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Abstract

Abstract

Due to the extremely lightweight characteristic of sandwich structures,
ambient air can significantly affect their natural frequency. In order to clarify the
importance and magnitude of this effect, the natural frequency of a sandwich panel
surrounded by air layer using experiment and numerical simulation was investigated
in this study. The experiment setup based on modal testing was proposed with the
feature of simulating air layer around the sandwich panel. The effect of air layer
thickness was examined. The analytical model was formulated on the basis of
sandwich theory and fluid-structure interaction analysis. The shear deformation of
sandwich core was taken into account and the thickness of sandwich structure was
included into the mesh model. The assumption of viscous incompressible flow was
employed for the motion of air domain. The accuracy of the formulation was verified
by comparing the obtained results with other analytical solutions and experimental
results. The parametric studies on the effect of shear deformation and ambient air
were conducted and the results indicate the necessity of taking into account these
effects. As a conclusion, the experimental and numerical simulation results
correspondingly demonstrated that when the air layer thickness becomes thinner than
3 mm, the fundamental natural frequency of sandwich panel greatly decreases of more
than 80% as compared with the natural frequency without air effect.

Keywords: Sandwich panel; Lightweight structure; Natural frequency; Air effect; Air

layer
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Chapter 1
Introduction

1.1 Background and literature review

1.1.1 Sandwich structure

Sandwich structures are extensively accepted in advance engineering
applications (e.g., aeronautics, automobiles, marines, and buildings) because of their
excellent strength-to-weight ratio, which results in significant weight reduction and
efficiency improvement [1-5]. A typical sandwich structure consists of two thin face
sheets and a thick core as illustrated in Figure 1.1. The face sheets, generally made of
metals or composite materials are responsible for carrying in-plane and bending load.
The core, commonly a lightweight structure such as aluminum honeycomb, is
sandwiched between the face sheets to keep them in a designed distance. The core
thickness is a main parameter that determines the bending stiffness of sandwich
structures. To clarify the outstanding properties of sandwich structure, the
comparative bending stiffness and weight of a sandwich structure with different core
thickness are presented in Figure 1.2. The bending stiffness and weight of each
condition are normalized by the values of two face sheets perfectly bonded without
core. The condition of the perfectly bonded face sheets is equivalent to a typical
homogeneous structure. By adding the core thickness, the bending stiffness efficiently
improves but the weight slightly increases. This comparison answers the question,

“Why sandwich structures are in continuous demand?”.
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Face sheet

Adhesive

Honeycomb core

N

Adhesive

Face sheet

Figure 1.1 Honeycomb sandwich structure

= LEECRECCT .
|
Comparative core thickness 0t 1t 2t 3t
Comparative Bending stiffness 1 7 19 37
Comparative Weight 1 1.02 1.04 1.06

Figure 1.2 Comparative core thickness, bending stiffness and weight of
sandwich structure [6]

Due to the prominent characteristic of light weight and high bending stiffness,
the honeycomb sandwich panel is commonly utilized as the main structure of satellite
solar panel. To minimize the size of space shuttle, in launching process, the solar

panels are generally arranged in folded configuration as shown in Figure 1.3.
2
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However, because the solar panels are arranged in the earth’s atmosphere, there are
inevitably air layers presenting in the tolerance gap between the panels. Based on the
condition of satellite solar panel in launching process, the vibration characteristic of
honeycomb sandwich panel was studied and the influence of air layers presenting in

the gap was also considered in this dissertation.

Stack of folded solar panels Satellite

Figure 1.3 Satellite and solar panel

1.1.2 Vibration of sandwich structure

For structural verification, vibration test is a major requisite because almost all
objects, when hit or disturbed, will vibrate and tend to vibrate at a particular
frequency or a set of frequencies [7]. These frequencies are called that the natural
frequency. The natural frequencies of each component must be estimated and may be
redesigned to avoid the resonance with vibrational sources. The explanation based on
the fundamental of vibration is given that a large amplitude of vibration presents
when a natural frequency of any structure or part is matching with the operating
frequency of any equipment [8-12]. For sandwich structures, bending vibration is an

interesting case study that has been analyzed by various techniques. The simplest and
3
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most functional technique is the approximation of Bernoulli-Euler theory, developed
in the eighteenth century for describing the bending deformation of slender beams
[13]. In the Bernoulli-Euler theory, the shear modulus is considered to be infinite and
the bending deformation of a beam is relied on pure bending as shown in Figure
1.4(a). In 1887, an improvement on the Bernoulli-Euler approximation was done by
Lord Rayleigh [14]. This approximation is called Rayleigh beam model, in which the
effect of rotational inertia of beam cross-section is taken into account [15]. Later,
Shear beam approximation was developed by including shear deformation to the
Bernoulli-Euler approximation. This model can considerably improve the estimated
natural frequency [16]. In 1922, Timoshenko approximation was proposed, in which
the effects of rotational inertia and shear deformation were included into the
Bernoulli-Euler approximation [17]. This improvement makes the model to be
suitable for thick beams with high frequency response [16]. The bending deformation

of Shear/Timoshenko approximation is illustrated in Figure 1.4(b).

‘Without shear deformation With shear deformation

(@) (b) (c)

Figure 1.4 Bending deformation of (a) Bernoulli-Euler approximation
(b) Shear/Timoshenko approximation (c) Sandwich approximation
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However, the explained approximations are more suitable for homogeneous
structures than for sandwich structures because the bending deformation of sandwich
structure is quite different from that of homogenous structures as displayed in Figure
1.4(c). Since the late nineteenth century, there have been an increasing number of
researches on the flexural deformation of sandwich structures. DiTaranto, (1965) [18]
and Mead and Markus, (1969) [19] proposed a sixth-order differential equation for
describing the transverse motion of three-layer sandwich panels. In their model, the
motion of laminates was based on the Bernoulli-Euler theory and the motion of core
was estimated only from shear deformation. Mead, (1982) [20] introduced the sixth
and eighth-order differential equations for defining the lateral displacement of
symmetric and asymmetric sandwich panels, respectively. Nilsson, (1990) [21]
exactly derived a model for governing the flexural deformation of three-layer
sandwich panels. In this model, the laminates and core were considered to be isotropic
and the effects of bending shear and rotation in core were included. Besides exact
formulation, a governing equation can be formulated by variational technique. For
example, the governing equations in References [22-25] were derived based on
Hamilton’s variational principle. Although, the high order differential equation up to
tenth-order is investigated in References [24], their conclusion shows that only sixth-
order equation is sufficient to govern the lateral displacement of sandwich panels for
high frequency range up to 5 kHz. Moreover, Nilsson and Nilsson, (2002) [23]
concluded that for typical lightweight sandwich structures, the effect of shear

deformation tends to dominate that of rotational inertia.
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1.1.3 Influence of ambient air

On lightweight structures, the influence of ambient air is very significant
because it can alter the dynamic behaviors of the structures. Therefore, it is important
to be included into the vibration analysis of light weight sandwich structures. A
number of researches have discussed the dynamic response of air-coupled structures
[23,26-38] Experimentation and/or numerical simulation were conducted in their
studies to solve the problem of Fluid-Structure Interaction (FSI).

However, until present, there are few literatures that study the vibration of
sandwich structures coupled with ambient air [23,28,34,35]. In 1966, Powell and
Stephens [34] experimentally investigated the vibration characteristics of sandwich
panels in various conditions of air density. This publication probably is the first study
that discussed the vibration response of a sandwich structure coupled with ambient
air. They performed the vibration testing in vacuum chamber as schematically shown
in Figure 1.5(a). The sandwich panel was excited from the bottom via spring supports
and the vibration response was sensed by the lightweight piezoelectric crystal
accelerometers mounted on the panel. By using this system, the first three natural
frequencies were obtained over a pressure variation from 1 to 1.32x107° atm. Their
conclusion was given that the effect of ambient air is in form of air added mass, which
results in the decrease in natural frequency of 2 to 10% as compared with the natural
frequency without air effect. Nilsson and Nilsson, (2002) [23] also conducted a
vibration experiment in two pressure conditions; the first in vacuum situation and the
second under normal pressure in order to investigate the effect of air added mass on a

lightweight sandwich panel. As schematically shown in Figure 1.5(b), the panel was
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suspended in the vacuum chamber and excited by a shaker. The panel response was
sensed by a laser vibrometer via a glass window on the vacuum chamber. They
concluded that the added mass effect can disturb the first few natural frequencies of a
lightweight panel, where the effect is of 30% of the panel actual mass and the effect is
decreasing for increasing frequencies up to the critical frequency. For frequencies
above the critical frequency, the acoustic radiation from the structure will increase the

losses of the structure.

Vacuum chamber

Acceleromet

Shaker

(@)

Vacuum chamber

Laser vibrometer

(b)

Figure 1.5 Vibration testing of sandwich panel in vacuum chamber performed by
(a) Powell and Stephens [34] (b) Nilsson and Nilsson [23]



Chapter 1
Introduction

Besides, there are some literatures that investigating the vibration of sandwich
panel coupled with air by using numerical analysis. Chimeno Manguén et al., (2014)
[28] numerically simulated the vibro-acoustic response of a satellite solar array in
folded configuration based on three difference approaches: finite element method
(FEM), boundary element method (BEM), and statistical energy analysis (SEA). In
this literature, the efficiency of each numerical approach was compared and the result
showed that the FEM is an efficient technique for analysis in low frequency range.
The FEM was also used in many researches for example in References [26,27]. The
authors in References [26,27] performed a series of researches on the rigid and
flexible plate coupled with a single air layer, where the assumption is the pressure
constant across the air layer thickness. Moreover, they also conducted the vibration
experiment, as schematically presented in Figure 1.6, to verify their numerical
results. Their results were concluded that the thickness of air layer is an influential
factor that can alter the air effect. In the condition of extremely thin air layer and low
frequencies, the coupling of the air-structure is extremely strong and the viscous
damping effect plays an important role in the dynamic behavior of the system. Their
conclusions are also in agreement with the those of many literatures
[26,27,29,32,37,38] that the thickness of air layer can significantly affect the
structural natural frequencies; and the effect of air viscosity is more influential than

that of compressibility especially for the problem of thin air layer.
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Force
transducer

Experimental
set-up

Accelerometers

Unix work station

Figure 1.6 Vibration testing of flexible plate interacting with single air layer [27]

1.2 Problem statements and objectives of dissertation

After extensively reviewing the literatures, the stated problems are concluded
below:
1. A few modal experiments of a sandwich panel coupled with air were found as
described in the previous section. The indispensable influence of air layer thickness
was frequently abandoned.
2. A few analytical models were proposed for studying the vibration of sandwich
panel coupled with air. The available models focused on the configuration of single
air layer and pressure constant across the layer thickness. However, the configuration
of air layers fully enveloping the structure is more realistic than that of single air layer
interacting with the structure. Although the assumption of constant pressure,
extensively used in various literatures [29,32,33], can simplify the formulation and
can provide practical results, it has some limitations that confine the thickness of air
layer to be smaller than the acoustic wavelength of the system. For the structural

9
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region, the sandwich structure was simply modelled as a homogeneous structure.
Although, the homogeneous model is able to simplify the formulation, it is not
sufficient for governing the lateral motion of the sandwich structure [39]. Another
issue is that the thickness of the sandwich structure was not included into the
boundary condition of the finite element mesh model. In the case of thin air layers
fully enveloping the sandwich structure, the thickness of the structure is quite large as
compared to the air layer thickness.

The described problem statements originate the inspiration of this dissertation. The
objectives of this dissertation are listed below:

1. To establish an experimental modal testing with the feature of simulating an air
layer around a sandwich panel and investigate the influence of ambient air layer on
the natural frequency of the sandwich panel.

2. To formulate the analytical model for studying the vibration of a sandwich panel
coupled with air, where the configuration of air layer fully enveloping the structure
and the incorporation of pressure distribution across the layer are modelled. The
sandwich panel is modelled based on sandwich theory and the sandwich panel
thickness is included into the mesh model.

3. To numerically evaluate the influence of ambient air layer in various aspects and
indicate the necessity of considering the shear deformation in sandwich core and of

including the sandwich panel thickness into the mesh model.

10
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1.3 Overview of dissertation

This dissertation is organized into 5 chapters as follows:

Chapter 1 presents the background, literature review, problem statements, objectives,
and overview of this dissertation. Literature study on the vibration of sandwich
structures is provided and various analytical models for describing the bending
vibration are clarified. Literature reviews on the influence of the ambient air on the
vibration of sandwich structures are presented. The pros and cons of the literatures
have been concluded.

Chapter 2 describes the detail of experimental setup and the effect of ambient air layer
on the fundamental natural frequency of a honeycomb sandwich panel. The
experimental setup based on modal testing was proposed with the feature of
simulating air layers around the sandwich panel. To clearly clarify the effect of air
layer surrounding the sandwich panel, 15 conditions of air layer thickness were
determined for performing modal testing.

Chapter 3 presents the concept and finite element formulation for analyzing free
vibration of a sandwich panel coupled with ambient air. The model configuration is a
vibrating flexible sandwich panel coupled with ambient air surrounded by rigid walls.
The flexural vibration of a sandwich panel was described by the governing equation
formulated based on the sandwich theory, where the shear deformation of sandwich
assumption was employed. The penalty function method was applied for the
formulation of the Navier-Stokes equations system to minimize the computational
time and effort. Based on the methods of Galerkin weight residual and finite element,

the governing equations were derived in weak-form and then a set of discrete matrix
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equations. The coupled discrete matrix equation was derived based on the monolithic
approach and eigenvalue problem. The implementation of finite element model is also
provided in chapter 3. The types of element for discretizing the panel and air domain
as well as the integral scheme are explained. The finite element mesh models
including and excluding the panel thickness are illustrated.

Chapter 4 presents the results of parametric studies and discussions. In addition, the
validation of the finite element model was examined by investigating the convergence
of the obtained results and comparing the results with other analytical solutions and
experimental results. The influences of shear deformation and ambient air on the
natural frequencies of three honeycomb sandwich panel are studied to demonstrate the
importance of each effects and the efficiency of the proposed finite element model.
The shear modulus of sandwich core, the thickness of sandwich core, and the
thickness of face sheets are varied to clarify the significance of considering the shear
deformation effect for the studying the bending vibration of sandwich panels. In order
to demonstrate the degree of ambient air effect, the parametric studies on the air layer
thickness, viscosity, and density as well as the panel length, bending stiffness, mass
density, and thickness are conducted.

Chapter 5 concludes the finding and achievement of this thesis. In addition, the

recommendations for future research are summarized in this chapter.
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Chapter 2
Experimental modal testing

2.1 Overview

As explained in Chapter 1, a few modal experiments of a sandwich panel
coupled with air were found and the indispensable influence of air layer thickness was
frequently abandoned. In this chapter, the modal experiment of a honeycomb
sandwich panel coupled with ambient air layer was setup originally to study the effect
of thin air layer on the natural frequency of the sandwich panel. The air layer
surrounding the sandwich panel was implemented by fixing the sandwich panel in the
specially designed air tight box, in which the air layer thickness can be adjusted. To
clearly clarify the effect of air layer surrounding the sandwich panel, 15 conditions of

air layer thickness were determined for performing modal testing.

2.2 Experimental setup

The testing system, as schematically illustrated in Figure 2.1, mainly consists
of an air tight container, a sandwich specimen, an electromagnetic exciter, a force
transducer, an optical displacement meter, and a FFT analyzer. The air tight box is
specially designed for fixing the specimen and simulating the air layer surrounding
the sandwich specimen. It composes of a base box and transparent acrylic cover. As
shown in Figure 2.2, the base box is made with heavy weight stainless steel and
securely fixed on the strong vibration test table in order to protect the vibration of the

base box. The base box and cover are assembled by using bolts (M6x10) and a rubber
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seal is installed between them to protect air leakage.

Optical
displacement

' o

Air tight box ] ‘

\ Cover
i 1 |

Honeycomb sandwich panel ?
Base box

Force transducer— "

Figure 2.1 Experimental schematic diagram

Figure 2.2 Experimental setup

14



Chapter 2
Experimental modal testing

The specimen used in this study is a honeycomb sandwich panel, manufactured by
Showa Aircraft industry, Tokyo, Japan. The material used for the face laminates and
honeycomb core is aluminum (AL5052). The picture and geometry of the specimen
are presented in Figure 2.3. The shape of honeycomb core is hexagonal where the cell
size is 5 mm and the cell wall thickness is 0.001 mm. The specifications are listed in
Table 2.1. To perform the boundary condition of fixed ends, the brackets was
specifically designed and fabricated to be seamlessly assembled with the specimen.
As shown in Figure 2.3 and Figure 2.4, a hole was drilled at each end of both bracket
sides in order to securely fix the brackets and the base box with four bolts. As the
brackets were fixed with the base box by bolts, they were considered to be the same
part with the base box. With this design, the brackets allow the stability for fixing the

specimen with fixed ends condition.
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0.1 mm
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370 mm
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10 mm 400 mm 10 mm

Figure 2.3 Honeycomb sandwich specimen
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Sandwich Panel

Base Box

Figure 2.4 Specimen fixed in base box

Table 2.1 Geometrical and material properties of specimen.

Panel length_L (m) 0.4
Panel width_b (mm) 50
Face thickness_t; (mm) 0.1
Core thickness_t. (mm) 5.0
Face density_p; (kg/m?) 2.68x10°
Core density_p. (kg/m?) 3.70x10°
Face Young’s modulus_E; (Pa) 70.0x10°
Core Young’s modulus_E, (Pa) 24.1x10’
Core shear modulus_G, (Pa) 34.5x10’
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Similar to typical modal testing, the specimen was excited by an electromagnetic
exciter (A.R. Brown US-2) via a stinger, threaded through the hole drilled on the
cover. The effect of stinger stiffness was eliminated by setting the stinger to be
vertical and short as much as possible in order to transmit the excitation force only in
the axial direction. With this attempt, the stinger stiffness in the axial direction was
considered to be very high as compared to the panel bending stiffness. As presented in
Figure 2.5, the stinger was mounted on the specimen by using a small piece of foil
adhesive tape, which insignificantly affects the panel characteristics. The
electromagnetic shaker was operated according to the sinusoid signal generated by the
FFT analyzer. To identify the natural frequency in a frequency range of interest, the
logarithmically swept-sine excitation (frequency range = 20-400 Hz and sweep rate =
0.5 octave/minute) was applied due to its reliability of the high signal-to-noise ratio.
With the objective to determine the natural frequency of the first bending mode, the
excitation point was determined in the center of the panel, which is its maximum
displacement point. The vibratory measuring point was beside the excitation point to
manifestly observe the panel displacement. The input excitation force was measured
by a force transducer (PCB 352C23) installed on the tip of the exciter. The
displacement response of the panel was measured by an optical displacement sensor
(KEYENCE LK-3100). Both the input force and output response were transferred to
the computer aided FFT analyzer (WCA AD-3661) to extract the modal parameters of

the sandwich panel.
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Figure 2.5 Stinger mounted on the specimen

2.3 Test conditions

To investigate the effect of air layer surrounding the sandwich panel, various
conditions of air layer were determined as illustrated in Figure 2.6. From the front
view of the air tight box enveloping the sandwich panel, the SIDE represents the
horizontal distance between the panel end and the box’s wall. The GAP is the vertical
distance between the panel and the box’s wall. To study the effect of SIDE, the
variation of SIDE was determined for five cases, which are SIDE of 1, 3, 15, 25 and
50 mm. In this testing, the variation of SIDE is executed by using a spacer as shown
in Figure 2.7. The condition of “without seals” and “with seals” represents the
condition of 3- and 2-dimensional air flow, respectively. To evidently demonstrate the
effect of SIDE, the factor of 3-dimensional air flow was limited in this study. As

presented in Figure 2.8, the seal was placed along the longitudinal side of the
18



Chapter 2
Experimental modal testing

sandwich panel. Between the seal and sandwich panel, lubricant oil was applied to

eliminate the friction that may occur. The effect of air layer thickness was also

investigated by determining GAP of 3, 6, and 10 mm. The variation of GAP is

performed by using a spacer as shown in Figure 2.9. At each SIDE condition, three

different GAP thicknesses were performed thus the overall is 15 conditions. Each

condition was performed 3 times to confirm the precision of the results.

Tcar
v

Sandwich panel

SIDE condition

GAP

SIDE of 1 mm with seals
SIDE of 3 mm with seals
SIDE of 15 mm with seals
SIDE of 25 mm with seals
SIDE of 50 mm with seals

@ 5> W D =

GAP condition

Air tight box
~ &

1. GAP of 3 mm
2. GAP of 6 mm
3. GAP of 10 mm

3 times for
each condition

Without seals

3-D airflow

With seals

2-D airflow

Figure 2.6 Air layers conditions
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Figure 2.7 SIDE variation (a) SIDE of 1 mm (b) SIDE of 3 mm (c) SIDE of 15 mm
(d) SIDE of 25 mm (e) SIDE of 50 mm
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Figure 2.8 Seal installed along the longitudinal side of the sandwich panel
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Figure 2.9 GAP variation (a) GAP of 3 mm (b) GAP of 6 mm (c) GAP of 10 mm

2.4 Results and discussion

The response amplitudes to the excited frequency are presented in Figure
2.10, 2.11, 2.12, 2.13, and 2.14 for the SIDE of 1, 3, 15, 25, and 50 mm, respectively.

The fundamental natural frequencies of the specimen determined from the response
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amplitude, average frequency, and standard deviation are presented in Table 2.2, 2.3,
2.4, 2.5, and 2.6 for the SIDE width of 1, 3, 15, 25, and 50 mm. The natural
frequencies of each condition show good concurrence and the standard deviation is

less than 0.5 Hz, which represents the verification of the obtained results.
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Figure 2.10 Frequency response: SIDE condition of 1 mm with seals

Table 2.2 Natural frequency: SIDE condition of 1 mm with seals.

GAP Natural frequency (Hz) Standard
(mm) deviation
Test 1 Test 2 Test3  Average (Hz)
3 mm 51.00 51.00 51.00 51.00 0.00
6 mm 70.25 70.00 70.00 70.08 0.14
10 mm 84.00 84.00 84.50 84.17 0.29
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Figure 2.11 Frequency response: SIDE condition of 3 mm with seals

Table 2.3 Natural frequency: SIDE condition of 3 mm with seals.

GAP Natural frequency (Hz) Standard

(mm) deviation
Test 1 Test 2 Test3  Average (Hz)

3 mm 51.75 51.25 51.50 51.50 0.25

6 mm 71.00 70.75 70.50 70.75 0.25

10 mm 86.50 86.25 86.75 86.50 0.25
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Figure 2.12 Frequency response: SIDE condition of 15 mm with seals

Table 2.4 Natural frequency: SIDE condition of 15 mm with seals.

GAP Natural frequency (Hz) Standard
(mm) deviation
Test 1 Test 2 Test3  Average (Hz)
3 mm 51.75 51.50 51.75 51.67 0.14
6 mm 70.50 70.75 70.75 70.67 0.14
10 mm 86.75 87.25 87.25 87.08 0.29
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Figure 2.13 Frequency response: SIDE condition of 25 mm with seals

Table 2.5 Natural frequency: SIDE condition of 25 mm with seals.

GAP Natural frequency (Hz) Standard
(mm) deviation
Test 1 Test 2 Test3  Average (Hz)
3 mm 51.75 51.25 51.25 51.42 0.29
6 mm 70.50 70.50 71.00 70.67 0.29
10 mm 86.75 87.00 87.00 86.92 0.14
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Figure 2.14 Frequency response: SIDE condition of 50 mm with seals

Table 2.6 Natural frequency: SIDE condition of 50 mm with seals.

GAP Natural frequency (Hz) Standard
(mm) deviation
Test 1 Test 2 Test3  Average (Hz)
3 mm 51.25 51.00 51.25 51.17 0.14
6 mm 70.75 70.50 71.00 70.75 0.25
10 mm 86.50 87.00 86.25 86.58 0.38
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By considering the variation of GAP, the results reveal that the natural
frequency decreases as the GAP becomes smaller. The reduction of natural frequency
is understood that it is due to the added mass effect of ambient air, which is magnified
when the air layer becomes thinner. To clarify this assumption, the average frequency
of each condition is normalized by the natural frequency neglecting the influence of
ambient air. For the sandwich panel used in this study, the fundamental natural
frequency without air effect is 247.322 Hz. This frequency was estimated by using the
analytical solution presented in equation (2.1). The derivation of this equation can be

found in the Reference [39].
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Figure 2.15 presents the alteration of the normalized natural frequency as a function
of GAP. At the GAP of 10 mm, the sandwich panel yield the lower natural frequency
(by approximately 65%) compared to the natural frequency without air effect.
Furthermore, the natural frequency significantly decreases of 73 and 79% while the
GAP is decreased to be 6 and 3 mm, respectively. For the influence of SIDE, the
results, illustrated in Figure 2.16, show that the variation of SIDE does not
significantly affect the natural frequency when compared with the variation of GAP.
However, when the SIDE is less than 3 mm, the SIDE effect is explicit in the case of
GAP of 10 mm but slightly presents in the condition of GAP of 6 and 3 mm. The

discussion of the GAP and SIDE effect are further provided in Chapter 4.
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Figure 2.16 Normalized natural frequency as a function of SIDE
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2.5 Conclusions

The modal experiments on the sandwich panel coupled with ambient air layer
were performed in this chapter. Various conditions of air layer were determined to
clearly describe the influence of ambient air layer. The obtained natural frequency of
each condition shows good concurrence and the standard deviation is less than 0.5 Hz.
Therefore, the precision of the obtained results was verified. The obtained results
show that the ambient air layer disturbs the vibration of sandwich panel as an added
mass effect resulting in the reduction of natural frequency. In addition, the effect
becomes stronger as the GAP becomes thinner. For the condition of GAP of 10, 6,
and 3 mm, the influence of air causes the reduction of natural frequency up to 65, 73,
and 79%, respectively. However, the variation of SIDE insignificantly alters the

natural frequency as compared with the variation of GAP.
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3.1 Basic configuration

To verify the experimental results and to conduct parametric studies, the finite
element model was formulated on the basis of fluid-structure interaction analysis. The
model configuration is a vibrating flexible sandwich panel fully coupled with ambient
air surrounded by rigid walls. As sketched in Figure 3.1, while the sandwich panel
vibrates, the air flow interacts with the motion of the panel. Here, Q,, Q,, G, and W
denote the panel domain, air domain, coupled interface between Q; and Q,, and rigid
wall boundary, respectively. The flexible panel is vertically placed along the X-Y
plane and is considered to possess identical properties throughout the plane. Thus, the
2-dimensional model is adopted to obtain accurate results in a reasonable calculation
time. The thickness of air layers can be varied from thin to thick and the thickness of
sandwich panel is taken into account. Although, in this study, the analysis of 2-
dimensional problem was applied to demonstrate the potential capability of the model,

the formulation can be applied for 3-dimensional problem for further study.

31



Chapter 3
Finite element modelling

;—v»»s\\\\\‘l{[(fe««ﬁ\

fa"*%\\\\\\t///‘(zrrd—ﬂ AN

\*4—«««,,/1 ! \\\\\a‘s»"’

N e l, A N R N

Lo

Bending + s
ddy, dd, ad
o, . AA a..
__.4 dx ) dx Ax

Figure 3.1 Sketch of a vibrating sandwich panel coupled with ambient air

For the panel domain (Q;), the flexural vibration of the sandwich panel was
described by the governing equation formulated based on the sandwich theory and the
following assumption: The sandwich panel is a kind of a lightweight thick core
sandwiched between two thin face laminates. The face laminates were considered to
be identical in geometrical and physical properties. The core was assumed to be very
weak in X-direction but in Y-direction to be so stiff that the lateral deflection of two
laminates are identic in the frequency range of interest. The lateral deflection of the
sandwich panel is composed of the pure bending and the core shear deformation as
illustrated in Figure 3.1. The rotary inertia of the sandwich panel was neglected. The

governing equation for the sandwich panel is derived as follows:
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o°d o'd
pB[Gcbtc P _(DB+2Df)WJ
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1 1 1 1
D, =b(gEftf +2EL (G L)’ +EEJSJ , Dy =5bE (3.3)

Here, p;, D, b, d, q, and t denote the sandwich panel mass per unit length, flexural
rigidity, width, lateral displacement, lateral force per unit length, and time. D; is the
flexural rigidity of single face laminate. p., t., E,, and G, are the core density,

thickness, Young’s modulus, and effective shear stiffness. D,, p, t;,and E; arethe

face sheet flexural rigidity, density, thickness, and Young’s modulus. The derivation
of equation (3.1) can be found in References [23,24,39]

For the motion of the air domain (Q;), the assumption of viscous
incompressible flow was employed because the viscous effect is important for thin air
layer condition and the compressibility is neglected due to the slow flow application.
However, the calculation of viscous incompressible equation requires great amount of
computational resources [40-42]. To solve this problem, the penalty function method
was applied for the formulation of the Navier-Stokes equations system, used for
governing the dynamic behaviour of the air. The Navier-Stokes momentum equation
derived for this study is present in equation (3.4) in which the convective acceleration
term is cancelled since the spatial effect is so small due to the excellent stiffness
characteristic of sandwich structure and the assumption that the vibration amplitude of

sandwich panel is very small as compared with the air layer thickness. Moreover, the
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verification for neglecting the convective acceleration term is given in Appendix E.

au
—+Vp—NVu=
P a +Vp-uVu=0 (34)

The continuity equation with the modification by penalty function formulation is

V-u=-¢,p (35)

(3.6)
Here, p., u, p, M, and &, denote the air density, velocity vector, pressure, viscosity
coefficient, and penalty parameter, respectively. o, and s, are the stress tensor of the

air and the Kronecker delta.
The coupling interaction between the sandwich panel and air region was determined
by considering the continuity of stress and velocity vector through the air-panel

interface (G). The relation between air and panel stress vector is hold as follows:
6,-N=6,-N 3.7)
Here, 65 and &, denote the stress tensor of the panel and air, respectively and n is the
normal unit vector on the coupled boundary surface, which is expressed as

. (3.8)
Here, n, denotes the normal unit vector outward from the air region and n, is the
normal unit vector outward from the panel region.

The continuity of velocity vector across the interface is concluded as below:

u=0

od

ot (3.9)
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3.2 Formulation of finite element and eigenvalue equations

The governing equations discussed above were written in the weak-form
representations and then were discretized into a set of discrete matrix equations based
on the methods of Galerkin weighted residual and finite element. To formulate the
governing equations in the variational integrals, i.e., the weak-form representations,
an appropriated weighting function is required for each equation.

Based on the Galerkin formulation, the shape function for the related element
was used as the weighting function for each governing equation. The shape function is
the function used to interpolate the physical solution of every node within a finite

element. [N, ], [N,], and [N, | symbolize the shape function matrix for the panel

lateral displacement, the air velocity, and the air pressure, which can be concluded as

follows:
a-In, Ji)
u=|N, furj
p=[N, [ip*} (3.10)
Here, {de}, {u} and {p°} represent the matrix of the nodal panel lateral displacement,

the nodal air velocity vector, and the nodal air pressure for each finite element. The
superscript ‘e’ is the indicator referred to the order of each finite element.

For the governing equation of the sandwich panel (3.1), the shape function for
the panel displacement was applied as a weighting function. The derivation was done
in the following succession as shown in equation (3.11). The panel lateral
displacement d was determined to be expressed as a function proportional to e”, in

which 4 is the complex conjugate quantity associated with the natural frequency of the
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system. The discretized equation of the derived weak-form representation has been

defined lastly in equation (3.11).

o4 o'd
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Here, [m¢] is the element mass matrix of the sandwich panel:

OX

[m:]- pg[ecbthQeLNJ N, oo -0, 20, B |2 Jdﬂ:}

[K:] is the element stiffness matrix of the sandwich panel:

[:]-D [G thL{6 . J F@)’(\' Jdge 2D jg{a(;ng [agx JdQeJ

[:] is the element coupling interface matrix of the sandwich panel:

el 1 JON, N | me 1o Ny |ae
[GB]-ecmc[ngGeM[ax Vs - 2ui . o 8yJaej

N, | [N, oN, | N, [ AN
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In case of the governing equation of the air (3.4), the shape function for the air
velocity was used as a weighting function. The derived weak-form representations
and the discretized equations for the air governing equation are presented in equation
(3.15). The air velocity vector u was also defined as a function proportional to e*. For
the continuity equation (3.5), the shape function for the air pressure was selected as a
weighting function. The weak-form representations and the discretized equations for

the continuity equation were derived as illustrated in equation (3.16).

0
J‘QZ\_NUJT(pAa—l:—i-Vp—IuVZUJdQ;
ZJPAIQELNuJT 'UdQeA _.‘.Q; pV'LNuJTdQZ
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= ij.[Qg |_NuJ.r LNquQ; ’ {ue}_jgg \_NDJT \\ag)l(u 86’\;/“ JdQ; : {pe}

+/¢j§2g\V|_NuJT -(LNUJ”. +\_Nuj”)dQ§ -{ue}
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~2ulo NJ o D]
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Here, [MZ] is the element mass matrix of the air:
M:]= pulug N TN, Joe;

[K,i] is the element stiffness matrix of the air:

[KE\]: /U.[Qg VN, [ 'QNuJi.j +LNqu,i )dQZ

[G,i] is the element coupling interface matrix of the air:

.1 -l oN,  oN, |
oi)-2helo o p | B B

T oN
2uf.e|0 N, | |0 —=(dG°
v2uilo w0 Bl

oN, oN, | .
+uf.e| N, oj-{ ay“ aX”JdG

[Pe] is the element pressure matrix of the air:
[Pe]:.[gg\_Ner'\_Np_bQ;

[H¢] is the element penalty matrix of the air:

oL SNy N,y
[H ]_ £, IQ%\_Ner \‘ax ay Jdgz

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

After the discrete matrix equations of the panel and air were derived, each of the

discrete matrix equation was then derived to be coupled each other to describe the

dynamic interaction between the sandwich panel and air. Due to the explanation of the

Galerkin method, the summation of all finite elements is equal to zero thus the

discrete matrix equations can be determined as in equation (3.22)-(3.24).

s} ool oj+ oo

= 2[M, ]-{d}+[K,]-{d}+][G,]- {u}=0
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sl e 0] o ) o) [oi] o)
=AM, ] {uj =g [H] - {p)+ [K.] fu}-[G,]-{uj=0 (3.23)

s (P o} [ )

=[P]-{p}+[H]-{u}=0 (3.24)
Based on the monolithic approach and eigenvalue problem, the coupled discrete
matrix equation derived according to the continuity through the interface is presented
in equation (3.25), in which [M], [c], [K], and {w} are the system mass matrix,
damping matrix, stiffness matrix, and velocity vector matrix. The combination of each
matrix is presented in equation (3.26)-(3.29). The variable w was determined to
combine the matrix of nodal panel lateral displacement and that of nodal air velocity
vector into one matrix. The coupled discrete matrix equation was derived to be
mathematically identical to the general eigenvalue problem. The solution of this
equation is eigenvalues and eigenvectors, which represent the natural frequencies of
the sandwich panel and the corresponding air velocity vectors and time derivative of
panel displacement. The nodal air pressure was calculated from the nodal air velocity

vector using equation (3.30).

(#[M]+ 2[c]+ [K])-w}=0 (3.25)

M]=[M,]+[m,] (3.26)

[cl=[K,J+&,[HT[PIH]+[6.]-[6.] (3.27)

[K]=[K] (3.28)
u in air

w=<u=Ad on interface
Ad in beam (329)
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tpf=—PI"-[H]-{u} (3.30)

3.3 Implementation of finite element and eigenvalue
equations

In this study, the finite element formulation presented above was implemented
in an in-house program operating on a Fortran 90 environment. Gauss-Legendre
quadrature was employed for performing the numerical integration. The coupled
discrete matrix equation (3.25) was expressed as presented in Equation (3.31) and was
solved by using a double-QR iteration procedure on the basis of the stabilized

elementary similarity transformations to an upper Hessenberg Form (UHF) [43-46].

[— ['Vl[(])_]l[K] - [M[l]]_l[cﬂ{;\\’lv} ) l{;‘\’l\’} (3.31)

The types of elements for discretizing the air and the panel domain were selected
based on the following discussion. For the motion of air domain governed by the
Navier-Stokes equations, only first order partial derivatives exist on the variational
formulation. In this case, only linear functions are adequate for interpolation of the air
motion. However, the formulation of this study is also based on the penalty function
method. The effective set of finite elements should be selected for the air domain. The
effective sets of finite elements and the corresponding integration scheme
recommended for the penalty formulation were introduced in [41], which suggested
that the most effective type of elements is the Lagrange isoparametric elements but
any triangular elements and serendipity quadrilateral elements are not recommended
due to their unsatisfied results. Besides, when using the penalty function method, it is

necessary to calculate the inverse of air pressure matrix [P] as formulated [P]* in
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Equation (3.27). In this case, if the pressure approximation, which is discontinuous
across the element boundaries is employed the bandwidth of [P] is the same with the
bandwidth of [P]*. On the contrary, the utilization of pressure approximation
continuous between adjacent elements leads to the increase of the bandwidth of [P]*
and thus the error in calculation. The explained aspect has been investigated in
Appendix D. According to the above explanation and simplicity for implementation to
the in-house analysis codes, the combination of quadrilateral elements, called
Crouzeix-Raviart (Q,-P-1) element was selected for the interpolation of the air velocity
and pressure. The designation of Q, indicates a quadratic (2" order) polynomial
interpolation for each velocity component and that of P indicate a complete
polynomial for the pressure interpolation while the negative subscript denotes the
discontinuous function between adjacent elements. The Q,-P.; element was also
confirmed the best accurate, optimal, and robust element for viscous incompressible
flow computation by various literatures [47-54]. The Q,-P-; element is illustrated in
Figure 3.2, in which the velocity vectors were approximated using 9-node biquadratic
quadrilateral elements while the pressure field was approximated linearly (1 node at
the centre with two derivatives).

The shape functions for Q,-P.; element are presented in local coordinates ¢and 7, as
follows:

For velocity (9 nodal points)

[N, (7))
=[NL(Em) NLEn) Nu(En) NL(Em) NgEn) Ng(En) Ng(En) NgEn) Ny(En)]
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N, ()= 0=k
N, (6r)=3 0 -k
N, (6r)=5 L+ XL ki

Nu4(§,77)=—%(1—§)(1+77)§77

Noo(6)=—2 -+ Xty
Nue(é,n)=%(l+§)(l—f7)(l+n)§
N, (&)= - 2o oy

Nus(é,n)?%(l—f)(l—n)(lw)é

N, (&)= (=& 1+ENi-n)L+7) (3.32)
1?? N
4 7 3
*— ° 1
1 0 1 ¢ 1 0L 1 3
59 ® > 1 g
o—'@ | .
1 5 2
Velocity: biquadratic Pressure: discontinuous linear
(9 nodal points) (1 nodal point, 2 derivatives)

Figure 3.2 Q,-P_; element
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For pressure (1 nodal point, 2 derivatives)
IN,(En)l=INu(Em) N(Em) N(Em)]

Np1(§:77):1

N,.(&m)=¢

N, (Em)=7 (3.33)
For the approximation of lateral displacement of the panel, the two-node bending

element with four degree of freedom as presented in Figure 3.3 was employed. d,

and d, represent the lateral displacement at the node 1 and 2 of the element. % and

% are the rotation at each node. [ is the length of element. The shape functions of the

two-node bending element are derived based on the cubic interpolation function,
which satisfies the governing equation of the panel domain. Furthermore, the cubic
interpolation function is able to provide the continuity of lateral displacement and
slope at sharing nodes between continuous elements. The shape function derivation

and accuracy investigation for this element type were offered in [55].

dl d2
A
1 adl 2 adz

Figure 3.3 2-node bending element
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The shape functions for the two-node bending element are presented in local

coordinates as follows:

\_Nd(SE)J:\_Ndl(SZ) Nm;1(§) Ndz(é:) Néz(ég)J

N, (€)=1-S(e+1) + 56+
NG ()= 6+ 1) (6 +1) + 5 +1]
N6)=2 e+ (e +1)

NL(E)= (61 + (e 1) (3.34)

The proposed feature of this study is to include the thickness of sandwich panel into
the mesh model. The finite element mesh model including the panel thickness is
presented in Figure 3.4. However, the finite element mesh models excluding the
panel thickness as shown in Figure 3.5 was also used to compare the obtained results
and clarify the influence of this improvement. The thickness of sandwich panel was
included by separating the upper and lower air-panel interface. The boundary
conditions of air velocity nodes on the upper and lower interface were set to be
identical to the time derivative of the displacement of corresponding panel nodes.
This concept is coherent with the assumption of the sandwich model that the core is

so stiff in transverse direction that the lateral motions of two faces are synchronous.

44



Chapter

3

Finite element modelling

Air layer
Thickness

Beam
Thickness

Air layer
Thickness

‘ Air layer

Thickness
Lox

Beam length

Air layer
Thickness

Velocity node: e
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Figure 3.4 Finite element mesh model including panel thickness

Air layer
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Air layer
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Velocity node: e
Pressurenode: O

Figure 3.5 Finite element mesh model excluding panel thickness
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Parametric studies and discussions

4.1 Verification of finite element model

The validation of the formulation was examined by investigating the
convergence of finite element results and comparing the obtained results with
analytical solutions and experimental results of other researches. In addition, the finite
element results are also compared with the experimental results presented in Chapter
2. In this study, the mesh convergence study was performed to determine the optimum
number of elements. The mesh convergence plot for the natural frequency versus the
number of air element is illustrated in Figure 4.1, while the convergence test on the
panel elements refinement is clarified in the next section, which also compares the
finite element results with analytical solution. In the analysis, the air and panel region
were discretized into 168 and 30 elements, respectively and the total number of DOFs
is 1561. The physical properties of the air were based on the normal temperature and
pressure (20 °C, 1 atm), where air mass density (pn) = 1.205 kg/m®, viscous
coefficient () = 1.809 x 10 Pa-s, and speed of sound (c)= 343.43 m/s. To assure the
versatility of the present formulation, three sandwich panels (A, B, and C) with
different geometrical and material properties were employed for this study. The
geometrical and material properties of Sandwich A and B were adopted from various
literatures [23,39] while those of Sandwich C was adopted from the specimen used in
Chapter 2.
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Figure 4.1 Mesh convergence plot of natural frequency versus number of air elements

Table 4.1 Geometrical and material properties

Sandwich panel A B C
Panel length_L (m) 1.2 1.2 0.4
Panel width_b (mm) 1.0 1.0 50
Face thickness_t; (mm) 0.5 1.0 0.1
Core thickness_t. (mm) 10 10 5.0
Face density_p; (kg/m°) 1.26x10° 2.77x10° 2.68x10°
Core density_p. (kg/m°) 1.38x10? 0.6x10? 0.37x10?
Face Young’s modulus E; (Pa) 32.0x10° 70.0x10° 70.0x10°
Core Young’s modulus_E; (Pa) 13.0x10’ 13.0x10’ 24.1x10’
Core shear modulus_G. (Pa) 13.6x10’ 45.0x10° 34.5x10’

47



Chapter 4
Parametric studies and discussions

In this part, the first eight natural frequencies of sandwich panel A, B, and C,
calculated by using the present finite element analysis are compared with those
calculated by using the Euler-Bernoulli and Sandwich approximation. The
geometrical and material properties of sandwich panel A, B, and C are presented in
Table 4.1. The boundary condition of the panel A and B is simply support and that of
the panel C is fixed ends. In this comparison, the effect of ambient air was not
considered. The effect of ambient air was disregarded from the finite element analysis
by setting the air boundary to be the condition of infinite vacuum air domain. In this
setting, the rigid walls were removed and the parameters of the air viscosity
coefficient and mass density were inputted with 5-digit smaller than the value of
standard condition. The analytical solutions based on the classical Euler-Bernoulli and
Sandwich theory are clarified in equation (4.1) and (4.2), respectively. The derivation
and analytical solutions of sandwich panel under fixed ends condition can be found in

the reference [39].

f =£~(£J2- B for simply supported
=5 ‘/ps ply supp
05+n) [D
fes =%[ |_+nj - [—= for fixed ends
24 4.1)

2 2,2 2
z (n D,(2D,z%n* + Gt L?) .
fow==:—1" — for simpl r
W [LJ \/pB((DB+2Df)7rzn2+GCtCL2) or simply supported

(4.2)

Here, n and L denote the vibrational mode order and sandwich panel length.

The comparisons of the first eight natural frequencies calculated by finite element,

Euler-Bernoulli, and Sandwich approximation are presented in Table 4.2, 4.3, and 4.4
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for sandwich panel A, B, and C, respectively. In addition, the number of panel
elements (N) was varied to investigate the convergence of the results. The natural
frequencies obtained from finite element model tend to converge to those calculated
by using Sandwich approximation and show more agreement with those calculated
using Sandwich approximation than those estimated using Euler-Bernoulli solution.
The natural frequencies of Euler-Bernoulli solution are slightly higher than those of
finite element model and Sandwich approximation because the assumption of Euler-
Bernoulli approximation neglects the shear deformation effect by considering the
shear modulus to be infinity, leading to the overestimated bending stiffness and
natural frequency. The deviation from the Euler-Bernoulli solution increases as the
mode order steps up. For the panel B having the lower shear modulus than the panel
A and C, the deviation of natural frequencies can be seen obviously. The deviation
indicates the necessity of taking the shear deformation effect into the calculation of
natural frequency especially for a sandwich structure with weak core.

As previously explained, the obtained finite element results were compared
with the experimental results of other researches [23,34] to verify the finite element
model. The first three natural frequencies of three sandwich panels are compared in
Table 4.5. The natural frequencies are presented in normalized form (f/f°), where f
is the natural frequency under normal pressure and f© is the natural frequency in
vacuum condition. In this comparison, the boundary condition of finite element model
was modified by removing the rigid wall surrounding the ambient air and the ambient
air thickness is set to be 1000 mm. For the vacuum condition, the air viscosity
coefficient and mass density were inputted with 5-digit smaller than the value of

standard condition.
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Table 4.2 Estimated natural frequency for Sandwich panel A without air effect

Vibrational Sandwich A natural frequency (Hz)

mode’s Finite element Analytical Euler-  Analytical

order N=10 N=20 N=30 N=40 Bernoulli Sandwich

1 19.921 19.905 19.903 19.902 19.946 19.902
2 79.158 79.098 79.089 79.083 79.784 79.083
3 176.191 176.058 176.038 176.023 179.513 176.024
4 308.643 308.409 308.374  308.349 319.135 308.351
5 473.489 473.130 473.076  473.037 498.648 473.040
6 667.293 666.787 666.711  666.657 718.053 666.661
7 866.442  885.770 885.669  885.597 977.349 885.602
8 1127.344 1126.489 1126.361 1126.269 1276.538 1126.275

Table 4.3 Estimated natural frequency for Sandwich panel B without air effect

Vibrational Sandwich B natural frequency (Hz)

mode’s Finite element Analytical Euler-  Analytical

order N=10 N=20 N=30 N=40 Bernoulli Sandwich

1 27.826 27.810 27.804 27.803 28.688 27.803
2 102.371  102.313 102.292  102.287 114.751 102.288
3 205.495 205.378 205.336  205.326 258.190 205.328
4 322.266  322.266  322.017  322.000 459.005 322.003
5 444,053 444.053 443.963 443.941 717.195 443.945
6 567.803 567.479 567.363 567.336 1032.761 567.340
7 691.263 690.868 690.728  690.694 1405.702 690.700
8 814.225 813.760 813.594  813.555 1836.019 813.562
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Table 4.4 Estimated natural frequency for Sandwich panel C without air effect

Vibrational Sandwich C natural frequency (Hz)

mode’s Finite element Analytical Euler-  Analytical

order N=10 N=20 N=30 N=40 Bernoulli Sandwich

1 274339  247.323 247.322 247.321 248.226 247.322
2 682.653 682.611 682.608 682.605 689.516 682.606
3 1325.373 1325.290 1325.285 1325.280 1351.451 1325.282
4 2163.990 2163.855 2163.846 2163.837 2234.032 2163.840
5 3184.363 3184.163 3184.151 3184.137 3337.257 3184.142
6 4370.540 4370.266 4370.248 4370.230 4661.128 4370.237
7 5705.584 5705.228 5705.204 5705.180 6205.643 5705.188
8 7172.319 7171.871 7171.842 7171.812 7970.804 7171.822

The agreement between the obtained finite element results and the experimental

results of other researches is satisfied. The results show that the ambient air affects the

vibration of sandwich panel as an added mass effect resulting in the reduction of

natural frequency. As compared with the natural frequency in vacuum condition, the

natural frequency decreases of about 10, 4, and 3% for vibrational mode 1, 2, and 3,

respectively. The results also show that the effect of ambient air increases when the

panel mass becomes lighter.
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Table 4.5 Comparison with experimental of other researches

Panel  Mass/area f/f° f/f°[23,34]
(kg/mm?) (FEM) (Experiment of other researches)

Model Mode2 Mode3 Model Mode2 Mode3

SW1 4.66x107° 0.90 0.95 0.98 0.94 0.98 0.99
SW2 4.10x10°° 0.89 0.94 0.97 0.92 0.96 0.97
SW3  2.60 x 107 0.83 0.92 0.93 0.86 n/a n/a

4.2 Influence of shear deformation

The influence of shear deformation in sandwich core was further investigated
in this part. The variation of the core shear modulus was conducted to illustrate the
characteristic of this effect while the values of other parameters were still equivalent
as listed in Table 4.1. Figure 4.2-4.4 show the alteration of the first three natural
frequencies through the adjustment of core shear modulus of sandwich panel A, B,
and C, respectively. The abscissa of Figure 4.2-4.4 is the shear modulus (G¢). The
ordinate is f/f °, where f is the natural frequency obtained by including shear
deformation effect and f ° is the natural frequency that neglects this effect. The results
of sandwich panel A, B, and C show similar tendency. While the core shear modulus
weakens, the effect of shear deformation presents as the sharp decrease of natural
frequencies. The effect is more significant in the higher vibration mode. On the other
hand, as the shear modulus strengthens up to a value, which is 10 times for sandwich
panel A and C, and 100 times for sandwich panel B, the shear deformation has the
minor effect on their natural frequencies.
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Figure 4.2 Influence of shear deformation on natural frequencies as a function of core
shear modulus: Sandwich panel A
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Figure 4.3 Influence of shear deformation on natural frequencies as a function of core
shear modulus: Sandwich panel B

53



Chapter 4
Parametric studies and discussions

0.3 -

—a— Model
0.2 | —o— Mode2
0.1 1 bt NMode3
0.0 ""; U L LU | ' LR | T UL LI L) |
0.01 0.1 1 10
G (x34.5x10" Pa)

Figure 4.4 Influence of shear deformation on natural frequencies as a function of core
shear modulus: Sandwich panel C

Generally, the shear deformation effect obviously presents in the case of thick panel.
In the high frequency region, the bending stiffness of a sandwich panel is completely
determined by the bending stiffness of the laminates [39]. Thus, in this section, the
shear deformation effect on the first three natural frequencies was investigated by
varying the core and face sheets thickness. Figure 4.5-4.7 present the variation of the
first three natural frequencies as the core thickness of the sandwich structure changes.
Figure 4.8-4.10 illustrate the change of natural frequencies through the variation of
face thickness. The abscissa of Figure 4.5-4.7 is the core thickness (t.) and that of
Figure 4.8-4.10 is face thickness (tf). The ordinate of Figure 4.5-4.10 is identical to
that of Figure 4.2-4.4. From the Figure 4.5-4.10, when the core and face sheets

thickness increases, the natural frequencies tend to decline according to the increase
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of shear deformation effect. As same tendency as shown in Figure 4.2-4.4, the effect
of shear deformation is magnified as the vibration mode order increases. The results
in this part conclude the importance of considering the shear deformation effect for

studying the bending vibration of sandwich panels.

1.0 ik
0.9 1 S
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0.6 1
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0.3/ —a—Model
0.2 | —e—Mode2
0.1 | =t Mode3
0.0+ ———— —
0.1 1 10

e (x10 mm)

Figure 4.5 Influence of shear deformation on natural frequencies as a function of core
thickness: Sandwich panel A
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Figure 4.6 Influence of shear deformation on natural frequencies as a function of core
thickness: Sandwich panel B
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Figure 4.7 Influence of shear deformation on natural frequencies as a function of core
thickness: Sandwich panel C
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Figure 4.8 Influence of shear deformation on natural frequencies as a function of face
sheet thickness: Sandwich panel A
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Figure 4.9 Influence of shear deformation on natural frequencies as a function of face
sheet thickness: Sandwich panel B
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Figure 4.10 Influence of shear deformation on natural frequencies as a function of
face sheet thickness: Sandwich panel C

4.3 Influence of GAP

In the section, the natural frequency of the first vibrational mode is
investigated as the GAP is changed between 1 to 40 mm. In addition, to verify the
experimental results, the conditions of SIDE are determined to be 1, 3, 15, 25, and 50
mm according to the experimental condition. The natural frequency variations for the
SIDE condition of 1, 3, 15, 25, and 50 mm are illustrated in Figure 4.11-4.15,
respectively. The ordinate of Figure 4.11-4.15 is the normalized frequency f/f °,
where f is the natural frequency obtained by including the effect of ambient air and f °
is the natural frequency neglecting this effect. For the specimen used in this study, the

fundamental natural frequency without air effect is 247.321 Hz. This frequency was
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estimated by using the numerical simulation where the boundary condition of the
model was adapted by removing the rigid surface around the panel and setting the air
density and viscous coefficient to be 5 times smaller than those of the standard
condition. The adapted boundary condition represents the condition of infinite
vacuum air domain. The abscissa of Figure 4.11-4.15 is the GAP/L, where L is panel
length. The blue background graph provides the magnified comparison between finite
element and experimental results. The finite element and experimental results show
good agreement. The frequency variations of all SIDE conditions are in same
tendency that the natural frequencies tend to decrease more sharply as the GAP

becomes thinner.
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Figure 4.11 Influence of GAP: SIDE of 1 mm
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Figure 4.12 Influence of GAP: SIDE of 3 mm
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Figure 4.13 Influence of GAP: SIDE of 15 mm
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Figure 4.15 Influence of GAP: SIDE of 50 mm
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The decrease of natural frequency due to the decrease of GAP can be explained by the
effect of Fluid-Structure Interaction (FSI) and air mass added to sandwich panel. As
shown in Figure 4.16(a), the bending vibration of the panel causes the oscillatory air
flow between the upper and lower cavity while the air flow disturbs the panel as an
added mass effect. Because the density of sandwich structure and air is comparable,
the added air mass can significantly modify the dynamic behaviour of the sandwich
structure. As the GAP becomes smaller, the oscillatory air flow improves resulting in
the increase of added mass effect and the decreases of natural frequency. The results
of this study are in contrast with the results of the literature [27], where the natural
frequency increases with decreasing air layer thickness. The contrast in the results is
because of their different air condition and resulting effect, as comparatively
illustrated in Figure 4.16. In the condition of the literature [27], the deformation of
the panel causes a volume change in the cavity and then a pressure disturbance on the
panel. The pressure disturbance affects the panel as an added stiffness effect, which

shifts the panel natural frequency up.

DL L bbby

_— I = ————
P+

e ——| P
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Figure 4.16 Air-panel coupling mechanism of (a) present model and
(b) reference [27] model
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4.4 Influence of SIDE

The influence of SIDE is studied by varying the SIDE width to be 1, 3, 5, 15,
25, and 50 mm, whereas the varying of GAP and other parameters are the same as
those in section 4.3. Figure 4.17 shows the variation of natural frequency of different
SIDE width. Its ordinate and abscissa are identical to those of Figure 4.11-4.15. The
effect of SIDE increases as the SIDE width decreases. However, the effect of SIDE is
insignificant when the GAP becomes smaller because it is dominated by the GAP
effect. As GAP/L is less than 0.015, SIDE variations do not affect the natural
frequencies. On the contrary, the influence of SIDE prominently appears, especially
for the case of narrow SIDE. The effect of SIDE leads to the reduction of natural
frequency as the SIDE width becomes narrower. The reason of this phenomenon is
similar to that of GAP effect explained in the previous section. The decrease of SIDE
induces the pressure difference between the upper and lower cavity as shown in
Figure 4.16(a). The increase of pressure difference leads to the improvement of the
oscillatory air flow between the upper and lower cavity and then the intensification of
added air mass effect. Thus, the natural frequency decreases according to the decrease

of SIDE.
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Figure 4.17 Influence of SIDE

4.5 Influence of panel length

The influence of air on the natural frequency of three panels with different
lengths is investigated. The condition of panel length of 400 mm and SIDE of 50 mm
is selected as the baseline for this comparison. The other panel length is set to be the
half and the twice of the baseline (1/2 L and 2 L). In Figure 4.18, the relation between
the GAP/L and the normalized frequency f/f ° is plotted for three panel spans. The
frequency of each panel is normalized by its f ° corresponding to its length.
Perceptibly, the effect of air on the natural frequency becomes stronger when the
length is extended. This result can be simply explained that the increase of panel
length leads to the longer air layer and thus the increment of added air mass effect,

which results the decrease of natural frequency.

64



Chapter 4
Parametric studies and discussions

—— 1L
—a—2 L

0.0- d I U I U T ! I ! | ! | ! | ! I ' I '
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
GAP/L

Figure 4.18 Influence of panel length

4.6 Influence of panel bending stiffness

The influence of air effect on the natural frequency of three different panels
with different bending stiffness is investigated as shown in Figure 4.19. The ordinate
and abscissa of Figure 4.19 are identical to those of Figure 4.11-4.15. The simulation
result of Figure 4.15 is used as the baseline. The bending stiffness of the panel is
varied to be 10 times smaller and larger than that of the baseline whereas the other
parameters are identical to those of the baseline. The comparison in Figure 4.19
shows that the frequencies of three different panels are quite identical except for the
extremely small GAP/L region, which reveals only small difference. In the very small
GAP/L region, the air effect becomes little stronger as the bending stiffness is

reduced. The stronger effect can be explained that the structures with lower stiffness
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are easier disturbed by the added mass effect than those with higher stiffness and the

added mass effect is magnified in thin GAP range.
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Figure 4.19 Influence of panel bending stiffness

4.7 Influence of panel mass

The difference of the air effect on different structural mass densities is
presented in Figure 4.20. The simulation result of Figure 4.11 is used as the baseline.
The ordinate and abscissa of Figure 4.20 are also identical to those of Figure 4.11-
4.15. The mass density is varied between 10 times smaller and larger than that of the
baseline. The alteration of structural mass substantially modifies the effect of ambient
air layers. As the structural mass density is minimized, the natural frequency
decreases manifestly because the added air mass effect becomes more prominent. The

results in this section show good agreement with those of the reference [28] which
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revealed the importance of added air mass effect on the vibrational response of light
weight structures. The comparison in this section evidently proves that the air effect
on structural vibration should not be neglected, especially for the case of light weight

structure.
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Figure 4.20 Influence of panel mass

4.8 Influence of vibration mode

In this section, the influence of ambient air on the first three natural
frequencies is investigated by simultaneously varying the GAP and SIDE, which are
commonly called the air layer thickness (t;). The frequency variation of sandwich
panel A, B, and C is shown in Figure 4.21, 4.22, and 4.23, respectively. The ordinate
of Figure 4.21-4.23 is f/f ° as identical as that of Figure 4.11-4.15. The abscissa is

the air layer thickness normalized by the core thickness (ta/t;). The frequency changes
67



Chapter 4
Parametric studies and discussions

of three panels are in same tendency. The frequencies decrease while the air layer
thickness becomes thinner and the frequencies tends to decrease more sharply when
ta/tc is less than one.

By considering the vibrational mode order, the effect of ambient air (added
mass) decreases as the mode order or frequency increases, the results are in agreement
with the discussion of Reference [39] that explained that the added mass effect is
decreasing for increasing frequencies up to the critical frequency. To further
substantiate these results, the characteristics of air flow velocity vector and pressure
distribution are shown in Figure 4.24, 4.25, and 4.26 for 1% mode, 2" mode, and 3"
mode, respectively. For the reason that both sides are symmetry, only the half left is
presented to identify their details. These characteristics are in the condition of air
layer with 20 mm thickness. For each vibrational mode, the vector plots were
normalized by the maximum absolute value of the time derivation of the panel
displacement. The pressure distributions of each mode were also normalized by their
own maximum value. The results show that the size of air velocity vector of the 1
mode (Figure 4.24) is larger than that of the 2™ mode (Figure 4.25), which is larger
than that of the 3" mode (Figure 4.26). In other words, the larger size of air flow
vector occurs in the lower mode. The larger size of air velocity vector, which
represents the intense air flow, indicates the stronger added mass effect. These results

provide the explanation why the air effect is stronger in the lower mode.
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Figure 4.21 Influence of vibration mode: Sandwich panel A

Figure 4.22 Influence of vibration mode: Sandwich panel B
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Figure 4.24 Air flow velocity vector and pressure distribution: Model
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4.9 Influence of air viscosity

To clarify the influence of air viscosity, the first three natural frequencies
obtained from the condition of considering and neglecting the air viscosity are
compared as presented in Figure 4.27, 4.28, and 4.29 for sandwich panel A, B, and C,
respectively. For the condition of considering air viscosity (Standard p), the air
viscosity coefficient based on the normal temperature and pressure is employed. For
the condition of neglecting air viscosity (10® ), the viscosity coefficient is set to be
5-digit smaller than the standard value. The ordinate of Figure 4.27-4.29 is identical
to that of Figure 4.11-4.15. The abscissa is the air layer thickness (t;). The
comparison of natural frequencies neglecting and considering the air viscosity shows
that the air viscosity effect is manifest in the case of thin air layer and the lower
vibration mode. The results in Figure 4.27-4.29 show good agreement with the results
and suggestion of the Reference [27] that the viscous effect should be regarded for the
condition of thin layer and low frequency.

To further explain these results, the characteristics of air flow velocity vector
and pressure distribution are shown in Figure 4.30, 4.31, and 4.32 for the air layer
thickness of 1, 10, and 100 mm, respectively. In these characteristics, the panel
vibrates in the fundamental mode and deforms upward. For the reason that both sides
are symmetry, only the half left is presented. At the center of the panel, the flow
vectors are directed vertically. Then they tend to change to horizontal direction and
become larger when they approach the panel end. For the air layer thickness of 1 mm,
the flow vectors appear as poiseuille flow as shown in Figure 4.30(a) due to the

dominance of viscous effect. However, the viscous effect lessens when the air layer
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thickness becomes larger. As presented in Figure 4.31(a) and 4.32(a), when the air
layer thickness is 10 and 100 mm, the ratio of boundary layer occupying the air layer
decreases as compared with the flow velocity profile of layer thickness of 1 mm
shown in Figure 4.30(a). In the case that the air viscosity coefficient is varied to be 5-
digit smaller than the standard value, the air viscous effect also lessens as presented in
Figure 4.30(b) and 4.31(b) in which the boundary layer occupying the air layer is
smaller than that of the standard condition. The comparison between Figure 4.32(a)
and 4.32(b) indicates that the viscous effect is very small in the case of thick air layer.
As illustrated in Figure 4.32, the flow velocity profile and pressure magnitude of
standard viscosity coefficient condition are quite identical to those of 5-digit smaller
viscosity coefficient condition. By considering the pressure magnitude of each
condition, the pressure magnitude in air layer increases when the air layer thickness
decreases and/or the viscous effect increases. When the air layer thickness becomes
thinner, the pressure magnitude of standard p condition becomes higher than that of
10 p condition. The difference of pressure magnitude increases corresponding to the

difference of natural frequency shown in Figure 4.27(b).
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Figure 4.27 Influence of air viscosity: Sandwich panel A
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Figure 4.28 Influence of air viscosity: Sandwich panel B
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Figure 4.32 Air flow velocity vector and pressure distribution: air layer thickness of
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4.10 Influence of air density

To further proof the added mass effect on the decrease of natural frequency,
the parametric study on the air density was conducted by varying the air density to be
smaller than the standard value 1, 2, and 5-digit. The 1% mode natural frequency of
sandwich panel A, B, and C is shown in Figure 4.33, 4.34, and 4.35, respectively.
The ordinate and abscissa are still identical to those of Figure 4.21-4.23. The
frequency variations of three sandwich panels are in same tendency. The results show
that while the air density decreases, the frequency tends to shift up due to the
diminution of added mass effect. As explained in the previous section, the oscillatory
air flow affects the panel as an added mass resulting in the reduction of natural
frequency. In the case that the density of air and sandwich panel is not much different,
the added mass effect plays an important role affecting the dynamic behavior of the
panel. On the contrary, the added mass effect has little effect. For instance, in the
condition of 10™ pa, the normalized frequency is almost 1.0 meaning that there is
small difference between the natural frequency including air effect and the natural
frequency excluding air effect. The explanation of the added mass effect on the

reduction of natural frequency was also verified by the results of this section.
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Figure 4.33 Influence of air density: Sandwich panel A
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Figure 4.34 Influence of air density: Sandwich panel B
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Figure 4.35 Influence of air density: Sandwich panel C

4.11 Influence of air-panel thickness

In the finite element analysis of a vibrating panel surrounded by thin air layers,
the thickness of the panel should be included into the mesh model in order to obtain
the accurate results. With the aim of understanding the accuracy improvement, the
first three natural frequencies calculated by two mesh models, including and
excluding the thickness of sandwich panel, were compared in the different air layer
thicknesses of 2 mm, 10 mm, 100 mm, and infinite air domain. For the case of infinite
air domain, the results from both models are almost same. For the other conditions,
the natural frequencies calculated using the model including the panel thickness are
always lower than those calculated using the model excluding the panel thickness.

The reason is that when the sandwich panel thickness is included, the distance of
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airflow increase thus resulting in the additional air mass. The difference between both
results is presented in Figure 4.36, 4.37, and 4.38 for 1% mode, 2" mode, and 3"
mode, respectively. The abscissa is the panel thickness (t,). The ordinate is the
difference between both results. The difference becomes larger as the panel thickness
increases and as the air layer thickness decreases. The results of three modes are
similar in tendency but various in the difference. The difference decreases as the
vibration mode order increases. In sum, the consideration of panel thickness is

important for the case of thick panel coupled with thin air layer.
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Figure 4.36 Influence of air-panel thickness: Model
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Chapter 5
Conclusions and Recommendations

5.1 Conclusions

The fundamental natural frequency of a sandwich panel surrounded by air
layers was investigated using experiment and numerical simulation. The experiment
setup based on modal testing was proposed with the feature of simulating air layers
around the sandwich panel. The numerical simulation was originally established for
this study. The flexural motion of the sandwich structure was governed by a sixth
order differential equation. The motion of the ambient air was governed by Navier-
Stokes equations with viscous incompressible flow assumption and the penalty
function formulation. The finite element equations of the panel and air were derived
in weak form through the Galerkin weighted residual method and combined on the
basis of a monolithic approach and eigenvalue problem. The finite element
formulation was implemented in an in-house program operating on a Fortran 90
environment. The validation of the formulation was investigated by comparing the
obtained results with other analytical solutions and experimental results. For the
comparison with the analytical solution of Euler-Bernoulli and Sandwich theory, the
results show good agreement with the sandwich theory solutions and indicate the
necessity of considering the effect of shear deformation in sandwich core. The
comparison between finite element and experimental results shows good concordance

with difference less than 3%.
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The parametric studies on the influences of shear deformation and ambient air on the

natural frequencies were conducted. The achieved results can be concluded as

follows:
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The effect of shear deformation causes the reduction in the natural
frequencies. As the core shear stiffness weakens, the vibration mode order
increases, and/or the sandwich panel thickens, the effect of shear deformation
becomes stronger. For the bending vibration analysis of a weak core and/or
thick sandwich panel, the effect of shear deformation is essential.

The effect of air layer that surround the sandwich panel is sorted as an added
mass effect and results in the reduction of the natural frequency.

The air layer thickness is an influential factor. As the air layer thickness
becomes thinner, the added mass effect is magnified and thus the natural
frequency greatly decreases of more than 80% when the air layer thickness
becomes thinner than 3 mm.

The influence of panel length and mass density indicates the sensitive
response on the natural frequency. However, the influence of panel bending
stiffness is insignificant when compared with that of panel length and mass
density.

The magnitude of air effect becomes larger as the vibration mode order
decreases. The effect of air viscosity is manifest in the case of thin layer and
the lower vibration mode order. The inclusion of panel thickness into the finite
element mesh model is important especially for the analysis of thick panel

coupled with thin air layers.
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5.2 Recommendations

Several recommendations for future researches as extension of this study are

listed below:

As explained in Chapter 2, the sandwich specimen was excited by an
electromagnetic exciter via a stinger. This excitation method may affect the
dynamic behavior of the sandwich panel as an added mass effect and result in
the error between the experimental and simulation results. It is interesting to
perform the experiment by using non-contact excitation methods, for instance
magnetic excitation.

It is interesting to perform the modal testing on a larger sandwich panel
coupled with various condition of ambient air layer, so that the influence of
ambient air on the natural frequencies and vibration modes can be fully
described.

More realistic 3-Dimensional finite element model can be developed to fully
describe the influence of ambient air. However, to minimize the computation
time and effort, 1/8 model can be employed by using the concept of ¥ model,
given in Appendix C.

Not only the influence of ambient air but also the effect of air trapped in
sandwich core is significant. To achieve high-accuracy natural frequency, the
influence of air trapped in sandwich core can be included into the analytical

model.
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Appendix A
Derivation for the element coupling interface
matricesf) [

Starting from the boundary integral term in Equation (3.11) and concerning
the continuity condition of the stress components through the discrete boundary of the

coupling interface G*in Equation (3.7), it becomes

82 (V ) O-Bij)

ox*

j{szNdJ[(DB +2Df) —Gcth(V'GBij )]in

o’o
:IGELNdJT[(DB +2Df) angn —GcthO'andGe

:jGeLNdJT[GCtho-nA 0, +20))° O ]dee
OoX (Al)

From Equation (3.5) and (3.6), the discrete stress components defined for each of

finite elements are expressed as

1({ou ov ov
O =—| —+— |[+2u—
g, ox oy oy

:gi(aLaquJ{ue}+ ataNqu{ve}}zﬂ%{ve}

p

i@ %J.{ue}%o 8NUJ.{ue}

g, oy oy

(A2)

A H ay aX

)

_ ,{% %J.{ue}

o (A3)

Substituting Equation (A2) for Equation (Al), we obtain the element coupling
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interface matrix of the panel

el
jGeLNdJ[GCbtco-An —(D, +2D,) ax:n jdee

1 oN, ON
— il N . u u | de e
Gcbtc gp ,[G L dJT \‘ ax ay J {U }dG

-zecmcﬂ;cw[o ?;J{ue}dee

_(DB+2Df)iL{mJ [ﬂ %J.{ue}dge
&

) ox* ox oy
N, [0 N, | e
+2(DB+2Df),ujG{WJ -{o 8yJ {uldc
=[es] o) (Ad)

From the last term in Equation (3.15), concerning the no slip condition, on the

discrete boundary of the rigid wall, it becomes
—fsgzee+weQNuj o + N o B8 = (N[0, 4N, [ o, piG (A5)
Also |N, | and [N, ] , which denote the normal and tangent components of the shape
function matrix | N, | are expressed as
[N =[0 N,]
[N =[N, o] (A6)
Substituting Equation (A2), (A3), and (A6) into Equation (A5)
LN o, <N o, pie

—Lilo W B Bl e

5
~2uelo ] fo Zhlfries
J.{ue}dee

o]
= 6] {ur} (A7)

oy o
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Appendix B
Free vibration analysis of damped system

Generally, the results obtained from an eigenvalue analysis are an eigenvalue

() and eigenvector (z). The vibration can be expressed as a function of time f(t)
f(t)=e"z+e"z (B1)
Here, 7 is the complex conjugate of the eigenvalue (1) and z is the complex
conjugate of the eigenvector (z).
Since the panel vibrating in air is considered as a damped system, both eigenvalue and
eigenvector are the complex quantities, which can be expressed as follows:
A=—a+if (B2)
zZ=X+iy (B3)

Substituting Equation (B2) and (B3) into (B1), f(t)is expressed as follows:

f(t) = 2e*(x-cos St — y-sin ft) (B4)
f(t) =27 (x-coswy,\/1—y’t — y-sinm,/1—y*t) (B5)
where

w, =Ja’ + B (B6)

(24

. —
Jal + fp? (B7)

The physical meaning of Equation (B5) can explained as follows:

2¢7 represents the amplitude of vibration, (x-cosm,1-7% —y-sing,J1-yt) is the
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sinusoidal vibration, o, is the natural frequency without damping, » (0<y<1) is the

damping coefficient ratio served as an indicator of the effect of damping term.
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Appendix C
Modelling of quarter model

C.1 % Model

For the consideration of %2 model, the geometry and restraints of mesh models
as shown in Figure 3.4 and 3.5 are symmetric between left- and right-half. Figure
C.1 shows the sketch of a vibrating panel coupled with ambient air on the 1st mode
(odd mode), in which the dash line represents the symmetrical edge and the
displacement of the panel and air velocity vectors are symmetric. The symmetry
displacement condition is given that in the symmetrical edge, the rotation of the panel
and the air velocity in X-direction equal to zero. Figure C.2 illustrates the sketch of a
vibrating panel coupled with ambient air on the 2nd mode (even mode), in which the
displacement of the panel and air velocity vectors are anti-symmetric and the dash
line is the edge of anti-symmetry. The lateral displacement of panel and the air
velocity in Y-direction equal to zero at the edge of anti-symmetry. For the condition
of odd mode and even mode, the ¥2 model can be applied by considering only half-

left.

C.2 ¥%amodel

To apply for ¥4 model, the anti-symmetry condition between upper and lower
part of the %2 model is considered. Figure C.3 and C.4 present the left half of the

sketch of a vibrating panel coupled with ambient air on the 1% and 2™ mode,

97



Appendix C
Modelling of quarter model

respectively. From Figure C.4 and C.5, as the panel displaces upward, the air flows
downward. The air velocity in upper and lower part is reverse in X-direction. The
relation of air velocity in upper and lower-part can be concluded as follows:

U, =—-U, (C1)
L (C2)
Here, u,and v, are the air velocity of upper part in X- and Y-direction, respectively.

u_and v, _are the air velocity of lower part in X- and Y-direction, respectively.
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Figure C.1 Sketch of a vibrating panel coupled with ambient air on the 1% mode
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Figure C.2 Sketch of a vibrating panel coupled with ambient air on the 2" mode
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Figure C.3 Sketch of a vibrating panel coupled with ambient air on the 1% mode
(%2 model)
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Figure C.4 Sketch of a vibrating panel coupled with ambient air on the 2" mode
(%2 model)
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The total mass matrix is expressed as below. u, and v, are the air velocity of medium

part in X- and Y-direction, respectively. d’ is the time derivative of panel

displacement.

M, M, 0 0 0 0 0 |fu
M, M, M,, 0 0 0 0 |u,
0 M,, M,, 0 0 0 0 ||u,
MJw}=f 0 0 0 M, M,, 0 0 [y
0 0 0 M, M, M, M,l|ly,
0 0 0 0 M, M, 0 [l
0o 0 0 0 M, 0 M,|d (C3)

Here, in the equation of the 2" row, substituting u, with —u, .

Mo+ M T b M T b= M) T Yo+ [ o)

(C4)
Here, [m,,] is obtained by arranging the column of [M,,]to be [M,.] {u }=[M.,.]u,}.

Also, from the symmetry of the model, the 3™ row can be removed because

M, Ju t=[M,Ju,} in the 1% column and [M,Ju, }=[M,Ju,}in the 3 column are the
same system of the equation. Then, by determining v, =v, the equation of the 5™ row

can be expressed as follows:

[M 54 {VL}+ [MSS]{VM }+ [M 56 {VU }+ [M 57]{d ’}

=M Jo e M, o [ B -
As the same manner, [m.]is arranged from the column of [M,,] based on

[M23]'{uL}=[M23 {u, } . Furthermore, by considering that row 4 and row 6 are the same

system of equations, the total mass matrix [M]is reduced as follows:
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In the same manner, the total stiffness matrix [K]and the total damping matrix [C] are

reduced as follows:

(C9)

Vi

d!

K57

00 0 K,
00 0 K,

I‘<77
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C, C. C. Cs Offu,
C21 - C2’3 sz C24 + Cée Czs 0 Uy
[C ]{W} = Cu. C. C. Cis OV
C51 - Cé3 Csz C54 + Cée Css 0 Vi
. 0 C,, Cu+Ci ojld’ (C10)
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Appendix D
Instability of continuous function between
pressure elements

As explained in Chapter 3, the utilization of pressure approximation
continuous between adjacent elements leads to the increase of the bandwidth of [P]*
and thus the error in calculation. This section demonstrates the problem of using the
pressure approximation continuous between adjacent elements. The pressure
distributions of Q;-Q; element combination, continuous between adjacent pressure
elements, are investigated and compared with those of Q,-P.1, discontinuous between
adjacent pressure elements.

Figure D.1 illustrates the pressure distribution of Q1-Q; element, where GAP
is 1 mm, SIDE is 100 mm, and the panel vibrates in the fundamental mode and
deforms upward. For the reason that both sides are symmetry, only the half left is
presented to identify their details. Corresponding to Figure D.1, the plot of
normalized pressure distribution at the center of the panel is presented in Figure D.2.
From the Figure D.1 and D.2, the value of pressure distribution fluctuates on each
node of Y-direction. Generally, when the panel displaces upward, the pressure
increases on the upper part of the panel and the pressure should drop at the lower part.

However, the obtained checkerboard pressure distribution is impossible in reality.
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Figure D.1 Pressure distribution of Q;-Q; element
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Figure D.2 Pressure distribution of Q;-Q1 element (at center of the panel)

To further verify the explanation, the pressure distribution of Q;-Q; element is

investigated with increasing the number of air elements in Y-direction to twice of
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Figure D.1 condition. As shown in Figure D.3, even if the number of element is
increased, the pressure distribution is still obtained in the checkerboard form.
Moreover, the pressure distribution of Q;-Q; element is examined with increasing
GAP and SIDE to 1000 mm. It also illustrates the checkerboard pattern as presented

in Figure D.4.

<
P S )

100 mm 500 mm

Ly

Figure D.3 Pressure distribution of Q;-Q; element
(increasing the number of element in Y-direction)
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1000 mm

1000 mm

<. oy P ~

1000 mm “ 500 mm T

Figure D.4 Pressure distribution of Q;-Q; element (increasing GAP and SIDE)

To compare the pressure distributions of Q:-Q; and Q,-P_;, the identical
conditions of Figure D.1 and Figure D.4 are adopted. The pressure distribution of
Q2-P_; element, where GAP is 1 mm and SIDE is 100 mm is presented in Figure D.5
and its plot of normalized pressure distribution at the center of the panel is presented
in Figure D.6. The pressure distribution of Q,-P_; element, where GAP and SIDE are

1,000 mm is presented in Figure D.7. The pressure distributions obtained by using
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Q2-P.1 element are reasonable. The investigation in this section can confirm the
explanation of selecting the discontinuous elements for the approximation of pressure

field in Chapter 3.

Figure D.5 Pressure distribution of Q,-P_; element
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Figure D.6 Pressure distribution of Q,-P_; element (at center of the panel)
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1000 mm

1000 mm

Figure D.7 Pressure distribution of Q,-P_; element (increasing GAP and SIDE)
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Appendix E
Validation of fluid region

In this section, the validity of the air region is examined by comparing the air
flow velocity vector and pressure distributions obtained from finite element model to

those from finite difference model.

E.1 Finite difference modeling

Unlike the finite element model, the finite difference model is formulated by
including the convective acceleration term into the Navier-Stokes equations in order
to clarify that the spatial effect can be neglected in this study. The governing
equations of the air region can be expressed by the Navier-Stokes equations and the

continuity equation in non-dimensional form as follows:

2] 2]
au+Uau vy _ P 1[au+au]

oT X oY X Reldx® v (E1)
N N N P 1[NV NV
—+U V—_—=-—+=— st
T X oY  oX Relox?® oY (E2)
LN
X oY (E3)
Here, the following dimensionless variables are used as follows:
X=X yo¥ U yo¥ W p P g AU

L L, U, Vo L P, H (E4)

The subscript zero refers a dimensional variable. L, U, V, p, p, t, 4, and Re denote
length, velocity in x direction, velocity in y direction, mass density, pressure, time,

viscosity coefficient, and the Reynolds number, respectively.
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The governing equations are discretized by the finite difference method, with a
staggered grid in which the pressure is defined at the cell center and the velocity

components are defined at the cell boundaries as shown in Figure E.1.

i,j

u

°
=<

i-1,j ij

i, 7=1

L5

Figure E.1 Staggered grid

The continuity and momentum equation can be discretized as follows:

urt-uy, R - R
j i +CNVUinJ- EELY Y B DIFUi”j
T ‘ AX ' (EG)
nl _\/n nil _ pn+l
i L L CNVV" =Mt B L DIV
AT & AY N E7)
D|V=£+ﬂ1 CNVU :UQ_,_VQ, CNVV:Ua_V+Va_V’
X oY X oY ox oY
2 2)
DIFU = — 5U2+8U2 , DIFV == aZ\/z +52v2
Re(ox* " av Re(ox* " oy (E8)

Where superscripts n and n+1 represent current and next time step, respectively and
subscripts denote the corresponding cell face position as shown in Figure E.1. The

pressure gradients and diffusion terms are approximated using a second-order central
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difference scheme, while the convective terms are approximated by a first-order
upwind difference scheme.
The continuity equation is discretized at i,j

n+l n+l n+l n+l
Ui,j _Ui—l,j Vi,j _Vi,jfl
+ =0

AX AY (E9)

DIV, =

The U-momentum equation is discretized at i,j

n Ui+ '_Ui, i U|AX Ui— '_2Ui'+U'+ . ’
CNVUi,j = Ui,j 1 1 _| J| 1 21 1
2AX 2 AX

+[V Ui,j+1 _Ui.jfl _|V|AY Ui,j—l_ZUi,j +Ui,j+1]

2AY 2 AY? (E10)
V= V-; +Vi,j—1 +Vi+l‘j +\/i+1,j—1
4 (E11)
DIEU" :i Ui—l,j _2Ui,j +Ui+1‘j Ui,j—l _2Ui,j +Ui,j+1
"' Re AX? AY? (E12)
The V-momentum equation is discretized at i,j
CNVV" = U Vi+1,j _Vi—l,j _ |U|AX Vifl,j — 2Vi,j +Vi+1,j
" 2AX 2 AX?
Ly VVi.j+1 _Vi‘jfl _ |V|‘J|AY Vi,j—l - 2Vi‘j +Vi‘j+1
“2AY 2 AY? (E13)
U= Ui‘j +Ui,j—1 +Ui+1,j +Ui+1,j—l
4 (E14)
D|FVi"j _ i(vil,j B Zvljz +Vi+1,j +Vi,jfl B 2V|i +Vi,j+1j
7 Re AX AY (E15)

The calculation of velocity and pressure fields is performed by HSMAC
(Highly Simplified Marker And Cell) method, in which the pressure and velocity

components are corrected iteratively until the continuity equation is satisfied. The
111



Appendix E
Validation of fluid region

equation for the pressure correction is expressed as

m| n+l

o"DIV

milpntl __mpn+l 1] __mpn+l mﬂ:,ml
Pij _P\' n+1_Pij + ij

] m[aDIVij j ,
oR.; (E16)

where the superscript m is the variable representing the number of iterations and w is

relaxation coefficient. Generally the relaxation coefficient is determined to be about
1.7.

The iterative procedure of this method consists of the following steps: First,
the velocity component is predicted using the discretized momentum equation (E6)
and (E7). Then, the divergence of each discretized cell is calculated by the discretized
continuity equation (E9). After that, the pressure is corrected iteratively by using

@IV,

md:)ivnjﬂ - _

N
AXZ ' AY (E17)

After the pressure correction, the velocity is updated. The procedure is reiterated until
the continuity equation is satisfied.

In order to analyze the air domain by finite difference method, the following
boundary condition is given as the theoretical expression of the transient mode of the

panel without solving the equation as a rigid wall.

v[x,YEJ: A-sin(%]COS(ZHfJ) (E18)

where fj refers the natural frequency determined by the finite element model and A is

the maximum amplitude of the panel.
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E.2 Comparison of air flow velocity vector and pressure
distribution

The comparisons of air flow velocity vector and pressure distribution, while
the panel vibrates and drives the ambient air, are presented here in various GAP and
SIDE conditions. The panel length and vibration amplitude are determined to be 1000
mm and 1 mm, respectively.

First, the SIDE is set for 1000 mm, which is large enough to neglect the effect
of lateral wall while the GAP is set to be 1 mm. The flow velocity vector (SIDE of
1000 mm and GAP of 1 mm) obtained from finite element model and the finite
difference model is presented in Figure E.2 and E.3, respectively. For the reason that
both sides are symmetry, only the half left is presented throughout this section. The
flow velocity vector of both models shows well agreement. At the center of the panel,
the flow vectors are dominant in vertical direction and tend to change to horizontal
direction when they approach the panel end. At the panel end, the flow vectors wrap
around in the vicinity rather than the entire space up to the lateral wall.

To differentiate between finite element and finite difference flow velocity
vector, the magnified superposition of finite element and finite difference flow
velocity vector is presented in Figure E.4. The magnification is pointed around the
panel end. The back vector belongs to the finite element model and the pink vector is
the finite difference model. The flow velocity vectors obtained from finite element
and finite difference model are fairly identical. They appear as poiseuille flow due to
the dominance of viscous effect when the GAP is small.

The pressure distribution (SIDE of 1000 mm and GAP of 1 mm) obtained

from finite element model and the finite difference model is presented in Figure E.5
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and E.6, respectively. Both results show good agreement where the pressure is
constant in vertical direction and the pressure magnitude gradually decreases from the
center of the panel. By comparing the maximum pressure magnitude, the difference

between both models is only 1.63%.
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Figure E.5 FEM pressure distribution: GAP of 1 mm and SIDE of 1000 mm
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Secondly, the GAP is set to be 10 mm while the SIDE is still same at 1000
mm. The flow velocity vector (SIDE of 1000 mm and GAP of 10 mm) obtained from
finite element model and the finite difference model is presented in Figure E.7 and
E.8, respectively. The trends of the air flow velocity vector are in good agreement
even the GAP is changed. The magnified superposition of finite element and finite
difference flow velocity vector around the panel end is presented in Figure E.9. The
back and pink vector belong to the finite element and finite difference model,
respectively. The flow velocity vector obtained from both model is similar to laminar
flow. When compared with the flow profile of the previous condition, the ratio of
boundary layer occupying the air layer decreases referring to the decrease of viscous
effect.

The pressure distribution (SIDE of 1000 mm and GAP of 10 mm) obtained
from finite element model and the finite difference model is presented in Figure E.10
and E.11, respectively. As same as the previous condition, both results show good
agreement and the pressure is constant in vertical direction and its magnitude
gradually decreases from the center of the panel. By comparing the maximum
pressure magnitude, the difference between both models is only 0.99%. The better
accuracy as compared with the condition of GAP of 1 mm is because the large GAP

results the less complicated influence of air flow.
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GAP of 10 mm and SIDE of 1000 mm
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Figure E.11 FDM pressure distribution: GAP of 10 mm and SIDE of 1000 mm
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Thirdly, the SIDE is set to be 100 mm while the GAP is 1 mm. The flow
velocity vector (SIDE of 100 mm and GAP of 1 mm) obtained from finite element
model and the finite difference model is presented in Figure E.12 and E.13,
respectively. The trends of the air flow velocity vector are in good agreement even the
SIDE is changed. The magnified superposition of finite element and finite difference
flow velocity vector around the panel end is presented in Figure E.14. The back and
pink vector belong to the finite element and finite difference model, respectively. The
flow velocity vector obtained from both model is similar to poiseuille flow.

The pressure distribution (SIDE of 100 mm and GAP of 1 mm) obtained from
finite element model and the finite difference model is presented in Figure E.15 and
E.16, respectively. The tendency of results obtained from both models is in good
agreement and similar to those of previous section. By comparing the maximum
pressure magnitude, the difference between both models is 1.89%.

In summary, although the GAP and/or SIDE are changed, the air flow velocity
vector and pressure distribution obtained from both models still shows good

agreement. Thus, the validity of fluid region is confirmed in this part.
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Figure E.12 FEM flow velocity vector: GAP of 1 mm and SIDE of 100 mm
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Figure E.13 FDM flow velocity vector: GAP of 1 mm and SIDE of 100 mm
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Figure E.14 Magnified superposition of FEM and FDM flow velocity vector:
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Figure E.16 FDM pressure distribution: GAP of 1 mm and SIDE of 100 mm
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In addition, the validation of the fluid region is further studied by varying the
vibrational amplitude of the panel. The maximum pressure magnitudes obtained from
finite difference and finite element model are compared in the condition of GAP of 1
mm and SIDE of 1000 mm. As shown in Figure E.17 (a), when the amplitude is less
than 1 mm, the difference of pressure magnitudes obtained from finite difference and
finite element model is less than 2%, which reveals the reliability of the finite element
model. On the other hand, when the amplitude is greater than 1 mm as shown in
Figure E.17 (b), the difference gradually increases because the accuracy of the finite
element analysis declines outside the range of micro-vibration. However, the vibration
amplitude of sandwich panels is considered to be very small because the linear
eigenvalue problem is performed in this study. The difference of the results obtained
from finite difference and finite element model is acceptable. Therefore, the reliability

of the finite element model is verified in this section.
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