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Abstract 

 

I 

 

Abstract 
 

Due to the extremely lightweight characteristic of sandwich structures, 

ambient air can significantly affect their natural frequency. In order to clarify the 

importance and magnitude of this effect, the natural frequency of a sandwich panel 

surrounded by air layer using experiment and numerical simulation was investigated 

in this study. The experiment setup based on modal testing was proposed with the 

feature of simulating air layer around the sandwich panel. The effect of air layer 

thickness was examined. The analytical model was formulated on the basis of 

sandwich theory and fluid-structure interaction analysis. The shear deformation of 

sandwich core was taken into account and the thickness of sandwich structure was 

included into the mesh model. The assumption of viscous incompressible flow was 

employed for the motion of air domain. The accuracy of the formulation was verified 

by comparing the obtained results with other analytical solutions and experimental 

results. The parametric studies on the effect of shear deformation and ambient air 

were conducted and the results indicate the necessity of taking into account these 

effects. As a conclusion, the experimental and numerical simulation results 

correspondingly demonstrated that when the air layer thickness becomes thinner than 

3 mm, the fundamental natural frequency of sandwich panel greatly decreases of more 

than 80% as compared with the natural frequency without air effect. 

Keywords: Sandwich panel; Lightweight structure; Natural frequency; Air effect; Air 

layer 
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Chapter 1 

Introduction 
 

1.1 Background and literature review 
 

1.1.1 Sandwich structure 

 

Sandwich structures are extensively accepted in advance engineering 

applications (e.g., aeronautics, automobiles, marines, and buildings) because of their 

excellent strength-to-weight ratio, which results in significant weight reduction and 

efficiency improvement [1-5]. A typical sandwich structure consists of two thin face 

sheets and a thick core as illustrated in Figure 1.1. The face sheets, generally made of 

metals or composite materials are responsible for carrying in-plane and bending load. 

The core, commonly a lightweight structure such as aluminum honeycomb, is 

sandwiched between the face sheets to keep them in a designed distance. The core 

thickness is a main parameter that determines the bending stiffness of sandwich 

structures. To clarify the outstanding properties of sandwich structure, the 

comparative bending stiffness and weight of a sandwich structure with different core 

thickness are presented in Figure 1.2. The bending stiffness and weight of each 

condition are normalized by the values of two face sheets perfectly bonded without 

core. The condition of the perfectly bonded face sheets is equivalent to a typical 

homogeneous structure. By adding the core thickness, the bending stiffness efficiently 

improves but the weight slightly increases. This comparison answers the question, 

“Why sandwich structures are in continuous demand?”.  
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Figure 1.1 Honeycomb sandwich structure  

 

  
 

 
 

Comparative core thickness 0t 1t 2t 3t 

Comparative Bending stiffness 1 7 19 37 

Comparative Weight 1 1.02 1.04 1.06 

 

Figure 1.2 Comparative core thickness, bending stiffness and weight of 

 sandwich structure [6] 

 

Due to the prominent characteristic of light weight and high bending stiffness, 

the honeycomb sandwich panel is commonly utilized as the main structure of satellite 

solar panel. To minimize the size of space shuttle, in launching process, the solar 

panels are generally arranged in folded configuration as shown in Figure 1.3. 
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However, because the solar panels are arranged in the earth’s atmosphere, there are 

inevitably air layers presenting in the tolerance gap between the panels. Based on the 

condition of satellite solar panel in launching process, the vibration characteristic of 

honeycomb sandwich panel was studied and the influence of air layers presenting in 

the gap was also considered in this dissertation. 

 

 

Figure 1.3 Satellite and solar panel 

 

1.1.2 Vibration of sandwich structure 

 

For structural verification, vibration test is a major requisite because almost all 

objects, when hit or disturbed, will vibrate and tend to vibrate at a particular 

frequency or a set of frequencies [7]. These frequencies are called that the natural 

frequency. The natural frequencies of each component must be estimated and may be 

redesigned to avoid the resonance with vibrational sources. The explanation based on 

the fundamental of vibration is given that a large amplitude of vibration presents 

when a natural frequency of any structure or part is matching with the operating 

frequency of any equipment [8-12]. For sandwich structures, bending vibration is an 

interesting case study that has been analyzed by various techniques. The simplest and 



Chapter 1 

Introduction 

4 

 

most functional technique is the approximation of Bernoulli-Euler theory, developed 

in the eighteenth century for describing the bending deformation of slender beams 

[13]. In the Bernoulli-Euler theory, the shear modulus is considered to be infinite and 

the bending deformation of a beam is relied on pure bending as shown in Figure 

1.4(a). In 1887, an improvement on the Bernoulli-Euler approximation was done by 

Lord Rayleigh [14]. This approximation is called Rayleigh beam model, in which the 

effect of rotational inertia of beam cross-section is taken into account [15]. Later, 

Shear beam approximation was developed by including shear deformation to the 

Bernoulli-Euler approximation. This model can considerably improve the estimated 

natural frequency [16]. In 1922, Timoshenko approximation was proposed, in which 

the effects of rotational inertia and shear deformation were included into the 

Bernoulli-Euler approximation [17]. This improvement makes the model to be 

suitable for thick beams with high frequency response [16]. The bending deformation 

of Shear/Timoshenko approximation is illustrated in Figure 1.4(b). 

 

 
 

Figure 1.4 Bending deformation of (a) Bernoulli-Euler approximation  
(b) Shear/Timoshenko approximation (c) Sandwich approximation 
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However, the explained approximations are more suitable for homogeneous 

structures than for sandwich structures because the bending deformation of sandwich 

structure is quite different from that of homogenous structures as displayed in Figure 

1.4(c). Since the late nineteenth century, there have been an increasing number of 

researches on the flexural deformation of sandwich structures. DiTaranto, (1965) [18] 

and Mead and Markus, (1969) [19] proposed a sixth-order differential equation for 

describing the transverse motion of three-layer sandwich panels. In their model, the 

motion of laminates was based on the Bernoulli-Euler theory and the motion of core 

was estimated only from shear deformation. Mead, (1982) [20] introduced the sixth 

and eighth-order differential equations for defining the lateral displacement of 

symmetric and asymmetric sandwich panels, respectively. Nilsson, (1990) [21] 

exactly derived a model for governing the flexural deformation of three-layer 

sandwich panels. In this model, the laminates and core were considered to be isotropic 

and the effects of bending shear and rotation in core were included. Besides exact 

formulation, a governing equation can be formulated by variational technique. For 

example, the governing equations in References [22-25] were derived based on 

Hamilton’s variational principle. Although, the high order differential equation up to 

tenth-order is investigated in References [24], their conclusion shows that only sixth-

order equation is sufficient to govern the lateral displacement of sandwich panels for 

high frequency range up to 5 kHz. Moreover, Nilsson and Nilsson, (2002) [23] 

concluded that for typical lightweight sandwich structures, the effect of shear 

deformation tends to dominate that of rotational inertia. 
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1.1.3 Influence of ambient air 

 

On lightweight structures, the influence of ambient air is very significant 

because it can alter the dynamic behaviors of the structures. Therefore, it is important 

to be included into the vibration analysis of light weight sandwich structures. A 

number of researches have discussed the dynamic response of air-coupled structures 

[23,26-38] Experimentation and/or numerical simulation were conducted in their 

studies to solve the problem of Fluid-Structure Interaction (FSI). 

However, until present, there are few literatures that study the vibration of 

sandwich structures coupled with ambient air [23,28,34,35]. In 1966, Powell and 

Stephens [34] experimentally investigated the vibration characteristics of sandwich 

panels in various conditions of air density. This publication probably is the first study 

that discussed the vibration response of a sandwich structure coupled with ambient 

air. They performed the vibration testing in vacuum chamber as schematically shown 

in Figure 1.5(a). The sandwich panel was excited from the bottom via spring supports 

and the vibration response was sensed by the lightweight piezoelectric crystal 

accelerometers mounted on the panel. By using this system, the first three natural 

frequencies were obtained over a pressure variation from 1 to 1.32×10−9 atm. Their 

conclusion was given that the effect of ambient air is in form of air added mass, which 

results in the decrease in natural frequency of 2 to 10% as compared with the natural 

frequency without air effect. Nilsson and Nilsson, (2002) [23] also conducted a 

vibration experiment in two pressure conditions; the first in vacuum situation and the 

second under normal pressure in order to investigate the effect of air added mass on a 

lightweight sandwich panel. As schematically shown in Figure 1.5(b), the panel was 
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suspended in the vacuum chamber and excited by a shaker. The panel response was 

sensed by a laser vibrometer via a glass window on the vacuum chamber. They 

concluded that the added mass effect can disturb the first few natural frequencies of a 

lightweight panel, where the effect is of 30% of the panel actual mass and the effect is 

decreasing for increasing frequencies up to the critical frequency. For frequencies 

above the critical frequency, the acoustic radiation from the structure will increase the 

losses of the structure. 

 

 

(a) 

 

(b) 

Figure 1.5 Vibration testing of sandwich panel in vacuum chamber performed by  

(a) Powell and Stephens [34] (b) Nilsson and Nilsson [23] 
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Besides, there are some literatures that investigating the vibration of sandwich 

panel coupled with air by using numerical analysis. Chimeno Manguán et al., (2014) 

[28] numerically simulated the vibro-acoustic response of a satellite solar array in 

folded configuration based on three difference approaches: finite element method 

(FEM), boundary element method (BEM), and statistical energy analysis (SEA). In 

this literature, the efficiency of each numerical approach was compared and the result 

showed that the FEM is an efficient technique for analysis in low frequency range. 

The FEM was also used in many researches for example in References [26,27]. The 

authors in References [26,27] performed a series of researches on the rigid and 

flexible plate coupled with a single air layer, where the assumption is the pressure 

constant across the air layer thickness. Moreover, they also conducted the vibration 

experiment, as schematically presented in Figure 1.6, to verify their numerical 

results. Their results were concluded that the thickness of air layer is an influential 

factor that can alter the air effect. In the condition of extremely thin air layer and low 

frequencies, the coupling of the air-structure is extremely strong and the viscous 

damping effect plays an important role in the dynamic behavior of the system. Their 

conclusions are also in agreement with the those of many literatures 

[26,27,29,32,37,38] that the thickness of air layer can significantly affect the 

structural natural frequencies; and the effect of air viscosity is more influential than 

that of compressibility especially for the problem of thin air layer. 
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Figure 1.6 Vibration testing of flexible plate interacting with single air layer [27] 
 

1.2 Problem statements and objectives of dissertation 
 

After extensively reviewing the literatures, the stated problems are concluded 

below: 

1. A few modal experiments of a sandwich panel coupled with air were found as 

described in the previous section. The indispensable influence of air layer thickness 

was frequently abandoned.  

2. A few analytical models were proposed for studying the vibration of sandwich 

panel coupled with air. The available models focused on the configuration of single 

air layer and pressure constant across the layer thickness. However, the configuration 

of air layers fully enveloping the structure is more realistic than that of single air layer 

interacting with the structure. Although the assumption of constant pressure, 

extensively used in various literatures [29,32,33], can simplify the formulation and 

can provide practical results,  it has some limitations that confine the thickness of air 

layer to be smaller than the acoustic wavelength of the system. For the structural 
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region, the sandwich structure was simply modelled as a homogeneous structure. 

Although, the homogeneous model is able to simplify the formulation, it is not 

sufficient for governing the lateral motion of the sandwich structure [39]. Another 

issue is that the thickness of the sandwich structure was not included into the 

boundary condition of the finite element mesh model. In the case of thin air layers 

fully enveloping the sandwich structure, the thickness of the structure is quite large as 

compared to the air layer thickness.  

The described problem statements originate the inspiration of this dissertation. The 

objectives of this dissertation are listed below: 

1. To establish an experimental modal testing with the feature of simulating an air 

layer around a sandwich panel and investigate the influence of ambient air layer on 

the natural frequency of the sandwich panel. 

2. To formulate the analytical model for studying the vibration of a sandwich panel 

coupled with air, where the configuration of air layer fully enveloping the structure 

and the incorporation of pressure distribution across the layer are modelled. The 

sandwich panel is modelled based on sandwich theory and the sandwich panel 

thickness is included into the mesh model. 

3. To numerically evaluate the influence of ambient air layer in various aspects and 

indicate the necessity of considering the shear deformation in sandwich core and of 

including the sandwich panel thickness into the mesh model. 
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1.3 Overview of dissertation 
 

This dissertation is organized into 5 chapters as follows:  

Chapter 1 presents the background, literature review, problem statements, objectives, 

and overview of this dissertation. Literature study on the vibration of sandwich 

structures is provided and various analytical models for describing the bending 

vibration are clarified. Literature reviews on the influence of the ambient air on the 

vibration of sandwich structures are presented. The pros and cons of the literatures 

have been concluded. 

Chapter 2 describes the detail of experimental setup and the effect of ambient air layer 

on the fundamental natural frequency of a honeycomb sandwich panel. The 

experimental setup based on modal testing was proposed with the feature of 

simulating air layers around the sandwich panel. To clearly clarify the effect of air 

layer surrounding the sandwich panel, 15 conditions of air layer thickness were 

determined for performing modal testing.  

Chapter 3 presents the concept and finite element formulation for analyzing free 

vibration of a sandwich panel coupled with ambient air. The model configuration is a 

vibrating flexible sandwich panel coupled with ambient air surrounded by rigid walls. 

The flexural vibration of a sandwich panel was described by the governing equation 

formulated based on the sandwich theory, where the shear deformation of sandwich 

assumption was employed. The penalty function method was applied for the 

formulation of the Navier-Stokes equations system to minimize the computational 

time and effort. Based on the methods of Galerkin weight residual and finite element, 

the governing equations were derived in weak-form and then a set of discrete matrix 
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equations. The coupled discrete matrix equation was derived based on the monolithic 

approach and eigenvalue problem. The implementation of finite element model is also 

provided in chapter 3. The types of element for discretizing the panel and air domain 

as well as the integral scheme are explained. The finite element mesh models 

including and excluding the panel thickness are illustrated. 

Chapter 4 presents the results of parametric studies and discussions. In addition, the 

validation of the finite element model was examined by investigating the convergence 

of the obtained results and comparing the results with other analytical solutions and 

experimental results. The influences of shear deformation and ambient air on the 

natural frequencies of three honeycomb sandwich panel are studied to demonstrate the 

importance of each effects and the efficiency of the proposed finite element model. 

The shear modulus of sandwich core, the thickness of sandwich core, and the 

thickness of face sheets are varied to clarify the significance of considering the shear 

deformation effect for the studying the bending vibration of sandwich panels. In order 

to demonstrate the degree of ambient air effect, the parametric studies on the air layer 

thickness, viscosity, and density as well as the panel length, bending stiffness, mass 

density, and thickness are conducted. 

Chapter 5 concludes the finding and achievement of this thesis. In addition, the 

recommendations for future research are summarized in this chapter. 
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Chapter 2 

Experimental modal testing  
 

2.1 Overview 
 

As explained in Chapter 1, a few modal experiments of a sandwich panel 

coupled with air were found and the indispensable influence of air layer thickness was 

frequently abandoned. In this chapter, the modal experiment of a honeycomb 

sandwich panel coupled with ambient air layer was setup originally to study the effect 

of thin air layer on the natural frequency of the sandwich panel. The air layer 

surrounding the sandwich panel was implemented by fixing the sandwich panel in the 

specially designed air tight box, in which the air layer thickness can be adjusted. To 

clearly clarify the effect of air layer surrounding the sandwich panel, 15 conditions of 

air layer thickness were determined for performing modal testing. 

2.2 Experimental setup 
 

The testing system, as schematically illustrated in Figure 2.1, mainly consists 

of an air tight container, a sandwich specimen, an electromagnetic exciter, a force 

transducer, an optical displacement meter, and a FFT analyzer. The air tight box is 

specially designed for fixing the specimen and simulating the air layer surrounding 

the sandwich specimen. It composes of a base box and transparent acrylic cover. As 

shown in Figure 2.2, the base box is made with heavy weight stainless steel and 

securely fixed on the strong vibration test table in order to protect the vibration of the 

base box. The base box and cover are assembled by using bolts (M6×10) and a rubber 
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seal is installed between them to protect air leakage. 

 

Figure 2.1 Experimental schematic diagram 

 

 

 

Figure 2.2 Experimental setup 



Chapter 2 

Experimental modal testing 

 

15 

 

The specimen used in this study is a honeycomb sandwich panel, manufactured by 

Showa Aircraft industry, Tokyo, Japan. The material used for the face laminates and 

honeycomb core is aluminum (AL5052). The picture and geometry of the specimen 

are presented in Figure 2.3. The shape of honeycomb core is hexagonal where the cell 

size is 5 mm and the cell wall thickness is 0.001 mm. The specifications are listed in 

Table 2.1. To perform the boundary condition of fixed ends, the brackets was 

specifically designed and fabricated to be seamlessly assembled with the specimen. 

As shown in Figure 2.3 and Figure 2.4, a hole was drilled at each end of both bracket 

sides in order to securely fix the brackets and the base box with four bolts. As the 

brackets were fixed with the base box by bolts, they were considered to be the same 

part with the base box. With this design, the brackets allow the stability for fixing the 

specimen with fixed ends condition. 

 

 

Figure 2.3  Honeycomb sandwich specimen 
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Figure 2.4  Specimen fixed in base box 

 

 

Table 2.1 Geometrical and material properties of specimen. 

 

Panel length_L (m) 0.4 

Panel width_b (mm) 50 

Face thickness_tf (mm) 0.1 

Core thickness_tc (mm) 5.0 

Face density_ρf (kg/m
3
) 2.68×10

3
 

Core density_ρc (kg/m
3
)  3.70×10

2
 

Face Young’s modulus_Ef (Pa) 70.0×10
9
 

Core Young’s modulus_Ec (Pa) 24.1×10
7
 

Core shear modulus_Gc (Pa) 34.5×10
7
 

 

 

 

Base Box 

Sandwich Panel 

Bolt 
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Similar to typical modal testing, the specimen was excited by an electromagnetic 

exciter (A.R. Brown US-2) via a stinger, threaded through the hole drilled on the 

cover. The effect of stinger stiffness was eliminated by setting the stinger to be 

vertical and short as much as possible in order to transmit the excitation force only in 

the axial direction. With this attempt, the stinger stiffness in the axial direction was 

considered to be very high as compared to the panel bending stiffness. As presented in 

Figure 2.5, the stinger was mounted on the specimen by using a small piece of foil 

adhesive tape, which insignificantly affects the panel characteristics. The 

electromagnetic shaker was operated according to the sinusoid signal generated by the 

FFT analyzer. To identify the natural frequency in a frequency range of interest, the 

logarithmically swept-sine excitation (frequency range = 20-400 Hz and sweep rate = 

0.5 octave/minute) was applied due to its reliability of the high signal-to-noise ratio. 

With the objective to determine the natural frequency of the first bending mode, the 

excitation point was determined in the center of the panel, which is its maximum 

displacement point. The vibratory measuring point was beside the excitation point to 

manifestly observe the panel displacement. The input excitation force was measured 

by a force transducer (PCB 352C23) installed on the tip of the exciter. The 

displacement response of the panel was measured by an optical displacement sensor 

(KEYENCE LK-3100). Both the input force and output response were transferred to 

the computer aided FFT analyzer (WCA AD-3661) to extract the modal parameters of 

the sandwich panel. 
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Figure 2.5  Stinger mounted on the specimen 

 

2.3 Test conditions 
 

To investigate the effect of air layer surrounding the sandwich panel, various 

conditions of air layer were determined as illustrated in Figure 2.6. From the front 

view of the air tight box enveloping the sandwich panel, the SIDE represents the 

horizontal distance between the panel end and the box’s wall. The GAP is the vertical 

distance between the panel and the box’s wall. To study the effect of SIDE, the 

variation of SIDE was determined for five cases, which are SIDE of 1, 3, 15, 25 and 

50 mm. In this testing, the variation of SIDE is executed by using a spacer as shown 

in Figure 2.7. The condition of “without seals” and “with seals” represents the 

condition of 3- and 2-dimensional air flow, respectively. To evidently demonstrate the 

effect of SIDE, the factor of 3-dimensional air flow was limited in this study. As 

presented in Figure 2.8, the seal was placed along the longitudinal side of the 

Foil Adhesive Tape 

Stinger 
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sandwich panel. Between the seal and sandwich panel, lubricant oil was applied to 

eliminate the friction that may occur. The effect of air layer thickness was also 

investigated by determining GAP of 3, 6, and 10 mm. The variation of GAP is 

performed by using a spacer as shown in Figure 2.9. At each SIDE condition, three 

different GAP thicknesses were performed thus the overall is 15 conditions. Each 

condition was performed 3 times to confirm the precision of the results.  

 

 

Figure 2.6 Air layers conditions 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2.7 SIDE variation (a) SIDE of 1 mm (b) SIDE of 3 mm (c) SIDE of 15 mm 

(d) SIDE of 25 mm (e) SIDE of 50 mm 
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Figure 2.8 Seal installed along the longitudinal side of the sandwich panel 

 

 

 

 

Seal Seal 

Seal 

Seal 
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(a) 

 
(b) 

 
(c) 

Figure 2.9 GAP variation (a) GAP of 3 mm (b) GAP of 6 mm (c) GAP of 10 mm 

 

2.4 Results and discussion 
 

The response amplitudes to the excited frequency are presented in Figure 

2.10, 2.11, 2.12, 2.13, and 2.14 for the SIDE of 1, 3, 15, 25, and 50 mm, respectively. 

The fundamental natural frequencies of the specimen determined from the response 
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amplitude, average frequency, and standard deviation are presented in Table 2.2, 2.3, 

2.4, 2.5, and 2.6 for the SIDE width of 1, 3, 15, 25, and 50 mm. The natural 

frequencies of each condition show good concurrence and the standard deviation is 

less than 0.5 Hz, which represents the verification of the obtained results.  

 

Figure 2.10 Frequency response: SIDE condition of 1 mm with seals 

 

Table 2.2 Natural frequency: SIDE condition of 1 mm with seals. 

GAP 

(mm) 

Natural frequency (Hz) Standard 

deviation  

(Hz) Test 1 Test 2 Test 3 Average 

3 mm 51.00 51.00 51.00 51.00 0.00 

6 mm 70.25 70.00 70.00 70.08 0.14 

10 mm 84.00 84.00 84.50 84.17 0.29 
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Figure 2.11 Frequency response: SIDE condition of 3 mm with seals 

 

Table 2.3 Natural frequency: SIDE condition of 3 mm with seals. 

GAP 

(mm) 

Natural frequency (Hz) Standard 

deviation 

(Hz) Test 1 Test 2 Test 3 Average 

3 mm 51.75 51.25 51.50 51.50 0.25 

6 mm 71.00 70.75 70.50 70.75 0.25 

10 mm 86.50 86.25 86.75 86.50 0.25 
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Figure 2.12 Frequency response: SIDE condition of 15 mm with seals 

 

Table 2.4 Natural frequency: SIDE condition of 15 mm with seals. 

GAP 

(mm) 

Natural frequency (Hz) Standard 

deviation 

(Hz) Test 1 Test 2 Test 3 Average 

3 mm 51.75 51.50 51.75 51.67 0.14 

6 mm 70.50 70.75 70.75 70.67 0.14 

10 mm 86.75 87.25 87.25 87.08 0.29 
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Figure 2.13 Frequency response: SIDE condition of 25 mm with seals 

 

Table 2.5 Natural frequency: SIDE condition of 25 mm with seals. 

GAP 

(mm) 

Natural frequency (Hz) Standard 

deviation  

(Hz) Test 1 Test 2 Test 3 Average 

3 mm 51.75 51.25 51.25 51.42 0.29 

6 mm 70.50 70.50 71.00 70.67 0.29 

10 mm 86.75 87.00 87.00 86.92 0.14 
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Figure 2.14 Frequency response: SIDE condition of 50 mm with seals 

 

Table 2.6 Natural frequency: SIDE condition of 50 mm with seals. 

GAP 

(mm) 

Natural frequency (Hz) Standard 

deviation 

(Hz) Test 1 Test 2 Test 3 Average 

3 mm 51.25 51.00 51.25 51.17 0.14 

6 mm 70.75 70.50 71.00 70.75 0.25 

10 mm 86.50 87.00 86.25 86.58 0.38 
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By considering the variation of GAP, the results reveal that the natural 

frequency decreases as the GAP becomes smaller. The reduction of natural frequency 

is understood that it is due to the added mass effect of ambient air, which is magnified 

when the air layer becomes thinner. To clarify this assumption, the average frequency 

of each condition is normalized by the natural frequency neglecting the influence of 

ambient air. For the sandwich panel used in this study, the fundamental natural 

frequency without air effect is 247.322 Hz. This frequency was estimated by using the 

analytical solution presented in equation (2.1). The derivation of this equation can be 

found in the Reference [39]. 

B

Bo D

L
f






2

27.2

2  
(2.1) 

Figure 2.15 presents the alteration of the normalized natural frequency as a function 

of GAP. At the GAP of 10 mm, the sandwich panel yield the lower natural frequency 

(by approximately 65%) compared to the natural frequency without air effect. 

Furthermore, the natural frequency significantly decreases of 73 and 79% while the 

GAP is decreased to be 6 and 3 mm, respectively. For the influence of SIDE, the 

results, illustrated in Figure 2.16, show that the variation of SIDE does not 

significantly affect the natural frequency when compared with the variation of GAP. 

However, when the SIDE is less than 3 mm, the SIDE effect is explicit in the case of 

GAP of 10 mm but slightly presents in the condition of GAP of 6 and 3 mm. The 

discussion of the GAP and SIDE effect are further provided in Chapter 4. 
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Figure 2.15  Normalized natural frequency as a function of GAP 

 

Figure 2.16 Normalized natural frequency as a function of SIDE 
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2.5 Conclusions 
 

The modal experiments on the sandwich panel coupled with ambient air layer 

were performed in this chapter. Various conditions of air layer were determined to 

clearly describe the influence of ambient air layer. The obtained natural frequency of 

each condition shows good concurrence and the standard deviation is less than 0.5 Hz. 

Therefore, the precision of the obtained results was verified. The obtained results 

show that the ambient air layer disturbs the vibration of sandwich panel as an added 

mass effect resulting in the reduction of natural frequency. In addition, the effect 

becomes stronger as the GAP becomes thinner. For the condition of GAP of 10, 6, 

and 3 mm, the influence of air causes the reduction of natural frequency up to 65, 73, 

and 79%, respectively. However, the variation of SIDE insignificantly alters the 

natural frequency as compared with the variation of GAP. 
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Chapter 3 

Finite element modelling  
 

3.1 Basic configuration 
 

To verify the experimental results and to conduct parametric studies, the finite 

element model was formulated on the basis of fluid-structure interaction analysis. The 

model configuration is a vibrating flexible sandwich panel fully coupled with ambient 

air surrounded by rigid walls. As sketched in Figure 3.1, while the sandwich panel 

vibrates, the air flow interacts with the motion of the panel. Here, Ω1, Ω2, G, and W 

denote the panel domain, air domain, coupled interface between Ω1 and Ω2, and rigid 

wall boundary, respectively. The flexible panel is vertically placed along the X-Y 

plane and is considered to possess identical properties throughout the plane. Thus, the 

2-dimensional model is adopted to obtain accurate results in a reasonable calculation 

time. The thickness of air layers can be varied from thin to thick and the thickness of 

sandwich panel is taken into account. Although, in this study, the analysis of 2-

dimensional problem was applied to demonstrate the potential capability of the model, 

the formulation can be applied for 3-dimensional problem for further study. 
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Figure 3.1 Sketch of a vibrating sandwich panel coupled with ambient air 

 

 

For the panel domain (Ω1), the flexural vibration of the sandwich panel was 

described by the governing equation formulated based on the sandwich theory and the 

following assumption: The sandwich panel is a kind of a lightweight thick core 

sandwiched between two thin face laminates. The face laminates were considered to 

be identical in geometrical and physical properties. The core was assumed to be very 

weak in X-direction but in Y-direction to be so stiff that the lateral deflection of two 

laminates are identic in the frequency range of interest. The lateral deflection of the 

sandwich panel is composed of the pure bending and the core shear deformation as 

illustrated in Figure 3.1. The rotary inertia of the sandwich panel was neglected. The 

governing equation for the sandwich panel is derived as follows: 
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(3.3) 

Here, B
 , B

D , b, d , q , and t denote the sandwich panel mass per unit length, flexural 

rigidity, width, lateral displacement, lateral force per unit length, and time. f
D  is the 

flexural rigidity of single face laminate. c
 , c

t , c
E ,  and c

G  are the core density, 

thickness, Young’s modulus, and effective shear stiffness. f
D , f

 , f
t , and f

E  are the 

face sheet flexural rigidity, density, thickness, and Young’s modulus. The derivation 

of equation (3.1) can be found in References [23,24,39]  

For the motion of the air domain (Ω1), the assumption of viscous 

incompressible flow was employed because the viscous effect is important for thin air 

layer condition and the compressibility is neglected due to the slow flow application. 

However, the calculation of viscous incompressible equation requires great amount of 

computational resources [40-42]. To solve this problem, the penalty function method 

was applied for the formulation of the Navier-Stokes equations system, used for 

governing the dynamic behaviour of the air. The Navier-Stokes momentum equation 

derived for this study is present in equation (3.4) in which the convective acceleration 

term is cancelled since the spatial effect is so small due to the excellent stiffness 

characteristic of sandwich structure and the assumption that the vibration amplitude of 

sandwich panel is very small as compared with the air layer thickness. Moreover, the 
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verification for neglecting the convective acceleration term is given in Appendix E. 
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The continuity equation with the modification by penalty function formulation is 

p
p

 u  (3.5) 

and the constitutive equation for the stoke flow is as follow: 
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(3.6) 

Here, A
 , u , p, µ, and ɛp denote the air density, velocity vector, pressure, viscosity 

coefficient, and penalty parameter, respectively. 
ij

  and 
ij

 are the stress tensor of the 

air and the Kronecker delta. 

The coupling interaction between the sandwich panel and air region was determined 

by considering the continuity of stress and velocity vector through the air-panel 

interface (G).  The relation between air and panel stress vector is hold as follows: 

nσnσ 
AB  (3.7) 

Here, B
σ  and A

σ denote the stress tensor of the panel and air, respectively and n  is the 

normal unit vector on the coupled boundary surface, which is expressed as 

BA
nnn   (3.8) 

Here, 
A

n  denotes the normal unit vector outward from the air region and 
B

n is the 

normal unit vector outward from the panel region. 

The continuity of velocity vector across the interface is concluded as below: 

0u  

t

d
v




  

(3.9) 
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3.2 Formulation of finite element and eigenvalue equations 
 

The governing equations discussed above were written in the weak-form 

representations and then were discretized into a set of discrete matrix equations based 

on the methods of Galerkin weighted residual and finite element. To formulate the 

governing equations in the variational integrals, i.e., the weak-form representations, 

an appropriated weighting function is required for each equation. 

Based on the Galerkin formulation, the shape function for the related element 

was used as the weighting function for each governing equation. The shape function is 

the function used to interpolate the physical solution of every node within a finite 

element.  d
N ,  u

N , and  p
N  symbolize the shape function matrix for the panel 

lateral displacement, the air velocity, and the air pressure, which can be concluded as 

follows: 

  e

d
dNd   

  e

u
N uu   

  e
p

pNp   (3.10) 

Here,  ed ,  e
u , and  ep  represent the matrix of the nodal panel lateral displacement, 

the nodal air velocity vector, and the nodal air pressure for each finite element. The 

superscript ‘e’ is the indicator referred to the order of each finite element. 

For the governing equation of the sandwich panel (3.1), the shape function for 

the panel displacement was applied as a weighting function. The derivation was done 

in the following succession as shown in equation (3.11). The panel lateral 

displacement d was determined to be expressed as a function proportional to e
λt
, in 

which λ is the complex conjugate quantity associated with the natural frequency of the 
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system. The discretized equation of the derived weak-form representation has been 

defined lastly in equation (3.11). 
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Here,  e

B
M  is the element mass matrix of the sandwich panel: 
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 e

B
K  is the element stiffness matrix of the sandwich panel: 
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 e

B
G  is the element coupling interface matrix of the sandwich panel: 
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In case of the governing equation of the air (3.4), the shape function for the air 

velocity was used as a weighting function. The derived weak-form representations 

and the discretized equations for the air governing equation are presented in equation 

(3.15). The air velocity vector u  was also defined as a function proportional to e
λt
. For 

the continuity equation (3.5), the shape function for the air pressure was selected as a 

weighting function. The weak-form representations and the discretized equations for 

the continuity equation were derived as illustrated in equation (3.16). 
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Here,  e

A
M  is the element mass matrix of the air: 
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 e

A
K  is the element stiffness matrix of the air: 
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 e

A
G  is the element coupling interface matrix of the air:  
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(3.19) 

 eP  is the element pressure matrix of the air: 

      e
e p

T

p

e dNNP
2

2
 



 
(3.20) 

 eH  is the element penalty matrix of the air: 
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After the discrete matrix equations of the panel and air were derived, each of the 

discrete matrix equation was then derived to be coupled each other to describe the 

dynamic interaction between the sandwich panel and air. Due to the explanation of the 

Galerkin method, the summation of all finite elements is equal to zero thus the 

discrete matrix equations can be determined as in equation (3.22)-(3.24). 
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Based on the monolithic approach and eigenvalue problem, the coupled discrete 

matrix equation derived according to the continuity through the interface is presented 

in equation (3.25), in which  M ,  C ,  K , and  w  are the system mass matrix, 

damping matrix, stiffness matrix, and velocity vector matrix. The combination of each 

matrix is presented in equation (3.26)-(3.29). The variable w  was determined to 

combine the matrix of nodal panel lateral displacement and that of nodal air velocity 

vector into one matrix. The coupled discrete matrix equation was derived to be 

mathematically identical to the general eigenvalue problem. The solution of this 

equation is eigenvalues and eigenvectors, which represent the natural frequencies of 

the sandwich panel and the corresponding air velocity vectors and time derivative of 

panel displacement. The nodal air pressure was calculated from the nodal air velocity 

vector using equation (3.30). 
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3.3 Implementation of finite element and eigenvalue 

equations 
 

In this study, the finite element formulation presented above was implemented 

in an in-house program operating on a Fortran 90 environment. Gauss-Legendre 

quadrature was employed for performing the numerical integration. The coupled 

discrete matrix equation (3.25) was expressed as presented in Equation (3.31) and was 

solved by using a double-QR iteration procedure on the basis of the stabilized 

elementary similarity transformations to an upper Hessenberg Form (UHF) [43-46].  
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The types of elements for discretizing the air and the panel domain were selected 

based on the following discussion. For the motion of air domain governed by the 

Navier-Stokes equations, only first order partial derivatives exist on the variational 

formulation. In this case, only linear functions are adequate for interpolation of the air 

motion. However, the formulation of this study is also based on the penalty function 

method. The effective set of finite elements should be selected for the air domain. The 

effective sets of finite elements and the corresponding integration scheme 

recommended for the penalty formulation were introduced in [41], which suggested 

that the most effective type of elements is the Lagrange isoparametric elements but 

any triangular elements and serendipity quadrilateral elements are not recommended 

due to their unsatisfied results. Besides, when using the penalty function method, it is 

necessary to calculate the inverse of air pressure matrix  P  as formulated   1
P  in 
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Equation (3.27). In this case, if the pressure approximation, which is discontinuous 

across the element boundaries is employed the bandwidth of  P  is the same with the 

bandwidth of   1
P . On the contrary, the utilization of pressure approximation 

continuous between adjacent elements leads to the increase of the bandwidth of   1
P  

and thus the error in calculation. The explained aspect has been investigated in 

Appendix D. According to the above explanation and simplicity for implementation to 

the in-house analysis codes, the combination of quadrilateral elements, called 

Crouzeix-Raviart (Q2-P-1) element was selected for the interpolation of the air velocity 

and pressure. The designation of Q2 indicates a quadratic (2
nd

 order) polynomial 

interpolation for each velocity component and that of P indicate a complete 

polynomial for the pressure interpolation while the negative subscript denotes the 

discontinuous function between adjacent elements. The Q2-P-1 element was also 

confirmed the best accurate, optimal, and robust element for viscous incompressible 

flow computation by various literatures [47-54]. The Q2-P-1 element is illustrated in 

Figure 3.2, in which the velocity vectors were approximated using 9-node biquadratic 

quadrilateral elements while the pressure field was approximated linearly (1 node at 

the centre with two derivatives).  

The shape functions for Q2-P-1 element are presented in local coordinates  and  as 

follows: 

For velocity (9 nodal points) 
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Figure 3.2  Q2-P-1 element 
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For pressure (1 nodal point, 2 derivatives) 
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For the approximation of lateral displacement of the panel, the two-node bending 

element with four degree of freedom as presented in Figure 3.3 was employed. 𝑑1 

and 𝑑2 represent the lateral displacement at the node 1 and 2 of the element.  
𝜕𝑑1

𝑑𝑥
 and  

𝜕𝑑2

𝑑𝑥
 are the rotation at each node. 𝑙 is the length of element. The shape functions of the 

two-node bending element are derived based on the cubic interpolation function, 

which satisfies the governing equation of the panel domain. Furthermore, the cubic 

interpolation function is able to provide the continuity of lateral displacement and 

slope at sharing nodes between continuous elements. The shape function derivation 

and accuracy investigation for this element type were offered in [55].  

 

Figure 3.3 2-node bending element 
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The shape functions for the two-node bending element are presented in local 

coordinates as follows: 
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(3.34) 

The proposed feature of this study is to include the thickness of sandwich panel into 

the mesh model. The finite element mesh model including the panel thickness is 

presented in Figure 3.4. However, the finite element mesh models excluding the 

panel thickness as shown in Figure 3.5 was also used to compare the obtained results 

and clarify the influence of this improvement. The thickness of sandwich panel was 

included by separating the upper and lower air-panel interface. The boundary 

conditions of air velocity nodes on the upper and lower interface were set to be 

identical to the time derivative of the displacement of corresponding panel nodes. 

This concept is coherent with the assumption of the sandwich model that the core is 

so stiff in transverse direction that the lateral motions of two faces are synchronous.  
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Figure 3.4 Finite element mesh model including panel thickness 

 

 
Figure 3.5 Finite element mesh model excluding panel thickness 
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Chapter 4 

Parametric studies and discussions 
 

 

4.1 Verification of finite element model 
 

The validation of the formulation was examined by investigating the 

convergence of finite element results and comparing the obtained results with 

analytical solutions and experimental results of other researches. In addition, the finite 

element results are also compared with the experimental results presented in Chapter 

2. In this study, the mesh convergence study was performed to determine the optimum 

number of elements. The mesh convergence plot for the natural frequency versus the 

number of air element is illustrated in Figure 4.1, while the convergence test on the 

panel elements refinement is clarified in the next section, which also compares the 

finite element results with analytical solution. In the analysis, the air and panel region 

were discretized into 168 and 30 elements, respectively and the total number of DOFs 

is 1561. The physical properties of the air were based on the normal temperature and 

pressure (20 °C, 1 atm), where air mass density (ρA) = 1.205 kg/m
3
, viscous 

coefficient (µ) = 1.809 × 10
-5  

Pa∙s, and speed of sound (c)= 343.43 m/s. To assure the 

versatility of the present formulation, three sandwich panels (A, B, and C) with 

different geometrical and material properties were employed for this study. The 

geometrical and material properties of Sandwich A and B were adopted from various 

literatures [23,39] while those of Sandwich C was adopted from the specimen used in 

Chapter 2.  
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Figure 4.1 Mesh convergence plot of natural frequency versus number of air elements 

 

Table 4.1 Geometrical and material properties 

Sandwich panel A B C 

Panel length_L (m) 1.2 1.2 0.4 

Panel width_b (mm) 1.0 1.0 50 

Face thickness_tf (mm) 0.5 1.0 0.1 

Core thickness_tc (mm) 10 10 5.0 

Face density_ρf (kg/m
3
) 1.26×10

3
 2.77×10

3 
 2.68×10

3
 

Core density_ρc (kg/m
3
)  1.38×10

2
 0.6×10

2 
0.37×10

2
 

Face Young’s modulus_Ef (Pa) 32.0×10
9
 70.0×10

9
 70.0×10

9
 

Core Young’s modulus_Ec (Pa) 13.0×10
7
 13.0×10

7
 24.1×10

7
 

Core shear modulus_Gc (Pa) 13.6×10
7
 45.0×10

6
 34.5×10

7
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In this part, the first eight natural frequencies of sandwich panel A, B, and C, 

calculated by using the present finite element analysis are compared with those 

calculated by using the Euler-Bernoulli and Sandwich approximation. The 

geometrical and material properties of sandwich panel A, B, and C are presented in 

Table 4.1. The boundary condition of the panel A and B is simply support and that of 

the panel C is fixed ends. In this comparison, the effect of ambient air was not 

considered. The effect of ambient air was disregarded from the finite element analysis 

by setting the air boundary to be the condition of infinite vacuum air domain. In this 

setting, the rigid walls were removed and the parameters of the air viscosity 

coefficient and mass density were inputted with 5-digit smaller than the value of 

standard condition. The analytical solutions based on the classical Euler-Bernoulli and 

Sandwich theory are clarified in equation (4.1) and (4.2), respectively. The derivation 

and analytical solutions of sandwich panel under fixed ends condition can be found in 

the reference [39]. 
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(4.2) 

Here, n and L denote the vibrational mode order and sandwich panel length. 

 

The comparisons of the first eight natural frequencies calculated by finite element, 

Euler-Bernoulli, and Sandwich approximation are presented in Table 4.2, 4.3, and 4.4 
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for sandwich panel A, B, and C, respectively. In addition, the number of panel 

elements (N) was varied to investigate the convergence of the results. The natural 

frequencies obtained from finite element model tend to converge to those calculated 

by using Sandwich approximation and show more agreement with those calculated 

using Sandwich approximation than those estimated using Euler-Bernoulli solution. 

The natural frequencies of Euler-Bernoulli solution are slightly higher than those of 

finite element model and Sandwich approximation because the assumption of Euler-

Bernoulli approximation neglects the shear deformation effect by considering the 

shear modulus to be infinity, leading to the overestimated bending stiffness and 

natural frequency. The deviation from the Euler-Bernoulli solution increases as the 

mode order steps up. For the panel B having the lower shear modulus than the panel 

A and C, the deviation of natural frequencies can be seen obviously. The deviation 

indicates the necessity of taking the shear deformation effect into the calculation of 

natural frequency especially for a sandwich structure with weak core.  

As previously explained, the obtained finite element results were compared 

with the experimental results of other researches [23,34] to verify the finite element 

model. The first three natural frequencies of three sandwich panels are compared in 

Table 4.5. The natural frequencies are presented in normalized form (𝑓/𝑓0), where 𝑓 

is the natural frequency under normal pressure and 𝑓0 is the natural frequency in 

vacuum condition. In this comparison, the boundary condition of finite element model 

was modified by removing the rigid wall surrounding the ambient air and the ambient 

air thickness is set to be 1000 mm. For the vacuum condition, the air viscosity 

coefficient and mass density were inputted with 5-digit smaller than the value of 

standard condition. 
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Table 4.2 Estimated natural frequency for Sandwich panel A without air effect 

Vibrational Sandwich A natural frequency (Hz) 

mode’s Finite element       Analytical Euler- Analytical 

order N=10 N=20 N=30 N=40 Bernoulli  Sandwich  

1 19.921 19.905 19.903 19.902 19.946 19.902 

2 79.158 79.098 79.089 79.083 79.784 79.083 

3 176.191 176.058 176.038 176.023 179.513 176.024 

4 308.643 308.409 308.374 308.349 319.135 308.351 

5 473.489 473.130 473.076 473.037 498.648 473.040 

6 667.293 666.787 666.711 666.657 718.053 666.661 

7 866.442 885.770 885.669 885.597 977.349 885.602 

8 1127.344 1126.489 1126.361 1126.269 1276.538 1126.275 

 

Table 4.3 Estimated natural frequency for Sandwich panel B without air effect 

Vibrational Sandwich B natural frequency (Hz) 

mode’s Finite element       Analytical Euler- Analytical 

order N=10 N=20 N=30 N=40 Bernoulli  Sandwich  

1 27.826 27.810 27.804 27.803 28.688 27.803 

2 102.371 102.313 102.292 102.287 114.751 102.288 

3 205.495 205.378 205.336 205.326 258.190 205.328 

4 322.266 322.266 322.017 322.000 459.005 322.003 

5 444.053 444.053 443.963 443.941 717.195 443.945 

6 567.803 567.479 567.363 567.336 1032.761 567.340 

7 691.263 690.868 690.728 690.694 1405.702 690.700 

8 814.225 813.760 813.594 813.555 1836.019 813.562 
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Table 4.4 Estimated natural frequency for Sandwich panel C without air effect 

Vibrational Sandwich C natural frequency (Hz) 

mode’s Finite element       Analytical Euler- Analytical 

order N=10 N=20 N=30 N=40 Bernoulli  Sandwich  

1 274.339 247.323 247.322 247.321 248.226 247.322 

2 682.653 682.611 682.608 682.605 689.516 682.606 

3 1325.373 1325.290 1325.285 1325.280 1351.451 1325.282 

4 2163.990 2163.855 2163.846 2163.837 2234.032 2163.840 

5 3184.363 3184.163 3184.151 3184.137 3337.257 3184.142 

6 4370.540 4370.266 4370.248 4370.230 4661.128 4370.237 

7 5705.584 5705.228 5705.204 5705.180 6205.643 5705.188 

8 7172.319 7171.871 7171.842 7171.812 7970.804 7171.822 

 

The agreement between the obtained finite element results and the experimental 

results of other researches is satisfied. The results show that the ambient air affects the 

vibration of sandwich panel as an added mass effect resulting in the reduction of 

natural frequency. As compared with the natural frequency in vacuum condition, the 

natural frequency decreases of about 10, 4, and 3% for vibrational mode 1, 2, and 3, 

respectively. The results also show that the effect of ambient air increases when the 

panel mass becomes lighter.  
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Table 4.5 Comparison with experimental of other researches  

Panel Mass/area 

(kg/mm
2
) 

𝑓/𝑓0  

(FEM) 

𝑓/𝑓0 [23,34] 

(Experiment of other researches) 

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 

SW1 4.66 × 10−6 0.90 0.95 0.98 0.94 0.98 0.99 

SW2 4.10 × 10−6 0.89 0.94 0.97 0.92 0.96 0.97 

SW3 2.60 × 10−6 0.83 0.92 0.93 0.86 n/a n/a 

 

4.2 Influence of shear deformation  
 

The influence of shear deformation in sandwich core was further investigated 

in this part. The variation of the core shear modulus was conducted to illustrate the 

characteristic of this effect while the values of other parameters were still equivalent 

as listed in Table 4.1. Figure 4.2-4.4 show the alteration of the first three natural 

frequencies through the adjustment of core shear modulus of sandwich panel A, B, 

and C, respectively. The abscissa of Figure 4.2-4.4 is the shear modulus (Gc). The 

ordinate is f/f 
0
, where f is the natural frequency obtained by including shear 

deformation effect and f 
0
 is the natural frequency that neglects this effect. The results 

of sandwich panel A, B, and C show similar tendency. While the core shear modulus 

weakens, the effect of shear deformation presents as the sharp decrease of natural 

frequencies. The effect is more significant in the higher vibration mode. On the other 

hand, as the shear modulus strengthens up to a value, which is 10 times for sandwich 

panel A and C, and 100 times for sandwich panel B, the shear deformation has the 

minor effect on their natural frequencies. 
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Figure 4.2 Influence of shear deformation on natural frequencies as a function of core 

shear modulus: Sandwich panel A 

 

 
Figure 4.3 Influence of shear deformation on natural frequencies as a function of core 

shear modulus: Sandwich panel B 
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Figure 4.4 Influence of shear deformation on natural frequencies as a function of core 

shear modulus: Sandwich panel C 

 

Generally, the shear deformation effect obviously presents in the case of thick panel. 

In the high frequency region, the bending stiffness of a sandwich panel is completely 

determined by the bending stiffness of the laminates [39]. Thus, in this section, the 

shear deformation effect on the first three natural frequencies was investigated by 

varying the core and face sheets thickness. Figure 4.5-4.7 present the variation of the 

first three natural frequencies as the core thickness of the sandwich structure changes. 

Figure 4.8-4.10 illustrate the change of natural frequencies through the variation of 

face thickness. The abscissa of Figure 4.5-4.7 is the core thickness (tc) and that of 

Figure 4.8-4.10 is face thickness (tf). The ordinate of Figure 4.5-4.10 is identical to 

that of Figure 4.2-4.4. From the Figure 4.5-4.10, when the core and face sheets 

thickness increases, the natural frequencies tend to decline according to the increase 
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of shear deformation effect. As same tendency as shown in Figure 4.2-4.4, the effect 

of shear deformation is magnified as the vibration mode order increases. The results 

in this part conclude the importance of considering the shear deformation effect for 

studying the bending vibration of sandwich panels. 

 
Figure 4.5 Influence of shear deformation on natural frequencies as a function of core 

thickness: Sandwich panel A 
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Figure 4.6 Influence of shear deformation on natural frequencies as a function of core 

thickness: Sandwich panel B 

 
Figure 4.7 Influence of shear deformation on natural frequencies as a function of core 

thickness: Sandwich panel C 



Chapter 4 

Parametric studies and discussions 

 

57 

 

 
Figure 4.8 Influence of shear deformation on natural frequencies as a function of face 

sheet thickness: Sandwich panel A 

 
Figure 4.9 Influence of shear deformation on natural frequencies as a function of face 

sheet thickness: Sandwich panel B 
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Figure 4.10 Influence of shear deformation on natural frequencies as a function of 

face sheet thickness: Sandwich panel C 

 

4.3 Influence of GAP 
 

In the section, the natural frequency of the first vibrational mode is 

investigated as the GAP is changed between 1 to 40 mm. In addition, to verify the 

experimental results, the conditions of SIDE are determined to be 1, 3, 15, 25, and 50 

mm according to the experimental condition. The natural frequency variations for the 

SIDE condition of 1, 3, 15, 25, and 50 mm are illustrated in Figure 4.11-4.15, 

respectively. The ordinate of Figure 4.11-4.15 is the normalized frequency f/f 
0
, 

where f is the natural frequency obtained by including the effect of ambient air and f 
0
 

is the natural frequency neglecting this effect. For the specimen used in this study, the 

fundamental natural frequency without air effect is 247.321 Hz. This frequency was 
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estimated by using the numerical simulation where the boundary condition of the 

model was adapted by removing the rigid surface around the panel and setting the air 

density and viscous coefficient to be 5 times smaller than those of the standard 

condition. The adapted boundary condition represents the condition of infinite 

vacuum air domain. The abscissa of Figure 4.11-4.15 is the GAP/L, where L is panel 

length. The blue background graph provides the magnified comparison between finite 

element and experimental results. The finite element and experimental results show 

good agreement. The frequency variations of all SIDE conditions are in same 

tendency that the natural frequencies tend to decrease more sharply as the GAP 

becomes thinner.  

 

 
Figure 4.11 Influence of GAP: SIDE of 1 mm 
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Figure 4.12 Influence of GAP: SIDE of 3 mm 

 

 
Figure 4.13 Influence of GAP: SIDE of 15 mm 
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Figure 4.14 Influence of GAP: SIDE of 25 mm 

 

 
Figure 4.15 Influence of GAP: SIDE of 50 mm 
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The decrease of natural frequency due to the decrease of GAP can be explained by the 

effect of Fluid-Structure Interaction (FSI) and air mass added to sandwich panel. As 

shown in Figure 4.16(a), the bending vibration of the panel causes the oscillatory air 

flow between the upper and lower cavity while the air flow disturbs the panel as an 

added mass effect. Because the density of sandwich structure and air is comparable, 

the added air mass can significantly modify the dynamic behaviour of the sandwich 

structure. As the GAP becomes smaller, the oscillatory air flow improves resulting in 

the increase of added mass effect and the decreases of natural frequency. The results 

of this study are in contrast with the results of the literature [27], where the natural 

frequency increases with decreasing air layer thickness. The contrast in the results is 

because of their different air condition and resulting effect, as comparatively 

illustrated in Figure 4.16. In the condition of the literature [27], the deformation of 

the panel causes a volume change in the cavity and then a pressure disturbance on the 

panel. The pressure disturbance affects the panel as an added stiffness effect, which 

shifts the panel natural frequency up.  

 
Figure 4.16 Air-panel coupling mechanism of (a) present model and  

(b) reference [27] model 
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4.4 Influence of SIDE 
 

The influence of SIDE is studied by varying the SIDE width to be 1, 3, 5, 15, 

25, and 50 mm, whereas the varying of GAP and other parameters are the same as 

those in section 4.3. Figure 4.17 shows the variation of natural frequency of different 

SIDE width. Its ordinate and abscissa are identical to those of Figure 4.11-4.15. The 

effect of SIDE increases as the SIDE width decreases. However, the effect of SIDE is 

insignificant when the GAP becomes smaller because it is dominated by the GAP 

effect. As GAP/L is less than 0.015, SIDE variations do not affect the natural 

frequencies. On the contrary, the influence of SIDE prominently appears, especially 

for the case of narrow SIDE. The effect of SIDE leads to the reduction of natural 

frequency as the SIDE width becomes narrower. The reason of this phenomenon is 

similar to that of GAP effect explained in the previous section. The decrease of SIDE 

induces the pressure difference between the upper and lower cavity as shown in 

Figure 4.16(a). The increase of pressure difference leads to the improvement of the 

oscillatory air flow between the upper and lower cavity and then the intensification of 

added air mass effect. Thus, the natural frequency decreases according to the decrease 

of SIDE. 
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Figure 4.17 Influence of SIDE 

 

4.5 Influence of panel length 
 

The influence of air on the natural frequency of three panels with different 

lengths is investigated. The condition of panel length of 400 mm and SIDE of 50 mm 

is selected as the baseline for this comparison. The other panel length is set to be the 

half and the twice of the baseline (1/2 L and 2 L). In Figure 4.18, the relation between 

the GAP/L and the normalized frequency f/f 
0 

is plotted for three panel spans. The 

frequency of each panel is normalized by its f 
0
 corresponding to its length. 

Perceptibly, the effect of air on the natural frequency becomes stronger when the 

length is extended. This result can be simply explained that the increase of panel 

length leads to the longer air layer and thus the increment of added air mass effect, 

which results the decrease of natural frequency. 
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Figure 4.18 Influence of panel length 

 

4.6 Influence of panel bending stiffness 
 

The influence of air effect on the natural frequency of three different panels 

with different bending stiffness is investigated as shown in Figure 4.19. The ordinate 

and abscissa of Figure 4.19 are identical to those of Figure 4.11-4.15. The simulation 

result of Figure 4.15 is used as the baseline. The bending stiffness of the panel is 

varied to be 10 times smaller and larger than that of the baseline whereas the other 

parameters are identical to those of the baseline. The comparison in Figure 4.19 

shows that the frequencies of three different panels are quite identical except for the 

extremely small GAP/L region, which reveals only small difference. In the very small 

GAP/L region, the air effect becomes little stronger as the bending stiffness is 

reduced. The stronger effect can be explained that the structures with lower stiffness 
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are easier disturbed by the added mass effect than those with higher stiffness and the 

added mass effect is magnified in thin GAP range.   

 

Figure 4.19 Influence of panel bending stiffness 

 

4.7 Influence of panel mass 
 

The difference of the air effect on different structural mass densities is 

presented in Figure 4.20. The simulation result of Figure 4.11 is used as the baseline. 

The ordinate and abscissa of Figure 4.20 are also identical to those of Figure 4.11-

4.15. The mass density is varied between 10 times smaller and larger than that of the 

baseline. The alteration of structural mass substantially modifies the effect of ambient 

air layers. As the structural mass density is minimized, the natural frequency 

decreases manifestly because the added air mass effect becomes more prominent. The 

results in this section show good agreement with those of the reference [28] which 
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revealed the importance of added air mass effect on the vibrational response of light 

weight structures. The comparison in this section evidently proves that the air effect 

on structural vibration should not be neglected, especially for the case of light weight 

structure. 

 

Figure 4.20 Influence of panel mass 

 

4.8 Influence of vibration mode 
 

In this section, the influence of ambient air on the first three natural 

frequencies is investigated by simultaneously varying the GAP and SIDE, which are 

commonly called the air layer thickness (ta). The frequency variation of sandwich 

panel A, B, and C is shown in Figure 4.21, 4.22, and 4.23, respectively. The ordinate 

of Figure 4.21-4.23 is  f/f 
0
 as identical as that of Figure 4.11-4.15. The abscissa is 

the air layer thickness normalized by the core thickness (ta/tc). The frequency changes 
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of three panels are in same tendency. The frequencies decrease while the air layer 

thickness becomes thinner and the frequencies tends to decrease more sharply when 

ta/tc is less than one.  

By considering the vibrational mode order, the effect of ambient air (added 

mass) decreases as the mode order or frequency increases, the results are in agreement 

with the discussion of Reference [39] that explained that the added mass effect is 

decreasing for increasing frequencies up to the critical frequency. To further 

substantiate these results, the characteristics of air flow velocity vector and pressure 

distribution are shown in Figure 4.24, 4.25, and 4.26 for 1
st
 mode, 2

nd
 mode, and 3

rd
 

mode, respectively. For the reason that both sides are symmetry, only the half left is 

presented to identify their details. These characteristics are in the condition of air 

layer with 20 mm thickness. For each vibrational mode, the vector plots were 

normalized by the maximum absolute value of the time derivation of the panel 

displacement. The pressure distributions of each mode were also normalized by their 

own maximum value. The results show that the size of air velocity vector of the 1
st
 

mode (Figure 4.24) is larger than that of the 2
nd

 mode (Figure 4.25), which is larger 

than that of the 3
rd 

mode (Figure 4.26). In other words, the larger size of air flow 

vector occurs in the lower mode. The larger size of air velocity vector, which 

represents the intense air flow, indicates the stronger added mass effect. These results 

provide the explanation why the air effect is stronger in the lower mode.  
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Figure 4.21 Influence of vibration mode: Sandwich panel A 

 

 
Figure 4.22 Influence of vibration mode: Sandwich panel B 
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Figure 4.23 Influence of vibration mode: Sandwich panel C 

 

 
Figure 4.24 Air flow velocity vector and pressure distribution: Mode1 
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Figure 4.25 Air flow velocity vector and pressure distribution: Mode2 

 

 

 
Figure 4.26 Air flow velocity vector and pressure distribution: Mode3 
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4.9 Influence of air viscosity  
 

To clarify the influence of air viscosity, the first three natural frequencies 

obtained from the condition of considering and neglecting the air viscosity are 

compared as presented in Figure 4.27, 4.28, and 4.29 for sandwich panel A, B, and C, 

respectively. For the condition of considering air viscosity (Standard µ), the air 

viscosity coefficient based on the normal temperature and pressure is employed. For 

the condition of neglecting air viscosity (10
-5

 µ), the viscosity coefficient is set to be 

5-digit smaller than the standard value. The ordinate of Figure 4.27-4.29 is identical 

to that of Figure 4.11-4.15. The abscissa is the air layer thickness (ta). The 

comparison of natural frequencies neglecting and considering the air viscosity shows 

that the air viscosity effect is manifest in the case of thin air layer and the lower 

vibration mode. The results in Figure 4.27-4.29 show good agreement with the results 

and suggestion of the Reference [27] that the viscous effect should be regarded for the 

condition of thin layer and low frequency.  

To further explain these results, the characteristics of air flow velocity vector 

and pressure distribution are shown in Figure 4.30, 4.31, and 4.32 for the air layer 

thickness of 1, 10, and 100 mm, respectively. In these characteristics, the panel 

vibrates in the fundamental mode and deforms upward. For the reason that both sides 

are symmetry, only the half left is presented. At the center of the panel, the flow 

vectors are directed vertically. Then they tend to change to horizontal direction and 

become larger when they approach the panel end. For the air layer thickness of 1 mm, 

the flow vectors appear as poiseuille flow as shown in Figure 4.30(a) due to the 

dominance of viscous effect. However, the viscous effect lessens when the air layer 
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thickness becomes larger. As presented in Figure 4.31(a) and 4.32(a), when the air 

layer thickness is 10 and 100 mm, the ratio of boundary layer occupying the air layer 

decreases as compared with the flow velocity profile of layer thickness of 1 mm 

shown in Figure 4.30(a). In the case that the air viscosity coefficient is varied to be 5-

digit smaller than the standard value, the air viscous effect also lessens as presented in 

Figure 4.30(b) and 4.31(b) in which the boundary layer occupying the air layer is 

smaller than that of the standard condition. The comparison between Figure 4.32(a) 

and 4.32(b) indicates that the viscous effect is very small in the case of thick air layer. 

As illustrated in Figure 4.32, the flow velocity profile and pressure magnitude of 

standard viscosity coefficient condition are quite identical to those of 5-digit smaller 

viscosity coefficient condition. By considering the pressure magnitude of each 

condition, the pressure magnitude in air layer increases when the air layer thickness 

decreases and/or the viscous effect increases. When the air layer thickness becomes 

thinner, the pressure magnitude of standard µ condition becomes higher than that of 

10
-5

 µ condition. The difference of pressure magnitude increases corresponding to the 

difference of natural frequency shown in Figure 4.27(b). 
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(a) 

 
(b) 

Figure 4.27 Influence of air viscosity: Sandwich panel A  
(a) thick air layer (b) thin air layer 
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(a) 

 
(b) 

Figure 4.28 Influence of air viscosity: Sandwich panel B  

(a) thick air layer (b) thin air layer 
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(a) 

 
(b) 

Figure 4.29 Influence of air viscosity: Sandwich panel C  

(a) thick air layer (b) thin air layer 
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(a) 

 

 
(b) 

 

Figure 4.30 Air flow velocity vector and pressure distribution: air layer thickness of  

1 mm (a) Standard µ (b) 10
-5

 µ 
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(a) 

 

 
(b) 

 

Figure 4.31 Air flow velocity vector and pressure distribution: air layer thickness of  

10 mm (a) Standard µ (b) 10
-5

 µ 
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(a) 

 

 
(b) 

 

 Figure 4.32 Air flow velocity vector and pressure distribution: air layer thickness of  

100 mm (a) Standard µ (b) 10
-5

 µ 
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4.10 Influence of air density  
 

To further proof the added mass effect on the decrease of natural frequency, 

the parametric study on the air density was conducted by varying the air density to be 

smaller than the standard value 1, 2, and 5-digit. The 1
st
 mode natural frequency of 

sandwich panel A, B, and C is shown in Figure 4.33, 4.34, and 4.35, respectively. 

The ordinate and abscissa are still identical to those of Figure 4.21-4.23. The 

frequency variations of three sandwich panels are in same tendency. The results show 

that while the air density decreases, the frequency tends to shift up due to the 

diminution of added mass effect. As explained in the previous section, the oscillatory 

air flow affects the panel as an added mass resulting in the reduction of natural 

frequency. In the case that the density of air and sandwich panel is not much different, 

the added mass effect plays an important role affecting the dynamic behavior of the 

panel. On the contrary, the added mass effect has little effect. For instance, in the 

condition of 10
-5

 ρA, the normalized frequency is almost 1.0 meaning that there is 

small difference between the natural frequency including air effect and the natural 

frequency excluding air effect. The explanation of the added mass effect on the 

reduction of natural frequency was also verified by the results of this section. 
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Figure 4.33 Influence of air density: Sandwich panel A 

 
Figure 4.34 Influence of air density: Sandwich panel B 
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Figure 4.35 Influence of air density: Sandwich panel C 

 

4.11 Influence of air-panel thickness  
 

In the finite element analysis of a vibrating panel surrounded by thin air layers, 

the thickness of the panel should be included into the mesh model in order to obtain 

the accurate results. With the aim of understanding the accuracy improvement, the 

first three natural frequencies calculated by two mesh models, including and 

excluding the thickness of sandwich panel, were compared in the different air layer 

thicknesses of 2 mm, 10 mm, 100 mm, and infinite air domain. For the case of infinite 

air domain, the results from both models are almost same. For the other conditions, 

the natural frequencies calculated using the model including the panel thickness are 

always lower than those calculated using the model excluding the panel thickness. 

The reason is that when the sandwich panel thickness is included, the distance of 
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airflow increase thus resulting in the additional air mass. The difference between both 

results is presented in Figure 4.36, 4.37, and 4.38 for 1
st
 mode, 2

nd
 mode, and 3

rd
 

mode, respectively. The abscissa is the panel thickness (tb). The ordinate is the 

difference between both results. The difference becomes larger as the panel thickness 

increases and as the air layer thickness decreases. The results of three modes are 

similar in tendency but various in the difference. The difference decreases as the 

vibration mode order increases. In sum, the consideration of panel thickness is 

important for the case of thick panel coupled with thin air layer. 

 
Figure 4.36 Influence of air-panel thickness: Mode1 
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Figure 4.37 Influence of air-panel thickness: Mode2 

 
Figure 4.38 Influence of air-panel thickness: Mode3 
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Chapter 5 

Conclusions and Recommendations 
 

 

5.1 Conclusions 
 

The fundamental natural frequency of a sandwich panel surrounded by air 

layers was investigated using experiment and numerical simulation. The experiment 

setup based on modal testing was proposed with the feature of simulating air layers 

around the sandwich panel. The numerical simulation was originally established for 

this study. The flexural motion of the sandwich structure was governed by a sixth 

order differential equation. The motion of the ambient air was governed by Navier-

Stokes equations with viscous incompressible flow assumption and the penalty 

function formulation. The finite element equations of the panel and air were derived 

in weak form through the Galerkin weighted residual method and combined on the 

basis of a monolithic approach and eigenvalue problem. The finite element 

formulation was implemented in an in-house program operating on a Fortran 90 

environment. The validation of the formulation was investigated by comparing the 

obtained results with other analytical solutions and experimental results. For the 

comparison with the analytical solution of Euler-Bernoulli and Sandwich theory, the 

results show good agreement with the sandwich theory solutions and indicate the 

necessity of considering the effect of shear deformation in sandwich core. The 

comparison between finite element and experimental results shows good concordance 

with difference less than 3%. 
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The parametric studies on the influences of shear deformation and ambient air on the 

natural frequencies were conducted. The achieved results can be concluded as 

follows: 

 The effect of shear deformation causes the reduction in the natural 

frequencies. As the core shear stiffness weakens, the vibration mode order 

increases, and/or the sandwich panel thickens, the effect of shear deformation 

becomes stronger. For the bending vibration analysis of a weak core and/or 

thick sandwich panel, the effect of shear deformation is essential. 

 The effect of air layer that surround the sandwich panel is sorted as an added 

mass effect and results in the reduction of the natural frequency. 

 The air layer thickness is an influential factor. As the air layer thickness 

becomes thinner, the added mass effect is magnified and thus the natural 

frequency greatly decreases of more than 80% when the air layer thickness 

becomes thinner than 3 mm. 

 The influence of panel length and mass density indicates the sensitive 

response on the natural frequency. However, the influence of panel bending 

stiffness is insignificant when compared with that of panel length and mass 

density. 

 The magnitude of air effect becomes larger as the vibration mode order 

decreases. The effect of air viscosity is manifest in the case of thin layer and 

the lower vibration mode order. The inclusion of panel thickness into the finite 

element mesh model is important especially for the analysis of thick panel 

coupled with thin air layers. 
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5.2 Recommendations 
 

 Several recommendations for future researches as extension of this study are 

listed below: 

 As explained in Chapter 2, the sandwich specimen was excited by an 

electromagnetic exciter via a stinger. This excitation method may affect the 

dynamic behavior of the sandwich panel as an added mass effect and result in 

the error between the experimental and simulation results. It is interesting to 

perform the experiment by using non-contact excitation methods, for instance 

magnetic excitation. 

 It is interesting to perform the modal testing on a larger sandwich panel 

coupled with various condition of ambient air layer, so that the influence of 

ambient air on the natural frequencies and vibration modes can be fully 

described. 

 More realistic 3-Dimensional finite element model can be developed to fully 

describe the influence of ambient air. However, to minimize the computation 

time and effort, 1/8 model can be employed by using the concept of ¼ model, 

given in Appendix C. 

 Not only the influence of ambient air but also the effect of air trapped in 

sandwich core is significant. To achieve high-accuracy natural frequency, the 

influence of air trapped in sandwich core can be included into the analytical 

model. 
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Appendix A 

Derivation for the element coupling interface 

matrices  e
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Starting from the boundary integral term in Equation (3.11) and concerning 

the continuity condition of the stress components through the discrete boundary of the 

coupling interface eG in Equation (3.7), it becomes  
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From Equation (3.5) and (3.6), the discrete stress components defined for each of 

finite elements are expressed as 
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Substituting Equation (A2) for Equation (A1), we obtain the element coupling 



Appendix A 

Derivation for the element coupling interface matrices 

94 

 

interface matrix of the panel  
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From the last term in Equation (3.15), concerning the no slip condition, on the 

discrete boundary of the rigid wall, it becomes  
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Also  nu
N  and  u

N , which denote the normal and tangent components of the shape 

function matrix  u
N  are expressed as 
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Substituting Equation (A2), (A3), and (A6) into Equation (A5) 
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Appendix B 

Free vibration analysis of damped system 
 

Generally, the results obtained from an eigenvalue analysis are an eigenvalue  

(  ) and eigenvector ( z ). The vibration can be expressed as a function of time )(tf  

zz
tt eetf  )(  (B1) 

Here,   is the complex conjugate of the eigenvalue (  ) and z  is the complex 

conjugate of the eigenvector ( z ). 

Since the panel vibrating in air is considered as a damped system, both eigenvalue and 

eigenvector are the complex quantities, which can be expressed as follows: 

 i  (B2) 

yxz i  (B3) 

Substituting Equation (B2) and (B3) into (B1), )(tf is expressed as follows: 

 ttetf t  sincos2)(  
yx  (B4) 

)1sin1cos(2)( 2

0

2

0
0 ttetf
t 




yx  (B5) 

where 

22

0
   (B6) 

22 





  

(B7) 

 

The physical meaning of Equation (B5) can explained as follows: 

t
e 02

  represents the amplitude of vibration, )1sin1cos( 2

0

2

0
tt   yx  is the 
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sinusoidal vibration, 0
  is the natural frequency without damping,   )10(    is the 

damping coefficient ratio served as an indicator of the effect of damping term. 
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Appendix C 

Modelling of quarter model 
 

C.1 ½ Model 
 

For the consideration of ½ model, the geometry and restraints of mesh models 

as shown in Figure 3.4 and 3.5 are symmetric between left- and right-half. Figure 

C.1 shows the sketch of a vibrating panel coupled with ambient air on the 1st mode 

(odd mode), in which the dash line represents the symmetrical edge and the 

displacement of the panel and air velocity vectors are symmetric. The symmetry 

displacement condition is given that in the symmetrical edge, the rotation of the panel 

and the air velocity in X-direction equal to zero. Figure C.2 illustrates the sketch of a 

vibrating panel coupled with ambient air on the 2nd mode (even mode), in which the 

displacement of the panel and air velocity vectors are anti-symmetric and the dash 

line is the edge of anti-symmetry. The lateral displacement of panel and the air 

velocity in Y-direction equal to zero at the edge of anti-symmetry. For the condition 

of odd mode and even mode, the ½ model can be applied by considering only half-

left. 

C.2 ¼ model 
 

To apply for ¼ model, the anti-symmetry condition between upper and lower 

part of the ½ model is considered. Figure C.3 and C.4 present the left half of the 

sketch of a vibrating panel coupled with ambient air on the 1
st
 and 2

nd
 mode, 
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respectively. From Figure C.4 and C.5, as the panel displaces upward, the air flows 

downward. The air velocity in upper and lower part is reverse in X-direction. The 

relation of air velocity in upper and lower-part can be concluded as follows:  

LU
uu   (C1) 

LU
vv   (C2) 

Here, U
u and U

v are the air velocity of upper part in X- and Y-direction, respectively. 

L
u and L

v are the air velocity of lower part in X- and Y-direction, respectively. 

 

 

Figure C.1 Sketch of a vibrating panel coupled with ambient air on the 1
st
 mode 

 

 

 

Figure C.2 Sketch of a vibrating panel coupled with ambient air on the 2
nd

 mode
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Figure C.3 Sketch of a vibrating panel coupled with ambient air on the 1
st
 mode  

(½ model) 

 

 

Figure C.4 Sketch of a vibrating panel coupled with ambient air on the 2
nd

 mode 
(½ model) 
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The total mass matrix is expressed as below. M
u  and M

v are the air velocity of medium 

part in X- and Y-direction, respectively. d   is the time derivative of panel 

displacement.  

  































































d

v

v

v

u

u

u

MM

MM

MMMM

MM

MM

MMM

MM

M

U

M

L

U

M

L

7775

6665

57565554

4544

3332

232221

1211

00000

00000

000

00000

00000

0000

00000

w
 

(C3) 

Here, in the equation of the 2
nd

 row, substituting U
u  with L

u . 

                 
MLUML

uMuMMuMuMuM
222321232221







 

  
(C4) 

Here,  
23

M is obtained by arranging the column of  
23

M to be       
UL

uMuM
2323


 . 

Also, from the symmetry of the model, the 3
rd

 row can be removed because 

     
ML

uMuM
1211

  in the 1
st
 column and      

UM
uMuM

3332
 in the 3

rd
 column are the 

same system of the equation. Then, by determining LU
vv   the equation of the 5

th
 row 

can be expressed as follows: 

           
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dMvMvMvM

ML

UML







 





57555654

57565554

 

(C5) 

As the same manner,  
56

M is arranged from the column of  
56

M  based on 

      
UL

uMuM
2323


 . Furthermore, by considering that row 4 and row 6 are the same 

system of equations, the total mass matrix  M is reduced as follows: 
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The total stiffness matrix  K and the total damping matrix  C are expressed as 

follows: 
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(C8) 

In the same manner, the total stiffness matrix  K and the total damping matrix  C  are 

reduced as follows: 
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Appendix D 

Instability of continuous function between 

pressure elements 
 

 As explained in Chapter 3, the utilization of pressure approximation 

continuous between adjacent elements leads to the increase of the bandwidth of   1
P  

and thus the error in calculation. This section demonstrates the problem of using the 

pressure approximation continuous between adjacent elements. The pressure 

distributions of Q1-Q1 element combination, continuous between adjacent pressure 

elements, are investigated and compared with those of Q2-P-1, discontinuous between 

adjacent pressure elements.  

Figure D.1 illustrates the pressure distribution of Q1-Q1 element, where GAP 

is 1 mm, SIDE is 100 mm, and the panel vibrates in the fundamental mode and 

deforms upward. For the reason that both sides are symmetry, only the half left is 

presented to identify their details. Corresponding to Figure D.1, the plot of 

normalized pressure distribution at the center of the panel is presented in Figure D.2. 

From the Figure D.1 and D.2, the value of pressure distribution fluctuates on each 

node of Y-direction. Generally, when the panel displaces upward, the pressure 

increases on the upper part of the panel and the pressure should drop at the lower part. 

However, the obtained checkerboard pressure distribution is impossible in reality. 
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Figure D.1 Pressure distribution of Q1-Q1 element 

 

Figure D.2 Pressure distribution of Q1-Q1 element (at center of the panel) 

 

 

To further verify the explanation, the pressure distribution of Q1-Q1 element is 

investigated with increasing the number of air elements in Y-direction to twice of 
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Figure D.1 condition. As shown in Figure D.3, even if the number of element is 

increased, the pressure distribution is still obtained in the checkerboard form. 

Moreover, the pressure distribution of Q1-Q1 element is examined with increasing 

GAP and SIDE to 1000 mm. It also illustrates the checkerboard pattern as presented 

in Figure D.4. 

 

 

Figure D.3 Pressure distribution of Q1-Q1 element  

(increasing the number of element in Y-direction) 
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Figure D.4 Pressure distribution of Q1-Q1 element (increasing GAP and SIDE) 

 

 To compare the pressure distributions of Q1-Q1 and Q2-P-1, the identical 

conditions of Figure D.1 and Figure D.4 are adopted. The pressure distribution of 

Q2-P-1 element, where GAP is 1 mm and SIDE is 100 mm is presented in Figure D.5 

and its plot of normalized pressure distribution at the center of the panel is presented 

in Figure D.6. The pressure distribution of Q2-P-1 element, where GAP and SIDE are 

1,000 mm is presented in Figure D.7. The pressure distributions obtained by using 
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Q2-P-1 element are reasonable. The investigation in this section can confirm the 

explanation of selecting the discontinuous elements for the approximation of pressure 

field in Chapter 3.  

 

Figure D.5 Pressure distribution of Q2-P-1 element 

 

Figure D.6 Pressure distribution of Q2-P-1 element (at center of the panel) 
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Figure D.7 Pressure distribution of Q2-P-1 element (increasing GAP and SIDE)
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Appendix E 

Validation of fluid region 
 

 

 In this section, the validity of the air region is examined by comparing the air 

flow velocity vector and pressure distributions obtained from finite element model to 

those from finite difference model. 

E.1 Finite difference modeling 
 

Unlike the finite element model, the finite difference model is formulated by 

including the convective acceleration term into the Navier-Stokes equations in order 

to clarify that the spatial effect can be neglected in this study. The governing 

equations of the air region can be expressed by the Navier-Stokes equations and the 

continuity equation in non-dimensional form as follows: 
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Here, the following dimensionless variables are used as follows: 

0
L

x
X  , 

0
L

y
Y  , 

0
U

u
U  , 

0
V

v
V  , 

0

0

L

tU
T  , 

2

00
U

p
P


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


00Re

LU
  

(E4) 

The subscript zero refers a dimensional variable. L, U, V, ρ, p, t, µ, and Re denote 

length, velocity in x direction, velocity in y direction, mass density, pressure, time, 

viscosity coefficient, and the Reynolds number, respectively. 



Appendix E 

Validation of fluid region 

110 

 

The governing equations are discretized by the finite difference method, with a 

staggered grid in which the pressure is defined at the cell center and the velocity 

components are defined at the cell boundaries as shown in Figure E.1.  

 

 
 

Figure E.1 Staggered grid 

 

The continuity and momentum equation can be discretized as follows: 
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Where superscripts n and n+1 represent current and next time step, respectively and 

subscripts denote the corresponding cell face position as shown in Figure E.1. The 

pressure gradients and diffusion terms are approximated using a second-order central 
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difference scheme, while the convective terms are approximated by a first-order 

upwind difference scheme. 

The continuity equation is discretized at i,j 
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The U-momentum equation is discretized at i,j 
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The V-momentum equation is discretized at i,j 
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The calculation of velocity and pressure fields is performed by HSMAC 

(Highly Simplified Marker And Cell) method, in which the pressure and velocity 

components are corrected iteratively until the continuity equation is satisfied. The 
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equation for the pressure correction is expressed as 
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where the superscript m is the variable representing the number of iterations and ω is 

relaxation coefficient. Generally the relaxation coefficient is determined to be about 

1.7. 

The iterative procedure of this method consists of the following steps: First, 

the velocity component is predicted using the discretized momentum equation (E6) 

and (E7). Then, the divergence of each discretized cell is calculated by the discretized 

continuity equation (E9).  After that, the pressure is corrected iteratively by using 
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After the pressure correction, the velocity is updated. The procedure is reiterated until 

the continuity equation is satisfied.  

In order to analyze the air domain by finite difference method, the following 

boundary condition is given as the theoretical expression of the transient mode of the 

panel without solving the equation as a rigid wall. 
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(E18) 

where f0 refers the natural frequency determined by the finite element model and A is 

the maximum amplitude of the panel. 

 



Appendix E 

Validation of fluid region 

 

113 

 

E.2 Comparison of air flow velocity vector and pressure 

distribution 
 

The comparisons of air flow velocity vector and pressure distribution, while 

the panel vibrates and drives the ambient air, are presented here in various GAP and 

SIDE conditions. The panel length and vibration amplitude are determined to be 1000 

mm and 1 mm, respectively.  

First, the SIDE is set for 1000 mm, which is large enough to neglect the effect 

of lateral wall while the GAP is set to be 1 mm. The flow velocity vector (SIDE of 

1000 mm and GAP of 1 mm) obtained from finite element model and the finite 

difference model is presented in Figure E.2 and E.3, respectively. For the reason that 

both sides are symmetry, only the half left is presented throughout this section. The 

flow velocity vector of both models shows well agreement. At the center of the panel, 

the flow vectors are dominant in vertical direction and tend to change to horizontal 

direction when they approach the panel end. At the panel end, the flow vectors wrap 

around in the vicinity rather than the entire space up to the lateral wall.  

 To differentiate between finite element and finite difference flow velocity 

vector, the magnified superposition of finite element and finite difference flow 

velocity vector is presented in Figure E.4. The magnification is pointed around the 

panel end. The back vector belongs to the finite element model and the pink vector is 

the finite difference model. The flow velocity vectors obtained from finite element 

and finite difference model are fairly identical. They appear as poiseuille flow due to 

the dominance of viscous effect when the GAP is small. 

The pressure distribution (SIDE of 1000 mm and GAP of 1 mm) obtained 

from finite element model and the finite difference model is presented in Figure E.5 
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and E.6, respectively. Both results show good agreement where the pressure is 

constant in vertical direction and the pressure magnitude gradually decreases from the 

center of the panel. By comparing the maximum pressure magnitude, the difference 

between both models is only 1.63%. 

 

 
 

Figure E.2 FEM flow velocity vector: GAP of 1 mm and SIDE of 1000 mm 

 

 

 
 

Figure E.3 FDM flow velocity vector: GAP of 1 mm and SIDE of 1000 mm 

 



Appendix E 

Validation of fluid region 

 

115 

 

 
 

Figure E.4 Magnified superposition of FEM and FDM flow velocity vector:  

GAP of 1 mm and SIDE of 1000 mm 

 

 

Figure E.5 FEM pressure distribution: GAP of 1 mm and SIDE of 1000 mm 

 

 

Figure E.6 FDM pressure distribution: GAP of 1 mm and SIDE of 1000 mm 
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Secondly, the GAP is set to be 10 mm while the SIDE is still same at 1000 

mm. The flow velocity vector (SIDE of 1000 mm and GAP of 10 mm) obtained from 

finite element model and the finite difference model is presented in Figure E.7 and 

E.8, respectively. The trends of the air flow velocity vector are in good agreement 

even the GAP is changed. The magnified superposition of finite element and finite 

difference flow velocity vector around the panel end is presented in Figure E.9. The 

back and pink vector belong to the finite element and finite difference model, 

respectively. The flow velocity vector obtained from both model is similar to laminar 

flow. When compared with the flow profile of the previous condition, the ratio of 

boundary layer occupying the air layer decreases referring to the decrease of viscous 

effect. 

The pressure distribution (SIDE of 1000 mm and GAP of 10 mm) obtained 

from finite element model and the finite difference model is presented in Figure E.10 

and E.11, respectively. As same as the previous condition, both results show good 

agreement and the pressure is constant in vertical direction and its magnitude 

gradually decreases from the center of the panel. By comparing the maximum 

pressure magnitude, the difference between both models is only 0.99%. The better 

accuracy as compared with the condition of GAP of 1 mm is because the large GAP 

results the less complicated influence of air flow. 
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Figure E.7 FEM flow velocity vector: GAP of 10 mm and SIDE of 1000 mm 

 

 

Figure E.8 FDM flow velocity vector: GAP of 10 mm and SIDE of 1000 mm 
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Figure E.9 Magnified superposition of FEM and FDM flow velocity vector:  

GAP of 10 mm and SIDE of 1000 mm 

 

 

Figure E.10 FEM pressure distribution: GAP of 10 mm and SIDE of 1000 mm. 

 

 

Figure E.11 FDM pressure distribution: GAP of 10 mm and SIDE of 1000 mm 
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Thirdly, the SIDE is set to be 100 mm while the GAP is 1 mm. The flow 

velocity vector (SIDE of 100 mm and GAP of 1 mm) obtained from finite element 

model and the finite difference model is presented in Figure E.12 and E.13, 

respectively. The trends of the air flow velocity vector are in good agreement even the 

SIDE is changed. The magnified superposition of finite element and finite difference 

flow velocity vector around the panel end is presented in Figure E.14. The back and 

pink vector belong to the finite element and finite difference model, respectively. The 

flow velocity vector obtained from both model is similar to poiseuille flow.  

The pressure distribution (SIDE of 100 mm and GAP of 1 mm) obtained from 

finite element model and the finite difference model is presented in Figure E.15 and 

E.16, respectively. The tendency of results obtained from both models is in good 

agreement and similar to those of previous section. By comparing the maximum 

pressure magnitude, the difference between both models is 1.89%.  

In summary, although the GAP and/or SIDE are changed, the air flow velocity 

vector and pressure distribution obtained from both models still shows good 

agreement. Thus, the validity of fluid region is confirmed in this part. 
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Figure E.12 FEM flow velocity vector: GAP of 1 mm and SIDE of 100 mm 

 

 

Figure E.13 FDM flow velocity vector: GAP of 1 mm and SIDE of 100 mm 

 



Appendix E 

Validation of fluid region 

 

121 

 

 

Figure E.14 Magnified superposition of FEM and FDM flow velocity vector:  

GAP of 1 mm and SIDE of 100 mm 

 

 

Figure E.15 FEM pressure distribution: GAP of 1 mm and SIDE of 100 mm 

 

 

Figure E.16 FDM pressure distribution: GAP of 1 mm and SIDE of 100 mm 
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In addition, the validation of the fluid region is further studied by varying the 

vibrational amplitude of the panel. The maximum pressure magnitudes obtained from 

finite difference and finite element model are compared in the condition of GAP of 1 

mm and SIDE of 1000 mm. As shown in Figure E.17 (a), when the amplitude is less 

than 1 mm, the difference of pressure magnitudes obtained from finite difference and 

finite element model is less than 2%, which reveals the reliability of the finite element 

model. On the other hand, when the amplitude is greater than 1 mm as shown in 

Figure E.17 (b), the difference gradually increases because the accuracy of the finite 

element analysis declines outside the range of micro-vibration. However, the vibration 

amplitude of sandwich panels is considered to be very small because the linear 

eigenvalue problem is performed in this study. The difference of the results obtained 

from finite difference and finite element model is acceptable. Therefore, the reliability 

of the finite element model is verified in this section. 
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(a) 

 

(b) 

Figure E.17 Difference of pressure magnitude obtained from finite difference and 

finite element model (a) small amplitude (b) large amplitude
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