierecE 
            outong,adienetaeln 

                  Flap table - I 

             Numbe oraYnapn: 1 

          14KKOkkilObwwa: -

                           Web. ole4wWmen 

 Kpleradlento11a4tloneoneWe. N

etqpolado.t IM.ryplale :

         cam V.a.M table 

   inflate.-} 

           alunnn M.ewages 

         ae¢Iptrrpnn slues: 

          Renew of nowpm.t I 

Apply gradient erientrefontorrettioe •

PY

Trading 
Determinatk 

Mange.           }

           Humber efelltectlearc121

OK Cancel

lrarinp 

DeterMINUIC 

KO_ - It 

RpI 

   seed.

 Ytwoifptti 

ovpuuro[rwNbk

DK Cancel

   (a)(b) 

   Figure 18 a) b-value and number of gradients b) Tracking parameters in the DTK 

In the DTK, the user can select the parameters such as angle, step size, and number of 

seeds. Figure 18 b) shows the tracking options in the DTK. 

     The final stage of connectome used to create connectivity matrices as mat files in 

MATLAB. These connectivity matrices can be stored as Gpickle in python, CFF or 

Graphml files as well. Figure 19 shows the available options to store the results.
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 Edit stage configuration 

Iconnectome stage
Configuration 

output types: Il (Gpjckle_: 
Connectivity matrix 

Compute curvature: S 

View outputs 

outputs not available

lit Mat Cff flGraphml

OK j t cancel I

                      Figure 19. Connectome Stage 

When the pipeline stages configured, the user can run the map connectome button on the 

GUI (Figure 20).

 ter..uae. 

 I _...• 
MNI—a 

 e~aa.« 
'.. / 

^ 

      AOStriltlen 

  paluMn~NaupqF/, 

1111,....n

I Last processing
Pipeline namr. ^-- ~n--_. 

last date processedt'_- ._ ,, _. 

Last stage processed:

I Processing configuration
Number of cores:

fwsuw

, Check Input data , I Ma CoonectomN Custom mapping...

Figure 20. Start the mapping of the connectome
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