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Abstract

Vertebrates basically reproduce sexually in which males and females contribute
their offspring genome and produce genetically diverse offspring. However, some of
them are asexual without genetic contribution from males. Asexual reproduction lacks
genetic diversity but is predicted to be advantageous for dispersal and for increasing
abundance relative to sexual reproduction because of no cost to mate between the sexes.

The nocturnal small gecko, Lepidodactylus lugubris, is all female and reproduces
parthenogenetically. This gecko is known to consist of diploid and triploid clones in the
tropical and subtropical regions, which can be identified by their dorsal marking
patterns, ploidy, or protein polymorphism. This gecko is also distributed in the southern
parts of Japan, and several clones have been reported particularly in the Daito Islands.
Moreover, the southern parts of Japan are often inhabited by this parthenogenetic gecko
and the sexually reproductive Hemidactylus frenatus. This situation offers a unique
opportunity to examine the relationships among sexuality and the abundance,
distribution, and genetic diversity of the two species. Therefore, in this study, the three
aims are addressed: (1) clonal discrimination using microsatellite analysis to examine
the origins and genetic diversity of Japanese L. lugubris, (2) comparisons of distribution
patterns and genetic population structures between asexual L. lugubris and sexual H.
frenatus to assess how benefit of asexual reproduction to dispersal, and (3) behavioral
observation in aggressive interactions for food among clones of L. lugburis to know
how clonal competition affects their microscale distribution patterns.

First, microsatellite and mitochondrial DNA analyses clarified the clonal
compositions of L. lugubris across Japan. A total of 748 individuals were collected from
21 islands of five island groups (Ogasawara, Okinawa, Miyako, Yaeyama, and Daito
Islands) and 17 clones (Clones O1, O2, M, T, and DI1-D13) were distinguished
genetically. Mitochondrial cyt b sequences of these clones suggested that they were all
closely related and differentiated recently. Clone diversity was much higher (14 clones)
in the Daito Islands than in the other island groups (1 or 2 clones there). Judging from
the dorsal marking patterns and ploidy, Clones Ol, O2, D12 and DI3 were the
cosmopolitan Clones A, C, and Bs, and Clones M and T were considered to be

colonized from the outsides. However, Clones D1 to D11 were endemic to the Daito



Islands and explained by hybridization between the female diploid Clone D1 (HI in
mtDNA) and male diploid Clone D2 (H2) because all Clones D3 to D11 were triploid
and had the combinations of polymorphic alleles of D1 and D2 in eight microsatellite
loci and haplotype H1. Although the males have never been found in Daito, there is a
possibility that the male existed or accidentally appeared in the past.

Next, a total of 445 geckos of parthenogenetic L. lugubris and bisexual H. frenatus
were collected across nine islands of the Ogasawara Islands. The population genetic
structures estimated using microsatellite markers revealed that L. lugubris which was
distributed on all nine islands, consisted of two clones, but H. frenatus, which was
limited to four islands, exhibited a great variation in population genetic structure among
islands, probably with some bottleneck effects. Thus, successful dispersal may be more
frequent in L. lugubris than in H. frenatus, and therefore the asexual reproductive
strategy of L. lugubris appears to have contributed to its dispersal success and increased
abundance among the small oceanic islands.

In the last, we observed aggressive behaviors for food between the two individuals
with different combinations of two clones (Clones O1, O2) of L. lugubris and male and
female H. frenatus. As a result Clone O2 was much less aggressive than Clone O1 and
also against H. frenatus. This behavioral tendency could help to explain the distribution
patterns of these geckos in the Ogasawara Islands where the habitats of Clone O1 of L.
lugubris and H. frenatus were biased towards the artificial environments such as house
walls, electric poles, and road guardrails, whereas those of Clone O2 were in natural
area such as forests, rock crevices, grasslands, and beaches.

These findings contribute to understand clonal diversity and dynamics of asexually
reproducing animals. If diploid parthenogenetic geckos can produce triploid clones by
mating the males, clonal diversity would increase rapidly in a small region and newly
produced clones expand widely. However, there may be behavioral interference and
competition among clones, which affect the clonal compositions and microhabitat

segregation.



1. General introduction

1-1. Background and aims

Parthenogenesis is an asexual reproduction in which development of embryos
occurs without fertilization (Beukeboom and Vrijenhoek, 1998). Parthenogenesis occurs
naturally in some invertebrate species but a few vertebrates such as some fish (Chapman
et al., 2007), amphibians (Bogart et al., 2007), reptiles (Ineich, 1989; Yamashiro et al.,
2000) and very rarely birds (Olsen, 1965). Nearly all arose from interspecific matings
which lead to hybrid genotypes sustained by non-recombinant reproductive processes
including true parthenogenesis, gynogenesis, and hybridogenesis (Vrijenhoek et al.,
1989).

All-female parthenogenetic species present a unique opportunity to test hypotheses
regarding the nature and evolution of sexuality. Although vertebrates are generally
gonochoristic, at least 27 species of reptiles are known to consist mostly or entirely of
females and to reproduce only clones of female offspring (Cole, 1975). In reptiles, most
species reproduce sexually, but parthenogenesis has been known to occur naturally in
certain species of whiptails, some geckos, rock lizards (Macculloch et al., 1997), and
Komodo dragons (Watts et al. 2006). Among them, the lizards belonging to the genera
Cnemidophorus and Lacerta have been well studied and much is known concerning the
genetics and ecology of parthenogenetic species (Cuellar, 1976; Mitchell, 1979). For
example, the whiptails of the genus Cnemidophorus have genetic or ecological diversity
despite that 15 species reproduce by parthenogenesis. All these asexual species appear
to have arisen through the hybridization of two or three sexual species in the genus,
which leading to polyploid individuals (Lutes et al., 2011). Because multiple
hybridization events can occur, each parthenogenetic species consists of multiple
independent asexual lineages. Different lineages have different genotypes.

Geckos also include relatively large number of parthenogenetic species such as
Lepidodactylus lugubris, Hemidactylus garnotii and Indotyphlops braminus, and several
studies have revealed their clone diversity and phylogenetic relationship with sexually
reproductive relatives (Kluge and Eckardt 1969; Ineich, 1989, 1999; Moritz et al., 1993;
Volobouev et al., 1993; Radtkey et al., 1995; Yamashiro et al., 2000; Kearney et al.,



2006; Roberts et al., 2012). However, such clonal polymorphisms have been still
unclear because little information is available regarding the modern genetics, ecology
and behavior of these clones.

Sexual reproduction is a potentially costly process for animals, although resulting in
the production of genetic diversity among the progeny of an individual. Since the rate of
adaptive evolution is a function of this diversity, the recombination of genes in sexual
lineages provides an obvious longterm benefit in a changing environment (Fisher, 1930;
Miiller, 1932). On the other hand, asexuality provides an immediate two-fold advantage
due to all female reproduction (Maynard Smith, 1978). Once an all-female lineage
arises and all other things being equal, it should replace its bisexual ancestors due to the
cost of producing males in the latter (Williams, 1975; Maynard Smith, 1978).
Parthenogenesis avoids not only the two-fold cost of sexual reproduction but also the
cost in failing dispersal to the place where the mate does not exist because all-female
species to produce offspring independently (Maynard Smith 1978; Neaves and
Baumann 2011). This strategy enables every member of the population to establish in a
new habitat. Thus, parthenogenetic reproduction is predicted to be advantageous in
increasing abundance and in dispersal.

However, all-female lineages have not completely replaced their bisexual ancestors
on broad geographical scales (Vrijenhoek 1989). This is because bisexual reproduction
has longterm benefits such as removing the accumulation of deleterious mutations from
the genome and preventing extinction of offspring from environmental changes and
diseases owing to their genetic diversity (Maynard Smith 1978).

In this study, the following three questions are addressed. The first is concerned to
the origins and genetic diversity (Chapter 2). Sexual populations have usually a greater
genetic diversity than clonal populations. If parthenogenetic lineages are produced at a
high rate and from various sources, their genetic diversity may reach levels comparable
to those of sexual populations (Simon et al. 2003). Therefore, determining distribution
patterns of each clone and genetic diversity among clones of a parthenogenetic species
is important. The second is concerned to the factors assessing costs and benefits of a
parthenogenetic species (Chapter 3). The parthenogenetic species is expected to expand
its distribution area more rapidly than the sexual species, because all individuals have

potential to reproduce without mating at newly colonized places. Therefore, the



comparisons of distribution patterns and genetic population structures between asexual
and sexual species in the same study area. The final question is whether behavioral
differences among clones affect the population dynamics and distribution patterns of a
parthenogenetic species (Chapter 4). This could in turn influence the outcome of clonal

competition with their sexual counterparts inhabiting the same area.

1-2. Parthenogenetic gecko Lepidodactylus lugubris

Lepidodactylus lugubris (Duméril et Bibron, 1836) is a nocturnal small gecko and
feeds mainly on arthropods but sometimes on nectar and ripe fruit (Nafus, 2012) (Fig.
1-1). The lectotype of this species was derived from Tahiti, French Polynesia (see
Torres-Carvajal, 2001). This species is all females and reproduces parthenogenetically,
consisting of diploid (2n = 2x = 44) and triploid (2n = 3x = 66) clones (Moritz and King,
1985; Volobouev et al., 1993; Ineich, 1999; Yamashiro et al., 2000). Each strain
includes a number of genetically divergent clones, some of which were identifiable
based on the dorsal color marking patterns (Ineich, 1988, Ineich 1999; Moritz et al.,
1993; Yamashiro et al., 2000). The diploid clones of L. lugubris were derived from
hybridizations between congeneric closely related bisexual species, and that the triploid
clones originated through back crosses between the diploid clones and males of parental
species (Moritz et al., 1993; Volobouev et al., 1993; Radtkey et al., 1995; Ineich, 1999;
Yamashiro et al., 2000). The parental species cohabited only on Arno Atoll of Marshall
Islands and therefore this place is thought to be the origin of L. lugubris (Radtkey et al.,
1995). This species expanded its distribution areas widely by accidental introduction by
human being or naturally occurred migration by driftwoods, and now is found on many
islands located all over Indian and Pacific Oceans and also on continental Asia and
middle America (Fig. 1-2). The eggs show salinity tolerance (Brown and Duffy, 1992).
At least five major clones of L. lugubris differing in ploidy and coloration (dorsal
marking pattern) are recognized by Ineich (1988, 1999). In Geckos, some species have a
XY or ZW sex determination system, but other species have temperature-dependent sex
determination (review by Gamble, 2010). Lepidodactylus is known to have ZW system
(Volobouev and Pasteur, 1988; Gamble, 2010).



Fig. 1-1. Lepidodactylus lugubris on Anijima in the Ogasawara Islands.



Fig. 1-2. Distribution (red circles) of Lepidodactylus lugubris (Duméril and Bibron,
1836; Girard, 1858; Bleeker, 1859; Fitzinger, 1861; Tytler, 1865; Stoliczka, 1870;
Ferguson, 1877; Macleay, 1877; Peters and Doria, 1878; Boulenger, 1885, 1887;
Garman, 1908; Werner, 1913; Taylor, 1918, 1953; Deraniyagala, 1929; Mertens, 1929;
Cagle, 1946; Brongersma, 1948; Gibson, 1950; Smith and Grant, 1961; Daan S and
Hillenius, 1966; Schauenberg, 1968; Cuéllar and Kluge, 1972; Henderson et al., 1976;
Brown and Parker, 1977; Mau, 1978; Cuellar, 1984; Gardner, 1985; Miiller, 1895;
Cheng, 1987; Jarecki and Lazell, 1987; Ota, 1987, 1989; Pasteur et al., 1987; Bauer and
Vindum, 1990; Henle, 1990; Case and Bolger, 1991; Zug, 1991; Roésler, 1992, 1995;
Gill, 1993; Ineich and Ota, 1993; Volobouev et al., 1993; Bauer and Sadlier, 1994,
2000; Hanley et al., 1994; Radtkey, 1995; Irschick et al., 1996; Mckeown, 1996; Turner
and Green, 1996; Barnett and Emms, 1997; Boissinot, et al., 1997; Manthey, 1997;
Sadlier and Bauer, 1997; Sengoku, 1998; Crombie and Gregory, 1999; Das, 1999, 2004;
Kikukawa, 1999; Cogger, 2000, 2014; Ferner et al., 2000; Ota et al., 2000; Swash and
Still, 2000; Grismer et al., 2002; Roll, 2002; Savage, 2002; Morrison, 2003; Van, 2003;
Goris and Maeda, 2004; Cooper, 2005; Rosler et al., 2005; Yamashiro and Ota, 2005;
McCoy, 2006, 2015; Zerbe, 2006; Bauer et al., 2007; Ziesmann et al., 2007; Buden,



2008, 2014, 2015a, b; Castro and Vargas, 2008; Kohler, 2008; Roll and Diiring, 2008;
Amarasinghe et al., 2009; Fujita and Moritz, 2009; Ineich, 2009, 2011, 2015; Sang et al.,
2009; Somaweera and Somaweera, 2009; Henderson, 2010; Venugopal, 2010; Gaulke,
2011; Grismer, 2011a, b; Lorvelec et al., 2011, 2017; Mcleod et al., 2011; Palacio et al.,
2011; Zug et al., 2011, 2012; Castro et al., 2012; Daza et al., 2012; Koch, 2012;
Niewiarowski et al., 2012; Brown et al., 2013; Gomes and Ibene, 2013; Parmentier et al.,
2013; Sunyer, 2014; Valencia et al., 2014; Zug and Hinrich, 2014; Chandramouli, 2015;
Hoogmoode et al., 2015; Jayaneththi et al., 2015; Jayaneththi, 2015; Jiménez and
Abarca, 2015; Sosa and Reyes, 2015; Trifonov et al., 2015; Buden and Taborosi, 2016;
Demangel, 2016; Jablonski, Angel, 2016; Krysko and MacKenzie, 2016; Supsup et al.,
2016; Senaris et al., 2017; Bosch and Paez, 2017).



2. Molecular discrimination and phylogeographic patterns of clones across the

Japanese Archipelago

2-1. Introduction

Lepidodactylus lugubris is now distributed widely in most islands and continental
parts of Indian and Pacific Oceans. In Japan, it is distributed in the Ryukyu Archipelago,
the Daito Islands, and the Ogasawara Islands (Ota, 1989, 1994; Yamashiro et al., 2000).
These Japanese areas are the northern limit of this gecko (Fig. 1-2 in Chapter 1) and
there the breeding is limited in the warm seasons (Sakai, 2016). Yamashiro et al. (2000)
revealed a great clonal diversity of L. /ugubris in Japan, which is largely attributable to
the surprisingly high diversity in the Daito Islands. However, in the Ogasawara Islands,
only two islands were studied and the genotypes were discriminated using 13 loci of
allozymes. In this study, we surveyed more islands than those studied by Yamashiro et
al. (2000) and the clones were identified by modern genetic analysis using both
mitochondrial DNA sequences and nuclear microsatellite markers. Such a detailed
survey for the clonal compositions of L. /ugubris enables us to compare clonal diversity
and distribution patterns of each clone across Japan, and to discuss their spatio-temporal
dynamics not only in Japan but also in Pacific Ocean using morphologically identified

clones of this species.

2-2. Materials and methods

We collected L. lugubris on 21 islands (Fig. 2-1): Anijima and Chichijima in March
2012, Anijima, Chichijima, Hahajima, Hirashima, and Iwoto in June and July 2012,
Anijima in August 2012, Nishijima and Chichijima in December 2012, Kitanoshima,
Mukojima, and Chichijima in July 2013, Kitadaitojima and Minamidaitojima in October
2013, Mukojima in December 2013, Kitanoshima in July 2014, Okinawa Island,
Iriomotejima, Kuroshima, Taketomijima and Ishigakijima in August 2014, Yomejima,
Mukojima, Nakoudojima and Chichijima in July 2015, Hahajima in August 2015,
Yonagunijima in October 2015, and Yomejima, Mukojima, Nakoudojima, Chichijima,

and Hahajima in August 2016, Miyakojima in February 2017, Zamamijima, Mukojima,



Nakoudojima, and Hyoutanjima in July 2017. On each island, efforts were made to
collect samples from as many types of habitats as possible (e.g., illuminated houses,
uninhabited constructions, and trees) to avoid sampling bias to particular clones,
because different clones may have differential habitat preferences (Bolger and Case,
1994). Individual dorsal color patterns of field-caught L. /ugubris were observed and
recorded as photographs, and later distinguished using the reference name for each color
morph described by Ineich (1988), Ineich and Ota (1992), Moritz et al. (1993), and
Yamashiro et al. (2000). To extract the total genomic DNA, the tail tips were cut and
preserved in 99.5% ethanol. Soon after these procedures, individuals were all released at

the captured points.

Microsatellite DNA analysis

Total genomic DNA was extracted from the preserved tail tips using a DNeasy
Blood and Tissue Kit (Qiagen, Hilden, Germany). Eight microsatellite loci, L101, L102,
L105, L106, L107, L108, L109 and LI110, were amplified using the primer sets of
Wilmbhoff et al. (2003) (Table 2-1). Microsatellite regions were amplified by T100TM
thermal cycler (Bio-Rad, Hercules, CA, USA) using ExTaq®(Takara, Tokyo, Japan).
The PCR reaction mix (total volume, 10 pl) contained of 1.0 ul 10x Extaq Buffer, 0.8 pl
25 mM dNTP mix, 0.5 pl fluorescent (6-FAM) forward primer (10 pM), 0.5 ul reverse
primer (10 pM), 0.05 pl Taq polymerase, 6.15 pl distilled deionized water, and 1.0 pl
template DNA. PCR conditions were as follows; an initial denaturation of 94°C for 3
min, 35 cycles of 95°C for 30 s, 54°C (in L109), 56°C (in L101, 02, 05, 06, 08 and 10),
or 62°C (in L107) for 40 s, and 72°C for 40 s. An initial single step of 94°C for 4 min
and a final single step of 72°C for 5 min were also included. Then, 1 pL product was
added to 9 pL loading mix containing a GeneScan' 500 Liz® Size Standard (Applied
Biosystems, Foster City, CA, USA) and Hi-Di Formamide (Applied Biosystems). This
mixture was analyzed using an ABI 3130xl Genetic Analyzer (Applied Biosystems).

Allele lengths were scored using Peak Scanner version 1.0 (Applied Biosystems).

Mitochondrial DNA analysis
The 448-bp fragments of the mitochondrial cytochrome b (cyt b) DNA were
amplified using Ex Taq® (TaKaRa) with primers: L15175
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5’-GTGCAACYGTTATTACTAA-3’and HI15725
5’-CATCCAATCCATAATAAAGCAT-3’ (Ricklefs et al., 2002). The PCR reaction
mix (total volume 10 pL) contained 1.0 uL 10x Ex Taq Buffer, 0.8 pL 25 mM dNTP
mix, 0.5 pL each of the forward and reverse primers (10 pM), 0.05 pL Taq polymerase,
6.15 puL distilled deionized water, and 1.0 pL template DNA. Using a T100™ thermal
cycler (Bio-Rad), the PCR protocol was as follows: an initial 10-min denaturing step at
95°C, 30 cycles of 60 s at 95°C, 60 s at 95°C, 60 s at 53°C, and 120 s at 72°C, with a
final 10-min extension at 72°C. The PCR products were purified with Illustra™
ExoStar'™ 1-Step (GE Healthcare, Buckinghamshire, UK) and sequenced using BigDye
Terminator ver. 3.1 (Applied Biosystems) on an ABI 3130x1 Genetic Analyzer (Applied
Biosystems).

Direct sequencing data were aligned with the sequences of other species of the
family Gekkonidae deposited in GenBank (Table 2-2), using MEGA6 (Tamura et al.,
2013). Phylogenetic analyses of the aligned sequences were performed with the
neighbor-joining (NJ) method based on p-distance and the maximum likelihood (ML)
estimation based on Tamura-Nei model (Tamura and Nei, 1993) using MEGA 6
(Tamura et al., 2013). The best-fit nucleotide substitution model was estimated based on
the Bayesian Information Criterion (BIC: Schwarz, 1978) using MEGA 6 (Tamura et al.,
2013).

2-3. Results

Genetic discrimination of clones

A total of 748 individuals were collected on 21 islands across Japan, 548 of which
were from the Ogasawara Islands, 12 from the Okinawa Islands, 101 from the Yaeyama
Islands, one from the Miyako Islands, and 86 from the Daito Islands (Table 2-3). These
individuals were all successfully genotyped by 8 loci of microsatellite DNA, and 17
clones named O1, 02, M, T, and D1-D13 were discriminated by the combinations of
these microsatellite alleles (Table 2-4). The maximum number of alleles observed in
each microsatellite locus suggested that Clones Ol, D1 and D2 are diploid and the
others are triploid (Table 2-4). Dorsal marking patterns were compared for 656

individuals obtained on 19 of 21 islands, because only the tissue samples of tail tips
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were available for some individuals on five islands in Ogasawara (Table 2-3).

Mitochondrial cyt b sequences were conducted for a total of 331 individuals
covering all islands (Table 2-3). Base substitutions occurred only at five positions of
448 bp, producing five haplotypes H1-HS5 (Table 2-5). These haplotypes were very
close to each other in the phylogenetic tree of species within the subfamily Gekkoninae,
although no sequence data were available for other Lepidodactylus species and clones
(Fig. 2-3). Clones O2, D1, D3-D13 shared the same haplotype H1, but others had each
specific haplotype; H2 in Clone D2, H3 in Clone O1, H4 in Clone T, and H5 in Clone
M (Table 2-4).

Dorsal marking patterns differed among clones and seemed to be stable within the
same clone (Fig. 2-2). Clone O1 had the dorsal marking pattern characterized by two
simple rows of V shaped markings on the dorsum. Clone O2 had two pairs of additional
large dark markings at the lateral sides compared with Clone O1. Clone M had black
dots on the dorsal body, but Clone T lacked dorsal markings other than dorsolateral
black dots on the neck and the basal part of tail. In Clone D1, the dorsal marking pattern
consisted of lateral black bars from the neck to the basal part of tail, chevrons and short
bars alternating with each other along the mid-dorsal line, and a relatively distinct
W-shaped mark on the neck. This pattern was same in Clone D2, but Clone D2 had
V-shaped marking instead of second chevron. Clones D3 to D5 had basically the same
dorsal pattern; relatively large black bars from the neck to the basal part of tail and a
W-shaped mark on the neck. However, there were the two dorsolateral rows of bold
crescent shaped black spots on the body in Clone D3 and four rows in Clones D4 and
D5. The angles of these dark spots differed between Clones D4 and D5. Clone D6 was
characterized by the horizontally arranged black dots on the body. Clones D7 to D10
had also black markings from the neck to the basal part of tail, but no W-shaped mark
on the neck. Asymmetrical black markings on the dorsal body were also characteristic
to these four clones, but distinguished to each other by clone-specific positions of these
markings. Clone D11 was unique in its marking patterns consisting of only of lateral
black bars from the neck to the basal part of tail. Clones D12 and D13 had two rows of
black spots on the mid-dorsal side of the body, but asymmetric markings differed

between them.

12



Clonal compositions in five island groups
(1) The Ogasawara Islands

Only two clones were obtained; 405 (73.91%) of 548 were Clone A, and the
remainings (26.09%) were Clone C (Table 2-6). Clone A was dominated on the two
large human-inhabited islands, Chichijima and Hahajima, whereas Clone C was slightly

dominated on the non-human-inhabited islands (Fig. 2-1).

(2) The Okinawa Islands
All 10 individuals from Okinawajima and 2 individuals from Zamamijima were all

identified Clone C (Table 2-6, Fig. 2-1).

(3) The Miyako Islands
Only one individual was collected on Miyakojima. She was Clone M endemic to

this island (Table 2-6, Fig. 2-1).

(4) The Yaeyama Islands
Two clones were obtained in this island group; 99 (98.02%) of 101 individuals
were Clone C and only 2 (1.98%) of them were Clone T endemic to Taketomijima

(Table 2-6, Fig. 2-1).

(5) The Daito Islands
A total of 28 individuals on Kitadaitojima and 58 on Minamidaitojima were
distinguished into 14 clones, C and D1 to D13 (Table 2-6, Fig. 2-1). Clones D1 to D13

were endemic to this island group.
2-4. Discussion
2-4-1. Clone identification
Our genetic analyses showed that there are 17 clones of all-female parthenogenetic
L. lugubris in Japan. Clone O1 was limited to the Ogasawara Islands and most dominant

there (Table 2-6, Fig. 2-1). This clone was identified as previously known Clone A
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because it was diploid (Table 2-4) and the dorsal marking pattern was characterized by
two simple rows of V shaped markings on dorsum (Fig. 2-2) (Ineich, 1988, 1999;
Yamashiro et al., 2000). This Clone A is widely distributed in Pacific and Indian
Oceans (Moritz et al., 1993; Radtkey et al., 1995; Ineich, 1999).

Clone O2 was most widely distributed in Japan (Table 2-6, Fig. 2-1). This was
triploid and had two pairs of additional large dark markings at the lateral sides, one was
on the lateral neck and the other was near the hindlegs (Fig. 2-2). This is identical to
well-known Ineich’s (1999) Clone C.

Clone M, obtained from one individual on Miyakojima, was triploid (Table 2-4).
Yamashiro et al. (2000) reported that only Clone C was distributed on this island based
on the dorsal marking patterns and allozyme band positions. However, Clone M
differed clearly from Clone C in microsatellite and mitochondrial DNA analyses, and
also from any other clones known in the world (Ineich, 1988). Our sample is only one
individual and therefore Clones C and M may coexist on this island.

Clone T obtained from Taketomijima in the Yaeyama Islands was also triploid
(Table 2-4) and had no clear dorsal markings other than dorsolateral black dots on the
neck and the basal part of tail (Fig. 2-2), suggesting it is peculiar among any known
clones.

Clones D1 to D13 were all endemic clones to the Daito Islands (Table 2-6), two
(D1, D2) of which was diploid but all others triploid (Table 2-4). These clones shared
the same mitochondrial haplotype H1, excluding D2 with the haplotype H2 (Table 2-4).
The dorsal marking pattern of Clone D1 (Fig. 2-2) seems to be the same as the pattern
of diploid Clone Da described from the Daito Islands by Yamashiro et al., (2000). Clone
D11 was unique in its marking patterns consisting of only of lateral black bars from the
neck to the base of tail (Fig. 2-2). This pattern is similar to Clone N described from the
Daito Islands by Yamashiro et al., (2000). Clones D12 and D13 had similarly two rows
of black spots on the mid-dorsal side of the body, one of which may be identical to
Ineich’s (1988) triploid Clone B. However, it is difficult to identify other clones found
from the Daito Islands by Yamashiro et al. (2000) and us based on the dorsal marking
patterns. In the Daito Islands, the clone diversity may be much higher as expected by

our examination.
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2-4-2. Origin and diversification processes of clones

The phylogenetic analyses based on mitochondrial cyt b sequences suggested rather
recent events of clonal diversification and distributional expansion in L. [ugubris,
compared with evolution in other species of Gekkoninae (Fig. 2-3). However, genetic
analysis by eight microsatellite loci was much useful to identify clones.

In the Ogasawara Islands, L. lugubris consisted of only two clones, Clones O1 (=A)
and O2 (=C), suggesting that at least two times of successful colonizations occurred in
this archipelago probably from the southern Pacific source populations of this species.
On Hahajima, Yamashiro and Ota (2005) recorded only Clone A in their field surveys
in 1997 and 1998 (N = 36), which was confirmed in this study. Therefore, until now,
there is no evidence of Clone C on this island (Yamashiro et al. 2000). However, the
reason why this island is occupied completely by Clone A is unknown.

All individuals from Okinawajima and Zamamijima in the Okinawa Islands, and
Yonagunijima, Iriomotejima, Kuroshima and Ishigakijima in the Yaeyama Islands were
identified as Clone O2 (=C), despite of their relatively large geographic isolation from
each other. In these areas, L. lugubris was first discovered in 1971 (Shibata et al., 1972),
and now expanded across these islands (Ota, 1989; Yamashiro et al., 2000). Therefore,
the current clone types may be derived from their recent introductions. Although one
individual on Miyakojima and two on Taketomijima had unique dorsal patterns,
microsatellite genotypes (Clones M and T, respectively), and mitochondrial haplotypes
(H5 and H4, respectively), these are considered to colonize recently to these islands
from unknown outsides of southern areas.

In contrast, a great clonal diversity was observed in the Daito Islands as reported
previously by Yamashiro et al. (2000). Moreover, at least 11 of 14 clones were endemic
to this island group and Clone O2 (=C), D12 (=B?) and D13 (=B?) was probably
cosmopolitan. Such a great diversity and high endemicity of clones in the Daito Islands
are higher than those reported for several southern Pacific and Indian Oceanic islands in
the previous studies (Ineich, 1988, 1999; Ineich and Ota, 1992, 1993; Bolger and Case,
1994; Moritz et al., 1993; Hanley et al., 1994), and this is surprising that it occurred on
two closely located small and flat islands, Kitadaitojima and Minamidaitojima.

In parthenogenetic L. ligubris, the diploid lineages may be derived from
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hybridization between diploid bisexual species, and the triploids may have resulted
from backcrosses of asexual diploid clonal females with males of one of the two
bisexual species, and also with males of other and now extinct bisexual species (Ineich
1988, 1999; Moritz et al., 1993, Boissinot et al., 1997; Yamashiro et al., 2000). If so,
clonal diversification in diploid lineages may occur by multiple or repeated
hybridizations of the diploid species, and in triploid lineages by reapeated crosses
between the diploid all-female clones and the male of the diploid bisexual species. In
the Daito Islands, endemic Clones D1 to D11 had common microsatellite alleles of
different combinations in all examined loci, whereas Clones D12 and D13 had unique
alleles in two and three loci, respectively (Table 2-4), suggesting the common origin in
Clones D1 to D11. Because Clones D1 and D2 were diploid but Clones D3 to D11 were
triploid, it is hypothesized that these triploid clones are drived by the two diploid clones.
Here, the mitochondrial haplotype was H2 in Clone D2, but HI in all other clones
(Table 2-4). Therefore, if the triploid clones are derived from the diploid clones, Clone
D1 should be female, and Clone D2 should be male (Fig. 2-4). However, male L.
lugubris have never been found in the Daito Islands (Yamashiro et al., 2000; this study)
and Clone D2 is all-female parthenogenetic clone. Therefore, Yamashiro et al. (2000)
suggested the recent extinction of bisexual diploid L. /ugubris to explain a great clonal
diversity in this island group. Recent extinctions of bisexual Lepidodactylus, as well as
clones of L. lugubris, are thought to occur on several southern Pacific and Indian Ocean
islands (Ineich, 1999). The reason(s) why they extincted probably through competition
with other clones in artificially disturbed habitats (Ineich, 1999). Both Minamidaitojima
and Kitadaitojima were originally covered by dense forests, and that deforestation has
progressed rapidly and drastically on both islands after human colonization (Yamashiro
et al., 2000). Thus, recent extinction of bisexual populations of Lepidodactylus in these
islands is likely to occur.

Our genetic analysis also suggest another hypothesis that diversification of the
triploid clones may be caused by the cross of most dominant females of Clone D1 with
the unusual phenotypic male(s) derived from Clone D2 (Fig. 2-4). The phenotypic
males have been found on few occasions in all-female parthenogenetic clones reared in
the mass culture (R6ll and von During, 2008) and in the field (Brown and
Murphy-Walker, 1996; Yamashiro and Ota, 1998). Once such a male appeared in Clone
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D2 in the Daito Islands, all triploid Clones D3 to D11 are explained by mating by this
D2 male with D1 females without genetic contradiction. Microsatellite genotypes of
triploid Clones D3 to D11 had common two alleles of diploid Clone D1 and one of two
alleles of Clone D2 at all of eight loci (Table 2-4). This hypothesis is likely. At present,
however, morphologically normal males known so far lack fully mature sperm and
seem to be functionally infertile, despite spermatogenesis occurs in males of diploid
Clone A (Roll and von During, 2008) and those of triploid Clone C (Yamashiro and Ota,
1998). Therefore, our hypothesis still needs evidence that fertile males appear in
all-female diploid clones.

Another explanations would be also possible for the diversified clones in the Daito
Islands. Multiple introductions and colonizations from the outsides would result in such
a clonal diversity. Parthenogenetic reproduction is predicted to be advantageous in
increasing abundance and in dispersal because parthenogenesis avoids the two-fold cost
of sexual reproduction by making no investment in males and enabling each individual
in all-female species to produce offspring independently (e.g., Maynard Smith 1978;
Neaves and Baumann 2011). In fact, Clones O2 (=C), D12 (=B?) and D13 (=B?) cannot
be explained genetically by our hypothesis of inter-clone hybridization (Table 2-4).
These three clones are known to distribute widely (Ineich, 1988, 1999), and therefore
may be migrated from the outsides. However, we cannot find out any peculiar situation
that so many colonizations were successful in this island group, unlike those other

island groups to which only one or two clones colonized (Table 2-6, Fig. 2-1).
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Table 2-3. The number of individuals collected, used for microsatellite genotyping, mitochondrial haplotype analysis, and morphological observations.

Island group Island Number of individuals
Collected Microsatellite genotyping  Mitochondrial haplotype  Dorsal marking patterns
The Ogasawara Islands Kitanoshima 2 2 2 2
Mukojima 56 56 20 56
Nakoudojima 20 20 20 20
Yomejima 10 10 10 10
Anijima* 61 61 20 16
Hyoutanjima 10 10 10 10
Chichijima* 200 200 20 177
Nishijima 6 6 6 6
Hahajima* 180 180 20 159
Hirashima* 2 2 2 0
Iwoto* 1 1 1 0
All islands 548 548 131 456
The Okinawa Islands Okinawajima 10 10 10 10
Zamamijima 2 2 2 2
All islands 12 12 12 12
The Miyako Islands Miyakojima 1 1 1 1
All islands 1 1 1 1
The Yaeyama Islands Yonagunijima 20 20 20 20
Iriomotejima 21 21 21 21
Taketomijima 20 20 20 20
Kuroshima 20 20 20 20
Ishigakijima 20 20 20 20
All islands 101 101 101 101
The Daito Islands Kitadaitojima 28 28 28 28
Minamidaitojima 58 58 58 58
All islands 86 86 86 86
Total 748 748 331 656

* Some samples were only the tail tips for DNA analyses and the dorsal marking pattern was not observed.
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Table 2-5. Five mitochondrial cyt b haplotypes in L. lugubris.

Haplotype Position of 448-bp of cyt b sequences

34 95 115 293 429
H1 C G A G C
H2 - A - - -
H3 - - G - A
H4 - - - C -
H5 A ; ; ] ]
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Fig. 2-2. Dorsal marking patterns of 17 clones (O1, O2, M, T, and D1 to D13) of
Lepidodactylus lugubris in southern Japan. Magnifications differe among photographs.
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Fig. 2-3. Phylogenetic trees based on 448-bp cyt b sequences among species belonging
to the subfamily Gekkoninae including the five haplotypes obtained for Japanese
Lepidodactylus lugubris. Sphaerodactylus vincenti (Sphaerodactylidae) is used as the
outgroup. For GenBank accession numbers, see Table 2-2. Bootstrap probability is

based on 1,000 replications in the Neibor-Joining (NJ) tree and in the Maximum

Likelyhood (ML) tree.
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Hybridization? Immigrants
D1 Female D2 Male? [ 01(=0) D12 (=B?) D13 (=B?)

2X (H1) T 2X(H2) 3X (H1) 3X (H1) 3X (H1)

N ),

| | | | | | | | |
D3 D4 D5 D6 D7 D8 D9 D10 D11

3X(H1)  3X(H1) 3X(H1)  3X(H1)  3X(H1) 3X(H1)  3X(H1)  3X(H1)  3X(H1)

Fig. 2-4. Hypothetical clone diversification of Lepidodactylus lugubris in the Daito
Islands. Three Clones O2, D12 and D13 may be colonized from the outsides because
they are similar to widely distributed Clones B and C. In other endemic Clones D1 to
D11, all triploid clones D3 to D11 can be explained to be produced by hybridization
between diploid D1 female and diploid D2 male based on their allele combinations in
eight microsatellite loci and also mitochondrial cyt b haplotypes (see Table 2-4).
However, Clone D2 is all-female parthenogenetic and the existence of males of this

clone has not be confirmed.
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3. Comparisons of population genetic structures with the coexisting sexual gecko

species Hemidactylus frenatus in the Ogasawara Islands

3-1. Introduction

Sexual reproduction has occurred widely in multicellular organisms; however,
several species in various lineages of 19 of 34 phyla in the Animal Kingdom have
secondarily lost this reproductive strategy and instead reproduce exclusively by
parthenogenesis (Simon et al., 2003). Parthenogenesis avoids the two-fold cost of
sexual reproduction by making no investment in males and enabling each individual in
all-female species to produce offspring independently (e.g., Maynard Smith, 1978;
Neaves and Baumann, 2011). This strategy enables every member of the population to
establish in a new habitat. Thus, parthenogenetic reproduction is predicted to be
advantageous in increasing abundance and in dispersal.

Among vertebrates, reptiles, and particularly geckos, include unexpected numbers
of asexual (parthenogenetic) all-female species (Cole, 1984). One such species, the
gecko Lepidodactylus lugubris, is distributed on the small oceanic Ogasawara Islands
located approximately 1,000 km south of Tokyo, Japan (Takada and Ohtani, 2011; Fig.
3-1). Lepidodactylus lugubris is an all-female parthenogenetic species that is widely
distributed in tropical-subtropical Pacific and Indian Ocean islands and adjacent
continental coasts (Ineich, 1999). Specimens from Micronesian and Polynesian islands
consist of diploid (2n = 44) and triploid (3n = 66) strains. Each strain includes a number
of genetically divergent clonal lineages, some of which are diagnosable on the basis of
dorsal color pattern (Ineich and Ota, 1992; Moritz et al., 1993; Hanley et al., 1994). The
diploid clones are estimated to have derived from hybridizations between congeneric
bisexual species, while the triploid clones originated via back crosses between the
diploid clones and males of the parent species (Radtkey et al., 1995). In Ogasawara, two
clones of L. lugubris have been recorded based on their dorsal color patterns
(Yamashiro et al., 2000; Yamashiro and Ota, 2005).

Another gecko species, Hemidactylus frenatus Duméril et Bibron, 1836, is also
widely distributed in tropical and subtropical regions (including the Ogasawara Islands),

but this species reproduces sexually (Moritz et al., 1993; Takada and Ohtani, 2011).
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Both H. frenatus and L. lugubris are so-called “house geckos,” often coexisting on
artificial substrates (Moritz et al., 1993). They are nocturnally active insectivores, with
snout-vent lengths (SVLs) of less than 50 mm in females and of 60 mm in males
(Moritz et al., 1993; Ota, 1994).

The Ogasawara Islands consist of four island groups, the Mukojima Islands,
Chichijima Islands, Hahajima Islands, and Kazan Islands, as well as some other isolated
islandsuch as Minamitorishima (Marcus Island). These island groups have never been
connected to each other, as each is surrounded by deep sea waters; thus, overwater
dispersal or artificial transportation was the route of colonization of these island groups
(e.g., Hayashi et al., 2009). Only three islands, Chichijima, Hahajima, and Iwoto, are
currently inhabited by humans. Although most islands of Ogasawara may have been
temporarily inhabited, detailed information on such historical events is unavailable.
Asexual L. lugubris and sexual H. frenatus on these islands may share a similar
geographic history and climate. This situation offers a unique opportunity to study the
relationship between reproductive strategy and the abundance, distribution, and genetic
diversity of these two species. In the present study, we first monitored the distribution
and abundance of the two species of geckos across nine islands. To document
microhabitat selection of the two species, substrates upon which they were found
(hereafter, perch substrates) were also recorded. Second, genetic diversity and
population genetic structure were compared between the two species using

microsatellite markers selected specifically for detecting intraspecific variation.
3-2. Materials and methods

Geckos were collected on nine islands (Fig. 3-1) that could be approached safely:
Anijima and Chichijima in March 2012; Anijima, Chichijima, Hahajima, Hirashima,
and Iwoto in June and July 2012; Anijima in August 2012; Nishijima and Chichijima in
December 2012; Kitanoshima, Mukojima, and Chichijima in July 2013; Mukojima in
December 2013; and Yomejima in July 2014. The area and maximum altitude of each
island are 0.2 km* and 52 m for Kitanoshima, 2.6 km* and 88 m for Mukojima, 0.8 km?
and 67 m for Yomejima, 7.9 km® and 254 m for Anijima, 0.5 km® and 88 m for
Nishijima, 23.8 km® and 326 m for Chichijima, 20.8 km* and 462 m for Hahajima, 2.1
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km® and 62 m for Hirashima, and 22.4 km® and 169 m for Iwoto. Sampling was
conducted to cover as much of each island as possible. Field-caught geckos were
identified to species, and the dorsal stripe patterns were recorded for L. lugubris. We
also recorded the perch substrates of geckos, which were separated into seven
categories: tree trunks and branches, rock crevices or under stones, grasses, sandy
beaches, house walls and windows, electrical poles, and road guardrails. On Chichijima
and Hahajima, all collection locations were plotted on maps using a global positioning
system (GPSMAP® 62SJ, Garmin Ltd., Hampshire, UK).

Total genomic DNA was extracted from tail tips preserved in 99.5% ethanol using a
DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany). For L. lugubris, four
microsatellite loci were amplified using the primer sets of Wilmhoff et al. (2003): L101,
5-ATGTTGTTTTTCCCCCATGT-3’ and 5’-AGAGACACAGGCATGTTTACG-3’;

L102, 5’-CAAAGGCATCTATGCAGACG-3’ and
5’-CCTGCACACCAGCTTATGAAG-3’; L105,
5’-ACAAGGGAGTATGGTAAGTTC-3’ and
5’-GCATCATGCAATTAGGTTCCA-3’; and L106,

5’-CCCAAGTCTGCAGGAAAATC-3" and 5-CCAGATGAAAAGTGGCAGGT-3".
For H. frenatus, five microsatellite loci were amplified using the two primer sets of Li
and Zhou (2007): di004, 5’-TGTAACCTGTGTGTGAAAGAA-3* and
5’-GCCTCAGAACCAAGAGTATG-3’ and di005,
5’-CAAGAGAAGTGTTGTCAGAGG-3" and 5’-GGCTGAATAAACAAGAATAA;
and three primer sets of Owusu et al. (2012): Gs112, 5’-CTGGTGCGGTGGTTATT-3’

and 5’-AGGAGGTGCCTGTTGCAAATC-3’; Gsl131,
5’-CTATGAGGGACACGGACC-3’ and 5’-TCAACACAAGAAACGCTTATT-3’; and
Gs133, 5’-AAATTTGCAAGGTGCTTAGG-3’ and

5’-TTCAGCGGAAAATGTAAATG-3".

Microsatellites were amplified in a T100™ thermal cycler (Bio-Rad, Hercules, CA,
USA) using ExTaq"(Takara, Tokyo, Japan). The PCR reaction mix (total volume, 10
uL) contained 1.0 pL 10x of Extaq Buffer, 0.8 uL 25 mM dNTP mix, 0.5 pL
fluorescent (6-FAM) forward primer (10 pM), 0.5 pL reverse primer (10 pM), 0.05 uL
Taq polymerase, 6.15 pL distilled deionized water, and 1.0 pL template DNA. For L.

lugubris, PCR conditions were as follows: an initial denaturation of 94°C for 3 min, 35
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cycles of 95°C for 30 s, 56°C for 40 s, and 72°C for 40 s. An initial single step of 94°C
for 4 min and a final single step of 72°C for 5 min were also included. For H. frenatus,
the PCR conditions of two loci, di004 and di005, were as follows: an initial
denaturation of 94°C for 5 min, 30 cycles of 94°C for 30 s, 56°C for 45 s, and 65°C for
45 s, and then eight cycles of 94°C for 30 s, 53°C for 45 s, 65°C for 45 s; and a final
elongation of 65°C for 10 min. The PCR conditions for Gs112, Gs131, and Gs133 were
an initial denaturation of 95°C for 3 min, 35 cycles of 95°C for 30 s, 52°C (but 54°C in
Gs131, 49°C in Gs133) for 30 s, and 72°C for 30 s; and a final elongation of 72°C for
10 min. Then, 1 uL product was added to 9 pL loading mix containing a GeneScan™
500 Liz® Size Standard (Applied Biosystems, Foster City, CA, USA) and Hi-Di
Formamide (Applied Biosystems). This mixture was analyzed using an ABI 3130x1
Genetic Analyzer (Applied Biosystems). Allele lengths were scored using Peak Scanner
version 1.0 (Applied Biosystems).

Observed heterozygosity (Ho) and expected heterozygosity (He) in each population
were calculated using GenAlEx 6.5 (Peakall and Smouse, 2012). Deviation from
Hardy-Weinberg equilibrium and linkage disequilibrium were estimated using
Genepop’007 (Rousset, 2008). The significance of inbreeding coefficients was
determined using FSTAT ver. 2.9.3.2 (Goudet, 1995). Tests of significant genetic
differentiation among populations were conducted using F-statistics (Weir and
Cockerham, 1984) with each parameter tested against zero by a bootstrapping method
using FSTAT ver. 2.9.3.2. The genetic variation among and within populations was
subjected to analysis of molecular variance (AMOVA) using Arlequin ver. 3.5
(Excoffier and Lischer, 2010). Assessment of current genetic structure was conducted
using the program Structure ver. 2.3.3 (Pritchard et al., 2000). Ten runs were set with a
burn-in length of 100,000 and an MCMC of 200,000 for each K (1 to 8). To make a
precise estimate of population structure, the LOCPRIOR model was utilized (Hubisz et
al., 2009). 4K was calculated to examine the true K number (Evanno et al., 2005). To
detect molecular signatures of bottlenecks, we used a method implemented in
Bottleneck ver. 1.2.02 (Piry et al., 1999). For Bottleneck, three mutation models were
used: the infinity allele model (IAM), two-phase mutation model (TPM), and stepwise
mutation model (SMM) with 80% single- and 20% multiple-step mutations.
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3-3. Results

3-3-1. Asexual Lepidodactylus lugubris

A total of 322 L. lugubris were collected and analyzed for their four microsatellite
DNAs. This gecko was found on all nine study islands and consisted of only two
microsatellite genotypes: Clone O1 (111/133 in L101, 147/155 in L102, 136/182 in LI0S,
and 204 in L106) and Clone O2 (111/121 in LI101, 147/151/159 in L102, 136/158/178 in
L105, and 194 in L106) (Fig. 3-1). Clone O1 had two alleles, while Clone O2 had three
alleles at a maximum, suggesting diploid and triploid clones, respectively. Dorsal stripe
patterns were stable within the same clone but clearly differed between clones. Clone
02 had two pairs of additional large dark markings on the lateral sides (Fig. 3-2). Both
clones were widely distributed throughout the Ogasawara Islands, although Hahajima
lacked Clone O2 despite having collected a sufficient number of samples (Figs. 3-1,
3-3b). On Chichijima, both clones were mixed (Fig. 3-3a). Most individuals, i.e., 103
(84.4%) of 122 individuals on Chichijima and 70 (80.5%) of 87 on Hahajima, were
collected on artificial substrates such as house walls and windows, electrical poles, and
road guardrails (Table 3-1). On islands not inhabited by humans, however, they usually
perched on trees and rocks (Table 3-1). Although the sample size was small (N = 7), all
Clone O2 individuals were found on natural substrates, even on human-inhabited

Chichijima (Table 3-1).

3-3-2. Sexual Hemidactylus frenatus

A total of 123 H. frenatus were collected. This gecko was found on four of the nine
study islands, of which three are presently inhabited by humans (Fig. 3-1). On
Chichijima and Hahajima, the collection sites were limited to areas of towns and along
roadways (Fig. 3c, d), and almost all individuals were collected on artificial substrates:
46 of 48 individuals (95.8%) on Chichijima and 56 of 56 (100%) on Hahajima (Table
3-1). The proportion of geckos that preferred artificial perches differed between H.
frenatus and L. lugubris (x> = 4.14, df = 1, P < 0.05 on Chichijima; x* = 12.42, df =1, P

< 0.001 on Hahajima). On Anijima, which lacks humans, all 18 individuals were found
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on the trunks of trees (Table 3-1).

The numbers of alleles observed from all 123 H. frenatus were five for locus di004,
two for di005, three for Gs112, four for Gs131, and three for Gs133. Observed and
expected heterozygosities ranged from 0.32 to 0.69 and 0.44 to 0.74, respectively (Table
3-2). After Bonferroni correction (oo = 0.03), no significant linkage disequilibrium or
deviation from Hardy-Weinberg equilibrium were identified. Allele frequencies
appeared to be similar among northern, central, and southern parts of Chichijima and
among these same areas of Hahajima (Table 3-2). However, allele frequencies differed
among Anijima, Chichijima, and Hahajima (Iwoto, with only one sample, was
excluded). Allele 245 of locus Gs131 was only found in the Chichijima population.
Allele 319 of locus Gs133 was only found in the Hahajima population. In the Anijima
population, all 18 individuals shared only two alleles/locus. AMOVA suggested that
most of the variance (74%) could be explained by within-individual variation, and the
variance explained by differences among populations (4.3%) was also significant (Table
3-3). Population pairwise Fst values were 0.016 between Anijima and Chichijima (P =
0.0003), 0.093 between Anijima and Hahajima (P = 0.0003), and 0.071 between
Chichijima and Hahajima (P = 0.0003). Moreover, the population genetic structure
differed among the three islands at K = 3, when 4K was highest (2.5) among all other
values (0-2.2) at K = 2 to 7 (Fig. 3-4). A significant excess of heterozygosity compared
to the expected equilibrium was obtained using Wilcoxon tests implemented in
Bottleneck: Hgqg was 0.232 in the IAM, 0.262 in the TPM, and 0.278 in the SMM in the
Anijima population (P < 0.05 in all cases); Hgq was 0.327 in the IAM, 0.381 in the
TPM, and 0.438 in the SMM in the Chichijima population (P < 0.05 in all cases); and
Hgq was 0.327 in the IAM, 0.381 in the TPM, and 0.449 in the SMM in the Hahajima
population (P < 0.05 in all cases). These results suggest significant bottleneck effects in

these three populations.

3-3-3. Microdistribution on small islands

A total of 107 L. lugubris samples were collected on six uninhabited islands of the
Ogasawara Islands, and all of individuals were successfully genotyped by microsatellite

DNA analysis and were observed their dorsal color patterns. A total of two clone types
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(Clone A and C) were recognized on the basis of the microsatellite genotypes.
Microsatellite genotypes of these clones did not contradict classifications on the basis of
dorsal coloration. On the all of six islands, A-clones were distributed clearly higher
frequency in coastal region, and C-clones were higher in inland areas (Fig. 3-2).
Moreover, Clone A individuals were found only on or under the rocks, while C-clones

were seen on the flowers or trees (Table 3-1).

3-4. Discussion

3-4-1. Clone diversity of asexual L. lugubris

In the Ogasawara Islands, asexual L. lugubris consisted of two clones, diploid
Clone O1 and triploid Clone O2. A previous survey also documented two clone types
on the islands, Clones A and C (Yamashiro et al., 2000; Yamashiro and Ota, 2005).
Judging from the dorsal marking patterns and ploidy level, Clone O1 is the same as
Clone A and Clone O2 is Clone C, as described in Yamashiro et al. (2000) and
Yamashiro and Ota (2005). More specifically, Clone A is diploid and Clone C is
triploid, and the dorsal dark markings are essentially similar between these clones
(compare Fig. 3-2a in this study and Fig. 1A in Yamashiro and Ota, 2005, for Clone A
and Fig. 3-2b in this study and Fig. 1B in Yamashiro and Ota, 2005, for Clone C).
Yamashiro and Ota (2005) suggested that Clone C individuals may soon disappear from
the Chichijima population based on the following sequence of specimen records on this
island: Okada’s (1930) first recorded specimen was identified as Clone C. An additional
25 museum specimens collected from 1968 to 1978 were identified as Clone A (21) and
Clone C (3) individuals (one was unidentified). Specimens obtained from 1997 and
1998 were all Clone A (N = 22). Ineich (1999) also noted the decline of several clone
types, sometimes to the point of complete disappearance, on tropical Pacific and Indian
Ocean islands where Clone A individuals are common. However, we confirmed that
Clone C individuals are still distributed on Chichijima, although their relative
abundance was slightly lower than on other islands (Fig. 3-1). On Hahajima, Yamashiro
and Ota (2005) recorded only Clone A during their surveys in 1997 and 1998 (N = 36),

which was confirmed in the present study. Therefore, to date, there has been no
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evidence of the existence of Clone C on Hahajima, although why this island is only
occupied by Clone A remains unknown.

The Takapoto Atoll, French Polynesia, harbors both asexual L. lugubris and its
sexual congener L. sp.; the former is distributed across the entire atoll, which consists of
several small lands each separated by sea, but the latter is confined to a single southern
land (Hanley et al. 1994). This distribution pattern is similar to our results. At this atoll,
displacement between asexual and sexual species had not occurred during 1986 to 1991,
and any significant aggression between the two species was not detected during
laboratory observations. Among clones of L. lugubris, individuals of one clone-type are
superior foragers compared to individuals of the other clone-type, suggesting that the
former individuals monopolize limited prey items within the structurally simple human
landscape (Short and Petren 2008). Inter-clonal differences in thermal preference may
also explain the altitudinal distribution patterns of L. lugubris clones on Fiji (Bolger and
Case 1994). To better understand the temporal and spatial population dynamics of L.
lugubris in the Ogasawara Islands, more information is needed on such inter-clone

competitive interactions.

3-4-2. Effects of sexuality on dispersal

In the Ogasawara Islands, asexual L. lugubris had widely expanded across the
islands and was mixed genetically, although genetic variation was low (only two clones).
In contrast, the distribution of sexual H. frenatus was limited to a few islands, forming
genetically different insular populations accompanied by some bottleneck effects. Such
differences in distribution and genetic population structure between species might be
explained by variation in colonization success. In general, inter-island dispersal can be
quite extensive in asexual species, as asexual organisms avoid the two-fold cost of
sexual reproduction by not investing in males and enabling each individual in the
all-female species to independently produce offspring (e.g., Maynard Smith, 1978;
Neaves and Baumann, 2011). Frequent dispersal of asexual species contributes to the
expansion of their distribution ranges and to the genetic homogenization of insular
populations. In our study system, however, the colonization histories of the two species

have not yet been examined, and we cannot rule out a more recent colonization of
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sexual H. frenatus relative to asexual L. lugubris. Lizards have weak dispersal abilities
among oceanic islands compared to flying animals; therefore, gene flow between
individual islands may be greatly reduced by oceanic barriers. In the Ogasawara Islands,
L. lugubris consists of only two clone types, suggesting at least two successful
colonizations of this archipelago, likely from the southern Pacific source population of
this species. We also cannot rule out the possibility that the two clone types colonized at
the same time. Based on their genetic diversity in microsatellite loci, colonization of H.
frenatus to Ogasawara may have occurred multiple times. However, we cannot identify
how and when colonization actually occurred.

In addition to reproductive strategy, variation in dispersal success rate may also be
caused by different microhabitat preferences of the two species. Both species are
considered house geckos, and the two often coexist on artificial substrates (Moritz et al.,
1993). Sexually reproducing H. frenatus exhibits a closer association with human
habitation (Newbery and Jones, 2007). Our observations also indicated that H. frenatus
collection sites were more confined to man-made structures in towns and along
roadways compared to L. lugubris collection sites on Chichijima and Hahajima. This
finding may partially explain the lack of H. frenatus on small islands without recent
human habitation or may suggest that it is a recent colonizer brought by humans,
probably accidentally, to human-inhabited islands. However, on Anijima, which lacks
humans, H. frenatus was found on tree trunks, suggesting that they have the potential to
live in natural habitats.

In general, asexual reproducers lack genetic diversity in offspring and therefore are
thought to more easily succumb to parasites, diseases, and predation due to their
negligible ability to adapt to changing environments (e.g., Neaves and Baumann, 2011).
In Ogasawara, terrestrial reptiles other than L. lugubris and H. frenatus number very
few: one other gecko, Perochirus ateles known only from Minami-iwoto, the
southernmost island of the Kazan Islands, and Minamitorishima (Marcus Island); the
skink  Cryptoblepharus  nigropunctatus; the human-introduced anole Anolis
carolinensis; and the parthenogenetic blind snake Ramphotyphlops braminus (Horikoshi,
2008; Takada and Ohtani, 2011). No native terrestrial amphibians and mammals exist
on the islands, except bats. Thus, at present, the islands may be free of effective

parasites, diseases, and predators of the two study gecko species, which may realize
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dispersal and abundance advantages for the asexual species.
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Table 3-2. Allele frequencies in five microsatellite loci of Hemidactylus frenatus on four Ogasawara islands. N = number of individuals sampled,
N, = number of alleles, H,, = observed heterozygosity, H; = expected heterozygosity. Frequencies on the northern, central, and southern

parts of Chichijima and Hahajima are also shown separately (see Fig. 3-3).

Locus Allele Anijima  Chichijima Hahajima Iwoto

(motif) in size North Central  South Total North Central  South Total

di0o4 187 bp 0 12 14 1 28 5 8 8 21 0

(TG),(GA),, 193 bp 22 15 7 10 31 7 30 7 44 0
207 bp 14 7 4 9 20 13 10 0 23 1
215 bp 0 7 5 2 14 2 0 0 2 0
221 bp 0 3 0 0 3 5 12 5 22 1
N, 2 5 4 4 5 5 4 3 5 2
H, 0.66 0.50 0.69
Hy 0.47 0.74 0.73

di0os 167 bp 14 17 10 10 37 10 23 10 43 1

(TC), 175 bp 22 27 20 12 59 23 37 10 69 1
N, 2 2 2 2 2 2 2 2 2 2
H, 0.44 0.35 0.44
Hg 0.47 0.47 0.47

Gsl12 176 bp 20 13 9 12 34 8 26 8 42 2

(GT), 182 bp 16 6 3 1 11 15 3 5 23 0
200 bp 0 25 18 9 51 9 31 7 47 0
N, 2 3 3 3 3 3 3 3 3 1
H, 0.32 0.41 0.57
Hy 0.49 0.57 0.64

Gsl31 245 bp 0 6 6 2 13 0 0 0 0 0

(CT), 247 bp 12 14 2 4 24 7 25 14 46 1
249 bp 0 5 7 2 12 7 12 1 20 0
265 bp 24 19 15 14 47 18 23 5 46 1
N, 2 4 4 4 4 3 3 3 3 2
H, 0.44 0.43 0.46
Hy 0.44 0.66 0.63

Gsl133 301 bp 15 23 15 9 47 10 28 11 49 2

(AC), 317 bp 21 21 15 13 69 13 25 9 47 0
319 bp 0 0 0 0 0 9 7 0 16 0
N, 2 2 2 2 2 3 3 3 3 1
H, 0.38 0.40 0.45
Hg 0.49 0.50 0.62

N 18 22 15 11 48 16 30 10 56 1
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Fig. 3-1. Distributions and allele frequencies of microsatellite DNA of the two
sympatric gecko species, Lepidodactylus lugubris and Hemidactylus frenatus, on nine
small oceanic islands: Kitanoshima, Mukojima, and Yomejima in the Mukojima Islands
group (c¢); Anijima, Nishijima, and Chichijima in the Chichijima Islands group (d);
Hahajima and Hirashima in the Hahajima Islands group (e); and Iwoto in the Kazan
Islands group (f) in the Ogasawara Islands (b) located about 1,000 km south of the
Japanese mainland (a). In asexual L. lugubris, only two genetic clones, Clones O1 and
02, were found. In sexual H. frenatus, allele frequencies of five microsatellite loci are
shown: five alleles (187, 193, 207, 215, and 221) of di004, two alleles (167 and 175) of
di005, three alleles (176, 182, and 200) of Gs112, four alleles (245, 247, 249, and 265)
of Gs131, and three alleles (301, 317, and 319) of Gs133. N = number of individuals

examined on each island.
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Fig. 3-2. Dorsal views of Clones O1 (a) and O2 (b) of Lepidodactylus lugubris found in
the Ogasawara Islands. Two pairs of dark markings indicated with arrows clearly differ
between the two clones. Clones Ol and O2 are identified as already known Clones A
and C, respectively (also see Chapter 2).
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Lepidodactylus lugubris

(a) Chichijima ¢ (b) Hahaiima
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O Clone 01
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Hemidactylus frenatus
Chichijima

Fig. 3-3. All collection sites of Clones O1 and O2 of Lepidodactylus lugubris (a, b) and
individuals of Hemidactylus frenatus (c, d) on Chichijima and Hahajima. In ¢ and d,
gray areas and lines drawn within each island represent towns and roadways,
respectively. N = number of individuals examined on each island. Dashed lines show
the northern, central, and southern parts on each island, which were categorized

separately in this study.
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Fig. 3-4. Population genetic structure among three island populations of Hemidactylus
frenatus drawn using the software STRUCTURE. Vertical columns represent the
assignment probabilities for each of the inferred clusters identified at K = 3 when 4K
was highest for K = 2-7 calculations. The single sample obtained from Iwoto was

excluded. N = number of individuals examined on each island.
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4. Clonal differences in aggressive behavior

4-1. Introduction

Ecological differentiation between clones of parthenogenetic species is necessary
for co-existence of multiple clones in narrow habitats such as islands and ponds,
because overlap of their niches intensifies inter clonal competition. All-female
parthenogenetic Lepidodactylus lugubris is a small gecko being widespread over Indian
and Pacific Ocean islands and continental Asia and America (see Fig. 1-2 in Chapter 1).
Multiple clones are reported genetically and morphologically in this gecko, and several
clones co-exist on some islands (Ineich, 1988; Ineich and Ota, 1992; Hanley et al.,
1994; Ota et al., 1995; Radtkey et al., 1995, 1996). However, the mechanisms
responsible for the spread and establishment of a clone to a habitat already occupied by
other clones are unclear (Bolger and Case 1994). In this study, to examine behavioral
differences among L. lugubris clones, we observed the behavioral interactions between
the two clones, Clones O1 and O2, inhabiting the Ogasawara Islands.

In the Ogasawara Islands, a sexually reproducing gecko, Hemidactylus frenatus, is
also distributed in some islands (Takada and Ohtani, 2011). This gecko has also a wide
distribution range in tropical and subtropical oceanic regions and often co-exists with L.
lugubris, both of which are found even in the human habitats (Moritz et al., 1993;
Takada and Ohtani, 2011). Therefore, H. frenatus was also included in the experiment

of behavioral interactions among L. /ugubris clones.

4-2. Materials and methods

A total of 111 females of Clone O1 and 92 females of Clone O2 of L. lugubris, and
67 males and 68 females of H. frenatus were collected from Chichijima in July and
August of two years, 2016 and 2017. In addition, 10 females of Clone O2 were
collected from Mukojima in July 2017. Snout to vent length (SVL) of all captured
individuals were measured, and the state of their tail (complete tail, regenerated tail, or
no tail) were recorded.

In the contest experiments, we used enclosures (50 x 50 cm” at the top, 10 x 10 cm”
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at the bottom, 30 cm high) made with wooden panels in which one small hole (1 cm in
diameter) opens on only one side of walls (Fig. 4-1). Geckos to use for experiments
were collected in the field before 7 to 15 h of video recording. They were kept together
in the experimental enclosures and allow them move around there. In darkness, two
individuals selected from Clones O1 and O2 of L. lugubris, and male and female H.
frenatus (hereafter written as Clone O1, Clone O2, H-M, and H-F, respectively) were
put into the empty enclosure, and the top of it was covered with a transparent acrylic
board. Then, the behavior of geckos within it was recorded using the night-shot function
of the video cameras (SONY FDR-AXS55 or SONY DCRA-C160, Tokyo, Japan). After
starting of video recording, one living small-sized mealworm (larvae of the beetle
Tenebrio molitor Linnaeus, 1758) was thrown in the narrow pipe opening at the wall
where the gecko ate it. If aggressive interactions competing for this bait were observed
between the two individuals, the following seven behavioral categories were
discriminated by referring Dame and Petren (2006); arches (warping body), lunges,
wags (shaking the tail when the enemy was behind), clicks, bites, wrestles, and no clear
behavior. The individual successfully feeding the mealworm was judged as a winner.
This feeding trial using the single mealworm (hereafter called as “round”) was repeated
three times at >1 h intervals for the same pair, and then they were replaced to another
cage to release at the captured sites in the next morning. All individuals were not used
twice and more. These experiments were all conducted at the Ogasawara Field Research
Station of Tokyo Metropolitan University on Chichijima. Geckos were maintained at
25-29°C and 50-60% in relative humidity.

All analyses were conducted using free programming language R and o was set to
0.05 for all hypothesis testing. Generalized linear model (McCullagh, 1984) was used to
compare the incidence of struggle between two clones of L. lugubris and male and
female H. frenatus. Furthermore, the Bradley-Terry model (Bradley and Terry, 1952)
was also used to quantify and compare the strength in conflict between them using the

‘Bradley Terry 2’ package (Firth, 2005).

4-3. Results

Hemidactylus frenatus was larger than L. [lugubris in SVL (Table 4-1). The
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proportion of individuals with complete tail was 40.5% in Clone O1, 94.1% in Clone
02, 52.2% in H-M, and 58.8% in H-F (Table 4-1). Thus, most individuals of Clone O2
had a complete tail in the field ()(2 test, ){2 =69.4,df=3, P <0.0001).

A total of 522 trials by 174 pairs were observed (Table 4-2). Clones O1 and O2
differed in aggressive behaviors for resource acquisition, despite being the same species.
Clone O2 showed little aggressive behaviors such as arches, wags, clicks, bites, or
lunges and did never wrestle in any combinations with Clones O1, O2, H-M, and H-F
(Fig. 4-2). Clicks were the most frequent response in aggressive interactions among
Clone O1, H-M, and H-F (Fig. 4-2).

The contests (feeding of a given prey item with some aggressive behaviors)
occurred usually in 66.7 to 100% of the rounds in the combinations of Clone O1, H-M,
and H-F, whereas much less of the combinations including Clone O2; 17.8% with Clone
Ol1, 9.3% with the same clone, 7.1% with H-M, and 10.6% with H-F (Table 4-2, Fig.
4-3). Although body size of L. lugubris was smaller than H. frenatus, Clone O1 fought
with H. frenatus. The results of GLM analysis indicated that the contest rate of Clone
02 was significantly lower than Clone O1 and H. frenatus (Clone O2 vs O1; Estimate =
-2.43, SE =0.47, P < 0.001. Clone O2 vs H-M; Estimate = 1.93, SE = 0.49, P < 0.001.
Clone O2 vs H-F; Estimate = 1.77, SE = 0.48, P < 0.001), whereas no significant
difference was detected between Clone O1 and H. frenatus (Clone O1 vs H-M; Estimate
=-0.50, SE=0.32, P > 0.1. Clone O1 vs H-F; Estimate =-0.48, SE=0.31, P> 0.1).

The quantifying the fighting ability using the Bradley-terry model that the strength
of Clone Ol was set to the reference value 0 suggested a superiority/inferior
relationship of two clones of L. lugubris and H. frenatus (H-M > Clone O1 > H-F >
Clone O2) (Fig. 4-4). Clone O2 was found to have significantly lower fighting ability
(ability = -1.204, SE = 0.189, P < 0.001) but no significant differences were detected
between Clone Ol and H. frenatus (H-M; ability = 0.188, SE = 0.1801, P = 0.297. H-F;
ability = -0.286, SE = 0.192, P = 0.136).

4-4. Discussion

Clones of L. lugubris differed in aggressiveness. Clone O2 was much less

aggressive than Clone OIl. This behavioral tendency could help to explain the
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distribution patterns of these two clones in the Ogasawara Islands. Artificial habitats in
urban areas consist of typically flat building walls with lights that attract insects because
of their phototaxis. Therefore, insects, their main food, are abundant in a small area on
the wall around the light, where competition to get these insects is severe. In this case,
more aggressive individuals can eat more insects and therefore less aggressive
individuals would be excluded from such an artificial area via longterm strong
competition for food.

In the Ogasawara Islands, the distribution of Clone O1 was biased towards the
artificial environments such as house walls, electric poles, and road guardrails, whereas
all individuals of Clone O2 were found in natural area such as forests, rock crevices,
grasslands, and beaches (see Table 3-1 in Chapter 3). Moreover, the detailed
microdistribution study of these two clones suggested that Clone Ol tends to be
distributed in the coastal regions whereas Clone O2 in the inland areas on
non-human-inhabiting Mukojima, Nakoudojima, and Yomejima in the Ogasawara
Islands (Murakami, 2017). Coastal regions are dominated by open habitats like the
artificial walls where individuals may often compete for food. On the other hand, the
inland areas are natural and covered by vegetation.

As shown in Chapter 2, Clones Ol and O2 are identical to Clones A and C,
respectively, both of which are known widely in Pacific Ocean (Moritz et al., 1993;
Radtkey et al., 1995; Ineich, 1999). Our results suggest that aggressiveness is one of the
important processes that lead to the displacement of resident Clone C by introduced
Clone A.

For Clone C of L. lugubris, another cosmopolitan gecko H. frenatus may have the
same impact as conspecific Clone A. In the combinations between Clone C and H.
frenatus, the former was much less aggressive to the latter. Aggressiveness including
physical contacts may result in injury. The fact that most individuals of Clone C in the
Ogasawara Islands had complete tails may be explained by less aggressiveness of this
clone. Therefore, if Clone C co-exists with H. frenatus, the similar distribution shift
would be expected as in the case of coexisting with Clone A. In the Okinawa and
Yaeyama Islands, Clone A (=O1) is not distributed but H. frenatus is known from these
Islands with Clone C (=02) (Takada and Ohtani, 2011). At present, however, the effect

of H. frenatus on the microhabitat shift of Clone C has not been examined.
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In the Daito Islands, Japan, however, 14 clones of L. lugubris and H. frenatus
cohabited two small, flattened islands (see Fig. 2-4 in Chapter 2). One of the clones is
Clone C (=02) and others (Clones D1 to D11) are endemic to these islands although the
two are thought to be the widely distributed Clone B (=D12/D13). The mechanisms
underlying the coexistence of so many clones remain unknown. If aggressiveness
differs among clones, habitat segregation would occur as seen between Clones A (=01)
and C (=02) in the Ogasawara Islands. This phenomenon will be examined in the future

in the Daito Islands.
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Table 4-2. The results of interactions between two individuals (players 1 and 2) in a box cage.

Combinations Number Number Number of victories Frequency of

Player 1 Player 2 of pairs  ofrounds Player 1 Player 2 No contests  contests (%)

Clone O1  Clone O1 18 54 27 18 9 83.3
Clone Ol  Clone O2 30 90 15 1 74 17.8
Clone O2  Clone O2 18 54 3 2 49 9.3
H-M Clone O1 24 72 31 17 24 66.7
H-F Clone O1 21 63 26 29 8 87.3
H-M Clone O2 14 42 2 1 39 7.1
H-F Clone O2 22 66 7 0 59 10.6
H-M H-M 9 27 14 13 0 100
H-F H-M 11 33 16 9 8 75.8
H-F H-F 7 21 9 10 2 90.5
Total 174 522 150 100 272 479

Clone Ol: Lepidodactylus lugubris Clone O1
Clone O2: Lepidodactylus lugubris Clone O2
H-M: Hemidactylus frenatus (male)

H-F: Hemidactylus frenatus (female)
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Fig. 4-1. Schematic drawings of the observation box for aggressive interactions between
two individuals of Clones Ol and O2 of Lepidodactylus lugubris and male and female

Hemidactylus frenatus. For the methods of observation, see the text.
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Fig. 4-2. Aggressive behaviors when two individuals of Clones Ol and O2 of
Lepidodactylus lugubris and male and female Hemidactylus frenatus interact for a given
prey item. Aggressive behaviors are shown in % occurrence of arches, wags, clicks,

bites, lunges, or wrestles in the total number of rounds x two individuals.
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Fig. 4-3. The results of the interactions to feed prey items between two individuals of
Clones O1 and O2 of Lepidodactylus lugubris and male and female Hemidactylus
frenatus. If Player 1 fed a given prey item with some interactions with Player 2, we
scored Player 1 wins and Player 2 loses. If players fed a given prey without any

interactions between them, we scored both no contests.
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Fig. 4-4. The quantifying the fighting ability between two individuals of Clones O1 and
O2 of Lepidodactylus lugubris and male and female Hemidactylus frenatus, using the
Bradley-terry model that the strength of Clone O1 was set to the reference value 0. ***
P <0.001.
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5. General discussion

5-1. Origin and genetic differentiation of clones

All-female parthenogenetic Lepidodactylus Ilugubris is considered to have the
hybrid origin between congeneric closely related bisexual species, L. moestus and
undescribed L. sp. (Moritz et al., 1993; Volobouev et al., 1993; Radtkey et al., 1995;
Ineich, 1999; Yamashiro et al., 2000). These parental species cohabit only on Arno
Atoll of Marshall Islands, and therefore this place is thought to be the origin of L.
lugubris (Radtkey et al., 1995). If L. lugubris had the hybrid origin, the first
parthenogenetic clone may have diploid, and the triploid clones originated through back
crosses between the diploid clones and males of one of the two parental species (Moritz
et al., 1993; Volobouev et al., 1993; Radtkey et al., 1995; Ineich, 1999; Yamashiro et al.,
2000). Table 5-1 shows morphological characteristics and distribution areas of all
known clones of L. lugburis and the possible parental species, L. moestus and
undescribed L. sp.The main clones are Clones A, B, C, D, E, and F. Clone A is diploid
and distributed widely in the Pacific Ocean areas and middle America. Clone B is
triploid and distributed widely in the Pacific Ocean areas. Clone C is triploid and
distributed widely in Sri Lanka, Pacific Ocean, and the middle of America. Clones D
and E are little known clones distributed in the southern Pacific regions. Clone F is
triploid and known only from Easter and Takapoto in the southern Pacific. Other minor
will be re-examined in the future.

In our study, L. lugubris of Japan included 17 microsatellite genotypes. These
genotypes had different dorsal marking patterns, and therefore all are thought to be
different clones named as Clones O1, O2, M, T, D1 to DI13. Furthermore, the ploidy
estimated by the number of alleles at eight microsatellite loci was diploid in three clones
Ol, D1 and D2 and triploid in all other clones. In the Ogasawara, Okinawa, Miyako,
and Yaeyama Islands, only one or two clones of Clones O1, 02, M, and T were found.
Clone O1 was identified as Clone A known in the Pacific Ocean because of its diploidy
and the dorsal marking pattern with two simple rows of V shaped markings on the
dorsum. Clone O2 was identified as Clone C, also known widely as in Clone A, because

it is triploid and dorsal pattern with two pairs of large dark markings at the lateral sides
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of neck and waist in addition to two simple rows of V shaped markings on the dorsum.
Clones M and T had a peculiar dorsal marking and at present are endemic to
Miyakojima and Taketomijima, respectively. However, these Clones M and T may be
colonized to each island from the outsides as in the cases of Clones Ol (=A) and O2
(=0).

However, in the Daito Islands, 14 clones were found. Such high clonal diversity
was already pointed out by Yamashiro et al. (2000). The clonal diversity of L. lugubris
was also known to be high in a particular geographic area. On Takapoto Atoll (the
Tuamotu group in French Polynesia), a total of seven morphologically different clones
(Clones A, B, C, D, E, F and A/B) of L. lugubris were distributed with a bisexual L. sp.
which is considered to be a parent species of some clones (Ineich, 1988; Ineich and Ota,
1992; Hanley et al., 1994; Ota et al., 1995; Radtkey et al., 1996). On Arno Atoll (the
Marshall Islands), three clones (Clones A, B and A/B) of L. lugubris are distributed
with its possible parental species, L. moestus and L. sp. (Radtkey et al., 1995). Moreover,
four clones of L. lugubris are also reported several islands: Clones A, B, C and D in the
Society Islands (Pasteur, 1987; Moritz et al., 1993) and the Australs (Ineich and Ota,
1993; Moritz et al., 1993); Clones A, B, C and A/B in Hawaii (Moritz et al., 1993;
Radtkey et al., 1995; Radtkey et al., 1996) and Cook Islands (Pasteur, 1987; Radtkey et
al., 1995; Radtkey et al., 1996; Gill, 1998). Three clones are cohabited in the following
islands: Clones A, B and C in the Marquesas Island (Pasteur, 1987; Ineich and Ota,
1993; Radtkey et al., 1996), Moorea Island (Boissinot et al., 1997; Ineich, 2015),
Rangiroa Atoll (Boissinot et al., 1997), the Gambier Islands (Ineich and Ota, 1993), and
Fiji (Pasteur, 1987; Moritz et al., 1993; Radtkey et al., 1996); Clones A, B and D on
Maiao (Boissinot et al., 1997).

Clonal diversity was thus much higher in the Daito Islands. The two explanations
may be possible for much higher clone diversity. One is that clones diversified within
the islands and the other is that colonization and establishment occurred multiply from
the outsides (Yamashiro et al., 2000). At least Clones O2, D12, and D13 are considered
as the widely distributed clones, which may be colonized to this island group over the
Pacific Ocean. Clone O2 was Clone C as shown above. Clones D12 and D13 may be
Clone B distributed over the Pacific Ocean, because it is triploid and two rows of black

spots exist on the mid-dorsal side of the body, although asymmetric markings differ
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slightly between them. In contrast, the other 11 clones in the Daito Islands might have
diversified within islands because they shared common microsatellite alleles in all
examined microsatellite loci and all different dorsal marking patterns from the
previously known clones. Our hypothesis is that diversification of the triploid clones
may be caused by the cross of females of Clone D1 with the unusual phenotypic male(s)
derived from Clone D2. The phenotypic males have been found on a few occasions in
all-female parthenogenetic clones reared in the mass culture (R6ll and von During,
2008) and in the field (Brown and Murphy-Walker, 1996; Yamashiro and Ota, 1998).
Once such a male appeared in Clone D2 and fertile, all triploid Clones D3 to D11 with
mitochondrial haplotype H1 are explained by mating by this D2 male with H2 with D1
females with H1.

5-2. Asexual and sexual reproduction and species concept

It is generally considered that parthenogenetic species avoid the two-fold cost of
sexual reproduction by making no investment in males and enabling each individual in
all-female species to produce offspring independently (Maynard Smith, 1978; Neaves
and Baumann, 2011). This strategy enables every member of the population to colonize
in a new habitat. Thus, parthenogenetic reproduction is predicted to be advantageous in
increasing abundance and in dispersal. Our study of comparing distribution patterns and
population genetic structure between parthenogenetic L. lugubris and sexual invasive
species, H. frenatus, supported this hypothesis. In the Ogasawara Islands, successful
dispersal may be more frequent in Clones O1 and O2 of L. lugubris than in H. frenatus,
and therefore the asexual reproductive strategy of L. [ugubris appears to have
contributed to its dispersal success and increased abundance among the small oceanic
islands.

Recent studies clarify that hybrid speciation is more common in animals than
previously thought (Lutes et al., 2011). Moreover, it has been believed that
hybridization combined with parthenogenesis produced parthenogenetic lizards
(Radtkey et al., 1995; Neaves and Baumann, 2011). Subsequent hybridizations between
diploid parthenogenetic females and males of sexual species can produce triploids

(Radtkey et al., 1995). If this type of hybridization occurs, the triploid clones have all
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diploid mother genome although the gene flow may not occur between the offspring
clones. Such a situation was supposed in the Daito Islands in our study. Although at
present it is not evident whether or not the males of Clone D2 were present in the past,
all nine triploid clones endemic to this island group could be explained by the repeated
hybridization between female Clone D1 and male D2 (see Fig. 2-4 in Chapter 2).

The absence of gene flow both within and between unisexual taxa has promoted
debate on the taxonomic treatment of parthenogenetic species (Lutes et al., 2011). In our
study, multiple clones can be discriminated morphologically and genetically in Japanese
L. lugubris. In addition to genetic and morphological differentiation, ecological and
behavioral characteristics such as aggressiveness between clones were also detected in
this study. However, classifying each clone to different species based on their
reproductive isolation, morphological and ecological differentiation, and unique
combination of microsatellite alleles may be unrealistic because biological species
concept (Mayr, 1963) is difficult to adapt to parthenogenetic species. On the other hand,
based on ecological species concept (Van Valen, 1976), the clones currently being
named L. lugubris might be divided into multiple species. At present, separating
parthenogenetic L. lugbris into multiple species may important in contribution to
conservation of rare endemic clones. Some cosmopolitan clones with a wide
distribution range are colonizing to other islands and areas naturally and artificially. In
this respect, these clones are the invasive alien species (Short and Petren, 2008). Some
invasive clones have introduced to the Daito Islands, and therefore, if nobody takes care
of conservation, various clones endemic to this island group might extinct in near future.
It is a great loss to decrease clonal diversity of L. lugubris. Descriptions of clones as

new species may be a pioneer of conserving these clones.
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