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1. ABSTRACT 

 

AIM: Oxaliplatin is a third-generation platinum-based chemotherapy 

drug, introduced for management of the advanced stages of metastatic 

colorectal cancer. However, repeated administration of oxaliplatin 

induced acute and chronic peripheral neuropathy. Valproic acid (VPA) 

is a neurotherapeutic drug used widespread and worldwide as therapy 

for seizures, bipolar disorder, and migraine, including children, adult 

and women of reproductive age.  

MATERIALS AND METHODS: In the present study, we investigated 

the effect of VPA in prevention of oxaliplatin-induced periphery 

neuropathy in the rat model. We demonstrated that VPA (300 mg/kg) 

relieved the oxaliplatin (4mg/kg)-induced peripheral neuropathy using 

behavioral tests, biochemical tests, and histopathological and 

immunohistochemical evaluations.  

RESULTS: VPA administration significantly attenuated the mechanical 

hyperalgesia by oxaliplatin-induced in rats. VPA exerted a significant 



 

 

4 

 

protective effect by reducing the occurrence of multinucleolated 

neurons and the nucleolar eccentricity caused on lumbar dorsal root 

ganglion from oxaliplatin-treated rats. It revealed an inhibitory effect 

of VPA on the number and activation of microglia and astrocytes in the 

dorsal horn of the spinal cord. However, VPA was unable to prevent 

demyelination and degeneration of nerve fibers from oxaliplatin-

induced peripheral neurotoxicity.  

COLUSION: The present results demonstrated for the first time that 

VPA administration ameliorated the oxaliplatin-induced behavioral, 

biochemical and histopathological changes in rats. The VPA-mediated 

effects in this study may be attributed to neuroprotection properties 

and ameliorating oxaliplatin-induced astrocytes and microglial 

activation. VPA may offer a dual protective approach against etiological 

factors and resulting maladaptative plasticity. 

Keywords: Oxaliplatin, Peripheral neuropathy, Mechanical allodynia, 

Valproic acid, Astrocyte and Microglia, Nucleolar eccentricity 
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2. INTRODUCTION 

 

Oxaliplatin is a third-generation platinum-based chemotherapy drug 

in various solid tumours, in particular, it was introduced for the 

management of the advanced stages of metastatic colorectal cancer 

[1]. However, it has been reported that repeated administration of 

oxaliplatin induced severe acute and chronic peripheral neuropathy [2]. 

Oxaliplatin induced neuropathy can persist from months to years 

beyond chemotherapy completion, causing significant challenges for 

cancer survivors due to negative influence on function and quality of 

life. Oxaliplatin neurotoxicity resulted in chemotherapy dose reductions 

or early discontinuation [3]. 

Acute neuropathy shows cold hyperalgesia in the early phase and 

includes acral paresthesias enhanced by exposure to cold in 71 to 95% 

of all patients [4,5]. It has been thought that the acute neuropathy is 

not due to morphological damage of the nerve [6] and is due to 

alternations of voltage-gated Ca2+ and K+ channels [7]. On the other 

hand, the dose-limiting toxicity of this compound is the development 
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of peripheral neuropathy with glove-and-stocking distribution sensory 

loss, combined with paresthesia, dysesthesia, pain, and motor 

neuropathy [3,6,8]. A chronic neurological syndrome, related to the 

total cumulative dose as well as the dose-intensity of treatment 

persists between and after treatments [9] negatively influencing 

patient’s quality of life. Thus, these neuropathies are a major clinical 

problem in oxaliplatin chemotherapy.  

To ameliorate oxaliplatin-induced neuropathy, various treatments by 

animal experiments have been suggested including gabapentin [10], 

neurotropin [6], carbamazepine [11], phosphatidylcholine [12], N-

palmitoylethanolamine [3], exenatide [8], and goshajinkigan [2]. 

There is no currently univocally-accepted proven therapy for 

oxaliplatin-induced neuropathy. Most randomized controlled trials 

testing a variety of drugs with diverse mechanisms of action failed to 

reveal an effective treatment. Recently, most reports including 

glutathione [13], duloxetine [14], Vitamin E [15], oxycodone [16], 

goshajinkigan [17], pregabalin [18] and MR309 (a novel selective 

sigma-1 receptor ligand previously developed as E-52862) [19] show 
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some effects. Neuroprotective, safe, preventive agents as adjuvant to 

chemotherapy are a therapeutic need.  

Valproic acid (VPA) is a neurotherapeutic drug prescribed worldwide 

as therapy for seizures, bipolar disorder, and migraine, including 

children, adult and women of reproductive age. It is one of the major 

antiepileptic drugs in clinical practice and the drug of choice par 

excellence for all varieties of generalised epilepsy syndromes, primary 

or symptomatic [20]. Recently, VPA exerts protective effects for various 

neurological diseases, including spinal cord injury [21,22], stroke [23], 

traumatic brain injury [24], motor neuron diseases [25], Parkinson’s 

disease [26], Alzheimer’s disease [27] and Huntington’s disease [28]. 

There is now accumulating evidence that VPA may have potential in 

the treatment of central nervous system disorders and the 

neuroprotective functions are linking with its inhibition on histone 

deacetylases (HDAC) [29,30]. It has recently been demonstrated that 

VPA robustly promotes neurite outgrowth, activates the extracellular 

signal regulated kinase pathway [30, 31,32]. However, the effect of 

VPA on the oxaliplatin-induced neuropathy remains unexplored. 
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Accordingly, in the present study, we investigated the effect of VPA 

in prevention of oxaliplatin induced periphery neuropathy in the rat 

model. The anti-neuropathic role of VPA was evaluated in oxaliplatin-

treated animals by analyzing pain behavior in relation to morphological 

and functional protection of the nervous system. 
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3. MATERIALS AND METHODS 

 

1) Animals 

Six-week-old male Sprague-Dawley rats weighing 200–250 g (Japan 

SLC, Shizuoka, Japan) were employed in the present study. Animals 

were housed in groups of three to four per cage (size 26 × 41 cm), fed 

a standard laboratory diet and tap water ad libitum, and kept at 25 ± 

2°C with a 12 h light/dark cycle, light at 8 a.m. All experiments were 

approved by the Experimental Animal Care and Use Committee of 

Tokyo Metropolitan University according to the National Institutes of 

Health guidelines (Permit Number: A28-16, A29-8), and we followed 

International Association for the Study of Pain (IASP) Committee for 

Research and Ethical Issues guidelines for animal research [33]. All 

efforts were made to minimize animal suffering and to reduce the 

number of animals used. 

2) Oxaliplatin model and pharmacological treatments 
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Oxaliplatin (Elplat®) was obtained from Yakult Co., Ltd. (Tokyo, 

Japan). VPA was purchased from Nippon Zoki Pharmaceutical Co. 

(Osaka, Japan). 

The rats (n=18) were divided into three groups (6 rats in each group) 

and treated as follows. Oxaliplatin group: oxaliplatin (4 mg/kg) was 

injected in intraperitoneal injection (i.p.) in volumes of 10 ml/kg twice 

weekly for 4 weeks (Days 1, 2, 8, 9, 15, 16, 22 and 23) (Fig. 1). 

Oxaliplatin was dissolved in a 5% glucose-water solution. The dose of 

oxaliplatin followed previous reports [6, 34]. Oxaliplatin + VPA group: 

administration both oxaliplatin (as above) and VPA (300 mg/kg) daily 

twice a day for 4 weeks in i.p. The dose of VPA followed previous 

reports [35, 36]. Control group: injection of vehicle (5% glucose 

solution) instead of oxaliplatin and VPA. 

3) Assessment of general toxicity 

The measurement of the body weights of rats was performed on Days 

0, 1, 2, 3, 8, 9, 10, 15, 16, 17, 22, 23, 24 and 28 in every groups, 

including on the day of treatment and immediately prior to sacrifice. 
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Rats were examined daily for abnormal clinical signs such as 

piloerection, hindlimb weakness, gait disturbance or gastrointestinal 

disorders such as diarrhea. 

4) von Frey test for mechanical allodynia 

The mechanical allodynia was assessed by von Frey test. The von 

Frey test was performed before the first drug administration (on Day 

0) and on Days 5, 15, 21 and 28 (Fig. 1). On Days 5, 15 and 21, the 

test was performed before drug administration. Rats were placed in a 

clear plastic box (20 × 17 × 13 cm) with a wire mesh floor and allowed 

to habituate for 30 min prior to testing. von Frey filaments (Aesthesio®, 

Precise Tactile Sensory Evaluator 20 pieces Kit with Carrying case, 

USA) ranging 1-15 g bending force were applied to the midplantar skin 

of each hind paw with each application held for 6 s. Fifty percent paw 

withdrawal thresholds were determined by a modification of up-down 

method that described by Kawashiri et al. [6] and Ushio et al. [37]. 

First, each hind paw was touched with some filaments from 1 g up to 

the force that rat exhibited the withdrawal response, in ascending order. 
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Next, the paw was touched with some filaments from 15 g down to the 

force that rat did not exhibit the response, in descending order. These 

up and down steps were repeated three times. Fifty percent thresholds 

were determined by average of the weakest force in each up or down 

step.  

5) Acetone test for cold hyperalgesia 

The cold hyperalgesia was assessed by acetone test. The acetone 

test was performed before the first drug administration and on the first 

day of drug administration (on Day 0 and Day 1) and on Days 5, 7, 14, 

21 and 28 (Fig. 1) according to the method described by Kawashiri et 

al. [6] and Ushio et al. [37]. On Days 1, 5, 7, 14 and 21, test was 

performed before drug administration. Rats were placed in a clear 

plastic box (20 × 17 × 13 cm) with a wire mesh floor and allowed to 

habituate for 30 min prior to testing. Fifty microlitre of acetone (Wako 

Pure Chemical Ltd., #016-00346, Osaka, Japan) was sprayed onto the 

plantar skin of each hind paw three times with a micro sprayer, and 
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rats were observed for 40 s from the start of the acetone spray. The 

number of elevation of each hind paw was recorded. 

6) Assay of sciatic nerve axonal degeneration 

On Day 28, the rats were deeply anesthetized with pentobarbital (50 

mg/kg), and transcardially perfused with phosphate-buffered saline 

(PBS) (0.1M, pH 7.4), followed by 2.5% (w/v) glutaraldehyde in PBS. 

The sciatic nerves were rapidly dissected, and the samples were kept 

overnight in the same fixative at 4 °C. The fixed fibers were post-fixed 

with 1% osmium tetroxide solution for 3 hours, dehydrated in a graded 

alcohol series, and embedded in EPON 815 (Wako, Japan). For light 

microscopy, semi-thin sections were cut from each block and stained 

with toluidine blue. The stained sections were observed using a light 

microscope (BX63, Olympus Corp., Tokyo, Japan). The density of axon 

area was calculated by image analysis software (ImageJ 1.50a; Wayne 

Rasband, National Institutes of Health, MD, USA).  

7) Histopathological assessment on dorsal root ganglia 
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On Day 28, the dorsal root ganglion (DRGs) and spinal cord 

specimens (at segments L4 and L5) were excised from rats of each 

group, and fixed by immersion in 4% PFA overnight at 4°C. The tissues 

were then washed with PBS, dehydrated with ascending grades of 

reagent alcohol, cleared in two changes of xylene, infiltrated with 

paraffin, and sliced to 5 μm, mounted on charged slides. The DRG 

specimens were stained with Azan-Mallory method as manual, and the 

spinal cord specimens were performed with immunohistochemistry for 

GFAP and Iba1 as below 2.8. 

Cellular dimensions of L4-L5 DRGs were measured using a method 

adapted from Di Cesare Mannelli et al. [3,38]. In these sections, using 

a 40x objective lens, the numbers of neurons with nuclei, nucleoli, 

multiple nucleoli, and nucleolar eccentricity (eccentric nucleolus) were 

counted. The nucleolus were considered eccentric when its center (or 

that of the largest one if there appeared to be more than one) lay in 

the outer half of the radius of the nucleus. The results were expressed 

as percentage of those cells with a visible nucleolus. Four consecutive 
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sections for each animal were analyzed. The reported data were 

obtained by averaging the data of L4 and L5 ganglia.  

8) Immunohistochemical evaluation of GFAP and Iba1 in L4-L5 

spinal cord 

The immunohistochemical procedures were performed according to 

our previous study [39]. Briefly, after rinsing the fixed tissue specimens 

in 0.01 M PBS (pH 7.4), endogenous peroxidase activity was inhibited 

by 30-min incubation in methanol containing 0.3% (v/v) hydrogen 

peroxide. After rinsing in PBS, the sections were blocked with normal 

goat serum for 1 h at room temperature, were then incubated for 

overnight at 4°C in PBS containing the primary antibodies, against glial 

fibrillary acidic protein (GFAP; mouse, 1:300; MAB3402, Chemicon, 

Temecula, USA) for astrocyte staining and Iba1 (rabbit, 1:200; #019-

19741, Wako Pure Chemicals, Osaka, Japan) for microglial staining. 

After rinsing in PBS, sections were incubated in donkey anti-mouse IgG 

secondary antibody labeled with Alexa Fluor 488 (1:2000, Thermo 

Fisher Scientific, Rockford, USA) and chicken anti-rabbit IgG secondary 
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antibody labeled with Alexa Fluor 488 (1:500, Thermo Fisher Scientific, 

Rockford, USA), respectively, at room temperature for 1 h. 

Negative control sections (no exposure to the primary antisera) were 

processed concurrently with the other sections for all 

immunohistochemical studies. We obtained a single optical density 

value for the dorsal horns by averaging the two sides in each rat, and 

these values were compared to the homologous average values from 

the vehicle-treated animals. 

9) Quantitative analyses of GFAP and Iba1 

immunohistochemistry 

Images were acquired by a motorized ZEISS ImagerM1 microscope 

equipped with a DS-Fi3 camera (Nikon, Tokyo, Japan). Morphological 

examination of astrocyte and microglia morphology was assessed by 

inspection of at least three fields (20 x) in the dorsal horn per section. 

Quantitative analysis of GFAP and Iba1-positive cells was performed 

by collecting at least three independent fields through a 20 X 0.5NA 

objective. The densities of GFAP and Iba1-positive cells were calculated 
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by means of the automatic thresholding and segmentation features of 

ImageJ (ImageJ 1.50a; Wayne Rasband, National Institutes of Health, 

MD, USA). Results, given as the area fraction (%) occupied by the 

thresholded GFAP- or Iba1-positive cell number, respectively. Five 

spinal cord sections were analyzed for each animal. 

10) Statistical analyses 

Data are expressed as the mean ± standard devtion (SD). ANOVA 

and the Tukey’s multiple comparison tests were employed for statistical 

analysis. All tests were performed as two-sided test and a p value of 

<0.05 was accepted as significant. 
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4. RESULTS   

 

1) General toxicity of oxaliplatin  

Rats were injected with either oxaliplatin (4 mg/kg) or VPA (300 

mg/kg) at dosages corresponding to human chemotherapy, while 5% 

glucose solution was used as a control treatment (Fig. 1). No 

deterioration in general status was observed in any of the groups, and 

no rats died in the course of our experiments. No significant differences 

in body weight were observed between groups at any time (data not 

shown). 

2) Effects of VPA on mechanical allodynia in oxaliplatin-

induced neuropathy 

Before the first oxaliplatin injection, there were no significant 

differences in withdrawal thresholds in all groups in the von Frey test. 

Oxaliplatin significantly reduced the withdrawal threshold compared 

with vehicle on Days 15, 21 and 28 (P < 0.01). Repeated 

administration of VPA significantly inhibited the oxaliplatin-induced 
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reduction of the withdrawal threshold on Days 21 and 28 (P < 0.05) 

(Fig. 2). 

3) Effects of VPA on cold hyperalgesia in oxaliplatin-induced 

neuropathy 

In the acetone test, there were no significant differences in number 

of withdrawal responses in all groups before the first oxaliplatin 

injection. Oxaliplatin significantly increased the number of withdrawal 

responses compared with vehicle on Days 1, 5, 7 and 14 (P < 0.05 or 

0.01). However, no significant difference in withdrawal responses 

compared to the vehicle group was observed on Days 21 and 28 (P > 

0.05). Repeated administration of VPA did not significantly inhibited the 

oxaliplatin-induced increase of the number of withdrawal responses on 

any days (P > 0.05) (Fig. 3). 

4) Effect of VPA on oxaliplatin-induced histological change in 

rat sciatic nerve 

Histological abnormalities in sciatic nerve were observed in vehicle-, 

oxaliplatin-treated and oxaliplatin + VPA-treated rats on Day 28. The 

http://www.sciencedirect.com/science/article/pii/S1090380110002028#ref_f0005
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quantification analysis showed that oxaliplatin caused the decrease in 

the density of myelinated fibers and the degeneration of myelinated 

fibers in rat sciatic nerve (P < 0.05, Fig. 4B), and co-treatment with 

VPA had no effect on the oxaliplatin-induced decrease of the density of 

myelinated fibers (P > 0.05, Fig. 4C). 

5) Effect of VPA on morphological derangement of DRG 

neurons 

Morphologic and morphometric determinations on morphological 

derangement of DRG neurons were performed under the light 

microscope after Azan–Mallory stain. On day 28, oxaliplatin-induced 

damage was evidenced by the occurrence of multinucleolated neurons 

(Fig. 5B) and nucleolar eccentricity (Fig. 5B and C) distributed on small, 

medium and large neurons. VPA exerted a significant protective effect 

by reducing the occurrence of eccentric nucleolus neurons caused by 

oxaliplatin (Fig. 5D).  

6) Effect of VPA treatment on glial cell activation profile in the 

spinal cord 
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To establish a relationship between pain relief and glial modulation 

the cell densities of astrocytes and microglia were calculated in the 

dorsal horn of the spinal cord using immunohistochemistry with 

antibodies against GFAP and Iba1, respectively.  

In the spinal cord, repeated oxaliplatin injections (Day 28) induced 

an increase in GFAP-positive cells (Fig. 6B), astrocyte density increased 

over the entire surface of the spinal cord, particularly in the superficial 

laminae. VPA treatment prevented the increase in the density of the 

dorsal horn GFAP-positive cells (Fig. 6C). 

The same as GFAP and shown in Fig. 7B, the number of Iba1-

expressing cells in dorsal horn superficial laminae of oxaliplatin-treated 

rats was significantly increase than the vehicle group. VPA treatment 

prevented the increase in the density of the dorsal horn microglial cells 

(Fig. 7C).  

 

  



 

 

22 

 

5. DISCUSSION  

 

In the present study, to demonstrate that VPA-treatment relieved the 

oxaliplatin-induced peripheral neuropathy, according to previous 

studies [10,12], oxaliplatin (4 mg/kg) was injected intraperitoneally to 

rats twice a week, and VPA (300 mg/kg) was administered daily twice 

a day for 4 weeks. The results were analysed using behavioral tests, 

and histopathological or immunohistochemical evaluations. In the von 

Frey test, VPA administration significantly attenuated the mechanical 

hyperalgesia induced by oxaliplatin injection. On the other hand, it was 

almost ineffective against the oxaliplatin-induced cold hyperalgesia in 

the acetone test. Therefore, it suggested that VPA has a protective 

effect on oxaliplatin-induced chronic peripheral neuropathy on the 

mechanical hyperalgesia.  

VPA as a broad-spectrum HDAC inhibitor, is an anticonvulsant and 

mood-stabilizing drug with neuroprotective effects [40]. The HDAC 

inhibitors, such as trichostatin A and valproic acid, restored peripheral 

and systemic morphine analgesia in neuropathic pain. It suggests that 
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HDAC inhibitors could serve as adjuvant analgesics to morphine for the 

management of neuropathic pain [35]. A clinical investigation 

demonstrated sodium valproate is well-tolerated, and provides 

significant subjective improvement in painful diabetic neuropathy [41]. 

Oxaliplatin-induced peripheral neurotoxicity in the peripheral nerve 

shows several histological characteristics including demyelination and 

degeneration of nerve fibers, and decrease in the number of myelinated 

fibers [42]. In this study, oxaliplatin caused sciatic nerves of the 

oxaliplatin-treated group showed axonal degeneration and decreased 

density of myelinated fibers. However, these histological changes were 

not ameliorated in the tissue of rats treated with co-administration of 

oxaliplatin and VPA. It suggested that VPA was unable to prevent 

demyelination and degeneration of nerve fibers from oxaliplatin-

induced peripheral neurotoxicity. 

Oxaliplatin causes damage to cell bodies and selective atrophy of 

subpopulations of DRG neurons [43]. In previous evidence [44], it is 

demonstrated that DRGs are a primary target for oxaliplatin 

neurotoxicity. In the present study, the histological determinations 
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were performed on lumbar DRGs from oxaliplatin-treated rats, VPA 

exerted a significant protective effect by reducing the occurrence of 

multinucleolated neurons and the nucleolar eccentricity caused by 

oxaliplatin. VPA prevented morphological derangements in DRGs from 

oxaliplatin-treated rats, showed the same effects of N-

Palmitoylethanolamine in oxaliplatin-treated rats[3]. 

Besides the neuronal damage, glial cells have recently been 

recognized as a powerful modulator of pain. The activation of spinal 

astrocytes has been reported to be involved in the oxaliplatin-induced 

neuropathic pain [45,46]. In models of trauma-induced neuropathy, 

microglia appear to exert a key role in the initial phases of neuropathic 

pain whereas astrocytes may be involved in its maintenance [47,48]. 

In addition, glial inhibitors have been described as pain relievers and 

glial cells are emerging as a new target for drug development [49]. The 

increased cell density of astrocyte and microglia is strongly related to 

pain hypersensitivity since the glial inhibitor minocycline and 

fluorocitrate fully prevent oxaliplatin-evoked pain [38]. 
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N-Palmitoylethanolamine has been reported to modulate glial cells 

and exert antinociceptive effects on oxaliplatin-induced neuropathic 

pain in rats [3]. Furthermore, Kimura et al. [50,51] reported VPA 

(300mg/kg) was administered via intraperitoneal injection in a 

conditional knockout mice, which exhibit glaucomatous pathology 

including glutamate neurotoxicity and oxidative stress in the retina, 

daily for 2 weeks. It showed VPA prevents retinal degeneration in a 

murine model of normal tension glaucoma. Subcutaneous injections of 

300 mg/kg VPA twice a day, VPA-mediated neuroprotection against I/R 

injury in the retina may involve cytoprotective Hsp70 induction via 

transcriptional activation and inhibition of the mitochondria-mediated 

apoptosis pathway [40]. In developing brain, few studies have 

examined VPA effects on glial cells, particularly astrocytes [36]. 

In the present study, to examine the effect of VPA on oxaliplatin-

induced glial activation on spinal cord, immunohistochemical 

evaluation using GFAP and Iba1 antibodies was performed. On day 28, 

a lower pain threshold was accompanied by effects on spinal astrocytes 

and microglia that involve a significant increase of the number of cells 



 

 

26 

 

immunoreactive to GFAP and Iba1, respectively. The present results 

reveal an inhibitory effect of VPA on astrocytes and microglia in the 

dorsal horn of the spinal cord with decreasing in the number or 

activation of both cell types. It suggested that VPA-ameliorated 

oxaliplatin-induced astrocytes and microglia activation, meaning that 

proinflammatory mediator-related nociceptor sensitization could be 

prevented by VPA administration.  

In conclusion, the present results demonstrate for the first time that 

VPA administration ameliorated the oxaliplatin-induced behavioral, 

biochemical and histopathological changes in rats. The VPA-mediated 

effects in this study may be attributed to neuroprotection properties 

and ameliorating oxaliplatin-induced astrocytes and microglial 

activation. VPA may offer a dual protective approach against etiological 

factors and resulting maladaptative plasticity. However, further study 

is needed to evaluate the effect of VPA on several symptoms of 

oxaliplatin-induced peripheral neuropathy and the mechanism of VPA 

on biomolecular changes of oxaliplatin-induced neuropathy. To get 

more conclusive results, a larger number of rats in each group and 
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more elaborate techniques are needed.  
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7. FIGURES AND LEGENDS 

 

 

 

 

 

Figure 1. Schedual of drug administration and behavioral test.  

A: Acetone test; V: von Frey test; vehicle: intraperitoneal injection 

(i.p.) with 5% glucose solution; oxaliplatin: oxaliplatin 4mg/kg i.p.; 

oxaliplatin + VPA group: oxaliplatin 4mg/kg and VPA 300mg/kg i.p., 

respectively. 
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Figure 2. Effects of repeated administration of VPA on 

oxaliplatin-induced mechanical allodynia in von Frey test in 

rats.  

Oxaliplatin (4 mg/kg) was administered i.p. twice a week for 4 weeks. 

VPA (300 mg/kg) was administered daily twice a day for 4 weeks. 

The von Frey test was performed before the first drug administration 

(on day 0) and on days 5, 15, 21 and 28. Values were expressed as 

the mean ± standard error mean of 6 animals. ∗∗P < 0.01 compared 

with vehicle. ∗P < 0.05 compared with oxaliplatin alone. 



 

 

44 

 

 

 

Figure 3. Effects of repeated administration of VPA on 

oxaliplatin-induced cold hyperalgesia in acetone test in rats.  

Oxaliplatin (4 mg/kg) was administered i.p. twice a week for 4 weeks. 

VPA (300 mg/kg) was administered daily twice a day for 4 weeks. 

The acetone test was performed before the first drug administration 

(on day 0) and on days 1, 3, 5, 7, 14, 21 and 28. Values are 

expressed as the mean ± standard error mean of 6 animals. ∗P < 

0.05, ∗∗P < 0.01 compared with vehicle.  
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Figure 4. Effect of repeated administration of VPA on 

histological change induced by oxaliplatin (B) in rat sciatic 

nerve.  

On day 28, The sciatic nerve was harvested, and samples were 

stained with toluidine blue. Images were captured at 800× 

magnification. The area of axon was calculated by image analysis 

software (ImageJ 1.50a). Values were expressed as the mean ± 

standard error mean of six animals. *P < 0.05 compared with vehicle 

(A). (C), oxiliplatin + VPA. 
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Figure 5. Morphological aspects of the peripheral nervous 

system. The protective effect of repeated administrations of VPA was 

evaluated on oxaliplatin-damaged DRGs on day 28. DRG sections 

were stained by the Azan-Mallory method. Light micrographs (original 

magnification 200 x) were analyzed by counting the incidence of 

eccentric nucleoli (#) and multinucleolated neurons (*).  
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Figure 6. Astrocytes activation profile in the lumbar 4-5 spinal 

cord.  

The effect of repeated treatment with VPA was evaluated in 

oxaliplatin-treated rats on day 28. The density of GFAP-positive cells 

was calculated by means of the automatic thresholding and 

segmentation features of ImageJ (ImageJ 1.50a; Wayne Rasband, 

National Institutes of Health, MD, USA) in (D). Images (original 

magnification 200 x) of sections showed vehicle in (A), oxaliplatin in 

(B) and oxaliplatin + VPA in (C). Each value represents the mean of 6 
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rats per group, performed in two different experimental sets. 

*P<0.05 versus vehicle; #P<0.05 versus oxaliplatin. 
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Figure 7. Microglia activation profile in the lumbar 4-5 spinal 

cord.  

The effect of repeated treatment with VPA was evaluated in 

oxaliplatin-treated rats on day 28. The density of Iba1-positive cells 

was calculated by means of the automatic thresholding and 

segmentation features of ImageJ (ImageJ 1.50a; Wayne Rasband, 

National Institutes of Health, MD, USA) in (D). Images (original 

magnification 200 x) of sections showed vehicle in (A), oxaliplatin in 
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(B) and oxaliplatin + VPA in (C). Each value represents the mean of 6 

rats per group, performed in two different experimental sets. 

*P<0.05 versus vehicle; #P<0.05 versus oxaliplatin. 
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