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 ABSTRACT

The aim of this study was to clarify the nonlinear oscillation of the sloshing-like behavior 

such as a container made of a flexible membrane like a bladder tank. The 2-dimensional 

interaction of a rubberlike membrane and liquid problem in a rectangular tank under 

horizontal vibration was examined by the arbitrary Lagrangian-Eulerian finite element 

method (ALE-FEM) and the influence of a large excitation and membrane tension were 

examined. Then, the 3-dimensional rubberlike membrane and liquid interaction problem in 

rectangular tank under the horizontal vibration are examined by the arbitrary 

Lagrangian-Eulerian finite element method (ALE-FEM). The influences of large excitation 

were examined. According to many parametric calculations, we confirmed validity of the 

present analysis and comparison with sloshing model. In addition, the effects of finite 

deformations of the membrane, i.e., material and geometrical nonlinearities in the 

membrane and the liquid, are taken into consideration. Furthermore, the influences of tank 

depth were examined. The effects of finite deformation of the membrane, i.e., material and 

geometrical nonlinearities of the membrane and liquid were considered. Last, the 

implementation of rectangular tank containing liquid with membrane-covered upper and 

lower surfaces is taken into consideration. 

Keywords: Rubberlike membrane, Liquid—structure interaction, Arbitrary Lagrangian— 

Eulerian, Vibration
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 CHAP'1 ER ONE INTRODUCTION & LI'I ERATURE REVIEW

CHAPTER 1 

            INTRODUCTION 

1.1 Research background and literature review 

      On the ground, sloshing means any motion of a free liquid surface inside a 

container. The dynamics of a liquid sloshing is physical phenomenon that is attractive for 

research. Stability and structural integrity of externally excited filled liquid storage tanks, 

moving containers, and the many associated applications have been the focus of a wide 

range of technologies and engineering. The literature reported a variety of analytical and 

numerical techniques for formulating slosh models for different practical geometries such 

as large-capacity liquid containers, propellant storage tanks or containers in airplanes, 

missiles, space vehicles, satellites, or space stations [1]. 

                                       In the aerospace industry, an overview of the relevant physics and modeling 

techniques for sloshing liquids in space was given by Vreeburg and Veldman [2]. Sloshing 

experiments have been designed to provide more information on these issues [3-4]. Most 

of the reports, however, were concerned with rigid tanks. For example, Faltinsen et al. [5] 

derived a linear analytical solution for a liquid sloshing in a horizontally excited 2-D 

rectangular tank, which has been widely used in the validation of numerical models. It is 

shown that the theory is not valid when the water depth (h) becomes small relative to the 

tank width (1). This is due to secondary parametric resonance. It is then necessary to 

include nonlinearly interacting modes having the same order of magnitude. This is 

demonstrated for a tank with h/l =0.173. They observed fluctuations of the excitation 

frequency in an initial period up to approximately 10 s. This effect was important to 

include in the theoretical model. There is good agreement with experimental free surface 

elevation when h/l >0.28. 
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 CHAP'1 ER ONE INTRODUCTION & LI'I ERATURE REVIEW

      Faltinsen and Timokha [6] developed a multimodal approach to describe the 

nonlinear sloshing in a rectangular tank with a finite water depth. Since the difference 

between natural frequencies decreases with decreasing liquid depth, this is more likely to 

occur at low liquid depths. This is a reason why the single dominant mode theories are 

invalid for small liquid depth. In addition, if the excitation amplitude increases, the liquid 

response becomes large in an increased frequency domain around the primary natural 

frequency. The method has been validated by comparing with model tests. Adaptive 

procedures have been established for all excitation periods as long as the mean liquid 

depth is larger than 0.24 times the tank width. When h/l <0.24and depth is not shallow, 

good agreement with experiments has been achieved for isolated excitation periods. 

      In the case of large deformations, sloshing of the free surface has a very strong 

effect on performance and stability of structures. The liquid pressure and motion generated 

by sloshing when the external excitation frequency is close to the natural frequency may 

lead to structural instability and damage. The typical approach to solving this serious 

problem is to covering the free surface with a flexible structural member, such as a 

membrane or an elastic plate [7]. In connection with these issues, analysis of liquid-filled 

rigid or flexible storage containers has been of great interest to structural engineers in 

recent years [8-10]. Celebi and Akyildiz [11]  described a liquid sloshing in 

two-dimensional tanks using the finite difference method. It is noted that the structural 

flexibility and free surface sloshing effects were not properly addressed in the previous 

studies. In modern technology, structures have trended toward being designed thinner and 

lighter because of high flexibility of these structures. Moreover, researchers often find 

strong interactions of propellants with the elastic structure in the control system. For 

instance, the interaction of a rubberlike membrane and liquid could occur in the rubber bag 

of the solid container used for the three axis control of a satellite [12]. 
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      Liquid propellant is confined within a flexible bladder that is itself contained in a 

rigid tank, with the role of the bladder being to facilitate discharge of propellant during 

thrusting and to constrain movement of the propellant from moving, as shown in Fig. 1.1

r

                       Figure 1.1. Flexible bladder tank. 

 Kawakami [12]  considered a model of a cylindrical tank containing liquid whose 

surface is covered by a rubberlike membrane and investigated the effects of finite 

deformations of the membrane using linear analysis and nonlinear finite element analysis. 

However, this study neglected the motion of the membrane-liquid boundary resulting from 

the large deformation of the liquid region. 

      Bauer [13] studied the resonant frequencies of an incompressible and non-viscous 

liquid in a rigid cylindrical container, in which the free liquid surface was covered by a 

membrane or elastic plate. The assumption of small deformations was adopted to allow use 
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of Fourier-Bessel series. This paper stated that a free liquid covered by a membrane or an 

elastic thin plate increased the resulting frequencies. After this study, Bauer and Chiba [14] 

extended the study in Ref. [13] to a structure filled with an incompressible viscous liquid, 

while Bauer and Komatsu [15, 16] studied the coupled hydroelastic frequencies of an 

inviscid liquid in a circular cylindrical container, in which the free liquid surface was 

partially covered by an elastic annular plate. 

      Bauer and Chiba [17, 18] studied the effects of the membrane tension parameter 

and the stiffness parameter on the amplitudes of both the natural frequency and the decay 

of oscillations of a membrane-covered viscous liquid in a rigid cylindrical container. The 

results showed that when a free liquid surface is completely covered by an elastic structure, 

the natural frequencies of the liquid—structure system are increased owing to the tension or 

stiffness of the membrane. 

Bohun and Trotsenko [19] developed an analytic modal solution for coupled free 

hydroelastic oscillations of liquid in an upright circular cylindrical container, with the 

unperturbed free surface of the liquid being covered by an elastic membrane or plate. 

Gavrilyuk et al. [20] studied a circular membrane clamped to the edge of a rigid 

upright circular cylindrical tank filled with an incompressible liquid. This paper examined 

a linear problem that describes small relative coupled oscillations. The problem was 

defined to an operator differential equation completed with initial conditions, which imply 

initial variation and velocities of the stretched membrane. The Cauchy problem was 

reduced to a spectral boundary problem on linear natural modes (eigenfunctions). The 

numerical results demonstrated the efficiency of the proposed approximate method. The 

fast convergence to the solution is facilitated by a functional basis of a specific singular 

structure. Similar studies have also been performed for rectangular containers [21-23].

4
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Bauer [21] studied the interaction of an elastic bottom with the free surface and 

liquid in a rigid tank that has a free liquid covered by a membrane in a rectangular 

container. The results showed that the free liquid surface was completely covered by an 

elastic structure; also the natural frequencies of the liquid and structure system increased 

because of the tension or stiffness of the covering membrane. 

      Bauer [22] theoretically investigated the same issue and discussed the influences 

of the system parameters on the coupled natural frequencies. He mentioned that a free 

liquid surface was covered by a membrane in a rectangular container under large 

deformation. The liquid reduced the influence on the system, while the membrane 

increased the influence on the system. Specifically, the vibration was dampened due to the 

increasing membrane tension. 

      Ikeda and Nakagawa [24] and Ikeda et al. [25] considered the nonlinear 

interaction of a liquid sloshing in rectangular and cylindrical tanks with an elastic structure 

in which the motion was orthogonal to the tank vertical walls. For a vertical sinusoidal 

excitation of an elastic structure carrying a rigid rectangular tank, Ikeda [26] determined 

the responses of the coupled systems when the structure natural frequency was 

approximately twice the liquid sloshing frequency. However, hydrodynamic systems, in 

which the free liquid surface was only partially covered with an elastic membrane, were 

evaluated. In most cases, the liquid is assumed to be inviscid and incompressible, while the 

motion was irrotational. 

      The transient response of liquid storage tanks due to external excitation can be 

strongly influenced by the interaction between the flexible containment structure and the 

contained liquid. Due to this fact, the amplitude of the sloshing depends on the nature, 

amplitude and frequency of the tank motion, liquid-fill depth, liquid properties, and tank 

geometry [27]. 
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      Many previous researches informed that the liquid depth was an important 

parameter because of nonlinearity of the resonant waves, and the liquid depth related to the 

tank base dimension [5-6, 28-30]. However, almost studies were interested in sloshing 

model, while interaction problem was not concerned. 

      In the systems described above, the elastic structures are on top of the liquid. In 

the opposite case, Chiba [31] presented theoretical and experimental studies on the 

axisymmetric free vibration of an elastic bottom plate in a liquid-containing cylindrical 

tank resulting from the in-plane forces in the plate due to static liquid pressure. 

      Bauer and Chiba [32] examined the free surface tension effect on the interaction 

of a viscous liquid in a rigid circular cylindrical tank with a flexible membrane bottom. 

Chiba et al. [33] presented a linear free hydroelastic vibration analysis of an inviscid liquid 

with a free surface contained in a rigid cylindrical tank with a flexible membrane bottom. 

They considered small-amplitude free vibrations of the liquid and the membrane, 

neglecting static deformations of the bottom membrane. Similar behavior has also been 

investigated for rectangular containers [34, 35]. In the case of a liquid-filled rectangular 

container with a sagging bottom membrane, Daneshmand and Ghavanloo [35] investigated 

the influence of pressure head, membrane length and weight, and distance between the two 

rigid walls on the natural frequency of interaction of the liquid and membrane. 

      The studies described above have all considered the systems as two-dimensional 

and with oscillations confined to one direction. Realistic situations, however, involve 

motion in three dimensions and the sloshing phenomenon becomes more complicate. For 

example, Zhang etal. [36] analyzed second-order resonance in a three-dimensional tank 

using potential theory and perturbation techniques. Such resonance can occur when the 

sum or difference frequency of one of the excitation frequencies and one of the natural 

frequencies is equal to another natural frequency. 
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      Hasheminejad and Tafani [37] presented a three-dimensional analysis for an 

elliptical cylindrical tank with an elastic bottom based on linear potential theory and an 

eigenfunction expansion in elliptic coordinates. They examined the effects of liquid level, 

bottom plate elasticity, and cross-sectional aspect ratio on sloshing frequencies and 

hydrodynamic pressure modes. They also gave a graphical presentation of selected 

hydrodynamic and structural deformation mode shapes. Most research in this area has 

concentrated on calculating the natural frequencies of flexible storage containers and has 

considered just small deformations of flexible cover or bottom plates in two dimensions. 

However, there is a need for studies in three dimensions of liquid-filled tanks with one or 

two membrane-covered surfaces, one approach to which is the use of a three-dimensional 

(3D) finite element method (FEM). 

      Moreover, there are two major problems that arise in a computational approach to 

sloshing: the moving boundary conditions at the liquid—tank interface and excessive 

distortion of liquid elements, which may cause numerical instability or even computational 

incompleteness [38]. To include nonlinearity and avoid complex boundary conditions of 

moving walls, a moving coordinate system known as the ALE (Arbitrary Lagrangian 

Eulerian) method has been used [39]. 

      The ALE method allows arbitrary motion of the moving boundary of the 

interaction of a rubberlike membrane and liquid with respect to their frame of reference by 

taking the convection of these points as described in [40-43]. Especially for 2D analysis 

where the remeshing of the liquid domain can be easily treated with the ALE description, 

numerical results were in good agreement with experimental results, see [44]. Currently, 

the mesh distortion and mesh adaptation problem can be resolved, to a large extent, by 

employing the ALE method with the help of a suitable remeshing and smoothing algorithm 

[45]. Referring to the papers by Soulaimani and Saad [46] and Cho and Lee [47], the 
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boundary tracking in both Lagrangian and ALE approaches was straightforward because 

the liquid mesh moved exactly with the liquid particles.

1.2 Aims of dissertation 

      The aim of this paper is to analyze the nonlinear sloshing-like behavior that 

occurs in containers where liquid is confined by a flexible membrane, such as bladder 

tanks. 

      The two-dimensional and three-dimensional interaction of a rubberlike membrane 

and liquid problem in a rectangular tank subject to vibration is investigated using the 

arbitrary Lagrangian—Eulerian finite element method (ALE-FEM). According to many 

parametric calculations, we confirmed validity of the present analysis and comparison with 

sloshing model. In addition, the effects of finite deformations of the membrane, i.e., 

material and geometrical nonlinearities in the membrane and the liquid, are taken into 

consideration. 

      Furthermore, the influences of a large excitation, membrane tension, and tank 

depth were examined. The effects of finite deformation of the membrane, i.e., material and 

geometrical nonlinearities of the membrane and liquid were considered. Last, In addition, 

the implementation of rectangular tank containing liquid with membrane-covered upper 

and lower surfaces is taken into consideration.
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1.3 Layout of dissertation 

This thesis is divided into five chapters as follows: 

      Chapter 1 presents the background and overview of this thesis. Literature studies 

on the sloshing and liquid-structure interaction are given. The published works reviewed in 

the study show that membrane—liquid interactions occur in many areas of engineering and 

it is important to understand their properties. Most research in this area has concentrated 

on calculating the natural frequencies of flexible storage containers and has considered just 

small deformations of flexible cover or bottom. To overcome the difficulties caused by the 

presence of a moving boundary due to large deformations, an arbitrary Lagrangian— 

Eulerian (ALE) description is used. However, there is a need for studies in large 

deformation area with more complex behavior of nonlinearity material as rubberlike 

membrane. 

      Chapter 2 presents the analytical model and the assumptions made regarding the 

conditions of the problem. The constitutive equation of the rubberlike membrane, which 

can be defined in terms of a strain energy function as a hyperelastic material. The 

corresponding equations for the structural and liquid domains are also given. The 

variational formulation of the liquid—structure interaction problem is presented. The 

ALE-FEM based on the Nitikitpaiboon—Bathe method is explained and applied. The mesh 

updating techniques required for the ALE method at each time step as a result of the large 

liquid deformations are then described. The Newmark-13 method is applied to deal with the 

time-derivative term in the dominant equation. Finally in this section, the weak form of the 

dominant equation is discretized using the FEM, the Newton—Raphson method is used to 

solve the nonlinear equation, and the tangent stiffness matrix is derived, with a 

convergence test.

9



 CHAP'1 ER ONE INTRODUCTION & LI'I ERATURE REVIEW

      Chapter 3 presents numerical evaluations and a discussion of the two-dimensional 

interaction of a rubberlike membrane and liquid problem in a rectangular tank under 

horizontal vibration was examined. The influence of a large excitation and membrane 

tension were examined. The effects of finite deformation of the membrane, i.e., material 

and geometrical nonlinearities of the membrane and liquid were considered. The numerical 

evaluations were performed and the time historical response, liquid pressure, and 

membrane and liquid displacements were presented. The results present the importance of 

the nonlinearity arising from the membrane itself. Nevertheless, the nonlinearity of a liquid 

still plays an important role in larger amplitude oscillations. 

      Chapter 4 presents numerical evaluations and a discussion of the 

three-dimensional interaction of a rubberlike membrane and liquid problem in a 

rectangular tank under horizontal vibration was examined. A rectangular tank in which the 

upper liquid surface is covered by a membrane is analyzed and the results are compared 

with those of a sloshing model. Some nonlinear characteristics are obtained through 

parametric calculations and the force equilibrium in the liquid—structure interaction is 

shown to confirm the validity of the analysis. Effects of tank depth influencing on natural 

frequency, time history response and displacement of membrane were discussed. 

Successfully, the results confirmed that the nonlinearity of membrane and liquid was 

important in the larger amplitude excitation causing by low tank depth. 

      Chapter 5 discusses the implementation and results of rectangular tank containing 

liquid with membrane-covered upper and lower surfaces. Some nonlinear characteristics 

are obtained. Finally, the membrane and liquid nonlinear behavior, especially under large 

excitation, are discussed. 

      Chapter 6, the dissertation concludes with a summary of the achievements of the 

present work. Recommendations for future research are also included in the chapter. 
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CHAPTER 2 

          RESEARCH METHOD 

2.1 Overview 

      The analytical model and the assumptions made regarding the conditions of the 

problem are presented in section 2.2. Section 2.3 presents the constitutive equation of the 

rubberlike membrane, which can be defined in terms of a strain energy function as a 

hyperelastic material [48]. The corresponding equations for the structural and liquid 

domains are also given. Finally in this section, the variational formulation of the liquid— 

structure interaction problem is presented. In Section 2.6, the ALE-FEM based on the 

Nitikitpaiboon—Bathe method [42] is explained and applied to the equations from Section 

2.3. The mesh updating techniques required for the ALE method at each time step as a 

result of the large liquid deformations [49] are then described. The Newmark-13 method is 

applied to deal with the time-derivative term in the dominant equation. Finally in this 

section, the weak form of the dominant equation is discretized using the FEM, the 

Newton—Raphson method is used to solve the nonlinear equation, and the tangent stiffness 

matrix is derived, with a convergence test. 

2.2 Analytical model 

      In a two-dimensional model, the rubberlike membrane and liquid interaction 

model, a rectangular tank of infinite width of 0.8 m was filled with a liquid to a height 0.3 

m and the upper surface was covered by a membrane, as shown in Fig. 2.1.

11
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Rubber-like iiieI1 hr<<ne 

( thickness 0.00 1 in)  Sinlpl> Nupport 

o ^

(1.3 iii

O.8 nn- 

Ilori/oiltal excitation 

            Figure 2.1. 2-D tank which upper surface is covered by membrane. 

      The tank was assumed to be sufficiently long in the perpendicular direction to the 

sheet so that a two-dimensional analysis and plane strain domain were reasonable 

assumptions. The tank was rigid compared to the rubberlike membrane. The rubberlike 

membrane was thin enough that the assumption of plane stress could be assumed. The 

bending stiffness and the friction with the liquid were so small that they could be 

disregarded. The membrane was simply supported at both edges of the tank, and also was 

assumed to have uniform and constant tension everywhere in advance. The liquid was 

assumed to be a potential flow that was incompressible, inviscid, and irrotational. The 

liquid had sufficient heat capacity, and the temperature change could be disregarded. 

      In a three-dimensional model, the first model of the interaction between 

rubberlike membranes and liquid, a rectangular tank of infinite height, width a, and length 

b is filled with liquid to a depth h, and the upper surfaces of the liquid are covered by 

membranes as Fig. 2.2. The model is subjected to vibration in the horizontal direction. The 

tank is rigid compared with the membranes, and the latter are sufficiently thin that the 

assumption of plane stress can be made. The bending stiffness and the friction with the 
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liquid are so small that they can be neglected. The membranes are simply supported at 

both edges and are subjected to uniform and constant tension from the start. The liquid is 

assumed to be in potential flow that is incompressible, inviscid, and irrotational. The liquid 

has sufficient heat capacity that its temperature can be taken as constant.

h

z
 Membrane  (thickness, t) 

               Fluid filled tank

      

I bHorizontal acceleration 

        '\' 
Gravity acceleration 

            Figure 2.2. 3-D tank which upper surface is covered by membrane. 

      In our second model, a rectangular tank contains a liquid whose upper and lower 

surface is covered by a membrane (Fig. 2.3). In this case, the model is vibrated vertically. 

In the model shown in Fig. 2.2, the effects of gravity are taken into account. In contrast, in 

the second model (Fig. 2.3), for simplicity, gravity is ignored because in this case the 

initial conditions nonlinear and the inclusion of gravity would complicate the problem to 

the extent that it would be difficult to determine the effects of large deformations.

13
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z 

 Y i 
Fluid filled tank

 L 

h Vertical acceleration

X

Membrane (thickness. t)

 b 

Figure 2.3. 3-D tank which upper and bottom surfaces is covered by membrane.

2.3 Hyperelastic rubberlike material 

      In this section, the constitutive equations for the incompressible rubberlike 

material are discussed. The neo-Hookean (Rivlin), Mooney—Rivlin, and Ogden theories are 

well-known approaches to the constructive equation of rubber. The neo-Hookean and 

Mooney—Rivlin theories, have limited applicability because the resulting constitutive 

equations are nonlinear in the high-strain domain. On the other hand, the strain energy 

function suggested by Ogden provides a generally applicable constitutive equation 

involving a strain energy function that is polynomial in the stretch rate in the principal 

direction and is in accord with the experimental results of Treloar up to a stretch rate of 

700%. Predictions of the Mooney model are good only for moderate deformation. Indeed, 

the Mooney predictions become too soft for large deformations, thus introducing important 

errors (60% of elongation on the right side of the path). On the contrary, predictions given 

by Ogden models still fit to the experimental data well even for large elongations. Finite 
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element analysis using Ogden constitutive equations provided results in good agreement 

with experimental data [50]. Three-term (modified) models are widely used. Besides the 

material constants mentioned above, Poisson ratio is also required. For most cases, 

satisfactory results can be obtained by assigning Poisson's ratio from 0.49 to 0.499. The 

Ogden model is used here for the constitutive equation of the rubberlike material. The 

Ogden strain energy function W is given in terms of the stretch rate Aa in the principal 

direction (a = 1, 2, 3) as follows: 

                 W p.1, A2, 2,3) =l ir[it, ar + A2 ar + A3 ar — 3].                                           (1) 
ar 

r 

Here /1r and ar are material constants determined from experimental data. In this paper, 

the values from Table 2.1 are used. These parameters are commonly used in other 

numerical analyses. 

                Table 2.1 Parameter of Ogden strain energy function 

r aryr (kg/m2 ) 

              1 1.362994.7 

            2 5.0126.7 

                3 -2.0-1001.3

Generally, the second Piola-Kirchhoff (2PK) stress in the principal direction, Sa, 

is derived by partially differentiating the strain energy function W with respect to the 

corresponding Green-Lagrange strain, Ea. The relation between Ea and Aa is 

(Aa)2 = 1 + 2Ea,(2) 

         a
=A-1a(3) 
                    aEaaA.a 

and so the 2PK stress in the principal direction is found to be 

             Sa=aW= .a1aW= A-2µr(Aa)ar + 2a2p. (4)             aE
aaAa 

r 
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      Lagrange's method of undetermined multipliers gives the following result, 

because the stress perpendicular to the membrane surface is zero (S3 = 0) owing to the 

assumption of plane stress: 

             P = 127(/13)ar = — lir()1A2)-ar•(5) 
                                     r 3 

      When Eq. (5) is substituted into Eq. (4), the 2PK stress becomes 

Sa = Aa 2 Iur [Aa ar — ()122)].(6) 

Thus, the 2PK stress depends on the initial shape. In this, it is different from the Cauchy 

stress, which depends on the current shape. Owing to the assumption of incompressibility, 

the relationship between the 2PK stress in the principal direction and the corresponding 

Cauchy stress 6a is as follows: 

                           1 
         Sa=26a•(7) 

                                               a 2.4 Strain on a thin membrane 

2.4.1 Green—Lagrange strain component 

      Owing to the assumption of plane stress, the Green—Lagrange strain matrix E of 

the membrane can be represented as follows in a rectangular coordinate system:

                            1 
                       Ex —2 

E= 1 

2 Exy Ey 

          au 1 f(au)2 av 2 
            Ex a

x + 2 ax + ax + 

                av 1 au 2 (aV)2 
           Ey a

y + 2 tUy)+ 
                _au avau au Dv               Exya

y+ax+ UXay+ax 

Here E 0 and E 0 are the initial strains in the x ar 

the displacement vector of the membrane. 
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! avaw 

+(Tx,+ ax+ Exo, 
: ava 

+a
y++ Eyo, 

 au au av av aw aw 

ax ay+ax ay+ax ay)' 
in the x and y directions and

      (8) 

      (9) 

      (10) 

      (11) 

u = (u, v, w) is
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2.4.2 Determination of the principal direction 

      The principal strain Ea is required in order to calculate the strain energy of the 

membrane. The principal direction of the membrane, which varies with time and location, 

is determined as follows. The principle direction is rotated by an angle 0 from the z axis, 

as shown in Fig. 2.4, and can be represented as follows, using the strain components from 

Eq. (8) [51]: 

             8 =~2E
x — Ey.arctan---------Exy(12) 

      The Green—Lagrange strain matrix in the principal direction, E, is then obtained 

as follows: 

             E = TETT =E1°,(13) 
                              0 E2 

               [fcos 0 sin 01l()         T=(14) 
0 cos 91 

V

x

Figure 2.4. x-y axis system and principle direction.
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2.5 Variational principle for the liquid—structure interaction problem 

      In this subsection, the dominant equation is derived from a functional formulation 

of the liquid—structure interaction problem based on Hamilton's principle [52]. 

2.5.1 Structural domain 

      A functional on the structural domain,17solid'is derived by subtracting the 

kinetic energy of the membrane and the gravitational potential energy due to acceleration 

from the strain energy of the membrane: 

       ft2 1            Hsolid=W-2prii•u—pma•ysd.(lsdt, (15)          1[Ls 
where .1ls is the structural domain, pm is the density of the membrane, u is the 

displacement vector, ys = xs + u is the position vector of the current shape, an overdot 

" • " indicates the time derivative . a is the acceleration vector of the external force, and, 

with gravity taken into account and with acceleration in the x direction as shown in Fig. 

2.2, it is given by 

Ax 
a = 0 .(16) 

—9 

      While in the absence of gravity and with acceleration in the z direction as shown 

in Fig. 2.3, is given by 

0 
a= 0 ,(17) 

AZ 

Here A, and A, are the accelerations due to the imposed vibration and g is the 

acceleration due to gravity. 

2.5.2 Liquid domain 

      A functional on the liquid domain, —liquid, is derived by subtracting the kinetic 

energy of the liquid from its potential energy under the assumption that the liquid is 

incompressible and inviscid. 
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                ftt2              //liquid=[pia • Yi ——2 • v}d!21dt.(18)             i[fa/ 
Here t21 is the liquid domain, yi is the position vector of the current shape, PI is the 

density of the liquid, and v is the liquid velocity vector. The equation of continuity and 

the dynamic boundary condition on the interaction boundary are taken into account using 

Lagrange's method of undetermined multipliers, and Eq. (18) becomes 

                 t2 f.ai {pia •Yi —2Piv•v—A1V • (piv)}dfli     //liquid = ftsdt. (19)                         + f
ris/12(—u • ns + v • ni)drs 

Here rs is the liquid—structure boundary, Ai is the Lagrange undetermined multiplier, 

and ns and n1 are the normal vectors on the structure and liquid boundaries, respectively. 

Variation of the functional with respect to v using partial integration and Gauss's theorem, 

taking account of the incompressibility of the liquid, gives the following: 

—p1v + piV.a1 = 0 in 121,                                            (20) 
                   2-2 = '1Pion [s. 

Taking Ai from Eq. (20) as the velocity potential and using it in Eq. (19) gives 

                 t2 fnl [pia •yi —2Piv•v—(1f9'• (Piv)}df2i     //liquid = ftidt.(21) + f P
1g—u • ns + v • ni)dris 

      The following equation results from the equality between the increments in 

volume per unit time in the structure—liquid interaction domain and the liquid domain: 

                  isu•nsdris= f~id121,(22) 

where the prime " ' " indicates the time derivative. Applying Gauss's theorem to the 

boundary integral term of Eq. (21) and taking Eq. (22) into account gives the following 

equation: 

                           1 
                  t2[pia •Yi-2Piv•v—Piq502dntI 

                             nl 
         //liquid =dt.(23)                ft1—Pi4d12 + Pi0 •(~0(b)df2i 

                                n~     Lr2~ 
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      Using the formula for the derivative of a product gives the following expression: 

                     ftt2               illiquid = ml df2ldt,(24) 
                                    1f21 

where 

1 
gi E2P1V 'V +P1O'+ Pia •Yl•(25) 

Here 0 has the physical meaning of the liquid velocity potential and the " ' " indicates 

the time derivative. 

2.5.3 Liquid—structure interaction problem 

      The functional for the liquid—structure interaction problem is as the sum of the 

expressions in Eq. (24) and Eq. (15): 

                          1 
                   t2l                          11/17 —Pma•yssI           liquid+solid =fn_mü 

       1I dt,26              t1 [+j 1piV•V+pi'+pia•yldfi1nl 2J 
      The first-variation equation is zero owing to the stationarity of the functional 

(note that the increment in the liquid domain, d.2i, varies because the boundary of the 

liquid domain changes as the membrane deforms): 

                   r [6TS - p m6uTa + pm6uTii}d.12s 1 
                                  ns 

            ftt2       6Hliquid+solid = +fPIOS/ •V 4dflf — dt = 0. (27) 
       ini 

 Pf : dfl + f 6uTmini drsi 
TlsTls 

Here E and S are the Green—Lagrange strain in the principal direction and the 2PK 

stress, respectively. This equation can be rewritten as follows:
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F 6uT (Anti — Pma — Vt)dfs 1 
ns 

                              t2 
                           —80P10 • V~dfll 

                                           nl 
    6Hliquid+solid =dt = 0.(28) 

                              t1 +6uT f (T • ns + Tllnl)drs 
rls 

                   [+64) f P1(—i1 • ns + V • nl) drs] ris 

Here T represents the surface forces on the structure and t the internal force imparting 

stress on the body. Because Su and 60 are arbitrary, Eq. (28) leads to the following 

dominant equations: 

Pmu — Pma — Vt = 0 in fs,(29) 

V • VO = 0in 121,(30) 

T • ns + rc1n1 = 0 on rs,(31) 

it • ns = V4 • nl on rs,(32) 

where T, ns, and n1 are the internal stress in the structure, the unit normal vector to the 

membrane surface, and the unit normal vector to the liquid boundary, respectively. 

Equations (29), (30), (31), and (32) are the equilibrium equation of the structural domain, 

the equation of continuity, the dynamic boundary condition representing equilibrium of 

forces, and the geometric boundary condition representing the kinematic condition on the 

structure—liquid boundary, respectively. 

2.6 Arbitrary Lagrangian—Eulerian (ALE) 

     A summary of the ALE method is given in this section and it applied to the 

dominant equation derived in Section 2.5 in accordance with the Nitikitpaiboon-Bathe 

method [42]. 
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2.6.1 Outline of ALE method 

      Lagrangian descriptions are mainly used in structural dynamics because they 

allow easy tracking of free surfaces and interfaces between different materials. However, 

they cannot follow large displacements of the computational domain without recourse to 

frequent remeshing operations. On the other hand, Eulerian descriptions are widely used in 

fluid dynamics. The computational mesh is fixed and the continuum moves with respect to 

the grid and the large displacements in the continuum motion can be handled-but often at 

the expense of accurate interface definition and flow resolution of flow. The ALE system 

combines these two descriptions. The mesh deforms, but it does not need to follow the 

motion of the material points.

1tit ellt conit tIiitk)ll

 D Mesh point 

• Nlaterial point 

Deformation

~(/ )Initial contmiration A = R, 

                       Figure 2.5. ALE coordinate system 

An outline of the ALE coordinate system is shown in Fig. 5. Rx is the initial 

position of the body, Ry is the current position, and x E Rx, y E Ry are the 

coordinates of the respective material points. The coordinate of the material point at the 

current position is a function of the initial position as follows: 
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y = y(x, t).(33) 

Here z E RZ is defined by the mesh. It is assumed that the initial positions of the body 

and mesh are the same and also match the boundary surface at the current position. The 

relationship between y and z is written as follows: 

             y =y(z, t).(34) 

      If some physical quantity f is expressed in the Eulerian coordinate system, it is 

written as follows as a function of the current coordinate y: 

f = f (Y, t)•(35) 

      In the case of a Lagrangian coordinate system, it is written as follows with 

reference to the initial coordinate x: 

f = f (y(x, t), t) = f (x, t).(36) 

It is also written as follows with reference to the mesh coordinate z: . 

f = f (Y(z, t), t) = f (z, t).(37) 

      In the ALE coordinate system, the physical quantity f is evaluated with 

reference to the mesh coordinate z. Next, the time derivatives are taken in each coordinate 

system and the relationships between them are given. In the Eulerian coordinate system, 

the time derivative is taken at a fixed point in space. This is called space—time 

differentiation and is written as follows: 

a 
f'atf (Y,t)Iyfixed•(38) 

      On the other hand, in the Lagrangian coordinate system, the time derivative is 

taken at a fixed material point. This is called material time differentiation and is written as 

follows: 

                                       a_ 
                 f_at f (x, 01 fixed•(39) 

      In the ALE coordinate system, the time derivative is taken at a fixed mesh point 

and is written as follows: 
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                                      a~ 
                    f*= —atf(Z,t)Iz fixed •(40) 

The velocity of a material point is vp = ay/at, and f is written as follows in 

the Eulerian coordinate system: 

                  f (y + VPAt1 t + At) Iy fixed — f (Y, t) Iy fixed     f 
At 

a 

                       at f (Y, t) I y fixed + Vf • VP 

=f'+vf•vP. (41) 

      When the material time derivative is represented in the Eulerian coordinate 

system in this way, a convection term v f • vp appears because it is not the same material 

point that is observed as time passes. Similarly, the velocity of the mesh is vin = ay/at, 

and f* is written as follows in the Eulerian coordinate system: 

f* =f'+vf •Vm•(42) 

If the motions of the mesh and the material point are the same (vm = VP), then 

the expression in Eq. (42) is equivalent to the material time derivative, while if the mesh is 

fixed in space (vm = 0), it is equivalent to the space—time derivative. The mesh 

coordinate y is defined by the mesh control rule and is normally different from both the 

Eulerian and Lagrangian coordinates. 

2.6.2 Dominant equation of the ALE method 

      Using Eq. (42), the Eulerian governing equation for the liquid from Section 3.3.3 

is replaced. We assume that the structure mesh agrees with the liquid mesh on its 

boundary. 

     Substituting Eq. (27) into Eqs. (29)—(32), the ALE governing equations for the 

structure and the current liquid domain are obtained as follows: 

V•VO=0 in 121(43) 

T• II, +ir'ini = 0 on rs,(44) 
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                       a                    - 
           vn =on Pis,(45) a
n 

t = 0 in f2s,(46) 

      Where 

           7'l =1PI(OP)2 +Plf+ Pia~— Plvm'a0(47) 
            2atz fixed Ply—At 

      The last term in Eq. (47) is the major change from the Eulerian formulation. Thus, 

the weak form of the above equation is 

           t2Ir 6e • sdls —fm'1SundrsI       LsrlsI                                    I dt = O.(48) 
      t1

P1S/vnmdrsI          LI+
tPiV60 • DOdf21 —rlsi 

For this equation to be applicable, the mesh displacement velocity ii must 

satisfy the following condition on the structure—liquid boundary: 

it•ns = ii •n1 on T1s.(49) 

      If the surface of the liquid is covered by the structure, Eq. (49) can be solved by 

using the ALE coordinate system in the liquid domain. Thus, if the shape functions of the 

structure and liquid on the structure—liquid boundary are the same, Eq. (49) is satisfied. If 

the ALE coordinates system is used for the weak form of the dominant equation (27) in the 

liquid domain and on the structure—liquid boundary, then, taking account of Eqs. (49) and 

(32), the following equation is found: 

                   Ift6ETS — Pm6uTa + pm6uTU}df2sl 
ns 

                 t2+P1V SO • Vdt2l 
                                        nl 

 6/1(50)                                         = 0,50)                    t1 —fP/11 Ix ' n164) drs 
                                         rls 

                   I_+fSUT?Tl * n1 drsi                                                 rls
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    1. alp              7(l*=2PiO(/)•0'+Pla•Yi+Pl (4*—u•aYl,(51) 
where yl = ii + it is defined in ALE coordinates. m * denotes the value in the ALE 

coordinate system of the space—time derivative of itl. 

2.6.3 Mesh updating 

      In this work, a Lagrangian coordinate system is used in the structural domain and 

an ALE coordinate system in the liquid domain. The mesh control rule in the liquid 

domain is defined for each analytical model. In the following, h denotes tank depth and 

31 = (2, 9, 2) denotes the initial coordinate in the liquid domain. The mesh displacement ii 

is linearly controlled such that it = u on the liquid—structure boundary and it = 0 at the 

bottom of the tank, as shown in Fig. 2.6.

It = u I.agranv,e Coordinate 

I

       114JiIiJTE2 
2I 

--------- 1 

     t—^ u-0 
X ---------------------------------- ALE Coordinate 

                          Figure 2.6. Mesh control rule. 

      For the rectangular tank containing a liquid whose upper surface is covered by a 

membrane as shown in Fig. 2.2, a Lagrangian coordinate system is used in the liquid— 

structure system., Close to the bottom of the tank, this become close to an Eulerian 

coordinate system, and thus it is controlled such that u = (2 /h) u in the liquid domain. 
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Therefore, the following equation is included in the finite element analysis: 

                                    z 

                  pi II — —h • 6ud.2l = 0.(52) 
                            121 

      In the rectangular tank containing a liquid whose upper and lower surfaces are 

covered by membranes shown in Fig. 2.3, uu denotes the upper membrane displacement 

and u1 the lower membrane displacement. u is linearly controlled such that 11 = uu 

on the upper structure—liquid boundary and II = u1 on the lower structure—liquid 

boundary. This can be expressed as follows: 

fz pi it — ul + —h — u1) • 61.1d12l = 0. (53) 
nl 

      Although this is a simple control rule, it is sufficient to prevent distortion of the 

mesh, because for structural deformations in these models, the z direction is dominant. 

2.7 Dealing with the time-derivative term (Newmark-1 method) 

The Newmark-J3 method, which is an implicit method, is applied to deal with the 

time-derivative term in the dominant equation. According to this method, when the 

displacement, velocity, and acceleration are known at time t, the displacement and velocity 

at time t + At are written as follows: 

                                       2 
          t+Atu = tu + At tit +(~t){(1 — 2,6N) tii + 2(3N t+Atii}, (54) 

2 t+otu = tu + it{(1 — yN) tii + yN t+otii}.(55) 

Here 13N and yN are the parameters of the Newmark-J3 method and are taken to have the 

values 13N = 0.25 and yN = 0.5 in this work. Equations (54) and (55) can be rewritten 

as follows: 

          t+otii =1 —1tii—1 tu +
31----------2 (t+LXtu —tu)              2NNRNNAtRFNCat) 

              =t+otu-- 1 t+otu,(56) 
                                ANk. )2 
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        t+otu =1—YNAt tii +1 _YNtit + YN(t+otu _ tu))213N16'NleN At 
= t+otu +  YN  t+otu (57) 

                                 i NAt 

When t+otu and t+Atli are considered together at time t, they are called a 

predictor. The weak form of the dominant equation is written as follows at the time 

t + At by using Eqs. (56) and (57): 

              F SETS — Pm6uTa 1 

                       ns+pmSuTii+ 12ud.~s                                l~
N (O t) 

                 itt2 +PIpS0 • vdfll —     6Hliquid+solid =12idt = 0,(58)             1(ii 
                         Pi+ YN iin160 drs 

                     r1sf3NAt 

                   I_ +f6uTitl*,nl drsi ris 

                        (*+YN~) 
   , 1fNit           7(1* = 2 MV4 ' Vcb+ Pia • Yi + Pi ~YN ..a~,(59)                                l—                           (iiu

aY1J 

            ii =1 —1RRtti —1 tu—RR1---------2tu,(60)                    2
,6N~NOt F'NCat) 

                        YNtii —YN ti(61)             u=1—
2NAt tu+1--u~tit         ~NiqNi6 

47 = 1 — YN At t4)** + 1 — Li)to* _ YN t(/).(62) ) Z f3N iqN flN A t 

Here u, u, and .1)* comprise the predictor, and rcl *' denotes the value in the ALE 

coordinate system of the result of applying the Newmark-I3 method to rc1*.

2.8 Application to FEM 

      The weak form of the dominant equation (50) and the mesh control rules in the 

liquid domain given by Eqs. (52) and (53) are discretized using the FEM, which is applied 

to both the structural domain and the liquid domain. 
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2.8.1 FEM in the structural domain 

The displacement u and the initial coordinate xs in the structural domain are 

discretized as follow by using the eight nodal isoperimetric elements shown in Fig. 2.7: 

xs = HX,(63) 

          u = HU,(64) 

where H is the shape function, and X = Xi and U = U1 are the nodal coordinate and 

nodal displacement at node i. The shape function is represented in a local coordinate 

system that is normalized as —1 <— <— 1, — 1 <— ri <— 1 to simplify the numerical 

integral:

H1 0 0 H2 0 0 
H = 0 H1 0 0 H2 0 

0 0 H1 0 0 H2 

H1 = 0.25 x (1— )(1—ri)(-1— —i), 

H2 =0.25x(1+ )(1—ri)(-1+ —ri), 

H3 = 0.25 x (1 + )(1 +77)(-1 + +ri), 

H4 = 0.25 x (1— )(1+ri)(-1— +ri), 

H5=0.50X(1—ri)(1— 2), 

H6 = 0.50 x (1 + 0(1 — n2), 

H7 = 0.50 x (1 + 70(1 — 2), 

H8 = 0.50 x (1 — 0(1 — n2), 

XT = [X1 Y1 Z1 X2 Y2 Z2 

UT = LU1 V1 W1U2 V2 W2

H8 

0 

0

X8 

U8

0 

H8 

0

Y8 

V8

0 

0 

H8 1

Z8 J, 

w8J.

(65)

(66) 

(67)
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Figure 2.7. 8 nodal isoperimetric element (the number indicate nodal number). 

2.8.2 FEM in the liquid domain 

The velocity potential(I)is discretized using the 20 nodal isoparametric elements shown 

in Fig. 2.8. The mesh displacement 11 and mesh initial coordinate f are discretized using 

the 16 nodal isoperimetric elements shown in Fig. 2.9. They are expressed as follows: 

0 = flip,(68) 

u=HU,(69) 

32 = ilk,(70) 

where h and 11 are the shape functions, and cp = cpi, 0 = U,, and X = Xl are the nodal 

velocity potential, nodal displacement, and nodal coordinate at node i. The shape 

functions are represented in a local coordinate system that is normalized as —1 < < 

1, —1<—il<-1, —1<—(<-1: 

h = [h1 h2 ••• h201,(71) 

h1=0.125x(1— )(1—n)(1-0(-2— —n-0, 

h2 = 0.25 x (1--2)(1—T1)(1-0, 

h3 = 0.125 x (1+ )(1—ri)(1-o(-2+ —n-0, 

h4=0.25x(1+ )(1-72)(1—a 
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h5 = 0.125 x (1+ )(1+0(1-')(-2+e+ri-0, 

h6 = 0.25 x (1 - e2)(1 +77)(1 — 0, 

h7 = 0.125 x (1- )(1+0(1-0(-2-e+ri-a 

h8 = 0.25 x (1 - e)(1 - n2)(1 - a 

h9 = 0.125 x (1-e)(1-71)(1+0(-2-e-7/+a 

h10 = 0.25 x (1-e2)(1-i7)(1+ '), 

h11 = 0.125 x (1+ )(1-0(1+')(-2+e-/7+0, 

h12 = 0.25 x (1+e)(1 -r72)(1+(), 

h13 = 0.125 x (1+ )(1+0(1+0(-2+e+ri+a 

h14 = 0.25 x (1 - e2)(1 + 0(1 + 0, 

h15 = 0.125 x (1- 0(1+ri)(1+0(-2-e+ri+a 

h16 = 0.25 x (1 - 0(1 - n2)(1 + 0, 

h17 =0.25x (1- )(1-rl)(1-(2), 

h18 = 0.25 x (1 + )(1 -11)(1 - (2), 

h19 = 0.25 x (1 + e)(1 + 0(1 - (2), 

h20 = 0.25 x (1 - e)(1 + n)(1 — (2), 

[111 0 0 112 0 0 ••• 1716 H = 0 H1 0 0 112 0 ••• 0 

0 0 R1 0 0 H2 ••• 0 

H1 = 0.125 x (1-0(1-i1)(1-0(-1— —01), 

F12 = 0.125 x (1+0(1-i)(1-0(-1+e-/7), 

H3 = 0.125 x (1+0(1+i)(1-0(-1+ +ii), 

H4=0.125x(1-e)(1+i)(1-0(-1— +ii), 

H5 = 0.5 x (1 — 2)(1 — T1) (1 — 0, 

176=0.5x(1+ )(1-772)(1-0, 

H7 =0.5x(1— 2)(1+ri)(1-0, 
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R8 =0.5X(1- )(1-r12)(1-'), 

= 0.125 x (1 — 0(1 — (1 + 0(-1 — —77),), 

H10 = 0.125 x (1 + 0(1 —17)(1 + 0(-1 + —17), 

H11 = 0.125 x (1 + )(1 + 17)(1 +')(-1 + + ii), 

H12=0.125x(1— )(1+17)(1+0(-1— +n), 

H13 =0.5x(1— -2)(1—i)(1+~), 

R14=0.5x(1— 2)(1—i1)(1+~), 

H15 =0.5x(1— 2)(1 + ri)(1 + 0, 

F116=0.5x(1— )(1—T12)(1+~), 

(PT = L(P1 (P2 ... C°20], 

1/T = [U1 t71 W1 U2 92 17172 ... 016 916 W16]) 

                                             XT = I21 Y1 21 22 Y2 Z2 ... 216 '16 216J. 

 The velocity potential is discretized as follows: 

v=Oq5=Dcp, 

[ ah1ah2ah20  1 I
a(x+u) a(x+u)a(x+u)I 

I  ah1 ah2ah20I 
         D =a(Y

+o) a(y+3)...a(Y+3)I'  II 

        

I  ah1 ah2ah20  
           Lau +W)a(2+W)"'a(2+W) 

a  a  ag  a  an  a  a~  
     a(5e+u)=g a(x+u)+ana(z+ ft) +a~a(z+u)' 

a  a  a  a  an  a  a~  
a(y+u)=a a of- +u)+ala(y+u) +~)' 

      a  a a a an  a  aN  
     a(2+W)=aa(Z+W)+a~a(Z+W)+a~a(Z+~

(73) 

(74) 

(75)

(76)

(77)

(78) 

(79) 

(80)
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Figure 2.8. 20 nodal isoperimetric element (the number indicate nodal number). 
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Figure 2.9. 16 nodal isoperimetric element (the number indicate nodal number).
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2.8.3 Discretization of the dominant equation 

Because Su and 60 are arbitrary in the weak form of the dominant equation (58), 

the following equations are obtained: 

             [SETS — pm6UTa + pm6uT(1.i~N (~t)                           +---------12u))df2s 
                                           (81)          L +iSuTrc f*,n f dIfs = 0, 

rfs 

         fflfpfVS~• V(/)d.~f — frfsp f (ii +~Notu) • n fSO di!,s = 0.(82) 

     The FEM is applied to Eqs. (81) and (82) and the mesh control rule Eq. (52) or Eq. 

(53). They are then discretized, and the following equations are derived: 

   fSETS — pmSuTa + pmSuT(CI~N (                         +--------1Ot)2 u))d.~ls +SuT rc f n f dIfs f2sr fs 

            11BT—PmHTa        = SUTf-1 -1{+pmHTH6 + 1 Utm detUs]d4di1 
                            igN(642 

      1 1(pTDTD(p + aH(X + U)  +SUTipfHTl+h(;-,---;-v+YN—H6+YNUDnf detUr]dgd]     —1 —1
igNOt4'13NOt~ 

= SUTGo + 6UTG3 = 0,(83) 

         fpfV60•V 5d.11f—pfUU+RYN-----un60dif     12frfs                                            F'NOt 

                  1 1J-1             = ScpTJp fDTDcp det[I.]ddr7d~          1 J1 J1 
                1 1 

         +ScpTp fhT-HU -YNfill)n f det[Jr] ddr/ 
         —1 —113NOt 

= 8cpTG1 + 6cpTG4 = 0,(84) 

                                     z 

                        pu—hu•Sud.1lf 
                                   .af
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       1= 60TpfHTHU —HUdetU f]-1 IL -1 
= ScpTG2 = 0, 

z 
          pf u— ul+(uu—ul) •6udflf 

of 

     1 1 1 = 60Tp fHT (110 — Hu—Uldet[Jf] d dr~d(   f 1 -1 -1h 
= ScpTG2 = 0, 

[ax ay] 

          det[] =detIaa~              1S~ax ay I, 

Lan an] 

rack' + Ii) a(y + 3) a(2 + 0)1 I 
a a a I 

'D(x+Ii) a(y+ 3) a(2+ 0)I 
  det[Jf] = det l l,      a

nanI 
           a(x+Ii) a(y+ 3) a(2+0)  

a( a( a( 

             Fo(x+u)a(y+i3)] 

      det=detIaa~,         [1r]la(x+u)a(y+13)1 

           L a~ a~ J 

            a(X+U)a(X+U)  
ayxax  

nf = I.

The relation SE = BSU

~V layuJ1x 
is explained in

ii - u~~ 
ax 

Appendix A. Here tin denotes the

(85)

(86)

(87)

(88)

(89)

(90)

membrane thickness. Gaussian integration is used to calculate the integrals and the integral 

point number is taken as 3 x 3 = 9 points in the structural domain and 3 x 3 x 3 = 27 

points in the liquid domain. The following equation is derived from the above expressions 

Go + G3 
G2 (or G'2) = t+°tG = 0,(91) 
G1 + G4 

where t+otG denotes the residual vector at time t + At. 
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2.9 Solution method for nonlinear equation 

      Equation (91) cannot be solved directly because it is a nonlinear simultaneous 

equation. Therefore, the Newton—Raphson method, which is an iterative solution method, 

is used in this analysis. 

2.9.1 Newton—Raphson method 

With t+Atd = [t+AtUT t+ot0T t+At(pT JT denoting the variable vector at time 

t + At, Eq. (91) can be written as follows: 

t+otG = G(t+otd) = P(t+otd) _ t+otf = 0. (92) 

Here P denotes the variable vector composed of t+otd and t+otf denotes the 

term that is independent of the variable (the external vector). The Newton—Raphson 

method gives a first-order approximation (Taylor expansion) of Eq. (92) and, with i 

denoting the iteration number, this can be written as follows: 

t+otGi+1 = G(t+otdi+i) = G(t+otdi) + Kist+otdi,(93) 
                          t+ot aG t+At aP 

            Ki ==-(94)  i()i, 
where Ki and 6 t+°tdi are the tangential stiffness matrix and the variable increment at 

iteration i . The following equation is derived from Eq. (93) at iteration i: 

Kist+otdi = _G(t+otdi).(95) 

      The approximate solution in the iterative process can be expressed as follows: 

t+otd = td + A td~t+otd
i + 6t+otdi = t+otdi+l, (96) 

where t+otd is the solution at time t + At and A td is the increment from solution td 

at time t. 

2.9.2 Tangential stiffness matrix 

In the following, gP, ... , g4 denote the elements of the residual vectors G0, ... , G4 

and i is the number of degrees of freedom (DOF). The elements of the tangential stiffness 

matrix are as follows: 
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                               a° 
           k°=g~(97) 

                               au; 

                               a1 
            kc. =9ti,(98) a

u; 

                               a1 
            k~~=9ti,(99) ac 

                               a2 

         ~_~~(100)                                au~ 

                               a3 
         k=g~(101) ac 

                                      _a3         sgl(102)
au.'102) 

a4 
kl =—.(103) a

u; 

      The following central difference is calculated in this analysis: 

        k•—gi(d+Lidi) —gi(d—M1)(104) ~20dj 

where a value of Ad] = 1.0 x 10-8 is assumed. 14 ... , k6can be taken as the elements 

of K0, ... , K6, respectively. The following equation can be derived from Eq. (95): 

K0 K5 K4 6U Go + G3 0 K3 0 5U = — 1 G2 1.(105) 
0 K1+K6 K2 6p G1+G4 

      The tangential stiffness vector is renewed every iteration, and the variable vector 

t+°td at the time t + L t is calculated from the variable vector td at time t by repeating 

the calculation. 

2.9.3 Convergence test 

      This iterative calculation converges when all the components of the residual 

vector t+°tG become zero. However, they cannot become exactly zero in a numerical 

calculation, so, in this analysis, convergence is assumed to occur when the norms of the 

variable increment St+°tdi and the residual vector t+°tG and the inner product of 

St+°tdi and t+°tGi become less than some given values:
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10-10

f< (u-tol) x f6t+Ltdi}T(6t+Ltdi}, 

ft+LxtG}Ttt+LtG1 < (r-tol) x [t+LtGi}Tft+LtGi}, 

[t+Ltd}Tft+LtG) < (e-tol) x [t+Ltd}T(t+LtG} 

Here values of (u-tol), (r-tol) and (e-tol) in the range 1.0 x 10-8 — 1.0 x 

are assumed.

(106) 

(107) 

(108)
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CHAPTER 3 

A TWO-DIMENSIONAL

3.1 Obj ectives 

      The two-dimensional of a rubberlike membrane and liquid problem in a 

rectangular tank subject to horizontal vibration is investigated using the arbitrary 

Lagrangian—Eulerian finite element method (ALE-FEM). In addition, the effects of finite 

deformations of the membrane, i.e., material and geometrical nonlinearities in the 

membrane and the liquid, are taken into consideration. Furthermore, the influences of a 

large excitation, and membrane tension were examined. The 2D numerical evaluations 

were performed and the time historical response, frequency response, liquid pressure, and 

membrane and liquid displacements were presented. Finally, the membrane and liquid 

nonlinear behavior, especially under low initial strain and large excitation, are discussed.

3.2 Numerical evaluation and discussion 

      In this section, the researchers focused on the membrane behavior in the vicinity 

of the natural frequency, and they presented some numerical results that are related to the 

discussion. The parameters of the numerical model were set up as follows. The width and 

depth of the container size were set to 0.8 m and 0.3 m, respectively, and the membrane 

thickness was 0.001 m. The liquid was assumed to be water with a density of 1,000 kg/m3. 

The excitation was restricted to a sinusoidal horizontal excitation, and then, it continued 

with an undamped free vibration. The amplitudes of excitation were fixed at constant 

values of 0.001 m/s2 and 0.01 m/s2 for small and large deformations, respectively. This 

membrane was subjected to uniform tension of 4.91, 9.60, and 16.92 kN/m in the direction 

horizontal and perpendicular to the sheet. This initial stress stated corresponds to the 
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bi-axial uniform strain of 2.0, 5.0, and 10%, respectively, under the plane strain condition 

and were applied to various frequencies. Two-node rod elements and eight-node 

rectangular elements were employed for the membrane deformation and liquid potential, 

respectively. The finite element mesh for the liquid potential consisted of 100 (10* 10) 

elements; coarser elements were employed near the bottom compared to the interface. The 

membrane was divided into 10 elements of constant length, as shown in Fig. 3.1. The time 

increment in the time integration scheme was 0.02 of one period of the driving acceleration. 

The influence of the rubberlike membrane is considered in the sloshing analysis. The tank 

size is the same in the sloshing model and the rubberlike membrane—liquid interaction 

model. For the interaction model, the resonant frequency at the maximum vertical 

displacement of five cycles is used as the vibration frequency. For the sloshing model, the 

one-degree mode natural frequency of the linear theory is used as the vibration frequency. 

The linear theory of sloshing is described in Appendix B.

:.1 
V

 v-_ Simply

            Fixed boundary 

Figure 3.1. Finite element model of analytical model.
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3.2.1 Time history response of the membrane 

      We investigated the time history response of a membrane 0.1 m from the left of 

tank. This position had the largest deformation of any position when the first vibration 

mode dominated. 

      The time history at this point is plotted in Fig. 3.2 and 3.3. The vertical left axis is 

the vertical displacement of the membrane and the vertical right axis is the excitation 

amplitude. The driving frequency is 0.95 Hz, which is the natural frequency of an initial 

strain of 2% and excitation amplitude of 0.001 m/s2 and 0.01 m/s2, as shown in the next 

section. Fig. 3.2 and 3.3 show the amplitude of displacement continues with a constant 

amplitude for approximately 55 sec. In Fig. 3.2, it is noticed that the amplitude of the 

upward displacement is symmetrical with the amplitude of the downward displacement. In 

contrast, in Fig. 3.3, the amplitude of upward displacement is approximately 1.25 times 

larger than the amplitude of the downward displacement. This phenomenon has been 

generally observed in studies of liquid sloshing and it is strongly affected by the 

nonlinearity of a liquid because of the large deformation.
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Figure 3.2. Time historical response of 0.001 m/s2.
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Figure 3.3. Time historical response of 0.01 m/s2.
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3.2.2 Frequency response 

In this part of the investigation, the excitation acceleration varied from 0.001 to 

0.01 m/s2 to examine the natural frequency. The maximum displacement after five cycles, 

which was normalized by the tank depth, is shown in Fig. 3.4. For the sloshing model, the 

first mode of the natural frequency is 0.9 Hz according to linear theory, and this decreases 

by only 0.3% when the deformation becomes large. This is a nonlinearity of the normal 

softening type. In the interaction model, the natural frequency is 1.0 Hz at an excitation of 

0.01 m/s2, which is 10% higher than in the sloshing model. Moreover, the natural 

frequency at an excitation of 0.01 m/s2 increases by 1.6% compared to 0.001 m/s2 that 

agree with the literatures [5, 6]. 

      On the other hand, Fig. 3.5 shows the initial strain variation with respect to the 

driving frequency. After five cycles, the oscillation still has approximately constant 

amplitude. It shows the comparison of the upward displacement of the membrane for 

initial strains of 2, 5, and 10% at an excitation of 0.01 m/s2. As a result of the displacement, 

the peaks of each initial strain are different. At a low initial strain of 2%, the resonance 

frequency is approximately 0.95 Hz; the resonance frequencies increase to 0.98 Hz and 

1.00 Hz when the initial strains are increased to 5 and 10%, respectively. The frequency 

increases by approximately 3% when initial strain increases one time. These results agree 

with the literature from Bauer [13, 23] based on Fourier-Bessel series theory that the 

natural frequency must increase when a free liquid surface was completely covered by a 

rubberlike membrane, and the magnitude depends on the stiffness of the rubberlike 

coverage. It can be confirmed that the move to a high-frequency range of the resonance 

frequency is large in comparison to the initial strains and that the hardening type 

nonlinearity is stronger due to the rubberlike membrane [13]. In this analysis, the influence 

of the geometric nonlinearity is small because the behavior is dominated by the initial 
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strain. In the large-deformation domain, the natural frequency increases, but it shows a 

complex response because of the left—right asymmetry. Therefore, it is possible to analyze 

the vertical displacement only up to values that are 10% of the tank depth. It is difficult to 

observe the behavior in the strong-nonlinearity domain. 
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     Figure 3.4. Resonant frequency curve (a) Interaction model and (b) Sloshing model.
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Figure 3.5. Upward displacement vs. frequency with excitation 0.01 m/s2. 
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3.2.3 Maximum response amplitude 

Figure 3.6 shows the maximum vertical displacement of the membrane at 1/8th of 

tank width for the initial strains of 2, 5, and 10%. From Fig. 3.5, it can be seen that the 

displacement of the membrane is divided into two areas: the linear increasing area and the 

sharply increasing area. In the first area, the maximum displacement increases 

proportionally to the excitation amplitude change. Then, the displacement increases 

exponentially in the second area (after 0.005 m/s2) as the excitation amplitude increases. 

The excitation amplitude changes from 0.001 m/s2 to 0.01 m/s2, which is 10 times, but the 

maximum displacement increase more than 20 times. This observation can be explained by 

the fact that the deformations are nonlinearly affected by the excitation amplitude in the 

second behavior area of the membrane.
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O.5 

C) 

c0.4 
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-5 0.3 
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    0.1 

    0.0

Initial strain 2% 
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11/
0.00 0.02 0.04 0.06 0.08 0.10 

Excitation amplitude (m/s-) 

Figure 3.6. Maximum displacement of membrane vs. excitation.
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3.2.4 Deformation of the liquid and membrane 

      Figure 3.7 represents the deformation profiles of the membrane when it has a 

maximum upward displacement for various initial strains and excitation amplitudes. This 

figure shows the two properties that cannot be described by linear theory. First, the 

maximum upward displacement increases more than the maximum downward 

displacement, as mentioned before, and simultaneously the slope of the upward shape 

sharply increases. At a low excitation of 0.001 m/s2, the maximum difference between the 

upward and downward displacement is 8.34%, which occurs at an initial strain of 2%, and 

the maximum differences decrease to 2.01% and 1.09% for initial strains of 5 and 10%, 

respectively. At a high excitation of 0.01 m/s2, the maximum difference of the upward and 

downward displacement is 17.08%, which occurs at an initial strain of 2%, and the 

maximum differences decrease to 14.21% and 11.74% for the initial strains of 5 and 10%, 

respectively. From the results, it is noticed that the maximum difference occurs at the high 

excitation of 0.01 m/s2 and low initial strain of 2%. These types of phenomena are 

well-known in the field of free surface motion of a liquid, and the main factor is the 

nonlinearity from the convection term of the liquid. The membrane motion is primarily 

dominated by the liquid motion because of the low stiffness of the membrane and large 

deformation. Therefore, this sloshing-like motion of the liquid is very important to the 

membrane system. The second cause of this motion is the asymmetry of the deformation, 

as shown in Fig. 3.7. In the other words, if a linear theory was employed, symmetry would 

have been predicted [53]. Contrary to this, the point that indicates zero vertical 

displacement shifts to the side of the upward deformation, i.e., to the left side with an 

enlargement of the deformation in this figure. In same direction as the first property, the 

maximum shift is 2.44% of 0.8 m and occurs at the high excitation of 0.01 m/s2 and low 

initial strain of 2%. When the deformation is large, the deformation of the membrane has 
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left-right asymmetry. This asymmetry also appears in the sloshing model because of the 

convection term. At five cycles, Fig. 3.8 shows the displacement of the liquid at different 

heights in the tank and the membrane surface with an initial strain of 2% and excitation of 

0.01 m/s2. This result ensures agreement between the liquid and membrane motion for a 

large deformation and low stiffness. 

      Figure 3.9 shows the vertical displacement of the membrane after five and 15 

cycles for the interaction and sloshing models, respectively. The maximum displacement 

of the upper surface in the sloshing model is at the left end of the tank. In contrast, the 

maximum displacement of the membrane in the interaction model is at x = 0.1 m because 

of the presence of a fixed point at the end of the tank. 

      The solid lines indicate the rubberlike membrane in the interaction model and the 

dashed lines indicate the sloshing model. The deformation of the membrane near the center 

of the tank (x = 0.1-0.7 m) in the interaction model is in good agreement with the 

deformation of the free surface in the sloshing model. The effect of the membrane is strong 

only near the edge of the tank, where the deformation is constrained because the 

membrane is attached to the edge of the tank. As the deformation of the membrane 

becomes large, it develops a left—right asymmetry with a greater displacement on the 

upward-displacement side (the left side). This phenomenon is mainly observed when 

studying a liquid sloshing [12] and it is strongly.
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3.2.5 Equilibrium of forces in the liquid—structure interaction 

      To demonstrate the validity of the results obtained here for the deformation, the 

equilibrium forces in the liquid—structure interaction will be examined. We consider a 

membrane without bending stiffness subject to liquid pressure that produces stress and 

curvature in the membrane. The equilibrium equation in the out-of-plane direction can take 

the following form [l2]: 

              6tm = _T(l + pm tm, a • ns,(109) 

where ci and r are the Cauchy stresses and radius of curvature, respectively, tm is the 

film thickness, irl is the liquid pressure, a is the membrane acceleration, and ns is the 

normal vector of the structure. The right-hand side of this equation represents the external 

force per unit area with the first term representing the liquid pressure force applied to the 

membrane and the second term representing the inertial force on the membrane. Fig. 3.10 
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is a graphical representation of the forces in Eq. (109), where Z denotes the sum of the 

external forces. 

      The membrane is supported by the component of the sectional force in the 

out-of-plane direction, which is equivalent to the external force. For this reason, if the 

curvature is small (i.e., the radius of the curvature is large), the component in the 

out-of-plane direction will be small, and the external force will also be small. In contrast, if 

the curvature is large, the component in the out-of-plane direction will be large, and the 

external force will also be large. The Cauchy stress is dominated by the initial tension. The 

difference between the maximum and minimum tensile stresses in the x direction is only 

11%, and the distribution appears to be uniform. The external force applied to the 

membrane by the liquid is due only to the liquid pressure because the liquid is assumed to 

be inviscid. The distributions of the curvature and pressure must match to satisfy Eq. 

(109). 

      The distribution of the liquid pressure with the exclusion of the hydrostatic 

pressure after 15 cycles was shown in Fig. 3.11. The distribution is large near the edge of 

tank, where the liquid motion is prevented because of the attachment of the membrane. 

The curvature in the x direction is shown in Fig. 3.12. The curvature in the x direction is 

large near the edge of the tank but is almost zero elsewhere. This is similar to the 

distribution of liquid pressure. From Fig. 3.12, it can be seen that there is equilibrium 

between the membrane and the liquid, and the results obtained for the deformation are 

considered to be valid. In addition, it should be noted that the FEM analysis was not 

performed directly, but was formulated using the energy equation. In this case, instead of 

the natural boundary condition, the mechanical boundary condition was used, which is 

difficult to strictly satisfy.
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3.3. Conclusion 

      Membrane-liquid interaction problems, including both geometry nonlinearity due 

to large liquid deformations and material nonlinearity of the membrane, were presented. 

We considered the moving boundary in the liquid region by coupling the arbitrary 

Lagrangian-Eulerian finite element method with the Lagrangian method for membrane 

elements. The time history response, liquid behavior and membrane behavior are 

calculated and compared with the results obtained from the sloshing model in the 

large-deformation domain. Furthermore, we have examined the balance of forces in the 

interaction model to confirm the validity of the results obtained for the deformation. We 

have arrived at the following conclusions: 

      (i) The amplitude of the upward displacement is larger than the amplitude of the 

downward displacement. It is strongly affected by the nonlinearity of the liquid because of 

the large deformations. 

      (ii) The frequencies increase when the initial strain and excitation increase but the 

influence of geometric nonlinearity due to large deformation is small because the behavior 

is dominated by the initial strain. It was confirmed that moving from the low to 

high-frequency range of the resonance frequency has a large effect in comparison to the 

initial strains for the hardening type nonlinearity because the membrane is rubberlike. 

      (iii) There is a nonlinear relation between the excitation and maximum response. 

The response shows a sudden exponential increase when the excitation increases. The 

nonlinear behavior of the excitation amplitude caused by a large deformation in the second 

area dominates the behavior of the membrane in this area. 

      (iv) The maximum upward displacement is much larger than the downward 

displacement and the membrane surface shape is asymmetrical with respect to the center. 

This asymmetry occurs as the deformation increases. These two phenomena are closely 
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related to each other. 

      (v) Equilibrium of the forces between the liquid and membrane has been shown, 

thus confirming the validity of the analysis in the large-deformation domain. Therefore, it 

is shown that the material and geometrical nonlinearities of the rubberlike membrane are 

very important when computing the response to a low initial strain and large excitation. 

Moreover, applying the arbitrary Lagrangian-Eulerian finite element method to the moving 

boundary in the liquid region ensures agreement between the movement of the liquid and 

structure.
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CHAPTER 4 

         A THREE-DIMENSIONAL 

4.1 Obj ectives 

      The aim of this chapter is to analyze the nonlinear sloshing-like behavior that 

occurs in containers where liquid is confined by a flexible membrane, such as bladder 

tanks. The 3D rectangular tank in which the upper liquid surface is covered by a 

membrane is analyzed and the results are compared with those of a sloshing model. Some 

nonlinear characteristics are obtained through parametric calculations and the force 

equilibrium in the liquid—structure interaction is shown to confirm the validity of the 

analysis. Then, a rectangular tank with the variation of tank depth was introduced for the 

implementation. The numerical evaluations were performed and the time historical 

response, natural frequency, and membrane and liquid displacements, liquid velocity and 

pressure were presented. Finally, the membrane and liquid nonlinear behavior, especially 

under low tank depth and large excitation, are discussed. 

4.2 The principal strain 

      In previous analyses, solutions of models describing three-dimensional 

interactions of a rubberlike membrane with liquid have been obtained only for small 

deformations, with convergence problems occurring for large deformations. It is the 

calculation method that causes this problem. The principal strain Ea is required to 

calculate the Ogden strain energy function presented in Section 2.4. The principal direction 

0 is calculated at each integral point following Eq. (13) as described in Section 2.4.2. In 

previous research, it has been taken that 0 = 0 when Ex — Ey is less than some 

given value. This is because the initial strains in the x and y directions are then equal 
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(Exo = E 0), and the denominator is zero at the start of the calculation. In the case of 

E 0 = E 0, when Ex = Ey, taking 0 = 0 is correct because the shear strain is zero. 

However, small shear strains are ignored and 0 become discontinuous, with the result that 

the calculation fails to converge. In these previous studies, therefore, the calculation is 

possible only at small deformations domain where the variations in the principal angle 

0 are sufficiently small that they can be ignored. In the present approach, when Ex = Ey 

and 0 = 0, Eq. (12) is used, and this allows consideration of large deformations.

4.3 Analysis of rectangular tank containing liquid whose upper surface is 

covered by a membrane 

      In this model, a complex response due to left—right asymmetry appears when the 

maximum vertical displacement exceeds 10% of the tank depth. A rectangular tank 

containing liquid whose upper surfaces are covered by membranes is vibrated horizontally 

and the dynamic characteristic of the model are considered. 

      The relationship between the stretch A and the Cauchy stress a under uniaxial 

tension is shown in Fig. 4.1. The dashed line is straight, and thus a nonlinear relationship is 

confirmed between A and a. The maximum deformation is approximately A= 1.5 in 

this model, and the tangential stiffnessoAdecreases by 6% compared with A= 1.0 

(strain equal to zero). The membrane density pry.,.,, is 1.07 x 103 kg/m3. The liquid is 

assumed to be water, with a density pi of 1.0 x 103 kg/m3. The analysis model is shown 

in Fig. 4.2. The tank dimensions are a = 0.8, b = 0.8, h = 0.3 and the membrane 

thickness is 4,2=0.001 m.
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The vibrational acceleration in the x direction is taken to be Ax = A sin 2irf t 

and the acceleration due to gravity is g = 9.80 m/s2. The finite element mesh (half 

model) for the liquid consisted of 768 (16 X 8 X 6) elements. The membrane was divided 

into 48 (16 X 8) elements. The time increment in the time integration scheme was 0.002 of 

one period of the driving acceleration. The influence of the rubberlike membrane is 

considered in a sloshing analysis. The tank size in the sloshing model is the same as that in 

the rubberlike membrane—liquid interaction model. The analysis conditions are shown in 

Table 4.1. For the interaction model, the resonant frequency at the maximum vertical 

displacement of 5 cycles is used as the vibration frequency. For the sloshing model, the 

one-degree mode natural frequency of the linear theory is used as the vibration frequency. 

The linear theory of sloshing is described in Appendix B. 

                   Table 4.1 Analysis condition of first model

 Initial strain 

Ex0 E0
A (m/s2) f (Hz)

Element division

a b h

Interaction model 

Sloshing model

0.05 0.02 0.01 

0.01

1.0 

0.9

16 

16

8 

8

6 

6

4.3.1 Natural frequency 

In this part of the investigation, the excitation acceleration A was varied from 0.01 

to 0.08 m/s2 to examine the natural frequency. The maximum displacement after 5 

cycles, made dimensionless using the tank depth, is shown in Fig. 4.3. For the sloshing 

model, the first mode of the natural frequency is 0.9 Hz according to the linear theory, and 

this decreases by only 0.3% when the deformation becomes large. This is a nonlinearity of 

the normal softening type. However, the possibility of the appearance of the internal 

resonance must be concern. The complicated phenomena wave more occur, in specially for 
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three-dimensional square tank, when the natural frequencies satisfy internal resonance 

conditions such as the dimension of liquid tanks, the amplitudes of sloshing, and liquid 

depths. The internal resonance problems were concerned and described in the literature 

[54-56]. 

In the interaction model, the natural frequency is 1.0 Hz at A = 0.01 m/s', which 

is 10% higher than in the sloshing model. Moreover, the natural frequency at A = 0.08 

m/s' increases by 1.6% from that 0.01 m/s'. These results agree with the literature from 

Bauer and Chiba [17, 18] based on Fourier-Bessel series theory that the natural frequency 

must increase when a free liquid surface was completely covered by a rubberlike 

membrane, and the magnitude depends on the stiffness of the rubberlike coverage. In this 

analysis, the influence of geometric nonlinearity is small because the behavior is 

dominated by the initial strain. In the large-deformation domain, the natural frequency 

increases, but it shows a complex response owing to the left—right asymmetry. Therefore, it 

is possible to analyze the vertical displacement only up to values that are 10% of the tank 

depth. It is difficult to observe the behavior in the strong-nonlinearity domain.
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Figure 4.3. Resonant frequency (a) Interaction model (b) Sloshing model. 
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4.3.2 Flow rate and pressure distribution 

      The flow rate and pressure distribution of the liquid after 15 cycles are shown in 

Figs. 4.4 and 4.5 for the liquid—membrane interaction and the sloshing model, respectively: 

Figs. 4.4(a) and 4.5(a) at at y = 0.4 m, and Figs. 4.4(b) and 4.5(b) for the half-model. The 

pressure distribution is shown with the hydrostatic pressure at each tank depth subtracted. 

It should be noted that in the sloshing model the flow in the y direction is uniform for an 

inviscid liquid and the free-surface pressure is zero because the atmospheric pressure is 

neglected. 

      After 15 cycles, the flow rate is almost zero in both models. The distribution of 

liquid pressure in the interaction model, excluding the hydrostatic liquid pressure, after 15 

cycles is shown in Fig. 4.4(b). The pressure distribution is large compared with that shown 

in Fig. 4.5(b) for the sloshing model near the edge of the tank, owing to the prevention of 

liquid motion by the membrane. 

4.3.3 Membrane displacement 

      Figure 4.6 shows the vertical displacement of the membrane after 15 cycles for 

the interaction and sloshing models, respectively. The displacement of the upper surface in 

the sloshing model is maximum at the left end of the tank. In contrast, the displacement of 

the membrane in the interaction model is maximum at x = 0.1 m owing to the presence of a 

fixed point at the end of the tank.
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      The deformations at the surface in both models after 5 and 15 cycles are shown in 

Fig. 4.6. The solid lines indicate the rubberlike membrane in the interaction model and the 

dashed lines indicate the sloshing model. The deformation of the membrane near the center 

of the tank (x = 0.1-0.7 m) in the interaction model is in good agreement with the 

deformation of the free surface in the sloshing model. The effect of the membrane is strong 

only near the edge of the tank, where the deformation is constrained by the attachment of 

the membrane to the tank. As the deformation of the membrane becomes large, it develops 

a left—right asymmetry, with greater displacement on the upward-displacement side (the 

left side). After 15 cycles, the zero point is moved to 1.3% of the width on the left-hand 

side of the container. This asymmetry also appears in the sloshing model. This is due to the 

presence of a convection term. 

The time-history response of the membrane at x = 0.1 m and y = 0.4 m is shown in 

Fig. 4.7. The deformation is greater here than at any other position if the first vibration 

mode dominates. The solid line indicates the vertical displacement and the dashed line the 

excitation acceleration. It can be seen that the amplitude of upward displacement is larger 

than the amplitude of downward displacement. After 15 cycles, the upward displacement is 

5.5% greater than the downward displacement. This phenomenon is often observed in 

studies of liquid sloshing [12] and is a consequence of the nonlinearity of liquid behavior 

at large deformation.
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4.3.4 Strain and stress distributions 

      The Green–Lagrange strain distribution of the membrane after 15 cycles is shown 

in Fig. 4.8. Here Ex, Ey, and Exy are defined as follows: 

          222 

           Ex_au+1au+av+aw+ ExO, (110)             ax 2x)x(i—)x 
          222 

           av10u0vOW 
           Ey=a+2a

y)+ay)                      +a+E 0, (111)                 Y 
                        au a~au auav a~aw aw 

         Exy=—+—+--+--+--(112) 
                      ay ax ax ay ax ay ax ay 

Ex and Ey are symmetrical because the same initial strain is applied in the x and 

y directions. The distributions of Ex and Ey are dominated by the out-of-plane 

deformation. 

In other words, the nonlinear terms 21 (Ow /ax)2 and 21 (aw/ay)2 in Eqs. 

(110) and (111) are dominant. When the out-of-plane displacement gradient 

(Ow/ax , Ow/ay) is large, the pressure is concentrated near the tank edge, where the 

membrane is attached. The variations of Ex and Ey are small in comparison with the 

initial strain. On the other hand, the distribution of Exy is dominated by the linear term in 

Eq. (112), du/ay + av/ax,which results from shear deformation in the x–y plane.
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                 Figure 4.10. The distribution of the Cauchy stress. 

      The deformation in the x—y plane after 15 cycles is shown in Fig. 4.9. There is 

large shear deformation near the corner, which is consistent with the distribution of Exy. 

Exy near the corner is dominated by the nonlinear term resulting from the out-of-plane 

deformation. In this model, the pressure is concentrated where the membrane is restrained. 

The shear deformation is due to a tension force generated in a direction inclined at 45° to 

the x-axis. Elsewhere, the liquid pressure shows a relatively uniform distribution, with no 

strong concentration. The Cauchy stress distribution is shown in Fig. 4.10. The stress 

distribution is almost the same as the strain distribution, for the same reasons. 
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4.3.5 Equilibrium of forces in the liquid—structure interaction 

      To demonstrate the validity of the results obtained here for the deformation, the 

equilibrium of forces in the liquid—structure interaction will be examined. We consider a 

membrane without bending stiffness subject to liquid pressure that produces stress and 

curvature in the membrane. The equilibrium equation in the out-of-plane direction can be 

shown to take the following form [12]: 

                             61 tm+62 tm — —Thf + Pm tm a ' ns,(113) 
r1 r2 

where di, 62 and r1, r2 are the Cauchy stresses and radii of curvature, respectively, in 

the principal direction, tm is the film thickness, iti is the liquid pressure, a is the 

membrane acceleration, and ns is the normal vector of the structure. The right-hand 

side of this equation represents the external force per unit area, with the first term being the 

liquid pressure force applied to the membrane and the second term the inertial force on the 

membrane. Figure 4.11 is a graphical representation of the forces in Eq. (113), where Z 

denotes the sum of the external forces. 

      The membrane is supported by the component of the sectional force in the 

out-of-plane direction, which is equivalent to the external force. For this reason, if the 

curvature is small (i.e., the radius of the curvature is large), the component in the 

out-of-plane direction will be small, and the external force will also be small. In contrast, if 

the curvature is large, the component in the out-of-plane direction will be large, and the 

external force will also be large. The Cauchy stress is dominated by the initial tension. The 

differences between the maximum and minimum tensile stresses in the x and y directions 

are only 11% and 16%, respectively, and the distribution appears to be uniform. The 

external force applied to the membrane by the liquid is due only to liquid pressure because 

of the assumption that the liquid is inviscid. The distributions of the curvature and pressure 

must match in order to satisfy Eq. (113). 
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      The distribution of the liquid pressure with the exclusion of the hydrostatic 

pressure after 15 cycles is shown in Fig. 4.12. The pressure change is large near the edge 

of tank, where liquid motion is prevented by the attachment of the membrane. The initial 

strain is dominant with respect to the stress on the membrane. Therefore, the strain remains 

almost unchanged from the initial strain (10%) and it is nearly uniform. 

      The curvatures in the x direction at y = 0.4 m and in the y direction at 

x = 0.1 m are shown in Fig. 4.13. The curvature in the x direction is large near the edge 

of the tank but is almost zero elsewhere. The curvature in the y direction is also large near 

the edge of the tank. This is similar to the distribution of liquid pressure. 

      Figure 4.14 shows the distribution of the membrane sectional force and external 

force, according to Eq. (113). The distributions of these forces match very well, except 

near the edge of the tank. The reason for this is that the Cauchy stress and the radius of 

curvature were calculated in the x—y direction rather than the principal direction. The 

difference between the forces is large near the edge of tank because of the variation of the 

strain in the principal direction. Therefore, in this model, it turns out that it is not the stress 

but rather the curvature that is dominant and supports the liquid pressure. From the above, 

it can be seen that there is equilibrium between the membrane and the liquid, and the 

results obtained for the deformation can be considered to be valid. In addition, it should be 

noted that the FEM analysis was not performed directly, but was formulated using the 

energy equation. In this case, instead of the natural boundary condition, the mechanical 

boundary condition was used, and this is difficult to satisfy strictly.
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4.4 Implementation of 3-D tank which upper surface is covered by membrane 

with the variation of tank depth 

      Considering the rubberlike membrane and liquid interaction model, a rectangular 

tank of infinite with both width and length of 0.8 m is filled liquid to a height (h) m on 

whose upper surface is covered by membrane as shown in Fig. 4.2. Before explanations, 

the parameters of numerical model were set up as follows. The width, length and depth of 

the container size were set with as 0.8 m, 0.8 m and h m respectively, and the membrane 

thickness was 0.001 m. Gravity is taken account. This membrane was subjected to uniform 

tension of 4.91 kN/m and 9.60 kN/m with the initial strains in x and y direction are 5% and 

2% respectively. The liquid was assumed to be water, namely, the density is 1,000 kg/m3. 

The excitation was restricted to be sinusoidal horizontal excitation, and undamped free 

vibration continues after that. The amplitudes of excitation were fixed at the constant 

values of 0.01 m/s2 and 0.1 m/s2 for small and large deformation, respectively. The 

variations of tank depth (h) were 0.15, 0.3, and 0.45 m. 

4.4.1 The frequency response 

      In this section, the maximum amplitude of the vertical displacement of the 

membrane at an observation point (0.1 m of tank width) was measured during this free 

vibration. After four cycles, the oscillation still continued being with approximately 

constant amplitude. In the Fig. 4.15, it shows the upward displacement of membrane 

comparison between the small deformation of 0.01 m/s2 and the large deformation of 0.1 

m/s2 with the variation of tank depth. It is noticed the peak of displacement in the small 

deformation region are 0.80, 1.00, and 1.06 Hz for the tank depth of 0.15, 0.30, and 0.45 m, 

respectively. 

      In the Table 4.2, it shows the excitation frequency comparison between the small 

deformation of 0.01 m/s2 and the large deformation of 0.1 m/s2. For high deformation 
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region, the frequency are 0.83, 1.02, and 1.08 Hz for the tank depth of 0.15, 0.30, and 0.45 

m, respectively, thus the resonance frequency is obtained approximately. As the result of 

frequency, the peaks of each tank depth are different. At low tank depth of 0.15 m, the 

resonance frequency is obtained approximately at 0.8 Hz and the resonance frequency 

increase to be 0.83 Hz that about 3.8% form small to high deformation region. On the 

other hand, the resonance frequencies of tank depth of 0.30 and 0.45 m increase only 2%. 

      It can be pointed that the move to high-frequency range of the resonance 

frequency is large in comparison of tank depth that the hardening type nonlinearity is 

stronger due to large deformation and low tank depth. We investigate the time historical 

response of membrane at 0.1 m from the left of tank. This position has larger deformation 

than any other position if the first vibration mode dominates. The time historical
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Table 4.2. The excitation frequency with the variation of tank depth

 Excitation (m/s2) Tank depth (m) Excitation frequency (Hz)

Small deformation

A= 0.01 m/s2

0.15 0.80

0.30 1.00

0.45 1.06

Large deformation

A= 0. 1 m/s2

0.15 0.83

0.30 1.02

0.45 1.08

4.4.2 The time historical response of membrane 

      We investigate the time historical response of membrane at 0.1 m from the left of 

tank. This position has larger deformation than any other position if the first vibration 

 mode dominates. The time historical at this point of 0.01 m/s2 and 0.1 m/s2 are plotted in 

Figs. 6 and 7. The driving frequency is given as same as we mentioned before. 

      From Fig. 4.16, it shows the amplitude of displacement continues increasing with 

symmetry between upward and downward displacement and accord together with variation 

of tank depth. 

      On the contrary, Fig. 4.17 is noticed that the amplitude of upward displacement is 

about 1.25 times as large as the amplitude of downward displacement. This phenomenon is 

mainly observed in the study on a liquid sloshing [57] and is strongly affected by the 

nonlinearity of a liquid due to large deformation. Moreover, the low tank depth of 0.15 m 

shows larger upward displacement and lower downward displacement as comparison with 

high tank depth of 0.3 m and 0.45 m.
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4.4.3 Membrane displacement 

      Due to Fig. 4.18, it represents the deformation profiles of the membrane at 4 

cycles with the variation of tank depth and excitation amplitude. At the low excitation of 

0.01 m/s2, the displacement is symmetry and accord together with variation of tank depth. 

But, the high excitation of 0.1 m/s2 shows the two characters which cannot observe by 

linear theory. 

      First, the maximum upward displacement increases more than the maximum 

downward displacement, as mention before, and the upward shape becomes sharp 

simultaneously. The maximum difference between upward and downward displacement 

occurred at low tank depth of 0.15 m. From the results, it was noticed that the maximum 

difference occurred at the high excitation of 0.1 m/s2 and low tank depth of 0.15 m. These 

kinds of phenomena are well-known in the study of a free surface motion of the liquid and 

the main factor is the nonlinearity from the convection term of the liquid. 

      The membrane motion is principally dominated by the liquid motion because of 

the low depth of the tank and large deformation. Therefore, this sloshing-like motion of 

liquid is very important to the membrane system. The second is the asymmetry of the 

deformation as shown in Fig. 4.18. In the other words, if linear theories were employed, 

this symmetry would have been predicted. Contrary to this, the point which indicates zero 

vertical displacement shifting to the side of the upward deformation, i.e. to the left side in 

this figure, with the enlargement of the deformation. In same direction with first character, 

the maximum occurred at the high excitation of 0.1 m/s2 and low tank depth of 0.15 m. The 

comparison of interaction and sloshing model is shown in Fig. 4.19. The result shows the 

accordance between interaction and sloshing model at large deformation of 0.1 m/s2 with 

the tank depth of 0.15 m and 0.3 m. As deformation is large, deformation of membrane 

becomes left right asymmetry. This asymmetry is also appeared in sloshing model. This is 
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due to convection term. The sloshing model also confirms that nonlinearities increase due

to low tank depth.
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 Liquid velocity and pressure 

 This section, the researchers focus on the causes of strong nonlinearities of liquid 

,iquid velocity and pressure distribution of the low excitation of 0.01 m/s2 with the 

Hi tank depth of 0.45, 0.3, and 0.15 m are shown in Figs. 4.20-4.22 respectively. For 

xcitation of 0.1 m/s2, the liquid velocity and pressure distribution of the variation 

Tth of 0.45, 0.3, and 0.15 m are shown in figure Figs. 4.23-4.25 respectively. The 

exnress 
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Figure 4.23. Liquid flow after 3.625 cycles at tank depth of 0.45 m and A=0.1 m/s2.
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Figure 4.24. Liquid flow after 3.625 cycles at tank depth of 0.30 m and A=0.1 m/s2.
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4.5 Conclusions 

      In this section, we have analyzed the dynamical characteristics of the interaction 

model of a rectangular tank containing liquid whose upper surface is covered by a 

membrane, comparing these with the results obtained from the sloshing model in the 

large-deformation domain. Furthermore, we have examined the balance of forces in the 

interaction model to confirm the validity of the results obtained for the deformation. We 

have arrived at the following conclusions: 

      1) The influence of membrane strongly appeared in the liquid pressure and 

deformation, because the movement of liquid was prevented in the area that the membrane 

was restricted. In other area, the liquid is dominant because it has a good agreement 

between the free surface displacement of the sloshing model and the membrane 

displacement of the interaction model. 

      2) The nonlinearity due to a left-right asymmetry of membrane deformation was 

observed. At large deformation, the upward displacement is greater than the downward 

displacement about 5.5% and the central point moves to left side about 1.3%. These 

phenomena also were found in the sloshing model due to the convection term. 

      3) The equilibrium of force between liquid and membrane is confirmed and 

validity of the analysis in large deformation is confirmed. 

      4) The resonance frequency increases when the liquid moves from low to high 

excitation, especially on low tank depth model. It can be explained that the move to 

high-frequency range of the resonance frequency is larger than the frequency of tank depth 

that the hardening type nonlinearity is stronger due to liquid 

      5) The amplitude of upward displacement is larger than the amplitude of 
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downward displacement. It is strongly affected by the nonlinearity of a liquid due to large 

deformation, especially on low tank depth model. 

      6) The maximum upward displacement is much larger than downward 

displacement and the membrane surface shape is asymmetric with respect to the center. 

This asymmetry occurred along with increasing of deformation and decreasing of tank 

depth. These two phenomena are closely related to each other. 

      Therefore, it is proved that the influence of tank depth is very important in the 

computation when the large excitation is applied. In addition, the behavior of liquid that 

occurred in sloshing model as same as interaction model, thus movement of liquid is 

dominant in deformation of rubberlike membrane.
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CHAPTER 5 

IMPLEMENTATION OF A THREE-DIMENSIONAL 

5.1 Obj ectives 

      The aim of this paper is to analyze the nonlinear sloshing-like behavior that 

occurs in containers where liquid is confined by a flexible membrane, such as bladder 

tanks. The three-dimensional interaction of a rubberlike membrane and liquid problem in a 

rectangular tank subject to vertical vibration is investigated using the arbitrary 

Lagrangian—Eulerian finite element method (ALE-FEM). The 3D rectangular tank with 

upper and lower liquid surfaces covered by membranes is analyzed. The cases of small and 

large deformation are considered in terms of liquid velocity and pressure distribution, 

membrane strain and stress distribution, and membrane displacement. The nonlinear 

behaviors of membrane and liquid, especially under large excitations, are discussed. 

5.2 Implementation of rectangular tank containing liquid with 

membrane-covered upper and lower surfaces 

      The analysis model is shown in Fig. 5.1. The dimensions of the rectangular tank 

are a = 0.3 xb = 0.3x h = 0.3 m and the membrane thickness is 0.001 m. The maximum 

vibrational acceleration is A (m/s2) and the acceleration in the z direction Az = 

Asin2rcf t is given, where f (Hz) is the vibration frequency. The stresses due to 

atmospheric pressure on the upper and lower surfaces are ignored because the difference 

between them is so small. A 1/4 model is analyzed owing to the symmetry in 

the x and y directions. 

The finite element mesh (1/4 model) for the liquid consisted of 432 (6*6*12) 

elements. The membrane (both side) was divided into 36 (6*6) elements. The time 
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increment in the time integration scheme was 0.002 of one period of the driving 

acceleration. 

      The parameters used for analysis are shown in Table 5.1. The vibration frequency 

that causes the maximum vertical displacement after five cycles for each vibrational 

acceleration is used. When A = 0.001 m/s2, the analysis is in the small-deformation 

domain and when A = 0.1 m/s2, it is in the large-deformation domain. Each 

characteristic is considered and then the variations of characteristics due to deformation 

are considered. 

Membrane Om = 1 mm) 

fA, = Asin rrf t

 X

 h  =  0. in

Figure 5.1.
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Fluid filled tank 

The rectangular tank which upper and lower surface is covered by membrane 

(1/4 model).
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Table 5.1 Analysis condition of second model

Initial strain

A (m/s2) f (Hz)

Element division number

Ex() Ey0 a b h

A = 0.001 

A = 0.01 

 A = 0.1

0.05 

0.05 

0.05

0.05 

0.05 

0.05

0.001 

0.01 

 0.1

0.71 

0.72 

0.89

6 

6 

6

6 

6 

6

12 

12 

12

5.2.1 Liquid velocity and pressure distribution 

      The liquid velocity and pressure distribution after 5 cycles of vibration with 

accelerations A = 0.001, 0.01, and 0.1 m/s2 are shown in Figs 5.2-5.4, respectively. A 

1/4 model is used owing to symmetry. The liquid velocity and pressure are represented by 

mesh deformations because they are evaluated on a mesh that deforms due to the use of the 

ALE method. The pressure and displacement vary in phase with the vibration, while the 

liquid velocity varies out of phase with the vibration by 0. 5m. The maximum pressure and 

displacement are reached after 5 cycles. W1, W2, and W3 indicate the liquid velocity 

in the vertical direction at the red point shown in Figs. 5.2(a)-5.4(a) after 4+7/8 cycles. 

W1 is located at the center of the upper surface, W3 at the center of the lower surface, 

and W2 is at the center between the upper and lower surfaces, at which point the liquid 

becomes almost uniform. A comparison of W1 and W3 with respect to W2 is shown in 

Table 5.2. 

In the small-deformation domain, the liquid velocity and pressure show top— 

bottom inverse symmetry throughout. The mesh displacement becomes maximum after 5 

cycles, but the maximum vertical displacement of the membrane is 0.5% of the tank depth 

and therefore the mesh is almost free of deformation.
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     After 4+7/8 cycles, the membrane is deformed by the force of the liquid, and the 

liquid flows along the membrane at the lower surface and perpendicular to the membrane 

at the upper surface for the large-deformation domain. Then W1 < W3, as shown in 

Table 5.2, and the liquid velocity at the center of the lower surface is higher than that at the 

center of the upper surface. This is because the liquid concentrates at the center of the 

membrane at the lower surface. After 5 cycles, the pressure is high at the center of the 

membrane at the lower surface, where there are large variations in the liquid velocity, 

while the liquid velocity is uniform near the upper surface.

w
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Figure 5.2. Liquid velocity and pressure distribution when A = 0.001 

             (a) 4+7/8 cycles and (b) 5 cycles.
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Table 5.2 Liquid velocity in vertical direction after 4+7/8 cycles

W1/W2 

(center of upper surface)

    W3/W2 

(center of lower surface)

A = 0.001 

A = 0.01 

 A = 0.1

1.98 

1.96 

1.99

1.99 

2.04 

2.39

5.2.2 Membrane displacement 

      The membrane vertical displacement, made nondimensional using the tank depth, 

after 5 cycles of vibration at accelerations A = 0.001, 0.01, and A = 0.1 m/s 2, is 

shown in Figs. 5.5-5.7, respectively. The red line indicates the upper surface and blue 

dotted line the lower surface. Owing to symmetry, a 1/4 model is shown, for y = 0.15 m. 

The vertical displacements at the upper and lower surfaces, made nondimensional using 

the tank depth, are shown in Table 5.3, together with their difference. The membrane 

deformations at the upper and lower surfaces for vibrational accelerations A = 0.001 and 

0.1 m/s2 after 4+3/4 cycles are shown in Figs. 5.8 and 5.9, respectively, from which it 

can be seen that the sign of the displacement changes. 

      For small deformation, the rubberlike membrane is attached at the tank periphery 

while elsewhere it deforms in a hill-like shape as shown in Fig. 5.5. According to Table 5.3, 

the difference in maximum vertical displacement at the upper and lower surfaces is 

0.0012% of the tank depth, and therefore the displacements of these surfaces can be taken 

to be the same and to show top—bottom symmetry like the liquid velocity and pressure. 

The curvature of the membrane is supported by stress from the liquid. The curvature is 

large near the center of the membrane, with the deformation become close to a sharp peak, 

whereas it small near the tank periphery. In the case of deformation after about 4+3/4 

cycles shown in Fig. 5.8, the sign of the deformation reverses simultaneously throughout 
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the membrane. Therefore, in this situation, it appears that the behavior can be represented 

by a mode vector as in the analysis of natural vibrations, and the vibration of the 

membrane is almost linear. 

      For large deformation, the difference between the upper and lower maximum 

vertical displacements is 2.8% of the tank depth, as shown in Table 5.3, and the 

deformations of the upper and lower membranes are different, thus exhibiting a top— 

bottom asymmetry. At the center of the membrane, the lower surface deformation is large. 

On the other hand, around the tank periphery, the upper surface deformation is large. Thus, 

for the upper surface, the curvature is the same all around the membrane, whereas for the 

lower surface, the curvature is large only at the center of the membrane. This trend is 

similar to that of the pressure distribution. The maximum vertical displacement is 31% of 

the tank depth, so the analysis has to take account of large deformations. In the case of 

membrane deformation after about 4+3/4 cycles, the pressure is concentrated at the tank 

periphery where the membrane is attached, and the deformation reverses sign earlier than 

in other regions. There is no time at which the membrane displacement is zero all around 

the membrane, so this is nonlinear vibration.

Table 5.3 Maximum vertical displacement after 5 cycles

Center of upper 

surface, w/h

Center of lower 

surface, w/h

Difference of upper and 

 lower surface, w/h

A=0.001 

A=0.01 

A=0.1 

—5 .18 x 10-3 

—5 .00 x 10-2 

—2 .77 x 10-1

—5 .19 x 10-3 

—5 .11 x 10-2 

—3 .05 x 10-1

1.16 x 10-5 

1.08 x 10-3 

2.80 x 10-2
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5.2.3 Resonant frequency 

      The vertical displacement of the center point of the lower surface after 5 cycles is 

shown for different values of the vibrational acceleration in Fig. 5.10. The points 

connected by a line indicate the vibration frequency. The resonant frequency changes 

nonlinearly as the membrane deforms. The resonant frequency is defined as the frequency 

at which the vertical displacement is maximum after 5 cycles. Figures 5.11(a), (b), and (c) 

show the time-history responses of the vertical displacement at the center point of the 

membrane for A = 0.001, 0.01, and A = 0.1 m/s2, respectively. The red line indicates 

the upper surface and the green line the lower surface, while the blue dotted line indicates 

the vibrational acceleration. Table 5.4 shows the vibrational acceleration and phase 

difference for each vibration cycle. 

      For small deformation, the resonant frequency is 0.71 Hz. The membrane 

displacement diverges as shown by the time-history response in Fig. 5.11(a) because there 

is no damping such as liquid viscosity. In the case of linear vibrations, the phase difference 

between membrane displacement and vibrational acceleration is 0.57r when the model is 

vibrated at the resonant frequency. That is to say, the membrane displacement becomes 

maximum when the vibrational acceleration becomes zero. For A = 0.001 rn/s2 for 

which the resonant frequency is 0.71 Hz, the phase difference between the start and finish 

of vibration is 0.005ir, which is 1% of 0.57r. This is so small that the phase difference 

can be taken as 0.57r in all cycles. Therefore, the resonant frequency does not change 

when vibration is confined to the small-deformation domain. 

      For large deformation, the resonant frequency is 0.89 Hz. The phase difference 

after 1 cycle is 9% larger than 0.57r, as shown in Fig. 5.11(c), and that after 3 cycles is 

12% larger than 0.57r. Therefore, the phase difference between vibrational acceleration 

and displacement remains almost unchanged up to 3 cycles. However, after 4 cycles, the 
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phase difference suddenly decreases to become close to 0.57. The variation in phase 

difference from 3 cycles to 5 cycles is 0.0797r, which is 15% of 0.57. This shows that 

the phase difference does not decrease proportionally to deformation but suddenly changes 

after a certain deformation has been reached. From the above, it can be seen that the 

resonant frequency varies widely when vibration is in the large-deformation domain, with 

0.89 Hz being the average value. 

      When A = 0.001, 0.01, and 0.1 m/s2, the resonant frequency is 0.71, 0.72, and 

0.89 Hz, respectively. When A goes from 0.001 to 0.01 m/s2 the percentage increase 

in resonant frequency is only 1.4%. However, when A goes from 0.01 to 0.1 m/s2, the 

percentage increase is 24%, confirming the strong nonlinearity. This phenomenon of a 

substantial increase in the resonant frequency at large deformations is called hardening 

nonlinearity. It does not appear in linear analyses. In addition, according to the results of 

the analysis in the large-deformation domain, the resonant frequency does not vary 

proportionally to deformation but changes suddenly after a certain value of the 

deformation has been reached. The deformation remains small when the acceleration is 

changed from A = 0.001 to 0.01 m/s2, and does not reach this value. The change in 

phase difference between 1 and 5 cycles is 1.0% of 0.57 when A = 0.001 m/s2, 1.6% 

when A = 0.01 m/s2, and 14% when A = 0.1 m/s2. Strong nonlinearity is found when 

= 0.1 m/s2. 

Table 5.4 Vibration acceleration and phase difference of displacement (x rc(rad))

Vibration cycle

1 2 3 4 5

A = 0.001 

A = 0.01 

 A = 0.1

0.502 

0.506 

0.546

0.500 

0.505 

0.565

0.499 

0.506 

0.556

0.499 

0.503 

0.523

0.497 

0.498 

0.477
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5.2.4 Membrane strain and stress distribution 

      The Green—Lagrange strain distribution of the membrane after 5 cycles is shown 

in Figs. 5.12 and 5.13. Ex and Ey are symmetrical because the same initial strain is 

applied in the x and y directions. Here Ex and Exy are defined as follows: 

          222 

           Ex=au+1au+a~+aw+ Exo,(114)              ax 2ax (h—)x 
                au av au au av av aw aw 

             Exy=a
y+ax+axay+axay+ax ay(115) 

      The Cauchy stress distribution is shown in Figs. 5.16 and 5.17. This is almost the 

same as the strain distribution because the rubber material is isotropic. 

      For small deformation, the gradient in the x direction of the vertical 

displacement is dominant in E. That is to say, the nonlinear term 21 (aw/ax)2 in Eq. 

(114) is dominant. This means that the strain occurs owing to deformation in the 

out-of-plane direction even if there is no deformation in the x—y plane. The Exy 

distribution is positive near the edge of the tank, where the membrane is attached, and is 

negative near x = y = 0.075 m. The negative value is due to shear deformation, which is 

represented by the linear term au/ay + av/ax in Eq. (115). The positive value is due to 

deformation in the out-of-plane direction, which is represented by the nonlinear term 

(aw/ax) (aw/ay) . However, the variation of Ex is only 0.2% of the initial strain 

Exo = 0.05 even at its maximum and Exy is an order of magnitude smaller than E. 

Thus, the initial strain is dominant in phenomena in the small-deformation domain. 

For large deformation, the nonlinear term 21 (aw/ax)2 is dominant in E. The 

variation of Ex is 655% of Exo = 0.05 at its maximum; thus, the strain more than six 

times the initial strain as a result of the dominance of the nonlinear term with increasing 

deformation in the out-of-plane direction. In the case of Exy, , the influence of the 

nonlinear term (aw/ax) (aw/ay) is large. The deformation in the x—y plane after 5 
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cycles is shown in Fig. 5.14. The black line indicates the membrane shape before 

deformation and the displacement is shown at its actual size. There is negative shear 

deformation near x = y = 0.075 m in the x—y plane. However, the membrane 

deformation at the lower surface in the out-of-plane direction is large near y = 0.075, as 

shown in Fig. 5.15. The negative value at the lower surface resulting from shear 

deformation is canceled by this, and Exy becomes maximum near x = y = 0.075 m. In 

the case of the upper surface, the nonlinear term prevents negative shear deformation. 

      The nonlinear term of the Green—Lagrange strain is of second degree, so large 

deformations have a strong influence. Table 5.5 shows the vertical displacement relative to 

its maximum value and the strain relative to its initial value (i. e. , Ex — Ego). It can be 

seen that when A is increased from 0.001 to 0.01 m/s2, the vertical displacement 

increases by a factor of almost 9.8 and Ex — Ego by a factor of 95, and when A 

increases from 0.01 to 0.1 m/s2, the vertical displacement increases by a factor of 6.0 

and Ex — Ego by a factor of 36. It is found that Ex — Ego is approximately proportional 

to the square of the variation in vertical displacement. Consequently, the variation of Ex 

for A = 0.01 rn/s2 is only 20% of the initial strain Ego = 0.05 even at its maximum; 

however, for A = 0.1 m/s2, it is 655% of the initial strain so the influence of the initial 

strain is no longer small. As discussed above, the influence of the nonlinear term is strong 

in the large-deformation domain. The variation of the resonant frequency (see Section 

5.2.3) is as follows. It increases by 24% when the acceleration changes from A = 0.01 to 

A = 0.1 m/s2 because of the increase in the restoring force of the rubber. However, it 

increases by only 1.4% when A changes from 0.001 to 0.01 m/s2. This is because the 

initial strain is dominant in the small-deformation domain. The resonant frequency 

changes suddenly after a certain deformation has been reached, because the strain, i.e., the 

restoring force, increases nonlinearly. 
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Table 5.5 Maximum vertical displacement of lower surface and maximum value of Ex — Exo

Vertical displacement, w/h Ex — Ex0

A = 0.001 

A=0.01 

A = 0.1

—5 .19x10-3 

—5 .11 x 10-2 

—3 .05 x 10-1

9.49 x 10-5 

9.05 x 10-3 

3.27 x 10-1

5.3 Conclusions 

      The difficulties arising in previous methods for the solution of models describing 

three-dimensional interactions of a rubberlike membrane with liquid have been described 

and an analysis of the large-deformation domain has been presented. In addition, the 

dynamical characteristics in both the small- and large-deformation domains, as well as 

variations in these characteristics due to deformation, have been considered. As a result, 

the following conclusions can be drawn. 

1. In previous solution methods, a certain value was set at Ex — Ey to calculate 

the angle that is used to calculate the principal strain. If Ex — Ey was less than a certain 

value, then 9 = 0, and the principal angle become discontinuous in the structural domain. 

Thus, the calculation failed to converge. This problem has been solved and analysis in the 

large-deformation domain is allowed. 

      2. In the small-deformation domain, the membrane deformations and strains, as 

well as the stress distributions, on the upper and lower surfaces are equal. The liquid 

velocity and pressure distribution exhibit top—bottom asymmetry. The resonant frequency 

is constant in time. 

      3. In the large-deformation domain, the liquid velocity and pressure distribution 

vary owing to membrane deformation and exhibit top—bottom asymmetry. Therefore, the 

membrane deformation and strain and the stress also exhibit top—bottom asymmetry. The 

maximum vertical displacement of the membrane is 31% of the tank depth. The method 
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adopted here allows analysis in the large-deformation domain. It confirms that the resonant 

frequency varies during vibration, and there is a phase difference between the vibrational 

acceleration and the displacement. 

4. The resonant frequency at A = 0.1 m/s2 is 25% higher than that at A = 

0.001 m/s2, confirming the presence of hardening nonlinearity. This occurs because the 

membrane strain is proportional to the square of the displacement as a result of 

geometrical nonlinearity, and the restoring force increases suddenly. The resonant 

frequency changes by 1.4% when the acceleration goes from A = 0.001 to A = 

0.01 m/s2. This is because the initial strain is dominant.
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CHAPTER 6 

   CONCLUSIONS AND RECOMMENDATION 

6.1 Conclusions 

      The material nonlinearity of rubberlike membranes and the geometric nonlinearity 

of the moving boundary of a liquid at large deformation have been investigated in 

two-dimensional dynamic analyses. Therefore, it is shown that the material and 

geometrical nonlinearities of the rubberlike membrane are very important when computing 

the response to a low initial strain and large excitation. Moreover, applying the arbitrary 

Lagrangian-Eulerian finite element method to the moving boundary in the liquid region 

ensures agreement between the movement of the liquid and structure. However, realistic 

situations are too complex to be approximated by a two-dimensional model, and it is 

necessary to consider three-dimensional models. 

      We performed three-dimensional dynamical analyses of interactions between 

rubberlike membranes and liquid in the large-deformation domain. 

      First, a rectangular tank contained liquid whose upper surface was covered by a 

rubberlike membrane, and we examined the balance of forces in the membrane—liquid 

interaction in the out-of-plane direction using the equilibrium equations of the membrane. 

After that, we considered a rectangular tank containing liquid whose upper and lower 

surfaces were both covered by a rubberlike membrane, and we investigated dynamic 

properties including the natural frequency, liquid pressure, flow rate, strain, and the 

deformation of the rubberlike membrane. 

      We arrived at the following conclusions: 

      1. Although previous calculation methods failed to converge owing to the 

presence of large strain, we have been able to avoid this problem and allow analysis in the 
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large-deformation domain. 

      2. In the case of a rectangular tank containing liquid whose upper and lower 

surfaces are covered by a rubberlike membrane, in the large-deformation area, the liquid 

velocity and pressure distribution show a vertical asymmetry. There are significant 

differences in membrane deformation, strain, and stress distributions between the upper 

and lower surfaces. 

      3. Comparing the small- and large-deformation domains, a nonlinearity of 

hardening type is observed, with the resonance frequency being 20% higher at the 

maximum. This is a geometric nonlinearity, with the variation of strain in the membrane 

being proportional to the square of the variation of the vertical displacement as a result of a 

restoring force that increases rapidly at large deformations. 

      4. In the case of a rectangular tank containing liquid whose upper surface is 

covered by a membrane, nonlinearities such as left—right asymmetry of the deformation are 

observed in the large-deformation domain. This is also seen in the sloshing model owing to 

the presence of the convection term. 

      Motion of the liquid is obstructed near the edge of the tank where the membrane 

is attached. In this region, the influence of the membrane dominates over the liquid 

pressure and liquid deformation. Elsewhere, the effects of the liquid are dominant. 

      5. From a comparison of the liquid pressure and the membrane curvature, it was 

confirmed that the liquid pressure was supported by the curvature. In addition, the balance 

of forces in the structure and at the liquid boundary in the out-of-plane direction were 

shown to be satisfied from the equilibrium equation. 

      The present study has successfully provided a three-dimensional dynamical 

analysis of the interaction between a rubber membrane and a liquid in the 

large-deformation domain, where the characteristics of the nonlinearity are completely 
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different from those at small deformation. Moreover, the equilibrium of the forces 

involved in the structure—liquid interaction is satisfied, indicating the validity of the 

analysis. 

6.2 Recommendation 

      Several potential future works and recommendations for other researchers as 

extensions of this study are listed below: 

      1. As mention in the introduction, the dimension of tank show strong effects to 

the behaviors of sloshing nonlinear. There is no a comparison with purely nonlinear 

sloshing nonlinear results, e.g., in [5,6], as a limit case; this is especially strange because 

the depth-to-breadth ratio is 0.375 which is close to the experimental and theoretical cases 

in [5,6]. We recommend the researchers to investigate the effect of tank depth for a 

comparison with purely nonlinear sloshing nonlinear results. 

      2. In a sloshing model using a square tank, the natural frequencies of the (1,0) 

and (0,1) sloshing modes are identical. In such a case, it is known that (1,0) and (0,1) 

modes may appear simultaneously due to the internal resonance even when the tank is 

excited in the x direction. Actually, this work did not concern and observed about the 

internal resonance in the square tank. However, the internal resonance is possible to appear 

in the sloshing of a square tank when the natural frequencies satisfy the internal resonance 

conditions. Then, we add the comment about the possibility of the appearance of the 

internal resonance and refer to the literatures. 

      3. This work describes a method for calculating the interaction between flow 

phenomena and elastic membranes. The model makes use of a finite-element formulation 

for the structure in combination with an ALE approach for the liquid. This work lacks a 

grid refinement study, which helps to separate the numerical errors from the physical 
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contents of the paper. Since the physics of the rubberlike membranes is complex, physical 

validation is necessary which should not be hampered by a large amount of numerical 

noise. The researcher should do the grid refinement to improve the numerical accuracy. 

      4. No experiments or comparisons with existing experiments are done that makes 

the output not validated. The researchers should do experiments or compare with existing 

experiments. 

      5. The effect of liquid viscosity is interesting. It was found that viscosity 

decreases the oscillation frequencies in comparison to the coupled hydroelastic frequencies 

of the frictionless liquid and that a new phenomenon appears exhibiting for certain small 

liquid heights h/a only a periodic motion [58-60]. In that treatment, adhesive conditions at 

the container bottom were satisfied, while at the small sidewall area only the normal 

velocity condition has been observed. This seems to be justified for shallow containers. 

This analytical treatment yields approximate complex frequencies, of which the real parts 

describe the damping decay, while the imaginary parts represent the oscillation 

frequencies.
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 APPENDIX  A 

      Green—Lagrange strain variation equation 

From Eqs. (9)—(11), the Green—Lagrange strain in a Cartesian coordinate system 

(x, y, z) is given by 

          SEaSu+++au a6uav a6vaw asw(Al)               x — a
xax axax axax ax 

                Dau av awSu 
                  ax1+ ax ax axiS w' 

          8E=a6v+aumu+avmy+aw asw(A2)a
y ay ay ay ay ay ay() 

                   8rrau0v awllSu                     =ay
y[ay1+8y ayj8v' S

w 

a6u au du a6u 06v ay 

               aSu &iv axay+axay+axay 
         sExy = ,W, ax I av asv asw aw aw asw I(A3)                   + ax ay + ax ay + ax ay ) 

         pxaa,~WSuaaua,~aWSu             1 +—Sv +—1 +——Sv .       —a
yyayaxaxax 6

w6w 

      When discretized using a shape function as described in Section 2.8.1, it can be 

written as 

6E = BSU,(A4) 

where

8E=

     1 
 SEx2SExy 

1 

 2 SExy SEy

(A5)
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   rau av Ow 
        Iau av aw11+ax ax ax)H'37I       I+ ax ax axIL 2 av awB=i1l+(au              aY1 +aYaYH,x Ji(A6) 

   Iauav anI       L syma1 +aa
y)H'y              YY 

 Here ( ),x and ( ),y denote partial derivatives with respect to the Cartesian coordinates 

x and y. Furthermore, the Green—Lagrange strain tensor, 6E in the principal direction can 

be obtained as in Section 2.4.2 using the following equations. 

6E=B6U,(A7) 

          B = TBTT(A8)
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         Linear theory of sloshing model 

      The governing equations of the interaction problem are Eqs. (29) - (32). In 

contrast, in the liquid sloshing analysis, because there is no structure term, the governing 

equations are as follows: 

0 • 0(/) = 0 in flf,(B1) 

rcfnf = 0 on Tf,(B2) 

0O • nf = 0 on Tr,(B3) 

1 
Irf= pfp(1)•p +pf0'+pfa•yf(B4) 

where I f and 1 are the boundaries of the free surface and the rigid container, respectively. 

For small excitations, the free surface is replaced by the static condition z = riand 

quadratic terms are neglected. Equation (B2) then becomes 

p fc/ + p fgq = 0,(B5) 

      The vertical velocity w of the free surface is 

           w =D~=a~(B6) 
Dt at 

     Equations (B.5) and (B.6) give 

           agar=0 (z=0).(B7) 
The continuity equation (B.1) is solved under the boundary conditions (B.3) and 

(B.7). For the rectangular tank used in this study, the natural frequency coo is obtained as 

coo = Jgk tanh(kH),(B8) 

with 

                             k=          27-CM(B9) l 
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H and l are the depth and width of the tank and m is the vibration mode 

number. The natural frequencies from the first to the third mode are shown in Table B 1. 

Table B 1. The natural frequency of sloshing model (small deformation) 

                       Mode fo (Hz) 

              1 0.90 

              2 1.38 

              3 1.71
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