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Abstract

We consider inflationary model building in the framework of N = 1 supergravity, where the in-
flaton scalar field belongs to a massive vector multiplet, and supersymmetry (and R-symmetry)
is spontaneously broken after inflation. We show that it is possible to obtain a Minkowski and
de Sitter vacua that are stable. We also reformulate our models as the U(1) gauge theories
coupled to a Higgs chiral superfield, which in the minimal case corresponds to the standard
U(1) Higgs setup. Finally, we focus on a specific representative of our class of models (called
Polonyi-Starobinsky supergravity), that leads to the Starobinsky inflationary potential. We
discover that the simplest known way to obtain the Starobinsky potential leads to instability,
and find a way to remove it by adding a Fayet-Iliopoulos term. This leads to a modification of
the previously found Polonyi vacuum.

Throughout the thesis, various connections of the conducted research to the Standard Model
(SM) of elementary particles, supersymmetry (SUSY) and supergravity, the Minimal Super-
symmetric Standard Model (MSSM), the supersymmetric Grand Unified Theories (GUT), the
Standard Cosmology (SC), cosmological inflation and superstrings are also discussed.
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Introduction

The inflationary paradigm solves initial-condition problems of the pre-inflationary cosmology
(like e.g. the flatness problem, the horizon problem, the monopole problem) and remarkably
agrees with CMB observations (COBE, WMAP, PLANCK). On the other hand, supergravity
(or SUGRA for short), as well as its flat-space-time limit – rigid supersymmetry (SUSY), is a
well-motivated framework for building UV-extensions of the Standard Model. Moreover, it is a
necessary step if one considers unification of the Standard Model and General Relativity in the
only known consistent framework of quantum gravity - superstring theories. Supersymmetry,
if exists, cannot be exact, it must be spontaneously broken at some high-enough scale in order
to generate large masses of superpartners of the Standard Model particles, as we do not see
them at presently available energies. One can build a theory with various numbers (N) of
supersymmetries, that would result in several distinct superpartners of the same particle. For
instance, in 4 space-time dimensions, maximum number of supersymmetries for a gauge theory
(where particle spin is no higher than 1) is N = 4, while for supergravity (where maximal spin
is 2), N = 8. However, N > 1 supersymmetric theories are non-chiral, and for that reason they
cannot be used as immediate extensions of the Standard Model, which is a chiral theory.

One of the most promising candidates for beyond-the-Standard-Model theory is the Minimal
Supersymmetric Standard Model, which implements N = 1 supersymmetry. This motivates
us to consider inflationary model building in the framework of N = 1 supergravity. However,
realising inflationary potentials in supergravity was met with difficulties. One of them, called
the η-problem, is related to the dangerous exponential factor in the F-term potential, which
leads to the large effective mass of the would-be inflaton, and ruins the slow-roll regime required
for successful inflation. Another problem arises if we assume that inflation was caused by a
chiral superfield. Since the lowest component of a chiral superfield is a complex scalar, it
provides two real degrees of freedom, one of which should be stabilised while the other drives
the inflation. These problems can be avoided in various ways, one of which is to identify the
inflaton with the real scalar component of a massive vector multiplet. Thus, there is no need
for stabilisation, and since the inflationary potential comes from the D-term, this resolves the
η-problem.

In generic inflationary models, although supersymmetry is spontaneously broken during infla-
tion (since either D- or F-term potentials must have non-vanishing effective values), in the end
of the inflation it is restored, and thus must be broken again by some mechanism.

In Chapter 1 we briefly review the main features of the Standard Model of particle physics.
In Chapter 2 we first introduce N = 1 supersymmetry, both global and local, then we show
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how to apply global supersymmetry to the Standard Model. The resulting model is a very
good candidate for beyond-the-Standard-Model theory, called the Minimal Supersymmetric
Standard Model (MSSM). One of its features is the exact unification of its extrapolated coupling
constants, which gives rise to the idea of Grand Unified Theories (GUT). We will discuss several
candidate GUT models in Chapter 3.

The second half of the dissertation, devoted to cosmology, starts with the review of the Standard
Cosmological Model (Chapter 4). In the end of Chapter 4 we review the problems of the
pre-inflationary cosmology, and give motivation to introduce the idea of inflation. Chapter
5 is devoted to inflationary cosmology, where we review the simplest models, discuss particle
production after inflation, and show the observational constraints on inflationary models. In
Chapter 6 we consider embedding inflationary models in supergravity (local supersymmetry)
by giving simple examples. Finally, in Chapter 7 we focus on the main goal of this dissertation,
which is to (minimally) connect inflation, supergravity, and supersymmetry breaking after
inflation, in a particular class of models. This is followed by conclusions where we summarise
the main achievements of the research.

This research was conducted in collaboration with Associate Professor Sergei V. Ketov. The
main results were published in [1, 2].
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Chapter 1

The Standard Model

This chapter summarises basic information about Quantum Field Theory (QFT) and the Stan-
dard Model (SM) of elementary particles along the lines of textbooks [3, 4, 5, 6].

1.1 Quantum field theory overview

In classical field theory the basic objects are fields: functions defined over some region of space.
Classical fields can be used to describe phenomena in classical physics, such as gravity or
electromagnetism. However, to describe physics on subatomic scales, the need for the new class
of theoretical framework arises, which is called quantum physics. We are particularly interested
in its prominent representative called quantum field theory (QFT).

In QFT instead of classical fields one works with quantum fields, which are operator-valued
functions. Quantum fields, in turn, act on a Fock space of all possible states, which is defined
as a direct sum of 1, 2, ..., n-particle Hilbert spaces

H = H0 ⊕H1 ⊕H2 ⊕ ...⊕Hn . (1.1)

A quantum field can be obtained by the quantization procedure of a classical field, depending
on the type of that field.

1.1.1 Scalar field

Let us start with the simple example of a real massive scalar field. Quantization of such a field
corresponds to promoting a classical scalar field φ(x) described by the Lagrangian

L = −1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x) , (1.2)

9



Chapter 1. The Standard Model

and obeying Klein-Gordon equation,

(�−m2)φ(x) = 0 , (1.3)

to an operator, which can be decomposed as 1

φ(x) =

∫
d3p

2Ep(2π)3

(
ape

ipx + a†pe
−ipx) , (1.4)

where px ≡ pµx
µ, Ep =

√
p2 +m2 is the energy, and ap and a†p are annihilation and creation

operators, respectively, which create or annihilate spin-0 excitations (particles) with momentum
p of the corresponding field at point x in spacetime. They satisfy commutation relations

[ap, aq] = [a†p, a
†
q] = 0 , (1.5)

[ap, a
†
q] = 2Ep(2π)3δ3(p− q) , (1.6)

which come from equal-time canonical commutation relations for φ(x) and its conjugate mo-
mentum π(x) ≡ φ̇(x):

[φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0 , (1.7)

[φ(t,x), π(t,y)] = iδ3(x− y) . (1.8)

The Hamiltonian

H =
1

2

∫
d3x

(
π2(x) + ∂iφ(x)∂iφ(x) +m2φ2(x)

)
(1.9)

in terms of creation and annihilation operators reads

H =

∫
d3p

(2π)32Ep

Ep

(
a†pap +

1

2
[ap, a

†
p]

)
=

1

2

∫
d3p

(2π)3

(
a†pap + (2π)3Epδ

3(p− p)
)
. (1.10)

The vacuum state is defined to be annihilated by ap,

ap|0〉 = 0 , (1.11)

for all p. Thus, acting with the Hamiltonian on the vacuum gives

H|0〉 =
1

2

∫
d3pEpδ

3(0)|0〉 , (1.12)

which clearly contains infinity due to δ3(0), which arises because we integrate over all space∫∞
−∞ d

3x. To regulate this divergence we use the finite volume trick, where we confine our
integral to a box of volume V ,

(2π)3δ̃3(0) =

∫
V

d3x = V , (1.13)

1The factor 2Ep in the denominator appears for normalization purposes, since for the Lorentz-invariance,
delta function is multiplied by the same factor: 2Epδ

3(a− b)
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Chapter 1. The Standard Model

where δ̃3(0) is a ”finite-volume” delta function. Then, to recover δ3(0) we take the limit

δ3(0) = lim
V→∞

δ̃3(0) . (1.14)

Then it is clear that we should consider energy density instead of total energy, i.e. divide (1.12)
by V .

However, (1.12) is still divergent, because we integrate over arbitrarily high momenta/small
distances, which means we are dealing with infinite number of zero-point-energy oscillators.
The problem can be cured if we use the so-called normal-ordered Hamiltonian, i.e. if we move
all annihilation operators in H to the right. Denoting the normal-ordered Hamiltonian as :H:
we have,

:H:=
1

2

∫
d3p

(2π)3
a†pap , (1.15)

which is exactly the difference H − 〈H〉. So normal ordering of H amounts to a subtraction of
the infinity of vacuum oscillators. From now on we will drop :: since we will only be interested
in normal-ordered Hamiltonians.

The excited states are constructed by acting with a†p on the vacuum,

a†p|0〉 = |p〉 , (1.16)

where |p〉 is one-particle state of momentum p and mass m, corresponding to the scalar field
φ(x). Acting with Hamiltonian we recover its energy eigenvalues

H|p〉 = Ep|p〉 . (1.17)

Acting with n number of creation operators we get an n-particle state,

a†p1
...a†pn|0〉 = |p1...pn〉 , (1.18)

which is symmetric under permutations of pi, reflecting its bosonic nature. The n-particle
Hilbert space (for the scalar field φ) is then nothing more than a collection of |p1...pn〉.

For a general complex scalar field φ† 6= φ, so there are two real degrees of freedom. φ and φ†

independently obey Klein-Gordon equations, and can be decomposed as

φ(x) =

∫
d3p

2Ep(2π)3

(
ape

ipx + b†pe
−ipx) , (1.19)

φ†(x) =

∫
d3p

2Ep(2π)3

(
bpe

ipx + a†pe
−ipx) , (1.20)

where there are two distinct sets of ladder operators, a, a† and b, b†, one associated with particles
and the other - with anti-particles.

11



Chapter 1. The Standard Model

1.1.2 Dirac spinor

We now proceed to quantization of a Dirac spinor. The corresponding Lagrangian

L = −ψ̄(/∂ +m)ψ (1.21)

leads to Dirac equation
(/∂ +m)ψ = 0 , (1.22)

where ψ̄ ≡ iψ†γ0, and /∂ ≡ γµ∂µ We choose the normalization of the Dirac matrices as {γµ, γν} =
2ηµν (with ”mostly plus” metric), so that γ0 is anti-Hermitian while γi are Hermitian. Dirac
spinor also satisfies Klein-Gordon equation,

(/∂ −m)(/∂ +m)ψ = (�−m2)ψ = 0 , (1.23)

and can be expanded as

ψ(x) =
∑
s=±

∫
d3p

(2π)32Ep

(
cpsus(p)e−ipx + d†psvs(p)eipx

)
, (1.24)

ψ†(x) =
∑
s=±

∫
d3p

(2π)32Ep

(
dpsv

†
s(p)e−ipx + c†psu

†
s(p)eipx

)
, (1.25)

where s = ± are the two helicity states ±1; c, c† and d, d† are ladder operators associated
with spinor Fourier modes us(p) and vs(p), respectively 2. Consistency requires spinor field
operators to obey anti -commutation relations (as opposed to bosonic fields),

{ψ(t,x), ψ(t,y)} = δ3(x− y) , (1.26)

or in terms of ladder operators,

{cps, c†qr} = {dps, d†qr} = 2Ep(2π)3δsrδ
3(p− q) . (1.27)

All other anti-commutators vanish.

(Normal-ordered) Hamiltonian is then

H =
1

2

∑
s=±

∫
d3p

(2π)3
(c†pscps + d†psdps) , (1.28)

and the excited states
c†p1s1

...c†pnsn|0〉 = |p1s1, ...,pnsn〉 (1.29)

are antisymmetric with respect to interchanging of any two particles.

2As in the case of complex scalars we interpret c, c† and d, d† as the operators creating and annihilating
particles and anti-particles.

12



Chapter 1. The Standard Model

1.1.3 Abelian gauge field

Now we turn to the simplest example of a vector field in the gauge theory formulation - massless
U(1) abelian gauge field. The corresponding Lagrangian is

L = −1

4
FµνF

µν , (1.30)

where Fµν ≡ Fµν(x) = ∂µAν(x) − ∂νAµ(x) is the field strength, and Aµ(x) is the 4-potential -
an abelian gauge field. The Lagrangian is invariant with respect to the gauge transformation

Aµ(x)→ Aµ(x) + ∂µω(x) , (1.31)

where ω(x) is a scalar function of spacetime. Fµν by construction satisfies Bianchi identities

∂µFνρ + ∂ρFµν + ∂νFρµ = 0 . (1.32)

The equations of motion are then exactly (free) Maxwell equations

∂µF
µν = 0 . (1.33)

If we try to naively impose the equal time commutation relations we will run into a problem
because the relation

[A0(t,x), π0(t,x)] = iη00δ
3(x− y) (1.34)

is non-vanishing, which contradicts the fact that

π0 ≡ ∂L
∂Ȧ0

= 0 , (1.35)

i.e. the time component A0 is non-dynamical.

A solution to the problem, that preserves explicit Lorentz covariance, uses the gauge freedom
to add an extra (gauge fixing) term to the Lagrangian so that

L = −1

4
FµνF

µν − ξ

2
(∂µA

µ)2 . (1.36)

Then the Lagrange multiplier ξ can be treated as an independent gauge parameter, and its
equation of motion can be used as the gauge fixing condition,

∂µA
µ = 0 , (1.37)

which is called the Lorenz gauge. However (1.37) cannot be understood as an operator equation
as π0 would still vanish in that case. Instead, after imposing canonical commutation relations
we will interpret the Lorenz gauge condition as a relation for physical states.

Now with non-vanishing π0 we are free to impose the commutation relations

[Aµ(t,x), πν(t,y)] = iηµνδ
3(x− y) , (1.38)

13



Chapter 1. The Standard Model

and expand the gauge field as

Aµ(x) =
3∑

λ=0

∫
d3p

(2π)32Ep

ερµ(p)
(
apλe

−ipx + a†pρe
ipx
)
, (1.39)

where ερµ(p) is the polarization vector and ρ = 0, ..., 3 denote polarization states.

For ladder operators the commutation relations are

[apρ, a
†
qσ] = 2Ep(2π)3ηρσδ

3(p− q) , (1.40)

which is positive for ηij, but since η00 = −1,

[ap0, a
†
q0] = −2Ep(2π)3δ3(p− q) , (1.41)

The minus sign may seem problematic, since it leads to negative norm states

〈0|ap0a
†
p0|0〉 = 〈p, 0|p, 0〉 < 0 , (1.42)

if we consider the full Fock space F , as we did before. But the rescue comes from the gauge
condition (1.37) which we now properly introduce as

〈ϕ1|∂µAµ|ϕ2〉 = 0 , (1.43)

where ϕ1 and ϕ2 are any two physical states. The condition (1.43) restricts the physical Fock
space to a subspace Fphys ⊂ F , which has the positive definite norm.

This method of quantizing gauge fields is called Gupta-Bleuler formalism, developed in the
works [7, 8]. It is suitable for abelian gauge theories, like QED, but is technically challenging to
generalize to non-abelian theories because of self-interactions of the gauge fields. For this reason
we shall introduce a more powerful framework - path integral quantization [9, 10, 11, 12, 13, 14].

1.1.4 Non-abelian gauge field

Gauge bosons of SU(N) theory transform in the adjoint representation of the gauge group that
has dimension N2− 1. Thus there are N2− 1 degrees of freedom associated with gauge bosons.
Assigning the group index a = 1, 2, ..., N2 − 1 to the gauge bosons, we write the Lagrangian as

L = −1

4
F a
µνF

aµν , (1.44)

where upper and lower gauge group indices are not distinguished, and summation over repeated
indices is implied as usual. The non-abelian field strength in contrast to the abelian one has
an additional term, when defined through the gauge field,

F a
µν ≡ ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.45)
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Chapter 1. The Standard Model

where g is the gauge coupling, and fabc are structure constants. This last term yields self-
interaction of the gauge boson, which means it is charged with respect to the gauge group
(abelian gauge fields, in contrast, are neutral). The Lagrangian (1.44) is invariant under the
(infinitesimal) gauge transformations

Aaµ → Aaµ + ∂µα
a + fabcAbµα

c , (1.46)

where αa(x) are N2 − 1 arbitrary functions.

The equations of motion follow as

(DµF
µν)a = ∂µF

aµν + gfabcAbµF
cµν = 0 , (1.47)

where we have introduced the covariant derivative Dµ. We can also use this covariant derivative
to define the field strength:

[Dµ, Dν ] = −igF a
µνT

a , (1.48)

where T a are generators of infinitesimal gauge transformations obeying

[T a, T b] = ifabcT c . (1.49)

We will now quantize SU(N) gauge theory (or Yang-Mills theory) in path integral formalism
using the so-called Faddeev-Popov method. Consider the functional integral

Z =

∫
DAaµ eiS , (1.50)

where the (gauge invariant) measure DAaµ represents integration over all possible field config-
urations of a non-abelian gauge field Aaµ. Here the index a is a group index which for SU(N)
is a = 1, 2, ..., N2 − 1. Since the integral (1.50) contains gauge redundancies, they should be
eliminated. Following the standard procedure we insert into the integral a unity in the form 3

1 =

∫
Dω δ[G(Aω)]∆[A] , (1.51)

where ω is an infinitesimal gauge transformation of Aaµ

(Aaµ)ω = Aaµ + ∂µω
a + fabcAbµω

c . (1.52)

Here G(Aω) is a gauge fixing condition. As an example, we choose the Lorenz gauge G(A) =
(∂µA

µ)a = 0, so that
G(Aaµ)ω = �ωa + fabcAµb ∂µωc . (1.53)

Then the Faddeev-Popov (FP) determinant is

∆[A] = det

∣∣∣∣δG(A)

δω

∣∣∣∣ = det(�δac + fabcAµb ∂µ) . (1.54)

3From now on, for convenience we suppress spacetime and gauge indices when working with path integrals,
so that A ≡ Aaµ, and write them explicitly when needed. Yang-Mills potential with no gauge group index should
be understood as Aµ ≡ AaµT a.
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Plugging (1.51) into the path integral (1.50) and changing the gauge field A→ Aυ, we get

Z =

∫
DωDAυ eiSδ[G(Aωυ)]∆[Aυ] . (1.55)

Then, choosing υ = ω−1 and using gauge invariance of the measure, action, and the FP deter-
minant, we have

Z =

∫
DωDA eiSδ[G(A)]∆[A] =

(∫
Dω
)∫

DA eiSδ[G(A)]∆[A] , (1.56)

where the factorized quantity
∫
Dω is the infinite (constant) volume of the gauge group, which

we will hide in the normalisation.

We can represent the FP determinant as a Gaussian integral of Grassmann variables, using the
formula

∆[A] =

∫
Dη̄Dη exp

(
−i
∫
d4xη̄aMacη

c

)
, (1.57)

where Mac ≡ �δac + fabcA
bµ∂µ, and Grassmann variables η̄ and η are fermionic fields obeying

bosonic statistics. Being unphysical, they are called (Faddeev-Popov) ghosts.

Next, changing the gauge condition as G(A) = 0→ G(A) = α(x), and averaging over arbitrary
functions α(x) with a properly normalized Gaussian weight, we have

Z =

∫
DADα eiSe−i

∫
d4x(α2/2ξ)δ[G− α]∆[A] . (1.58)

Integrating over α and using (1.57), we arrive at

Z =

∫
DADη̄Dη ei

∫
d4xLG , (1.59)

where

LG = tr

[
−1

4
FµνF

µν − 1

2ξ
G2 − η̄a(�δac + fabcA

bµ∂µ)ηc
]

(1.60)

is the total Lagrangian containing gauge-fixing (recall G = ∂µA
µ) and ghost terms. The pa-

rameter ξ determines choice of a gauge. For example, ξ → 0 corresponds to the Lorenz gauge
∂µA

µ = 0, while ξ = 1 corresponds to the so-called Feynman-’t Hooft gauge which is more
convenient for perturbative calculations.

1.1.5 Interactions and perturbation theory

When coupling constants are small (g � 1, which is true for electroweak interactions, QED, and
some high-energy QCD processes), particle interactions can be treated using time-dependent
perturbation theory, where we expand the ”scattering” matrix, or S-matrix, in a small coupling
constant and calculate approximate ”scattering” amplitudes. We use quotation marks on the
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word ”scattering” since in QFT particles can not only scatter, but also transform and decay
into one-another, as far as conservation laws allow.

We introduce a small interaction term V as a perturbation to the (Schrödinger) Hamiltonian,

H = H0 + V , (1.61)

where H0 is the unperturbed (free) Hamiltonian. In free QFT we prefer to work in Heisen-
berg picture where time dependence is assigned to operators, while state vectors are time-
independent. The relation between the Schrödinger picture and Heisenberg picture states
(|ΩS(t)〉 and |ΩH〉 respectively) is

|ΩS(t)〉 = e−iHt|ΩH〉 , or |ΩH〉 = eiHt|ΩS(t)〉 , (1.62)

where e−iHt is the unitary time-evolution operator. When we add interactions, it becomes
convenient to work in the so-called interaction picture, where we introduce the (interaction
picture) states |ΩI(t)〉. In analogy with (1.62) we express |ΩI(t)〉 in terms of |ΩS(t)〉:

|ΩI(t)〉 = eiH0t|ΩS(t)〉 , (1.63)

Unlike the Heisenberg states, the interactions picture states are time-dependent. This is because
we are not using the full Hamiltonian anymore, H0 6= H.

Taking time derivative of (1.63) we see that

i
d

dt
|ΩI(t)〉 = i

d

dt
(eiH0t|ΩS(t)〉) = eiH0t

(
i
d

dt
−H0

)
|ΩS(t)〉 . (1.64)

But from the Schrödinger equation we know that

i
d

dt
|ΩS(t)〉 = H|ΩS(t)〉 , (1.65)

thus (1.64) reads (omitting (t) for simplicity)

i
d

dt
|ΩI〉 = eiH0t(H −H0)|ΩS〉 = eiH0tV |ΩS〉 . (1.66)

Then, using (1.63) this becomes

i
d

dt
|ΩI〉 = V (t)|ΩI〉 , (1.67)

where
V (t) = eiH0tV e−iH0t (1.68)

is a time-dependent perturbation in the interaction picture.

Next, we turn our attention to time evolution of the operators in the interaction picture. In
analogy with the relation between Heisenberg and Schrodinger picture operators, i.e.

φH(t,x) = e−iHtφS(x)eiHt , (here H = H0) (1.69)
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we express interaction picture operators as

φI(t,x) = e−iH0tφS(x)eiH0t , (here H = H0 + V ) . (1.70)

We constructed the interaction picture in such a way that turning off interactions automatically
takes us to the Heisenberg picture,

|ΩI〉|V=0 = |ΩH〉 , φI(x)|V=0 = φH(x) . (1.71)

Remotely before and after an interaction, particles can be described by free asymptotic states

|Ω〉− ≡ |Ω(t→ −∞)〉 , |Ω〉+ ≡ |Ω(t→ +∞)〉 , (1.72)

and the transition between the two states is dictated by the S-operator, Ŝ, as

|Ω〉+ = Ŝ|Ω〉− , (1.73)

where

Ŝ =
n∏
i=1

exp(−iV (ti)δti) , (1.74)

where we divided the timeline between the two asymptotic states into n segments, and transi-
tions between the segments are achieved by exp(−iV (ti)δti) operators. Time ordering of these
transition operators in (1.74) does matter because two operators at different times, ti, in general
do not commute, and we cannot simply put

n∏
i=1

exp(−iV (ti)δti) = exp

(
−i

n∑
i=1

V (ti)δti

)
. (1.75)

We can, however, use the so-called time-ordering operator T which puts everything it acts on
in the right order. Thus, we can write

n∏
i=1

exp(−iV (ti)δti) = T

{
exp

(
−i

n∑
i=1

V (ti)δti

)}
, (1.76)

or taking a continuous limit, δt→ 0 and n→∞,

Ŝ = T

{
exp

(
−i
∫ +∞

−∞
V (t)dt

)}
. (1.77)

From (1.73) we infer the S-matrix which is built from the elements

Sba ≡ +〈Ωb|Ŝ|Ωa〉− , (1.78)

which encode the probability amplitudes of processes taking |Ωa〉− to |Ωb〉+.
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When V (t) is small, we can expand the S-operator in Taylor series,

Ŝ = 1 +
∞∑
n=1

(−i)n

n!
T

{∫
V (t1)dt1

∫
V (t2)dt2...

∫
V (tn)dtn

}
. (1.79)

In terms of Hamiltonian (or Lagrangian) density H (L), the interaction Hamiltonian V (t) is
written as

V (t) =

∫
d3xHI = −

∫
d3xLI , (1.80)

where HI and LI are interactions parts of Hamiltonian and Lagrangian densities, respectively.

It is convenient to define the M - and T -matrices as

Sba = δba − iMba(2π)4δ4(pb − pa) , (1.81)

Sba = δba − iTba2πδ(Eb − Ea) , (1.82)

where Mba and Tba are the probability amplitudes for the transition from distinct a to b states.
In the first case the 4-momentum (p) conserving delta-function is factorized, while in the second
case only the energy (E) conserving delta function is factorized.

Let us now use an example of the QED scattering process e+e− → e+e−, to be more specific.
The corresponding interaction Lagrangian is

LI = −eψ̄eγµψeAµ = −HI . (1.83)

Then the initial (|a〉) and final (|b〉) states are (using the decomposition of a Dirac spinor
(1.24)(1.25) but unpolarized)

|a〉 = c†1d
†
2|0〉 = |p1, p2〉 , (1.84)

|b〉 = c†3d
†
4|0〉 = |p3, p4〉 , (1.85)

where states are labeled by 4-momenta pi, with i = 1, 2, 3, 4, of the initial and final particles.
Labels 1, 2 are assigned to the initial positron and electron, while 3, 4 - final positron and
electron, respectively. The 4-momentum conservation law yields

p1 + p2 = p3 + p4 . (1.86)

We will be interested in the physical quantities called decay rates (or decay widths) and cross-
sections of the process, which are closely related to each other. The decay rate is the probability
of the process per unit time, and it is not Lorentz-invariant. The cross-section, on the other
hand, is Lorentz-invariant, and is defined as

Cross-section =
decay rate

incident flux of particles
. (1.87)

The cross-section is a function of the products pi · pj, where i 6= j because p2
i = −m2

i gives no
information about kinematics of the process. Taking into account the 4-momentum conservation
(1.86), which eliminates one degree of freedom, we can construct 3 independent scalars out of
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pi. It is customary to choose the following combinations,

s ≡ −(p1 + p2)2 , t ≡ −(p1 − p3)2 , u ≡ −(p1 − p4)2 , (1.88)

called Mandelstam variables.

When choosing a reference frame, there are two commonly used ones - center-of-mass (CM)
frame, and the ”lab” frame. CM frame is defined by p1 = −p2, while in the lab frame p1 = 0
and E1 = m1.

For two-body scattering in the CM frame, the differential decay rate dΓ and differential cross-
section dσ are related to the amplitude Mba as

dΓ(a→ b) =
|Mba|2

4E1E2V
(2π)4δ4(pa − pb)

∏
b

d3pb
(2π)32Eb

, (1.89)

dσ(a→ b) = |Mba|2
(2π)4δ4(pa − pb)

4
√

(p1p2)2 −m2
1m

2
2

∏
b

d3pb
(2π)32Eb

, (1.90)

where the index b in the product takes values b = 3, 4 denoting the two final state particles,
and V is the volume of the box in which the process takes place.

Now we are left with the calculation of scattering amplitude Mba from S-matrix element Sba,

Sba = 〈0|d4c3Ŝc
†
1d
†
2|0〉 . (1.91)

Expanding S-operator (using (1.83)) and leaving only the leading term we have

Ŝ = T

(
−ie

∫
d4xAµψ̄eγ

µψe

)2

+O(e4) , (1.92)

where all the lower-order terms vanish since unpaired creation (annihilation) operators in (1.91)
commute with everything on their left (right) side, and annihilate the vacuum. Omitting
technical details (which can be found in [4, 3, 5], for example) the result in terms of Mba reads

Mba = Mba(s) +Mba(t) , (1.93)

where

Mba(s) = e2(v̄1γ
µu2)

ηµν
(p1 + p2)2

(ū4γ
νv3) , (1.94)

Mba(t) = −e2(v̄1γ
µv3)

ηµν
(p1 − p3)2

(ū4γ
νu2) . (1.95)

In order to simplify calculations, Feynman introduced a technique of using diagrams to represent
expansion terms in the amplitude. Each term is divided into several parts, each of which is
assigned a line (including loops) or a vertex in the corresponding Feynman graph. External
lines represent incoming and outgoing particles. Depending on the spin of a particle there is
a corresponding factor as shown in Table 1.1. Possible types of internal lines, or propagators,
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Particle Feynman graph line Incoming line Outgoing line

Spin-0 1 1

Spin-1
2

u(p, λ) ū(p, λ)

Spin-1
2

(antiparticle) v̄(p, λ) v(p, λ)

Spin-1 ε(p, λ) ε∗(p, λ)

Table 1.1: Expressions for external lines

Spin-0 −i
∫

d4p

(2π)4

1

p2 +m2 − i0

Spin-1
2

−i
∫

d4p

(2π)4

−i/p+m

p2 +m2 − i0

Spin-1 (Rξ gauge) −i
∫

d4p

(2π)4

ηµν + (ξ − 1) pµpν
p2+ξm2

p2 +m2 − i0

Table 1.2: Expressions for internal lines (propagators)

and their expressions are listed in Table 1.2, where the term −i0 in the denominator represents
small imaginary shift to avoid poles during integration. The situation is a bit more complicated
with vertices, since there are many different types of them in the Standard Model. For example,
a vertex for the QED interaction γe+e− contributes a factor of

− eγµ(2π)4δ4(pa − pb) , (1.96)

where pa and pb are incoming and outgoing 4-momenta respectively, so that the delta-function
conserves the total 4-momentum of the system. For all possible vertices of the SM interactions
see [5].

Going back to our example (e+e− → e+e−), let us draw the two leading-order diagrams (Figures
1.1 and 1.2) for this process. The time axis conventionally goes from left to right, and while the
arrows on the external lines of electrons coincide with the flow of time, those of positrons are
often drawn pointing backwards in time (although if we label each line by the particles’ names,
we can ignore this convention and draw every arrow on external lines pointing towards future).
So the top-left external line of both diagrams (1.1 and 1.2) represent incoming positron, while
top-right lines represent outgoing positron. Similarly, bottom-left and -right lines stand for
incoming and outgoing electron, respectively. If we are considering only QED, the wiggly line
represents photon. But in the full Standard Model the same diagrams appear with Z boson
propagator as well.
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Figure 1.1: e+e− scattering s-channel di-
agram

Figure 1.2: e+e− scattering t-channel di-
agram

Putting together the Feynman rules we listed above for the diagram in Figure 1.1, we obtain
the S-matrix element (in Feynman-’t Hooft gauge, ξ = 1)

Sba(s) = −ie2

∫
d4k(2π)4δ4(p1 + p2 − k)δ4(k − p3 − p4)(v̄1γ

µu2)
ηµν

k2 − i0
(ū4γ

νv3) , (1.97)

where k is the photon 4-momentum. Then, performing the integration and using (1.81) we find

Mba(s) = e2(v̄1γ
µu2)

ηµν
(p1 + p2)2

(ū4γ
νv3) , (1.98)

called the s-channel amplitude, and the corresponding diagram called the s-channel diagram,
because the Mandelstam variable s = −(p1 + p2)2. Similarly reading off the t-channel diagram
in Figure 1.2, we obtain exactly (1.95). Again, the name t-channel follows from the Mandelstam
variable t = −(p1 − p3)2.

1.1.6 Renormalization

Renormalization is a reparametrization procedure of coupling constants of a theory, with the
aim to eliminate the dependence of the physical quantities, like amplitudes, on the (ultraviolet,
or UV) cut-off scale Λ. Naively, Λ can be taken arbitrarily large, however, it is inevitable that
new physics will appear at some point (e.g. Grand Unification, quantum gravity), and so Λ
should be taken as the corresponding scale. When couplings are renormalized they absorb the
Λ-dependence of physical quantities, and become functions of the ”running” scale - the scale at
which the related physical process takes place. The couplings in the Lagrangian are referred to
as bare couplings. The renormalized couplings are sums of the bare couplings and the infinity
of loop contributions. If a coupling is small, it, of course, makes every subsequent term less and
less significant.

As an example, consider the effective electromagnetic coupling e measured at the scale of the
electron mass me, say, in a QED scattering process. For a tree-level Feynman diagram in Figure
1.3 (left), there is a one-loop diagram with a fermionic loop, called the self-energy diagram. So,
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Figure 1.3

at one-loop order, the aforementioned coupling reads

e2(me) = e2
0 −

e4
0

12π2
log

(
Λ2

m2
e

)
+O(e6

0) , (1.99)

where the first term on the RHS comes from the tree-level diagram (Figure 1.3, left), while the
second term comes from the one-loop self-energy diagram (Figure 1.3, right).

Next, consider a similar scattering process but with a large momentum transfer p2 � m2
e. The

amplitude for this process is proportional to

M ∝ e2
0 −

e4
0

12π2
log

(
Λ2

p2e−5/3

)
+O(e6

0) . (1.100)

When substituting (1.99), and replacing e4
0 with e4(me) (the difference is of higher order and

can be neglected), Λ-dependence is cancelled because the logarithm term from (1.99) enters
with the opposite sign.

We can generalize the expression (1.99) for e2 at arbitrary (”running”) scale µ,

e2(µ) = e2
0 −

e4
0

12π2
log

(
Λ2

µ

)
+O(e6

0) , (1.101)

and, in order to see how e2 runs with µ, substitute e2
0 from (1.99). We obtain

e2(µ) = e2(me)−
e4(me)

12π2
log

(
m2
e

µ

)
+O(e6(me)) , (1.102)

and further generalize it by differentiating with respect to µ2 to get

µ2de
2(µ)

µ2
=
e4(me)

12π2
+O(e6(me)) . (1.103)

The quantity µ2 de
2(µ)
µ2
≡ β(e) is called the renormalisation group beta function.

The beta functions for the SM interactions (i = 1, 2, 3 for U(1)Y , SU(2)L, SU(3)C respectively)
read

βi(g) = bi
g4
i

12π2
, (1.104)
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Ga
µ (8,1, 0)

W i
µ (1,3, 0)

Bµ (1,1, 0)

Table 1.3: SM gauge bosons

with

b1 =
41

10
, b2 = −19

6
, b3 = −7 , (1.105)

and gi - coupling constants. Computation of bi is rather technical, but note that b1 is positive
and b2, b3 are negative, which result in different behaviour of couplings: α1 decreases at higher
energies while α2 and α3 increase. This results in asymptotic freedom in QCD, in particular.

The general solution of (1.103), in terms of αi ≡ g2
i /4π and with me yet again generalized by

µ0, reads

α−1
i (µ) = α−1

i (µ0) +
bi
3π

log

(
µ2

0

µ2

)
, (1.106)

and is referred to as Renormalization Group Equations. They define running of the couplings.

1.2 Standard Model particles

The three forces of the Standard Model (SM) - electromagnetic, weak, and strong - are described
by a gauge theory based on the combined SU(3)c × SU(2)L × U(1)Y gauge group, where
SU(3)c corresponds to QCD (c for colour), and SU(2)L×U(1)Y corresponds to the electroweak
interaction. Subscript L stands for ”left”, since only left-chiral fermions transform non-trivially
under SU(2)L. More precisely, they form SU(2)-doublets, while right-chiral fermions are SU(2)-
singlets. Subscript Y denotes so-called hypercharge, to distinguish it from the electric charge.
While SU(3)c symmetry is exact, electroweak symmetry is spontaneously broken as SU(2)L ×
U(1)Y → U(1)em, where U(1)em is a gauge group of electromagnetic interaction, the coupling
constant of which is the electric charge. U(1)em symmetry is a combination of U(1)Y and the
U(1) group sitting inside SU(2)L.

Gauge boson content of the SM consists of 8 SU(3)c gauge bosons - gluons Ga
µ, transforming as

octet under the corresponding gauge group; 3 SU(2)L (sometimes called ”weak”) gauge bosons
W i
µ, transforming as triplet; and the U(1)Y gauge boson Bµ. We use indices a, b, c = 1, ..., 8

for SU(3)c group, and i, j, k = 1, 2, 3 for SU(2)L. Transformation properties of the gauge
bosons under SU(3)c × SU(2)L × U(1)Y are summarized in Table 1.3. The first number in the
parentheses stands for SU(3)c multiplicity, second one - for SU(2)L multiplicity, and the last
one is hypercharge Y .

Fermionic content consists of ”fundamental” spin-1/2 particles which can be divided into leptons
and quarks. Leptons are defined as fermions that are SU(3)c singlets, i.e. that don’t participate
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in strong interactions. They are: electron e, muon µ, tau lepton τ , and associated neutrinos
νe, νµ, ντ . Quarks, on the other hand, are fermions that do carry colour charge and interact
strongly. However, unlike leptons, at low energies they are only found in bound colour-neutral
states - baryons (combination of 3 quarks) and mesons (combination of quark and anti-quark).
There are six quark ”flavours”: up u, down d, strange s, charm c, top t, and bottom b. Each
of them carry one of the three colour charges conventionally denoted r (red), g (green), and
b (blue). Quarks and leptons can also be grouped into 3 generations, with each successive
generation essentially being just a heavier version of the previous generation with the same
quantum numbers. So, the three generations of leptons are e and νe, µ and νµ, τ and ντ .
And for quarks - u and d, s and c, t and b. Interestingly, members of each generation of both
quarks and leptons differ by one unit of electric charge. For example, e has an electric charge
Q(e) = −1, while Q(νe) = 0; similarly Q(u) = +2/3 and Q(d) = −1/3.

In the Standard Model it is convenient to use Weyl or Majorana spinors to represent left- and
right-chiral 4 components of Dirac spinors, since they transform differently under SU(2)L. The
Dirac spinor of the electron (and its heavier cousins muon and tau) can be decomposed to left
and right Weyl spinors as

e =

(
eL
eR

)
. (1.107)

Then to translate this into the language of Majorana spinors, we define (in the notation of [5])

E =

(
eL

iσ2e
∗
L

)
, E =

(
−iσ2e

∗
R

eR

)
, (1.108)

where E and E are Majorana spinors containing left and right Weyl spinors respectively, and
σ2 is the second Pauli matrix. Now, using projection operators (see appendix) PL and PR, it is
easy to see that

e = PLE + PRE . (1.109)

Left-chiral electron (mu, tau) E and the electron (mu, tau) neutrino ν (which has only left-chiral
component) form an SU(2)L doublet L:

Lm =

(
ν
E

)
m

, (1.110)

where we use the index m = 1, 2, 3 to distinguish between the three generations. E is an
SU(2)L-singlet. For left-chiral quark doublet we have

Qm =

(
U
D

)
m

, (1.111)

while the right-chiral singlets are Um and Dm. Here U and U stand for up-type quarks u, c, t; D
and D stand for down-type quarks d, s, b. Transformation properties of leptons and quarks are
summarized in Table 1.4. Bar over a bold number means complex-conjugate representation.
The electric charge is defined simply as a sum Q = T3 + Y , where T3 is the eigenvalue of the
third SU(2)L generator called (third component of) isospin.

4We sometimes refer to left- and right-chiral (Weyl) spinors just as ”left” and ”right” for simplicity.
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PLLm (1,2,−1/2) PRLm (1,2,+1/2)

PLEm (1,1,+1) PREm (1,1,−1)

PLQm (3,2,+1/6) PRQm (3̄,2,−1/6)

PLUm (3̄,1,−2/3) PRUm (3,1,+2/3)

PLDm (3̄,1,+1/3) PRDm (3,1,−1/3)

Table 1.4: SM fermions

The last missing piece of the Standard Model that has been experimentally confirmed [15] is
the Higgs boson - the only ”fundamental” scalar in the SM. It transforms as (1,2,+1/2) (while
it’s conjugate as (1,2,−1/2)), i.e. as an SU(2)L-doublet,

φ =

(
φ+

φ0

)
, (1.112)

with electrically charged component φ+ and neutral component φ0.

Now we are ready to write down the Standard Model Lagrangian,

L = −(Dµφ)†(Dµφ)− 1

2
L̄m /DLm −

1

2
Ēm /DEm −

1

2
Q̄m /DQm −

1

2
Ūm /DUm

−1

2
D̄m /DDm −

1

4
Ga
µνG

aµν − 1

4
W i
µνW

iµν − 1

4
BµνB

µν − g2
3θ3

64π2
εµνρσG

aµνGaρσ

− g
2
2θ2

64π2
εµνρσW

iµνW iρσ − g2
1θ1

64π2
εµνρσB

µνBρσ − V (φ, φ†)

−(yemnL̄mPREnφ+ yumnQ̄mPRUnφ̃+ ydmnQ̄mPRDnφ+ h.c.) , (1.113)

where φ̃ ≡ iσ2φ
∗; yfmn, with f = e, u, d, are Yukawa couplings (scalar-spinor), and V (φ, φ†) is

the Higgs potential,
V = −µ2φ†φ+ λ(φ†φ)2 , (1.114)

with real parameters µ and λ satisfying µ2 > 0 (for spontaneous electroweak symmetry break-
ing) and λ > 0 (for stability). The covariant derivatives depend on the objects they act on as
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follows:

Dµφ = ∂µφ− ig2W
i
µT

iφ− i

2
g1Bµφ , (1.115)

DµLm = ∂µLm +

(
−ig2W

i
µT

i +
i

2
g1Bµ

)
PLLm +

(
ig2W

i
µT

i∗ − i

2
g1Bµ

)
PLLm , (1.116)

DµEm = ∂µEm + ig1BµPREm − ig1BµPLEm , (1.117)

DµQm = ∂µQm +

(
−ig3G

a
µT

a − ig2W
i
µT

i − i

6
g1Bµ

)
PLQm

+

(
ig3G

a
µT

a∗ + ig2W
i
µT

i∗ +
i

6
g1Bµ

)
PRQm ,

(1.118)

DµUm = ∂µUm +

(
−ig3G

a
µT

a − 2i

3
g1Bµ

)
PRUm +

(
ig3G

a
µT

a∗ +
2i

3
g1Bµ

)
PLUm , (1.119)

DµDm = ∂µDm +

(
−ig3G

a
µT

a +
i

3
g1Bµ

)
PRDm +

(
ig3G

a
µT

a∗ − i

3
g1Bµ

)
PLDm , (1.120)

where T a = λa/2 with Gell-Mann matrices λa, and T i = σi/2 with Pauli matrices σi.

The so-called θ-terms (the terms including θ1, θ2, θ3) are total derivatives, and do not contribute
to classical equations of motion. They are non-perturbative (topological) terms, which are
important for CP violation 5.

The reason we do not introduce explicit mass terms for gauge bosons and fermions is that it
would break gauge invariance. In the following section we introduce a mechanism, which can
give masses to the aforementioned particles, via spontaneous symmetry breaking.

1.3 Spontaneous electroweak symmetry breaking

Mass terms for gauge bosons and fermions in the Lagrangian (1.113) are not allowed, as they
would break gauge symmetry. But we know experimentally that the weak force is short-ranged
(and does not exhibit confinement, unlike QCD), so that it must be mediated by a massive gauge
boson. Furthermore, quarks and leptons are also found to be massive. A way to add masses to a
theory while keeping the Lagrangian gauge invariant is to break gauge symmetry spontaneously,
which means making the vacuum gauge variant by letting a certain field(s) acquire a non-zero
vacuum expectation value(s) (VEV). Then in the SM the need for a fundamental scalar arises,
because non-zero vev cannot be assigned to spinor and vector fields (that would break Lorentz
symmetry.) With that purpose the Higgs complex scalar field, and the Higgs mechanism were
introduced, by which certain particles acquire masses while preserving gauge symmetry of the
Lagrangian.

We parametrize the Higgs field by choosing the unitary gauge where its upper (charged) com-
ponent vanishes, while the lower (neutral) component is real,

5For more details on topological terms see e.g. [16], or Chapter 11 of [5].
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φ =
1√
2

(
0

υ +H

)
, (1.121)

where υ is the (real constant) vev, and H is the redefined Higgs field with vanishing vev. Then
in vacuum we have

〈φ〉 =
1√
2

(
0
υ

)
, (1.122)

The vacuum defined by this configuration has the residual gauge symmetry SU(3)c × U(1)em.

We now examine the perturbative spectrum of the theory. After inserting (1.121) into the
Lagrangian (1.113) we first consider the term

L ⊃ −(Dµφ)†Dµφ = −1

2
∂µH∂

µH − 1

4
g2

2(υ+H)2W+
µ W

−µ− 1

8
(g2

1 + g2
2)(υ+H)2ZµZ

µ , (1.123)

where W 1
µ and W 2

µ combine as

W±
µ ≡

1√
2

(W 1
µ ∓ iW 2

µ) (1.124)

with respective electric charges Q = ±1, and masses

MW ≡MW± =
1

2
g2υ . (1.125)

Zµ is another, electrically neutral, combination,

Zµ ≡ − sin θWBµ + cos θWW
3
µ , (1.126)

where θW is the Weinberg angle defined as

sin θW ≡
g2√
g2

1 + g2
2

, cos θW ≡
g1√
g2

1 + g2
2

. (1.127)

The mass of Zµ reads

MZ =
1

2

√
g2

1 + g2
2υ =

MW

cos θW
, (1.128)

while the orthogonal field, the photon,

Aµ ≡ sin θWBµ + cos θWW
3
µ (1.129)

is massless.

The mass of the Higgs field (H) itself comes from the potential V which yields

M2
H = µ2 =

1

2
λυ2 , (1.130)
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where the second equality comes from the vacuum condition

V0 = −1

2
µ2υ2 +

1

4
λυ4 = 0 . (1.131)

The fermion mass terms come from Yukawa couplings

L ⊃ − υ√
2

(yemnĒmPREn + yumnŪmPRUn + ydmnD̄mPRDn + h.c.) , (1.132)

where the Higgs VEV picks out specific components of left-chiral doublets. In particular this
leaves neutrinos massless. One can add right-chiral (or right-handed) neutral heavy leptons by
hand to introduce neutrino masses.

The Yukawa mass matrices M f = υyf/
√

2 in general are not diagonal, which they should be if
we want to identify mass eigenstates. We can diagonalize them by six unitary matrices V f

L and
V f
R as

M̃ f =
υ√
2
V f
L

†
yfV f

R , (1.133)

where M̃ f is diagonal. These six unitary matrices are introduced by redefinition of the fermions
as

PLEm = (V e
L)mnPLE ′n , PREm = (V e

R)mnPRE
′
n ,

PLUm = (V u
L )mnPLU ′n , PRUm = (V u

R )mnPRU
′
n , (1.134)

PLDm = (V d
L )mnPLD′n , PRDm = (V d

R)mnPRD
′
n ,

This, in turn, has an interesting effect on the couplings between quarks and W±
µ ,

L ⊃ ig2√
2

[W+
µ ŪmγµPLDm +W−

µ D̄mγµPLUm] . (1.135)

After the redefinitions 6 (1.134) the interaction terms (1.135) become

ig2√
2

[W+
µ VmnŪ ′mγµPLD′n +W−

µ (V†)mnD̄′mγµPLU ′n] , (1.136)

where V ≡ (V u
L )†V d

L is known as Cabbibo-Kobayashi-Maskawa (CKM) matrix. It is a 3 × 3
unitary matrix responsible for mixing between different generations of quarks.

After adding neutrino masses to the SM, their mass terms undergo similar diagonalization
procedure, and the generation-mixing matrix (analogous to CKM) can be defined. It is named
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.

6For U and D we may use the redefinitions involving only VL, since (1.135) involves only PL projectors.
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1.4 Problems of the Standard Model

The Standard Model of particle physics is a remarkably successful theory. It provides an ex-
tremely precise working model of particle interactions at presently available energies. However,
the story does not end here, as the SM has a number of problems and unanswered questions.
Let us mention some of these problems:

• One crucial thing the SM does not include is gravity. The difficulty arises if one tries to
quantise General Relativity, due to the well-known fact that it is non-renormalisable. Of
course one may not care about gravitational effects at scales well below the Planckian
one (MP ≡ (8πG)−1/2 ∼ 1018 GeV). But without the proper theory of quantum gravity,
our picture of the Universe is not complete. There are at least two types of objects out
there, to fully understand which, quantum gravity is necessary – black holes and the ”Big
Bang” singularity.

• The hierarchy problem. Why is there such an enormous gap between the electroweak
scale and the Planck scale? The latter is ∼ 1016 times larger than the former! In the
next chapter we are going to show that the hierarchy problem also leads to extreme fine
tuning of the Higgs mass parameter.

• Another big questions in the SM is the origin of quark and lepton masses (or Yukawa
couplings). In the SM the Yukawa couplings are input parameters, i.e. their values are
put by hand. In the same category is the problem of neutrino masses which are absent
in the SM. Although there is a possible solution to this problem (see-saw mechanism), it
requires the introduction of a new heavy particle.

• Why are there three generations of leptons and quarks? These are basically three copies
of the same particles that differ only in their masses.

• Dark energy. From astronomical observations we know that the visible matter constitutes
only a fraction of the total energy density of the Universe. The total energy density is
dominated by the dark sector which consists of dark energy and dark matter. Dark
energy, in the simplest scenario, is identified with cosmological constant which, in turn,
is assumed to be the vacuum energy. However, observations show that the cosmological
constant (vacuum energy) is 120 orders of magnitude smaller than the expected value in
the SM. This is a very large discrepancy!

• Dark matter. The existence of dark matter poses yet another challenge for the SM. Dark
matter is made of particles of unknown origin, that do not interact with the SM particles
by means other than gravity.

In the next chapter we introduce SUSY and show that it helps resolve some of the men-
tioned problems.
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Supersymmetry and MSSM

This chapter summarises basic facts about supersymmetry, supergravity, and the Minimal Su-
persymmetric Standard Model (MSSM) along the lines of [17, 18, 19].

2.1 Rigid (global) supersymmetry

Supersymmetry originated as a tool for solving some of the problems of the Standard Model.
It first of all addresses the fine-tuning problem. The essence of the problem is that the Higgs
mass receives enormous quantum corrections proportional to the UV cut-off scale Λ. With the
Higgs potential,

V = −µ2φ†φ+
λ

4
(φ†φ)2 , (2.1)

to one-loop order, the measured value of the mass parameter µ is

µ2
meas = µ2 − λΛ2 , (2.2)

where Λ is the UV cut-off. The correction−λΛ2 comes from the diagram (Fig. 2.1) representing
the term proportional to

λ

∫ Λ

d4k
1

k2 −m2
H

. (2.3)

Here mH =
√

2µ is the mass of the Higgs boson. When Λ is at the GUT scale (∼ 1016 GeV)
or at the Planck scale (∼ 1018 GeV), the extremely precise cancellation is needed between the

Figure 2.1: Higgs self-energy correction due to Higgs loop
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Figure 2.2: Higgs self-energy correction due to fermionic loop

Lagrangian parameter µ2 and the correction λΛ2, in order to get the observed value µmeas of
order ∼ 100 GeV.

Now, considering the contribution from the fermionic loop (Fig. 2.2), which is proportional to

− λ2
f

∫ Λ

d4k Tr

(
1

(γµkµ −mf )2

)
, (2.4)

one finds that if λ2
f = λ and mf = mH , the bosonic and fermionic corrections cancel each

other (and do so at all loops)! Thus, the problem can be solved by introducing the fermionic
superpartner of the Higgs boson with the same coupling and mass.

This, of course, is not the only reason to be interested in SUSY. When considering Grand
Unification, and embedding SU(3) × SU(2) × U(1) in a larger simple Lie group, say, SU(5),
the couplings do not exactly unify with the SM beta functions, although they come very close
to each other. If we consider the supersymmetric extension of the SM, the exact unification
can be achieved, which, if coincidental, is quite miraculous.

It should also be mentioned, that supersymmetry is inevitable if one goes even further in
unification, and considers the ”Theory of Everything”, in which case bosons and fermions
should also be unified among other things. And indeed, the only known candidate for such
theory (or rather, a framework) - superstring theory - requires the inclusion of supersymmetry
for its consistency.

2.1.1 Wess-Zumino model

We begin with the simplest supersymmetric theory, the Wess-Zumino model, having only
spinors and scalars.

The free Wess-Zumino Lagrangian is

Lfree = ∂µφ
†
i∂

µφi + ψ̄iiσ̄
µ∂µψi , (2.5)

where the complex scalar field φ is partnered with the Weyl spinor ψ. i = 1, ..., n, where
n represents the number of different fields, and the summation is implied over the repeated
indices. On-shell both fields have 2 real degrees of freedom, but off-shell 2 additional spinor
degrees of freedom will emerge, so we will match them by adding an auxiliary complex scalar
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field F (since we need 2 real bosonic degrees of freedom). The resulting Lagrangian

Lfree = ∂µφ
†
i∂

µφi + ψ̄iiσ̄
µ∂µψi + F †i Fi (2.6)

is invariant with respect to the SUSY transformations:

δξφ = ξψ (2.7)

δξψ = −iσµξ̄∂µφ+ ξF (2.8)

δξF = −iξ̄σ̄µ∂µψ (2.9)

which can be obtained from dimensional analysis and Lorentz-invariance of the transformations.
ξ is the constant parameter of SUSY transformations. On-shell Fi = 0 here.

To build a more general Lagrangian, we add interactions as

Lint = −WiFi −
1

2
Wijψiψj + h.c. , (2.10)

where Wij are some functions of φi and φ†i (i represents flavour). Consistency requires SUSY
transformation of Wij to be proportional to δφ:

− 1

2

∂Wij

∂φk
(ξψk)(ψiψj)−

1

2

∂Wij

∂φ†k
(ξ̄ψ̄k)(ψiψj) . (2.11)

The first term vanishes due to the Fierz identity

ψk(ψiψj) + ψi(ψjψk) + ψj(ψkψi) = 0 , (2.12)

while for the second term there is no such identity and no other term can compensate it. This
means if we want SUSY-invariant Lagrangian, Wij cannot depend on φ† or φ∗ (holomorphicity),
and we have to introduce another scalar field in its place to generate the proper Yukawa sector
(thus, in MSSM we will have 2 Higgs supermultiplets). The same goes for hermitian conjugate
term, W †

ij = W †
ij(φ

†).

SUSY-invariance requires Wi and Wij to be of the form

Wi =
∂W

∂φi
, Wij =

∂2W

∂φi∂φj
. (2.13)

Then, the general renormalisable superpotential takes the form

W = const +
1

2
mijφiφj +

1

6
yijkφiφjφk , (2.14)

where mij corresponds to the mass matrix elements, and yijk - to the Yukawa couplings, both
totally symmetric. W is called the superpotential.
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2.1.2 Superspace and Superfields

We could continue by adding new fields and adjusting the corresponding terms by hand for
SUSY-invariance, but there is a more convenient and generic approach to build a supersym-
metric theory - the superspace formalism.

In the superspace formalism space-time dimensions are complemented with four (in minimal
case) anti-commuting fermionic degrees of freedom θ1, θ̄1, θ2, θ̄2

1 (also known as Grassmann
coordinates). As space-time symmetries constitute Poincare group with the corresponding
Lie algebra, superspace symmetries constitute the so-called super-Poincare group. But the
corresponding algebra is a graded Lie algebra, since fermionic generators obey anti-commutation
relations. So, in N = 1 case the full algebra is

{Qα, Q̄α̇} = iσαα̇
µ∂µ ≡ −σαα̇µPµ, (2.15)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (2.16)

[Pµ, Qα] =
[
Pµ, Q̄α̇

]
= 0 . (2.17)

We identify the generators with differential operators in superspace as

Qα = − i√
2

(
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ

)
, (2.18)

Q̄α̇ =
i√
2

(
∂

∂θ̄α̇
+ iθασµαα̇∂µ

)
. (2.19)

However the choice is not unique, and there are different sets of coefficients in front of each
term that will leave the algebra unchanged. Elements of the algebra act on the functions of
superspace, called superfields. But what we are looking for are the chiral projections of super-
fields, which can be regarded as the SUSY extensions of left- and right- chiral Weyl spinors.

Chiral superfields

To find them, we first construct the algebra of ”super-covariant derivatives” that generates
super-translations in the opposite direction from (2.17), namely,

{Dα, D̄α̇} = −iσαα̇µ∂µ , (2.20)

with

Dα =
∂

∂θα
− iσµαα̇θ̄α̇∂µ, (2.21)

D̄α̇ =
∂

∂θ̄α̇
− iθασµαα̇∂µ . (2.22)

1When dealing with supersymmetry in Weyl-spinor language, we use bar and dagger symbols interchangeably,
e.g. φ† ≡ φ̄.
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Now we can define a chiral superfield by

D̄α̇Φ = 0. (2.23)

The most general solution to (2.23) is

Φ = φ(x)− iθσµθ̄∂µφ(x)− 1

4
θθθ̄θ̄�φ(x)

+
√

2θψ(x) +
i√
2
θθ∂µψ(x)σµθ̄ − θθF , (2.24)

or, if we make a transformation xµ → x′µ = xµ − iθσµθ̄, it reduces to

Φ = φ(x′) +
√

2θψ(x′)− θθF (x′) . (2.25)

Conjugate of the chiral superfield (sometimes called anti-chiral superfield) satisfies

DαΦ̄ = 0, (2.26)

and has the form

Φ̄ = φ†(x) + iθσµθ̄∂µφ
†(x)− 1

4
θθθ̄θ̄�φ†(x)

+
√

2θ̄ψ̄(x)− i√
2
θ̄θ̄θσµ∂µψ̄(x)− θ̄θ̄F † =

= φ†(x′+) +
√

2θ̄ψ̄(x′+)− θ̄θ̄F †(x′+) , (2.27)

where (x′†)µ = xµ + iθσµθ̄.

Chiral superfields contain scalars and spinors, and can be shifted by a constant, since Φ = const
is also a solution to (2.23). A collection of component fields of a chiral superfield is called chiral
(or sometimes scalar) supermultiplet. All the SM fermions and the Higgs field (now two Higgs
fields) are represented as the components of their respective chiral supermultiplets in the MSSM.

In the previous section we defined the superpotential W (φ) as a function of scalar fields only,
and used it in the interaction terms of scalars and spinors. Generalizing the notion of the
superpotential using chiral superfields,

W(Φ) =
1

2
mijΦiΦj +

1

3
yijkΦiΦjΦk , (2.28)

we can arrive at the Wess-Zumino Lagrangian:

LWZ = (Φ̄Φ)|θθθ̄θ̄ + W|θθ + W̄|θ̄θ̄ =

= ∂µφ
†
i∂

µφi + ψ̄iiσ̄
µ∂µψi + F †i Fi −WiFi − F †iW

†
i −

1

2
Wijψiψj −

1

2
(Wijψiψj)

† , (2.29)

where W|θθ means θθ term of W . We can equivalently use
∫
d2θW ≡ W|θθ. The kinetic term

Φ̄Φ ≡ K is also known as canonical Kähler potential.
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Vector superfield

We have yet to generalize the gauge boson sector of the SM. So we define the vector superfield,

V = V̄ , (2.30)

which generally takes the form

V = V̄ = C(x) + iθχ(x)− iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]− i

2
θ̄θ̄[M(x)− iN(x)]

−θσµθ̄Aµ(x) + iθθθ̄

(
λ̄(x) +

i

2
σ̄µ∂µχ(x)

)
− iθ̄θ̄θ

(
λ(x) +

i

2
σµ∂µχ̄(x)

)
+

1

2
θθθ̄θ̄

(
D(x) +

1

2
�C(x)

)
, (2.31)

where the vector field Aµ(x), and the scalar fields C(x), D(x), M(x), N(x) are all real valued.
However, not all the fields are physical. Gauge invariance on superfield level introduces new
redundant degrees of freedom which can be eliminated by appropriate gauge fixing. Gauge
transformation of the vector superfield is

V ′ = V + Λ + Λ̄, (2.32)

where Λ and Λ̄ are chiral and anti-chiral superfields which can be chosen specifically to cancel
unphysical fields (the choice is called Wess-Zumino, or WZ gauge), leaving

V ′ = θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) . (2.33)

Now it is clear, that λ(x) is the superpartner of the gauge field Aµ(x), thus referred to as the
gaugino. D(x) is the auxiliary scalar field providing one off-shell bosonic degree of freedom. As
one would expect, Wess-Zumino gauge fixing breaks supersymmetry (but preserves ordinary
gauge invariance).

The superfield-generalized field strength is given by 2

Fα = −1

4
D̄D̄DαV

x→x′
= −iλα(x′) + θαD(x′) +

i

2
(θσµσ̄ν)αFµν(x

′)− θθ(σµ∂µλ̄(x′))α , (2.34)

where Fµν = ∂µAν − ∂νAµ. Since Fα is chiral, D̄α̇Fα = 0, there is also the anti-chiral field
strength,

F̄α = −1

4
DDD̄α̇V

x→x′+
= iλ̄α̇(x′+)+ θ̄α̇D̄(x′+)− i

2
(σµσ̄ν θ̄)α̇Fµν(x

′+)− θ̄θ̄(∂µλ(x′+)σµ)α̇ , (2.35)

2Sometimes, for the sake of simplicity, we omit (x) for the component fields, e.g. Aµ ≡ Aµ(x). But the x′-
and x′+-dependence is always given explicitly.

36



Chapter 2. Supersymmetry and MSSM

satisfying DαF̄α̇ = 0. With these definitions we can write down the free vector supermultiplet
Lagrangian:

L =
1

4
(FαFα)|θθ +

1

4
(F̄α̇F̄ α̇)|θ̄θ̄ = −1

4
FµνF

µν + λ̄iσ̄µ∂µλ+
1

2
D2 . (2.36)

2.1.3 Supersymmetric abelian gauge theory

To construct gauge theory in terms of superfields, we have to find gauge invariant interactions
between chiral and vector superfields. First, we introduce the U(1) gauge transformation of the
matter chiral superfield:

Φ→ eiΛΦ, Φ† → Φ†e−iΛ
†
, (2.37)

where Λ and Λ† are chiral and anti-chiral superfields playing the roles of local parameters.

Vector superfields transform as in (2.32), but with proper normalization:

V → V − i

2g
(Λ− Λ†), (2.38)

where g is the coupling constant of the theory. The Kähler potential Φ†Φ is not invariant with
respect to transformations (2.37), (2.38), so we replace it by Φ†e2gV Φ.

In the abelian case there is another gauge invariant term, called a Fayet-Iliopoulos term,

2ξgV |θθθ̄θ̄ = ξgD, (2.39)

with some real constant ξ. The superpotential and the field strength terms remain invariant,
so the total U(1) gauge theory Lagrangian will be

L =
(

Φ†ie
2gqiV Φi + 2ξgV

)∣∣∣
θθθ̄θ̄

+

(
W +

1

4
FαFα

)∣∣∣∣
θθ

+

(
W+ +

1

4
F̄α̇F̄ α̇

)∣∣∣∣
θ̄θ̄

, (2.40)

for arbitrary number of chiral superfields, where qi is the U(1) charge of the corresponding Φi.
Rewriting it in terms of the component fields, we have

L = (Dµφi)
†Dµφi + ψ̄iiσ̄

µDµψi + F †i Fi −WiFi − F †iW
†
i −

1

2
Wijψiψj −

1

2
(Wijψiψj)

†

−1

4
FµνF

µν + λ̄iσ̄µ∂µλ+
1

2
D2

+gqiDφ
†
iφi +

√
2igqiφ

†
iλψi −

√
2igqiψ̄iλ̄φi + αgD, (2.41)

where Dµ = ∂µ + igAµ is the ordinary gauge covariant derivative, and Wi ≡ ∂W
∂φi

; Wij ≡ ∂2W
∂φi∂φj

are as in (2.13). The first line in (2.41) coincides with the Wess-Zumino Lagrangian up to
covariant derivative, the second line is the free vector supermultiplet Lagrangian, and the last
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line is due to supersymmetry.

2.1.4 Supersymmetric non-abelian gauge theory

In non-abelian gauge theories V = V aT a and Λ = ΛaT a are matrices, and the generators T a

belong to Lie algebra [
T a, T b

]
= ifabcT

c. (2.42)

Because V and Λ do not commute, the Kähler potential (Φ†ie
2gqiV Φi) ceases to be gauge in-

variant. But this time, instead of changing it, we adjust gauge transformation of the vector
superfield:

e2gV → eiΛ
†
e2gV e−iΛ, (2.43)

which is, in fact, the generalization of (2.38) to non-abelian cases. To make everything consis-
tent, we also have to generalize the superfield strength Fα to

Fα = FaαT a = −1

4
D̄D̄e−2gVDαe

2gV . (2.44)

The total Lagrangian of a non-abelian gauge theory is then

L = Φ†ie
2gVijΦj|θθθ̄θ̄ +

(
W +

1

16g2
Tr(FαFα)

)∣∣∣∣
θθ

+

(
W+ +

1

16g2
Tr(F̄α̇F̄ α̇)

)∣∣∣∣
θ̄θ̄

, (2.45)

with no Fayet-Iliopoulos term, since it is not gauge invariant in non-abelian case. Rewriting
(2.45) explicitly, we have

L = (Dµφi)
†Dµφi + ψ̄iiσ̄

µDµψi + F †i Fi −WiFi − F †iW
†
i −

1

2
Wijψiψj −

1

2
(Wijψiψj)

†

−1

4
F a
µνF

aµν + λ̄aiσ̄µDµλ
a +

1

2
DaDa

+gDaφ†iT
a
ijφj +

√
2igφ†iλ

aT aijψj −
√

2igψ̄iλ̄aT
a
ijφj. (2.46)

2.2 Supergravity

Up to this point we were considering rigid, or global, supersymmetry where the algebra (2.17)
is the same at every point in space-time. This is legitimate when curvature of space-time is very
small, or, in other words, gravitational effects can be neglected. When gravity comes into play,
the translation generator becomes space-time dependent, Pµ = Pµ(x), and space-time geometry
becomes dynamical. Thus supergravity = local (or gauged) supersymmetry.
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2.2.1 Superfields in curved superspace

There are two main approaches in formulating a supergravity theory. One of them uses super-
conformal calculus to build a Lagrangian with redundant degrees of freedom, and then fix them
to obtain Poincare supergravity. Here we are going to use the second (equivalent) approach
- the superspace formalism, just as we did in the case of rigid SUSY. However, superspace
formulation of supergravity is more involved since Grassmann coordinates effectively become
functions of space-time, θ = θ(x), θ̄ = θ̄(x). The full treatment can be found in [19], here we
will merely review the main results.

In analogy with how Einstein’s gravity is obtained from space-time differential forms, Poincare
supergravity can be obtained from differential forms in superspace. Derived in such a way
components of superspace vielbein, torsion, and curvature have both tensor and spinor indices.
E.g. components of the superspace vielbein are EA

M , withM,N = (m,µ, µ̇) and A,B = (a, α, α̇).
Here m,n, .. are space-time Einstein indices, while µ, µ̇, .. are spinorial Einstein indices. a, b, ..
and α, α̇, .. are space-time and spinorial Lorentz indices, respectively.

The independent components of the super-vielbein, -torsion, and -curvature are determined
by superspace Bianchi identities. These components form the off-shell supergravity multiplet.
Physical components are the space-time vielbein, eam, and the mediator of SUGRA interactions -
the gravitino, ψαm. The so-called old minimal set of auxiliary fields consists of the real vector bm,
and the complex scalar we call M . For the super-vielbein at θ = θ̄ = 0 (we denote |θ=θ̄=0 ≡ |)
we have

EA
M(x, θ, θ̄)| =

 eam(x) 1
2
ψαm(x) 1

2
ψ̄mα̇(x)

0 δαµ 0

0 0 δµ̇α̇

 , (2.47)

EM
A (x, θ, θ̄)| =

 ema (x) −1
2
ψµa (x) −1

2
ψ̄aµ̇(x)

0 δµα 0
0 0 δα̇µ̇

 . (2.48)

In supergravity it is convenient to define component fields of superfields by applying SUGRA
analogs of the differential operators Dα and D̄α̇ (plus an additional operator with space-time
index a), defined as

Dα = Em
α Dm + Eµ

αDµ + Eαµ̇D̄µ̇ , (2.49)

D̄α̇ = Eα̇mDm + Eα̇µDµ + Eα̇
µ̇ D̄µ̇ , (2.50)

Da = Em
a Dm + Eµ

aDµ + Eaµ̇D̄µ̇ . (2.51)

A chiral superfield Φ is then defined as

D̄α̇Φ = 0 , (2.52)
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and its components are

Φ| = A ,

DαΦ| =
√

2ξα ,

DαDβΦ| = −2εαβF , D̄α̇DαΦ| = −2iσαα̇
m(∂mA−

1√
2
ψµmξµ) ,

DαD2Φ| = −4

3

√
2ξαM̄ ,

D2D̄2Φ| = 16DmD̂mA− 32

3
ibmD̂mA− 8

√
2ψmD̂

mξ +
32

3
M̄F̄ +

8

3

√
2ψmnσ

mnξ

−8

3

√
2iψmξb

m +
4

3

√
2iψmσ

mσ̄nξbn .

(2.53)

where A and ξα are physical complex scalar and spinor fields, while F is an auxiliary complex
scalar. We define D2 ≡ DαDα, and D̄2 ≡ D̄α̇D̄α̇ (see appendix). D̂mA ≡ ∂mA− ψµmξµ/

√
2 and

D̂mξα ≡ Dmξα−ψmαF/
√

2−iψ̄β̇mσmαβ̇D̂mA. Similarly, the vector superfield (V = V̄ ) components
are

V | = C ,

DαV | = iχα , D̄α̇V | = −iχ̄α̇ ,
D2V | = 2X , D̄2V | = 2X̄ ,

D̄α̇DαV | = σαα̇
m(Bm − i∂mC) ,

Wα| ≡ −
1

4
(D̄2 − 8R)DβV | = −iλα , W̄α̇| = iλ̄α̇ ,

DαW β| = 1

2
σmαα̇σ̄

α̇βn(DmDnC + iFmn) + δβα(D +
1

2
�C) ,

(2.54)

where � ≡ DmDm. As we saw earlier (for global SUSY), in the case of a massless vector
multiplet, the real scalars C and D, spinor χα, and complex scalar X 3 are auxiliary (non-
propagating) fields, whereas the spinor λα and vector Bm, whose field strength is

Fmn ≡ ∂mBn − ∂nBm − [Bm, Bn] ,

are the dynamical components. The auxiliary fields, except D, can be gauged away by choosing
WZ gauge,

V | = DαV | = D̄α̇V | = DαDβV | = D̄α̇D̄β̇V | = 0 . (2.55)

In the massive case we cannot use WZ gauge, and C and χα become physical, acquiring kinetic
terms.

Expressions in (2.53) and (2.54) are not all independent, of course. Some of them are related
by the commutation relations for the D-operators,[

DADB − (−1)abDBDA
]
V C = (−1)d(a+b)V DRABD

C − TABDDDV C , (2.56)

3Comparing this to (2.31), it can be seen that X and X̄ here correspond to N − iM and N + iM in (2.31)
where M,N are real
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where a, b, c take the value one, whenever A,B,C are spinor indices, and zero, whenever A,B,C
are tensor (vector) indices. The components of the curvature R and the torsion T can be found
in [19]. One can also use (2.56) to compute higher-order terms of the superfields Φ and V .

2.2.2 Chiral theory

The Lagrangian for the pure supergravity reads

LSG = −6

∫
d2ΘER+ h.c. , (2.57)

where Θ is the redefined spinor variable having a Lorentz index (the old θ and θ̄ had Einstein
indices). Thus, we can write ∫

d2Θ = −1

4
D2 . (2.58)

Component-wise, we find

e−1LSG = −1

2
R− 1

3
M̄M +

1

3
bmb

m +
1

2
εklmn(ψ̄kσ̄lD̂mψn − ψkσlD̂mψ̄n) , (2.59)

where spinor indices are supressed, and D̂mψn ≡ ∂mψ
α
n+ψβnωnβ

α. Equations of motion eliminate
bm- and M -terms, leaving simply the Einstein-Hilbert plus Rarita-Schwinger action.

We add chiral superfields by introducing a real function, K(Φi,Φi), called a Kähler potential;
and a holomorphic superpotential W(Φi),

L =

∫
d2Θ2E

[
3

8
(D̄2 − 8R)e−K/3 +W

]
+ h.c. . (2.60)

The Kähler potential gives rise to the metric (here at the lowest order in θ, θ̄) Kij∗ ≡ ∂2

∂Ai∂Āj
K

on a so-called Kähler manifold, with complex coordinates Ai, Āi. This metric is invariant with
respect to Kähler transformations,

K(Φi, Φ̄j)→ K(Φi, Φ̄j) + f(Φi) + f̄(Φ̄j) , (2.61)

where f and f̄ are holomorphic and antiholomorphic functions of the chiral superfields. La-
grangian (2.60) is invariant under a Kähler transformation, if it is accompanied by the Weyl
transformation of spinors,

ξi → exp

(
i

2
Imf

)
ξi , ψm → exp

(
− i

2
Imf

)
ψm , (2.62)

and the transformation of the superpotential,

W → e−fW . (2.63)
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The invariance of the Lagrangian under these transformations implies the invariance under
rigid isometries of the Kähler manifold. So, when dealing with non-trivial Kähler manifolds,
the Kähler-Weyl invariance is required in order the Lagrangian be well defined globally.

The component expansion of (2.60) is in the Jordan frame, which means that the scalar cur-
vature is multiplied by a function of scalar fields, specifically exp(−K/3) at θ = θ̄ = 0. The
transition to the Einstein frame is achieved by the Weyl rescaling

eam → eK/6eam , (2.64)

which leads to the transformation of the scalar curvature as

ee−K/3R→ eR− 1

6
e∂mK∂

mK . (2.65)

Weyl rescaling is followed by the spinor redefinitions for canonical normalization,

ξi → e−K/12ξi , ψm → eK/12ψm , (2.66)

and a shift of the gravitino,

ψm → ψm +
i
√

2

6
σmξ̄iKi∗ . (2.67)

Finally, after eliminating auxiliary fields and Weyl-rescaling, the Lagrangian (2.60) leads to

e−1L = −1

2
R−Kij∗∂mAi∂

mĀj − iKij∗ ξ̄
jσ̄mDmξi + εklmnψ̄kσ̄lD̃mψn

− 1√
2
Kij∗∂nĀ

jξiσmσ̄nψm −
1√
2
Kij∗∂nA

iξ̄jσ̄mσnψ̄m

+
1

4
Kij∗(iε

klmnψkσlψ̄m + ψmσ
nψ̄m)ξiσnξ̄

j − 1

8
(Kij∗Kkl∗ − 2Rij∗kl∗)ξ

iξkξ̄j ξ̄l

−eK/2
{
Wψaσ

abψb +Wψ̄aσ̄
abψ̄b +

i√
2
DiWξiσ

aψ̄a +
i√
2
Di∗Wξ̄iσ̄

aψa

+
1

2
[Wij +KijW +KiDjW +KjDiW −KiKjW −Kkl∗Kijl∗DkW ]ξiξj

+
1

2
[W ij +Ki∗j∗W +Ki∗Dj∗W +Kj∗Di∗W −Ki∗Kj∗W −Kk∗lKi∗j∗lDk∗W ]ξ̄iξ̄j

}
−eK(Kij∗DiWDj∗W − 3|W |2) ,

(2.68)

where DiW ≡ Wi +KiW , Kij∗ ≡ K−1
ij∗ , and

Dmξi ≡ ∂mξ
i + ξiωm + Γijk∂mA

jξk − 1

4
(Kj∂mA

j −Kj∗∂mĀ
j)ξi , (2.69)

D̃mψn ≡ ∂mψn + ψnωm +
1

4
(Kj∂mA

j −Kj∗∂mĀ
j)ψn , (2.70)

42



Chapter 2. Supersymmetry and MSSM

with the space-time spin connection ωm, the Christoffel symbols Γijk, and curvature tensor
Rij∗kl∗ of the Kähler manifold. The last line of (2.68) is the scalar potential,

V = eK(Kij∗DiWDj∗W − 3|W |2) . (2.71)

Because of the Kähler invariance, only the invariant function

G ≡ K + logW + logW (2.72)

is relevant, in terms of which the scalar potential has the form

V = eG(Kij∗GiGj∗ − 3) . (2.73)

2.2.3 Gauge theory

A supersymmetric gauge theory is constructed by gauging holomorphic isometries on a given
Kähler manifold. They are generated by Killing vectors,

Y ā = Y iā ∂

∂Ai
, Ȳ ā = Ȳ iā ∂

∂Āi
, (2.74)

which can be defined through Killing potentials Dā - real scalar functions, as

Kij∗Y
iā = −i∂D

ā

∂Āj
, Kij∗Ȳ

jā = i
∂Dā

∂Ai
. (2.75)

Here the ”barred” indices ā, b̄, .. represent the isometry (gauge) group G.

Gauging the isometries of a Kähler manifold leads to an introduction of the gauge superfield in
order to keep the Lagrangian invariant. Specifically, we add a counterterm Γ(Φi, Φ̄i, V ) which
compensates the transformation of K, and the superfield strength term representing the vector
(gauge) superfield V as

L =

∫
d2Θ2E

[
3

8
(D2 − 8R)e−

1
3

(K+Γ) +
1

16g2
Hāb̄(W

α)ā(Wα)b̄ +W
]

+ h.c. (2.76)

Here Hāb̄ is a gauge kinetic function, for which we use the simplest choice Hāb̄ = δāb̄.
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The component expansion of the Lagrangian (2.76) in Einstein frame is

e−1L = −1

2
R−Kij∗D̃mAiD̃mĀj −

1

2
g2Dā2 − 1

4
F ā
mnF

mnā − iλ̄āσ̄mD̃mλā

−iKij∗ ξ̄
jσ̄mD̃mξi + εklmnψ̄kσ̄lD̃mψn +

√
2gKij∗(Ȳ

jāξiλā + Y iāξ̄jλ̄ā)

−1

2
gDā(ψmσ

mλ̄ā − ψ̄mσ̄mλā)−
1√
2
Kij∗(D̃nĀjξiσmσ̄nψm + D̃nAiξ̄jσ̄mσnψ̄m)

+
i

4
(ψmσ

abσmλ̄ā + ψ̄mσ̄
abσ̄mλā)(F ā

ab + F̃ ā
ab) +

1

4
Kij∗(iε

klmnψkσlψ̄m + ψmσ
nψ̄m)ξiσnξ̄

j

−1

8
(Kij∗Kkl∗ − 2Rij∗kl∗)ξ

iξkξ̄j ξ̄l +
1

8
Kij∗ ξ̄

jσ̄mξiλ̄āσ̄mλ
ā − 3

16
λāσmλ̄āλb̄σmλ̄

b̄

−eK/2
{
Wψaσ

abψb +Wψ̄aσ̄
abψ̄b +

i√
2
DiWξiσ

aψ̄a +
i√
2
Di∗Wξ̄iσ̄

aψa

+
1

2
[Wij +KijW +KiDjW +KjDiW −KiKjW −Kkl∗Kijl∗DkW ]ξiξj

+
1

2
[W ij +Ki∗j∗W +Ki∗Dj∗W +Kj∗Di∗W −Ki∗Kj∗W −Kk∗lKi∗j∗lDk∗W ]ξ̄iξ̄j

}
−eK(Kij∗DiWDj∗W − 3|W |2) ,

(2.77)

where the field-dependent derivatives are

D̃mAi ≡ ∂mA
i − gBā

mY
iā , (2.78)

D̃mξi ≡ ∂mξ
i + ξiωm + ΓijkD̃mAjξk −

1

4
(KjD̃mAj −Kj∗D̃mĀj)ξi

−gBā
m

∂Y iā

∂Aj
ξj − i

2
gBā

mImf āξi , (2.79)

D̃mψn ≡ ∂mψn + ψnωm +
1

4
(KjD̃mAj −Kj∗D̃mĀj)ψn +

i

2
gBā

mImf āψn , (2.80)

D̃mλā ≡ ∂mλ
ā + λāωm +

1

4
(KjD̃mAj −Kj∗D̃mĀj)λā − gfabcB b̄

mλ
c̄ +

i

2
gB b̄

mImf b̄λā . (2.81)

fabc are structure constants of the gauge group G, and f ā = f ā(Φi) are the parameters of
Kähler transformations due to local isometries.

The full scalar potential in this case is a sum of the so-called F-term potential (the potential
of chiral models),

VF = eK(Kij∗DiWDj∗W − 3|W |2) , (2.82)

and the D-term potential,

VD =
1

2
g2Dā2

. (2.83)

2.3 Minimal Supersymmetric Standard Model

In this section we review the Minimal Supersymmetric Standard Model, or MSSM, which is
obtained by applying N = 1 rigid supersymmetry to the Standard Model in a minimalistic way.
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Chiral Scalar Spinor SU(3)C × SU(2)L × U(1)Y
superfield component component multiplicity

Q (ũL, d̃L) (uL, dL) (3,2, 1
3
)

ū ¯̃uL ≡ ũ†R ūL ≡ (uR)c (3̄,1,−4
3
)

d̄ ¯̃dL ≡ d̃†R d̄L ≡ (dR)c (3̄,2, 2
3
)

L (ν̃eL, ẽL) (νeL, eL) (1,2,−1)

ē ¯̃eL ≡ ẽ†R ēL ≡ (eR)c (1,1, 2)

Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1,2, 1)

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1)

Table 2.1: MSSM chiral superfields

Vector Spinor Vector SU(3)C × SU(2)L × U(1)Y
superfield component component multiplicity

VG g̃ g (8,1, 0)

VW W̃±, W̃ 0 W±, W 0 (1,3, 0)

VB B̃ B (1,1, 0)

Table 2.2: MSSM vector (gauge) superfields

In the MSSM each Standard Model field is placed into a separate superfield, which roughly
doubles the number of particles. The reason SM fermions and bosons cannot be partnered
with each other is that superpartner fields must carry the same SM-charge and transform in
the same representation of a given gauge group. Since this is not the case, and we have yet to
observe superpartners of the SM particles, we conclude that SUSY is broken at higher energy
scale (well beyond 100 GeV).

The chiral superfields of the MSSM are presented in the table 2.1. The bar notation of the
component fields merely denotes anti-particle fields (not Dirac conjugation). Vector superfields
and their components are presented in the table 2.2.

Different supersymmetric models are characterised by their superpotentials. The MSSM super-
potential is

W = Y ij
u ūiQjHu + Y ij

d d̄iQjHd + Y ij
e ēiLjHd + µHuHd . (2.84)

It could be further extended by renormalisable terms that violate baryon (B) and lepton (L)
number conservation (they are not considered fundamental symmetries, and are violated non-
perturbatively). However, the B and L violating terms in the superpotential would lead to
the processes such as proton decay, that are not seen experimentally. To forbid such unwanted
terms in the superpotential, we accommodate the new type of fundamental symmetries, called
R-parity. It imposes the conservation of the following quantity:

R = (−1)3B+L+2s, (2.85)
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where B and L are the baryon and lepton numbers, and s is the spin of the particle. Then, the
SM particles have R = +1, while for their superpartners R = −1.

2.3.1 ”Soft” SUSY breaking terms

There is no ”standard” mechanism for spontaneous breaking of SUSY - different high-energy
theories provide different answers. But regardless of that, we can always do phenomenology,
that is, pick out all the possible explicit breaking terms to build the low-energy model. The
reasonable requirement for these terms would be not to re-introduce divergences to the quantum
theory. Such terms must have positive mass dimension, and are called ”soft” SUSY breaking
terms.

They include, but not limited to, gaugino masses,

M1B̃B̃ +M2W̃
aW̃ a +M3g̃

ag̃a + h.c., (2.86)

squark and slepton masses (3× 3 matrices),

Q̃†m2
q̃Q̃+ ¯̃u†Lm

2
ũ
¯̃uL + ¯̃d†Lm

2
d̃

¯̃dL + ¯̃L†m2
L̃

¯̃L+ ¯̃e†Lm
2
ẽ
¯̃eL, (2.87)

and Higgs scalar masses,

(mhu)
2H†uHu + (mhd)

2H†dHd + bHuHd + h.c. (2.88)

What we have learned from this is that the masses of sparticles break SUSY explicitly, thus,
should be generated by spontaneous SUSY breaking (except the higgsino masses which would
break EW symmetry). Spontaneous breaking of the EW symmetry then gives masses to the
ordinary SM particles.

The ”soft” SUSY breaking terms introduce a number of new parameters that together with the
existing ones reach & 100. However, in the context of the high-energy unification models the
number of the parameters is often vastly reduced.

2.3.2 Spontaneous electroweak symmetry breaking in MSSM

In the SM to spontaneously break EW symmetry, the Higgs potential

V = −µ̃2φ†φ+
λ

4
(φ†φ)2 (2.89)

is introduced, with the requirement µ̃2 > 0, λ > 0 (to avoid confusion, we mark the SM
parameter µ with tilde). In the MSSM, the minus sign in front of µ2 would break SUSY-
invariance, hence, we cannot accommodate the standard Higgs potential and preserve SUSY
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at the same time. In order to spontaneously break the EW symmetry, one has to introduce
explicit SUSY breaking terms (choosing from the ”soft” terms).

The consistent MSSM Higgs potential is

V = (|µ|2 +m2
hu)(|H+

u |2 + |H0
u|2) + (|µ|2 +m2

hd)(|H0
d |2 + |H−d |

2)

+b(H+
u H

−
d −H

0
uH

0
d) + b(H+

u H
−
d −H

0
uH

0
d)†

+
g2 + g′2

8
(|H+

u |2 + |H0
u|2 − |H0

d |2 − |H−d |
2)2 +

g2

2
|H+

u (H0
d)† +H0

u(H−d )†|2. (2.90)

The parameter of the SUSY-invariant term, |µ|2 is positive, while the Higgs masses m2
hu and

m2
hd can bear either sign, but it is required that either (|µ|2 +m2

hu) or (|µ|2 +m2
hd) is negative

for the SSB to occur. The interesting point here is that the quartic self-coupling parameter of
the Higgs scalars is the combination of electroweak couplings, namely, 1

8
(g2 + g′2). In contrast,

in the SM it is a free parameter (λ of (2.89)) 4.

Considering SSB, the charged components H+
u,d and H−u,d cannot develop a VEV, since it would

break electromagnetic U(1)em symmetry. That leaves us with |H0
u| = υu and |H0

d | = υd to
define the Higgs vacuum. The VEVs combine to give masses to W± and Z gauge bosons:

m2
Z =

1

2
(g2 + g′2)(υ2

u + υ2
d),

m2
W =

1

2
g2(υ2

u + υ2
d). (2.91)

2.3.3 Higgs mixing

In the Standard Model there are 4 real degrees of freedom of the Higgs field, 3 of which get
”eaten” by W± and Z bosons, leaving one to become a massive excitation of the field - the Higgs
boson. In the MSSM, Higgs scalars have 2×4 = 8 real degrees of freedom in total. 3 of them get
absorbed into W± and Z as before, but the remaining degrees of freedom now count 5, which
means there are 5 Higgs bosons. After the diagonalization of the mass matrices, the following
mass eigenstates are extracted: first, the massless states, absorbed into the longitudinal modes
of the electroweak bosons,

√
2[sin β · Im(H0

u)− cos β · Im(H0
d)] → Z (2.92)

sin β ·H+
u − cos β · (H−d )† → W+ (2.93)

sin β · (H+
u )† − cos β ·H−d → W− (2.94)

4It should be mentioned that renormalisation of λ drives it to a negative value beyond 1011 GeV. This is yet
another SM problem that is overcome by SUSY!
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where tan β ≡ υu/υd; Next, the 5 massive states are

A0 =
√

2[cos β · Im(H0
u) + sin β · Im(H0

d)] (2.95)

h0 = Re(H0
u)− υu (2.96)

H0 = Re(H0
d)− υd (2.97)

H+ = cos β ·H+
u + sin β · (H−d )† (2.98)

H− = cos β · (H+
u )† + sin β ·H−d . (2.99)

A0, h0 and H0 are electrically neutral, and H+ and H− are the charged Higgs bosons. While
the masses of A0, H0 and H± are unconstrained, the careful treatment [20] puts the upper
limit to the h0 mass mh0 . 140 GeV, which is fully consistent with the SM Higgs boson mass
mH ≈ 125 GeV. However, the recent search at LHC did not reveal any sign of SUSY yet. It
implies that the MSSM may have to be modified by some non-minimal terms, and the SUSY
breaking scale is higher than 10 TeV.

2.3.4 Sparticle mixing

Gluinos are the only gauginos that do not mix with other sparticles to form mass eigenstates
due to the colour symmetry being unbroken. Their masses are coming purely from the ”soft”
SUSY breaking terms mentioned earlier. The electroweak gauginos, and higgsinos, on the other
hand, mix among themselves, forming mass eigenstates of the same quantum numbers.

Electrically neutral mass eigenstates - the neutralinos (χ0) - form from the mixing between B̃,
W̃ 3, H̃0

d and H̃0
u due to the diagonalization of the mass matrix,

M1 0 −mZcβsW mZsβsW
0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβcW −µ 0




B̃

W̃ 3

H̃0
d

H̃0
u



⇒


Mχ0

1

Mχ0
2

Mχ0
3

Mχ0
4




χ0
1

χ0
2

χ0
3

χ0
4

 (2.100)

where sβ ≡ sin β, cβ ≡ cos β, sW ≡ sin θW , cW ≡ cos θW .

Similarly, electrically charged mass eigenstates - the charginos (χ±) - are formed by(
M2

√
2mW sβ√

2mW cβ µ

)(
W̃±

H̃±

)
⇒
(
Mχ1

Mχ2

)(
χ±1
χ±2

)
. (2.101)

So that χ+
i and χ−i have equal masses, Mχi . The mass hierarchies are Mχ0

1
< Mχ0

2
< Mχ0

3
< Mχ0

4

for neutralinos, and Mχ1 < Mχ2 for charginos. The neutralino χ0
1 is the lightest (stable)

supersymmetric particle (LSP) in the MSSM and a good candidate for WIMP dark matter
particle.
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For squarks and sleptons, the mixing is also possible, although is believed to be very small.
Mixing occurs separately between up-type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R), down-type squarks
(d̃L, s̃L, b̃L, d̃R, s̃R, b̃R), charged sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R), and sneutrinos (ν̃e, ν̃µ, ν̃τ ).
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Chapter 3

Grand Unified Theories

In this chapter, supersymmetric Grand Unified Theories (GUTs) are briefly reviewed by fol-
lowing the references [21, 22, 23, 24, 25, 26]

3.1 SU(5) unification

As we mentioned before, in the Standard Model, the couplings do not exactly unify in the
simplest SU(5) scenario. But this is ”cured” in the MSSM, where they exactly unify at MU ∼
1016 GeV, as can be seen in Figure 3.1.

In the SUSY SU(5) the matter (super)fields fit into two representations, 5 and 10,

5m =


d̄r
d̄g
d̄b
e−

νe


L

, 10m =


0 ūb −ūg −ur −dr
−ūb 0 ūr −ug −dg
ūg −ūr 0 −ub −db
ur ug ub 0 −e+

dr dg db e+ 0


L

. (3.1)

Figure 3.1: Running couplings in the SM (left), and those in the MSSM (right).
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The Higgs sector contains 24H which breaks SU(5) to the SM gauge group, and 5H(Hu) and
5H(Hd) which break the EW symmetry. The part of the superpotential responsible for the
breaking of SU(5) is

WSSB = aTr(242
H) + bTr(243

H). (3.2)

To obtain the unbroken SU(3)× SU(2)× U(1), 24H must satisfy

24H = diag

(
4a

3b
,
4a

3b
,
4a

3b
,−2a

b
,−2a

b

)
(3.3)

In the SUSY SU(5) the dominant channel of the proton decay is p→ K+ν̄, due to Higgs color
triplets in 5H and 5H . And to make a proton lifetime long enough (& 1033 years for the K+

channel), those triplets have to have large masses mT ∼ 1017 GeV, which results in a doublet-
triplet splitting problem - the triplet Higgs becomes much heavier than the doublet. However
this can be remedied in the flipped SU(5) model 1 2, as shown in [24].

3.2 Flipped SU(5)

The flipped SU(5) model has the SU(5) × U(1)X gauge group as the unification group which
can be embedded into a larger GUT (i.e. SO(10), E6, or directly into stringy E8). Originally, it
was developed in [23] from superstrings and, in general, the flipped intermediate groups (those
containing U(1)X) are preferred by compactified superstrings.

The name ”flipped” is due to the fermion assignment

5m =


ūr
ūg
ūb
e−

νe


L

, 10m =


0 d̄b −d̄g −ur −dr
−d̄b 0 d̄r −ug −dg
d̄g −d̄r 0 −ub −db
ur ug ub 0 −ν̄e
dr dg db ν̄e 0


L

; 1m = (e+)L; (3.4)

where u-d quarks and νe-e
− are flipped compared to (3.1) in the ordinary SU(5), and in addition

we have an SU(5)-singlet positron. Another big difference is that the breaking of SU(5)×U(1)X
to the SM can be achieved by the 10-dimensional Higgs representations, 10H and 10H , with
the corresponding terms of the superpotential:

WSSB = λ110H10H5H + λ210H10H5H + λ310m10Hφm, (3.5)

where φm is the additional SU(5)-singlet (for the see-saw mechanism, see [27]). The first two
terms render the colour Higgs triplet heavy when 10H acquires a VEV 〈10H〉 ∼ 1015 GeV.

1The flipped SU(5) is mostly considered in the context of SUSY, so when writing ”flipped SU(5)” we imply
”flipped SUSY SU(5)”.

2All flipped SUSY GUTs lead to the so-called ”no-scale” N = 1 supergravity in four dimensions, as the
low-energy effective action, which is characterised by independence of the Kähler potential upon some fields
(”flat directions”).

51



Chapter 3. Grand Unified Theories

In the flipped SU(5), at the GUT scale MGUT (∼ 1015 GeV) the gauge couplings α2 and α3 are
unified into the SU(5) coupling α5:

α2(MGUT ) = α3(MGUT ) = α5(MGUT ), (3.6)

and the coupling αX of the U(1)X evolves separately as a combination

24

αX(MGUT )
=

25

α1(MGUT )
− 1

α5(MGUT )
, (3.7)

eventually unifying with α5 at ∼ 1018 GeV for the stringy flipped SU(5) [24].

3.3 SO(10) models

Another example of GUT is based on SO(10), and has the intermediate scale at ∼ 1012 GeV [25,
26]. With this particular scale, these models can naturally accommodate Majorana masses for
neutrinos and the see-saw mechanism. The required right-handed neutrinos are already included
in the three copies of 16-dimensional representation, along with all the other matter fields (three
copies for three generations). The masses of the right-handed neutrinos (we collectively call
them MR) are assumed to be around the same scale as the intermediate scale MI ∼ 1012 GeV
(very roughly), in order to generate the observed small masses of the left-handed neutrinos.

There are several breaking patterns for SO(10) GUTs with intermediate scale,

SO(10)→ SU(4)c × SU(2)L × SU(2)R → SM , (3.8)

SO(10)→ SU(4)c × SU(2)L × U(1)R → SM , (3.9)

SO(10)→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L → SM . (3.10)

For the intermediate groups we use the notation

G1 ≡ SU(4)c × SU(2)L × SU(2)R ,

G2 ≡ SU(4)c × SU(2)L × U(1)R ,

G3 ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L .

At the one-loop order, the Renormalisation Group Equations describing the unification are

α−1
i (MS) = α−1

U (MU) +
1

3π
bi log

MI

MS

+
1

3π
b′i log

MU

MI

, (3.12)

where i = 1(Y ), 2(L), 3(c); b′i are the values taken at MI , and MS is the MSSM scale. The
observed proton lifetime constrains MU > 1016 GeV, while MI ∼ MR can range from 1010 to
1014 GeV. Matter content at intermediate scale, MI , can include the following multiplets of
SO(10): 10,16,45,54,120,126,210.
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Figure 3.2: Unification of couplings in SO(10), with G3 as the intermediate group.

It is known that the most favoured intermediate group is G3, assuming that MR is obtained
from a renormalizable Yukawa coupling. The corresponding evolution of the couplings is given
in Figure 3.2, where the Higgs content is taken as

(1,2,2, 0) × 2 , (3.13)

(1,1,3,±6) , (1,3,1, 0) , (3.14)

(1,2,1,±3) , (8,1,1, 0) , (3.15)

where we have denoted each multiplet by its transformation law under G3. The multiplets
(1,1,3,±6) break SO(10) to G3 and give masses to the right-handed neutrinos. The two
(1,2,2, 0) multiplets are the MSSM Higgs doublets. With this Higgs content, α−1

U (MU) ≈ 21.2,
and MU ≈ 2× 1016 GeV.

3.4 E6 models

Under similar considerations, we can build a model based on an even larger group - E6. In this
case the number of intermediate group choices is vast, so we first present the maximal compact
subgroups of E6:

1) SO(10)× U(1)

2) SU(3)× SU(3)× SU(3)

3) SU(6)× SU(2)

In the group SO(10) × U(1) the U(1) factor, often called U(1)X is orthogonal to SO(10) and
is irrelevant to the SM group. Thus the pattern is essentially the same as for SO(10) models,
but with some extra fields, since E6 is larger.

In the case 2), one SU(3) is identified with SU(3)c, for the other two we can choose either
SU(3)L(R) containing SU(2)L(R) , or SU(2)L(R)×U(1)Z ⊂ SU(3). There is also a possibility of
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choosing SU(2)Z × U(1)R ⊂ SU(3). The hypercharge is then obtained as

Y =
1

6
Z − 1

2
T 3
R , (3.16)

where T 3
R is the third SU(2)R generator.

In the case 3), SU(6) can be decomposed as

a) SU(5)× U(1)

b) SU(4)× SU(2)× U(1)

c) SU(3)× SU(3)× U(1)

where the second option (b) coincides with one of the SO(10) models above. In the case a), since
there is already an SU(2) (outside of SU(6)) for SU(2)L role, the SU(5) can be the extended
color group SU(5)c containing SU(3)c.

Among all these options it is found [Sato] that only the following intermediate groups of E6

lead to the small unification coupling (in perturbative treatment):

SU(3)c × SU(2)L × SU(2)R × U(1)B−L × U(1)X (3.17)

SU(3)c × SU(3)R × SU(2)L × U(1)Z (3.18)

SU(4)c × SU(2)L × U(1)X × [SU(2) or subgroups] (3.19)

SU(3)c × SU(3)L × U(1)Z × [SU(2) or subgroups] (3.20)

There is also a variety of Higgs and matter combinations that gives us too many options. More
general treatment and extensive reviews of GUT models can be found e.g. in [22, 21, 28].

In the context of superstrings, E6 can arise from one of the E8-factors in the anomaly-free
E8×E8 gauge group, in the context of Calabi-Yau compactification breaking E8 → E6×SU(3)
[29].

54



Chapter 4

Standard Cosmology

In this chapter we move from elementary particles to theoretical cosmology that is another
essential part of our investigation.

The Standard Cosmological Model is the simplest model describing all known cosmological
observations. These include

• accelerated expansion of the universe;

• large-scale homogeneity and isotropy;

• current composition of the universe, in terms of abundances of light elements;

• existence of cosmic structures (galaxies and clusters);

• cosmic microwave background (CMB) radiation.

The model is based on General Relativity 1, but can be extended to include higher-curvature
terms (f(R) gravity), as at low curvatures a modified gravity theory can be practically indis-
tinguishable from Einstein’s gravity.

4.1 FLRW universe

An expanding universe can be described by a Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, which in spherical coordinates takes the form

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (4.1)

1General Relativity was tested many times. Recently, two of its most important predictions - the existence of
black holes and gravitational waves - was directly confirmed by LIGO and Virgo collaborations [30][31][32][33],
by detecting gravitational waves coming from black hole and neutron star merging events.
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where a(t) is the cosmic scale factor describing spatial expansion. The topological parameter
k defines the choice of one of the three symmetric spaces: k = 1 for spherical space (positive
3-curvature), k = 0 for flat space, and k = −1 for hyperbolic space (negative 3-curvature). The
expansion rate of the universe is given by the Hubble function

H ≡ ȧ

a
, (4.2)

where the dot stands for the time derivative. According to the latest data, the present expansion
rate is [34]

H = (67.8± 0.9) km s−1 Mpc−1 . (4.3)

Homogeneity and isotropy are reflected in the form of the matter stress-energy tensor (in the
co-moving frame),

Tµν = diag(ρ, p, p, p) , (4.4)

which is called the perfect fluid form. ρ = ρ(t) is energy density, and p = p(t) is pressure.
Plugging (4.1) and (4.4) into the Einstein field equations

Rµν −
1

2
gµνR = 8πGTµν , (4.5)

the 00-component gives the first Friedmann equation,

H2 +
k

a2
=

8

3
πGρ , (4.6)

and the ij-components give the second Friedmann equation (also called Raychaudhuri equa-
tion),

2
ä

a
+H2 +

k

a2
= −8πGρ . (4.7)

Here Rµν and R are Ricci tensor and scalar curvature, respectively, G is the gravitational
constant.

4.1.1 Composition of the Universe

The (covariant) conservation law
∇µT

µν = 0 , (4.8)

for perfect fluid, for ν = 0 yields

d(ρa3) + pd(a3) = 0 . (4.9)

Given an equation of state p = ωρ, with some constant ω, integrating (4.9) gives rise to

ρ ∝ a−3(1+ω) . (4.10)
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Non-relativistic matter behaves like pressureless dust with ω = 0, so the above equation gives
ρ ∝ a−3. Ultra-relativistic matter (or radiation) has ω = 1/3, and ρ ∝ a−4, thus its energy
density dilutes more rapidly with expansion than that of non-relativistic matter. Substances
with negative pressure, like dark energy (cosmological constant), have ω = −1 and constant
energy density ρ ∝ a0.

It is convenient to define the critical energy density,

ρc ≡
3H2

8πG
, (4.11)

and the density ratio,

Ω ≡ ρ

ρc
, (4.12)

when looking at the first Friedmann equation (4.6), it takes values Ω > 1 for k = 1, Ω = 1 for
k = 0, and Ω < 1 for k = −1. The density parameter can be broken down as

Ω = Ωb + Ωdm + Ωde , (4.13)

where Ωb corresponds to baryonic matter, Ωdm to cold dark matter, and ΩΛ to dark energy.
The present-day values are [34, 35, 36]

Ωb = 0.0486± 0.0010 , Ωdm = 0.2589± 0.0057 , Ωde = 0.6911± 0.0062 , (4.14)

so that Ω = 0.9986 ± 0.0129, and we conclude that the visible Universe is (almost) spatially
flat.

However, spatial geometry does not determine the space-time geometry (nor does it work back-
wards). For the maximally symmetric space-times, space-time geometry can be classified as
Minkowski, de Sitter, and anti-de Sitter. Minkowski space-time is well known from the Special
Relativity courses, and it corresponds to zero 4-curvature case. De Sitter and anti-de Sitter
space-times have positive and negative constant scalar curvature, respectively (in our notation).

4.1.2 Thermal history

As we look back into the cosmic history, the energy density becomes larger, but for different
components it has different dependence on time.

As shown in Figure 4.1, we can divide the timeline into 3 stages:

I. The first stage is the radiation-dominated era, which lasted until teq (parametrised by aeq).
At this stage the scale factor behaves as a ∝

√
t (ω = 1/3 for radiation).

II. After the equilibrium at teq, where radiation and matter 2 energy densities meet, the matter-
dominated era begins, where a ∝ t2/3.

III. Eventually, as ρm drops, since ρΛ = const, dark energy dominates onwards, with a ∝ et.

2we refer as ”matter” to baryons and cold dark matter together, ρm = ρb + ρdm.
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Figure 4.1: Evolution of the energy densities of radiation, matter, and dark energy

It turns out that the present time, t0, is at the beginning of the stage III - the dark-energy-
dominated era. This is implied by the CMB data [37, 34, 35, 36], which yields

Ωtotal ≈ Ωcr . (4.15)

To determine the thermal history of the Universe, we compare the interaction rate Γ with the
expansion rate H at various stages of its evolution.

When Γ � H, the interaction rate is large enough to maintain thermal equilibrium. On the
other hand, if H � Γ, i.e. the expansion rate is much larger, then the particles quickly fall
out of equilibrium, or following the terminology, freeze out. When ultra-relativistic matter
(T � m) freezes out, it is called a hot relic. When non-relativistic matter (T � m) freezes
out, it is called a cold relic.

If equilibrium were maintained until today, the Universe would consist mostly of radiation, and
in addition there would be equal amounts of matter and antimatter. Since this is not the case,
we have to understand how freeze-out occurred for different particle species, and explain the
present composition of the Universe.

The observed overabundance of matter over antimatter, and the baryon-to-photon ratio, nb/nγ ∼
10−9, should be generated by some mechanism called baryogenesis. Along with freeze-out,
baryogenesis requires B (baryon number) and CP violation. These three requirements carry
the name of Sakharov’s conditions. All three need to be satisfied for successful baryogenesis.
CP violation is already present in the SM weak interactions [38, 39], while GUTs naturally
provide the baryon number violation in the processes like proton decay. The exact mechanism
is still an open question.

Let us summarise the thermal history in the energy scale order, by listing major events:

• Around 1 TeV: thermal equilibrium. Radiation-dominated era begins.
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• 1 TeV – 100 GeV: EW phase transition and (presumably) baryogenesis occur.

• 100 MeV: quarks form bound states – hadrons.

• 1 MeV: neutrinos decouple.

• 0.1 MeV: Nucleosynthesis, helium-4 forms.

• 1 eV: matter-dominated era begins.

• 0.3 eV: recombination. Atoms form, and the universe becomes transparent to light.

• 10−3 eV: formation of galaxies and the present epoch.

4.1.3 Cosmological redshift

The light travelling through an expanding space undergoes a redshift. It is convenient to
parametrise redshift by the parameter

z ≡ ∆λ

λi
=
λf − λi
λi

, (4.16)

where λi and λf are the initial (emission) and final (observation) wavelengths of a photon. This
can be recast in terms of ai and af , using λf/λi = af/ai, as

z =
af
ai
− 1 , (4.17)

The redshift parameter is in one-to-one correspondence with ai, the cosmic scale factor at the
time of the emission of photon.

The Hubble parameter can be rewritten in terms of z as

H(z) = − ż

1 + z
. (4.18)

By measuring the redshift from, say, a distant star, we can tell the distance to that star, because

L =

∫ tf

ti

dt

a(t)
=

1

a0

∫ z

0

dz

H(z)
, (4.19)

using (4.18). Here a0 ≡ af .

4.1.4 Horizons

Due to finiteness of the speed of light and the age of the Universe, there are various types of
cosmological horizons.
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Light emitted at the earliest conceivable time travels a finite distance over the current age of
the Universe, and marks the particle horizon. In practice, we can only receive the light emitted
after the recombination, since before that the universe was opaque to photons. The distance
that light can travel since recombination is called the optical horizon.

The cosmic event horizon is the maximal distance from which light (emitted at a given time)
can reach the observer in the future.

The so-called Hubble horizon, thought not a horizon in a strict sense, is the curvature scale
defined as

rH = H−1(t) . (4.20)

4.2 Problems of Standard Cosmology

Before the inflationary paradigm was developed, the Standard Cosmology (SC) had several
initial-conditions problems:

Horizon problem. First of all, the SC is unable to explain the observed large-scale homo-
geneity and isotropy of the universe. If we look back in time, according to the SC, right after
the Big Bang the universe consisted of many causally disconnected regions. This raises the
question – how did those regions evolve into such a homogeneous and isotropic universe we see
today without causally connecting to each other? Unless they were already produced as such.
This is called the horizon problem.

Flatness problem. It is known that the energy density of the universe is close to the critical
density, which favours spatially flat universe. Since the total density departs from the crtitical
value rather quickly at cosmic timescales, at early times it would be even closer to the critical
value. In fact, it would need to be extremely fine-tuned in order to be able to evolve into its
present-day value.

Monopole problem. Yet another class of problems arise if we go beyond the Standard Model.
Grand Unified Theories predict various kinds of topological defects, such as monopoles, cosmic
strings, and domain walls. These exotic objects should be abundantly produced in early, hot
universe. But since we do not see them now, they should have been somehow diluted.

All these problems require unnaturally finely-tuned initial conditions for the universe. It be-
comes necessary to find a way to produce (at least) the observable universe from a single causally
connected region. This demands a cosmological inflation - a period of rapid, quasi-exponential
(or quasi-de Sitter) expansion of the Universe.

Last and not least, the SC does not allow any structure formation by its definition (as FLRW
universe). Hence, the SC needs to be upgraded.
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Inflationary Cosmology

In this chapter we introduce inflationary cosmology by following [40, 41, 42].

As we showed earlier, expansion of space requires a substance with negative pressure and
constant energy density. At the present epoch dark energy drives the accelerating expansion,
which in the simplest case is a cosmological constant. However, the cosmological constant
cannot be responsible for inflation, because, well, it is a constant. And a too small constant for
that.

A more powerful way of obtaining an expanding universe is the use of scalar fields with potentials
having local minima, also known as false vacua, which was first realised in the early 1970s
[43, 44, 45], and was developed further in [46, 47, 48, 49]. However, such models (now called
the old inflation) suffered from the graceful exit problem [50, 51] – the problem of successful
reheating (particle production by decaying inflaton field) after inflation. The problem was
later solved in the new inflation [52, 53, 54, 55], where it was realised that if one employs an
inflationary potential with a (slightly tilted) approximately flat region, an inflaton field, slowly
rolling down that plateau, causes an accelerating expansion of space. And once the slow-roll
regime ends, under the right conditions one can realise the graceful exit. However, new inflation
also suffered from certain problems related to the fact that it was assumed that the Universe was
initially very large and very hot (and in thermal equilibrium), and inflation happened during
the cosmological phase transitions.

Later, the first models of the so-called chaotic inflation were proposed [56], which solved all
the prior problems. In chaotic inflaton scenarios, all the initial condition assumptions, such as
thermal equilibrium and ”hotness”, were relaxed. Chaotic inflation in a broad sense represents
any model where the potential has sufficiently flat region, so that the slow-roll regime lasts long
enough (as Ne ∼ (50÷ 60) in terms of the e-foldings number Ne introduced below).
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5.1 Chaotic inflation

The equation of motion for a scalar field in the FLRW space-time is

φ̈+ 3Hφ̇+ V ′ = 0 , (5.1)

where H ≡ ȧ/a as before, V = V (φ) is the potential of the scalar field φ, and V ′ ≡ ∂V/∂φ.
The second term above acts as a friction force, slowing down oscillations of the scalar field.

The corresponding Einstein equations yield (setting the Planck mass MP = (8πG)−1/2 = 1, and
using the perfect fluid stress-energy tensor)

H2 +
k

a2
=

1

3

(
1

2
φ̇2 + V

)
, (5.2)

where k is the 3d curvature parameter, which we set to 0 (spatially flat universe) from now on.

5.1.1 Slow-roll conditions

In order to realise inflation, we, first of all, make sure that the desired equation of state p = −ρ
is satisfied. For a perfect fluid with a scalar potential V , energy density and pressure take the
form

ρ =
1

2
φ̇2 + V , (5.3)

p =
1

2
φ̇2 − V . (5.4)

Thus, if

V � 1

2
φ̇2 , (5.5)

the desired equation of state is approximately satisfied, p ≈ −ρ. We then require that the
friction term is non-negligible (since, otherwise, there will be no inflation),

3Hφ̇� φ̈ . (5.6)

This, together with (5.5) leads to the slow-roll regime, where the equations (5.1) and (5.2) are
simplified,

3Hφ̇+ V ′ = 0 , (5.7)

H2 =
1

3
V . (5.8)
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For more convenience we can recast the slow-roll conditions (5.5)(5.6) into the conditions for a
potential only. To do this, we combine the equations (5.7)(5.8) to obtain

φ̇2 =
1

3

V ′2

V
, (5.9)

and substitute φ from here into the condition (5.5). This yields

1

2

(
V ′

V

)2

≡ ε� 1 , (5.10)

where we have omitted the factor of 1/3 (as it does not affect the condition).

There is another condition on a potential, to find which, we take the time derivative of the
condition (5.5), which leads to

V ′ � φ̈ , (5.11)

assuming for simplicity positivity of both sides, and taking positive square root of (5.9). Sub-
stituting φ̇ from (5.9) we have

|φ̈| = dφ̇

dt
=

d

dt

(
V ′√
3V

)
=

V ′′√
3V

φ̇− 3

2

V ′2
√

3V
3 φ̇� V ′ . (5.12)

Then, using (5.9) again, we arrive at

1

3

V ′′

V
− 1

6

V ′2

V 2
� 1 . (5.13)

Since the second term on the left-hand side is already negligible due to (5.10), we are left with∣∣∣∣V ′′V
∣∣∣∣ ≡ η � 1 , (5.14)

where we have again omitted 1/3, and included modulus bars.

We introduced the parameters ε and η with the conditions (5.10)(5.14) that can be conveniently
used to determine the slow-roll regime - whether or not it is possible to realise it (and thus
inflation) depends upon a potential V .

5.1.2 m2φ2-inflation

The simplest example of chaotic inflation is the model with the quadratic potential

V =
1

2
m2φ2 , (5.15)

where m is the mass of the scalar field φ.
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The slow-roll parameters in this case are

ε = η = 2φ−2 , (5.16)

which for φ � 1 (in Planck mass units) are negligibly small, thus satisfying the slow-roll
conditions down until the value of φ drops to ∼ 1.

During the slow roll, the oscillator and Einstein equations for this model take the form

3Hφ̇+m2φ = 0 , (5.17)

H2 =
1

6
m2φ2 . (5.18)

The solution of the system (5.17)(5.18) is

φ(t) ≈ φi +
m√
12π

(ti − t) ≈
m√
12π

(tf − t) , (5.19)

where ti and tf correspond to the beginning and the end of the slow-roll regime. φi ≡ φ(ti),
while φf ≡ φ(tf ) is negligible. However, it should be noted that the slow-roll regime ends before
φ vanishes, so the domain of validity of the solution (5.19) is more limited than appears here.
It follows from this solution that inflation lasts for tf − ti ≈

√
12πφi/m.

To determine the behaviour of the cosmic scale factor during inflation, we plug the solution
(5.19) into the Einstein equation (5.8) and find

a(t) ≈ ai exp

(
1

2
(H +Hi)(t− ti)

)
≈ af exp

(
−1

6
m2(t− tf )2

)
. (5.20)

It is convenient to measure the duration of inflation by the number of e-foldings Ne,

af
ai

= eNe , (5.21)

which, for (5.20), is Ne ≈ 2πφ2
i .

5.1.3 Starobinsky inflation

Soon after chaotic inflation was introduced, it was realised that it is possible to obtain infla-
tion from a higher-derivative gravity. In particular, consider the simplest f(R) gravity due to
Starobinsky [57], given by the Lagrangian (MP = 1)

L =
1

2

√
−g
(
R +

R2

6M2

)
, (5.22)
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where M is the mass parameter of the model. The dual scalar-tensor description has a potential
for the scalaron field φ (which we identify with the inflaton), as [58]

V =
3

4
M2

(
1− e−

√
2
3
φ
)2

. (5.23)

The potential is non-negative, and has a plateau for large positive values of φ, since V in
that case asymptotically approaches 3M2/4. Therefore, it can easily accommodate slow-roll
inflation.

5.2 Graceful exit and reheating

After inflation, the scalar inflaton field begins to (coherently) oscillate around the minimum of
the potential. This regime starts when φ ∼ 1 (in Planckian units). For simplicity, we go back
to the m2φ2-model where the field equations are

φ̈+ 3Hφ̇+m2φ = 0 , (5.24)

H2 +
k

a2
=

1

3

(
1

2
φ̇2 +

1

2
m2φ2

)
. (5.25)

Soon after the end of inflation, the solution to these equations asymptotically approaches

φ(t) = Φ(t) cos(mt) , (5.26)

where Φ(t) ≡ (
√

3πmt)−1 is the slowly decaying amplitude of oscillations (m plays the role
of the frequency of oscillations). The solution (5.26) is valid as long as mt � 1. In this
regime the energy density of φ behaves as ρ ∝ a−3, which means that the universe expands
as effectively (non-relativistic) matter-dominated, with zero pressure. Thus, the coherently
oscillating inflaton field can be thought of as a collection of heavy scalar condensates with mass
m, and vanishing kinetic energy.

Once the regime mt� 1 is over, the amplitude Φ decays more rapidly, and the energy density of
φ is transferred by inflaton decays to lighter particles, including ordinary matter. This process
is called the reheating. The details of the reheating are very model-dependent, but we can still
derive some general results.

Let us consider the simplest interaction between the inflaton φ, some real scalar χ, and a spinor
ψ,

Lint = −gφχ2 − hφψ̄ψ . (5.27)

This yields the decay rates [59, 40]

Γ(φ→ χχ) =
g2

8πm
, Γ(φ→ ψψ) =

h2m

8π
, (5.28)

obtained from perturbation theory. Therefore, for m�MP the decay rate into scalar particles
(Γχ ≡ Γ(φ→ χχ)), is much larger than the decay rate into fermions. Taking this into account,
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the decay rate Γχ can be inserted into the effective equation

φ̈+ (3H + Γχ)φ̇+m2φ = 0 , (5.29)

where it serves as the additional friction term.

5.2.1 Parametric resonance

The problem of the perturbative treatment above is that it does not take into account Bose
condensation effect, which dominates in the early stages of reheating. The essence of the effect
is that the decay rate, Γχ, of φ into two χ particles is boosted, if there already exist χ particles
with the same phase-space coordinates (momentum k, and position x). And the factor by
which it is boosted is proportional to the occupation number of χ.

The dynamics of non-perturbative particle production, which is called preheating, can be de-
termined by the mode equation for χ (in the case (5.27)),

χ̈k + [k2 +m2
χ + 2gΦ cos(mt)]χk = 0 . (5.30)

This equation describes an oscillator with periodically varying frequency ω. It can be conve-
niently transformed, after the redefinition mt ≡ 2τ , into Mathieu equation

χ′′k(τ) + [Ak − 2q cos(2τ)]χk(τ) = 0 , (5.31)

where we have introduced Ak ≡ 4(k2 + m2
χ)/m2, and q ≡ −4gΦ/m2. This equation is well-

known, and the detailed study of its solutions can be found in [60], with its application to
preheating in [59, 61, 40]. The main point is the existence of resonance bands of the solution,
which leads to periodically explosive particle production.

The relevant solution of (5.31) has the form

χk ∝ exp(µ
(n)
k τ) , (5.32)

where the factor µ
(n)
k describes the exponential growth of n-th resonance band with the mo-

mentum spread ∆k(n). It is related to the occupation number as

nk ∝ exp(2µ
(n)
k τ) . (5.33)

When gΦ� m2 the instability bands are thin (narrow resonance), and produced particles have
small momentum spread, ∆k � m. But if gΦ > m2 the momentum spread can be much larger.
In this case we have a broad resonance.

We summarise that the realistic theory of reheating after inflation should incorporate both
perturbative and non-perturbative treatments, as they yield different results. This is true
not only for bosons, but for fermions also [61], although Pauli exclusion principle restricts the
number density of fermions, nψ ≤ 1. The interaction Lagrangian, in general, should also include
quartic interactions, e.g. −λχ2φ2, where λ is a coupling constant.
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5.3 Inflation and cosmic perturbations

Although the Universe is apparently homogeneous and isotropic on cosmological scales (> 100
Mpc), there are inhomogeneities at smaller scales (< 100 Mpc) due to cosmic structures such
as galaxies and stars. This can also be seen in the CMB data [34, 35, 36]. As long as those
inhomogeneities are small, they can be treated by using perturbation theory.

5.3.1 Classification of perturbations

Let us consider small perturbations of the FLRW metric

gµν = g̃µν + δgµν , (5.34)

which then translate into matter perturbations by Einstein equations.

To simplify the treatment of perturbations, we decompose them into the scalar, vector, and
tensor contributions. This can be done because Einstein equations at the linear order do not
mix the three kinds of perturbations. The perturbed FLRW metric is then decomposed as

ds2 = a2(τ)
[
(1 + 2A)dτ 2 − 2Bidx

idτ − (δij +Hij)dx
idxj

]
, (5.35)

where A,Bi, Hij are scalar, vector, and tensor perturbations, respectively (in 3d sense, since
i, j run over spacial dimensions). This is not a complete decomposition though, as Bi and Hij

can be further decomposed as

Bi = ∂iB + bi , (5.36)

Hij = 2Cδij + 2

(
∂i∂j −

1

3
δij∆

)
D + (∂ihj − ∂jhi) + 2hij , (5.37)

where ∆ is the Laplacian operator. In total we have 4 scalars A,B,C,D; 2 (divergenceless)
vectors bi, hi; and one (traceless) tensor hij. These are not uniquely defined, as we have general
coordinate invariance. We can either reparametrise the perturbations to make them gauge-
invariant, or we can work with specific gauge choices.

Scalar perturbations are important for structure formation, as they can lead to gravitational
instabilities. Vector perturbations are not so interesting, as they decay very quickly. Tensor
perturbations are (primordial) gravitational waves which at the linear order do not lead to
instabilities, but are important since they are predicted by inflation, and should leave imprints
in CMB.

An important quantity for observational cosmology is the curvature perturbation, defined as
(in the so-called Newtonian gauge, B = D = 0)

R = C +
2M2

PH(C ′ +HC)

a2(ρ0 + p0)
, (5.38)
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where the prime stands for the derivative w.r.t. the conformal time τ ; ρ0 and p0 are the
unperturbed energy density and pressure, respectively.

During inflation, metric fluctuations (5.34) can be understood as originating from quantum
fluctuations of the inflaton field (since they are related by Einstein equations),

φ = φ0 + δφ . (5.39)

Of course, quantum fluctuations are originally very small, and were created inside the Hubble
horizon. However, inflation soon stretches them to superhorizon scales. At superhorizon scales
the fluctuations lose their quantum-mechanical nature and can be treated with classical methods
(e.g., VEVs can be identified with average values of classical fields). Therefore, after the
fluctuations re-enter the Hubble horizon, their observation can tell us about the inflationary
epoch.

5.3.2 Scalar perturbations

At the horizon crossing, i.e. when the 3-momentum modulus k = aH, we can relate the
curvature perturbation R and the inflaton perturbation δφ, in the spatially flat gauge (C =
D = 0),

R = −Hδφ
φ′0

. (5.40)

Then, for their power spectra (quadratic deviations) ∆2
R(k) ≡ 〈|Rk|2〉 and ∆2

δφ(k) ≡ 〈|δφk|2〉
we have

∆2
R(k) = H2∆2

δφ(k)φ̇−2 ≈ H4

4π2φ̇2

∣∣∣∣
k=aH

, (5.41)

where in the last step we have used the approximated power spectrum of δφ at k = aH,

∆2
δφ(k) ≈ H2

4π2

∣∣∣∣
k=aH

. (5.42)

We can also relate ∆2
R with the shape of the inflationary potential,

∆2
R =

1

12π2M6
P

V 3

V ′2
. (5.43)

It is convenient to parametrise the curvature power spectrum as

∆2
R(k) = As

(
k

k∗

)ns−1

, (5.44)

where k∗ is a reference scale, while ns is called the scalar spectral index. Taking k∗ = k we have

ns − 1 =
d log ∆2

R
d log k

. (5.45)
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ns = 1 corresponds to an exactly scale-symmetric scalar spectrum.

The right-hand side of (5.45) can be expressed in terms of the slow-roll parameters ε and η,

ns − 1 = 2η − 6ε . (5.46)

This is one of the main observational parameters related to inflationary potentials.

5.3.3 Tensor perturbations

The tensor power spectrum can be written as

∆2
t (k) =

2

π2

H2

M2
P

∣∣∣∣
k=aH

, (5.47)

while, unlike the scalar spectrum (5.41), it does not depend on φ̇2.

Similarly to the scalar spectrum, the tensor spectrum can be parametrised as

∆2
t (k) = At

(
k

k∗

)nt−1

, (5.48)

where nt is the tensor spectral index, and At is an amplitude of tensor perturbations. The value
of At is subject to normalisation w.r.t. As, but we can use their ratio

r ≡ Ar
As

, (5.49)

which is normalisation-independent. r is called tensor-to-scalar ratio, and is another important
parameter, together with ns, connecting inflationary models with observations.

One can conveniently express r in terms of the slow-roll parameter ε as

r = 16ε . (5.50)

5.4 Observational constraints on inflationary models

Here we present the latest results from Planck collaboration [35, 62] on inflationary parameters
ns and r. As can be seen in Figure 5.1, the combined results of PLANCK, BICEP (BKP), and
Baryonic Acoustic Oscillation (BAO) experiments favour low values of r(k∗ = 0.002) . 0.07,
and spectral index values 0.96 . ns . 0.97. The results, although not conclusive, strongly
favour Starobinsky, or R2, inflation with the number of e-foldings N ∼ 50÷ 60. The quadratic,
quartic, and power-law inflationary models are well outside the presented 99.7 % confidence-
level region in the ns − r parameter space. Other models, like hilltop, hybrid, and natural
inflation are in agreement with observations, but some of them have limited choices of their
parameters.
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Figure 5.1: Observational constraints on the parameters ns and r, and their predicted values
from different inflationary models.
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Inflation in supergravity

6.1 Difficulties of embedding inflation into supergravity

As we already showed, supersymmetry is the very attractive idea that is used to extend the
Standard Model, solving many of its problems. It is inevitable that at higher energies, when
gravitational effects kick in, global supersymmetry should be replaced with local (or gauged)
SUSY. This means that when we deal with the early-universe cosmology, particularly inflation,
any realistic model should be reconsidered in the supergravity framework, and a supersymmetric
model is more restrictive than its non-SUSY counterpart.

But it turns out that embedding inflationary models into supergravity is not an easy task. First
of all, supersymmetrisation of inflationary models requires that the inflaton (real!) scalar field
belongs to a supermultiplet. The simplest case then corresponds to a chiral supermultiplet that
on-shell contains one complex scalar and one spinor. This means that the would-be inflaton is
accompanied by another real scalar that can potentially spoil inflation. Thus, if we choose to
deal with chiral multiplets, we have to deal with the problem of stabilisation of the extra real
scalar during inflation.

Next, we recall the general form of a scalar potential in N = 1 chiral supergravity [19],

V = eK
(
Kij∗|Wi +KiW |2 − 3|W |2

)
, (6.1)

where K is a (real) Kähler potential, W is a (holomorphic) superpotential. The problem is
the factor eK that can easily destroy the slow-roll regime. To illustrate this, let us choose the
canonical Kähler potential K = |A|2 for the complex scalar A, and assume that the inflaton
is its real (or imaginary) component, φ ≡ ReA (φ ≡ ImA). Then the slow-roll parameter η in
this case is

η ≡ V ′′

V
& 2 , (6.2)

where the primes denote the derivatives w.r.t. φ, and the 2 comes from taking the derivatives
of eK . So, one of the slow-roll conditions is violated. This is called the η-problem.
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The problem can be avoided by various methods, e.g. considering non-canonical Kähler po-
tentials and/or special kinds of superpotentials (this includes imposing certain symmetries on
the potentials), or using quantum corrections. We are going to consider super-gauge theories,
where inflation comes from a D-term instead of an F-term.

In addition, if a scalar potential leads to inflation, it should have a plateau of positive height.
In other words, the quantity Wi +KiW should be non-vanishing during inflation. And since it
is proportional to the F-term (as a result of Euler-Lagrange equations),

F̄j = −eK/3Kij∗(Wi +KiW ) , (6.3)

the non-vanishing Fi (F̄i) break supersymmetry during that period of time. However, in the
minimal models, supersymmetry is restored after inflation (in true vacuum). Since we don not
see supersymmetry at low energies, it must be broken at a higher scale (perhaps not too far
from the inflationary scale). This serves as a motivation to study possible connections between
inflation and SUSY breaking.

In what follows, we give a few examples of the F-term, and D-term inflationary models in
supergravity. In the next chapter, we consider D-term inflation and SUSY breaking together
in a specific class of models.

6.2 F-term inflationary models

6.2.1 m2φ2-inflation

As we already mentioned, one way to realise inflation in supergravity is to impose certain
symmetries on the potentials of the model. Here we give an example of obtaining m2φ2-inflation
(from F-term) by imposing a symmetry on Kähler potential w.r.t. a shift of the (inflaton) chiral
superfield as

Φ→ Φ + if , (6.4)

where f is a real parameter. This symmetry requires that the Kähler potential is of the form
K = K(Φ + Φ). This means that the imaginary part of the scalar component of Φ vanishes
from eK , and can take values larger than one, whereas the real part of Φ| is bounded by the
slow-roll conditions to be < 1. Because the exact shift symmetry makes the plateau completely
flat, we need to break it, in order to introduce a small tilt. This is achieved by considering the
superpotential

W = mXΦ , (6.5)

where X is a new chiral superfield. Then for m� 1 (in Planck units), the full Kähler potential
can be approximated as

K ≈ 1

2
(Φ + Φ)2 + |X|2 . (6.6)

The model is invariant w.r.t. the sign flips of X and Φ, as well as the R-symmetry:

X → e2iαX , Φ→ eiαΦ , (6.7)
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where α is a real parameter. The corresponding kinetic terms of X| = χ and Φ| are canonical,
while the scalar potential, parametrising Φ| = (ξ + iφ)/

√
2, takes the form

V = m2eξ
2+|χ|2

{
1

2
(ξ2 + φ2)(1 + |χ|4) + |χ|2

[
1− 1

2
(ξ2 + φ2) + 2ξ2

(
1 +

ξ2

2
+
φ2

2

)]}
, (6.8)

where we identify φ with the inflaton. The fields ξ and χ do not affect the inflation, and can
be ignored, leaving effectively

V ≈ 1

2
m2φ2 . (6.9)

6.2.2 Hybrid inflation

Another example of the F-term inflation is the model called hybrid inflation, proposed in [63,
64, 65], which is attractive from the GUT perspective. Its supergravity extension [66] is defined
by the potentials

K = |S|2 + |Ψ|2 + |Ψ̃|2 , (6.10)

W = λSΨΨ̃− µ2S , (6.11)

where Ψ and Ψ̃ are the conjugate representations of a gauge group G that can be part of a
GUT group. λ and µ are the parameters of the model, both assumed to be smaller than one.

The model is invariant w.r.t. the R-symmetry transformations

S → e2iαS , Ψ→ e2iαΨ , P̃ si→ e−2iαΨ̃ . (6.12)

The corresponding F-term scalar potential is

VF = e|S|
2+|Ψ|2+|Ψ̃|2

{
(1− |S|2 + |S|4)|λΨΨ̃− µ2|2

+ |S|2
[
|λ(1 + |Ψ|2)Ψ̃− µ2Ψ|2 + |λ(1 + |Ψ̃|2)Ψ− µ2Ψ̃|2

]}
, (6.13)

where the inflaton is defined as φ ≡
√

2ReS. There is also the D-term scalar potential due to
Killing potentials of the gauge group G.

From (6.13) it follows that the mass eigenstates are

Z− =
1√
2

(Ψ− Ψ̃) , Z+ ≡
1√
2

(Ψ + Ψ̃) , (6.14)

with masses

M2
∓ =

1

2
(λ2 + µ4)φ2 ∓ λµ2 . (6.15)
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We consider the state Z+ since M2
+ is always positive. Then putting Z− = 0, and assuming for

simplicity µ� λ, we arrive at

V ≈ (λ|Ψ|2 − µ2)2 + λ2φ2|Ψ|2 +
1

8
µ4φ4 . (6.16)

Due to SUSY breaking during inflation, which generates superpartner fermion masses, the above
potential receives quantum corrections. At the one-loop order, the inflaton effective potential
during inflation is given by

V = µ4

(
1 +

λ2d

8π2
log

φ

φc
+

1

8
φ4

)
, (6.17)

where d is the dimension of the representation of G, and φc ≡
√

2µ/
√
λ stands for the critical

value of φ, below that the inflaton starts quickly rolling down to the minimum of the potential,
ending the inflation.

In this model, the requirement of the sufficient number of e-foldings, Ne & 50, sets the limit
λ
√
d . 0.2. The spectral index and tensor-to-scalar ratio are given by

ns − 1 ≈ − 1

N
, r ≈ λ2d

2π2N
. (6.18)

6.3 D-term inflationary models

6.3.1 Quartic potential

Consider the following Kähler potential and superpotential [67, 68]:

K = |S|2 + |X|2 + |X̃|2 , W = λ(XX̃ − µ2) , (6.19)

where λ and µ are taken real and positive. The model has a U(1) gauge symmetry and U(1)
rigid R-symmetry. Under the gauge U(1) group the chiral superfields S,X, X̃ have charges
(0, 1,−1) and are minimally coupled to the U(1) gauge superfield; while their R-charges are
(2, 0, 0), respectively.

Taking the simplest gauge-kinetic function, the corresponding F-term potential is

VF = λ2eK
{ ∣∣∣XX̃ − µ2

∣∣∣2 (1− |S|2 + |S|4)

+ |S|2
[∣∣∣X̃ +X(XX̃ − µ2)

∣∣∣2 +
∣∣∣X + X̃(XX̃ − µ2)

∣∣∣2]} , (6.20)

while the D-term potential reads

VD =
g2

2
(|X|2 − |X̃|2)2 , (6.21)
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where g is the U(1) coupling constant.

The global minimum of the full potential V = VF + VD has

S = 0 , X = X̃ = µ , (6.22)

where we used the gauge symmetry to set the phase of X, X̃ to zero.

For inflation to take place, VD must dominate, with VF ≈ 0. The vanishing of VF requires

XX̃ = µ2 , S = 0 , (6.23)

so that during inflation this condition should be approximately satisfied. But because of the
factor eK , in order to approximately satisfy (6.23), we need X to be much larger than one,
X � 1. Then we can approximate the scalar potential as

V ≈ 1

2
g2|X|4 , (6.24)

so that the inflaton can be identified with e.g. the real part of X.

As we showed, however, quartic models (actually, all power-law inflationary models) are dis-
favoured by PLANCK measurements of the tensor-to-scalar ratio r < 0.07.

6.3.2 D-term inflation with a massive vector multiplet

According to the end of the previous chapter, the Starobinsky model of inflation is favoured
by the CMB observations. It is also one of the simplest models, as it is obtained from the
(R + R2) gravity that is a purely gravitational theory, and no extra fields are needed solely
for inflation. However, there is a problem with obtaining slow-roll inflation from supergravity
extensions of f(R) gravities. As was shown in [69, 70], a chiral (F-type) F (R) supergravity
cannot accommodate Starobinsky inflation. And a generic F (R) supergravity (with both F- and
D-type terms) leads to problems with stabilisation of additional scalars, and ghosts [71]. It is
an open question which F (R) (superspace) functions can lead to viable inflationary potentials.
Fortunately, there is another way to embed the Starobinsky model of inflation into (N=1)
supergrvity.

Consider a class of models first proposed in [72, 73], where N = 1 supergravity is non-minimally
coupled to a massive vector superfield V represented by an arbitrary real function J(V ) with
the coupling constant g 1. Then, the bosonic part of the Lagrangian is given by

e−1L = −1

2
R− 1

4
FµνF

µν − g2

2
J ′′∂µC∂

µC − g2

2
J ′′BµB

µ − V , (6.25)

where the real scalar field C and the vector Bµ are the physical components of the massive
vector superfield V (in fact, C is defined as C ≡ V |) along with two spinor fields. Thus, in
(6.25) J is a function of the real scalar J = J(C), while the prime stands for the derivative

1The general framework for massive vector multiplets in N = 1 supergravity was developed in [74].
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w.r.t. C. As is clear from the kinetic term of C, the absence of ghosts requires J ′′ > 0 2. For
the scalar potential V we have

V = VD =
g2

2
J ′2 . (6.26)

It is easy to realise chaotic inflation in this framework. As the simplest example, consider the
function J ′ = C, coming from J = C2/2 + const (J ′′ > 0 is satisfied). With this choice we
arrive at the quadratic potential

V =
g2

2
C2 , (6.27)

where g can be identified with the mass of the inflaton C.

It makes this class of models even more attractive that there is the possibility to obtain the
Starobinsky inflation due to the freedom to choose the function J . Consider the following
choice:

J = −3

2
[log(−C) + C] , J ′ = −3

2
(C−1 + 1) , J ′′ =

3

2
C−2 . (6.28)

In this case J ′′ yields a non-canonical kinetic term for C, so that we have to normalise it by
redefining C as

C = − exp

(√
2

3
φ

)
, (6.29)

where φ is the canonical inflaton scalar.

The function (6.28), along with the normalisation (6.29), leads to the following potential:

V =
9

8
g2
(

1− e−
√

2
3
φ
)2

, (6.30)

that is exactly of the Starobinsky type.

This minimal class of models is just a starting point to consider more general setups that
include matter chiral superfields, and possibly embed them into larger (SUSY GUT) gauge
groups. But it also leaves supersymmetry exact after inflation. That is why we would like to
consider minimal extensions of these models, including chiral superfields, where one of them
would be responsible for spontaneous SUSY breaking (after inflation). We also discuss the
equivalent formulation of these models, where the vector superfield V is massless and plays
the role of the gauge field of a U(1) gauge symmetry. The U(1) (super-)gauge symmetry is
then spontaneously broken by introduction of a Higgs chiral superfield, whose scalar component
acquires a non-vanishing VEV.

2Our notation for J differs by the sign from that of [73].

76



Chapter 7

Inflation with inflaton in a vector
multiplet and SUSY breaking

During inflation, supersymmetry is spontaneously broken, since either F-term or D-term ac-
quires a non-vanishing VEV. But in the simplest models under consideration, after inflation
SUSY is restored. Thus it should be spontaneously broken again, but now by a true VEV of
F/D-terms. In this chapter we develop a class of inflationary models based on the earlier work
[72, 73], where inflaton belongs to a massive vector multiplet 1. We minimally extend those
models by connecting them to a model of (F-term) SUSY breaking due to Polonyi [75], which
gives rise to a non-minimal coupling between chiral and vector superfields.

This chapter is based on our original research results [1, 2, 76].

7.1 Non-minimal coupling of vector and chiral multiplets

Let us consider models with some chiral superfields Φi, represented by an arbitrary Kähler po-
tential K = K(Φi,Φi) and a superpotentialW =W(Φi), coupled to a massive vector superfield
V , described by an arbitrary real function J = J(V ). Chiral superfields Φi are gauge singlets
in our construction.

Our models are described by the Lagrangian (MP = g = 1, where g is the coupling constant of
the massive vector multiplet)

L =

∫
d2θ2E

{
3

8
(DD − 8R)e−

1
3

(K+2J) +
1

4
WαWα +W

}
+ h.c. , (7.1)

where we have introduced the density superfield 2E , the scalar curvature superfield R, and the
vector superfield strength Wα ≡ −1

4
(DD − 8R)DαV , all chiral.

1Supergravity with a massive vector multiplet in the non-minimal (arbitrary) setting was developed by Van
Proeyen [74].

77



Chapter 7. Inflation with inflaton in a vector multiplet and SUSY breaking

We focus on the bosonic part of our models, and set all fermions to zero. The (bosonic)
components of supergravity multiplet are defined as

2E| = e, DD(2E)| = 4eM ,

R| = −1

6
M, DDR| = −1

3
R +

4

9
MM +

2

9
bmb

m − 2

3
iDmbm ,

where e ≡ deteam is the vierbein determinant, R is the space-time scalar curvature. We use the
old-minimal set of the supergravity auxiliary fields: the complex scalar M and the real vector
bm. The vertical bars denote the leading (θ = θ̄ = 0) field components of a superfield.

The components of Φi and V are defined by

Φi| = Ai , DαDβΦi| = −2εαβFi , Dα̇DαΦi| = −2iσαα̇
m∂mAi ,

DDDDΦi| = 16�Ai +
32

3
iba∂

aAi +
32

3
FiM ,

V | = C , DαDβV | = εαβX , Dα̇DαV | = σαα̇
m(Bm − i∂mC) ,

DαW β| ≡ −1

4
Dα(DD − 8R)DβV =

1

2
σαα̇

mσα̇βn(Dm∂nC + iFmn) + δα
β(D +

1

2
�C) ,

DDDDV | = 16

3
bm(Bm − i∂mC) + 8�C − 16

3
MX + 8D ,

in terms of the physical fields: complex scalars Ai, a real scalar C, and a vector Bm. The chiral
auxiliary fields Fi and X are complex scalars, while the real auxiliary field D is a real scalar.
Fmn = DmBn −DnBm is the field strength of Bm.

Using these definitions, we find that the kinetic part of our Lagrangian is given by

e−1Lkin. = e−
1
3

(K+2J)

{
−1

2
R−Kij∗∂mAi∂

mĀj −
1

6
KiKj∂mAi∂

mAj −
1

6
Ki∗Kj∗∂mĀi∂

mĀj

−
(

1

3
J ′

2 − 1

2
J ′′
)
∂mC∂

mC +

(
1

3
J ′

2 − 1

2
J ′′
)
BmB

m + J ′�C +
i

3
J ′Bm(Ki∗∂

mĀi −Ki∂
mAi)

− 1

3
J ′∂mC(Ki∗∂

mĀi +Ki∂
mAi)

}
−1

4
FmnF

mn , (7.2)

while its auxiliary part reads

e−1Laux. = e−
1
3

(K+2J)

{
1

3
bmb

m +
i

3
bm(Ki∗∂

mĀi −Ki∂
mAi) +

2

3
J ′bmB

m + J ′D +Kij∗FiF j

−
(

1

3
J ′

2− 1

2
J ′′
)
XX− 1

3
(MM+KiKj∗FiF j−J ′Ki∗F iX−J ′KiFiX+Ki∗F iM+KiFiM−J ′MX

− J ′MX)

}
+

1

2
D2 + FiWi + F iW i −MW −MW . (7.3)

Here K, J , and W represent the leading components of the corresponding superfields, i.e.
they are functions of the scalar fields Ai and C. We use the notation Ki ≡ ∂K

∂Ai
, Ki∗ ≡ ∂K

∂Ai
,

Kij∗ ≡ ∂2K
∂Ai∂Aj

, J ′ ≡ ∂J
∂C

, Wi ≡ ∂W
∂Ai

, W i ≡ ∂W
∂Ai

.
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In order to eliminate the auxiliary fields by their equations of motion, we first separate M , Fi
and X from each other via the substitution

M = N + J ′X −Ki∗F i , (7.4)

M = N + J ′X −KiFi . (7.5)

In terms of the new auxiliary fields N and N , the auxiliary part of the Lagrangian reads

e−1Laux. = e−
1
3

(K+2J)

{
1

3
bmb

m +
i

3
bm(Ki∗∂

mĀi −Ki∂
mAi) +

2

3
J ′bmB

m + J ′D +Kij∗FiF j

+
1

2
J ′′XX − 1

3
NN

}
+

1

2
D2 +FiWi +F iW i−W(N + J ′X −KiFi)−W(N + J ′X −Ki∗F i) ,

(7.6)

and Euler-Lagrange equations for the auxiliary fields are easily solved,

bm = −J ′Bm −
i

2
(Ki∗∂mĀi −Ki∂mAi) ,

D = −J ′e−
1
3

(K+2J), N = −3e
1
3

(K+2J)W ,

Fi = −e
1
3

(K+2J)K−1
ij∗ (Wj +Kj∗W), X = 2

J ′

J ′′
e

1
3

(K+2J)W .

Plugging these solutions back into the Lagrangian, we have

e−1L = e−
1
3

(K+2J)

{
−1

2
R−Kij∗∂mAi∂

mĀj −
1

6
KiKj∗∂mAi∂

mĀj −
1

12
KiKj∂mAi∂

mAj

− 1

12
Ki∗Kj∗∂mĀi∂

mĀj −
(

1

3
J ′

2 − 1

2
J ′′
)
∂mC∂

mC + J ′�C − 1

3
J ′∂mC(Ki∗∂

mĀi +Ki∂
mAi)

−1

2
J ′′BmB

m

}
−1

4
FmnF

mn − 1

2
e−

2
3

(K+2J)J ′
2

−e
1
3

(K+2J)

[
K−1
ij∗ (Wi +KiW)(Wj +Kj∗W)−

(
3− 2

J ′2

J ′′

)
WW

]
.

(7.7)

This is in the Jordan frame. A transition to the Einstein frame is achieved by Weyl rescaling
of spacetime metric,

gmn → eΛgmn , e→ e2Λe , with Λ =
1

3
(K + 2J) .

It leads to the transformation of the scalar curvature term,

− 1

2
ee−

1
3

(K+2J)R→ −1

2
eR +

1

12
e(∂mK + 2∂mJ)2 . (7.8)
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This gives rise to the Lagrangian

e−1L = −1

2
R−Kij∗∂mAi∂

mĀj −
1

4
FmnF

mn − 1

2
J ′′∂mC∂

mC − 1

2
J ′′BmB

m − V , (7.9)

with the scalar potential

V =
1

2
J ′

2
+ eK+2J

[
K−1
ij∗ (Wi +KiW)(Wj +Kj∗W)−

(
3− 2

J ′2

J ′′

)
WW

]
. (7.10)

Our main results here are the equations (7.1), (7.9), and (7.10). If we drop the vector superfield
V (J = 0), our Lagrangian coincides with the standard one, (2.60), for a chiral supergravity
model. If we set K(Φi,Φi) = W(Φi) = 0, our results coincide with the models proposed in
[72, 73, 74].

As is clear from (7.9), the absence of ghosts (i.e. the negative sign of the kinetic term of C)
requires J ′′(C) > 0.

7.2 Vacuum solution

In this Section we restrict ourselves to a single chiral superfield Φ having the canonical Kähler
potential and the superpotential given by a sum of a linear term and a constant,

K = ΦΦ , W = µ(Φ + β) . (7.11)

This particular choice is known in the literature as Polonyi model [75]. 2

In accordance to the previous Section, it gives rise to the Lagrangian

e−1L = −1

2
R− ∂mA∂mĀ−

1

4
FmnF

mn − 1

2
J ′′∂mC∂

mC − 1

2
J ′′BmB

m − 1

2
J ′

2

− µ2eAĀ+2J

[
|1 + Aβ + AĀ|2 −

(
3− 2

J ′2

J ′′

)
|A+ β|2

]
. (7.12)

The (Minkowski) vacuum conditions in this model are given by

V =
1

2
J ′

2
+ µ2eAĀ+2J

[
|1 + Aβ + AĀ|2 −

(
3− 2

J ′2

J ′′

)
|A+ β|2

]
= 0 , (7.13)

∂ĀV = AṼF + µ2eAĀ+2J

[
A(1 + Āβ + AĀ) + (A+ β)(1 + Aβ + AĀ)−

(
3− 2

J ′2

J ′′

)
(A+ β)

]
= 0 ,

(7.14)

∂CV = J ′
{
J ′′ + 2µ2eAĀ+2J

[
|1 + Aβ + AĀ|2 −

(
1− 2

J ′2

J ′′
+
J ′J ′′′

J ′′2

)
|A+ β|2

]}
= 0 , (7.15)

2It is worth mentioning that this choice is natural for a nilpotent (Akulov-Volkov) superfield, Φ2 = 0.
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where we have introduced ṼF as the F-type scalar potential with the additional J-dependent
term as

ṼF = µ2eAĀ+2J

[
|1 + Aβ + AĀ|2 −

(
3− 2

J ′2

J ′′

)
|A+ β|2

]
. (7.16)

A simple solution to vacuum equations exists when J ′ = 0, which separates the Polonyi multiplet
from the vector multiplet. The remaining vacuum equations allow a solution with the VEV
〈A〉 ≡ α = (

√
3− 1) and β = 2−

√
3 [75]. This celebrated (Polonyi) solution describes a stable

Minkowski vacuum with spontaneously broken SUSY since 〈F 〉 = µ. Hence, the parameter µ
defines the scale of SUSY breaking, that is arbitrary in this model.

The physical spectrum of this model, including fermions, consists of

• Φ→ A,χα

• V → C, ξα, λα, Bm

• R → eam, ψ
α
m

coming from the corresponding supermultiplets (R stands for the supergravity multiplet). Here
the fermion χα is massless, while the fermions ξα, λα, belong to a massive multiplet with the
mass mξ,λ =

√
J ′′. ψαm is the gravitino with the mass mψ = µe2−

√
3+〈J〉.

It should be emphasized that the Polonyi field does not affect inflation driven by the scalar
C as the inflaton belonging to the massive vector multiplet and having the D-type scalar
potential V (C) = 1

2
J ′2 with arbitrary real J-function. Of course, the true inflaton field should

be canonically normalized via the appropriate field redefinition of C.

When trying to get other patterns of SUSY breaking after inflation by demanding J ′ 6= 0 and
α = β = 0, we get two conditions on the J-function,

J ′
2

= J ′′ , (7.17)

J ′′ = −2µ2e2J . (7.18)

The first equation is solved by J = − logC + const., then the second condition yields the
consistency relation const. = −1

2
log(−2µ2). Since both J and µ should be real, there is no

solution. However, when allowing β 6= 0, the second equation (7.18) gets modified as

J ′′ = −2µ2e2J(1− β2) , (7.19)

so that the reality of J and µ requires β > 1. Then (7.17) reads J ′2 = C−2 and is easily solvable.
However, such scalar potential is not suitable for inflation (no slow roll).

81



Chapter 7. Inflation with inflaton in a vector multiplet and SUSY breaking

-1.0
-0.5

0.0
0.5

1.0
Re@AD

-1.0
-0.5

0.0
0.5 1.0

Im@AD

0

1

2

Figure 7.1: The scalar potential Ṽ = µ−2e−AĀ−2JV as a function of Re(A) and Im(A) at
J ′ = 0.

7.3 Stability of the vacuum

Here we examine stability of the vacuum in our models. For |A| > 1 the stability is guaranteed
because the functions J ′2 and J ′′ enter the scalar potential

V =
1

2
J ′

2
+ µ2eAĀ+2J

[
|1 + Aβ + AĀ|2 −

(
3− 2

J ′2

J ′′

)
|A+ β|2

]
(7.20)

with positive signs, while the function J ′′ is already positive (for ghost-freedom). On the other
hand, the only term with a negative sign in this potential is 3|A + β|2 that grows slower than
the positive quartic term |1 + Aβ + AĀ|4.

However, for |A| < 1, non-negativity of the potential (7.20) is not apparent, so we provide a
plot in Figs. 7.1 and 7.2, where it is clear that the potential is non-negative for |A| < 1 as well.

7.4 Adding a cosmological constant

We can easily introduce a cosmological constant (dark energy) into our models without breaking
any symmetries. It requires modification of the Polonyi VEV α, and the parameter β 3.

3The similar idea was used in Ref. [77].

82



Chapter 7. Inflation with inflaton in a vector multiplet and SUSY breaking

0.2 0.4 0.6 0.8 1.0
ReHAL

0.2

0.4

0.6

0.8

Figure 7.2: The real slice at Im(A) = 0 of Fig. 7.1 around the minimum of Ṽ .

Adding a (very) small positive constant δ, and assuming that at the minimum of the potential
J ′ = 0, leads to the shift of the minimum of V ,

V = µ2eα
2

δ = m2
3/2δ . (7.21)

By comparing the condition (7.21) to the equation (7.13), we find the relation

(1 + αβ + α2)2 − 3(α + β)2 = δ . (7.22)

The solution to the equations (7.22) and (7.14) with V = m2
3/2δ reads

α = (
√

3− 1) +
3− 2

√
3

3(
√

3− 1)
δ +O(δ2) , β = (2−

√
3) +

√
3− 3

6(
√

3− 1)
δ +O(δ2) , (7.23)

and describes a de Sitter vacuum with spontaneously broken SUSY.

Substituting the solution into the superpotential and ignoring the O(δ2)-terms, we find

〈W〉 = µ(α + β) = µ(a+ b− 1

2
δ) , (7.24)

where a ≡ (
√

3− 1) and b ≡ (2−
√

3) are the SUSY breaking vacuum solutions in the absence
of a cosmological constant.

7.5 Massless vector multiplet and Higgs mechanism

The supergravity model (7.1) with a massive vector multiplet can also be considered as a
supersymmetric (Abelian, Higgs-type) gauge theory where the Higgs superfield is gauged away
(unitary gauge). In the formulation, where the U(1) symmetry is restored, the vector superfield
V becomes the U(1) gauge superfield, gauge-coupled to the Higgs chiral superfield (responsible
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for spontaneous breaking of U(1)). We restore the gauge symmetry in the way that is consistent
with local supersymmetry, and compare the results with the massive formulation (7.1).

We start with a Lagrangian that has essentially the same form as (7.1),

L =

∫
d2θ2E

{
3

8
(DD − 8R)e−

1
3

(K+2J̃) +
1

4
WαWα +W(Φi)

}
+ h.c. , (7.25)

where K = K(Φi,Φj) and the indices i, j, k count the chiral superfields, excluding the Higgs
chiral superfield, H,H. In contrast to the massive formulation (7.1), the (real) function J̃
depends on the Higgs superfield, J̃ = J̃(He2VH), and the vector superfield V is massless. The
Lagrangian (7.25) is gauge-invariant under the supersymmetric U(1),

H → H ′ = e−iZH , H → H ′ = eiZH , (7.26)

V → V ′ = V +
i

2
(Z − Z) , (7.27)

where the gauge parameter Z itself is a chiral superfield.

Since the Lagrangian (7.25) has the U(1) gauge symmetry, this allows us to choose the Wess-
Zumino gauge, i.e. to ”gauge away” the chiral and anti-chiral parts of the general vector
superfield V by appropriately choosing the parameters Z and Z,

V | = DαDβV | = Dα̇Dβ̇V | = 0,

Dα̇DαV | = σαα̇
mBm ,

DαW β| = 1

4
σαα̇

mσα̇βn(2iFmn) + δα
βD ,

DDDDV | = 16

3
bmBm + 8D .

A calculation of the bosonic part of the Lagrangian (7.25), after eliminating the auxiliary fields
yields (in Einstein frame)

e−1L = −1

2
R−Kij∗∂

mAi∂mĀj −
1

4
FmnF

mn − 2Jhh̄∂mh∂
mh̄− 1

2
JV 2BmB

m

+ iBm(JV h∂
mh− JV h̄∂mh̄)− V , (7.28)

where h, h̄ is the Higgs complex scalar field. We use the notation Jhh̄ ≡ ∂2J
∂h∂h̄
|, JV h ≡ ∂2J

∂h∂V
| and

JV 2 ≡ ∂2J
∂V 2 |. For the scalar potential we have

V =
1

2
J2
V +eK+2J

{
(K + 2J)IJ

∗
(WI + (K + 2J)IW )(W J∗ + (K + 2J)J∗W )− 3WW

}
, (7.29)

where the indices I, J collectively denote all chiral superfields (as well as their leading compo-
nents), including the Higgs superfield.
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The standard U(1) Higgs mechanism can be obtained if we employ the canonical function
J = 1

2
he2V h̄. Then, for the Higgs sector we have

e−1LHiggs = −∂mh∂mh̄+ iBm(h̄∂mh− h∂mh̄)− hh̄BmB
m − V . (7.30)

Parametrising h and h̄ as

h =
1√
2

(ρ+ ν)eiζ , h̄ =
1√
2

(ρ+ ν)e−iζ , (7.31)

where ρ is the (real) Higgs boson, ν ≡ 〈h〉 = 〈h̄〉 is the Higgs VEV, and ζ is the Goldstone
boson, in the unitary gauge, h → h′ = e−iζh and Bm → B′m = Bm + ∂mζ, we reproduce the
standard well-known result [78]

e−1LHiggs = −1

2
∂mρ∂

mρ− 1

2
(ρ+ ν)2BmB

m − V . (7.32)

The same result can also be achieved by considering the super-Higgs mechanism, where to get
rid of the Goldstone mode, we use the super-gauge transformations (7.26)(7.27), and define the
relevant components of Z and i(Z − Z) as

Z| = ζ + iξ ,
i

2
Dα̇Dα(Z − Z)| = σmαα̇∂mζ . (7.33)

Looking at the lowest components of the transformation (7.26), it can be seen that the real
part of Z| and Z| cancels the Goldstone mode of (7.31). Similarly, applying Dα̇ and Dα to
(7.27), and taking their lowest components (recalling Dα̇DαV | = σmαα̇Bm), we conclude that the
massive vector field indeed absorbs the Goldstone mode,

B′m = Bm + ∂mζ . (7.34)

As for the physical spectrum of the model, we have

• Φ→ A,χα

• H → h, ωα

• V → λα, Bm

• R → eam, ψ
α
m

where in contrast to the massive phase, we have an extra chiral multiplet - Higgs multiplet that
includes massless Higgs complex scalar and fermion ωα (Higgsino). The vector multiplet, being
massless, includes only one (also massless) fermion λ, and no real scalars.
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7.6 Polonyi-Starobinsky model

In this section we return to the massive formulation of our models with the Polonyi choice of
K and W ,

K = ΦΦ , W = µ(Φ + β) . (7.35)

This gives rise to the component Lagrangian (7.12).

In order to obtain the Starobinsky inflationary potential we fix the real function J(C) and
redefine C (following [72, 73]) as

C = − exp
(√

2/3φ
)
, J = −3

2
[log(−C) +C] , J ′ = −3

2

(
C−1 + 1

)
, J ′′ =

3

2
C−2 , (7.36)

in terms of the canonical scalar φ playing the role of inflaton. The full scalar potential is a sum
of the following D-type and F -type terms (MP = 1):

VD =
9g2

8

(
1− e−

√
2/3φ
)2

, (7.37)

VF = µ2 exp
(
ĀA−

√
6φ+ 3e

√
2/3φ
){
|ĀA+ Aβ + 1|2 −

[
3− 3e

√
8/3φ

(
1− e−

√
2/3φ
)2
]
|A+ β|2

}
,

(7.38)

where VD is the Starobinsky potential responsible for (large-field, slow-roll) inflation, while g is
proportional to the inflaton mass that is fixed by CMB observations.

The phenomenological consequences of the PS model were studied in [79], where it was used to
realise super-heavy gravitino dark matter scenario.

The Starobinsky inflationary potential VD can be affected by the F-term potential, since VF is
also dependent upon φ. The exponential in front of the r.h.s. of (7.38) has the dangerous (fast
growing) factor

exp
(

3e
√

2/3φ
)

(7.39)

that can destroy the slow-roll of inflaton φ. Indeed, for the Starobinsky inflation lasting for

Ne = 50, the initial value of the inflaton is φini ≈ 5.1 so that e
√

2/3φ ≈ 64.3, and the factor
(7.39) is extremely large. This poses a problem because the expression in curly braces in (7.38)
cannot be suppressed for φ = φini, and the potential VF spoils the inflation.

Therefore, the Polonyi field should be strongly stabilised, and the double exponential factor in
VF should be removed. In order to stabilise the Polonyi field, we assume that it has a large
mass (beyond the Hubble value), and, hence, a high-scale SUSY breaking dictated by the free
parameter µ. As regards to the double exponential factor, we employ an FI term in order to
be able to remove it.
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7.7 Improved PS model with FI term

Our idea is to find a function J that would yield the Starobinsky inflationary potential for VD,
while keeping VF suppressed against VD. As we are going to show, this can be achieved with
the help of a FI term.

To introduce a FI term, we consider the U(1) gauge-invariant formulation (7.25) of our models,
where the real function of the massless vector superfield depends upon the Higgs chiral superfield
H as J = J(He2VH) [2]. Then we add a FI term with the real coupling constant ξ and its
SUSY completion according to [80] 4

LFI = 8ξ

∫
d4θE

W 2W 2

D2W 2D2W 2
DαWα . (7.40)

Going back to the massive formulation (in the unitary gauge H = 1), it leads to the following
D-type and F -type scalar potentials:

VD =
g2

2

(
J ′ + ξe

1
3

(K+2J)
)2

, (7.41)

VF = µ2eK+2J

[
|ĀA+ Aβ + 1|2 −

(
3− 2

J ′2

J ′′

)
|A+ β|2

]
, (7.42)

where K = ΦΦ, as before.

Equating (7.41) to the Starobinsky potential (in terms of C = −e
√

2/3φ), we get a first-order
non-linear differential equation for J (we have to choose the negative square root sign on the
r.h.s.),

J ′ + ξ̃e
2
3
J = −3

2
(C−1 + 1) , (7.43)

where we have introduced a ”field-dependent” FI term ξ̃ ≡ ξeK/3. We require that the Polonyi
field A stays at its VEV during inflation so that ξ̃ = ξe〈K〉/3. During slow-roll, C takes large
negative values (|C−1| � 1), and the equation (7.43) can be approximately solved as

J(C) ≈ J∞ −
3

2
log
(
1− eC−C0

)
, (7.44)

where C0 is the integration constant, and we have introduced

J∞ ≡
3

2
log

(
−3

2ξ̃

)
. (7.45)

As is clear from (7.45), the existence of J∞ requires ξ̃ < 0 (thus, ξ < 0). Requiring the
Starobinsky potential in VD leads to the vanishing VEV of the auxiliary field D, which may
result in the inconsistency of the fermionic terms multiplied by the negative powers of D.

4 Ref. [80] introduces a new linearly-realized SUSY completion of a constant FI term, without gauging
R-symmetry and allowing for a non-vanishing gravitino mass.
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However, the problem can be cured if we uplift the Minkowski vacuum to a de Sitter vacuum
(after inflation) via a minor modification of the function J by uplifting its minimum.

According to the equation (7.42) the stability of inflationary trajectories also requires that

(J ′)2

J ′′
� 1 . (7.46)

Using the asymptotic solution (7.44), we find

(J ′)2

J ′′
≈ −3

2
C−1 , (7.47)

so that (7.46) is satisfied for |C| � 1.

The full scalar potential (during slow-roll inflation) of PS supergravity in the presence of FI
term reads

V ≈ 9g2

8
M4

P

(
1− e−

√
2/3φ/MP

)2

+ µ2M−2
P exp(M−2

P ĀA+ 2J∞)× (7.48)

×
{
|ĀA+ Aβ +M2

P |2 − 3M2
P

(
1− e−

√
2/3φ/MP

)
|A+ β|2

}
, (7.49)

where we have restored the (reduced) Planck mass MP . Here the first term (VD) is exact, while
the second term is approximate, as we have used the asymptotic solution (7.44).
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Conclusion

Our main results begin with the original Lagrangian (7.9) and (7.10) that describes a new
class of models suitable for inflationary model building that can accommodate SUSY breaking
(along with R-symmetry breaking) after inflation. Our models are described by three arbitrary
potentials K, W and J , providing flexibility and, perhaps, derivable from superstring theory.
These models are limited in the sense that they provide the minimal extension of the inflationary
models proposed in [72, 73] for the sake of spontaneous SUSY breaking in Minkowski vacuum
after inflation.

We showed that considering the simple Polonyi setup (specific K,W , but general J-function)
of SUSY breaking, we can obtain Minkowski and de Sitter vacua, both of which are stable. We
also demonstrated that there is a gauge-invariant formulation of our models, which is intended
for unification of inflation with super-GUTs in the context of supergravity. Unfortunately,
physical applications of our model to SUSY GUTs and reheating appear to be highly model-
dependent. Hence, a derivation of our supergravity model from superstrings would be very
desirable because it would simultaneously fix those interactions and thus provide specific tools
for a computation of reheating temperature, matter abundance, etc. after inflation, together
with the low-energy predictions – see e.g., [81] for previous studies along these lines.

In the end of Chapter 7, we considered a specific choice of the J-function that leads to the
Polonyi-Starobinsky supergravity model. This model can be part of a more general (and more
realistic) theory including more matter and the hidden sector, suitable for phenomenological
applications. We found an instability of inflation in the PS supergravity, and showed that it
can be removed by adding a Fayet-Iliopoulos term to the model.

Our models can be extended in the gauge-sector by replacing Maxwell-type kinetic term with
DBI-type one along the lines of [82, 83], providing further support towards their possible origin
in compactified superstrings.
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