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Abstract. We calculate the twisted Alexander polynomials of (−2, 3, 2n + 1)-pretzel knots
associated to their holonomy representations.

1. Introduction

The notion of twisted Alexander polynomials was introduced by Wada [W] and Lin [L] indepen-
dently in 1990s. The definition of Lin is for knots in S3 and the definition of Wada is for finitely
presented groups. The twisted Alexander polynomial is a generalization of the Alexander polyno-
mial and is defined for the pair of a group and its representations. By Kitano and Morifuji [KM],
it is known that Wada’s twisted Alexander polynomials of the knot groups for any nonabelian
representations into SL2(F) over a field F are polynomials. In this paper, by using the following
definition due to Wada, we compute the twisted Alexander polynomials of (−2, 3, 2n + 1)-pretzel
knots Kn depicted in Figure 1 associated to their holonomy representations ρm : G(Kn) → SL2(C)
given in following section.

Figure 1. (−2, 3, 2n+ 1)-pretzel knot

Definition 1.1. Let G(K) = π1(S3 \K) be the knot group of a knot K presented by

G(K) = ⟨x1, · · · , xn r1, · · · , rn−1⟩.

Let Γ denote the free group generated by x1, · · · , xn and φ : ZΓ → ZG(K) the natural ring
homomorphism. Let ρ : G(K) → GLd(C) be a d-dimensional linear representation of G(K) and
Φ : ZΓ → Md(C[t, t−1]) the ring homomorphism defind by

Φ = (ρ̃⊗ α̃) ◦ φ,

where α̃ : ZG(K) → Z⟨t, t−1⟩ and ρ̃ are respective ring homomorphisms induced by the abelian-
ization α : G(K) → ⟨t⟩ and ρ. We put

Ai,j = Φ

(
∂ri
∂xj

)
,
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where
∂

∂xj
denotes the Fox derivative (or free derivative) with respect to xj , that is, a map

ZΓ → ZΓ satisfying the conditions

∂

∂xj
xi = δij ,

∂

∂xj
gg′ =

∂

∂xj
g +

∂

∂xj
g′,

where δij denotes the Kronecker symbol and g, g′ ∈ Γ. Then, the twisted Alexander polynomial of
K is defined by

∆K,ρ =
detAρ,k

detΦ(xk − 1)
,

where Aρ,k is the 2(n − 1) × 2(n − 1) matrix obtained from Aρ = (Ai,j) by removing the k-th
column, i.e.

Aρ,k =

⎛

⎜⎝
A1,1 · · · A1,k−1 A1,k+1 · · · A1,n
...

...
...

...
An−1,1 · · · An−1,k−1 An−1,k+1 · · · An−1,n

⎞

⎟⎠ .

If K is hyperbolic, i.e. the complement S3 \ K admits a complete hyperbolic metric of finite
volume, the most important representation is its holonomy representation into SL2(C) which is
a lift of the representation into the group of orientation-preserving isometries of the hyperbolic
3-space H3. In fact, the twisted Alexander polynomials of some hyperbolic knots associated to
their holonomy representations are computed by Dunfield, Friedl and Jackson [DFJ]. Recently,
the twisted Alexander polynomials of some infinite families of knots, twist knots and genus one
two-bridge knots associated to their holonomy representations, are computed by Morifuji [Mo1]
and Tran [T1] and genus one two-bridge knots associated to the adjoint representations of their
holonomy representations is also computed by Tran [T2].

(−2, 3, 2n+1)-pretzel knot is an infinite family of knots which contains the Fintushel-Stern knot
i.e. (−2, 3, 7)-pretzel knot. It plays an important role in studying of exceptional surgeries of knots
[Ma]. The A-polynomials of (−2, 3, 2n+1)-pretzel knot are computed by Tamura-Yokota [TY] and
Garoufalidis-Mattman [GM].

Acknowledgement: The author would like to thank professor Yoshiyuki Yokota for supervising and
giving helpful comments. She also would like to thank professor Teruhiko Soma and professor
Manabu Akaho for giving valuable comments.

2. Holonomy representations

In this section, we give a presentation of knot group G(Kn) and its holonomy representation
ρm : G(Kn) → SL2(C), where m represents the eigenvalue of the meridian of Kn.

Let L be the link depicted in Figure 2 and E = S3 \ L. Then, the Wirtinger presentation (see
[CF]) of π1(E) is given by

⟨a, b, x {axba(xb)−1}−1x = xb{axba(xb)−1}−1(axb)−1xb, [x, axba(xb)−1] = 1⟩,
where a, b and x is Wirtinger generators assigned to the corresponding pass depicted in Figure 2.
Note that En := S3 \Kn is obtained from L by (− 1

n )-surgery along the trivial component, that is,
removing the tubular neighborhood of the trivial component and re-gluing the solid torus again.
Therefore, by the van Kampen theorem, we have

π1(En) = ⟨a, b, x {axba(xb)−1}−1x = xb{axba(xb)−1}−1(axb)−1xb, x = {axba(xb)−1}n⟩.

Figure 2. Link L
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Proposition 2.1. For a non-zero complex number m, there exists a representation ρm : π1(En) →
SL2(C) such that

ρm(a) =

⎛

⎝ m −
(
m2 − s

) (
s2n+1 + 1

)

m(s+ 1)
0 m−1

⎞

⎠ , ρm(b) =
1

sα

⎛

⎜⎝
β − (sα−mβ)(msα− β)

mβ

β
m(msα− β) + sα

m

⎞

⎟⎠ ,

and

ρm(x) =

⎛

⎝
sn 0

sn − s−n

s2n+1 + 1
s−n

⎞

⎠ ,

where s is a solution to

0 = m8(s− 1)(s+ 1)2(s2n − s2)s2n+2(1)

−m6{s6n+3+(2s6 + s5 − 4s4 + s3 + s2 − s− 1)s4n+1

−(s6 + s5 − s4 − s3 + 4s2 − s− 2)s2n+2 + s6}
+m4{(s2+1)s6n+2 + (s6 + 2s5 − 3s4 − 2s3 + 6s2 − 4s− 2)s4n+3

−(2s6 + 4s5 − 6s4 + 2s3 + 3s2 − 2s− 1)s2n + (s2 + 1)s5}
−m2{s6n+3+(2s6 + s5 − 4s4 + s3 + s2 − s− 1)s4n+1

−(s6 + s5 − s4 − s3 + 4s2 − s− 2)s2n+2 + s6}
+(s− 1)(s+1)2(s2n − s2)s2n+2

and α,β are given by

α = (s2 − 1)s2n{−m6(s− 1)s2(s2n+1 + 1) +m4(s2n+2(s4 − 2s2 + 3s− 1) + s4 − 3s3 + 2s2 − 1)

−m2s(s2n(2s3 − s2 + 1)− s(s3 − s+ 2)) + s2(s2n − s2)},
β = m7s2n+2(s2 − 1)(s3 + 1)

−m5s3{s4n(s3 − s2 + 1) + s2n−2(s− 1)(s3 + s+ 1)(s3 + s2 + 1)− (s3 − s+ 1)}
+m3s2(s3 + 1)(s2n − 1)(s2n + s2)−ms3(s2n − s2)(s2n + s).

In what follows, for simplicity, we denote the right hand side of (1) by r0.

Proof. For simplicity, put A = ρm(a), B = ρm(b), X = ρm(x). By the aid of Mathematica, we
have

AXBA(XB)−1 =

⎛

⎝
s 0

s2 − 1

s(s2n+1 + 1)

1

s

⎞

⎠+ r1

⎛

⎜⎝

1

m3s(s2n+1 + 1)α2
− 1

m3s(s+ 1)α2

s+ 1

m3s2(s2n+1 + 1)2α2
− 1

m3s2(s2n+1 + 1)α2

⎞

⎟⎠ ,

where

r1 = −α2ms(m2s2n+2 −m2 − s2n+1 + s) + αβ(m2 − 1)(m2 + 1)s2n+1(s+ 1)

+β2ms2n(m2s2n+1 −m2s− s2n+2 + 1) ≡ 0 mod r0.

Therefore, by (1), we have X = {AXBA(XB)−1}n, that is, ρm(x) = ρm
(
{axba(xb)−1}n

)
.

On the other hand, we can observe

AXB{AXBA(XB)−1} ≡ XBX−1{AXBA(XB)−1}XB mod r0

and so AXB{AXBA(XB)−1} = XBX−1{AXBA(XB)−1}XB by (1). Further more, we obtain

XB{AXBA(XB)−1}−1(AXB)−1XB = XB(AXB{AXBA(XB)−1})−1XB

= XB(XBX−1{AXBA(XB)−1}XB)−1XB

= {AXBA(XB)−1}−1X

that is, ρm
(
{axba(xb)−1}−1x

)
= ρm

(
xb{axba(xb)−1}−1(axb)−1xb

)
. This completes the proof.

!
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Remark 2.2. Since the representation ρm comes from the holonomy representation obtained from
the ideal triangulation of E given in [TY], the holonomy representation ρm of G(Kn) is given by
the solution to (1) which maximizes the hyperbolic volume of S3 \Kn.

3. Calculation of the twisted Alexander polynomial

The following is the main result of this paper.

Theorem 3.1. The twisted Alexander polynomial of Kn associated to ρm is given by

∆Kn,ρm(t) = 1 +
2n−1∑

i=0

λi(t
i+3 + t4n−i+3) + t4n+6,

where

λi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 +m2)(Hsi/2+1β − s(si/2+1 − s−(i/2+1))(η1 + η2))

Hmβ
if 0 ≤ i ≤ 2n− 2 and i is even,

s(i−1)/2 − s−(i−1)/2

s− s−1
if 0 ≤ i ≤ 2n− 2 and i is odd,

sn−1 − s−(n−1)

s− s−1
− (s2 − 1)η1

Hsnβ
if i = 2n− 1

and we put

H = 1−m2s+m2s2n+1 − s2n+2,

η1 = mα−ms2n+1α+ s2nβ +m2s2nβ,

η2 = −msα+ms2n+1α− s2nβ − s2n+1β.

To prove Theorem 3.1, it suffices to show

Proposition 3.2. For simplicity, we put S = sn and T = tn. The twisted Alexander polynomial
∆Kn,ρm(t) is given by

S − T 2

s− t2
s

S

(
ms−mST 2 + (1 +m2)(1− s2)StT 2

m(1− s2)t2
+

(1 +m2)(1− sSt2T 2)(η1 + η2)

Hmt3β

)

+
1− ST 2

1− st2
s

S

(
(1 +m2)(1− s2)S −mSt+mstT 2

m(1− s2)t3
− (1 +m2)(sS − t2T 2)(η1 + η2)

Hmt3β

)

+
1

t6
+ T 4 +

(1− s2)(1 + t2)T 2η1
HSt4β

.

By multiplying t6 and rearranging with respect to t , we obtain the formula of Theorem 3.1,
when we use

S − T 2

s− t2
=

S

s

n−1∑

i=0

(
t2

s

)i

,
ST 2 − 1

st2 − 1
=

n−1∑

i=0

(st2)i.

4. Proof of Proposition 3.2

Recall that

π1(En) = ⟨a, b, x {axba(xb)−1}−1x = xb{axba(xb)−1}−1(axb)−1xb, x = {axba(xb)−1}n⟩
= ⟨a, c (acac−1)n−1 = c(acac−1)−1(ac)−1c⟩.

Then the twisted Alexander polynomial of Kn is given by

∆Kn,ρm(t) =

detΦ

(
∂

∂a
(acac−1)n−1 − ∂

∂a
c(acac−1)−1(ac)−1c

)

detΦ(c− 1)
,
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where

Φ

(
∂

∂a
(acac−1)n−1 − ∂

∂a
c(acac−1)−1(ac)−1c

)

=
n−1∑

i=1

t2(i−1)ρm
({

axba(xb)−1
}i−1

){
ρm(1) + t2(n+1)ρm(axb)

}
+ t4n+1ρm(xbxba−1)(2)

+t2n−1ρm
(
xb

{
axba(xb)−1

}−1
)
+ t−3ρm

(
xb{axba(xb)−1}(axb)−1

)
.

For simplicity, we put

γ1 = sα−mβ , γ2 = msα− β , γ3 = m2s(sS2 + 1)α.

By the aid of Mathematica, the first term of the right hand side of (2) is given by

n−1∑

i=1

t2(i−1)(AXBA(XB)−1)i−1(E + t2(n+1)AXB)

=

⎛

⎜⎜⎝

(ST 2 − st2)(St2βT 2 +mα)

mst2(st2 − 1)α
−T 2(ST 2 − st2)(γ1η2 + (mα− β)γ3)

m2s(s+ 1)S (st2 − 1)αβ
mC1α− St2T 2C2β

msS(sS2 + 1)t2(s− t2)(st2 − 1)α

C3t4T 4 + C4t2T 4 + C5t6T 2 + C6t4T 2 + C7

(s+ 1)S2t2(s− t2)(st2 − 1)γ3β

⎞

⎟⎟⎠ ,

where

C1 = −t4s(s2 − 1)S − T 2{t2(S2 − s4)− s(S2 − s2)},
C2 = −t2(t2 − 1)s(s+ 1)S + T 2{t2(S2 + s3) + s(S2 − s)},
C3 = (s3 + S2)γ1η2 − {s3(msα+ β)− S2(mα− β)}γ3,
C4 = −s(s+ S2)γ1η2 + s{s(msα+ β)− S2(mα− β)}γ3,
C5 = −s(s+ 1)S{γ1η2 + (η1 + η2 − (1 +m2S2 − sS2)β)γ3},
C6 = s(s+ 1)S{sαη2 −m(s+ 1)S2βγ2},
C7 = s(s+ 1)S(st2 − 1)(St2 − sT 2)βγ3.

Similarly, the second term of the right hand side of (2) is given by

XBXBA−1 =

⎛

⎜⎜⎝

S2D1

γ3α

msD1D2 − (sS2 + 1)(sS2D1 +mγ3α)β2

(s+ 1)γ3αβ2

(s+ 1)D2

(sS2 + 1)γ3α

msS2D1D2 + s(sS2 + 1)(m2sα2 − S2β2)D2

S2(sS2 + 1)γ3αβ2
−m

⎞

⎟⎟⎠ ,

where

D1 = −(s+ 1)αγ2 +m(η1 + γ2 +mS2γ1)β,

D2 = −αη2 +mS2(η1 +mS2γ1 + γ2)β,

the third term of the right hand side of (2) is given by

XB
{
AXBA(XB)−1

}−1
=

⎛

⎜⎜⎝

SE1

ms (sS2 + 1)αβ
−Sγ1γ2

mαβ
(s+ 1)E2

msS (sS2 + 1)2 αβ

E3

mS (sS2 + 1)αβ

⎞

⎟⎟⎠ ,

where

E1 = (s2 − 1)αγ2 +m(η1 +mS2γ1 − sγ2)β,

E2 = (s− 1)αη2 +mS2(η1 +mS2γ1 − sγ2)β,

E3 = −sαη2 +m(s+ 1)S2βγ2,

and the fourth term of the right hand side of (2) is given by

XB(AXBAXBA(XB)−1)−1 =

⎛

⎜⎜⎝

mF3

γ2
3β

2

F4

m(s+ 1)γ3αβ2

m(s2 − 1)F1F2

S2(sS2 + 1)γ2
3β

2

mF5

S2γ2
3β

2

⎞

⎟⎟⎠ ,
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where

F1 = m(s+ 1)S2(η1 +mS2γ1)β − η2α,

F2 = m(s+ 1)S2(sS2 + 1)β2 − sF1,

F3 = −{mβ(η1 +mS2γ1) + sγ1γ2 − γ2α}F2 +ms(s+ 1)S2(sS2 + 1)γ1γ2β
2,

F4 = (s2 − 1){m(η1 +mS2γ1)β − γ2α}F2

+γ3{mγ2α− (m2η1 + s2η2 +m3S2γ1 − s2(S2 − 1)γ2)β −msγ1γ2}α,
F5 = (s− 1)(sF1 −mγ3α)F2 −m2S2(sS2 + 1)γ3αβ

2.

Therefore, the determinant of the right hand side of (2) is written as

∑
i,j Ui,jtiT j

m3S2t6(s− t2)(st2 − 1)β2ι
,

where

U0,0 = U4,0 = U6,0 = U2,4 = U10,4 = U6,8 = U8,8 = U12,8 = −m3sS2β2ι,

U2,0 = U10,8 = m3(s2 + 1)S2β2ι,

HU3,0 ≡ HU9,8 ≡ −m2(m2 + 1)sS2β(Hsβ − (s2 − 1)(η1 + η2))ι mod r0,

U5,0 ≡ U7,8 ≡ m2(m2 + 1)sS2β2ι mod r0,

HU1,2 ≡ HU11,6 ≡ m2(m2 + 1)(s− 1)sSβη2ι mod r0,

HU2,2 = HU6,2 = HU8,2 = HU4,6 ≡ HU6,6 = HU10,6 ≡ m3(s2 − 1)sSβη1ι mod r1,

HU3,2 ≡ HU9,6 ≡ m2(m2 + 1)(s− 1)Sβ{HsS2β − s(sS2 + 1)η1 − (s2S2 + s2 + 1)η2}ι mod r0,

H2U4,2 ≡ H2U8,6

≡ m(s− 1)sS{H2m3αβ +H(m2 + 1)(m2s+ s+ 1)βη2 − (m2 + 1)2(s2 − 1)η2(η1 + η2)}ι
mod r0,

HU5,2 ≡ HU7,6 ≡ −m2(m2 + 1)(s− 1)sSβη2ι mod r0,

HU7,2 ≡ HU5,6 ≡ m2(m2 + 1)(s− 1)sSβ(HS2β − (sS2 + 1)η1 − (sS2 − 1)η2)ι mod r1,

H2U3,4 ≡ H2U9,4 ≡ −m2(m2 + 1)(s− 1)2s(s+ 1)η1η2ι mod r0,

H2U4,4 = H2U8,4

≡ m{H2m2(s2 − s+ 1)S2β2 + (m2 + 1)2(s− 1)2sη2(−HS2β + (sS2 + 1)η1 + sS2η2)}ι
mod r1,

H2U5,4 ≡ H2U7,4

≡ −(m2 + 1)(s− 1)s{(s− 1)η2(m
3Hα+ (m2 + 1)η2) +m2S2Hβ(Hβ − (s+ 1)(η1 + η2))}ι

mod r0,

H2U6,4 ≡ −2ms(HmSβ − (m2 + 1)(s− 1)η2)(HmSβ + (m2 + 1)(s− 1)η2)ι mod r0,

where we put ι = m2s2(s+ 1)S(sS2 + 1)3α3β, and the other Ui,j ’s are 0.
On the other hand, by the aid of Mathematica,

detΦ(c− 1) = det

(
t2n+1ρm(xb)−

(
1 0
0 1

))

=
mSHβ +mSHt2T 4β − (m2 + 1)(s− 1)tT 2η2

mSHβ
− (S2 − 1)tT 2

mS(sS2 + 1)Hαβ
r1

=
mSHβ +mSHt2T 4β − (m2 + 1)(s− 1)tT 2η2

mSHβ
.

Consequently, we have

∆Kn,ρm(t) =

∑
i,j Vi,jtiT j

Hm2St6(s− t2)(st2 − 1)β
,(3)
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where

V0,0 = V4,0 = V6,0 = V4,4 = V6,4 = V10,4 = −Hm2sSβ,

V2,0 = V8,4 = Hm2(s2 + 1)Sβ,

V3,0 = V7,4 = m(m2 + 1)sS{(s2 − 1)(η1 + η2)−Hsβ},
V5,0 = V5,4 = Hm(m2 + 1)sSβ,

V2,2 = V8,2 = m2s(s2 − 1)η1,

V3,2 = V7,2 = m(m2 + 1)(s− 1)s{(s+ 1)η1 + η2}
V4,2 = V6,2 = (s− 1)s{(m2 + 1)η2 +Hm3α},
V5,2 = −2m(m2 + 1)(s− 1)sη2,

and the other Vi,j ’s are 0. By the aid of Mathematica, the difference between the right hand side
of (3) and the formula in Proposition 3.2 is equal to

sζ1 + tζ2 − 2t2ζ1 + t3ζ2 + st4ζ1
Hm2St3(s+ 1)(s− t2)(st2 − 1)β

T 2,

where

ζ1 = m(m2 + 1)s(s+ 1)(HS2β − s(S2 − 1)η1 − (sS2 − 1)η2),

ζ2 = Hm2s(mα−ms2α+ sβ + S2β)− (s2 − 1)(m2η1 +m2s3η1 + sη2 +m2sη2).

Note that ζ1 = 0 by the definition of H, η1 and η2 and that

ζ2 = m{(m2(s2 − s+ 1)− s)(s3S2 + 1)−Hs(s− 1)}r0 = 0.

This completes the proof of Proposition 3.2.
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