TWISTED ALEXANDER POLYNOMIALS OF $(-2,3,2 n+1)$-PRETZEL KNOTS

AIRI ASO
DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES, TOKYO METROPOLITAN UNIVERSITY

Abstract. We calculate the twisted Alexander polynomials of $(-2,3,2 n+1)$-pretzel knots associated to their holonomy representations.

1. Introduction

The notion of twisted Alexander polynomials was introduced by Wada [W] and Lin [L] independently in 1990s. The definition of Lin is for knots in S^{3} and the definition of Wada is for finitely presented groups. The twisted Alexander polynomial is a generalization of the Alexander polynomial and is defined for the pair of a group and its representations. By Kitano and Morifuji $[\mathrm{KM}]$, it is known that Wada's twisted Alexander polynomials of the knot groups for any nonabelian representations into $S L_{2}(\mathbb{F})$ over a field \mathbb{F} are polynomials. In this paper, by using the following definition due to Wada, we compute the twisted Alexander polynomials of $(-2,3,2 n+1)$-pretzel knots K_{n} depicted in Figure 1 associated to their holonomy representations $\rho_{m}: G\left(K_{n}\right) \rightarrow S L_{2}(\mathbb{C})$ given in following section.

Figure 1. $(-2,3,2 n+1)$-pretzel knot

Definition 1.1. Let $G(K)=\pi_{1}\left(S^{3} \backslash K\right)$ be the knot group of a knot K presented by

$$
G(K)=\left\langle x_{1}, \cdots, x_{n} \mid r_{1}, \cdots, r_{n-1}\right\rangle .
$$

Let Γ denote the free group generated by x_{1}, \cdots, x_{n} and $\phi: \mathbb{Z} \Gamma \rightarrow \mathbb{Z} G(K)$ the natural ring homomorphism. Let $\rho: G(K) \rightarrow G L_{d}(\mathbb{C})$ be a d-dimensional linear representation of $G(K)$ and $\Phi: \mathbb{Z} \Gamma \rightarrow M_{d}\left(\mathbb{C}\left[t, t^{-1}\right]\right)$ the ring homomorphism defind by

$$
\Phi=(\tilde{\rho} \otimes \tilde{\alpha}) \circ \phi
$$

where $\tilde{\alpha}: \mathbb{Z} G(K) \rightarrow \mathbb{Z}\left\langle t, t^{-1}\right\rangle$ and $\tilde{\rho}$ are respective ring homomorphisms induced by the abelianization $\alpha: G(K) \rightarrow\langle t\rangle$ and ρ. We put

$$
A_{i, j}=\Phi\left(\frac{\partial r_{i}}{\partial x_{j}}\right)
$$

[^0]where $\frac{\partial}{\partial x_{j}}$ denotes the Fox derivative (or free derivative) with respect to x_{j}, that is, a map $\mathbb{Z} \Gamma \rightarrow \mathbb{Z} \Gamma$ satisfying the conditions
$$
\frac{\partial}{\partial x_{j}} x_{i}=\delta_{i j}, \frac{\partial}{\partial x_{j}} g g^{\prime}=\frac{\partial}{\partial x_{j}} g+\frac{\partial}{\partial x_{j}} g^{\prime},
$$
where $\delta_{i j}$ denotes the Kronecker symbol and $g, g^{\prime} \in \Gamma$. Then, the twisted Alexander polynomial of K is defined by
$$
\Delta_{K, \rho}=\frac{\operatorname{det} A_{\rho, k}}{\operatorname{det} \Phi\left(x_{k}-1\right)},
$$
where $A_{\rho, k}$ is the $2(n-1) \times 2(n-1)$ matrix obtained from $A_{\rho}=\left(A_{i, j}\right)$ by removing the k-th column, i.e.
\[

A_{\rho, k}=\left($$
\begin{array}{cccccc}
A_{1,1} & \cdots & A_{1, k-1} & A_{1, k+1} & \cdots & A_{1, n} \\
\vdots & & \vdots & \vdots & & \vdots \\
A_{n-1,1} & \cdots & A_{n-1, k-1} & A_{n-1, k+1} & \cdots & A_{n-1, n}
\end{array}
$$\right) .
\]

If K is hyperbolic, i.e. the complement $S^{3} \backslash K$ admits a complete hyperbolic metric of finite volume, the most important representation is its holonomy representation into $S L_{2}(\mathbb{C})$ which is a lift of the representation into the group of orientation-preserving isometries of the hyperbolic 3 -space \mathbb{H}^{3}. In fact, the twisted Alexander polynomials of some hyperbolic knots associated to their holonomy representations are computed by Dunfield, Friedl and Jackson [DFJ]. Recently, the twisted Alexander polynomials of some infinite families of knots, twist knots and genus one two-bridge knots associated to their holonomy representations, are computed by Morifuji [Mo1] and Tran [T1] and genus one two-bridge knots associated to the adjoint representations of their holonomy representations is also computed by Tran [T2].
$(-2,3,2 n+1)$-pretzel knot is an infinite family of knots which contains the Fintushel-Stern knot i.e. $(-2,3,7)$-pretzel knot. It plays an important role in studying of exceptional surgeries of knots [Ma]. The A-polynomials of $(-2,3,2 n+1)$-pretzel knot are computed by Tamura-Yokota [TY] and Garoufalidis-Mattman [GM].

Acknowledgement: The author would like to thank professor Yoshiyuki Yokota for supervising and giving helpful comments. She also would like to thank professor Teruhiko Soma and professor Manabu Akaho for giving valuable comments.

2. Holonomy representations

In this section, we give a presentation of knot group $G\left(K_{n}\right)$ and its holonomy representation $\rho_{m}: G\left(K_{n}\right) \rightarrow S L_{2}(\mathbb{C})$, where m represents the eigenvalue of the meridian of K_{n}.

Let L be the link depicted in Figure 2 and $E=S^{3} \backslash L$. Then, the Wirtinger presentation (see [CF]) of $\pi_{1}(E)$ is given by

$$
\left\langle a, b, x \mid\left\{a x b a(x b)^{-1}\right\}^{-1} x=x b\left\{a x b a(x b)^{-1}\right\}^{-1}(a x b)^{-1} x b,\left[x, a x b a(x b)^{-1}\right]=1\right\rangle,
$$

where a, b and x is Wirtinger generators assigned to the corresponding pass depicted in Figure 2. Note that $E_{n}:=S^{3} \backslash K_{n}$ is obtained from L by $\left(-\frac{1}{n}\right)$-surgery along the trivial component, that is, removing the tubular neighborhood of the trivial component and re-gluing the solid torus again. Therefore, by the van Kampen theorem, we have

$$
\pi_{1}\left(E_{n}\right)=\left\langle a, b, x \mid\left\{a x b a(x b)^{-1}\right\}^{-1} x=x b\left\{a x b a(x b)^{-1}\right\}^{-1}(a x b)^{-1} x b, x=\left\{a x b a(x b)^{-1}\right\}^{n}\right\rangle .
$$

Figure 2. Link L

Proposition 2.1. For a non-zero complex number m, there exists a representation $\rho_{m}: \pi_{1}\left(E_{n}\right) \rightarrow$ $S L_{2}(\mathbb{C})$ such that
$\rho_{m}(a)=\left(\begin{array}{cc}m & -\frac{\left(m^{2}-s\right)\left(s^{2 n+1}+1\right)}{m(s+1)} \\ 0 & m^{-1}\end{array}\right), \quad \rho_{m}(b)=\frac{1}{s \alpha}\left(\begin{array}{cc}\beta & -\frac{(s \alpha-m \beta)(m s \alpha-\beta)}{m \beta} \\ \beta & \frac{m(m s \alpha-\beta)+s \alpha}{m}\end{array}\right)$,
and

$$
\rho_{m}(x)=\left(\begin{array}{cc}
s^{n} & 0 \\
\frac{s^{n}-s^{-n}}{s^{2 n+1}+1} & s^{-n}
\end{array}\right)
$$

where s is a solution to

$$
\begin{align*}
& 0=m^{8}(s-1)(s+1)^{2}\left(s^{2 n}-s^{2}\right) s^{2 n+2} \tag{1}\\
& \begin{aligned}
&- m^{6}\left\{s^{6 n+3}+\left(2 s^{6}+s^{5}-4 s^{4}+s^{3}+s^{2}-s-1\right) s^{4 n+1}\right. \\
& \quad\left.\quad\left(s^{6}+s^{5}-s^{4}-s^{3}+4 s^{2}-s-2\right) s^{2 n+2}+s^{6}\right\} \\
&+ m^{4}\left\{\left(s^{2}+1\right) s^{6 n+2}+\left(s^{6}+2 s^{5}-3 s^{4}-2 s^{3}+6 s^{2}-4 s-2\right) s^{4 n+3}\right. \\
& \quad\left.\quad\left(2 s^{6}+4 s^{5}-6 s^{4}+2 s^{3}+3 s^{2}-2 s-1\right) s^{2 n}+\left(s^{2}+1\right) s^{5}\right\} \\
&- m^{2}\left\{s^{6 n+3}+\left(2 s^{6}+s^{5}-4 s^{4}+s^{3}+s^{2}-s-1\right) s^{4 n+1}\right. \\
&\left.\quad \quad-\left(s^{6}+s^{5}-s^{4}-s^{3}+4 s^{2}-s-2\right) s^{2 n+2}+s^{6}\right\} \\
&+(s-1)(s+1)^{2}\left(s^{2 n}-s^{2}\right) s^{2 n+2}
\end{aligned}
\end{align*}
$$

and α, β are given by

$$
\begin{aligned}
\alpha= & \left(s^{2}-1\right) s^{2 n}\left\{-m^{6}(s-1) s^{2}\left(s^{2 n+1}+1\right)+m^{4}\left(s^{2 n+2}\left(s^{4}-2 s^{2}+3 s-1\right)+s^{4}-3 s^{3}+2 s^{2}-1\right)\right. \\
& \left.-m^{2} s\left(s^{2 n}\left(2 s^{3}-s^{2}+1\right)-s\left(s^{3}-s+2\right)\right)+s^{2}\left(s^{2 n}-s^{2}\right)\right\}, \\
\beta= & m^{7} s^{2 n+2}\left(s^{2}-1\right)\left(s^{3}+1\right) \\
& -m^{5} s^{3}\left\{s^{4 n}\left(s^{3}-s^{2}+1\right)+s^{2 n-2}(s-1)\left(s^{3}+s+1\right)\left(s^{3}+s^{2}+1\right)-\left(s^{3}-s+1\right)\right\} \\
& +m^{3} s^{2}\left(s^{3}+1\right)\left(s^{2 n}-1\right)\left(s^{2 n}+s^{2}\right)-m s^{3}\left(s^{2 n}-s^{2}\right)\left(s^{2 n}+s\right) .
\end{aligned}
$$

In what follows, for simplicity, we denote the right hand side of (1) by r_{0}.
Proof. For simplicity, put $A=\rho_{m}(a), B=\rho_{m}(b), X=\rho_{m}(x)$. By the aid of Mathematica, we have

$$
A X B A(X B)^{-1}=\left(\begin{array}{cc}
s & 0 \\
\frac{s^{2}-1}{s\left(s^{2 n+1}+1\right)} & \frac{1}{s}
\end{array}\right)+r_{1}\left(\begin{array}{cc}
\frac{1}{m^{3} s\left(s^{2 n+1}+1\right) \alpha^{2}} & -\frac{1}{m^{3} s(s+1) \alpha^{2}} \\
\frac{s+1}{m^{3} s^{2}\left(s^{2 n+1}+1\right)^{2} \alpha^{2}} & -\frac{1}{m^{3} s^{2}\left(s^{2 n+1}+1\right) \alpha^{2}}
\end{array}\right)
$$

where

$$
\begin{aligned}
r_{1}= & -\alpha^{2} m s\left(m^{2} s^{2 n+2}-m^{2}-s^{2 n+1}+s\right)+\alpha \beta\left(m^{2}-1\right)\left(m^{2}+1\right) s^{2 n+1}(s+1) \\
& +\beta^{2} m s^{2 n}\left(m^{2} s^{2 n+1}-m^{2} s-s^{2 n+2}+1\right) \equiv 0 \quad \bmod r_{0} .
\end{aligned}
$$

Therefore, by (1), we have $X=\left\{A X B A(X B)^{-1}\right\}^{n}$, that is, $\rho_{m}(x)=\rho_{m}\left(\left\{a x b a(x b)^{-1}\right\}^{n}\right)$.
On the other hand, we can observe

$$
A X B\left\{A X B A(X B)^{-1}\right\} \equiv X B X^{-1}\left\{A X B A(X B)^{-1}\right\} X B \quad \bmod r_{0}
$$

and so $A X B\left\{A X B A(X B)^{-1}\right\}=X B X^{-1}\left\{A X B A(X B)^{-1}\right\} X B$ by (1). Further more, we obtain

$$
\begin{aligned}
X B\left\{A X B A(X B)^{-1}\right\}^{-1}(A X B)^{-1} X B & =X B\left(A X B\left\{A X B A(X B)^{-1}\right\}\right)^{-1} X B \\
& =X B\left(X B X^{-1}\left\{A X B A(X B)^{-1}\right\} X B\right)^{-1} X B \\
& =\left\{A X B A(X B)^{-1}\right\}^{-1} X
\end{aligned}
$$

that is, $\rho_{m}\left(\left\{a x b a(x b)^{-1}\right\}^{-1} x\right)=\rho_{m}\left(x b\left\{a x b a(x b)^{-1}\right\}^{-1}(a x b)^{-1} x b\right)$. This completes the proof.

Remark 2.2. Since the representation ρ_{m} comes from the holonomy representation obtained from the ideal triangulation of E given in [TY], the holonomy representation ρ_{m} of $G\left(K_{n}\right)$ is given by the solution to (1) which maximizes the hyperbolic volume of $S^{3} \backslash K_{n}$.

3. Calculation of the twisted Alexander polynomial

The following is the main result of this paper.
Theorem 3.1. The twisted Alexander polynomial of K_{n} associated to ρ_{m} is given by

$$
\Delta_{K_{n}, \rho_{m}}(t)=1+\sum_{i=0}^{2 n-1} \lambda_{i}\left(t^{i+3}+t^{4 n-i+3}\right)+t^{4 n+6}
$$

where
$\lambda_{i}= \begin{cases}\frac{\left(1+m^{2}\right)\left(H s^{i / 2+1} \beta-s\left(s^{i / 2+1}-s^{-(i / 2+1)}\right)\left(\eta_{1}+\eta_{2}\right)\right)}{H m \beta} & \text { if } 0 \leq i \leq 2 n-2 \text { and } i \text { is even, } \\ \frac{s^{(i-1) / 2}-s^{-(i-1) / 2}}{s-s^{-1}} & \text { if } 0 \leq i \leq 2 n-2 \text { and } i \text { is odd, } \\ \frac{s^{n-1}-s^{-(n-1)}}{s-s^{-1}}-\frac{\left(s^{2}-1\right) \eta_{1}}{H s^{n} \beta} & \text { if } i=2 n-1\end{cases}$
and we put

$$
\begin{aligned}
& H=1-m^{2} s+m^{2} s^{2 n+1}-s^{2 n+2}, \\
& \eta_{1}=m \alpha-m s^{2 n+1} \alpha+s^{2 n} \beta+m^{2} s^{2 n} \beta, \\
& \eta_{2}=-m s \alpha+m s^{2 n+1} \alpha-s^{2 n} \beta-s^{2 n+1} \beta .
\end{aligned}
$$

To prove Theorem 3.1, it suffices to show
Proposition 3.2. For simplicity, we put $S=s^{n}$ and $T=t^{n}$. The twisted Alexander polynomial $\Delta_{K_{n}, \rho_{m}}(t)$ is given by

$$
\begin{aligned}
& \frac{S-T^{2}}{s-t^{2}} \frac{s}{S}\left(\frac{m s-m S T^{2}+\left(1+m^{2}\right)\left(1-s^{2}\right) S t T^{2}}{m\left(1-s^{2}\right) t^{2}}+\frac{\left(1+m^{2}\right)\left(1-s S t^{2} T^{2}\right)\left(\eta_{1}+\eta_{2}\right)}{H m t^{3} \beta}\right) \\
& +\frac{1-S T^{2}}{1-s t^{2}} \frac{s}{S}\left(\frac{\left(1+m^{2}\right)\left(1-s^{2}\right) S-m S t+m s t T^{2}}{m\left(1-s^{2}\right) t^{3}}-\frac{\left(1+m^{2}\right)\left(s S-t^{2} T^{2}\right)\left(\eta_{1}+\eta_{2}\right)}{H m t^{3} \beta}\right) \\
& +\frac{1}{t^{6}}+T^{4}+\frac{\left(1-s^{2}\right)\left(1+t^{2}\right) T^{2} \eta_{1}}{H S t^{4} \beta}
\end{aligned}
$$

By multiplying t^{6} and rearranging with respect to t, we obtain the formula of Theorem 3.1, when we use

$$
\frac{S-T^{2}}{s-t^{2}}=\frac{S}{s} \sum_{i=0}^{n-1}\left(\frac{t^{2}}{s}\right)^{i}, \frac{S T^{2}-1}{s t^{2}-1}=\sum_{i=0}^{n-1}\left(s t^{2}\right)^{i}
$$

4. Proof of Proposition 3.2

Recall that

$$
\begin{aligned}
\pi_{1}\left(E_{n}\right) & =\left\langle a, b, x \mid\left\{a x b a(x b)^{-1}\right\}^{-1} x=x b\left\{a x b a(x b)^{-1}\right\}^{-1}(a x b)^{-1} x b, x=\left\{a x b a(x b)^{-1}\right\}^{n}\right\rangle \\
& =\left\langle a, c \mid\left(a c a c^{-1}\right)^{n-1}=c\left(a c a c^{-1}\right)^{-1}(a c)^{-1} c\right\rangle .
\end{aligned}
$$

Then the twisted Alexander polynomial of K_{n} is given by

$$
\Delta_{K_{n}, \rho_{m}}(t)=\frac{\operatorname{det} \Phi\left(\frac{\partial}{\partial a}\left(a c a c^{-1}\right)^{n-1}-\frac{\partial}{\partial a} c\left(a c a c^{-1}\right)^{-1}(a c)^{-1} c\right)}{\operatorname{det} \Phi(c-1)}
$$

where

$$
\begin{align*}
& \Phi\left(\frac{\partial}{\partial a}\left(a c a c^{-1}\right)^{n-1}-\frac{\partial}{\partial a} c\left(a c a c^{-1}\right)^{-1}(a c)^{-1} c\right) \\
& =\sum_{i=1}^{n-1} t^{2(i-1)} \rho_{m}\left(\left\{a x b a(x b)^{-1}\right\}^{i-1}\right)\left\{\rho_{m}(1)+t^{2(n+1)} \rho_{m}(a x b)\right\}+t^{4 n+1} \rho_{m}\left(x b x b a^{-1}\right) \tag{2}\\
& +t^{2 n-1} \rho_{m}\left(x b\left\{a x b a(x b)^{-1}\right\}^{-1}\right)+t^{-3} \rho_{m}\left(x b\left\{a x b a(x b)^{-1}\right\}(a x b)^{-1}\right) .
\end{align*}
$$

For simplicity, we put

$$
\gamma_{1}=s \alpha-m \beta, \gamma_{2}=m s \alpha-\beta, \gamma_{3}=m^{2} s\left(s S^{2}+1\right) \alpha
$$

By the aid of Mathematica, the first term of the right hand side of (2) is given by

$$
\begin{aligned}
& \sum_{i=1}^{n-1} t^{2(i-1)}\left(A X B A(X B)^{-1}\right)^{i-1}\left(E+t^{2(n+1)} A X B\right) \\
& =\left(\begin{array}{cc}
\frac{\left(S T^{2}-s t^{2}\right)\left(S t^{2} \beta T^{2}+m \alpha\right)}{m s t^{2}\left(s t^{2}-1\right) \alpha} & -\frac{T^{2}\left(S T^{2}-s t^{2}\right)\left(\gamma_{1} \eta_{2}+(m \alpha-\beta) \gamma_{3}\right)}{m^{2} s(s+1) S\left(s t^{2}-1\right) \alpha \beta} \\
\frac{m C_{1} \alpha-S t^{2} T^{2} C_{2} \beta}{m s S\left(s S^{2}+1\right) t^{2}\left(s-t^{2}\right)\left(s t^{2}-1\right) \alpha} & \frac{C_{3} t^{4} T^{4}+C_{4} t^{2} T^{4}+C_{5} t^{6} T^{2}+C_{6} t^{4} T^{2}+C_{7}}{(s+1) S^{2} t^{2}\left(s-t^{2}\right)\left(s t^{2}-1\right) \gamma_{3} \beta}
\end{array}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1}=-t^{4} s\left(s^{2}-1\right) S-T^{2}\left\{t^{2}\left(S^{2}-s^{4}\right)-s\left(S^{2}-s^{2}\right)\right\}, \\
& C_{2}=-t^{2}\left(t^{2}-1\right) s(s+1) S+T^{2}\left\{t^{2}\left(S^{2}+s^{3}\right)+s\left(S^{2}-s\right)\right\}, \\
& C_{3}=\left(s^{3}+S^{2}\right) \gamma_{1} \eta_{2}-\left\{s^{3}(m s \alpha+\beta)-S^{2}(m \alpha-\beta)\right\} \gamma_{3}, \\
& C_{4}=-s\left(s+S^{2}\right) \gamma_{1} \eta_{2}+s\left\{s(m s \alpha+\beta)-S^{2}(m \alpha-\beta)\right\} \gamma_{3}, \\
& C_{5}=-s(s+1) S\left\{\gamma_{1} \eta_{2}+\left(\eta_{1}+\eta_{2}-\left(1+m^{2} S^{2}-s S^{2}\right) \beta\right) \gamma_{3}\right\}, \\
& C_{6}=s(s+1) S\left\{s \alpha \eta_{2}-m(s+1) S^{2} \beta \gamma_{2}\right\}, \\
& C_{7}=s(s+1) S\left(s t^{2}-1\right)\left(S t^{2}-s T^{2}\right) \beta \gamma_{3} .
\end{aligned}
$$

Similarly, the second term of the right hand side of (2) is given by

$$
X B X B A^{-1}=\left(\begin{array}{cc}
\frac{S^{2} D_{1}}{\gamma_{3} \alpha} & \frac{m s D_{1} D_{2}-\left(s S^{2}+1\right)\left(s S^{2} D_{1}+m \gamma_{3} \alpha\right) \beta^{2}}{(s+1) \gamma_{3} \alpha \beta^{2}} \\
\frac{(s+1) D_{2}}{\left(s S^{2}+1\right) \gamma_{3} \alpha} & \frac{m s S^{2} D_{1} D_{2}+s\left(s S^{2}+1\right)\left(m^{2} s \alpha^{2}-S^{2} \beta^{2}\right) D_{2}}{S^{2}\left(s S^{2}+1\right) \gamma_{3} \alpha \beta^{2}}-m
\end{array}\right)
$$

where

$$
\begin{aligned}
& D_{1}=-(s+1) \alpha \gamma_{2}+m\left(\eta_{1}+\gamma_{2}+m S^{2} \gamma_{1}\right) \beta, \\
& D_{2}=-\alpha \eta_{2}+m S^{2}\left(\eta_{1}+m S^{2} \gamma_{1}+\gamma_{2}\right) \beta,
\end{aligned}
$$

the third term of the right hand side of (2) is given by

$$
X B\left\{A X B A(X B)^{-1}\right\}^{-1}=\left(\begin{array}{cc}
\frac{S E_{1}}{m s\left(s S^{2}+1\right) \alpha \beta} & -\frac{S \gamma_{1} \gamma_{2}}{m \alpha \beta} \\
\frac{(s+1) E_{2}}{m s S\left(s S^{2}+1\right)^{2} \alpha \beta} & \frac{E_{3}}{m S\left(s S^{2}+1\right) \alpha \beta}
\end{array}\right)
$$

where

$$
\begin{aligned}
& E_{1}=\left(s^{2}-1\right) \alpha \gamma_{2}+m\left(\eta_{1}+m S^{2} \gamma_{1}-s \gamma_{2}\right) \beta, \\
& E_{2}=(s-1) \alpha \eta_{2}+m S^{2}\left(\eta_{1}+m S^{2} \gamma_{1}-s \gamma_{2}\right) \beta, \\
& E_{3}=-s \alpha \eta_{2}+m(s+1) S^{2} \beta \gamma_{2},
\end{aligned}
$$

and the fourth term of the right hand side of (2) is given by

$$
X B\left(A X B A X B A(X B)^{-1}\right)^{-1}=\left(\begin{array}{cc}
\frac{m F_{3}}{\gamma_{3}^{2} \beta^{2}} & \frac{F_{4}}{m(s+1) \gamma_{3} \alpha \beta^{2}} \\
\frac{m\left(s^{2}-1\right) F_{1} F_{2}}{S^{2}\left(s S^{2}+1\right) \gamma_{3}^{2} \beta^{2}} & \frac{m F_{5}}{S^{2} \gamma_{3}^{2} \beta^{2}}
\end{array}\right)
$$

where

$$
\begin{aligned}
F_{1}= & m(s+1) S^{2}\left(\eta_{1}+m S^{2} \gamma_{1}\right) \beta-\eta_{2} \alpha, \\
F_{2}= & m(s+1) S^{2}\left(s S^{2}+1\right) \beta^{2}-s F_{1}, \\
F_{3}= & -\left\{m \beta\left(\eta_{1}+m S^{2} \gamma_{1}\right)+s \gamma_{1} \gamma_{2}-\gamma_{2} \alpha\right\} F_{2}+m s(s+1) S^{2}\left(s S^{2}+1\right) \gamma_{1} \gamma_{2} \beta^{2}, \\
F_{4}= & \left(s^{2}-1\right)\left\{m\left(\eta_{1}+m S^{2} \gamma_{1}\right) \beta-\gamma_{2} \alpha\right\} F_{2} \\
& +\gamma_{3}\left\{m \gamma_{2} \alpha-\left(m^{2} \eta_{1}+s^{2} \eta_{2}+m^{3} S^{2} \gamma_{1}-s^{2}\left(S^{2}-1\right) \gamma_{2}\right) \beta-m s \gamma_{1} \gamma_{2}\right\} \alpha, \\
F_{5}= & (s-1)\left(s F_{1}-m \gamma_{3} \alpha\right) F_{2}-m^{2} S^{2}\left(s S^{2}+1\right) \gamma_{3} \alpha \beta^{2} .
\end{aligned}
$$

Therefore, the determinant of the right hand side of (2) is written as

$$
\frac{\sum_{i, j} U_{i, j} t^{i} T^{j}}{m^{3} S^{2} t^{6}\left(s-t^{2}\right)\left(s t^{2}-1\right) \beta^{2} \iota}
$$

where

$$
\begin{aligned}
& U_{0,0}=U_{4,0}=U_{6,0}=U_{2,4}=U_{10,4}=U_{6,8}=U_{8,8}=U_{12,8}=-m^{3} s S^{2} \beta^{2} \iota \\
& U_{2,0}=U_{10,8}=m^{3}\left(s^{2}+1\right) S^{2} \beta^{2} \iota \\
& H U_{3,0} \equiv H U_{9,8} \equiv-m^{2}\left(m^{2}+1\right) s S^{2} \beta\left(H s \beta-\left(s^{2}-1\right)\left(\eta_{1}+\eta_{2}\right)\right) \iota \quad \bmod r_{0}, \\
& U_{5,0} \equiv U_{7,8} \equiv m^{2}\left(m^{2}+1\right) s S^{2} \beta^{2} \iota \bmod r_{0}, \\
& H U_{1,2} \equiv H U_{11,6} \equiv m^{2}\left(m^{2}+1\right)(s-1) s S \beta \eta_{2} \iota \quad \bmod r_{0}, \\
& H U_{2,2}=H U_{6,2}=H U_{8,2}=H U_{4,6} \equiv H U_{6,6}=H U_{10,6} \equiv m^{3}\left(s^{2}-1\right) s S \beta \eta_{1} \iota \quad \bmod r_{1}, \\
& H U_{3,2} \equiv H U_{9,6} \equiv m^{2}\left(m^{2}+1\right)(s-1) S \beta\left\{H s S^{2} \beta-s\left(s S^{2}+1\right) \eta_{1}-\left(s^{2} S^{2}+s^{2}+1\right) \eta_{2}\right\} \iota \bmod r_{0}, \\
& H^{2} U_{4,2} \equiv H^{2} U_{8,6} \\
& \equiv m(s-1) s S\left\{H^{2} m^{3} \alpha \beta+H\left(m^{2}+1\right)\left(m^{2} s+s+1\right) \beta \eta_{2}-\left(m^{2}+1\right)^{2}\left(s^{2}-1\right) \eta_{2}\left(\eta_{1}+\eta_{2}\right)\right\} \iota \\
& \bmod r_{0}, \\
& H U_{5,2} \equiv H U_{7,6} \equiv-m^{2}\left(m^{2}+1\right)(s-1) s S \beta \eta_{2} \iota \bmod r_{0}, \\
& H U_{7,2} \equiv H U_{5,6} \equiv m^{2}\left(m^{2}+1\right)(s-1) s S \beta\left(H S^{2} \beta-\left(s S^{2}+1\right) \eta_{1}-\left(s S^{2}-1\right) \eta_{2}\right) \iota \bmod r_{1}, \\
& H^{2} U_{3,4} \equiv H^{2} U_{9,4} \equiv-m^{2}\left(m^{2}+1\right)(s-1)^{2} s(s+1) \eta_{1} \eta_{2} \iota \bmod r_{0}, \\
& H^{2} U_{4,4}= H^{2} U_{8,4} \\
& \equiv m\left\{H^{2} m^{2}\left(s^{2}-s+1\right) S^{2} \beta^{2}+\left(m^{2}+1\right)^{2}(s-1)^{2} s \eta_{2}\left(-H S^{2} \beta+\left(s S^{2}+1\right) \eta_{1}+s S^{2} \eta_{2}\right)\right\} \iota \\
& \quad \bmod r_{1}, \\
& H^{2} U_{5,4} \equiv H^{2} U_{7,4} \\
& \equiv-\left(m^{2}+1\right)(s-1) s\left\{(s-1) \eta_{2}\left(m^{3} H \alpha+\left(m^{2}+1\right) \eta_{2}\right)+m^{2} S^{2} H \beta\left(H \beta-(s+1)\left(\eta_{1}+\eta_{2}\right)\right)\right\} \iota \\
& \bmod r_{0}, \\
& H^{2} U_{6,4} \equiv-2 m s\left(H m S \beta-\left(m^{2}+1\right)(s-1) \eta_{2}\right)\left(H m S \beta+\left(m^{2}+1\right)(s-1) \eta_{2}\right) \iota \bmod r_{0},
\end{aligned}
$$

where we put $\iota=m^{2} s^{2}(s+1) S\left(s S^{2}+1\right)^{3} \alpha^{3} \beta$, and the other $U_{i, j}$'s are 0 .
On the other hand, by the aid of Mathematica,

$$
\begin{aligned}
\operatorname{det} \Phi(c-1) & =\operatorname{det}\left(t^{2 n+1} \rho_{m}(x b)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\frac{m S H \beta+m S H t^{2} T^{4} \beta-\left(m^{2}+1\right)(s-1) t T^{2} \eta_{2}}{m S H \beta}-\frac{\left(S^{2}-1\right) t T^{2}}{m S\left(s S^{2}+1\right) H \alpha \beta} r_{1} \\
& =\frac{m S H \beta+m S H t^{2} T^{4} \beta-\left(m^{2}+1\right)(s-1) t T^{2} \eta_{2}}{m S H \beta} .
\end{aligned}
$$

Consequently, we have

$$
\begin{equation*}
\Delta_{K_{n}, \rho_{m}}(t)=\frac{\sum_{i, j} V_{i, j} t^{i} T^{j}}{H m^{2} S t^{6}\left(s-t^{2}\right)\left(s t^{2}-1\right) \beta}, \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& V_{0,0}=V_{4,0}=V_{6,0}=V_{4,4}=V_{6,4}=V_{10,4}=-H m^{2} s S \beta, \\
& V_{2,0}=V_{8,4}=H m^{2}\left(s^{2}+1\right) S \beta, \\
& V_{3,0}=V_{7,4}=m\left(m^{2}+1\right) s S\left\{\left(s^{2}-1\right)\left(\eta_{1}+\eta_{2}\right)-H s \beta\right\}, \\
& V_{5,0}=V_{5,4}=H m\left(m^{2}+1\right) s S \beta, \\
& V_{2,2}=V_{8,2}=m^{2} s\left(s^{2}-1\right) \eta_{1}, \\
& V_{3,2}=V_{7,2}=m\left(m^{2}+1\right)(s-1) s\left\{(s+1) \eta_{1}+\eta_{2}\right\} \\
& V_{4,2}=V_{6,2}=(s-1) s\left\{\left(m^{2}+1\right) \eta_{2}+H m^{3} \alpha\right\}, \\
& V_{5,2}=-2 m\left(m^{2}+1\right)(s-1) s \eta_{2},
\end{aligned}
$$

and the other $V_{i, j}$'s are 0 . By the aid of Mathematica, the difference between the right hand side of (3) and the formula in Proposition 3.2 is equal to

$$
\frac{s \zeta_{1}+t \zeta_{2}-2 t^{2} \zeta_{1}+t^{3} \zeta_{2}+s t^{4} \zeta_{1}}{H m^{2} S t^{3}(s+1)\left(s-t^{2}\right)\left(s t^{2}-1\right) \beta} T^{2}
$$

where

$$
\begin{aligned}
& \zeta_{1}=m\left(m^{2}+1\right) s(s+1)\left(H S^{2} \beta-s\left(S^{2}-1\right) \eta_{1}-\left(s S^{2}-1\right) \eta_{2}\right) \\
& \zeta_{2}=H m^{2} s\left(m \alpha-m s^{2} \alpha+s \beta+S^{2} \beta\right)-\left(s^{2}-1\right)\left(m^{2} \eta_{1}+m^{2} s^{3} \eta_{1}+s \eta_{2}+m^{2} s \eta_{2}\right)
\end{aligned}
$$

Note that $\zeta_{1}=0$ by the definition of H, η_{1} and η_{2} and that

$$
\zeta_{2}=m\left\{\left(m^{2}\left(s^{2}-s+1\right)-s\right)\left(s^{3} S^{2}+1\right)-H s(s-1)\right\} r_{0}=0 .
$$

This completes the proof of Proposition 3.2.

References

[CF] R. H. Crowell and R. H. Fox, Introduction to knot theory, Springer-Verlag(1963).
[CGLS] M. Culler, C. M. Gordon, J. Luecke and P. B. Shalen, Dehn Surgery on Knots, Ann. Math, 125 (1987), 237-300.
[DFJ] N. Dunfield, S. Friedl and N. Jackson, Twisted Alexander polynomials of hyperbolic knots, Exp. Math. 21 (2012), 329-352.
[GKM] H. Goda, T. Kitano and T. Morifuji, Twisted Alexander polynomials (in Japanese), Sugaku-Memoirs 5 (2005).
[GM] S. Garoufalidis and T. W. Mattman, The A-polynomial of the $(-2,3,3+2 n)$ pretzel knots, New York J. Math. 17 (2011) 269-279.
[KM] T. Kitano and T. Morifuji, Divisibility of twisted Alexander polynomials and fibered knots, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. IV (2005), 179-186.
[L] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. 17 (2001), 361-380.
[Ma] Thomas W. Mattman, The Culler-Shalem seminorms of the (-2, 3, n) pretzel knot, J. Knot Theory Ramifications, 11 (2002), 1251.
[Mo1] T. Morifuji, Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math. 132 (2008), no. 5, 439-453.
[Mo2] T. Morifuji, Representations of knot groups into $S L(2, C)$ and twisted Alexander polynomials, Handbook of Group Actions (Vol. I), Advanced Lectures in Mathematics 31 (2015), 527-576.
[T1] A. Tran, Twisted Alexander polynomials of genus one two-bridge knots, preprint 2015, arXiv:1506.05035.
[T2] A. Tran, Adjoint twisted Alexander polynomials of genus one two-bridge knots, J. Knot Theory Ramifications 25 (2016), 1650065.
[TY] N. Tamura and Y. Yokota, A formula for the A-polynomials of ($-2,3,2 n+1$)-pretzel knots, Tokyo J. Math. 27 (2004), 263-273.
[W] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256.

[^0]: Key words and phrases. twisted Alexander polynomials, pretzel knot, holonomy representation.

