氏 友	
いして、 「 所 属	山山 峡 理丁学研究科 物理学専攻
学位の種類	博士 (理学)
学位記番号	理工博 第 257 号
学位授与の日付	平 30 年 3 月 25 日
課程・論文の別	学位規則第4条第1項該当
学位論文題名	Unusual Magnetic-Field-Insensitive Heavy Fermion States in
	$\operatorname{Sm} T_2\operatorname{Al}_{20}$ (<i>T</i> : Transition Metals)
	Sm T ₂ Al ₂₀ (T:遷移金属)における異常に磁場鈍感な重い電子状態
	(英文)
論文審査委員	主查教授青木勇二
論文審査委員	主査 教 授 青木 勇二 委員 准教授 松田 達磨
論文審査委員	主查 教 授 青木 勇二 委員 准教授 松田 達磨 委員 准教授 服部 一匡

【論文の内容の要旨】

Strongly correlated f electron systems have attracted much attention due to a variety of physical phenomena, such as heavy fermion (HF), non-Fermi liquid (NFL) and unconventional superconductivity. These behaviors originate from the degrees of freedom possessed by f electrons, such as magnetic dipole and higher multipole moments associated with crystalline electric field (CEF) states, and possible multiple valence states. So far, studies have been made intensively in Ce-based compounds and, for the other rare-earth elements, they remains to be elucidated. Unique behaviors that have been found recent years are unconventional quantum critical behaviors probably driven by valence instabilities in YbRh₂Si₂ and 6-YbAlB₄, quadrupolar Kondo effect and associated NFL behaviors in Pr Tr₂X₂₀ (Tr: transition metals, X: Al, Zn, and Cd). For Sm, only a limited number of strongly correlated behaviors have been reported. Among them, "unusually magnetic-field-insensitive HF states" observed in $SmOs_4Sb_{12}$ and Sm *Tr*₂Al₂₀ (*Tr*: Ti, V, and Cr) are one of the important topics remaining to be elucidated. Unconventional non-magnetic mechanisms are expected to be involved in these phenomena. In order to resolve this issue, we focus on the Sm Tr₂Al₂₀ systems. We have grown single crystals of Sm Tr₂Al₂₀ and other relevant materials, and have performed

single-crystal X-ray analysis and electrical transport, magnetization, specific heat, and X-ray absorption spectroscopic (XAS) measurements. Main findings are summarized below.

1. Heavy fermion states unusually insensitive to magnetic field in SmTa₂Al₂₀

We have succeeded in growing single crystals of SmTa₂Al₂₀ and have measured the physical properties. It has been found that а magnetic-field-insensitive phase transition appears at 2.0 K and the electronic specific heat coefficient is $\gamma \cong 3$ J/mol K², largest among Sm-based intermetallic compounds. Specific heat data suggest that the CEF ground state of the $Sm^{3+} J =$ 5/2 multiplet is a Γ_8 quartet. The size of the ordered Sm dipole moment is estimated to be 0.22 µB/Sm from nuclear specific heat in zero magnetic field, which is suppressed compared with those expected for a Γ_8 ground state. The Sm L_3 -edge XAS measurements have clarified that Sm ions are in an intermediate valence state with the average valence of about +2.85 with no significant temperature dependence. This is in line with the observed temperature dependence of magnetic susceptibility, which is evidently different from those of both free Sm^{2+} and Sm^{3+} ions.

The resistivity shows a clear $-\log T$ dependence, suggesting the occurrence of Kondo effect. The transverse magnetoresistance (MR) data show a strong deviation from the Kohler's rule in the low-field condition, indicating that the conduction electron scattering by 4f electrons has a strong wave-vector dependence. Analyses clarified that the MR data obey "the modified Kohler's rule" that has been confirmed to be satisfied in some of the quasi-two-dimensional strongly-correlated electron systems. This finding, providing the first example in cubic systems, reveals that the modified Kohler's rule can be applied to three-dimensional systems.

2. Single-site Kondo effect in Sm_xLa_{1-x}Ta₂Al₂₀

The La-substitution effect on the transport properties has been examined using single crystals of $\text{Sm}_x \text{La}_{1-x} \text{Ta}_2 \text{Al}_{20}$ (x = 0.01, 0.05, 0.25, and 1). The magnetic-field-insensitive $-\log T$ dependence of resistivity has been observed even in the most dilute sample with x = 0.01, clearly evidencing that the unconventional $-\log T$ dependence is caused by a local single-ion Kondo effect. The transverse MR of $\text{Sm}_x \text{La}_{1-x} \text{Ta}_2 \text{Al}_{20}$ is always positive with H^2 dependence. The deviation from the Kohler's rule gradually becomes large as the Sm concentration x increases, indicating that the strong wave-vector dependent conduction electron scattering is caused by Sm ions. The XAS measurements down to x = 0.01 clarify that the average Sm-ion valence is always +2.85 and independent on temperature and x, suggesting that this is a Sm single-ion character.

3. Superconducting properties in La Tr₂Al₂₀ (Tr: Ti, V, Nb, and Ta)

To investigate the characteristics of conduction electrons that host the above-mentioned strongly correlated electron states, the physical properties of reference materials La Tr_2Al_{20} (Tr: Ti, V, Nb, and Ta) have been measured. It has been found that all these are superconductors with the transition temperature $T_c = 0.46$, 0.18, 1.05, and 1.02 K, respectively. Analyses using the modified McMillan formula suggest that these are weak-coupling type-II superconductors. Single crystal X-ray diffraction analysis indicates a large atomic displacement parameter at Al (16*c*) site, suggesting "rattling" anharmonic large-amplitude oscillations of the Al ions. No such feature is found for the atomic displacement parameter at La site on the cage center, in contrast to the rattling cage-center ions in Ga0.2V₂Al₂₀, Al_{0.3}V₂Al₂₀, ScV₂Al₂₀, and LuV₂Al₂₀. The large T_c distribution in the four La Tr_2 Al₂₀ compounds indicates that anharmonic large-amplitude vibration modes of Al ions at 16*c* site and/or *d* electrons of transition metals may play an essential role for the Cooper pairing.

4. Low-Curie temperature ferromagnetic phase in SmPt₂Cd₂₀

In $\operatorname{Sm} Tr_2 X_{20}$ compounds (*Tr*: transition metals, *X*: Zn and Cd), the 4*f* electronic states are relatively localized. This feature can be seen in the clear Curie-Weiss behavior in temperature dependence of magnetic susceptibility and the absence of the Kondo scattering ($-\log T$ dependence) in resistivity. We have succeeded in growing single crystals of $\operatorname{SmPt_2Cd_{20}}$, a new member of $\operatorname{Sm} Tr_2 X_{20}$ family. It has been found that $\operatorname{SmPt_2Cd_{20}}$ exhibits a ferromagnetic (FM) transition at $T_{\rm FM} = 0.64$ K, which is the lowest among the cubic 1-2-20 compounds. The increase of specific heat divided by temperature with decreasing temperature even below $T_{\rm FM}$ and a power-law behavior with $T^{0.74}$ dependence in resistivity below 2 K

imply substantial magnetic quantum fluctuations. An analysis of the magnetic entropy suggests the CEF splitting of the J=5/2 multiplet of Sm³⁺ state with a Γ_7 doublet ground state and a Γ_8 excited state with the excitation energy of ~30 K. The bulk properties at low temperatures suggest that SmPt₂Cd₂₀ is regarded as a rare cubic system that is located in the vicinity of a FM quantum critical point.

5. Fermi surface investigation on SmIr₂Si₂

For comparison, we have extended our study into non-cubic systems, focusing on tetragonal 1-2-2 system, where anomalous HF behaviors have been observed. We have succeeded in growing high quality single crystals of SmIr₂Si₂ and observing de Haas-van Alphen signals (dHvA). The observed Fermi surfaces (FS) are different from those of LaRh₂Si₂, suggesting a folding of the Brillouin zone caused by antiferromagnetic (AFM) ordering at 37 K. The cyclotron effective mass has been found to be ranging from 0.53 to 2.1 m_0 depending on branches. This first observation of FS properties may give a clue to understand the possible formation of HF states in AFM phases in Sm*Tr*₂Si₂ compounds (*Tr*: transition metals).

The abovementioned findings have clarified that Kondo behaviors observed in Sm-based intermetallic compounds are quite different from those in Ce-based HF compounds; for instance, Sm ions are in intermediate valence states despite the low Kondo temperature. These findings are expected to be keys to reveal the origin of the magnetic-field-insensitive Kondo effect in these Sm-based HF compounds.