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Abstract

The main aim of this thesis is to present a theory about the complex interpola-
tion of some function spaces related to Morrey spaces. This thesis consists of six
chapters. In Chapter 1, we recall the definition of Morrey spaces and generalized
Morrey spaces and we also mention inclusion between Morrey spaces and the re-
sults on the boundedness of some classical integral operators in Morrey spaces. In
addition, we recall a known result and a counterexample on interpolation of linear
operators on Morrey spaces in this chapter. In Chapter 2, we recall the complex
interpolation method and some useful lemmas on this method. We present our re-
sults about the complex interpolation of generalized Morrey spaces in Chapter 3.
We obtain the description of the first and second complex interpolation of gener-
alized Morrey spaces. We show that the first complex interpolation of generalized
Morrey spaces can be described as a proper closed subspace of generalized Mor-
rey spaces. Meanwhile, the second complex interpolation of generalized Morrey
spaces yields generalized Morrey spaces. We also give a description of complex
interpolation between generalized Morrey spaces and L*>. Our results in this
chapter can be viewed as an extension of the results in [12, 35, 36]. In Chapter 4,
we discuss the complex interpolation of some closed subspaces of Morrey spaces.
These subspaces arise naturally in some papers about Morrey spaces, for instance
[51, 55]. We show that the first and second complex interpolation of these sub-
spaces yield different spaces. In Chapter 5, we discuss local Morrey type spaces,
local block spaces, and the first complex interpolation of local block spaces. We
show that local block spaces behave well under the first complex interpolation
method. Lastly, we discuss the first and second complex interpolation of grand
Lebesgue spaces in Chapter 6.

iii



Notation

We use the following notation:

1. We denote by B(z,r) the ball centered at x of radius r. Namely, we write
B(z,r)={yeR" : |z —y| <r}

when x € R” and r > 0. Given a ball B, we denote by ¢(B) its center and by
r(B) its radius. We write B(r) instead of B(o,r) , where o := (0,0,...,0).

2. Given a ball B and k > 0, we denote by k B the ball concentric to B with
radius kr(B).

3. Let E be a measurable set. Then we denote its characteristic function by
xe and |E| denotes the volume of E.

4. The set Z(R) denotes the set of all open intervals in R.

5. The constants C' and ¢ denote positive constants that may change from one
occurrence to another. The two constant ¢ being different, the inequality
0 < 2¢ < ¢ is by no means a contradiction. When we add a subscript
p and «, for example, this means that the constant ¢ depends upon the
parameter. It can happen that the constants with subscript differ according
to the above rule. In particular, we prefer to use c,, various constants that
depend on n, when we do not want to specify its precise value.

6. Let A,B > 0. Then A < B and B 2 A mean that there exists a constant
C > 0 such that A < C'B, where C' depends only on the parameters of
importance. The symbol A ~ B means that A < B and B < A happen
simultaneously. While A ~ B means that there exists a constant C' > 0
such that A = CB.

7. We define
N:={1,2,...}, Z:={0,£1,+2,...}, Nyg:={0,1,...}. (1)
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10.
11.

12.

13.
14.
15.

. Let X be a Banach space. We denote its norm by || - || x.

. Let © be an open set in R”. Then C'°(€2) denotes the set of smooth function

with compact support in €.
The space C' denotes the set of all continuous functions on R".

The space BC(R") denotes the set of all bounded continuous functions on
R".

Occasionally we identify the value of functions with functions. For example
sin x denotes the function on R defined by x + sinx.

Given a Banach space X, we denote by X* its dual space.

When two normed spaces X and Y are isomorphic, we write X ~ Y.

When A and B are sets, A C B stands for the inclusion of sets. If, in
addition, both A and B are topological spaces, and if the natural embedding
mapping A — B is continuous, we write A < B in the sense of continuous
embedding.
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Chapter 1

Introduction

We recall here the definition of Morrey spaces and generalized Morrey spaces.
We also give a summary of several previous results about interpolation of linear
operators on Morrey spaces.

1.1 Morrey spaces and generalized Morrey spaces

Morrey spaces were first introduced by C.B. Morrey in [37] based on the study of
the solution of certain elliptic partial differential equations. For 1 < g < p < o0,
the Morrey space MP(R") is defined to be the set of all functions f € Lj (R")
such that

sup |B(z,r)|i! / <o (1.1)
B(x,r

zeR™,r>0

The norm on MP?(R") is defined by

11
[fllagen = sup  [B(z,r)[»" e[ fl|Las.r)- (1.2)

zeR™,r>0

For simplicity, we shall write M? instead of M?(R"). Remark that there is also
another notation for Morrey spaces, namely LP?, where 1 < p < 00, 0 < X\ < n,
and || - ||e is defined by

1 P
[ fllor := sup (7/ [f (W)l dy)
zeR?r>0 \7" JB(z,r)

1



We shall use the notation M?# throughout this thesis. Note that if p = ¢, then
M?P = LP, so Morrey spaces can be seen as an extension of Lebesgue spaces.
Moreover, when 1 < g < p < 0o, we have

LP — M?. (1.3)

Inclusion (1.3) is a consequence of the Holder inequality. Furthermore, if 1 < g <

p < 00, then inclusion (1.3) is proper, since the function f(z) := |#|~™" belongs
to MP\ LP. Inclusion (1.3) can be viewed as a special case of

M — M, (1.4)

where 1 < ¢1 < ¢ < p < co. We refer the reader to [45, 47] for (1.4). A
generalization of (1.4) to weighted Morrey spaces can be seen in [32].

Note that the function 7 € (0,00) + /7 € (0,00) in the definition of the
MbE-norm can be generalized to a suitable function ¢ : (0,00) — (0, 00) to define
the generalized Morrey space M¢ = M (R™) whose norm is given by

p(r)
= e o)) < 0. 1.5
11 S |B(x’r)|1/q||f||m<s< ) (1.5)

The space MY was introduced by Nakai in [38]. Here, we may assume that ¢ € G,
that is, ¢ is increasing and r € (0,00) = r~9p(r) € (0,00) is decreasing (see
39, p. 446]). Remark that, when o(r) = r7» and 1(r) = 1, we have Mg = M?
and MY = L> with identical norms (see [42, Proposition 3.3]), respectively.
Recently, there are also various extension of generalized Morrey spaces to Orlicz-
Morrey type spaces (see [41, 49]). Inclusion between generalized Morrey spaces,
Orlicz-Morrey spaces and related spaces can be seen in [22, 42].

Let us now recall the boundedness results of some classical integral opera-
tors such as the Hardy-Littlewood maximal operator and the fractional integral
operators in Morrey spaces and their generalization. The boundedness of the
fractional integral operators in Morrey spaces were proved in [1, 44]. Meanwhile,
F. Chiarenza and M. Frasca proved the boundedness of the Hardy-Littlewood
maximal operator in Morrey spaces in [11]. Furthermore, they also reproved the
result in [1] by using a Hedberg type inequality. In [38], E. Nakai proved the
boundedness of the Hardy-Littlewood maximal operator and fractional integral
operators on generalized Morrey spaces. He also introduced generalized fractional
integral operators and proved the boundedness of these operators in [40]. For
further results about the generalized fractional integral opertors on generalized
Morrey spaces, we refer the reader to [14, 20, 21, 25, 48] and reference therein. A
necessary and sufficient condition for the boundedness of the Hardy-Littlewood
maximal operator on Orlicz-Morrey spaces is given in [42]. The boundedness
result of the fractional maximal operators on generalized Morrey spaces can be
seen in [28].



1.2 Interpolation of linear operators on Morrey spaces

First let us recall the Riesz-Thorin interpolation theorem.

Theorem 1.2.1. [3, p.2] Let 0 € (0,1) and 1 < py,p1,70,71 < 00. Let p and r

be defined by

1 1—-0 0 1 1—0 0
= 4+ — and - := + —.

p Po P r To T

Suppose that T is a bounded linear operator from LP° to L™ and LP* to L. Then
T is bounded from LP to L".

One may inquire whether Lebesgue spaces in Theorem 1.2.1 can be replaced
by Morrey spaces. When the domain of the operator T' is the Lebesgue space
LPo + [P an extension of Theorem 1.2.1 to Morrey spaces was obtained by G.
Stampacchia [53].

Theorem 1.2.2. [53] Let 6 € (0,1), 1 < pg,p1 < 00, 1 < 59 < 19 < 00, and
1 <51 <ry<oo. Define p,r,s by

111 1 1 1 1 1 1
(_7_7 _) = (1 - 9) (_a _7_> +9 (_a _7_) .
pr.s Do To So P11 St

If T is a bounded linear operator from LP° to M0 and from LP* to M7, then T
is bounded from LP to M.,

Unfortunately, if the domain of the operator T is Morrey spaces, there are
some counterexamples given by A. Ruiz and L. Vega [46] for the case n > 1 and
by O. Blasco et al. in [5] for the case n = 1. Let us recall the result in [5].

Theorem 1.2.3. [5] Letn=1, 0 € (0,1), and 1 < ¢1 < qo. Define

1 1—9+ 0 2 J 1 1—9+ 0
— = —, T = — , T i=q, and — = —.
q % P mm(qiD + %2) ! ! r o ™

Then there exists a bounded linear operator T' from LT = M to L™ and from
ML to L™ such that T' is not bounded from M@ to L".

Proof. According to the definition of ¢, we know that ¢; < g < qo. Hence, we
may choose

1

B> 2. (1.6)

q q0



Let Ny € N be such that

B+1 - N+1
log2 ~logN'’

(1.7)
for every N € NN [Ny, 00). Let N € NN [Ny, 00) be fixed. We define
N . _ AT B B
I = [N+ jN" NI+ jN” +1]

where 7 = 0,1,...,N — 1 and set Fy := Uév 01[]1\/ Observe that the choice of

allows { Enx}3%_; to be disjoint. Note that ry < 71, so ro < r < ry. Therefore, we

may choose
2 2
2. 1.8
vE (r17 T) (1.8)

With this choice of 7, we construct an operator 7' by the formula

= 3 Ny (@) f(2)

N=Np

for every measurable function f. By the Holder inequality, for every f € L% we

have
1T fllro < (Z N0\ By ( / |f<x>|q0)"°>

N=No
L
< (Z N) 15
N=Np
It follows from (1.8) that
2 2 1
—7r0+1——<—ﬂ+1——_1—r0( —i——> < -1
q0 1 do @1 4o
Consequently,

1T f]lLro < Coll 1] oo

for some constant Cy > 0. We now show that
1T fllzrs < Cullfll pao (1.9)
for some C; > 0 and for every f € M. Since {En}F_y, is a collection of
disjoint sets and q; = r{, we get
1

> N Z/ )| d:z:)rl. (1.10)

N=Ny

1Tl < (



Combining (1.10) and

/NI ()" do < | F e = 1

I

for each y =0,1,...,N — 1, we get

1—vr
1Tl < (Z N 1) /1 pags -

N=Np
According to (1.8), we have

2
l—yrm<1l——r =-1
T1

SO
[ee)
E NP~ 0.
N=N,

This implies (1.9). The proof of the unboundedness of 7' from M2 to L" goes as

follows. Define .
= > X

N=Np

Note that, for every N € N, we have

Izl = sup |15 LV EN
90 = SU ‘IO—
XEy Mlqo IC% ||
a N
< ((N=1)NP 4+1)w
SN =DN 1) 1
q 1 q(B+1)
1\ g Y
S(NPH)© S =N

Let Jy := (No!, N! + (N — 1)N? + 1) for every N € NN [Ny, 00). Since
1foll v = I1/5ll, oo = foll |

q q
we have

4 _q
foll% @ = sup [I|w / XE
Ioll o = sup 11767 | 3 el

N=Nj

< max {|JM|1 Z XEN dy7 ”XEMH }

JM N=N,

< max

M? aB+) _g
q 9
MEN | (M! 4 (M —1)MF +1— Nol)' w0



It follows from (1.6) that 2 — 8 < 0. This implies

P
[ foll g < o0

On the other hand, we claim
T foll - = 0. (1.11)

Indeed, (1.11) follows from

T follzr = (Z N’”]EN‘) — (Z Nl'yr)

N=Np N=Ny

and 1 — vyr > —1. This ends the proof of Theorem 1.2.3. [

In view of Theorem 1.2.3, the Riesz-Thorin theorem can not be generalized
to Morrey spaces. However, by adding some mild assumptions, there are recent
researches about complex interpolation interpolation of Morrey spaces (see [12,
35, 36]). We shall recall the complex interpolation method and these results in
Chapters 2 and 3, respectively.



Chapter 2

Complex interpolation
method—Preliminaries

In this chapter we recall the complex interpolation method introduced by Calderén
in [9]. We follow the terminology and presentation in [3, 9]. In Sections 2.1 and
2.2, we recall the definition of Calderén’s first and second complex interpolation
method. For the proof of our results in the next chapter, we shall discuss the
Calderén product of Banach spaces in Section 2.3.

2.1 The first complex interpolation method

A pair (Xo, X7) is said to be a compatible couple of Banach spaces if there exists
a Hausdorff topological vector space Z such that Xy and X, are subspaces of Z.
From now on, let S :={z € C:0 < Re(z) <1} and S be its interior.

Definition 2.1.1 (Calderdn’s first complex interpolation functor). Let (Xo, X7)
be a compatible couple of Banach spaces. Define F (Xo, X1) as the set of all
continuous functions F': S — Xy + X; such that

L. sup ”F(2)||X0+X1 < o0,
z€S

2. F' is holomorphic on S,

3. the functions ¢t € R — F(j+it) € X, are bounded and continuous on R for
Jj=0,1.



The norm on F(Xy, X;) is defined by

1| 70,31 = max {Sup 1 @t) || xo, sup [[F(1+ it)l\xl} :
teR teR

Definition 2.1.2 (Calderén’s first complex interpolation spaces). Let 6 € (0, 1)
and (Xp, X1) be a compatible couple of Banach spaces. The complex interpolation
space [Xo, X1]p with respect to (Xo, X;) is defined by

[X07X1]9 = {f € XO + X1 . f = F(@) for some F' € .F(Xo,Xl)}
The norm on [Xy, Xi] is defined by
1/ llix0,x:16 := [ Fll7(x0.x,) : f = F(0) for some F € F(Xo, X1)}.

The fact that [Xo, X1y is a Banach space can be seen in [9] and [3, Theo-
rem 4.1.2]. When X, and X; are Lebesgue spaces, Calder6n gave the following
description of [Xg, X1]o.

Theorem 2.1.3. [9] Let 0 € (0,1), 1 < py < o0, and 1 < p; < oo. Then
[LPo, Py = LP

where p is defined by
1 1—-60 0

p Po y4i

Note that the Riesz-Thorin complex interpolation theorem can be seen as a
corollary of Theorem 2.1.3 and the following Calderén’s result.

Theorem 2.1.4. [9] Let 6 € (0,1). Let (Xo, X1) and (Yo,Y1) be two compatible
couples of Banach spaces. If T is a bounded linear operator from X; to Y for
Jj=0,1, then T is bounded from [Xo, X1]g to [Yo, Y1]o-

We also invoke the following useful lemmas.

Lemma 2.1.5. [9], [3, Theorem 4.2.2] Let 6 € (0,1) and (Xo, X1) be a compatible
couple of Banach spaces. Then we have Xo N Xy is dense in [Xo, X1]p.

Lemma 2.1.6. [3, Lemma 4.3.2] Let § € (0,1) and F € F(Xo, X1). Then we
have

||F<9)”[XO,X1]9
%

< (ﬁ/RHF(z’t)HXOPO(Q,t) dt)lg (%/RHF(1+it)||X1P1(9,t) dt> (21)

where Py(0,t) and Py(0,t) are defined by
sin(7)
(cosh(mt) — cos(mh))

sin(70)
(cosh(mt) + cos(mwh))

Py(0,t) := 5 and P;(6,t) := 5

8



2.2 The second complex interpolation method

First let us recall the definition of Banach space-valued Lipschitz continuous
functions. Let X be a Banach space. Denote by Lip(R, X) the set of all functions
f iR — X such that

| fllLip,x) == sup 1/ () — f(s)llx

—00<s<t< 0o |t - 3|

is finite.

Definition 2.2.1. [3, 9](Calderén’s second complex interpolation functor) Let
(Xo, X1) be a compatible couple of Banach spaces. Denote by G(Xo, X1) the set
of all continuous functions G : S — X, + X; such that:

G(2)
p < 00,

1. sup Hl
z€S

Xot+X1
2. G is holomorphic on S,

3. the functions
teR—G(G+it)—G(j) € X;

are Lipschitz continuous on R for j = 0, 1.

The space G(Xy, X;) is equipped with the norm

1Glg(x0,x1) = max {[|G(i)||Lip(®,x0)s G+ i) |Lipr.x1) } - (2.2)

Definition 2.2.2. [3, 9](Calderén’s second complex interpolation space) Let 6 €
(0,1). The second complex interpolation space [ Xy, X;]° with respect to (Xg, X;)
is defined to be the set of all f € Xy + X, such that f = G'(#) for some G €
G(Xo, X1). The norm on [Xy, X1]? is defined by

HfH[Xle]e = inf{||G|lgxo,x1) 1 f = G'(0) for some G € G(Xo, X;)}.

The relation between the inclusion and the second complex interpolation
spaces is given as follows.

Lemma 2.2.3. [30, Lemma 2.8] If Xy — Y, and X; < Y3, then

[Xo, X1]7 — [Yo,11)".



Proof. Let f € [Xy, X1]?. Then f = G'(0) for some G € G(Xp, X1). By using the
following inequalities

[zollve S l7ollxo, 21l S lzallx,  and lzllyein S l2llxo+x.,
for every xy € Xo, x1 € X3, and z € Xy + X;, we can show that G € G(Yp, V7).
Thus, f € [Yo, Y1)’ O

The relation between the first and second complex interpolation functors is
given in the following lemma:

Lemma 2.2.4. [27, Lemma 2.4] For G € G(Xy, X;), 2 € S, and k € N, define
G(z+27%) — G(2)

Hk(Z) = 27]%

(2.3)
Then we have Hy(0) € [Xo, Xi]s.

Proof. We give a simplified proof of [27, Lemma 2.4]. The proof is adapted
from [30]. The continuity and holomorphicity of Hj is a consequence of the
corresponding property of G. Let j € {0, 1} be fixed. Since t € R — G(j +it) €
X is Lipschitz-continuous, we see that t € R +— Hy(j +it) € X; is bounded and
continuous on R. Therefore, Hy € F(Xy, X1). Moreover,

| Hi(0)[1x0,x110 < 1HE| F(x0,x1)

G +i(t+27%) - G(j +it)
2-kj

X
< |GHQ(X0,X1) < 09,
as desired. n

We shall also use the following useful connection between the first and second
complex interpolation, obtained by Bergh [4].

Lemma 2.2.5. [4] Let (Xo, X1) be a compatible couple and 6 € (0,1). Then we
have ,
[X(), Xl]g = X() N Xl[XO’Xl] . (24)

2.3 Calderoén product

In order to obtain the description of the first complex interpolation spaces, some-
times it is easier to calculate the Calderén product of Banach lattices and ap-

10



plying the result of Sestakov in [52]. The definition of the Calderén product and
Sestakov’s lemma are given as follows.

Definition 2.3.1. Let 6 € (0, 1) and (Xy, X;1) be a compatible couple of Banach
spaces of measurable functions in R”. The Calderén product Xo'~?X,% of X, and
X is defined by

XX = | R Cf@)] < U fol@)] 0 fi(2)) ae. z € R™Y

Jfo€Xo,fr1€X1
For f € Xo'7?X,%, we define

||f||X01’9X19

= inf{ follic" 1l « fo € Xo, fr € X1, [f(@)] < [fo(@)""Ifa(2)|” ae. w € R}

By virtue of the Holder inequality and factorization, for 1 < pg,p1 < 00
(L) =o(Lr)? = LP,

where p is defined by % = 1p_—09 + p%. We now recall the following result by
Sestakov.

Lemma 2.3.2. [52] Let (Xo, X1) be a compatible couple of Banach spaces of
measurable functions in R™. Then for every 6 € (0,1), we have

1-6 y0
XO Xl

[Xo, Xi]o = Xo N X,

11



Chapter 3

Complex interpolation of
generalized Morrey spaces

3.1 Previous results about complex interpolation of Mor-
rey spaces

The first result about the description of the first complex interpolation of Morrey
spaces was given by Cobos et al. [12].

Theorem 3.1.1. [12] Let 6 € (0,1), 1 < gy < py < 00, and 1 < ¢; < p; < 0.
Define p and q by

1 1—-0 40 1 1-6 40
— = + — and - := + —, (3.1)
p Po P1 q do q1
respectively. Then
[MEP, Mt © MY (3.2)

Assuming B2 = £ Tu et al. [36] improved the description of [MEs, Mit]s

in Theorem 3.1.1. Morever, their result are in the setting of Morrey spaces over
metric measure space.

Theorem 3.1.2. [36] Let 0 € (0,1), 1 < gy < po <00, and 1 < ¢ < p; < 0.

Assume that 22 = 2L Then
q0 q1

o ~ oM
(Mg, Miilo = Mgg N Mg, (3-3)
where p and q are defined by (3.1).

12



The key parts of the proof of Theorem 3.1.2 are Lemma 2.3.2 and the calcu-
lation of the Calderén product between M and MEL. We shall see in Section
3.2 that Theorem 3.1.2 can be seen as a special case of the first complex inter-
polation of generalized Morrey spaces. Another decription of the first complex
interpolation of Morrey spaces was given by Yuan, Sickel, and Yang [55] in term
of the space Mgg:gll’e. The definition of this space is given as follows.

Definition 3.1.3. Keep the same assumption as in Theorem 3.1.2. The space
Mggjgll’e is defined to be the set of all functions f for which

1

max sup Bz, )" ( / R dy)"<oo,
B(x,r

J=0,1 zeR™ r>1

Q=

sup | B(z,r)|r”

q
(/ 1f (W)l dy) < 00,
zeR?,0<r<1 B(z,r)

lim |B(a, )|+ < [ s dy) o,
r—0+ B(z,r)

uniformly in x € R™.

and

Let us recall the description of the first complex interpolation of Morrey spaces
in [55].

Theorem 3.1.4. [55] Keep the same assumption as in Theorem 3.1.2. Then
(Mo MP g = MpopLE (3.4)

q0°’ 40,91

The description of the right-hand side of (3.3) and can be refined as follows.

Theorem 3.1.5. [27] Keep the same assumption as in Theorem 3.1.2 and assume
also that qo # q1. Then we have

[MZ&M@H@ = {f € MZ : ]\};H;O Hf - X{%glﬂgN}f“M‘q’ = 0}. (3.5)

Note that Theorem 3.1.5 is an improvement of Theorems 3.1.2 and 3.1.4, in the
sense that, [MF0, MP]y is now written in term of the parameters p and ¢ only
and this description is more explicit than the right-hand side of (3.3). We shall
prove Theorem 3.1.5 as a corollary of the corresponding result for generalized

Morrey spaces.

Observe that the function f(x) := |z|~™/? does not belong to the set in the
right-hand side of (3.5), but this function is in M?. From this observation, one

13



may inquire whether we can interpolate Morrey spaces and the result is also
Morrey spaces. The affirmative answer was given by Lemarié-Rieusset [35]. He
proved the following result about the second complex interpolation of Morrey
spaces.

Theorem 3.1.6. [35] Keep the same asssumption as in Theorem 3.1.2. Then
[Mpo

q0°’

MBS = M,

q

It is written in the book [3, p. 90] that the first complex interpolation space is
the main interest in this book and the second complex interpolation method is
considered as a technical tool. Hence, Theorem 3.1.6 can be seen as an example
of the importance of the second complex interpolation method. We shall give a
generalization of Theorem 3.1.6 to the setting of generalized Morrey spaces in
Section 3.3.

3.2 The first complex interpolation of generalized Morrey
spaces

In this section we give a description of the first complex interpolation of general-
ized Morrey spaces. Our proof uses Lemma 2.3.2 and the following result about
the Calderéon product of generalized Morrey spaces.

Proposition 3.2.1. Let 0 € (0,1), qo,q1 € (1,00), ¢o € Gy, and ¢1 € Gy, .
Assume that oo and o1 satisfy

wo =i (3.6)
Define ¢ and q by
_ 1 1—-0 40
0 :=pp ! and - .= + —, (3.7)
q 4qo 41
respectively. Then
1-6 o
(M) I (M) = M. (3.8)

Proof. Let B = B(a,r) be any ball in R” and & > 0. Let f € (Mg0)=?(M#1)f.
Then, there exist some functions fo € M7 and f; € M?! such that

[f(@)] < [fo(@)" I fi(2)’, ae. z €R" (3.9)

14



and
HfoHMvo HleMm < (@)l ffomgoy-o gy (3.10)

By using Holder’s inequality and (3.9), we have

([ 1 dx); < ([ tn@r=o1ne@r dx);
< ([ i d) ([ 15 dx);l. (3.11)

Combining (3.6)—(3.7) and inequalities (3.10)—(3.11), we obtain

H 1-0
2 ([ ) < 2B o

IN

1 foll gz Il fill %z
< +5)HfH(M%))1* (M)
Since ¢ is arbitary, we have f € M{ with || f][ v < Hf||(M§£)1,@(M511)g. Thus,
(Mg =0 (Me)" C My

Conversely, let f € M. Define fi=If |% where j € {0,1}. It follows from
(3.6)—(3.7) that
! =gy = ¢l (3.12)

Then f; € My’ with HfjHij = Hf||/€¢ for j = 0,1. Observe that, we have
qaj q

~ ~ q(1-0) qf
ol 1 ful” =[] 0 = |fl (3.13)
and
q(l 9)+q0
190 gy i < 1o Nl = 150 = 1 < oo (314)

Consequently, f € (/\/lfoo)l_e (Mfll)e. Therefore, Mg C (M) =0 (M£1)°.
Thus, we have proved (3.8). O

Combining Lemma 2.3.2 and Proposition 3.2.1, we have the following gener-
alization of Theorem 3.1.2.

Theorem 3.2.2. [24] Keep the same assumption as in Propostion 3.2.1. Then

ME ME ]y = MEg 0 MG

g0’

15



Note that we can recover Theorem 3.1.2 by taking ¢o(t) := tvo and ©1(t) := to
We now prove the following generalization of Theorem 3.1.5.

Theorem 3.2.3. [27] Keep the same assumption of Proposition 3.2.1 and assume
also that qo # q1. Then

[MED, M2y = {f eMZ: lim If = X2 <pem Fllvg = o} . (3.15)
Remark 3.2.4. If ¢;(t) = t7 where j = 0,1, then we can recover Theorem

3.1.5.

In order to prove Theorem 3.2.3, we need two lemmas. The first one is the
fact that the set in the right-hand side of (3.15) is closed. The second lemma
tells us that this set contains M0 N M#L.

Lemma 3.2.5. Let 1 < g < oo and ¢ € G,. Then the set

a={re s tim [f - xpanend],, =0} G0)

1s a closed subset ./\/lf.

Proof. Let {f;}52, C A be such that f; converges to f in M¢. Fix j € N. For
every N € N, we have

HX{|f<11V}fHM§ <|f- fj||M;" + HX{|f\<%}m{|fj|z%}fi M? T HX{Ifj|<%}fJ'

MG

and

HX{\f|>N}fHM§ < ”f - fj”/vlf + HX{|f|>N}m{|fj|§%}fj m? + HX{|fj|>%}fj M
On the set {|f] < &} N{|f;| = %}, we have

1 1
il < 1fs = I+ U< s = fl 4 5 = 1 = fI+ Sl
and hence |f;| < 2|f — f;|. Consequently,
Ixasef| . <308 = fillwes +|Pgpiezy i) (3.17)

Meanwhile, on the set {|f| > N} N {|f;] < 5}, we have

N s }
‘fj‘§§<|7f|§w+@,
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and hence, |f;| < |f — f;|. Therefore,

HX{\f|>N}fHM§;’ <2|f- fj”M§ + ‘|X{\fj\>%}fj”Mf;’- (3.18)
By combining (3.17) and (3.18), we get

|7 - X{}VSfISN}fHMg = HX{|f|<}v}fHMg + I e

< 5Hf - fjHM?f + HX{|f].|<%}fj o + HX{\fjb%}fj Mo

Since f; € A, we have
hngUP If = X{%gf\gv}f“/\/l?j <5|f - fj”Mﬁ'
—00
By taking j — oo, we have lim [|f—x 1 <y<nyfllamg =0, and hence, f € A. O
N—oo N == q

Lemma 3.2.6. [27] Maintain the same conditions as Proposition 3.2.1 and let A
be defined by (3.16). Then
MPNMFC A

Proof. Without loss of generality, we assume that ¢; > qo. Then, ¢ > q¢ > qo.

Consequently, for every f € Mg N MZ!, we have

1—490 90 1-4a a
| = xepamnemd| e < Dxaneasl 111 % aeg + x5 171 g
< N1 N1l
MY MY
%0 %0 a—q1 %1
= N S + N s 0
as N — oo, which implies f € A. H

Now we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. By virtue of Theorem 3.2.2 and Lemmas 3.2.5 and 3.2.6,
we have

—MW

[MZ)O?M?;]@ = Mgoo N Mgf ! C A
Conversely, let f € A. For every N € N, define fy := X{%SIfISN}f' As in the
proof of Lemma 3.2.6, we may assume that ¢y < ¢;. Then ¢y < ¢ < ¢;. This
implies

a-40
<N @ [|f|4# < oo

-4, ., 2
I llaegy < HX{%SM}W R
0
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and

q1 —4g
o SN angg? < 0.
a1

1—Z 2
Il < [xanemlf =571

Therefore, f € Mg N /\/lfqu by the definition of A. According to Theorem
3.2.2, we have f € [M£, M#]y as desired. O

q0 7’

3.3 The second complex interpolation of generalized Mor-
rey spaces

We prove a generalization of Theorem 3.1.6 in the setting of generalized Morrey
spaces. First we prove the following lemmas about the construction of the second
complex interpolation functor.

Lemma 3.3.1. [24, Lemma 4] Let g0 > q and f € LY. Define ¢ : S — C,
F:S—L%and G:S — L° by:

1 _1—2 Z

@ o + a, (3.19)
F(z) :=sgn(f)exp (%1% ]f|> (z €8), (3.20)
and .
G(2) = (= — 0) / FO+(—0)t)dt (= €3), (3.21)
0
respectively. Define Fy, Fy, Gy, G1: S — L° by:
Fo(z) :== F(2)xqpn<y,  Fi(z) == F(2)xqs513 (3.22)
and
Go(2) == G(2)xqr<y,  Gi(2) = GE)xqss1y- (3.23)
Then, for any z € S, we have
G(2)] < (L+[2))(| 12 + | F]7). (3.24)

For any z € C with e <Re(2) <1 —¢ and w € C with |w| < 1, we have

‘Go(z + wu)} — Go(2) — Fy(2)| < C.w)| - |f|%’ (3.25)
‘Gl(Z—i-wu)}—Gl(Z) — Fi(2) §05|w|'|f|%7 (3.26)

where the constant C. depending only on € € (0,1/2).
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Proof. For t € [0,1], define v := (2 — #)t + 6. Since Re(v) € [0, 1], we have
[F(0)] < |faw TRt
< (1= Re()|f|% +Re(v)|f|% < |flo +|fl=.  (3.27)
By the triangle inequality, we have
G < J2 = 6] (IF1% +£1%) < (14 J2) (115 + 1715
Writing out the definitions in full, we obtain
Go(z +w) — Go(2)

w

- F()(Z)

— |Fo(Re(2))] |— [qfijg:qu o

Since qo > q1, we have

Go(z + w) — Go(2)

w - FO(Z)
— ey B O R et | 7 o (G + ) toslsl] -1 _
_ w(g — &) log|f]
B e deas et o
< xunenlf® - 1) »
o w(Z = Z)log|f
exp [q <__w + ﬂ) IOgt] 1
< 111 gup (75 ) T 1| <l - 115
Ost=t w(l — L)logt

By a similar argument, we also have

Gi(z + w) — Gi(2)

w

— Fi(z)

ex
= Xqrulfl |f|<%—%)<1—Re<z)>

, y exp[q(ﬂ-l-H 10g|f|]_1
< Lo () 2% -
< xqsplflm - [ w(L — L) log|f]

< |f|% Supf,‘(qo a1
t>1 w<_ _ a

e _a),|“XP [q (;—;”—Fqﬂl) logt] —1 q
o ) ~ 1] < Cuful |15

as desired. .
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Lemma 3.3.2. 24, Lemma 12] Let f € M?. Via (3.19) define F : S — M# +

M?Land G S — ME + MY by (3.20) and (3.21), respectively. Then, the
function G belongs to Q(M‘po M‘pl).

qo0

Proof. Tt follows from (3.24) that G(z) € M0 + M and

16 laage sy
sup L < I+ I
z€S

Now let 21,2, € S. Then, by inequality (3.27), we get

|G(z1) — G(Zz)||M§§+M§f < |21 — 2| <||f||q/ + ||f||q/‘h> .

This shows the continuity of G : S — Mo+ Mgt The proof of holomorphicity
of G: 8 — M#o + M#! goes as follows. Let €€ ( 1) and define

Se:={z€ S:e<Re(z) <1—c¢}.

According to (3.25) and (3.26), we have

G(z+w)—G(2) _Fls
H )
w MEO - MEL

< Celul (112 + A1)

Taking w — 0, we see that G : S, — Mg° + M?#! is holomorphic. Since € > 0 is
arbitrary, we conclude that G': S — M + M is holomorphic.

We now verify that G(j + it;) — G(j + it2) € M for every t1,t, € R and
j €{0,1} and also

1GG + i) lipagy < (L llaeg) (3.28)
for every j € {0,1}. Combining |F'(j + it)| = |f]% and

to
G +ity) — G + ita) = —z'/ F(j+it) dt,
t1
we get

2

. . . . q;
|G +it) = G(j + th)Hngj < [ty = b1 f1] 0
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This implies (3.29). Thus, G € G(MZ, M?!) with

q0
|Gllgeago aagty < IFISGE (3.29)

as desired. O

Note that we can not use the function F' defined by (3.20) as the first complex
interpolation functor because F' does not belong to F (M, MP!) when f(z) :=

|z|~"/P. This fact is a consequence of the following proposition.

Proposition 3.3.3. [24, Proposition 4] Let f(x) := |z|™/? and define F by
(3.20). Then the mapping t € R+ F(it) € M is not continuous at t = 0.

1
p1

L Using 2 = 2 = L for
Ppo q0 q q1

Proof. Assume that pg > p; and define Q) :=

every 0 <t < %, we have

_n : _n tl
|F(it) — F(0)] = || %o ||z ~®" — 1| = 22| ‘sin (QOTM)‘ (3.30)

Using (3.30) and letting R := exp((Qt)™!), we get

| <Qtloglx|> “ )
sin [ ———— dx
2
no_n _nag )
> Rwo (/ |2z| o dx) > 1, (3.31)
B(0,2R)\B(0,R)

where we use
‘ . (Qtloglxl)
sin —5

for every R < |z| < 2R. Thus, (3.31) implies
T [[F(it) — F(0)Luzg #0.

as desired. n

|E(it) = F(0) ] v

nqq

> 9|B(0,2R)| ® (/ 2|~ o
B(0,2R)\B(0,R)

1

> sin(1/2)

Now we arrive at our main result in this section.

Theorem 3.3.4. [24, p. 316] Keep the same assumption as in Proposition 3.2.1.
Then

IME MET = M2, (3.32)

q0 q
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Remark 3.3.5. Taking ¢(t) := to and 1(t) = t#1, we recover Theorem 3.1.6.

Proof of Theorem 3.5.4. Let f € M. By a normalization, we may suppose

I fllmg = 1, for the purpose of proving f € [Mg0, M£1)°. For every z € S, define

F(z) and G(z) as we did in Lemma 3.3.1. Thanks to Lemma 3.3.2, we have
G € GME, M¢1). Since G'(0) = F(0) = f, we have

q0’

||f||[M;”§,Mg’11]9 < ||G||g(M§(§),M§11) = jH:l%?f G+ i‘)“Lip(R,M;ﬂ') =1

This shows that [M#£0, M#21]? 5 M. Conversely, let f € [M#, M#1]? with

90’ 90’
1 lpmgo agje = 1.
Suppose f is realized as G'(0), where G € G(M¥°, M#!) and ]|G||g(qu£,M511) < 2.
For every k € N and z € S, we define Hy(z) by (2.3). According to Lemma 2.2.4
and Theorem 3.2.3, we obtain

IOl S IO Dizo sz, < 1Clougoney <2 (333)
Meanwhile, since f = G'(0) = lim H(f) in M + M!, there exists a sub-
k—o0
sequence {Hy, }32, such that f(x) = lim Hj, (¢)(x) for almost every z € R".
j—o0
Consequently, by virtue of the Fatou lemma and the inequality (3.33), we have

1Fllaag S timinf [[Hy, (0) | sag < 2.

This implies [M£0

qo0?

M — M. O

3.4 Complex interpolation between L>* and the general-
ized Morrey space MY

Note that, when py and p; are finite, Theorem 2.1.3 is a special case of Theorems
3.1.2 and 3.2.2. In order to recover Theorem 2.1.3 for the case py = 0o, we give
the following supplement of Theorem 3.2.2.

Theorem 3.4.1. [30] Let 0 € (0,1), 1 < ¢ < o0, and ¢ € G,. Then

oo _ 0 . 3 —
[L>, M7l = {f € Mg lim HfX{|f|<§}u{|f|>N}HMZ:/@G = 0}- (3.34)

As in Section 3.2, we first prove the Calderén product between L> and M.
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Lemma 3.4.2. [30] Let 0 € (0,1), 1 < ¢ < o0, and ¢ € G,. Then we have

(L) (ME) = M), (3.35)

Proof. Let f € ./\/lfje and define fy :=1 and f; := |f|*/?. Since

0 _
[folle= =1, fillsg = 141100 < o0, and S *1A) = |11,

q/0

we have f e (L™)'"(M£)? and || f|(zooyr-o(pagye < [f1l o0 - Consequently,

q/0

ME7y s (LX) (M2’

q/0 q

with embedding constant 1.

Conversely, for f € (L>)'"?(M¢#)? and ¢ > 0, choose fo € L and f; € M?
such that

L 1AIAI and (1Al AN < A+l flwey-opugye.  (3.36)

Let z € R® and r > 0. As a consequence of (3.36), we get

e ([, w)' < oy ([, 0w w)

o ll = 11 1

(L + )l fllzoeyr-o gy,

N

<
<

and hence, f € ./\/lj/e@ with ”fHMsﬂ < | fll¢zeeyr-o(pgye- Therefore,
q/0

00\1-6 0 o

(L) (M) > M,

Thus, (3.35) holds. O
The proof of the first complex interpolation of L> and MY is given as follows.

Proof of Theorem 3.4.1. We combine Lemmas 2.3.2 and 3.4.2 to obtain

00)179(./\/15)0 <P9

L%, ME)y = T2 A MG — T M, (3.37)

23



Let f € [L®, M?]s. As a consequence of (3.37), for each ¢ > 0, there exists

g = g- € L N M? such that

£
If = gl <5

LP/GG
For each N € N, we have
X< tronsnsm! < I xqney] + xassn |
< 2| = gl + 9xq 1< 2ngigl> 23 F 19X g1 23
+ x5 Mnge< 2y 19X 005 23

Observe that, on the set {|f| < &} N{|g| > £}, we have

1 g
ol <IF =gl + 171 < 1F — gl + % < If gl + 2]
N 2
Therefore,
[9X (171« 2ynqg> 23] < 21F — gl
Meanwhile, on the set {|f| > N} N {|g| < &}, we have
N f
FI<1f =gl +lol <1 —gl+ 5 <17 —gl+ 12

and hence,
X mngg<yy ) < 20 =gl
By combining (3.39)-(3.41), for

_1
1+ Hg”?wg’) e

N > 2max < ||g|| L=, ( .

we have

lfXqs<ymogssny <6lf —gl + |gX{|g|§%}’ + |9X{\g\>g}‘
5\ 10
6
<6|f—g|l+ (N) 191” + 19X 19523

<6|f —g|+ lg/°.

9
NP

We combine the last inequality and (3.38) to obtain

3
1 o <6|f— o+ —Fr— 0 0
||fX{\f|<N}U{|f|>N}HM§/G ||f gHMg/G 1+ HgHi/[qW”|g| ||./\/l§/9

€

<et+——p—
T ol

gl < 2¢.
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This shows that ]\}1_{%0 HfX{|f|<%}U{|f\>N}HMg/"e =0.

Conversely, let f € /\/lf/oe be such that
A 1 xas<dyoussmlaes, =0 (3.43)

For every N € N, define fy := fX{%gmgN}- Since fy € L™,
_1 1 1/6
1 fxllaeg < (/NS F1Y | pap = N 1IIJ‘IIA/#,,Q < o0,
q/0

and
— — 0
If fNHM;o/ﬂg ”fX{|f|<%}U{\f|>N}HM;GG

0

_ M¥
as N — oo, we see that f € Lo N MG 4" = [L>, M?],. O

Similar to Theorem 3.4.1, we also give a description of the second complex
interpolation between L and M.

Theorem 3.4.3. [30] Let 0 € (0,1), 1 < g < o0, and ¢ € G,. Then we have

(L7, M) = Mg

o (3.44)

Proof. Our proof of (3.44) combines (3.34) and Lemma 2.2.4. Let [ € [L>, M
and € > 0. Then, we can choose G' € G(L>, MY) such that

G'(0)=f and |Gllgremgy < (14 fllioo mgpe-

For every z € S and k € N, define Hy(z) by (2.3). By virtue of Lemma 2.2.4, we
have Hy(0) € [L>, M?]p with

[He @Ol mg1, < (U4 ) fllzoe magre- (3.45)
Combining (3.45) and (3.34), we get

[Hi (O oo < (L&) f Iz mgp0- (3.46)
q/0

Since klim Hy(0) = G'(0) = f in L+ M7, we can find a subsequence { Hy, ()} 22
—

C {Hi(0)}72, such that
lim Hy, (0)(z) = f(z) a..

J—00
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By virtue of Fatou’s lemma and (3.46), we get
“fHMﬁfe < liminf ||ij(9)||Mq¢/99 < (L) f iz mgpe-

Since £ > 0 is arbitrary, we have HfHMw/eg < N fllzoe, gy
q

Conversely, let us assume that f € ./\/l(fje. For every z € S, define

F(2):=sgn(f)|fl? and G(z):= (2 — 0)/0 F(0+ (z—0)t) dt. (3.47)
Let Fo(2) == xq<n3F(2), Fl(z)_:: F(z) = Fy(2), Go(2) = xq<13G(2), and
G1(z) == G(z) — Gp(z). Let uw € S. Since Re(u) € [0, 1], we have

Re(u) Re(u) 1

[Fo(u)] = xqgneplfl 7 <1 and  |Fi(u)| = xqpsnlfl 7 <I[f]7.
Consequently,
0
1F ()| oo raag < [Fo(w)llzoe + 1 Fr ()|l agg < 1+ ag = 1+ Hfowe )
q/6
(3.48)
|Go(2) |l = H/ Fo(u) du <|lz—=0| < (1+]z]) (3.49)
% oo
and
161 GIg = | [ Fitw ] <l O < QDAL o <o
0 Mg a/0
(3.50)
This implies G(z) € L> + MY and
G 1
sup || -E&) ST+ |fI7 L, < oo (3.51)
25 1L F 12l oo aag Maro

Fix 0 <e < 1. Let z € S with € < Re(z) < 1 —¢ and w € C with |w| < 5. Since

z+w)— F(z)
log(|f1) 7

G(z+w)—G(z) = /Z+w F(u) du = il
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we have

Go(z +w) — Go(2) exp(w log(| /%)) — 1
—Fy2)| = |R 1
" 0(2)| = [Fo(2)] wlog(| f]79)
e |exp(wlog(|f]'/)) —1
= —1
= Xqsylf 7 wlog(|F[17%)
. |exp(wlog(|f]) — 1 ’
<x f -1
{\f|<1}| |7 wlog(|f|1/9)
1 -1
< sup £° exp(w logt) 4|
0<t<1 wlogt
Observe that, for every ¢ € (0, 1), we have
e exp(wlogt) —1 1' _ i wlogt
wlogt
k=2
- 1 t
< —t*|w|(log t) Z ]w[ og
k=2
< —t*|w|(log t) exp(—|w| log t)
< —t*|w|(log t) exp(—glog t)
e 2
= —t2(logt < —w|.
(o)l < 2 ul
Consequently,
G -G 2
H B2 g < 2 (3.52)
w [ €€
By a similar argument, we also have
G1(2+w)—G1(z) 2 1 19
' —R(2)| < —ollllflellme = | A1, ", (353)
w mp o €€ Mo

Combining (3.52) and (3.53), we get
HG(Z +w) - G(z) F(2)

w

2
(1 I ) w0 (3.54)
56 q/9

Lot ME

as w — 0. According to (3.48) and (3.54), we have G : S. — L>® + M? is a
holomorphic function. Since ¢ is arbitrary, we conclude that G : S — L> + M?
is holomorphic.

Observe that, for j = 0,1 and t1,t; € R, we have

Gj +its) — G(j + ity) = i/b Fj +it) dt. (3.55)

t1
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Combining (3.55), |F(it)| = 1, and |F(1 +it)| = | f|#, we have
|G (ita) — G(it1)|| e < [t2 — ti]

and )
IGQA +ito) = G +aty)[[amg < Jt2 = talll I o

q/0

which verify Lipschitz-continuity of the functions ¢ € R — G(it) — G(0) € L™
and t € R = G(1+1it) — G(1) € M¢. Thus, we have G € G(L>, M¢). Since
[ =F(0) = G'(0), we conclude that f € [L>®, MZ]? as desired. O
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Chapter 4

Complex interpolation of some
closed subspaces of generalized
Morrey spaces

Let 1 < ¢ < p < oo and define f(z) := |z|™/7. Observe that f € M? and for
any R > 0, we have

1f = xBo.r fllme = 1 fxBo.r v = | fllre- (4.1)

This shows the difficulty of approximating functions in the Morrey space MY by
compactly supported functions [50, p. 1744]. Recently, the description of the
closure in M? of LZ° is given in [24, Lemma 7]. For the next discussion, we use
the following notation:

Definition 4.0.1. Let 1 < ¢ < o0, ¢ € G,, and L2 be the set of compactly

supported functions. The spaces Mf, M, and ﬂf denote the closure in MY of
L, LN My, and L> N MY, respectively. We also write L> for the closure of

L in L™=, If ¢(t) := t™/?, then we write MVZ, M?, and Mf]’ for the corresponding
closed subspaces of Morrey spaces.

*

Our results on the characterization of ./W‘;, M7, and M§ are given as follows:

Theorem 4.0.2. [27, 30] Let 1 < ¢ < oo and ¢ € G,. Then we have

M7 ={f e M7 lim g muensom /g = 0}, (4.2)
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= {reMs: Jim xensom il =0}, (4.3)

and

e ={remg: lim Ingrem Sl =0} (4.4)

Remark 4.0.3. Note that, the identity (4.2) for the case inf ¢ = 0 can be seen in

24, Lemma 15]. We also remark that another characterization of M? was given
by Yuan et al. in [55, Lemma 2.33]. Meanwhile, the description of the space Mg
and MY was given in [10, Lemma 3.1] and [27, Lemma 2.6], respectively.

The proof of Theorem 4.0.2 will be given in Sectlon 4.1. By using (4.2), (4.3),

and (4.4), we can verify the examples of ./\/lp - /\/lp G M?P and MP C G ME as
follows:

Example 4.0.4. Let 1 < ¢ < p < co. For x € R”, define f(x) := |z|™/7,
( ) —f( )XR”\BOl)( ) and h( ) f( )XBOl)( ) ThenfEMg\(MgUMé’),
gE/\/lp\/\/lp andhE/\/lp\/\/lp

The sets L, LY, and L™ are the model cases of the following closed subspace of
Morrey spaces.

Definition 4.0.5. Assume that a linear subspace U C L° enjoys the lattice
property: g € U whenever f € U and |g| < |f|. For 1 < ¢ < oo and ¢ € G,
define

UM =TnMG (4.5)

Taking U = L, L, L™, we get UM = //\/lvf,/\/lf,ﬂf. Another example of
U = L°(Q), namely the set of measurable functions f vanishing outside bounded
domain €2. We also define

Usa M? = {f € M?: Xta<isj<ty f € UM for all 0 <a <b<oo}.  (4.6)

The first result on the complex interpolation of closed subspaces of Morrey
spaces was given by Yang, Yuan, and Zhuo [54] The authors gave a description of

the first complex interpolation space [./\/lfl’g, Mpl]g, where /\/lp denotes the closure

in /\/l{]’ . Let us recall their result as follows.
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Theorem 4.0.6. Let 6 € (0,1), 1 < g9 < pg < o0, and 1 < ¢ < p; < 0.

Assume that 2’—8 = %. Define p and q by

1 1-46 0 1 1-6 0
= 4+ — and -:= + —.
p Do h q q0 qQ

Then

o

MO, M2 g = [MEO, MDYy = M2, MP]y = M.

q0°’ q0°’ q0’ q

In this thesis, we investigate the first and second complex interpolation of

closed subspaces of generalized Morrey spaces UM and UMY, where U sat-

isfies the condition in Definition 4.0.5. We shall discuss these results in Sections
4.2 and 4.3. Remark that a description of complex interpolation of the diamond
spaces can be seen in [28].

4.1 Closed subspaces of generalized Morrey spaces satis-
fying the lattice property

Our proof of Theorem 4.0.2 (4.2) utilizes the information about the level sets of
the functions in M? and L N M. The proof of (4.2) is given as follows:

Proof of Theorem 4.0.2 (4.2). Let f € //\/l\g’ and € > 0. Choose g € L2° such that
£
5

Choose R. > 0 such that R. > 2||g||z~ and supp(g) € B(0, R.). For every
R > R., we have

1f = gllme <

X175 ryu@EnBO.RYS| < |f — gl + IX(r>Rr19] + [XR2\B(O,R)I]

R
<|f—gl+ X{f1>Ry

/]
<I[f-gl+ X{|f|>R}u(R"\B(0,R))7- (4.7)

Therefore, for every R > R., we have

IXq171>rRyu@n\BO,R) S| < 2|f — 9,

and hence
X715 ryuEBO.R)Y Mg < 2/1f — gllmg <e
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This shows that 1%1_{1;0 X (171> RyUERn B0, R) | A2 = O.

Conversely, let f € MY be such that
1' n = U.
A (g s> muen o) fllmg =0

For every R > 0, define fr = xqg<mnsor)f Note that |fz] < R and
supp(fr) € B(0, R). Hence, fr € L. Since

A ([ = frllvg = Hm [xqssmoensor) fllvg =0

and fr € LY, we see that f € /\A/F;. O

We now give the proof of Theorem 4.0.2 (4.3):

Proof of Theorem 4.0.2 (4.3). Let f € M and ¢ > 0. Then, there exists g. €
LY N M such that

1 = gellmg <e (4.8)
For any R > 0, we have

X\ BO.R) | < [XRM\BO,R)9:| + [XR\BO,R) ([ — 92)| < [XRM\B(OR)G=| + | f — el
Choose R. > 0 such that supp(g.) C B(0, R.). Then, for all R > R., we have

IXe\Bo,R) S| < |f — gel-
Consequently, for all R > R., we have

Xz BO.R) fllame < I = gellmg <e

This shows that I%E)%O [ X&m\B0.R) fll Az = 0.

Conversely, assume that f € M7 and that
A [[xeeso,r) fllmg = 0.
For every R > 0, define fr := x(o,r)f. Then fr € LI N M, and it follows that

Rhm ||f_fR||M§ :Oa
—00

so then f € MY.
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The proof of (4.4) is given as follows.

Proof of Theorem 4.0.2 (4.4). Let f € M be such that ]%im Ixq171>ry fllmge = 0.
—00
Define fr := xqs<ryf for every R > 0. Since fgp € LN M7 and
If = frllme = Ixqssryfllme — 0

as R — oo, we see that f € M{.

Conversely, let f € Mf and £ > 0. Choose g € L> N M? be such that
€

3"

Let R. :=2||g||p~. Then, for every R > R., we have

1f = gllme <

IXussrr S| < Ixqpsry(f = 9+ [Xq171>r39]

R
<|f=gl+xuemny
I£1
2 )
so |xqs>ryf| < 2|f — g|. Consequently, for every R > R., we have

<|f =gl + xqs>r

Ixgrsryfllag < 20f = gllmg < e
This shows that lim ||x{s>ryfllame =0, as desired. O
R—o0 q

As a corollary of Theorem 4.0.2, we show that //\/lvf is the intersection of M¥
and ﬂg.

Corollary 4.1.1. [30] Let 1 < g < 0o and ¢ € G,. Then, va = ./{k/lg nMe.

Proof. The inclusion /f\\/l/g C /\*/lf mﬂg follows from Mf C /(F/lg and /f\;ng C Mf.
Conversely, let f € /\*/lf NM¢. Define Ag := {|f| > R} U (R"\ B(0, R)). Then

IXarfllae < lxen\Bo,R) fllag + Ixgrsry fllvg- (4.9)

Since f € M? and f € ﬂf, by combining Theorem 4.0.2 and (4.9), we have

Jimn (|4, flLaeg = 0. (1.10)
and hence, f € .K/lvf. This shows that Mf N M§ - va. O
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4.2 The first complex interpolation of some closed sub-
spaces of generalized Morrey spaces

We obtain the following description of [UM¥0

q0 "’

UMZHy.
Theorem 4.2.1. [27] Let 0 € (0,1). Suppose that the parameters 1 < gy < 0,
0o € Gy 1 < qu <00, 01 € Gy, satisfy qo # q1 and pf® = of". Define

B 1 1—-6 0
Y= cp(l) ego‘f and - := + —.
q qo0 q1
Then we have
[U./\/lfoo, UM§11]9 = U/\/lg N [Mfoo, M?j]g

= {7 e UMz lm If ~ xepen fllag =0}

As a special case of Theorem 4.2.1, we have the following corollary:

Corollary 4.2.2. [27] Suppose that 6 € (0,1), 1 < gy <po <00, 1 <q <p; <

00, and 2 =B Define
q0 q1

1 1-0 0
= +— and

1 1-6 ¢
P P m q o ¢

Then we have

(Mg, Mitly = My = [ME2, M,

q0°

In order to prove Theorem 4.2.1, we need to prove the following lemmas:

Lemma 4.2.3. [24, Lemma 4.2] Assume the same paramaters as in Theorem
4.2.1. Let E be a measurable set such that xp € UMY. Then

X5 € UME N UM,

Proof. Let xp € UMY and choose {gy}72; € U N M? for which
lim [|xg — gkllrme = 0.
k—o00

Define hy, := x{g,20yne- Then, for each & = 0,1, we have

Ixe = Bl s = lIxe = hell i < lxe — aell 3 =0

as k — oco. Thus, xp € UM NUMZ!. ]
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Lemma 4.2.4. [24, Lemma 4.1] Assume the same paramaters as in Theorem
4.2.1. Then U/\/lfo0 N U./\/lfl1 - U./\/ljl".

Proof. Without loss of generality assume that ¢ > qo. Let f € UM NUMZ!.
In view of Lemma 3.2.6, we may assume f = xi/n<|f<n}f for some N € N.
By the lattice property of the spaces UM, UM$! and UMY, we may assume
f = x& for some measurable set E. Choose a sequence {g;}32, € U N M! such
that

i I~ g5l =0
Define F; := {g; # 0} N E. Hence |f — xp| < 2 and |f — x5 | < |f — g4l
Consequently,

<277 B
| <2 =gl

q

_a1 a
1 = xemllag = || 1 = xm 751 = x|

This shows that f € UM?. H

The proof of Theorem 4.2.1 is given as follows:

Proof of Theorem 4.2.1. We assume that ¢; > qo. By using Lemma 4.2.4, the
inclusions [UMZ0, UMEi]g C [ME0, M?1]y € MP, and the fact that X, N X is

q0 q0

a dense subset of [Xo, X1]p, we have [UMZ0, UMy € UMP. Consequently,
[UMEo M.

q0’ UM?HG g UMZ N [Mgo()’
Conversely, let f € UMP N [MZ0, M?1]y. Note that, for any 0 < b < ¢ < oo, we
have a pointwise estimate:

1 | f]
X{p<|fl<et < gX{bSIf\Sc}|f| < o (4.11)

SO X{v<|fl<e} € UM’;. From Lemma 4.2.3, it follows that X{p<|fl<er € UM?OO N
UM?L. For every N € N and 2 € S, define

1-z4 =z
Fy(z) = Sgn(f)\flq( 0 ql)X{%gmgN}'
Decompose F(z) := Fyo(2) + Fn1(2) where Fyo(2) := Fy(2)xqs<13- Since
Fyo(2)] < xgpapen and [Fva(2)] < (N% + N ) xayeny,
we have Fiy(z) = Fio(z) + Fni(z) € UME + UME!. Moreover, we also have

q a
sup HFN(Z)HUM§[9+UM;"11 < ”X{%g\ﬂgl}HUM;’g + (Nqo + N‘H) ”X{IS\fISN}HUmff-
z€S
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Observe that for every w € S, we have

q

Then we have

1Fn(2) = Fn(Z)lumgo sumen
/ Fy(w) dw
( a

q1
X

for all 2,2/ € S. Thus, Fy : S — UMz + UM is a continuous function.
Likewise we can check that Fy|s: S — U M“"O +UMZ! is a holomorphic function.
Note that, for all t € R and j = 0,1, we have

UM +UMG}

a .
) (M + N ) (10g V) x (Ixeg ipemtlumgroneg ) 12 = 2/

a4 _
qo

q 9 a9

— = — NqO—i—N‘H)logN

do ¢

<||X{N<|f|<1}||UM“’0 + HX{1<|f\<N}||UMv1> |z — 2|

a a9
[Fn (i +it)| = |f[] X(L<ipeny < NYX 1 qip<nys

so, Fy(j +it) € UM{’. Furthermore, by using (4.12), we get

J+it
1PN (5 +it) = Fx(j +it) [l pges = Fy(w) dw
I jtit! UM,
< <2 — —) <Nqo —|—Nq1> log N
do 1

xa/wsinsnlly e[t =4

for all ¢,#' € R. This shows that ¢t € R — Fy(j + it) € UM;’ are continuous
functions. In total, we have showed that Fy € F(UMZ0, U ./\/l“"l) Note that, for
M, N € N with N < M, we have

||FM(9)—FN( )|| (UM UME! <HFM FNH]—' UM UMTH)

a0
= ?71%7)(51616115 HFM(] + Zt) FN(] + Zt)HU/\/lgjj

_ Jai |
= massup ||| X <l g rotvsisisan g

U te

_ a/4;
= max ||fx (3 <in< tovancan g

< q/q]
hS jni%}f If - X{N<\f|<N}f||
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Since ]\}1_{1100 Ilf— X{%gu\gz\f}f“/\/iz = 0, we see that

1E2(0) — Fn(0) | wamgo vmgay, — 0

whenever M, N — oo. Thus, Fy () converges to g € [UME°, UM?!]s. Hence,

]\}gr(l)o Fn(0) = g in M#° + M?!. Meanwhile, by combining M¥ C M7o + M7
and

A}iinoo If— X{%g|f|§N}f||M§’ =0,
we have A}i_{nOOFN(H) = fin MZ + M which implies f = g. Thus, f €
[UME UMy as desired. O

q0

4.3 The second complex interpolation of some closed sub-
spaces of generalized Morrey spaces

Our main result in this section is the following theorem.

Theorem 4.3.1. [27] Suppose that 6 € (0,1), 1 < gy < 00, 1 < ¢ < o0, and
ol = f*. Define

_ 1 1-6 0
Y= cp(l) ego‘f and - := + —.
q qo0 qQ1
Then we have
[UME,UME = U pa M. (4.13)

As a special case of Theorem 4.3.1, we have the following results:

Corollary 4.3.2. [27, Theorems 5.2 and 5.12] Suppose that 0 € (0,1), 1 < gp <
00, 1 < q < 00, and ¢ = . Define ¢ == 50} and % = 1(1;09 + (%. Then,
the description of the second interpolation functor of these closed subspaces is as
follows:

AP0

Mag MR = M2 M2 = () {f € ME: Xquzinienf € ME}, (4.14)

q0
0<a<b<oo

and

(Mo, M = M. (4.15)

q0 q
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From now on, we shall always use the assumption of Theorem 4.3.1. To prove
Theorem 4.3.1, we shall invoke and prove several lemmas.

Lemma 4.3.3. [27] Keep the assumption in Theorem 4.3.1. Then
Ui Mg C UM, UM’ (4.16)

q0?

Proof. Without loss of generality, assume that o > ¢1. Let f € U ba MP. Since
X{a<lfi<t} < +X{a<|fi<b}|f]; we have X{as<|fl<b) € UM?. From Lemma 4.2.3, we
have x{a<|fj<py € UMB NUMEL. For z € S, define

gz , a(1—z)

F(z) :=sgn(f)|flo" @ and G(z) := (2 — 9)/0 FO+ (z—0)t) dt. (4.17)

Decompose G(z) = Go(z) + G1(z) where Go(2) := xq5<13G(2). Let 0 < e < 1.
Since X (e<|fj<1y € UM and

Xe<f1<t|Go(2)] < (L+ [2D) (1 F1Y% + | F1Y ™) xqe<ipieny < 201+ |2])Xqe<isi<iys

(4.18)
we have X (.<|f<1}Go(2) € UM, Observe that
F(z) — F(6)
1Go(2) = Xezin=nyGol2) e = Xt 77—
<q—1 - q—0> log | f] o
M
a/40
i
4 _ 4 -1
(&= )08
2| f Il
= M0 (4.19)

(;il — q%) loge~?
as ¢ — 0%. Hence Go(z) € UMP. Similarly, Gi(z) € UM Thus G(z) €
UMP + UMP . Let t € R and R > 1. Since xp-1<|fj<ry € UMP and

[(G(it) — G(0)[x(r-1<ip1<ry < (2+ |t]) (R + Rq/ql)X{R*1§|f|§R}v (4.20)
we have [G(it) — G(0)]x(r-1<|si<ry € UME. Note that

| 20| FII%
I1G(it) — G(0)]xrn\gr-1<i1<m) gz < -0 (4.21)
<q% — q%) log R

as R — oo. Thus G(it) — G(0) € UME. Similarly, G(1 +it) — G(1) € UM?E,
Since G € G(MP, MP1), we have G € G(UMP, UM?). From f = G'(0), it

follows that f € [UME, UMEH?. O

q0°’
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Lemma 4.3.4. [27] Let G € G(MZ, M#') and € (0,1). For z € S and k € N,

q0

define Hi(z) by (2.3). Then Hy(0) € UM N UMngq.

Proof. Tt follows from Lemma 2.2.4, that Hy(0) € [UMZ, UMy, Let € > 0.
Since UM N UMZ! is dense in [UME, UMZp, we can find Ji,(0) € UME N
UM such that

1H4(6) = Ju(O) sy <
Since [UM#0, UMy C [M#P0, M7y © M7, we have

q0° qo0’

[1Hk(0) = Je(O)laeg S NHKO) = Te(O) [ aago oz, <€

1

©
This shows that Hy(0) € UMZ N U./\/lfqu. O
Lemma 4.3.5. [27] We use the assumption of Theorem 4.3.1. Then we have

MO+ MGE

MENTUM; " C U g M.

a0 MGt oo
. Choose {f;}32, € UMY such that

—M
Proof. Let f € MY NUM{
jlijglo 1f = fillmgo yamegr = 0.
Then, we can find {k;}32, C /(/l\g(‘)) and {h;}52, C /\7{5} convergent to 0 in /\//\lg,’ and

o1, respectively, such that f—f; = k;+h; forall j. Assume0 <a <1 <b< o0
as before. Let © € C.(R) be a piecewise linear function defined by

2 1
o'(t) == ~X(a/2.0) (t) — w20 () (4.22)

except at t = 5, a,b,20. Let Cyp = % + % Since
|O(t) — O(s)| < Coplt — s and |O(t) — O(s)| < 2,
we have

O = O£ < Capmin(L, [[f] = [f]]) < Capmin(L, |f = f])-
Let B = B(xo,r) be any ball in R™. Then,

LXwﬂﬂ@mWU@m—@QM@Wmﬁ
§AMMWWWmMLW@—b@WMm
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By using the decomposition f = f; + k; + h;, we obtain
/BX[a,bl(lf(x)l)l@(lf(w)l) = O(lf;(2)])|* dx
S [ o@D min(L 517 dz + | o1 (o)) min, by (2)]7) do
B B

By keeping in mind, ¢o > ¢ > ¢; and Zg = zi = q , we obtain

%f / X (£ @DIO(F@)]) = O(1f;(x)]) " dz

13\ /|h [ da

([ sant@ar) (/mlk opeaz)”
< Ul + (2 [ ipoprar) ™ (Wols)’

S (gl gz )™ (|B| /If qu:c) q(l!ijMgg)q

q
S Uil + (17 )" (sl

Thus, it follows that

M [Ixasi <o OUf51) = Xtasisi<n O D lwg = 0.

Since X{a<ifi<yO(1f5]) < a7'|f;], we have x{a<if1<5©(f]) € UMZ. From the
equality

Xasf<0y [ f | = OX{a<i 1<y O (1 £1),
it follows that x(.<|f<e} f € UMY, O

Now, we are ready to prove Theorem 4.3.1.

Proof of (4.13). In view of Lemma 4.3.3, we only need to show that

[ UM? U

q0 "’

0
UM C U M.

Let f € [UM?OO,UMW]G. Then there exists G € G{UMZ, UM{!) such that
G'(§) = f. For z € S and k € N, define Hi(2) by (2.3). By virtue of Lemmas
4.2.4 and 4.3.4, we have Hy(0) € UMq“’. Since H(#) converges to G'(A) = f in
Mg+ Mg, by Lemma 4.3.5, it follows that f € U >a M. O

q17
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4.4 Complex interpolation between L>* and some closed
subspaces of Morrey spaces

We also consider the complex interpolation between L and each of the spaces

— * -
M7, M7, and M?. First, we prove the following lemma.

Lemma 4.4.1. [30] Let 1 < ¢ < o0 and ¢ € G,. Then, for every f € L> N //\/lv@:,
we have

170 g i~ 11

Proof. Since [L*°, /\77;]9 C [L>, M2 = M;D/ee, we have
< N
11yt S W0 e

Assume that HfHM*"G = 1. For every z € S, define
q/0

P(z) = sen(/)\f1F. G()i= [ Pla) du, and Gi(2) i= x-0Gl2)
0
For every u € S, we have

Reu 1 1-1
o < |fe < fll7 [f],

Ixgrsn F(w)| = xqss1lf

1-9 —
so |G1(2)] < (1 + |zDIf1I;% | f]- Since f € M, we see that G1(z) € M. Let
t1,to € R. Since f € L N M and

|G(1+ity) —G(1+ity)| =

t2 1-6
i/‘Fﬂ+@d4sm—muW%ﬂw4mvmuﬂ,

t1
we have G(1 +ity) — G(1 +1ity) € ./T/ljlf. Combining G4 (z) EA/\?E:, G(1 + ity) —
G(1+it;) € Mg, and G € G(L>®, M?), we have G € G(L*>, M7). Moreover,

G(it) — G(is) G(1+it) — G(1 +1is)

HGHQ(U’",W) - max (Tﬁf t—s oo ’Stlilf t—s ’/\7@)
G(it) — G(z G(l+dit)—G(1l+1
~ max [ sup (it) (is) , (1 +4t) (1+1s) ’
t<s t—s Lo 1<s t—s M#

< max(1, |||f|1/0||/\/lq“’)

1/6
= max(L, /100 ) = 1= Iyt
q/6 4
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Since f = G'(0), we have
stz < 1l sy < 11

as desired. n

One of our main results in this section is the following theorem:

Theorem 4.4.2. [30] Let 0 € (0,1), 1 < ¢ < o0, and ¢ € G,. Then we have

(L%, ME]p = [L%, ME]y = ME,. (4.23)

Proof. For [ € [Lm,ﬂg]g, choose F € f(LOO,Mf) such that f = F(#). Com-
bining Lemma 2.1.6 and Theorem 3.4.1, we have

Ixe\BO.RVN oo < xR\ BOR)F(O)][£5 A2),
Mq/9

1 1-0
< (1= | IPOl~Po.) d
1-0 J,
1 0
< (5 [ emmon P+ 0l RO.0 dr) (@20
R

From F(1+it) € //\/lvﬁ C M7, we see that
T [xgep F(1 + ) g = 0. (4.25)
We combine (4.24), (4.25), and the dominated convergence theorem to obtain

A ||XR“\B(O,R)f||qu/90 = 0.
According to (4.3), we have f € /\/l‘qp/gg. Since

4
. M
(L, M)y C [L%, M)y = L A MT 7" C M2,

—_—~—

* 0 — 0 0
¢ o Aq® :
we see that f € Mq/o N ./\/lq/9 = ./\/lq/e, as desired.

Now, let f € ./\/lf/g@. We shall show that f € [L™, M“q"]g. Since L° C .//\/lv“qp, we

6
—_— M —
have f € L>® N Mg v Then, there exists a sequence {f;}32, € LN M{ such
that
< L 4.26
I = Fll e, < (4.26)

42



Therefore, for every j, k € N with j > k, we have
1 1

Hf] - ka[LOO,J\’/\lT;]e ~ Hf] - fk’|M§f9 < 3‘|‘ - < =,

so {f;}32, is a Cauchy sequence in [L"o,//\/l\% 1. By completeness of [L*°, /\77; 9,

there exists g € [L*°, /\7@” 1% such that

oy
Eall )

jlir{é Hf] - g”[Loo’/CEZP]e =0. (427)

Combining M¥, C L + Mg, (L%, Mg)? C L+ M, (426), and (4.27), we
——— L= M7 —

get f=g€ L*NMg . Finally, by using (2.4), we have f € [L>, M¢]y,

as desired.

—_~—

We shall show that [L>, M#]y = ./\/lg/ge. Let f € [L>, M¢]p. By virtue of
* — 0 —— 0
(3.34), we have [L*>, M7y C [L*°, M?]y € M7, s0 f € M7 ,. By Lemma 2.1.5,
for each £ > 0, there exists g € L> N M7 such that

1 = gl mg), <

Since L>* N M7 C Mf NMg = va, we have g € va. Therefore, by virtue of
Theorem 4.0.2, we have

It myom o m gl v < gl 22 X 191> Ryuee\ 50,70 e — O
q
as R — oo. Consequently, g € ije. Since [L>®, M?]p C [L>, My C Mf/ge, we

have
f— o Se.
I gHMf/g N

This implies f € /\/lf;)e. Thus, [L>, M)y C ./\/lg/ge. Meanwhile, the inclusion
./\/lz;/g@ C [L*, M¢]y follows from [LOO,./T/I/f]g C [L%, M¢]y and [LOO,/\/ZZO]Q =
O

o0
Mq/g.

Next, we move on to the description of the spaces [Loo,ﬂg]e, [L“,ﬂf]g,
[, /\75]9, and [L>, M?]°. First, we prove the following lemma:

Lemma 4.4.3. [27] Let 1 < ¢ < 0o and ¢ € G,. Then we have

Lo ME
* 9 0 0 * 9
ME nM?, C ﬂ { f €My Xasipicny € Mj/g} .

0<a<b<oo
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L+ MG
Proof. Let /\/lj;)e N M;O/: and 0 < a < b < co. For every t > 0, define

Vap(t) = X(g.2 ()t — a/2)*(t — 2b)*

Since

1 b
Xfasiriset < ~Xaslfisnp |1 S “Xasinzor < CapXiasissopan(f]),  (4.28)

we only need to show that Xia<|f<syVas(|f]) € M?j@' Let {f;}32, be such that
im [|f — fjllpeesre = 0. Choose {g;}32; € L™ and {h;}52, C MY such that
Jj—00

f=fi=g;+hy, lim |gjllL~ =0, and lim [|A;]| 1 = 0. (4.29)
J—0 j—oo
Since g € C'(R) and 9ap, ¢, € L®(R), we have

IX{a<ifi<oyVas (| f]) = Xqa<ii<orCap (| fiD)] S Xqa<ipi<ey min(1, [f — f;])
< X{a<)fi<ey (min(1, |g;|) + min(1, [hy])).

Since min(1,|h;|) < |h;|?, we have
- 0 0
[Foin L 13 yger < 125 Pl ge0 = illaag - (4.30)
Meanwhile,
: 1
IXtasisi<oy min(L, [g; N oo < =llg5lleoellf1] o0 - (4.31)
a/0 QA a/0

By combining (4.30) and (4.31), we get
1 0
INtasisi<oyVas(IF1) = XasisismyWap(FiDll yper < ZllGslleelF 1 oo+ 1175 ez

According to (4.29), we have thglo IX{as<if1<byPab(lf]) _X{aélfléb}wa,b(’fj|)||Maa/96 =
. * 50

0. Since Xfa<ifi<np®ap(fi]) S 1fil, we have Xia<ipi<npap(lfjl) € My, and

hence, X{a<|fi<tyVas(|f]) € Mf/ge. As a consequence of (4.28), we conclude that

* 0
X{az|f1<vy € Mg O

We describe the spaces [L>, M#]?, [L>, M?],, [L‘X’,/\A/l/f]e, and [L>, M?]? as
follows:

Theorem 4.4.4. [27] Let 1 < g < 0o and ¢ € G,. Then we have
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(i) (L, M) = M7,

(i) (L, MZlg = M7,

(iii) [L MZ) = [L°,M£)" = () {f € Myt Xpasisizn) € Mq/e}

0<a<b<oo

Proof. Note that [L>, H@]G [L°° M‘p] Mq/9 Now, let f € M“Oe Define
F(z) := sgn(f)|f|? and G(2) := [; F(w) dw. In the proof of (3. 44) we know
that G € G(L>, MY), so it sufﬁces to ShOW that

L. Gi(2) = xqs>11G(2) € ﬂg for every z € S;

2. G(1+it) — G(1) € M? for every t € R.

From the inequalities

F(z) — F(0) £
_ £lz) = F0)) L
|G1(2)] 'X{|f>1} log [f[/0 | ~ M1 og | f17e

and |G1(2)] < (1 + |2])|£]*/?, it follows that

1
HX{\G1(2)\>R}G1( )“M HX{|f| 10> B \}log\fll/e

1 1/6
< f — 0
mamu+vm””q;

as R — oo. Therefore, G1(z) € ﬂf. Similarly, for every ¢t € R, we have

1A
. y q/9
||X{‘G(1+Zt)_G(1)|>R}(G(]‘ + ’Lt) ( ))HM ~ 10g(R/<1 ¥ |t|)) — 0 (R — OO))

so G(1+it) — G(1) € M¢. Hence, G € G(L®, M¢) and f = G'(0) € [L*, M#)°.

We now move on to the proof of (ii). Let f € [L>, M¢]y. By virtue of Lemma

2.1.5 and [LOO,M@;]G C ./\/lj/:, for each ¢ > 0, there exists g € L N M such
that

I =l e, S = (4.32)
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By combining (4.32) and [|g|, .o < ||g||1LZo9||g||§qu¢ < 00, we see that f € ./\/lf;e.
a/0
Meanwhile, by virtue of Theorem 4.4.4 (i) and (2.4), we have

[L>.MZ)?

— 6 —_—— 0o T
M?), C L= M; — (L, M2,

as desired.

Finally, let us prove (iii). Let f € ./\/lf;j@ be such that x(a<|f<sy € ./\/lf/e(, for
every 0 < a < b < oo. Since

1
Iz o Xtasir<o g = IxemBo.R X e<ini<n [l 0 =0
q/9

as R — oo, we have x{.<|f<p) € ./{k/lf. For every z € S, define
F(2) = sen(f)| |7 and G(2) == / Flw) duw.
0

In the proof of Theorem 4.4.4 (i), we know that G € Q(Loo,ﬂg). Hence, in order
to prove that G € G(L*°, va), we only need to show that

G1(2) = xqp>11G(2) € MY and G(1 +it) — G(1) € M7
for each z € S and t € R. For every R > 0, we have
xnmGr(z)] < (1+ 2R xp<is1<nys

80 X{fl<ryG1(2) € M. Since

1 1/6
_ o<
||G1(2) X{lf‘SR}Gl(Z)HMq ~ 10g(R/(1 + |Z|)) ||f||M¢9 =0

q/0

as R — oo, we have G1(z) € M?. For every t € R and R > 1, we have
G(L+it) = G x1<pcny < 1+ |t|)R1/GX{%§|f\§R}a

s0 (G(1+it) — G(1)X (1< <m) € M. Meanwhile,

, 0 1/0
(G(1+t) — G(D)XR”\{%SUKR}HM? S @Hf”Mg,e =0

a/0
as R — 00, so G(1 +it) — G(1) € ./\*/lg. Since G € Q(L“,va) and f = G'(0),

we conclude that f € [Lm,ﬂf]e. Combining with [L“,va]e C [LOO,/\*/lﬁ]e, we
have

M {f €My Xtaziieny € MEj} C [L°, ME)? C [L%, ME)'. (4.33)

0<a<b<oo
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Let f € [L,Mg]’. From [L*, Mg]’ = M. it follows that f € M),
Choose G € Q(L“,./(k/lf) such that f = G'(f). For each z € S, define

G(z+27%) — G(z)'

h =

k(2) 2Fi

By Lemma 2.2.4 and Theorem 4.4.2, we have h,(6) € [L>, M{]y = ./\/lf/ee C Mf/ee.
L+ MG

Since kh—>I£1<> hi(0) = f in L + M7, we have f € Mf/ge N /\/lf;)e. By virtue

of Lemma 4.4.3, we conclude that xj.<|s<p € ./\/lfje, for every 0 < a < b < o0.
Hence,

* 0 * 0
(L, M) () A €MDy Xpasisiny € MEj}- (4.34)
0<a<b<oo
As a consequence of (4.33) and (4.34), we have Theorem 4.4.4 (iii). O

Finally, we also consider the complex interpolation between L= and closed
subspaces of Morrey spaces. Recall that L> denotes the closure of L2° in L*.

Theorem 4.4.5. [30] Let 1 < g < 0o and ¢ € G,. Then we have

—_~—

0

(i) (L, Mglo = My,
(ii)

, N
() {f e MIy: Xasinen € L%}

0<a<b<oo
C [Lee, M)
] *
c ﬂ {f € M7y Xqazipi<oy € My}
0<a<b<oo
(111) If inf ¢ > 0, then

-~ 0 * 6

(Lo, M7 = ﬂ {f € M)y Xtasisi<oy € My} (4.35)
0<a<b<oo

(iv) (L2, Mg)p = [L°, ME)g = ME),.

Remark 4.4.6. In (ii), we only prove an inclusion relation for [170/0, M¢#1P. The
complete description of this space is an open problem for the future research.
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Proof of Theorem 4.4.5. Let [ € /\/lj/eo. Since L C L, we have

o0
a/0

—_M
feLrLenMy
Therefore, there exists a sequence {f;}52, C L> N M such that
17— Filyger <= (1.36)
Mg, <5 -
By using a similar argument as in the proof of Lemma 4.4.1, we have
13ll iz pagye ~ ||fj||Mgf0'

Therefore, for every j,k € N with j > k, we have

1 1
15 = Jill e aagpe ~ 115 = kaM«pfg S TR
q

o
El )

so {f;}32, is a Cauchy sequence in [E‘;O,Mf]g. By completeness of [L>, M,
there exists g € [L>°, M#]? such that

jlggo Hf] - g||[Lo<>7/\r/Ts;]9 = 0. (437)

Combining M), € L™ + Mg, [L*, MZ]* € L™ + M, (4.36), and (4.37),
LM
we get [ =g € L*NMg . As a consequence of (2.4), we have f €
[LOO,Mf]g.

Conversely, let f € [E\(;O,Mf]g and choose F € }"(lf)\‘;o,./\/l“q") such that f =
F(6). Since F(it) € L>, we have
F%I_I)I;o ||XR”\B(O,R)F(Zt)||L°° = 0. (438)
By Lemma 2.1.6, we have
1 1-6
Ixem\Bo.R o0 < —/ Ix®m\B0,R)F (it)]| Lo Po(0, 1) dt
q/9 1-6 R
X 2 aaz)- (4.39)
By virtue of the dominated convergence theorem, (4.38), and (4.39), we have

1' n ==
dm[Pxeeso.mfll e =0
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6 Lpg
* __ M? _
sof € ije. Since [L*°, M#]y C [L>°, M$]g = LN MG *° C L= N Mf/ge v
we have o
o0

Vi Y
fe Mq/9 N Mq/9 - q/¢’

as desired.

The proof of (ii) goes as follows. Let f € ./\/lf/gg be such that x{a.<|fj<p} € L>
for every 0 < a < b < oo. For each z € S, define

F(z2) :=sgn(f)|f]*? and G(z) := /{: F(w) dw.

Since G' € G(L>, M?), we shall show that Go(z) := xq5<1yG(2) € L*> for every
z €S and G(it) — G(0) € L™ for every ¢t € R. For each N € N, we have

Go(2)xq s> 13 < U+ 2Dx 2 <ip<1y
SO G0<Z>X{|f\>%} € L. Meanwhile,

sgn()IfIF? = sgn(f)f]
log | f| X{1/N<|fI<1}

1Go(2) = Gol2)xg | e = ‘ ’

20
log N

L=

< —0

—~

as N — oo. Therefore, Go(z) € L.

Next, for all N € N and ¢t € R, we have
|G(it) = GO)xpn<ieny < (U+ [Dxan<fi<nys
so (G(it) — G(0))x{/n<|f|<N} € L*>. Since |F'(it)] = 1 for every t € R, we have

. F(it) — F(0
[(G(it) — G(0))xrm\(1/n<|f1<ny [ L = HG%X{VG/N}U{UDN}

20
log N

LOO

< — 0,

as N — oo. Therefore, G(it) — G(0) € L. In total, G € Q(ﬁo,/\/lf). Since
[ =G'(0), we see that f € [Ego,Mf]e.

Now, let f € [EZO7M§]9_ Since [L>, M#]? = ./\/lf;je, we have f € Mf/ge. Let
G e G(L>, M) be such that f = G'(6). For cach k € Nand z € S, define Hy(2)
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by (2.3). As a consequence of Lemma 2.2.4 and Theorem 4.4.5(i), we have Hy(0) €
L®4+ME

0 . . . I * 0 0
Mf/e' Since ]}Lrgo Hy(0) = f in L™ + M?, we have f € M;D/e ﬂ/\/l(f/g. By

—~—

virtue of Lemma 4.4.3, we conclude that x{.<|f<p) € /\/15/99, as desired.

Finally, let us prove (i7i) and (iv). Recall that, when inf¢ > 0, we have
Mf/gg C L*; see [42, Proposition 3.3]. Therefore, ./\/15/99 C L. Combining this
fact with Theorem 4.4.5 (ii), we get (4.35). From Theorem 4.4.5 (i), it follows
that [I?’/O, .//\/lvf]g - /\/l(fjg. By the same argument as in the proof of Theorem 4.4.5
(i), we have

6 — o~
il -~ ~ Mg/e —~ (L. M{]’ oo A
My, © LN My C L*NMy = [L>°, M7]p.

By combining [LA‘;O,Mf]e - [LAJO,Mf]e = Mf/ea and M?/ge = [Ego7ﬂg]9 <

(L, M¢], we have L, M#], = Mf/%'
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Chapter 5

Complex interpolation of local
block spaces

In this chapter, we discuss the first complex interpolation of local block spaces,
which are known to be a predual of local Morrey spaces. We prove that local
block spaces behave well under the first complex interpolation. To prove this
result, we show that the associate space of general local Morrey-type spaces can
be realized as certain block spaces.

5.1 Local Morrey-type spaces and local block spaces

Let 0 < p<ooand 0 < A < %. The local Morrey space LM;‘ = LM;(R") is
defined to be the set of all functions f € Lj, (R™) for which

loc

[ llagy = sup M| fxse |l < oo,
r>0

where B(r) denotes the open ball centered at the origin of radius » > 0. The
local Morrey spaces behaves well with respect to the real interpolation method as
shown in [6] and the references therein. Moreover, the results in [6] were general-
ized to general local Morrey-type spaces and B} -spaces in [8, 43]. Interpolation
of Bl-spaces by complex method can be found in [29]. The definition of gen-
eral local Morrey-type spaces and general global Morrey-type spaces is given as
follows.

Definition 5.1.1. Let 1 < p,q < oo and w be a non-negative measurable func-
tion on (0,00). The general local Morrey-type space LMy, = LMp,,,(R"™) is

o1



defined to be the set of all measurable functions f on R™ for which
[l My = ||w(7“)||fXB(7~)||LPHLq(0700) < 0.

The global Morrey-type space GM g = GM ., (R") is defined to be the set of
all measurable functions f on R"™ such that

||f||GMpq,w = Sup ||f(',”v + ')HLMpq,w < 0.
x€R?

Note that, if w(r) =1, then LMoo oy = GM ooy = LP. We shall assume the
following condition on w so that LM, ,, contains non-zero function,

Definition 5.1.2. Let 1 < p,q < oco. We define
Qg :={w:(0,00) = (0,00) : ||w||La(ty,00) < 00 for some ¢y > 0}
and
Qg i= {1 (0,00) = (0,50) : [1"/7w0(r) [ 1s02) < o0 and [[uw] o) < 00}

Remark 5.1.3. It is known in [7, Lemma 1] that w € Q, if and only if LM, .,
is not equal to the set of all functions equivalent to zero function. In addition,
w € Q,, is a necessary and sufficient condition for GM,, ., to be non-trivial.

It was proved in [19](see Theorem 5.1.5 below) that the predual of LM, ; can
be characterized as the local block space LH,y ,, where 1 < p < 00, 1 < g < o0,

1% =1- %, % =1- %, w(t) = t~Y9w(t), and w satisfies the following doubling
condition; there exists a constant C' > 1 such that C~'w(r) < w(s) < Cw(r) for

every 7, s satisfying = € (%, 2). Let us recall the definition of LH,y 4.

Definition 5.1.4. Let 1 < p < 00, 1 < ¢ < 00, w € €, and r € (0,00). We
define p’ := p%l and ¢ := q%l. A measurable function A is called a (p', w, r)-block

if supp (A) C B(r) and ||Al|;» < w(r). We define
Au(LP) = {{(4;,2)}2__ - Ajis a (p,w,2)—block}.

j=—00

The local block space LH,/y ,, is defined by

LHp’q’,w = { Z /\jAj : {)‘J}(])i—oo S gq’ and {(Aj,?j) (]?i—oo c Aw(LP/>} .

j==o0

The norm on LH,y ,, is defined by

00 1/q¢
Hf“LHp/q/,w = inf ( Z ’)‘j|q/> ) (51)

Jj=—00
where the infimum is taken over all decompositions f = > 7= NA;, {\;}2

: , j=—00 j=—00
07, and {(A;,2)}2 € A,(LY).

j=—o00
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We now recall the result in [19] about a characterization of a predual of general
local Morrey type space as certain local block spaces.

Theorem 5.1.5. [19, Theorem 4.1] Let 1 < p < 00, 1 < g < 00, and w € Q.
Assume that w satisfies the doubling condition. Define

(t) = {t‘” ‘wlt), g <o

w(t), q = o0.

Then (LHy g )" &= LM,y in the following sense:

1. Let g € LMy 5. Then, for every f € LHyy ., we have fg € L' and the
mapping Ly defined by

Ly(f) = [ f(x)g(x) dx
]Rn
is a bounded linear functional on LHyy .
2. For every L € (LHyy )", there exists g € LM, such that

L =L, and ||L||(LH/ P L ||9||LMpan‘

raqg,w

5.2 Some basic properties of local block spaces

A non-trivial member of the space LH,y ,, is an L¥ -function supported on the
ball B of radius 27 for some j € N.

Lemma 5.2.1. [31] Let 1 < p < o0, 1 < ¢ < oo, andw € Q. If A€ L and
supp (A) C B(27) for some j € Z, then A € LHyyy ., and

Al
A < —
Al < g

(5.2)

Proof. If |[A||» = 0, then A =0, so (5.2) is trivial. Hence, we may assume that

|Al| ;. # 0. Define A := ﬁﬁ])’?. Since supp (A) € B(27) and || A]|,,» = w(27), we
LP

see that A is a (p', w, 27)-block. Moreover, (5.2) follows from A = H;‘(H%’ A O

We prove the following basic properties of LH,y, ,,. The first one is the lattice
property of LHyy 4.
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Lemma 5.2.2. [31] Let1 <p < o0, 1 < g <00, andw € Qp,. If0 < f(x) < g(x)
and g € LHy g ., then f € LHyy,, and

W fllem,, . <lgllcm,, .- (5.3)

Proof. Given € > 0. Let g = 3% AjA; where {(A;,2/)}52_ € Ay, (L) and
(N} €07 satisfy

j=—o00
00 1/q
( Z |)‘j|q,) < X +o)llgllem,,.,- (5.4)

j=—o00

For each j € Z, define B; := X{g#o}gAj. Then, {(B;,27)}32_, € Ay (L¥') and

f:X{g;féO}g > NA =) AB;

j=—00 j=—o00
Consequently, f € LHyy ,,. From (5.4), it follows that

||f||LHp/q/,w < (1 + 5)|Ig||LHp/q/7 : (55)

w

By taking e — 0", we get (5.3). O

Lemma 5.2.3. Let 1 <p<oo,1<q<o00, andw € Q. If f € LHyy ,, then
|f| € LHp/quw with

|||f|||LHp/quw - HfHLHp’q/,w' (56)

Proof. Let > 0. Then there exist {\;}52_ € ¢4 and {(A;,27) 2 €
such that

o0 [ee] 1/q
f: Z )\JAJ and (Z |)\J|q’> S (1+5)||f||LHp’q’,w'

j=—o0 j=—o0

Ay (LP)

Since |f| < YF_ VAL (ADE 0 € 07, and {(14,],2)}2 . € Au(L),

by Lemma 5.2.2, we have |f| € LH,, ., and

o 1/q
< ( > |>\j|q/> <A+ ) fllem,,.,-
LHp/q/’

j=—o0

[e.9]

> INlIA

j=—o0

I llzm,, ., <

By letting 6 — 07, we get

|||f|||LHp/q/,w S ”fHLHp’q’,w' (57)
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Since | f| € LH,yq w, for any e > 0, we can find {o;}52__ € €7 and {(B;,27)}32_,
Ay, (LP") such that
o) 0 1/q’
=3 (3 ) < (0 M-
j=oc j=—o0
It follows from f = 7% _ aj(sgn(f)B;) and {(sgn(f)B;,27)}32 e A, (L")
that
s 1/q
1fllem,,., < ( > |04j|q> <@+llfllem,.,.,-
j=—o00

Since ¢ is arbitrary, we have

ey, < WAllm,.,.,- (5.8)
Thus, (5.6) follows from (5.7) and (5.8). O

5.3 The Fatou property of local block spaces

Next, we prove the Fatou property of LH,, ,,. Note that the Fatou property of
local block spaces is not trivial. In fact, our proof uses a quite delicate argument,
inspired by [34].

Proposition 5.3.1. [31] Let 1 <p < o0, 1 < q < o0, and w € Q. For ¢ =00
only, assume also that tlim w(t) = 0. Suppose that {fi}72y € LHyqy . Satisfies
—00
0 < fr(z) < fra1(x) for a.e. x € R™ and for every k € N. If
sup ”kaLH to w00
keN
then f = klggo fr € LHp/qlvw and
(5.9)

”fHLHp/q/,w = 211]@ kaHLHp/q/ w"

Proof. Define M := sup | fellee,, , and let € > 0. Then, for every k € N, there

W

exist {\jx}2_ € Eq and {(Ajr,2)}32 . € A, (L?") such that

j=—00

00 00 1/¢
fk = Z )\],k‘A]’k and < Z |)\j7k|q’> S (1 -+ g)ka”LHp’q’,w'

j:—oo j:—OO

95
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Therefore, for each 7 € Z and k € N, we have
Ajkl < (1 +2)M
and
1Akl o < w(27). (5.10)

Consequently, there exist {\;x, 1021 € {\jrtezes {4k 12 € {4k}, A € C,
and A; € L” such that elim Ajk, = A; and
—00

lim [ A (2)h(z) do = / As(2)h(x) de (5.11)

{—00 Rn n

for every h € LP. Moreover,
1 1

I{\ ezl = (Z Klgloqo|xj7kg|q/> < lim inf ( Z |Aj,ke|q'> < (1+ €)M,

j=—00 J=—00

(5.12)

supp (4,) C B(27), and

1Al = sup lim [ A, (y)3(y) dy < limsup || Az, || < w(2'). (5.13)

Gl Lo <1 ¢700 JRn 00

Define g := > 2 ___ \;A;. From (5.12) and (5.13), it follows that g € LH

j=—o0 ¢ w-
Therefore, if we can prove that

f(z) = g(x) ae. z € R", (5.14)

then f € LHy .. The proof of (5.14) goes as follows. Let x € R™\ {0}. Once
we can show that

1 / () d 1
T oA 9\Y) Y = 757N
|B(ZL’,T)| B(z,r) |B(ZL’,T’)| B(z,r)

for all balls B(z,r) which satisfy 0 ¢ B(z,2r), we have (5.14), by virtue of the
Lebesgue differentiation theorem. By substituting h(y) := Xxp@(y) to (5.11)
and using the fact that B(z,r) N B(27) = ) for every j < log, r, we have

gy dy:/ NA:(y dy:/ NAi(y) dy.
R o VA B = [ 3 A

=—0 jGZ,jZloggT

fly) dy (5.15)
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As a consequence of (5.12) and (5.13), we have

L() AW dy < Bl S Al

JEZ,j>logy T JEZ,j>logy T

< [B(z,r)* (Z qu'> > 4l

Jj=—00 JEZL,j2logy T

<[Banr@+eM | Y w@)| |

JjEZ,j>logy T

so, by using the doubling condition and w € €2,,, we get

2]+1

[ Al dy SIBEFa+r | 3 [T

JEZ, j>log2r JEZ,j>logy T

. B, >E§ )M ([wwmqﬁ) -

Consequently, by virtue of the dominated convergence theorem, we have
/ gy) dy= > / A A (
B(z,r) JEZ,j>logy T (z,r)

Therefore, once we prove that

Qe

Q|

> / LA d=lm S, [ A G10)

JEZ:j>logy T JEZ:j>logy T

we have

/B(x,r) g(y) dy = fliglo Z / (@) Jke Jke y) dy

JEZ:5>logy T
_glgg)/ o) Z )‘J keAJ ke
j=—o00
= Jim fr,(y) dy = / f(y) dy,
= J B(x,r) B(z,r)

so we arrive at (5.15). Hence, we only need to verify (5.16).

Now, assume that ¢ < oo. Since [°% t Lt < [ w(t) dt < oo, for every

d > 0, there exists J € NN (log, r, 00) such that

00 q l/q
(/ w(t) dt) < 0.
2J 1 t
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Therefore, for every ¢ € N, we have

2 /M Py > /B(mr))‘j,kgAj,kg(y> dy

JEZ:j>logy T JEZ:5>logy T
< > [ waelas 3 [ Dl d
]EZ §>J B(z,r) JEL:G>T

S

JE€Z:logy r<j<J

n [ A A=, / A . 619
B(z,r) B(z,r)

Let I, I5, and I3 be the first, second, and third term in the right-hand side of
(5.18), respectively. By using Hélder inequality and (5.17), we have

I < (i w’)w (fj (f AW dy)q> "

T s 1/q
<(l+e)M (Z(HAJHM'IB(%T)!l/p)q>

00 1/q
< (14 €)M|B(a,r)|"” (Zw@j)q>

J=J

o0 q 1/q
§(1+€)M]B(x,r)|1/p(/2 w(t) dt) < (14 e)M|B(z,r)|[Y5. (5.19)

J_q t
Likewise,
I, < (14 ¢)M|B(x,7)|6. (5.20)
Meanwhile, from Zlim Nik, = Aj and (5.11), it follows that
—00
Jim [y = > Jim ')‘j/ Aj(y) dy — )‘j,k:e/ Ak (y) dy‘ =
J€EZ:logy r<j<J B(x,r) B(zr)
(5.21)
By combining (5.18)-(5.21), we obtain

lim sup Z / (y) dy — Z / ke A, (y) dy

o0 JEZ:5>logy T JEZ:j>logy T

< 2(1 4 &)M|B(z,r)|"/?s. (5.22)

so by taking 6 — 01, we get (5.16) when ¢ < oco.
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Now, we consider the case ¢ = co. Since tlim w(t) = 0, for each § > 0, there
— 00
exists K € NN (log, 7, 00) such that

w(2X) < 6.

For every ¢ € N, we have

S foovawd S [ ) dy| <Ly

JEZ:5>logy T JEZ:j>logy T
(5.23)
where
A—ZMM’ rw&—Zwm/ Ay ()] dy,
B(z,r)
and

I = / y) dy — A, / Ajr,(y) dy| .
¢ B(x,r) Z Tt B(z,r) Jké()

JEZL: 10g2 r<j<K J€Zlogy r<j<K

By Holder’s inequality, we get

L <> INIIA | Bla, )P

i=K

< [B(a, )7y [Ajlw()
j=K

< Bz, r)["Pw(25) > [N < B, )71+ e) M. (5.24)
j=—00
Similarly,
Is < |B(x, 7)Y (1 + £) M. (5.25)

From élim Nk, = Aj and (5.11), it follows that glim Is = 0. We combine this and
—00 —0
(5.23)—(5.25) to obtain

lim sup Z / (y) dy — Z / Nike A, (y) dy

=00 JEZ:j>logy T JEZL:j>logy T

< 2|B($,r)|1/p(1 + ¢)Mo.

Therefore, by taking § — 07, we have (5.16) for ¢ = oo
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Finally, we prove (5.9). From f =" _ AjA; and (5.12), it follows that
1 fllem,, , < (1+e)M.
Since ¢ is arbitrary, we have
1fllee,,,.,, < M. (5.26)

On the other hand, by virtue of Lemma 5.2.2 and 0 < fi.(x) < f(x) for all k € N,
we have

| fellem,, . < Ifllzm,, .
and hence
M < ||fHLHp/q/7w' (527)
Thus, (5.9) follows from (5.26) and (5.27). O

5.4 A characterization of the associate space of local Morrey-
type spaces

In this section we prove that the associate space of general local Morrey-type
spaces can be realized as certain block spaces. First, we recall the definition of
the associate space (see [2, Chapter 1]).

Definition 5.4.1. Let X be a Banach space of measurable functions on R™. The
associate space of X, denoted by X', is defined to be the set of all measurable
functions f on R™ for which

Il = s [ (@)g(o)] do

is finite.

We remark that a different characterization of the associate space of local
Morrey type space can be seen in [17, Theorem 4.3].

Proposition 5.4.2. [31] Let 1 < p < 00 and 1 < g < co. Assume that w € €,
satisfies the doubling condition. If ¢ = 0o, assume also that tlim w(t) = 0. For
— 00

t=Vaw(t), ¢ < oo,

Then (LMpq 1;,), = LHp/q/ w-
w(t), q= 0. ’ ’

every t > 0, define w(t) := {
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Proof. Let f € LH, ,,. By virtue of Theorem 5.1.5, for every g € LM, 5 with
HgHLMpq,TD < 1, we have

[l de= [ ISl ds

Slollesrye sl llzm,,, < W fllem,,., < oo

Therefore, f € (LMyp,5)". Hence, LHy g € (LMpys)

Let f € (LMpgs) of norm 1. Then

sup |f(z)g(x)| doz = 1. (5.28)

l9llLamy,, 5 <1 JR™

Without loss of generality, we may assume that f > 0. For each k£ € N, define
gi(2) 1= 2"xp(ary(z) and fy(z) := min(f(z), gr(z)).

Since supp (gr) = B(2") and g, € L¥, by virtue of Lemma 5.2.1, we have g €
LHyy . From 0 < fi(x) < gix(x) and Lemma 5.2.2, it follows that f € LHpy 4.
By virtue of the Hahn-Banach theorem, there exists L € (LH, )" such that
HLH(LHp’qu)* =1 and

I fellzm,, ., = [L(f)l. (5.29)

According to Theorem 5.1.5, there exist h € LM, 4 such that [|A|[zr,, , ~ 1
and L = Lj. Consequently, by combining (5.28) and (5.29), we get

il = ELn(f)l < [ fel@)h(@)] de < |[hlliag, . ~ 1,
Rn

s0, 2u§\|fk|\LHp,q/7w < 1. Since {fi}72, is increasing and klgn fr(x) = f(z), by
= oo

virtue of Proposition 5.3.1, we have f € LH,, ,, and

HfHLHp/ / ST

q,’UJN

Hence, (LMyg.) € LHpy 4. This completes the proof. ]

We shall use the following corollary.

Corollary 5.4.3. [31] Let 1 < po,p1 < 00, 1 < qo,q1 < 00, wy € Qpygy, and
wy € Qg Assume that wy and wy satisfy the doubling condition. If gy = oo
and ¢; = 0o, assume also that 1tlim wo(t) =0 and tlim wy(t) = 0. Define

— 00 —00

t=Va, (t), g1 < o0,

- t=Haowg(2), qo < 00,
wl(t)a g1 = OQ.

dolt) = wo(t), qo = 00,

and wy(t) := {
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If f € LHy g wo + LHyp g w, and g € LMypyg0 50 VLM yp,q,.5,, then fg € LT and

w, w

; [F@)g(@)] dx SN Flle, o o+ 28 g o 191200000 EMyy gy - (5:30)

Proof. Let fo € LHp ¢ w, and f1 € LHy g ., be such that f = fo + fi1 and

||f0||LH/ ’ + ||f1||LH/ / < ||f||LH/ ’ +LH_;, (531)

phaf-wo P a] w1 phafwo phajwi’

Then, by virtue of Proposition 5.4.2, we have

f@l@)l do < [ @@ o+ [ gl do
R
< ||foH LMmros, wO)’HgHLMPO‘IO w0 + Hfl”(LMqulv“?l)’HgHLMqulﬂfq
S (follea, o+ Wllm, W NI EMg00.50n LMy gy 6,
(5.32)
Thus, (5.30) follows from (5.31) and (5.32). O

5.5 Interpolation of local block spaces

Our main results are given in the following theorems.

Theorem 5.5.1. [31] Let 6 € (0,1), 1 < po,p1 < 00, wy € Qpyoo, and wy €
Q) 00. Assume that wy and wy satisfy the doubling condmon hm wo(t) =0, and

thm wy(t) = 0. In addition, assume that wy(t)P° = wq (t)P". Deﬁne
—00

1 1-0 0
= + — and w = wi~w?.
p Do b1

Then
[LHp{)l,woa LHp’ll,wl]G = LHp’Lw-

Theorem 5.5.2. [31] Let 6 € (0,1), 1 < po,p1 < 00, 1 < qo,q1 < 00, Wy € Lpogos
and wy € 4. Assume that wy and wy satisfy the doubling condition. In
addition, assume that 2 = and wo(t)® = wi(t)". Define

1 1-0

p'_ Po

0 1 1—-6 6
—, — = + —, and w —w(l) 9wf.
pr q do 31

Then
[LHp’ q0,wo > LHp’lq’l,wJ(? = LHp’q’ﬁw‘
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First we give the proof of Theorem 5.5.1.

Proof of Theorem 5.5.1. Without loss of generality, we may assume that py > p;.
Since tlim wo(t) = tlim wy(t) = 0, we have tlim w(t) = 0.
—00 —00 —00

Let f € [LHp 1wy, LHp,1,0,]0- We shall show that f € LHy,. According to
Proposition 5.4.2, it suffices to show that

sup |f(z)g(x)] de < ||f||[LHp/1wO,LHp,1 o (5.33)
Hg”LMpoo,wSl R™ o v
Choose F' € F(LHp 1wy, LHy14,) such that f = F(6,-) and
HFH]:(LHp{)l,wOVLlell,wl) Sf Hf”[LHp61,1u07LHp/11,w1]9. (534>
Let g € LM pog o With [|g]|zatyee.. < 1and M = sup, g || F(z, -)HLHpBLwO—i-LHp,lel.
For k € N and z € S, define
|f<$)| oz 2 n
Hi(z,2) = X{s20}(7) f(z) lg(x)\p( 70 “)X{;Sgsk}(%) (z €R")
and
or(2) ::/ F(z,x)Hy(z,x) du. (5.35)
Since
or(0) = f(x)Hy (0, ) dv = |f($)9(x)‘X{%g\g|gk}($) dx.
R" Rn
we have
|[f(@)g(w)] dz = lim ¢;(6).
R~ —00
Hence, in order to obtain (5.33), we only need to prove that
oe(0) S Hf”[LHpé)l,wO,LHp/ll’wl]@; (5.36)

for all £ € N.

We now prove (5.36). For every z € S, we have

p p Pr _ P

£ £ P )Re(z 2
| Helz,)] < lg(@)] 7 |g(@)| )™y (@) < kA |g@)|® (5.37)
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and

p (P2 _P )\ (1—-Re(z P _ P »
| Hiz,2)| < lg(@)| 7 g(@)|"Grm) 0@y, (@) < kiR ()

(5.38)
Note that, our assumptions imply wq(r)P° = w;(r)P* = w(r)?. Therefore,
gl = supw(r) o |lgl1 22 5y = gl <1 (5.39)
g LMpooo,wo B T>g g LP(B(T)) B g LMpoo,w o .
and
J1617% = sup () ol ) = ol Fag,, <1 (5.40)
LMy, co,uwq r>0 Lr(B(r)) posyw T

By combining (5.37)-(5.40), we have Hy(2) € LM 00wy N LM, 00wy With

p D

[ H (2, )| LMoo, g NEMy ooy, < KPP0 (5.41)

It folllows from the last inequality and Corollary 5.4.3, that

[9u(2)| S koo || F(z, ')|’LHP6WO+LHP,1W1- (5.42)
Therefore,
sup | (2)| < k71 7 M < oo, (5.43)

zeS

Next we estimate |¢5(2)| on the boundary of S. Let t € R. As a consequence of
(5.39) and |H(it,z)| < |g(a:)|%, we have

‘|Hk(2t7 .)HLMpooo,wO S 1
From the last inequality and Proposition 5.4.2, it follows that

|pr(it)]| < /" |F'(it, x) Hy(it, x)| dx

< NPt Mttty S NG ay o < NP ray, ey,
(5.44)
By a similar argument, we also have
)] <
ok (L) S N E N Fwa, Lty 0)- (5.45)

In view of Lemma 5.6.1 and (5.43), we may use the three-lines lemma together
with (5.34), (5.44), and (5.45) to obtain

0

ou(0) < (sup w)k(u)r)l_g (supbonta + ) )

< HFH]:(LH, JLH , ) 5 Hf”[LH /
P 1 Po

1,wq p7 1wy 7LH ’1

1,wq P 1,w1}9.
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Thus, the proof of [LHpg)LwO, LHy 1 w,]o0 € LHp1, is complete.

Conversely, we shall show that LH,;,, C [LHxle,LH Lo Let f €

LHy1 .. Then, there exist {)\;}2 € ¢ and {(A4;,2)}2 € A,(L¥) such
that

J=—00 Jj=—00

f=>" NAyand Y NS (Il (5.46)

j=—o0 j=—o0
For every J € N and z € S, define

1—2

By = S0 Mm@ oy G,

We claim that

Fy(0,) € [LHy1w05 LHy 10,0 (5.48)
and
J}y_{loo 1F5(0,-) — Fie (6, )] [LH 1 1 g EH 1 1,00y J0 = 0. (5.49)

J>K

The proof of (5.48) and (5.49) will be given in Section 5.1. As a consequence of
(5.49), there exists g € [LHpy1,wy; LHpy 1,0, |0 such that

lim ||F;(0,-) = gllwn,, ., oo, .10 =0 (5.50)
J—o00 pol,wg? Pl Lwy
From (5.50) and [LHpy 1w, LHy 1,0, ]0 © LHp1 4, it follows that
lim [[F;(0,-) — gllou,, , =0 (5.51)
J—o0 p'1,
Since [ — Fy(0,) = > icz 155 A (), we have

If = Fs0,)lem,, . < > Nl =0

JEL,|51>J

Therefore,
hm Hf FJ( )HLH o 1w = O (552)

Combining (5.51) and (5.52), we have f = g. Hence, f € [LHy 1wy, LHp,1,0,]0-
O]

We now prove Theorem 5.5.2.
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Proof of Theorem 5.5.2. Without loss of generality, assume that py > p;. First,
we prove that

[LHy o wor LHy o wi)o € LHygr . (5.53)

Pp9p,wo > P197,w1

Let f € [LHpygow0s LHy g1 0, ]o- We shall show that f € LHyy .. Let w(t) =
t_%w(t). By Proposition 5.4.2, we only need to show that

sup [f(@)g(0)] de SN lliwa, oLy o (5.54)

||gHLMqu_J§1 R™ PHagwo’ Py w

Let g € LMpge with [|g|lzam,, , < 1. By the definition of [LHy ot o, LHy g1 10,0,

Pp4p,wo > P19;,w1

there exists F' € F(LHy g wos LHp, g w,) such that f = F(6,-) and that

1E'l| 7 (LHyy ot oo DHt o oy )y S LHyy ot g DH ot gt o (5.55)
For k € N and z € S, define
i) = xtran @ F a5 g @)

and

Or(z) = /n F(z,z)Hy(z,x) dx.
Since

Jim ¢ (0) = lim - f(@)Hy (0, z) dx
= Jim [ @@l zn (@) do= [ 1f@g) do

the inequality (5.54) can be obtained if we can show that

or(0) S W llie, , om0 1 (5.56)

PlI’UJO P147,w1

for all k € N.

The proof of (5.56) goes as follows. Let z € S. Let wy(t) := t wwp(t)
nd wi(t) = t wwi(t). From wy(t)® = w (1), w(t) = we(t)'~

a
1= 1204 9 it follows that
q q0 q0

>
g
=
~—
\.%
o
=
o,

wo(t)* = wi ()" = w(t)?,

which yields
Wo ()% = wy ()" = w(t).
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By using this identity, for every j € {0,1}, we have

P
"I XB(r)

_ Hw(r)qu

where we used £ = 2. = 2. From inequalities (5.37), (5.38), and (5.57), it follows

that Hg(z,-) € LMpqu wo M LM, g, and

P
1917 )
LMPijﬂffj LPi(B(r)) L9 (0,00)

NgllPp,, . <1, (557)

(@(r)lgx e LrBe)) ™

L% (0,00

P

V(22 M ety My < K05 (5.58)

Therefore, by combining (5.30) and (5.58), we have

sup ¢ (2)| S k» w0 sup |[F () lear,, , rrr,, . < 0. (5.59)

— Py 1,wq P 1,wq
z€S z€S

Next, we estimate |¢y(j+it)| for every j € {0,1} and ¢ € R. Since |Hg(j+it,-)| <
|g|p/p1 by virtue of (5.57), we have

[ Hy (G + it ) eMpygpm, < 1 (5.60)

Consequently, by combining (5.55), (5.60), and Proposition 5.4.2, we see that

\pu(j +it)| < [ |F(j+it,x)Hy(j +it, x)| da
Rn

<G+t ) 2Mpgag o)
~ ||F(j + it, ')HLHp/q/’wo

< HFH]: LH ;, / JLH ; / < HfH[LH/ / JLH ; / lo* (561)

quo qul quo P147,w1

By using an analogous argument as in the proof of Lemma 5.6.1, we have ¢(2)
is continuous on S and holomorphic in S. Since (5.59) holds. we may use the
three-lines lemma and estimate (5.61) to obtain

¢k<)<||f“LH// JLH ;i ]9

Poa>wo’ P AW

as desired. Thus, the proof of (5.53) is complete.

Now, suppose that f € LHyy .. Weshall show that f € [LHpy g wy, LHy, g1 0 ]o-
Write

j=—o0
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for some {(A;,27)}> € A, (L7) and {), }52 o € 17 satisfying

1

(Z |Aj|q/) S ler,,..- (5.63)

j=—o00
For J € N and z € S, define
Fy(z,-)

J 1—z, = J 1—zw1 Y o=
Z ‘)\ | ( + i)w0(2 )/ — (22) sgn(A]())\AJ()] (po +p1>_
7= w(2i)’ (5+)

(5.64)
We claim that
Fy(0,-) € [LHyyq w0, LHp, g w16 (5.65)
and
i 1E(0,) = Fe(0. )ity 1o = (5.66)
J>K

We postpone the proof of (5.65) and (5.66) to Section 5.2. As a consequence of

(5.65) and (5.66), there exists g € [LHpy g wos LHy g1 0, |0 such that
}1_}1110 1 F5(0,-) — gH[LHp/ ap o LH o oy J0 0. (5.67)

By combining (5.67) and [LHy g wos LHp, ¢t wylo © LHpy g 1, We have
lim [|F;(0,) —glim,, , =0. (5.68)
J—00 p'q’,

From f— F;(0,) = 3 \A;(-), (5.68), and {\;}__ € (7, it follows that

JELj|>J

j=—00

1f =9l ., <If=Fil)en,, ., + 1F06,) = gllen,.,.

S
q

< > i +IE0.) gl 0

,w
JEL|§|>T

as J — oo. Consequently, f = g. Hence, f € [LHp 1wy, LHp 1,0,]0- Thus, the
proof of Theorem 5.5.2 is complete. O]
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5.6 Some lemmas about the first complex interpolation
functor

In this section we provide the proof of continuity and holomorphicity of the
function ¢ (z) in Subsection 4.1. We also prove (5.48), (5.49), (5.65) and (5.66).

Lemma 5.6.1. [31] Let ¢x(2) be defined by (5.35). Then ¢y (2) is continuous on
S and holomorphic in S.

+LH,, By

Py l,wg phlwy’

Proof. Let 21,20 € S, P:= £ — 2 and M := sup | F (2 )lew,
0

P1 Po ol
z€S

combining (5.30) and (5.41) and
|Hy,(22,2) — Hi(z21,2)| < [Hi(z1,2)| (lg(2)[7=272 = 1) < [Hy(z1, @) (7127210 = 1)
we obtain

|9 (22) — & (21)]
< |F(29,2) — F(z1, 2)||Hg(22, )| dx

Rn

+ |F(z1,2)(Hg (22, ) — Hp(21,))| dz
R

< kPHF(Zza )= F(z1,)|lea 2

pol,w

JeLty HETM (R 1) (5.69)

Hence, the continuity of ¢x(z) on S follows from (5.69) and the continuity of
F:.:5— LHpE)l,wo + LMplll,wl‘

Now, we prove the holomorphicity of ¢x(z). Let z € S. Then there exists
F'(z,+) € LHp 1w, + LHp 1, such that

F(s. ) — F(s. -
iy [FE P
z—&-;}eg Lpr)l,w

0. (5.70)
0+LH /

prylwg

Define H;(z, ) = P - Hy(z,-)log|g| and
o(2) = /n(F'(z,m)Hk(z,x) + F(z,2)H;(z,x)) du.

Let h € C be such that z 4+ h € S. From (5.30), it follows that

Pr(z +h) — dx(2)
h

— ¢ (2)| S h+ 1L+ 13 (5.71)
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where

I = HHk(Zv ')”LMpoOO,wOmLMPOOO’“’O
F(z,-) - F(z,-
g H = h &) e : (5.72)
LHp61,wO+LHp’117w1
[2 = HF(Z + h/7 .)HLpr)l,wO+LHPI11!w1
Hy(z 4 h,) — Hi(s,-
y H k(z+h,) — Hy(z,-) _HI(2,) , (5.73)
h LMpOoo,wOmLMp100’w1
and
[3 = ||Hl:;(Za ')||LMpooo,woﬂLMploo,w1 ||F(Z + h’ ) - F(Z, .)||LHp6l’w0+LHp,11’w1 ‘

(5.74)

Combining (5.41), (5.71)-(5.74), and

H h,x)— H
k(z + ,:E})L K(2,x) — Hl(2,2)| < |Hu(2,2)] (kP|h| o 1) Plogk,
we get
h) —
AEHN 20D g
< kP F<Z>') - F(Za ) —F/(,Z, ) —|—MCk,p(l€P|h| - 1)
h LH /1w +LH 1w
Pp w0 pplwy
+ PE"(log k)| F(z + h, ) = F(2,)llem,, , 410, - (5.75)

By virtue of continuity of F'(z,-) and (5.70), the right-hand side of (5.75) tends
to zero as h — 0, so ¢}(z) is the derivative of ¢y (z). Thus, ¢x(2) is holomorphic.

]

Proof of (5.48) and (5.49)

In this subsection, we suppose that f is any function in LH,,, such that (5.46)
holds and F(z) is defined by (5.47). For each j € [—J, J| N Z, we define

/ ’

uj = | A7 7. (5.76)




For each j € [-J, J]NZ and z € S, define

G,z ) = VY o () )

w(gj)p,( 7 +E)

Gj70(2, ) = Gj(Z, ')X{Uj§1}7 and Gj,l(Z, ) = G]’(Z, ) — Gj,o(Z, ) (578)

We prove (5.48) by checking the conditions given in Definition 2.1.1. We shall
use the following calculation of the norm of some blocks.

Lemma 5.6.2. [31] Let k € {0,1}. Then, for each j € ZN[—J, J]

2y
wi( ) A, |7 <1 (5.79)

w<21>1);€ LHp;gl,wk

Proof. Inequality (5.79) follows from Lemma 5.2.1, ]|\Aj]p'/7’§c]|Lp;€ = HAjHI;/,p;“,

and ||A;] . < w(279). O

Lemma 5.6.3. [31] For every z € S, we have Fj(z,-) € LHy1 ., + LHy 10, -

Moreover, sup || Fj(z, )|’LHP/1wO+LHp'11,w1 < 00
z€eS

Proof. We decompose Fj(z,-) = Fjo(z,-) + Fj1(z, ) where

J
FJ@(Z, ) = Z )\jGj,O(Za ) and FJ1 Z A G]1 (580)

j=—J j=—J

Combining Lemma 5.6.2 and

wo(27) 2 Re( wo(27) B
Gz, )] = === A ()P <y < ——2 A5,
w(2])po w(QJ)po
we have
1Ero(z ) em,, < Z AillGiollea,,, ., < Z Nl S e,

j==J j==J

Therefore, Fo(2,-) € LHy 1w, Similarly, we also have Fj;(2) € LHy 1, with

1Es (2 ) len,, o S I llza,,

plwl
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Since Fy(z,-) = Fja(2,-) + Fja(z, ), we have Fj(2) € LHp 1w, + LHy 14, and

1E5 (2, )|,

plwo

< [[Fyo(z, ')HLHP61 + |1 F7a(z, )HLHP,M1
S ||fHLHp/1’w- (5.81)

S W lemy,, < oo O

HLH wo

Thus, sup [|[F;(z, )| zm,,

1% Pl wO+LH/
z€eS

pylwy

Lemma 5.6.4. [31] The function Fy: S — LH oot + LHp 10, 18 continuous.

Proof. Let z € S. We shall show that

lim ||Fy(z+h,-) = Fi(z,-)||ca,
h—0

plwo

+LH,,, = 0. (5.82)

pylwy
2+heS

Let Fjo and F}j; be defined by (5.80). For every h € C satistying z + h € C, we
have

J
| Fro(z 4+ h,-) = Fio(z, )||LHp,lw0 < Z NG00z + Ry ) — Giolz, )HLH,/MO
=1

~ A
J
- j:Z_:J wo(27) 1Gs0lz+hs) = Giolz )l -

Since

hII(l)(Gjo(Z +h,z) — Gjo(z,2)) = Gjo(z,x) hn%(uj( )" —1)=0, z € R",

we have
w 2]) L/I ez
Gaolz+ ) = Cyolz, N < 2224, (1 zny + o g,
w 2j>P6
Wo 2j p—,/
<2 @) 401,
()"

/
p

and |A;|"0 € LPo, by virtue of the dominated convergence theorem, we have
lim [[Gjo(2 + R, ) = Gjoz,)ll oy = 0-
Consequently,

Py 1,wq

lim ||FJ’0<Z + h, ) - FJ7O( )”LH , =0. (583)
h—0
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By a similar argument, we also have

hIH.”f?Ll(Z %-}L') _'f?Ll( )HL}[/ = 0. (5.84)
h—0

plwo

Combining (5.83), (5.84), and
| Ey(z+h,) = Fy(2)len, , , +om,

plwo plw

< | Fpolz+h, ) = Folz, ),

Py 1,wq

+\|Esi(z+h, ) — Fra(z,)|lou,

P lwl

we get (5.82). O
Lemma 5.6.5. [31] The function Fy:S — LHy 1w, + LHp 1.0, is holomorphic.

Proof. Let € € (0,1/2). It suffices to show that

§:AG Ylog(u;(-)) € LHpy1y + LHp 1,0, (5.85)

j=—J

for every z € S and

F - F
im [ EEEN =BG g =0 (5.86)
Z-]T-?EOS LHp’l w0+LHp’1 wq
for every z € S.:={2€ S :e <Re(2) <1—e}. We define
F(/IO Z AiGio(z, ) log(u;(+)) and Ff]l Z NGz, ) log(u;(+)).
j=—J j=—J
(5.87)
Since
w <2J> LII ez
Gi0(z: ) log(uy(-))] = =7 45 ()0 ()7 og (u; () [ Xy <13
w(i)
wo (27 2
< ) a5,
eRe(z)w(27)7
by virtue of Lemma 5.6.2, we have
! w0<2j> p'/pg
1Es0(z ) em, 0 < j{: Al o [ A7 7o
j==J eRe(z)w(27)o Lily,
1 J
< £ <
— GRG(Z) jz_Jl J| ~ ||f||LHp/1,w < o0,
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LH'lwl

80 Fo(2,+) € LHp 1w, By a similar argument, we have F7,(2,-) €
) = F", (z,-) + F5,(z,-), we conclude that F)(z,-) € LHp 1w, +

Since F'(z,-
LHy 1w,

Now, we prove (5.86). Let z € S. and h € C be such that z + h € S and
|h| < 5. Since

p*/O . wal(29)| A )576
Gjolz)] = = wo(@)l4 i)’ i () x <1y < o) Jél Xuj<t}s
w(29) % w(27)%
we have
Giolz+ h,-) — Gz,
et 1) = OB o)
u; ()" — 1 — hlog(u,(-
= Gyo(e. ]| HEE A )
wa (29 A (- zf() hlog(u;(+))|*2
IO ) Z' L0
w(27) %
wa (29 A (- 1%6 _ e
< WA e, <l Qo () e s (5.58)
Combining (5.88) and sup ¢/*(logt)? = 3%, we get
0<t<1
Gjo(z +h,-) = Gjo(z, )
30 - 2O2 L Gjolz, ) log(u;(+))
wo(29)| A ()| 7
< WA el <yl Qo s ()P
2N A (- A
< C.|H| 0(27)] Jf/)' ° (5.89)
w(29) 7
Therefore,
Fro(z+h, ) — Fiol(z, )
‘ 0 n ° _FL/],O(Z7 )
LHp()l,wo
L Jweniaor "
<Clnl S ) o < Celhl >IN
j==J w(27) 7 LH, =
pol,w



Consequently,

F h,-)—F .
lim || 20+ R ) = Fooler) = 0. (5.90)
h—0 h ' LH.,
P, l,wo
Likewise,
F V- F :
lim || 220G ) = Foaler) g = 0. (5.91)
h—0 h ’ LH,
pyLwy
Thus, (5.86) follows from (5.90) and (5.91). O

Lemma 5.6.6. [31] For every k € {0,1}, the function t € R — Fj(k +it) €
LHy 1w, is bounded and continuous.

Proof. First, we shall show that

iri%xsupHFJ(k—l—zt)HLH,l < 0. (5.92)

For each k € {0,1}, t € R, and j € [—J, J] N Z, we have

we(2) g we(2)
— U || AR =

w(29)P /P w(29)P'/Pk | ]| " (5.93)

|Gj(k +it)] =

so, by virtue of Lemma 5.6.2, we have

J
1k +t)em,, ,,, < > NS Il

p%l,wk :
j=—1

Therefore,

km_%xsup 1F5(k+i)l[rm,, ., SIfllem, , < oo
Now, we prove the continuity of t € R +— Fj(k + it). Let t, € R. By virtue of
Lemma 5.2.1, we have

| Fy(k +it,-)—Fy(k +ito, - )||lm,

plwk

J
< Do NG kit ) = Gylk+ito, ey,

j—fJ
Gk +it,) — Gk +ito, )|
. Z || ) =Gyl +ito Ny 590
— wk(QJ)
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Since |A;|7% € LPk, |G;(k + it, ) — G(k + ito, -)| < 2-2%2)_| 4, I”k and

L/
w(29) Pk

lim (G,(k +it,x) — G;(k + ito, x)) = G;(k + ito, x) 1th_gl u;(z) —1=0
0

t—to

for every x € R"™, by virtue of the dominated convergence theorem, we have

lim |G, (k + it) — G(k + ito)]| ;= 0. (5.95)

t—to

By combining (5.94) and (5.95), we get

Yo (| (k + it ) = Fy(k+ it ) o,y =0,

as desired. n

From Lemmas 5.6.3-5.6.6, it follows that Fy € F(LHpy 1w, LHp,1,w,). Conse-
quently, F;;(0) € [LHp 1wy, LHy 1, ]o- Thus, it remains to prove (5 49).

Proof of (5.49). Let J, K € N with J > K. From (5.93) and Lemma 5.6.2, it
follows that

1E5(0,) = Fic (0, e, o,

Py 1 w1]9

< Hl%XSllp HFJ(k’ + it, ) - FK(/{? + it, ')HLHP/ L

< SUP Z ’)\‘”G (k +1t, )HLH,lw

k=
J>|J|>K
“pysw 3 SORPVOIES I I VR
J>|]|>K w(QJ)pk LHyt 1wy, sz\]e'\Z>K
Since {\;}32 ., € £, we sce that
Jim > Inl=0 (5.97)
J>K  JeL
J2|jI>K
Thus, (5.49) follows from (5.96) and (5.97). O
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Proof of (5.65) and (5.66)

Let F(2) be defined by (5.64). For each j € [—J, J| N Z, we define

4~ 2w (27) " w (27) A 4
= [\j|0 —|Aj|m o (5.98)

For each j € [-J,J]NZ and z € S, define

z i) w0<2j>1—zw1 2])2

@) oaor ()
w(29)’ (5+7)

(5
Gj(z,-) == sgn(\)) |\l ( “0

(5.99)
Lemma 5.6.7. [31] For every z € S and j € [—J,J] N7Z, define
Gjo(z,+) = Gj(z )xqu<1y,  and  Gja(z,-) == Gj(z,+) — Gjo(z,-).  (5.100)
Then, for each k € {0,1}, we have

Gnle ) < 12D 4,15 (5.101)

w(27)70

Proof. We prove (5.101) only for £ = 0. We leave to the reader the case k = 1
because there are no differences. Since Re(z) > 0, we have

9 wo(2/ B o wy (2 Z
e PPN AU RPWETE S N W IO RPETE 3

w(27) 7 w(29) %
as desired. O

Lemma 5.6.8. [31] Let k € {0,1} and j € [-J,J]NZ. Then
is a (p},, wg, 27)-block.

|A; ,p/pk

. //p

Proof. Since supp (4;) C B(27), we have supp ( |A;|P /pk) C B(2).

w(29)P /p
Moreover, from || 4|, < w(27) it follows that

wk(QJ)

'/,
= wypm Al < @),
LPk

M A, [P/
w(2j>pl/pk J

Thus, (“2’ p/p |A;[P'/Pk s a (pf,, wy, 27)-block. O
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Lemma 5.6.9. [31] For every z € S, we have Fy(z,-) € LHy g wy + LHp g1 w, -
Moreover, sup || F;(z, )”LHP/Q/ R N
z€S
Proof. We define
FJO Z GJO and FJ]_ Z G]l (5102)
j=—J j=—J
We use (5.3), (5.63), and Lemma 5.6.8 to obtain
J
10z Mlem, 0y < > 1Gj0(z)]
j==J LHp/ qO g
% 27) '
< ZMIO A
g==J LHy )
J 1/qq
VANV /
<[ Sl /%)%) SIAIAS <o,
j=—J
Therefore, Fyo(2,-) € LHy g w,- Likewise, Fj1(2) € LHy ¢ w, With
| Fnnz My, o SIFITEE, -
Consequently, Fj(2,-) € LHy g w, + LHp, g, and
| F5(2, )HLHp/q/ oo Ly gty S < || Fyo(2, ')||LHP6QW0 + | Fra(z, )HLHp/q/ .
SNz, + AT, (5.103)
Thus, sup | (2, Mleny oy S IR, +IFITE, < oo m
z€S ’
Lemma 5.6.10. [31] The function Fy : S — LHy g wo + LHy, g w0, 18 continuous.
Proof. Let z € S. For h € C with z + h € S, we have
|Fs(z+h,") — Fi(z,)|leu sty o TLH Y ot oy
<\ Fro(z+h,-) — Fro(z a’)HLHp/q/ + N Fpa(z+hyo) = Fra(z,)lew, , -
0900 p1d3-w1
(5.104)
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Hence, it suffices to show that

Hm || Fypp(z +h,o) = Fie(2,)lemy, , . =0 (5.105)
h—0_ P4} Wk
z+hes

for each k € {0,1}. By virtue of Lemma 5.2.1, we have

J

Z Gik(z+h, o) = Gz, )lem,, ,

Pl Wk

||FJ,k(Z+h7')—FJ,k( ||LH/q/

Wi

i ”ij Z+h ) G]»k(za')HLP;-
iz wi(27) '

(5.106)
According to Lemma 5.6.7, we have

|Gip(z + D) = Giplz, )| < Gyk(z + by ) +1Gy (2, )]

‘5/'\

/

=

< o )4
w(QJ')pk

Since
lin (Ge(= + o) — Galz)) = Gz 0) lim ()" — 1) = 0

for every x € R™ and |A;|" € LPk, by virtue of the dominated convergence
theorem, we have

lim [G(z + b, ) = Gaz, )y, = 0. (5.107)

Thus, we obtain (5.105) by combining (5.106) and (5.107). O
Lemma 5.6.11. [31] The function F;y : S — LHy ot w,+LHy gt w, is holomorphic.

Proof. Let € € (0,1/2) and S, := {2 € S : ¢ < Re(z) < 1 —¢}. We shall show
that

Z Gj(z, ) 1og(w;(-)) € LHyy wo + LHy o - (5.108)

j=—dJ
for every z € S and

Fr(z+ h})L — Fj(2) P2

z+heSs LHp’ q/ w0+LHp/ q’ ,wy

=0 (5.109)
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for every z € S.. We define

Fio(z, Z AiGio(z, ) log(u;(-)) and F, (2 Z AjiGia(z,-) log(u;(+)).
j=—J j=—J
(5.110)
Since
G. I1 (- A%_ﬁﬂﬂ4.§..%@1 (.
|Go(z, ) log(u;(-))] = [A;] % o 1A ()70 ()7 log (ui (1)) X gy <13
w(29) 7
9 wp(2 B
< lh )y
eRe(z)w(27)7

by virtue of Lemma 5.6.8, we have

1/ '
) R Vi

F! Al S—5 5 <
|| J’0< )“LH Pl wo — GRG (]Z:J| | ~ GRG( ) oo,
so Fj(z,) € LHy g w,- Similarly, I, (z,) € LHy ¢ w,. Since

F3(27 ) = FJI,O(Z’ ) + Ff],l(zv ')v
we see that F(z,-) € LHy g 1, + LHy

Ppdp,Wo p1q1 wy -

The proof of (5.109) is obtained in a similar way as (5.86). Let z € S. and
h € C be such that z 4+ h € S and |h| < §. By a similar calculation as in (5.89),
we obtain

Gjo(z+h,-) —Gjol(z,- @ g (27)] A (- 0
et b 2 e ) et < a5 2210
w(2)%
The last inequality, (5.63), and Lemma 5.6.8 imply
1/qp
FJVO(Z—f-h,') _FJ70(Z,') J ’
| ) Pz <cn [ 30
LHp/ 2w j=—J
S Ce |h|HfHLH//w'
Consequently,
F N F :
lim || 220 R = Foolzr) — 0. (5.111)
h=0 h ’ LH,

P40>w0
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Similarly,

F h,-) — Fyi(z, -
lim || 220G A ) = Foaer) g = 0. (5.112)
h=0 h ’ LH,,
phafwy
Thus, (5.109) follows from (5.111) and (5.112). O
Lemma 5.6.12. [31] For every k € {0,1}, the function t € R — F;(k +it) €
LHp/ gl U5 bounded and continuous.

Proof. First, we shall prove that

km%xsup 1F5(k + at)| L, Ly, < OO (5.113)

Let k € {0,1}, t € R, and j € [—J, J] N Z. By virtue of Lemma 5.6.8 and

% wi(2) % wy,(27) %
|Gk +it)] = [A] ’“ijtHAﬂp = [Aj] kw\ Ajlre, (5.114)
we have
J 1/qk
. ’ '/
1£5 (K + i)l e,y o < (Z \)\j’q> S Hquui’?q,w
j=—J
Therefore,
massup |5k +i0)|um, S IAIEE, , < o0

The proof of the continuity of t € R +— Fj;(k + it) goes as follows. Let t; € R.
According to Lemma 5.2.1, we have

||FJ(k + Zt? )_FJ<k + it07 )HLH / q

Wk

=< Z NG (K + it ) = Gk +ito. )l e,y

a5, W
=
! 1G;(k +1it,-) — Gj(k +ito, )| u
) ) ka
< Z I\ ) . (5.115)

2 / L; j L//
Since |A;|"% € LPk, |Gy(k +it, ) — Gk + ito, -)| < 2||% 25| A;]7%, and

T
w(279) Pk

lim G,(k +it,x) — Gj(k +it,x) = G;(k + ito, z) thr? (u;(x)" ™ —1) =0,
—to

t—to

by virtue the dominated convergence theorem, we have

lim |G (k + it) — G, (k + ito) |, = 0. (5.116)
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By combining (5.115) and (5.116), we get

lim ||FJ(]{,‘—|—Zt,)—Fj(k+2t,)||LH, , :0,
t—to P Wk
as desired. O
According to Lemmas 5.6.9-5.6.12, we have
F;e ‘F(Lpr)qé,wm LHPﬁqiawl)'
Therefore, F;;(0,) € [LHpyq wos LHy g w0, Jo- Thus, it remains to prove (5.66).

Proof of (5.66). Let J,K € N with J > K. By virtue of (5.114) and Lemma
5.114, we have
HFJ(07 -) J— FK(67 ')“[LHpgq(’),wo’LHP'ﬂ'pm]e

S max sup ||Fj(k + Zty ’) - FK(k + Zt? )HLH ’
k=0,1 tcRr Pk ik

YW
m
— ) o < 4
pasep | ), Gk it |2 W
JEZ JEZ
TSNS K . TR K
PR Wk

(5.117)
Since {\;}32_ o € (7, the right-hand side of (5.117) tends to zero as J, K — oo,
which implies (5.49). O
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Chapter 6

Complex interpolation of grand
Lebesgue spaces

In this chapter discuss interpolation of grand Lebesgue spaces by complex method.
First let us explain the motivation of considering complex interpolation of grand
Lebesgue spaces according to the result of complex interpolation of generalized
Morrey spaces. Let 2 be a bounded measurable subset of R™ and define M(§2)
to be the set of all measurable functions f on 2 which belong to MY, where
it is understood tacitly that f is extended to be zero outside 2. Substituting
U = L°(Q) to Theorems 4.2.1 and 4.3.1 we get

Corollary 6.0.1. Keep the same assumption as in Theorem 4.2.1. Then
[M?OO(Q),M%(Q)]@ ={fe M?(Q) : ]\}E{l)o ||fX{|f\>N}||M;’(Q) =0}

and

(M (Q), MEH Q)" = MZ(Q).

q

It seems that Morrey spaces on the bounded domain behaves better than
Morrey spaces on R™ under the first complex interpolation results. Hence, it is
interesting to consider complex interpolation of some function spaces defined on
set of finite measure other than Morrey space on the bounded domain, such as
grand Lebesgue spaces.

Let us recall the definition of grand Lebesgue spaces. Let (€2, ) be a finite
measure space, 1 < p < oo, and 7 > 0. The grand Lebesgue space LP)7 =
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LP»7(§), ;1) is the set of all measurable functions f for which

||f||Lp>r(Q,u) = oe SUP 5’7 N f”LP () < O0.

<p—1

The space LP'(Q, 1) was first introduced by T. Iwaniec and C. Sbordone in
their studies on the integrability condition of the Jacobian function on a domain
Q C R" (see [33]). Meanwhile, the definition of LP7(Q, 1) for general 7 > 0 can
be found in [18]. An example of a member of LP)7 (€2, 1) is given as follows:

Example 6.0.2. [15, 26] Let 2 := (0, 1),  be the Lebesgue measure, and f(z) :=
x~% Then we can verify that

1

a< =

P),T ’
feLrL @{a b

:;,7'21.

It is known in [15, Remark 2] that the function f(z) := 2=Y/? is in L?>7(0,1) but
it does not have absolutely continuous norm.

6.1 Basic properties of grand Lebesgue spaces

We recall the following inclusion of Lebesgue spaces on () to grand Lebesgue
spaces on {2 which can be found in [16].

Lemma 6.1.1. [16, 26] Let 1 < p < 0o and r € [p,00]|. Then we have

L'(Qu) CLPT(Qu)C () L' (2 p). (6.1)

O<e<p—1

Proof. The inclusion (6.1) is stated in [16]. We give the proof of (6.1) for conve-
nience of the reader. Let f € L"(Q, u). If r < 0o, then for any ¢ € (0,p — 1), we
have

T T L1
er= || fll e < max(L,p — 1)7u(Q)7= " | fll @)
max(1,p — 1)" max(1, x(€2))

< r
= M(Q)l/r HfHL (Q,u)
Therefore,
maX(l,p B 1)T ma’X(]-?/J“<Q))
Hf”LmvT(Q,u) < N(Q)l/r Hf”LT(Qn“)'
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Since L®(Q, ) € L"(Q, ), L=®(Q,pu) € LP7(Q,p). If f € LP7(Q,p) and € €
(0,p — 1), then

1 @) < €7 1 fllmnm g < 00, (6.2)
sofe [ LPe(Q,u) as desired. O

O0<e<p—1

The next lemma is the scaling property of grand Lebesgue spaces:

Lemma 6.1.2. [26] Let 0 <7 < 00 and 1 < ¢ <r < s < oo. Then there exists
C > 0 such that for every f € L’")’T(Q 1), we have

LS):T <C

o S HfIILT> 0 (6.3)

and

< e (6.4)

Proof. Let € € (0,q — 1) and ¢ := Le. Then we have

r _ : _ g5>rTa
o, =M g = | ¢

SlnceO<5——a<r——<r 1, we have

LO)sT

r

q
|rf||m-am,m}

T

T =g 7 A

< |67
. bl

and hence (6.4) follows. Let ¢ € (0,7 —1). Write § := Ze. Since 0 <0 < s —1,
we have

: e
s LSfE(Q,/L) — 8‘( %) ||f| Lg(s—s)( )

- [0 1fles]
< ()* (=11 o)
<(3)" i

rl)

P
gs—e

T

s

ﬂICn

(@) (6.5)

Now, let e € (r—1,s—1) and  := "1
1nequa11ty, and (6.2), we get

Ls s ) < maX(17 (8 - ]‘>T)va||2'r7§z€(gﬂu) SJ Hf”[sﬂ'—’*/(ﬂ,u) S ||f“£7‘),7’((Q”u;
6.6
Combining (6.5) and (6.6), we have (6.3). O

. By using 0 <~y < Ze <r—1, Holder’s
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6.2 The first complex interpolation of grand Lebesgue
spaces

We give the following description of the first complex interpolation of grand
Lebesgue spaces.

Theorem 6.2.1. [26, Theorem 1.1] Let 0 € (0,1), 1 < py < 00, 1 < p; < o0,
and T > 0. Assume that py # p1 and define
1 1-46 1
= +—. (6.7)
P Po P1

Then
(76, 1), L7 (9, w)lo = { £ € L7920 - Jim (x| ey = 0

Our proof of Theorem 6.2.1 uses Lemma 2.3.2 and the description of the
Calderén product of grand Lebesgue spaces. To give a description of the Calderon
product of grand Lebesgue spaces, we prove the following lemma.

Lemma 6.2.2. [26, Lemma 3.3] Let@E( 1), 0<T<oo, and 1 < p; < py <
oo. Define p by (6.7). If fo € LPO™ andfleLpl T, then

1ol LA e S W foll gy e 12100 - (6.8)

Remark 6.2.3. Note that (6.8) can be viewed as the Holder inequality in grand
Lebesgue spaces.

Proof of Lemma 6.2.2. Let € € (0,p — 1). By using Holder’s inequality, we have
1-0) ¢ |0
H‘fU, ‘fl’ HLp—s(Q)
1

< (U |f0(x)|m(i_8)du(x)}(1p§)p V () e)dﬂ(@]ii’)p—e

= H’f0|p0/pHLp £(Q) H|fl|pl/pHLp e(

By virtue of Lemma 6.1.2, we get

(1-0)p op

|1_0|f1|0HL,7_5(M)§<5P%€ | folP/]| . Q)> " (»sﬁ |f1|p1/1”HLp_s(Q)>p1

< Il A,
S 1ol il -

Taking the supremum over any ¢ € (0,p — 1), we get (6.8). O
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We now prove the following description of the Calderén product for grand
Lebesgue spaces.

Lemma 6.2.4. [26] Let 6 € (0,1), 0 <7 < 00, and 1 < p; < pg < co. Define p
by (6.7). Then we have

(LPOI7(Q, ) O (LPT(Q, p)? = LP7(Q, ).

Proof. Let f € LP7(Q, ). Define fo := [f[P/P and f, := |f[P/"*. By using
Lemma 6.1.2, we have

Voll ey S 11 and il < 1A g0

Since |fo|*~?|f1]° = | f| and

||f|| (LP0) 7 (Q,1))1 =0 (LP1):7 (Q, 1)) < ||f0| Lpo) M)HleiPl)v"(Q,u)

- )£(9)
< HfHLP)-r(Q :)1

= ||f||LP)vT(Q,M)>
we have f € (LPO7(Q, 1)) =0 (LP)7(Q, 1))?. Therefore,
LT (Q, ) © (LPM7(Q, 1))~ (LPT(Q, 1))

Conversely, let g € (LPO)7(Q, ) =9(LPV7(Q, 11))?. Choose gy € LP)7 (€, 1) and
g1 € LPY7(Q, p) such that |g| < |go|*~%|¢g1|? and

||90| Lpo> Q,M)Hgl”immf(g,u) < 2”9”(LPO)’T(Q,u))1*9(L1’1>’T(Q,M))9' (6.9)
Combining (6.8) and (6.9), we get
||gHLP)’T(Q,,u < |||90’1_0|gl|0HLP)T(Q 1)

< ||gO| Lpo)r QM)HgluLm) )

S Mgllzro @py-o@enm@umye-
Consequently, g € LP7(, i). Thus,
(L7 (92, 1) (127(@, 1)) € ID7 (0, ).

as desired. n

The proof of Theorem 6.2.1 is given as follows.
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Proof of Theorem 6.2.1. Combining Lemmas 2.3.2 and 6.2.4, we have

LP)T (1)

(L7 (9, ), P07 (9, 1) = TP (€ ) 1 L7 (S0, 1) (6.10)

Without loss of generality, we may assume that py > p > p1. Let f € LP7(Q, u)
be such that

i ([ x5 3y 2o @) = 0- (6.11)
Define fy := fxqs<ny. Then, by virtue of Lemma 6.1.1, we have

fn € LPOT(Q, 1) N LPYT (K, 1) (6.12)
In view of (6.10) and (6.11), we have f € [LPO7(Q, u), LPV7 (2, i)]g. Thus, we
have proved that

{f € LT )+ i s my fl| ey = 0} [LP7 (€2, 1), L7 (82, 1))

Hence, to conclude the proof, it suffices to show that

T £ ) = 0 (6.13)

for every f € [LPO7 (S, ), LPV™ (Q w)]e. According (6.10), for every € > 0, we
can choose g € LP)7(Q, ) N LPY)7(Q, i) such that
If — g”LP)»T(Q,,u) <e&. (6.14)
We now fix j € N. Note that
[Pxas=al < 1 =91+ l9xqgir2 | + l9xar=nnts<iiz |-
On the set {|f] > j} N{]g| < j/2} we have

=l I

<<
9 1

SO

I fxarsillznr @ < 20 = gllzor @ + l9xqg>5/23 207 (0, - (6.15)
By virtue of Lemma 6.1.2, we get

P Xolaylgl T

ot e = [[lol' ™ oo

<%

L) (Q,p)

120
Sj b HgHE)pO),T(Q’#)?

and hence
1 ol s = 0 (6.16)
Combining (6.14)-(6.16), we get
Hmsup || X551 2o - < 26
j—o0

Since € > 0 is arbitrary, we have (6.13), as desired. O
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6.3 The second complex interpolation of grand Lebesgue
spaces

Our result on the second complex interpolation of grand Lebesgue spaces is as
follows.

Theorem 6.3.1. [26] Keep the same assumption as in Theorem 6.2.1. Then
[LpO)VT(Qv :u)v Lm)’T(Q’ //“)]6 = Lp)7T(Q> M)-

In some particular cases, we may have a proper inclusion
(L7 (Q, ), LT (Q, m)]o G (L7907 (Q, o), LT (2, )’ (6.17)

For instance, let us consider {2 = (0, 1), u is the Lebesgue measure on €2, and the
1
function f(z) := 2" 7, v € Q. Note that f € LP1(Q, 1) and

i sismy fllm @ ~ 17 0.
In view of Theorems 6.2.1 and 6.3.1, we see that
e (L@, ), PO (S, )]\ [LPH(Q, o), P82, )]
This shows (6.17).

Our proof of Theorem 6.3.1 uses Lemma 2.2.4 and Theorem 6.2.1 and also
the construction of the second complex interpolation functor given by (3.21).

Proposition 6.3.2. [26] Keep the same assumption as in Theorem 6.2.1. Let
f e LP7(Q, 1) and define G by

G(z):=(2—-10) /1F(9—|—(2—0)t)dt (€ 9), (6.18)
where L-: 1_Z_|_i (6.19)
p(z) P i
and
F(z2) := sgn(f) exp (]% log | f|) (z€3). (6.20)
Then

G € G(LPOT(Q, ), LPY7(Q, ).
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Proof. The idea of the proof of Proposition 6.3.2 is similar to that of Lemma
3.3.2. We uses inequalities (3.24)—(3.27) with g, ¢1, and g are replaced by py, p1,
and p, respectively. Combining these inequalities and Lemma 6.1.2, we get

O
z€8 1+ | |

Q
B S NI o + IR

||G(Z1) - G(z2)||LP0) T(Q, ) +LP1)T (1)
S l21 = 2l (I8 o + A1 ) 2122 €5,

and

G(z+w) — G(z)

w

S0l o + LI )
LP0)T (Q, 1)+ LP1)T (€, 11)

whenever z € S satisfying 0 < ¢ < Re(z) < 1 —¢ for e € (0,3) and w € C

with |w| < 1. These show the boundedness and continuity of G on S and also
holomorphicity of G in S. Hence, we only need to verify that

G(] + Zt1> - G(] + Ztg) € ij (Q u)
for every t1,t2 € R and j € {0,1} and also
GG + i pazr =y < (1l (6.21)
for every j € {0,1}. Combining
to
G(j +it)) — G(j + its) = —2'/ F(j +it) dt
t1

and [F(j +it)| = ||, we get
P
IGG +its) = GG + it oy < 01 = t2lllF 11

This implies (6.21). Thus, G € G(LPO)7 (2, ), LPV7 (2, ). O

Proof of Theorem 6.2.1. Let f € LP7 (€, 1) and define G by (6.18). Then G'(6) =
f in LPo)™ (Q @) + LPY7(Q, ). This equality and Proposition 6.3.2 imply f =
G'(0) € [L77(Q, ), LPT(Q, )’

Let f € [LP)7(Q, u), LPY7(Q, p)]?. Choose G € G(LPO7(Q, ), LPV7™ (82, 1))
such that G'(6) = f and

Gl gerrorm @200 ) S Wl izrore pompe- (6.22)
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For each k € N and 2z € S, define Hy(z) by (2.3). Combining Lemma 2.2.4,
Theorem 6.2.1, and (6.22), we have

HHE O o7 @) S 1 pro (@, o0 7 @ 310

Since
kh—glo ||Hk(0)_f||Lpo)J(QW)_;_Lm),T(Q,M) - kh—golo ||Hl€(0)_G/(8>”LPO)J(Q,;A)—I—Lpl)’T(Q,/L) = 07

we can find a subsequence {Hy, (0)}32, such that

lim Hy, (6)(@) = £ (@)

a.e. x € ). Therefore, by the Fatou Lemma, we have

1Nl o) < lijfgg}f | Hy, (O] 1o 7 2,0 S N lizroer (), zonm @, (6.23)

Hence, f € LP7(Q,pn). Thus, we conclude that [LPO)7(Q, u), LPV7(Q, p)]? C
LP7(Q, p). O

91



Bibliography

[1] D. R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975), 765
778.

[2] C. Bennett, and R. Sharpley, Interpolation of operators. Pure and Applied
Mathematics, 129, Academic Press, Inc., Boston, MA, 1988. xiv+469 pp.

[3] J. Bergh and J. Lofstrom, Interpolation spaces. An introduction,
Grundlehren der Mathematischen Wissenschaften, no. 223. Springer-
Verlag, Berlin-New York, 1976.

[4] J. Bergh, On the relation between the two complex methods of interpola-
tion. Indiana Univ. Math. J. 28(5), (1979), 775-778.

[5] O. Blasco, A. Ruiz and L. Vega, Non-interpolation in Morrey-Campanato
and block spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 31-40.

[6] V.I. Burenkov and E.D. Nursultanov, Description of interpolation spaces
for local Morrey-type spaces. (Russian), Tr. Mat. Inst. Steklova 269 (2010),
Teoriya Funktsii i Differentsialnye Uravneniya 52-62; translation in Proc.
Steklov Inst. Math. 269 (2010).

[7] V.I. Burenkov, P. Jain, and T.V. Tararykova, On boundedness of the Hardy
operator in Morrey-type spaces, Eurasian Math. J. 2 (2011), 52-80.

[8] V. I. Burenkov, E. D. Nursultanov, and D. K. Chigambayeva, Description
of the interpolation spaces for a pair of local Morrey-type spaces and their
generalizations, Proc. Steklov Inst. Math. 284 (2014), 97-128.

[9] A.P. Calder6n, Intermediate spaces and interpolation, the complex method,
Studia Math. 24 (1964), no.2, 113-190.

[10] L. Caso, R. D’Ambrosio, and S. Monsurro, Some remarks on spaces of
Morrey type. Abstr. Appl. Anal., Art. ID 242079, 22 pp. ( 2010).

[11] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal
function, Rend. Mat. Appl. 7 (1987), 273-279.

92



[12] F. Cobos, J. Peetre and L. E. Persson, On the connection between real and
complex interpolation of quasi-Banach spaces, Bull. Sci. Math. 122 (1998),
17-37.

[13] G. Di Fazio, D.I. Hakim, and Y. Sawano. Elliptic equations with discontin-
uous coefficients in generalized Morrey spaces, Eur. J. Math. 3 (2017), no.
3, 728-762.

[14] Eridani, H. Gunawan, E. Nakai, and Y. Sawano, Characterizations for the

generalized fractional integral operators on Morrey spaces, Math. Ineq. and
Appl. 17 (2014), 761-777.

[15] A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect.
Math. 51, (2000), 131-148.

[16] A. Fiorenza, B. Gupta, and P. Jain, The maximal theorem in weighted
grand Lebesgue spaces, Studia Math. 188(2), (2008), 123-133.

[17] A. Gogatishvili and R. Mustafayev, Dual spaces of local Morrey-type spaces,
Czechoslovak Math. J., 61(136), (2011), no. 3, 609-622.

[18] L. Greco, T. Iwaniec and C. Shordone, Inverting the p-harmonic operator,
Manuscripta Math. 92, (1997), 249-258.

[19] V.S. Guliyev, S.G. Hasanov, and Y. Sawano, Decompositions of local
Morrey-type spaces, Positivity 21 (2017), no. 3, 1223-1252.

[20] H. Gunawan, A note on the generalized fractional integral operator, J.
Indones. Math. Soc. 9 (2003), no. 1, 39-43.

[21] H. Gunawan, D.I. Hakim, Y. Sawano, and I. Sihwaningrum, Weak
type inequalities for some singular integral operators on generalized non-
homogeneous Morrey spaces, J. Function Spaces Appl., Vol. 2013, Article
ID 809704, 12 pp.

[22] H. Gunawan, D.I. Hakim, K. M. Limanta, and A. A. Masta. Inclusion
properties of generalized Morrey spaces, Math. Nachr. 290, (2017), 332
340.

[23] D.I. Hakim, E. Nakai, and Y. Sawano, Generalized fractional maximal op-
erators and vector-valued inequalities on generalized Orlicz-Morrey spaces,
Rev. Mat. Complut. 29 (2016), no. 1, 59-90.

[24] D.I. Hakim and Y. Sawano, Interpolation of generalized Morrey spaces,
Rev. Mat. Complut. 29 (2016), 295-340.

[25] D.I. Hakim, Y. Sawano, and T. Shimomura, Boundedness of generalized
fractional integral operators from the Morrey space Ly 4(X, pt) to the Cam-
panato space L1 (X, pt) over non-doubling measure spaces, Azerb. J. Math.
6 (2016), no. 2, 117-127.

93



[26] D. I. Hakim, M. Izuki, and Y. Sawano, Complex interpolation of grand
Lebesgue spaces, Monatsh. Math. 184 (2017), no. 2, 245-272.

[27] D.I. Hakim and Y. Sawano, Calderén’s first and second complex interpo-
lations of closed subspaces of Morrey spaces, J. Fourier Anal. Appl. 23
(2017), no. 5, 1195-1226.

[28] D.I. Hakim, S. Nakamura, and Y. Sawano, Complex interpolation of
smoothness Morrey subspaces, Constr Approx. 46, (2017), 489-563.

[29] D. I. Hakim, S. Nakamura, Y. Sawano, and T. Sobukawa, Complex in-
terpolation of B}-spaces, Complex variables and elliptic equations, online,
(2017), DOL: http://dx.doi.org/10.1080/17476933.2017.1327954.

[30] D. I. Hakim, Complex interpolation of certain closed subspaces of Morrey
spaces, to appear in Tokyo J. Math.

[31] D. I. Hakim, Complex interpolation of predual of general local Morrey-type
spaces, to appear in Banach J. of Math. Analysis.

[32] D.D. Haroske and L. Skrzypczak, Embeddings of weighted Morrey spaces,
Math. Nachr. 290 (2017), 1066-1086.

[33] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under
minimal hypotheses, Arch. Rational Mech. Anal. 119(2), (1992), 129-143.

[34] T. Izumi, E. Sato, and K. Yabuta, Remarks on a subspace of Morrey spaces,
Tokyo J. Math. 37 (2014), no. 1, 185-197.

[35] P. G. Lemarié-Rieusset, Erratum to: Multipliers and Morrey spaces, Po-
tential Anal. 41 (2014), no.4, 1359-1362.

[36] Y. Lu, D. Yang, and W. Yuan, Interpolation of Morrey spaces on metric
measure spaces, Canad. Math. Bull. 57 (2014), 598-608.

[37] C.B. Morrey, On the solutions of quasi linear elliptic partial differential
equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.

[38] E. Nakai, Hardy—Littlewood maximal operator, singular integral operators,
and the Riesz potential on generalized Morrey spaces, Math. Nachr. 166,
1994, 95-103.

[39] E. Nakai, A characterization of pointwise multipliers on the Morrey spaces,
Sci. Math. 3 (2000), no. 3, 445-454.

[40] E. Nakai, On generalized fractional integrals, Taiwanese J. of Math. 5
(2001), 587-602.

[41] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, In: Ba-
nach and Function spaces, pp. 323-333, Yokohama Publ., Yokohama (2004).

94



[42] E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal func-
tion, Studia Math. 188 (2008), no. 3, 193-221.

[43] E. Nakai and T. Sobukawa, BY-function spaces and their interpolation,
Tokyo J. of Math., 39 (2016), no. 2, 483-517.

[44] J. Peetre, On the theory of L,  spaces, J. Funct. Anal. 4 (1969), 71-87.

[45] L.C. Piccinini, Inclusioni tra spazi di Morrey, Boll. Un. Mat. Ital. 2 (1969),
95-99.

[46] A. Ruiz and L. Vega, Corrigenda to “Unique continuation for Schrédinger
operators with potential in Morrey spaces” and a remark on interpolation
of Morrey spaces, Publ. Mat. 39 (1995), 405-411.

[47] Y. Sawano and H. Tanaka, Morrey space for non-doubling measures, Acta
Math. Sinica 21 (2005), no. 6, 1535-1544.

[48] Y. Sawano, S. Sugano, and H. Tanaka, Generalized fractional integral oper-
ators and fractional maximal operators in the framework of Morrey spaces,
Trans. Am. Math. Soc. 363 (2011), 6481-6503.

[49] Y. Sawano, S. Sugano, and H. Tanaka, Orlicz—-Morrey spaces and fractional
operators. Potential Anal. 36 (2012), 517-556.

[50] Y. Sawano, D. I. Hakim, and H. Gunawan, Non-smooth atomic decompo-
sition for generalized Orlicz-Morrey spaces. Math. Nachr. 288 (2015), no.
14-15, 1741-1775.

[51] Y. Sawano, H. Tanaka, The Fatou property of block spaces. J. Math. Sci.
Univ. Tokyo 22 (2015), no. 3, 663-683.

[52] V.A. Sestakov, On complex interpolation of Banach space of measurable
functions, Vestnik Leningrad, 19 (4), (1974), 64-68.

[53] G. Stampacchia, The spaces £, N®Y and interpolation. Ann. Scuola
Norm. Sup. Pisa 19 (1965), 443-462.

[54] D. Yang, W. Yuan, and C. Zhuo, Complex interpolation on Besov-Type
and Triebel-Lizorkin-Type Spaces, Anal. and Appl., (2013), 45pp.

[55] W. Yuan, W. Sickel and D. Yang, Interpolation of Morrey-Campanato and
related smoothness spaces, Sci. China Math. 58, no. 9, (2015), 1835-1908.

95



