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Abstract

The main aim of this thesis is to present a theory about the complex interpola-
tion of some function spaces related to Morrey spaces. This thesis consists of six
chapters. In Chapter 1, we recall the definition of Morrey spaces and generalized
Morrey spaces and we also mention inclusion between Morrey spaces and the re-
sults on the boundedness of some classical integral operators in Morrey spaces. In
addition, we recall a known result and a counterexample on interpolation of linear
operators on Morrey spaces in this chapter. In Chapter 2, we recall the complex
interpolation method and some useful lemmas on this method. We present our re-
sults about the complex interpolation of generalized Morrey spaces in Chapter 3.
We obtain the description of the first and second complex interpolation of gener-
alized Morrey spaces. We show that the first complex interpolation of generalized
Morrey spaces can be described as a proper closed subspace of generalized Mor-
rey spaces. Meanwhile, the second complex interpolation of generalized Morrey
spaces yields generalized Morrey spaces. We also give a description of complex
interpolation between generalized Morrey spaces and L∞. Our results in this
chapter can be viewed as an extension of the results in [12, 35, 36]. In Chapter 4,
we discuss the complex interpolation of some closed subspaces of Morrey spaces.
These subspaces arise naturally in some papers about Morrey spaces, for instance
[51, 55]. We show that the first and second complex interpolation of these sub-
spaces yield different spaces. In Chapter 5, we discuss local Morrey type spaces,
local block spaces, and the first complex interpolation of local block spaces. We
show that local block spaces behave well under the first complex interpolation
method. Lastly, we discuss the first and second complex interpolation of grand
Lebesgue spaces in Chapter 6.
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Notation

We use the following notation:

1. We denote by B(x, r) the ball centered at x of radius r. Namely, we write

B(x, r) := {y ∈ Rn : |x− y| < r}

when x ∈ Rn and r > 0. Given a ball B, we denote by c(B) its center and by
r(B) its radius. We write B(r) instead of B(o, r) , where o := (0, 0, . . . , 0).

2. Given a ball B and k > 0, we denote by k B the ball concentric to B with
radius k r(B).

3. Let E be a measurable set. Then we denote its characteristic function by
χE and |E| denotes the volume of E.

4. The set I(R) denotes the set of all open intervals in R.

5. The constants C and c denote positive constants that may change from one
occurrence to another. The two constant c being different, the inequality
0 < 2c < c is by no means a contradiction. When we add a subscript
p and α, for example, this means that the constant c depends upon the
parameter. It can happen that the constants with subscript differ according
to the above rule. In particular, we prefer to use cn, various constants that
depend on n, when we do not want to specify its precise value.

6. Let A,B ≥ 0. Then A . B and B & A mean that there exists a constant
C > 0 such that A ≤ CB, where C depends only on the parameters of
importance. The symbol A ∼ B means that A . B and B . A happen
simultaneously. While A ' B means that there exists a constant C > 0
such that A = CB.

7. We define

N := {1, 2, . . .}, Z := {0,±1,±2, . . .}, N0 := {0, 1, . . .}. (1)
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8. Let X be a Banach space. We denote its norm by ‖ · ‖X .

9. Let Ω be an open set in Rn. Then C∞c (Ω) denotes the set of smooth function
with compact support in Ω.

10. The space C denotes the set of all continuous functions on Rn.

11. The space BC(Rn) denotes the set of all bounded continuous functions on
Rn.

12. Occasionally we identify the value of functions with functions. For example
sinx denotes the function on R defined by x 7→ sinx.

13. Given a Banach space X, we denote by X∗ its dual space.

14. When two normed spaces X and Y are isomorphic, we write X ≈ Y .

15. When A and B are sets, A ⊂ B stands for the inclusion of sets. If, in
addition, both A and B are topological spaces, and if the natural embedding
mapping A→ B is continuous, we write A ↪→ B in the sense of continuous
embedding.

v



Contents

Acknowledgement ii

Abstract iii

Notation iv

1 Introduction 1

1.1 Morrey spaces and generalized Morrey spaces . . . . . . . . . . . 1

1.2 Interpolation of linear operators on Morrey spaces . . . . . . . . . 3

2 Complex interpolation method—Preliminaries 7

2.1 The first complex interpolation method . . . . . . . . . . . . . . . 7

2.2 The second complex interpolation method . . . . . . . . . . . . . 9

2.3 Calderón product . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Complex interpolation of generalized Morrey spaces 12

vi



3.1 Previous results about complex interpolation of Morrey spaces . . 12

3.2 The first complex interpolation of generalized Morrey spaces . . . 14

3.3 The second complex interpolation of generalized Morrey spaces . . 18

3.4 Complex interpolation between L∞ and the generalized Morrey
space Mϕ

q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Complex interpolation of some closed subspaces of generalized
Morrey spaces 29

4.1 Closed subspaces of generalized Morrey spaces satisfying the lattice
property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 The first complex interpolation of some closed subspaces of gener-
alized Morrey spaces . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 The second complex interpolation of some closed subspaces of gen-
eralized Morrey spaces . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Complex interpolation between L∞ and some closed subspaces of
Morrey spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Complex interpolation of local block spaces 51

5.1 Local Morrey-type spaces and local block spaces . . . . . . . . . . 51

5.2 Some basic properties of local block spaces . . . . . . . . . . . . . 53

5.3 The Fatou property of local block spaces . . . . . . . . . . . . . . 55

5.4 A characterization of the associate space of local Morrey-type spaces 60

5.5 Interpolation of local block spaces . . . . . . . . . . . . . . . . . . 62

vii



5.6 Some lemmas about the first complex interpolation functor . . . . 69

6 Complex interpolation of grand Lebesgue spaces 83

6.1 Basic properties of grand Lebesgue spaces . . . . . . . . . . . . . 84

6.2 The first complex interpolation of grand Lebesgue spaces . . . . . 86

6.3 The second complex interpolation of grand Lebesgue spaces . . . 89

viii



Chapter 1

Introduction

We recall here the definition of Morrey spaces and generalized Morrey spaces.
We also give a summary of several previous results about interpolation of linear
operators on Morrey spaces.

1.1 Morrey spaces and generalized Morrey spaces

Morrey spaces were first introduced by C.B. Morrey in [37] based on the study of
the solution of certain elliptic partial differential equations. For 1 ≤ q ≤ p <∞,
the Morrey space Mp

q(Rn) is defined to be the set of all functions f ∈ Lqloc(Rn)
such that

sup
x∈Rn,r>0

|B(x, r)|
q
p
−1

∫
B(x,r)

|f(y)|q dy <∞. (1.1)

The norm on Mp
q(Rn) is defined by

‖f‖Mp
q(Rn) := sup

x∈Rn,r>0
|B(x, r)|

1
p
− 1
q ‖f‖Lq(B(x,r)). (1.2)

For simplicity, we shall write Mp
q instead of Mp

q(Rn). Remark that there is also

another notation for Morrey spaces, namely Lp,λ, where 1 ≤ p < ∞, 0 ≤ λ < n,
and ‖ · ‖Lp,λ is defined by

‖f‖Lp,λ := sup
x∈Rn,r>0

(
1

rλ

∫
B(x,r)

|f(y)|p dy
) 1

p

.
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We shall use the notation Mp
q throughout this thesis. Note that if p = q, then

Mp
q = Lp, so Morrey spaces can be seen as an extension of Lebesgue spaces.

Moreover, when 1 ≤ q ≤ p <∞, we have

Lp ↪→Mp
q . (1.3)

Inclusion (1.3) is a consequence of the Hölder inequality. Furthermore, if 1 ≤ q <
p <∞, then inclusion (1.3) is proper, since the function f(x) := |x|−n/p belongs
to Mp

q \ Lp. Inclusion (1.3) can be viewed as a special case of

Mp
q2
↪→Mp

q1
(1.4)

where 1 ≤ q1 ≤ q2 ≤ p < ∞. We refer the reader to [45, 47] for (1.4). A
generalization of (1.4) to weighted Morrey spaces can be seen in [32].

Note that the function r ∈ (0,∞) 7→ rn/p ∈ (0,∞) in the definition of the
Mp

q-norm can be generalized to a suitable function ϕ : (0,∞)→ (0,∞) to define
the generalized Morrey space Mϕ

q =Mϕ
q (Rn) whose norm is given by

‖f‖Mϕ
q

:= sup
x∈Rn,r>0

ϕ(r)

|B(x, r)|1/q
‖f‖Lq(B(x,r)) <∞. (1.5)

The spaceMϕ
q was introduced by Nakai in [38]. Here, we may assume that ϕ ∈ Gq,

that is, ϕ is increasing and r ∈ (0,∞) 7→ r−n/qϕ(r) ∈ (0,∞) is decreasing (see

[39, p. 446]). Remark that, when ϕ(r) = r
n
p and ψ(r) = 1, we have Mϕ

q = Mp
q

and Mψ
q = L∞ with identical norms (see [42, Proposition 3.3]), respectively.

Recently, there are also various extension of generalized Morrey spaces to Orlicz-
Morrey type spaces (see [41, 49]). Inclusion between generalized Morrey spaces,
Orlicz-Morrey spaces and related spaces can be seen in [22, 42].

Let us now recall the boundedness results of some classical integral opera-
tors such as the Hardy-Littlewood maximal operator and the fractional integral
operators in Morrey spaces and their generalization. The boundedness of the
fractional integral operators in Morrey spaces were proved in [1, 44]. Meanwhile,
F. Chiarenza and M. Frasca proved the boundedness of the Hardy-Littlewood
maximal operator in Morrey spaces in [11]. Furthermore, they also reproved the
result in [1] by using a Hedberg type inequality. In [38], E. Nakai proved the
boundedness of the Hardy-Littlewood maximal operator and fractional integral
operators on generalized Morrey spaces. He also introduced generalized fractional
integral operators and proved the boundedness of these operators in [40]. For
further results about the generalized fractional integral opertors on generalized
Morrey spaces, we refer the reader to [14, 20, 21, 25, 48] and reference therein. A
necessary and sufficient condition for the boundedness of the Hardy-Littlewood
maximal operator on Orlicz-Morrey spaces is given in [42]. The boundedness
result of the fractional maximal operators on generalized Morrey spaces can be
seen in [28].
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1.2 Interpolation of linear operators on Morrey spaces

First let us recall the Riesz-Thorin interpolation theorem.

Theorem 1.2.1. [3, p.2] Let θ ∈ (0, 1) and 1 ≤ p0, p1, r0, r1 ≤ ∞. Let p and r
be defined by

1

p
:=

1− θ
p0

+
θ

p1

and
1

r
:=

1− θ
r0

+
θ

r1

.

Suppose that T is a bounded linear operator from Lp0 to Lr0 and Lp1 to Lr1. Then
T is bounded from Lp to Lr.

One may inquire whether Lebesgue spaces in Theorem 1.2.1 can be replaced
by Morrey spaces. When the domain of the operator T is the Lebesgue space
Lp0 + Lp1 , an extension of Theorem 1.2.1 to Morrey spaces was obtained by G.
Stampacchia [53].

Theorem 1.2.2. [53] Let θ ∈ (0, 1), 1 ≤ p0, p1 < ∞, 1 ≤ s0 ≤ r0 < ∞, and
1 ≤ s1 ≤ r1 <∞. Define p, r, s by(

1

p
,
1

r
,
1

s

)
:= (1− θ)

(
1

p0

,
1

r0

,
1

s0

)
+ θ

(
1

p1

,
1

r1

,
1

s1

)
.

If T is a bounded linear operator from Lp0 to Mr0
s0

and from Lp1 to Mr1
s1

, then T
is bounded from Lp to Mr

s.

Unfortunately, if the domain of the operator T is Morrey spaces, there are
some counterexamples given by A. Ruiz and L. Vega [46] for the case n > 1 and
by O. Blasco et al. in [5] for the case n = 1. Let us recall the result in [5].

Theorem 1.2.3. [5] Let n = 1, θ ∈ (0, 1), and 1 < q1 < q0. Define

1

q
:=

1− θ
q0

+
θ

q1

, r0 :=
2

min( 1
q0

+ 2
q1
.2)
, r1 := q1, and

1

r
:=

1− θ
r0

+
θ

r1

.

Then there exists a bounded linear operator T from Lq0 = Mq0
q0

to Lr0 and from
Mq0

q1
to Lr1 such that T is not bounded from Mq0

q to Lr.

Proof. According to the definition of q, we know that q1 < q < q0. Hence, we
may choose

β >

1
q0

1
q
− 1

q0

. (1.6)

3



Let N0 ∈ N be such that

β + 1

log 2
<
N + 1

logN
, (1.7)

for every N ∈ N ∩ [N0,∞). Let N ∈ N ∩ [N0,∞) be fixed. We define

INj := [N ! + jNβ, N ! + jNβ + 1]

where j = 0, 1, . . . , N − 1 and set EN := ∪N−1
j=0 I

N
j . Observe that the choice of β

allows {EN}∞N=1 to be disjoint. Note that r0 < r1, so r0 < r < r1. Therefore, we
may choose

γ ∈
(

2

r1

,
2

r

)
. (1.8)

With this choice of γ, we construct an operator T by the formula

Tf(x) :=
∞∑

N=N0

N−γχEN (x)f(x)

for every measurable function f . By the Hölder inequality, for every f ∈ Lq0 we
have

‖Tf‖Lr0 ≤

(
∞∑

N=N0

N−γr0 |EN |1−
r0
q0

(∫
EN

|f(x)|q0
) r0

q0

) 1
r0

≤

(
∞∑

N=N0

N
−γr0+1− r0

q0

) 1
r0

‖f‖Lq0 .

It follows from (1.8) that

−γr0 + 1− r0

q0

< −2r0

r1

+ 1− r0

q0

= 1− r0

(
2

q1

+
1

q0

)
≤ −1.

Consequently,
‖Tf‖Lr0 ≤ C0‖f‖Lq0

for some constant C0 > 0. We now show that

‖Tf‖Lr1 ≤ C1‖f‖Mq0
q1

(1.9)

for some C1 > 0 and for every f ∈ Mq0
q1

. Since {EN}∞N=N0
is a collection of

disjoint sets and q1 = r1, we get

‖Tf‖Lr1 ≤

(
∞∑

N=N0

N−γr1
N−1∑
j=0

∫
INj

|f(x)|r1 dx

) 1
r1

. (1.10)

4



Combining (1.10) and∫
INj

|f(x)|q1 dx ≤ |INj |
1− q1

q0 ‖f‖q1Mq0
q1

= ‖f‖q1Mq0
q1

,

for each j = 0, 1, . . . , N − 1, we get

‖Tf‖Lr1 ≤

(
∞∑

N=N0

N1−γr1

) 1
r1

‖f‖Mq0
q1
.

According to (1.8), we have

1− γr1 < 1− 2

r1

r1 = −1,

so
∞∑

N=N0

N1−γr1 <∞.

This implies (1.9). The proof of the unboundedness of T fromMq0
q to Lr goes as

follows. Define

f0 :=
∞∑

N=N0

χEN .

Note that, for every N ∈ N, we have

‖χEN‖
M

q0
q

1

= sup
I⊆R
|I|

q
q0
|I ∩ EN |
|I|

.
(
(N − 1)Nβ + 1

) q
q0

N

(N − 1)Nβ + 1

.
(
Nβ+1

) q
q0

1

Nβ
= N

q(β+1)
q0
−β
.

Let JN := (N0!, N ! + (N − 1)Nβ + 1) for every N ∈ N ∩ [N0,∞). Since

‖f0‖qMq0
q

= ‖f q0‖
M

q0
q

1

= ‖f0‖
M

q0
q

1

,

we have

‖f0‖qMq0
q

= sup
I∈I(R)

|I|
q
q0
−1

∫
I

∞∑
N=N0

χEN (y) dy

. max
M∈N

{
|JM |

q
q0
−1

∫
JM

M∑
N=N0

χEN (y) dy, ‖χEM‖
M

q0
q

1

}

. max
M∈N

{
M2

(M ! + (M − 1)Mβ + 1−N0!)
1− q

q0

,M
q(β+1)
q0
−β

}
.

5



It follows from (1.6) that q(β+1)
q0
− β < 0. This implies

‖f0‖Mq0
q
<∞.

On the other hand, we claim

‖Tf0‖Lr =∞. (1.11)

Indeed, (1.11) follows from

‖Tf0‖Lr =

(
∞∑

N=N0

N−γr|EN |

) 1
r

=

(
∞∑

N=N0

N1−γr

) 1
r

and 1− γr > −1. This ends the proof of Theorem 1.2.3.

In view of Theorem 1.2.3, the Riesz-Thorin theorem can not be generalized
to Morrey spaces. However, by adding some mild assumptions, there are recent
researches about complex interpolation interpolation of Morrey spaces (see [12,
35, 36]). We shall recall the complex interpolation method and these results in
Chapters 2 and 3, respectively.
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Chapter 2

Complex interpolation
method—Preliminaries

In this chapter we recall the complex interpolation method introduced by Calderón
in [9]. We follow the terminology and presentation in [3, 9]. In Sections 2.1 and
2.2, we recall the definition of Calderón’s first and second complex interpolation
method. For the proof of our results in the next chapter, we shall discuss the
Calderón product of Banach spaces in Section 2.3.

2.1 The first complex interpolation method

A pair (X0, X1) is said to be a compatible couple of Banach spaces if there exists
a Hausdorff topological vector space Z such that X0 and X1 are subspaces of Z.
From now on, let S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and S be its interior.

Definition 2.1.1 (Calderón’s first complex interpolation functor). Let (X0, X1)
be a compatible couple of Banach spaces. Define F(X0, X1) as the set of all
continuous functions F : S → X0 +X1 such that

1. sup
z∈S
‖F (z)‖X0+X1 <∞,

2. F is holomorphic on S,

3. the functions t ∈ R 7→ F (j+ it) ∈ Xj are bounded and continuous on R for
j = 0, 1.

7



The norm on F(X0, X1) is defined by

‖F‖F(X0,X1) := max

{
sup
t∈R
‖F (it)‖X0 , sup

t∈R
‖F (1 + it)‖X1

}
.

Definition 2.1.2 (Calderón’s first complex interpolation spaces). Let θ ∈ (0, 1)
and (X0, X1) be a compatible couple of Banach spaces. The complex interpolation
space [X0, X1]θ with respect to (X0, X1) is defined by

[X0, X1]θ := {f ∈ X0 +X1 : f = F (θ) for some F ∈ F(X0, X1)}
The norm on [X0, X1]θ is defined by

‖f‖[X0,X1]θ := inf{‖F‖F(X0,X1) : f = F (θ) for some F ∈ F(X0, X1)}.

The fact that [X0, X1]θ is a Banach space can be seen in [9] and [3, Theo-
rem 4.1.2]. When X0 and X1 are Lebesgue spaces, Calderón gave the following
description of [X0, X1]θ.

Theorem 2.1.3. [9] Let θ ∈ (0, 1), 1 ≤ p0 ≤ ∞, and 1 ≤ p1 ≤ ∞. Then

[Lp0 , Lp1 ]θ = Lp

where p is defined by
1

p
:=

1− θ
p0

+
θ

p1

.

Note that the Riesz-Thorin complex interpolation theorem can be seen as a
corollary of Theorem 2.1.3 and the following Calderón’s result.

Theorem 2.1.4. [9] Let θ ∈ (0, 1). Let (X0, X1) and (Y0, Y1) be two compatible
couples of Banach spaces. If T is a bounded linear operator from Xj to Yj for
j = 0, 1, then T is bounded from [X0, X1]θ to [Y0, Y1]θ.

We also invoke the following useful lemmas.

Lemma 2.1.5. [9], [3, Theorem 4.2.2] Let θ ∈ (0, 1) and (X0, X1) be a compatible
couple of Banach spaces. Then we have X0 ∩X1 is dense in [X0, X1]θ.

Lemma 2.1.6. [3, Lemma 4.3.2] Let θ ∈ (0, 1) and F ∈ F(X0, X1). Then we
have

‖F (θ)‖[X0,X1]θ

≤
(

1

1− θ

∫
R
‖F (it)‖X0P0(θ, t) dt

)1−θ (
1

θ

∫
R
‖F (1 + it)‖X1P1(θ, t) dt

)θ
, (2.1)

where P0(θ, t) and P1(θ, t) are defined by

P0(θ, t) :=
sin(πθ)

2(cosh(πt)− cos(πθ))
and P1(θ, t) :=

sin(πθ)

2(cosh(πt) + cos(πθ))
.

8



2.2 The second complex interpolation method

First let us recall the definition of Banach space-valued Lipschitz continuous
functions. Let X be a Banach space. Denote by Lip(R, X) the set of all functions
f : R→ X such that

‖f‖Lip(R,X) := sup
−∞<s<t<∞

‖f(t)− f(s)‖X
|t− s|

is finite.

Definition 2.2.1. [3, 9](Calderón’s second complex interpolation functor) Let
(X0, X1) be a compatible couple of Banach spaces. Denote by G(X0, X1) the set
of all continuous functions G : S̄ → X0 +X1 such that:

1. sup
z∈S̄

∥∥∥ G(z)
1+|z|

∥∥∥
X0+X1

<∞,

2. G is holomorphic on S,

3. the functions
t ∈ R 7→ G(j + it)−G(j) ∈ Xj

are Lipschitz continuous on R for j = 0, 1.

The space G(X0, X1) is equipped with the norm

‖G‖G(X0,X1) := max
{
‖G(i·)‖Lip(R,X0), ‖G(1 + i·)‖Lip(R,X1)

}
. (2.2)

Definition 2.2.2. [3, 9](Calderón’s second complex interpolation space) Let θ ∈
(0, 1). The second complex interpolation space [X0, X1]θ with respect to (X0, X1)
is defined to be the set of all f ∈ X0 + X1 such that f = G′(θ) for some G ∈
G(X0, X1). The norm on [X0, X1]θ is defined by

‖f‖[X0,X1]θ := inf{‖G‖G(X0,X1) : f = G′(θ) for some G ∈ G(X0, X1)}.

The relation between the inclusion and the second complex interpolation
spaces is given as follows.

Lemma 2.2.3. [30, Lemma 2.8] If X0 ↪→ Y0 and X1 ↪→ Y1, then

[X0, X1]θ ↪→ [Y0, Y1]θ.
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Proof. Let f ∈ [X0, X1]θ. Then f = G′(θ) for some G ∈ G(X0, X1). By using the
following inequalities

‖x0‖Y0 . ‖x0‖X0 , ‖x1‖Y1 . ‖x1‖X1 , and ‖x‖Y0+Y1 . ‖x‖X0+X1 ,

for every x0 ∈ X0, x1 ∈ X1, and x ∈ X0 + X1, we can show that G ∈ G(Y0, Y1).
Thus, f ∈ [Y0, Y1]θ.

The relation between the first and second complex interpolation functors is
given in the following lemma:

Lemma 2.2.4. [27, Lemma 2.4] For G ∈ G(X0, X1), z ∈ S, and k ∈ N, define

Hk(z) :=
G(z + 2−ki)−G(z)

2−ki
. (2.3)

Then we have Hk(θ) ∈ [X0, X1]θ.

Proof. We give a simplified proof of [27, Lemma 2.4]. The proof is adapted
from [30]. The continuity and holomorphicity of Hk is a consequence of the
corresponding property of G. Let j ∈ {0, 1} be fixed. Since t ∈ R 7→ G(j + it) ∈
Xj is Lipschitz-continuous, we see that t ∈ R 7→ Hk(j + it) ∈ Xj is bounded and
continuous on R. Therefore, Hk ∈ F(X0, X1). Moreover,

‖Hk(θ)‖[X0,X1]θ ≤ ‖Hk‖F(X0,X1)

= max
j=0,1

sup
t∈R

∥∥∥∥G(j + i(t+ 2−k))−G(j + it)

2−ki

∥∥∥∥
Xj

≤ ‖G‖G(X0,X1) <∞,
as desired.

We shall also use the following useful connection between the first and second
complex interpolation, obtained by Bergh [4].

Lemma 2.2.5. [4] Let (X0, X1) be a compatible couple and θ ∈ (0, 1). Then we
have

[X0, X1]θ = X0 ∩X1
[X0,X1]θ . (2.4)

2.3 Calderón product

In order to obtain the description of the first complex interpolation spaces, some-
times it is easier to calculate the Calderón product of Banach lattices and ap-
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plying the result of Sestakov in [52]. The definition of the Calderón product and
Sestakov’s lemma are given as follows.

Definition 2.3.1. Let θ ∈ (0, 1) and (X0, X1) be a compatible couple of Banach
spaces of measurable functions in Rn. The Calderón product X0

1−θX1
θ of X0 and

X1 is defined by

X0
1−θX1

θ :=
⋃

f0∈X0,f1∈X1

{f : Rn → C : |f(x)| ≤ |f0(x)|1−θ|f1(x)|θ a.e. x ∈ Rn}.

For f ∈ X0
1−θX1

θ, we define

‖f‖X0
1−θX1

θ

:= inf{‖f0‖1−θ
X0
‖f1‖θX1

: f0 ∈ X0, f1 ∈ X1, |f(x)| ≤ |f0(x)|1−θ|f1(x)|θ a.e. x ∈ Rn}.

By virtue of the Hölder inequality and factorization, for 1 ≤ p0, p1 ≤ ∞

(Lp0)1−θ(Lp1)θ = Lp,

where p is defined by 1
p

:= 1−θ
p0

+ θ
p1

. We now recall the following result by

Sestakov.

Lemma 2.3.2. [52] Let (X0, X1) be a compatible couple of Banach spaces of
measurable functions in Rn. Then for every θ ∈ (0, 1), we have

[X0, X1]θ = X0 ∩X1
X1−θ

0 Xθ
1 .
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Chapter 3

Complex interpolation of
generalized Morrey spaces

3.1 Previous results about complex interpolation of Mor-
rey spaces

The first result about the description of the first complex interpolation of Morrey
spaces was given by Cobos et al. [12].

Theorem 3.1.1. [12] Let θ ∈ (0, 1), 1 ≤ q0 ≤ p0 < ∞, and 1 ≤ q1 ≤ p1 < ∞.
Define p and q by

1

p
:=

1− θ
p0

+
θ

p1

and
1

q
:=

1− θ
q0

+
θ

q1

, (3.1)

respectively. Then

[Mp0
q0
,Mp1

q1
]θ ⊆Mp

q . (3.2)

Assuming p0
q0

= p1
q1

, Lu et al. [36] improved the description of [Mp0
q0
,Mp1

q1
]θ

in Theorem 3.1.1. Morever, their result are in the setting of Morrey spaces over
metric measure space.

Theorem 3.1.2. [36] Let θ ∈ (0, 1), 1 ≤ q0 ≤ p0 < ∞, and 1 ≤ q1 ≤ p1 < ∞.
Assume that p0

q0
= p1

q1
. Then

[Mp0
q0
,Mp1

q1
]θ =Mp0

q0 ∩Mp1
q1

Mp
q
, (3.3)

where p and q are defined by (3.1).
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The key parts of the proof of Theorem 3.1.2 are Lemma 2.3.2 and the calcu-
lation of the Calderón product between Mp0

q0
and Mp1

q1
. We shall see in Section

3.2 that Theorem 3.1.2 can be seen as a special case of the first complex inter-
polation of generalized Morrey spaces. Another decription of the first complex
interpolation of Morrey spaces was given by Yuan, Sickel, and Yang [55] in term
of the space Mp0,p1,θ

q0,q1
. The definition of this space is given as follows.

Definition 3.1.3. Keep the same assumption as in Theorem 3.1.2. The space
Mp0,p1,θ

q0,q1
is defined to be the set of all functions f for which

max
j=0,1

sup
x∈Rn,r≥1

|B(x, r)|
1
pj
− 1
qj

(∫
B(x,r)

|f(y)|qj dy
) 1

qj

<∞,

sup
x∈Rn,0<r≤1

|B(x, r)|
1
p
− 1
q

(∫
B(x,r)

|f(y)|q dy
) 1

q

<∞,

and

lim
r→0+

|B(x, r)|
1
p
− 1
q

(∫
B(x,r)

|f(y)|q dy
) 1

q

= 0,

uniformly in x ∈ Rn.

Let us recall the description of the first complex interpolation of Morrey spaces
in [55].

Theorem 3.1.4. [55] Keep the same assumption as in Theorem 3.1.2. Then

[Mp0
q0
,Mp1

q1
]θ =Mp0,p1,θ

q0,q1
. (3.4)

The description of the right-hand side of (3.3) and can be refined as follows.

Theorem 3.1.5. [27] Keep the same assumption as in Theorem 3.1.2 and assume
also that q0 6= q1. Then we have

[Mp0
q0
,Mp1

q1
]θ =

{
f ∈Mp

q : lim
N→∞

‖f − χ{ 1
N
≤|f |≤N}f‖Mp

q
= 0
}
. (3.5)

Note that Theorem 3.1.5 is an improvement of Theorems 3.1.2 and 3.1.4, in the
sense that, [Mp0

q0
,Mp1

q1
]θ is now written in term of the parameters p and q only

and this description is more explicit than the right-hand side of (3.3). We shall
prove Theorem 3.1.5 as a corollary of the corresponding result for generalized
Morrey spaces.

Observe that the function f(x) := |x|−n/p does not belong to the set in the
right-hand side of (3.5), but this function is in Mp

q . From this observation, one
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may inquire whether we can interpolate Morrey spaces and the result is also
Morrey spaces. The affirmative answer was given by Lemarié-Rieusset [35]. He
proved the following result about the second complex interpolation of Morrey
spaces.

Theorem 3.1.6. [35] Keep the same asssumption as in Theorem 3.1.2. Then

[Mp0
q0
,Mp1

q1
]θ =Mp

q .

It is written in the book [3, p. 90] that the first complex interpolation space is
the main interest in this book and the second complex interpolation method is
considered as a technical tool. Hence, Theorem 3.1.6 can be seen as an example
of the importance of the second complex interpolation method. We shall give a
generalization of Theorem 3.1.6 to the setting of generalized Morrey spaces in
Section 3.3.

3.2 The first complex interpolation of generalized Morrey
spaces

In this section we give a description of the first complex interpolation of general-
ized Morrey spaces. Our proof uses Lemma 2.3.2 and the following result about
the Calderón product of generalized Morrey spaces.

Proposition 3.2.1. Let θ ∈ (0, 1), q0, q1 ∈ (1,∞), ϕ0 ∈ Gq0, and ϕ1 ∈ Gq1.
Assume that ϕ0 and ϕ1 satisfy

ϕq00 = ϕq11 . (3.6)

Define ϕ and q by

ϕ := ϕ1−θ
0 ϕθ1 and

1

q
:=

1− θ
q0

+
θ

q1

, (3.7)

respectively. Then

(Mϕ0
q0

)1−θ(Mϕ1
q1

)θ =Mϕ
q . (3.8)

Proof. Let B = B(a, r) be any ball in Rn and ε > 0. Let f ∈ (Mϕ0
q0

)1−θ(Mϕ1
q1

)θ.
Then, there exist some functions f0 ∈Mϕ0

q0
and f1 ∈Mϕ1

q1
such that

|f(x)| ≤ |f0(x)|1−θ|f1(x)|θ, a.e. x ∈ Rn (3.9)
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and
‖f0‖1−θ

Mϕ0
q0

‖f1‖θMϕ1
q1
≤ (1 + ε)‖f‖(Mϕ0

q0
)1−θ(Mϕ1

q1
)θ . (3.10)

By using Hölder’s inequality and (3.9), we have(∫
B

|f(x)|q dx
) 1

q

≤
(∫

B

|f0(x)|q(1−θ)|f1(x)|qθ dx
) 1

q

≤
(∫

B

|f0(x)|q0 dx
) 1−θ

q0

(∫
B

|f1(x)|q1 dx
) θ

q1

. (3.11)

Combining (3.6)–(3.7) and inequalities (3.10)–(3.11), we obtain

ϕ(r)

|B|
1
q

(∫
B

|f(x)|qdx
) 1

q

≤ ϕ0(r)1−θϕ1(r)θ

|B|
1−θ
q0

+ θ
q1

‖f0‖1−θ
Lq0 (B)‖f1‖θLq1 (B)

≤ ‖f0‖1−θ
Mϕ0

q0

‖f1‖θMϕ1
q1

≤ (1 + ε)‖f‖
(Mϕ0

q0 )
1−θ

(Mϕ1
q1 )

θ .

Since ε is arbitary, we have f ∈Mϕ
q with ‖f‖Mϕ

q
≤ ‖f‖(Mϕ0

q0
)1−θ(Mϕ1

q1
)θ . Thus,

(Mϕ0
q0

)1−θ(Mϕ1
q1

)θ ⊆Mϕ
q .

Conversely, let f ∈ Mϕ
q . Define f̃j := |f |

q
qj where j ∈ {0, 1}. It follows from

(3.6)–(3.7) that
ϕq = ϕq00 = ϕq11 . (3.12)

Then f̃j ∈M
ϕj
qj with ‖f̃j‖Mϕj

qj
= ‖f‖

q
qj

Mϕ
q

for j = 0, 1. Observe that, we have

|f̃0|1−θ|f̃1|θ = |f |
q(1−θ)
q0 |f |

qθ
q1 = |f | (3.13)

and

‖f‖
(Mϕ0

q0 )
1−θ

(Mϕ1
q1 )

θ ≤ ‖f̃0‖1−θ
Mϕ0

q0

‖f̃1‖θMϕ1
q1

= ‖f‖
q(1−θ)
q0

+ qθ
q1

Mϕ
q

= ‖f‖Mϕ
q
<∞. (3.14)

Consequently, f ∈
(
Mϕ0

q0

)1−θ (Mϕ1
q1

)θ
. Therefore, Mϕ

q ⊆ (Mϕ0
q0

)1−θ(Mϕ1
q1

)θ.
Thus, we have proved (3.8).

Combining Lemma 2.3.2 and Proposition 3.2.1, we have the following gener-
alization of Theorem 3.1.2.

Theorem 3.2.2. [24] Keep the same assumption as in Propostion 3.2.1. Then

[Mϕ0
q0
,Mϕ1

q1
]θ =Mϕ0

q0 ∩Mϕ1
q1

Mϕ
q
.
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Note that we can recover Theorem 3.1.2 by taking ϕ0(t) := t
n
p0 and ϕ1(t) := t

n
p1 .

We now prove the following generalization of Theorem 3.1.5.

Theorem 3.2.3. [27] Keep the same assumption of Proposition 3.2.1 and assume
also that q0 6= q1. Then

[Mϕ0
q0
,Mϕ1

q1
]θ =

{
f ∈Mϕ

q : lim
N→∞

‖f − χ{ 1
N
≤|f |≤N}f‖Mϕ

q
= 0
}
. (3.15)

Remark 3.2.4. If ϕj(t) = t
n
pj where j = 0, 1, then we can recover Theorem

3.1.5.

In order to prove Theorem 3.2.3, we need two lemmas. The first one is the
fact that the set in the right-hand side of (3.15) is closed. The second lemma
tells us that this set contains Mϕ0

q0
∩Mϕ1

q1
.

Lemma 3.2.5. Let 1 ≤ q <∞ and ϕ ∈ Gq. Then the set

A :=

{
f ∈Mϕ

q : lim
N→∞

∥∥∥f − χ{ 1
N
≤|f |≤N}f

∥∥∥
Mϕ

q

= 0

}
(3.16)

is a closed subset Mϕ
q .

Proof. Let {fj}∞j=1 ⊂ A be such that fj converges to f in Mϕ
q . Fix j ∈ N. For

every N ∈ N, we have∥∥∥χ{|f |< 1
N
}f
∥∥∥
Mϕ

q

≤ ‖f − fj‖Mϕ
q

+
∥∥∥χ{|f |< 1

N }∩{|fj |≥ 2
N }fj

∥∥∥
Mϕ

q

+
∥∥∥χ{|fj |< 2

N }fj
∥∥∥
Mϕ

q

and∥∥χ{|f |>N}f∥∥Mϕ
q
≤ ‖f − fj‖Mϕ

q
+
∥∥∥χ{|f |>N}∩{|fj |≤N2 }fj∥∥∥Mϕ

q

+
∥∥∥χ{|fj |>N

2 }fj
∥∥∥
Mϕ

q

.

On the set
{
|f | < 1

N

}
∩
{
|fj| ≥ 2

N

}
, we have

|fj| ≤ |fj − f |+ |f | < |fj − f |+
1

N
≤ |fj − f |+

1

2
|fj|,

and hence |fj| ≤ 2|f − fj|. Consequently,∥∥∥χ{|f |< 1
N
}f
∥∥∥
Mϕ

q

≤ 3‖f − fj‖Mϕ
q

+
∥∥∥χ{|fj |< 2

N }fj
∥∥∥
Mϕ

q

. (3.17)

Meanwhile, on the set {|f | > N} ∩ {|fj| ≤ N
2
}, we have

|fj| ≤
N

2
<
|f |
2
≤ |f − fj|

2
+
|fj|
2
,
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and hence, |fj| ≤ |f − fj|. Therefore,

‖χ{|f |>N}f‖Mϕ
q
≤ 2‖f − fj‖Mϕ

q
+ ‖χ{|fj |>N

2
}fj‖Mϕ

q
. (3.18)

By combining (3.17) and (3.18), we get∥∥∥f − χ{ 1
N
≤|f |≤N}f

∥∥∥
Mϕ

q

≤
∥∥∥χ{|f |< 1

N }f
∥∥∥
Mϕ

q

+
∥∥χ{|f |>N}f∥∥Mϕ

q

≤ 5‖f − fj‖Mϕ
q

+
∥∥∥χ{|fj |< 2

N }fj
∥∥∥
Mϕ

q

+
∥∥∥χ{|fj |>N

2 }fj
∥∥∥
Mϕ

q

.

Since fj ∈ A, we have

lim sup
N→∞

‖f − χ{ 1
N
≤|f |≤N}f‖Mϕ

q
≤ 5‖f − fj‖Mϕ

q
.

By taking j →∞, we have lim
N→∞

‖f−χ{ 1
N
≤|f |≤N}f‖Mϕ

q
= 0, and hence, f ∈ A.

Lemma 3.2.6. [27] Maintain the same conditions as Proposition 3.2.1 and let A
be defined by (3.16). Then

Mϕ0
q0
∩Mϕ1

q1
⊆ A.

Proof. Without loss of generality, we assume that q1 > q0. Then, q1 > q > q0.
Consequently, for every f ∈Mϕ0

q0
∩Mϕ1

q1
, we have∥∥∥f − χ{ 1

N
≤|f |≤N}f

∥∥∥
Mϕ

q

≤ ‖χ{|f |< 1
N
}|f |

1− q0
q |f |

q0
q ‖Mϕ

q
+ ‖χ{|f |>N}|f |1−

q1
q |f |

q1
q ‖Mϕ

q

≤ N
q0−q
q

∥∥∥|f | q0q ∥∥∥
Mϕ

q

+N
q−q1
q

∥∥∥|f | q1q ∥∥∥
Mϕ

q

= N
q0−q
q ‖f‖

q0
q

Mϕ0
q0

+N
q−q1
q ‖f‖

q1
q

Mϕ1
q1

→ 0

as N →∞, which implies f ∈ A.

Now we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. By virtue of Theorem 3.2.2 and Lemmas 3.2.5 and 3.2.6,
we have

[Mϕ0
q0
,Mϕ1

q1
]θ =Mϕ0

q0 ∩Mϕ1
q1

Mϕ
q ⊆ A.

Conversely, let f ∈ A. For every N ∈ N, define fN := χ{ 1
N
≤|f |≤N}f . As in the

proof of Lemma 3.2.6, we may assume that q0 < q1. Then q0 < q < q1. This
implies

‖fN‖Mϕ0
q0
≤
∥∥∥χ{ 1

N
≤|f |}|f |

1− q
q0 |f |

q
q0

∥∥∥
Mϕ0

q0

≤ N
q−q0
q0 ‖f‖q/q0Mϕ

q
<∞
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and

‖fN‖Mϕ1
q1
≤
∥∥∥χ{|f |<N}|f |1− q

q1 |f |
q
q1

∥∥∥
Mϕ1

q1

≤ N
q1−q
q1 ‖f‖q/q1Mϕ

q
<∞.

Therefore, f ∈ Mϕ0
q0 ∩Mϕ1

q1

Mϕ
q

by the definition of A. According to Theorem
3.2.2, we have f ∈ [Mϕ0

q0
,Mϕ1

q1
]θ as desired.

3.3 The second complex interpolation of generalized Mor-
rey spaces

We prove a generalization of Theorem 3.1.6 in the setting of generalized Morrey
spaces. First we prove the following lemmas about the construction of the second
complex interpolation functor.

Lemma 3.3.1. [24, Lemma 4] Let q0 > q1 and f ∈ L0. Define q : S → C,
F : S → L0 and G : S → L0 by:

1

q(z)
=

1− z
q0

+
z

q1

, (3.19)

F (z) := sgn(f) exp

(
q

q(z)
log |f |

)
(z ∈ S), (3.20)

and

G(z) := (z − θ)
∫ 1

0

F (θ + (z − θ)t) dt (z ∈ S), (3.21)

respectively. Define F0, F1, G0, G1 : S → L0 by:

F0(z) := F (z)χ{|f |≤1}, F1(z) := F (z)χ{|f |>1}, (3.22)

and
G0(z) := G(z)χ{|f |≤1}, G1(z) := G(z)χ{|f |>1}. (3.23)

Then, for any z ∈ S, we have

|G(z)| ≤ (1 + |z|)(|f |q/q0 + |f |q/q1). (3.24)

For any z ∈ C with ε < Re(z) < 1− ε and w ∈ C with |w| � 1, we have∣∣∣∣G0(z + w)−G0(z)

w
− F0(z)

∣∣∣∣ ≤ Cε|w| · |f |
q
q0 , (3.25)∣∣∣∣G1(z + w)−G1(z)

w
− F1(z)

∣∣∣∣ ≤ Cε|w| · |f |
q
q1 , (3.26)

where the constant Cε depending only on ε ∈ (0, 1/2).
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Proof. For t ∈ [0, 1], define v := (z − θ)t+ θ. Since Re(v) ∈ [0, 1], we have

|F (v)| ≤ |f |
q
q0

(1−Re(v))+ q
q1

Re(v)

≤ (1− Re(v))|f |
q
q0 + Re(v)|f |

q
q1 ≤ |f |

q
q0 + |f |

q
q1 . (3.27)

By the triangle inequality, we have

|G(z)| ≤ |z − θ|
(
|f |

q
q0 + |f |

q
q1

)
≤ (1 + |z|)

(
|f |

q
q0 + |f |

q
q1

)
.

Writing out the definitions in full, we obtain∣∣∣∣G0(z + w)−G0(z)

w
− F0(z)

∣∣∣∣
= |F0(Re(z))|

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log |f |

]
− 1

w( q
q1
− q

q0
) log |f |

− 1

∣∣∣∣∣∣ .
Since q0 > q1, we have∣∣∣∣G0(z + w)−G0(z)

w
− F0(z)

∣∣∣∣
= χ{|f |≤1}|f |

q
q0

(1−Re(z))+ q
q1

Re(z)

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log |f |

]
− 1

w( q
q1
− q

q0
) log |f |

− 1

∣∣∣∣∣∣
≤ χ{|f |≤1}|f |

q
q0 · |f |

(
q
q1
− q
q0

)
ε

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log |f |

]
− 1

w( q
q1
− q

q0
) log |f |

− 1

∣∣∣∣∣∣
≤ |f |

q
q0 sup

0<t≤1
t

(
q
q1
− q
q0

)
ε

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log t

]
− 1

w( q
q1
− q

q0
) log t

− 1

∣∣∣∣∣∣ ≤ Cε|w| · |f |
q
q0 .

By a similar argument, we also have∣∣∣∣G1(z + w)−G1(z)

w
− F1(z)

∣∣∣∣
= χ{|f |>1}|f |

q
q1 · |f |

(
q
q0
− q
q1

)
(1−Re(z))

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log |f |

]
− 1

w( q
q1
− q

q0
) log |f |

− 1

∣∣∣∣∣∣
≤ χ{|f |>1}|f |

q
q1 · |f |

(
q
q0
− q
q1

)
ε

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log |f |

]
− 1

w( q
q1
− q

q0
) log |f |

− 1

∣∣∣∣∣∣
≤ |f |

q
q1 sup

t≥1
t

(
q
q0
− q
q1

)
ε

∣∣∣∣∣∣
exp

[
q
(
−w
q0

+ w
q1

)
log t

]
− 1

w( q
q1
− q

q0
) log t

− 1

∣∣∣∣∣∣ ≤ Cε|w| · |f |
q
q1

as desired.
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Lemma 3.3.2. [24, Lemma 12] Let f ∈Mϕ
q . Via (3.19) define F : S →Mϕ0

q0
+

Mϕ1
q1

and G : S → Mϕ0
q0

+Mϕ1
q1

by (3.20) and (3.21), respectively. Then, the
function G belongs to G(Mϕ0

q0
,Mϕ1

q1
).

Proof. It follows from (3.24) that G(z) ∈Mϕ0
q0

+Mϕ1
q1

and

sup
z∈S

‖G(z)‖Mϕ0
q0

+Mϕ1
q1

1 + |z|
≤ ‖f‖q/q0Mϕ

q
+ ‖f‖q/q1Mϕ

q
.

Now let z1, z2 ∈ S. Then, by inequality (3.27), we get

‖G(z1)−G(z2)‖Mϕ0
q0

+Mϕ1
q1
≤ |z1 − z2|

(
‖f‖q/q0Mϕ

q
+ ‖f‖q/q1Mϕ

q

)
.

This shows the continuity of G : S →Mϕ0
q0

+Mϕ1
q1

. The proof of holomorphicity

of G : S →Mϕ0
q0

+Mϕ1
q1

goes as follows. Let ε ∈ (0, 1
2
) and define

Sε := {z ∈ S : ε < Re(z) < 1− ε}.

According to (3.25) and (3.26), we have∥∥∥∥G(z + w)−G(z)

w
− F (z)

∥∥∥∥
Mϕ0

q0
+Mϕ1

q1

≤
∥∥∥∥G0(z + w)−G0(z)

w
− F0(z)

∥∥∥∥
Mϕ0

q0

+

∥∥∥∥G1(z + w)−G1(z)

w
− F1(z)

∥∥∥∥
Mϕ1

q1

≤ Cε|w|
(
‖f‖q/q0Mϕ

q
+ ‖f‖q/q1Mϕ

q

)
.

Taking w → 0, we see that G : Sε →Mϕ0
q0

+Mϕ1
q1

is holomorphic. Since ε > 0 is
arbitrary, we conclude that G : S →Mϕ0

q0
+Mϕ1

q1
is holomorphic.

We now verify that G(j + it1) − G(j + it2) ∈ Mϕj
qj for every t1, t2 ∈ R and

j ∈ {0, 1} and also

‖G(j + i·)‖
Lip(R,M

ϕj
qj

)
≤ (‖f‖Mϕ

q
)q/qj . (3.28)

for every j ∈ {0, 1}. Combining |F (j + it)| = |f |
q
qj and

G(j + it1)−G(j + it2) = −i
∫ t2

t1

F (j + it) dt,

we get

‖G(j + it1)−G(j + it2)‖Mϕj
qj
≤ |t1 − t2|‖f‖

q
qj

Mϕ
q
.
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This implies (3.29). Thus, G ∈ G(Mϕ0
q0
,Mϕ1

q1
) with

‖G‖G(Mϕ0
q0
,Mϕ1

q1
) ≤ ‖f‖

q/qj
Mϕ

q
, (3.29)

as desired.

Note that we can not use the function F defined by (3.20) as the first complex
interpolation functor because F does not belong to F(Mp0

q0
,Mp1

q1
) when f(x) :=

|x|−n/p. This fact is a consequence of the following proposition.

Proposition 3.3.3. [24, Proposition 4] Let f(x) := |x|−n/p and define F by
(3.20). Then the mapping t ∈ R 7→ F (it) ∈Mp0

q0
is not continuous at t = 0.

Proof. Assume that p0 > p1 and define Q := 1
p1
− 1

p0
. Using p0

q0
= p

q
= p1

q1
, for

every 0 < t < 1
Q

, we have

|F (it)− F (0)| = |x|−
n
p0

∣∣|x|−Qit − 1
∣∣ = 2|x|−

n
p0

∣∣∣∣sin(Qt log |x|
2

)∣∣∣∣ . (3.30)

Using (3.30) and letting R := exp((Qt)−1), we get

‖F (it)− F (0)‖Mp0
q0

≥ 2|B(0, 2R)|
1
p0
− 1
q0

(∫
B(0,2R)\B(0,R)

|x|−
nq0
p0

∣∣∣∣sin(Qt log |x|
2

)∣∣∣∣q0 dx

) 1
q0

& R
n
p0
− n
q0

(∫
B(0,2R)\B(0,R)

|x|−
nq0
p0 dx

) 1
q0

& 1, (3.31)

where we use ∣∣∣∣sin(Qt log |x|
2

)∣∣∣∣ > sin(1/2)

for every R < |x| < 2R. Thus, (3.31) implies

lim
t→0+
‖F (it)− F (0)‖Mp0

q0
6= 0,

as desired.

Now we arrive at our main result in this section.

Theorem 3.3.4. [24, p. 316] Keep the same assumption as in Proposition 3.2.1.
Then

[Mϕ0
q0
,Mϕ1

q1
]θ =Mϕ

q . (3.32)
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Remark 3.3.5. Taking ϕ0(t) := t
n
p0 and ϕ1(t) := t

n
p1 , we recover Theorem 3.1.6.

Proof of Theorem 3.3.4. Let f ∈ Mϕ
q . By a normalization, we may suppose

‖f‖Mϕ
q

= 1, for the purpose of proving f ∈ [Mϕ0
q0
,Mϕ1

q1
]θ. For every z ∈ S, define

F (z) and G(z) as we did in Lemma 3.3.1. Thanks to Lemma 3.3.2, we have
G ∈ G(Mϕ0

q0
,Mϕ1

q1
). Since G′(θ) = F (θ) = f , we have

‖f‖[Mϕ0
q0
,Mϕ1

q1
]θ ≤ ‖G‖G(Mϕ0

q0
,Mϕ1

q1
) = max

j=0,1
‖G(j + i·)‖

Lip(R,M
ϕj
qj ) = 1.

This shows that [Mϕ0
q0
,Mϕ1

q1
]θ ⊃Mϕ

q . Conversely, let f ∈ [Mϕ0
q0
,Mϕ1

q1
]θ with

‖f‖[Mϕ0
q0
,Mϕ1

q1
]θ = 1.

Suppose f is realized as G′(θ), where G ∈ G(Mϕ0
q0
,Mϕ1

q1
) and ‖G‖G(Mϕ0

q0
,Mϕ1

q1
) ≤ 2.

For every k ∈ N and z ∈ S, we define Hk(z) by (2.3). According to Lemma 2.2.4
and Theorem 3.2.3, we obtain

‖Hk(θ)‖Mϕ
q
. ‖Hk(θ)‖[Mϕ0

q0
,Mϕ1

q1
]θ
≤ ‖G‖G(Mϕ0

q0
,Mϕ1

q1
) ≤ 2. (3.33)

Meanwhile, since f = G′(θ) = lim
k→∞

Hk(θ) in Mϕ0
q0

+Mϕ1
q1

, there exists a sub-

sequence {Hkj}∞j=1 such that f(x) = lim
j→∞

Hkj(θ)(x) for almost every x ∈ Rn.

Consequently, by virtue of the Fatou lemma and the inequality (3.33), we have

‖f‖Mϕ
q
. lim inf

j→∞
‖Hkj(θ)‖Mϕ

q
≤ 2.

This implies [Mϕ0
q0
,Mϕ1

q1
]θ ↪→Mϕ

q .

3.4 Complex interpolation between L∞ and the general-
ized Morrey space Mϕ

q

Note that, when p0 and p1 are finite, Theorem 2.1.3 is a special case of Theorems
3.1.2 and 3.2.2. In order to recover Theorem 2.1.3 for the case p0 = ∞, we give
the following supplement of Theorem 3.2.2.

Theorem 3.4.1. [30] Let θ ∈ (0, 1), 1 ≤ q <∞, and ϕ ∈ Gq. Then

[L∞,Mϕ
q ]θ =

{
f ∈Mϕθ

q/θ : lim
N→∞

‖fχ{|f |< 1
N
}∪{|f |>N}‖Mϕθ

q/θ

= 0

}
. (3.34)

As in Section 3.2, we first prove the Calderón product between L∞ and Mϕ
q .
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Lemma 3.4.2. [30] Let θ ∈ (0, 1), 1 ≤ q <∞, and ϕ ∈ Gq. Then we have

(L∞)1−θ(Mϕ
q )θ =Mϕθ

q/θ. (3.35)

Proof. Let f ∈Mϕθ

q/θ and define f0 := 1 and f1 := |f |1/θ. Since

‖f0‖L∞ = 1, ‖f1‖Mϕ
q

= ‖f‖1/θ

Mϕθ

q/θ

<∞, and |f0|1−θ|f1|θ = |f |,

we have f ∈ (L∞)1−θ(Mϕ
q )θ and ‖f‖(L∞)1−θ(Mϕ

q )θ ≤ ‖f‖Mϕθ

q/θ

. Consequently,

Mϕθ

q/θ ↪→ (L∞)1−θ(Mϕ
q )θ

with embedding constant 1.

Conversely, for f ∈ (L∞)1−θ(Mϕ
q )θ and ε > 0, choose f0 ∈ L∞ and f1 ∈ Mϕ

q

such that

|f | ≤ |f0|1−θ|f1|θ and ‖f0‖1−θ
L∞ ‖f1‖θMϕ

q
≤ (1 + ε)‖f‖(L∞)1−θ(Mϕ

q )θ . (3.36)

Let x ∈ Rn and r > 0. As a consequence of (3.36), we get

ϕ(r)θ

|B(x, r)|
θ
q

(∫
B(x,r)

|f(y)|q/θ dy
) θ

q

≤ ϕ(r)θ

|B(x, r)|
θ
q

(∫
B(x,r)

|f0(y)|
q(1−θ)
θ |f1(y)|q dy

) θ
q

≤ ‖f0‖1−θ
L∞ ‖f1‖θMϕ

q

≤ (1 + ε)‖f‖(L∞)1−θ(Mϕ
q )θ ,

and hence, f ∈Mϕθ

q/θ with ‖f‖
Mϕθ

q/θ

≤ ‖f‖(L∞)1−θ(Mϕ
q )θ . Therefore,

(L∞)1−θ(Mϕ
q )θ ↪→Mϕθ

q/θ.

Thus, (3.35) holds.

The proof of the first complex interpolation of L∞ andMϕ
q is given as follows.

Proof of Theorem 3.4.1. We combine Lemmas 2.3.2 and 3.4.2 to obtain

[L∞,Mϕ
q ]θ = L∞ ∩Mϕ

q
(L∞)1−θ(Mϕ

q )θ

= L∞ ∩Mϕ
q
Mϕθ

q/θ . (3.37)
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Let f ∈ [L∞,Mϕ
q ]θ. As a consequence of (3.37), for each ε > 0, there exists

g = gε ∈ L∞ ∩Mϕ
q such that

‖f − g‖
Mϕθ

q/θ

<
ε

6
. (3.38)

For each N ∈ N, we have

|fχ{|f |< 1
N
}∪{|f |>N}| ≤ |fχ{|f |< 1

N
}|+ |fχ{|f |>N}|

≤ 2|f − g|+ |gχ{|f |< 1
N
}∩{|g|> 2

N
}|+ |gχ{|g|≤ 2

N
}|

+ |fχ{|f |>N}∩{|g|≤N
2
}|+ |gχ{|g|>N

2
}|. (3.39)

Observe that, on the set {|f | < 1
N
} ∩ {|g| > 2

N
}, we have

|g| ≤ |f − g|+ |f | < |f − g|+ 1

N
< |f − g|+ |g|

2
.

Therefore,

|gχ{|f |< 1
N
}∩{|g|> 2

N
}| ≤ 2|f − g|. (3.40)

Meanwhile, on the set {|f | > N} ∩ {|g| ≤ N
2
}, we have

|f | ≤ |f − g|+ |g| ≤ |f − g|+ N

2
< |f − g|+ |f |

2
,

and hence,

|fχ{|f |>N}∩{|g|≤N
2
}| ≤ 2|f − g|. (3.41)

By combining (3.39)-(3.41), for

N > 2 max

‖g‖L∞ ,
(

1 + ‖g‖θMϕ
q

ε

) 1
1−θ
 , (3.42)

we have

|fχ{|f |<1/N}∪{|f |>N}| ≤ 6|f − g|+ |gχ{|g|≤ 2
N
}|+ |gχ{|g|>N

2
}|

≤ 6|f − g|+
(

2

N

)1−θ

|g|θ + |gχ{|g|>N
2
}|

≤ 6|f − g|+ ε

1 + ‖g‖θMϕ
q

|g|θ.

We combine the last inequality and (3.38) to obtain

‖fχ{|f |< 1
N
}∪{|f |>N}‖Mϕθ

q/θ

≤ 6‖f − g‖
Mϕθ

q/θ

+
ε

1 + ‖g‖θMϕ
q

‖|g|θ‖
Mϕθ

q/θ

< ε+
ε

1 + ‖g‖θMϕ
q

‖g‖θMϕ
q
< 2ε.
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This shows that lim
N→∞

‖fχ{|f |< 1
N
}∪{|f |>N}‖Mϕθ

q/θ

= 0.

Conversely, let f ∈Mϕθ

q/θ be such that

lim
N→∞

‖fχ{|f |< 1
N
}∪{|f |>N}‖Mϕθ

q/θ

= 0. (3.43)

For every N ∈ N, define fN := fχ{ 1
N
≤|f |≤N}. Since fN ∈ L∞,

‖fN‖Mϕ
q
≤ (1/N)1− 1

θ ‖|f |1/θ‖Mϕ
q

= N
1
θ
−1‖f‖1/θ

Mϕθ

q/θ

<∞,

and
‖f − fN‖Mϕθ

q/θ

= ‖fχ{|f |< 1
N
}∪{|f |>N}‖Mϕθ

q/θ

→ 0

as N →∞, we see that f ∈ L∞ ∩Mϕ
q
Mϕθ

q/θ = [L∞,Mϕ
q ]θ.

Similar to Theorem 3.4.1, we also give a description of the second complex
interpolation between L∞ and Mϕ

q .

Theorem 3.4.3. [30] Let θ ∈ (0, 1), 1 ≤ q <∞, and ϕ ∈ Gq. Then we have

[L∞,Mϕ
q ]θ =Mϕθ

q/θ. (3.44)

Proof. Our proof of (3.44) combines (3.34) and Lemma 2.2.4. Let f ∈ [L∞,Mϕ
q ]θ

and ε > 0. Then, we can choose G ∈ G(L∞,Mϕ
q ) such that

G′(θ) = f and ‖G‖G(L∞,Mϕ
q ) ≤ (1 + ε)‖f‖[L∞,Mϕ

q ]θ .

For every z ∈ S and k ∈ N, define Hk(z) by (2.3). By virtue of Lemma 2.2.4, we
have Hk(θ) ∈ [L∞,Mϕ

q ]θ with

‖Hk(θ)‖[L∞,Mϕ
q ]θ ≤ (1 + ε)‖f‖[L∞,Mϕ

q ]θ . (3.45)

Combining (3.45) and (3.34), we get

‖Hk(θ)‖Mϕθ

q/θ

≤ (1 + ε)‖f‖[L∞,Mϕ
q ]θ . (3.46)

Since lim
k→∞

Hk(θ) = G′(θ) = f in L∞+Mϕ
q , we can find a subsequence {Hkj(θ)}∞j=1

⊆ {Hk(θ)}∞k=1 such that

lim
j→∞

Hkj(θ)(x) = f(x) a.e.
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By virtue of Fatou’s lemma and (3.46), we get

‖f‖
Mϕθ

q/θ

≤ lim inf
j→∞

‖Hkj(θ)‖Mϕθ

q/θ

≤ (1 + ε)‖f‖[L∞,Mϕ
q ]θ .

Since ε > 0 is arbitrary, we have ‖f‖
Mϕθ

q/θ

≤ ‖f‖[L∞,Mϕ
q ]θ .

Conversely, let us assume that f ∈Mϕθ

q/θ. For every z ∈ S, define

F (z) := sgn(f)|f |
z
θ and G(z) := (z − θ)

∫ 1

0

F (θ + (z − θ)t) dt. (3.47)

Let F0(z) := χ{|f |≤1}F (z), F1(z) := F (z) − F0(z), G0(z) := χ{|f |≤1}G(z), and

G1(z) := G(z)−G0(z). Let u ∈ S. Since Re(u) ∈ [0, 1], we have

|F0(u)| = χ{|f |≤1}|f |
Re(u)
θ ≤ 1 and |F1(u)| = χ{|f |>1}|f |

Re(u)
θ ≤ |f |

1
θ .

Consequently,

‖F (u)‖L∞+Mϕ
q
≤ ‖F0(u)‖L∞ + ‖F1(u)‖Mϕ

q
≤ 1 + ‖|f |1/θ‖Mϕ

q
= 1 + ‖f‖1/θ

Mϕθ

q/θ

,

(3.48)

‖G0(z)‖L∞ =

∥∥∥∥∫ z

θ

F0(u) du

∥∥∥∥
L∞
≤ |z − θ| ≤ (1 + |z|) (3.49)

and

‖G1(z)‖Mϕ
q

=

∥∥∥∥∫ z

θ

F1(u) du

∥∥∥∥
Mϕ

q

≤ |z − θ|‖|f |
1
θ ‖Mϕ

q
≤ (1 + |z|) ‖f‖

1
θ

Mϕθ

q/θ

<∞.

(3.50)

This implies G(z) ∈ L∞ +Mϕ
q and

sup
z∈S

∥∥∥∥ G(z)

1 + |z|

∥∥∥∥
L∞+Mϕ

q

≤ 1 + ‖f‖
1
θ

Mϕθ

q/θ

<∞. (3.51)

Fix 0 < ε� 1. Let z ∈ S with ε < Re(z) < 1− ε and w ∈ C with |w| < ε
2
. Since

G(z + w)−G(z) =

∫ z+w

z

F (u) du =
F (z + w)− F (z)

log(|f |1/θ)
,
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we have∣∣∣∣G0(z + w)−G0(z)

w
− F0(z)

∣∣∣∣ = |F0(z)|
∣∣∣∣exp(w log(|f |1/θ))− 1

w log(|f |1/θ)
− 1

∣∣∣∣
= χ{|f |≤1}|f |

Re(z)
θ

∣∣∣∣exp(w log(|f |1/θ))− 1

w log(|f |1/θ)
− 1

∣∣∣∣
≤ χ{|f |≤1}|f |

ε
θ

∣∣∣∣exp(w log(|f |1/θ))− 1

w log(|f |1/θ)
− 1

∣∣∣∣
≤ sup

0<t≤1
tε
∣∣∣∣exp(w log t)− 1

w log t
− 1

∣∣∣∣ .
Observe that, for every t ∈ (0, 1), we have

tε
∣∣∣∣exp(w log t)− 1

w log t
− 1

∣∣∣∣ = tε

∣∣∣∣∣
∞∑
k=2

(w log t)k−1

k!

∣∣∣∣∣
≤ −tε|w|(log t)

∞∑
k=2

(−|w| log t)k−2

(k − 2)!

≤ −tε|w|(log t) exp(−|w| log t)

≤ −tε|w|(log t) exp(−ε
2

log t)

= −t
ε
2 (log t)|w| ≤ 2

εe
|w|.

Consequently, ∥∥∥∥G0(z + w)−G0(z)

w
− F0(z)

∥∥∥∥
L∞
≤ 2

εe
|w|. (3.52)

By a similar argument, we also have∥∥∥∥G1(z + w)−G1(z)

w
− F1(z)

∥∥∥∥
Mϕ

q

≤ 2

εe
|w|‖|f |

1
θ ‖Mϕ

q
=

2

εe
|w|‖f‖1/θ

Mϕθ

q/θ

. (3.53)

Combining (3.52) and (3.53), we get∥∥∥∥G(z + w)−G(z)

w
− F (z)

∥∥∥∥
L∞+Mϕ

q

≤ 2

εe

(
1 + ‖f‖

1
θ

Mϕθ

q/θ

)
|w| → 0 (3.54)

as w → 0. According to (3.48) and (3.54), we have G : Sε → L∞ +Mϕ
q is a

holomorphic function. Since ε is arbitrary, we conclude that G : S → L∞ +Mϕ
q

is holomorphic.

Observe that, for j = 0, 1 and t1, t2 ∈ R, we have

G(j + it2)−G(j + it1) = i

∫ t2

t1

F (j + it) dt. (3.55)
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Combining (3.55), |F (it)| = 1, and |F (1 + it)| = |f | 1θ , we have

‖G(it2)−G(it1)‖L∞ ≤ |t2 − t1|

and

‖G(1 + it2)−G(1 + it1)‖Mϕ
q
≤ |t2 − t1|‖f‖

1
θ

Mϕθ

q/θ

,

which verify Lipschitz-continuity of the functions t ∈ R 7→ G(it) − G(0) ∈ L∞
and t ∈ R 7→ G(1 + it) − G(1) ∈ Mϕ

q . Thus, we have G ∈ G(L∞,Mϕ
q ). Since

f = F (θ) = G′(θ), we conclude that f ∈ [L∞,Mϕ
q ]θ as desired.
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Chapter 4

Complex interpolation of some
closed subspaces of generalized
Morrey spaces

Let 1 ≤ q < p < ∞ and define f(x) := |x|−n/p. Observe that f ∈ Mp
q and for

any R > 0, we have

‖f − χB(0,R)f‖Mp
q

= ‖fχB(0,R)‖Mp
q

= ‖f‖Mp
q
. (4.1)

This shows the difficulty of approximating functions in the Morrey spaceMp
q by

compactly supported functions [50, p. 1744]. Recently, the description of the
closure in Mp

q of L∞c is given in [24, Lemma 7]. For the next discussion, we use
the following notation:

Definition 4.0.1. Let 1 ≤ q < ∞, ϕ ∈ Gq, and L0
c be the set of compactly

supported functions. The spaces M̃ϕ
q ,

∗
Mϕ

q , andMϕ
q denote the closure inMϕ

q of

L∞c , L0
c ∩Mϕ

q , and L∞ ∩Mϕ
q , respectively. We also write L̃∞ for the closure of

L∞c in L∞. If ϕ(t) := tn/p, then we write M̃p
q ,
∗
Mp

q , andMp
q for the corresponding

closed subspaces of Morrey spaces.

Our results on the characterization of M̃ϕ
q ,

∗
Mϕ

q , andMϕ
q are given as follows:

Theorem 4.0.2. [27, 30] Let 1 ≤ q <∞ and ϕ ∈ Gq. Then we have

M̃ϕ
q = {f ∈Mϕ

q : lim
R→∞

‖χ{|f |>R}∪(Rn\B(0,R))f‖Mϕ
q

= 0}, (4.2)
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∗
Mϕ

q =
{
f ∈Mϕ

q : lim
R→∞

‖χRn\B(0,R)f‖Mϕ
q

= 0
}
, (4.3)

and

Mϕ
q =

{
f ∈Mϕ

q : lim
R→∞

‖χ{|f |>R}f‖Mϕ
q

= 0
}
. (4.4)

Remark 4.0.3. Note that, the identity (4.2) for the case inf ϕ = 0 can be seen in

[24, Lemma 15]. We also remark that another characterization of
∗
Mp

q was given

by Yuan et al. in [55, Lemma 2.33]. Meanwhile, the description of the spaceMp
q

and Mϕ
q was given in [10, Lemma 3.1] and [27, Lemma 2.6], respectively.

The proof of Theorem 4.0.2 will be given in Section 4.1. By using (4.2), (4.3),

and (4.4), we can verify the examples of M̃p
q (

∗
Mp

q ( Mp
q and Mp

q ( Mp
q as

follows:

Example 4.0.4. Let 1 ≤ q < p < ∞. For x ∈ Rn, define f(x) := |x|−n/p,
g(x) := f(x)χRn\B(0,1)(x), and h(x) := f(x)χB(0,1)(x). Then f ∈Mp

q\(Mp
q∪

∗
Mp

q),

g ∈Mp
q \

∗
Mp

q , and h ∈
∗
Mp

q \ M̃p
q .

The sets L∞c , L0
c, and L∞ are the model cases of the following closed subspace of

Morrey spaces.

Definition 4.0.5. Assume that a linear subspace U ⊂ L0 enjoys the lattice
property: g ∈ U whenever f ∈ U and |g| ≤ |f |. For 1 ≤ q < ∞ and ϕ ∈ Gq,
define

UMϕ
q := U ∩Mϕ

q
Mϕ

q
. (4.5)

Taking U = L∞c , L
0
c, L

∞, we get UMϕ
q = M̃ϕ

q ,
∗
Mϕ

q ,Mϕ
q . Another example of

U = L0(Ω), namely the set of measurable functions f vanishing outside bounded
domain Ω. We also define

U ./Mϕ
q := {f ∈Mϕ

q : χ{a≤|f |≤b}f ∈ UMϕ
q for all 0 < a < b <∞}. (4.6)

The first result on the complex interpolation of closed subspaces of Morrey
spaces was given by Yang, Yuan, and Zhuo [54]. The authors gave a description of

the first complex interpolation space [
◦
Mp0

q0
,
◦
Mp1

q1
]θ, where

◦
Mp

q denotes the closure
in Mp

q . Let us recall their result as follows.
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Theorem 4.0.6. Let θ ∈ (0, 1), 1 < q0 ≤ p0 < ∞, and 1 < q1 ≤ p1 < ∞.
Assume that p0

q0
= p1

q1
. Define p and q by

1

p
:=

1− θ
p0

+
θ

p1

and
1

q
:=

1− θ
q0

+
θ

q1

.

Then

[
◦
Mp0

q0
,
◦
Mp1

q1
]θ = [Mp0

q0
,
◦
Mp1

q1
]θ = [

◦
Mp0

q0
,Mp1

q1
]θ =

◦
Mp

q .

In this thesis, we investigate the first and second complex interpolation of
closed subspaces of generalized Morrey spaces UMϕ0

q0
and UMϕ1

q1
, where U sat-

isfies the condition in Definition 4.0.5. We shall discuss these results in Sections
4.2 and 4.3. Remark that a description of complex interpolation of the diamond
spaces can be seen in [28].

4.1 Closed subspaces of generalized Morrey spaces satis-
fying the lattice property

Our proof of Theorem 4.0.2 (4.2) utilizes the information about the level sets of

the functions in M̃ϕ
q and L∞c ∩Mϕ

q . The proof of (4.2) is given as follows:

Proof of Theorem 4.0.2 (4.2). Let f ∈ M̃ϕ
q and ε > 0. Choose g ∈ L∞c such that

‖f − g‖Mϕ
q
<
ε

2
.

Choose Rε > 0 such that Rε ≥ 2‖g‖L∞ and supp(g) ⊆ B(0, Rε). For every
R > Rε, we have

|χ{|f |>R}∪(Rn\B(0,R))f | ≤ |f − g|+ |χ{|f |>R}g|+ |χRn\B(0,R)g|

≤ |f − g|+ χ{|f |>R}
R

2

≤ |f − g|+ χ{|f |>R}∪(Rn\B(0,R))
|f |
2
. (4.7)

Therefore, for every R > Rε, we have

|χ{|f |>R}∪(Rn\B(0,R))f | ≤ 2|f − g|,

and hence
‖χ{|f |>R}∪(Rn\B(0,R))f‖Mϕ

q
≤ 2‖f − g‖Mϕ

q
< ε.
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This shows that lim
R→∞

‖χ{|f |>R}∪(Rn\B(0,R))f‖Mϕ
q

= 0.

Conversely, let f ∈Mϕ
q be such that

lim
R→∞

‖χ{|f |>R}∪(Rn\B(0,R))f‖Mϕ
q

= 0.

For every R > 0, define fR := χ{|f |≤R}∩B(0,R)f . Note that |fR| ≤ R and
supp(fR) ⊆ B(0, R). Hence, fR ∈ L∞c . Since

lim
R→∞

‖f − fR‖Mϕ
q

= lim
R→∞

‖χ{|f |>R}∪(Rn\B(0,R))f‖Mϕ
q

= 0

and fR ∈ L∞c , we see that f ∈ M̃ϕ
q .

We now give the proof of Theorem 4.0.2 (4.3):

Proof of Theorem 4.0.2 (4.3). Let f ∈
∗
Mϕ

q and ε > 0. Then, there exists gε ∈
L0

c ∩Mϕ
q such that

‖f − gε‖Mϕ
q
< ε. (4.8)

For any R > 0, we have

|χRn\B(0,R)f | ≤ |χRn\B(0,R)gε|+ |χRn\B(0,R)(f − gε)| ≤ |χRn\B(0,R)gε|+ |f − gε|.

Choose Rε > 0 such that supp(gε) ⊂ B(0, Rε). Then, for all R > Rε, we have

|χRn\B(0,R)f | ≤ |f − gε|.

Consequently, for all R > Rε, we have

‖χRn\B(0,R)f‖Mϕ
q
≤ ‖f − gε‖Mϕ

q
< ε.

This shows that lim
R→∞

‖χRn\B(0,R)f‖Mϕ
q

= 0.

Conversely, assume that f ∈Mϕ
q and that

lim
R→∞

‖χRn\B(0,R)f‖Mϕ
q

= 0.

For every R > 0, define fR := χB(0,R)f . Then fR ∈ L0
c ∩Mϕ

q , and it follows that

lim
R→∞

‖f − fR‖Mϕ
q

= 0,

so then f ∈
∗
Mϕ

q .
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The proof of (4.4) is given as follows.

Proof of Theorem 4.0.2 (4.4). Let f ∈Mϕ
q be such that lim

R→∞
‖χ{|f |>R}f‖Mϕ

q
= 0.

Define fR := χ{|f |≤R}f for every R > 0. Since fR ∈ L∞ ∩Mϕ
q and

‖f − fR‖Mϕ
q

= ‖χ{|f |>R}f‖Mϕ
q
→ 0

as R→∞, we see that f ∈Mϕ
q .

Conversely, let f ∈Mϕ
q and ε > 0. Choose g ∈ L∞ ∩Mϕ

q be such that

‖f − g‖Mϕ
q
<
ε

2
.

Let Rε := 2‖g‖L∞ . Then, for every R > Rε, we have

|χ{|f |>R}f | ≤ |χ{|f |>R}(f − g)|+ |χ{|f |>R}g|

≤ |f − g|+ χ{|f |>R}
R

2

≤ |f − g|+ χ{|f |>R}
|f |
2
,

so |χ{|f |>R}f | ≤ 2|f − g|. Consequently, for every R > Rε, we have

‖χ{|f |>R}f‖Mϕ
q
≤ 2‖f − g‖Mϕ

q
< ε.

This shows that lim
R→∞

‖χ{|f |>R}f‖Mϕ
q

= 0, as desired.

As a corollary of Theorem 4.0.2, we show that M̃ϕ
q is the intersection of

∗
Mϕ

q

and Mϕ
q .

Corollary 4.1.1. [30] Let 1 ≤ q <∞ and ϕ ∈ Gq. Then, M̃ϕ
q =

∗
Mϕ

q ∩Mϕ
q .

Proof. The inclusion M̃ϕ
q ⊆

∗
Mϕ

q ∩Mϕ
q follows from M̃ϕ

q ⊆
∗
Mϕ

q and M̃ϕ
q ⊆Mϕ

q .

Conversely, let f ∈
∗
Mϕ

q ∩Mϕ
q . Define AR := {|f | > R} ∪ (Rn \B(0, R)). Then

‖χARf‖Mϕ
q
≤ ‖χRn\B(0,R)f‖Mϕ

q
+ ‖χ{|f |>R}f‖Mϕ

q
. (4.9)

Since f ∈
∗
Mϕ

q and f ∈Mϕ
q , by combining Theorem 4.0.2 and (4.9), we have

lim
R→∞

‖χARf‖Mϕ
q

= 0, (4.10)

and hence, f ∈ M̃ϕ
q . This shows that

∗
Mϕ

q ∩Mϕ
q ⊆ M̃ϕ

q .
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4.2 The first complex interpolation of some closed sub-
spaces of generalized Morrey spaces

We obtain the following description of [UMϕ0
q0
, UMϕ1

q1
]θ.

Theorem 4.2.1. [27] Let θ ∈ (0, 1). Suppose that the parameters 1 ≤ q0 < ∞,
ϕ0 ∈ Gq0, 1 ≤ q1 <∞, ϕ1 ∈ Gq1 satisfy q0 6= q1 and ϕq00 = ϕq11 . Define

ϕ := ϕ1−θ
0 ϕθ1 and

1

q
:=

1− θ
q0

+
θ

q1

.

Then we have

[UMϕ0
q0
, UMϕ1

q1
]θ = UMϕ

q ∩ [Mϕ0
q0
,Mϕ1

q1
]θ

=
{
f ∈ UMϕ

q : lim
N→∞

‖f − χ{ 1
N
≤|f |≤N}f‖Mϕ

q
= 0
}
.

As a special case of Theorem 4.2.1, we have the following corollary:

Corollary 4.2.2. [27] Suppose that θ ∈ (0, 1), 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 <
∞, and p0

q0
= p1

q1
. Define

1

p
:=

1− θ
p0

+
θ

p1

and
1

q
:=

1− θ
q0

+
θ

q1

.

Then we have

[M̃p0
q0 ,M̃p1

q1 ]θ = M̃p
q = [

∗
Mp0

q0
,
∗
Mp1

q1
]θ.

In order to prove Theorem 4.2.1, we need to prove the following lemmas:

Lemma 4.2.3. [24, Lemma 4.2] Assume the same paramaters as in Theorem
4.2.1. Let E be a measurable set such that χE ∈ UMϕ

q . Then

χE ∈ UMϕ0
q0
∩ UMϕ1

q1
.

Proof. Let χE ∈ UMϕ
q and choose {gk}∞k=1 ⊆ U ∩Mϕ

q for which

lim
k→∞
‖χE − gk‖Mϕ

q
= 0.

Define hk := χ{gk 6=0}∩E. Then, for each k = 0, 1, we have

‖χE − hk‖Mϕj
qj

= ‖χE − hk‖
q/qj
Mϕ

q
≤ ‖χE − gk‖

q/qj
Mϕ

q
→ 0

as k →∞. Thus, χE ∈ UMϕ0
q0
∩ UMϕ1

q1
.
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Lemma 4.2.4. [24, Lemma 4.1] Assume the same paramaters as in Theorem
4.2.1. Then UMϕ0

q0
∩ UMϕ1

q1
⊆ UMϕ

q .

Proof. Without loss of generality assume that q1 > q0. Let f ∈ UMϕ0
q0
∩ UMϕ1

q1
.

In view of Lemma 3.2.6, we may assume f = χ{1/N≤|f |≤N}f for some N ∈ N.
By the lattice property of the spaces UMϕ0

q0
, UMϕ1

q1
and UMϕ

q , we may assume
f = χE for some measurable set E. Choose a sequence {gj}∞j=1 ⊆ U ∩Mϕ1

q1
such

that
lim
j→∞
‖f − gj‖Mϕ1

q1
= 0.

Define Fj := {gj 6= 0} ∩ E. Hence |f − χFj | ≤ 2 and |f − χFj | ≤ |f − gj|.
Consequently,

‖f − χFj‖Mϕ
q

=
∥∥∥ |f − χFj |1− q1q |f − χFj | q1q ∥∥∥Mϕ

q

≤ 21− q1
q ‖f − gj‖

q1
q

Mϕ1
q1

.

This shows that f ∈ UMϕ
q .

The proof of Theorem 4.2.1 is given as follows:

Proof of Theorem 4.2.1. We assume that q1 > q0. By using Lemma 4.2.4, the
inclusions [UMϕ0

q0
, UMϕ1

q1
]θ ⊆ [Mϕ0

q0
,Mϕ1

q1
]θ ⊆ Mp

q , and the fact that X0 ∩X1 is
a dense subset of [X0, X1]θ, we have [UMϕ0

q0
, UMϕ1

q1
]θ ⊆ UMp

q . Consequently,

[UMϕ0
q0
, UMϕ1

q1
]θ ⊆ UMp

q ∩ [Mϕ0
q0
,Mϕ1

q1
]θ.

Conversely, let f ∈ UMp
q ∩ [Mϕ0

q0
,Mϕ1

q1
]θ. Note that, for any 0 < b < c <∞, we

have a pointwise estimate:

χ{b≤|f |≤c} ≤
1

b
χ{b≤|f |≤c}|f | ≤

|f |
b
, (4.11)

so χ{b≤|f |≤c} ∈ UMp
q . From Lemma 4.2.3, it follows that χ{b≤|f |≤c} ∈ UMϕ0

q0
∩

UMϕ1
q1

. For every N ∈ N and z ∈ S, define

FN(z) = sgn(f)|f |q
(

1−z
q0

+ z
q1

)
χ{ 1

N
≤|f |≤N}.

Decompose FN(z) := FN,0(z) + FN,1(z) where FN,0(z) := FN(z)χ{|f |≤1}. Since

|FN,0(z)| ≤ χ{ 1
N
≤|f |≤1} and |FN,1(z)| ≤

(
N

q
q0 +N

q
q1

)
χ{1≤|f |≤N},

we have FN(z) = FN,0(z) + FN,1(z) ∈ UMϕ0
q0

+ UMϕ1
q1

. Moreover, we also have

sup
z∈S
‖FN(z)‖UMϕ0

q0
+UMϕ1

q1
≤ ‖χ{ 1

N
≤|f |≤1}‖UMϕ0

q0
+
(
N

q
q0 +N

q
q1

)
‖χ{1≤|f |≤N}‖UMϕ1

q1
.
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Observe that for every w ∈ S, we have

|F ′N(w)| ≤
(
q

q0

− q

q1

)(
N

q
q0 +N

q
q1

)
(logN)× χ{ 1

N
≤|f |≤N}. (4.12)

Then we have

‖FN(z)− FN(z′)‖UMϕ0
q0

+UMϕ1
q1

=

∥∥∥∥∫ z

z′
F ′N(w) dw

∥∥∥∥
UMϕ0

q0
+UMϕ1

q1

≤
(
q

q0

− q

q1

)(
N

q
q0 +N

q
q1

)
(logN)×

(
‖χ{ 1

N
≤|f |≤N}‖UMϕ0

q0
+UMϕ1

q1

)
|z − z′|

≤
(
q

q0

− q

q1

)(
N

q
q0 +N

q
q1

)
logN

×
(
‖χ{ 1

N
≤|f |≤1}‖UMϕ0

q0
+ ‖χ{1<|f |≤N}‖UMϕ1

q1

)
|z − z′|

for all z, z′ ∈ S. Thus, FN : S → UMϕ0
q0

+ UMϕ1
q1

is a continuous function.
Likewise we can check that FN |S : S → UMϕ0

q0
+UMϕ1

q1
is a holomorphic function.

Note that, for all t ∈ R and j = 0, 1, we have

|FN(j + it)| = |f |
q
qj χ{ 1

N
≤|f |≤N} ≤ N

q
qj χ{ 1

N
≤|f |≤N},

so, FN(j + it) ∈ UMϕj
qj . Furthermore, by using (4.12), we get

‖FN(j + it)− FN(j + it′)‖
UM

ϕj
qj

=

∥∥∥∥∫ j+it

j+it′
F ′N(w) dw

∥∥∥∥
UM

ϕj
qj

≤
(
q

q0

− q

q1

)(
N

q
q0 +N

q
q1

)
logN

× ‖χ{1/N≤|f |≤N}‖UMϕj
qj
|t− t′|

for all t, t′ ∈ R. This shows that t ∈ R 7→ FN(j + it) ∈ UMϕj
qj are continuous

functions. In total, we have showed that FN ∈ F(UMϕ0
q0
, UMϕ1

q1
). Note that, for

M,N ∈ N with N < M , we have

‖FM(θ)− FN(θ)‖[UMϕ0
q0
,UMϕ1

q1
]θ
≤ ‖FM − FN‖F(UMϕ0

q0
,UMϕ1

q1
)

= max
j=0,1

sup
t∈R
‖FM(j + it)− FN(j + it)‖

UM
ϕj
qj

= max
j=0,1

sup
t∈R
‖|f |q/qjχ{ 1

M
≤|f |≤ 1

N
}∪{N≤|f |≤M}‖Mϕj

qj

= max
j=0,1
‖fχ{ 1

M
≤|f |≤ 1

N
}∪{N≤|f |≤M}‖

q/qj
Mϕ

q

≤ max
j=0,1
‖f − χ{ 1

N
≤|f |≤N}f‖

q/qj
Mϕ

q
.
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Since lim
N→∞

‖f − χ{ 1
N
≤|f |≤N}f‖Mp

q
= 0, we see that

‖FM(θ)− FN(θ)‖[UMϕ0
q0
,UMϕ1

q1
]θ
→ 0

whenever M,N → ∞. Thus, FN(θ) converges to g ∈ [UMϕ0
q0
, UMϕ1

q1
]θ. Hence,

lim
N→∞

FN(θ) = g in Mϕ0
q0

+Mϕ1
q1

. Meanwhile, by combining Mϕ
q ⊆ Mϕ0

q0
+Mϕ1

q1

and
lim
N→∞

‖f − χ{ 1
N
≤|f |≤N}f‖Mϕ

q
= 0,

we have lim
N→∞

FN(θ) = f in Mϕ0
q0

+ Mϕ1
q1

, which implies f = g. Thus, f ∈
[UMϕ0

q0
, UMϕ1

q1
]θ as desired.

4.3 The second complex interpolation of some closed sub-
spaces of generalized Morrey spaces

Our main result in this section is the following theorem.

Theorem 4.3.1. [27] Suppose that θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤ q1 < ∞, and
ϕq00 = ϕq11 . Define

ϕ := ϕ1−θ
0 ϕθ1 and

1

q
:=

1− θ
q0

+
θ

q1

.

Then we have

[UMϕ0
q0
, UMϕ1

q1
]θ = U ./Mϕ

q . (4.13)

As a special case of Theorem 4.3.1, we have the following results:

Corollary 4.3.2. [27, Theorems 5.2 and 5.12] Suppose that θ ∈ (0, 1), 1 ≤ q0 <
∞, 1 ≤ q1 < ∞, and ϕq00 = ϕq11 . Define ϕ := ϕ1−θ

0 ϕθ1 and 1
q

:= 1−θ
q0

+ θ
q1

. Then,

the description of the second interpolation functor of these closed subspaces is as
follows:

[M̃ϕ0
q0 ,M̃ϕ1

q1 ]θ = [
∗
Mϕ0

q0
,
∗
Mϕ1

q1
]θ =

⋂
0<a<b<∞

{f ∈Mϕ
q : χ{a≤|f |≤b}f ∈ M̃ϕ

q }, (4.14)

and

[Mϕ0
q0
,Mϕ1

q1
]θ =Mϕ

q . (4.15)
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From now on, we shall always use the assumption of Theorem 4.3.1. To prove
Theorem 4.3.1, we shall invoke and prove several lemmas.

Lemma 4.3.3. [27] Keep the assumption in Theorem 4.3.1. Then

U ./Mϕ
q ⊆ [UMϕ0

q0
, UMϕ1

q1
]θ. (4.16)

Proof. Without loss of generality, assume that q0 > q1. Let f ∈ U ./Mp
q . Since

χ{a≤|f |≤b} ≤ 1
a
χ{a≤|f |≤b}|f |, we have χ{a≤|f |≤b} ∈ UMp

q . From Lemma 4.2.3, we

have χ{a≤|f |≤b} ∈ UMp0
q0
∩ UMp1

q1
. For z ∈ S, define

F (z) := sgn(f)|f |
qz
q0

+
q(1−z)
q1 and G(z) := (z − θ)

∫ 1

0

F (θ + (z − θ)t) dt. (4.17)

Decompose G(z) = G0(z) + G1(z) where G0(z) := χ{|f |≤1}G(z). Let 0 < ε < 1.
Since χ{ε≤|f |≤1} ∈ UMp0

q0
and

χ{ε≤|f |≤1}|G0(z)| ≤ (1 + |z|)(|f |q/q0 + |f |q/q1)χ{ε≤|f |≤1} ≤ 2(1 + |z|)χ{ε≤|f |≤1},
(4.18)

we have χ{ε≤|f |≤1}G0(z) ∈ UMp0
q0
. Observe that

‖G0(z)− χ{ε≤|f |≤1}G0(z)‖Mp0
q0

=

∥∥∥∥∥∥χ{|f |≤ε} F (z)− F (θ)(
q
q1
− q

q0

)
log |f |

∥∥∥∥∥∥
Mϕ0

q0

≤

∥∥∥∥∥∥ 2|f |q/q0(
q
q1
− q

q0

)
log(ε−1)

∥∥∥∥∥∥
Mϕ0

q0

=
2‖f‖q/q0Mp

q(
q
q1
− q

q0

)
log ε−1

→ 0 (4.19)

as ε → 0+. Hence G0(z) ∈ UMp0
q0

. Similarly, G1(z) ∈ UMp1
q1

. Thus G(z) ∈
UMp0

q0
+ UMp1

q1
. Let t ∈ R and R > 1. Since χ{R−1≤|f |≤R} ∈ UMp0

q0
and

|(G(it)−G(0))|χ{R−1≤|f |≤R} ≤ (2 + |t|)(Rq/q0 +Rq/q1)χ{R−1≤|f |≤R}, (4.20)

we have [G(it)−G(0)]χ{R−1≤|f |≤R} ∈ UMp0
q0

. Note that

‖[G(it)−G(0)]χRn\{R−1≤|f |≤R}‖Mp0
q0
≤

2‖f‖q/q0Mp
q(

q
q1
− q

q0

)
logR

→ 0 (4.21)

as R → ∞. Thus G(it) − G(0) ∈ UMp0
q0

. Similarly, G(1 + it) − G(1) ∈ UMp1
q1

.
Since G ∈ G(Mp0

q0
,Mp1

q1
), we have G ∈ G(UMp0

q0
, UMp1

q1
). From f = G′(θ), it

follows that f ∈ [UMp0
q0
, UMp1

q1
]θ.
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Lemma 4.3.4. [27] Let G ∈ G(Mϕ0
q0
,Mϕ1

q1
) and θ ∈ (0, 1). For z ∈ S and k ∈ N,

define Hk(z) by (2.3). Then Hk(θ) ∈ UMϕ0
q0 ∩ UMϕ1

q1

Mϕ
q
.

Proof. It follows from Lemma 2.2.4, that Hk(θ) ∈ [UMϕ0
q0
, UMϕ1

q1
]θ. Let ε > 0.

Since UMϕ0
q0
∩ UMϕ1

q1
is dense in [UMϕ0

q0
, UMϕ1

q1
]θ, we can find Jk(θ) ∈ UMϕ0

q0
∩

UMϕ1
q1

such that
‖Hk(θ)− Jk(θ)‖[UMϕ0

q0
,UMϕ1

q1
]θ
< ε.

Since [UMϕ0
q0
, UMϕ1

q1
]θ ⊆ [Mϕ0

q0
,Mϕ1

q1
]θ ⊆Mϕ

q , we have

‖Hk(θ)− Jk(θ)‖Mϕ
q
. ‖Hk(θ)− Jk(θ)‖[UMϕ0

q0
,UMϕ1

q1
]θ
< ε.

This shows that Hk(θ) ∈ UMϕ0
q0 ∩ UMϕ1

q1

Mϕ
q
.

Lemma 4.3.5. [27] We use the assumption of Theorem 4.3.1. Then we have

Mϕ
q ∩ UM

ϕ
q
Mϕ0

q0
+Mϕ1

q1 ⊆ U ./Mϕ
q .

Proof. Let f ∈Mϕ
q ∩ UM

ϕ
q
Mϕ0

q0
+Mϕ1

q1 . Choose {fj}∞j=1 ⊆ UMϕ
q such that

lim
j→∞
‖f − fj‖Mϕ0

q0
+Mϕ1

q1
= 0.

Then, we can find {kj}∞j=1 ⊂ M̃
p0
q0 and {hj}∞j=1 ⊂ M̃

p1
q1 convergent to 0 in M̃p0

q0 and

M̃p1
q1 , respectively, such that f−fj = kj+hj for all j. Assume 0 < a < 1 < b <∞

as before. Let Θ ∈ Cc(R) be a piecewise linear function defined by

Θ′(t) :=
2

a
χ(a/2,a)(t)−

1

b
χ(b,2b)(t) (4.22)

except at t = a
2
, a, b, 2b. Let Ca,b = 2

a
+ 1

b
. Since

|Θ(t)−Θ(s)| ≤ Ca,b|t− s| and |Θ(t)−Θ(s)| ≤ 2,

we have

|Θ(|f |)−Θ(|fj|)| ≤ Ca,b min(1, ||f | − |fj||) ≤ Ca,b min(1, |f − fj|).

Let B = B(x0, r) be any ball in Rn. Then,∫
B

χ[a,b](|f(x)|)|Θ(|f(x)|)−Θ(|fj(x)|)|q dx

.
∫
B

χ[a,b](|f(x)|) min(1, |f(x)− fj(x)|q) dx.
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By using the decomposition f = fj + kj + hj, we obtain∫
B

χ[a,b](|f(x)|)|Θ(|f(x)|)−Θ(|fj(x)|)|q dx

.
∫
B

χ[a,b](|f(x)|) min(1, |kj(x)|q) dx+

∫
B

χ[a,b](|f(x)|) min(1, |hj(x)|q) dx.

By keeping in mind, q0 > q > q1 and q0
p0

= q1
p1

= q
p
, we obtain

ϕ(r)q

|B|

∫
B

χ[a,b](|f(x)|)|Θ(|f(x)|)−Θ(|fj(x)|)|q dx

.
ϕ(r)q

|B|

∫
B

|hj(x)|q1 dx

+
ϕ(r)q

|B|

(∫
B

χ[a,b](|f(x)|) dx
)1− q

q0

(∫
B

min(1, |kj(x)|q0) dx
) q

q0

. (‖hj‖Mϕ1
q1

)q1 +

(
ϕ(r)q

|B|

∫
B

|f(x)|q dx
)1− q

q0
(
‖kj‖Mϕ0

q0

)q
. (‖hj‖Mϕ1

q1
)q1 +

(
ϕ(r)q

|B|

∫
B

|f(x)|q dx
)1− q

q0
(
‖kj‖Mϕ0

q0

)q
. (‖hj‖Mϕ1

q1
)q1 +

(
‖f‖Mϕ

q

)q− q2
q0

(
‖kj‖Mϕ0

q0

)q
.

Thus, it follows that

lim
j→∞
‖χ{a≤|f |≤b}Θ(|fj|)− χ{a≤|f |≤b}Θ(|f |)‖Mϕ

q
= 0.

Since χ{a≤|f |≤b}Θ(|fj|) ≤ a−1|fj|, we have χ{a≤|f |≤b}Θ(|f |) ∈ UMϕ
q . From the

equality
χ{a≤|f |≤b}|f | = bχ{a≤|f |≤b}Θ(|f |),

it follows that χ{a≤|f |≤b}f ∈ UMϕ
q .

Now, we are ready to prove Theorem 4.3.1.

Proof of (4.13). In view of Lemma 4.3.3, we only need to show that

[UMϕ0
q0
, UMϕ1

q1
]θ ⊆ U ./Mϕ

q .

Let f ∈ [UMϕ0
q0
, UMϕ1

q1
]θ. Then there exists G ∈ G(UMϕ0

q0
, UMϕ1

q1
) such that

G′(θ) = f . For z ∈ S and k ∈ N, define Hk(z) by (2.3). By virtue of Lemmas
4.2.4 and 4.3.4, we have Hk(θ) ∈ UMϕ

q . Since Hk(θ) converges to G′(θ) = f in
Mϕ0

q0
+Mϕ1

q1
, by Lemma 4.3.5, it follows that f ∈ U ./Mϕ

q .
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4.4 Complex interpolation between L∞ and some closed
subspaces of Morrey spaces

We also consider the complex interpolation between L∞ and each of the spaces

M̃ϕ
q ,

∗
Mϕ

q , and Mϕ
q . First, we prove the following lemma.

Lemma 4.4.1. [30] Let 1 ≤ q <∞ and ϕ ∈ Gq. Then, for every f ∈ L∞ ∩ M̃ϕ
q ,

we have
‖f‖

[L∞,M̃ϕ
q ]θ
∼ ‖f‖

Mϕθ

q/θ

.

Proof. Since [L∞,M̃ϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ =Mϕθ

q/θ, we have

‖f‖
Mϕθ

q/θ

. ‖f‖
[L∞,M̃ϕ

q ]θ
.

Assume that ‖f‖
Mϕθ

q/θ

= 1. For every z ∈ S, define

F (z) := sgn(f)|f |
z
θ , G(z) :=

∫ z

θ

F (u) du, and G1(z) := χ{|f |>1}G(z).

For every u ∈ S, we have

|χ{|f |>1}F (u)| = χ{|f |>1}|f |
Reu
θ ≤ |f |

1
θ ≤ ‖f‖

1
θ
−1

L∞ |f |,

so |G1(z)| ≤ (1 + |z|)‖f‖
1−θ
θ

L∞ |f |. Since f ∈ M̃ϕ
q , we see that G1(z) ∈ M̃ϕ

q . Let

t1, t2 ∈ R. Since f ∈ L∞ ∩ M̃ϕ
q and

|G(1+it2)−G(1+it1)| =
∣∣∣∣i ∫ t2

t1

F (1 + it) dt

∣∣∣∣ ≤ |t2−t1||f |1/θ ≤ |t2−t1|‖f‖ 1−θ
θ

L∞ |f |,

we have G(1 + it2) − G(1 + it1) ∈ M̃ϕ
q . Combining G1(z) ∈ M̃ϕ

q , G(1 + it2) −
G(1 + it1) ∈ M̃ϕ

q , and G ∈ G(L∞,Mϕ
q ), we have G ∈ G(L∞,M̃ϕ

q ). Moreover,

‖G‖G(L∞,M̃ϕ
q )

= max

(
sup
t<s

∥∥∥∥G(it)−G(is)

t− s

∥∥∥∥
L∞

, sup
t<s

∥∥∥∥G(1 + it)−G(1 + is)

t− s

∥∥∥∥
M̃ϕ

q

)

= max

(
sup
t<s

∥∥∥∥G(it)−G(is)

t− s

∥∥∥∥
L∞

, sup
t<s

∥∥∥∥G(1 + it)−G(1 + is)

t− s

∥∥∥∥
Mϕ

q

)
≤ max(1, ‖|f |1/θ‖Mϕ

q
)

= max(1, ‖f‖1/θ

Mϕθ

q/θ

) = 1 = ‖f‖
Mϕθ

q/θ

.
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Since f = G′(θ), we have

‖f‖[L∞,Mϕ
q ]θ ≤ ‖G‖G(L∞,M̃ϕ

q )
≤ ‖f‖

Mϕθ

q/θ

,

as desired.

One of our main results in this section is the following theorem:

Theorem 4.4.2. [30] Let θ ∈ (0, 1), 1 ≤ q <∞, and ϕ ∈ Gq. Then we have

[L∞,M̃ϕ
q ]θ = [L∞,

∗
Mϕ

q ]θ = M̃ϕθ

q/θ. (4.23)

Proof. For f ∈ [L∞,M̃ϕ
q ]θ, choose F ∈ F(L∞,M̃ϕ

q ) such that f = F (θ). Com-
bining Lemma 2.1.6 and Theorem 3.4.1, we have

‖χRn\B(0,R)f‖Mϕθ

q/θ

≤ ‖χRn\B(0,R)F (θ)‖[L∞,Mϕ
q ]θ

≤
(

1

1− θ

∫
R
‖F (it)‖L∞P0(θ, t) dt

)1−θ

×
(

1

θ

∫
R
‖χRn\B(0,R)F (1 + it)‖Mϕ

q
P1(θ, t) dt

)θ
. (4.24)

From F (1 + it) ∈ M̃ϕ
q ⊆

∗
Mϕ

q , we see that

lim
R→∞

‖χRn\B(0,R)F (1 + it)‖Mϕ
q

= 0. (4.25)

We combine (4.24), (4.25), and the dominated convergence theorem to obtain

lim
R→∞

‖χRn\B(0,R)f‖Mϕθ

q/θ

= 0.

According to (4.3), we have f ∈
∗
Mϕθ

q/θ. Since

[L∞,M̃ϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ = L∞ ∩Mϕ
q
Mϕθ

q/θ ⊆Mϕθ

q/θ,

we see that f ∈
∗
Mϕθ

q/θ ∩M
ϕθ

q/θ = M̃ϕθ

q/θ, as desired.

Now, let f ∈ M̃ϕθ

q/θ. We shall show that f ∈ [L∞,M̃ϕ
q ]θ. Since L∞c ⊆ M̃ϕ

q , we

have f ∈ L∞ ∩ M̃ϕ
q

Mϕθ

q/θ

. Then, there exists a sequence {fj}∞j=1 ⊆ L∞ ∩M̃ϕ
q such

that

‖f − fj‖Mϕθ

q/θ

≤ 1

j
. (4.26)
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Therefore, for every j, k ∈ N with j > k, we have

‖fj − fk‖[L∞,M̃ϕ
q ]θ
∼ ‖fj − fk‖Mϕθ

q/θ

≤ 1

j
+

1

k
<

2

k
,

so {fj}∞j=1 is a Cauchy sequence in [L∞,M̃ϕ
q ]θ. By completeness of [L∞,M̃ϕ

q ]θ,

there exists g ∈ [L∞,M̃ϕ
q ]θ such that

lim
j→∞
‖fj − g‖[L∞,M̃ϕ

q ]θ
= 0. (4.27)

Combining Mϕθ

q/θ ⊆ L∞ +Mϕ
q , [L∞,Mϕ

q ]θ ⊆ L∞ +Mϕ
q , (4.26), and (4.27), we

get f = g ∈ L∞ ∩ M̃ϕ
q

[L∞,M̃ϕ
q ]θ

. Finally, by using (2.4), we have f ∈ [L∞,M̃ϕ
q ]θ,

as desired.

We shall show that [L∞,
∗
Mϕ

q ]θ = M̃ϕθ

q/θ. Let f ∈ [L∞,
∗
Mϕ

q ]θ. By virtue of

(3.34), we have [L∞,
∗
Mϕ

q ]θ ⊆ [L∞,Mϕ
q ]θ ⊆Mϕθ

q/θ, so f ∈Mϕθ

q/θ. By Lemma 2.1.5,

for each ε > 0, there exists g ∈ L∞ ∩
∗
Mϕ

q such that

‖f − g‖[L∞,Mϕ
q ]θ < ε.

Since L∞ ∩
∗
Mϕ

q ⊆ Mϕ
q ∩

∗
Mϕ

q = M̃ϕ
q , we have g ∈ M̃ϕ

q . Therefore, by virtue of
Theorem 4.0.2, we have

‖χ{|g|>R}∪(Rn\B(0,R))g‖Mϕθ

q/θ

≤ ‖g‖1−θ
L∞ ‖χ{|g|>R}∪(Rn\B(0,R))g‖θMϕ

q
→ 0

as R→∞. Consequently, g ∈ M̃ϕθ

q/θ. Since [L∞,
∗
Mϕ

q ]θ ⊆ [L∞,Mϕ
q ]θ ⊆Mϕθ

q/θ, we

have
‖f − g‖

Mϕθ

q/θ

. ε.

This implies f ∈ M̃ϕθ

q/θ. Thus, [L∞,
∗
Mϕ

q ]θ ⊆ M̃ϕθ

q/θ. Meanwhile, the inclusion

M̃ϕθ

q/θ ⊆ [L∞,
∗
Mϕ

q ]θ follows from [L∞,M̃ϕ
q ]θ ⊆ [L∞,

∗
Mϕ

q ]θ and [L∞,M̃ϕ
q ]θ =

M̃ϕθ

q/θ.

Next, we move on to the description of the spaces [L∞,Mϕ
q ]θ, [L∞,Mϕ

q ]θ,

[L∞,M̃ϕ
q ]θ, and [L∞,

∗
Mϕ

q ]θ. First, we prove the following lemma:

Lemma 4.4.3. [27] Let 1 ≤ q <∞ and ϕ ∈ Gq. Then we have

∗
Mϕθ

q/θ

L∞+Mϕ
q

∩Mϕθ

q/θ ⊆
⋂

0<a<b<∞

{
f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ

}
.
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Proof. Let
∗
Mϕθ

q/θ

L∞+Mϕ
q

∩Mϕθ

q/θ and 0 < a < b <∞. For every t ≥ 0, define

ψa,b(t) := χ(a
2
,2b)(t)(t− a/2)2(t− 2b)2

Since

χ{a≤|f |≤b} ≤
1

a
χ{a≤|f |≤b}|f | ≤

b

a
χ{a≤|f |≤b} ≤ Ca,bχ{a≤|f |≤b}ψa,b(|f |), (4.28)

we only need to show that χ{a≤|f |≤b}ψa,b(|f |) ∈
∗
Mϕθ

q/θ. Let {fj}∞j=1 be such that

lim
j→∞
‖f − fj‖L∞+Mϕ

q
= 0. Choose {gj}∞j=1 ⊆ L∞ and {hj}∞j=1 ⊆Mϕ

q such that

f − fj = gj + hj, lim
j→∞
‖gj‖L∞ = 0, and lim

j→∞
‖hj‖Mϕ

q
= 0. (4.29)

Since ψa,b ∈ C1(R) and ψa,b, ψ
′
a,b ∈ L∞(R), we have

|χ{a≤|f |≤b}ψa,b(|f |)− χ{a≤|f |≤b}ψa,b(|fj|)| . χ{a≤|f |≤b}min(1, |f − fj|)
. χ{a≤|f |≤b}(min(1, |gj|) + min(1, |hj|)).

Since min(1, |hj|) ≤ |hj|θ, we have

‖min(1, |hj|)‖Mϕθ

q/θ

≤ ‖|hj|θ‖Mϕθ

q/θ

= ‖hj‖θMϕ
q
. (4.30)

Meanwhile,

‖χ{a≤|f |≤b}min(1, |gj|)‖Mϕθ

q/θ

≤ 1

a
‖gj‖L∞‖f‖Mϕθ

q/θ

. (4.31)

By combining (4.30) and (4.31), we get

‖χ{a≤|f |≤b}ψa,b(|f |)− χ{a≤|f |≤b}ψa,b(|fj|)‖Mϕθ

q/θ

≤ 1

a
‖gj‖L∞‖f‖Mϕθ

q/θ

+ ‖hj‖θMϕ
q
.

According to (4.29), we have lim
j→∞
‖χ{a≤|f |≤b}ψa,b(|f |)−χ{a≤|f |≤b}ψa,b(|fj|)‖Mϕθ

q/θ

=

0. Since χ{a≤|f |≤b}ψa,b(|fj|) . |fj|, we have χ{a≤|f |≤b}ψa,b(|fj|) ∈
∗
Mϕθ

q/θ, and

hence, χ{a≤|f |≤b}ψa,b(|f |) ∈
∗
Mϕθ

q/θ. As a consequence of (4.28), we conclude that

χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ.

We describe the spaces [L∞,Mϕ
q ]θ, [L∞,Mϕ

q ]θ, [L∞,M̃ϕ
q ]θ, and [L∞,

∗
Mϕ

q ]θ as
follows:

Theorem 4.4.4. [27] Let 1 ≤ q <∞ and ϕ ∈ Gq. Then we have
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(i) [L∞,Mϕ
q ]θ =Mϕθ

q/θ,

(ii) [L∞,Mϕ
q ]θ =Mϕθ

q/θ,

(iii) [L∞,M̃ϕ
q ]θ = [L∞,

∗
Mϕ

q ]θ =
⋂

0<a<b<∞
{f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ}.

Proof. Note that [L∞,Mϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ = Mϕθ

q/θ. Now, let f ∈ Mϕθ

q/θ. Define

F (z) := sgn(f)|f | zθ and G(z) :=
∫ z
θ
F (w) dw. In the proof of (3.44), we know

that G ∈ G(L∞,Mϕ
q ), so it suffices to show that

1. G1(z) := χ{|f |>1}G(z) ∈Mϕ
q for every z ∈ S;

2. G(1 + it)−G(1) ∈Mϕ
q for every t ∈ R.

From the inequalities

|G1(z)| =
∣∣∣∣χ{|f |>1}

F (z)− F (θ)

log |f |1/θ

∣∣∣∣ . χ{|f |>1}
|f |1/θ

log |f |1/θ

and |G1(z)| ≤ (1 + |z|)|f |1/θ, it follows that

‖χ{|G1(z)|>R}G1(z)‖Mϕ
q
.

∥∥∥∥χ{|f |1/θ> R
1+|z|}

|f |1/θ

log |f |1/θ

∥∥∥∥
Mϕ

q

.
1

log(R/(1 + |z|))
‖f‖1/θ

Mϕθ

q/θ

→ 0

as R→∞. Therefore, G1(z) ∈Mϕ
q . Similarly, for every t ∈ R, we have

‖χ{|G(1+it)−G(1)|>R}(G(1 + it)−G(1))‖Mϕ
q
.

‖f‖1/θ

Mϕθ

q/θ

log(R/(1 + |t|))
→ 0 (R→∞),

so G(1 + it)−G(1) ∈Mϕ
q . Hence, G ∈ G(L∞,Mϕ

q ) and f = G′(θ) ∈ [L∞,Mϕ
q ]θ.

We now move on to the proof of (ii). Let f ∈ [L∞,Mϕ
q ]θ. By virtue of Lemma

2.1.5 and [L∞,Mϕ
q ]θ ⊆ Mϕθ

q/θ, for each ε > 0, there exists g ∈ L∞ ∩Mϕ
q such

that

‖f − g‖
Mϕθ

q/θ

. ε. (4.32)
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By combining (4.32) and ‖g‖
Mϕθ

q/θ

≤ ‖g‖1−θ
L∞ ‖g‖θMϕ

q
< ∞, we see that f ∈ Mϕθ

q/θ.

Meanwhile, by virtue of Theorem 4.4.4 (i) and (2.4), we have

Mϕθ

q/θ ⊆ L∞ ∩Mϕ
q

[L∞,Mϕ
q ]θ

= [L∞,Mϕ
q ]θ,

as desired.

Finally, let us prove (iii). Let f ∈ Mϕθ

q/θ be such that χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ for

every 0 < a < b <∞. Since

‖χRn\B(0,R)χ{a≤|f |≤b}‖Mϕ
q

= ‖χRn\B(0,R)χ{a≤|f |≤b}‖
1
θ

Mϕθ

q/θ

→ 0

as R→∞, we have χ{a≤|f |≤b} ∈
∗
Mϕ

q . For every z ∈ S, define

F (z) := sgn(f)|f |
z
θ and G(z) :=

∫ z

θ

F (w) dw.

In the proof of Theorem 4.4.4 (i), we know that G ∈ G(L∞,Mϕ
q ). Hence, in order

to prove that G ∈ G(L∞,M̃ϕ
q ), we only need to show that

G1(z) := χ{|f |>1}G(z) ∈
∗
Mϕ

q and G(1 + it)−G(1) ∈
∗
Mϕ

q

for each z ∈ S and t ∈ R. For every R > 0, we have

|χ{|f |≤R}G1(z)| ≤ (1 + |z|)R1/θχ{1≤|f |≤R},

so χ{|f |≤R}G1(z) ∈
∗
Mϕ

q . Since

‖G1(z)− χ{|f |≤R}G1(z)‖Mϕ
q
.

1

log(R/(1 + |z|))
‖f‖1/θ

Mϕθ

q/θ

→ 0

as R→∞, we have G1(z) ∈
∗
Mϕ

q . For every t ∈ R and R > 1, we have

|G(1 + it)−G(1)|χ{ 1
R
≤|f |≤R} ≤ (1 + |t|)R1/θχ{ 1

R
≤|f |≤R},

so (G(1 + it)−G(1))χ{ 1
R
≤|f |≤R} ∈

∗
Mϕ

q . Meanwhile,

‖(G(1 + it)−G(1))χRn\{ 1
R
≤|f |≤R}‖Mϕ

q
.

θ

logR
‖f‖1/θ

Mϕθ

q/θ

→ 0

as R → ∞, so G(1 + it) − G(1) ∈
∗
Mϕ

q . Since G ∈ G(L∞,M̃ϕ
q ) and f = G′(θ),

we conclude that f ∈ [L∞,M̃ϕ
q ]θ. Combining with [L∞,M̃ϕ

q ]θ ⊆ [L∞,
∗
Mϕ

q ]θ, we
have ⋂

0<a<b<∞

{f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ} ⊆ [L∞,M̃ϕ
q ]θ ⊆ [L∞,

∗
Mϕ

q ]θ. (4.33)
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Let f ∈ [L∞,
∗
Mϕ

q ]θ. From [L∞,Mϕ
q ]θ = Mϕθ

q/θ, it follows that f ∈ Mϕθ

q/θ.

Choose G ∈ G(L∞,
∗
Mϕ

q ) such that f = G′(θ). For each z ∈ S, define

hk(z) :=
G(z + 2−ki)−G(z)

2−ki
.

By Lemma 2.2.4 and Theorem 4.4.2, we have hk(θ) ∈ [L∞,
∗
Mϕ

q ]θ = M̃ϕθ

q/θ ⊆
∗
Mϕθ

q/θ.

Since lim
k→∞

hk(θ) = f in L∞ +Mϕ
q , we have f ∈

∗
Mϕθ

q/θ

L∞+Mϕ
q

∩Mϕθ

q/θ. By virtue

of Lemma 4.4.3, we conclude that χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ, for every 0 < a < b < ∞.
Hence,

[L∞,
∗
Mϕ

q ]θ ⊆
⋂

0<a<b<∞

{f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ}. (4.34)

As a consequence of (4.33) and (4.34), we have Theorem 4.4.4 (iii).

Finally, we also consider the complex interpolation between L̃∞ and closed

subspaces of Morrey spaces. Recall that L̃∞ denotes the closure of L∞c in L∞.

Theorem 4.4.5. [30] Let 1 ≤ q <∞ and ϕ ∈ Gq. Then we have

(i) [L̃∞,Mϕ
q ]θ = M̃ϕθ

q/θ,

(ii) ⋂
0<a<b<∞

{f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈ L̃∞}

⊆ [L̃∞,Mϕ
q ]θ

⊆
⋂

0<a<b<∞

{f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ}

(iii) If inf ϕ > 0, then

[L̃∞,Mϕ
q ]θ =

⋂
0<a<b<∞

{f ∈Mϕθ

q/θ : χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ}. (4.35)

(iv) [L̃∞,M̃ϕ
q ]θ = [L̃∞,

∗
Mϕ

q ]θ = M̃ϕθ

q/θ.

Remark 4.4.6. In (ii), we only prove an inclusion relation for [L̃∞,Mϕ
q ]θ. The

complete description of this space is an open problem for the future research.
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Proof of Theorem 4.4.5. Let f ∈ M̃ϕθ

q/θ. Since L∞c ⊆ L̃∞, we have

f ∈ L̃∞ ∩Mϕ
q

Mϕθ

q/θ

.

Therefore, there exists a sequence {fj}∞j=1 ⊆ L̃∞ ∩Mϕ
q such that

‖f − fj‖Mϕθ

q/θ

≤ 1

j
. (4.36)

By using a similar argument as in the proof of Lemma 4.4.1, we have

‖fj‖[L̃∞,Mϕ
q ]θ ∼ ‖fj‖Mϕθ

q/θ

.

Therefore, for every j, k ∈ N with j > k, we have

‖fj − fk‖[L̃∞,Mϕ
q ]θ ∼ ‖fj − fk‖Mϕθ

q/θ

≤ 1

j
+

1

k
<

2

k
,

so {fj}∞j=1 is a Cauchy sequence in [L̃∞,Mϕ
q ]θ. By completeness of [L̃∞,Mϕ

q ]θ,

there exists g ∈ [L̃∞,Mϕ
q ]θ such that

lim
j→∞
‖fj − g‖[L∞,M̃ϕ

q ]θ
= 0. (4.37)

Combining Mϕθ

q/θ ⊆ L∞ +Mϕ
q , [L∞,Mϕ

q ]θ ⊆ L∞ +Mϕ
q , (4.36), and (4.37),

we get f = g ∈ L̃∞ ∩Mϕ
q

[L̃∞,Mϕ
q ]θ

. As a consequence of (2.4), we have f ∈
[L̃∞,Mϕ

q ]θ.

Conversely, let f ∈ [L̃∞,Mϕ
q ]θ and choose F ∈ F(L̃∞,Mϕ

q ) such that f =

F (θ). Since F (it) ∈ L̃∞, we have

lim
R→∞

‖χRn\B(0,R)F (it)‖L∞ = 0. (4.38)

By Lemma 2.1.6, we have

‖χRn\B(0,R)f‖Mϕθ

q/θ

≤
(

1

1− θ

∫
R
‖χRn\B(0,R)F (it)‖L∞P0(θ, t) dt

)1−θ

× ‖F‖F(L̃∞,Mϕ
q ). (4.39)

By virtue of the dominated convergence theorem, (4.38), and (4.39), we have

lim
R→∞

‖χRn\B(0,R)f‖Mϕθ

q/θ

= 0,
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so f ∈
∗
Mϕθ

q/θ. Since [L̃∞,Mϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ = L∞ ∩Mϕ
q
Mϕθ

q/θ ⊆ L∞ ∩Mϕθ

q/θ

Mϕθ

q/θ

,

we have

f ∈Mϕθ

q/θ ∩
∗
Mϕθ

q/θ = M̃ϕθ

q/θ,

as desired.

The proof of (ii) goes as follows. Let f ∈ Mϕθ

q/θ be such that χ{a≤|f |≤b} ∈ L̃∞

for every 0 < a < b <∞. For each z ∈ S, define

F (z) := sgn(f)|f |z/θ and G(z) :=

∫ z

θ

F (w) dw.

Since G ∈ G(L∞,Mϕ
q ), we shall show that G0(z) := χ{|f |≤1}G(z) ∈ L̃∞ for every

z ∈ S and G(it)−G(0) ∈ L̃∞ for every t ∈ R. For each N ∈ N, we have

|G0(z)χ{|f |> 1
N
}| ≤ (1 + |z|)χ{ 1

N
<|f |≤1},

so G0(z)χ{|f |> 1
N
} ∈ L̃∞. Meanwhile,

∥∥G0(z)−G0(z)χ{|f |>1/N}
∥∥
L∞

=

∥∥∥∥θ sgn(f)|f |z/θ − sgn(f)|f |
log |f |

χ{1/N≤|f |≤1}

∥∥∥∥
L∞

≤ 2θ

logN
→ 0

as N →∞. Therefore, G0(z) ∈ L̃∞.

Next, for all N ∈ N and t ∈ R, we have

|G(it)−G(0)|χ{1/N≤|f |≤N} ≤ (1 + |t|)χ{1/N≤|f |≤N},

so (G(it)−G(0))χ{1/N≤|f |≤N} ∈ L̃∞. Since |F (it)| = 1 for every t ∈ R, we have

‖(G(it)−G(0))χRn\{1/N≤|f |≤N}‖L∞ =

∥∥∥∥θF (it)− F (0)

log |f |
χ{|f |<1/N}∪{|f |>N}

∥∥∥∥
L∞

≤ 2θ

logN
→ 0,

as N → ∞. Therefore, G(it) − G(0) ∈ L̃∞. In total, G ∈ G(L̃∞,Mϕ
q ). Since

f = G′(θ), we see that f ∈ [L̃∞,Mϕ
q ]θ.

Now, let f ∈ [L̃∞,Mϕ
q ]θ. Since [L∞,Mϕ

q ]θ = Mϕθ

q/θ, we have f ∈ Mϕθ

q/θ. Let

G ∈ G(L̃∞,Mϕ
q ) be such that f = G′(θ). For each k ∈ N and z ∈ S, define Hk(z)
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by (2.3). As a consequence of Lemma 2.2.4 and Theorem 4.4.5(i), we haveHk(θ) ∈

M̃ϕθ

q/θ. Since lim
k→∞

Hk(θ) = f in L∞ +Mϕ
q , we have f ∈

∗
Mϕθ

q/θ

L∞+Mϕ
q

∩Mϕθ

q/θ. By

virtue of Lemma 4.4.3, we conclude that χ{a≤|f |≤b} ∈
∗
Mϕθ

q/θ, as desired.

Finally, let us prove (iii) and (iv). Recall that, when inf ϕ > 0, we have

Mϕθ

q/θ ⊆ L∞; see [42, Proposition 3.3]. Therefore,
∗
Mϕθ

q/θ ⊆ L̃∞. Combining this

fact with Theorem 4.4.5 (ii), we get (4.35). From Theorem 4.4.5 (i), it follows

that [L̃∞,M̃ϕ
q ]θ ⊆ M̃ϕθ

q/θ. By the same argument as in the proof of Theorem 4.4.5

(i), we have

M̃ϕθ

q/θ ⊆ L̃∞ ∩ M̃ϕ
q

Mϕθ

q/θ ⊆ L̃∞ ∩ M̃ϕ
q

[L̃∞,M̃ϕ
q ]θ

= [L̃∞,M̃ϕ
q ]θ.

By combining [L̃∞,
∗
Mϕ

q ]θ ⊆ [L̃∞,Mϕ
q ]θ = M̃ϕθ

q/θ and M̃ϕθ

q/θ = [L̃∞,M̃ϕ
q ]θ ⊆

[L̃∞,
∗
Mϕ

q ]θ, we have [L̃∞,
∗
Mϕ

q ]θ = M̃ϕθ

q/θ.
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Chapter 5

Complex interpolation of local
block spaces

In this chapter, we discuss the first complex interpolation of local block spaces,
which are known to be a predual of local Morrey spaces. We prove that local
block spaces behave well under the first complex interpolation. To prove this
result, we show that the associate space of general local Morrey-type spaces can
be realized as certain block spaces.

5.1 Local Morrey-type spaces and local block spaces

Let 0 < p ≤ ∞ and 0 ≤ λ ≤ n
p
. The local Morrey space LMλ

p = LMλ
p(Rn) is

defined to be the set of all functions f ∈ Lploc(Rn) for which

‖f‖LMλ
p

:= sup
r>0

r−λ‖fχB(r)‖Lp <∞,

where B(r) denotes the open ball centered at the origin of radius r > 0. The
local Morrey spaces behaves well with respect to the real interpolation method as
shown in [6] and the references therein. Moreover, the results in [6] were general-
ized to general local Morrey-type spaces and Bu

w-spaces in [8, 43]. Interpolation
of Bu

w-spaces by complex method can be found in [29]. The definition of gen-
eral local Morrey-type spaces and general global Morrey-type spaces is given as
follows.

Definition 5.1.1. Let 1 < p, q ≤ ∞ and w be a non-negative measurable func-
tion on (0,∞). The general local Morrey-type space LMpq,w = LMpq,w(Rn) is
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defined to be the set of all measurable functions f on Rn for which

‖f‖LMpq,w :=
∥∥w(r)‖fχB(r)‖Lp

∥∥
Lq(0,∞)

<∞.

The global Morrey-type space GMpq,w = GMpq,w(Rn) is defined to be the set of
all measurable functions f on Rn such that

‖f‖GMpq,w := sup
x∈Rn
‖f(x+ ·)‖LMpq,w <∞.

Note that, if w(r) = 1, then LMp∞,w = GMp∞,w = Lp. We shall assume the
following condition on w so that LMpq,w contains non-zero function,

Definition 5.1.2. Let 1 < p, q ≤ ∞. We define

Ωq := {w : (0,∞)→ (0,∞) : ‖w‖Lq(t0,∞) <∞ for some t0 > 0}

and

Ωpq := {w : (0,∞)→ (0,∞) : ‖rn/pw(r)‖Lq(0,t) <∞ and ‖w‖Lq(t,∞) <∞}.

Remark 5.1.3. It is known in [7, Lemma 1] that w ∈ Ωq if and only if LMpq,w

is not equal to the set of all functions equivalent to zero function. In addition,
w ∈ Ωpq is a necessary and sufficient condition for GMpq,w to be non-trivial.

It was proved in [19](see Theorem 5.1.5 below) that the predual of LMpq,w̃ can
be characterized as the local block space LHp′q′,w where 1 < p <∞, 1 < q ≤ ∞,
1
p′

:= 1− 1
p
, 1
q′

:= 1− 1
q
, w̃(t) = t−1/qw(t), and w satisfies the following doubling

condition; there exists a constant C > 1 such that C−1w(r) ≤ w(s) ≤ Cw(r) for
every r, s satisfying r

s
∈ (1

2
, 2). Let us recall the definition of LHp′q′,w.

Definition 5.1.4. Let 1 < p < ∞, 1 < q ≤ ∞, w ∈ Ωq, and r ∈ (0,∞). We
define p′ := p

p−1
and q′ := q

q−1
. A measurable function A is called a (p′, w, r)-block

if supp (A) ⊆ B(r) and ‖A‖Lp′ ≤ w(r). We define

Ȧw(Lp
′
) := {{(Aj, 2j)}∞j=−∞ : Aj is a (p′, w, 2j)−block}.

The local block space LHp′q′,w is defined by

LHp′q′,w :=

{
∞∑

j=−∞

λjAj : {λj}∞j=−∞ ∈ `q
′

and {(Aj, 2j)}∞j=−∞ ∈ Ȧw(Lp
′
)

}
.

The norm on LHp′q′,w is defined by

‖f‖LHp′q′,w := inf

(
∞∑

j=−∞

|λj|q
′

)1/q′

, (5.1)

where the infimum is taken over all decompositions f =
∑∞

j=−∞ λjAj, {λj}∞j=−∞ ∈
`q
′
, and {(Aj, 2j)}∞j=−∞ ∈ Ȧw(Lp

′
).
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We now recall the result in [19] about a characterization of a predual of general
local Morrey type space as certain local block spaces.

Theorem 5.1.5. [19, Theorem 4.1] Let 1 < p < ∞, 1 < q ≤ ∞, and w ∈ Ωpq.
Assume that w satisfies the doubling condition. Define

w̃(t) :=

{
t−1/qw(t), q <∞,
w(t), q =∞.

Then (LHp′q′,w)∗ ≈ LMpq,w̃ in the following sense:

1. Let g ∈ LMpq,w̃. Then, for every f ∈ LHp′q′,w, we have fg ∈ L1 and the
mapping Lg defined by

Lg(f) :=

∫
Rn
f(x)g(x) dx

is a bounded linear functional on LHp′q′,w.

2. For every L ∈ (LHp′q′,w)∗, there exists g ∈ LMpq,w̃ such that

L = Lg and ‖L‖(LHp′q′,w)∗ ∼ ‖g‖LMpq,w̃
.

5.2 Some basic properties of local block spaces

A non-trivial member of the space LHp′q′,w is an Lp
′
-function supported on the

ball B of radius 2j for some j ∈ N.

Lemma 5.2.1. [31] Let 1 < p < ∞, 1 < q ≤ ∞, and w ∈ Ωq. If A ∈ Lp′ and
supp (A) ⊆ B(2j) for some j ∈ Z, then A ∈ LHp′q′,w and

‖A‖LHp′q′,w ≤
‖A‖Lp′
w(2j)

. (5.2)

Proof. If ‖A‖Lp′ = 0, then A = 0, so (5.2) is trivial. Hence, we may assume that

‖A‖Lp′ 6= 0. Define Ã := w(2j)A
‖A‖

Lp
′
. Since supp (Ã) ⊆ B(2j) and ‖Ã‖Lp′ = w(2j), we

see that Ã is a (p′, w, 2j)-block. Moreover, (5.2) follows from A =
‖A‖

Lp
′

w(2j)
Ã.

We prove the following basic properties of LHp′q′,w. The first one is the lattice
property of LHp′q′,w.
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Lemma 5.2.2. [31] Let 1 < p <∞, 1 < q ≤ ∞, and w ∈ Ωpq. If 0 ≤ f(x) ≤ g(x)
and g ∈ LHp′q′,w, then f ∈ LHp′q′,w and

‖f‖LHp′q′,w ≤ ‖g‖LHp′q′,w . (5.3)

Proof. Given ε > 0. Let g =
∑∞

j=−∞ λjAj where {(Aj, 2j)}∞j=−∞ ∈ Ȧw(Lp
′
) and

{λj}∞j=−∞ ∈ `q
′

satisfy(
∞∑

j=−∞

|λj|q
′

)1/q′

≤ (1 + ε)‖g‖LHp′q′,w . (5.4)

For each j ∈ Z, define Bj := χ{g 6=0}
f
g
Aj. Then, {(Bj, 2

j)}∞j=−∞ ∈ Ȧw(Lp
′
) and

f = χ{g 6=0}
f

g

∞∑
j=−∞

λjAj =
∞∑

j=−∞

λjBj.

Consequently, f ∈ LHp′q′,w. From (5.4), it follows that

‖f‖LHp′q′,w ≤ (1 + ε)‖g‖LHp′q′,w . (5.5)

By taking ε→ 0+, we get (5.3).

Lemma 5.2.3. Let 1 < p <∞, 1 < q ≤ ∞, and w ∈ Ωpq. If f ∈ LHp′q′,w, then
|f | ∈ LHp′q′,w with

‖|f |‖LHp′q′,w = ‖f‖LHp′q′,w . (5.6)

Proof. Let δ > 0. Then there exist {λj}∞j=−∞ ∈ `q
′
and {(Aj, 2j)}∞j=−∞ ∈ Ȧw(Lp

′
)

such that

f =
∞∑

j=−∞

λjAj and

(
∞∑

j=−∞

|λj|q
′

)1/q′

≤ (1 + δ)‖f‖LHp′q′,w .

Since |f | ≤
∑∞

j=−∞ |λj||Aj|, {|λj|}∞j=−∞ ∈ `q
′
, and {(|Aj|, 2j)}∞j=−∞ ∈ Ȧw(Lp

′
),

by Lemma 5.2.2, we have |f | ∈ LHp′q′,w and

‖|f |‖LHp′q′,w ≤

∥∥∥∥∥
∞∑

j=−∞

|λj||Aj|

∥∥∥∥∥
LHp′q′,w

≤

(
∞∑

j=−∞

|λj|q
′

)1/q′

≤ (1 + δ)‖f‖LHp′q′,w .

By letting δ → 0+, we get

‖|f |‖LHp′q′,w ≤ ‖f‖LHp′q′,w . (5.7)

54



Since |f | ∈ LHp′q′,w, for any ε > 0, we can find {αj}∞j=−∞ ∈ `q
′
and {(Bj, 2

j)}∞j=−∞ ∈
Ȧw(Lp

′
) such that

|f | =
∞∑
j=∞

αjBj and

(
∞∑

j=−∞

|αj|q
′

)1/q′

≤ (1 + ε)‖|f |‖LHp′q′,w .

It follows from f =
∑∞

j=−∞ αj(sgn(f)Bj) and {(sgn(f)Bj, 2
j)}∞j=−∞ ∈ Ȧw(Lp

′
)

that

‖f‖LHp′q′,w ≤

(
∞∑

j=−∞

|αj|q
′

)1/q′

≤ (1 + ε)‖|f |‖LHp′q′,w .

Since ε is arbitrary, we have

‖f‖LHp′q′,w ≤ ‖|f |‖LHp′q′,w . (5.8)

Thus, (5.6) follows from (5.7) and (5.8).

5.3 The Fatou property of local block spaces

Next, we prove the Fatou property of LHp′q′,w. Note that the Fatou property of
local block spaces is not trivial. In fact, our proof uses a quite delicate argument,
inspired by [34].

Proposition 5.3.1. [31] Let 1 < p < ∞, 1 < q ≤ ∞, and w ∈ Ωpq. For q = ∞
only, assume also that lim

t→∞
w(t) = 0. Suppose that {fk}∞k=1 ⊆ LHp′q′,w satisfies

0 ≤ fk(x) ≤ fk+1(x) for a.e. x ∈ Rn and for every k ∈ N. If

sup
k∈N
‖fk‖LHp′q′,w <∞,

then f := lim
k→∞

fk ∈ LHp′q′,w and

‖f‖LHp′q′,w = sup
k∈N
‖fk‖LHp′q′,w . (5.9)

Proof. Define M := sup
k∈N
‖fk‖LHp′q′,w and let ε > 0. Then, for every k ∈ N, there

exist {λj,k}∞j=−∞ ∈ `q
′

and {(Aj,k, 2j)}∞j=∞ ∈ Ȧw(Lp
′
) such that

fk =
∞∑

j=−∞

λj,kAj,k and

(
∞∑

j=−∞

|λj,k|q
′

)1/q′

≤ (1 + ε)‖fk‖LHp′q′,w .
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Therefore, for each j ∈ Z and k ∈ N, we have

|λj,k| ≤ (1 + ε)M

and

‖Aj,k‖Lp′ ≤ w(2j). (5.10)

Consequently, there exist {λj,k`}∞`=1 ⊆ {λj,k}∞k=1, {Aj,k`}∞`=1 ⊆ {Aj,k}∞k=1, λj ∈ C,
and Aj ∈ Lp

′
such that lim

`→∞
λj,k` = λj and

lim
`→∞

∫
Rn
Aj,k`(x)h(x) dx =

∫
Rn
Aj(x)h(x) dx (5.11)

for every h ∈ Lp. Moreover,

‖{λj}j∈Z‖`q′ =

(
∞∑

j=−∞

lim
`→∞
|λj,k`|q

′

) 1
q′

≤ lim inf
`→∞

(
∞∑

j=−∞

|λj,k`|q
′

) 1
q′

≤ (1 + ε)M,

(5.12)

supp (Aj) ⊆ B(2j), and

‖Aj‖Lp′ = sup
‖g̃‖Lp≤1

lim
`→∞

∫
Rn
Aj,k`(y)g̃(y) dy ≤ lim sup

`→∞
‖Aj,k`‖Lp′ ≤ w(2j). (5.13)

Define g :=
∑∞

j=−∞ λjAj. From (5.12) and (5.13), it follows that g ∈ LHp′q′,w.
Therefore, if we can prove that

f(x) = g(x) a.e. x ∈ Rn, (5.14)

then f ∈ LHp′q′,w. The proof of (5.14) goes as follows. Let x ∈ Rn \ {0}. Once
we can show that

1

|B(x, r)|

∫
B(x,r)

g(y) dy =
1

|B(x, r)|

∫
B(x,r)

f(y) dy (5.15)

for all balls B(x, r) which satisfy 0 /∈ B(x, 2r), we have (5.14), by virtue of the
Lebesgue differentiation theorem. By substituting h(y) := χB(x,r)(y) to (5.11)
and using the fact that B(x, r) ∩B(2j) = ∅ for every j < log2 r, we have∫

B(x,r)

g(y) dy =

∫
B(x,r)

∞∑
j=−∞

λjAj(y) dy =

∫
B(x,r)

∑
j∈Z,j≥log2 r

λjAj(y) dy.
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As a consequence of (5.12) and (5.13), we have∫
B(x,r)

∑
j∈Z,j≥log2 r

|λjAj(y)| dy ≤ |B(x, r)|
1
p

∑
j∈Z,j≥log2 r

‖λjAj‖Lp′

≤ |B(x, r)|
1
p

(
∞∑

j=−∞

|λj|q
′

) 1
q′
 ∑
j∈Z,j≥log2 r

‖Aj‖qLp′

 1
q

≤ |B(x, r)|
1
p (1 + ε)M

 ∑
j∈Z,j≥log2 r

w(2j)q

 1
q

,

so, by using the doubling condition and w ∈ Ωpq, we get

∫
B(x,r)

∑
j∈Z,j≥log2 r

|λjAj(y)| dy . |B(x, r)|
1
p (1 + ε)M

 ∑
j∈Z,j≥log2 r

∫ 2j+1

2j

w(t)q

t
dt

 1
q

≤ |B(x, r)|
1
p (1 + ε)M

r
1
q

(∫ ∞
r

w(t)q dt

) 1
q

<∞.

Consequently, by virtue of the dominated convergence theorem, we have∫
B(x,r)

g(y) dy =
∑

j∈Z,j≥log2 r

∫
B(x,r)

λjAj(y) dy.

Therefore, once we prove that∑
j∈Z:j≥log2 r

λj

∫
B(x,r)

Aj(y) dy = lim
`→∞

∑
j∈Z:j≥log2 r

λj,k`

∫
B(x,r)

Aj,k`(y) dy, (5.16)

we have ∫
B(x,r)

g(y) dy = lim
`→∞

∑
j∈Z:j≥log2 r

∫
B(x,r)

λj,k`Aj,k`(y) dy

= lim
`→∞

∫
B(x,r)

∞∑
j=−∞

λj,k`Aj,k`(y) dy

= lim
`→∞

∫
B(x,r)

fk`(y) dy =

∫
B(x,r)

f(y) dy,

so we arrive at (5.15). Hence, we only need to verify (5.16).

Now, assume that q < ∞. Since
∫∞

1
w(t)q

t
dt ≤

∫∞
1
w(t)q dt < ∞, for every

δ > 0, there exists J ∈ N ∩ (log2 r,∞) such that(∫ ∞
2J−1

w(t)q

t
dt

)1/q

< δ. (5.17)
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Therefore, for every ` ∈ N, we have∣∣∣∣∣∣
∑

j∈Z:j≥log2 r

∫
B(x,r)

λjAj(y) dy −
∑

j∈Z:j≥log2 r

∫
B(x,r)

λj,k`Aj,k`(y) dy

∣∣∣∣∣∣
≤

∑
j∈Z:j≥J

∫
B(x,r)

|λjAj(y)| dy +
∑

j∈Z:j≥J

∫
B(x,r)

|λj,k`Aj,k`(y)| dy

+
∑

j∈Z:log2 r≤j≤J

∣∣∣∣λj ∫
B(x,r)

Aj(y) dy − λj,k`
∫
B(x,r)

Aj,k`(y) dy

∣∣∣∣ . (5.18)

Let I1, I2, and I3 be the first, second, and third term in the right-hand side of
(5.18), respectively. By using Hölder inequality and (5.17), we have

I1 ≤

(
∞∑

j=−∞

|λj|q
′

)1/q′ ( ∞∑
j=J

(∫
B(x,r)

|Aj(y)| dy
)q)1/q

≤ (1 + ε)M

(
∞∑
j=J

(‖Aj‖Lp′ |B(x, r)|1/p)q
)1/q

≤ (1 + ε)M |B(x, r)|1/p
(
∞∑
j=J

w(2j)q

)1/q

≤ (1 + ε)M |B(x, r)|1/p
(∫ ∞

2J−1

w(t)q

t
dt

)1/q

≤ (1 + ε)M |B(x, r)|1/pδ. (5.19)

Likewise,

I2 ≤ (1 + ε)M |B(x, r)|1/pδ. (5.20)

Meanwhile, from lim
`→∞

λj,k` = λj and (5.11), it follows that

lim
`→∞

I3 =
∑

j∈Z:log2 r≤j≤J

lim
`→∞

∣∣∣∣λj ∫
B(x,r)

Aj(y) dy − λj,k`
∫
B(x,r)

Aj,k`(y) dy

∣∣∣∣ = 0.

(5.21)

By combining (5.18)-(5.21), we obtain

lim sup
`→∞

∣∣∣∣∣∣
∑

j∈Z:j≥log2 r

∫
B(x,r)

λjAj(y) dy −
∑

j∈Z:j≥log2 r

∫
B(x,r)

λj,k`Aj,k`(y) dy

∣∣∣∣∣∣
≤ 2(1 + ε)M |B(x, r)|1/pδ. (5.22)

so by taking δ → 0+, we get (5.16) when q <∞.
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Now, we consider the case q = ∞. Since lim
t→∞

w(t) = 0, for each δ > 0, there

exists K ∈ N ∩ (log2 r,∞) such that

w(2K) < δ.

For every ` ∈ N, we have∣∣∣∣∣∣
∑

j∈Z:j≥log2 r

∫
B(x,r)

λjAj(y) dy −
∑

j∈Z:j≥log2 r

∫
B(x,r)

λj,k`Aj,k`(y) dy

∣∣∣∣∣∣ ≤ I4 + I5 + I6

(5.23)

where

I4 :=
∞∑
j=K

|λj|
∫
B(x,r)

|Aj(y)| dy, I5 :=
∞∑
j=K

|λj,k` |
∫
B(x,r)

|Aj,k`(y)| dy,

and

I6 :=

∣∣∣∣∣∣
∑

j∈Z:log2 r≤j<K

λj

∫
B(x,r)

Aj(y) dy −
∑

j∈Z:log2 r≤j<K

λj,k`

∫
B(x,r)

Aj,k`(y) dy

∣∣∣∣∣∣ .
By Hölder’s inequality, we get

I4 ≤
∞∑
j=K

|λj|‖Aj‖Lp′ |B(x, r)|1/p

≤ |B(x, r)|1/p
∞∑
j=K

|λj|w(2j)

≤ |B(x, r)|1/pw(2K)
∞∑

j=−∞

|λj| ≤ |B(x, r)|1/p(1 + ε)Mδ. (5.24)

Similarly,

I5 ≤ |B(x, r)|1/p(1 + ε)Mδ. (5.25)

From lim
`→∞

λj,k` = λj and (5.11), it follows that lim
`→∞

I6 = 0. We combine this and

(5.23)–(5.25) to obtain

lim sup
`→∞

∣∣∣∣∣∣
∑

j∈Z:j≥log2 r

∫
B(x,r)

λjAj(y) dy −
∑

j∈Z:j≥log2 r

∫
B(x,r)

λj,k`Aj,k`(y) dy

∣∣∣∣∣∣
≤ 2|B(x, r)|1/p(1 + ε)Mδ.

Therefore, by taking δ → 0+, we have (5.16) for q =∞.
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Finally, we prove (5.9). From f =
∑∞

j=−∞ λjAj and (5.12), it follows that

‖f‖LHp′q′,w ≤ (1 + ε)M.

Since ε is arbitrary, we have

‖f‖LHp′q′,w ≤M. (5.26)

On the other hand, by virtue of Lemma 5.2.2 and 0 ≤ fk(x) ≤ f(x) for all k ∈ N,
we have

‖fk‖LHp′q′,w ≤ ‖f‖LHp′q′,w ,

and hence

M ≤ ‖f‖LHp′q′,w . (5.27)

Thus, (5.9) follows from (5.26) and (5.27).

5.4 A characterization of the associate space of local Morrey-
type spaces

In this section we prove that the associate space of general local Morrey-type
spaces can be realized as certain block spaces. First, we recall the definition of
the associate space (see [2, Chapter 1]).

Definition 5.4.1. Let X be a Banach space of measurable functions on Rn. The
associate space of X, denoted by X ′, is defined to be the set of all measurable
functions f on Rn for which

‖f‖X′ := sup
‖g‖X≤1

∫
Rn
|f(x)g(x)| dx

is finite.

We remark that a different characterization of the associate space of local
Morrey type space can be seen in [17, Theorem 4.3].

Proposition 5.4.2. [31] Let 1 < p < ∞ and 1 < q ≤ ∞. Assume that w ∈ Ωpq

satisfies the doubling condition. If q = ∞, assume also that lim
t→∞

w(t) = 0. For

every t > 0, define w̃(t) :=

{
t−1/qw(t), q <∞,
w(t), q =∞.

Then (LMpq,w̃)′ = LHp′q′,w.
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Proof. Let f ∈ LHp′q′,w. By virtue of Theorem 5.1.5, for every g ∈ LMpq,w̃ with
‖g‖LMpq,w̃

≤ 1, we have∫
Rn
|f(x)g(x)| dx =

∫
Rn

f(x)

sgn(f(x))
|g(x)| dx

. ‖g‖LMpq,w̃
‖f‖LHp′q′,w ≤ ‖f‖LHp′q′,w <∞.

Therefore, f ∈ (LMpq,w̃)′. Hence, LHp′q′,w ⊆ (LMpq,w̃)′.

Let f ∈ (LMpq,w̃)′ of norm 1. Then

sup
‖g‖LMpq,w̃

≤1

∫
Rn
|f(x)g(x)| dx = 1. (5.28)

Without loss of generality, we may assume that f ≥ 0. For each k ∈ N, define

gk(x) := 2kχB(2k)(x) and fk(x) := min(f(x), gk(x)).

Since supp (gk) = B(2k) and gk ∈ Lp
′
, by virtue of Lemma 5.2.1, we have gk ∈

LHp′q′,w. From 0 ≤ fk(x) ≤ gk(x) and Lemma 5.2.2, it follows that fk ∈ LHp′q′,w.
By virtue of the Hahn-Banach theorem, there exists L ∈ (LHp′q′,w)∗ such that
‖L‖(LHp′q′,w)∗ = 1 and

‖fk‖LHp′q′,w = |L(fk)|. (5.29)

According to Theorem 5.1.5, there exist h ∈ LMpq,w̃ such that ‖h‖LMpq,w̃
∼ 1

and L = Lh. Consequently, by combining (5.28) and (5.29), we get

‖fk‖LHp′q′,w = |Lh(fk)| ≤
∫
Rn
fk(x)|h(x)| dx ≤ ‖h‖LMpq,w̃

∼ 1,

so, sup
k∈N
‖fk‖LHp′q′,w . 1. Since {fk}∞k=1 is increasing and lim

k→∞
fk(x) = f(x), by

virtue of Proposition 5.3.1, we have f ∈ LHp′q′,w and

‖f‖LHp′q′,w . 1.

Hence, (LMpq,w)′ ⊆ LHp′q′,w. This completes the proof.

We shall use the following corollary.

Corollary 5.4.3. [31] Let 1 < p0, p1 < ∞, 1 < q0, q1 ≤ ∞, w0 ∈ Ωp0q0, and
w1 ∈ Ωp1q1. Assume that w0 and w1 satisfy the doubling condition. If q0 = ∞
and q1 =∞, assume also that lim

t→∞
w0(t) = 0 and lim

t→∞
w1(t) = 0. Define

w̃0(t) :=

{
t−1/q0w0(t), q0 <∞,
w0(t), q0 =∞,

and w̃1(t) :=

{
t−1/q1w1(t), q1 <∞,
w1(t), q1 =∞.
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If f ∈ LHp′0q
′
0,w0

+ LHp′1q
′
1,w1

and g ∈ LMp0q0,w̃0 ∩ LMp1q1,w̃1, then fg ∈ L1 and∫
Rn
|f(x)g(x)| dx . ‖f‖LHp′0q′0,w0

+LHp′1q
′
1,w1
‖g‖LMp0q0,w̃0

∩LMp1q1,w̃1
. (5.30)

Proof. Let f0 ∈ LHp′0q
′
0,w0

and f1 ∈ LHp′1q
′
1,w1

be such that f = f0 + f1 and

‖f0‖LHp′0q′0,w0
+ ‖f1‖LHp′1q′1,w1

. ‖f‖LHp′0q′0,w0
+LHp′1q

′
1,w1

. (5.31)

Then, by virtue of Proposition 5.4.2, we have∫
Rn
|f(x)g(x)| dx ≤

∫
Rn
|f0(x)g(x)| dx+

∫
Rn
|f1(x)g(x)| dx

≤ ‖f0‖(LMp0q0,w̃0 )′‖g‖LMp0q0,w̃0 + ‖f1‖(LMp1q1,w̃1 )′‖g‖LMp1q1,w̃1

. (‖f0‖LHp′0q′0,w0
+ ‖f1‖LHp′1q′1,w1

)‖g‖LMp0q0,w̃0
∩LMp1q1,w̃1

.

(5.32)

Thus, (5.30) follows from (5.31) and (5.32).

5.5 Interpolation of local block spaces

Our main results are given in the following theorems.

Theorem 5.5.1. [31] Let θ ∈ (0, 1), 1 < p0, p1 < ∞, w0 ∈ Ωp0∞, and w1 ∈
Ωp1∞. Assume that w0 and w1 satisfy the doubling condition, lim

t→∞
w0(t) = 0, and

lim
t→∞

w1(t) = 0. In addition, assume that w0(t)p0 = w1(t)p1. Define

1

p
:=

1− θ
p0

+
θ

p1

and w := w1−θ
0 wθ1.

Then
[LHp′01,w0

, LHp′11,w1
]θ = LHp′1,w.

Theorem 5.5.2. [31] Let θ ∈ (0, 1), 1 < p0, p1 <∞, 1 < q0, q1 <∞, w0 ∈ Ωp0q0,
and w1 ∈ Ωp1q1. Assume that w0 and w1 satisfy the doubling condition. In
addition, assume that p0

q0
= p1

q1
and w0(t)q0 = w1(t)q1. Define

1

p
:=

1− θ
p0

+
θ

p1

,
1

q
:=

1− θ
q0

+
θ

q1

, and w := w1−θ
0 wθ1.

Then
[LHp′0q

′
0,w0

, LHp′1q
′
1,w1

]θ = LHp′q′,w.
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First we give the proof of Theorem 5.5.1.

Proof of Theorem 5.5.1. Without loss of generality, we may assume that p0 > p1.
Since lim

t→∞
w0(t) = lim

t→∞
w1(t) = 0, we have lim

t→∞
w(t) = 0.

Let f ∈ [LHp′01,w0
, LHp′11,w1

]θ. We shall show that f ∈ LHp′1,w. According to
Proposition 5.4.2, it suffices to show that

sup
‖g‖LMp∞,w≤1

∫
Rn
|f(x)g(x)| dx . ‖f‖[LHp′01,w0

,LHp′11,w1
]θ . (5.33)

Choose F ∈ F(LHp′01,w0
, LHp′11,w1

) such that f = F (θ, ·) and

‖F‖F(LHp′01,w0
,LHp′11,w1

) . ‖f‖[LHp′01,w0
,LHp′11,w1

]θ . (5.34)

Let g ∈ LMp∞,w with ‖g‖LMp∞,w ≤ 1 and M := supz∈S ‖F (z, ·)‖LHp′01,w0
+LHp′11,w1

.

For k ∈ N and z ∈ S, define

Hk(z, x) := χ{f 6=0}(x)
|f(x)|
f(x)

|g(x)|p
(

1−z
p0

+ z
p1

)
χ{ 1

k
≤|g|≤k}(x) (x ∈ Rn)

and

φk(z) :=

∫
Rn
F (z, x)Hk(z, x) dx. (5.35)

Since

φk(θ) =

∫
Rn
f(x)Hk(θ, x) dx =

∫
Rn
|f(x)g(x)|χ{ 1

k
≤|g|≤k}(x) dx.

we have ∫
Rn
|f(x)g(x)| dx = lim

k→∞
φk(θ).

Hence, in order to obtain (5.33), we only need to prove that

φk(θ) . ‖f‖[LHp′01,w0
,LHp′11,w1

]θ , (5.36)

for all k ∈ N.

We now prove (5.36). For every z ∈ S, we have

|Hk(z, x)| ≤ |g(x)|
p
p0 |g(x)|

(
p
p1
− p
p0

)
Re(z)

χ{ 1
k
≤|g|≤k}(x) ≤ k

p
p1
− p
p0 |g(x)|

p
p0 (5.37)
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and

|Hk(z, x)| ≤ |g(x)|
p
p1 |g(x)|−

(
p
p1
− p
p0

)
(1−Re(z))

χ{ 1
k
≤|g|≤k}(x) ≤ k

p
p1
− p
p0 |g(x)|

p
p1 .

(5.38)

Note that, our assumptions imply w0(r)p0 = w1(r)p1 = w(r)p. Therefore,∥∥∥|g| pp0 ∥∥∥
LMp0∞,w0

= sup
r>0

w(r)
p
p0 ‖g‖

p
p0

Lp(B(r)) = ‖g‖
p
p0
LMp∞,w

≤ 1 (5.39)

and ∥∥∥|g| pp1 ∥∥∥
LMp1∞,w1

= sup
r>0

w(r)
p
p1 ‖g‖

p
p1

Lp(B(r)) = ‖g‖
p
p1
LMp∞,w

≤ 1. (5.40)

By combining (5.37)-(5.40), we have Hk(z) ∈ LMp0∞,w0 ∩ LMp1∞,w1 with

‖Hk(z, ·)‖LMp0∞,w0∩LMp1∞,w1
≤ k

p
p1
− p
p0 . (5.41)

It folllows from the last inequality and Corollary 5.4.3, that

|φk(z)| . k
p
p1
− p
p0 ‖F (z, ·)‖LHp′01,w0

+LHp′11,w1
. (5.42)

Therefore,

sup
z∈S
|φk(z)| . k

p
p1
− p
p0M <∞. (5.43)

Next we estimate |φk(z)| on the boundary of S. Let t ∈ R. As a consequence of

(5.39) and |Hk(it, x)| ≤ |g(x)|
p
p0 , we have

‖Hk(it, ·)‖LMp0∞,w0
≤ 1.

From the last inequality and Proposition 5.4.2, it follows that

|φk(it)| ≤
∫
Rn
|F (it, x)Hk(it, x)| dx

≤ ‖F (it, ·)‖(LMp0∞,w0 )′ . ‖F (it, ·)‖LHp′01,w0
≤ ‖F‖F(LHp′01,w0

,LHp′11,w1
).

(5.44)

By a similar argument, we also have

|φk(1 + it)| . ‖F‖F(LHp′01,w0
,LHp′11,w1

). (5.45)

In view of Lemma 5.6.1 and (5.43), we may use the three-lines lemma together
with (5.34), (5.44), and (5.45) to obtain

φk(θ) ≤
(

sup
t∈R
|φk(it)|

)1−θ (
sup
t∈R
|φk(1 + it)|

)θ
≤ ‖F‖F(LHp′01,w0

,LHp′11,w1
) . ‖f‖[LHp′01,w0

,LHp′11,w1
]θ .
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Thus, the proof of [LHp′01,w0
, LHp′11,w1

]θ ⊆ LHp′1,w is complete.

Conversely, we shall show that LHp′1,w ⊆ [LHp′01,w0
, LHp′11,w1

]θ. Let f ∈
LHp′1,w. Then, there exist {λj}∞j=−∞ ∈ `1 and {(Aj, 2j)}∞j=−∞ ∈ Ȧw(Lp

′
) such

that

f =
∞∑

j=−∞

λjAj and
∞∑

j=−∞

|λj| . ‖f‖LHp′1,w . (5.46)

For every J ∈ N and z ∈ S, define

FJ(z, ·) :=
J∑

j=−J

λj
w0(2j)1−zw1(2j)z

w(2j)
p′
(

1−z
p′0

+ z
p′1

) sgn(Aj(·))|Aj(·)|
p′
(

1−z
p′0

+ z
p′1

)
. (5.47)

We claim that

FJ(θ, ·) ∈ [LHp′01,w0
, LHp′11,w1

]θ (5.48)

and

lim
J,K→∞
J>K

‖FJ(θ, ·)− FK(θ, ·)‖[LHp′01,w0
,LHp′11,w1

]θ = 0. (5.49)

The proof of (5.48) and (5.49) will be given in Section 5.1. As a consequence of
(5.49), there exists g ∈ [LHp′01,w0

, LHp′11,w1
]θ such that

lim
J→∞

‖FJ(θ, ·)− g‖[LHp′01,w0
,LHp′11,w1

]θ = 0. (5.50)

From (5.50) and [LHp′01,w0
, LHp′11,w1

]θ ⊆ LHp′1,w, it follows that

lim
J→∞

‖FJ(θ, ·)− g‖LHp′1,w = 0. (5.51)

Since f − FJ(θ, ·) =
∑

j∈Z,|j|>J λjAj(·), we have

‖f − FJ(θ, ·)‖LHp′1,w ≤
∑

j∈Z,|j|>J

|λj| → 0.

Therefore,

lim
J→∞

‖f − FJ(θ, ·)‖LHp′1,w = 0. (5.52)

Combining (5.51) and (5.52), we have f = g. Hence, f ∈ [LHp′01,w0
, LHp′11,w1

]θ.

We now prove Theorem 5.5.2.
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Proof of Theorem 5.5.2. Without loss of generality, assume that p0 > p1. First,
we prove that

[LHp′0q
′
0,w0

, LHp′1q
′
1,w1

]θ ⊆ LHp′q′,w. (5.53)

Let f ∈ [LHp′0q0,w0
, LHp′1q

′
1,w1

]θ. We shall show that f ∈ LHp′q′,w. Let w̃(t) :=

t−
1
qw(t). By Proposition 5.4.2, we only need to show that

sup
‖g‖LMpq,w̃

≤1

∫
Rn
|f(x)g(x)| dx . ‖f‖[LHp′0q

′
0,w0

,LHp′1q
′
1,w1

]θ . (5.54)

Let g ∈ LMpq,w̃ with ‖g‖LMpq,w̃
≤ 1. By the definition of [LHp′0q

′
0,w0

, LHp′1q
′
1,w1

]θ,
there exists F ∈ F(LHp′0q

′
0,w0

, LHp′1q
′
1,w1

) such that f = F (θ, ·) and that

‖F‖F(LHp′0q
′
0,w0

,LHp′1q
′
1,w1

) . ‖f‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ . (5.55)

For k ∈ N and z ∈ S, define

Hk(z, x) := χ{f 6=0}(x)
|f(x)|
f(x)

|g(x)|p
(

1−z
p0

+ z
p1

)
χ{ 1

k
≤|g|≤k}(x)

and

φk(z) :=

∫
Rn
F (z, x)Hk(z, x) dx.

Since

lim
k→∞

φk(θ) = lim
k→∞

∫
Rn
f(x)Hk(θ, x) dx

= lim
k→∞

∫
Rn
|f(x)g(x)|χ{ 1

k
≤|g|≤k}(x) dx =

∫
Rn
|f(x)g(x)| dx,

the inequality (5.54) can be obtained if we can show that

φk(θ) . ‖f‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ , (5.56)

for all k ∈ N.

The proof of (5.56) goes as follows. Let z ∈ S. Let w̃0(t) := t
− 1
q0w0(t)

and w̃1(t) := t
− 1
q1w1(t). From w0(t)q0 = w1(t)q1 , w(t) = w0(t)1−θw1(t)θ, and

1
q

= 1−θ
q0

+ θ
q0

, it follows that

w0(t)q0 = w1(t)q1 = w(t)q,

which yields
w̃0(t)q0 = w̃1(t)q1 = w̃(t)q.
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By using this identity, for every j ∈ {0, 1}, we have∥∥∥|g| ppj ∥∥∥
LMpjqj ,w̃j

=

∥∥∥∥w̃(r)
q
qj

∥∥∥|g| ppj χB(r)

∥∥∥
Lpj (B(r))

∥∥∥∥
Lqj (0,∞)

=
∥∥∥(w̃(r)‖gχB(r)‖Lp(B(r)))

p
pj

∥∥∥
Lqj (0,∞)

= ‖g‖
p
pj

LMpq,w̃
≤ 1, (5.57)

where we used p0
q0

= p1
q1

= p
q
. From inequalities (5.37), (5.38), and (5.57), it follows

that Hk(z, ·) ∈ LMp0q0,w0 ∩ LMp1q1,w1 and

‖Hk(z, ·)‖LMp0q0,w0∩LMp1q1,w1
≤ k

p
p0
− p
p1 . (5.58)

Therefore, by combining (5.30) and (5.58), we have

sup
z∈S
|φk(z)| . k

p
p1
− p
p0 sup

z∈S
‖F (z)‖LHp′01,w0

+LHp′11,w1
<∞. (5.59)

Next, we estimate |φk(j+it)| for every j ∈ {0, 1} and t ∈ R. Since |Hk(j+it, ·)| ≤
|g|p/pj , by virtue of (5.57), we have

‖Hk(j + it, ·)‖LMp0q0,w̃0
≤ 1. (5.60)

Consequently, by combining (5.55), (5.60), and Proposition 5.4.2, we see that

|φk(j + it)| ≤
∫
Rn
|F (j + it, x)Hk(j + it, x)| dx

≤ ‖F (j + it, ·)‖(LMp0q0,w̃0
)′

∼ ‖F (j + it, ·)‖LHp′0q′0,w0

≤ ‖F‖F(LHp′0q
′
0,w0

,LHp′1q
′
1,w1

) . ‖f‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ . (5.61)

By using an analogous argument as in the proof of Lemma 5.6.1, we have φk(z)
is continuous on S and holomorphic in S. Since (5.59) holds. we may use the
three-lines lemma and estimate (5.61) to obtain

φk(θ) . ‖f‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ ,

as desired. Thus, the proof of (5.53) is complete.

Now, suppose that f ∈ LHp′q′,w. We shall show that f ∈ [LHp′0q
′
0,w0

, LHp′1q
′
1,w1

]θ.
Write

f =
∞∑

j=−∞

λjAj (5.62)

67



for some {(Aj, 2j)}∞j=−∞ ∈ Ȧw(Lp
′
) and {λj}∞j=−∞ ∈ `q

′
satisfying(

∞∑
j=−∞

|λj|q
′

) 1
q′

. ‖f‖LHp′q′,w . (5.63)

For J ∈ N and z ∈ S, define

FJ(z, ·)

:=
J∑

j=−J

sgn(λj)|λj|
q′
(

1−z
q′0

+ z
q′1

)
w0(2j)1−zw1(2j)z

w(2j)
p′
(

1−z
p′0

+ z
p′1

) sgn(Aj(·))|Aj(·)|
p′
(

1−z
p′0

+ z
p′1

)
.

(5.64)

We claim that

FJ(θ, ·) ∈ [LHp′0q
′
0,w0

, LHp′1q
′
1,w1

]θ (5.65)

and

lim
J,K→∞
J>K

‖FJ(θ, ·)− FK(θ, ·)‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ = 0. (5.66)

We postpone the proof of (5.65) and (5.66) to Section 5.2. As a consequence of
(5.65) and (5.66), there exists g ∈ [LHp′0q

′
0,w0

, LHp′1q
′
1,w1

]θ such that

lim
J→∞

‖FJ(θ, ·)− g‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ = 0. (5.67)

By combining (5.67) and [LHp′0q
′
0,w0

, LHp′1q
′
1,w1

]θ ⊆ LHp′q′,w, we have

lim
J→∞

‖FJ(θ, ·)− g‖LHp′q′,w = 0. (5.68)

From f − FJ(θ, ·) =
∑

j∈Z,|j|>J
λjAj(·), (5.68), and {λj}∞j=−∞ ∈ `q

′
, it follows that

‖f − g‖LHp′q′,w ≤ ‖f − FJ(θ, ·)‖LHp′q′,w + ‖FJ(θ, ·)− g‖LHp′q′,w

≤

 ∑
j∈Z,|j|>J

|λj|q
′

 1
q′

+ ‖FJ(θ, ·)− g‖LHp′q′,w → 0

as J → ∞. Consequently, f = g. Hence, f ∈ [LHp′01,w0
, LHp′11,w1

]θ. Thus, the
proof of Theorem 5.5.2 is complete.

68



5.6 Some lemmas about the first complex interpolation
functor

In this section we provide the proof of continuity and holomorphicity of the
function φk(z) in Subsection 4.1. We also prove (5.48), (5.49), (5.65) and (5.66).

Lemma 5.6.1. [31] Let φk(z) be defined by (5.35). Then φk(z) is continuous on
S and holomorphic in S.

Proof. Let z1, z2 ∈ S, P := p
p1
− p

p0
and M := sup

z∈S
‖F (z, ·)‖LHp′01,w0

+LHp′11,w1
. By

combining (5.30) and (5.41) and

|Hk(z2, x)−Hk(z1, x)| ≤ |Hk(z1, x)|
(
|g(x)|P |z2−z1| − 1

)
≤ |Hk(z1, x)|

(
kP |z2−z1| − 1

)
,

we obtain

|φk(z2)− φk(z1)|

≤
∫
Rn
|F (z2, x)− F (z1, x)||Hk(z2, x)| dx

+

∫
Rn
|F (z1, x)(Hk(z2, x)−Hk(z1, x))| dx

≤ kP‖F (z2, ·)− F (z1, ·)‖LHp′01,w0
+LHp′11,w1

+ kPM
(
kP |z2−z1| − 1

)
. (5.69)

Hence, the continuity of φk(z) on S follows from (5.69) and the continuity of
F : S → LHp′01,w0

+ LMp′11,w1
.

Now, we prove the holomorphicity of φk(z). Let z ∈ S. Then there exists
F ′(z, ·) ∈ LHp′01,w0

+ LHp′11,w1
such that

lim
h→0
z+h∈S

∥∥∥∥F (z, ·)− F (z, ·)
h

− F ′(z, ·)
∥∥∥∥
LHp′01,w0

+LHp′11,w1

= 0. (5.70)

Define H ′k(z, ·) = P ·Hk(z, ·) log |g| and

φ′k(z) :=

∫
Rn

(F ′(z, x)Hk(z, x) + F (z, x)H ′k(z, x)) dx.

Let h ∈ C be such that z + h ∈ S. From (5.30), it follows that∣∣∣∣φk(z + h)− φk(z)

h
− φ′k(z)

∣∣∣∣ ≤ I1 + I2 + I3 (5.71)
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where

I1 := ‖Hk(z, ·)‖LMp0∞,w0∩LMp0∞,w0

×
∥∥∥∥F (z, ·)− F (z, ·)

h
− F ′(z, ·)

∥∥∥∥
LHp′01,w0

+LHp′11,w1

, (5.72)

I2 := ‖F (z + h, ·)‖LHp′01,w0
+LHp′11,w1

×
∥∥∥∥Hk(z + h, ·)−Hk(z, ·)

h
−H ′k(z, ·)

∥∥∥∥
LMp0∞,w0∩LMp1∞,w1

, (5.73)

and

I3 := ‖H ′k(z, ·)‖LMp0∞,w0∩LMp1∞,w1
‖F (z + h, ·)− F (z, ·)‖LHp′01,w0

+LHp′11,w1
.

(5.74)

Combining (5.41), (5.71)-(5.74), and∣∣∣∣Hk(z + h, x)−Hk(z, x)

h
−H ′k(z, x)

∣∣∣∣ ≤ |Hk(z, x)|
(
kP |h| − 1

)
P log k,

we get∣∣∣∣φk(z + h)− φk(z)

h
− φ′k(z)

∣∣∣∣
≤ kP

∥∥∥∥F (z, ·)− F (z, ·)
h

− F ′(z, ·)
∥∥∥∥
LHp′01,w0

+LHp′11,w1

+MCk,P (kP |h| − 1)

+ PkP (log k)‖F (z + h, ·)− F (z, ·)‖LHp′01,w0
+LHp′11,w1

. (5.75)

By virtue of continuity of F (z, ·) and (5.70), the right-hand side of (5.75) tends
to zero as h→ 0, so φ′k(z) is the derivative of φk(z). Thus, φk(z) is holomorphic.

Proof of (5.48) and (5.49)

In this subsection, we suppose that f is any function in LHp′1,w such that (5.46)
holds and FJ(z) is defined by (5.47). For each j ∈ [−J, J ] ∩ Z, we define

uj :=
w0(2j)−1w1(2j)

w(2j)
p′
p′1
− p′
p′0

|Aj|
p′
p′1
− p′
p′0 . (5.76)
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For each j ∈ [−J, J ] ∩ Z and z ∈ S, define

Gj(z, ·) :=
w0(2j)1−zw1(2j)z

w(2j)
p′
(

1−z
p′0

+ z
p′1

) sgn(Aj(·))|Aj(·)|
p′
(

1−z
p′0

+ z
p′1

)
, (5.77)

Gj,0(z, ·) := Gj(z, ·)χ{uj≤1}, and Gj,1(z, ·) := Gj(z, ·)−Gj,0(z, ·). (5.78)

We prove (5.48) by checking the conditions given in Definition 2.1.1. We shall
use the following calculation of the norm of some blocks.

Lemma 5.6.2. [31] Let k ∈ {0, 1}. Then, for each j ∈ Z ∩ [−J, J ]∥∥∥∥∥∥ wk(2
j)

w(2j)
p′
p′
k

|Aj|
p′
p′
k

∥∥∥∥∥∥
LHp′

k
1,wk

≤ 1. (5.79)

Proof. Inequality (5.79) follows from Lemma 5.2.1, ‖|Aj|p
′/p′k‖

L
p′
k

= ‖Aj‖
p′/p′k
Lp′

,

and ‖Aj‖Lp′ ≤ w(2j).

Lemma 5.6.3. [31] For every z ∈ S, we have FJ(z, ·) ∈ LHp′01,w0
+ LHp′11,w1

.
Moreover, sup

z∈S
‖FJ(z, ·)‖LHp′01,w0

+LHp′11,w1
<∞.

Proof. We decompose FJ(z, ·) = FJ,0(z, ·) + FJ,1(z, ·) where

FJ,0(z, ·) :=
J∑

j=−J

λjGj,0(z, ·) and FJ,1(z, ·) :=
J∑

j=−J

λjGj,1(z, ·). (5.80)

Combining Lemma 5.6.2 and

|Gj,0(z, ·)| = w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 u

Re(z)
j χ{uj≤1} ≤

w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 ,

we have

‖FJ,0(z, ·)‖LHp′01,w0
≤

J∑
j=−J

|λj|‖Gj,0‖LHp′01,w0
≤

J∑
j=−J

|λj| . ‖f‖LHp′1,w <∞.

Therefore, FJ,0(z, ·) ∈ LHp′01,w0
. Similarly, we also have FJ,1(z) ∈ LHp′11,w1

with

‖FJ,1(z, ·)‖LHp′11,w1
. ‖f‖LHp′1,w .
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Since FJ(z, ·) = FJ,1(z, ·) + FJ,2(z, ·), we have FJ(z) ∈ LHp′01,w0
+ LHp′11,w1

and

‖FJ(z, ·)‖LHp′01,w0
+LHp′11,w1

≤ ‖FJ,0(z, ·)‖LHp′01,w0
+ ‖FJ,1(z, ·)‖LHp′11,w1

. ‖f‖LHp′1,w . (5.81)

Thus, sup
z∈S
‖FJ(z, ·)‖LHp′01,w0

+LHp′11,w1
. ‖f‖LHp′1,w <∞.

Lemma 5.6.4. [31] The function FJ : S → LHp′01,w0
+ LHp′11,w1

is continuous.

Proof. Let z ∈ S. We shall show that

lim
h→0
z+h∈S

‖FJ(z + h, ·)− FJ(z, ·)‖LHp′01,w0
+LHp′11,w1

= 0. (5.82)

Let FJ,0 and FJ,1 be defined by (5.80). For every h ∈ C satisfying z + h ∈ C, we
have

‖FJ,0(z + h, ·)− FJ,0(z, ·)‖LHp′01,w0
≤

J∑
j=−J

|λj|‖Gj,0(z + h, ·)−Gj,0(z, ·)‖LHp′01,w0

≤
J∑

j=−J

|λj|
w0(2j)

‖Gj,0(z + h, ·)−Gj,0(z, ·)‖
Lp
′
0
.

Since

lim
h→0

(Gj,0(z + h, x)−Gj,0(z, x)) = Gj,0(z, x) lim
h→0

(uj(x)h − 1) = 0, x ∈ Rn,

we have

|Gj,0(z + h, ·)−Gj,0(z, ·)| ≤ w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0

(
u

Re(z)
j χ{uj≤1} + u

Re(z)
j χ{uj≤1}

)
≤ 2

w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 ,

and |Aj|
p′
p′0 ∈ Lp′0 , by virtue of the dominated convergence theorem, we have

lim
h→0
‖Gj,0(z + h, ·)−Gj,0(z, ·)‖

Lp
′
0

= 0.

Consequently,

lim
h→0
‖FJ,0(z + h, ·)− FJ,0(z, ·)‖LHp′01,w0

= 0. (5.83)
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By a similar argument, we also have

lim
h→0
‖FJ,1(z + h, ·)− FJ,1(z, ·)‖LHp′11,w0

= 0. (5.84)

Combining (5.83), (5.84), and

‖FJ(z + h, ·)− FJ(z, ·)‖LHp′01,w0
+LHp′11,w1

≤ ‖FJ,0(z + h, ·)− FJ,0(z, ·)‖LHp′01,w0

+ ‖FJ,1(z + h, ·)− FJ,1(z, ·)‖LHp′11,w1
,

we get (5.82).

Lemma 5.6.5. [31] The function FJ : S → LHp′01,w0
+ LHp′11,w1

is holomorphic.

Proof. Let ε ∈ (0, 1/2). It suffices to show that

F ′J(z) :=
J∑

j=−J

λjGj(z, ·) log(uj(·)) ∈ LHp′01,w0
+ LHp′11,w1

(5.85)

for every z ∈ S and

lim
h→0
z+h∈S

∥∥∥∥FJ(z + h)− FJ(z)

h
− FJ(z)

∥∥∥∥
LHp′01,w0

+LHp′11,w1

= 0 (5.86)

for every z ∈ Sε := {z̃ ∈ S : ε < Re(z̃) < 1− ε}. We define

F ′J,0(z, ·) :=
J∑

j=−J

λjGj,0(z, ·) log(uj(·)) and F ′J,1(z, ·) :=
J∑

j=−J

λjGj,1(z, ·) log(uj(·)).

(5.87)

Since

|Gj,0(z, ·) log(uj(·))| =
w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 uj(·)Re(z)| log(uj(·))|χ{uj≤1}

≤ w0(2j)

eRe(z)w(2j)
p′
p′0

|Aj(·)|
p′
p′0 ,

by virtue of Lemma 5.6.2, we have

‖F ′J,0(z, ·)‖LHp′01,w0
≤

J∑
j=−J

|λj|

∥∥∥∥∥∥ w0(2j)

eRe(z)w(2j)
p′
p′0

|Aj|p
′/p′0

∥∥∥∥∥∥
LHp′01,w0

≤ 1

eRe(z)

J∑
j=−J

|λj| . ‖f‖LHp′1,w <∞,
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so F ′J,0(z, ·) ∈ LHp′01,w0
. By a similar argument, we have F ′J,1(z, ·) ∈ LHp′11,w1

.
Since F ′J(z, ·) = F ′J,0(z, ·) + F ′J,1(z, ·), we conclude that F ′J(z, ·) ∈ LHp′01,w0

+
LHp′11,w1

.

Now, we prove (5.86). Let z ∈ Sε and h ∈ C be such that z + h ∈ S and
|h| < ε

2
. Since

|Gj,0(z)| = w0(2j)|Aj(·)|
p′
p′0

w(2j)
p′
p′0

uj(·)Re(z)χ{uj≤1} ≤
w0(2j)|Aj(·)|

p′
p′0

w(2j)
p′
p′0

χ{uj≤1},

we have∣∣∣∣Gj,0(z + h, ·)−Gj,0(z, ·)
h

−Gj,0(z, ·) log(uj(·))
∣∣∣∣

= |Gj,0(z, ·)|
∣∣∣∣uj(·)h − 1− h log(uj(·))

h

∣∣∣∣
≤ w0(2j)|Aj(·)|

p′
p′0

w(2j)
p′
p′0

uj(·)Re(z)χ{uj≤1}|h|(log(uj(·)))2

∞∑
k=2

|h log(uj(·))|k−2

k!

≤ w0(2j)|Aj(·)|
p′
p′0

w(2j)
p′
p′0

uj(·)εχ{uj≤1}|h|(log(uj(·)))2e−|h| log(uj(·)). (5.88)

Combining (5.88) and sup
0<t≤1

tε/2(log t)2 = 16
e2ε2

, we get

∣∣∣∣Gj,0(z + h, ·)−Gj,0(z, ·)
h

−Gj,0(z, ·) log(uj(·))
∣∣∣∣

≤ w0(2j)|Aj(·)|
p′
p′0

w(2j)
p′
p′0

uj(·)ε/2χ{uj≤1}|h|(log(uj(·)))2

≤ Cε|h|
w0(2j)|Aj(·)|

p′
p′0

w(2j)
p′
p′0

. (5.89)

Therefore,∥∥∥∥FJ,0(z + h, ·)− FJ,0(z, ·)
h

− F ′J,0(z, ·)
∥∥∥∥
LHp′01,w0

≤ Cε|h|
J∑

j=−J

|λj|

∥∥∥∥∥∥w0(2j)|Aj(·)|
p′
p′0

w(2j)
p′
p′0

∥∥∥∥∥∥
LHp′01,w0

≤ Cε|h|
J∑

j=−J

|λj|.
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Consequently,

lim
h→0

∥∥∥∥FJ,0(z + h, ·)− FJ,0(z, ·)
h

− F ′J,0(z, ·)
∥∥∥∥
LHp′01,w0

= 0. (5.90)

Likewise,

lim
h→0

∥∥∥∥FJ,1(z + h, ·)− FJ,1(z, ·)
h

− F ′J,1(z, ·)
∥∥∥∥
LHp′11,w1

= 0. (5.91)

Thus, (5.86) follows from (5.90) and (5.91).

Lemma 5.6.6. [31] For every k ∈ {0, 1}, the function t ∈ R 7→ FJ(k + it) ∈
LHp′k1,wk is bounded and continuous.

Proof. First, we shall show that

max
k=0,1

sup
t∈R
‖FJ(k + it)‖LHp′

k
1,wk

<∞. (5.92)

For each k ∈ {0, 1}, t ∈ R, and j ∈ [−J, J ] ∩ Z, we have

|Gj(k + it)| = wk(2
j)

w(2j)p
′/p′k
|uitj ||Aj|

p′
p′
k =

wk(2
j)

w(2j)p
′/p′k
|Aj|

p′
p′
k , (5.93)

so, by virtue of Lemma 5.6.2, we have

‖FJ(k + it)‖LHp′
k
1,wk
≤

J∑
j=−J

|λj| . ‖f‖LHp′
k
1,wk

.

Therefore,
max
k=0,1

sup
t∈R
‖FJ(k + it)‖LHp′1,w . ‖f‖LHp′1,w <∞.

Now, we prove the continuity of t ∈ R 7→ FJ(k + it). Let t0 ∈ R. By virtue of
Lemma 5.2.1, we have

‖FJ(k + it, ·)−FJ(k + it0, ·)‖LHp′
k
1,wk

≤
J∑

j=−J

‖Gj(k + it, ·)−Gj(k + it0, ·)‖LHp′
k
1,wk

≤
J∑

j=−J

‖Gj(k + it, ·)−Gj(k + it0, ·)‖Lp′k
wk(2j)

. (5.94)
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Since |Aj|
p′
p′
k ∈ Lp′k , |Gj(k + it, ·)−Gj(k + it0, ·)| ≤ 2 wk(2j)

w(2j)

p′
p′
k

|Aj|
p′
p′
k , and

lim
t→t0

(Gj(k + it, x)−Gj(k + it0, x)) = Gj(k + it0, x) lim
t→t0

uj(x)t−t0 − 1 = 0

for every x ∈ Rn, by virtue of the dominated convergence theorem, we have

lim
t→t0
‖Gj(k + it)−Gj(k + it0)‖

L
p′
k

= 0. (5.95)

By combining (5.94) and (5.95), we get

lim
t→t0
‖FJ(k + it, ·)− FJ(k + it, ·)‖LHp′

k
1,wk

= 0,

as desired.

From Lemmas 5.6.3-5.6.6, it follows that FJ ∈ F(LHp′01,w0
, LHp′11,w1

). Conse-
quently, FJ(θ) ∈ [LHp′01,w0

, LHp′11,w1
]θ. Thus, it remains to prove (5.49).

Proof of (5.49). Let J,K ∈ N with J > K. From (5.93) and Lemma 5.6.2, it
follows that

‖FJ(θ, ·)− FK(θ, ·)‖[LHp′01,w0
,LHp′11,w1

]θ

≤ max
k=0,1

sup
t∈R
‖FJ(k + it, ·)− FK(k + it, ·)‖LHp′

k
1,wk

≤ max
k=0,1

sup
t∈R

∑
j∈Z

J≥|j|>K

|λj| ‖Gj(k + it, ·)‖LHp′
k
1,wk

= max
k=0,1

sup
t∈R

∑
j∈Z

J≥|j|>K

|λj|

∥∥∥∥∥∥ wk(2
j)

w(2j)
p′
p′
k

|Aj(·)|
p′
p′
k

∥∥∥∥∥∥
LHp′

k
1,wk

≤
∑
j∈Z

J≥|j|>K

|λj|. (5.96)

Since {λj}∞j=−∞ ∈ `1, we see that

lim
J,K→∞
J>K

∑
j∈Z

J≥|j|>K

|λj| = 0. (5.97)

Thus, (5.49) follows from (5.96) and (5.97).
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Proof of (5.65) and (5.66)

Let FJ(z) be defined by (5.64). For each j ∈ [−J, J ] ∩ Z, we define

uj := |λj|
q′
q′1
− q′
q′0
w0(2j)−1w1(2j)

w(2j)
p′
p′1
− p′
p′0

|Aj|
p′
p′1
− p′
p′0 . (5.98)

For each j ∈ [−J, J ] ∩ Z and z ∈ S, define

Gj(z, ·) := sgn(λj)|λj|
q′
(

1−z
q′0

+ z
q′1

)
w0(2j)1−zw1(2j)z

w(2j)
p′
(

1−z
p′0

+ z
p′1

) sgn(Aj(·))|Aj(·)|
p′
(

1−z
p′0

+ z
p′1

)
.

(5.99)

Lemma 5.6.7. [31] For every z ∈ S and j ∈ [−J, J ] ∩ Z, define

Gj,0(z, ·) := Gj(z, ·)χ{uj≤1}, and Gj,1(z, ·) := Gj(z, ·)−Gj,0(z, ·). (5.100)

Then, for each k ∈ {0, 1}, we have

|Gj,k(z, ·)| ≤ |λj|
q′
q′
k
wk(2

j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 . (5.101)

Proof. We prove (5.101) only for k = 0. We leave to the reader the case k = 1
because there are no differences. Since Re(z) ≥ 0, we have

|Gj,1(z, ·)| = |λj|
q′
q′0
w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 u

Re(z)
j χ{uj≤1} ≤ |λj|

q′
q′0
w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 ,

as desired.

Lemma 5.6.8. [31] Let k ∈ {0, 1} and j ∈ [−J, J ] ∩ Z. Then wk(2j)

w(2j)
p′/p′

k
|Aj|p

′/p′k

is a (p′k, wk, 2
j)-block.

Proof. Since supp (Aj) ⊆ B(2j), we have supp

(
wk(2j)

w(2j)
p′/p′

k
|Aj|p

′/p′k

)
⊆ B(2j).

Moreover, from ‖Aj‖Lp′ ≤ w(2j) it follows that∥∥∥∥ wk(2
j)

w(2j)p
′/p′k
|Aj|p

′/p′k

∥∥∥∥
L
p′
k

=
wk(2

j)

w(2j)p
′/p′k
‖Aj‖

p′/p′k
Lp′
≤ wk(2

j).

Thus, wk(2j)

w(2j)
p′/p′

k
|Aj|p

′/p′k is a (p′k, wk, 2
j)-block.
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Lemma 5.6.9. [31] For every z ∈ S, we have FJ(z, ·) ∈ LHp′0q
′
0,w0

+ LHp′1q
′
1,w1

.
Moreover, sup

z∈S
‖FJ(z, ·)‖LHp′0q′0,w0

+LHp′1q
′
1,w1

<∞.

Proof. We define

FJ,0(z, ·) :=
J∑

j=−J

Gj,0(z, ·) and FJ,1(z, ·) :=
J∑

j=−J

Gj,1(z, ·). (5.102)

We use (5.3), (5.63), and Lemma 5.6.8 to obtain

‖FJ,0(z, ·)‖LHp′0q′0,w0
≤

∥∥∥∥∥
J∑

j=−J

|Gj,0(z, ·)|

∥∥∥∥∥
LHp′0q

′
0,w0

≤

∥∥∥∥∥
J∑

j=−J

|λj|
q′
q′0

w0(2j)

w(2j)p
′/p′0
|Aj|p

′/p′0

∥∥∥∥∥
LHp′01,w0

≤

(
J∑

j=−J

(|λj|q
′/q′0)q

′
0

)1/q′0

. ‖f‖q
′/q′0
LHp′q′,w

<∞.

Therefore, FJ,0(z, ·) ∈ LHp′0q
′
0,w0

. Likewise, FJ,1(z) ∈ LHp′1q
′
1,w1

with

‖FJ,1(z, ·)‖LHp′1q′1,w1
. ‖f‖q

′/q′1
LHp′q′,w

.

Consequently, FJ(z, ·) ∈ LHp′0q
′
0,w0

+ LHp′1q
′
1,w1

and

‖FJ(z, ·)‖LHp′0q′0,w0
+LHp′1q

′
1,w1
≤ ‖FJ,0(z, ·)‖LHp′0q′0,w0

+ ‖FJ,1(z, ·)‖LHp′1q′1,w1

. ‖f‖q
′/q′0
LHp′q′,w

+ ‖f‖q
′/q′1
LHp′q′.w

. (5.103)

Thus, sup
z∈S
‖FJ(z, ·)‖LHp′0q′0,w0

+LHp′1q
′
1,w1

. ‖f‖q
′/q′0
LHp′q′,w

+ ‖f‖q
′/q′1
LHp′q′.w

<∞.

Lemma 5.6.10. [31] The function FJ : S → LHp′0q
′
0,w0

+LHp′1q
′
1,w1

is continuous.

Proof. Let z ∈ S. For h ∈ C with z + h ∈ S, we have

‖FJ(z + h, ·)− FJ(z, ·)‖LHp′0q′0,w0
+LHp′1q

′
1,w1

≤ ‖FJ,0(z + h, ·)− FJ,0(z, ·)‖LHp′0q′0,w0
+ ‖FJ,1(z + h, ·)− FJ,1(z, ·)‖LHp′1q′1,w1

.

(5.104)
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Hence, it suffices to show that

lim
h→0
z+h∈S

‖FJ,k(z + h, ·)− FJ,k(z, ·)‖LHp′
k
q′
k
,wk

= 0 (5.105)

for each k ∈ {0, 1}. By virtue of Lemma 5.2.1, we have

‖FJ,k(z + h, ·)− FJ,k(z, ·)‖LHp′
k
q′
k
,wk
≤

J∑
j=−J

‖Gj,k(z + h, ·)−Gj,k(z, ·)‖LHp′
k
q′
k
,wk

≤
J∑

j=−J

‖Gj,k(z + h, ·)−Gj,k(z, ·)‖Lp′k .
wk(2j)

.

(5.106)

According to Lemma 5.6.7, we have

|Gj,k(z + h, ·)−Gj,k(z, ·)| ≤ |Gj,k(z + h, ·)|+ |Gj,k(z, ·)|

≤ 2|λj|
q′
q′
k
wk(2

j)

w(2j)
p′
p′
k

|Aj(·)|
p′
p′
k .

Since

lim
h→0

(Gj,k(z + h, x)−Gj,k(z, x)) = Gj,k(z, x) lim
h→0

(uj(x)h − 1) = 0

for every x ∈ Rn and |Aj|
p′
p′
k ∈ Lp

′
k , by virtue of the dominated convergence

theorem, we have

lim
h→0
‖Gj,k(z + h, ·)−Gj,k(z, ·)‖Lp′k = 0. (5.107)

Thus, we obtain (5.105) by combining (5.106) and (5.107).

Lemma 5.6.11. [31] The function FJ : S → LHp′0q
′
0,w0

+LHp′1q
′
1,w1

is holomorphic.

Proof. Let ε ∈ (0, 1/2) and Sε := {z ∈ S : ε < Re(z) < 1 − ε}. We shall show
that

F ′J(z) :=
J∑

j=−J

Gj(z, ·) log(uj(·)) ∈ LHp′0q
′
0,w0

+ LHp′1q
′
1,w1

. (5.108)

for every z ∈ S and

lim
h→0
z+h∈S

∥∥∥∥FJ(z + h)− FJ(z)

h
− F ′J(z)

∥∥∥∥
LHp′0q

′
0,w0

+LHp′1q
′
1,w1

= 0 (5.109)
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for every z ∈ Sε. We define

F ′J,0(z, ·) :=
J∑

j=−J

λjGj,0(z, ·) log(uj(·)) and F ′J,1(z, ·) :=
J∑

j=−J

λjGj,1(z, ·) log(uj(·)).

(5.110)

Since

|Gj,0(z, ·) log(uj(·))| = |λj|
q′
q′0
w0(2j)

w(2j)
p′
p′0

|Aj(·)|
p′
p′0 uj(·)Re(z)| log(uj(·))|χ{uj≤1}

≤ |λj|
q′
q′0

w0(2j)

eRe(z)w(2j)
p′
p′0

|Aj(·)|
p′
p′0

by virtue of Lemma 5.6.8, we have

‖F ′J,0(z, ·)‖LHp′0q′0,w0
≤ 1

eRe(z)

(
J∑

j=−J

|λj|q
′

)1/q′0

.
‖f‖q

′/q′0
LHp′q′,w

eRe(z)
<∞,

so F ′J,0(z, ·) ∈ LHp′0q
′
0,w0

. Similarly, F ′J,1(z, ·) ∈ LHp′1q
′
1,w1

. Since

F ′J(z, ·) = F ′J,0(z, ·) + F ′J,1(z, ·),

we see that F ′J(z, ·) ∈ LHp′0q
′
0,w0

+ LHp′1q
′
1,w1

.

The proof of (5.109) is obtained in a similar way as (5.86). Let z ∈ Sε and
h ∈ C be such that z + h ∈ S and |h| < ε

2
. By a similar calculation as in (5.89),

we obtain∣∣∣∣Gj,0(z + h, ·)−Gj,0(z, ·)
h

−Gj,0(z, ·) log(uj(·))
∣∣∣∣ ≤ Cε|h||λj|

q′
q′0
w0(2j)|Aj(·)|

p′
p′0

w(2j)
p′
p′0

.

The last inequality, (5.63), and Lemma 5.6.8 imply∥∥∥∥FJ,0(z + h, ·)− FJ,0(z, ·)
h

− F ′J,0(z, ·)
∥∥∥∥
LHp′0q

′
0,w0

≤ Cε|h|

(
J∑

j=−J

|λj|q
′

)1/q′0

. Cε|h|‖f‖
q′
q′0
LHp′q′,w

.

Consequently,

lim
h→0

∥∥∥∥FJ,0(z + h, ·)− FJ,0(z, ·)
h

− F ′J,0(z, ·)
∥∥∥∥
LHp′0q

′
0,w0

= 0. (5.111)
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Similarly,

lim
h→0

∥∥∥∥FJ,1(z + h, ·)− FJ,1(z, ·)
h

− F ′J,1(z, ·)
∥∥∥∥
LHp′1q

′
1,w1

= 0. (5.112)

Thus, (5.109) follows from (5.111) and (5.112).

Lemma 5.6.12. [31] For every k ∈ {0, 1}, the function t ∈ R 7→ FJ(k + it) ∈
LHp′kq

′
k,wk

is bounded and continuous.

Proof. First, we shall prove that

max
k=0,1

sup
t∈R
‖FJ(k + it)‖LHp′

k
q′
k
,wk

<∞. (5.113)

Let k ∈ {0, 1}, t ∈ R, and j ∈ [−J, J ] ∩ Z. By virtue of Lemma 5.6.8 and

|Gj(k + it)| = |λj|
q′
q′
k

wk(2
j)

w(2j)p
′/p′k
|uitj ||Aj|

p′
p′
k = |λj|

q′
q′
k

wk(2
j)

w(2j)p
′/p′k
|Aj|

p′
p′
k , (5.114)

we have

‖FJ(k + it)‖LHp′
k
q′
k
,wk
≤

(
J∑

j=−J

|λj|q
′

)1/q′k

. ‖f‖q
′/q′k
LHp′q′,w

.

Therefore,

max
k=0,1

sup
t∈R
‖FJ(k + it)‖LHp′

k
q′
k
,wk

. ‖f‖q
′/q′k
LHp′q′,w

<∞.

The proof of the continuity of t ∈ R 7→ FJ(k + it) goes as follows. Let t0 ∈ R.
According to Lemma 5.2.1, we have

‖FJ(k + it, ·)−FJ(k + it0, ·)‖LHp′
k
q′
k
,wk

≤
J∑

j=−J

|λj|‖Gj(k + it, ·)−Gj(k + it0, ·)‖LHp′
k
q′
k
,wk

≤
J∑

j=−J

|λj|
‖Gj(k + it, ·)−Gj(k + it0, ·)‖Lp′k

wk(2j)
. (5.115)

Since |Aj|
p′
p′
k ∈ Lp′k , |Gj(k + it, ·)−Gj(k + it0, ·)| ≤ 2|λj|

q′
q′
k
wk(2j)

w(2j)

p′
p′
k

|Aj|
p′
p′
k , and

lim
t→t0

Gj(k + it, x)−Gj(k + it, x) = Gj(k + it0, x) lim
t→t0

(
uj(x)t−t0 − 1

)
= 0,

by virtue the dominated convergence theorem, we have

lim
t→t0
‖Gj(k + it)−Gj(k + it0)‖

L
p′
k

= 0. (5.116)
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By combining (5.115) and (5.116), we get

lim
t→t0
‖FJ(k + it, ·)− FJ(k + it, ·)‖LHp′

k
q′
k
,wk

= 0,

as desired.

According to Lemmas 5.6.9-5.6.12, we have

FJ ∈ F(LHp′0q
′
0,w0

, LHp′1q
′
1,w1

).

Therefore, FJ(θ, ·) ∈ [LHp′0q
′
0,w0

, LHp′1q
′
1,w1

]θ. Thus, it remains to prove (5.66).

Proof of (5.66). Let J,K ∈ N with J > K. By virtue of (5.114) and Lemma
5.114, we have

‖FJ(θ, ·)− FK(θ, ·)‖[LHp′0q
′
0,w0

,LHp′1q
′
1,w1

]θ

≤ max
k=0,1

sup
t∈R
‖FJ(k + it, ·)− FK(k + it, ·)‖LHp′

k
q′
k
,wk

= max
k=0,1

sup
t∈R

∥∥∥∥∥∥∥∥
∑
j∈Z

J≥|j|>K

Gj(k + it, ·)

∥∥∥∥∥∥∥∥
LHp′

k
q′
k
,wk

≤

 ∑
j∈Z

J≥|j|>K

|λj|q
′


1
q′
k

.

(5.117)

Since {λj}∞j=−∞ ∈ `q
′
, the right-hand side of (5.117) tends to zero as J,K →∞,

which implies (5.49).
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Chapter 6

Complex interpolation of grand
Lebesgue spaces

In this chapter discuss interpolation of grand Lebesgue spaces by complex method.
First let us explain the motivation of considering complex interpolation of grand
Lebesgue spaces according to the result of complex interpolation of generalized
Morrey spaces. Let Ω be a bounded measurable subset of Rn and define Mϕ

q (Ω)
to be the set of all measurable functions f on Ω which belong to Mϕ

q , where
it is understood tacitly that f is extended to be zero outside Ω. Substituting
U = L0(Ω) to Theorems 4.2.1 and 4.3.1 we get

Corollary 6.0.1. Keep the same assumption as in Theorem 4.2.1. Then

[Mϕ0
q0

(Ω),Mϕ1
q1

(Ω)]θ = {f ∈Mϕ
q (Ω) : lim

N→∞
‖fχ{|f |>N}‖Mϕ

q (Ω) = 0}

and
[Mϕ0

q0
(Ω),Mϕ1

q1
(Ω)]θ =Mϕ

q (Ω).

It seems that Morrey spaces on the bounded domain behaves better than
Morrey spaces on Rn under the first complex interpolation results. Hence, it is
interesting to consider complex interpolation of some function spaces defined on
set of finite measure other than Morrey space on the bounded domain, such as
grand Lebesgue spaces.

Let us recall the definition of grand Lebesgue spaces. Let (Ω, µ) be a finite
measure space, 1 < p < ∞, and τ > 0. The grand Lebesgue space Lp),τ =
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Lp),τ (Ω, µ) is the set of all measurable functions f for which

‖f‖Lp),τ (Ω,µ) := sup
0<ε<p−1

ε
τ
p−ε‖f‖Lp−ε(Ω,µ) <∞.

The space Lp),1(Ω, µ) was first introduced by T. Iwaniec and C. Sbordone in
their studies on the integrability condition of the Jacobian function on a domain
Ω ⊆ Rn (see [33]). Meanwhile, the definition of Lp),τ (Ω, µ) for general τ > 0 can
be found in [18]. An example of a member of Lp),τ (Ω, µ) is given as follows:

Example 6.0.2. [15, 26] Let Ω := (0, 1), µ be the Lebesgue measure, and f(x) :=
x−a. Then we can verify that

f ∈ Lp),τ ⇔

{
a < 1

p
,

a = 1
p
, τ ≥ 1.

It is known in [15, Remark 2] that the function f(x) := x−1/p is in Lp),τ (0, 1) but
it does not have absolutely continuous norm.

6.1 Basic properties of grand Lebesgue spaces

We recall the following inclusion of Lebesgue spaces on Ω to grand Lebesgue
spaces on Ω which can be found in [16].

Lemma 6.1.1. [16, 26] Let 1 < p <∞ and r ∈ [p,∞]. Then we have

Lr(Ω, µ) ⊂ Lp),τ (Ω, µ) ⊂
⋂

0<ε<p−1

Lp−ε(Ω, µ). (6.1)

Proof. The inclusion (6.1) is stated in [16]. We give the proof of (6.1) for conve-
nience of the reader. Let f ∈ Lr(Ω, µ). If r <∞, then for any ε ∈ (0, p− 1), we
have

ε
τ
p−ε‖f‖Lp−ε(Ω,µ) ≤ max(1, p− 1)τµ(Ω)

1
p−ε−

1
r ‖f‖Lr(Ω,µ)

≤ max(1, p− 1)τ max(1, µ(Ω))

µ(Ω)1/r
‖f‖Lr(Ω,µ).

Therefore,

‖f‖Lp),τ (Ω,µ) ≤
max(1, p− 1)τ max(1, µ(Ω))

µ(Ω)1/r
‖f‖Lr(Ω,µ).
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Since L∞(Ω, µ) ⊆ Lr(Ω, µ), L∞(Ω, µ) ⊆ Lp),τ (Ω, µ). If f ∈ Lp),τ (Ω, µ) and ε ∈
(0, p− 1), then

‖f‖Lp−ε(Ω,µ) ≤ ε−
τ
p−ε‖f‖Lp),τ (Ω,µ) <∞, (6.2)

so f ∈
⋂

0<ε<p−1

Lp−ε(Ω, µ) as desired.

The next lemma is the scaling property of grand Lebesgue spaces:

Lemma 6.1.2. [26] Let 0 < τ < ∞ and 1 < q ≤ r ≤ s < ∞. Then there exists
C > 0 such that for every f ∈ Lr),τ (Ω, µ), we have∥∥|f | rs∥∥

Ls),τ (Ω,µ)
≤ C‖f‖

r
s

Lr),τ (Ω,µ)
(6.3)

and ∥∥∥|f | rq∥∥∥
Lq),τ (Ω,µ)

≤ ‖f‖
r
q

Lr),τ (Ω,µ)
. (6.4)

Proof. Let ε ∈ (0, q − 1) and δ := r
q
ε. Then we have

ε
τ
q−ε

∥∥∥|f | rq∥∥∥
Lq−ε(Ω,µ)

= ε
τ
q−ε‖f‖

r
q

L
r− rεq (Ω,µ)

=

[(q
r
δ
) τ
r−δ ‖f‖Lr−δ(Ω,µ)

] r
q

.

Since 0 < δ = r
q
ε < r − r

q
< r − 1, we have

ε
τ
q−ε

∥∥∥|f | rq∥∥∥
Lq−ε(Ω,µ)

≤
[
δ

τ
r−δ ‖f‖Lr−δ(Ω,µ)

] r
q ≤ ‖f‖

r
q

Lr),τ (Ω,µ)
,

and hence (6.4) follows. Let ε ∈ (0, r − 1). Write δ := r
s
ε. Since 0 < δ < s − 1,

we have

ε
τ
s−ε
∥∥|f | rs∥∥

Ls−ε(Ω,µ)
= ε

τr
s(r−δ)‖f‖r/s

L
r
s (s−ε)(Ω,µ)

=

[(s
r
δ
) τ
r−δ ‖f‖Lr−δ(Ω,µ)

] r
s

≤
(s
r

) τr
s
(
δ

τ
r−δ ‖f‖Lr−δ(Ω,µ)

) r
s

≤
(s
r

) τr
s ‖f‖

r
s

Lr),τ (Ω,µ)
. (6.5)

Now, let ε ∈ (r− 1, s− 1) and γ := r(r−1)
s

. By using 0 < γ ≤ r
s
ε < r− 1, Hölder’s

inequality, and (6.2), we get

ε
τ
s−ε
∥∥|f | rs∥∥

Ls−ε(Ω,µ)
≤ max(1, (s− 1)τ )‖f‖

r
s

Lr−
r
s ε(Ω,µ)

. ‖f‖
r
s

Lr−γ(Ω,µ) . ‖f‖
r
s

Lr),τ (Ω,µ)
.

(6.6)

Combining (6.5) and (6.6), we have (6.3).
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6.2 The first complex interpolation of grand Lebesgue
spaces

We give the following description of the first complex interpolation of grand
Lebesgue spaces.

Theorem 6.2.1. [26, Theorem 1.1] Let θ ∈ (0, 1), 1 < p0 < ∞, 1 < p1 < ∞,
and τ > 0. Assume that p0 6= p1 and define

1

p
:=

1− θ
p0

+
1

p1

. (6.7)

Then

[Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ =
{
f ∈ Lp),τ (Ω, µ) : lim

N→∞

∥∥χ{|f |>N}f∥∥Lp),τ (Ω,µ)
= 0
}
.

Our proof of Theorem 6.2.1 uses Lemma 2.3.2 and the description of the
Calderón product of grand Lebesgue spaces. To give a description of the Calderón
product of grand Lebesgue spaces, we prove the following lemma.

Lemma 6.2.2. [26, Lemma 3.3] Let θ ∈ (0, 1), 0 < τ < ∞, and 1 < p1 < p0 <
∞. Define p by (6.7). If f0 ∈ Lp0),τ and f1 ∈ Lp1),τ , then∥∥|f0|1−θ|f1|θ

∥∥
Lp),τ

. ‖f0‖1−θ
Lp0),τ

‖f1‖θLp1),τ . (6.8)

Remark 6.2.3. Note that (6.8) can be viewed as the Hölder inequality in grand
Lebesgue spaces.

Proof of Lemma 6.2.2. Let ε ∈ (0, p− 1). By using Hölder’s inequality, we have∥∥|f0|1−θ|f1|θ
∥∥
Lp−ε(Ω)

≤

([∫
Ω

|f0(x)|
p0(p−ε)

p dµ(x)

] (1−θ)p
p0

[∫
Ω

|f1(x)|
p1(p−ε)

p dµ(x)

] θp
p1

) 1
p−ε

=
∥∥|f0|p0/p

∥∥ (1−θ)p
p0

Lp−ε(Ω)

∥∥|f1|p1/p
∥∥ (θ)p

p1

Lp−ε(Ω) .

By virtue of Lemma 6.1.2, we get

ε
τ
p−ε
∥∥|f0|1−θ|f1|θ

∥∥
Lp−ε(µ)

≤
(
ε

τ
p−ε
∥∥|f0|p0/p

∥∥
Lp−ε(Ω)

) (1−θ)p
p0

(
ε

τ
p−ε
∥∥|f1|p1/p

∥∥
Lp−ε(Ω)

) θp
p1

≤
∥∥|f0|p0/p

∥∥ (1−θ)p
p0

Lp),τ

∥∥|f1|p1/p
∥∥ θpp1
Lp),τ

. ‖f0‖1−θ
Lp0),τ

‖f1‖θLp1),τ .

Taking the supremum over any ε ∈ (0, p− 1), we get (6.8).
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We now prove the following description of the Calderón product for grand
Lebesgue spaces.

Lemma 6.2.4. [26] Let θ ∈ (0, 1), 0 < τ < ∞, and 1 < p1 ≤ p0 < ∞. Define p
by (6.7). Then we have

(Lp0),τ (Ω, µ))1−θ(Lp1),τ (Ω, µ))θ = Lp),τ (Ω, µ).

Proof. Let f ∈ Lp),τ (Ω, µ). Define f0 := |f |p/p0 and f1 := |f |p/p1 . By using
Lemma 6.1.2, we have

‖f0‖Lp0),τ (Ω,µ) . ‖f‖
p
p0

Lp),τ (Ω,µ)
and ‖f1‖Lp1),τ (Ω,µ) ≤ ‖f‖

p
p1

Lp),τ (Ω,µ)
.

Since |f0|1−θ|f1|θ = |f | and

‖f‖(Lp0),τ (Ω,µ))1−θ(Lp1),τ (Ω,µ))θ ≤ ‖f0‖1−θ
Lp0),τ (Ω,µ)

‖f1‖θLp1),τ (Ω,µ)

. ‖f‖
p
p0

(1−θ) p
p1

(θ)

Lp),τ (Ω,µ)

= ‖f‖Lp),τ (Ω,µ),

we have f ∈ (Lp0),τ (Ω, µ))1−θ(Lp1),τ (Ω, µ))θ. Therefore,

Lp),τ (Ω, µ) ⊆ (Lp0),τ (Ω, µ))1−θ(Lp1),τ (Ω, µ))θ.

Conversely, let g ∈ (Lp0),τ (Ω, µ))1−θ(Lp1),τ (Ω, µ))θ. Choose g0 ∈ Lp0),τ (Ω, µ) and
g1 ∈ Lp1),τ (Ω, µ) such that |g| ≤ |g0|1−θ|g1|θ and

‖g0‖1−θ
Lp0),τ (Ω,µ)

‖g1‖θLp1),τ (Ω,µ)
≤ 2‖g‖(Lp0),τ (Ω,µ))1−θ(Lp1),τ (Ω,µ))θ . (6.9)

Combining (6.8) and (6.9), we get

‖g‖Lp),τ (Ω,µ) ≤
∥∥|g0|1−θ|g1|θ

∥∥
Lp),τ (Ω,µ)

. ‖g0‖1−θ
Lp0),τ (Ω,µ)

‖g1‖θLp1),τ (Ω,µ)

. ‖g‖(Lp0),τ (Ω,µ))1−θ(Lp1),τ (Ω,µ))θ .

Consequently, g ∈ Lp),τ (Ω, µ). Thus,

(Lp0),τ (Ω, µ))1−θ(Lp1),τ (Ω, µ))θ ⊆ Lp),τ (Ω, µ),

as desired.

The proof of Theorem 6.2.1 is given as follows.
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Proof of Theorem 6.2.1. Combining Lemmas 2.3.2 and 6.2.4, we have

[Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ = Lp0),τ (Ω, µ) ∩ Lp1),τ (Ω, µ)
Lp),τ (Ω,µ)

. (6.10)

Without loss of generality, we may assume that p0 > p > p1. Let f ∈ Lp),τ (Ω, µ)
be such that

lim
N→∞

‖fχ{|f |>N}‖Lp),τ (Ω,µ) = 0. (6.11)

Define fN := fχ{|f |≤N}. Then, by virtue of Lemma 6.1.1, we have

fN ∈ Lp0),τ (Ω, µ) ∩ Lp1),τ (Ω, µ) (6.12)

In view of (6.10) and (6.11), we have f ∈ [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ. Thus, we
have proved that{
f ∈ Lp),τ (Ω, µ) : lim

N→∞

∥∥χ{|f |>N}f∥∥Lp),τ (Ω,µ)
= 0
}
⊆ [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ.

Hence, to conclude the proof, it suffices to show that

lim
j→∞
‖fχ{|f |>j}‖Lp),τ (Ω,µ) = 0 (6.13)

for every f ∈ [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ. According (6.10), for every ε > 0, we
can choose g ∈ Lp0),τ (Ω, µ) ∩ Lp1),τ (Ω, µ) such that

‖f − g‖Lp),τ (Ω,µ) < ε. (6.14)

We now fix j ∈ N. Note that

|fχ{|f |>j}| ≤ |f − g|+ |gχ{|g|>j/2}|+ |gχ{|f |>j}∩{|g|≤j/2}|.
On the set {|f | > j} ∩ {|g| ≤ j/2}, we have

|g| ≤ j

2
<
|f |
2
≤ |f − g|

2
+
|g|
2
,

so

‖fχ{|f |>j}‖Lp),τ (Ω,µ) ≤ 2‖f − g‖Lp),τ (Ω,µ) + ‖gχ{|g|>j/2}‖Lp),τ (Ω,µ). (6.15)

By virtue of Lemma 6.1.2, we get

‖gχ{|g|>j}‖Lp),τ (Ω,µ) =
∥∥∥|g|1− p0p χ{|g|>j}|g| p0p ∥∥∥

Lp),τ (Ω,µ)

≤ j1− p0
p

∥∥∥|g| p0p ∥∥∥
Lp),τ (Ω,µ)

. j1− p0
p ‖g‖

p0
p

Lp0),τ (Ω,µ)
,

and hence

lim
j→∞
‖gχ{|g|>j}‖Lp),τ (Ω,µ) = 0. (6.16)

Combining (6.14)-(6.16), we get

lim sup
j→∞

‖fχ{|f |>j}‖Lp),τ (Ω,µ) ≤ 2ε.

Since ε > 0 is arbitrary, we have (6.13), as desired.

88



6.3 The second complex interpolation of grand Lebesgue
spaces

Our result on the second complex interpolation of grand Lebesgue spaces is as
follows.

Theorem 6.3.1. [26] Keep the same assumption as in Theorem 6.2.1. Then

[Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ = Lp),τ (Ω, µ).

In some particular cases, we may have a proper inclusion

[Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ ( [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ. (6.17)

For instance, let us consider Ω = (0, 1), µ is the Lebesgue measure on Ω, and the

function f(x) := x−
1
p , x ∈ Ω. Note that f ∈ Lp),1(Ω, µ) and

lim
N→∞

‖χ{|f |>N}f‖Lp),1(Ω,µ) ∼ 1 6= 0.

In view of Theorems 6.2.1 and 6.3.1, we see that

f ∈ [Lp0),1(Ω, µ), Lp1),1(Ω, µ)]θ \ [Lp0),1(Ω, µ), Lp1),1(Ω, µ)]θ.

This shows (6.17).

Our proof of Theorem 6.3.1 uses Lemma 2.2.4 and Theorem 6.2.1 and also
the construction of the second complex interpolation functor given by (3.21).

Proposition 6.3.2. [26] Keep the same assumption as in Theorem 6.2.1. Let
f ∈ Lp),τ (Ω, µ) and define G by

G(z) := (z − θ)
∫ 1

0

F (θ + (z − θ)t) dt (z ∈ S), (6.18)

where
1

p(z)
:=

1− z
p0

+
z

p1

, (6.19)

and

F (z) := sgn(f) exp

(
p

p(z)
log |f |

)
(z ∈ S). (6.20)

Then
G ∈ G(Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)).
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Proof. The idea of the proof of Proposition 6.3.2 is similar to that of Lemma
3.3.2. We uses inequalities (3.24)–(3.27) with q0, q1, and q are replaced by p0, p1,
and p, respectively. Combining these inequalities and Lemma 6.1.2, we get

sup
z∈S

‖G(z)‖Lp0),τ (Ω,µ),Lp1),τ (Ω,µ)

1 + |z|
. ‖f‖p/p0

Lp),τ (Ω,µ)
+ ‖f‖p/p1

Lp),τ (Ω,µ)
,

‖G(z1)−G(z2)‖Lp0),τ (Ω,µ)+Lp1),τ (Ω,µ)

. |z1 − z2|
(
‖f‖p/p0

Lp),τ (Ω,µ)
+ ‖f‖p/p1

Lp),τ (Ω,µ)

)
, z1, z2 ∈ S,

and∥∥∥∥G(z + w)−G(z)

w
− F (z)

∥∥∥∥
Lp0),τ (Ω,µ)+Lp1),τ (Ω,µ)

. |w|(‖f‖p/p0
Lp),τ (Ω,µ)

+ ‖f‖p/p1
Lp),τ (Ω,µ)

),

whenever z ∈ S satisfying 0 < ε < Re(z) < 1 − ε for ε ∈ (0, 1
2
) and w ∈ C

with |w| � 1. These show the boundedness and continuity of G on S and also
holomorphicity of G in S. Hence, we only need to verify that

G(j + it1)−G(j + it2) ∈ Lpj),τ (Ω, µ)

for every t1, t2 ∈ R and j ∈ {0, 1} and also

‖G(j + i·)‖
Lip(R,Lpj),τ (Ω,µ)

≤ (‖f‖Lp),τ (Ω,µ))
p/pj . (6.21)

for every j ∈ {0, 1}. Combining

G(j + it1)−G(j + it2) = −i
∫ t2

t1

F (j + it) dt

and |F (j + it)| = |f |
p
pj , we get

‖G(j + it1)−G(j + it2)‖
Lpj),τ (Ω,µ)

≤ |t1 − t2|‖f‖
p
pj

Lp),τ (Ω,µ)
.

This implies (6.21). Thus, G ∈ G(Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)).

Proof of Theorem 6.2.1. Let f ∈ Lp),τ (Ω, µ) and defineG by (6.18). ThenG′(θ) =
f in Lp0),τ (Ω, µ) + Lp1),τ (Ω, µ). This equality and Proposition 6.3.2 imply f =
G′(θ) ∈ [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ.

Let f ∈ [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ. Choose G ∈ G(Lp0),τ (Ω, µ), Lp1),τ (Ω, µ))
such that G′(θ) = f and

‖G‖G(Lp0),τ (Ω,µ),Lp1),τ (Ω,µ)) . ‖f‖[Lp0),τ ,Lp1),τ ]θ . (6.22)
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For each k ∈ N and z ∈ S, define Hk(z) by (2.3). Combining Lemma 2.2.4,
Theorem 6.2.1, and (6.22), we have

‖Hk(θ)‖Lp),τ (Ω,µ) . ‖f‖[Lp0),τ (Ω,µ),Lp1),τ (Ω,µ)]θ .

Since

lim
k→∞
‖Hk(θ)−f‖Lp0),τ (Ω,µ)+Lp1),τ (Ω,µ) = lim

k→∞
‖Hk(θ)−G′(θ)‖Lp0),τ (Ω,µ)+Lp1),τ (Ω,µ) = 0,

we can find a subsequence {Hkj(θ)}∞j=1 such that

lim
j→∞

Hkj(θ)(x) = f(x)

a.e. x ∈ Ω. Therefore, by the Fatou Lemma, we have

‖f‖Lp),τ (Ω,µ) ≤ lim inf
j→∞

‖Hkj(θ)‖Lp),τ (Ω,µ) . ‖f‖[Lp0,τ (Ω,µ),Lp1,τ (Ω,µ)]θ . (6.23)

Hence, f ∈ Lp),τ (Ω, µ). Thus, we conclude that [Lp0),τ (Ω, µ), Lp1),τ (Ω, µ)]θ ⊆
Lp),τ (Ω, µ).
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