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Most robots involved in vertical movement against gravitation require actuators large enough to
support their own weight. To improve the inherent safety of such robots against the large actuators
and reduce their energy consumption, numerous gravity compensation mechanisms (GCMs) have been
proposed. Our previous study proposed a variable GCM (VGCM) that uses two types of springs and
can adjust the compensation force. In this paper, a VGCM-based scissor lift (pantograph lift) that
uses three springs and a smaller actuator is proposed. A prototype is designed and fabricated, and the
performance of the prototype is evaluated experimentally. The results demonstrate that the developed
scissor lift meets the design specifications. In addition, a load estimator is established based on the
dynamic model of the scissor lift. A real-time self-adjustment method that automatically changes the
compensation force is proposed, and its effectiveness is verified.
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1. Introduction

Robots involved in vertical movement against gravitation require actuators large enough to
support their own weight, although selective compliance assembly robot arm (SCARA) robots
can support themselves structurally. When humans work with these robots, there is a risk that
the large actuators may injure them. Therefore, to improve the inherent safety of these robots
and minimize their energy consumption, mechanisms capable of compensating for gravity have
been devised [1].
It is well known that there are two types of mechanical compensation methods [2]: mass

balancing [3, 4] and spring balancing [5–22]. The spring balance has the advantage that the total
weight of the system is not significantly increased.
Various approaches can be used for the spring balance, such as zero-free-length springs with

links [5–9], springs with 1:2-ratio gears [10, 11], springs with noncircular pulleys [12, 13], and
springs with cams [14]. A pantograph mechanism using a spring [15–17] is another such approach.
Pantograph lifts, which are also called scissor lifts, are widely used for the vertical transporta-

tion of load and assembly works in automotive factories [24–26]. Scissor lifts consume energy
to maintain the table position. Therefore, a pantograph mechanism that generates a constant
repulsive force has been proposed [15, 16]. This mechanism uses two types of springs that have
positive and negative spring constants. The concept of springs with negative constant is often
used in research on vibration isolation [27, 28]. Another type of gravity compensation mechanism
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(GCM) that uses springs and 1:2-ratio gears has been applied to a scissor lift for heavy works
over 100 kg in [17].
Most GCMs can compensate a predetermined constant weight. Such GCMs fail to maintain

balance with the gravitational force if the weight changes from the predetermined value in
the design specifications or if the work mass varies widely. Therefore, some studies propose
adjustable mechanisms [5, 18–23]. Although self-adjusting mechanisms were presented in [5], the
adjustment mode is limited to only the preselected position. In [18], four concepts of energy-free
adjustable mechanisms are described: simultaneous displacement [19], virtual springs [20], spring
constant [21], and storage springs [22]. In [23], counterbalance systems including energy-free
adjustment are classified into seven categories. Energy-free adjustment is useful for therapeutic
and assistive applications. In many cases, however, during the adjustment, the weight arm and/or
the compensation adjuster must be locked in a certain position. Therefore, the adjustment needs
a sequential operation and it cannot be achieved immediately. For industrial applications, the
adjustment should be done at an arbitrary position in a short time, although some energy may
be allowed to compensate for a new payload.
Our previous study proposed a variable GCM (VGCM) that can adjust the compensation ratio

of the load by varying the displacement (equilibrium) of the spring [29]. Our proposed VGCM
uses two types of springs with a 90◦ phase difference in the same manner as in [16], but it is
adaptable to variable gravity by deriving perfect balancing conditions. Once the compensation
force is adjusted to balance the payload, the force required to move it up and down is very
small. However, the force required to vary the compensation may not be small, especially if the
displacement of the spring is large. Therefore, in this paper, a VGCM-based scissor lift that uses
a third spring and a smaller actuator is proposed. It is considered to be a practical configuration
because all of the springs are arranged in parallel at the bottom of the lift. Moreover, a real-time
self-adjustment method for an arbitrary payload is presented. Since counterbalance systems with
energy-free adjustment[18, 23] have to lock the weight arm and/or the compensation adjuster in
a certain position during the adjustment, the real-time adjustment has not been shown.
The remainder of this paper is organized as follows. Section II briefly describes the principles

of the VGCM using two springs A and B, and the VGCM-based scissor lift is proposed. In
addition, to reduce the adjustment motor size, a third spring C is introduced. In Section III, the
parameters for the scissor lift are designed and a prototype VGCM-based scissor lift is presented.
Section IV describes various verification experiments. In Section V, load estimation performance
and self-adjustment experiments are conducted based on the load estimation. Finally, in Section
VI, we summarize this paper and propose future work.

2. VGCM-Based Scissor Lift

2.1 Principles of VGCM

In this section, the principles of VGCM [29] are briefly described with reference to Fig. 1. It
is assumed that a link pivots on point O. When the link is in the original position along the
vertical line, as shown in Fig. 1 (a), the angle θ is zero. When the link rotates in the clockwise
direction around point O, θ is defined as a positive angle. The gravitational force mg of the load
is applied to the point G of the link, as shown in Fig. 1 (b). The torque τg generated by the
gravitational force is written as

τg = mglG sin θ. (1)

Regular (non-zero-free-length) springs A and B, which are oriented horizontally and vertically,
respectively, are connected to the points A and B of the link, respectively, so that the spring
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Figure 1. Schematic of variable gravity compensation mechanism (VGCM)

forces compensate the gravitational force. The spring forces are written as

fA = −kAsA = −kAlA sin θ, (2)

fB = −kBsB = −kBlB(1− cos θ), (3)

where sA and sB are the horizontal and vertical displacements of springs A and B, respectively,
from their original positions. Therefore, when the link is in the original position, the displace-
ments sA and sB are both zero.
The torque produced by the springs is obtained as

τk = τkA + τkB

= fAlA cos θ + fBlB sin θ

= −kAl
2
A sin θ cos θ − kBl

2
B(1− cos θ) sin θ. (4)

Assuming kAl
2
A = kBl

2
B = W , the spring torque τk can be rewritten as

τk = −W sin θ. (5)

If W = mglG, the total torque τlink applied to the link is

τlink = τg + τk = mglG sin θ −W sin θ = 0. (6)

This means that the spring torque is statically balanced with the gravitational torque.
Moreover, adding an initial displacement sBe = lB(β − 1) to the other end of spring B, the

spring torque is changed to

τk(β) = −kAsAlA cos θ − kB(sB + sBe)lB sin θ

= −kAl
2
A sin θ cos θ − kBl

2
B(β − cos θ) sin θ

= −βW sin θ. (7)
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This means that the spring torque balances with the load weight multiplied by β. Therefore,
adding an appropriate initial displacement to spring B can adjust the compensation force ac-
cording to the change in the load.

2.2 VGCM-Based Scissor Lift

The explanation given in the previous section is based on the use of a straight link and two
springs aligned perpendicular to each other (horizontally and vertically, respectively). Other
configurations can be considered based on the same principle, as shown in Fig. 2. When the link
is L-shaped as shown in Fig. 2 (b)–(f), it allows two springs to align in parallel direction. An
additional link allows removing a slider, as shown in Fig. 2 (g) and (h).
To use the VGCM principle for a practical lift, we propose the scissor (pantograph) lift shown

in Fig. 3, which is the similar configuration to Fig. 2 (h). The symbols in the figure represent
the same quantities as in Fig. 1. In the scissor lift, the springs are aligned at the base of the lift.
In addition, motors for the lift and adjustment located at points O and Be(the other end of

spring B), respectively, are shown in Fig. 4. The motor for the lift should include appropriate
gears. The motor for adjusting the compensation should be a linear drive, such as a screw. To
hold the position, it may be preferable to be non-backdrivable.
By controlling the position of the adjustment motor, the compensation force from springs A

and B can be changed, and the load of the lift motor can be reduced.

2.3 Addition of Spring C

Although increasing the displacement sB+ sBe of spring B increases the compensation force and
reduces the load of the lift motor, this increase in the displacement simultaneously enlarges the
drive force of the adjustment motor. In spite of the introduction of springs to reduce the required
torque of the lift motor, a larger motor for adjustment is required, which is undesirable.
Therefore, we add spring C via a link mechanism, as shown in Fig. 5, assuming that the link

length is lC/2 and the angle of the link is 0 < ϕ < π/2. Spring C is fixed so that its displacement
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is zero when ϕ = π/2. Then, the displacement can be written as

sC = −lC cosϕ. (8)

The displacement sC′ of point C′ can be written as

sC′ = lC sinϕ. (9)
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The relationship between the two displacements in (8) and (9) can be derived as

ṡC′ = JṡC (10)

where J = tan−1 ϕ corresponds to the Jacobian.
The spring force fC is applied at point C:

fC = −kCsC = kClC cosϕ. (11)

The spring force fC′ at point C′ is obtained as

fC′ = J−1fC = kClC sinϕ = kCsC′ . (12)

The forces fBe and fC′ are applied to the slider driven by the adjustment motor. The total
force is expressed as

fBC = fBe + fC′ = −kB(sB + sBe) + kCsC′ . (13)

Here, assuming that kB = kC and sBe = sC′ , the total force fBC becomes −kBsB. Therefore,
the total force does not depend on the position sBe of the slider, whereas it does depend on the
position θ of the lift table because sB is a function of θ.
In other words, the potential energy stored by spring C is utilized to pull spring B. As a result,

the force of the adjustment motor that is required to move the equilibrium position of spring B
is reduced.

3. Prototype VGCM-based Scissor Lift

Based on the principle described in the previous section, a prototype scissor lift is developed.
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3.1 Parameter Design

Assuming a lift table mass of m̄ = 2 kg and a link length of lG = lA = 0.25 m, the theoretical
spring constant k̃A of spring A can be obtained as

k̃A =
m̄glG
l2A

=
2× 9.8× 0.25

0.252
= 78.4 N/m. (14)

This spring constant is described as ‘theoretical’ because in practical situations, a physical
spring with the calculated spring constant is not available in all cases. For the prototype, a
spring whose constant is 40.6 N/m is chosen, and two substitute springs are utilized such that
the total spring constant is kA = 81.3 N/m. As a result, when the displacement sBe is zero,
the spring force balances with the table mass, as m = kAl

2
A/(glG) = 2.1 kg, which is called the

nominal mass in this paper.
Next, assuming a link length of lB = 0.09 m, the theoretical spring constant k̃B of spring B is

determined as

k̃B =
kAl

2
A

l2B

=
81.3× 0.252

0.092
= 6.27× 102 N/m. (15)

Four substitute springs are used for spring B such that the spring constant is approximately
kB = 6.23× 102 N/m. The springs that are utilized are the same as spring C.
It can be considered that the error between k̃B and kB may affect the balancing error. In this

case, however, since the error ratio is ε = (k̃B − kB)/k̃B = 6.4× 10−3, the balancing error which
will be compensated by the lift motor is less than 1 percent. The spring torque is

τk(β) = −kAl
2
A sin θ cos θ − kBl

2
B(β − cos θ) sin θ

= −(k̃B − kB)lB
2 sin θ cos θ − βkBlB

2 sin θ

= −ε(cos θ − β)W sin θ − βW sin θ (16)

where the first term is the balancing error torque and the second term is the adjustable spring
compensation torque.

3.2 Prototype

Fig. 6 shows an overview of the developed VGCM-based scissor lift. Fig. 7(a)–(d) illustrates
the details. Fig. 7(a) shows the front view of the scissor lift. Fig. 7(b) depicts the top view
of the adjustment drive. Figs. 7(c) and 7(d) demonstrate the change in springs B and C for
small and large sBe , respectively. The lift table is backdrivable while the adjustment slider is
non-backdrivable.
The specifications are listed in Table 1. Although the nominal mass was m = 2.1 kg in the

design phase, the actual mass of the lift table was approximately 3 kg. Because the maximum
displacement of spring B used in the prototype is sBmax = 0.27 m, the range of the compensation
mass is βm = 2.1 – 6.3 kg based on max(β) = sBmax/lB = 0.27/0.09 = 3. To balance the
compensation force with the weight of the lift table, the displacement of spring B is adjusted to
sBe = 0.045 m, which corresponds to β = 1.5, as the initial setting β0. Therefore, the lift can
balance additional weight of up to approximately 3.3 kg.
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Figure 6. Overview of prototype VGCM-based scissor lift

Table 1. Specifications of VGCM-based scissor lift

Nominal mass m 2.1 kg
Adjustable compensation ratio β 1 – 3
Compensatable mass 2.1 – 6.3 kg
Actual table mass mT 3 kg
Link length lA, lG 0.250 m
Link length lB, lC 0.090 m
Spring constant kA 81.3 N/m

(total of 2 springs)
Spring constant kB, kC 6.23× 102 N/m

(total of 4 springs)

Table 2. Specifications of motors

Motor Lift motor Adjustment motor

Product maxon A-max32
Power 20 W
Nominal voltage 12 V
Nominal speed 3170 rpm
Nominal torque 0.044 N·m
Stall torque 0.140 N·m
Encoder resolution 1024 ppr

1:4.8 &
Gear ratio 1:198

2 mm lead screw

Two maxon motors A-max32 (20 W) are used as the lift and adjustment motors. The gear
ratios for the lift and adjustment are 1:198 and 1:4.8, respectively. In addition, the adjustment
drive is a trapezoidal screw with a 2 mm lead. Each motor has a rotary encoder whose resolution
is 1024 ppr. The angle of lift motor is initialized by a potentiometer fixed on the axis of the
scissor lift. The specifications of motors are listed in Table 2.
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(a) Front view of scissor lift

(b) Top view of adjustment motor

(c) Springs B and C in case of small sBe

(d) Springs B and C in case of large sBe

Figure 7. Details of VGCM-based scissor lift
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4. Verification Experiments

To verify the performance of the VGCM-based scissor lift, various experiments are conducted.

4.1 Compensation Force by Springs

In the first experiment, the compensation force of springs A and B is verified. A load cell is
attached to the top of the lift. The lift motor is turned off, and the top of load cell is pulled up
and down. The table height and the load cell force are measured.
The spring conditions are as follows:

(1) without springs,
(2) with only spring A,
(3) with only spring B,
(4) with both springs A and B.

In the case of no spring, the force of the load cell corresponds to the weight mTg of the table.
With any springs, the force of the load cell must be reduced by the compensation force of the
springs.
The experimental results are shown in Fig. 8. The vertical axis indicates the pulling force

measured by the load cell. The horizontal axis represents the normalized height cos θ of the table.
The green, red, blue, and black lines depict the results under conditions (1)–(4), respectively.
The gray dashed lines denote the theoretical characteristics.
As shown in the figure, the gravitational force of the lift table including links was approximately

30 N (approximately 3 kgf). In the case of no spring (without compensation), the lift motor must
support the entirety of the load. Conversely, it can be confirmed that the addition of spring A
or B reduces the pulling force of the table.
With both springs A and B, the load is almost completely compensated. The absolute force

is less than 2 N when the lift table is pulled up and down at any height. In this case, the energy
of the lift motor will be reduced drastically, and the motor can be miniaturized.

4.2 Motor Torque

4.2.1 Lift motor with/without compensation

In the next experiment, the lift motor is turned on, and the position of the lift table is controlled
under two conditions: without springs (no compensation) and with springs (compensation). A
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proportional-derivative (PD) controller is employed using the following equation:

τ1 = KP (θd − θ) +KD(θ̇d − θ̇) (17)

where θd is the desired angle and KP and KD are the proportional and derivative gains, respec-
tively. The motor torque is obtained from this command.
The motor torque is shown in Fig. 9. The vertical and horizontal axes represent the torque τ1

of the lift motor and the normalized height cos θ of the table, respectively.
When there is no compensation from the spring, when the height is close to zero, a motor

torque of mTg lG = 3× 9.8× 0.25 ≃ 7.4 N·m is theoretically required. In the experiment, a large
hysteresis was observed as a result of the friction of the drive system. A maximum torque of
approximately 12 N·m was output when the table was lifted up. Conversely, the motor torque
was within 1 N·m under spring compensation. In that case, the hysteresis was relatively small.

4.2.2 Adjustability of compensation

To evaluate the variability of the compensation, the displacement sBe of the slider is changed,
and the torque of the lift motor is measured.
The conditions are sBe = 45, 90, 135 or 180 mm, which correspond to β = 1.5, 2.0, 2.5 or 3.0,

respectively, and additional weights of 0, 1, 2 or 3 kg, respectively.
The experimental results are shown in Fig. 10. The gray solid lines indicate the motor torques

under no additional weight (mW = 0 kg) when β is set to 2.0, 2.5 or 3.0. The gray dashed lines
show the theoretical values.
The black solid lines represent the case with an additional weight corresponding to β. In all

cases, the motor torque is within 1 N·m even though a weight of 0, 1, 2 or 3 kg is added.
As shown in the results, the adjustability of the compensation resulting from changing the

displacement sBe or β was verified.

4.2.3 Adjustment motor

It is confirmed that the introduction of spring C reduces the adjustment motor torque.
The lift table is set to high (cos θ = 0.92), middle (cos θ = 0.72), and low (cos θ = 0.33)

positions. The torque of the adjustment motor is measured when the displacement changes from
β = 1.5 to β = 2.8 for 10 s.
Theoretical force to move the adjustment slider was expressed as (13). The theoretical forces

are shown in Fig. 11. The vertical and horizontal axes indicate the adjustment force and the
displacement β, respectively. The thin solid, thick broken, and thick solid lines depict the results
with the lift table set to the high, middle, and low positions. As seen from the figure, it is
expected that the required motor torque for the adjustment is effectively reduced.
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Since the prototype uses a trapezoidal screw, which is non-backdrivable, to drive the slider,
the direction of force and efficiency affect the motor torque. The experimental results are shown
in Figs. 12(a) and 12(b). The vertical and horizontal axes indicate the torque of the adjustment
motor and the displacement β, respectively.

13



2016 Advanced Robotics N. Takesue et al.

Before the introduction of spring C, the motor torque increases in proportion to the displace-
ment β (sBe = lB(β − 1)), as shown in Fig. 12(a). The motor torque also depends on the height
of the table. When the table was at the low position, the motor torque was saturated, and the
slider could not be pulled up to the predefined final displacement (β = 2.8).
Conversely, after the introduction of spring C, the motor torque is almost constant regardless

of the displacement β, although it depends on the height of the table, as illustrated in Fig. 12(b).
The adjustment motor torque was within 0.15 N·m even if the table position was low. Although
using a high gear ratio allows a smaller motor for the adjustment, it will make the adjustment
slower. The proposed method of this paper allows a smaller motor for the faster adjustment, as
shown in the later experiments.
In this section, it was verified that the proposed VGCM-based scissor lift is effective and has

the following characteristics.

(1) The introduction of springs A and B can reduce the required torque of the lift motor.
(2) Adjusting the displacement β of spring B can change the compensation force of the lift.
(3) The introduction of spring C can reduce the required torque of the adjustment motor.

5. Load Estimation and Self-Adjustment

5.1 Load Estimation

As shown in the previous section, if the work weight is known, the spring force assists the
lift motor by adjusting the displacement β (sBe). The work weight can be obtained from the
production information in factories. However, if an unknown work weight is loaded on the lift
table, the compensation force may not be balanced by the load. Therefore, to compensate for
the unknown weight, a method of detecting the work weight is necessary, as considered in this
section.
The easiest way to determine the work weight is to utilize a load cell on top of the table.

However, load cells are generally weak against shock and are relatively costly. The compensation
force does not have to perfectly correspond to the load if the torque of the lift motor is reduced.
In this study, the estimation of the work weight is adopted based on the dynamic model of the
lift.
The dynamics of the scissor lift are modeled as shown in Fig. 13. The equations of motion are

written as

H(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) + F sgn(θ̇) +Dθ̇ − τk(β0) = τm (18)

H(θ) = IA +mA

(
l2gA + (lA − 2lgA) lA cos2 θ

)
+ IB1 + IB2 + IB3 +mB1l

2
gB1 +mB2l

2
gB2

+mB3

(
(lgB3 + lB/2)

2 − 2lBlgB3 cos
2 θ

)
+mTl

2
A sin2 θ (19)

C(θ, θ̇) =
(
(mT −mA)l

2
A + 2(mAlAlgA +mB3lBlgB3)

)
θ̇ sin θ cos θ (20)

G(θ) = −g ((mAlgA +mB1lgB1 +mTlA) sin θ + (mB2lgB2 +mB3 (lB/2− lgB3)) cos θ) (21)

where, H(θ)θ̈ is the inertia term; C(θ, θ̇)θ̇ is the Coriolis and centrifugal term; G(θ) is the gravity
term; F sgn(θ̇) and Dθ̇ are the friction and viscosity terms of lift motor, respectively. τk(β) is
the compensation torque of springs (7); and τm is the torque τ1 of the lift motor.
The equation can be rewritten in the following form[30, 31]:

Y (θ, θ̇, θ̈)ρ0 = τm (22)
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Figure 13. Dynamic model of scissor lift

where,

Y (θ, θ̇, θ̈) =



θ̈

θ̈ sin2 θ + θ̇
2
sin θ cos θ

θ̈ cos2 θ − θ̇
2
sin θ cos θ

sin θ cos θ
sin θ
cos θ

sgn(θ̇)

θ̇



T

(23)

ρ =



IA + IB1 + IB2 + IB3 +mAl
2
gA +mB1l

2
gB1

+mB2l
2
gB2 +mB3 (lgB3 + lB/2)

2

mTl
2
A

mAl
2
A − 2mAlAlgA − 2mB3lBlgB3

kAl
2
A − kBl

2
B

−g(mAlgA +mB1lgB1 +mTlA) + β0kBl
2
B

−g (mB2lgB2 +mB3 (lB/2− lgB3))
F
D


. (24)

Y (θ, θ̇, θ̈) is generally called the regressor, and ρ0 is a vector of parameters[30].
The position of the lift motor is controlled at a certain desired angle, angular velocity, and

angular acceleration. The parameters ρ0, which are considered to take constant values when
the displacement is set to the constant as β0, are identified from the experimental data of
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Yi(θd, θ̇d, θ̈d) and τm i (i = 0, · · · , k) as

ρ̂0 =


Y0(θd, θ̇d, θ̈d)

Y1(θd, θ̇d, θ̈d)
...

Yk(θd, θ̇d, θ̈d)


+ 

τm 0

τm 1
...

τm k

 (25)

where ρ̂0 indicates the identified vector with the initial displacement β0 and [·]+ denotes the
pseudoinversion of a matrix.
As a result of the identification, the following values are obtained:

ρ̂0 = [0.10, 0.17, −0.07, −0.17, 0.46, −0.38, 0.24, 0.74]T . (26)

As an example, the desired height of the lift table was given as shown in Fig. 14. The actual mo-
tor torque (command) τm and the torque calculated by the identified parameters Y (θd, θ̇d, θ̈d)ρ̂0
are compared in Fig. 15. The gray and black lines express the actual and calculated motor
torques, respectively. The calculated torque shows good agreement with the actual motor torque
(the correlation coefficient is 0.96).
Next, the additional work weight must be estimated. It is assumed that the change in the

gravity term is large and the change in the rest is relatively small when the weight is added.
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The related variable in the gravity term is the mass mT of the table. The lifted mass becomes
mT +mW from mT, where mW is the added mass and generates the torque τw = mWglA sin θ.
When the additional weight and the adjusted spring force are considered, the dynamics can be
rewritten as the following equation:

Y (θ, θ̇, θ̈)ρ0 − τk(β − β0) = τm + τw. (27)

Since the calculated torque showed good agreement with the actual torque as shown in Fig. 15,
in the same manner as the disturbance observer, the additional work weight is estimated as

τ̂w = m̂WglA sin θ = Y (θd, θ̇d, θ̈d)ρ̂0 − τk(β − β0)− τm (28)

m̂Wg =
Y (θd, θ̇d, θ̈d)ρ̂0 + (β − β0)W sin θ − τm

lA sin θ
. (29)

During the motion shown in Fig. 14, a weight of 1 kg is loaded on the table at approximately
10 s. An additional weight of 1 kg (total weight of 2 kg) is loaded on the table at approximately
20 s. At approximately 30 and 40 s, the weights are unloaded one at a time. In this experiment,
the displacement of the slider has not yet changed.
The experimental results are shown in Fig. 16. The black line represents the measured force

due to the weight by the load cell. The gray line shows the estimated force based on (29).
In the estimated force, large errors are observed, which may be caused by the hysteresis shown

in Figs. 9 and 10. The light gray bands in Fig. 16 represent the range of the hysteresis. In other
words, the estimated force includes the influence of friction force depending on the load and the
velocity (the direction of motion). It is expected that the estimation error can be reduced if the
spring force is balanced by the weight.

5.2 Self-Adjustment

The displacement β of the slider is changed so that the compensation force is balanced with the
estimated force m̂Wg. The desired displacement βd of the slider is written as

βd = β0 +
m̂Wg

mg
. (30)

Since the estimated load m̂Wg may be noisy, a low-pass filter
1

Ts+ 1
, in which s is a Laplace

operator, with a time constant T = 0.5 s is employed in the following experiments.
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The motion of the table is the same as that shown in Fig. 14. During the motion, the additional
weights are loaded on the table as the same with the previous section. (a weight of 1 kg is loaded
on the table at approximately 10 s. An additional weight of 1 kg is loaded at approximately 20
s. At approximately 30 and 40 s, the weights are unloaded one at a time.) The experimental
results are shown in Fig. 17. The black line represents the measured force, and the gray line
illustrates the estimated force using (29). In this case, the estimation agrees very well with the
measurement. (the correlation coefficient is 0.99).
The torques of the lift motor with and without the adjustment of the compensation are shown

in Fig. 18. When the additional weights were applied and the compensation force was not
adjusted, the maximum torque of the lift motor was approximately 6 N·m for a weight of 2 kg.
Conversely, when the compensation force was adjusted, the torque of the lift motor was within
1 N·m.
The displacement β during the motion is shown in Fig. 19. It changed immediately according

to the estimated force shown in Fig. 17.
The torque of the adjustment motor is illustrated in Fig. 20. It was in almost the same range

as that shown in Fig. 12(b).

6. Conclusions

This paper proposed a scissor lift based on VGCM using three springs. A prototype was designed
and fabricated. To evaluate the performance of the prototype, experiments were carried out.
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The results demonstrated that the developed scissor lift was in good agreement with the design
specifications.
In addition, a load estimator was established based on the dynamic model of the scissor lift. A

real-time self-adjustment method was proposed, and its effectiveness was experimentally verified.
Future studies may address the multiplication of the proposed scissor lift for larger heights

and the magnification of the compensation force for industrial applications.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Naoyuki Takesue received BE and ME degrees from The University of Electro- Communications,
respectively, in 1995 and 1997. In 2000, he received his PhD in Engineering from Osaka Univer-
sity. He joined Osaka University in 2000 and then joined Nagoya Institute of Technology in 2003.
He joined Tokyo Metropolitan University in 2008 as an associate professor. His research inter-
ests include mechanism design, industrial applications, physically assistive robots, and aquatic
robots.

19



2016 Advanced Robotics N. Takesue et al.

Yosuke Komoda received his bachelor and master degrees in Engineering from Tokyo 5
Metropolitan University, respectively, in 2011 and 2013. He currently works at Isuzu Motors
Ltd.
Hideyuki Murayama received his bachelor and master degrees in Engineering from Tohoku

University, respectively, in 1995 and 1997. He joined Mitsubishi Electric Corporation in 1997
and joined Toyota Motor Corporation in 2003. He developed human cooperation robots for
assembly operation at Partner Robot Division. He currently works at Production Engineering
Development Division. He received the Technical Innovations Award from the Robotics Society
of Japan in 2011 and the JSME Medal for New Technology from the Japan Society of Mechanical
Engineers in 2012.
Kousyun Fujiwara joined Toyota Motor Corporation in 1973. He worked at General Assembly

Engineering Division and developed human cooperation robots for assembly operation. He retired
from Toyota Motor Corporation in 2015. He received the Technical Innovations Award from the
Robotics Society of Japan in 2011 and the JSME Medal for New Technology from the Japan
Society of Mechanical Engineers in 2012.
Hideo Fujimoto received the BE andDr Eng degrees from Nagoya University, Nagoya, Japan,

in 1970 and 1982, respectively, all in mechanical engineering. He joined Nagoya Institute of
Technology in 1972. He is currently a project professor and a Professor Emeritus at Nagoya In-
stitute of Technology. His research interests include medical engineering, haptic engineering, and
robotics. Fujimoto is a Fellow of the Japan Society of Mechanical Engineers. He was the recipient
of the Best Paper Award for a paper presented at the 2000 Japan-USA Flexible Automation
Symposium, the Best Paper Award at the Sixth Robotics Symposium, the Contribution Award
from the System Integration Section, Society of Instrument and Control Engineers, and the
Great Contribution Award from the Production System Section, the Japan Society of Mechan-
ical Engineers, in 2002.

References

[1] H. S. Kim and J. B. Song: Multi-DOF Counterbalance Mechanism for a Service Robot Arm,
IEEE/ASME Trans. Mechatronics, Vol.19, No.6, pp.1756–1763, 2014.

[2] S. Mahalingam and A. M. Sharan: The Optimal Balancing of the Robotic Manipulators, Proc. 1986
IEEE Int. Conf. Robot. Autom., pp.828–835, 1986, San Francisco, USA.

[3] J. P. Whitney and J. K. Hodgins: A Passively Safe and Gravity-counterbalanced Anthropomorphic
Robot Arm, Proc. 2014 IEEE Int. Conf. Robot. Autom., pp.6168–6173, 2014, Hong Kong, China.

[4] A. Kawamura, T. Hisatsune, K. Matsusaka, M. Uemura and S. Kawamura: Adaptive Motion Control
of a Robotic Arm with Movable Counterweights, Proc. 2014 IEEE/ASME Int. Conf. on Advanced
Intelligent Mechatronics, pp.882–887, 2014, Besançon, France.
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