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Abstract

Tunnelling splitting in integrable systems is studied in the semiclassical regime. The semiclas-

sical formula of the tunnelling splitting requires certain complex trajectories as input for it. We

mainly discuss how the complex trajectories with different topologies can be obtained. It has been

a standard strategy, as is the case of the so called the instanton path, to explore complex trajecto-

ries in the time plane. However it would not be practically possible or feasible to enumerate all

topologically distinct complex paths required by the semiclassical analysis of tunnelling splittings.

This point will be closely examined by providing analytical solutions for some simple Hamilto-

nian systems and then showing that infinitely many singularities appear in the complex time plane.

Here we claim that, instead of considering the complex trajectories in the time plane, one should

analyse complex trajectories in the configuration space. In order to illustrate this, we here examine

the Hamiltonian expressed as polynomial functions. As a result of limiting ourselves to such a

class of systems, it turns out that the Riemann surface of complex trajectory is homeomorphic to a

compact space. The fundamental group for the corresponding Riemann surface provides complete

information of the topology of complex paths, and enables us to enumerate all possible candidates

contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to

action relations among classically disjoint regions, revealing entirely non-local nature of the quan-

tization condition. The importance of the treatment of the Stokes phenomenon is also discussed in

the case of Hamiltonians in the normal form.



Chapter 1

Introduction

In this thesis, we will study the tunnelling phenomenon in 1-dimensional systems. This is mo-

tivated by recent studies on quantum tunnelling in multi-dimensional systems, especially non-

integrable systems [1–7]. Many attempts have so far been made in order to understand multi-

dimensional tunnelling. However, not only conceptually but also technically there still exist many

issues, which remain unsolved and wait for our further investigations. Among them, some orig-

inate not necessarily from the fact that systems under consideration are multi-dimensional or

non-integrable, but that important tools we use for analyses has not satisfactorily been developed

even for 1-dimensional situations. As explained below, the semiclassical theory especially for

1-dimensional quantum tunnelling is not ripe enough to tackle the problems we are facing.

In classical mechanics, 1-dimensional Hamiltonian systems are integrable and exhibit regular

motions such as ballistic or periodic motion [8–10]. On the other hand, multi-dimensional Hamil-

tonian systems are in general non-integrable and exhibit not only regular motion but also chaotic

motion. The non-integrable systems lack analytical solutions to the equations of motion, therefore

we usually discuss the dynamics by observing the phase space of the system numerically. The

phase space in multi-dimensional systems shows chaotic regions and nonlinear resonances, which

are characteristic dynamical structures of non-integrable systems.

Tunnelling is a typical quantum phenomenon by which a particle penetrates into classically

forbidden regions. For instance, in the 1-dimensional double-well system, two wells are separated

by a potential barrier. Classical particles with energies below the top of the potential barrier would

2



CHAPTER 1. INTRODUCTION 3

oscillate in each well, without being able to move beyond the potential barrier. In quantum me-

chanics, however, a particle can penetrate into the barrier and move beyond it. This penetration is

called barrier tunnelling. In multi-dimensional systems, even without potential barriers, a particle

can be confined in limited regions. This is because orbits in each constant energy surface are di-

vided into (infinitely many) regions in each of which the orbits are confined. The orbits in phase

space of multi-dimensional systems could therefore be separated dynamically. Alternatively stated,

each orbit plays a role of barrier to other orbits, like potential barriers in 1-dimensional systems, so

it would be reasonable, analogous to the potential barrier tunnelling, to consider tunnelling pene-

tration through dynamically formed barriers. This type of tunnelling is called dynamical tunnelling

in literatures [11–13].

Tunnelling splitting is a well-known manifestation of quantum tunnelling: tunnelling splitting

is given as a difference between quasi-degenerate eigenenergies associated with symmetric and

anti-symmetric combinations of the eigenfunctions localized in each well. It is typically discussed

in the 1-dimensional symmetric double-well potential system [14–18]. Here we will focus on

tunnelling splitting and try to relate it to the underlying classical mechanics since our ultimate goal

is to clarify how integrability of classical mechanics manifests itself in quantum tunnelling.

In the past two decades, it has been reported that quantum tunnelling is affected by chaos

and nonlinear resonances in the classical phase space. The role of classical chaos in quantum

tunnelling has been observed in quantum wave packet dynamics [1], as well as in tunnelling split-

ting [2–5]. In multi-dimensional systems, it has been shown that the classical chaos and non-

linear resonances in the classical phase space drastically enhance the tunnelling splitting, com-

pared to the case for 1-dimensional systems; these phenomena are called chaos-assisted tunnelling

(CAT) [5] and resonance-assisted tunnelling (RAT) [6, 7], respectively. However, there is no ev-

idence showing that the enhancement could not appear in 1-dimensional, integrable systems. If

such enhancement took place even in 1-dimensional systems, the concept of RAT and CAT should

be reconsidered. One might of course expect that the nature of tunnelling is essentially different

between integrable and non-integrable systems and the enhancement is the nature owned only by

non-integrable systems. However, no one has yet confirmed this explicitly, and we need more con-

vincing explanations why we can say so.
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Semiclassical theory has been used and is known to be an efficient tool to understand the

relation between classical and quantum mechanics. Concerning tunnelling splittings, a formula for

the double-well potential system was derived by taking the trace of propagator in the form of the

Feynman path integral [19]. In particular, the idea of instanton was proposed in [20] as an input

of the semiclassical formula for tunnelling splittings and was first applied to gauge field theories

to describe tunnelling between degenerate vacua [19, 21]. Later complexifying time has become a

widely used technique and now there are numerous applications [22–34].

Even under such circumstances, the semiclassical formulation for tunnelling splittings beyond

the double-well potential situation is quite limited. To the best of our knowledge, the work by Le

Deunff and Mouchet [35] first derived a semiclassical formula which could be applied to the triple-

well potential system. Needless to say, it is far beyond our reach to develop similar arguments made

there and to obtain formulas applicable to multi-dimensional or non-integrable systems. Hence we

will extensively employ the formula derived in Ref. [35] in our subsequent study since it is the only

formula that can be applied to tunnelling splitting in the situation beyond the double-well potential

system.

There are two tasks that must be made to establish a semiclassical analysis of tunnelling split-

ting. The first step is to enumerate all possible complex trajectories that satisfy the boundary

conditions required by the semiclassical formula. The second step is to deal with the so-called

Stokes phenomenon, which generally occurs when one applies the saddle point approximation

to integrals. Due to the Stokes phenomenon, it is known that not all of the complex trajectories

contribute to the saddle point evaluation.

In the symmetric triple-well system, the tunnelling splitting as a function of 1/ℏ exhibits ex-

ponential decay accompanied with a sequence of spikes. Such enhancements in such a situation

are known as so called resonant tunnelling [35, 36]. The authors in [35] succeeded in reproducing

these spikes based on a semiclassical analysis using classical trajectories in the complex time plane.

However, since they searched complex trajectories only numerically, we need more convincing ev-

idence why it works even though there exist (infinitely) many other complex trajectories [35]. The

paper’s argument would need to be reconsidered if there exists at least one complex path with a
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dominant contribution to the semiclassical formula other than those studied in [35].

In this thesis, we mainly discuss the first step, i.e., finding a systematic way to enumerate

all complex trajectories. One of main results of this thesis is that considering trajectories in the

complex time plane is not a right strategy for semiclassical analysis of tunnelling splitting, even

though there have been a lot of works along this line. The reason for this is that, as will be shown,

the solution of the equations of motion as a function of time has infinitely many singularities. As

a result, there are infinitely many topologically distinct complex trajectories. This fact makes it

impossible to enumerate all complex trajectories in general. We suggest that one should examine

the complex trajectories on the configuration space instead of the complex time plane. To illustrate

this we here take the Hamiltonian which is expressed as a polynomial function of momentum

and position. Then any local classical quantities are algebraic functions of dynamical variables.

This makes the Riemann surface simple, allowing all complex trajectories to be enumerated. Our

method for enumerating these trajectories can be applied not only to the triple-well potential system

but also to multi-well potential systems. This result will help to establish semiclassical analysis for

integrable systems.

This thesis is organized as follows. In chapter 2, we briefly review the enhancement of the tun-

nelling splitting in the light of RAT, as well as the semiclassical argument of the tunnelling splitting

in a couple of 1-dimensional systems with trajectories on the complex-time plane. We show that

infinitely many singularities on the time plane hinder our enumeration of complex trajectories. In

chapter 3, we discuss the semiclassical formula for the tunnelling splitting and reconsider complex-

trajectory enumeration. We explain our strategy for enumerating topologically distinct complex

trajectories. The key idea is to examine the complex trajectories on the configuration space instead

of the complex time plane. By doing so, the fundamental group of the Riemann surfaces for the

corresponding function will make it possible to obtain a complete list of complex trajectories. In

chapter 4, we apply our method introduced in chapter 3 to 1-dimensional double- and triple-well

potential systems. For the second step, we handle the Stokes phenomenon in a heuristic manner,

i.e., eliminating exponentially exploding unphysical solutions. After dealing with the Stokes phe-

nomenon, we evaluate the tunnelling splitting by using specific trajectories which have the smallest

imaginary action, because such trajectories have the most dominant contribution to the semiclas-
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sical tunnelling splitting formula. The results obtained here are the same as already known results

in [35]. As a byproduct, we obtain non-trivial global relations among action integrals, leading to

a simultaneous quantization condition for distinct potential wells. We further investigate a normal

form of the Hamiltonian system. In that case, we also obtain a complete list of complex trajecto-

ries but we show that our heuristic manner of handling the Stokes phenomenon does not work. In

chapter 5, we summarise this thesis and discuss future works.



Chapter 2

Tunnelling splitting and semiclassical

analysis

2.1 Resonance-assisted tunnelling

In the 1-dimensional symmetric double-well potential system, quantum tunnelling manifests as

exponentially small energy splittings, caused by the coupling between odd and even eigenstates

forming quasi-degenerated doublets. It is known that the splitting width decays exponentially as

a function of 1/ℏ and the way of decay is always monotonic. However, more than 1-dimensional

systems, the nature of quantum tunnelling drastically changes, reflecting the fact that the system

is in general non-integrable and chaos appears in the corresponding classical dynamics [13]. In

fact, the role of chaos in quantum tunnelling was first investigated in wavepacket dynamics [1],

and in tunnelling splittings as well [2–5]. These works have focused mainly on the role of chaos,

and the tunnelling effect associated with classical chaos was called “chaos-assisted tunnelling”

in [5]. Later the effect of nonlinear resonances to quantum tunnelling has also been explored [6,7].

The emergence of nonlinear resonances is also a generic phenomenon in non-integrable systems,

so it would be fairly reasonable to study the role of nonlinear resonances in quantum tunnelling.

The authors of Ref. [6,7] have put a name “resonance-assisted tunnelling” to a phenomenon which

could be invoked by nonlinear resonances appearing in the classical phase space. In both situations,

chaos-assisted and resonance-assisted tunnelling, it has been claimed that the tunnelling probability

7
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is drastically enhanced as compared to that observed in 1-dimensional systems.

In this section, we will explain how the enhancement of tunnelling in the nearly-integrable

system is observed. Let us consider the standard map system as an example in order to discuss

the enhancement of tunnelling splitting. The standard map is known to have generic features of

nearly-integrable systems, in which chaos and nonlinear resonances appear in the phase space [37].

Since we here consider the tunnelling splitting, we will use the version in which the original form

of the standard map is modified as 1

F :

 pn+1 = pn + 2k sin(2qn)

qn+1 = qn + pn+1τ.
(2.1)

The map system describes the motion of a particle with discrete time, so the trajectory of a particle

is described by the discrete time evolution: (qn, pn) → (qn+1, pn+1), where qn is the position and

pn the momentum of the particle at each time step n. The map is derived from the equations of

motion for the so-called kicked Hamiltonian:

H(p, q, t) =
p2

2
+ k cos(2q)

∑
n

δ(nτ − t), (2.2)

and qn, pn are obtained by the integration of the Hamiltonian equations of motion over the period

τ . This map could also be regarded as discretization of the Hamiltonian equations of motion for

the 1-dimensional pendulum

H =
p2

2
+ k cos(2q), (2.3)

and τ shows the discretization interval. Typical examples of phase space portraits are presented in

figure 2.1.

For τ = 1, the system is nearly-integrable, the most dominant nonlinear resonances are located

at (q, p) = (π/2, 0) and (3π/2, 0), and there appear chaotic motions around an unstable fixed point

at (q, p) = (π, 0). However, chaotic regions do not spread over the entire phase space but are

1This model was used in [38] to study tunnelling splitting in the nearly-integrable system.
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Figure 2.1: The phase space of the standard map with k = 0.25. (Left) The case of τ = 1. Both
chaotic orbits and nonlinear resonances (small circles around wells) are visible. (Right) The case
of τ ∼ 0. Regular orbits dominate the phase space, which is very close to the phase space for the
1-dimensional pendulum.

localized only in the vicinity of an unstable fixed point. The term “nearly” comes from such an

aspect of phase space. Most of signatures of the integrable limit τ ∼ 0 still remain, and the phase

space is covered by regular orbits, shown as continuous curves, and is very close to the phase space

of the pendulum Hamiltonian.

The corresponding quantum map can be formulated by introducing the unitary operator given

as

Û(τ) = exp

(
− i

ℏ
p̂2

2
τ

)
exp

(
− i

ℏ
k cos(2q̂)τ

)
. (2.4)

The associated eigenvalue equation is expressed as

Û(τ)|ψn⟩ = exp

(
− i

ℏ
ϵnτ

)
|ψn⟩, (2.5)

where ϵn is called quasi-eigenenergy. Here tunnelling splitting of quasi-eigenvalues appears be-

tween odd and even quasi-eigenstates, which are both localized on invariant curves surrounding the

most dominant nonlinear resonance but have different parity, analogous to the symmetric double-

well potential system as explained above. The splitting is therefore defined as ∆E := ϵ−n − ϵ+n ,

where ϵ±n are quasi-eigenvalues associated with even and odd parity, respectively. The ∆E numer-
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ically calculated in this way is shown in figure 2.2.

Figure 2.2: The tunnelling splitting ∆E as a function of 2π/ℏ for the quantum standard map
system. The blue line shows the case of τ = 1, the red line the case of τ ∼ 0.

As shown in figure 2.2, the tunnelling splitting ∆E for the case τ ∼ 0 shows a simple exponen-

tially decaying behaviour whereas that for τ = 1 exhibits a staircase like structure accompanied

by spikes.

The plot ∆E vs 1/ℏ for the non-integrable map was first made in [4] and the enhancement

shown here was recognised in [39], and later closely examined in [6,7]. In particular, the authors of

Ref. [6, 7] attributed such enhancement to the existence of nonlinear resonances in classical phase

space. To explain it, they developed a hybrid scheme based on quantum perturbation analysis

whose ingredients are taken from the classical phase space. It was reported that, after several tech-

nical improvements, such a scheme could successfully reproduce analogous quantities, not exactly

tunnelling splittings, associated with tunnelling [40]. Since their approach is based on classical

nonlinear resonances, they call such a tunnelling mechanism “resonance-assisted tunnelling”.

On the other hand, recent studies [41, 42] are revealing that the role of nonlinear resonances is

rather restricted, just creating spikes in ∆E vs 1/ℏ plot. This was confirmed by applying selective

absorbers composed of well tuned basis functions in order to eliminate the coupling to the states
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Figure 2.3: The figure illustrates the difference of signatures observed in τ ∼ 0 and τ = 1. In
Ref. [41], the latter curve is interpreted as the one composed of the backbone staircase (blue) and
spikes (yellow) on it.

responsible for creating spikes. They have observed that even though spikes disappear under such

operation the staircase structure survives, meaning that the staircase structure, the most important

signature in tunnelling splitting in non-integrable systems, could not be attributed to the states

associated with classical nonlinear resonances. The origin of the staircase structure was further

examined in details in Ref. [41].

In order to establish that classical nonlinear resonances or even chaos do not provide a source

creating the staircase behaviour in ∆E vs 1/ℏ plot, it would be necessary to see this issue also

from the integrable side, because there is no evidence confirming that the staircase cannot appear

in integrable systems. If it is true that the staircase structure cannot appear in integrable systems,

the latter perspective turns out to acquire another supports. On the other hand, if the staircase

structure appears even in the integrable limit, the concept of resonance-assisted and chaos-assisted

tunnelling should be reconsidered.
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2.2 Double-well potential and instanton

In this section, we will briefly review tunnelling splittings in the double-well potential system and

introduce the so-called instanton. Let us consider a 1-dimensional symmetric double-well potential

system,

H(p, q) =
p2

2
+ V (q), (2.6)

V (q) = (q2 − a2)2. (2.7)

The potential function V (q) has two minima at q = ±a. The portrait of the phase space is shown

in figure 2.4.

The time-independent Schrödinger equation is

Ĥ|ϕ±
n ⟩ = E±

n |ϕ±
n ⟩, (2.8)

where E±
n and ϕ±

n are the eigenvalues and the corresponding eigenfunctions, respectively. The ±

signs denote the parity of eigenfuncions with respect to the q direction.

The state |L⟩ := |ϕ−
0 ⟩ + |ϕ+

0 ⟩ localizes at the left-well, and the state |R⟩ := |ϕ−
0 ⟩ − |ϕ+

0 ⟩

localizes at the right-well. The time evolution of the state |L⟩ driven by the time evolution operator

Û(T ) = e−iĤT/ℏ is expressed as

Û(T )|L⟩ = e−iE+
0 T/ℏ|ϕ+

0 ⟩+ e−iE−
0 T/ℏ|ϕ−

0 ⟩

= e−iE+
0 T/ℏ(|ϕ+

0 ⟩+ e−i(E−
0 −E+

0 )T/ℏ|ϕ−
0 ⟩)

= e−iE+
0 T/ℏ(|ϕ+

0 ⟩+ e−i∆ET/ℏ|ϕ−
0 ⟩), (2.9)

where ∆E := E−
0 − E+

0 . Within the time interval T = πℏ/∆E, the wavepacket |L⟩ moves to

|R⟩. It is obvious that the state |L⟩ oscillates between two wells with the period T = 2πℏ/∆E.

This oscillation is called tunnelling oscillation and the associated energy difference ∆E is called

tunnelling splitting (For instance, see [17].).
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As is well known [14], the tunnelling splitting ∆E is semiclassically evaluated as

∆E ∼ Ae−Scl/ℏ, (2.10)

where Scl is the classical action integral:

Scl =

∫ a

−a

√
2(E − V (q))dq, (2.11)

and A is a prefactor. Integration is made along classical paths which connect the bottoms of the

wells. When rotating the time direction as t→ −iτ , which is called the Wick rotation, one obtains

a solution for classical equations of motion as

q(τ) = a tanh(a
√
2(τ − τ0)), (2.12)

where τ0 denotes a critical time at which the path goes over the potential barrier. This complex

path is called the instanton [18,21]. The action of the instanton gives us a semiclassical evaluation

of tunnelling splitting in the formula (2.10).

In general, complex paths run in 2-dimensional complex phase space, or 4-dimensional real

space (Re q,Re p, Im q, Im p). However the instanton derived above is confined onto the (Re q, Im p)

plane, so the intanton could be visualized by projecting onto (Re q,Re p, Im p) space, which is

shown in figure 2.4.

2.3 Triple-well potential and complex path

In this section, we review a semiclassical analysis of tunnelling splitting in the symmetric triple-

well system studied in [35]. The system studied in [35] is as follows,

H(p, q) =
p2

2
+ V (q), (2.13)

V (q) = (q2 − a2)2(q2 − b2). (2.14)
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Figure 2.4: (Left) The phase space of the double-well model (2.7) with a = 1. (Right) A projection
of instanton onto (Re q,Re p, Im p) space.

The potential portrait is depicted in figure 2.5. The potential has two symmetrically located wells

at q = ±a and a central well at q = 0. The classical phase space is shown at the left side of figure

2.7.

Figure 2.5: The triple-well potential.

The tunnelling splitting ∆En := E−
n − E+

n is defined as well as the double-well case, where

E−
n and E+

n are eigenvalues for the odd and even parity states with respect to the q direction. We

show in figure 2.6 a typical behaviour of tunnelling splittings as a function of 1/ℏ, and observe

that a sequence of spikes appears in the plot. The origin of the spikes has been closely argued and



CHAPTER 2. TUNNELLING SPLITTING AND SEMICLASSICAL ANALYSIS 15

it was attributed to the so-called resonant tunnelling effect [35, 36].

Figure 2.6: Tunnelling splittings ∆E obtained by direct diagonalization (black) and by using the
semiclassical formula (red).

If the height of the central well is smaller than that of both wells, tunnelling splittings in the

triple-well potential appear in the exited states, while the formula (2.10) is applicable only to

the tunnelling splitting between the ground and first exited state. In Ref. [35], a semiclassical

formula for tunnelling splittings of exited states has been derived. We briefly show the sketch of

their derivation in Appendix B and section 3.1. Within a rather heuristic argument, the authors of

Ref. [35] has picked up certain specific complex trajectories to calculate the tunnelling splitting

for the triple-well system. The resulting semiclassical formula taking into account such complex

trajectories turns out to take the form as

∆En ∼ ℏ
Tr
e−2Sc/ℏ

∑
wr,wm

(wr + 1)eiwr(Sr/ℏ−π)+iwm(Sm/ℏ−π), (2.15)

where Sr and Sm are the actions of the real periodic orbits at the energy E ∼ E±
n located in right
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and centre well, respectively:

Sr := 2

∫ q′

q′′

√
2(E − V (q))dq, (2.16)

Sm := 4

∫ q′′′

0

√
2(E − V (q))dq, (2.17)

and wr and wm represent the winding numbers. Tr denotes the period of the right well 2. Sc is the

actions of “instantons”:

Sc :=

∫ q′′

q′′′

√
2(E − V (q))dq. (2.18)

(2.19)

The complex path taken in Ref. [35] is shown in the right panel of figure 2.7. The path is a

combination of the real periodic orbits running in the both wells and the “instanton” bridging the

wells. The final semiclassical formula could be written in a more concise form as

∆En ∼ ℏ
Tr

1

| sin(((Tm/Tr)Sr − Sm)/(2ℏ)− π/2)|
e−2Sc/ℏ, (2.20)

(see equation (66) in [35]). As shown in figure 2.6, the semiclassical formula thus derived has

reproduced tunnelling splittings obtained by direct numerical diagonalization, not only the slope

of the curve but also a sequence of spikes. This analysis tells us that resonance tunnelling can

semiclassically be understood as the interference effect among complex classical trajectories. We

should note, however, that the semiclassical formula for tunnelling splittings ∆En, requires the

sum over all possible topologically distinct complex paths connecting two symmetrically located

wells (see Appendix B). In this sense, the argument developed in [35] was heuristic at most and

lacks evidence showing that the complex trajectories considered there are actually responsible for

the creation of spikes.

For the triple-well potential system, we can indeed show that there exist many or even infinitely

many topologically independent complex paths because it is possible to solve the classical equa-

2Considering the symmetry, we put Srigrt = Sleft =: Sr, Tright = Tleft =: Tr.
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Figure 2.7: (Left)The phase space of the triple-well model (2.14). (Right) A projection of complex
path onto the complex phase space.

tions of motion for the triple-well system analytically. Here we only present the final form of the

solution,

qsn(t) =

√
−(β − δ)(a2 + α) + (α− δ)(a2 + β)sn2(2

√
−2Mt, k)

(α− δ)sn2(2
√
−2Mt, k)− (β − δ)

. (2.21)

All the details including the derivation and the definition of the parameters are presented in Ap-

pendix A.1. The solution is expressed using the Jacobi sn function, so we can specify the divergent

points by solving the following equation,

sn2(2
√
−2Mt, k) =

β − δ

α− δ
. (2.22)

From this equation, we understand that the solution of the equations of motion has infinitely many

singularities, which implies that there exist infinitely many topologically independent complex

classical paths. For the moment, we do not discuss types of singularities, which will be an impor-

tant issue in the subsequent analysis.
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2.4 Normal form Hamiltonian system and complex path

Before discussing the problem addressed above, we will give another class of systems, and in-

troduce a semiclassical analysis made in [43]. The Hamiltonian we here consider takes the form

as

H(p, q) = H0(p, q) + V (p, q), (2.23)

with

H0(p, q) =
1

2
(cos2 p+ cos2 q) + a(cos2 p+ cos2 q)2, (2.24)

V (p, q) = |b|{(cos4 p+ cos4 q − 6 cos2 p cos2 q) cosϕ− 4(cos3 p cos q − cos3 q cos p) sinϕ},

(2.25)

where a, b, ϕ are real parameters. Here the term H0 can be rewritten as a form of
∑
an(Q

2 +P 2)n

by introducing new coordinates as Q = cos q, P = cos p. This form is known as the normal

form in the literatures [10, 44, 45]. The Hamiltonian H(p, q) has four local minima at (p, q) =

(±π/2,±π/2), and a set of equienergy contours surrounds each of them as shown in figure 2.8.

Equienergy contour patterns almost look like the same as the pattern typically observed in the

Poincaré surface of two-dimensional Hamiltonain systems, or the area-preserving map as shown

in figure 2.1. For this reason, the authors of Ref. [43] took this normal form Hamiltonian system to

examine the validity of the resonance-assisted tunnelling scenario. Below we review the discussion

made in Ref. [43], which invokes many questions and motivates further studies on the complex

trajectories in 1-dimensional systems.

The quantum Hamiltonian operator Ĥ is obtained by quantization of the classical Hamiltonian

(2.23) with a symmetrization rule for the product of non-commutative variables

f(p)g(q) → 1

2
[f(p̂)g(q̂) + q(q̂)f(p̂)] (2.26)
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Figure 2.8: The phase space of the Hamiltonian (2.23) with the parameters: a) a = −0.55, b =
0, ϕ = 0, b) a = −0.55, b = 0.05, ϕ = 0, c) a = −0.55, b = 0.05, ϕ = 3π/4, d) a = −0.55, b =
0.05, ϕ = π.



CHAPTER 2. TUNNELLING SPLITTING AND SEMICLASSICAL ANALYSIS 20

where f(p) and g(q) are arbitrary functions of the arguments [46, 47]. The periodicity of the

classical Hamiltonian (2.23) allows us to use the Floquet-Bloch theorem [48], so the corresponding

quantum system is also defined on the periodical phase space [−π, π]× [−π, π].

The system has two-fold parity with respect to p and q. To define the tunnelling splitting, the

authors of Ref. [43] preferred 4 quantum states as follows,

|+,+⟩ :=
1

2
(|RU⟩+ |LU⟩+ |LD⟩+ |RD⟩), (2.27)

|−,+⟩ :=
1

2
(|RU⟩ − |LU⟩ − |LD⟩+ |RD⟩), (2.28)

|+,−⟩ :=
i

2
(|RU⟩+ |LU⟩ − |LD⟩ − |RD⟩), (2.29)

|−,−⟩ :=
i

2
(|RU⟩ − |LU⟩+ |LD⟩ − |RD⟩), (2.30)

where |L/R,U/D⟩ are eigenstates of harmonic oscillators centered at (q, p) = (±π/2,±π/2):

L(R) denotes the left (right) column and U(D) the upper (lower) row of the wells, respectively,

as shown in figure 2.8. To focus on the tunnelling splitting with respect to the q direction, they

considered eigenstates of Ĥ that have a maximal overlap with the states |+,+⟩ and |−,+⟩. The

∆En as a function of 1/ℏ is shown in figure 2.9, which exhibits a spike structure as found in the

triple-well potential case.

They gave a semiclassical formula, based on a rather phenomenological argument, as

∆En ∼ 2ℏwout

π
|Aτ |2e−Sc̃/2ℏ, (2.31)

where

Aτ =
e−Sc/(2ℏ)

2 sin((Sin − Sout)/(2lℏ))
. (2.32)

Applying this formula, they took a complex path Γbypass given below:

Γbypass = Γin + C + Γout + C̃ + Γ′
out + C ′ + Γ′

in, (2.33)

which is, as displayed in figure 2.10, given as a combination of real periodic orbits, expressed using
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Figure 2.9: The tunnelling splittiing ∆En as a function of π/(2ℏ), reprinted from [43]. The index
n denotes the quantum number. The black dots show the numerical result obtained by direct
calculation. The blue curve is obtained by applying the semiclassical formula (2.31). The magenta
dots and curves represent the numerical result and the semiclassical evaluation in the case of b = 0,
respectively. The red dash line shows the calculation based on the RAT scenario [6].



CHAPTER 2. TUNNELLING SPLITTING AND SEMICLASSICAL ANALYSIS 22

the notation Γ, and complex orbits connecting the two wells, denoted by C. Associated actions are

given as

Sc̃ := Im

[
1

2

∮
C̃

pdq

]
, (2.34)

Sc := Im

[
1

2

∮
C

pdq

]
, (2.35)

Sin :=

∮
Γin

pdq, (2.36)

Sout :=

∮
Γout

pdq, (2.37)

and wout is the frequency of the real outer torus Γout (see figure 2.10). l is an integer related to the

number of hills around each well. In this case, l = 4 [43].

Figure 2.10: The projection of complex paths onto the complex phase space. There appears a
bypassing complex path made by a combination of complex paths C,C ′ and C̃ shown as the red
curves and real orbits Γin,Γout,Γ

′
in and Γ′

out shown as the green curves. The “instanton” path also
exists as shown in the blue curve.

As shown in figure 2.9, the formula taking into account the complex path Γbypass has well pre-

dicted tunnelling splittings between the states associated with symmetrically located wells. What

is remarkable in their finding is that not the direct instanton path, shown as a blue curve in figure
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2.10, but a bypassing path Γbypass is responsible for reproducing splitting curves and spikes. This is

clearly beyond the conventional view of quantum tunnelling, in which the instanton is considered

to be the most dominant contributor to tunnelling between wells.

The existence of such a bypassing path reminds us of the resonance-assisted tunnelling sce-

nario, where nonlinear resonances assist the tunnelling transport from the inside to the outside of

the well. We should however recall that nonlinear resonances appearing in the phase space of,

not in the 1-dimensional but only in multi-dimensional systems and the energy wells observed in

figure 2.8 in 1-dimensional systems have completely different origins, so apparent similarity in the

pattern of phase space might mislead us. For this reason, their result has, strictly speaking, nothing

to do with the resonance-assisted tunnelling, which can appear only in multi-dimensional systems.

Nevertheless, it would be a very important discovery that non-instanton complex path giving the

dominant contribution actually exists.

It should be remarked that even though they have actually predicted tunnelling splittings using

the complex paths heuristically found, we cannot eliminate the possibility that the agreement they

obtained was merely accidental. This is because, as is the case of the triple-well potential system,

there might exist infinitely many candidate complex paths in their system. We can indeed confirm

this by examining solutions of the following simpler Hamiltonian:

H(p, q) =
p2

2
+
q2

2
+ ϵ

(
p2

2
+
q2

2

)2

+ ηp2q2. (2.38)

The phase space of this model is very similar to a quarter part of the phase space of the system

(2.25) (see figure A.1). The exact solution of this model is obtained in Appendix. A.3 as

q(t) =

(
1

2

(
A1/2

ϵ+ η
sin θ(t)− 1

ϵ+ η
+

(
A

−η(ϵ+ η)

)1/2

cos θ(t)

))1/2

, (2.39)

where θ(t) is expressed using the Jacobi sn function. As is the triple-well case, we can easily see
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that the divergent points of classical trajectories are obtained by solving the equation

sn2(

√
4ϵA

ϵ+ η
Mt, k) =

zβ − zδ
zα − zδ

. (2.40)

Here each parameter is defined in Appendix A.3. The exact solution tells us that there exist in-

finitely many singularities periodically located in the time plane of q(t). It is possible to see the

relation to the original system (2.25) by performing the change of variable as q → cos q, which

keeps the singularity structure of the solution, meaning that the solution of the original system also

has infinitely many singularities, and infinitely many topologically independent complex paths.



Chapter 3

Semiclassical formula of tunnelling splitting

and action integral

3.1 Semiclassical formula for the tunnelling splitting

In this section, we introduce a semiclassical formula on which we will rely throughout the follow-

ing analysis. In Ref. [35], a semiclassical trace formula for tunnelling splittings has been derived

and it was shown to work well in a symmetric triple-well potential system. Below we briefly ex-

plain the formula to show how complex classical orbits come into play in determining tunnelling

splittings (see more details in Appendix B and Ref. [35]).

Let us consider a 1-dimensional classical HamiltonianH(p, q) having reflection symmetry with

respect to the canonical variables p and q:

H(p, q) = H(−p,−q). (3.1)

The energies E±
n and the associated eigenstates |ϕ±

n ⟩ of the corresponding quantum model are

given by

Ĥ|ϕ±
n ⟩ = E±

n |ϕ±
n ⟩, (3.2)

25
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where Ĥ = H(p̂, q̂) with p̂ and q̂ being the canonical operators associated with p and q, respec-

tively. The superscripts ± stand for the symmetric/antisymmetric states and tunnelling manifests

itself through the splittings ∆En = E−
n − E+

n .

In Ref. [35], a semiclassical formula for the energy splitting ∆En has been derived as

∆En ∼ ℏ
2T

∑
cl

(−1)µ+1eiScl/ℏ, (3.3)

where the sum is taken over all the classical paths with energy E ∼ E±
n such that q(T ) = −q(0)

and p(T ) = −p(0) for a given time interval T . Although the time interval T appears explicitly in

the formula, it has been shown in Ref. [35] that the right-hand side of (3.3) becomes independent

of T as long as ImT is taken to be large enough compared to the typical (real) period of the

classical system.

The quantities Scl and µ denote the classical action of the path Γ

Scl =

∫
Γ

p(q)dq ( =: SΓ), (3.4)

and the Maslov index [49], respectively. The function p(q) is defined by

H(p, q) = E, (3.5)

where E ≃ E±
n and we will always left implicit the dependence on E. Since there exist no real

classical paths connecting two classically disjointed regions, the path Γ runs in the complex plane.

Formula (3.3) comes from the saddle point approximation, therefore, in order to apply it, two

steps can be identified. The first one is to list all the possible complex paths that could contribute to

the sum in the formula and the second step is to select in this list of candidates those that actually

contribute to ∆En. As far as the first step is concerned, in general, even in the simplest models

such as double-well potential systems, the classical solutions with appropriate boundary conditions

occur in families of infinite numbers and it is a non-trivial task to enumerate all these stationary

paths. Even after enumerating all the possible candidates, it is known that not all of them do not

necessarily remain as final contributions. This is because the Stokes phenomenon occurs in the
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complex plane, and some saddles have to be excluded from the final contribution. The second step

we should consider is therefore to find a proper way of handling the Stokes phenomenon.

In Ref. [35] and as actually shown in the previous sections, the formula (3.3) was satisfactorily

tested in some standard models with a procedure for achieving the first step that does not guarantee

that all the possible complex stationary path were considered. To justify the adopted method and

to have a better control on the approximations, we need to establish a systematic way, based on

more rigorous grounds, to achieve step one. Our subsequent argument will be focused mainly on

this step. Concerning the second step, although the Stokes phenomenon could be now captured

as a well recognised object [50–52] and even within the scope of rigorous arguments thanks to

recent progress of the so-called exact WKB analysis, or resurgent theory [53], we will not take

into account the Stokes phenomenon based on such recent developments, rather treat the Stokes

phenomenon in a heuristic way, as explained below.

As is easily seen, classical actions associated with complex paths have imaginary parts, and the

complex path(s) with the most dominant weight are supposed to have minimal imaginary action.

Note that such an argument of course holds only after handling the Stokes phenomenon in an

appropriate manner. Our task here is therefore to enumerate all the possible candidate complex

paths and then to specify the complex path with the smallest imaginary action out of the candidates.

The strategy for the first step is to examine the fundamental group of the Riemann surface R

of the function p(q) since the fundamental group provides the topological independent paths on a

given surface. In addition to such information we also need to specify singularities of the function

p(q). This is because, by virtue of Cauchy theorem, the value of the classical action (3.4) is affected

when a continuous deformation of Γ crosses singularities.

3.2 Action integral and topology of complex trajectory

Each action integral is evaluated along the corresponding complex classical path. We may deform

the classical path continuously unless the classical path crosses over singularities. However, as

shown in the previous chapter, infinitely many singularities on the time plane exist in the systems

examined here, and correspondingly there appear infinitely many topologically independent paths.
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It would be impossible to handle infinitely many paths in numerical computations, so we need a

certain analytical argument.

Figure 3.1: Deforming of the path Γ to the path Γ′ and the corresponding action integral SΓ, SΓ′ .
The black dot shows a singularity point. C is a closed loop encircling the singularity.

Our strategy to enumerate topologically distinct paths is follows. Suppose a complex path

denoted by Γ connecting two end points (see figure 3.1), and the associated action integral SΓ. If a

given path Γ is deformed continuously to pass through a singularity, due to the Cauchy’s theorem,

the action SΓ′ of the deformed path is given by the sum of the original action SΓ plus the action SC

around the singularity (see figure 3.1). The action SC is evaluated along a small loop encircling

the singularity. Hence, our task to enumerate topologically independent paths could be reduced to

specifying closed loops encircling each singularity. In the systems considered here, singularities

are either poles or branch points at most. If branch points appear, we have to consider multiple

Riemann sheets and the topology of the path is characterised by the Riemann sheet structure.

As a simple example, let us consider a function f(z) =
√
z. The function is double-valued

except for a branch point z = 0. After drawing a branch cut from z = 0 to z = ∞, we can

consider the the Riemann sheet associated with the function f(z) (see figure 3.2). Each sheet can

be projected onto a Riemann sphere, and then the Riemann spheres are deformed after opening the

branch cut to form a sphere as shown in figure 3.3. The resulting surface is called the Riemann
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Figure 3.2: Complex z-plane of a function
√
z. Dashed line is a branch cut.

surface. We further regard the branch points as small holes, and deform it to have a cylinder

space (see also shown in figure 3.4). We could then recognise that there exists a single loop on the

Riemann surface for the function f(z) =
√
z. It is obvious that counting independent loops around

essential singularities is impossible, so hereafter we restrict our Hamiltonian to those expressed

as polynomial functions of p and q. This condition makes it possible to enumerate all possible

independent loops.

3.3 Fundamental group of Riemann surfaces of algebraic func-

tions

In this section, we show how the fundamental group of the Riemann surface R of the function

p(q) helps to construct the path Γ along which the classical action (3.4) is computed. In what

follows, we assume that our Hamiltonian H(p, q) is expressed as a polynomial function of p and

q and the polynomial is irreducible. The former condition allows to obtain the complete list of

the complex paths contributing to the semiclassical sum (3.3) and the latter one ensures that the

Riemann surface of the function p(q) is connected.

H being a polynomial, the function p(q) defined by (3.5) is an algebraic function and therefore
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Figure 3.3: Deformation of Riemann spheres to a sphere.

Figure 3.4: Deforming the Riemann surface of a function
√
z to a cylinder space. The red curve is

the only topologically independent loop on the Riemann surface.
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has at most finitely many singularities 1 [55] that are points where p(q) has a pole or a branch point.

Since our Riemann surface R is constructed from an algebraic function and assumed to be irre-

ducible, it is homeomorphic to a surface of a finite genus g, or g-fold torus for short, accompanied

with finite number of holes associated with singularities of the function under consideration. The

genus of the surface is given by the formula g = w/2 − d + 1, where w is the ramification index

and d is the highest degree of p in the polynomial in question. Especially, w is equal to the number

of branch points if all branch points are square-root type, i.e., the function is double-valued near

each branch point. For example, in multi-well potential systems discussed in sections 4.1 and 4.2,

and the normal form Hamiltonian system in section 4.4 as well, p(q) is shown to be double-valued

functions near each branch point.

The fundamental group on the Riemann surface is introduced as the group whose elements are

identified through homotopy equivalence of curves on the surface. For the g-fold torus, there exist

2g independent homotopically equivalent loops, and following the convention we call the half of

them αi-loop and the rest βi-loop (1 ≤ i ≤ g). The loops αi and βi are often called homology

basis in the literature [55].

When computing the action integral (3.4) one must include the contribution of singularities

which could provide non-zero residues, when deforming Γ. This means that the associated funda-

mental group should be replaced by the one incorporating singularities of the function p(q). The

Seifert-Van Kampen theorem tells us that the fundamental group for a surface with holes is ob-

tained as the product of the fundamental group for the original g-fold torus and that of a sphere

with m holes, where m is the number of holes [56], which appear as either poles or branch points

in the present situation. We call the loop encircling a hole the γi loop (1 ≤ i ≤ m), again following

the convention. The loop γi here is taken to be a small closed loop around each hole (see figure

3.5).

We note also from the Seifert-Van Kampen theorem that the elements αi, βi and γi of the

1The number of singularities of an algebraic function is finite. The reason is that, if the number of singularities
is infinite, let us consider a projection of singularities onto the Riemann sphere (is compact space) and application of
the Bolzano-Weierstrass theorem, there exists at least one accumulation point of singularities. However, the algebraic
function cannot have accumulation points of singularities [54].
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β
γ

(b)(a)

α

β

Figure 3.5: (a) An example of the Riemann surface. Here the case for the 2-fold torus with two
holes is presented. Homology bases of the fundamental group are shown as α1, α2, β1, β2, γ1 and
γ2. (b) A graphical proof for the relation (3.6). A simple torus with a hole is here assumed.

fundamental group satisfy a relation,

∏
i

αiβiα
−1
i β−1

i =
∏
i

γi (3.6)

implying that all the loops αi, βi and γi are not independent with each other. We hereafter assume

that one of γi-loops, say γm, is expressed in terms of the other loops. We just graphically show in

figure 3.5 why the relation (3.6) follows in the simplest situation where a simple torus with g = 1

is connected with a sphere with a hole.

Using the elements of the fundamental group, we can now enumerate all the topologically

distinct paths obtained from a reference path Γ0. More concretely, for an arbitrarily chosen refer-

ence path Γ0 with the fixed initial and final ends in the q-plane, topologically independent paths

associated with the reference path Γ0 are expressed as

Γ = Γ0 +

g∑
i=1

nαi
αi +

g∑
i=1

nβi
βi +

m−1∑
i=1

nγiγi, (3.7)

where nαi
, nβi

and nγi are integers and will be called winding numbers hereafter. In what follows

we apply the scheme formulated in this way to a couple of concrete examples, some of them are

the systems already well studied.
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Applications

4.1 Double-well potential case

As a simple example, we first discuss a double-well potential system:

H(p, q) =
p2

2
+ V (q), (4.1)

V (q) = E + (q − q1)(q − q2)(q − q3)(q − q4). (4.2)

Here qi (1 ≤ i ≤ 4) are real parameters satisfying q1 < q2 < q3 < q4 and E is the total energy.

We further assume that the potential function is symmetric, that is q1 = −q4, q2 = −q3 (see figure

4.1) in accordance with (3.1) even though this symmetry condition is not relevant for topological

considerations. From (3.5) we find

Figure 4.1: The double-well potential V (q).

33
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p(q) = ±
√

−2(q − q1)(q − q2)(q − q3)(q − q4). (4.3)

The function p(q) has four branch points at q = qi (1 ≤ i ≤ 4), which are all located on the real axis

and one can choose the intervals [q1, q2] and [q3, q4] as two cuts defining a Riemann surface with

two leaves. As shown in figure 4.2, we project each leaf onto the Riemann sphere and continuously

deform two spheres by opening the branch cuts. We finally get a simple torus with g = 1 with

holes associated with the singularities.

The homology basis of the fundamental group in this case is composed of the loops α, β, which

are homotopically independent loops on the torus, together with the loops encircling singularities.

In addition to branch points at q = qi (1 ≤ i ≤ 4), there exist poles at q = ±∞, and we denote

the loops associated with singularities by γi (1 ≤ i ≤ 4) and γ(±∞), respectively (see figure

4.3). Relations (3.6) allow to express, γ4, say, as a product of the other loops considered to be

independent. As shown in the previous section, with fixed initial and final end points, the variety

of distinct values of the action integral is given based on the formula (3.7).

Figure 4.2: Deformation of Riemann spheres to a torus is shown in the double-well potential case.
The black dots and the dashed lines represent branch points and branch cuts, respectively. ± signs
show the branches of p(q).
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Figure 4.3: Homology basis of the fundamental group for the torus T \ {q1, q2, q3, q4,+∞,−∞}.

Recall the semiclassical formula (3.3) for the tunnelling splitting requires the complex paths

connecting the points symmetrically located in the q-plane then we may take Γ0 to connect q2 and

q3 = −q2. Without loss of generality, we can obtain arbitrary symmetric paths from the path con-

necting the branch points q2 and q3 by shifting both initial and final points simultaneously keeping

the symmetry condition. All the topologically distinct paths, taking into account the contribution

from divergent singularities, are then written as

Γ = Γ0 + nαα + nββ +
3∑

i=1

nγiγi + n(+∞)γ(+∞) + n(−∞)γ(−∞), (4.4)

where nα, nβ, nγi and n(±∞) are winding numbers of each loop.

As is discussed below, it is important to specify the α and β loops explicitly when one actually

evaluates the action integrals, while we can freely move and deform the α and β loops and the

locations are not relevant within the argument of the fundamental group (see figure 3.5).

For simplicity, we take two independent loops α and β on the torus in such a way that each

branch in the α loop runs along the real q-axis with encircling the two branch points q1 and q2, and

in the same way the β loop encircles the two branch points q2 and q3 (see figure 4.4). By taking
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Figure 4.4: α, β loops taken as integration contours on the q plane.

the loops α and β in this manner, the action integral for the α loop turns out to be real valued and

that for the β loop purely imaginary valued. As shown in Appendix C, the action integrals for γi

(i = 1, 2, 3) vanish. We then reach the expression for the total action integral after summing over

all the contributions as

SΓ = SΓ0 + nαSα + nβSβ + n(+∞)S(+∞) + n(−∞)S(−∞), (4.5)

where

SΓ0 :=

∫ q3

q2

pdq,

Sα :=

∮
α

pdq = 2

∫ q2

q1

pdq,

Sβ :=

∮
β

pdq = 2

∫ q3

q2

pdq,

S(±∞) :=

∮
γ(±∞)

pdq. (4.6)
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Now we show that Sα and S(±∞) are not independent and actually related with each other. To

see this, we rewrite as SL = Sα for the left-side well, and introduce the action integral for the

right-side well as

SR := 2

∫ q4

q3

pdq. (4.7)

As illustrated in figure 4.5, the integration contour specifying the action integral SL is continuously

deformed and split into the ones associated with the action integrals S(+∞) and SR. This leads to

the relation

SL = SR − S(+∞), (4.8)

where the minus sign in front of S(+∞) comes from the phase of p (see Appendix D). From the

symmetry of the potential function, it is obvious that SL = SR holds. This automatically gives

S(+∞) = 0, which can also be confirmed by the direct calculation of the residue at q = +∞ (also

see Appendix D). From this observation, the candidates of action integrals finally take a simple

form as

SΓ = SΓ0 + nαSα + nβSβ. (4.9)

Next we turn our attention to the most dominant complex path in the semiclassical formula

(3.3). Since classical action integrals under consideration are complex valued, the most dominant

contribution is supposed to come from the complex classical orbit(s) with minimal imaginary ac-

tion ImS. In the present situation, the α loop contribution is real valued, so the imaginary part of

action integral is written as

ImSΓ = ImSΓ0 + nβImSβ. (4.10)

This may take arbitrarily large negative values as nβ is allowed to be any integer, positive or

negative, meaning that imaginary action can become arbitrarily small. However, it is obvious that
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Figure 4.5: Deformation of the α loop in the left well. It splits into a combination of the α loop in
the right well and a loop around +∞.

the orbits with negative imaginary action give rise to exponentially large contributions, which are

not physically accepted, so should be dropped from the final contributions.

Excluding unphysical contributions out of necessary ones could be done by handling the Stokes

phenomenon properly. This would therefore be a matter of issues which should be closely dis-

cussed in order to make our theory self-consistent. However, as mentioned in section 3.1, we

here treat the Stokes phenomenon only in a heuristic manner. The principle we adopt is based on

the behaviour of imaginary action as time proceeds. From the Hamiltonian equations of motion,

dq = pdt follows, which results in
∫
pdq =

∫
p2dt. We then have 1

ImS =

∫
−Im p2Im dt. (4.11)

and in order to get ImS > 0 we will choose a parametrisation such that Im dt < 0. In this choice,

ImS becomes negatively large with increase in Im dt in a monotonic way.

If one applies this rule, which will also be used in the examples discussed below, Γ0 is given as

1p has only imaginary part when one integrates it along to the β loop.
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a trajectory passing through the potential barrier only once, that is a half cycle of the β loop, and

the smallest imaginary action is just

ImSΓ =
1

2
Sβ. (4.12)

This is nothing but the imaginary action for the so-called instanton path. From the expression (4.9),

the corresponding real part turns out to be

ReSΓ = nαSα. (4.13)

Since branch points are turning points and α, β loops encircle the two branch points, we find

that the Maslov index is equal to µ = 2nα + 1. Incorporating the semiclassical quantization

condition Sα = (1/2 +N)2πℏ, the formula (3.3) can now be explicitly written as

ℏ
2T

e−Sβ/2ℏ
∑
nα

(−1)2nα+2einαSα/ℏ =
ℏ
2T

e−Sβ/2ℏ
∑
nα

(−1)2nα+2einα(1/2+N)2πℏ/ℏ

=
ℏ
2T

e−Sβ/2ℏ
∑
nα

(−1)2nα+2einαπeinαN2π

=
ℏ
2T

e−Sβ/2ℏ
∑
nα

(−1)2nα+2(−1)nα . (4.14)

Here the sum over the winding number nα is cancelled except for the case nα = 0. From these

arguments we finally obtain the formula

∆E ∼ ℏ
2T

e−Sβ/2ℏ. (4.15)

This is nothing but the well known formula in the instanton theory (see equation (2.10)), and also

coincides with the result rederived in [35].



CHAPTER 4. APPLICATIONS 40

4.2 Triple-well potential case

As a next example, we consider a triple-well potential system:

H(p, q) =
p2

2
+ V (q), (4.16)

V (q) = E + (q − q1)(q − q2)(q − q3)(q − q4)(q − q5)(q − q6),

where the parameters qi (1 ≤ i ≤ 6) are all real and satisfy the conditions q1 < q2 < · · · < q6. We

again assume the conditions q1 = −q6, q2 = −q5, q3 = −q4 in order to develop the semiclassical

analysis for the tunnelling splitting (see figure 4.6).

Figure 4.6: The triple-well potential V (q).

In the same way as the double-well case, we obtain p(q) as

p(q) =
√

−2(q − q1)(q − q2)(q − q3)(q − q4)(q − q5)(q − q6).

The function p(q) has now six branch points on the real axis. The associated Riemann surface of

p(q) is homeomorphic to a 2-fold torus with small holes associated with branch points and poles

(see figure 4.7). The homology basis of the fundamental group is composed of the loops αi and βi

(i = 1, 2) on the 2-fold torus and γi (1 ≤ i ≤ 6) and γ(±∞), each of which is a small loop encircling

the corresponding singularity. We illustrate in figure 4.8 the elements of the fundamental group in

this case.
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Figure 4.7: Deformation of Riemann spheres to a torus is shown in the triple-well potential case.
The black dots and the dashed lines represent branch points and branch cuts, respectively. ± signs
show the branches of p(q).

Figure 4.8: Homology basis for the surface T #T \ {q1, q2, q3, q4, q5, q6,+∞,−∞}.
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To discuss the tunnelling splitting between the states localized at the left- and right-wells, let

Γ0 be a path connecting the branch points q2 and q5 = −q2. The integration contour is given by a

combination of these loops as follows, keeping in mind that γ6 is a product of the other loops,

Γ = Γ0 +
2∑

i=1

nαi
αi +

2∑
i=1

nβi
βi

+
5∑

i=1

nγiγi + n(+∞)γ(+∞) + n(−∞)γ(−∞), (4.17)

where nα, nβ, nγi and n(±∞) are winding numbers of each loop. Again using the result shown in

Appendix C, the action integrals for γi (i = 1, 2, · · · , 5) all vanish, and we reach the expression

for the total action integral contributions,

SΓ = SΓ0 +
2∑

i=1

nαi
Sαi

+
2∑

i=1

nβi
Sβi

+ n(+∞)S(+∞) + n(−∞)S(−∞), (4.18)

where

SΓ0 :=

∫ q5

q2

pdq,

Sα1 :=

∮
α1

pdq = 2

∫ q2

q1

pdq,

Sα2 :=

∮
α2

pdq = 2

∫ q6

q5

pdq,

Sβ1 :=

∮
β1

pdq = 2

∫ q3

q2

pdq,

Sβ2 :=

∮
β2

pdq = 2

∫ q5

q4

pdq,

S(±∞) :=

∮
γ(±∞)

pdq. (4.19)

As done in the double-well potential case, we next show that these action integrals are not

independent. As illustrated in figure 4.9, the integration contours specifying Sα1 and Sα2 are

continuously deformed and split into the ones associated with the action integrals S(+∞) and SC .
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Here SC stands for the action integral for the central well,

SC := 2

∫ q4

q3

pdq. (4.20)

Rewriting the notation as SL = Sα1 and SR = Sα2 to make clear that Sα1 and Sα2 are action

integrals for the left- and right-side wells, we obtain the relation

SC = SL + SR + S(+∞). (4.21)

This relation can also be confirmed in the direct calculation presented in Appendix D. A similar

relation holds for S(−∞) except that the sign in front of S(−∞) is minus.

Figure 4.9: Deformation of the α1 and α2 loops in the left- and right-wells. They split into a
combination of the loop for the central well and a loop encircling +∞.

The symmetry of the potential function leads to the relations SR = SL, and Sβ1 = Sβ2 . As a

result, all the possible classical action integrals are simply expressed as

SΓ = SΓ0 + nLSL + nCSC + (nβ1 + nβ2)Sβ1 . (4.22)

Note that the winding numbers are introduced as nL := nα1+nα2−2nC and nC := n(+∞)−n(−∞).

The principle to incorporate the Stokes phenomenon is the same as before. The imaginary part
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of complex paths is written as

ImSΓ = ImSΓ0 + (nβ1 + nβ2)ImSβ1 , (4.23)

and we require that the imaginary component of time t is decreasing. Under this condition, the

complex path with the minimal imaginary action is given as the one with nβ1 = nβ2 = 0. The

corresponding orbit starts from the left-side well and crosses over two potential barriers and reaches

the right-side well. The resulting imaginary action is evaluated twice as much as the instanton

action in each barrier:

ImSΓ = ImSβ1 . (4.24)

Concerning the real part of the action integral, the path Γ has to go half round the central well,

so the real part of the action is given as

ReSΓ = nLSL + (nC +
1

2
)SC , (4.25)

and the Maslov index is also evaluated similarly to give µ = 2nL + 2nC + 3. We finally get the

semiclassical expression for the tunnelling splitting:

∆En ∼ ℏ
2T

e−Sβ1
/ℏ
∑
nL,nC

(−1)µ+1ei(nLSL+(nC+ 1
2
)SC)/ℏ. (4.26)

This almost coincides with the formula derived in [35] (see also equation (2.15)), but the way

of enumerating the paths differs from the one adopted there, so the form of the sum is slightly

different. As also discussed in [35], the interference caused by the sum in the right-hand side gives

rise to resonances, which generate a series of spikes in the ∆E vs 1/ℏ-plot. Such a phenomenon

could be understood as the resonant tunnelling or the Fabry-Pérot effect in optics [36, 57].
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4.3 Simultaneous quantization

As given in (4.8) and (4.21) the action integrals for the α loops in the fundamental group are related

through the action integral associated with the loop encircling infinity. These relations will invoke

simultaneous quantization of distinct wells. Simultaneous quantization in distinct wells has been

discussed in Ref. [58], and the result obtained above is essentially the same as the one derived there

in the double-well potential case.

We first explain how simultaneous quantization is achieved in the double-well case. Suppose

the action integral for the left-side well is quantized as SL = (1/2 +mL)2πℏ. From the relation

(4.8), the action for the right well is also quantized as SR = (1/2 + mR)2πℏ if and only if the

action integral around infinity satisfies the condition S(∞) = 2πℏm(∞), where mR,mL and m(∞)

are integers.

Concerning the triple-well system, the relation (4.21) among action integrals is not enough

to give simultaneously quantization of SL and SR even if S(∞) = 2πℏm(∞) with integers m(∞) is

satisfied. However, if the potential is symmetric as assumed in section 4.2, SL and SR are quantized

simultaneously since SL = SR follows in such a case.

Note that the relations (4.8) and (4.21) hold among the α loops in the fundamental group.

It would be natural to explore whether or not the relation involving β loops exist, which might

provide further constraints for action integrals. Integrals of algebraic functions along α or β loops

are called periods of Abelian integrals [55]. In a general argument of Abelian integrals, the period

of Abelian integrals of the first kind has a relation as(∫
β1

ω, · · ·,
∫
βg

ω

)
=

(∫
α1

ω, · · ·,
∫
αg

ω

)
T, (4.27)

where T is called the period matrix and ω is the Abelian differential of the first kind, respectively

[59]. However, since the function p(q) has poles in the Riemann surface, the relation among α or

β loops might not take a linear form as given in (4.27). If the relation is linear, it would not provide

an additional relation generating extra constraints concerning the quantization condition.
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4.4 Normal form Hamiltonian system

In this section, we examine the case where the Hamiltonian is built from more general normal

forms and whose tunnelling splittings were semiclassically studied in Ref. [43] in order to investi-

gate the validity of the so-called RAT scenario [6, 7]. As shown below, equi-energy contours look

like typical patterns observed in the Poincaré section of phase space in two-dimensional nearly-

integrable systems. In the following we consider a Hamiltonian of the form [10]

H(p, q) =
n∑

k=1

ak(p
2 + q2)k +

∑
l,m

bl,mq
lpm, (4.28)

where ak and bl,m are constants. Note that the b’s are not all independent and depend only on the

2 real parameters. The argument based on the fundamental group for algebraic functions holds, in

particular, the formula (3.7) for the path Γ.

As shown in an example below, if the coefficient of the highest order of p in the Hamiltonian

does not depend on the variable q, the action integral along γi loop turns out to be 0 (see Appendix

C).

More specifically we will work with

H(p, q) =
1

2
(p2 + x2)− 1

2
(p2 + x2)2 − 2x2p2, (4.29)

where x := 1 − q2. The symmetry condition (3.1) is maintained. As seen in the phase space

portrait drawn in figure 4.10, the system has two symmetric wells located at the positions q = ±1

respectively, and nonlinear resonance like equi-energy contours appear around each well.

In order to perform semiclassical analysis for the tunnelling splitting, as was done in the previ-

ous examples, we first examine the Riemann surface and the associated fundamental group. From

the Hamiltoninan (4.29), we easily find

p(q) =

√
±
√
−8E + 32x4 − 8x2 + 1

−2
− 3x2 +

1

2
. (4.30)
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Figure 4.10: Equi-energy contours for the Hamiltonian (4.29).

The branch points are obtained by solving simultaneous algebraic equations

±
√
−8E + 32x4 − 8x2 + 1

−2
− 3x2 +

1

2
= 0,

−8E + 32x4 − 8x2 + 1 = 0,

which provide 24 branch points in total. Each branch point is locally square-root type, thereby the

corresponding Riemann surface R has four leaves. Using the formula evaluating the genus, we

find that the Riemann surface R is homeomorphic to 9-fold torus with 28 small holes associated

with 4 poles and 24 branch points. The Riemann surface is illustrated in figure 4.11. There are

9 α- and β-loops together with 24 γ-loops associated with the branch points and 4 γ-loops with

poles, each of which is attached in the corresponding leaf. From these observations, we have 45

independent action integrals in the semiclassical formula. However, as shown in Appendix C, the

action integrals for γ-loops for branch points are all zero, and the residues at the poles vanish. This

fact simplifies the expression of action integrals as

SΓ = SΓ0 +
9∑

i=1

nαi
Sαi

+
9∑

i=1

nβi
Sβi

. (4.31)

The next step is to single out the most dominant path out of all the candidates given above.

Since dq = pdt does not hold any more, we cannot a priori compare the different ImS even with
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Figure 4.11: The Riemann surface of p(q) for the Hamiltonian (4.29). The Riemann surface forms
a 9-fold torus. The black dots and dashed curves are branch points and branch cuts, respectively.

an increasing Im dt < 0 and the usual heuristic selection argument may fail, as will be shown

below.

4.5 Tunnelling splitting for the normal form Hamiltonian sys-

tem

In the following, we discuss the tunnelling splitting ∆En for the normal form Hamiltonian (4.29)

based on the semiclassical analysis. Note however that the semiclassical analysis performed here

will not fully be based on the semiclassical formula (3.3), and could be done only with a heuristic

recipe. This is because, as shown below, that non-trivial situations actually arise from the handling

of the Stokes phenomenon, so the selection of the most dominant complex path would be highly

non-trivial. We focus on the tunnelling splitting ∆En = E−
n − E+

n for E+
n ≃ E−

n ≃ E below the

barrier. Figure 4.12 plots ∆En as a function of 1/ℏ for E = 6.19× 10−3.

In classical phase space, there appear congruent energy contour pairs in both sides of equi-

energy contours, reflecting the symmetry with respect to the q-direction. For the energy satisfying

E ∼ E±
n , there appear two closed energy contours in each side, which are shown in magenta
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Figure 4.12: The tunnelling splitting ∆En = E−
n −E+

n as a function of 1/(2πℏ). HereE+
n ≃ E−

n ≃
E = 6.19× 10−3. The black curve shows the numerical result obtained by direct calculation. The
blue and red ones are obtained by applying the semiclassical formula (4.37), and the corresponding
time paths are respectively shown in figure 4.15.

curves in figure 4.13. Obviously, due to the symmetry, there are only two characteristic real periods

Tout and Tin and two actions Sout and Sin associated with the outer and inner orbits respectively.

The latter are connected via complex manifolds, which are shown in blue curves in figure 4.13,

and outer periodic orbits in both sides are also connected via complex manifolds, drawn in green

curves. Complex manifolds are obtained by integrating Hamiltonian equations of motion in the

purely imaginary direction starting from each point of periodic orbits.

Following the argument developed in Ref. [35], we consider the time path in the complex plane

for the orbit contributing to the semiclassical formula (3.3). The total elapsed time T is written as

T ∼ R(T ) + iTin−out + iTout−out + iTin−out + L(T ), (4.32)

where iTin−out is the time interval during which the complex orbit runs from the inner energy to the

outer energy curve within the same well, shown in blue curves in figure 4.13. Similarly, iTout−out is

the purely imaginary interval between the outer energy curve in the left side to another outer curve

in the right side, shown in green curves in figure 4.13. L(T ) and R(T ) are sums of time intervals
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Figure 4.13: (a) Equi-energy contours for the Hamiltonian (4.29). The magenta curves show
energy contours satisfying the condition E ∼ E±

n where E = 6.19 × 10−3. The blue curves
are projections onto the real plane of complex manifolds connecting inside and outside energy
contours. The green one shows projection of complex manifold connecting left and right outer
energy contours. (b) The projection of each manifold onto (Re q,Re p, Im p) space.



CHAPTER 4. APPLICATIONS 51

spent by the orbit moving in the inner and outer real energy curves, i.e.,

L(T ) = ninTin + noutTout, (4.33)

R(T ) = n′
inTin + n′

outTout, (4.34)

where the winding numbers nin, nout, n
′
in and n′

out are taken to be positive integers. A comment

concerning L(T ) and R(T ) is in order. In Ref. [35], a fractional time interval τ , or a residual time,

was introduced for the time interval along the real direction as ReT = L(T ) +R(T )− τ in order

to adjust the time interval in such a way that initial and final points are located at desired positions.

However this residual time τ does not play any roles after taking the limit ReT → ∞ [35]. The

corresponding action integral is then written as

S ∼ ninSin + iSin−out/2 + noutSout

+ iSout−out/2

+ n′
inSin + iSin−out/2 + n′

outSout, (4.35)

Here we focus only on the trajectories running on the complex manifolds connecting the real

energy curves only once, as illustrated in figure 4.14. Hence, under the restrictions given in (4.33)

Figure 4.14: The projection of complex paths onto (Re q,Re p, Im p) space in the case (a) where
the corresponding time path is taken as the red line in figure 4.15 and (b) where the blue path is
taken, respectively. The energy for red and blue coloured curves is given as E = 6.19× 10−3.
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and (4.34), the sum of contributions of such trajectories takes the form as

∑
nin

∑
n′
in

(−1)µ+14(nin + 1)4(n′
in + 1)ei(ninSin+iSin−out/2+noutSout)/ℏ

×e(−Sout−out/2)/ℏei(n
′
inSin+iSin−out/2+n′

outSout)/ℏ. (4.36)

Here the Maslov index is evaluated as µ = nin + nout + n′
in + n′

out + 7. We may take the sums

for nin and n′
in separably, and each sum is the same as the one in the triple-well case in Ref. [35].

These lead us to the semiclassical expression for the tunnelling splitting

∆En ∼ 2ℏ
Tin

(
e−Sin−out/(2ℏ)

sin(((Tout/Tin)Sin − Sout)/(2ℏ))

)2

e−Sout−out/2ℏ. (4.37)

Using this formula, we now demonstrate that a proper treatment of the Stokes phenomenon is

crucial to discuss the tunnelling splitting of the normal form Hamiltonian within the semiclassical

framework. In figure 4.12, we compare the splitting calculated using direct diagonalization with

the ones obtained using the semiclassical formula (4.37). In the semiclassical calculation, we show

the splittings evaluated using the complex path, which are drawn as red and blue zig-zag lines in

the complex time plane (see figure 4.15). Note that both paths connect the left- and right wells and

satisfy the boundary conditions necessary for the semiclassical formula.

As noticed from figure 4.15, the time path shown in blue satisfies the condition that ImT

monotonically decreases whereas the path in red breaks the monotonicity. According to the cri-

terion adopted in sections 4.1 and 4.2, the red-coloured path should be dropped from the final

contribution because the path contains an interval in which ImT increases and expected to provide

an exponentially exploding contribution which should be excluded from the final sum. However,

as seen in figure 4.12, the curve based on the red-path contribution gives a larger slope as compared

to the blue one, and shows better fitting to the exact plot. This result provides evidence implying

that a naive criterion to treat the Stokes phenomenon does not work in the case studied here. The

result also strongly suggests that exponentially decreasing solutions do not necessarily remain as

contributions. This is counterintuitive in the conventional semiclassical argument as well.
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Figure 4.15: Complex time paths which are taken to test the semiclassical formula (see text). The
imaginary time monotonically decreases in the blue path case while monotonicity condition is not
satisfied in the red path case.



Chapter 5

Summary and discussion

In this thesis, we have discussed tunnelling splittings based on semiclassical analysis, and inves-

tigated the topology of complex paths in 1-dimensional systems to enumerate possible complex

paths which contribute to the semiclassical sum formula for tunnelling splittings. One of our main

claims is, as compared conventional complex trajectory based approaches to tunnelling splittings,

that it would not be a reasonable strategy to explore the complex paths as a function of time t,

instead one should examine the complex path on the configuration space because infinitely many

singularities and as a result infinitely many topologically distinct paths inevitably appear in the

complex time plane even in simple systems. Here Hamiltonian functions were assumed to be writ-

ten as polynomials of the variables p and q, thereby we could make use of knowledge on algebraic

functions, especially the fundamental group for the Riemann surface. Since the action integral is

the most important ingredient in the semiclassical formula, we examined the Riemann surface of

the function p(q) closely and showed that it has a finite number of leaves and homeomorphic to

a multi-handled compact surface. The number of loops of the homology basis for the associated

fundamental group turns out to be finite, reflecting the fact that the function p(q) is algebraic.

To enumerate independent action integrals, it would be natural to consider independent ele-

ments in the fundamental group of the function p(q). However this is not enough for our semiclas-

sical analysis because the action integral is defined by the integration of p(q) along an integration

contour, so one has to take into account not only branch points generating the multivaluedness of

the function p(q), but also other singularities of p(q) with non-zero residues. Such singularities

54
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indeed appear in the Riemann surface as divergent points of p(q).

As model systems, we here studied the double- and triple-well potential systems, together with

the normal form Hamiltonians as well. For the former two cases, we have obtained the complete list

of the possible complex paths based on the idea employing the fundamental group. As a bi-product

out of such a systematic treatment, we derived action relations involving the residue contribution

from divergent points of p(q). Note that the relation for the double-well case has already been

obtained in [58], but its origin could more simply be understood through the fundamental group

argument. In the case of the double-well potential system for instance, we usually consider the

quantization condition for each well independently since the equi-energy surfaces in left- and right-

side wells are classically disjoined. However our analysis exploring the topology of the whole

complex equi-energy surfaces has unveiled that quantization conditions in left- and right-wells are

linked through the action integral associated with infinity of the Riemann surface. Similar action

relations were similarly derived in the triple-well potential system, and they lead to simultaneous

quantization of left- and right-wells if the potential is symmetric.

In performing the semiclassical analysis, it is not sufficient to enumerate the complex paths

satisfying the boundary conditions required in the semiclassical formula. Since the semiclassical

formula is obtained by applying the saddle point method, one needs to handle the Stokes phe-

nomenon in an appropriate manner. In the semiclassical arguments for tunnelling splittings so far,

this issue has not been discussed seriously even in 1-dimensional situations. The most typical ap-

proach would be just to remove exponentially exploding solutions, which is based only on a rather

naive speculation in analogy with a treatment of the Airy function. The well-known instanton the-

ory and its variants applied to more general situations have adopted essentially the same strategy.

However, as shown in the present thesis, the possible classical actions are expressed as a linear

combination of elements of the fundamental group together with contributions from divergent sin-

gularities. This brings infinitely many possible candidates, and infinitely many exploding solutions

are necessarily contained among them. As a result, it becomes a crucial step to deal with the Stokes

phenomenon properly. This is entirely beyond the scope of this thesis, and here we only tested the

most conventional prescription. For the double- and triple-well potential systems, we extracted the

complex paths remaining as semiclassical contributions in such a way that the imaginary direction
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of the corresponding time path should be negative, which guarantees the monotonicity of imag-

inary action of complex paths. We confirmed that the results were both consistent with known

results.

In the normal form Hamiltonian case, we could also find all the possible complex paths based

on the fundamental group because the Hamiltonian is also given as a polynomial function. How-

ever, a naive treatment of the Stokes phenomenon was shown to break down. In particular, we

demonstrated that there is a situation where even exponentially decaying contributions should be

dropped, which is one piece of evidence suggesting that the Stokes phenomenon for the normal

form Hamiltonian systems must be highly non-trivial [60].

Our motivation for studying the normal form Hamiltonian was to promote our understanding

of the so-called resonance-assisted tunnelling as was done in [43]. As stressed in this thesis, equi-

energy contours of the normal form Hamiltonian apparently look like patterns typically appearing

in Poincaré sections of two-dimensional nearly integrable system, but nonlinear resonance like

structures in 1-dimensional systems are not caused by nonlinear resonances. It would therefore be

unreasonable to explain the mechanism of tunnelling occurring in two-dimensional nonintegrable

systems based on 1-dimensional systems even though apparent similarity exists in their phase space

patterns.

Even if one concedes that the normal form Hamiltonian could somehow serve as an analogous

model to the system with nonlinear resonances, the analysis based on the fundamental group tells

us that what is relevant is the topology of the Riemann surface, which is entirely controlled by

the branch points of the function p(q). This implies that instanton in the conventional sense might

play only a relative role. The understanding of instanton has been updated from the perspective

of the relevance of the Riemann sheet structure, which is based on a similar spirit as our present

arguments [61, 62].

One important message out of this thesis would be that one does not need to consider the time

path any more and has only to focus on the function p(q). Instanton has a long history and the idea

using the complex time plane has been and still might be predominant, but we believe that this

would not be a right strategy as discussed in the present thesis and Refs. [61,62] as well. What we

need is information on the function p(q), not the complex structure of functions q(t) and p(t), so
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analyzing the fundamental group for the Riemann surface of p(q) would become unavoidable.



Appendix A

Exact solution of equations of motion

A.1 Exact solution in triple-well potential system

Let us consider a Hamiltonian,

H =
p2

2
+ V (q), (A.1)

where the potential is given as

V (q) = (q2 − a2)2(q2 − b2). (A.2)

In what follows we will provide the exact solution for the Hamiltonian equation for this system.

From the energy conservation law,

E =
p2

2
+ V (q), (A.3)

we obtain,

∫
dt =

∫
dq√

2(E − V (q))
. (A.4)
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In case of (A.2), the right hand side is expressed as

∫
dq√

2(E − (q2 − a2)2(q2 − b2))
. (A.5)

Introducing the coordinate transformation x = q2 − a2, the above integral is rewritten as

∫
dx

2
√

2(x+ a2) (E − x2(x+ a2 − b2))
. (A.6)

Then we write it in the form as

∫
dx

2
√

−2(x− α)(x− β)(x− γ)(x− δ)
, (A.7)

the constants α, β, γ, δ are solutions for the 4th order algebraic equation, which is given by setting

the denominator of equation (A.6) to be zero 1. Furthermore, we convert the coordinate as

y2 =
(β − δ)(x− α)

(α− δ)(x− β)
(A.8)

k2 =
(β − γ)(α− δ)

(α− γ)(β − δ)
(A.9)

M2 =
(β − δ)(α− γ)

4
, (A.10)

then we obtain

∫
dx

2
√

−2(x− α)(x− β)(x− γ)(x− δ)
=

1

2
√
−2

∫
dy

M
√

(1− y2)(1− k2y2)
. (A.11)

Since the right side of equation (A.11) is just an elliptic integral [63–65], one solution for the

equation (A.5) is written using the Jacobi elliptic function sn as,

qsn(t) =

√
−(β − δ)(a2 + α) + (α− δ)(a2 + β)sn2(2

√
−2Mt, k)

(α− δ)sn2(2
√
−2Mt, k)− (β − δ)

. (A.12)

1These are controlled by E, a, and b.
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Another one is given using the Jacobi elliptic functions cn,

qcn(t) =

√
(a2 + δ)(α− β)− (α− δ)(a2 + β)cn2(−2

√
−2Mt, k)

(α− β)− (α− δ)cn2(−2
√
−2Mt, k)

. (A.13)

Singularities (divergence points) of these solutions on the complex time plane are given by the

condition √
−(β − δ)(a2 + α) + (α− δ)(a2 + β)sn2(2

√
−2Mt, k)

(α− δ)sn2(2
√
−2Mt, k)− (β − δ)

= ±∞, (A.14)

which leads to an implicit condition

sn2(2
√
−2Mt, k) =

β − δ

α− δ
. (A.15)

We can extend the method described here to more general cases. One generalization would be

to take V (q) = (q2 − a2)(q2 − b2)(q2 − c2). In this case, we can solve the equations of motion

in the same manner by introducing x = q2 − a2. More general variable transformation such as

g(x) = f(q), where both g(x) and f(q) are polynomial functions of x and q respectively allows us

to provide exact solutions for higher order potential systems.

A.2 Exact solution in n-th order normal form Hamiltonian sys-

tems

In this section, we show the exact solution of Hamilton equation for the one-dimensional n-th order

normal form Hamiltonian. We recall the definition of the normal form Hamiltonian:

H =
n∑

k=1

ak(p
2 + q2)k +

∑
l,m

bl,mq
lpm, (A.16)

which is introduced in [10]. In the (p, q)-phase space, the phase space exhibits resonance-like chain

structure (See figure 4.10). A classification of generic bifurcation of the phase space structure was
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first studied in [66], and further examined in [67]. Semiclassically, the analysis of the energy

spectrum according to the periodic-orbit sum formula was studied in [68].

Let us introduce new variables as

P := p2, (A.17)

Q := q2. (A.18)

Using these variables, we consider the following Hamiltonian

H =
n∑

k=1

ak(Q+ P )k + f(Q,P ; l,m), (A.19)

where

f(Q,P ; l,m) =
∑
l,m

bl,mQ
l/2Pm/2 (A.20)

represents the resonance terms. The derivative of P,Q with respect to time t gives

Q̇ = 2qq̇ = 2q
∂H

∂p
=
∑
k

kak(Q+ P )k−1(4
√
QP ) + 2

√
Qfp, (A.21)

Ṗ = 2pṗ = 2p
−∂H
∂q

= −
∑
k

kak(Q+ P )k−1(4
√
QP )− 2

√
Pfq, (A.22)

where prime ˙ denotes the derivative with respect to time t and fq, fp are the partial derivative of f

with respect to the variables q and p, respectively. Then we get

Q̇+ Ṗ = 2
√
Qfp − 2

√
Pfq, (A.23)

Q̇− Ṗ = 2
∑
k

kak(Q+ P )k−1(4
√
QP ) + 2

√
Qfp + 2

√
Pfq. (A.24)
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Here, the right-hand side of equation (A.23) and equation (A.24) are

2
√
Qfp + 2

√
Pfq

=
∑
l,m

m

2
bl,mQ

l
2P

m
2
−1(4

√
QP ) +

∑
l,m

l

2
bl,mQ

l
2
−1P

m
2 (4
√
QP )

=
∑
l,m

m

2
bl,mQ

l
2P

m
2
−1(4

√
QP ) +

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

+
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2 (4
√
QP )

= (Q+ P )
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP ) +

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP ),

(A.25)

2
√
Qfp − 2

√
Pfq

=
∑
l,m

m

2
bl,mQ

l
2P

m
2
−1(4

√
QP )−

∑
l,m

l

2
bl,mQ

l
2
−1P

m
2 (4
√
QP )

=
∑
l,m

m

2
bl,mQ

l
2P

m
2
−1(4

√
QP )−

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

−
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2 (4
√
QP )

= (Q− P )
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP )−

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP ).

(A.26)

Then we obtain

Q̇+ Ṗ = (Q− P )
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP )−

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP ),

Q̇− Ṗ = 2
∑
k

kak(Q+ P )k−1(4
√
QP ) + (Q+ P )

∑
l,m

m

2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP )

+
∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP ).
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In order to cancel the sum:
∑

l,m
m
2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP ), we rewrite the above relations as

Q̇+ Ṗ +
∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

= (Q− P )
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP ),

Q̇− Ṗ − 2
∑
k

kak(Q+ P )k−1(4
√
QP )−

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

= (Q+ P )
∑
l,m

m

2
bl,mQ

l
2
−1P

m
2
−1(4

√
QP ),

and take the ratio of both sides, which leads to

Q̇+ Ṗ +
∑

l,m(
l
2
− m

2
)bl,mQ

l
2
−1P

m
2 (4

√
QP )

Q̇− Ṗ − 2
∑

k kak(Q+ P )k−1(4
√
QP )−

∑
l,m(

l
2
− m

2
)bl,mQ

l
2
−1P

m
2 (4

√
QP )

=
(Q− P )

(Q+ P )
.

This gives the relation

(Q+ P )

{
Q̇+ Ṗ +

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

}
=

(Q− P )

{
Q̇− Ṗ − 2

∑
k

kak(Q+ P )k−1(4
√
QP )−

∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

}
.

Integrating both sides, we get

1

2
(Q+ P )2 − 1

2
(Q− P )2 =

∫
−2(Q− P )

∑
k

kak(Q+ P )k−1(4
√
QP )

− (Q− P )
∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

− (Q+ P )
∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )dt.

(A.27)
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In the following, we write the above relation in the following form

(Q+ P )2 − (Q− P )2 = I(t), (A.28)

by introducing

I(t) :=

∫
−2(Q− P )

∑
k

kak(Q+ P )k−1(4
√
QP )

− (Q− P )
∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )

− (Q+ P )
∑
l,m

(
l

2
− m

2
)bl,mQ

l
2
−1P

m
2 (4
√
QP )dt.

(A.29)

Then we immediately get

Q+ P = I1/2(t) cosh(θ(t)), (A.30)

Q− P = I1/2(t) sinh(θ(t)), (A.31)

and

QP =
I(t)

4
. (A.32)

Our last task is therefore to obtain the function I(t). To do this, we use the energy conservation

relation,

E =
∑
k

ak(Q+ P )k + f(Q,P ; l,m)

=
n∑

k=1

ak(I
1/2 cosh θ)k +

∑
l,m

bl,m

(
I1/2(cosh θ + sinh θ)

2

)l/2(
I1/2(cosh θ − sinh θ)

2

)m/2

.

(A.33)

This is an algebraic equation for I(t), so it would be possible to solve I(t) and express it as a
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function of θ. We finally have solutions for Q(t) and P (t) in terms of θ(t) as

Q =
1

2
(I1/2(θ(t)) cosh(θ(t)) + I1/2(θ(t)) sinh(θ(t))), (A.34)

P =
1

2
(I1/2(θ(t)) cosh(θ(t))− I1/2(θ(t)) sinh(θ(t))). (A.35)

Therefore our task is reduced to solving a first-order differential equation for θ(t), implicitly ex-

pressed in the form of (A.23) (or (A.24)).

A.3 An example of normal form Hamiltonian systems

We here consider an example of 1-dimensional Hamiltonian normal form systems,

H =
p2

2
+
q2

2
+ ϵ

(
p2

2
+
q2

2

)2

+ ηp2q2, (A.36)

where ϵ and η are parameters controlling the structure of the phase space. There appears nonlin-

ear resonance-like structure which looks like the two-dimensional nonlinear resonance islands in

non-integrable systems. As shown in figure A.1, the phase space (with ϵ = η = −2) exhibits

a resonance-like island chain around a central elliptic fixed point. The Hamilton equations are

Figure A.1: The phase space for Hamiltonian (A.36) with ϵ = η = −2.
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written as

q̇ = p+ ϵ(q2p+ p3) + 2ηpq2, (A.37)

ṗ = −q − ϵ(qp2 + q3)− 2ηp2q. (A.38)

We define new variables

P := p2, (A.39)

Q := q2, (A.40)

then for Ṗ and Q̇ we have

Ṗ = 2pṗ, (A.41)

Q̇ = 2qq̇. (A.42)

The Hamilton equations are then rewritten as

Q̇ = (2 + 2ϵ(Q+ P ) + 4ηQ)
√
PQ, (A.43)

Ṗ = (−2− 2ϵ(P +Q)− 4ηP )
√
PQ, (A.44)

and we obtain

Q̇+ Ṗ = 4η(Q− P )
√
PQ, (A.45)

Q̇− Ṗ = (4 + 4ϵ(P +Q) + 4η(P +Q))
√
PQ. (A.46)

Combining these, we get

Q̇+ Ṗ

4η(Q− P )
=
√
PQ =

Q̇− Ṗ

4 + 4ϵ(P +Q) + 4η(P +Q)
. (A.47)
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Multiplying equation (A.47) by 4η(Q− P )(4 + 4ϵ(P +Q) + 4η(P +Q)), we have

4(1 + (ϵ+ η)(P +Q))(Q̇+ Ṗ ) = 16η(Q− P )(1 + (ϵ+ η)(P +Q))
√
PQ

= 4η(Q− P )(Q̇− Ṗ ). (A.48)

Both sides are integrated to get

4(P +Q) + (2ϵ+ 2η)(P +Q)2 =

∫
4η(Q− P )(4 + (4ϵ+ 4η)(P +Q))

√
PQdt

= 2η(Q− P )2 + C, (A.49)

where C is a constant of integration. We here focus on the leftmost and rightmost sides in equation

(A.49):

4(P +Q) + (2ϵ+ 2η)(P +Q)2 = 2η(Q− P )2 + C. (A.50)

This can be regarded as an equation of a circle. After some calculations, we obtain

η(ϵ+ η)

−1− (ϵ+ η)C
(Q− P )2 +

−(ϵ+ η)2

−1− (ϵ+ η)C

{
(P +Q) +

1

ϵ+ η

}2

= 1. (A.51)

Putting

−(ϵ+ η)2

−1− (ϵ+ η)C

{
(P +Q) +

1

ϵ+ η

}2

= sin2 θ(t), (A.52)

η(ϵ+ η)

−1− (ϵ+ η)C
(Q− P )2 = cos2 θ(t), (A.53)

where θ(t) is given through a differential equation for θ, which is discussed later. Then Q,P are

Q =
1

2

(
(1 + (ϵ+ η)C)1/2

1

ϵ+ η
sin θ(t)− 1

ϵ+ η
+

(
1 + (ϵ+ η)C

−η(ϵ+ η)

)1/2

cos θ(t)

)
,

P =
1

2

(
(1 + (ϵ+ η)C)1/2

1

ϵ+ η
sin θ(t)− 1

ϵ+ η
−
(
1 + (ϵ+ η)C

−η(ϵ+ η)

)1/2

cos θ(t)

)
.
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Putting A := 1 + (ϵ+ η)C, we finally reach the exact solution for the original variables q, p as

q =

(
1

2

(
A1/2

ϵ+ η
sin θ(t)− 1

ϵ+ η
+

(
A

−η(ϵ+ η)

)1/2

cos θ(t)

))1/2

,

p =

(
1

2

(
A1/2

ϵ+ η
sin θ(t)− 1

ϵ+ η
−
(

A

−η(ϵ+ η)

)1/2

cos θ(t)

))1/2

. (A.54)

C (or A) is a control parameter of the energy of trajectories.

A.3.1 Differential equation for θ(t)

Our remaining task is to derive the equation for θ(t) and to solve it. Remember the left side equality

in equation (A.47):

Q̇+ Ṗ

4η(Q− P )
=
√
PQ. (A.55)

Here we express this equation in terms of θ(t), which provides a differential equation for θ(t).

Since we already know expressions for Q and P as a function of θ(t), we have

Q̇+ Ṗ =
A1/2

ϵ+ η

(
θ̇(t) cos θ(t)

)
, (A.56)

4η(Q− P ) = 4η

(
A

−η(ϵ+ η)

)1/2

cos θ(t), (A.57)

and

QP =
1

4(ϵ+ η)2

(
A sin θ(t)2 − 2A1/2 sin θ(t) + 1 +

A(ϵ+ η)

η
cos θ(t)2

)
, (A.58)
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We insert these into equation (A.55) to obtain

θ̇(t)

4η
(

ϵ+η
−η

)1/2 =

√
1

4(ϵ+ η)2

(
A sin2(θ(t))− 2A1/2 sin(θ(t)) + 1 +

A(ϵ+ η)

η
cos2(θ(t))

)
.

(A.59)

This can be integrated as

∫
dz√

1−
(
z + η

A1/2(−ϵ)

)2√
1

4(ϵ+η)2

(
A−ϵ

η
z2 + η

ϵ
+ 1 + A(ϵ+η)

η

) = 4 (−η(ϵ+ η))1/2
∫
dt,

where z := sin(θ(t))− η
A1/2(−ϵ)

. Introducing the notations for parameters as

zα = − −η
A1/2ϵ

+ 1,

zβ = − −η
A1/2ϵ

− 1,

zγ =

√
−η
Aϵ

(−η
ϵ
− 1− A(ϵ+ η)

η
),

zδ = −

√
−η
Aϵ

(−η
ϵ
− 1− A(ϵ+ η)

η
), (A.60)

the equation can be rewritten as

∫
dz√

(z − zα)(z − zβ)(z − zγ)(z − zδ)
=

√
4ϵA

ϵ+ η

∫
dt. (A.61)

Furthermore by setting

y2 =
(zβ − zδ)(z − zα)

(zα − zδ)(z − zβ)
, (A.62)

k2 =
(zβ − zγ)(zα − zδ)

(zα − zγ)(zβ − zδ)
, (A.63)

M2 =
(zβ − zδ)(zα − zγ)

4
, (A.64)
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the left-side hand can be expressed using the inverse function of the Jaboci elliptic sn function

∫
dy√

M(1− y2)(1− k2y2)
. (A.65)

We finally reach an explicit expression for z(t) as

z(t) =
−zα(zβ − zδ) + zβ(zα − zδ)sn

2(
√

4ϵA
ϵ+η

Mt+ t0, k)

(zα − zδ)sn2(
√

4ϵA
ϵ+η

Mt+ t0, k)− (zβ − zδ)
, (A.66)

and for θ(t)

θ(t) = arcsin(z(t) +
−η
A1/2ϵ

), (A.67)

where t0 is an initial condition of time.

A.3.2 Relation to the double-well system

In this section, we show a relation between z(t) and the double-well potential system. Now recall

the solution z(t):

z(t) =
−zα(zβ − zδ) + zβ(zα − zδ)sn

2(
√

4ϵA
ϵ+η

Mt+ t0, k)

(zα − zδ)sn2(
√

4ϵA
ϵ+η

Mt+ t0, k)− (zβ − zδ)
. (A.68)

Note that the double-well potential system as four turning points, each of which is hereby denoted

as z(t) = zα, zβ, zγ , and zδ. For simplicity, we set t0 = 0 and T =
√

4ϵA
ϵ+η

Mt in the following.

For T = 0, we have

z(0) = zα, (A.69)

and for T = K,

z(K) = zδ, (A.70)
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which implies that zα and zδ form a pair. In the same way, for T = iK ′,

z(iK ′) = zβ, (A.71)

and for T = K + iK ′,

z(K + iK ′) = zγ. (A.72)

This implies that the point zβ is connected with zγ via a real torus and also we know that zα and zβ

are connected via a complex torus. K and K ′ are the real and imaginary period of the sn function,

respectively. At each turning point, zα, zβ, zγ, zδ, we have

θ(zα) = arcsin(zα +
−η
A1/2ϵ

) = arcsin(1) =
π

2
,

θ(zβ) = arcsin(zβ +
−η
A1/2ϵ

) = arcsin(−1) = −π
2
,

θ(zγ) = arcsin(zγ +
−η
A1/2ϵ

) = arcsin(

√
(ϵ+ η)(Aϵ+ η)

A1/2ϵ
),

θ(zδ) = arcsin(zδ +
−η
A1/2ϵ

) = arcsin(−
√

(ϵ+ η)(Aϵ+ η)

A1/2ϵ
).

For z = zα and zβ , q(t) = p(t) is satisfied, and z = zγ , zδ, q(t) = 0, or p(t) = 0 follows.

The correspondence between the double-well system and the phase space for the normal form

Hamiltonian is shown in figure A.2. Since we fix the elliptic function’s modular k as given in

equation (A.63), the turning points of the double-well potential should be located as in figure A.2.

For comparison, we consider an orbit which starts from the point zα in the double-well potential

system (see the right top in figure A.2). Let tα be time which is implicitly specified by the initial

point zα. Since q(tα) = p(tα) holds, the corresponding position in phase space of the normal form

Hamiltonian, denoted as “zα”, given as in figure A.2.

In the double-well system, the orbit described by z(t) moves from zα to zδ along the real time

axis and the period of oscillation zα and zδ is given as K. The orbit starting at “zα” for the normal

form Hamiltonian also moves to “zδ”, but the form of explicit solutions tell us that the sign of q(t)

and p(t) changes its value either to -1 or 1, the orbit can move either q(t) = 0 or p(t) = 0 (notice
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that there are two “zδ” as shown in figure A.2). In other words, multivaluedness happens in case

of the normal form Hamiltonian.

On the other hand, along the pure imaginary direction, the orbit starting at zα moves to zβ

during the period iK ′. This is nothing but the instanton orbit. In the normal form Hamiltonian, the

orbit starting at “zα” moves to “zβ” as shown in figure A.3.

In a similar way as the oscillation between “zα” and “zδ” along the real axis, the oscillation

between “zβ” and “zγ” with K happens in phase space of the normal form Hamiltonian.

Obviously the divergence points of q(t) are found as the divergence points of z(t), i.e., going

along the imaginary time from zδ or zγ . Except for the singularities attaining zeros, there exist no

further divergence points in this situation (See figure A.4).

Figure A.2: The relation between the solution of the double-well potential and z(t).The parameters
are ϵ = −2, η = −2.
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Figure A.3: A part of an orbit is put on the torus with C = 0.12. “zα”, “zβ”, “zγ”, and “zδ”
are the positions of the orbit which are specified by zα, zβ , zγ , and zδ in the double-well system,
respectively. The red curve with arrow shows an orbit which moves from “zα” to “zδ” along the
real time axis. The green curve shows an orbit which moves from “zα” to “zβ” along the imaginary
time axis. The blue curve shows an orbit which moves from “zβ” to “zγ” along the real time axis.
A sketch of the double-well potential with turning points is put on the top right.

Figure A.4: Singularities (divergence points) of q(t) on the complex time plane of sn function.



Appendix B

Semiclassical formula of tunnel splittings

In this appendix, we briefly sketch the derivation of the formula (3.3), following Ref. [35]. Let

|ϕ±
n ⟩ be symmetric and asymmetric quasi-degenerated states for a Hamiltonian commuting with

the parity operator Ŝ such that Ŝ2 = 1. The eigenstates of Ĥ can be classified according to their

parity,

Ŝ|ϕ±
n ⟩ = ±|ϕ±

n ⟩. (B.1)

The spectral decomposition of the evolution operator after a time T writes

Û(T ) =
∑
n

(e
1
iℏE

+
n T |ϕ+

n ⟩⟨ϕ+
n |+ e

1
iℏE

−
n T |ϕ−

n ⟩⟨ϕ−
n |). (B.2)

To discuss the tunnelling splitting between the states |ϕ+
n ⟩ and |ϕ−

n ⟩, we further define the projection

operator

Π̂n = ϕ+
n ⟩⟨ϕ+

n |+ |ϕ−
n ⟩⟨ϕ−

n |, (B.3)

and we have

Tr(Π̂nÛ) =
∑
m

⟨ϕ±
m|Π̂nÛ |ϕ±

m⟩ = e−
i
ℏE

+
n T + e−

i
ℏE

−
n T , (B.4)
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Tr(ŜΠ̂nÛ) = e−
i
ℏE

+
n T − e−

i
ℏE

−
n T . (B.5)

We then obtain

Tr(ŜΠ̂nÛ)

Tr(Π̂nÛ)
= i tan(

∆En

2ℏ
T ). (B.6)

where ∆En = E−
n − E+

n . If the condition

|T |∆En

2ℏ
≪ 1 (B.7)

is satisfied, the tunnelling splitting ∆En can be explicitly written as

∆En ∼ 2ℏ
iT

Tr(ŜΠ̂nÛ)

Tr(Π̂nÛ)
. (B.8)

We now rewrite the right-hand side of (B.8) in the path integral form. Introducing the quasi-

mode |Φn⟩ = (|ϕ+
n ⟩+ |ϕ−

n ⟩)/
√
2, the projection operator is expressed as

|ϕ+
n ⟩⟨ϕ+

n |+ |ϕ−
n ⟩⟨ϕ−

n | = |Φn⟩⟨Φn|+ Ŝ|Φn⟩⟨Φn|Ŝ. (B.9)

Let Φsc
n (q) be WKB approximation of Φn(q) [69, 70], which is localized on the energy curve

satisfying E ∼ E±, then the numerator and denominator of the formula (B.8) are semiclassically

evaluated as

2

∫
dqdq′Φsc

n (q)(Φ
sc
n (q

′))∗G(ηq′, q;T ), (B.10)

where G(ηq′, q;T ) represents the Van Vleck-Gutzwiller propagator

G(ηq′, q;T ) =
∑
γ

(−1)kγ

√
det

(
i

2πℏ
∂2Sγ

∂qf∂qi

)
e

i
ℏSγ(ηq′,q;T ). (B.11)

Here η = −1 for the numerator and η = +1 for the denominator of the formula (B.8), respectively.

The index kγ denotes the number of conjugation points along the trajectory γ.
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We further evaluate the integral (B.10) again using the saddle point approximation, which

requires the condition

lim
qf→ηqi

δSγ

δqi
=
∂Sγ

∂qi
+
∂qf
∂qi

∂Sγ

∂qf
= 0. (B.12)

Then the generating relations

∂Sγ

∂qi
= −pi,

∂Sγ

∂qf
= ηpf , (B.13)

leads to the condition

pf = ηpi (B.14)

for each η. By taking the trace of integral (B.10), the classical paths contributing to the final

semiclassical sum should altogether satisfy the conditions E ∼ E±
n , qf = ηqi and pf = ηpi. In

section 3.1, qf and qi are expressed as q(T ) and q(0), respectively (same as for p). After calculating

the prefactor in evaluating the integral (B.10) (see details in Ref. [35]), we finally reach the formula

(3.3).



Appendix C

Integral along γ loops

In this appendix we calculate the integral whose integration contour encircles a single branch point

qi of the function p(q). In the text, such a loop is called the γi loop.

Branch points of the algebraic function are algebraic singularities, around which p has the

Puiseux expansion in the following form

p(q) =
∞∑
n=s

cn(q − qi)
n
w , (s > −∞) (C.1)

where w is a positive number.

Putting t = (q − qi)
1/w, we evaluate each term of the expansion as

1

2πi

∫
C

(q − qi)
n
w dq =

w

2πi

∮
tn+w−1dt =

 w if n+ w = 0

0 otherwise,
(C.2)

where C is a closed curve circling around the point q = qi w times [71].

For a Hamiltonian of the form H = p2/2+V (q) where V (q) is a polynomial function of q, the

function p(q) does not contain negative order terms in the corresponding Puiseux series. Therefore

the action integrals for the γi loops all vanish. For the normal form Hamiltonian (4.28), if the

condition 2k > m holds, the γi contributions are all zero as well since the function p(q) does not

contain negative order terms in the Puiseux series. On the other hand, for 2k ≤ m, the coefficient

for the highest order of p contains the variable q, resulting in a non-zero contribution from γi loops.

77



Appendix D

The action relation and the residue at

infinity

In this appendix, we provide an explicit derivation of action relations. The following calculations

can easily be generalised to the multi-well potential systems. We here present double- and triple-

well cases as examples.

D.1 Double-well case

Let us consider the Hamiltonian:

H =
p2

2
+ V (q), (D.1)

where V (q) = E + (q − q1)(q − q2)(q − q3)(q − q4). Branch points of p(q) at the energy E are

located at q = qi (1 ≤ i ≤ 4). Let C be a closed curve rotating clockwise around all branch points

(figure D.1). The loop C is homotopic to the loop around infinity on the Riemann sphere, so the

integration along this loop is equal to the residue of infinity. We calculate the residue at q = +∞
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as follows. Introducing a new coordinate q = 1/η, we find

∮
Γ(∞)

p(q)dq =

∮
1

η2

√
−W (η)(

−1

η2
)dη

=

∮
−1

η4

(∑
k

Ckη
k

)
dη,

where W (η) := 2(1 − q1η)(1 − q2η)(1 − q3η)(1 − q4η), and Ck (k ≥ 0) are coefficients of the

Taylor expansion of
√

−W (η). Γ(∞) denotes a single loop encircling η = 0. For the integration

over η, the loop rotates anticlockwise around η = 0, and the residue is evaluated as −2πiC3. An

explicit form of C3 is

C3 = i
(1
4
(q1 + q2 + q3 + q4)(q1q2 + q1q3 + q2q3 −

1

4
(q1 + q2 + q3 + q4)

2

+q1q4 + q2q4 + q3q4) +
1

2
(−q1q2q3 − q1q2q4 − q1q3q4 − q2q3q4)

)
.

Hence we obtain S(∞) :=
∮
Γ(∞) p(q)dq = −2πiC3.

On the other hand, we evaluate the same integral by taking the integration along the real axis.

We introduce new coordinates rqi and θqi as rqie
iθqi := q − qi (1 ≤ i ≤ 4). Here we have to take

a close look at the phase of the function p(q) and the upper limit of the integration. If we take the

phase as p(q) = i
√
rq1rq2rq3rq4 , the upper limit should satisfy the condition q4 < q in order that

the phase of p(q) is consistent with the residue calculation at infinity, as shown in figure D.1. We

therefore obtain

∮
C

p(q)dq = 2

∫ q2

q1

pdq − 2

∫ q4

q3

pdq

= SL − SR. (D.2)

Finally we get the relation (4.8)

S(∞) =

∮
Γ(∞)

p(q)dq =

∮
C

p(q)dq = SL − SR. (D.3)
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Figure D.1: The integration contour C and the phase of p(q) at each position. The black dots are
branch points. The dash lines represent the branch cuts.

D.2 Triple-well case

For the triple-well case where V (q) = E + (q − q1)(q − q2)(q − q3)(q − q4)(q − q5)(q − q6), we

find

∮
Γ(∞)

p(q)dq =

∮
1

η3

√
−W (η)(

−1

η2
)dη

=

∮
−1

η5

(∑
k

Ckη
k

)
dη.

Here W (η) := 2(1 − ηq1)(1 − ηq2)(1 − ηq3)(1 − ηq4)(1 − ηq5)(1 − ηq6), and Ck (k ≥ 0) are

coefficients of the Taylor expansion of
√

−W (η). The residue is evaluated as −2πiC4. Hence we

obtain S(∞) :=
∮
Γ(∞) p(q)dq = −2πiC4.

On the other hand, we calculate the same integral along the real axis. As shown in fig-

ure D.2, we choose a closed curve C rotating clockwise around all branch points, and intro-

duce new coordinates rqi and θqi as rqie
iθqi := q − qi (1 ≤ i ≤ 6). If we take the phase as

p(q) = i
√
rq1rq2rq3rq4rq5rq6 , the upper limit should satisfy the condition q6 < q in order that the

phase of p(q) should be consistent with the residue calculation at infinity, as shown in figure D.2.
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Then we obtain

∮
C

p(q)dq = −2

∫ q2

q1

pdq + 2

∫ q4

q3

pdq − 2

∫ q6

q5

pdq

= −SL + SC − SR. (D.4)

Finally we reach the relation (4.21)

S(∞) = −SL + SC − SR. (D.5)

Figure D.2: The integration contour C and the phase of p(q) at each position. The black dots are
branch points. The dash lines represent the branch cuts.
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[40] S. Löck, A. Bäcker, R. Ketzmerick and P. Schlagheck, Phys. Rev. Lett. 104 114101 (2010)

[41] Y. Hanada, A. Shudo and K. S. Ikeda, Phys. Rev. E, 91, 042913 (2015)

[42] Y. Hanada, A. Shudo and K. S. Ikeda, Special Issue of Advances in Science, Technology and

Environmentology (Waseda University), B11, 127-130 (2015)

[43] J. Le Deunff, A. Mouchet and P. Schlagheck, Phys. Rev. E, 88 042927 (2013)

[44] G. D. Birkhoff, Dynamical Systems, New York: American Mathematical Society Colloquium

Publications Vol IX (1927)

[45] F. G. Gustavson, Astronomical Journal, 71 670 (1966)



BIBLIOGRAPHY 86

[46] H. Weyl, The Theory of Group and Quantum Mechanics, Dover Publications, New York

(1950)

[47] J. R. Shewell, American Journal of Physics, 27 16 (1956)
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