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Abstract

Quantum chromodynamics (QCD) describes the physics of the strong inter-

action between quarks and gluons. QCD has a characteristic feature called

“asymptotic freedom”, and this feature leads to non-perturbative phenom-

ena. How the non-perturbative effects in QCD are evaluated is one of the

important issue in the elementary particle physics.

It is blindly believed that a non-trivial vacuum structure in QCD is the

quantum mechanical superposition of an infinite number of vacua. The QCD

instanton solution is a classical solution to Yang-Mills theory in Euclidean

space-time, and is believed to describe the transition between the vacua.

Although this object is very interesting and contributes to developments of

mathematical and theoretical physics, its signature has not been discovered

in any experiment yet. The verification of the non-trivial vacuum structure

or the QCD instanton effects is important to comprehend the phenomena in

the non-perturbative region in QCD.

We discuss the constraint on the size of the QCD instanton effects in a

low-energy effective theory. Among various instanton effects in meson mass

spectrum and dynamics, we concentrate on the instanton-induced masses of

light quarks, namely up, down and strange quark. The famous instanton-

induced six-quark interaction, the so-called ’t Hooft vertex, could give non-

perturbative quantum corrections to light quark masses. Many works have

already been done to constrain the mass corrections in the light meson sys-

tem, namely in the system of π, K, η and η′, and we know the fact that the

instanton-induced mass of up-quark is too small to realize the solution of the

strong CP problem because of vanishing current mass of up-quark.

In this thesis we give a constraint on the instanton-induced mass correc-

tion to light quarks from the mass spectrum of heavy mesons, B+, B0, Bs

and their anti-particles. To accomplish this, the complete second order chiral

symmetry breaking terms are identified in the heavy meson effective theory.

We find that the strength of the constraint from heavy meson masses is at



the same level as that from light mesons, and it would be made even stronger

by more precise data from future B factories and lattice calculations.
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Chapter 1

Introduction

The aim of elementary particle physics is to find a fundamental principle

which governs all the phenomena in the real world. The principle is believed

to be simple and the fundamental theory is expected to be universal. It is im-

portant that experiments and theories should be complementarily developed

in physics. To discover how the real world is, a lot of collider experiments

and observations as well as theoretical investigations have been done in the

past. For now, the standard model of elementary particles is the most reliable

theory.

The standard model of elementary particles is composed by SU(3)C gauge

symmetry of the strong interaction and SU(2)L×U(1)Y gauge symmetry of

the electroweak interaction [1, 2, 3]. The standard model provides the most

successful description of the physics in the energy scale which we can cur-

rently reach with particle accelerators. Especially, the discovery of Higgs

particle [4, 5], which is associated with the spontaneously electroweak sym-

metry breaking, is one of the glorious achievements in the Large Hadron

Collider [6].

Despite its successes, many open questions remain in the standard model.

One of the theoretical problems is that the gravitational interaction is not

contained in the standard model. There are a lot of unpredicted parameters

associated with the flavor sector of the standard model. This mystery, which

would be related with the origin of electroweak symmetry breaking, implies

an existence of fundamental physics behind the standard model. Further-
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more, in view of cosmological observations, dark matter and dark energy are

also left unexplained.

There are a great deal of challenges to explain above issues with many

different types of the new physics beyond the standard model (for exam-

ple, supersymmetric models, models with extra dimensions, composite Higgs

models and so on). It is highly important to investigate which new physics is

the most suitable scenario to describe nature. However, no signature of the

new physics has been discovered in the experiments and observations in the

past yet.

On the basis of these circumstances, deep understanding of the standard

model is more important than verifying the physics beyond the standard

model. Quantum chromodynamics (QCD) is known as the system with the

asymptotic freedom which the coupling constant of QCD, namely the strong

coupling constant, becomes small in process with large momentum transfer

[7, 8]. On the other hand, the coupling constant becomes large in process with

small momentum transfer, corresponding to interactions at large distance

scales. This characteristic feature leads to non-perturbative phenomena such

as the confinement of quarks and gluons. How the non-perturbative effects

are evaluated is one of the most challenging subject in understanding the

standard model deeper than now.

The non-trivial vacuum structure in QCD, which is the quantum mechan-

ical superposition of an infinite number of vacua, has not been discovered.

The transition from one vacuum to another vacuum in the vacuum structure

would be described by an instanton solution (or an instanton configuration)

which are classical solutions to the non-Abelian gauge field equation defined

in Euclidean space-time [9]. This tunneling effect is referred to as an “instan-

ton effect”. The verification of existences of the non-trivial vacuum structure

and the QCD instanton effect is an important topic which is related to un-

derstanding of non-perturbative effects in the QCD sector. In this thesis,

we give a possibility to verify the instanton effect in the non-trivial QCD

vacuum in the low energy effective theory.

In the limit in which up, down and strange quark masses vanish, the QCD

Lagrangian has a chiral symmetry which is an invariance under the indepen-

dent phase transformation of the left-handed and right-handed fermions. The
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chiral symmetry is spontaneously broken due to the quark condensate and

the Nambu-Goldstone bosons are expected. The light mesons, π, K and η

are identified as the Nambu-Goldstone bosons. However, it is known that

the physical η′ mass is much larger than the theoretical prediction [10]. A

possibility to solve this problem, so-called U(1)A problem, by using the in-

stanton effect has been pointed out in [11]. The statement is that as a result

of the axial anomaly [12, 13] and the non-trivial vacuum structure, there is no

Nambu-Goldstone boson coupled to the physical U(1)A current. Therefore,

η′ would be heavy.

On the other hand, there are some indications which suggest that the

instanton effect may not necessarily give a solution of this problem. The

problem could be understood within the 1/Nc expansion [14, 15, 16]. There

is also an indication of inconsistency between the Ward-Takahashi identity for

the U(1)A current and the quark condensate in the instanton configuration

[17]. In addition, the instanton effect has not been directly confirmed by

experiments yet.

If we believe the existence of the non-trivial vacuum structure, the instan-

ton effect provides the so-called Θ-term which gives CP violation in QCD.

Then the Θ-term should be strongly suppressed by some reasons because

such a CP violating process is not observed in QCD. In fact, from the CPT

theorem, CP violation leads T violation and the observed scale of T violation

in physics demands Θ < 10−5 [18]. This is called strong CP problem. The

Peccei-Quinn mechanism [19] is a possibility to solve this problem. The pre-

dicted new particle, called “axion”, which is a Nambu-Goldstone boson with

the spontaneous breaking of the Peccei-Quinn symmetry, has not been dis-

covered yet. The verification of the instanton effect in the real world remains

to be achieved.

It is highly important to directly observe instanton-induced effects in ex-

periments. The instanton effect gives a six-quark interaction, which violates

the U(1)A symmetry in QCD, known as ’t Hooft vertex [20]. The contribution

of instanton-induced effects in deep inelastic scattering is investigated with

instanton perturbation theory [21] and the direct searches have been made

at the electron-proton collider HERA [22, 23, 24]. No signal is observed, and

it gives a constraint on the cross section by the instanton-induced processes.
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This is one of the quantitative result of the direct search for instanton effects.

The six-quark interaction also induces a quantum correction to light quark

masses. This quantum correction is proportional to the product of different

quark flavor masses. An “effective up-quark mass” of the form has been

first considered in connection with the instanton effect in [25, 26]. Since

the instanton effect could generate a non-zero effective up-quark mass even

when mu = 0, the strong CP phase could be unphysical, and there could

be no strong CP problem. Here, mu is a bare or current quark mass, and

mu = 0 means the existence of chiral symmetry for up quark. A hidden sym-

metry under the so-called instanton transformation, which is related to the

instanton-induced quark mass correction, is discovered in the low-energy light

meson effective theory with next-to-leading order terms in chiral Lagrangian

[27]. The instanton effect on the second order coupling constant has been

discussed in [28]. This attempt is one of the other quantitative result of the

indirect search for the instanton effect in the light meson system.

The precise data on B meson masses, namely b-flavored pseudoscalar

mesons B+, B0, Bs and their anti-particles, are obtained by various experi-

ments. The purpose of this thesis is to give another quantitative result from

heavy meson system. We consider a heavy meson system with the heavy

meson effective theory. In order to discuss the constraint on the size of the

instanton effect, the chiral symmetry breaking terms in next-to-leading or-

der effective Lagrangian are systematically investigated. We find a hidden

symmetry under the instanton transformation in the heavy meson effective

theory. We estimate the upper bound of the correction to light quark masses

from the instanton-induced effect under some assumptions and also discuss

whether or not the instanton-induced effective mass is large enough to resolve

strong CP problem by mu = 0.

In the future the B-factories, such as LHCb and Super-KEKB, will give

more precise data on the mass spectrum and the decay constants in the B

meson system. In addition, the development of lattice calculation on heavy

quarks gives useful information. These knowledge would provide more strict

constraints on the instanton-induced effects.

This thesis is developed as follows. Chapters 1 to 4 represent a review of

essential theory whereas chaper 4 and 5 contain the original results. In the
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next chapter, we review the fundamental properties of symmetries and the

spontaneous symmetry breaking. We also introduce the general formulation

of a low energy effective theory with spontaneous symmetry breaking. In

chapter 3, the tunneling effect in quantum mechanics is briefly reviewed. The

QCD instanton effects are introduced as tunneling effects between non-trivial

vacua in QCD which are classified with integers n. We see that the instanton

effects induce an quark effective interaction. In chapter 4, the effective theory

which describes the interactions of pseudo Nambu-Goldstone bosons at low

energies is introduced. The dynamical meaning of instanton transformation,

which is related to instanton-induced mass correction, is discussed. The light

meson mass formulae of next-to-leading order in chiral expansion are derived.

We extract the value of couplings which are sensitive to the instanton effect

using the formulae, and the constraint on the quark mass correction given by

the instanton effect is discussed. In chapter 5, we discuss the instanton effect

in the heavy meson effective theory. The effective Lagrangian which includes

the next-to-leading order of chiral symmetry breaking terms is constructed.

We show the invariance under the instanton transformation even in the heavy

meson effective theory. The mass formulae of pseudoscalar B mesons and the

formulae of their mass differences are given. The constraint on the instanton-

induced effect are obtained in the B system. Chapter 6 is devoted to the

conclusion.
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Chapter 2

Symmetry

In the elementary particle physics, the concept of symmetry plays an impor-

tant role in classifying the particles spectra and in relating the interactions

between them. When the Lagrangian of a system is invariant under trans-

formations, the symmetries of the transformations realize in the system.

In certain cases, though the Lagrangian of a system is invariant under

the transformation of a symmetry group G, the ground state is not necessar-

ily invariant under the transformation of symmetry G but invariant under

the transformation of symmetry subgroup H. This phenomenon is called

“spontaneously symmetry breaking”.

The spontaneously symmetry breaking occurs in cases, for example, the

acquiring of vacuum expectation values by one scalar field in the theory as

in the breaking of local SU(2)L×U(1)Y gauge invariance by Higgs field in

the electroweak interactions. Even in the absence of scalar fields, quantum

effects can lead to the dynamical breaking of a symmetry as in the case of

chiral symmetry breaking by quark condensate in the strong interaction.

We give the formulation for realization of symmetries and its sponta-

neously breaking in this chapter. The treatment in this chapter will be used

for construction of the chiral effective theory as we will see later.
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2.1 Noether current and charge

Let us assume that the Lagrangian (density) is a functional of fields ϕ and

its derivative as

L = L(ϕ, ∂µϕ). (2.1)

The symmetry is represented as the invariance of Lagrangian L. The dy-

namical variables are the fields, and symmetries describe invariance under

transformations of the fields. We consider a continuous infinitesimal trans-

formation of the field as

ϕ(x) −→ ϕ′(x) = ϕ(x) + θa(δϕ)a, (2.2)

where θa is a transformation parameter and a is the index of the transfor-

mation. Under the transformation of eq.(2.2), the Lagrangian is transformed

as

L(ϕ, ∂µϕ) −→ L(ϕ′, ∂µϕ
′) = L(ϕ, ∂µϕ) + θa(δL)a. (2.3)

When the Lagrangian has the symmetry of the transformation, the deviation

of Lagrangian vanishes so that

(δL)a = ∂L
∂ϕ

(δϕ)a +
∂L

∂(∂µϕ)
(δ(∂µϕ))

a

= ∂µ
∂L

∂(∂µϕ)
(δϕ)a = 0, (2.4)

with Euler-Lagrange equation, and the Lagrangian is invariant under the

transformation of eq.(2.2).

We define the Noether current as

Ja
µ ≡ − ∂L

∂(∂µϕ)
(δϕ)a (2.5)

and the corresponding charge as

Qa ≡ −
∫

d3xJa
0 (x). (2.6)

When the Lagrangian has the symmetry, the divergence of current vanishes,

∂µJa
µ = 0, (2.7)
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and we find that the charge is time-independent

d

dt
Qa = −

∫
d3x∂0Ja

0 = −
∫

d3x∂iJa
i = 0 (2.8)

under an assumption that the field and its derivative converge at the bound-

ary. In the canonical quantization, the charge becomes the operator which

generates the transformation of fields:

[iQ̂a,ϕ] = (δϕ)a, (2.9)

where Q̂a is the quantized operator.

2.2 Spontaneous symmetry breaking

In case that the Lagrangian of a system is invariant under the transformation

of a symmetry group, there are two situations called by the Wigner phase or

the Nambu-Goldstone phase. The situations are symbolically described by

Q|0⟩ = 0 Wigner phase,

Q|0⟩ ≠ 0 Nambu-Goldstone phase, (2.10)

where Q is the generator of the symmetry and the vacuum state is defined

by annihilation operators in the asymptotic fields of the theory.

In the Wigner phase the charge Q is well-defined from eq.(2.6). Since Q

and the vacuum state are invariant under space and time translations, the

quantity

⟨0|Q|0⟩ = −
∫

d3x⟨0|j0(x)|0⟩

= −⟨0|j0(0)|0⟩
∫

d3x (2.11)

converges only in the case of ⟨0|j0(0)|0⟩ = 0, that is to say, Q|0⟩ = 0.

The same argument does not apply in the Nambu-Goldstone phase. The

charge Q is not well-defined since the volume integral in eq.(2.11) diverges.

Therefore, the phenomenon of spontaneous symmetry breaking is defined in
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terms of the condition that there exists at least one operator Φ satisfying the

commutation relation

[iQ,Φ(y)] ≡ −i

∫
d3x[j0(x),Φ(y)] = δΦ(y) (2.12)

with the finite vacuum expectation value

⟨0|δΦ|0⟩ ̸= 0. (2.13)

The Nambu-Goldstone theorem states that massless bosons, the Nambu-

Goldstone bosons, appear and are coupled to the currents in the system with

spontaneously broken symmetry. We show the consequences of the theorem

in the following. Define a correlation function as
∫

d4xeiq·x∂µ⟨0|Tjµ(x)Φ(0)|0⟩, (2.14)

where T is a time ordered product. This correlation function is related to

the vacuum expectation value of eq.(2.12) in the soft limit qµ → 0,
∫

d4xeiq·x∂µ⟨0|Tjµ(x)Φ(0)|0⟩ = −⟨0|[Q,Φ]|0⟩, (2.15)

from the current conservation. When the theory is in the Nambu-Goldstone

phase, the correlation function becomes finite. The correlation function can

be also expressed as
∫

d4xeiq·x∂µ⟨0|Tjµ(x)Φ(0)|0⟩ = −iqµ
∫

d4xeiq·x⟨0|Tjµ(x)Φ(0)|0⟩

= i
∑

n

FnGn
q2

q2 −m2
n + iϵ

, (2.16)

where we use the completeness of the theory

1 =
∑

n

∫
d3pn

2p0n(2π)
3
|n(pn)⟩⟨n(pn)|. (2.17)

Here Fn and Gn are defined as

⟨0|jµ(x)|n(pn)⟩ = ipµFne
−ip·x, (2.18)

⟨0|Φ(x)|n(pn)⟩ = Gne
−ip·x, (2.19)
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with Fn ̸= 0 and Gn ̸= 0 when n corresponds to the Nambu-Goldstone mode.

Namely, since we identify eq.(2.18) with the current sandwiching between the

vacuum and the one Nambu-Goldstone boson state |πa⟩,

⟨0|jaµ(x)|πb(p)⟩ = iδabpµfπe
−ip·x, (2.20)

where fπ is the pion decay constant, the current can be expressed as

jaµ(x) = −fπ∂µπ
a(x) + · · · , (2.21)

where the dots stand for the continuous spectrum parts. The current con-

servation implies the masslessness of the Nambu-Goldstone boson πa. In

the soft limit eq.(2.16) requires the existence of massless Nambu-Goldstone

bosons coupled to the current jµ (the Goldstone theorem [29]). We can easily

find that the number of the independent Nambu-Goldstone bosons is given

by the number of independent broken generators.

2.3 Nonlinear realization

In a system realizing the symmetry G which is spontaneously broken down

to the subgroup H, we show the procedure for constructing a low energy

effective Lagrangian, the CCWZ Lagrangian, which has been introduced in

[30] (and see ref.[31] for review). The effective Lagrangian is constructed

in terms of the nonlinearly transforming Nambu-Goldstone bosons and the

terms of the lowest order in derivatives on the Nambu-Goldstone bosons are

uniquely determined without any parameter.

We consider the case that the symmetry group G is spontaneously broken

down to the subgroup H. Here we assume that G and H are compact simple

groups.

The set of the generators TA of G is divided into the generators Sα ∈ H
of the unbroken subgroup H and the rest Xa ∈ G −H as

{TA} = {Sα ∈ H, Xa ∈ G −H}. (2.22)

We employ the normalization and orthogonality of generators as

tr(TATB) =
1

2
δAB, tr(SαXa) = 0, (2.23)
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where the second equation implies

tr(Sα[Sβ, Xa]) = tr([Sα, Sβ]Xa) = 0, (2.24)

so that the element [Sα, Xa] always lies in G −H,

[H,G −H] ⊂ G −H. (2.25)

The Nambu-Goldstone bosons π(x), whose number is equal to the dimen-

sion of the (right) coset space G/H, dimG− dimH, are transformed under

H, so that π(x) can be identified with the coordinates in coset space G/H.

The Nambu-Goldstone bosons are not linearly transformed under G. To

construct a G-invariant nonlinear Lagrangian with such Nambu-Goldstone

bosons, we see the non-trivial transformation property of π(x). Let ξ(π)

be “representatives” of the coset space G/H, which is parameterized by the

Nambu-Goldstone bosons π(x) as

ξ(π) = eiπ(x)/f , π(x) ≡
∑

a∈G−H

πa(x)Xa, (2.26)

where f is a scale parameter or the decay constant at the tree level with

a mass dimension. An element gξ(π) yielded by the left multiplication of

g ∈ G is in G. There exists the representative ξ(π′) corresponding to the

element gξ(π) (see Fig.(2.1)). We find that the element can be decomposed

into the coset part and unbroken part as

gξ(π) = ξ(π′)h(π, g), h(π, g) ∈ H. (2.27)

Note that this element h depends on π(x) as well as on g. Therefore, we

define the transformation of the Nambu-Goldstone bosons π(x) under the

G-transformation as

ξ(π′) = gξ(π)h−1(π, g), g ∈ G. (2.28)

As we expected, the transformation becomes linear as

ξ(π′) = hξ(π)h−1(π, h),⇒ π′(x) = hπ(x)h−1, h ∈ H, (2.29)

when the left multiplication is an element h belonging to subgroup H in

eq.(2.28).
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Figure 2.1: Image of the decomposition of the element gξ(π). A box implies a

set of elements of G and the bottom of box (shaded area) is a set of elements

of G/H. The two carves represent the equivalence classes ξ(π)H.

We now consider the case when G is a simple group. We introduce a

1-form as

α(π) =
1

i
ξ−1dξ, ξ ∈ G/H, (2.30)

or more explicitly as

αµ(π)dx
µ =

1

i
ξ−1(π)

∂ξ

∂xµ
dxµ ⇒ αµ(π) =

1

i
ξ−1∂µξ, (2.31)

which is well-known as the Maurer-Cartan 1-form. Since the 1-form α(π) be-

longs to the Lie algebra G and can be expanded with its generators {TA} =

{Sα ∈ H, Xa ∈ G −H}, we can define the parallel and perpendicular com-

ponents of αµ(π) to H as

αµ∥(π) ≡ αα
µ(π)S

α = 2tr(Sααµ(π)) · Sα ∈ H,

αµ⊥(π) ≡ αa
µ(π)X

a = 2tr(Xaαµ(π)) ·Xa ∈ G −H. (2.32)

From eq.(2.28), we find that the transformation law of αµ(π) is

αµ(π) → αµ(π
′) = h(π, g)αµ(π)h

−1(π, g) +
1

i
h(π, g)∂µh

−1(π, g). (2.33)
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The second term in the above equation comes from the transformation of the

parallel component of αµ(π), since h(π, g)∂µh−1(π, g) is in H. That is to say,

each component is transformed under the G-transformation as

αµ∥(π) → αµ∥(π
′) = h(π, g)αµ∥(π)h

−1(π, g) +
1

i
h(π, g)∂µh

−1(π, g)

αµ⊥(π) → αµ⊥(π
′) = h(π, g)αµ⊥(π)h

−1(π, g). (2.34)

We see that only the perpendicular component αµ⊥ transforms homoge-

neously, and the G-invariant Lagrangian can be constructed in terms of

tr(αµ⊥(π))2. The most general Lagrangian with the lowest order in deriva-

tives is given by

L = f 2tr(αµ⊥(π))
2 (2.35)

where the square of a factor f is multiplied in order to normalize the kinetic

terms of the π(x) fields.

In QCD, the Lagrangian has the approximate symmetry, the chiral sym-

metry, which is the global U(Nf)×U(Nf) symmetry with the number of the

quark flavors Nf . The chiral symmetry is spontaneously broken by the quark

condensate. Therefore, we can construct the chiral effective theory using the

procedure for constructing CCWZ Lagrangian.
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Chapter 3

Non-trivial vacuum structure

in QCD

It is widely believed that a non-trivial vacuum structure exists in QCD.

The non-trivial vacuum structure is described by the quantum mechanical

superposition of equivalent vacua classified by an integer called “a winding

number”. In the quantum mechanics, tunneling effects are transitions from

one vacuum to another vacuum. The effects can be described by the classical

solutions to the equation of motion in the semi-classical approximation and

the classical solutions are called “instanton solutions”. Tunneling effects

in QCD could be described by the instanton solutions which are classical

solutions (or often referred to as gauge field configurations) formulated in

Euclidean space-time.

In QCD, the axial current, which is related to the chiral symmetry, is

not conserved at the quantum level and this is known as the chiral anomaly

[12, 13]. It could be interpreted that the tunneling effect, namely instanton

effect, causes non-conserving of the chiral charges. An effective interaction,

the so-called ’t Hooft vertex, is induced by the instanton effect, which changes

the axial charge by twice of the number of flavors in QCD.

In this chapter, we start by introducing the path integral in Euclidean

space-time and discuss a tunneling effect in a system with a double-well

potential. Then, we overview the non-trivial vacuum structure and the in-

stanton effect in QCD, which induce the ’t Hooft vertex.
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3.1 Instanton solutions in quantum mechan-

ics

Before we discuss QCD, let us review tunneling effects in quantum mechanics

using the method of pass integral as a simple example. We consider the theory

of a particle with mass m moving in a one-dimensional potential V (x) in

Minkowski space-time. The action and Lagrangian are

S =

∫
dtL, L =

m

2

(
dx

dt

)2

− V (x). (3.1)

The Hamiltonian is

H = p
dx

dt
− L =

p2

2m
+ V (x) =

m

2

(
dx

dt

)2

+ V (x) (3.2)

with canonical momentum

p ≡ ∂L

∂ẋ
= m

dx

dt
. (3.3)

The transition amplitude from x = xi at t = −T/2 to x = xf at t = T/2 is

given by

⟨xf |eiHT/!|xi⟩ = N
∫

DxeiS/! (3.4)

in the path integral representation. On the left-hand side, |xi⟩ and |xf⟩ are
the position eigenstates. On the right-hand side, N is a normalization factor

and Dx donotes integration over all functions x(t), satisfying the boundary

conditions, x(−T/2) = xi and x(T/2) = xf .

The action in Euclidean space-time is given by the analytic continuation

in the time coordinate. Euclidean coordinates are denoted as

xµ
E = (x1, x2, x3, x4) = (x1, x2, x3,−ix0), (3.5)

and the metric is

gEµν = diag(−1,−1,−1,−1). (3.6)
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Figure 3.1: Integration along the path C.

We take a closed path C in the complex-plane shown as Fig.3.1, and decom-

pose the integral into four parts of the path as

∮

C

dtL =

∫

C1

dtL+

∫

C2

dtL+

∫ T/2

−T/2

dtL+

∫ iT/2

−iT/2

dtL. (3.7)

Assuming that there are no singularities inside the closed path and that the

contribution from two integrals on the contours C1 and C2 vanish in the limit

T → ∞, we have

S =

∫ T/2

−T/2

dtL = −
∫ iT/2

−iT/2

dtL

= −
∫ T/2

−T/2

idτ

(
−1

2

(
dx

dτ

)2

− V (x)

)

= i

∫ T/2

T/2

dτLE

≡ iSE, (3.8)
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where τ ≡ −ix0 and the Lagrangian in Euclidean space-time is

LE ≡ m

2

(
dx

dτ

)2

+ V (x). (3.9)

We can naively see that the Euclidean action is defined as −i times the

Minkowskian action. Since we consider QCD in Euclidean space-time later,

we use a subscript E.

The Hamiltonian is

HE = pE
dx

dτ
− LE =

m

2

(
dx

dτ

)2

− V (x) = −H

∣∣∣∣
t=iτ

, (3.10)

where the canonical momentum in Euclidean space-time is

pE ≡ ∂LE

∂(dx/dτ)
= m

dx

dτ
. (3.11)

The amplitude of transition from x = xi at τ = −T/2 to x = xf at τ = T/2

is given by

⟨xf |e−iHT/!|xi⟩ = ⟨xf |e−i(−H)(−iT )/!|xi⟩
= ⟨xf |e−HET/!|xi⟩

= N
∫

Dxe−SE/! (3.12)

in the path integral representation. If we expand the left-hand side in a

complete set of energy eigenstates,

HE|n⟩ = En|n⟩, (3.13)

then

⟨xf |e−HET/!|xi⟩ =
∑

n

e−EnT/!⟨xf |n⟩⟨n|xi⟩. (3.14)

The leading term in this expression for large T is saturated by the energy

and the wave-function of the lowest-lying energy eigenstate.

On the right-hand side of eq.(3.12), the integration parameter can be

written as

x(τ) = xcl(τ) +
∑

n

cnxn(τ), (3.15)
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where xcl(τ) is the classical solution to the equation of motion

m
d2xcl

dτ 2
− dV (xcl)

dx
= 0, (3.16)

and xn are a complete set of real orthonormal function satisfying the bound-

ary conditions,

∫ T/2

−T/2

dτxn(τ)xm(τ) = δmn,

xn(τ = ±T/2) = 0. (3.17)

The measure is defined by

Dx ≡
∏

n

dcn√
2π!

. (3.18)

We can readily evaluate the path integral in eq.(3.12). The Lagrangian be-

comes

LE =
m

2

(
dxcl

dτ

)2

+ V (xcl)

+
1

2

∑

n

∑

m

cncmxm

(
−m

d2

dτ 2
+

d2V (xcl)

dx2

)
xn +O(!). (3.19)

Choosing xn to be the eigenfunctions of the second derivative of SE at xcl,

(
−m

d2

dτ 2
+

d2V (xcl)

dx2

)
xn = λnxn(τ), (3.20)

we obtain

LE =
m

2

(
dxcl

dτ

)2

+ V (xcl) +
1

2

∑

n

∑

m

cncmxmλnxn +O(!). (3.21)

We can carry out the integral of the action

SE = SE(x
cl) +

1

2

∑

n

c2nλn +O(!), (3.22)
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Figure 3.2: The shape of the potential as a simple example.

and the amplitude is

⟨xf |e−HET/!|xi⟩ = N e−SE(xcl)/!

(
∏

n

λn

)− 1
2

(1 +O(!))

= N e−SE(xcl)/!
[
det

(
−m

d2

dτ 2
+ V ′′(xcl)

)]− 1
2

(1 +O(!)) ,

(3.23)

where the prime denotes differentiation with respect to x. We find that the

transition amplitude is proportional to exp(−SE(xcl)/!). When SE is much

greater than !, this expansion on ! is a good approximation. The expansion

is known as a semi-classical approximation or the WKB approximation.

As a simple example of applying a semi-classical approximation, consider

the parabola potential shown in Fig.(3.2) with the boundary condition that

both the initial and final states are at the origin, namely xi = xf = 0. We

expect that the vacuum energy of the system is that of a harmonic oscillator.

The only solution to the classical equation of motion is

xcl(τ) = 0, ẋcl = 0, SE(x
cl) = 0. (3.24)
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The transition amplitude from the initial state to the final state after (Eu-

clidean) time T is

⟨0|e−HET/!|0⟩ = N
[
det

(
−m

d2

dτ 2
+mω2

)]− 1
2

, (3.25)

where

ω2 ≡ V ′′(0)

m
. (3.26)

To calculate the determinant, we consider the equation

(
−m

d2

dτ 2
+mω2

)
fn = λnfn, n = 1, 2, 3, · · · , (3.27)

where the eigenfunctions fn(τ) satisfies the conditions

fn

(
−T

2

)
= fn

(
T

2

)
= 0. (3.28)

The eigenfunctions can be taken both symmetric and anti-symmetric function

as

f sym
k = cos

(
(2k + 1)π

τ

T

)
, k = 0, 1, 2, · · · ,

f anti−sym
k = sin

(
2kπ

τ

T

)
, k = 1, 2, 3, · · · , (3.29)

with each of the eigenvalues

m

{
(2k + 1)π

T

}
+mω2, k = 0, 1, 2, · · · ,

m

{
2kπ

T

}
+mω2, k = 1, 2, 3, · · · . (3.30)

This results in

λn = m

{(nπ
T

)2
+ ω2

}
, n = 1, 2, 3, · · · , (3.31)
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and

det

(
−m

d2

dτ 2
+mω2

)
=

∞∏

n=1

m

{(nπ
T

)2
+ ω2

}

⇒ ln det

(
−m

d2

dτ 2
+mω2

)
= ln

∞∏

n=1

m

{(nπ
T

)2
+ ω2

}

= ln
∞∏

n=1

m
(nπ
T

)2
+ ln

∞∏

n=1

{
1 +

( nπ
ωT

)−2
}

= ln
∞∏

n=1

m
(nπ
T

)2
+ ln

sinhωT

ωT
, (3.32)

where we used the formula
∞∏

n=1

{
1 +

1

(n/z)2

}
=

sinh πz

πz
(3.33)

in the last equality. Therefore, we obtain

det

(
−m

d2

dτ 2
+mω2

)
=

( ∞∏

n=1

mπ2

T 2
n2

)
sinhωT

ωT
(3.34)

and the transition amplitude

⟨0|e−HET/!|0⟩ = N
( ∞∏

n=1

mπ2

T 2
n2

)− 1
2 √

ωT (sinhωT )−
1
2 (1 +O(!))

→ N
( ∞∏

n=1

mπ2

T 2
n2

)− 1
2 √

2ωTe−ωT/2, (3.35)

for large T . We immediately find that the exponential behavior in this equa-

tion gives vacuum energy

E0 =
1

2
!ω, (3.36)

which coincides with the energy of a harmonic oscillator.

On the other hand, eq.(3.35) can be represented as

⟨0|e−HET/!|0⟩ = ⟨0|e−HET/!
∑

n

|n⟩⟨n|0⟩

→ e−E0T/!|⟨0|n = 0⟩|2, (3.37)
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Figure 3.3: The shape of double-well potential.

for large T . Here the coefficient |⟨0|n = 0⟩|2 is the probability that the

particle stays at the origin in the ground state and we find

|⟨0|n = 0⟩|2 =
(mω
π!

) 1
2
. (3.38)

Therefore, we can determine the normalization factor

N =

√
m

2π!T

( ∞∏

n=1

mπ2

T 2
n2

) 1
2

. (3.39)

To see a system with the tunneling effect, we consider the double-well

potential (see Fig.3.3) given by

V (x) ≡ mω2

8a2
(x2 − a2)2, a > 0, (3.40)

where an ω is corresponding to the height of the barrier between minimum

points, x = ±a and we consider in the case of a large ω. We can find that

xcl = ±a can be classical solutions to the equation of motion (3.16) since the

potential is a downward convex around x = ±a so that

−m
d2xcl

dτ 2
− mω2

2
xcl +

mω2

2a2
(xcl)3 = 0. (3.41)
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Figure 3.4: A shape of classical solution with positive sign in eq.(3.44) (left-

side panel). A shape of the solution which is contained a single instanton

and a single anti-instanton (right-side panel).

The transition amplitude from xi = a in the initial state to xf = a in the

final state or from xi = −a in the initial state to xf = −a in the final state

after time T is given by

z0 = ⟨a|e−HET/!|a⟩0 = ⟨−a|e−HET/!|− a⟩0, (3.42)

where the index 0 stands for a number of instantons and its approximate

energy of the ground state is

E0 =
!ω
2
, (3.43)

in the limit ω → ∞. This coincides with the energy of harmonic oscillator.

As we see later, the energy decreases due to the tunneling effect which is a

transition effect between the two minimum points.

Actually

xcl(τ) = ±a tanh
ω(τ − τ0)

2
(3.44)

is also the solution to the equation of motion (3.16). Here the constant of

integration τ0 is a position of the solution. The solution with its signature
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+ in eq.(3.44) is called an “instanton” solution and the other is called an

“anti-instanton” solution because these solutions describe the instantaneous

transition at τ = τ0 (see the left-side panel in Fig.3.4). This solution rep-

resents the transition from x = −a at τ = −∞ to x = a at τ = ∞. The

instanton solution would be interpreted as the tunneling effect in quantum

dynamics.

We define the contribution from instanton or anti-instanton as

K ≡ z1
z0

=
⟨a|e−HET/!|− a⟩1
⟨a|e−HET/!|a⟩0

=
⟨−a|e−HET/!|a⟩1
⟨a|e−HET/!|a⟩0

. (3.45)

In the following, we employ a “dilute gas approximation” where instantons

and anti-instantons are sufficiently apart from each other and each instanton

independently contributes to the amplitude. At first, we consider a process

contained a single instanton and a single anti-instanton shown as the right-

hand panel in Fig.(3.4). This transition is described by the solution

xcl(τ) = ±a tanh
ω(τ − τ̄0)

2
tanh

ω(τ − τ0)

2
(3.46)

for large ω. Dividing instanton and anti-instanton by τ = τ1 with τ̄0 < τ1 <

τ0, the amplitude is

z2 = ⟨a|e−HET/!|a⟩2 (= ⟨−a|e−HET/!|− a⟩2)
→ ⟨a|e−HE(T/2−τ1)/!|− a⟩1⟨−a|e−HE(T/2+τ1)/!|a⟩1 (3.47)

for large T . On the other hand, we obtain

z0 →
{

⟨−a|e−HE(T/2−τ1)/!|− a⟩0⟨−a|e−HE(T/2+τ1)/!|− a⟩0
⟨a|e−HE(T/2−τ1)/!|a⟩0⟨a|e−HE(T/2+τ1)/!|a⟩0

,

z1 →
{

⟨a|e−HE(T/2−τ1)/!|− a⟩1⟨−a|e−HE(T/2+τ1)/!|− a⟩0
⟨−a|e−HE(T/2−τ1)/!|− a⟩0⟨−a|e−HE(T/2+τ1)/!|a⟩1

, (3.48)

for large T . Therefore eq.(3.47) can be represented as

z2 → ⟨a|eHE(T/2−τ1)/!|− a⟩1⟨−a|e−HE(T/2+τ1)/!|a⟩1

×
⟨−a|e−HE(T/2−τ1)/!|− a⟩0⟨−a|e−HE(T/2+τ1)/!|− a⟩0

z0

=
z21
z0

= K2z0 (3.49)
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Note that the integral over the location of instantons is given by

∫ T/2

−T/2

dτ0

∫ τ

−T/2

dτ̄0 =
1

2

∫ T/2

−T/2

dτ0dτ̄0, (3.50)

and the amplitude for transition from a to a with a single instanton and

a single anti-instanton can be written in terms of the amplitude without

instantons as

z2 →
1

2!
K2z0. (3.51)

It is easy that the amplitude is extended to

z2n → 1

2n!
K2nz0, (3.52)

which is the amplitude with 2n transitions. The amplitude with all the gen-

eral classical solutions is given by summation for even number of instantons

and anti-instantons as

⟨a|e−HET/!|a⟩ =
∞∑

n=0

z2n = (coshK)z0. (3.53)

Now we consider the calculation of the Van Vleck determinant

[
det

(
−m

d2

dτ 2
+ V ′′(xcl)

)]− 1
2

. (3.54)

Since the instanton solution is time-dependent, time derivative of eq.(3.16)

[
−m

d2

dτ 2
+ V ′′(xcl)

]
ẋcl = 0 (3.55)

supply zero eigenvalues (or zero-eigenmode) and the Van Vleck determinant

divergences (zero-mode problem). For large T , what xcl is translated on τ

becomes also a solution and the value of the action does not change for the

time-translated solutions. The integral over c0 which is the zero eigenvalue

for λ0 = 0 is not Gaussian integral in the formula of determinant. We

should remove this zero eigenvalue in the definition of the determinant by

the treatment shown as follows.
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The eigenfunction in eq.(3.20) for zero eigenvalue is given by

x0 =

√
m

SE(xcl)

dxcl

dτ
, (3.56)

and we can find
∫ T/2

−T/2

dτ(x0)
2 = 1, (3.57)

where we use the formula

dxcl

dτ
=

√
±2V

m
(3.58)

for large T . The relation between integration measure dc0 and dτ is given by

dxcl

dτ
dτ = dc0x0 = dc0

√
m

SE(xcl)

dxcl

dτ
, (3.59)

so that

dc0√
2π!

=

√
SE(xcl)

2π!m dτ. (3.60)

We can remove zero eigenvalue from the Gaussian integral as

∫ ∏

n

dcn√
2π!

exp

{
− 1

2!
∑

m,n

cmcn

(
−m

d2

dτ 2
+ V ′′(xcl)

)
xn

}

=

∫ T/2

−T/2

dτ

√
SE(xcl)

2π!m

∫ ∏

n ̸=0

dcn√
2π!

exp

{
− 1

2!
∑

m,n

cmcn

(
−m

d2

dτ 2
+ V ′′(xcl)

)
xn

}

≡ T

√
SE(xcl)

2π!m

[
det′

(
−m

d2

dτ 2
+ V ′′(xcl)

)]− 1
2

, (3.61)

where det′ means that zero eigenvalue is not included in the integral measure.

Eq.(3.45) can be represented as

K = e−SE(xcl)/!T

√
SE(xcl)

2π!m

⎡

⎣
det′

(
−m d2

dτ2 + V ′′(xcl)
)

det
(
−m d2

dτ2 +mω2
)

⎤

⎦

1
2

. (3.62)
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Substituting this result for ⟨a|e−HET/!|a⟩ gives the energy of the ground state

as

E0 =
!ω
2

− e−SE(xcl)/!

√
!SE(xcl)

2πm

⎡

⎣
det′

(
−m d2

dτ2 + V ′′(xcl)
)

det
(
−m d2

dτ2 +mω2
)

⎤

⎦

1
2

. (3.63)

This consequence states that the energy of system decreases due to the in-

stanton effect, namely the tunneling effect.

We give the representation of the polar coordinates in Euclidean space-

time. The transformation from the cartesian coordinates to the polar coor-

dinates in Euclidean space-time is

x1 = r cosα1,

x2 = r sinα1 cosα2,

x3 = r sinα1 sinα2 cosα3,

x4 = r sinα1 sinα2 sinα3, (3.64)

with 0 ≤ r < ∞, 0 ≤ α1 < π, 0 ≤ α2 < π, 0 ≤ α3 < 2π and r2 =

(x4)2 + (x)2 = |xE|2. From the Jacobian

∂(x1, x2, x3, x4)

∂(r,α1,α2,α3)
= r3 sin2 α1α2, (3.65)

the volume element is obtained as

d4xE = r3 sin2 α1 sinα2drdα1dα2dα3 ≡ r3drdΩ, (3.66)

where dΩ is the solid angle in the polar coordinates with
∫

dΩ = 2π2. (3.67)

The surface element dσµ is

dσµ = |xE|3dΩ
xE
µ

|xE|
(3.68)

on the hypersphere with the radius r.
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We give a remark on the validity of analytic continuation. For example,

in the free theory the 2-point function is

⟨0|Tφ(x)φ(y)|0⟩ =
∫

d4k

(2π)4
i

k2 −m2 + iϵ
e−ik(x−y), (3.69)

and no singularities in the area enclosed by the integral path ensure that

the analytic continuation is well-defined. However, the validity of analytic

continuation becomes non-trivial because there are no assurance in the case

that the mass has some correction in the full theory. In the following we will

discuss under the assumption that the analytic continuation can be done.

3.2 QCD instantons

The Lagrangian of SU(N) Yang-Mills theory with the fermions is represented

by

L = −1

4
trF µνFµν + ψ̄(i /D −m)ψ, (3.70)

where the gauge field and the field strength are

Aµ = Aa
µ

T a

2
, Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (3.71)

and T as are the generators associated with the SU(N) gauge group and

satisfies the normalization as

tr

[
T a

2

T b

2

]
=

1

2
δab, (3.72)

and ψ denote fermions. The gauge field Aµ(x) is transformed under the

SU(N) gauge transformation as

Aµ(x) → Ω(x)Aµ(x)Ω(x)
† +

i

g
Ω(x)∂µΩ(x)

†, (3.73)

where a unitary matrix

Ω(x) = eiθ
a(x)Ta/2 (3.74)
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is an element of SU(N). The Yang-Mills action is

SYM =

∫
d4xE

[
−1

2
TrFµνFµν

]
(3.75)

and the field equation is

DµFµν = ∂µFµν − ig[Aµ, Fµν ] = 0 (3.76)

in Euclidean space-time. Here, Aµ = 0, which leads Fµν = 0, is the trivial

solution. The trivial solution is transformed into “pure gauge” as

Aµ(x) =
i

g
Ω(x)∂µΩ(x)

† (3.77)

and it also leads to Fµν = 0 and satisfies the field equation (3.76).

It is convenient to study the theory in the gauge A4 = 0. In this gauge

we can choose the gauge transformation as a time independent, so that the

spatial pure gauge fields are

Ai(x⃗) =
i

g
Ω(x⃗)∂iΩ

†(x⃗). (3.78)

The gauge fields are required to vanish at spatial infinity. This can be ac-

complished by a restriction as

Ω(x⃗) → 1, for |x⃗| → ∞. (3.79)

QCD is the SU(3) Yang-Mills theory. For simplicity, we concentrate on

the SU(2) subgroup in QCD. Any elements of SU(2) can be represented as

Ω(x) = a(x) + i⃗b(x) · σ⃗,
Ω(x)Ω(x)† = a(x)2 + (⃗b(x))2 = 1. (3.80)

This means that the elements are identified with a unit hypersphere, S3, in

a four-dimensional space spanned by linear combination of a and b⃗, namely,

topologically SU(2) is S3. We can define an integer n called “winding num-

ber”, which measures the number of windings of S3 on the gauge space. The

winding number can be represented in terms of an integral over the gauge

fields as

n =
ig3

24π2

∫
d3xϵijkTr

[
A(n)

i (x⃗)A(n)
j (x⃗)A(n)

k (x⃗)
]
, (3.81)
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where the gauge fields are

A(n)
i (x⃗) =

i

g
Ωn(x⃗)∂iΩ

†
n(x⃗). (3.82)

We can construct the representative for Ωn. The representatives of gauge

transformations giving n = 1 is

Ω1(x⃗) =
x⃗2 − λ2

x⃗2 + λ2
+

2iλx⃗ · σ⃗
x⃗2 + λ2

(3.83)

with λ > 0. Indeed, the insertion of the gauge fields A(1)
i (x⃗) with Ω1(x⃗) into

the formula of winding number gives unity. Then, we consider the gauge

transformation of the pure gauge fields as

A(1)
i → Ω1A

(1)
i Ω† +

i

g
Ω1∂iΩ

†
1

= Ω1

(
i

g
Ω1∂iΩ

†
1

)
Ω†

1 +
i

g
Ω1Ω1Ω

†
1∂iΩ

†
1

=
i

g
Ω2

1∂i(Ω
2
1)

†

≡ A(2)
i (3.84)

with Ω2 ≡ (Ω1)2. Again the insertion of the gauge fields A(2)
i (x⃗) into the

formula of winding number gives

ig3

24π2

∫
d3xϵijkTr

[
i

g
Ω2

1∂i(Ω
2
1)

† i

g
Ω2

1∂j(Ω
2
1)

† i

g
Ω2

1∂k(Ω
2
1)

†
]

=
ig3

24π2

∫
d3xϵijkTr

[
i

g
Ω1∂iΩ

†
1

i

g
Ω1∂jΩ

†
1

i

g
Ω1∂kΩ

†
1

]
× 2

= 2. (3.85)

We can immediately find that substituting the gauge fields A(n)
i (x⃗) with

Ωn(x⃗) ≡ (Ω1(x⃗))
n (3.86)

for eq.(3.81) gives the winding number n.

A “vacuum state” associated with each of the gauge configurations is

classified by the winding number. To introduce vacuum states, so-called “n-

vacua”, we consider the path integral quantization. The gauge fields can be

decomposed as

A(n)
µ (x) = Acl(n)

µ (x) + Â(n)
µ (x), (3.87)
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Figure 3.5: The n-vacua are described as a periodic potential by analogy

with the Bloch potential.

where Acl(n)
µ (x) is the classical solution to the field equation and Â(n)

µ (x) is the

fluctuation around the classical solution. In the procedure of path integral

quantization, fluctuations are treated as the measures in the path integral

(see eq.(3.18)). The vacuum states on each of the gauge fields are defined as

Â(n)
µ (x)|n⟩ = 0. (3.88)

Actually, the “true vacuum state” of QCD cannot be any one of n-vacua

because state |n⟩ transforms under the gauge transformation as

Ω1|n⟩ = |n+ 1⟩. (3.89)

The tunneling effect from the state |n⟩ to |n+1⟩ is described by the instanton

solution. As we will see, the Pontryagin index is given by the difference in the

winding numbers between τ = −∞ and τ = ∞, and the transition amplitude

is proportional to exp(−8π2/g2). We see that the instanton effect is a non-

perturbative effect. Due to the tunneling effect, the situation is similar to

the one in which a particle is in a periodic potential as shown in Fig.3.5.

There is an analogy between the n-vacua and the Bloch potential. We must

define the “true vacuum state” as the superposition of the n-vacua, called

the Θ-vacuum,

|Θ⟩ ≡
∑

n∈Z

e−inΘ|n⟩, (3.90)
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which is clearly gauge invariant up to a phase, namely

Ω1|Θ⟩ =
∑

n

e−inΘ|n+ 1⟩ = eiΘ|Θ⟩. (3.91)

Interestingly, each value of Θ represents a different theory. To see that,

let us consider the transition amplitude by a gauge invariant operator O.

Since the amplitude

⟨m|O|n⟩ = ⟨m|Ω†
1Ω1OΩ†

1Ω1|n⟩
= ⟨m+ 1|O|n+ 1⟩ = F (ν) (3.92)

only depends upon the difference ν = m− n in the winding number, we find

⟨Θ′|O|Θ⟩ =
∑

m

∑

n

eimΘ′
e−inΘ⟨m|O|n⟩

=
∑

ν

∑

n

ei(n+ν)Θ′
e−inΘF (ν)

=
∑

ν

∑

n

ein(Θ
′−Θ)eiνΘF (ν)

= 2πδ(Θ′ −Θ)eiνΘF (ν). (3.93)

This implies that the state |Θ⟩ cannot be changed to another state |Θ′⟩ by
gauge invariant operators.

A path integral of the vacuum to vacuum transition amplitude with

sources is given by integrating over the all field configurations weighted by

the action (3.75) with source terms. The gauge field configurations in the

path integral cause the transition of changing the winding number. The net

charge in the winding number between τ = ∞ and τ = −∞ is given by ν

which is related to an integral over all space-time of FµνF̃µν . We see it as

follows.

First, we introduce the dual of Fµν as

F̃µν ≡ 1

2
ϵµνρσFρσ, (3.94)

where ϵµνρσ is an antisymmetric tensor with ϵ1234 = ϵ1234 = −1. From the

formula

ϵµνρσϵµνκλ = 2(δρκδσλ − δρλδκσ), (3.95)
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we can find

FµνFµν = F̃µνF̃µν . (3.96)

Substituting the classical solution eq.(3.82) for Fµν gives

Fµν = F̃µν . (3.97)

Therefore we have
∫

TrFµνFµνd
4xE =

∫
TrFµνF̃µνd

4xE. (3.98)

This can be represented by a total divergence as

1

4
TrFµνF̃µν = ∂µKµ, (3.99)

where , for SU(2),

Kµ = ϵµνκλTr

[
1

2
Aν∂κAλ −

ig

3
AνAκAλ

]
. (3.100)

Only K4 is nonvanishing for the classical solution in the A4 = 0 gauge and

we obtain

K4 =
ig

6
ϵijkTrAiAjAk. (3.101)

Therefore,

g2

16π2

∫
d4xETrFµνF̃µν =

g2

4π2

∫
d4xE∂µKµ

=
g2

4π2

∫
d3xK0

∣∣∣
τ=∞

τ=−∞

= n+ − n− = ν, (3.102)

which is called the Pontryagin index.

Returning to the path integral, we have

⟨Θ+|Θ−⟩J =
∑

m

∑

n

eimΘe−inΘ⟨m+|n−⟩J

=
∑

ν

eiνΘ
{
∑

n

⟨n+ + ν|n−⟩J
}
, (3.103)
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where the transition amplitudes ⟨n+ + ν|n−⟩ are given by a path integral

with ν fixed by eq.(3.102). Hence,

⟨Θ+|Θ−⟩J =
∑

ν

eiνΘ
∫

dµfieldse
iSJ
δ(ν − g2

16π2

∫
d4xETrFµνF̃µν)

=

∫
dµ′

fieldse
iSJ

eff , (3.104)

where

SJ
eff ≡ SJ

YM +Θ
g2

16π2

∫
d4xETrFµνF̃µν

dµfields ≡
∑

ν

dµfieldsδ(ν −
g2

16π2

∫
d4xETrFµνF̃µν), (3.105)

with Yang-Mills action SJ
YM with sources.

We see that the non-trivial vacuum structure would lead the additional

term

Θ
g2

16π2
TrFµνF̃µν (3.106)

in the effective Lagrangian, which violates P, T and CP invariance in QCD

and is called the “Θ-term”.

3.3 The ’t Hooft vertex

The additional CP violating term (3.106) is related with the chiral anomaly.

To define the U(1) axial current,

Jµ
5 = −

Nf∑

i=1

ψ̄iγ
µγ5ψi, (3.107)

we consider the Lagrangian eq.(3.70) in the fermion massless limit. In this

limit, the Lagrangian is invariant under the transformations as

ψL → eiϕLULψL = eiϕL exp

(
iθaL

λa

2

)
ψL (3.108)

ψR → eiϕRURψR = eiϕR exp

(
iθaR

λa

2

)
ψR (3.109)
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uL

uR dL

dR

sL sR

Figure 3.6: The diagram of the effective interaction induced by the instanton

effect in the case of three flavors.

where eiϕL and eiϕR are the elements of U(1)L and U(1)R and the elements

Ul and UR are in SU(N)L and SU(N)R, respectively, and λa denotes the

generators associated with the SU(N)L,R. Noether currents corresponding

to U(1)L and U(1)R transformations are

Lµ = −
∑

i

ψ̄i
Lγ

µψi
L, (3.110)

Rµ = −
∑

i

ψ̄i
Rγ

µψi
R (3.111)

The U(1) axial current defined as

Jµ
5 = −Lµ +Rµ. (3.112)

The U(1) axial current is classically conserved in QCD, in the quark massless

limit. However, there is an anomaly

∂µJµ
5 = −2Nf

g2

16π2
TrF µνF̃ µν , (3.113)

at the quantum level.

We can redefine a conserved current as

J̃µ
5 = Jµ

5 + 2Nf
g2

4π2
Kµ, (3.114)
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whose associated charge

Q̃5 = −
∫

d3xJ̃0
5 (3.115)

is time independent. Although Q̃5 is a generator for the chiral U(1)A trans-

formations, it is not invariant under the gauge transformations. In fact, since

under the gauge transformations the charge is transformed as

Ω1

(
g2

4π2

∫
d3xK0

)
Ω†

1 =
g2

4π2

∫
d3xK0 − 1, (3.116)

it follows that

∆Q5 = 2Nf . (3.117)

This consequence could be understood that an effective interaction which

changes the chiral charge by 2Nf is generated in transition of changing the

winding number by the amount of ν = 1. It is called the ’t Hooft vertex and

is diagrammatically represented for Nf = 3 in Fig.3.6.

When fermion zero-modes, ψ0 which satisfy /Dψ0 = 0, are exist, the action

for fermion zero-mode vanishes. Therefore the integration corresponding to

the fermion zero-modes vanishes in the path integral representation, because

the fermion integrals are the Grassmannian integrals. However, this conse-

quence contradicts the fact that the instanton effects give the finite transition

amplitudes between vacua with different winding numbers. In order for the

integral to be non-vanishing, fermion fields with a number of fermion zero-

modes must be inserted in front of exponential in the path integral. This is

equivalent to introducing an effective interaction of fermions with a number

of fermion zero-modes. This interaction is known as the ’t Hooft vertex. A

number of fermion zero-modes coincides with the change of chiral charge,

∆Q5, in transition between n-vacua, and when ν = 1, ∆Q5 = 2Nf with Nf

flavor in the theory.

In [26, 27], it has been pointed that this effective interaction could provide

the way to avoid the strong CP problem. When mu = 0, the strong CP phase

becomes unphysical. Although the situation with mu = 0 is apparently ruled

out by, for example, the current algebra estimation of mu/md ̸= 0, in fact,

mu = 0 in the sense of current algebra does not necessarily require mu = 0
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in the current mass in QCD Lagrangian. The interaction leads to the light

quark mass corrections at the loop level. Therefore, if mu = 0 in the sense

of bare mass, the effective up quark mass induced by the correction could be

large enough to satisfy the current algebra.
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Chapter 4

Light meson sector

QCD has the typical energy scale denoted as ΛQCD. This energy scale roughly

separates the regions of large and small coupling constant. When the coupling

is large, non-perturbative effects are dominant. When the mass of quark q is

much smaller than ΛQCD, q is called a light quark. On the other hand, when

the mass of quark Q is much larger than the scale, Q is called a heavy quark.

In the light quark massless limit, mq → 0, the QCD Lagrangian has the

chiral symmetry. The chiral symmetry is defined as the invariance under

independent transformations of left- and right-handed fermions.

In this chapter, we review the construction of the light meson effective

theory with manifest chiral symmetry. We also introduce the instanton trans-

formation and constrain the size of the instanton-induced effect using the

light meson mass spectra and the meson decay constants.

4.1 Construction of light meson effective

Lagrangian

The QCD Lagrangian is given by

LQCD = −1

2
TrFµνF

µν + ψ̄(i /D −m)ψ, (4.1)
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where the covariant derivative and field strength are

Dµ = ∂µ − igAµ

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (4.2)

The gauge fields and fermion fields are transformed under the SU(3)C gauge

transformation as

Aµ(x) → U(x)Aµ(x)U(x)† +
i

g
U(x)∂µU(x)†,

ψ(x) → U(x)ψ(x), (4.3)

where the unitary matrix is

U(x) = eigθ
a(x)Ta ∈ SU(3)C (4.4)

in terms of the continuous parameter θa(x) and the generator T a of SU(3)C
algebra.

In the system with light quarks, u, d and s, we consider the chiral limit

where the typical QCD scale ΛQCD is much greater than light quark masses

mq, namely mq/ΛQCD → 0. The Lagrangian becomes

LQCD

∣∣∣
m=0

= −1

2
TrFµνF

µν + ψ̄i /Dψ

= −1

2
TrFµνF

µν + ψLi /DψL + ψRi /DψR, (4.5)

where a left-handed fermion, ψL, and a right-handed, ψR, are defined with

γ5-matrix as

ψL ≡ 1− γ5
2

ψ, ψR ≡ 1 + γ5
2

ψ. (4.6)

The invariance arises under the independent transformations with respect to

the left- and right-handed fermions. It is so-called “chiral transformation”

ψL → eiϕLULψL = eiϕL exp(iθaL
λa

2
)ψL,

ψR → eiϕRURψR = eiϕR exp(iθaR
λa

2
)ψR, (4.7)

where eiϕL and eiϕR are the elements of U(1)L and U(1)R, and the elements UL

and UR are in SU(3)L and SU(3)R, respectively and λa denotes the Gell-Mann
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matrix. In this limit, the system has the U(3)L×U(3)R chiral symmetry. This

symmetry is not exact however, because anomaly, which is a phenomenon at

the quantum level, breaks the U(1)A symmetry defined as U(1)L−U(1)R.

The effect of quark condensate causes spontaneous breaking of chiral sym-

metry down to SU(3)V×U(1)V. We construct the effective Lagrangian fol-

lowing the procedure in chap.2 as follows. There are 8 Nambu-Goldstone

bosons and they are identified as light mesons π, K and η in the real world.

We consider the case where the symmetry group G = SU(3)L × SU(3)R
is spontaneously broken down to the subgroup H = SU(3)V . An element

g ∈ G is given by (UL, UR), where UL ∈ SU(3)L and UR ∈ SU(3)R. In the

language of chap.2, the perpendicular component of 1-form is given by

αµ⊥(π) =
1

2i
{ξ−1(π)∂µξ(π)− ξ(π)∂µξ

−1(π)}

=
1

2i
ξ(U−1∂µU)ξ−1, (4.8)

where ξ is transformed under the G-transformation as

ξ → ULξh(π,UL,UR)
† = h(π,UL,UR)ξU

†
R, (4.9)

and we define a unitary matrix

U ≡ ξ2 = e2iπ(x)/f , (4.10)

so that the transformation property under the G-transformation is given by

U → ULUU†
R. (4.11)

The field π includes the Nambu-Goldstone bosons as

π =
1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

π0

√
2
+

η
√
6

π+ K+

π− −
π0

√
2
+

η
√
6

K0

K− K
0 −

2
√
6
η

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.12)

The effective field containing η′ is

Σ = U exp

(
2i√
6f ′

η′
)
. (4.13)
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The first order G-invariant effective Lagrangian, which includes only two

derivatives, that is to say an O(p2) term, is obtained by

LLO
chi =

f 2

4
tr(∂µΣ∂

µΣ†), (4.14)

and this term gives kinetic the term of the Nambu-Goldstone bosons.

Chiral symmetry is not an exact symmetry such as the color gauge sym-

metry SU(3)C but an approximate symmetry in the light quark massless

limit. To make the effective theory more realistic we perturbatively include

the effect of finite light quark masses. We introduce the chiral breaking term

χ = 2B0M, M =

⎛

⎜⎝
mu 0 0

0 md 0

0 0 ms

⎞

⎟⎠ , (4.15)

where B0 is a constant of mass dimension one, and is related to the quark

condensate. The QCD Lagrangian has an invariance under the U(3)L×U(3)R
chiral transformation, if the mass matrix M transforms appropriately under

the chiral transformation

χ→ eiθAULχU
†
R. (4.16)

This χ is considered as a quantity of O(p2) in the effective Lagrangian.

Since M is just an expansion parameter in the chiral perturbation theory,

we can use

Meff = M+
2B0ω

(4πf)2
(detM†)(M†)−1 (4.17)

instead of the original M, where Meff has the same transformation property

as that of M and ω is a parameter..
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The O(p4) effective Lagrangian with quark masses is

LNLO
chi =

f 2

4

〈
∂µΣ

†∂µΣ
〉
+

f 2

4

〈
χΣ† + χ†Σ

〉

+L1

〈
∂µΣ

†∂µΣ
〉2

+ L2

〈
∂µΣ

†∂νΣ
〉〈
∂µΣ†∂νΣ

〉

+L3

〈
∂µΣ

†∂µΣ∂νΣ
†∂νΣ

〉
+ L4

〈
∂µΣ

†∂µΣ
〉〈
χΣ† + χ†Σ

〉

+L5

〈
∂µΣ

†∂µΣ(χΣ† + χ†Σ)
〉
+ L6

〈
χΣ† + χ†Σ

〉2

+L7

〈
χΣ† − χ†Σ

〉2
+ L8

〈
χΣ†χΣ† + χ†Σχ†Σ

〉
, (4.18)

where ⟨A⟩ denotes the trace of the matrix A over light flavor indices and the

low-energy coupling constants, Li, are dimensionless parameters [32].

4.2 Instanton transformation

The chiral effective Lagrangian has the following symmetries which have well-

defined dynamical meaning in QCD. The Lagrangian of eq.(4.18) is invariant

under

M → γM , B0 → γ−1B0, (4.19)

where γ is a multiplicative renormalization factor. This symmetry is the

consequence of the fact that the physics is independent of the scale of mul-

tiplicative renormalization of quark masses M.

The Lagrangian of eq.(4.18) is also invariant under the transformation,

which is known as the instanton transformation

χ→ χ+
ω

(4πf)2
(detχ†)(χ†)−1, (4.20)

and

L6 → L6 −
ω

(16π)2
,

L7 → L7 −
ω

(16π)2
,

L8 → L8 + 2
ω

(16π)2
.

(4.21)
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Note that the parameter ω is invariant under the multiplicative renormaliza-

tion of quark masses. It is easy to check the invariance using the following

matrix identity

detM = M3 −M2trM − 1

2
M [tr(M2)− (trM)2], (4.22)

where M is any 3×3 complex matrix. This identity can be proved as follow.

A characteristic polynomial for M is given by

fM(x) ≡ det(M − xI)

= −x3 + trMx2 − 1

2
[(trM)2 − trM2]x+ detM. (4.23)

Cayley-Hamilton theorem states that substituting M for x in this polynomial

results in a zero matrix, namely

fM(M) = 0. (4.24)

We obtain the matrix identity from eq.(4.24).

The symmetry under the transformations (4.20) and (4.21) is related to

the instanton-induced quark mass corrections. The instanton-induced mass is

proportional to the product of different quark flavor masses (see Fig.4.1). The

instanton effect gives a six-quark interaction, known as the ’t Hooft vertex,

which induces corrections to the light quark masses. The physics should be

independent of whether or not the instanton correction is included in χ or Li

[26, 28, 33]. Notice that the couplings L6, L7 and L8 are transformed under

the instanton transformation. We do not pay attention to L6 since we can

not extract it by meson masses (we see below that L6 enters in the same form

in each of the mass formula). We expect that particularly L7, which gives

the contribution of the type in Fig.4.1 in meson mass formulae, is produced

dominantly by the instanton dynamics, though the other couplings, L6 and

L8, should be also sensitive to the instanton effect. We estimate the value of

the coupling L7 in the following.
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uL uR

×

×

ms

md

Figure 4.1: The instanton mass correction to up-quark mass by the ’t Hooft

vertex.

4.3 Constraints in light meson system

From the effective Lagrangian (4.18), we have the meson mass formulae of

O(p4):

m2
π0 = B0(mu +md)

[
1 +

(
L̂6 −

L̂4

2

)
(mu +md +ms)−

L̂5

4
(mu +md)

+L̂7
(mu −md)2

mu +md
+ L̂8

m2
u +m2

d

mu +md

]
, (4.25)

m2
π± = B0(mu +md)

[
1 +

(
L̂6 −

L̂4

2

)
(mu +md +ms)

+

(
L̂8

2
− L̂5

4

)
(mu +md)

]
, (4.26)

m2
K0 = B0(md +ms)

[
1 +

(
L̂6 −

L̂4

2

)
(mu +md +ms)

+

(
L̂8

2
− L̂5

4

)
(md +ms)

]
, (4.27)
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m2
K± = B0(mu +ms)

[
1 +

(
L̂6 −

L̂4

2

)
(mu +md +ms)

+

(
L̂8

2
− L̂5

4

)
(mu +ms)

]
, (4.28)

m2
η = B0

mu +md + 4ms

3

×
[
1 +

(
L̂6 −

L̂4

2

)
(mu +md +ms)−

L̂5

12
(mu +md + 4ms)

+L̂7
(mu +md − 2ms)2

mu +md + 4ms
+ L̂8

m2
u +m2

d + 4m2
s

mu +md + 4ms

]
, (4.29)

m2
η′ =

2

3

f 2

f ′2B0(mu +md +ms)

×
[
1 +

(
L̂7 + L̂6 −

L̂5

6
− L̂4

2

)
(mu +md +ms) + L̂8

m2
u +m2

d +m2
s

mu +md +ms

]
,

(4.30)

where L̂i ≡ 32B0Li/f 2 and we neglect the mass mixing between neutral

mesons, π0, η and η′. In fact, there are the pion loop effects in the mass

formulae. However, we attempt to investigate with the heavy meson effective

theory later and need to obtain the method which is simpler than and is

consistent with the previous research [34].

The quantum electrodynamics (QED) correction to the mass squared of

the meson P is proportional to the square of its charge QP as [35]

m̂2
P = m2

P + e2Q2
PC, (4.31)

where C is a constant and m̂ means the observable mass, which is measured

by experiments. If the QED correction is turned off, π+ and π0 become

degenerate in the leading order, O(p2). Therefore the quantity e2C can

be determined to good approximation from the observed value as e2C ≡
m̂2

π± − m̂2
π0 .

To obtain the values of light quark masses at the energy scale where

the effective theory is applicable, we fit the light quark masses with the
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mass formulae of mesons in the leading order including the QED corrections

and with the value of B0 given by the lattice calculations under the non-

perturbative RI-MOM renormalization scheme in [36]1:

mu = 2.78± 0.19 MeV,

md = 4.97± 0.34 MeV,

ms = 100.4± 6.8 MeV.

(4.32)

These results are consistent with the quark mass ratio mu/md given by the

lattice calculation in [37]. The parameters are fitted order by order in a spirit

of chiral expansion theory. Once the light quark masses are determined at

the leading order, the freedom of the instanton transformation is fixed, since

the effective theory up to the leading order does not have an invariance under

the instanton transformation. The instanton corrections are included in the

next-to-leading order terms.

Now we are going to determine the values of L5, L8, and L7 in order by

using the observable masses and the decay constants. The quantity L5/f 2

can be fixed by using the formulae of decay constants in the next-to-leading

order, O(p4), as

L5

f 2
=

fK± − fπ±

fπ±

1

4(m̂2
K± − m̂2

π±)
, (4.33)

where

fπ± = f

[
1 +

8B0L4

f 2
(mu +md +ms) +

4B0L5

f 2
(mu +md)

]
,

fK± = f

[
1 +

8B0L4

f 2
(mu +md +ms) +

4B0L5

f 2
(mu +ms)

]
. (4.34)

The experimental values

fπ± = 92.4± 0.2 MeV,

fK± = 113.0± 1.0 MeV, (4.35)

1The quark masses are usually given in the MS renormalization scheme. In our present

work we do not need to take the MS scheme, since we do not use the values in eq.(4.32)

to compare with other determinations of the quark masses.
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are obtained from the decay processes π+ → µ+νµ, µ+νµγ and K+ →
µ+νµ, µ+νµγ, respectively [38], and we obtain

L5

f 2
= (2.5± 0.1)× 10−7 MeV−2. (4.36)

We can determine L8/f 2 from the O(p4) relation

m2
K0 −m2

K±

m2
π±

=
m̂2

K0 − m̂2
K± + m̂2

π± − m̂2
π0

m̂2
π0

=
md −mu

md +mu

[
1 +

(
16L8

f 2
− 8L5

f 2

)
(m̂2

K± + m̂2
K0 − m̂2

π±)

]
(4.37)

as

L8

f 2
= (1.24± 0.06)× 10−7 MeV−2, (4.38)

with the quantity

R ≡ md +mu

md −mu
= 3.53± 0.01 (4.39)

determined at the leading order. At the next-to-leading order, we can derive

the relation

2m2
K± + 2m2

K0 −m2
π± − 3m2

η

m2
η −m2

π0

=
2m̂2

K± + 2m̂2
K0 − 2m̂2

π± + m̂2
π0 − 3m̂2

η

m̂2
η − m̂2

π0

=
8

f 2
(L5 + 6L7 + 3L8)(3m̂

2
π0 − m̂2

K± − m̂2
π0 − m̂2

K0)

−48

f 2
L5

(m̂2
π0 − m̂2

K0)(m̂2
π± − m̂2

K±)

3m̂2
π0 − m̂2

K± − m̂2
π0 − m̂2

K0

(4.40)

neglecting mass mixing of neutral mesons and we finally obtain

L7

f 2
= (−5.1± 0.3)× 10−8 MeV−2. (4.41)
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On the assumption, which is conservative in extracting the possible mag-

nitude of the instanton effect, that all the value of L7 is produced by the

instanton dynamics, we have

ωmax = 0.4± 0.1, (4.42)

using eq.(4.21) with the result of the lattice calculation of f = 54.1±4.0 MeV

[36]. The error of the omega parameter is mainly from the error of quark

condensate given by the lattice calculations. This conservative maximum

value of ω can not reproduce the situation mu = 0 with a sufficiently large

value of meff
u in Meff in eq.(4.17), and, thus, be a solution to the strong CP

problem. In fact, the instanton effect can generate

meff
u = 1.93± 0.18 MeV, (4.43)

when mu = 0 in eq.(4.17). This value differs from the value in eq.(4.32) by

about 4.7σ, and mu = 0 is not the solution to the strong CP problem.

Since L8 does not seem to directly represent the effect of the ’t Hooft

vertex, the coupling L8 would not be produced dominantly by the instanton

effect. However, it is transformed under the instanton transformation, and

therefore an evaluation of the maximum omega parameter is possible with

L8. We obtain

ωmax = 0.5± 0.1. (4.44)

Note that in this case we do not need to neglect neutral meson mixing which

is necessary for L7. Since L8 can have this the contribution without instan-

ton dynamics, eq.(4.44) gives a “weak constraint” on the maximum omega

parameter. The instanton-induced mass correction gives

meff
u = 2.33± 0.20 MeV, (4.45)

when mu = 0. This value differs from the value in eq.(4.32) by about 2.3σ,

and mu = 0 is not favored as a solution to the strong CP problem. We

have confirmed this known result in a simple way without the loop effects of

the pseudo-Nambu-Goldstone bosons, which could be large contributions in

chiral perturbation theory. These results [39] are consistent with the result
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Table 4.1: The results determined using two the different renormalization

schemes. The errors of results, which are determined with the MS scheme

at the energy scale 2 GeV, is larger than ones with RI-MOM scheme due to

error propagation from the conversion factor.

the coupling RI-MOM scheme MS scheme

ωmax meff
u [MeV] ωmax meff

u [MeV]

using L7 0.4± 0.1 1.93± 0.18 1.7± 0.3 1.80± 0.23

using L8 0.5± 0.1 2.33± 0.20 2.0± 0.3 2.20± 0.27

mu [MeV] 2.78± 0.19 2.60± 0.29

mu/md ̸= 0 by Leutwyler in [34], which supports the validity of our simple

estimate. These our results indicate that the instanton effect is small.

Finally, we make a comment on the conversion from the result using the

RI-MOM renormalization scheme to the result using the MS renormalization

scheme. As we mentioned, the value of B0 is determined with the RI-MOM

renormalization scheme. The quantity with the MS renormalization scheme

is obtained by multiplying the conversion factor. Since the conversion factor

has an error, it propagates to the results with the MS scheme so that our

claim becomes milder as shown in Table 4.1.
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Chapter 5

Heavy meson sector

In a system with a single heavy quark and light constituents at low energy, the

properties of the system cannot be calculated analytically in a perturbative

way from the first principles because of the asymptotic freedom in QCD.

In the heavy quark mass limit MQ → ∞, the exact symmetries arise. In

fact, these symmetries are approximate symmetries because the heavy quark

masses are finite and are much larger than the typical energy scale of strong

interaction in the system.

On the basis of a concept of the symmetries related to invariance under

the heavy quark spin and flavor transformations and of the chiral symmetry

related to the light constituents, we can construct an effective theory which

describes the heavy meson system [40, 41, 42]. In fact, the symmetries is

broken due to the finiteness of heavy quark mass.

On the other hand, the instanton-induced effect gives a correction of

next-to-leading order in the expansion in the light quark mass matrix, M.

In order to discuss the size of the instanton-induced effect as shown in the

light meson sector, we construct the effective Lagrangian up to O(p4) in the

chiral expansion in the heavy meson effective theory and we use only heavy

meson mass spectrum.

For simplicity, the subscript QCD in ΛQCD is sometimes omitted in the

following formulae.
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Figure 5.1: A hadronic system containing a single heavy quark and light

degrees of freedom. Since the quark is sufficiently heavy, the heavy quark

behaves as a static source of color localized at the origin and the light quark

and gluonic degrees of freedom are distributed around the source.

5.1 Realization of heavy quark symmetry

We consider systems of hadrons contained a single heavy quark Q and light

constituents at low energy. A physical picture of the system can be ex-

pressed as the heavy quark surrounded by strongly interacting “clouds” of

light quarks, anti-quarks and gluons. These clouds are referred to as “light

degrees of freedom” (see Fig.5.1).

The typical momentum transfer between the heavy and the light degrees

of freedom are of order ΛQCD. Namely,

∆p = ∆(MQv) ∼ ΛQCD, (5.1)

where ∆p is the transfer momentum and v is the four-velocity of the heavy

quark normalized by the on-shell condition

vµv
µ = 1. (5.2)

Since the heavy quark mass MQ is much greater than the scale ΛQCD of the

strong interaction, the change of the four-velocity is small so that the heavy
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quark behaves as a static color triplet and light degrees of freedom follow the

equations of QCD with the boundary condition in the system. The strong

interaction cannot distinguish quark flavors. When the heavy quark flavor

is replaced with one another, the solutions for light degrees of freedom are

the same. Therefore, the light degrees of freedom are symmetric under an

isospin-like rotation of heavy quark flavor.

The current can be decomposed with the Gordon identity as

ū(p′)γµu(p) =
1

2MQ
ū(p′) [(p′ + p)µ + iσµν(p′ − p)µ] u(p), (5.3)

where u denotes the heavy quark spinor and σµν = i[γµ, γν ]/2. In case of

MQ ≫ ΛQCD, this current becomes the spin-independent interaction since

the first term in the right-handed side of eq.(5.3) is of order 1, p′ + p ∼ MQ,

and the second term is of order of ΛQCD/MQ, p′ − p ∼ ΛQCD, and vanishes

in the limit. That is to say, the systems which contain heavy quark with

difference of spin are degenerate.

The heavy quark is affected by surrounding light degrees of freedom so

that the heavy quark becomes off-shell and its momentum can be expressed

pµQ = MQv
µ + kµ, (5.4)

where the residual momentum kµ is of the order of ΛQCD. The quark propa-

gator becomes

i

/pQ −MQ
=

(MQ/v + /k +MQ)

M2
Q + 2MQv · k + k2 −MQ

→ i

v · k
1 + /v

2
(5.5)

in the leading order of the 1/MQ expansion. A velocity-dependent projection

operator in the propagator

1 + /v

2
(5.6)

projects onto the particle components of the four-component Dirac spinor in

the rest frame of the heavy quark. To obtain the Feynman rule for the heavy

quark-gluon vertex, we see the vertex sandwiched between quark propagators.

Since the propagator is proportional to (1+/v)/2, the factor of γµ in the vertex
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can be replaced by vµ as

i

v · k
1 + /v

2
igγµT

a i

v · k
1 + /v

2

=
i

v · k
1 + /v

2
igvµT

a i

v · k
1 + /v

2
(5.7)

where T as are the generators of the color gauge group. We also see the vertex

sandwiched between Dirac spinors of quarks. From Dirac equation,

(/pQ −MQ)u(pQ) = 0 → (/v +
/k

MQ
− 1)u(pQ) = 0 (5.8)

therefore,

/vu(pQ) = u(pQ) +O(ΛQCD/MQ), (5.9)

namely, in the leading order, the heavy quark spinor satisfies

1 + /v

2
u(pQ) = u(pQ). (5.10)

It follows that

ū(p′Q)igγµT
au(pQ) = ū(p′Q)

1 + /v

2
igγµT

a1 + /v

2
u(pQ)

= ū(p′Q)
1 + /v

2
igvµT

a1 + /v

2
u(pQ)

= ū(p′Q)igvµT
au(pQ) (5.11)

due to the factor of (1 + /v)/2 and the case that the vertex is sandwiched

between a quark propagator and a spinor results in the same conclusion.

The Feynman rule for the vertex is given by

igvµT
a (5.12)

and for the propagator simplifies to

i

v · k (5.13)

since the factor of (1 + /v)/2 can be absorbed into the heavy quark spinor.

We introduce an effective field h(Q)
v (x) as

ψ(x) = e−iMQv·xh(Q)
v (x) +O(ΛQCD/MQ) (5.14)
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and substituting it for QCD Lagrangian gives an effective Lagragian which

derives the Feynman rules as we saw above. In the leading order, the effective

Lagrangian is

Leff
v = h̄(Q)

v (x)eiMQv·x(i /D −MQ)e
−iMQv·xh(Q)

v (x)

= h̄(Q)
v (x)[MQ(/v − 1) + i /D]h(Q)

v (x) (5.15)

so that the equation of motion for the heavy quark is

[MQ(/v − 1) + i/∂]h(Q)
v = 0. (5.16)

In the leading order of the 1/MQ expansion, the effective field satisfies

1 + /v

2
h(Q)
v = h(Q)

v , (5.17)

and then the effective Lagrangian becomes independent of heavy quark masses

MQ. Furthermore, with eq.(5.17), the effective Lagrangian can be reduced

to

Leff
v = h̄(Q)

v (x)
1 + /v

2
iDµγµ

1 + /v

2
h(Q)v(x)

= h̄(Q)
v (x)

1 + /v

2
iDµvµ

1 + /v

2
h(Q)v(x)

= h̄(Q)
v (iD · v)h(Q)

v (x). (5.18)

We can verify that this effective Lagrangian reproduces the Feynman rules

eq.(5.12) and eq.(5.13). If there is more than one heavy quark flavor, the

effective Lagrangian at the leading order in ΛQCD/MQ is

Leff =

Nf∑

i=1

h̄(i)
v (x)(iD · v)h(i)

v (x), (5.19)

where Nf is the number of heavy quark flavors and the heavy quarks have

the same four-velocity v. The effective Lagrangian in (5.19) is independent of

the masses and spins of the heavy quark, that is, has a spin-flavor symmetry.

5.2 Construction of heavy meson effective

Lagrangian

The total angular momentum of the hadron J is conserved. In the heavy

quark mass limit, since the spin of heavy quark SQ is conserved, the spin of
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the light degrees of freedom defined by

Sl ≡ J− SQ (5.20)

is also conserved when the orbital angular momentum L = 0. The total spin

of light degrees of freedom is good quantum number in heavy hadrons. We

define the quantum numbers j, sQ and sl as the eigenvalues j(j+1), sQ(sQ+1)

and sl(sl + 1) for J2, S2
Q and S2

l in the heavy hadron state, respectively. In

the heavy Q̄q meson systems, the light degrees of freedom must have the

quantum numbers of a single quark q. Since the ground state mesons consist

of a heavy quark with sQ = 1/2 and light degrees of freedom with sl = 1/2,

they come in doublets with spin

j =
1

2
⊗ 1

2
= 0⊕ 1, (5.21)

which have negative parity because the Q̄ and q have opposite intrinsic parity.

The states with j = 0 are pseudoscalar mesons and those with j = 1 are

vector mesons. These doublets are degenerate in the heavy quark mass limit.

When Q̄ is an anti-charm quark, these states are D̄ and D̄∗ mesons, and when

Q̄ is an anti-bottom quark, these states are B and B∗ mesons.

In the heavy meson effective theory, a formalism is employed, in which

the entire multiplet of degenerate states is treated as a single object, Hv,

that transforms linearly under the heavy quark spin-flavor symmetry. Heavy

mesons are described by the effective field

Hv(x) =
1 + /v

2
[P ∗

vµ(x)γ
µ + iPv(x)γ5], (5.22)

where vµ is the velocity of the heavy meson, and Hv has mass dimension 3/2.

With two heavy flavors, c and b, and three light flavors, u, d and s, the fields

P ∗
v and Pv include six heavy-light vector and six heavy-light pseudoscalar

mesons

P (∗)
v =

(
D(∗)

u D(∗)
d D(∗)

s

B(∗)
u B(∗)

d B(∗)
s

)
. (5.23)

The fields Bu, Bd and Bs correspond to the mesons B+, B0 and B0
s , re-

spectively. The field Hv is transformed under the spin-flavor SU(4) transfor-

mation, which can be decomposed by spin SU(2)s and heavy flavor SU(2)f
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transformations, as

Hv → SHv, (5.24)

Hv → zHHv, (5.25)

where S ∈ SU(2)s act on the spinor index and zH ∈ SU(2)f act on the heavy

flavor index. The field is also transformed under the chiral SU(3)L×SU(3)R×
U(1)A transformation as

Hv → Hvh(Π, VL, VR)
†. (5.26)

The parity transformation and charge conjugation are defined as follows,

PHv(x)P† = γ0HvP (xP )γ
0, (5.27)

CHv(x)C† = C(H̄−v(x))
TC†, (5.28)

where vP = (v0,−v), xP = (x0,−x) and C = iγ2γ0. We need to introduce

M(x) = ξ†(x) exp

(
−iη′√
6f ′

)
χξ†(x) exp

(
−iη′√
6f ′

)
(5.29)

to describe chiral symmetry breaking by the masses of light quarks and it is

transformed

M(x) → h(Π, VL, VR)M(x)h(Π, VL, VR)
† (5.30)

under the chiral transformation, if light quark masses transform appropri-

ately. This is also transformed under the parity transformation and charge

conjugation as

PM(x)P† = M †(xP ), (5.31)

CM(x)C† = MT (x). (5.32)

The effective Lagrangian can be obtained by imposing the chiral symme-

try, spin-flavor symmetry, and invariance under the parity transformation,

charge conjugation and Hermite conjugation. The effect of spin-flavor sym-

metry breaking is included by introducing the matrix

1

MQ
≡

⎛

⎜⎜⎜⎝

1

Mc
0

0
1

Mb

⎞

⎟⎟⎟⎠
, (5.33)
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where Mc and Mb are charm and bottom quark masses, respectively. Since

we consider the situation that the heavy quark masses are much larger than

the typical QCD scale, Λ, the effective Lagrangian is expanded in powers of

Λ/MQ. We do not consider the terms which includes derivatives on Hv, since

we are going to analyse only the masses of heavy mesons. We write down

non-derivative part of the effective Lagrangian up to O(Λ/MQ) in the Λ/MQ

expansion and O((mq/Λ)2) in the chiral expansion

Lmass
v = Λ

〈
tr[H̄vHv]

〉
+ Lmass

(Λ/M) + Lmass
(m/Λ) + Lmass

(Λ/M)(m/Λ) + Lmass
(Λ/M)2

+O
((

Λ

MQ

)2
)
, (5.34)

where

Lmass
(Λ/M) = κ′Λ

〈
tr[H̄v

Λ

MQ
Hv]
〉
+ κΛ

〈
tr[H̄v

Λ

MQ
σρσHvσ

ρσ]
〉
, (5.35)

Lmass
(m/Λ) =

χ1

Λ

〈
tr[H̄vHv]

〉〈
M +M †

〉
+
χ2

Λ

〈
tr[H̄vHv](M +M †)

〉
, (5.36)

Lmass
(Λ/M)(m/Λ) =

a1
Λ

〈
tr[H̄v

Λ

MQ
Hv]
〉〈

M +M †
〉
+

a2
Λ

〈
tr[H̄v

Λ

MQ
Hv](M +M †)

〉

+
b1
Λ

〈
tr[H̄v

Λ

MQ
σρσHvσ

ρσ]
〉〈

M +M †
〉

+
b2
Λ

〈
tr[H̄v

Λ

MQ
σρσHvσ

ρσ](M +M †)
〉
, (5.37)
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and

Lmass
(Λ/M)2 =

K1

Λ3

〈
tr[H̄vHv]

〉〈
M
〉〈

M †
〉

+
K2

Λ3

{〈
tr[H̄vHv]M

〉〈
M †
〉
+
〈
tr[H̄vHv]M

†
〉〈

M
〉}

+
K3

Λ3

{〈
tr[H̄vHv]MM †

〉
+
〈
tr[H̄vHv]M

†M
〉}

+
K4

Λ3

〈
tr[H̄vHv]

〉{〈
MM +M †M †

〉}

+
K5

Λ3

〈
tr[H̄vHv]

〉{〈
M
〉〈

M
〉
+
〈
M †
〉〈

M †
〉}

+
K6

Λ3

{〈
tr[H̄vHv]M

〉〈
M
〉
+
〈
tr[H̄vHv]M

†
〉〈

M †
〉}

+
K7

Λ3

{〈
tr[H̄vHv]MM

〉
+
〈
tr[H̄vHv]M

†M †
〉}

. (5.38)

Here σρσ = i[γρ, γσ]/2 and the couplings κ′, κ, χi, ai, bi and the seven

couplings Ki are dimensionless parameters. A possible term

K0

Λ

〈
tr[H̄vHv]

〉〈
M †M +MM †

〉
(5.39)

can be absorbed into the first term in Lmass
v due to unitarity of ξ. The terms

with coupling Ki in Lmass
(Λ/M)2 gives a complete collection of terms of O(p4)

without derivatives [39], though some of the terms have already been given

by [43]. The order (Λ/MQ)2 terms, which could give the contribution of the

same order of O(p4) terms, are irrelevant to our present analysis, since we

are not going to consider the mass differences between heavy pseudoscalar

mesons and heavy vector mesons.

The heavy meson effective Lagrangian has also the invariance under the

instanton transformation of eq.(4.20) with

K4 → K4 +
χ1 + χ2

2
ω,

K5 → K5 −
χ1 + χ2

2
ω,

K6 → K6 + χ2ω,

K7 → K7 − χ2ω.

(5.40)
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This invariance can be shown by using eq.(4.22). The terms with couplings

K4, K5, K6 and K7 break U(1)A symmetry, because M is transformed under

the U(1)A axial transformation (note that in eq.(5.29) η′ transforms as η′ →
η′ +

√
6f ′θA/2 and χ is invariant since it is essentially the mass matrix).

Remember that the instanton effect breaks U(1)A symmetry, and in fact,

these couplings are sensitive to the instanton transformation. On the other

hand, the other terms of K1, K2 and K3 are invariant under U(1)A axial

transformation, and they are insensitive to the instanton transformation.

In the following, we fit a combination of couplings, K3+K7, which is sen-

sitive to the instanton correction using the well-known masses of pseudoscalar

B mesons only.

5.3 Constraints in heavy meson system

We obtain the pseudoscalar B meson mass formulae from eq.(5.34)

M2
Bq

= M2
b

[
1 +

Λ

Mb

{
2 + 2 (κ′ + 6κ)

Λ

Mb

+8

(
χ1 + a1

Λ

Mb
+ 6b1

Λ

Mb

)
B0

Λ

mu +md +ms

Λ

+8 (K1 + 2K5)
B2

0

Λ2

(mu +md +ms)2

Λ2
+ 16K4

B2
0

Λ2

m2
u +m2

d +m2
s

Λ2

}

+
Λ

Mb

{
8

(
χ2 + a2

Λ

Mb
+ 6b2

Λ

Mb

)
B0

Λ

+16 (K2 +K6)
B2

0

Λ2

mu +md +ms

Λ

}
mq

Λ

+
Λ

Mb
16 (K3 +K7)

B2
0

Λ2

m2
q

Λ2

]
+O

((
Λ

MQ

)2
)
, (5.41)

where q is the light flavor index, u, d and s [39]. In this heavy meson mass

formulae, we see that the couplings K5 and K6 describe the direct contri-

bution of the instanton-induced mass like Fig.4.1, though the couplings K4

and K7 should be also sensitive to the instanton transformation. This is the
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same argument as that on L6, L7 and L8 in previous chapter. We can fit

χ2 =
Λ

4

M̂Bs − M̂Bd

m̂2
K± − m̂2

π±
= 0.065± 0.004, (5.42)

at O(p2). Up to O(p4) the meson mass differences are obtained as follows

MBs −MBd
=

B0(ms −md)

Λ

[
4χ2 + (4a2 + 24b2)

Λ

Mb

+ 8(K2 +K6)
B0(mu +md +ms)

Λ2
+ 8(K3 +K7)

B0(ms +md)

Λ2

]
,

(5.43)

and

MBd
−MBu =

B0(md −mu)

Λ

[
4χ2 + (4a2 + 24b2)

Λ

Mb

+ 8(K2 +K6)
B0(mu +md +ms)

Λ2
+ 8(K3 +K7)

B0(md +mu)

Λ2

]
.

(5.44)

Therefore, we can extract only one combination

K3 +K7

=
Λ3

8(m̂2
K0 − m̂2

π0)

{
M̂Bs − M̂Bd

m̂2
K± − m̂2

π±
− M̂Bd

− M̂Bu + (M̂Bu − M̂Bd
)EM

m̂2
K0 − m̂2

K± + m̂2
π± − m̂2

π0

}

−χ2

2

Λ2

m̂2
K± + m̂2

K0 − m̂2
π±

{
m̂2

K0 − m̂2
K± + m̂2

π± − m̂2
π0

m̂2
π0

md +mu

md −mu
− 1

}
,

(5.45)

where we have considered the QED correction to the masses of the charged

mesons. Substituting

(MBu −MBd
)EM = 2.09± 0.18 MeV, (5.46)

which is given by a theoretical calculation in [44], and the observed value of

the mass differences in [38], we obtain

K3 +K7 = −0.013± 0.007, (5.47)
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Since K7 does not seem to describe direct the contribution of the instan-

ton effect in the mass formulae of eq.(5.41), and since K3 does not transform

under the instanton transformation, we are going to discuss the “weak con-

straint” on the possible maximal value of the parameter ω. This should be

equivalent what we have obtained from L8 in the previous chapter. It can be

obtained as

ωmax = 0.2± 0.1, (5.48)

by using eqs.(5.40) and (5.42) and by assuming that all the values in eq.(5.47)

are produced by the instanton dynamics.

The constraint on the possible maximal value of the omega parameter can

be also evaluated in the heavy meson system. It is found that the constraint

on the instanton effect in the heavy meson system is as strong as that in the

light meson system. In this case, the instanton-induced effective up-quark

mass is given as

meff
u = 1.06± 0.50 MeV, (5.49)

when mu = 0 by eq.(4.17). This value differs from the value in eq.(4.32)

by about 3.4σ and the solution to the strong CP problem by mu = 0 is

disfavored [39]. Note that, if the sign of non-instanton K3 is opposite of

the sign of K7, we are overconstraining the instanton effect. To avoid this,

we must determine the value of K3, which should be future work. The

quantitative investigation of the contribution of instanton effects to K7 is a

future task. We believe that the value of K3 and K7 will be independently

extracted from the data by future experiments. Also note that, there would

be room for improvement to take into account some possible loop effects of the

pseudo-Nambu-Goldstone bosons as we have noted in previous chapter. Our

analysis using the heavy meson effective theory indicates that the instanton-

induced mass correction does not seem to be large enough to solve the U(1)A
problem.
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Chapter 6

Conclusion

We have investigated the light meson effective Lagrangian of the system

with pseudo Nambu-Goldstone bosons at low energies up to O(p4), and we

have confirmed that the effective Lagrangian is invariant under the instan-

ton transformation. This symmetry is the consequence of the fact that the

physics is independent of whether the instanton correction is included in χ

or L6, L7 and L8. We have evaluated the value of the coupling L7, which is

expected to be dominantly produced by the instanton dynamics. The maxi-

mum value of the omega parameter given in eq.(4.42) was calculated under

the assumption that the whole value of L7 is produced by the instanton dy-

namics. The result ωmax = 0.4± 0.1 cannot create the situation that mu = 0

could be a solution to the strong CP problem. In other words, the instanton

corrections to quark masses are too small to explain the strong CP problem.

The “weakly constrained” maximum omega parameter has been also calcu-

lated with the coupling L8 though the coupling might have the contribution

from the other non-instanton dynamics in QCD. The result in this case also

indicates that the instanton effect is small. We have confirmed this known

result in a simple way.

We have shown that the same analysis is possible for the heavy me-

son systems in Sec.5. We have constructed the heavy meson effective La-

grangian with chiral symmetry breaking up to O(p4) in the chiral expansion

(eq.(5.38)). This effective Lagrangian also is invariant under the instanton

transformation and we have identified the couplings which are non-trivially
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transformed under the instanton transformation. The bottomed pseudoscalar

meson mass formulae up toO(p4) have been derived in eq.(eq:heavymassformulae).

This was possible because their masses have already been measured well by

experiments and Λ/Mb expansion is more reliable than Λ/Mc expansion in

the heavy meson effective theory. Although we could only determine a combi-

nation ofK3+K7 (K3 is insensitive andK7 is sensitive to the instanton trans-

formation), the possible maximal value (“weak constraint”) ωmax = 0.2± 0.1

is obtained from the meson mass differences. It has been found that the con-

straint on the instanton parameter in the heavy meson system is as strong as

that in the light meson system. The development of the lattice calculations

is going to give a more precise omega parameter, since the error of the omega

parameter is mainly from the error of quark condensate given by the lattice

calculations.

Our results are obtained following the procedure based on a spirit of

the chiral expansion theory, where the parameters are fitted order by order.

When the light quark masses are fitted in the leading order, the freedom

of the instanton transformation is fixed. The instanton corrections are in-

cluded in the higher order terms. The instanton correction can be absorbed

into the leading order quark masses with a special instanton transformation

by which higher order couplings vanish under a conservative assumption of

dominance of the instanton contributions to the higher order couplings. The

value of ωmax corresponds to such an instanton transformation, and it can be

a measure of the magnitude of the instanton effect as well as meff
u .

The non-trivial vacuum structure in QCD is in the theory not in Minkowski

space-time but in Euclidean space-time. Whether the analytic continuation

can be done or not is an assumption. The proof of the validity seems to

be difficult. On the other hand, there are some attempts to investigate the

phenomenon induced by the non-trivial vacuum structure. No attempt has

succeeded in supporting the existence of the non-trivial vacuum structure in

QCD. Our analysis using heavy meson effective theory is not in favor of the

existence by showing that the instanton-induced effect cannot produce the

sufficiently large value of meff
u to solve the strong CP problem.

In the following, we point out the problems and future subjects of our

present analysis in order.
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We note that both the results in the light and heavy meson systems were

obtained under the assumption that the whole values of the corresponding

couplings were generated by the instanton dynamics only. If the contribution

of the non-instanton dynamics in QCD to the couplings in the effective theory

is large, especially if it cancels the contribution of the instanton dynamics,

our constraints do not apply.

In order to make the constraint more precise for heavy meson system, we

must determine the value of K3 independently. In the future, the informa-

tion of b-flavored vector meson masses given by experiments will enable us

to fit the couplings Ki more precisely and systematically. When we consider

the mass differences between the vector mesons and pseudoscalar mesons,

we need to include the O((Λ/Mb)2) terms in the heavy meson effective La-

grangian.

As a first step of the analysis, we have neglected, for simplicity, the chiral

symmetry breaking terms in the leading order in derivative of Hv, ⟨tr(Hv ·
∂H)⟩⟨M⟩ and ⟨tr(Hv · ∂H)M⟩, which require the field redefinitions, and the

mass formulae should obtain corrections. Again, we hope that the results of

the future B factory experiments will enable us to include these terms.

We also have neglected the loop effects of the pseudo-Nambu-Goldstone

bosons in chiral perturbation theory, because we have attempted to investi-

gate with the heavy meson and have needed to obtain the consistent method

which is simpler than [34]. We leave this problem as a future work.

According to [44], the masses of Bd and Bu are almost degenerate as a

result of the cancellation of two sources of isospin breaking: mass difference

of up- and down-quarks and the QED effect. This situation is very different

from that in light mesons or charmed mesons, π, K and D. The phenomena

should be studied more to obtain more precise input of the theoretical QED

effect.

In this thesis a new quantitative constraint on the instanton effect in the

heavy meson system has been given. We hope that future development of

this approach will help to verify the instanton effect experimentally.

65



Bibliography

[1] S. L. Glashow, Nucl. Phys. 22 (1961) 579.

[2] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.

[3] A. Salam, Conf. Proc. C 680519 (1968) 367.

[4] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1

[5] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30

[6] L. Evans and P. Bryant, JINST 3 (2008) S08001.

[7] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.

[8] H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.

[9] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, Phys.

Lett. 59B (1975) 85.

[10] S. Weinberg, Phys. Rev. D 11 (1975) 3583.

[11] G. ’t Hooft, Phys. Rept. 142 (1986) 357.

[12] J. S. Bell and R. Jackiw, Nuovo Cim. A 60 (1969) 47.

[13] S. L. Adler, Phys. Rev. 177 (1969) 2426.

[14] E. Witten, Nucl. Phys. B 149 (1979) 285.

[15] E. Witten, Nucl. Phys. B 156 (1979) 269.

[16] G. Veneziano, Nucl. Phys. B 159 (1979) 213.

66



[17] R. J. Crewther, Phys. Lett. 70B (1977) 349.

[18] F. Wilczek, Phys. Rev. Lett. 40 (1978) 279.

[19] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38 (1977) 1440.

[20] G. ’t Hooft, Phys. Rev. D 14 (1976) 3432 Erratum: [Phys. Rev. D 18

(1978) 2199].

[21] A. Ringwald and F. Schrempp, Phys. Lett. B 438 (1998) 217

[22] S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 34 (2004) 255

[23] C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 25 (2002) 495

[24] V. Andreev et al. [H1 Collaboration], Eur. Phys. J. C 76 (2016) no.7,

381

[25] D. G. Caldi, Phys. Rev. Lett. 39 (1977) 121.

[26] H. Georgi and I. N. McArthur, HUTP-81/A011.

[27] D. B. Kaplan and A. V. Manohar, Phys. Rev. Lett. 56 (1986) 2004.

[28] K. Choi, Nucl. Phys. B 383 (1992) 58.

[29] J. Goldstone, Nuovo Cim. 19 (1961) 154.

[30] C. G. Callan, Jr., S. R. Coleman, J. Wess and B. Zumino, Phys. Rev.

177 (1969) 2247.

[31] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164 (1988) 217.

[32] J. Gasser and H. Leutwyler, Nucl. Phys. B 250 (1985) 465.

[33] K. Choi, C. W. Kim and W. K. Sze, Phys. Rev. Lett. 61 (1988) 794.

[34] H. Leutwyler, Nucl. Phys. B 337 (1990) 108.

[35] R. F. Dashen, Phys. Rev. 183 (1969) 1245.

[36] C. Allton et al. [RBC-UKQCD Collaboration], Phys. Rev. D 78 (2008)

114509

67



[37] R. Horsley et al., J. Phys. G 43 (2016) no.10, 10LT02

[38] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40 (2016)

no.10, 100001.

[39] N. Kitazawa and Y. Sakai, Int. J. Mod. Phys. A 33 (2018) no.02, 1850017

[40] H. Georgi, Lectures at TASI, Published in Boulder TASI 91, 589 (HUTP-

91-A039).

[41] G. Burdman and J. F. Donoghue, Phys. Lett. B 280 (1992) 287.

[42] M. B. Wise, Phys. Rev. D 45 (1992) no.7, R2188.

[43] E. E. Jenkins, Nucl. Phys. B 412 (1994) 181

[44] J. L. Goity and C. P. Jayalath, Phys. Lett. B 650 (2007) 22

68


