
Ph.D. Thesis

Effective Hamiltonian theory of
anomalous optical responses induced by

spin-orbit interaction

スピン軌道相互作用による特異な光学応答現象
の有効理論（英文）

Hideo Kawaguchi

川口　秀雄

Department of Physics,

Graduate Scool of Science and Engineering,

Tokyo Metropolitan University　
首都大学東京大学院　理工学研究科　物理学専攻

2018



Abstract

Spin-orbit interaction arising from the breaking of spatial-inversion symmetry

induces electromagnetic cross-correlation effects, resulting in anomalous optical

responses. In present Thesis, we theoretically study anomalous light propagation

induced by cross-correlation effects in spin-orbit systems by effective Hamiltonian

approach based on a microscopic ground.

First, we investigate nonreciprocal directional dichroism in the magnetic Rashba

conductor by deriving an effective Hamiltonian based on an imaginary-time path-

integral formalism. We show that the effective Hamiltonian representing the direc-

tional dichroism in the magnetic Rashba conductor is written in terms of toroidal

and quadrupole moments as in insulator multiferroics. The toroidal-moment term

consists of the vector coupling between toroidal moment and Poynting vector, re-

sulting in the directional dichroism irrespective of the light polarization due to

the Doppler shift. We also see that the quadrupole-moment term also induces

directional dichroism for linearly-polarized waves. Furthermore, we discuss differ-

ence between optical responses of magnetic Rashba conductor and that of 3+1

dimensional Weyl semimetal in context of the effective Hamiltonian.

Next, we examine optical properties of a Weyl spin-orbit system having quadratic

dispersion by deriving an effective Hamiltonian of electromagnetic fields. We

demonstrate that an optical chirality order parameter introduced by Lipkin ap-

pears in the effective Hamiltonian, and that the optical chirality order parameter

indeed leads to natural optical activity from the viewpoint of the effective Hamil-

tonian.
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Chapter 1

Introduction

First of all, we briefly introduce electromagnetic cross-correlation effects and
optical responses in spin-orbit systems without spatially-inversion symmetry in
Chapter 1. Especially, we focus on effects of Rashba spin-orbit interaction and
that of Weyl spin-orbit interaction in medium. We summarize the organization of
this Thesis in the last section.

1.1 Electromagnetism and spintronics

Lows of electromagnetism that couple electricity to magnetism were discovered
by James Clerk Maxwell and Michael Faraday about 150 years ago [1]. Conversion
between electric signals and magnetic information plays an important role in the
development of currently available information technologies from that time on.
Such conversions were first performed using classical laws of electromagnetism,
such as Faraday’s law and Ampére’s law as shown below.

∇×E = −∂B
∂t

, (1.1)

∇×B =µ0j + µ0ϵ0
∂E

∂t
, (1.2)

where E and B are electric and magnetic fields, respectively. Here, j is the
charge-current density, and ϵ0 and µ0 are the electric permittivity and magnetic
permeability of the vacuum, respectively. In magnetic devices such as a cassette
tape and a hard disk drive, Faraday’s law, Eq. (1.1), was used to read out in-
formation while Ampére’s law, Eq. (1.2), is applied to write in information by
magnetization flip [2].

However, these classical mechanisms have not been able to sufficiently meet
the recent technological requirements of fast processing of large amounts of in-
formation and high-density storage; hence, they have been gradually replaced by
solid-state mechanisms such as spin-transfer torque [3, 4]. The interaction Hamil-
tonian describing the spin-transfer effect in magnets is

Hst =

∫
d3r

ℏP
2e

(1− cos θ)(j · ∇)ϕ, (1.3)
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where θ and ϕ are the polar coordinates representing the direction of a magneti-
zation, P is the spin polarization of conduction electrons, ℏ is the Planck constant
divided by 2π, and e is the electron charge. Spin-transfer torque induced by an
applied electric current in ferromagnetic metals is a crucially important effect in
the context of current-induced magnetization reversal in spintronics. In fact, we
see that the spin torque by the electric current, τst ≡ − δHst

δn
= − P

2e
(j ·∇)n, acts

on a magnetization, where n is a unit vector representing the direction of the mag-
netization; hence the magnetization reversal can be induced by the spin-polarized
electric current (spin current) described as js ≡ Pj. The idea of the spin-transfer
effect was first proposed theoretically by Berger [5] in the case of a domain wall
motion and by Slonczewski [3] and Berger [4] in the case of the uniform mag-
netization of thin films. The spin-transfer effect arises from the transfer of spin
angular momentum from conduction electrons to localized spins which induce the
magnetization. The effect is caused by an sd exchange interaction, and the angular
momentum transfer occurs owing to the angular momentum conservation [3].

In resent years, the effect arising from spin-orbit interaction attracts the in-
terest of researchers in this context. One example is the magnetization reversal
using an effective magnetic field induced by a spin-orbit interaction, called Rashba
interaction (Ref. [6]). In the case of a strong sd interaction, i.e., adiabatic limit,
the interaction describing the magnetization reversal is given by [7–10]

Hst,R = −
∫

d3r(Beff,R · n), (1.4)

with

Beff,R ≡
m

eℏ
(αR × js), (1.5)

where m is electron mass and αR is the Rashba field along z-axis representing
the strength of the Rashba interaction. It was reported that the effective magnetic
field induced by the Rashba interaction such as Eq. (1.5) plays a key role in pining
for domain wall motion under the electric current [11]. Refs. [12, 13] have been
argued optical magnetization reversal induced by inverse Faraday effect, which is
a nonlinear effect with respect to an incident electric field in the presence of the
Rashba interaction.

1.2 Spin-orbit interaction

Spin-orbit interaction, which couples the orbital motion of an electron to its
spin via a relativistic effect, plays an important role in the context of a mixing
of electric and magnetic degrees of freedom. Originally, spin-orbit interaction is
derived directly from the Dirac equation as a relativistic effect [14]. Under the
effect of electromagnetic fields, the Dirac equation is given by[∑

µ

γµ
(
i
∂

∂xµ
− q

c
Aµ

)
−mc

]
ψ = 0, (1.6)
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where we set ℏ = 1, γµ is gamma matrices, c is light speed, m is rest mass of
Dirac electron, q is the charge of Dirac electron, and ψ is the Dirac field having
4-components. Here, Aµ ≡ (ϕ,A) is a gauge field being 4-vector whose time
component is a scalar potential and whose spatial component is a vector potential.
Using the 4×4 matrices, αi ≡ γ0γi and β ≡ γ0, Eq. (1.6) reads

i
∂

∂t
ψ = HDiracψ, (1.7)

with

HDirac ≡
[
cα ·

(
p− q

c
A
)
+mc2β + qϕ

]
, (1.8)

where p ≡ −i∇ is a linear momentum of Dirac electron and HDirac is the Dirac
Hamiltonian being 4 ×4. In non-relativistic limit, Eq. (1.8) up to the second order
in p reduces to the 2×2 Hamiltonian such as

H ≃ p2

2m
− qϕ− q

2mc
(B · σ)− q

16m2c2
(∇ ·E) +HSOI, (1.9)

with

HSOI ≡ −λsoE · (p× σ), (1.10)

where σ is the vector of Pauli matrices, λso ≡ q
4m2c2

andE ≡ −∇ϕ andB ≡∇×A
are electric and magnetic fields, respectively. In Eq. (1.9), the first term is kinetic
energy of the charged particle. The second term is the interaction between the
particle charge and the scalar potential. The third term is Zeeman interaction
describing the coupling between the magnetic field and the particle’s spin. The
fourth term is called Darwin term. The term HSOI is spin-orbit interaction that
couples particle motion to it’s spin and λso is the coupling constant of the spin-orbit
interaction in vacuum.

1.3 Electromagnetic cross-correlation effect in-

duced by Rashba spin-orbit interaction

Recent studies have shown that spin-orbit interaction becomes prominent for
surfaces and interfaces containing heavy metals as it significantly modifies their
electric and magnetic properties as a consequence of inversion symmetry breaking
[15]. The most typical spin-orbit interaction lacking inversion symmetry is the
Rashba interaction [6], whose Hamiltonian is as shown below.

HR = −αR · (p× σ), (1.11)

where p is a linear momentum of electron, σ is the vector of Pauli matrices,
and αR is the Rashba field representing the strength and direction of the Rashba
spin-orbit interaction. This form of interaction is derived directly from the Dirac
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equation as a relativistic effect as was shown in section 1.2, but its magnitude can
be significantly enhanced for solids containing heavy elements as compared to that
for the vacuum case.

Of particular current interest is electromagnetic effects induced by such strong
spin-orbit interaction because the effects are qualitatively different from conven-
tional electromagnetic responses like in Ohm’s law and Curie’s law as shown below.

j =σBE,

M =χB, (1.12)

where j is an electric current, M is a magnetization, σB is the Boltzmann conduc-
tivity, and χ is the magnetic susceptibility. A direct consequence of the Rashba
interaction is electromagnetic cross-correlation effects where a magnetization and
an electric current are induced by external electric and magnetic fields, E and B,
as

ME = γME(αR ×E), (1.13)

jIE = γjB(αR ×B), (1.14)

where γME and γjB are coefficients that generally depend on frequency. The
Rashba field induces a tangential electron spin texture on Fermi surface depicted
in Fig. 1.1, resulting in effects described by Eqs. (1.13) and (1.14). The emer-
gence of spin accumulation from the applied electric field, mentioned in Ref. [6],
was studied in detail by Edelstein [17]; hence, this effect is sometimes referred to
as the Edelstein effect. Experimentally, the magnetization by Edelstein effect is
observed using Kerr effect at interface between Cu, Ag and Bismuth oxide [18].
The generation of electric current by a magnetic field or magnetization, called
the inverse Edelstein effect [19], was recently observed in a multilayer structure
consisting of Ag, Bi, and a ferromagnet [20]. In Appendixes A.1 and A.2, we
confirm that the the Edelstein and inverse Edelstein effects arise from the spin
polarization induced by Rashba interaction through the microscopic calculation in
the long-wave region [21,22].
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Figure 1.1: Schematic illustration of the electron spin configuration on Fermi sur-
face induced by the Rashba interaction. Black arrows denote the direction of the
electron spin. The tangential spin configuration was optically detected in bulk
Rashba conductor such as BeTeI [16].

1.4 Optical responses in Rashba conductor

1.4.1 Birefringence and softening of plasma frequency in
non-magnetic Rashba conductor

Recent studies (Refs. [21, 22]) showed that the cross-correlation effects of the
Rashba spin-orbit interaction lead to anomalous optical properties in bulk Rashba
conductor. From Eqs. (1.13), we obtain a magnetization current induced by the
Edelstein effect as

jE ≡∇×ME

= iγME[(αR · k)E − (k ·E)αR], (1.15)

where k is the wave vector of electromagnetic waves. Using Faraday’s law (∇×E =
−∂B

∂t
) and the Onsager’s reciplocal relation (γjB = iωγME, where ω is angular

frequency of electromagnetic waves), Eq. (1.14) is rewritten as

jIE = iγME[(αR ·E)k − (αR · k)E]. (1.16)

We thus get the electric current including the cross-correlation effects as

jEE−IE,µ ≡ jE,µ + jIE,µ =
∑
ν

σEE−IE
µν Eν , (1.17)

with

σEE−IE
µν (ω) = iγME(kµαR,ν − αR,µkν), (1.18)

where σEE−IE
µν is an electric conductivity tensor being liner in k. Above equation

indicates that Edelstein and inverse Edelstein effects give rise to an antisymmetric
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component of the electric conductivity tensor, resulting in an anomalous optical
response for linearly-polarized waves such as birefringence [21, 22]. In fact, from
Maxwell’s equations and Eq. (1.18), we obtain the dispersion relation of light
describing extraordinary waves where the direction of Poynting vector and that of
the wave vector differ,

k = ω

[
c2 −

(
γMEαR

ϵ0

)2 ]− 1
2

, (1.19)

where c is the light velocity in vacuum.
Furthermore, it was pointed out that a strongly anisotropic light propagation

arises from the electric current induced by a direct coupling between Edelstein
effect and inverse Edelstein effect defined as

jEIE ≡ γME(αR ×ME). (1.20)

The anisotropic contribution arising from the Rashba field is written by diago-
nal components of the electric conductivity tensor as shown below [21, 22]. (see
Appendix A.3 for details of the derivation.)

σEIE
µν (ω) =

ie2

ω + i0

ne

m

[
δµν [1 + C(ω)]− α̂R,µα̂R,νC(ω)

]
, (1.21)

where α̂R ≡ αR/|αR| is a unit vector representing the direction of the Rashba
field, 0 is a positive infinitesimal, and ne and C(ω) are defined in Eq. (A.28)
and Eq. (A.13), respectively. Equation (1.21) leads to the softening of plasma
frequency due to C(ω) originated from the current-spin correlation function. As
a consequence of the softening of plasma frequency, the dispersion relation being
hyperbola for linearly-polarized waves,

ω2

c2
=

k2x
1 + ϵEIEzz

+
k2z

1 + ϵEIExx

, (1.22)

can emerge, resulting in a hyperbolic metamaterial [23] that exhibits a negative

refraction and a focusing effect, where ϵEIExx = −ω2
p

ω2 [1 + C(ω)], ϵEIEzz = −ω2
p

ω2 , and

ωp ≡
√

e2n2
e

ϵ0m
is the plasma frequency. Here, we used the relation, ϵµν = δµν+i

1
ϵ0ω
σµν .

1.4.2 Directional dichroism in magnetic Rashba conductor

Until now, we introduce electromagnetic cross-correlation effects and optical
responses in the Rshaba system with time-reversal inversion. Refs. [21,22] also re-
ported anomalous optical responses in magnetic Rashba conductors realized in the
Rashba system attached ferromagnet. In such systems, the time-reversal invari-
ance breaking is caused by the sd exchange interaction that couples the electron
spin to the magnetization, whose Hamiltonian is given by

Hsd = −Jsd
∫

d3r(M · σ), (1.23)
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where, M is the magnetization vector, σ is the vector of Pauli matrices, and Jsd
is the strength of the exchange interaction.

If Rashba conductors are magnetic or under the effect of an external mag-
netic field, directional dichroism, a form of anisotropic wave propagation, has been
shown to occur as with insulator multiferroics. An electric conductivity tensor de-
scribing optical responses in magnetic Rashba conductors is given by [21,22]

σMµν(Ω) =σ
AHE(Ω)

∑
l

ϵµνlM
∥
k

+ σM1 (Ω)(αR ×M ) · q[δµν − α̂R,µα̂R,ν ]

+ σM2 (Ω)[(αR ×M )µq
⊥
ν + (αR ×M )νq

⊥
µ ]

+ σM3 (Ω)
∑
ℓm

[M⊥
µ αR,ℓϵνℓm + ϵµℓmM

⊥
ν αR,ℓ]qm, (1.24)

where q and Ω are the wave vector and angular frequency of electromagnetic waves,
respectively, q⊥ ≡ q− α̂R(α̂R · q), M ∥ ≡ (αR ·M )αR, M

⊥ ≡M − α̂R(α̂R ·M ),
ϵµνl is a totally antisymmetric tensor, and σAHE, σM1 , σM2 , and σM3 are coefficients
depending on the angular frequency. The antisymmetric component being q0 with
σAHE on the right-hand side of Eq. (1.24) induces anomalous Hall effect [24] when
αR ·M is finite, resulting in the magneto-optical effect such as Faraday effect [25]
for circularly-polarized waves traveling along in the direction of magnetization.
The dispersion relation describing the Faraday effect is

q2 =
Ω2

c2

[
1± σAHE(Ω)α2

R(−M)

ϵ0Ω

]
, (1.25)

where ± stands for the sense of circular polarization. On the other hand, the
symmetric terms proportional to q1 on the right-hand side of Eq. (1.24) lead to
diagonal components, resulting in directional dichroism depending on the direction
of light propagation in the case where αR ×M being finite and q take parallel or
antiparallel configuration. In fact, the dispersion relation describing the directional
dichroism for linearly-polarized waves is shown to be [21,22]

q =
Ω

c

√
1 + ϵEIExx + σM13 (Ω)[(αR ×M) · q̂], (1.26)

where σM13 ≡ σM1 + σM3 .
The directional dichroism was found to be governed by the relative direction

of the wave vector and another vector AR ≡ αR ×M depicted in Fig. 1.2. The
latter vector is known to be an effective gauge field coupled with the electron’s spin
(Rashba-induced spin gauge field), which generates a spin current [26–28]. From
the symmetry point of view, the Rashba field αR is equivalent to an electric polar-
ization P (Ref. [29]); hence, the vectorAR works as a toroidal moment t ≡ P×M .
The toroidal moment has been reported to act as an effective vector potential for
light in the case of multiferroics [30]; however, microscopic justification for the
same has not been provided. The study in Refs. [21, 22] further discussed that
the effective theory describing magnetic Rashba conductors is similar to the one
describing insulator multiferroics.
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In Chapter 2, we examine the propagation of electromagnetic waves in mag-
netic Rashba conductors based on an effective Hamiltonian analysis on a micro-
scopic ground. We show that the effective Hamiltonian describing the directional
dichroism consists of two terms, one representing the Doppler shift and the other
denoting the cross-correlation effect induced by a quadrupole moment [31]. The
results of our study confirm with those of Refs. [21,22] obtained by calculating an
optical conductivity.

Figure 1.2: Schematic illustration of the directional dichroism in the magnetic
Rashba conductor. When the toroidal moment (Rashba-induced spin gauge field)
AR ≡ αR×M is finite, the directional dichroism is caused by the coupling between
the toroidal moment and the wave vector of light.

1.5 Spin gauge fields

In this section, we introduce two spin gauge fields. First one is the Volovik’s
spin gauge field, and second one is the Rashba-induced spin gauge field which
plays an important part in argument about the directional dichroism in magnetic
Rashba conductors. Rewriting the spin-transfer interactions shown in Sec. 1.1 in
terms of the spin gauge fields, we see that these fields generate the spin current.
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1.5.1 Volovik’s spin gauge field

Figure 1.3: Schematic illustration of ferromagnetic metals with inhomogeneous
magnetization texture. Electrons travel in the metals under the effect of the strong
sd exchange interaction.

In ferromagnetic metals without the Rashba interaction depicted in Fig 1.3, an
effective electromagnetic field arises from the sd exchange interaction described by

Hsd = −∆sd

∫
d3r(n · se), (1.27)

where ∆sd ≡ JsdM is the exchange energy, M ≡ |M |, n is a unit vector represent-
ing the direction of the magnetization, and se is the direction of the conduction
electron spin. When this exchange interaction is strong, the conduction electron
spin is aligned parallel to the magnetization direction, and this effect results in a
quantum mechanical phase attached to the electron spin when the electron moves
(see Ref. [32] for details of derivation). The spin part of the electron wave function
with the expectation value along n ≡ n(r) is |n⟩ = cos θ

2
| ↑⟩+sin θ

2
eiϕ| ↓⟩, where r

means a position, θ and ϕ are the polar coordinates of n, and | ↑⟩ and | ↓⟩ denote
the spin states [33].

Figure 1.4: Schematic illustration of electron hopping. The strong sd interac-
tion changes the direction of the electron spin when the electron travels in the
inhomogeneous magnetization texture.

When the electron hops over a small distance dr ≡ r′ − r to a nearby site
where the magnetization is along n′ ≡ n(r′) as is shown in Fig. 1.4, the overlap
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of the wave functions is calculated as ⟨n′|n⟩ ≃ e
i
ℏ eA

z
s ·dr, where

Az
s =

ℏ
2e

(1− cos θ)∇ϕ, (1.28)

and the factor of 1
2
is due to the magnitude of the electron spin. The field Az

s is
an effective vector potential or an effective gauge field. When the electron’s path
is finite, the phase becomes φ = e

ℏ

∫
C
dr ·Az

s . The existence of the phase means
that there is an effective magnetic field Bs, as seen by rewriting the integral over
a closed path using the Stokes theorem as φ = e

ℏ

∫
S
dS ·Bs, where Bs ≡∇×Az

s .
The time derivative of the phase is equivalent to a voltage, and thus, we have an
effective electric field defined by φ̇ = − e

ℏ

∫
C
dr · Es, where Es ≡ −Ȧz

s . These

two fields satisfy Faraday’s law, ∇ × Es + Ḃs = 0. We therefore have effective
electromagnetic fields that couple to the conduction electron spin as a result of the
sd exchange interaction. We call the field a spin electromagnetic field [34]. Using
the explicit form of the effective gauge field, Eq. (1.28), we see that the emergent
spin electromagnetic fields are

Es,i = − ℏ
2e

n · (ṅ×∇in),

Bs,i =
ℏ
4e

∑
jk

ϵijkn · (∇jn×∇kn). (1.29)

The magnetic component Bs is the spin Berry’s curvature [35] or scalar chiral-
ity. The electric component Es, called the spin motive force, is a chirality in the
space-time, which arises when the magnetization structure n is time-dependent.
The expression Eq. (1.29) was derived by Volovik in 1987 [36]. Experimentally,
the spin magnetic field (the spin Berry’s curvature) has been observed using the
anomalous Hall effect 1 in frustrated ferromagnets [37, 38]. The spin electric field
has been measured in the motion of various ferromagnetic structures such as do-
main walls [41], magnetic vortices [42], and skyrmions [43].

By use of Eq. (1.28), we see that the spin-transfer interaction, Eq. (1.3), is
represented as a gauge coupling to the adiabatic spin gauge field (Volovik’s spin
gauge field) (Refs [2, 44]) as shown below.

Hst =

∫
d3r(js ·Az

s ), (1.30)

where js is the spin-polarized electric current. Above expression clearly shows that
the adiabatic spin gauge field Az

s induces the spin current. In the case of the sd
interaction having time dependence, it is theoretically shown that non-adiabatic
components of an SU(2) spin gauge field intrinsically contribute to the spin current
generation in the context of the spin pumping effect [45].

1By taking into consideration of vertex corrections due to random impurities, the anomalous
Hall effect induced by the non-local component of the scalar chirality is theoretically investigated
in the case of a weak sd interaction [39,40].
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1.5.2 Rashba-induced spin gauge field

In Ref. [27], the Rashba-induced spin gauge field is derived in the strong sd
coupling region by calculating a pumped electric current, jpump, by magnetization
texture and a spin Hall current, jHall, by effective magnetic field based on the
microscopic transport theory [28, 46]. These electric currents are given by (see
Appendixes C.1 and C.2 for details of derivation)

jpump =j(A) + j(B) + j(C)

=− a1
∂

∂t
(αR × n) + b1∇× [∇× (αR × n)], (1.31)

jHall =j(Hall,1) + j(Hall,2)

=− c1E × [∇× (αR × n)], (1.32)

where n is a unit vector representing the direction of the magnetization. Con-
tributions for jpump and jHall at the linear order of the Rashba interaction are
diagrammatically shown in Fig. 1.5 and Fig. 1.6, respectively. The coefficients a1,
b2, and c3 are defined in Appendixes C.1 and C.2.

From Eq. (1.31), Eq. (1.32), and Maxwell’s equation including effective spin
electromagnetic fields in medium (Refs. [28,46]),

j =σsEs,eff +
1

µs

∇×Bs,eff , (1.33)

with the spin-dependent electric conductivity σs and the spin-dependent magnetic
permeability µs, Rashba-induced spin electric and magnetic fields are obtained as

ER ≡− ȦR = −αR × ṅ

BR ≡∇×AR = ∇× (αR × n), (1.34)

respectively. These two fields satisfy Faraday’s law, ∇×ER + ḂR = 0. Here,

AR ≡αR × n (1.35)

is the Rashba-induced spin gauge fields [27], which is an effective vector potential
for electron spin. The spin-dependent electric conductivity, magnetic permeability,
and Hall conductivity are given by a1, b

−1
1 , and c1, respectively. Using the above

expression, the spin-transfer interaction by the Rashba interaction, Eq. (1.4), is
rewritten as a form of gauge coupling as shown below.

Hst,R =

∫
d3r

m

e
(js ·AR). (1.36)

Therefore, we see that the Rashba-induced spin gauge fields AR plays a role of
the spin current generation as with the adiabatic spin gauge field suggested by
Volovik.
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Figure 1.5: The Feynman diagrams for the electric current pumped by non-uniform
magnetization texture and the Rashba field. Solid lines represent the conducting
electrons’ Green’s function including the sd interaction. The dotted lines and
the dotted wavy lines denote the Rashba field αR and the spin gauge field As,
respectively. Diagrams (a) and (b) are contributions of j(A). Diagrams (c), (d),
(e), and (f) are contributions of j(B). Diagram (g) is contribution of j(C). Note
that j(C) dose not contribute to the expression for the pumped current in this
calculation.
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Figure 1.6: The Feynman diagrams for the spin Hall current driven by the Rashba-
induced spin magnetic field. Solid lines represent the conducting electrons’ Green’s
function including the sd interaction. The dotted lines and the wavy lines denote
the Rashba interaction and the gauge field A, respectively. Diagrams (a), (b), and
(c) are contributions of j(Hall,1). Diagrams (d) and (e) are contributions of j(Hall,2).
As was pointed out in Ref. [27], the contribution arising from the spin gauge field
As is negligibly small in this description. Note that j(Hall,2) does not contribute to
the expression for the Hall current in this calculation.

As has been reported by Volovik [36], the original spin gauge field (adiabatic
spin gauge field) occurs in the absence of the Rashba interaction in the strong
sd-coupling regime (Ref. [32]), and induces effective electric and magnetic fields
acting on electron spin as was shown in Sec. 1.5.1. Originally, the emergence of
the effective electric field from moving magnetic structures was found in 1986 by
Berger, where a voltage generated by canting a moving domain wall was calculated
[5]. Stern discussed the motive force in the context of the spin Berry’s phase and
the Aharonov-Bohm effect in a ring, and showed similarity to Faraday’s law [47].
The spin motive force was rederived in Ref. [48] in the case of the domain wall
motion, and discussed in the context of topological pumping in Ref. [49]. Recenty,
a generation mechanism of a spin electric field using a nonlinear effect of non-
monochromatic spin-wave excitations was proposed in Ref. [50]. This mechanism
is applicable to the case of a uniform magnetization, and it would have a great
advantage in applications over common setups using non-coplanar structures. This
theoretical considerations call for an experimental verification of the effect. The
coupling of adiabatic spin gauge field to electromagnetic field was studied based on
the effective Hamiltonian study in Refs. [50,51]. It was found that the spin-transfer
effect is described using the linear coupling term of the adiabatic spin gauge field
and the electric field 2. Ref. [54] reported the effect of adiabatic spin gauge field on

2It was experimentally confirmed that the spin-transfer effect causes nonreciprocal spin-wave
propagation due to the Doppler shift in ferromagnetic metals when the electric current is applied
[52]. Recent study (Ref. [53]) theoretically showed that the spin-transfer effect can induce the

13



nonlinear optical effects and a topological inverse Faraday effect was shown to have
occurred from a spin Berry’s curvature in the absence of a spin-orbit interaction.

Those works consider only the adiabatic limit, i.e., in the case of a strong
sd exchange interaction and in the absence of spin-dependent scattering. The
idea of the spin motive force has recently been extended to include the spin-orbit
interaction [26, 27, 34, 55–58], and it was shown that the spin-orbit interaction
modifies the spin electric field. It was also shown that the spin electromagnetic
field arises even in the limit of the weak sd interaction [28,46], as was shown in Eq.
(1.33). The case of the Rashba spin-orbit interaction has been studied in detail
recently. It was shown that the spin electric field in this case emerges even from
a uniform precession of magnetization [27,34]. This fact suggests that the Rashba
interaction at interfaces would be useful in controlling the spin-charge conversion.
The Rashba-induced spin electric field induces a voltage in the same direction as
in the inverse spin Hall and inverse Edelstein effects [20, 59] driven by the spin
pumping effect [60]. It was also pointed out that the spin electromagnetic fields
in the presence of spin relaxation satisfy Maxwell’s equations with spin magnetic
monopoles that are driven dynamically [28].

1.6 Optical responses and cross-correlation ef-

fects in Weyl spin-orbit system

Optical responses and cross-correlation effects are qualitatively discussed based
on symmetry argument. An optical response for circularly-polarized waves, natural
optical activity, is caused by the inversion symmetry breaking which induces an
antisymmetric off-diagonal component linear in the wave vector of light in an
electric conductivity tensor [61]. Natural optical activity of chiral molecules was
phenomenologically discussed in Ref. [62]. It was pointed out that chiral nature
leads to the electric flux density and magnetic field strength, D and H , given by

D =ϵ

[
E − g

ϵ
Ḃ

]
,

H =
1

µ

[
B − µgĖ

]
, (1.37)

where E and B are electric and magnetic fields, respectively. ϵ and µ are the
electric permittivity and magnetic permeability in the medium, respectively, and
the constant g characterizes the breaking of spatial inversion symmetry. It was
demonstrated through discussion on a correlation function that g is finite when
the inversion symmetry is broken [63].

In the case of electron systems, a typical chiral system is the one with the Weyl
spin-orbit interaction (Refs. [64–66]), whose Hamiltonian is given by

HW = −λ(p · σ), (1.38)

spin-wave-Doppler shift even in antiferromagnets.
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where λ stands for the coupling constant of the spin-orbit interaction with broken
inversion symmetry. The interaction, Eq. (1.38), breaks mirror symmetry with
respect to all the three axes (Ref. [67]), resulting in a radial electron spin texture on
Fermi surface [68] depicted in Fig. 1.7. The radial electron spin texture generates
magnetization by the electric field in the system having helical structure such as Se
or Te [68]. In Chapter 3, we examine natural optical activity in the Weyl spin-orbit
system by deriving an effective Hamiltonian for electromagnetic fields.

Figure 1.7: Schematic illustration of the electron spin configuration on Fermi sur-
face induced by the Weyl interaction. Black arrows denote the direction of the
electron spin.

The Weyl spin-orbit systems, where time-reversal symmetry is kept, are called
truly chiral systems [69]. In contrast, quantity which breaks time-reversal invari-
ance besides spatial one is called “false chirality” . A symmetry analysis showed
that the truly chiral interaction p · σ leads to natural optical activity in chiral
molecules [69]. In the case of electromagnetism, quantities with “false chirality”
are E ·B and E ×B. The scaler product E ·B appears in an effective Hamil-
tonian of 3+1-dimensional Weyl semimetal in the form Hθ = θ(r, t)E ·B [70,71],
where θ(r, t) is a topological field depending on space r and time t. The effective
Hamiltonian leads to topological electromagnetic cross-correlation effects such as
chiral magnetic effect and anomalous Hall effect [72]. The vector product form
E×B appears in magnetic Rashba conductors [31] or insulator multiferroics [73].
The effective Hamiltonian in this case is Hu = u · (E ×B) with a constant vector
u representing an intrinsic flow and it could cause directional dichroism [31], as is
shown in Chapter 2.

1.7 Overview of this Thesis

This Thesis is structured as follows. In Chapter 2, we examine an anisotropic
light propagation, directional dichroism, in magnetic Rashba conductors in terms
of an effective Hamiltonian for electromagnetic fields. By deriving the effec-
tive Hamiltonian based on an imaginary-times path-integral formalism, we show
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that the directional dichroism in magnetic Rashba conductors is described by the
toroidal-moment term and the quadrupole moment term like in insulator multifer-
roics. From the result, the directional dichroism is interpreted as Doppler shift of
light. Furthermore, we discuss optical responses in relativistic spin-orbit systems
such as 3+1-dimensional Weyl semimetals. This work was reported in Ref. [31].
In Chapter 3, we investigate optical properties of a Weyl spin-orbit system with
quadratic dispersion by deriving an effective Hamiltonian of electromagnetic fields.
We show that an optical chirality order parameter appears in the effective Hamil-
tonian, and describes natural optical activity in a typically chiral system. This
work was reported in Ref. [74].
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Chapter 2

Theory of nonreciprocal
directional dichroism in magnetic
Rashba conductor

Rashba spin-orbit interaction leads to a number of electromagnetic cross corre-
lation effects by inducing a mixing of electric and magnetic degrees of freedom as
mentioned in Introduction. In this Chapter, we investigate the optical properties
of a magnetic Rashba conductor by deriving an effective Hamiltonian based on an
imaginary-time path-integral formalism. We show that the effective Hamiltonian
can be described in terms of toroidal and quadrupole moments, as has been argued
in the case of insulator multiferroics [31]. The toroidal moment turns out to coin-
cide with the spin gauge field induced by the Rashba field. It causes Doppler shift
by inducing intrinsic electric current, resulting in anisotropic light propagation
(directional dichroism) irrespective of the polarization. In addition, we see that
the quadrupole moment contributes to the linear dichroism for linearly-polarized
waves.

2.1 Phenomenological argument: Doppler-shift

picture

In this section, we discuss an effective Hamiltonian for electromagnetic fields
in magnetic Rashba conductors with breaking of both spatial-inversion symmetry
and time-reversal invariance from the symmetry point of view.

In the case of electromagnetism in vacuum, the effective Hamiltonian density of
electromagnetic fields induced by charged particles (electrons) is restricted to [75]

H =
1

2

(
ϵ0|E|2 +

1

µ0

|B|2
)
, (2.1)

where ϵ0 is an electric permittivity of the vacuum, µ0 is a magnetic permeability
of the vacuum, and E and B are electric and magnetic fields, respectively. In this
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case, we get conventional Maxwell’s equations as

∇ ·E =
ρ

ϵ0
,

∇ ·B =0,

∇×E =− ∂B

∂t
,

∇×B =µ0j + ϵ0µ0
∂E

∂t
, (2.2)

where ρ represents charge density and j is the charge-current density.
However, the existence of cross-correlation effects of Rashba conductors indi-

cates that the electric and magnetic fields, E and B, are linearly coupled, as was
mentioned in Secs 1.3 and 1.4. Therefore, we can expect that there are two pos-
sibilities for this form of interaction in the case where spatial-inversion symmetry
and time-reversal invariance are broken: The first one is proportional to E · B,
and the second one is proportional to their vector product E×B, as shown below.

Hθ = θ(E ·B), (2.3)

Hu = u · (E ×B), (2.4)

where θ is a constant and u is a constant vector. The first scalar interaction
(2.3) does not modify the equation of motion but has a topological effect, and the
emergence of such an interaction is restricted to surfaces or interfaces with non-
trivial topological properties. For instance, such a scalar coupling leads to a mixing
of E andB when the topological number θ/2π has a jump at the interfaces [76,77].
(In Sec. 2.4, the cross-correlation effect induced by the θ-term in Weyl semimetal
is briefly discussed.) In contrast, the coupling of the vector product shown in Eq.
(2.4) may occur in ordinary materials if a vector u exists because of the breaking
of both spatial-inversion symmetry and time-reversal invariance. This term, Eq.
(2.4), has not been discussed in the context of high-energy physics because it is
not invariant under the Lorentz transformation.

It is known that the vector 1
µ
E ×B (where µ is the magnetic permeability of

solids) is the Poynting vector representing the momentum of the electromagnetic
wave [1]. The vector interaction of Eq. (2.4) can thus be considered to be of
the form representing the Doppler shift u · k, where k is the wave vector of the
electromagnetic wave. In fact, in terms of the photon operators ak and a†k, the
coupling of Eq. (2.4) modifies the photon Hamiltonian as

Hphoton =
∑
k

(ck − u · k)a†kak, (2.5)

where c is the light velocity. The vector coupling of Eq. (2.4) is thus expected to
occur when the medium has an intrinsic flow with a velocity proportional to u.

The Doppler shift picture can also be justified at the level of the equation of
motion. The following description shows how electromagnetism is modified by the
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vector interaction of Eq. (2.4). Two of Maxwell’s equations become

∇ ·E =
ρ

ϵ0
− 1

ϵ0
∇ · (u×B),

∇×B =µ0j + ϵ0µ0
∂E

∂t
+ µ0

∂

∂t
(u×B)− µ0∇× (u×E), (2.6)

whereas the other two remain unchanged (∇ ·B = 0 and ∇ × E = −∂B
∂t
). The

total electric and magnetic fields can be represented as follows.

Etot =E +
1

ϵ0
(u×B),

Btot =B + µ0(u×E). (2.7)

These relations representing a cross-correlation effect can be considered as a result
of the Doppler shift as we demonstrate here. Taking a derivative of Etot with
respect to time, we have, using ∂B

∂t
= −∇×E,

∂Etot

∂t
=
∂E

∂t
+

1

ϵ0
[(u ·∇)E −∇(u ·E)]. (2.8)

For plane waves with the wave vector k ⊥ E, the last term in the above equation
is orthogonal to the field E; hence, it is neglected as was done for the linear effects
in u. The time derivative is thus replaced by a “covariant” one,

Dt ≡
∂

∂t
+

1

ϵ0
(u ·∇), (2.9)

which is expected for a flowing medium [78]. Therefore, the electromagnetic cross-
correlation effect shown in Eq. (3.4) represents the Doppler shift because of a
medium flow with velocity u.

It needs to be understood which type of intrinsic flow causes the Doppler shift
of the electromagnetic field in solids. One example is an equilibrium flow of spin
(spin current) can occur even at macroscopic scales, as known in magnets with
noncollinear magnetization structures [2, 79]. Spin current can be spontaneously
generated by the spin-orbit interaction because the spin current breaks the spatial-
inversion symmetry but not the time-reversal symmetry. In fact, a recent study
showed that such an intrinsic spin current generates the Dzyaloshinskii–Moriya
interaction (Refs. [80,81]) in magnetic materials as a result of the Doppler shift [82].
(see Appendix D for details of derivation of an effective Hamiltonian induced by
the spin current.) Anisotropic spin wave propagation experimentally measured in
chiral magnets such as Cu2OSeO3 (Ref. [83]) is interpreted as a consequence of the
Doppler shift induced by the Dzyaloshinskii–Moriya interaction. Another one is an
equilibrium flow of charge which do not induced Joule heat as well spin current. We
see that intrinsic flow in medium induced by the vector u is the equilibrium charge
current but not the equilibrium spin current because symmetry of the velocity of
the electron corresponds to that of u describing medium flow.

Our aim is to demonstrate that the magnetic Rashba conductor induces the
vector-coupling term of Eq. (2.4), and the vector u is given by a toroidal moment
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AR which induces the intrinsic charge current in medium. This result indicates
that wave propagation is affected by the Doppler shift induced by intrinsic electric
current generated by the toroidal moment. This is an interesting result as it
indicates that an effective vector potential for an electron spin acts as an effective
vector potential for an electromagnetic wave (light) as suggested by Refs. [30,78].
The directional dichroism predicted in the magnetic Rashba conductor in Ref. [21]
can thus be explained based on this result. We should keep in mind, however, that
this sceanario is justified up to the linear order of u representing the intrinsic flow
in medium.

2.2 Cross-correlation effects on electric permit-

tivity

The section till now describes the effects originating from the vector coupling
of Eq. (2.4); however, there may be other effects induced by the quadrupole
moment of the system. These effects are described in the section below. The
cross-correlation effect because of the quadrupole moment is expressed as [73]

HQ =
∑
ij

QijEiBj, (2.10)

where Qij(=Qji) is the traceless quadrupole moment. The electric and magnetic
fields representing the cross-correlation effects due to the total Hamiltonian Hu +
HQ after considering the vector u and the quadrupole moment Qij are

Etot =E +
1

ϵ0
P ,

Btot =B + µ0M , (2.11)

with

Pµ ≡(u×B)µ −
∑
ν

QµνBν ,

Mµ ≡(u×E)µ +
∑
ν

QµνEν , (2.12)

where P andM indicate effective electric polarization and effective magnetization,
respectively. The wave equation read from Eq. (2.11) is

∑
ν [c

2(k2δµν − kµkν) −
ω2ϵµν ]Eν = 0, where the electric permittivity tensor is

ϵij ≡ ϵ
(0)
ij + ϵ

(u)
ij + ϵ

(Q)
ij , (2.13)

with

ϵ
(u)
ij ≡−

1

ϵ0ω

∑
l

(uiδlj + δiluj)kl +
2

ϵ0ω
δij(u · k), (2.14)

ϵ
(Q)
ij ≡−

1

ϵ0ω

∑
lν

(Qiνϵνjl + ϵνilQjν)kl, (2.15)
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where ϵijk is a totally antisymmetric tensor, k and ω are the wave vector and

frequency of the electromagnetic field, respectively, and ϵ
(0)
ij is the contribution

even in k. It can be seen that the cross-correlation effects by u and Qij lead
to generation of linear components in the wave vector k that change signs by
time-reversal [84]. Such terms may induce dichroism phenomena of light such as
directional dichroism. Compering the result of Eq. (1.24) with that of Eq. (2.13),
we can expect that u and Qij in magnetic Rashba conductor are described as

u =d1(α̂R × M̂ ),

Qij =d2(M̂iα̂R,j + α̂R,iM̂j), (2.16)

where α̂R is a unit vector of the Rashba vector, M̂ is a unit vector of the magneti-
zation vector, and d1 and d2 are coefficients. Note that we neglect the angular fre-
quency dependence of coefficients and the anisotropic terms described by α̂R,µα̂R,ν

for simplicity.
First, we take into account only the contribution of Eq (2.14) to directional

dichroism. The terms on the right-hand side of Eq. (2.14) indicates that the vector
u contributes to the symmetric components of the electric permittivity tensor. The
symmetric component on the right-hand side of Eq. (2.14) means that the Doppler
shift, u · k, leads to the generation of the diagonal component. Setting α̂R =
(0, 0, 1), M̂ = (0,−1, 0), and ϵ(0)ij = δij in order to realize the configuration where u
and k take parallel or antiparallel, we obtain the dispersion relation for unpolarized
waves traveling in x-axis as k2 = ω2

c2
[1 + 2d1

ϵ0ω
(α̂R × M̂ ) · k]. The expression of

the dispersion relation indicates that the Doppler shift term induces directional
dichroism irrespective of light polarization. In the configuration, contribution of
symmetric off-diagonal component vanishes. This Doppler shift term, u · k is
known as magneto-chiral dichroism, where magnetization M in chiral materials
acts as the vector u [85]. In the case of Rashba spin-orbit system, the Rashba
field αR, which is invariant under time reversal, cannot induce u on its own.
Our result indicates that the combination αR ×M plays the role of vector u,
suggesting possible applications of natural magnetic spin-orbit systems to novel
optical materials.

Next, we discuss the contribution of Eq. (2.15) in addition to that of Eq. (2.14).
The term on the right-hand side of Eq. (2.15) indicates that the quadrupole mo-
ment contributes to the symmetric components of the electric permittivity tensor
as with the toroidal moment. The diagonal component arising from Eqs. (2.14)
and (2.15) results in directional dichroism for linearly-polarized waves. In fact, a

contribution of ϵ
(Q)
yy in addition to that of ϵ

(u)
yy appears in the dispersion relation

for Ey having linear polarization in the same configuration as above. On the other
hand, the off-diagonal components of Eqs. (2.14) and (2.15) do not contribute to
directional dichroism.

From the above discussion, we thus see that the vector u and the quadrupole
moment Qµν play a same role in the context of the dichroism phenomena. Note
that u and Qµν can not affect circularly-polarized waves since these quantities do
not induce the antisymmetric components of the electric permittivity tensor.
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2.3 Derivation of effective Hamiltonian

In this section, we derive an effective Hamiltonian based on an imaginary-time
path-integral formalism [86] and confirm that the E-B coupling in the magnetic
Rashba conductor is described by Hu shown in Eq. (2.4) and HQ shown in Eq.
(2.10). Here, ℏ = 1 is used for simplicity, where ℏ is the Planck constant divided
by 2π. The system we consider consists of electrons with Rashba interaction and
also interaction with magnetization and electromagnetic fields. The electrons are
represented using annihilation and creation fields having two spin components,
defined on an imaginary time τ , c(r, τ) and c̄(r, τ). The Hamiltonian is H =
H0 +Hsd +HR +Hem, where

H0 =

∫
d3r

(
1

2m
|∇c|2 − µc̄c

)
(2.17)

describes the kinetic energy of conduction electrons measured from the Fermi en-
ergy. m is the electron mass and µ is the chemical potential of the system. The
second term,

Hsd = −Jsd
∫

d3rM · (c̄σc) , (2.18)

is the exchange interaction between the magnetization and conduction-electron
spin. Jsd is its strength, M is the magnetization vector, and σ is the vector of
Pauli matrices. The magnetization is treated as spatially uniform and static. We
consider a weak sd-exchange interaction up to the linear order. HR is the Rashba
spin-orbit interaction,

HR =
i

2

∫
d3rαR · c̄(

←→
∇ × σ)c, (2.19)

where c̄
←→
∇ c ≡ c̄ (∇c) − (∇c̄) c. The term Hem describes the interaction between

the conduction electron and the electromagnetic field, described by a gauge field
A. Taking into account the term arising from the Rashba spin-orbit interaction,
the interaction reads as,

Hem = −
∫

d3rA ·
(
ie

2m
c̄
←→
∇ c− e2

2m
Ac̄c− ec̄(αR × σ)c

)
, (2.20)

where −e is the electron charge (e > 0). The current density derived from Eq.
(2.20) is

jtoti ≡−
δHem

δAi

=− ji −
e2

m
Aic̄c− 2e

∑
jk

ϵijkαR,jsk, (2.21)
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where

ji(r, τ) ≡−
ie

2m
c̄(r, τ)

←→
∇ic(r, τ),

sα(r, τ) ≡
1

2
c̄(r, τ)σαc(r, τ), (2.22)

are the bare electric current density and spin density, respectively.
The effective Hamiltonian for the electromagnetic field, Heff , is calculated by

integrating the electrons in the partition function 1

Z[A] =

∫
Dc̄Dce−

∫ β
0 dτL[c̄,c,A] (2.23)

as ∫ β

0

dτHeff [A] ≡ −Tr lnZ, (2.24)

where D denotes the path integral, L =
∫
d3rc̄∂τc + H is the imaginary-time

Lagrangian, and β is the inverse temperature. The partition function is perturba-
tively calculated to the second order in the gauge field. The result, diagramatically
shown in Fig. 2.1, is

lnZ = −
∫ β

0

dτ

∫
d3r
∑
µν

AµAν
e2

2m
ne(r, τ)δµν

+
1

2

∫ β

0

dτ

∫ β

0

dτ ′
∫

d3r

∫
d3r′

∑
µν

AµAν

×
[
χµνjj (r, r

′, τ, τ ′) + χµνsj (r, r
′, τ, τ ′) + χµνjs (r, r

′, τ, τ ′) + χµνss (r, r
′, τ, τ ′)

]
.

(2.25)

Here, ne(r, τ) ≡ ⟨c̄(r, τ)c(r, τ)⟩ is the electron density, the thermal average ⟨ ⟩ is
calculated in the equilibrium state determined by

∫ β
0
dτL0 ≡

∫ β
0
dτ [
∫
d3rc̄∂τc +

H0 +Hsd +HR] and

χµνjj (r, r
′, τ, τ ′) ≡ ⟨jµ(r, τ)jν(r′, τ ′)⟩,

χµνsj (r, r
′, τ, τ ′) ≡ 2e

∑
mα

ϵµmααR,m⟨sα(r, τ)jν(r′, τ ′)⟩,

χµνjs (r, r
′, τ, τ ′) ≡ 2e

∑
mα

ϵνmααR,m⟨jµ(r, τ)sα(r′, τ ′)⟩,

χµνss (r, r
′, τ, τ ′) ≡ 4e2

∑
moαβ

ϵµoαϵνmβαR,oαR,m⟨sα(r, τ)sβ(r′, τ ′)⟩ (2.26)

represent the correlation functions of the current and the spin density. The electron

1See Appendix E for details of derivation of the partition function in the imaginary-time
path-integral formalism.
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Figure 2.1: The Feynman diagrams for the effective Hamiltonian. Solid lines
represent the conducting electrons’ Green’s function and the wavy lines denote
the gauge field, respectively. Diagrams, (a), (b), (c), (d), and (e), correspond to
the contributions of ne, χ

µν
jj , χ

µν
sj , χ

µν
js , and χ

µν
ss in Eq. (2.25), respectively.

density ne is expressed as

ne = −
1

βV

∑
n,k

tr[Gk,n,M ], (2.27)

where tr is the trace over spin space, V is the volume of the system, and

Gk,n,M ≡
1

iωn − ϵk − γk,M · σ + iηsgn(ωn)
(2.28)

is the thermal Green’s function for electrons that includes the Rashba and sd-
exchange interactions. Here, k and ωn ≡ (2n+1)π

β
( n is an integer) indicate the

wave vector and fermionic thermal frequency, respectively, ϵk = k2

2m
− µ is the

electron energy measured from the Fermi energy, and γk,M ≡ γk − JsdM with
γk ≡ k × αR. We have included a finite electron-elastic-scattering lifetime τe as
an imaginary part, η ≡ 1

2τe
, and sgn(ωn) ≡ 1 and −1 for ωn > 0 and ωn < 0,

respectively. In terms of the Green’s function, correlation functions read as

χµνjj (q, iΩℓ,M ) = − e2

m2βV

∑
n,k

kµkνtr[Gk+,n+ℓ,MGk−,n,M ],

χµνsj (q, iΩℓ,M ) = − e2

mβV

∑
n,k

∑
mα

ϵµmααR,mkνtr[σαGk+,n+ℓ,MGk−,n,M ],

χµνjs (q, iΩℓ,M ) = − e2

mβV

∑
n,k

∑
mα

ϵνmααR,mkµtr[Gk+,n+ℓ,MσαGk−,n,M ],

χµνss (q, iΩℓ,M ) = − e2

βV

∑
n,k

∑
moαβ

ϵµoαϵνmβαR,oαR,mtr[σαGk+,n+ℓ,MσβGk−,n,M ],

(2.29)
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where k± ≡ k ± q
2
. The wave vector and thermal frequency carried by the gauge

field are denoted by q and Ωℓ, respectively. (Ωℓ ≡ 2πℓ
β

is a bosonic thermal fre-

quency).
We are interested in a low-energy long-wavelength effective Hamiltonian; hence,

we expand the correlation functions given in Eq. (3.17) with respect to q. The
result up to the linear order of q and M is (see Appendix F)

χ(1)
µν (q, iΩℓ,M ) ≡ χµνjj + χµνsj + χµνjs + χµνss

= g1(iΩℓ)(AR · q)δ⊥µν + g2(iΩℓ)(AR,µqν + qµAR,ν)

+ g3(iΩℓ)[M
⊥
µ (αR × q)ν + (αR × q)µM

⊥
ν ], (2.30)

where δ⊥µν ≡ δµν − α̂R,µα̂R,ν , α̂R ≡ αR/|αR| is a unit vector representing the
direction of the Rashba field, and M⊥ ≡M − (α̂R ·M )α̂R. We have considered
the case where αR · q = 0 depicted in Fig. 1.2 to simplify the angular integration
calculation with respect to k. This expression otherwise consists of more number
of terms. The vector AR ≡ αR ×M represents an effective spin gauge field and
a toroidal moment. The coefficients g1, g2, and g3 are defined in Appendix. G.

Eq. (2.30) contributes to directional dichroism as it is linear in q. The first and
second terms of this equation proportional to g1 and g2 indicate that the existence
of the toroidal moment governs the anomalous light propagation, whereas the
terms proportional toM⊥

µ (αR×q)ν and (αR×q)µM
⊥
ν represent the contributions

arising from the effective quadrupole moment, as shown in the effective theory [21].
The result can be simplified using the gauge invariance of the effective Hamiltonian
(see Appendix H). It was observed that g1 = −2g2 is restricted by the gauge
invariance, whereas g3 is not restricted by this invariance.

Carrying out the analytic continuation, the coefficient, g1 is calculated. g1 is
written by rewriting the summation over the thermal frequency using the contour
integral (z ≡ iωn) as

g1(iΩℓ) = −2
Jsd
24

( e
m

)2∑
k

∑
σ1σ2σ3σ4

(
γk
αR

)2

×
[
σ1σ2 +

mα2
R

γk
(σ2σ3σ4 + 2σ2)

]∫
C

dz

2πi
f(z)gk,σ1(z)gk,σ2(z)

× [gk,σ3(z + iΩℓ)gk,σ4(z + iΩℓ)− gk,σ3(z − iΩℓ)gk,σ4(z − iΩℓ)], (2.31)

where C is a counterclockwise contour surrounding the imaginary axis [87, 88],
γk ≡ |γk|, gk,σ(z) ≡ [z − ϵσk + iηsgn(Im[z])]−1 with ϵσk = ϵk + σγk is the Green’s
function diagonalized in spin space, σi = ± (i = 1 ∼ 4) are the diagonalized spin
indices, Im denotes the imaginary part, and f(z) ≡ (eβz + 1)−1 is the Fermi–
Dirac distribution function. We expand the coefficient g1 with respect to external
frequency Ω after the analytic continuation to Ω + i0 ≡ iΩℓ [87, 88], where i0
denotes a small imaginary part. The result up to the linear order in Ω is

g1(Ω) = 2Ωg, (2.32)
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with

g ≡ i
Jsd
24

( e
m

)2∑
k,ω

∑
σ1σ2σ3σ4

(
γk
αR

)2 [
σ1σ2 +

mα2
R

γk
(σ2σ3σ4 + 2σ2)

]

×

{
f(ω)[(grk,ω,σ1g

r
k,ω,σ2

)
←→
∂ω (g

r
k,ω,σ3

grk,ω,σ4)− c.c.]
+f ′(ω)[gak,ω,σ1g

a
k,ω,σ2

grk,ω,σ3g
r
k,ω,σ4

− c.c.]

}
, (2.33)

where grk,ω,σ ≡ (ω − ϵσk + iη)−1 and gak,ω,σ = (grk,ω,σ)
∗ are the retarded and ad-

vanced Green’s functions of the conduction electron with wave vector k and an-
gular frequency ω, respectively.

∑
ω ≡

∫∞
−∞

dω
2π
, ∂ω ≡ ∂

∂ω
, f(ω)=(eβω + 1)−1, and

f ′(ω) ≡ ∂ωf(ω). g3 is also given by

g3(Ω) = Ωλ, (2.34)

with

λ ≡ i

2

Jsd
24

( e
m

)2∑
k,ω

∑
σ1σ2σ3σ4

σ1σ2

(
γk
αR

)2

×

{
f(ω)[(grk,ω,σ1g

r
k,ω,σ2

)
←→
∂ω (g

r
k,ω,σ3

grk,ω,σ4)− c.c.]
+f ′(ω)[gak,ω,σ1g

a
k,ω,σ2

grk,ω,σ3g
r
k,ω,σ4

− c.c.]

}
. (2.35)

The effective Hamiltonian describing the directional dichroism is finally obtained
as

Heff = HAR
+HQ, (2.36)

with

HAR
= g

∫
d3rAR · (E ×B), (2.37)

HQ = λ

∫
d3r
∑
µν

QµνEµBν , (2.38)

where Qµν ≡ M⊥
µ αR,ν is the effective quadrupole moment and E ≡ −Ȧ and

B ≡∇×A are the electric and magnetic fields, respectively.
The effective Hamiltonian of Secs. 2.1 and 2.2, Hu +HQ with u = AR is thus

justified by microscopic derivation based on the imaginary-time path-integral for-
malism. The toroidal moment thus leads to the Doppler shift and this is the origin
of the magnetic Rashba conductor that exhibits directional dichroism discussed in
Sec. 2.1.

The coupling constant g consists of terms proportional to f(ω) and f ′(ω) but it
cannot be expressed only in terms of f ′(ω) (Fermi surface term) using integration
by parts. The f ′(ω) term represents the contribution arising from the state of
electrons in the vicinity of a Fermi surface. The contribution of this term is finite
in a metallic system, whereas it does not exist for insulators such as multiferroics.
In contrast, the f(ω) term (Fermi sea term) arises from the equilibrium property
of the electrons forming the Fermi sea. The contribution of this term is finite in
insulator systems; therefore, directional dichroism can be induced even in broad
materials.
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2.4 Topological cross-correlation effects and op-

tical responses in Wely semimetal

So far, we have considered the electromagnetic cross-correlation effects in a
non-relativistic Rashba spin-orbit system. The cross-correlation effects also occurs
in a relativistic spin-orbit system such as 3+1-dimensional Weyl semimetal. It is
known that the Weyl semimetal realized in multilayer of topological insulator and
magnetic insulator (Ref. [89]) induces topological electromagnetic cross-correlation
effects such as anomalous Hall effect and chiral magnetic effect [72]. Recently,
Ref. [90] proposed generation mechanism of an electric current by use of an effective
magnetic field occurred from a nonlinear effect with respect to an incident electric
field.

A Hamiltonian representing Weyl spin-orbit system is made up of two terms,
one describing the diagonal components and the other denoting the off-diagonal
components (mass term) as [70,71]

HWeyl = τ z(σ · k) + τ zb0 + σ · b, (2.39)

where the first term is the Dirac Hamiltonian being linear in the wave vector k of
the Dirac electrons, τ is the Weyl node degree of freedom, σ is the conduction-
valence band degree of freedom, b0 is a constant reflecting the breaking of spatial-
inversion symmetry, and b is a constant vector reflecting the breaking of time-
reversal invariance. HWeyl is 4× 4 Hamiltonian because of having the Weyl nodes
of opposite chirality and conduction-valence band degrees of freedom. By the
Fujikawa’s method [91], the effective Hamiltonian describing the electromagnetic
response of the Weyl system is shown to be [70,71]

Hθ =
α

8π

∑
µναβ

∫
d3rθ(r, t)ϵµναβFµνFαβ, (2.40)

where we set ℏ = c = ϵ0 = 1, α ≡ e2

4π
is the fine structure constant, ϵµναβ is a

totally antisymmetric tensor, and Fµν ≡ ∂µAν − ∂νAµ is the field strength of the
electromagnetic field. θ(r, t) ≡ 2(b ·r−b0t) is the field depending linearly on space
r and time t.

Using the fact that E ·B = 1
4

∑
µναβ ϵ

µναβFµνFαβ, the effective Hamiltonian,
Eq. (2.40), reduces to

Hθ =
α

2π

∫
d3rθ(r, t)E ·B. (2.41)

Maxwell’s equations including the above Hamiltonian are given by [76,77]

∇ ·E =ρ+
α

π
∇ · (θB),

∇ ·B =0,

∇×E =− ∂B

∂t
,

∇×B =j +
∂E

∂t
− α

π

∂

∂t
(θB)− α

π
∇× (θE), (2.42)
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where ρ represents charge density and j is the charge-current density. Therefore,
we see that the total electric and magnetic fields representing the cross-correlation
effects become

Etot ≡E + P ,

Btot ≡B +M , (2.43)

with

P ≡ −α
π
θB,

M ≡ α

π
θE, (2.44)

where P and M are effective electric polarization and effective magnetization,
respectively. The electric polarization P leads to a polarization current jP ≡ ∂tP
while the magnetizationM gives rise to a magnetization current as jM ≡ −∇×M .
We thus see that a total electric current defined as jtot ≡ jP + jM is induced as
shown below [72].

jtot =
α

π
(−b0B + b×E). (2.45)

In the case of the system with broken spatial-inversion symmetry by b0, the cur-
rent parallel to an applied magnetic field arises (chiral magnetic effect). On the
other hand, in the case of the system with broken time-reversal symmetry by b,
the current perpendicular to an applied electric field is induced (anomalous Hall
effect). In terms of an electric permittivity tensor, these effects are represented by
antisymmetric off-diagonal components which only affect circular waves as [31,92]

ϵµν = δµν + i
2α

πω2

∑
l

ϵµlν(b0kl + blω). (2.46)

Here, we used the relationship between the electric permittivity tensor and an
electric conductivity tensor, ϵµν = δµν +

i
ω
σµν , where ω is angular frequency of

electromagnetic fields and σµν is the electric conductivity tensor. In fact, from
Eqs. (2.42) and (2.46), the characteristic equation for plane waves traveling along
in z-axis is given by ∣∣∣∣∣∣

k2 − ω2 −ω2ϵxy 0
ω2ϵxy k2 − ω2 0
0 0 −ω2

∣∣∣∣∣∣ = 0. (2.47)

The dispersion relation for Ex and Ey thus read as

k2 =ω2

[
1± 2α

πω2
(b0|k|+ bω)

]
, (2.48)

where ± stands for a circular polarization of light and we choose b = (0, 0, b).
Therefore, the term with b0 results in the natural optical activity where the electric
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field E rotates around the direction of k (Ref. [67]) while the term with b results
in the Faraday effect where E rotates around the direction of b [92, 93] when
circularly-polarized waves are applied.

Comparing Eq. (2.13) with Eq. (2.46), the field θ which dose not induce the
symmetric component turns out to play a different role from the toroidal moment
and the quadrupole moment in the context of the anomalous optical responses.
Especially, the Doppler shift term does not appear in the Weyl system, as the
system is Lorentz invariant.
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Chapter 3

Theory of optical activity in Weyl
spin-orbit system

Chirality or handedness in condensed matter induces anomalous optical re-
sponses such as natural optical activity, rotation of the plane of light polarization,
as a result of breaking of spatial-inversion symmetry. In this Chapter, optical
properties of a Weyl spin-orbit system with quadratic dispersion, a typical chiral
system invariant under time-reversal, are investigated theoretically by deriving an
effective Hamiltonian based on an imaginary-time path-integral formalism. We
show that the effective Hamiltonian can be indeed written in terms of an optical
chirality order parameter suggested by Lipkin [74]. The natural optical activity is
discussed based on the Hamiltonian.

3.1 Phenomenological study: Effective Hamilto-

nian approach

Let us discuss the effective Hamiltonian for electromagnetic fields in the Weyl
spin-orbit system from the symmetry point of view.

In vacuum, the effective Hamiltonian of electromagnetic field is [75]

H =

∫
d3r

1

2

(
ϵ0|E|2 +

1

µ0

|B|2
)
, (3.1)

where ϵ0 and µ0 are the electric permittivity and magnetic permeability of the
vacuum. When coupled to electron system lacking spatial-inversion symmetry, an
interaction linear both in E and B is expected to arise in the form

HEB =g

∫
d3r(B · Ė −E · Ḃ) ≡ 2g

ϵ0
Cχ, (3.2)

where g is a constant reflecting the breaking of spatial-inversion symmetry and Cχ
is an optical chirality order parameter defined in Refs. [94,95].

Here, we show that the interaction of Eq. (3.2) leads to optical activity.
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Figure 3.1: Schematic illustration of charged particle’s helical motion under the
effect of g∇×E. Filled circle and solid arrow stand for the particle and its orbital
motion, respectively.

Maxwell’s equations (equation of motion) including HEB are given by

∇ ·E =
ρ

ϵ0
+
g

ϵ0
∇ · Ḃ,

∇×B =µ0j + ϵ0µ0
∂E

∂t
− µ0g

∂2B

∂t2
+ µ0g∇× Ė, (3.3)

where ρ represents the charge density and j is the charge-current density. The
condition of the absence of monopole and the Faraday’s induction law are not
changed because of U(1) gauge symmetry. From Eq. (3.3), we obtain the electric
and magnetic fields including the cross-correlation effect due to Eq. (3.2) as

Etot ≡E −
g

ϵ0
Ḃ,

Btot ≡B − µ0gĖ. (3.4)

The above expressions are indeed identical to Eq. (1.37) suggested by Ref [62]
in the context of the optical activity for circularly-polarized waves. Using Ḃ =
−∇×E, Etot in Eq. (3.4) is rewritten as

Etot =E +
g

ϵ0
∇×E. (3.5)

The equation (3.5) clearly describes a chiral nature of the system. In fact, it
indicates that the electric field acquires an additional component proportional
to its rotation, ∇ × E. When a charge undergoes a circular motion by E(r),
therefore, the motion is drifted in the perpendicular direction due to the term
g∇×E, resulting in a helical motion shown in Fig. 3.1. This helical motion gives
rise to optical activities.

In fact, we see directly that Eq. (3.4) results in the optical activity for
circularly-polarized waves by deriving the dispersion relation of light. From Eq.
(3.3), the wave equation in the medium reads∑

ν

[c2(k2δµν − kµkν)− ω2ϵµν ]Eν =0, (3.6)
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where c is the light velocity in vacuum, k and ω are the wave vector and angular
frequency of electromagnetic waves, respectively, and

ϵµν ≡ δµν + i
g

ϵ0

∑
l

ϵµlνkl, (3.7)

is an electric permittivity tensor having the antisymmetric off-diagonal component
linear in k due to the violation of spatial-inversion symmetry [84,85]. Here ϵµlν is
a totally antisymmetric tensor. Since Eqs. (3.6) and (3.7) give the characteristic
equation for plane waves traveling along in z-axis of the form∣∣∣∣∣∣

c2k2 − ω2 −ω2ϵxy 0
ω2ϵxy c2k2 − ω2 0
0 0 −ω2

∣∣∣∣∣∣ = 0, (3.8)

we obtain a dispersion relation,

k2 =
ω2

c2

[
1± g

ϵ0
|k|
]
, (3.9)

where ± stands for the sense of circular polarization. Therefore, the existence
of the optical chirality order parameter leads to a rotation of the electric field
in a plane perpendicular to the incident direction, namely, circular dichroism, as
pointed out in Ref. [96].

Originally, the optical chirality order parameter was mathematically introduced
to describe the solution of Maxwell’s equations in order to explore conserved phys-
ical quantities reflecting the symmetry of electromagnetic fields [94]. Lipkin called
it zilch, meaning that it has no physical effects. The quantity is revisited recently
as it determines the polarization of circularly-polarized light [97, 98]. The cross-
correlation effects was phenomenologically discussed in terms of the optical chiral-
ity in Ref. [95]. Until now, however, the optical chirality has not been discussed
based on a microscopic ground. The aim of the present study is to show that the
optical chirality indeed appears in the effective Hamiltonian by an imaginary-time
path-integral formalism, and present a microscopic scenario on how the optical
chirality leads to circular dichroism.

3.2 Derivation of effective Hamiltonian

In this section, we derive the effective Hamiltonian based on the imaginary-time
path-integral formalism [86]. We set ℏ = 1 for simplicity, where ℏ is the Planck
constant divided by 2π. We consider an electron system having the Weyl spin-
orbit interaction under the effect of electromagnetic fields described by the gauge
field A. In the field-representation, the conduction electrons are characterized by
two-component annihilation and creation fields, c(r, τ) and c̄(r, τ), with spin up
and down along the z-axis, where c and c̄ are defined on an imaginary time τ . The
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imaginary-time Lagrangian of the system thus reads L[c̄, c,A] = L0 + LA, where

L0(τ) ≡
∫

d3rc̄

[
∂

∂τ
−
(
∇2

2m
+ µ

)
+
iλ

2
(
←→
∇ · σ)

]
c, (3.10)

LA(τ) ≡ −
∫

d3rA ·
(
ie

2m
c̄
←→
∇ c− e2

2m
Ac̄c+ eλc̄σc

)
. (3.11)

Here m is the electron mass, µ is the chemical potential of the system, λ stands for
the coupling constant of the Weyl spin-orbit interaction, σ is the vector of Pauli

matrices, c̄
←→
∇ c ≡ c̄ (∇c) − (∇c̄) c, and −e is the electron charge (e > 0). The

effective Hamiltonian for the electromagnetic field Heff [A] is defined as∫ β

0

dτHeff [A] ≡ −Tr lnZ[A], (3.12)

where Z is the partition function in path-integral representation and β denotes
the inverse temperature. Equation (3.12) is calculated by integrating out the
conduction electrons in the partition function as

Z[A] =

∫
Dc̄Dce−

∫ β
0 dτL[c̄,c,A], (3.13)

where D stands for the path-integral. By carrying out the path integral over the
electrons, the contribution to the second order in the gauge field reads (diagram-
matically shown in Fig. 3.2)

lnZ = −
∫ β

0

dτ

∫
d3r
∑
µν

AµAν
e2

2m
ne(r, τ)δµν

+
1

2

∫ β

0

dτ

∫ β

0

dτ ′
∫

d3r

∫
d3r′

∑
µν

AµAνχ
µν
jj (r, r

′, τ, τ ′). (3.14)

Here ne(r, τ) ≡ ⟨c̄(r, τ)c(r, τ)⟩ is the electron density and

χµνjj (r, r
′, τ, τ ′) ≡ ⟨j̃µ(r, τ)j̃ν(r′, τ ′)⟩ (3.15)

represents the current-current correlation function. The total electric current is
denoted by

j̃µ =− jµ + 2eλsµ, (3.16)

where j ≡ − ie
2m
c̄
←→∇ c and s ≡ 1

2
c̄σc are the bare electric current density and

electron spin density, respectively. The thermal average ⟨ ⟩ in Eq. (F.9) is
calculated in the equilibrium state determined by the Lagrangian L0(τ). Using
Wick’s theorem, the electron density and the correlation function are expressed as
ne = − 1

βV

∑
n,k tr[Gk,n] and

χµνjj (q, iΩℓ) = −
e2

βV

∑
n,k

tr[ṽk,µGk+,n+ℓṽk,νGk−,n], (3.17)

33



(a) A

A
k, n

(b)
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Figure 3.2: Diagrammatic representation of the contribution to the effective Hamil-
tonian. Solid lines represent the thermal Green’s function for electron and the wavy
lines denote the gauge field, respectively. Diagrams, (a) and (b), correspond to
the contributions of ne and χ

µν
jj in Eq. (3.14), respectively.

respectively, where ṽk ≡ v − λσ with v ≡ k
m
, tr is the trace over spin space, V is

the volume of the system, and

Gk,n ≡
1

iωn − ϵk − γk · σ + iηsgn(ωn)
(3.18)

is the 2 × 2 thermal Green’s function for electrons. It includes the Weyl spin-
orbit interaction and a finite electron-elastic-scattering lifetime τe as η ≡ 1

2τe
, and

sgn(ωn) ≡ 1 and −1 for ωn > 0 and ωn < 0, respectively. Here k± ≡ k ± q
2
,

ϵk = k2

2m
− µ is the electron energy measured from the Fermi energy, γk ≡ −λk,

and k and ωn ≡ (2n+1)π
β

with n being an integer are the wave vector and fermionic
thermal frequency of the conduction electron, respectively. The wave vector and
thermal frequency carried by the gauge field are denoted by q and Ωℓ ≡ 2πℓ

β
with

ℓ being an integer, respectively.
Since we are interested in the effective Hamiltonian in the long-wavelength and

low-energy region, we expand the correlation functions Eq. (3.17) with respect to
q. Up to the first order of q, Eq. (3.17) reduces to (see Appendix I)

χµνjj (q, iΩℓ) ≃ χµνjj (q = 0, iΩℓ)− ig(iΩℓ)
∑
ρ

ϵµρνqρ, (3.19)

with

g(iΩℓ) ≡
e2λ3

24

∑
k

∑
σ1σ2σ3

ξk,σ1σ2σ3

×
(
− 1

β

)∑
n

gk,n,σ1gk,n,σ2(gk,n+ℓ,σ3 + gk,n−ℓ,σ3), (3.20)

where

ξk,σ1σ2σ3 ≡
k

λm
(σ3 − 3σ1σ2σ3) + 3− (σ1σ2 + 2σ2σ3). (3.21)

Here gk,n,σ ≡ [iωn − ϵσk + iηsgn(ωn)]
−1 with ϵσk = ϵk+σλ|k| is the Green’s function

diagonalized in the spin space and σi = ±1 (i=1∼3) is the diagonalized spin index.
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χµνjj (q = 0) and the coefficient g on the right-hand side of Eq. (3.19) are
calculated by the analytic continuation. We first show that the first term with
q = 0 is irrelevant. Expanding χµνjj (q = 0) with respect to the external frequency
Ω defined by the analytic continuation to Ω + iδ ≡ iΩℓ [87,88], where δ is a small
positive imaginary part, the result up to the second order in Ω reduces to

χµνjj (q = 0,Ω + iδ) ≃ χµν,Ω
0

jj + χµν,Ω
1

jj + χµν,Ω
2

jj . (3.22)

The first term in the above equation is χµν,Ω
0

jj = − e2

m
neδµν ; hence, the contribution

of χµν,Ω
0

jj and that of ne shown in Eq. (2.25) cancel each other, as is required by the

gauge invariance. The second term on the right-hand side of Eq. (3.22), χµν,Ω
1

jj ,
is a term with iΩδµν , but we drop the term proportional to iΩAµ(−Ω)Aµ(Ω) by
noting the fact that

∫
dtAµȦµ = 0. In Eq. (3.22), there appear the odd orders

with respect to Ω, but these terms also become total differential with respect to

time. The third term on the right-hand side of Eq. (3.22), χµν,Ω
2

jj , gives rise to a
term with Ω2δµν , which represents renormalization of the electric permittivity ϵ0
and we do not consider it further. The correlation function, Eq. (3.19), is therefore
dominated by the q-linear contribution with a coefficient g(iΩℓ),

χµνjj (q, iΩℓ) ≃ −ig(iΩℓ)
∑
ρ

ϵµρνqρ. (3.23)

By rewriting the summation over the thermal frequency using the contour
integral (z ≡ iωn), Eq. (3.20) becomes

g(iΩℓ) =
e2λ3

24

∑
k

∑
σ1σ2σ3

ξk,σ1σ2σ3∫
C

dz

2πi
f(z)gk,σ1(z)gk,σ2(z)[gk,σ3(z + iΩℓ) + gk,σ3(z − iΩℓ)], (3.24)

where C is a counterclockwise contour surrounding the imaginary axis [87, 88],
and gk,σ(z) ≡ [z − ϵσk + iηsgn(Im[z])]−1, f(z) ≡ (eβz + 1)−1 is the Fermi–Dirac
distribution function, and Im is the imaginary part. The retarded and advanced
Green’s function are defined as grk,ω,σ ≡ gk,σ(ω + iδ) and gak,ω,σ ≡ gk,σ(ω − iδ),
respectively, where ω is an angular frequency of conduction electrons. Expanding
g with respect to Ω after the analytic continuation, the result up to the order of
Ω2 reduces to

g(Ω + iδ) ≃ g(0) + iΩg(1) + Ω2g(2), (3.25)

35



with

g(0) ≡ e2λ3

6

∑
k,ω

∑
σ1σ2σ3

ξk,σ1σ2σ3f(ω)Im[grk,ω,σ1g
r
k,ω,σ2

grk,ω,σ3 ],

g(1) ≡ e2λ3

12

∑
k,ω

∑
σ1σ2σ3

ξk,σ1σ2σ3f
′(ω)Re[grk,ω,σ1g

r
k,ω,σ2

(grk,ω,σ3 − gak,ω,σ3)],

g(2) ≡ −ie
2λ3

12

∑
k,ω

∑
σ1σ2σ3

ξk,σ1σ2σ3

×


2if(ω)Im

 grk,ω,σ1g
r
k,ω,σ2

grk,ω,σ3
×[(grk,ω,σ1)

2 + (grk,ω,σ2)
2

+(grk,ω,σ3)
2 + grk,ω,σ1g

r
k,ω,σ2

]


−f ′(ω)

 gak,ω,σ1g
a
k,ω,σ2

(grk,ω,σ3)
2

+(grk,ω,σ1)
2grk,ω,σ2g

a
k,ω,σ3

+grk,ω,σ1(g
r
k,ω,σ2

)2gak,ω,σ3




, (3.26)

where grk,ω,σ ≡ (ω − ϵσk + iη)−1, gak,ω,σ = (grk,ω,σ)
∗, Re is the real part, f(ω)=(eβω +

1)−1, and f ′(ω) ≡ ∂
∂ω
f(ω). The result can be simplified using the gauge invariance

which impose g(0) = 0. The second term on the right-hand side of Eq. (3.25), the
Ω-linear term, generally arises from integrating out fermions coupled to bosons [99],
and gives rise to a term with E · B, where E ≡ −Ȧ and B ≡ ∇ × A are the
electric and magnetic fields, respectively. However, we drop the term because
E ·B = 1

4

∑
µναβ ϵ

µναβFµνFαβ reduces to a surface term by the divergence theorem,

where ϵµναβ is a totally antisymmetric tensor, Fµν ≡ ∂µAν − ∂νAµ is the field
strength of the electromagnetic field. We thus have g ∼ Ω2g(2) and the effective

Hamiltonian finally turns out to be Eq. (3.2) with g = g(2)

4
.

36



Chapter 4

Conclusions

In Chapter 2, we have derived an effective Hamiltonian describing directional
dichroism in a magnetic Rashba conductor, and showed that it is made up of
a toroidal-moment term and a quadrupole-moment term, as in insulator multi-
ferroics. The toroidal-moment term is given by the vector coupling between the
toroidal moment and the Poynting vector, such that this term leads to direc-
tional dichroism irrespective of light polarization as a result of the Doppler shift.
Furthermore, the quadrupole-moment term induces directional dichroism when
linearly-polarized waves are applied. The microscopic analysis done in this study
indicates that the toroidal moment plays the role of an effective vector potential
for light, causing dichroism as a result of the Doppler shift. The effective Hamil-
tonian approach clearly shows that electromagnetic cross-correlation effects in the
magnetic Rashba system is qualitatively distinct from those in relativistic Weyl
systems (3+1dimensional Weyl semimetals) described by topological θ-term.

Using an imaginary-time path-integral formalism, we derived an effective Hamil-
tonian of the electromagnetic fields in terms of an optical chirality order parameter
in a Weyl spin-orbit system having quadratic dispersion in Chapter 3. The effective
Hamiltonian approach clearly revealed that natural optical activity in the system
is due to the emergence of the optical chirality order parameter.
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Appendix A

Edelstein Effect and inverse
Edelstein Effect

A.1 Microscopic calculation of Edelstein effect

By calculating a magnetization induced by Edelstein effect by use of Keldysh
Green’s function method [100], we derive Eq. (1.13). For simplicity, we set ℏ = 1.
In the second quantized representation, the Lagrangian we consider is given by

L = L0 + L
(1)
A

L0 ≡
∫

d3rc†
[
i
∂

∂t
+

(
∇2

2m
+ ϵF

)
− i

2
αR · (

←→
∇ × σ)

]
c,

L
(1)
A ≡

∫
d3rA ·

[
ie

2m
c†
←→
∇ c− e2

2m
Ac†c− ec†(αR × σ)c

]
, (A.1)

where c† and c are the conduction electron’s creation and annihilation operators
having two spin components, respectively, m is the electron mass, ϵF is the Fermi
energy of the system, σ is the vector of Pauli matrices, αR is the Rashba field
representing the strength and direction of the Rashba spin-orbit interaction, −e
is the electron charge (e > 0), and c†

←→
∇ c ≡ c† (∇c) −

(
∇c†

)
c. The term L

(1)
A

is the interaction between the conduction electron and the applied electric field
described by E ≡ −Ȧ, where A is a gauge field. Note that L

(1)
A includes the term

arising from the Rashba spin-orbit interaction.
The magnetization is defined as

M ≡ −γse, (A.2)

where γ ≡ e
2m

is gyromagnetic ratio, se ≡ 1
2
⟨c†σc⟩ is the expectation value of a

electron spin density, ⟨ ⟩ is the expectation value for L. In the Green’s function
representation, the spin density reads

se(r, t) = − lim
r′→r
t′→t

i

2
tr[σG<(r, r′, t, t′)], (A.3)
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Figure A.1: The Feynman diagrams for the spin density induced by Edelstein
effect. Solid lines represent the conducting electrons’ Green’s function including
the Rashba interaction and the wavy lines denote the gauge field, respectively.

where r and t are space and time, respectively, tr is the trace over the spin space,
and G<(r, r′, t, t′) ≡ i⟨c†(r′, t′)c(r, t)⟩ is a lesser component of contour ordered
Green’s function. We calculate Eq. (A.3) up to the first order of the gauge field
based on linear response theory [101]. Using the Dyson equation,

G(r, r′, t, t′) =
1

V

∑
k,ω


eik·(r−r′)−iω(t′−t)gk,ω

+e
∑
ν

∑
q,Ω

ei(k+·r−k−·r′)−i(ω+t−ω−t′)Aν(q,Ω)gk+,ω+ ṽk,νgk−,ω−

 ,

(A.4)

the spin density, Eq. (A.3), is given by (diagrammatically shown in Fig. A.1 )

se,µ =
∑
q,Ω

∑
ν

eiq·r−iΩt
e

2Ω
χsjµν(q,Ω)Eν(q,Ω), (A.5)

where

χsjµν(q,Ω) ≡ −
1

V

∑
k

∫ ∞

−∞

dω

2πi
tr[σµgk+,ω+ ṽk,νgk−,ω− ]

< (A.6)

is spin-current correlation function, gk,ω is 2×2 free Green’s function including
the Rashba interaction with wave vector k and angular frequency ω, whose lesser
component is given by

g<k,ω = f(ω)(gak,ω − grk,ω). (A.7)

Here, grk,ω ≡ (ω − ϵk − γk · σ + i0)−1 and gak,ω = (grk,ω)
† are the retarded and

advanced Green’s functions, respectively, ϵk = k2

2m
− ϵF is the electron energy

measured from the Fermi energy ϵF, γk ≡ k × αR, 0 is a positive infinitesimal,
f(ω) ≡ (eβω + 1)−1 is the Fermi–Dirac distribution function, and β is the inverse
temperature. k± ≡ k ± q

2
, ω± ≡ ω ± Ω

2
, and ṽk ≡ v + αR × σ with v ≡ k

m
. The

wave vector and angular frequency carried by the gauge field are denoted by q and
Ω, respectively. The lesser component of the correlation function, Eq. (A.6), is
calculated by use of the Langreth’s methods [100,102],

[gk+,ω+gk−,ω− ]
< = grk+,ω+

g<k−,ω−
+ g<k+,ω+

gak−,ω− . (A.8)
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Since we are interested in the long wavelength region, we estimate χsjµν at q = 0.
The spin trace is performed by use of

tr[σµgk,ω+gk,ω− ] = γ̂µk
∑
σ

σgk,ω+,σgk,ω−,σ,

tr[σµgk,ω+σνgk,ω− ] =
∑
σ

[δµνgk,ω+,σgk,ω−,−σ + γ̂µk γ̂
ν
k(gk,ω+,σgk,ω−,σ − gk,ω+,σgk,ω−,−σ)],

(A.9)

where σ = ± is the diagonalized spin index, gk,ω,σ is the Green’s function diago-
nalized in spin space, and γ̂k ≡ γk/|γk|. Using Eqs. (A.7), (A.8), and (A.9), the
result becomes

χsjµν(q = 0,Ω) = −8i

V

∑
k

∑
σ

∑
ij

ϵνijαR,i(δνj − γ̂µk γ̂
j
k)

γkσf(ϵ
σ
k)

(Ω + i0)2 − 4γ2k
, (A.10)

where γk ≡ |γk| and ϵσk ≡ ϵk + σγk. For the k-integral, we choose the z axis along
the Rashba field, i.e., αR = αRẑ (ẑ ≡ (0, 0, 1)) and k is represented using the
polar and azimuthal angles θ and φ, respectively. Using the following relation,∫ 2π

0

dφ

2π
γ̂µk γ̂

ν
k =

1

2
(δµν − α̂R,µα̂R,ν), (A.11)

where α̂R ≡ αR/|αR|, we thus get the correlation function as

χsjµν = −
ine

β̃2ϵF

∑
i

ϵνiµαR,iC(Ω), (A.12)

with

C(Ω) ≡ −4β̃2ϵF
ne

∑
k

γks

Hk(Ω)
, (A.13)

where s ≡ σf(ϵσk), Hk(Ω) ≡ (Ω + i0)2 − 4γk, ne ≡ n
(0)
e (1 + 2∆β̃), n

(0)
e ≡ k3F

6π2 , kF is

Fermi wave number, ∆β̃ ≡ 3
4β̃2

(
1 + 1+β̃2

β̃
tan−1 β̃

)
, β̃ ≡ mαR

kF
.

The results of Eqs. (A.2), (A.5) and Eq. (A.12) are summarized in Eq. (1.13)

with γME = γene

mαR

Im[C]
Ω

. The electron density ne is defined as (A.28) by use of
Green’s function. ne and C(Ω) are calculated in Appendix B.

A.2 Microscopic calculation of inverse Edelstein

effect

Here, we derive Eq. (1.14) as the same manner in Sec. A.1. We calculate
the electric current density induced by Zeeman term describing the interaction
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Figure A.2: The Feynman diagrams for the electric current density induced by
inverse Edelstein effect. Solid lines represent the conducting electrons’ Green’s
function including the Rashba interaction. The dotted and wavy lines denote the
Rashba field and magnetic field, respectively. Note that the contribution arising
from the third term on the right-hand side of Eq. (A.16) vanishes at q = 0.

between electron spin and the applied magnetic field. The Lagrangian we consider
is given by

L = L0 + L
(2)
A ,

L0 ≡
∫

d3rc†
[
i
∂

∂t
+

(
∇2

2m
+ ϵF

)
− i

2
αR · (

←→
∇ × σ)

]
c,

L
(2)
A ≡ γ

∫
d3rA ·∇× (c†σc). (A.14)

The term L
(2)
A represents the interaction between electron spin and the applied

magnetic field defined by B ≡ ∇ ×A, called Zeeman interaction, where γ ≡ e
2m

is gyromagnetic ratio.
The expectation value of electric current density in this Rashba system is

jµ(r, t) =
ie

2m
⟨c†
←→
∇ µc⟩ − e

∑
ij

ϵµijαR,i⟨c†σjc⟩ − γ
∑
ij

ϵµij∇i⟨c†σjc⟩, (A.15)

where ⟨ ⟩ means the expectation value for L. In the Green’s function representa-
tion, the electric current density reads

jµ = lim
r′→r
t′→t

tr


e
2m

[(∇r′,µ −∇r,µ)G
<(r, r′, t, t′)] + ie

∑
ij

ϵµijαR,i[σkG
<(r, r′, t, t′)]

+iγ
∑
ij

ϵµij[(∇r′,j +∇r,j)σkG
<(r, r′, t, t′)]

 ,

(A.16)

where G<(r, r′, t, t′) ≡ i⟨c†(r′, t′)c(r, t)⟩ is a lesser component of contour ordered
Green’s function. We calculate Eq. (A.16) up to the first order of the magnetic
field. Using the Dyson equation,

G(r, r′, t, t′) =
1

V

∑
k,ω


eik·(r−r′)−iω(t−t′)gk,ω

+
∑
ν

∑
q,Ω

ei(k+·r−k−·r′)−i(ω+t−ω−t′)γBν(q,Ω)gk+,ω+σνgk−,ω−

 ,

(A.17)
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the electric current density, Eq. (A.16), is given by (diagrammatically shown in
Fig. A.2 )

jµ = ieγ
∑
q,Ω

∑
ν

eiq·r−iΩtχjsµν(q,Ω)Bν(q,Ω), (A.18)

where

χjsµν(q,Ω) ≡ −
1

V

∑
k

∫ ∞

−∞

dω

2πi
tr[ṽk,µgk+,ω+σνgk−,ω− ]

< (A.19)

is current-spin correlation function and and ṽk ≡ v + αR × σ with v ≡ k
m
. As

is the case in the Edelstein effect, we calculate χjsµν in the long wavelength region
(q=0). Using Eqs. (A.7), (A.8), (A.9) and (A.11), the correlation function reduces
to

χjsµν = −
ne

β̃2ϵF

∑
i

ϵµiναR,iC(Ω), (A.20)

The results of Eqs. (A.18) and Eq. (A.20) are summarized in Eq. (1.14) with
γjB = iΩγME.

A.3 Microscopic calculation of Rashba-induced

direct coupling effect

In this section, we derive Eq. (1.21). We calculate the electric current density
induced by a direct coupling between Edelstein and inverse Edelstein effects by
use of linear response theory. The Lagrangian we consider is given by

L = L0 + L
(1)
A

L0 ≡
∫

d3rc†
[
i
∂

∂t
+

(
∇2

2m
+ ϵF

)
− i

2
αR · (

←→
∇ × σ)

]
c,

L
(1)
A ≡

∫
d3rA ·

[
ie

2m
c†
←→
∇ c− e2

2m
Ac†c− ec†(αR × σ)c

]
. (A.21)

The expectation value of the electric current density in this system is given by

jµ(r, t) =
ie

2m
⟨c†
←→
∇ µc⟩ −

e2

m
Aµ⟨c†c⟩ − e

∑
ij

ϵµijαR,i⟨c†σjc⟩, (A.22)

where ⟨ ⟩ stands for the expectation value for L. In the Green’s function represen-
tation, the electric current density reads

jµ = lim
r′→r
t′→t

tr


e
2m

[(∇r′,µ −∇r,µ)G
<(r, r′, t, t′)] + ie2

m
AµG

<(r, r′, t, t′)

+ie
∑
ij

ϵµijαR,itr[σkG
<(r, r′, t, t′)]

 , (A.23)
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Figure A.3: The Feynman diagrams for the electric current density arising from
Edelstein and inverse Edelstein effects. Solid lines represent the conducting elec-
trons’ Green’s function including the Rashba interaction and the wavy lines denote
the gauge field, respectively. Diagrams, (a) and (b) correspond to the contributions
of χjjµν and ne on the right-hand side of Eq. (A.26), respectively.

where G<(r, r′, t, t′) ≡ i⟨c†(r′, t′)c(r, t)⟩ is a lesser component of contour ordered
Green’s function. We calculate Eq. (A.23) up to the first order of the gauge field.
Using the Dyson equation,

G(r, r′, t, t′) =
1

V

∑
k,ω


eik·(r−r′)−iω(t−t′)gk,ω

+e
∑
ν

∑
q,Ω

ei(k+·r−k−·r′)−i(ω+t−ω−t′)Aν(q,Ω)gk+,ω+ ṽk,νgk−,ω−

 ,

(A.24)

the electric current density, Eq. (A.23) reduces to (diagrammatically shown in
Fig. A.3 )

jµ =
∑
q,Ω

∑
ν

eiq·r−iΩtσµν(q,Ω)Eν(q,Ω), (A.25)

where

σµν(q,Ω) ≡
ie2

Ω

[
χjjµν(q,Ω)−

ne

m
δµν

]
(A.26)

is an electric conductivity tensor. Here current-current correlation function χjjµν
and electron density ne are defined as

χµνjj (q,Ω) ≡ −
1

V

∑
k

∫ ∞

−∞

dω

2πi
tr[ṽk,µgk+,ω+ ṽk,νgk−,ω− ]

<, (A.27)

ne ≡
1

V

∑
k

∫ ∞

−∞

dω

2πi
tr[gk,ω]

<. (A.28)

We estimate the contributions of χjjµν at q = 0. Using Eqs. (A.9), (A.8), and
(A.11), the correlation function reduces to

χµνjj (q = 0,Ω) =
ne

m
C(Ω)(δµν − α̂R,µα̂R,ν). (A.29)

The results of Eqs. (A.26) and Eq. (A.29) are summarized in Eq. (1.21).
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Appendix B

Calculation of Eq. (A.28) and Eq.
(A.13)

First, let us calculate Eq. (A.28). By use of Eq. (A.7). the electron density,
ne, read as

ne =
1

4

∑
σ

1

6π2

∫ π

0

dθ sin θk3F,σ(θ), (B.1)

where kF,σ(θ) ≡ kF[
√

1 + (β̃ sin θ)2−σβ̃ sin θ], kF is Fermi wave number, σ = ± is

the diagonalized spin index, and β̃ ≡ mαR

kF
. Carrying out the integration of θ as∫ π

0

dθ sin θ

√
1 + (β̃ sin θ) = 1 +

1 + β̃2

β̃
tan−1 β̃,∫ π

0

dθ sin3 θ =
1

4β̃2

(
1 + 3β̃2 + (3β̃2 − 1)

1 + β̃2

β̃
tan−1 β̃

)
, (B.2)

we can get the electron density as

ne = n(0)
e (1 + 2∆β̃), (B.3)

where n
(0)
e ≡ k3F

6π2 and ∆β̃ ≡ 3
4β̃2

(
1 + 1+β̃2

β̃
tan−1 β̃

)
.

Next, we calculate Eq. (A.13). Using the following relation,

1

2kαR sin θ ± (Ω + i0)
=

1

2kαR sin θ ± Ω
∓ iπδ(2kαR sin θ ± Ω), (B.4)

we see that Eq. (A.13) is decomposed into Real part and Imaginary part as shown
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below.

Re[C(Ω)] = − β̃
2ϵF
ne

1

2π2

∫ π

0

dθ sin θ

∫ kF,+(θ)

kF,−(θ)

dkk2
[

1

2kαR sin θ − Ω
− 1

2kαR sin θ + Ω

]
,

(B.5)

Im[C(Ω)] = − β̃
2ϵF
ne

1

4π

∫ π

0

dθ sin θ

∫ kF,+(θ)

kF,−(θ)

dkk2

×
[
δ(2kαR sin θ − Ω)− δ(2kαR sin θ + Ω)

]
. (B.6)

B.1 Calculation of Re[C(Ω)]

Carrying out the k-integral, Eq. (B.5) is expressed as

Re[C] = − β̃2ϵFk
2
F

2π2αRne

[β̃I1 + ν2I2], (B.7)

where ν ≡ Ω
2αRkF

,

I1 ≡
∫ π

0

dθ sin θ

√
1 + (β̃ sin θ), (B.8)

I2 ≡
1

4

∑
σ

σ

∫ π

0

dθ
1

sin2 θ
ln[(kF,σ(θ) sin θ)

2 − ν2]. (B.9)

Using Eq. (B.2), Eq. (B.8) reads

I1 =
4

3β̃2
∆β̃. (B.10)

Carrying out the integration of θ by use of the partial integration after change of
variable as x ≡ β̃ sin θ, Eq. (B.9) reads

I2 =
β̃

2

∑
σ

σ

∫ β̃

0

dx

√
β̃2 − x2
1 + x2

k3F,σ(x)

(kF,σ(x)x)2 − ω̃2
, (B.11)

where ω̃ ≡ β̃ν. Performing the summation of σ, we can get I2 as

I2 =
β̃

2ω̃

∑
η

(η − ω̃)
∫ β̃

0

dx

√
β̃2 − x2
1 + x2

x

x2 − Aη
, (B.12)

with Aη ≡ ω̃
1−2ηω̃

, where η = ±1. Here we used the following relation,

∑
σ

σ
k3F,σ(x)

(kF,σ(x)x)2 − ω̃2
=
x

ω̃

∑
η

η − ω̃
x2 − Aη

. (B.13)

45



Changing a variable to y =
√

β̃2−x
1+x

after change of variable as x2 = x, Eq.(B.12)

reads

I2 = −
β̃

2ω̃

∑
η

(η − ω̃)
∫ β̃

0

dy

[
Qη

y2 +Qη

− 1

1 + y2

]
, (B.14)

with Qη ≡ Aη−β̃2

1+Aη
. Carrying out the integration of y as

∫ β̃

0

dy

[
Qη

y2 +Qη

− 1

1 + y2

]
= − tan−1 β̃ +

√
Qη tan

−1 β̃√
Qη

, (B.15)

Eq. (B.14) becomes

I2 = −
β̃

2

[
1

ω̃

∑
η

(η − ω̃)
√
Qη tan

−1 β̃√
Qη

+ 2 tan−1 β̃.

]
. (B.16)

From the results, Eqs (B.10) and (B.16), we thus obtain Re[C] as

Re[C] =
3

4

1

1 + 2∆β̃

[
ω̃
∑
η

(η − ω̃)
√
Qη tan

−1 β̃√
Qη

+ 2ω̃2 tan−1 β̃

]
−2

∆β̃

1 + 2∆β̃

.

(B.17)

B.2 Calculation of Im[C(Ω)]

Carrying out the k-integral, Eq. (B.6) is expressed as

Im[C] =
β̃4ϵFk

2
F

8παRne

∫ β̃

0

dx
1√

β̃2 − x2
Θ

(√
1 + x2 − x < x

|ω̃|
<
√
1 + x2 + x

)
,

(B.18)

where Θ(x) is a step function. Integrating out a variable x in response to case
analysis of Θ, we see that Im[C] reads

Im[C] = −3π

8

β̃

1 + 2∆β̃

ω̃


S+ − S− ω̃ < ω̃−
−S− ω̃− < ω̃ < ω̃+

0 ω̃+ < ω̃

 , (B.19)

where ω̃± ≡ β̃(

√
1 + β̃2 ± β̃), Sλ ≡

√
β̃2 − 2λβ̃2|ω̃| − |ω̃|2, and λ = ±1.
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Appendix C

Derivation of Rashba-induced
spin gauge field

C.1 Pumped current induced by magnetization

texture

Here, we calculate the pumped electric current induced by nonuniform magneti-
zation texture. For simplicity, we set ℏ = 1. The system we consider is a ferromag-
netic metal with broken spatial-inversion symmetry, where conduction electrons,
represented by two-component annihilation and creation operators, c(r, t) and
c†(r, t), interact with magnetization texture, described by the vector field n(r, t),
via the sd exchange interaction. The Hamiltonian thus reads

H = H0 +Hsd +HR, (C.1)

H0 =

∫
d3r

(
1

2m
|∇c|2 − µc†c

)
, (C.2)

Hsd = −∆sd

∫
d3rn ·

(
c†σc

)
, (C.3)

HR =
i

2

∫
d3rαR · c†(

←→
∇ × σ)c, (C.4)

where The term Hsd is the exchange interaction between the magnetization and
conduction-electron spin and ∆sd is its strength. The term HR is Rashba spin-
orbit interaction. αR is the Rashba field representing the strength and direction
of the Rashba spin-orbit interaction. The Lagrangian of the system is

L ≡ i

∫
d3rc†∂tc−H, (C.5)

where ∂t ≡ ∂
∂t
. The expectation value of the electric current density in this system

is given by

jµ(r, t) =
ie

2m
⟨c†
←→
∇ µc⟩ − e

∑
jk

ϵµjkαR,j⟨c†σkc⟩, (C.6)
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where ⟨ ⟩ stands for the expectation value for L. We are interested in the case
where the sd exchange interaction is large and thus the conduction electron spin
is aligned parallel to the magnetization direction n, i.e., the adiabatic limit.
To describe this limit, the use of the spin gauge field, which characterizes the
deviation from the adiabatic limit, is convenient [2]. The spin gauge field is
introduced by diagonalizing the sd interaction using a unitary transformation,
c(r, t) = U(r, t)a(r, t), where U(r, t) is a 2 × 2 unitary matrix and a is a new
electron field operator. A convenient choice of U(r, t) is U(r, t) = m(r, t) · σ
with m(r, t) =

(
sin θ

2
cosϕ, sin θ

2
sinϕ, cos θ

2

)
, where θ and ϕ are the polar angles

of n. It is easy to confirm that U †(n · σ)U = σz is satisfied. Because of this
local unitary transformation, derivatives of the electron field become covariant
derivatives ∂µc = U(∂µ + ieAs,µ)a, where As,µ ≡ − i

e
U−1∂µU is the gauge field.

Since U is a 2 × 2 matrix, the gauge field As,µ is written using Pauli matrices as
As,µ =

∑
αA

α
s,µσα (µ = x, y, z, τ is a suffix for space and time and α = x, y, z is

for spin). It is thus an SU(2) gauge field, which we call the spin gauge field. The
Lagrangian in the rotated space is thus given by

L ≡ L0 + L
(1)
As
, (C.7)

L0 ≡
∫

d3ra†
(
i∂t +

1

2m
∇2 + µ+∆sdσz

)
a, (C.8)

L
(1)
As
≡
∫

d3r

[
−ea†As,ta−

∑
i,α

Aαs,ij
α
s,i.−

e2

2m

∑
i,α

(Aαs,i)
2a†a

+
1

2

∑
ijkn

ϵijkαR,iRkn

(
−2m

e
jns,j − 2eAns,ja

†a

)]
, (C.9)

where jαs,i ≡ −ie 1
2m
a†
←→∇iσ

αa is the spin current, ϵijk is a totally antisymmetric
tensor, and Rkn ≡ 2mkmn − δkn is a 3×3 rotation matrix elements. The electron
field a is strongly spin-polarized owing to the sd exchange interaction (the last
term of L0). In the rotated frame, Eq. (C.6) reads

jµ(r, t) =
ie

2m
⟨a†
←→
∇ µa⟩ −

e

m

∑
ℓ

Aℓs,µ⟨a†σℓa⟩ − e
∑
jkℓ

ϵµjkℓαR,jRkℓ⟨a†σℓa⟩. (C.10)

In the Green’s function representation, the electric current density in the rotated
frame becomes

jµ = lim
r′→r
t′→t

tr


e
2m

[(∇r′,µ −∇r,µ)G
<(r, r′, t, t′)] + ie2

m

∑
ℓ

Aℓs,µ[σℓG
<(r, r′, t, t′)]

+ie
∑
jkℓ

ϵµjkαR,jRkℓ[σℓG
<(r, r′, t, t′)]

 ,

(C.11)

where G<(r, r′, t, t′) ≡ i⟨a†(r′, t′)a(r, t)⟩ is a lesser component of contour ordered
Green’s function. We calculate the above expression up to the first order in the
Rashba field αR based on linear response theory [101]. In the calculation, we use
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the following Dyson equation,

G(r, r′, t, t′) =
1

V

∑
k,ω

eik·(r−r′)−iω(t−t′)gk,ω

+
1

mV

∑
k,ω

∑
q,Ω

∑
jµ

eik·r−iωt−i(k+q)·r′+i(ω+Ω)t′

× Ajs,µ(q,Ω)
(
k +

q

2

)
µ
gk,ωσjgk+q,ω+Ω

+
1

V

∑
k,ω

∑
p,Ω̄

∑
ℓmno

eik·r−iωt−i(k+p)·r′+i(ω+Ω̄)t′

× ϵℓmnαR,ℓRno(p, Ω̄)
(
k +

p

2

)
m
gk,ωσogk+p,ω+Ω̄

+
1

V

∑
k,ω

∑
p,q

∑
Ω̄,Ω

∑
ℓmno

eik·r−iωt−i(k+p+q)·r′+i(ω+Ω̄+Ω)t′

× ϵℓmnαR,ℓRno(p, Ω̄)A
o
s,m(q,Ω)gk,ωgk+p+q,ω+Ω̄+Ω

+
1

mV

∑
k,ω

∑
p,q

∑
Ω̄,Ω

∑
µjℓmno

eik·r−iωt−i(k+p+q)·r′+i(ω+Ω̄+Ω)t′

× ϵℓmnαR,ℓA
j
s,µ(q,Ω)Rno(p, Ω̄)

×

[ (
k + q

2

)
µ

(
k + q + p

2

)
m
gk,ωσjgk+q,ω+Ωσogk+q+p,ω+Ω+Ω̄

+
(
k + p

2

)
m

(
k + p+ q

2

)
µ
gk,ωσogk+p,ω+Ω̄σjgk+q+p,ω+Ω+Ω̄

]
,

(C.12)

where p and q are the wave vector carried by the magnetization texture, Ω and
Ω̄ are the angular frequency carried by the magnetization texture, gk,ω is 2×2
free Green’s function including the sd-exchange interaction with a finite electron-
elastic-scattering lifetime, whose lesser component is given by g<k,ω = f(ω)(gak,ω −
grk,ω) with f(ω) ≡ (eβω +1)−1. Here, grk,ω ≡ (ω− ϵk + i

2τe
)−1 and gak,ω = (grk,ω)

† are

the retarded and advanced Green’s functions, respectively, ϵk = k2

2m
− ϵF−∆sdσz is

the electron energy in the matrix representation, τe is the electron elastic scattering
lifetime.

Using the Dyson equation, the result up to the first order in the Rashba field
is given by (diagrammatically shown in Fig. 1.5 )

jpump =j(A) + j(B) + j(C), (C.13)
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with

j(A)
µ =− ie

mV

∑
k,ω

∑
p,Ω̄

∑
ℓmno

e−ip·r+iΩ̄tϵℓmnαR,ℓRno(p, Ω̄)

× tr

[
kµkmgk−p

2
,ω− Ω̄

2
σogk+p

2
,ω+ Ω̄

2
+mδµmσogk,ω

]<
, (C.14)

j(B)
µ =− ie

mV

∑
k,ω

∑
p,q

∑
Ω̄,Ω

∑
νjℓmno

e−i(p+q)·r+i(Ω̄+Ω)tϵℓmnαR,ℓRno(p, Ω̄)A
j
s,ν(q,Ω)

× tr

[
kµ
m

(
k +

q

2

)
m

(
k − p

2

)
ν

× g
k− q

2
−p

2
,ω−Ω

2
− Ω̄

2
σjgk+ q

2
−p

2
,ω+Ω

2
− Ω̄

2
σogk+ q

2
+p

2
,ω+Ω

2
+ Ω̄

2

+
kµ
m

(
k − q

2

)
m

(
k +

p

2

)
ν

× g
k− q

2
−p

2
,ω−Ω

2
− Ω̄

2
σogk− q

2
+p

2
,ω−Ω

2
+ Ω̄

2
σjgk+ q

2
+p

2
,ω+Ω

2
+ Ω̄

2

+ δµmkνσogk− q
2
,ω−Ω

2
σjgk+ q

2
,ω+Ω

2
+ δµνkmσjgk−p

2
,ω− Ω̄

2
σogk+p

2
,ω+ Ω̄

2

]<
, (C.15)

j(C)
µ =− ie

mV

∑
k,ω

∑
p,q

∑
Ω̄,Ω

∑
ℓmno

e−i(p+q)·r+i(Ω̄+Ω)tϵℓmnαR,ℓRno(p, Ω̄)A
o
s,m(q,Ω)

× kµtr
[
g
k− q

2
−p

2
,ω−Ω

2
− Ω̄

2
g
k+ q

2
+p

2
,ω+Ω

2
+ Ω̄

2

]<
. (C.16)

First, we calculate Eq. (C.14). Performing trace over the spin after use of the
Langreth’s methods [100,102], j(A) becomes

j(A)
µ =−

∑
p,Ω̄

∑
m

e−ip·r+iΩ̄taµm(p, Ω̄)[αR × n(p, Ω̄)]m, (C.17)

with

aµm = − ie

mV

∑
k,ω

∑
σ

σ

{[
f(ω +

Ω̄

2
)− f(ω − Ω̄

2
)

]
kµkmg

r

k−p
2
,ω− Ω̄

2
,σ
ga
k+p

2
,ω+ Ω̄

2
,σ

+ f(ω − Ω̄

2
)kµkmg

a

k−p
2
,ω− Ω̄

2
,σ
ga
k+p

2
,ω+ Ω̄

2
,σ
+ f(ω +

Ω̄

2
)kµkmg

r

k−p
2
,ω− Ω̄

2
,σ
gr
k+p

2
,ω+ Ω̄

2
,σ

+mδµmf(ω)(g
a
k,ω,σ − grk,ω,σ)

}
, (C.18)

where we use the fact that Rkz = nk, σ = ± is the diagonalized spin index,
grk,ω,σ ≡ (ω − ϵk,σ + i

2τe
)−1, gak,ω,σ = (grk,ω,σ)

∗, and ϵk,σ = k2

2m
− ϵF − σ∆sd. We

expand aµm with respect to the external wave vector p and frequency Ω̄. Carrying
out the integration by parts with respect to k and ω, the result up to the first
order in Ω̄ and the second order in p is

aµm =iΩ̄δµma1 + (p2 − pµpm)a2, (C.19)
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where we use the fact that f ′(ω) ≡ ∂f(ω)
∂ω

= −δ(ω) and a rotational symmetry in

k-space, i.e., kµkν =
k2

3
δµν , and a1 and a2 are defined as

a1 ≡
e

6m

∑
k

∑
σ

σk2(gak,σ − grk,σ)2, (C.20)

a2 ≡−
ie

12m

∑
k

∑
σ

σ(gak,σ − grk,σ). (C.21)

We thus obtain j(A) as

j(A) =− a1
∂

∂t
(αR × n) + a2∇× [∇× (αR × n)]. (C.22)

Next, we calculate j(B) in the same manner as j(A). Expanding Eq. (C.15)
with respect to p and q, the result up to the first order in p and q is given by

j(B)
µ =− ie

3mV

∑
k,ω

∑
p,q

∑
Ω̄,Ω

∑
νjℓmno

e−i(p+q)·r+i(Ω̄+Ω)tϵℓmnαR,ℓRno(p, Ω̄)A
j
s,ν(q,Ω)

× k2

2m
[(q + p)mδµν − (q + p)νδµm]tr

[
σjgk,ωσo(gk,ω)

2 − σogk,ωσj(gk,ω)2
]<
.

(C.23)

Using the spin trace formula

tr[σjgk,ωσo(gk,ω)
2 − σogk,ωσj(gk,ω)2] = 2iϵjoz

∑
σ

gk,ω,−σ(gk,ω,σ)
2, (C.24)

where gk,ω,σ is Green’s function diagonalized in spin space, Eq. (C.23) reduces to

j(B)
µ =a3

∑
k,ω

∑
p,q

∑
Ω̄,Ω

∑
νjℓmno

e−i(p+q)·r+i(Ω̄+Ω)t2iϵℓmnϵjozαR,ℓRno(p, Ω̄)A
j
s,ν(q,Ω)

× [(q + p)mδµν − (q + p)νδµm], (C.25)

where

a3 ≡
ie

6m

∑
k

∑
σ

σ

(
k2

2m

)2

[gak,−σ(g
a
k,ω,σ)

2 − grk,−σ(grk,ω,σ)2]. (C.26)

By use of the following equation,

[∇× [∇× (αR × n)]]µ =2i
∑
p,q

∑
Ω̄,Ω

∑
νjℓmno

e−i(p+q)·r+i(Ω̄+Ω)tϵℓmnϵjozαR,ℓRno(p, Ω̄)

× [(q + p)mδµνA
j
s,ν(q,Ω)− (q + p)νδµmA

j
s,ν(q,Ω)],

(C.27)

Eq. (C.23) reads

j(B) =a3∇× [∇× (αR × n)]. (C.28)

From the results of Eqs. (C.22) and Eq. (C.28), the pumped electric current is
thus given by

jpump =− a1
∂

∂t
(αR × n) + b1∇× [∇× (αR × n)], (C.29)

where b1 ≡ a2 + a3.
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C.2 Spin Hall current induced by Rashba-induced

spin magnetic field

As was pointed out in Refs. [28, 46], the result of the pumped current is not
useful in order to estimate magnetic components in solids, the effective magnetic
filed and the spin-dependent magnetic permeability, simultaneously. Therefore,
we should calculate the spin Hall current induced by the effective magnetic fields
under the effect of an applied electric field to achieve the decision of the magnetic
components. In this calculation, we introduce the static magnetization texture
and the spatially uniformed electric field.

The Lagrangian we consider in the rotated space is given by

L ≡ L0 + L
(2)
As
, (C.30)

L0 ≡
∫

d3ra†
(
i∂t +

1

2m
∇2 + µ+∆sdσz

)
a, (C.31)

L
(2)
As
≡
∫

d3r

[
.−
∑
i

Aiji −
e2

2m

∑
i

(Ai)
2a†a−

∑
i,α

Aαs,ij
α
s,i −

e2

2m

∑
i,α

(Aαs,i)
2a†a

+ e
∑
jkℓn

ϵjkℓαR,jAkRℓna
†σna−

e

m

∑
iα

AiA
α
s,ia

†σαa

+
1

2

∑
ijkn

ϵijkαR,iRkn

(
−2m

e
jns,j − 2eAns,ja

†a

)]
, (C.32)

where jαi ≡ −ie 1
2m
a†
←→
∇ia is the charge current. In the rotated frame, the electric

current reads

jµ(r, t) =
ie

2m
⟨a†
←→
∇ µa⟩ −

e2

m

∑
ℓ

Aµ⟨a†a⟩ − e
∑
jkℓ

ϵµjkℓαR,jRkℓ⟨a†σℓa⟩, (C.33)

where ⟨ ⟩ denotes the expectation value for L. In terms of Green’s function, Eq.
(C.33) becomes

jµ = lim
r′→r
t′→t

tr


e
2m

[(∇r′,µ −∇r,µ)G
<(r, r′, t, t′)] + ie2

m
AµG

<(r, r′, t, t′)

+ie
∑
jkℓ

ϵµjkαR,jRkℓ[σℓG
<(r, r′, t, t′)]

 , (C.34)

where G<(r, r′, t, t′) ≡ i⟨a†(r′, t′)a(r, t)⟩ is a lesser component of contour ordered
Green’s function. We calculate the electric current up to the linear order in both
the Rashba field and the gauge filed. In the calculation, we use the following Dyson
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equation,

G(r, r′, t, t′) =
1

V

∑
k,ω

eik·(r−r′)−iω(t−t′)gk,ω

+
e

mV

∑
k,ω

∑
Ω

∑
j

eik·(r−r′)−iωt+i(ω+Ω)t′Aj(Ω)kjgk,ωσjgk,ω+Ω

− 1

V

∑
k,ω

∑
p

∑
jlℓn

eik·r−i(k+p)·r′−iω(t−t′)

× ϵjkℓαR,jRℓn(p)
(
k +

p

2

)
k
gk,ωσngk+p,ω

− e

V

∑
k,ω

∑
p,Ω

∑
jkℓn

eik·r−iωt−i(k+p)·r′+i(ω+Ω)t′

× ϵjkℓαR,jRℓn(p)Ak(Ω)gk,ωσngk+p,ω+Ω

− e

mV

∑
k,ω

∑
p,Ω

∑
jkℓmn

eik·r−iωt−i(k+p)·r′+i(ω+Ω)t′ϵjkℓαR,jAm(Ω)Rℓn(p)

×
[(
k + p

2

)
k
(k + p)m gk,ωσngk+p,ωgk+p,ω+Ω

+km
(
k + p

2

)
k
gk,ωgk,ω+Ωσngk+p,ω+Ω

]
, (C.35)

where where p is the wave vector carried by the magnetization texture and Ω is
the angular frequency carried by the gauge field.

Using the Dyson equation, the result being bilinear in the Rashba field and the
gauge field is given by (diagrammatically shown in Fig. 1.6)

jHall =j(Hall,1) + j(Hall,2), (C.36)

with

j(Hall,1)
µ =− ie2

mV

∑
k,ω

∑
p,Ω

∑
jkℓmn

e−ip·r+iΩtϵjkℓαR,jRℓn(p)Am(Ω)

× tr

[
−δkmkµgk−p

2
,ω−Ω

2
σngk+p

2
,ω+Ω

2

− kµkk
m

(
k +

p

2

)
m
gk−p

2
,ω−Ω

2
σngk+p

2
,ω+Ω

2
gk+p

2
,ω+Ω

2

− kµkk
m

(
k − p

2

)
m
gk−p

2
,ω−Ω

2
gk−p

2
,ω+Ω

2
σngk+p

2
,ω+Ω

2

]<
, (C.37)

j(Hall,2)
µ =− ie2

mV

∑
k,ω

∑
p,Ω

∑
jkℓmn

e−ip·r+iΩtϵjkℓαR,jRℓn(p)Am(Ω)

× tr

[
δµkkmσngk,ω−Ω

2
gk,ω+Ω

2
− δµmkkgk−p

2
,ωσngk+p

2
,ω

]<
, (C.38)

Let us calculate Eq. (C.37). Expanding j(Hall,1) with respect to Ω and p, the result
up to the linear order in both Ω and p is given by

j(Hall,1)
µ =− c1

∑
p,Ω

e−ip·r+iΩt
∑
jkℓmn

ϵjkℓαR,jRℓn(p)Am(Ω)δnzΩ(pµδkm − pmδµk),

(C.39)
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where

c1 ≡
ie2

3m2

∑
k

∑
σ

σk2[(gak,ω,σ)
3 − (grk,ω,σ)

3]. (C.40)

Using the following equation,

[E × [∇× (αR × n)]]µ =
∑
p,Ω

e−ip·r+iΩt
∑
jkℓmn

ϵjkℓαR,jRℓn(p)Am(Ω)

× δnzΩ(pµδkm − pmδµk), (C.41)

we thus obtain the Hall current as

jHall =− c1E × [∇× (αR × n)]. (C.42)

54



Appendix D

Microscopic derivation of
Dzyaloshinskii-Moriya interaction

In this section, we show that the equilibrium spin current induces the Dzyaloshinskii-
Moriya interaction by deriving an effective Hamiltonian for the magnetization
based on the imaginary-time path-integral formalism. In this calculation, we in-
troduce the static magnetization texture.

The imaginary-time Lagrangian we consider in the laboratory frame is

L =

∫
d3rc̄

[
∂τ −

1

2m
∇2 − µ−∆sdn · σ +

i

2

∑
i

λi · σ
←→
∇i

]
c, (D.1)

where λ is the spin-orbit field representing the breaking of spatial-inversion sym-
metry and conduction electrons are represented by two component annihilation
and creation fields, c and c̄ defined on imaginary-time, τ . By introducing the spin
gauge field by use of the local unitary transformation in order to diagonalize the
sd interaction, the Lagrangian in the rotated space is thus decomposed L0 into
LAs as shown below.

L0 ≡
∫

d3rā

(
∂τ −

1

2m
∇2 − µ−∆sdσz +

i

2

∑
i,αβ

Rαβλ
β
i

←→
∇iσα

)
a, (D.2)

LAs ≡
∫

d3r

[∑
i,α

Aαs,ij
α
s,i +

e2

2m

∑
i,α

(Aαs,i)
2āa− e

∑
i,αβ

Rαβλ
β
i A

α
s,j āa

]
, (D.3)

where a and ā are annihilation and creation fields describing the spin-polarized
conduction electrons in the rotated frame. The effective Hamiltonian for the mag-
netization, Heff ≡ − lnZ, is calculated by integrating out of the variables of the

electrons in the partition function, Z(As) =
∫
Dc̄Dce−

∫ β
0 dτL(c̄,c,As), where D de-

notes the path integral. The contribution of the first order in the spin gauge field,
diagramatically shown in Fig. D.1, reads,

lnZ = −
∫ β

0

dτ

∫
d3r
∑
µα

Aαs,µj̃
α
s,µ, (D.4)

55



Figure D.1: Diagrammatic representation of the contribution to the effective
Hamiltonian. Solid lines represent the thermal Green’s function including the
spin-orbit and sd exchange interactions and the wavy lines denote the spin gauge
field, respectively.

where

j̃αs,µ =− 1

βV

∑
k,n

tr

[
−kµ
m
σαGk,n,sd −

∑
β

Rαβλ
β
µGk,n,sd

]
(D.5)

is the spin current density in rotated frame and

Gk,n,sd ≡
1

iωn − ϵk + γk,sd · σ + iηsgn(ωn)
(D.6)

is the thermal Green’s function for electrons that includes the spin-orbit and sd-
exchange interactions. Here, k and ωn ≡ (2n+1)π

β
( n is an integer) indicate the wave

vector and fermionic thermal frequency, respectively, ϵk = k2

2m
− µ is the electron

energy measured from the Fermi energy, and γαk,sd ≡
∑

iβ Rαβλ
β
i ki + ∆sdẑ

α with
ẑ ≡ (0, 0, 1). We have included a finite electron-elastic-scattering lifetime τe as
an imaginary part, η ≡ 1

2τe
, and sgn(ωn) ≡ 1 and −1 for ωn > 0 and ωn < 0,

respectively.
Expanding Eq. (D.5) with respect to λ by use of the resolvent expansion, the

result up to the linear order in λ and the zero-order in ∆sd is reduced to

j̃αs,µ ≃
∑
β

Rαβj
β
s,µ, (D.7)

where

js ≡ 2neλ (D.8)

is the spin current density in the laboratory frame and ne ≡ 1
V

∑
k

∑
σ f(ϵk) is the

electron density. Using the following relation,∑
α

RαβA
α
s,µ =

1

2
(∇µn× n)β + nβAs,µ, (D.9)

we thus get the effective Hamiltonian as [82]

Heff =

∫
d3r

[∑
i,α

Dα
i (n×∇in)

α + j∥s ·Az
s

]
, (D.10)
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with

D ≡ j⊥s , (D.11)

where j⊥,αs,µ ≡ jαs,µ − nαj
∥
s,µ and j

∥
s,µ ≡ n · js,µ. The first term on the right-hand

side of Eq. (D.10) describes the Dzyaloshinskii-Moriya interaction induced by the
spin current density with the spin component perpendicular to the magnetization
vector. The second term on the right-hand side of Eq. (D.10) means the spin-
transfer term originated from the spin current density with the spin component
parallel to the magnetization vector.
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Appendix E

Partition function in path integral
formalism

Under the effect of a finite temperature, the equilibrium properties is deter-
mined by the partition function as shown below.

Z(β) = Tr e−βĤT , (E.1)

where ĤT ≡ Ĥ−µN̂ , Ĥ is the Hamiltonian of the system, N̂ is the particle number
operator, µ is the chemical potential of the system, β is the inverse temperature,
Tr is over the entire Hilbert space. In fermion system, Eq. (E.1) reduces to

Z =
1∑

n=0

⟨n|e−βĤT |n⟩, (E.2)

where |n⟩ is the Fock space state.
In order to construct the path integral representation of the partition function

in fermion system, we introduce the fermionic coherent states, |ψ⟩ and ⟨ψ|, as

|ψ⟩ = |0⟩+ |1⟩ψ,
⟨ψ| = ⟨0|+ ψ̄⟨ψ|. (E.3)

Here, ψ and ψ̄ are the Grassmann numbers satisfying {ψ, ψ} = 0, {ψ̄, ψ̄} = 0,
{ψ, ψ̄} = 0, ψ̂|ψ⟩ = ψ|ψ⟩, and ⟨ψ|ψ̂† = ⟨ψ|ψ̄, where {A,B} ≡ AB+BA and ψ̂ and
ψ̂† represent annihilation and creation operators, respectively. Since integration
over Grassmann variable ψ is defined by

∫
dψ = 0 and

∫
dψψ = 1, the resolution

of identity for the coherent states is given by∫
dψ̄dψe−ψ̄ψ|ψ⟩⟨ψ| = 1. (E.4)

Using the above equation, the partition function, Eq, (E.2), reads

Z =

∫
dψ̄dψe−ψ̄ψ⟨−ψ|e−βĤT |ψ⟩. (E.5)
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Dividing β into N segments of infinitesimal length ∆τ ≡ β
N

and inserting coherent
states resolution of identity, Eq. (E.5) becomes

Z =

∫
ψ̄N=−ψ̄0
ψN=−ψ0

N∏
i=1

dψ̄idψiexp

[
−∆τ

∑
j=1

N

(
ψ̄j
ψj − ψj−1

∆τ
+HT(ψ̄j, ψj−1)

)]
,

(E.6)

where HT(ψ̄j, ψj−1) ≡ ⟨ψj|ĤT(ψ̂
†, ψ̂)|ψj−1⟩ and ψ̄N = −ψ̄0 (ψN = −ψ0) means

the anti-periodic boundary condition for ψ̄ (ψ). Here we used the fact that ĤT

is described by the annihilation and creation operators in second quantized repre-
sentation. In the limit N → ∞ and ∆τ → 0, the path integral representation of
partition function is thus obtained as [86]

Z =

∫
Dψ̄Dψe−

∫ β
0 dτL(τ), (E.7)

with

Dψ̄Dψ ≡ lim
N→∞
∆τ→0

N∏
i=1

dψ̄idψi, (E.8)

where L(τ) ≡ ψ̄ ∂
∂τ
ψ +HT is corresponding to an imaginary-time Lagrangian and

ψ̄(τ) and ψ(τ) are creation and annihilation fields defined on an imaginary-time τ .
We should keep in mind that ψ̄(τ) (ψ(τ)) satisfies the the anti-periodic boundary
condition for fermion field ψ̄(β) = −ψ̄(0) (ψ(β) = −ψ(0)).
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Appendix F

Derivation of Eq. (2.30)

This section shows the detailed derivation of Eq. (2.30) from Eq. (2.29). Let
us first calculate χµνjj shown in Eq. (2.29). Expanding Gk,n,M with respect to M
by use of the resolvent expansion, the term proportional to the linear order of M
is given by

χ
µν,(M1)
jj ≃− e2Jsd

m2βV

∑
n,k

∑
α

(−Mα)

× tr

[
1

2

[(
k +

q

2

)
µ

(
k +

q

2

)
ν
Gk+q,n+ℓ +

(
k − q

2

)
µ

(
k − q

2

)
ν
Gk−q,n−ℓ

]
× {Gk,n, σα}

+ 2j2k,n
∑
mn′op

ϵαmn′ϵn′opγ̂
m
k γ̂

o
k

×
[(

k +
q

2

)
µ

(
k +

q

2

)
ν
Gk+q,n+ℓ +

(
k − q

2

)
µ

(
k − q

2

)
ν
Gk−q,n−ℓ

]
σp

]
,

(F.1)

with

jk,n ≡
1

2

∑
σ=±

σgk,n,σ, (F.2)

where γ̂k ≡ γk/|γk|, Gk,n ≡ [iωn − ϵk − γk · σ + iηsgn(n)]−1, γk ≡ k × αR,
gk,n,σ ≡ [iωn − ϵσk + iηsgn(n)]−1 with ϵσk = ϵk + σγk (γk ≡ |γk|) is the Green’s
function diagonalized in the spin space, σ = ± is the diagonalized spin index, and
{A,B} ≡ AB + BA. Expanding Eq. (F.1) with respect to q, the term being
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bilinear in M and q is given by

χ
µν,(M1,q1)
jj ≃− e2Jsd

2m2βV

∑
n,k

∑
α

(−Mα)

× tr



kµkν



k·q
m
(G 2

k,n+ℓ − G 2
k,n−ℓ){G 2

k,n, σα}

+
∑
ρ

γρq


1
2
({G 2

k,n+ℓ, σρ} − {G 2
k,n−ℓ, σρ})

×{G 2
k,n, σα}

+2(j2k,n+ℓ − j2k,n−ℓ)
×
∑
ρmn′op

ϵρmn′ϵn′opγ̂
m
k γ̂

o
kσp{G 2

k,n, σα}




+1

2
(kµqν + kνqµ)(Gk,n+ℓ − Gk,n−ℓ){G 2

k,n, σα}
+4j2k,n

∑
mn′op

ϵαmn′ϵn′opγ̂
m
k γ̂

o
k

×


kµkν


k·q
m
(G 2

k,n+ℓ − G 2
k,n−ℓ)σp

+
∑
ρ

γρq


1
2
({G 2

k,n+ℓ, σρ} − {G 2
k,n−ℓ, σρ})σp

+2(j2k,n+ℓ − j2k,n−ℓ)
×

∑
ρm′o′m′′o′′

ϵρm′o′ϵo′m′′o′′ γ̂
m′

k γ̂m
′′

k σo′′σp




+1
2
(kµqν + kνqµ)(Gk,n+ℓ − Gk,n−ℓ)σp





.

(F.3)

Performing the trace over the spin using

tr[σασβσγσδ] = 2(δαβδγδ + δβγδαδ − δαγδβδ), (F.4)

the result up to the linear order in q and M is obtained as

χµνjj (q, iΩℓ,M ) ≃ − e2Jsd
m2βV

∑
n,k

∑
α

(−Mα)(kµqν + qµkν)γ̂
α
k

×
[
2hk,njk,n(hk,n+ℓ − hk,n−ℓ) + (h2k,n + j2k,n)(jk,n+ℓ − jk,n−ℓ)

]
,

(F.5)

with

hk,n ≡
1

2

∑
σ=±

gk,n,σ. (F.6)
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Other correlation functions are calculated similarly as

χµνsj (q, iΩℓ,M ) ≃ − e
2Jsd
mβV

∑
n,k

∑
mαβρ

ϵµmααR,m(−Mβ)

×



− 4
m
qρ(kνkρδαβ − kνkργ̂αk γ̂

β
k)j

2
k,n(h

2
k,n+ℓ − h2k,n−ℓ)

+4γρq(δραkν γ̂
β
k − δαβkν γ̂

ρ
k)hk,njk,n

×[(h2k,n+ℓ − h2k,n−ℓ)− (j2k,n+ℓ − j2k,n−ℓ)]

+qρδρj

δαβ(h2k,n − j2k,n)(hk,n+ℓ − hk,n−ℓ)+2γ̂αk γ̂
β
k [hk,njk,n(jk,n+ℓ − jk,n−ℓ)

+j2k,n(hk,n+ℓ − hk,n−ℓ)]




,

χµνss (q, iΩℓ,M ) ≃ −e
2Jsd
βV

∑
n,k

∑
moαβγ

∑
µ′ν′ρ

ϵµoαϵνmβαR,oαR,m(−Mγ)

×



− 4
m
qν′


kν′ γ̂

µ′

k (ϵαµ′ρϵργβ + ϵαγρϵρµ′β)
×hk,njk,n[(h2k,n+ℓ − h2k,n−ℓ) + (j2k,n+ℓ − j2k,n−ℓ)]
+2
∑
ijkp

ϵγijϵjkpkν′ γ̂
i
kγ̂

k
kγ̂

µ′

k (ϵαpρϵρµ′β + δµ′βδαp)

×hk,njk,n(j2k,n+ℓ − j2k,n−ℓ)


+4
∑
ijk

γµ
′

q γ̂
i
kγ̂

k
kϵjkν′

[
ϵµ′ij(ϵαγρϵρν′β + δν′βδαγ)
−ϵγij(ϵαν′ρϵρµ′β + δµ′βδαν′)

]
×h2k,n(j2k,n+ℓ − j2k,n−ℓ)


,

(F.7)

where we should keep in mind that χµνjs (q, iΩℓ,M) = χνµsj (−q,−iΩℓ,M ) holds.
To carry out the k-integral, we choose the z axis along the Rashba field, i.e.,

αR = αRẑ (ẑ ≡ (0, 0, 1)) and k is represented using the polar and azimuthal
angles θ and φ, respectively. We consider an electromagnetic wave with qz = 0,
i.e., propagation perpendicular to the Rashba field. Let us calculate Eq. (F.5).
Calculating the integral over φ by use of∫ 2π

0

dφ

2π
kµγ̂

ν
k = − γk

2αR

ϵµνlα̂R,l, (F.8)

where α̂R ≡ αR/|αR|, we obtain

χµνjj (q, iΩℓ,M) = −Jsd
β

( e
m

)2∑
n,k

(
− γk
2α2

R

)
ϕ
(0)
k,n(iΩℓ)(AR,µqν + qµAR,ν), (F.9)

with

ϕ
(0)
k,n(iΩℓ) ≡ 2hk,njk,n(hk,n+ℓ − hk,n−ℓ) + (h2k,n + j2k,n)(jk,n+ℓ − jk,n−ℓ). (F.10)
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Here, AR ≡ αR ×M . Other correlation functions are calculated similarly as

χµνsj (q, iΩℓ,M ) = −Jsd
β

( e
m

)2∑
n,k

×

{
− γ2k

2α2
R
ϕ
(1)
k,n(iΩℓ)[2(AR · q)δ⊥µν − 3AR,µqν +M⊥

µ (αR × q)ν ]

+2mαRγkϕ
(2)
k,n(iΩℓ)(AR,µqν − qµAR,ν)−mϕ(3)

k,n(iΩℓ)AR,µqν

}
,

χµνss (q, iΩℓ,M ) = −Jsd
β

( e
m

)2∑
n,k

(−2mγk)

×

{
ϕ
(4)
k,n(iΩℓ)(AR · q)δ⊥µν

+ϕ
(5)
k,n(iΩℓ)[2(AR · q)δ⊥µν − (AR,µqν + qµAR,ν)]

}
, (F.11)

with

ϕ
(1)
k,n(iΩℓ) ≡ j2k,n(h

2
k,n+ℓ − h2k,n−ℓ),

ϕ
(2)
k,n(iΩℓ) ≡ hk,njk,n[(h

2
k,n+ℓ − h2k,n−ℓ)− (j2k,n+ℓ − j2k,n−ℓ)],

ϕ
(3)
k,n(iΩℓ) ≡ h2k,n(hk,n+ℓ − hk,n−ℓ) + hk,njk,n(jk,n+ℓ − jk,n−ℓ),

ϕ
(4)
k,n(iΩℓ) ≡ hk,njk,n(j

2
k,n+ℓ − j2k,n−ℓ),

ϕ
(5)
k,n(iΩℓ) ≡ hk,njk,n(h

2
k,n+ℓ − h2k,n−ℓ), (F.12)

where δ⊥µν ≡ δµν − α̂R,µα̂R,ν and M⊥ ≡M − (α̂R ·M )α̂R.
The results of Eq. (F.9) and Eq. (F.11) are summarized in Eq. (2.30). The

coefficients g1, g2, and g3 are defined in Appendix G.
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Appendix G

Definition of coefficients g1, g2,
and g3

From (F.9) and (F.11), coefficients g1, g2, and g3 of Eq. (2.30) are obtained as

g1(iΩℓ) ≡ −
Jsd
β

( e
m

)2∑
n,k

(
−2γ2k
α2
R

)[
ϕ
(1)
k,n(iΩℓ) +

mα2
R

γk
(ϕ

(4)
k,n(iΩℓ) + 2ϕ

(5)
k,n(iΩℓ))

]
,

g2(iΩℓ) ≡ −
Jsd
β

( e
m

)2∑
n,k

γ2k
2α2

R

[
− 1

γk
ϕ
(0)
k,n(iΩℓ) + 3ϕ

(1)
k,n(iΩℓ)−

2mα2
R

γ2k
ϕ
(3)
k,n(iΩℓ)

+
4mα2

R

γk
ϕ
(5)
k,n(iΩℓ)

]
,

g3(iΩℓ) ≡ −
Jsd
β

( e
m

)2∑
n,k

(
− γ2k
2α2

R

)
ϕ
(1)
k,n(iΩℓ). (G.1)

Using Eqs. (F.2), (F.6) and Eq. (F.12), the coefficients g1 and g3 can be written
as

g1(iΩℓ) = −2
Jsd
24

( e
m

)2∑
k

∑
σ1σ2σ3σ4

(
γk
αR

)2 [
σ1σ2 +

mα2
R

γk
(σ2σ3σ4 + 2σ2)

]
×
(
− 1

β

)∑
n

gk,n,σ1gk,n,σ2(gk,n+ℓ,σ3gk,n+ℓ,σ4 − gk,n−ℓ,σ3gk,n−ℓ,σ4),

g3(iΩℓ) = −
1

2

Jsd
24

( e
m

)2∑
k

∑
σ1σ2σ3σ4

σ1σ2

(
γk
αR

)2

×
(
− 1

β

)∑
n

gk,n,σ1gk,n,σ2(gk,n+ℓ,σ3gk,n+ℓ,σ4 − gk,n−ℓ,σ3gk,n−ℓ,σ4). (G.2)
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Appendix H

Gauge transformation

Under the gauge transformation Aµ(q)→ Aµ(q) + iqµΛ(q), where Λ(q) is the
gauge degree of freedom, the change in the effective Hamiltonian linear in Λ is
given by

δHeff = −i
∑
q

Λ(q)

×


g1(AR · q)[q ·A(−q)− q ·A(−q)]

+g2

[
(AR ·A(−q))q2 + (q ·A(−q))(AR · q)
−(AR · q)(q ·A(−q))− (AR ·A(−q))q2

]
+g3[A(−q) · (αR × q)(M⊥ · q)− (M⊥ · q)A(−q) · (αR × q)]

 . (H.1)
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Appendix I

Derivation of Eqs. (3.19), (3.20),
and (3.21)

This section shows the detailed derivation of Eqs. (3.19), (3.20), and (3.21)
from Eq. (3.17) as a same manner in Appendix F. By use of Eq. (F.4) and

tr[σασiσβσjσγ] = 2i(δαiϵβjγ + δjγϵαiβ + δβjϵαiγ − δβγϵαij), (I.1)

the result up to the linear order in q thus reads

χµνjj (q, iΩℓ) ≃ χµνjj (q = 0, iΩℓ)−
(−i)e2λ2

βV

∑
n,k

∑
ρ

×



−
∑
i

1
λm
γρq γ̂

i
k(ϵµiρkν − kµϵνiρ)(h2k,n − j2k,n)(jk,n+ℓ + jk,n−ℓ)

−kρqρ
m

∑
i

γ̂ikϵµνi(h
2
k,n + j2k,n)(jk,n+ℓ + jk,n−ℓ)

+γρq


ϵµνρ(h

2
k,n + j2k,n)(hk,n+ℓ + hk,n−ℓ)

+2j2k,n
∑
mn′op

ϵρmn′ϵn′opϵµνργ̂
m
k γ̂

o
k(hk,n+ℓ + hk,n−ℓ)

+2
∑
i

γ̂ikγ̂
ρ
kϵµiνhk,njk,n(jk,n+ℓ + jk,n−ℓ)




,

(I.2)

where γ̂k ≡ γk/|γk|, γq ≡ −λq, and hk,n and jk,n are defined as

hk,n ≡
1

2

∑
σ=±

gk,n,σ,

jk,n ≡
1

2

∑
σ=±

σgk,n,σ, (I.3)

where σ = ± is the diagonalized spin index. Using a rotational symmetry in k-
space, i.e., kµkν = k2

3
δµν and Eq. (I.3), the result of Eq. (I.2) is summarized in

Eqs. (3.19), (3.20), and (3.21).
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