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Abstract. In the first half of this thesis, for a given Fourier-Mukai equivalence of
bounded derived categories of coherent sheaves on smooth quasi-projective varieties,
we construct Fourier-Mukai equivalences of derived factorization categories of gauged
Landau-Ginzburg (LG) models. As an application, we obtain some equivalences of de-
rived factorization categories of K-equivalent gauged LG models. This result is an equi-
variant version of the result of Baranovsky and Pecharich, and it also gives a partial
answer to Segal’s conjecture. As another application, we prove that if the kernel of
the Fourier-Mukai equivalence is linearizable with respect to a reductive affine algebraic
group action, then the derived categories of equivariant coherent sheaves on the varieties
are equivalent. This result is shown by Ploog for finite groups case.

In the second half, we prove a Knörrer periodicity type equivalence between derived
factorization categories of gauged LG models, which is an analogy of a theorem proved
by Shipman and Isik independently. As an application, we obtain a gauged LG version
of Orlov’s theorem describing a relationship between categories of graded matrix factor-
izations and derived categories of hypersurfaces in projective spaces, by combining the
above Knörrer periodicity type equivalence and the theory of variations of GIT quotients
due to Ballard, Favero and Katzarkov.

Contents

1. Introduction 2
1.1. Main results (Part I) 2
1.2. Main results (Part II) 4
1.3. Notation and conventions 6
1.4. Acknowledgments 6
2. Comodules over comonads 6
2.1. Comodules over comonads 6
2.2. Functors between categories of comodules 8
3. Derived factorization categories 14
3.1. Factorization categories 14
3.2. cwp-functors 19
3.3. ind/pro-categories and their factorization categories 24
4. Derived factorization categories of gauged LG models 27
4.1. Equivariant sheaves and factorization categories of gauged LG models 28
4.2. Functors of factorization categories of gauged LG models 30
4.3. Support properties of factorizations 42
4.4. Comonads induced by restriction and induction functors 45
5. Main results (Part I) 49
5.1. Equivariantization 49
5.2. Proof of Lemma 5.2 51
5.3. Main Theorem 59
5.4. Applications 61

2010 Mathematics Subject Classification. Primary 14F05; Secondary 18E30.
Key words and phrases. derived factorization category; Knörrer periodicity.

1



2 Y. HIRANO

6. Relative singularity categories 62
6.1. Triangulated categories of relative singularities 63
6.2. Direct images and inverse images in relative singularity categories 64
6.3. Relative singularity categories and derived factorization categories 65
7. Main results (Part II) 68
7.1. Koszul factorizations 69
7.2. Integral functors in Gorenstein cases 69
7.3. Lemmas for the main theorem 70
7.4. Proof of the main theorem 71
7.5. Cases when W = 0. 74
7.6. Orlov’s theorem for gauged LG models 75
References 78

1. Introduction

When X is a scheme, G is an affine algebraic group acting on X, χ : G → Gm is a
character, andW : X → A1 is a χ-semi invariant regular function, we call data (X,χ,W )G

a gauged Landau-Ginzburg (LG) model. Following Positselski [Pos1], [EP], we consider the
derived factorization category of (X,χ,W )G, denoted by

DcohG(X,χ,W ).

Derived factorization categories are simultaneous generalizations of bounded derived cat-
egories of coherent sheaves on schemes, and of categories of (graded) matrix factorizations
of (homogeneous) polynomials.

Derived factorization categories play an important role in Homological Mirror Sym-
metry for non-Calabi-Yau varieties [Orl4], and are useful to study derived categories of
coherent sheaves on algebraic stacks. For example, studying windows in derived factor-
ization categories gives a new technique to obtain some equivalences or semi-orthogonal
decompositions of derived categories of algebraic stacks [Seg], [BFK2]. Moreover, by us-
ing derived factorization categories, we obtain new approach to Kuznetsov’s homological
projective duality [BDFIK2], [ADS], [ST], [Ren].

1.1. Main results (Part I).

1.1.1. Background and motivation. Since derived factorization categories are generaliza-
tions of the bounded derived category of coherent sheaves, it is natural to expect similar-
ities between derived categories and derived factorization categories; such similarities are
observed in [Vel], [BP], [LS], for example. In the present paper, we obtain equivalences
between derived factorization categories of certain gauged LG models from equivalences
between derived categories of smooth quasi-projective varieties.

1.1.2. Statements. Let X1 and X2 be smooth quasi-projective varieties over an alge-
braically closed field k of characteristic zero, and G be a reductive affine algebraic group
acting on each Xi. Let Wi : Xi → A1 be a χ-semi invariant regular function on Xi for
some character χ : G → Gm, and πi : X1 × X2 → Xi be the projections. Consider the
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and let j : X1 ×A1 X2 ↪→ X1 ×X2 be the embedding.
An object P ∈ Db(cohX1 ×A1 X2) whose support is proper over X2 defines the integral

functor

Φj∗(P ) : D
b(cohX1)→ Db(cohX2) (−) 7−→ Rπ2∗(π

∗
1(−)⊗L j∗(P )).

On the other hand, the object P induces an object P̃ ∈ Dcoh(X1 × X2, π
∗
2W2 − π∗1W ∗

1 )
and it defines the integral functor

Φ
P̃
: Dcoh(X1,W1)→ Dcoh(X2,W2) (−) 7−→ Rπ2∗(π

∗
1(−)⊗L P̃ ).

Furthermore, if the object P is G-linearizable, i.e. it is in the essential image of the
forgetful functor

Π : Db(cohGX1 ×A1 X2)→ Db(cohX1 ×A1 X2),

then the object P induces an object P̃G ∈ DcohG(X1 ×X2, π
∗
2W2 − π∗1W ∗

1 ) and it defines
the integral functor

Φ
P̃G

: DcohG(X1,W1)→ DcohG(X2,W2) (−) 7−→ Rπ2∗(π
∗
1(−)⊗L P̃G).

The main result of the present paper is the following:

Theorem 1.1 (Theorem 5.6). Let P ∈ Db(cohX1×A1X2) be a G-linearizable object whose
support is proper over X1 and X2. If the integral functor Φj∗(P ) : D

b(cohX1)→ Db(cohX2)
is an equivalence (resp. fully faithful), then so is Φ

P̃G
: DcohG(X1,W1)→ DcohG(X2,W2).

This theorem is proved when the group G is trivial, the functions Wi are flat, and Xi

are smooth Deligne-Mumford stacks, in [BP]. Combining Theorem 1.1 with the result in
[Bri], we obtain the following:

Corollary 1.2. Let X and X+ be smooth quasi-projective threefolds, and let the diagram

X
f−→ Y

f+←−− X+

be a flop. Let G be a reductive affine algebraic group acting on X, X+ and Y with the
morphisms f and f+ equivariant. Take a semi invariant regular function WY : Y → A1,
and set W := f∗WY and W+ := f+∗WY . Then we have an equivalence

DcohG(X,W ) ∼= DcohG(X
+,W+).

The gauged LG models (X,W )G and (X+,W+)G in Corollary 1.2 are K-equivalent.
Here, K-equivalence means that there exists a common equivariant resolution of the vari-
eties such that the pull-backs of the functions of LG models, and the classes of canonical
divisors, coincide. We expect the following conjecture, which is a generalization of [Seg,
Conjecture 2.15]:

Conjecture 1.3. If two gauged LG models are K-equivalent, then their derived factoriza-
tion categories are equivalent.

Conjecture 1.3 for gauged LG models with trivial Gm-actions and trivial functions is
proposed in [Kaw].

As another corollary of Theorem 1.1, we obtain the following result.
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Corollary 1.4. Let P ∈ Db(cohX1 × X2) be an G-linearizable object whose support is
proper over X1 and X2. Let PG ∈ Db(cohGX1 ×X2) be an object with Π(PG) ∼= P , where
Π is the forgetful functor. If the integral functor ΦP : Db(cohX1) → Db(cohX2) is an
equivalence (resp. fully faithful), then so is ΦPG : Db(cohGX1)→ Db(cohGX2).

Corollary 1.4 is obtained in the case of smooth projective varieties with finite group
actions by [Plo, Lemma 5]; see also [KS]. We can also prove Corollary 1.4 for a finite
group G by using [Ela2, Theorem 5.2].

1.2. Main results (Part II).

1.2.1. Background and motivation. Orlov proved the following semi-orthogonal decom-
positions between bounded derived categories of hypersurfaces in projective spaces and
categories of graded matrix factorizations [Orl3].

Theorem 1.5 ([Orl3] Theorem 40). Let X ⊂ PN−1
k be the hypersurface defined by a

section f ∈ Γ(PN−1
k ,O(d)). Denote by F the corresponding homogeneous polynomial.

(1) If d < N , there is a semi-orthogonal decomposition

Db(cohX) = ⟨OX(d−N + 1), ...,OX ,DcohGm(ANk , χd, F )⟩.
(2) If d = N , there is an equivalence

Db(cohX) ∼= DcohGm(ANk , χd, F ).
(3) If d > N , there is a semi-orthogonal decomposition

DcohGm(ANk , χd, F ) = ⟨k, ..., k(N − d+ 1),Db(cohX)⟩.

While Orlov’s approach was algebraic, there are geometric approaches to the above
theorem [Shi], [BFK2], [BDFIK3], where a version of Knörrer periodicity [Shi], [Isi] and
homological variations of GIT quotients [Seg], [H-L], [BFK2] are the main tools. Combi-
nations of Knörrer periodicity and the theory of variations of GIT quotients also imply
homological projective dualities [BDFIK2], [ADS], [ST], [Ren].

In part II, we prove another version of Knörrer periodicity [Knö], which is a derived
(or global) version, and we combine it with the theory of variations of GIT quotients by
[BFK2] to obtain a gauged LG version of Orlov’s theorem.

1.2.2. Statements. Let k be an algebraically closed field of characteristic zero. Let X be
a smooth quasi-projective variety over k, and let G be a reductive affine algebraic group
acting on X. Let E be a G-equivariant locally free sheaf of finite rank, and choose a
G-invariant regular section s ∈ Γ(X, E∨)G. Denote by Z ⊂ X the zero scheme of s. Let
χ : G→ Gm be a character ofG, and set E(χ) := E⊗O(χ), whereO(χ) is theG-equivariant
invertible sheaf corresponding to χ. Then E(χ) induces a vector bundle V(E(χ)) over X
with a G-action induced by the equivariant structure of E(χ). Let q : V(E(χ)) → X
and p : V(E(χ))|Z → Z be natural projections, and let i : V(E(χ))|Z → V(E(χ)) be
a natural inclusion. The regular section s induces a χ-semi invariant regular function
Qs : V(E(χ))→ A1. The first main result in this paper is the following:

Theorem 1.6. Let W : X → A1 be a χ-semi invariant regular function, such that the
restricted function W |Z : Z → A1 is flat. Then there is an equivalence

i∗p
∗ : DcohG(Z, χ,W |Z)

∼−→ DcohG(V(E(χ)), χ, q∗W +Qs).

The above result is an analogy of Shipman’s and Isik’s result, where they consider
the case when G = Gm, the G-action on X is trivial, χ = idGm , and W = 0 [Shi],
[Isi]. Furthermore, the above theorem can be considered as a generalization of Knörrer
periodicity to a derived and G-equivariant version. The proof of the above theorem is quite
different from Shipman’s and Isik’s proofs, and we consider relative singularity categories
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introduced in [EP], which are equivalent to derived factorization categories, and use results
in [Orl2].

To state the next result, let S be a smooth quasi-projective variety over k with a Gm-
action, and let W : S → A1 be a χ1 := idGm-semi invariant regular function which is flat.
Let d > 1 and N > 0 be positive integers, and consider Gm-actions on ANS := S×ANk and

on PN−1
S := S × PN−1

k given by

Gm × ANS ∋ t× (s, v1, ..., vN ) 7→ (td · s, tv1, ...tvN ) ∈ ANS

Gm × PN−1
S ∋ t× (s, v1 : ... : vN ) 7→ (t · s, v1 : ... : vN ) ∈ PN−1

S .

Denote by the same notation W : ANS → A1 and W : PN−1
S → A1 the pull-backs of

W : S → A1 by the natural projections respectively. Combining the above derived Knörrer
periodicity with the theory of variations of GIT quotients, we obtain the following gauged
LG version of the Orlov’s theorem:

Theorem 1.7. Let X ⊂ PN−1
S be the hypersurface defined by a Gm-invariant section

f ∈ Γ(PN−1
S ,O(d))Gm, and assume that the morphism W : PN−1

S → A1 is flat on X.

Denote by F : ANS → A1 the regular function induced by f .
(1) If d < N , there are fully faithful functors

Φ : DcohGm(ANS , χd,W + F )→ DcohGm(X,χ1,W )

Υ : DcohGm(S, χ1,W )→ DcohGm(X,χ1,W ),

and there is a semi-orthogonal decomposition

DcohGm(X,χ1,W ) = ⟨Υd−N+1, ...,Υ0,Φ(DcohGm(ANS , χd,W + F ))⟩,

where Υi denotes the essential image of the composition (−)⊗O(i) ◦Υ.

(2) If d = N , there is an equivalence

DcohGm(X,χ1,W ) ∼= DcohGm(ANS , χd,W + F ).

(3) If d > N , there are fully faithful functors

Ψ : DcohGm(X,χ1,W )→ DcohGm(ANS , χd,W + F )

Υ : DcohGm(S, χ1,W )→ DcohGm(ANS , χd,W + F ),

and there is a semi-orthogonal decomposition

DcohGm(ANS , χd,W + F ) = ⟨Υ0, ...,ΥN−d+1,Ψ(DcohGm(X,χ1,W ))⟩,

where Υi denotes the essential image of the composition (−)⊗O(χi) ◦Υ.

Since we have an equivalence

Db(cohX) ∼= DcohGm(X,χ1, 0),

where the Gm-action on X is trivial, we can view Orlov’s theorem as the case when
S = Speck and W = 0 in the above theorem.
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1.3. Notation and conventions.

• For an integer n ∈ Z, we denote by χn : Gm → Gm the character of the 1-
dimensional algebraic torus Gm defined by

χn(t) := tn.

• For a character χ : G → Gm of an algebraic group G, we denote by O(χ) the

G-equivariant invertible sheaf (OX , λ : π∗OX
∼−→ σ∗OX) associated to χ, where

π : G×X → X and σ : G×X → X are the projection and the morphism defining
the G-action respectively. For any g ∈ G, λg := λ|{g}×X : OX

∼−→ g∗OX is given as
the composition

OX
χ(g)−−→ OX

∼−→ g∗OX
of the multiplication by χ(g) ∈ Gm and the natural isomorphism OX

∼−→ g∗OX .
For a G-equivariant quasi-coherent sheaf F on a G-scheme, we set

F (χ) := F ⊗O(χ).

• Throughout this article, unless stated otherwise, all schemes and categories are
over an algebraically closed field k of characteristic zero.

1.4. Acknowledgments. The author would like to express his deep gratitude to his
supervisor Hokuto Uehara for his valuable advice and many suggestions to improve this
paper and continuos support. A part of this article was written whilst the author was
visiting the School of Mathematics at the University of Edinburgh during the period from
October 2015 to March 2016. He appreciates the hospitality, and he would like to express
his deep gratitude to Michael Wemyss for fruitful discussions and many suggestions to
improve this paper. Finally, I would like to thank Timothy Logvinenko and Ed Segal for
their comments. The author is a Research Fellow of Japan Society for the Promotion of
Science. He is partially supported by Grant-in-Aid for JSPS Fellows ♯26-6240.

2. Comodules over comonads

Categories of comodules over comonads are main tools to obtain the main result. In this
section, we recall the definitions of comonads and comodules over comonads, and provide
basic properties of them, following [Ela2].

2.1. Comodules over comonads. Let C be a category. We start by recalling the defi-
nitions of comonads on C and comodules over a comonad.

Definition 2.1. A comonad T = (T, ε, δ) on the category C consists of a functor T : C →
C and functor morphisms ε : T → idC and δ : T → T 2 such that the following diagrams
are commutative:

T
δ //

δ
��

idT

BB
BB

BB
BB

BB
BB

BB
BB

T 2

Tε
��

T
δ //

δ
��

T 2

Tδ
��

T 2 εT // T T 2 δT // T 3

Example 2.2. Let P = (P ∗ ⊣ P∗) be an adjoint pair of functors P ∗ : C → D and
P∗ : D → C, and let ηP : idC → P∗P

∗ and εP : P ∗P∗ → idD be the adjunction morphisms.
Set TP := P ∗P∗ and δP := P ∗ηPP∗. Then T(P ) := (TP , εP , δP ) is a comonad on D.
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Definition 2.3. Let T = (T, ε, δ) be a comonad on C. A comodule over T is a pair
(C, θC) of an object C ∈ C and a morphism θC : C → T (C) such that

(1) ε(C) ◦ θC = idC
(2) the following diagram is commutative:

C
θC−−−−→ T (C)

θC

y yT (θC)
T (C)

δ(C)−−−−→ T 2(C).

Given a comonad T on C, we define the category CT of comodules over the comonad T
as follows:

Definition 2.4. Let T = (T, ε, δ) be a comonad on C. The category CT of comodules over
T on C is the category whose objects are comodules over T and whose sets of morphisms
are defined as follows;

Hom((C1, θC1), (C2, θC2)) := {f : C1 → C2 | T (f) ◦ θC1 = θC2 ◦ f}.
For a full subcategory B ⊂ C, we define the full subcategory CBT ⊂ CT as

Ob(CBT ) := {(C, θC) ∈ Ob(CT) | C ∼= B for some B ∈ B}.

Remark 2.5. Let (C, θC) ∈ CBT . By definition, there exist an object B ∈ B and an

isomorphism φ : C
∼−→ B. If we set θB := T (φ)θCφ

−1, then the pair (B, θB) is an object
of CBT and φ gives an isomorphism from (C, θC) to (B, θB) in CBT .

For a comonad which is given by an adjoint pair (P ∗ ⊣ P∗), we have a canonical functor,
called comparison functor, from the domain of P ∗ to the category of comodules over the
comonad.

Definition 2.6. The notation is the same as in Example 2.2. For an adjoint pair P =
(P ∗ ⊣ P∗), we define a functor

ΓP : C → DT(P )

as follows: For any C ∈ C and for any morphism f in C
ΓP (C) := (P ∗(C), P ∗(ηP (C))) and ΓP (f) := P ∗(f).

This functor is called the comparison functor of P . Restricting ΓP to a full subcategory
B ⊂ C, we have a restricted functor

ΓP |B : B → DP
∗(B)

T(P ) .

The following proposition gives sufficient conditions for a comparison functor to be fully
faithful or an equivalence.

Proposition 2.7 ([Ela1] Theorem 3.9, Corollary 3.11). The notation is the same as in
Example 2.2.

(1) If for any C ∈ C, the morphism ηP (C) : C → P∗P
∗(C) is a split mono, i.e. there

is a morphism ζC : P∗P
∗(C)→ C such that ζ ◦ ηP (C) = idC , then the comparison

functor ΓP : C → DT(P ) is fully faithful.
(2) If C is idempotent complete and the functor morphism ηP : idC → P∗P

∗ is split
mono, i.e. there exists a functor morphism ζ : P∗P

∗ → idC such that ζ ◦ η = id,
then ΓP : C → DT(P ) is an equivalence.



8 Y. HIRANO

2.2. Functors between categories of comodules. We introduce the notion of lin-
earizable functors which induce natural functors between categories of comodules. Let A
(resp. B and C) be a category and let TA = (TA, εA, δA) (resp. TB = (TB, εB, δB) and
TC = (TC , εC , δC)) be a comonad on A (resp. B and C).

Definition 2.8. A functor F : A → B is called linearizable with respect to TA and TB,
or just linearizable, if there exists an isomorphism of functors

Ω : FTA
∼−→ TBF

such that the following two diagrams of functor morphisms are commutative :

(1) FTA
Ω //

FεA   B
BB

BB
BB

BB
TBF

εBF~~}}
}}
}}
}}
}

(2) FTA
Ω //

FδA
��

TBF

δBF
��

F FT 2
A

TBΩ◦ΩTA // T 2
BF

We call the pair (F,Ω) a linearized functor with respect to TA and TB, and the isomor-

phism of functors Ω is called a linearization of F with respect to TA and TB.

If F : A → B is a linearizable functor with a linearization Ω : FTA
∼−→ TBF , we have an

induced functor

FΩ : ATA → BTB

defined by

FΩ(A, θA) := (F (A),Ω(A) ◦ F (θA)) and FΩ(f) := F (f).

Lemma 2.9. Let F : A → B and G : B → C be linearizable functors with linearizations
Φ : FTA

∼−→ TBF and Ψ : GTB
∼−→ TCG respectively. Then the composition GF is a

linearizable functor with linearization Ω := ΨF ◦GΦ and (GF )Ω = GΨFΦ.

Proof. By definition it is sufficient to prove that

GFεA = εCGF ◦ Ω and TCΩ ◦ ΩTA ◦GFδA = δCGF ◦ Ω.
The former one of the above equations follows from easy diagram chasing as follows.

GFεA = G(εBF ◦ Φ) = GεBF ◦GΦ = (εCG ◦Ψ)F ◦GΦ = εCGF ◦ Ω,
where the first and third equations follow from the commutativity of the diagrams corre-
sponding to (1) in Definition 2.8. The latter one is verified as follows;

TCΩ ◦ ΩTA ◦GFδA
= TCΨF ◦ TCGΦ ◦ΨFTA ◦GΦTA ◦GFδA
= TCΨF ◦ΨTBF ◦GTBΦ ◦GΦTA ◦GFδA
= TCΨF ◦ΨTBF ◦G(TBΦ ◦ ΦTA ◦ FδA)
= TCΨF ◦ΨTBF ◦G(δBF ◦ Φ)
= (TCΨ ◦ΨTB ◦GδB)F ◦GΦ
= (δCG ◦Ψ)F ◦GΦ
= δCGF ◦ Ω,

where the second equation follows from the functoriality of Ψ, and the fourth and the
sixth equations follow from the commutativity of the diagrams corresponding to (2) in
Definition 2.8. □
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The next proposition gives a sufficient condition for a restriction of the functor FΩ

associated with a linearized functor (F,Ω) to be fully faithful or an equivalence.

Proposition 2.10. Let F : A → B be a linearizable functor with a linearization Ω :
F ◦TA

∼−→ TB ◦F . Let C ⊂ A be a full subcategory of A and let D ⊂ B be a full subcategory
of B containing F (C). Assume the following condition:

(∗): Hom(C, TnA(C
′))

F−→ Hom(F (C), F (TnA(C
′))) is an isomorphism for any C,C ′ ∈ C

and n = 1, 2.

If F |C : C → D is fully faithful (resp. an equivalence), then the functor

FΩ|AC
TA

: AC
TA → B

D
TB

is also fully faithful (resp. an equivalence).

Proof. Assume F |C is fully faithful. At first we show that FΩ is fully faithful on AC
TA

.

Let C̃ := (C, θC) and C̃ ′ := (C ′, θC′) be objects of AC
TA

. By Remark 2.5, we may assume

that C and C ′ are objects of C. For f, g ∈ Hom(C̃, C̃ ′) ⊂ HomA(C,C
′), if FΩ(f) = FΩ(g),

then F (f) = F (g) as morphisms in B. Since F is fully faithful on C, this implies that
f = g as morphisms in A, whence f = g in ATA . Hence FΩ is faithful.

Take any morphism h ∈ Hom(FΩ(C̃), FΩ(C̃ ′)). Since F is full on C, there exists a
morphism f ∈ Hom(C,C ′) such that F (f) = h, and we have the following commutative
diagram:

F (C)
F (θC)−−−−→ F (TA(C))

Ω(C)−−−−→ TB(F (C))

F (f)

y yTB(F (f))

F (C ′)
F (θC′ )−−−−→ F (TA(C

′))
Ω(C′)−−−−→ TB(F (C

′))

By the functoriality of Ω, the following diagram is commutative:

F (TA(C))
Ω(C)−−−−→ TB(F (C))

F (TA(f))

y yTB(F (f))

F (TA(C
′))

Ω(C′)−−−−→ TB(F (C
′))

Combining commutativity of the above diagrams, we have

F (TA(f) ◦ θC) = F (θ′C ◦ f)

since Ω(C ′) is an isomorphism. By the condition (∗) in the assumption, we see that
TA(f) ◦ θC = θ′C ◦ f , which implies that f is a morphism in AC

TA
. Hence FΩ is full.

Assume F |C is an equivalence. We verify that the functor FΩ|AC
TA

: AC
TA
→ BDTB

is

essentially surjective. Since F |C is an equivalence, it is sufficient to prove that for any object
(B, θB) ∈ BDTB

with B = F (C) for some C ∈ C, there exists an object (C, θC) ∈ AC
TA

such

that FΩ(C, θC) = (B, θB). By the condition (∗), we know that there exists a morphism
θC : C → TA(C) such that F (θC) = Ω(C)−1 ◦ θF (C) : F (C) → F (TA(C)). To show that
the pair (C, θC) is an object of ATA , we check two conditions in Definition 2.3. Considering
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the following commutative diagram;

F (C)
F (θC) //

θF (C)

**UUU
UUUU

UUUU
UUUU

UUU

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

C
F (TA(C))

Ω(C)

ttiiii
iiii

iiii
iiii

ii

F (εA(C))

||yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
yy
y

TB(F (C))

εB(F (C))

��
F (C)

we see that F (εA(C) ◦ θC) = idF (C). Since F |C is fully faithful, we obtain

εA(C) ◦ θC = idC ,

which is the first condition in Definition 2.3. By the following commutative diagram;

F (TA(C))

Ω(C)wwppp
ppp

ppp
pp

F (TA(θC))

��

F (C)
θF (C)

//

θF (C)

��

F (θC)
33ffffffffffffffffffffffffffffff

F (θC)

����
��
��
��
��
��
��
��
��
�

TB(F (C))

TB(θF (C))

��
TB(F (C))

δB(F (C))
// T 2

B(F (C))

F (TA(C))

Ω(C)

88qqqqqqqqqqq

F (δA(C))
// F (T 2

A(C)),

TB(Ω(C))◦Ω(TA(C))

ffNNNNNNNNNNN

we see that F (δA(C) ◦ θC) = F (TA(θC) ◦ θC). By the condition (∗), we obtain

δA(C) ◦ θC = TA(θC) ◦ θC ,

which is the second condition in Definition 2.3. Hence, the pair (C, θC) is a comodule over
TA, and we see that FΩ(C, θC) = (F (C), θF (C)) by the construction of (C, θC). □

The following lemma gives a useful criteria for a functor to be linearizable with respect

to comonads which are constructed from

”

compatible” adjoint pairs.

Lemma 2.11. Assume that we have the following diagram of functors;

A

P∗

��

F // B

Q∗

��
A′

P ∗

JJ

F ′
// B′

Q∗

JJ

where P := (P ∗ ⊣ P∗) and Q := (Q∗ ⊣ Q∗) are adjoint pairs. Assume that we have two

isomorphisms of functors Ω∗ : FP ∗ ∼−→ Q∗F ′ and Ω∗ : F
′P∗

∼−→ Q∗F . Let Ω : FTP
∼−→ TQF

be the composition of functor morphisms Q∗Ω∗◦Ω∗P∗. Consider the following two diagrams
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of functor morphisms:

(i) Q∗F ′P∗
Q∗Ω∗ // Q∗Q∗F

εQF

��

(ii) F ′ ηQF
′
//

F ′ηP
��

Q∗Q
∗F ′

FP ∗P∗

Ω∗P∗

OO

FεP // F F ′P∗P
∗ Ω∗P ∗

// Q∗FP
∗

Q∗Ω∗

OO

If the above two diagrams are commutative, then (F,Ω) is a linearized functor with respect

to T(P ) and T(Q), and there exists an isomorphism of functors Σ : FΩΓP
∼−→ ΓQF

′.

Proof. We verify that the diagrams corresponding to ones in Definition 2.8 are commu-
tative. The commutativity of (i) immediately implies the commutativity of the diagram
corresponding to (1) in Definition 2.8. We show that if the diagram of (ii) is commutative,
the diagram corresponding to (2) in Definition 2.8 is commutative. By the functoriality
of Ω∗ and ηQ, the following diagrams of functor morphisms are commutative;

FP ∗P∗
Ω∗P∗ //

FP ∗ηPP∗
��

Q∗F ′P∗

Q∗F ′ηPP∗
��

FP ∗P∗P
∗P∗

Ω∗P∗P ∗P∗ // Q∗F ′P∗P
∗P∗

and

F ′P∗
ηP ′F ′P∗ //

Ω∗
��

Q∗Q
∗F ′P∗

Q∗Q∗Ω∗
��

Q∗F (B)
ηQQ∗F // Q∗Q

∗Q∗F.

Hence, we have equations of functor morphisms

(a) : Ω∗P∗P
∗P∗ ◦ FP ∗ηPP∗ = Q∗F ′ηPP∗ ◦ Ω∗P∗

and
(b) : ηQQ∗F ◦ Ω∗ = Q∗Q

∗Ω∗ ◦ ηQF ′P∗.

We see that the diagram corresponding to (2) in Definition 2.8 is commutative as follows;

TQΩ ◦ ΩTP ◦ FδP
= TQ(Q

∗Ω∗ ◦ Ω∗P∗) ◦ (Q∗Ω∗ ◦ Ω∗P∗)TP ◦ FδP
= Q∗Q∗(Q

∗Ω∗ ◦ Ω∗P∗) ◦ (Q∗Ω∗ ◦ Ω∗P∗)P
∗P∗ ◦ FP ∗ηPP∗

= Q∗Q∗Q
∗Ω∗ ◦Q∗Q∗Ω

∗P∗ ◦Q∗Ω∗P
∗P∗ ◦ (Ω∗P∗P

∗P∗ ◦ FP ∗ηPP∗)

(a)→ = Q∗Q∗Q
∗Ω∗ ◦Q∗Q∗Ω

∗P∗ ◦Q∗Ω∗P
∗P∗ ◦ (Q∗F ′ηPP∗ ◦ Ω∗P∗)

= Q∗Q∗Q
∗Ω∗ ◦ (Q∗Q∗Ω

∗P∗ ◦Q∗Ω∗P
∗P∗ ◦Q∗F ′ηPP∗) ◦ Ω∗P∗

= Q∗Q∗Q
∗Ω∗ ◦Q∗(Q∗Ω

∗ ◦ Ω∗P
∗ ◦ F ′ηP )P∗ ◦ Ω∗P∗

(ii)→ = Q∗Q∗Q
∗Ω∗ ◦Q∗ηQF

′P∗ ◦ Ω∗P∗

= Q∗(Q∗Q
∗Ω∗ ◦ ηQF ′P∗) ◦ Ω∗P∗

(b)→ = Q∗(ηQQ∗F ◦ Ω∗) ◦ Ω∗P∗

= Q∗ηQQ∗F ◦Q∗Ω∗ ◦ Ω∗P∗

= δQF ◦ Ω,
where the fourth, seventh and ninth equations follow from the above equation (a), the
commutativity of (ii) and the above equation (b) respectively. Hence (F,Ω) is a linearized
functor.
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For anyA ∈ A′, let Σ(A) := Ω∗(A). By constructions, we have FΩΓP (A) = (FP ∗(A),ΩP ∗(A)◦
FP ∗ηP (A)) and ΓQF

′(A) = (Q∗F ′(A), Q∗ηQF
′(A)). We show that Σ(−) defines a functor

morphism Σ : FΩΓP → ΓQF
′. So we have to verify that Ω∗(A) is a morphism in BT(Q) for

each A ∈ A′, i.e., verify the following diagram is commutative:

FP ∗(A)
ΩP ∗(A)◦FP ∗ηP (A) //

Ω∗(A)
��

TQ(FP
∗(A))

TQ(Ω∗(A))

��
Q∗F ′(A)

Q∗ηQF
′(A)

// TQ(Q
∗F ′(A))

By the functoriality of Ω∗ and the commutativity of (ii), we see that the above diagram
is commutative as follows:

TQ(Ω
∗(A)) ◦ ΩP ∗(A) ◦ FP ∗ηP (A)

= Q∗Q∗Ω
∗(A) ◦Q∗Ω∗P

∗(A) ◦ Ω∗P∗P
∗(A) ◦ FP ∗ηP (A)

= Q∗Q∗Ω
∗(A) ◦Q∗Ω∗P

∗(A) ◦ {Ω∗(P∗P
∗(A)) ◦ FP ∗(ηP (A))}

functoriality of Ω∗ → = Q∗Q∗Ω
∗(A) ◦Q∗Ω∗P

∗(A) ◦ {Q∗F ′(ηP (A)) ◦ Ω∗(A)}
= Q∗{Q∗Ω

∗(A) ◦ Ω∗P
∗(A) ◦ F ′(ηP (A))} ◦ Ω∗(A)

(ii)→ = Q∗ηQF
′(A) ◦ Ω∗(A).

Hence Σ(−) defines a functor morphism, and it is an isomorphism. □

In the following, we give an important lemma to prove the main theorem. Notation is
same as the above lemma. Let G : B → A and G′ : B′ → A′ be functors. Let C ⊂ A,
D ⊂ B, C′ ⊂ A′ and D′ ⊂ B′ be full subcategories with F (A) ⊂ D, G(D) ⊂ C, P ∗(C′) ⊂ C
and Q∗(D′) ⊂ D. Now we have the following diagram of functors;

C
F |C

--� p

  A
AA

AA
AA

A D
G|D

mm
nN

~~||
||
||
||

A
F

++

P∗




B
Q∗




G

kk

A′

P ∗

HH

F ′
++ B′

Q∗

HH

G′
kk

C′
. �

>>}}}}}}}} F ′|C′
--

P ∗|C′

OO

D′

G′|D′

mm
P0

``AAAAAAAA

Q∗|D′

OO

Let Ω∗
F : FP ∗ ∼−→ Q∗F ′, ΩF∗ : F ′P∗

∼−→ Q∗F , Ω
∗
G : GQ∗ ∼−→ P ∗G′ and ΩG∗ : G′Q∗

∼−→ P∗G
be isomorphisms of functors such that the diagrams corresponding to (i) and (ii) in Lemma
2.11, namely the following diagrams, are commutative.

Q∗F ′P∗
Q∗Ω∗ // Q∗Q∗F

εQF

��

F ′ ηQF
′

//

F ′ηP
��

Q∗Q∗F
′

FP∗P
∗ FεP //

Ω∗P∗

OO

F F ′P∗P
∗ Ω∗P ∗

// Q∗FP
∗,

Q∗Ω∗

OO



13

P ∗G′Q∗
P ∗Ω∗ // P ∗P∗G

εPG

��

G′ ηPG
′

//

G′ηQ
��

P ∗P∗G
′

GQ∗Q
∗ GεQ //

Ω∗Q∗

OO

G G′Q∗Q
∗ Ω∗Q∗

// P∗GQ
∗,

P∗Ω∗

OO

Set ΩF := Q∗ΩF∗ ◦ Ω∗
FP∗ and ΩG := P ∗ΩG∗ ◦ Ω∗

GQ∗.

Lemma 2.12. Notation is same as above. Assume that the adjunction morphisms ηP :
id→ P∗P

∗ and ηQ : id→ Q∗Q
∗ are split mono, and for any D ∈ D and A ∈ A there is a

natural isomorphism

Σ(D,A) : HomB(D,F (A)) ∼= HomA(G(D), A)

which is functorial in D and A. Then, if F |C : C → D is fully faithful, so is F ′|C′ : C′ → D′.
Moreover, if F |C and G′|D′ are fully faithful and the following diagram (⋆) of functor
morphisms is commutative, F ′|C′ is an equivalence. Define a diagram by

(⋆) : GFP ∗|C′
GFP ∗ηP //

ωP ∗

��

GFP ∗P∗P
∗|C′

GΩFP
∗
// GQ∗Q∗FP

∗|C′
ΩGFP

∗
// P ∗P∗GFP

∗|C′

P ∗P∗ωP ∗

��
P ∗|C′

P ∗ηP // P ∗P∗P
∗|C′ ,

where ω : GF |C → idC is the adjunction morphism of the adjoint pair (G|D ⊣ F |C) given
by Σ(−, ∗).

Proof. By the assumption and Lemma 2.11, (F,ΩF ) and (G,ΩG) are linearized functor,
and we have the following commutative diagram of functors

AC
T(P )

FΩF
|AC

T(P ) // BDT(Q)

C′
F ′|C′ //

ΓP |C′
OO

D′.

ΓQ|D′

OO

Since the adjunction morphisms ηP and ηQ are split mono, the comparison functors ΓP :
A′ → AT(P ) and ΓQ : B′ → BT(Q) are fully faithful functors by Proposition 2.7.

We show that if F |C is fully faithful, then the condition (∗) in Proposition 2.10 is
satisfied, i.e. the map F : Hom(C1, T

n
P (C2)) → Hom(F (C1), F (T

n
P (C2))) is bijective for

any Ci ∈ C and n = 1, 2. Consider the following commutative diagram of maps

Hom(C1, T
n
P (C2))

(−)◦ω(C1) //

F **UUU
UUUU

UUUU
UUUU

U
Hom(G(F (C1)), T

n
P (C2))

Hom(F (C1), F (T
n
P (C2)))

Σ(F (C1),TnP (C2))

44hhhhhhhhhhhhhhhhhh

Since F |C is fully faithful, ω(C1) is an isomorphism, whence the maps in the above diagram
except for F are bijective. Hence, the condition (∗) in Proposition 2.10 is satisfied, and
we see that if F |C is fully faithful, then F ′|C′ is also fully faithful by Proposition 2.10.

Assume that F |C and G′|D′ are fully faithful and that the diagram (⋆) is commutative.
Since the diagram (⋆) is commutative, the functor morphism ωP ∗|C′ : GF |CP ∗|C′ → P ∗|C′

induces a functor morphism ω′ : GΩG ◦ FΩF ◦ ΓP |C′
∼−→ ΓP |C′ . Since F |C is fully faithful,

ω′ is an isomorphism of functors. Since we have GΩG ◦ FΩF ◦ ΓP |C′ ∼= ΓP ◦ G′ ◦ F ′|C′

and ΓP is fully faithful, the functor isomorphism ω′ implies an isomorphism of functors
G′F ′|C′

∼−→ idC′ . Hence G′|D′ : D′ → C′ is an equivalence, and therefore, F ′|C′ is also an
equivalence. □
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3. Derived factorization categories

In this section, we give definitions and foundations of categories with potentials, and
construct derived factorization categories of them. We also construct functors between
factorization categories from cwp-functors.

3.1. Factorization categories. Let A be an exact category in the sense of Quillen (see
[Qui]). First of all, we define potentials on A.

Definition 3.1. A potential of A is a pair (Φ,W ) of an exact equivalence Φ : A ∼−→ A
and a functor morphism W : idA → Φ such that ΦW = WΦ. The triple (A,Φ,W ) is
called a category with a potential.

Let (Φ,W ) be a potential of A. A factorization of (Φ,W ) is a sequence in A

A =
(
A1

φA1−−→ A0
φA0−−→ Φ(A1)

)
such that φA0 ◦ φA1 = W (A1) and Φ(φA1 ) ◦ φA0 = W (A0). Objects A1 and A0 in the above
sequence are called components of the factorization A.

Definition 3.2. For a category with a potential (A,Φ,W ), we define a dg-category
F(A,Φ,W ), whose objects are factorizations of (Φ,W ), as follows. For two factorizations
A,B ∈ F(A,Φ,W ), the set of morphisms Hom(A,B) is a complex

Hom(A,B) :=
⊕
n∈Z

Hom(A,B)n

with a differential d on Hom(A,B) given by

d(f) := φB ◦ f − (−1)deg(f)f ◦ φA if f ∈ Hom(A,B)deg(f),

where

Hom(A,B)2n := Hom(A1,Φ
n(B1))⊕Hom(A0,Φ

n(B0))

Hom(A,B)2n+1 := Hom(A1,Φ
n(B0))⊕Hom(A0,Φ

n+1(B1)).

We call F(A,Φ,W ) the factorization category of (A,Φ,W ).

For any dg-category D, we define two categories Z0(D) and H0(D) whose objects are
same as D and whose morphisms are defined as follows;

HomZ0(D)(A,B) := Z0(HomD(A,B))

HomH0(D)(A,B) := H0(HomD(A,B)),

where HomD(A,B) in the right hand sides are considered as complexes.

Remark 3.3. The categories Z0(F(A,Φ,W )) and H0(F(A,Φ,W )) are generalizations of
categories of classical matrix factorizations introduced by Eisenbud [Eis].

Let A,B be objects in Z0(F(A,Φ,W )). Then the set of morphisms from A to B can
be described as follows:

HomZ0(F(A,Φ,W ))(A,B) ∼= {(f1, f0) | fi : Ai → Bi and the diagram (⋆) is commutative.}

(⋆) : A1

φA1 //

f1
��

A0

φA0 //

f0
��

Φ(A1)

Φ(f1)
��

B1

φB1 // B0

φB0 // Φ(B1)
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The set of morphisms in the category H0(F(A,Φ,W )) can be described as the set of
homotopy equivalence classes of HomZ0(F(A,Φ,W ))(A,B);

HomH0(F(A,Φ,W ))(A,B) ∼= HomZ0(F(A,Φ,W ))(A,B)/ ∼ .

Two morphisms f = (f1, f0) and g = (g1, g0) in HomZ0(F(A,Φ,W ))(A,B) are homotopy
equivalence if there exist morphisms

h0 : A0 → B1 and h1 : Φ(A1)→ B0

such that f0 = φB1 h0 + h1φ
A
0 and Φ(f1) = φB0 h1 +Φ(h0)Φ(φ

A
1 ).

Definition 3.4. For each i = 0, 1, we have a natural exact functor

(−)i : Z0(F(A,Φ,W ))→ A

defined by (A1
φA1−−→ A0

φA0−−→ Φ(A1))i := Ai. This functor extends to an exact functor of
their derived categories,

(−)i : Db(Z0(F(A,Φ,W )))→ Db(A).

Proposition 3.5. The category Z0(F(A,Φ,W )) is an exact category. Furthermore, if A
is abelian category, then Z0(F(A,Φ,W )) is an abelian category.

Proof. Assume that A is abelian category. At first, we show that Z0(F(A,Φ,W )) is an
abelian category. For any morphism f = (f1, f0) : A→ B in Z0(F(A,Φ,W )), let

ki : Ki ↪→ Ai

be the kernel of fi : Ai → Bi for each i = 0, 1. By the universal property of kernels, there
exist morphisms φK1 : K1 → K0 and φK0 : K0 → Φ(K1) such that the following diagram is
commutative:

K1

φK1 //

k1
��

K0

φK0 //

k0
��

Φ(K1)

Φ(k1)
��

A1

φA1 // A0

φA0 // Φ(A1)

Since we have an equality Φ(k1) ◦ (φK0 ◦ φK1 ) = Φ(k1) ◦W (K1), and Φ(k1) is injective, we
have φK0 ◦ φK1 =W (K1). Similarly, we see that Φ(φK1 ) ◦ φK0 =W (K0). Hence,

K := (K1
φK1−−→ K0

φK0−−→ Φ(K1))

is an object of Z0(F(A,Φ,W )). Since, Ki is the kernel of fi, K is the kernel of f . Similarly,
we see that Z0(F(A,Φ,W )) admits cokernel of any morphism, and we obtain a natural
isomorphism Im(f) ∼= Coim(f). Hence, Z0(F(A,Φ,W )) is an abelian category.

Next, we show that Z0(F(A,Φ,W )) is an exact category. Let A be the category of left
exact functors from Aop to the category of abelian groups (in a fixed universe containing
A). By [Qui], the category A is an abelian category, and we have a fully faithful functor

h : A → A,

such that h embeds A as a full subcategory of A closed under extensions, and a sequence

A′ → A→ A′′

in A is exact if and only if h carries it into an exact sequence in A (the category A is called
the abelian envelope of A). We define an exact autoequivalence Φ : A → A and a functor
morphism W : idA → Φ as follows: For an object F ∈ A, we define Φ(F ) := F ◦ (Φop)−1 ∈
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A and W (F ) := FW op(Φop)−1 : F → F ◦ (Φop)−1 where W op(Φop)−1 : idAop → (Φop)−1

is the composition

idAop
∼−→ Φop ◦ (Φop)−1 W op(Φop)−1

−−−−−−−−→ (Φop)−1

Since the functor h is compatible with potentials, it induces a fully faithful functor

Z0(F(A,Φ,W ))→ Z0(F(A,Φ,W )).

By this embedding, we obtain a natural structure of exact category on Z0(F(A,Φ,W )). □

For an object A ∈ Z0(F(A,Φ,W )), we can construct a twisted-periodic infinite sequence
Com(A) = (Com(A)•, d•A) in A with di+1

A ◦ diA =W (Com(A)i) as follows;

Com(A)2i := Φi(A0), Com(A)2i−1 := Φi(A1),

d2iA := Φi(ϕA0 ), d2i−1
A := Φi(ϕA1 ).

For a morphism f = (f1, f0) ∈ HomZ0(F(A,Φ,W ))(A,B) ⊂ Hom(A1, B1)⊕Hom(A0, B0), we
define a morphism Com(f) = (Com(f)•) from Com(A) to Com(B) as follows:

Com(f)2i := Φi(f0) Com(f)2i−1 := Φi(f1)

Definition 3.6. Let C• = (· · · → Ci
δi
C•−−→ Ci+1 → · · ·) be a bounded complex of

Z0(F(A,Φ,W )). We define the totalization of C• as an object Tot(C•) ∈ Z0(F(A,Φ,W ))
in a similar way to construct the total complex of a double complex, i.e.,

Tot(C•) := (T1
t1−→ T0

t0−→ Φ(T1)),

where

Tl :=
⊕

i+j=−l
Com(Ci)j ,

tl|Com(Ci)j := Com(δiC•)j + (−1)idj
Ci
.

Let φ• : C• → D• be a morphism of complexes of Z0(F(A,Φ,W )). We define a
morphism Tot(φ•) : Tot(C•)→ Tot(D•) in Z0(F(A,Φ,W )) as

Tot(φ•) := (τ1, τ0),

where

τl|Com(Ci)j := Com(φi)j .

Taking totalizations gives an exact functor

Tot : Chb(Z0(F(A,Φ,W )))→ Z0(F(A,Φ,W )).

In what follows, we will see that the category H0(F(A,Φ,W )) has a structure of a
triangulated category.

Definition 3.7. We define an automorphism T on H0(F(A,Φ,W )), which is called the
shift functor, as follows. For an object A ∈ H0(F(A,Φ,W )), we define an object T (A)
as

T (A) := (A0
−φA0−−−→ Φ(A1)

−Φ(φA1 )
−−−−−→ Φ(A0))

and for a morphism f ∈ Hom(A,B), a morphism T (f) ∈ Hom(T (A), T (B)) is suitably
defined. For any integer n ∈ Z, denote by (−)[n] the functor Tn(−).
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Definition 3.8. Let f : A→ B be a morphism in Z0(F(A,Φ,W )). We define itsmapping
cone Cone(f) to be the totalization of the complex

(· · · → 0→ A
f−→ B → 0→ · · ·)

with B in degree zero.
A sequence in H0(F(A,Φ,W )) of the form

A
f−→ B

i−→ Cone(f)
p−→ A[1],

where i is the natural injection and p is the natural projection, is called a standard triangle
and a sequence which is isomorphic to a standard triangle is called distinguished triangle.

Proposition 3.9. H0(F(A,Φ,W )) is a triangulated category with respect to its shift func-
tor and its distinguished triangles.

Proof. This follows from an argument similar to a proof showing that homotopy categories
of exact categories are triangulated categories. □

Following Positselski (cf. [Pos1] or [EP]), we define derived factorization categories.

Definition 3.10. Denote by Acyclabs(A,Φ,W )) the smallest thick subcategory ofH0(F(A,Φ,W ))
containing all totalizations of short exact sequences in Z0(F(A,Φ,W ). E ∈ H0(F(A,Φ,W ))

is called absolutely acyclic if it lies in Acyclabs(A,Φ,W )). The absolute derived factorization
category of (A,Φ,W ) is the Verdier quotient

Dabs(A,Φ,W ) := H0(F(A,Φ,W ))/Acyclabs(A,Φ,W )

Definition 3.11. Assume A admits small coproducts. Denote Acyclco(A,Φ,W )) the
smallest thick subcategory of H0(F(A,Φ,W )) containing all totalizations of short exact se-
quences in Z0(F(A,Φ,W ) and closed under taking small coproducts. E ∈ H0(F(A,Φ,W ))
is called co-acyclic if it lies in Acyclco(A,Φ,W ). The co-derived factorization category
of (A,Φ,W ) is the Verdier quotient

Dco(A,Φ,W ) := H0(F(A,Φ,W ))/Acyclco(A,Φ,W )

Remark 3.12. (1)Let E be an exact category, and take a complex E• in E ;

E• = · · · → En−1 dn−1

−−−→ En
dn−→ En+1 → · · ·.

We say that the complex E• is exact if all kernels and images of differentials exist, and
for any n ∈ Z, we have natural isomorphisms

Im(dn−1) ∼= Ker(dn).

Let B be an abelian category, and let C be a strictly full additive subcategory of B which
is closed under extensions. The category C has a natural structure of an exact category.
If C admits either all kernels or all cokernels, then a bounded complex in C is exact in the
above sense if and only if the complex is exact in B.
(2)Note that in the definitions of Acyclabs(A,Φ,W ) and Acyclco(A,Φ,W ), we can replace

the words

”

totalizations of short exact sequences” with

”

totalizations of bounded exact
sequences”.

By the next lemma, we see that the totalization functor

Tot : Chb(Z0(F(A,Φ,W )))→ Z0(F(A,Φ,W ))

induces a functor
Tot : Kb(Z0(F(A,Φ,W )))→ H0(F(A,Φ,W ))
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which is an exact functor of triangulated categories. This functor naturally induces an
exact functor

Tot : Db(Z0(F(A,Φ,W )))→ Dabs(A,Φ,W ).

Lemma 3.13. Let φ• : C• → D• be a morphism in Chb(Z0(F(A,Φ,W ))). If φ• is homo-
topic to zero, i.e. φ• = 0 in Kb(Z0(F(A,Φ,W ))), then Tot(φ•) = 0 in H0(F(A,Φ,W )).

Proof. Let δiC• : Ci → Ci+1 and δiD• : Di → Di+1 be differentials of complexes C• and
D•, and set

S = (S1
s1−→ S0

s0−→ Φ(S1)) := Tot(C•),

T = (T1
t1−→ T0

t0−→ Φ(T1)) := Tot(D•)

and

τ = (τ1, τ0) := Tot(φ•),

where τl : Sl → Tl. If φ• = 0 in Kb(Z0(F(A,Φ,W ))), then there exist morphisms hi :
Ci → Di−1 such that φi = δi−1

D• hi + hi+1δiC• . We define two morphisms σ0 : S0 → T1 and
σ1 : Φ(S1)→ T0 in A as

σl|Com(Ci)j := Com(hi)j

for each l = 0, 1. Then we have(
s1σ0 +Φ(σ1)t0

)
|Com(Ci)j

=
(
Com(δi−1

D• )
j + (−1)i−1dj

Di−1

)
Com(hi)j +Φ(σ1)

(
Com(δiC•)j + (−1)idj

Ci

)
= Com(δi−1

D• )
jCom(hi)j + (−1)i−1dj

Di−1Com(hi)j +Com(hi+1)jCom(δiC•)j + (−1)iCom(hi)j+1dj
Ci

= Com(δi−1
D• h

i + hi+1δiC•)j

= τ0|Com(Ci)j ,

where dj
Di−1 and dj

Ci
are morphisms in the infinite sequences Com(Di−1) and Com(Ci)

respectively. Hence, we have τ0 = s1σ0 + Φ(σ1)t0. Similarly, we obtain Φ(τ1) = s0σ1 +
Φ(σ0)Φ(t1). Hence, Tot(φ

•) = 0 in H0(F(A,Φ,W )). □

Consider an exact functor of exact categories

τ : A → Z0(F(A,Φ, 0)),

which is defined by

τ(A) := (0 −→ A −→ 0).

Then this functor induces an exact functor of triangulated categories

τ : Db(A)→ Db(Z0(F(A,Φ, 0))).

Definition 3.14. We define an exact functor

Υ : Db(A)→ Dabs(A,Φ, 0)

as the composition

Db(A) τ−→ Db(Z0(F(A,Φ, 0))) Tot−−→ Dabs(A,Φ, 0).
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3.2. cwp-functors. Let (A,ΦA,WA), (B,ΦB,WB) and (C,ΦC ,WC) be categories with
potentials.

Definition 3.15. Let F : A → B be an additive functor. F is compatible with po-
tentials with respect to (ΦA,WA) and (ΦB,WB) if there exists a functor isomorphism

σ : FΦA
∼−→ ΦBF such that WBF = σ ◦FWA. We call the pair (F, σ) a cwp-functor and

write

(F, σ) : (A,ΦA,WA)→ (B,ΦB,WB).

We just say F is a cwp-functor and write F : (A,ΦA,WA) → (B,ΦB,WB) when there is
no confusion about what σ is.

A cwp-functor (F, σ) : (A,ΦA,WA)→ (B,ΦB,WB) induces a natural dg-functor

F(F, σ) : F(A,ΦA,WA)→ F(B,ΦB,WB)

as follows. For objects A,B ∈ F(A,ΦA,WA) and for a morphism f ∈ Hom(Ai,Φ
n
A(Bj)),

we define

F(F, σ)(A) :=
(
F (A1)

F (φA1 )
−−−−→ F (A0)

σ(A1)◦F (φA0 )
−−−−−−−−→ ΦB(F (A1))

)
and

F(F, σ)(f) := σn(Bj) ◦ F (f) ∈ Hom(F (Ai),Φ
n
B(F (Bj))),

where σn : FΦnA
∼−→ ΦnBF is the functor isomorphism induced by σ. By the construction,

we see that the morphism F(F, σ) : Hom(A,B)→ Hom(F(F, σ)(A),F(F, σ)(B)) preserves
degrees of complexes and is compatible with differentials.

In the following lemma, we give fundamental properties of dg-functors give as F(−).
Since the proof is straightforward, we skip the proof.

Lemma 3.16. Let (F, σ) : (A,ΦA,WA) → (B,ΦB,WB) and (G, τ) : (B,ΦB,WB) →
(C,ΦC ,WC) be cwp-functors. Then we have

(1) (G ◦ F, τF ◦Gσ) is a cwp-functor, and we have

F(G ◦ F, τF ◦Gσ) = F(G, τ) ◦ F(F, σ).

(2) If F is fully faithful, so is F(F, σ).
(3) If F is an equivalence, so is F(F, σ).

Definition 3.17. Let (F, σ), (F ′, σ′) : (A,ΦA,WA) → (B,ΦB,WB) be cwp-functors and
let α : F → F ′ be functor morphism. We say that α is a cwp-functor morphism if the
following diagram of functor morphisms is commutative.

FΦA
σ //

αΦA
��

ΦBF

ΦBα
��

F ′ΦA
σ′

// ΦBF
′

If α is a cwp-functor morphism, we write α : (F, σ)→ (F ′, σ′).

A cwp-functor morphism α : (F, σ)→ (F ′, σ′) induces a functor morphism

F(α) : F(F, σ)→ F(F ′, σ′)

defined by

F(α)(A) := (α(A1), α(A0)) ∈ Hom(F (A1), F
′(A1))⊕Hom(F (A0), F

′(A0)).
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Since α is a cwp-functor morphism, the following diagram is commutative,

F (A1)
F (φA1 )

//

α(A1)
��

F (A0)
σ(A1)◦F (φA0 )

//

α(A0)
��

ΦB(F (A1))

ΦB(α(A1))
��

F ′(A1)
F ′(φA1 )

// F ′(A0)
σ′(A1)◦F ′(φA0 )

// ΦB(F
′(A1)),

which means that F(α)(A) ∈ Z0(Hom(F (A), F ′(A))) for any A ∈ F(A,ΦA,WA).

Definition 3.18. Let (F, σ), (F ′, σ′) : (A,ΦA,WA)→ (B,ΦB,WB) be cwp-functors and let
α : (F, σ)→ (F ′, σ′) be a cwp-functor morphism. For a cwp-functor (G,µ) : (C,ΦC ,WC)→
(A,ΦA,WA), we define a cwp-functor morphism

α(G,µ) : (F ◦G,µF ◦Gσ)→ (F ′ ◦G,µF ′ ◦Gσ′)

as α(G,µ)(C) := α(G(C)) for any C ∈ C. Similarly, for a cwp-functor (H, ν) : (B,ΦB,WB)→
(C,ΦC ,WC), we define a cwp-functor morphism

(H, ν)α : (H ◦ F, νF ◦Hσ)→ (H ◦ F ′, νF ′ ◦Hσ′)

as (H, ν)α(A) := H(α(A)) for any A ∈ A.

The next lemma gives fundamental properties of functor morphisms given as F(−). The
proof is left to the reader.

Lemma 3.19. Let (F, σ), (F ′, σ′) and (F ′′, σ′′) be cwp-functors from (A,ΦA,WA) to
(B,ΦB,WB) and let α : (F, σ) → (F ′, σ′) and β : (F ′, σ′) → (F ′′, σ′′) be cwp-functor
morphisms. Then

(1) β ◦ α : (F, σ)→ (F ′′, σ′′) is a cwp-functor morphism, and we have

F(β ◦ α) = F(β) ◦ F(α)

(2) If α is an isomorphism of functors, so is F(α).
(3) For a cwp-functor (G,µ) : (C,ΦC ,WC)→ (A,ΦA,WA), we have

F(α(G,µ)) = F(α)F(G,µ).

Similarly, for a cwp-functor (H, ν) : (B,ΦB,WB)→ (C,ΦC ,WC), we have

F((H, ν)α) = F(H, ν)F(α).

Next, we introduce the notion of cwp-adjunction of cwp-functors.

Definition 3.20. Let (F, σ) : (A,ΦA,WA) → (B,ΦB,WB) and (G, τ) : (B,ΦB,WB) →
(A,ΦA,WA) be cwp-functors. We say that (F, σ) is left cwp-adjoint to (G, τ), denoted
by (F, σ) ⊣ (G, τ), if F is left adjoint to G and adjunction morphisms are cwp-functor
morphisms.

Lemma 3.21. In the same notation as above, assume (F, σ) ⊣ (G, τ) and let ε : (FG, σG◦
Fτ)→ idB and η : idA → (GF, τF ◦Gσ) be adjunction morphisms which are cwp-functor
morphisms. Then F(F, σ) ⊣ F(G, τ) and

F(ε) : F(F, σ) ◦ F(G, τ)→ idF(B,ΦB,WB)

F(η) : idF(A,ΦA,WA) → F(G, τ) ◦ F(F, σ)
are the adjunction morphisms of the adjoint pair F(F, σ) ⊣ F(G, τ).
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Proof. Since ε : FG → idB and η : idA → GF are adjunction morphisms of the adjoint
pair F ⊣ G, the following compositions are identities of functors;

F
Fη−−→ FGF

εF−−→ F and G
ηG−−→ GFG

Gε−−→ G.

By Lemma 3.16 and Lemma 3.19, the following compositions are also identities of dg-
functors;

F(F, σ)
F(F,σ)F(η)−−−−−−→ F(F, σ)F(G, τ)F(F, σ)

F(ε)F(F,σ)−−−−−−→ F(F, σ)

and

F(G, τ)
F(η)F(G,τ)−−−−−−−→ F(G, τ)F(F, σ)F(G, τ)

F(G,τ)F(ε)−−−−−−→ F(G, τ).

Hence, we have an adjunction F(F, σ) ⊣ F(G, τ), and F(ε) and F(η) are adjunction mor-
phisms. □

We give definitions of relative adjoint functors and basic properties of it after [Ulm].

Definition 3.22. Let C1, C2 and D be categories and let F : C1 → D, G : D → C2 and
J : C1 → C2 be functors. F is called left J-relative adjoint to G (or J-left adjoint to
G) if for each C ∈ C1, D ∈ D there is an isomorphism

HomD(F (C), D) ∼= HomC2(J(C), G(D))

which is functorial in C and D.
Dually, F is called right J-relative adjoint to G (or J-right adjoint to G) if for

each C ∈ C1, D ∈ D there is an isomorphism

HomD(D,F (C)) ∼= HomC2(G(D), J(C))

which is functorial in C and D.

Remark 3.23.
(1) Relative adjointness is not symmetric property, i.e. although F is J-left adjoint to G,
G is not J-right adjoint to F in general.
(2) If F is J-left adjoint to G, there is a functor morphism

µ : J → GF

such that µ(C) : J(C)→ G(F (C)) corresponds to idF (C).
Similarly, if F is J-right adjoint to G, there is a functor morphism

ν : GF → J

such that ν(C) : G(F (C))→ J(C) is corresponding to idF (C).
The above functor morphisms µ : J → GF and ν : GF → J are called the front

adjunction.

By the next lemma, we see that the existence of a front adjunction implies a relative
adjunction.

Lemma 3.24 ([Ulm] Lemma 2.7). The notation is the same as in Definition 3.22. The
functor F is J-left adjoint to G if and only if there exists a functor morphism µ : J → GF
such that for each C ∈ C1 and D ∈ D the composition of maps

Hom(F (C), D)
G(−)−−−→ Hom(G(F (C)), G(D))

Hom(µ(C),G(D))−−−−−−−−−−−→ Hom(J(C), G(D))

is a bijection.
Similarly, F is J-right adjoint to G if and only if there exists a functor morphism

ν : GF → J such that for each C ∈ C1 and D ∈ D the composition of maps

Hom(D,F (C))
G(−)−−−→ Hom(G(D), G(F (C)))

Hom(G(D),ν(C))−−−−−−−−−−→ Hom(G(D), J(C))
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is bijective.

Similarly, the notion of relative cwp-adjunction is given in the following.

Definition 3.25. In the same notation as in Definition 3.22, let (Φi,Wi) and (Ψ, V )
be potentials of Ci and D respectively. Let (F, σ) : (C1,Φ1,W1) → (D,Ψ, V ), (G, τ) :
(D,Ψ, V )→ (C2,Φ2,W2) and (J, η) : (C1,Φ1,W1)→ (C2,Φ2,W2) be cwp-functors. (F, σ) is
called (J, η)-left cwp-adjoint to (G, τ) if F is J-left adjoint to G and the front adjunction
is cwp-functor morphism.

Dually, we say (F, σ) is (J, η)-right cwp-adjoint to (G, τ) if F is J-right adjoint to G
and the front adjunction is cwp-functor morphism.

Lemma 3.26. Notation is the same as in Definition 3.25. If (F, σ) is (J, η)-left cwp-
adjoint to (G, τ) and µ : J → GF is the front adjunction, then F(F, σ) is F(J, η)-left
adjoint to F(G, τ) and the front adjunction is F(µ) : F(J, η)→ F(G, τ)F(F, σ).

Similarly, if (F, σ) is (J, η)-right cwp-adjoint to (G, τ) and ν is the front adjunction,
then F(F, σ) is F(J, η)-right adjoint to F(G, τ) and the front adjunction is F(ν).

Proof. If (F, σ) is (J, η)-left cwp-adjoint to (G, τ), then the front adjunction µ : J → GF
is cwp-functor morphism, and the composition

Hom(F (C), D)
G(−)−−−→ Hom(G(F (C)), G(D))

Hom(µ(C),G(D))−−−−−−−−−−−→ Hom(J(C), G(D))

is a bijection. Hence, the composition of morphisms

Hom(F(F, σ)(C), D)
F(G,τ)(−)−−−−−−→ Hom({F(G, τ) ◦ F(F, σ)}(C),F(G, τ)(D))

and

Hom({F(G, τ)◦F(F, σ)}(C),F(G, τ)(D))
Hom(F(µ)(C),F(G,τ)(D))−−−−−−−−−−−−−−−→ Hom(F(J, η)(C),F(G, τ)(D))

is also bijective. By Lemma 3.24, we see that F(F, σ) is F(J, η)-left adjoint to F(G, τ), and
the front adjunction is F(µ) : F(J, η)→ F(G, τ)F(F, σ).

The latter statement can be proved in a similar way. □

In what follows, we define cwp-bifunctors.

Definition 3.27. Let P : A × B → C be a bifunctor. We say that P is compatible
with potentials with respect to (ΦA,WA), (ΦB,WB) and (ΦC ,WC) if there are bifunctor

isomorphisms σA : P (ΦA × idB)
∼−→ ΦCP and σB : P (idA × ΦB)

∼−→ ΦCP such that

σA(A,B) ◦ P (WA(A), B) + σB(A,B) ◦ P (A,WB(B)) =WC(P (A,B))

and

ΦC(σB(A,B)) ◦ σA(A,ΦB(B)) = ΦC(σA(A,B)) ◦ σB(ΦA(A), B)

for any A ∈ A and B ∈ B. By the latter equation above, σA and σB induce a natural func-
tor isomorphism σm,n : P (ΦmA × ΦnB)

∼−→ Φm+nP for any m,n ∈ Z. The triple (P, σA, σB)
is called cwp-bifunctor and we write

(P, σA, σB) : (A,ΦA,WA)× (B,ΦB,WB)→ (C,ΦC ,WC).

For a cwp-bifunctor (P, σA, σB) : (A,ΦA,WA) × (B,ΦB,WB) → (C,ΦC ,WC), we define
a dg-bifunctor

F(P, σA, σB) : F(A,ΦA,WA)⊗ F(B,ΦB,WB)→ F(C,ΦC ,WC)
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as follows. For any object A = (A1
φA1−−→ A0

φA0−−→ ΦA(A1)) ∈ F(A,ΦA,WA) and B =

(B1
ψB1−−→ B0

ψB0−−→ ΦB(B1)) ∈ F(B,ΦB,WB), we define the object F(P, σA, σB)(A,B) ∈
F(C,ΦC ,WC) as(
P (A1, B0)⊕P (A0, B1)

ω1−→ P (A0, B0)⊕ΦC(P (A1, B1))
ω0−→ ΦC(P (A1, B0))⊕ΦC(P (A0, B1))

)
,

where

ω1 =

(
P (φA1 , id) P (id, ψB1 )

−σB(A1, B1) ◦ P (id, ψB0 ) σA(A1, B1) ◦ P (φA0 , id)

)
and

ω0 =

(
σA(A1, B0) ◦ P (φA0 , id) −ΦC(P (id, ψ

B
1 ))

σB(A0, B1) ◦ P (id, ψB0 ) ΦC(P (φ
A
1 , id))

)
.

For a morphism f : (A,B) → (A′, B′) in F(A,ΦA,WA) ⊗ F(B,ΦB,WB), we define the
morphism F(P, σA, σB)(f) : F(P, σA, σB)(A,B) → F(P, σA, σB)(A

′, B′) by the following
rule,

F(P, σA, σB)(g
m
i,j ⊗ hnk,l) :=

{
(−1)deg(h

n
1,l)ΦC(σ

m,n(A′
j , B

′
l) ◦ P (gm1,j , hn1,l)) if i = k = 1

(−1)ideg(h
n
k,l)σm,n(A′

j , B
′
l) ◦ P (gmi,j , hnk,l) otherwise

,

where gmi,j ∈ HomA(Ai,Φ
m
A(A′

j)) and h
n
k,l ∈ HomB(Bk,Φ

n
B(B

′
l)).

Definition 3.28. Let Q : Aop × B → C be a bifunctor. We say that Q is compatible
with potentials with respect to (ΦA,WA), (ΦB,WB) and (ΦC ,WC) if there are bifunctor

isomorphisms τA : Q((Φop
A )−1 × idB)

∼−→ ΦCQ and τB : Q(idA × ΦB)
∼−→ ΦCQ such that

−τA(A,B) ◦Q((Φop
A )−1(W op

A (A)), B) + τB(A,B) ◦Q(A,WB(B)) =WC(Q(A,B))

and
ΦC(τB(A,B)) ◦ τA(A,ΦB(B)) = ΦC(τA(A,B)) ◦ τB((Φop

A )−1(A), B)

for any A ∈ A and B ∈ B, where Φop
A : Aop ∼−→ Aop is the opposite equivalence of ΦA

and W op
A : Φop

A → idAop is the opposite functor morphism of WA. By the latter equation

above, τA and τB induce a natural functor isomorphism τm,n : Q(ΦmA × ΦnB)
∼−→ Φ−m+nQ

for any m,n ∈ Z. The triple (Q, τA, τB) is called cwp-bifunctor and we write

(Q, τA, τB) : (A,ΦA,WA)
op × (B,ΦB,WB)→ (C,ΦC ,WC).

For a cwp-bifunctor (Q, τA, τB) : (A,ΦA,WA)
op× (B,ΦB,WB)→ (C,ΦC ,WC), we define

a dg-bifunctor

F(Q, τA, τB) : F(A,ΦA,WA)
op ⊗ F(B,ΦB,WB)→ F(C,ΦC ,WC)

as follows. For any object A = (A1
φA1−−→ A0

φA0−−→ ΦA(A1)) ∈ F(A,ΦA,WA)
op and B =

(B1
ψB1−−→ B0

ψB0−−→ ΦB(B1)) ∈ F(B,ΦB,WB), we define the object F(Q, τA, τB)(A,B) ∈
F(C,ΦC ,WC) as(
Φ−1
C (Q(A1, B0))⊕Q(A0, B1)

ω1−→ Q(A0, B0)⊕Q(A1, B1))
ω0−→ Q(A1, B0)⊕ΦC(Q(A0, B1))

)
,

where

ω1 =

(
Q(φA0 , id) ◦ ((τ1,0)(A1, B0))

−1 Q(id, ψB1 )
Φ−1
C (τB(A1, B1) ◦Q(id, ψB0 )) Q(φA1 , id)

)
and
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ω0 =

(
−Q(φA1 , id) Q(id, ψB1 )

τB(A0, B1) ◦Q(id, ψB0 ) −τA(A0, B1) ◦ (Q(Φ−1
A (φA0 ), id))

)
.

For a morphism f : (A,B) → (A′, B′) in F(A,ΦA,WA)
op ⊗ F(B,ΦB,WB), we define the

morphism F(Q, τA, τB)(f) : F(Q, τA, τB)(A,B) → F(Q, τA, τB)(A
′, B′) by the following

rule,

F(Q, τA, τB)(g
m
i,j ⊗ hnk,l)

:=

{
Φm−1
C (τ0,n(A′

j , B
′
l) ◦Q(gm1,j , h

n
0,l) ◦ τm,0(A1, B0)

−1) if i = 1 k = 0

(−1)i−k+1ΦmC (τ0,n(A′
j , B

′
l) ◦Q(gmi,j , h

n
k,l) ◦ τm,0(Ai, Bk)−1) otherwise

where gmi,j ∈ HomAop(ΦmA(Ai), A
′
j) and h

n
k,l ∈ Hom(Bk,Φ

n
B(B

′
l)).

3.3. ind/pro-categories and their factorization categories. In this section, we re-
call the notion of ind-categories and pro-categories, and study factorization categories of
ind/pro-categories. For the detail of ind/pro-categories, see [CP] or [Kas], for example.

At first, we recall the definition and the foundations of ind/pro-categories.

Definition 3.29. A small category I is called filtering if the following properties hold;

(1) For any objects i, i′ ∈ I, there exist an object j ∈ I and morphisms i → j and
i′ → j.

(2) For two morphisms u, v : k′ → k in I, there exist an object l ∈ I and a morphism
w : k → l such that w ◦ u = w ◦ v.

A small category J is called cofiltering if its opposite category J op is filtering.

Definition 3.30. Let C be a category.
(1) We define the ind-category of C, denoted by Ind(C), as follows:

An object of Ind(C) is a functor D : I → C with I filtering. For two objects D : I → C
and E : J → C, we define the set of morphisms as

HomInd(C)(D,E) := lim←−
i∈I

lim−→
j∈J

HomC(D(i), E(j)).

(2) We define the pro-category of C, denoted by Pro(C), by the following:
An object of Pro(C) is a functor P : I → C with I cofiltering. For two objects P : I → C

and Q : J → C, we define the space of morphisms as

HomPro(C)(P,Q) := lim←−
j∈J

lim−→
i∈I

HomC(P (i), Q(j)).

Remark 3.31. (1) We have a natural equivalence

Pro(C) ∼= Ind(Cop)op.

(2) Let D : I → C and E : J → C be objects of Ind(C). The set of morphisms
HomInd(C)(D,E) is interpreted as the set of equivalence classes of maps of systems de-
fined as follows:

A map of systems from D to E is a pair φ = ({φi}i∈I , θφ) where θφ : Ob(I) →
Ob(J ) is a map from Ob(I) to Ob(J ), and φi ∈ HomC(D(i), E(θφ(i))), such that for any
morphism v : i → i′ in I there are j ∈ J , u : θφ(i) → j and u′ : θφ(i

′) → j such that the
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following diagram is commutative:

D(i)
φi //

D(v)

��

E(θφ(i))
E(u)

$$JJ
JJ

JJ
JJ

J

E(j)

D(i′)
φi′ // E(θφ(i

′))

E(u′)
::ttttttttt

Two maps of systems φ = ({φi}i∈I , θφ) and ψ = ({ψi}i∈I , θψ) are equivalent if for each
i ∈ I, there exist j ∈ Ob(J ), u : θφ(i) → j and v : θψ(i) → j such that the following
diagram commutes:

E(θφ(i))
E(u)

$$JJ
JJ

JJ
JJ

J

D(i)

φi
::uuuuuuuuu

ψi $$I
II

II
II

II
E(j)

E(θψ(i))

E(v)
::uuuuuuuuu

We denote by [φ] the morphism from D to E in Ind(C) corresponding to the equivalence
class of a map of systems φ. With this notation one can easily write down the composition
of [φ] ∈ Hom(D,E) and [ψ] ∈ Hom(E,H), where H : K → C. The composition is given
by

[ψ] ◦ [φ] = [({ψθφ(i) ◦ φi}i∈I , θψ ◦ θφ)].

(3) Let P : I → C and Q : J → C be objects of Pro(C). Similarly to (2), the set
HomPro(C)(P,Q) is interpreted as the set of equivalence classes of maps of systems defined
by the following:

A map of systems from P to Q is a pair φ = ({φj}j∈J , θφ) where θφ : Ob(J ) →
Ob(I) is a map from Ob(J ) to Ob(I) and φj ∈ HomC(P (θφ(j)), Q(j)), such that for any
morphism v : j → j′ in J there are i ∈ I, u : i→ θφ(j) and u

′ : i→ θφ(j
′) such that the

following diagram is commutative:

P (θφ(j
′))

φj′ // Q(j′)

P (i)

P (u′)
::ttttttttt

P (u) $$J
JJ

JJ
JJ

JJ

P (θφ(j))
φj // Q(j)

Q(v)

OO

Two maps of systems φ = ({φj}j∈J , θφ) and ψ = ({ψj}j∈J , θψ) are equivalent if for each
j ∈ J , there exist i ∈ Ob(I), u : i → θφ(j) and v : i → θψ(j) such that the following
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diagram commutes:

P (θφ(j))
φj

$$JJ
JJ

JJ
JJ

J

P (i)

P (u)
::uuuuuuuuu

P (v) $$I
II

II
II

II
Q(j)

P (θψ(j))

ψj
::ttttttttt

We denote by [φ] the morphism from P to Q in Pro(C) corresponding to the equivalence
class of a map of systems φ. Let [φ] ∈ Hom(P,Q) and [ψ] ∈ Hom(Q,R) be morphisms,
where R : K → C. The composition of [φ] with [ψ] is given by

[ψ] ◦ [φ] = [({ψk ◦ φθψ(k)}k∈K, θφ ◦ θψ)].

Definition 3.32. For C ∈ C, ι(C) : {̃1} → C is the functor from the category {̃1} with
a unique object, 1, and a unique morphism, id1, defined by ι(C)(1) := C. ι(−) defines
natural functors

ιInd : C → Ind(C)
ιPro : C → Pro(C).

By the constructions, the functors ιInd and ιPro are fully faithful.

Remark 3.33. Ind(−) defines an endofunctor on the category of functors, i.e.
(a) A functor F : C → D induces a natural functor

Ind(F ) : Ind(C)→ Ind(D)
as follows: For an object D : I → C ∈ Ind(C), the object Ind(F )(D) is defined by
F ◦ D : I → D. For another object D′ : I ′ → C and for a morphism [φ] : D → D′,
Ind(F )([φ]) is defined by [({F (φi)}i∈I , θφ)]. The following diagram is commutative.

Ind(C)
Ind(F ) // Ind(D)

C F //

ιInd

OO

D

ιInd

OO

(b) Let F,G : C → D be functors. A functor morphism α : F → G induces a natural
functor morphism

Ind(α) : Ind(F )→ Ind(G)

as follows: For an object D : I → C ∈ Ind(C), the morphism Ind(α)(D) is defined by
[({αD(i)}i∈I , idI)].

Similarly, Pro(−) defines an endofunctor on the category of functors, i.e.
(a′) A functor F : C → D induces a natural functor

Pro(F ) : Pro(C)→ Pro(D)
as follows: For an object P : I → C ∈ Pro(C), the object Pro(F )(P ) is defined by
(F ◦ P : I → D). For another object P ′ : I ′ → C and for a morphism [φ] : P → P ′,
Pro(F )([φ]) is defined by [((F (φi′))i′∈I′ , θφ)]. The following diagram is commutative.

Pro(C)
Pro(F ) // Pro(D)

C F //

ι

OO

D

ι

OO
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(b′) Let F,G : C → D be functors. A functor morphism α : F → G induces a natural
functor morphism

Pro(α) : Pro(F )→ Pro(G)

as follows: For an object P : I → C ∈ Pro(C), the morphism Pro(α)(P ) is defined by
[(αP (i))i∈I , idI)].

Proposition 3.34. We have the following:

(1) If C is an abelian category, then the categories Ind(C) and Pro(C) are abelian
categories.

(2) If E is an exact category, then the categories Ind(E) and Pro(E) are exact cate-
gories.

(3) If F : A → B is an exact functor of exact categories, then the functors Ind(F ) :
Ind(A)→ Ind(B) and Pro(F ) : Pro(A)→ Pro(B) are exact functors.

Proof. (1) This follows from [Kas, Theorem 8.6.5.]
(2) This is [Pre, Proposition 4.18.]
(3) Since we can take abelian envelopes of the exact categories A and B, and extend the
functor F to a functor between the abelian envelopes (see the proof of Proposition 3.5),
we may assume that A and B are abelian categories. Then we obtain the result by [Kas,
Corollary 8.6.8.] □

Let (A,ΦA,WA) be a category with a potential. Then

Ind(A,ΦA,WA) := (Ind(A), Ind(ΦA), Ind(W ))

Pro(A,ΦA,WA) := (Pro(A),Pro(ΦA),Pro(W ))

are categories with potentials. Since the natural functor ιInd : A → Ind(A) (resp. ιPro :
A → Pro(A)) is compatible with potentials with respect to (ΦA,WA) and (Ind(ΦA), Ind(W ))
(resp. (Pro(ΦA),Pro(W ))), it induces a natural fully faithful functor

F(ιInd) : F(A,ΦA,WA)→ FInd(A,ΦA,WA)

(resp. F(ιPro) : F(A,ΦA,WA)→ FPro(A,ΦA,WA) ).

Let (F, σ) : (A,ΦA,WA)→ (B,ΦB,WB) be a cwp-functor. Then

Ind(F, σ) := (Ind(F ), Ind(σ)) : Ind(A,ΦA,WA)→ Ind(B,ΦB,WB)

Pro(F, σ) := (Pro(F ),Pro(σ)) : Pro(A,ΦA,WA)→ Pro(B,ΦB,WB)

are cwp-functors, and the following diagrams are commutative:

FInd(A,ΦA,WA)
FInd(F,σ) // FInd(B,ΦB,WB) FPro(A,ΦA,WA)

FPro(F,σ) // FPro(B,ΦB,WB)

F(A,ΦA,WA)
F(F,σ) //

F(ιInd)

OO

F(B,ΦB,WB)

F(ιInd)

OO

F(A,ΦA,WA)
F(F,σ) //

F(ιPro)

OO

F(B,ΦB,WB)

F(ιPro)

OO

4. Derived factorization categories of gauged LG models

Let X be a scheme and let G be an affine algebraic group acting on X over an alge-
braically closed field k of characteristic zero. Let σ : G×X → X be the morphism defining
the action, π : G×X → X be a projection and ι : X → G×X be an embedding given by
x 7→ (e, x), where e ∈ G is the identity of group G.
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4.1. Equivariant sheaves and factorization categories of gauged LG models.

Definition 4.1. A quasi-coherent (resp. coherent) G-equivariant sheaf is a pair (F , θ)
of a quasi-coherent (resp. coherent) sheaf F and an isomorphism θ : π∗F ∼−→ σ∗F such
that

ι∗θ = idF and
(
(1G × σ) ◦ (s × 1X)

)∗
θ ◦ (1G × π)∗θ = (m × 1X)

∗θ,

where m : G × G → G is the multiplication and s : G × G → G × G is the switch of
two factors. A G-invariant morphism φ : (F1, θ1) → (F2, θ2) of equivariant sheaves is a
morphism of sheaves φ : F1 → F2 which is commutative with θi, i.e. σ

∗φ ◦ θ1 = θ2 ◦ π∗φ.
We denote by QcohG(X) (resp. cohG(X)) the category of quasi-coherent (resp. coher-

ent) G-equivariant sheaves on X whose morphisms are G-invariant morphisms. And we
denote by InjG(X), LFrG(X) and lfrG(X) the full subcategories of QcohG(X) consisting
of injective quasi-coherent equivariant sheaves, locally free equivariant sheaves and locally
free equivariant sheaves of finite ranks.

Let L ∈ PicG(X) be a G-equivariant invertible sheaf on X and let W ∈ H0(X,L)G be
an invariant section of L.

Definition 4.2. We call the data (X,L,W )G a gauged Landau-Ginzburg model
or gauged LG model, for short. We sometimes drop the script L from the notion
(X,L,W )G, and write (X,W )G if there is no confusion.

The pair (L,W ) := ((−)⊗L, (−)⊗W ) is a potential of QcohG(X), cohG(X), InjG(X),
LFrG(X) and lfrG(X), whereW is considered as the morphismW : OX → L corresponding
to the section of L.

Definition 4.3. We define factorization categories of (X,L,W )G as

QcohG(X,L,W ) := F(QcohG(X), L,W )

cohG(X,L,W ) := F(cohG(X), L,W )

InjG(X,L,W ) := F(InjG(X), L,W )

LFrG(X,L,W ) := F(LFrG(X), L,W )

lfrG(X,L,W ) := F(lfrG(X), L,W ).

We define categories of acyclic factorizations as

AcyclG(X,L,W ) := Acyclabs(QcohG(X), L,W )

AcyclcoG (X,L,W ) := Acyclco(QcohG(X), L,W )

and derived factorization categories are defined as

DQcohG(X,L,W ) := Dabs(QcohG(X), L,W )

DcohG(X,L,W ) := Dabs(cohG(X), L,W )

DLFrG(X,L,W ) := Dabs(LFrG(X), L,W )

DlfrG(X,L,W ) := Dabs(lfrG(X), L,W ).

We call the category DcohG(X,L,W ) the derived factorization category of a gauged
LGmodel (X,L,W )G. ForE,F ∈ QcohG(X,L,W ), we sayE and F are quasi-isomorphic
if E and F are isomorphic in DQcohG(X,L,W ). We denote by DcohQcohG(X,L,W ) the
full subcategory of DQcohG(X,L,W ) whose objects are quasi-isomorphic to objects in
DcohG(X,L,W ).

Similarly, we consider coderived factorization categories;

DcoQcohG(X,χ,W ) := H0(QcohG(X,χ,W ))/Acyclco(QcohG(X,χ,W ))

DcoLFrG(X,χ,W ) := H0(LFrG(X,χ,W ))/Acyclco(LFrG(X,χ,W )).
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If G is trivial, we drop the subscript G in the above notations.

Remark 4.4. By Lemma 4.10, ifX is smooth variety, then AcyclG(X,L,W ) = AcyclcoG (X,L,W )
and hence DQcohG(X,L,W ) = DcoQcohG(X,χ,W ).

Definition 4.5. A gauged LG model (X,O(χ), 0)G×Gm such that the potential is zero,
the character χ : G×Gm → Gm is projection, and the action of Gm is trivial, is called of
σ-type. If G is trivial, the gauged LG model (X,O(χ), 0)Gm of σ-type is called of trivial
σ-type.

The derived factorization category of a gauged LG models of σ-type is equivalent to
bounded derived category of coherent sheaves on some algebraic stack.

Proposition 4.6 (cf.[BFK2], Corollary 2.3.12). Let (X,O(χ), 0)G×Gm be a gauged LG
model of σ-type. Then we have equivalences

DcohG×Gm(X,O(χ), 0) ∼= Db(coh[X/G]).

The following lemma is necessary to replace objects of DQcohG(X,L,W ) or DcohG(X,L,W )
to ones with injective (or locally free) components. These replacements ensure that we
can define derived functors between derived factorization categories from exact functors
between homotopy categories of factorization categories.

Lemma 4.7 (cf. [LS], Lemma 2.10.). Assume that X is a smooth variety. Then we have

(1) For any F ∈ QcohG(X,L,W ) there exists a bounded exact sequence 0 → F →
I0 → · · · → In → 0 in Z0(QcohG(X,L,W )) with all Im ∈ InjG(X,L,W ). In
particular, there is an isomorphism F → Tot(I•) in DQcohG(X,L,W ).

(2) For any object F of QcohG(X,L,W ) (resp. cohG(X,L,W )) there exists a bounded
exact sequence 0 → Pn → · · · → P 0 → F → 0 in Z0(QcohG(X,L,W )) (resp.
Z0(cohG(X,L,W ))) with all Pm in LFrG(X,L,W ) (resp. lfrG(X,L,W )). In par-
ticular, we have an isomorphism Tot(P •)→ F .

Proof. This is an equivariant version of [LS, Lemma 2.10]. Since QcohG(X,L,W ) has
enough injective objects and for any equivariant sheaf E ∈ QcohG(X) there exist an
equivariant locally free sheaf P and surjection P → E (see e.g. [CG, Proposition 5.1.26]),
the exact sequences can be constructed in a similar way as in [LS, Lemma 2.10]. □

Lemma 4.8 ([BFK1] Proposition 3.11). Assume X is a smooth variety. We have

HomH0(QcohG(X,L,W ))(A, I) = 0

for any A ∈ AcyclG(X,L,W ) and I ∈ H0(InjG(X,L,W )). Moreover, the following com-
positions are equivalences;

H0(InjG(X,L,W ))→ H0(QcohG(X,L,W ))→ DQcohG(X,L,W )

H0(injG(X,L,W ))→ H0(QcohG(X,L,W ))→ DcohG(X,L,W ),

where injG(X,L,W ) is the dg-subcategory of InjG(X,L,W ) consisting of factorizations
which are quasi-isomorphic to factorizations with coherent components.

Since the embedding H0(injG(X,L,W ))→ H0(InjG(X,L,W )) is fully faithful, so is

DcohG(X,L,W )→ DQcohG(X,L,W )

by the above lemma. Hence we have a natural equivalence,

DcohG(X,L,W )
∼−→ DcohQcohG(X,L,W )
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Lemma 4.9 ([BFK1] Proposition 3.14). Assume X is a smooth variety. The following
natural functors are equivalences:

DLFrG(X,L,W )→ DQcohG(X,L,W )

DlfrG(X,L,W )→ DcohG(X,L,W )

Lemma 4.10 (cf. [LS], Corollary 2.23.). Assume X is a smooth variety. The categories
H0(QcohG(X,L,W )), H0(InjG(X,L,W )), AcyclG(X,L,W ) and DQcohG(X,L,W ) are
closed under arbitrary direct sums and therefore idempotent complete.

Proof. We can prove this in a similar way as in [LS, Corollary 2.23]. □

We define the supports of factorizations and complexes of factorizations as follows:

Definition 4.11. Let E ∈ Z0(cohG(X,L,W )). The support Supp(E) of E is defined as

Supp(E) := Supp(E1) ∪ Supp(E0).

For an object E• ∈ Db(Z0(cohG(X,L,W ))), we define the support Supp(E•) of E• as

Supp(E•) :=
∪
i∈Z

Supp(H i(E•)).

Remark 4.12. By definition the support of E• ∈ Db(Z0(cohG(X,L,W ))) is the union of
supports of objects E•

i ∈ Db(X), i.e. Supp(E•) =
∪
i=0,1 Supp(E

•
i ), where the support of

a complex in Db(X) is defined by the union of supports of its cohomologies.

In the following, we define properness of the
”

support” of an object in DcohG(X,L,W )
by using totalization.

Definition 4.13. Let f : X → Y be a morphism of schemes. A closed subset Z of X

is called f-proper if the composition Z ↪→ X
f−→ Y is a proper morphism. We denote

by cohf⊓G(X,L,W ) the full subcategory of cohG(X,L,W ) consisting of objects whose
supports are f -proper.

Let F be an object in DcohG(X,L,W ). We say F has a f-proper support if there
exists an object F • ∈ Db(Z0(cohG(X,L,W ))) such that Tot(F •) is isomorphic to F in
DcohG(X,L,W ) and the closed subset Supp(F •) is f -proper.

We denote by Df
⊓cohG(X,L,W ) the full subcategory of DcohG(X,L,W ) consisting of

objects which have f -proper supports.

Remark 4.14.
(1) Df

⊓cohG(X,L,W ) is strictly full subcategory, i.e. closed under isomorphisms in DcohG(X,L,W ).

(2) If f is proper morphism then Df
⊓cohG(X,L,W ) = DcohG(X,L,W ).

(3) Let g : Y → Z be another morphism of quasi-projective varieties. If F ∈ DcohG(X,L,W )
has a g ◦ f -proper support, then F has a f -proper support.

(4) An object E ∈ DcohG(X,L,W ) which is quasi-isomorphic to F ∈ cohf⊓G(X,L,W ) has
a f -proper support.

4.2. Functors of factorization categories of gauged LG models. Throughout this
section, we assume X is a smooth variety. In what follows, we define exact functors
between derived equivariant factorization categories.
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4.2.1. Derived functors between triangulated categories. In this section, we recall defini-
tions and generalities on derived functors of exact functors of triangulated categories after
[Mur]. Let D be a triangulated category, and let C be a full subcategory of D with Verdier
quotient Q : D → D/C. Throughout this section, all functor morphisms of exact functors
are assumed to be commutative with shift functors, i.e. if α : F → G is a functor mor-
phism between exact functors F,G : T → T ′ of triangulated categories T and T ′ with
shift functors Σ : T → T and Σ′ : T ′ → T ′, then α satisfies the commutativity of the
following diagram of functor morphisms,

FΣ
∼ //

Fα
��

Σ′F

Σ′α
��

GΣ
∼ // Σ′G.

Definition 4.15. Let F : D → T be an exact functor of triangulated categories. The
right derived functor of F (with respect to C) is a pair (RF, ζ) of an exact functor
RF : D/C → T and functor morphism ζ : F → RF ◦ Q with the following universal
property: for any exact functor G : D/C → T and functor morphism ρ : F → G ◦Q there
is a unique functor morphism η : RF → G making the following diagram commute:

F
ζ

{{vv
vv
vv
vv
v

ρ

##F
FF

FF
FF

FF

RF ◦Q
ηQ // G ◦Q.

We will often drop the subcategory C and ζ from the notation, and say simply that RF
is right derived functor of F .

Remark 4.16. By the definition, if right derived functor exists, it is unique up to natural
equivalence.

Definition 4.17. Let F : D → T be an exact functor. An object A ∈ D is right F -
acyclic with respect to C if the following condition holds: if s : A → B is a morphism
with cone in C, there is a morphism t : B → C with cone in C such that F (ts) is an
isomorphism.

Remark 4.18. If A ∈ D is a right F -acyclic with respect to C and in C, then F (A) = 0.

The following theorem will be applied several times in the following sections to construct
exact functors between derived factorization categories.

Theorem 4.19 ([Mur] Theorem 116). Let F : D → T be an exact functor. Assume C is a
thick subcategory of D. Suppose that for each object X ∈ D there exists a right F -acyclic
object AX and a morphism ηX : X → AX with cone in C. Then F admits a right derived
functor (RF, ζ) with the following properties

(1) For any object X ∈ D we have RF (X) = F (AX) and ζ(X) = F (ηX).
(2) An object X ∈ D is right F -acyclic if and only if ζ(X) is an isomorphism in T .

There are similar definitions and results for left derived functors. See [Mur] for the
detail.
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4.2.2. Direct and inverse image. Let Y be another smooth quasi-projective variety with
an action of G, defined by τ : G×Y → Y , and let f : X → Y be an equivariant morphism,
i.e. f ◦ σ = τ ◦ (1G × f).

For the morphism f , the direct image f∗ : QcohG(X) → QcohG(Y ) and the inverse
image f∗ : QcohG(Y )→ QcohG(X) are defined by

f∗(F , θ) := (f∗(F), (1× f)∗θ) and f∗(F , θ) := (f∗F , (1× f)∗θ).
Let L ∈ PicG(Y ) be an equivariant invertible sheaf on Y and let W ∈ H0(Y, L)G be an

invariant section of L. Then we have potentials (f∗L, f∗W ) and (L,W ) of QcohG(X) and
QcohG(Y ) respectively. By the natural isomorphisms of functors f∗((−)⊗f∗L) ∼= f∗(−)⊗L
and f∗((−)⊗L) ∼= f∗(−)⊗ f∗L, we see that the direct image f∗ and inverse image f∗ are
compatible with potentials with respect to (f∗L, f∗W ) and (L,W ) (see Definition 3.15).
So we have direct image f∗ and inverse image f∗, denoted by the same notation as usual
ones, between factorization categories

f∗ : QcohG(X, f
∗L, f∗W )→ QcohG(Y, L,W )

f∗ : QcohG(Y, L,W )→ QcohG(X, f
∗L, f∗W ).

Taking H0(−) of these dg-functors, we have exact functors

f∗ : H
0(QcohG(X, f

∗L, f∗W ))→ H0(QcohG(Y, L,W ))

f∗ : H0(QcohG(Y, L,W ))→ H0(QcohG(X, f
∗L, f∗W )).

Since these exact functors don’t send acyclic objects to acyclic ones in general, we need
to take derived functors of them. In the following, we give a proposition that implies
existences of derived functors and two lemmas about them, following [LS]. Since the
proofs are same as [LS], we will omit proofs.

Denote the following compositions by same notation f∗ and f∗,

f∗ : H
0(QcohG(X, f

∗L, f∗W ))→ H0(QcohG(Y,L,W ))→ DQcohG(Y, L,W )

f∗ : H0(QcohG(Y, L,W ))→ H0(QcohG(X, f
∗L, f∗W ))→ DQcohG(X, f

∗L, f∗W ).

By Lemma 4.7 and Theorem 4.19, we have the following:

Proposition 4.20 (cf. [LS] Theorem 2.35).

(1) The functor f∗ : H0(QcohG(X, f
∗L, f∗W )) → DQcohG(Y, L,W ) admits a right

derived functor Rf∗ : DQcohG(X, f
∗L, f∗W )→ DQcohG(Y, L,W ) with respect to

AcyclG(X, f
∗L, f∗W ).

(2) The functor f∗ : H0(QcohG(Y, L,W ))→ DQcohG(X, f
∗L, f∗W ) has a left derived

functor Lf∗DQcohG(Y, L,W )→ DQcohG(X, f
∗L, f∗W ) with respect to AcyclG(Y, L,W ).

This left derived functor maps to DcohG(Y,L,W ) to DcohG(X, f
∗L, f∗W ).

The right derived functor Rf∗ doesn’t map an object E ∈ DcohG(X, f
∗L, f∗W ) to an

object in DcohG(Y, L,W ) in general. But the following Lemma 4.21 implies that if E
has a f -proper support, then Rf∗(E) is isomorphic to an object in DcohG(Y,L,W ). In
particular, if f is proper morphism then Rf∗ maps an object in DcohG(X, f

∗L, f∗W ) to
an object which is isomorphic to an object in DcohG(Y,L,W ) and we also denote by Rf∗
the following composition

DcohG(X, f
∗L, f∗W )

Rf∗−−→ DcohQcohG(Y, L,W )
∼−→ DcohG(Y, L,W ).

Lemma 4.21 ([LS] Lemma 2.40). Let F ∈ Chb(Z0(QcohG(Y, L,W )). If each H i(F ) ∈
DQcohG(Y, L,W ) is isomorphic to an object in DcohG(Y, L,W ), then so is Tot(F ).
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Lemma 4.22 ([LS] Lemma 2.38). Let E = (E1 → E0 → E1⊗f∗L) ∈ H0(QcohG(X, f
∗L, f∗W ))

and assume that Rif∗(En) = 0 in QcohG(Y ) for any i > 0 and each n = 0, 1. Then E is
right f∗-acyclic. In particular, if f is affine morphism then we have a canonical isomor-
phism of functors f∗

∼−→ Rf∗.
Similarly, if F = (F1 → F0 → F1 ⊗ L) ∈ H0(QcohG(Y,L,W )) and Ljf∗(Fm) = 0 in

QcohG(X) for any j > 0 and each m = 0, 1, then F is left f∗-acyclic. In particular, if f

is flat morphism then Lf∗
∼−→ f∗.

Since the direct image f∗ : QcohG(X) → QcohG(Y ) is right cwp-adjoint to the inverse
image f∗ : QcohG(Y ) → QcohG(X) with respect to potentials (f∗L, f∗W ) and (L,W ),
f∗ : QcohG(X, f

∗L, f∗W ) → QcohG(Y, L,W ) is right adjoint to f∗ : QcohG(Y, L,W ) →
QcohG(X, f

∗L, f∗W ), whose adjunction morphisms are of degree zero. Taking H0(−),
we see that f∗ : H0(QcohG(X, f

∗L, f∗W )) → H0(QcohG(Y,L,W )) is right adjoint to
f∗ : H0(QcohG(Y, L,W )) → H0(QcohG(X, f

∗L, f∗W )). Thus, by [Mur, Theorem 122],
we obtain the following adjoint pair:

Lf∗ ⊣ Rf∗

4.2.3. Tensor product and local Hom. Let L ∈ PicG(X) and V,W ∈ H0(X,L)G.
Taking tensor product gives a bifunctor (−)⊗(−) : QcohG(X)×QcohG(X)→ QcohG(X).

Note that this functor is compatible with potentials with respect to potentials (L, V ),
(L,W ) and (L, V +W ) (see Definition 3.27). So it induces a dg-bifuctor

(−)⊗ (−) : QcohG(X,L, V )⊗QcohG(X,L,W )→ QcohG(X,L, V +W ).

If we fix an object P ∈ QcohG(X,L,W ), we have an exact functor

(−)⊗ P : H0(QcohG(X,L, V ))→ DQcohG(X,L, V +W ).

Proposition 4.23. The functor (−)⊗P : H0(QcohG(X,L, V ))→ DQcohG(X,L, V +W )
has a left derived functor (−) ⊗L P : DQcohG(X,L, V ) → DQcohG(X,L, V +W ) with
respect to AcyclG(X,L, V ). If P ∈ cohG(X,L,W ) then this left derived functor maps
DcohG(X,L, V ) to DcohG(X,L, V +W ).

Proof. The proof is very similar to the proof of [LS, Theorem 2.35 (b)], and the detail is
left to the reader. □

Definition 4.24. For any complex C• ∈ Db(QcohG(X)), we define an exact functor

(−)⊗L C• : DQcohG(X,L,W )→ DQcohG(X,L,W )

as

E ⊗L C• := E ⊗L Υ(C•),

where Υ : Db(QcohG(X)) → DQcohG(X,L, 0) is the functor defined in Definition 3.14.
We denote by E ⊗ C• if E ⊗L Υ(C•) ∼= E ⊗Υ(C•).

Taking local Hom gives a bifunctor Hom(−,−) : cohG(X)op×QcohG(X)→ QcohG(X).
Note that this bifunctor is compatible with potentials with respect to potentials (L, V ),
(L,W ) and (L,W − V ) (see Definition 3.28). So it induces a dg-bifunctor

Hom(−,−) : cohG(X,L, V )⊗QcohG(X,L,W )→ QcohG(X,L,W − V ).

If we fix an object Q ∈ cohG(X,L, V ), we have an exact functor

Hom(Q,−) : H0(QcohG(X,L,W ))→ DQcohG(X,L,W − V )
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Proposition 4.25. The functor Hom(Q,−) : H0(QcohG(X,L,W ))→ DQcohG(X,L,W−
V ) has a right derived functor RHom(Q,−) : DQcohG(X,L,W )→ DQcohG(X,L,W−V )
with respect to AcyclG(X,L,W ).

Proof. The proof is very similar to the proof of [LS, Theorem 2.35 (a)], and the detail is
left to the reader. □

By Lemma 4.21, if E ∈ DcohG(X,L,W ), then RHom(Q,E) ∈ DcohQcohG(X,L,W −
V ). We use same notation RHom(Q,−) for the composition

DcohG(X,L,W )
RHom(Q,−)−−−−−−−−→ DcohQcohG(X,L,W − V )

∼−→ DcohG(X,L,W − V ).

Lemma 4.26. Let E = (E1 → E0 → E1 ⊗ L) ∈ H0(QcohG(X,L, V )) and P = (P1 →
P0 → P1⊗L) ∈ QcohG(X,L,W ). If T ori(En, Pm) = 0 for any i > 0 and any n,m ∈ {0, 1},
then E is (−) ⊗ P -acyclic object. In particular, if P ∈ LFrG(X,L,W ), then there is an

isomorphism of exact functors (−)⊗L P
∼−→ (−)⊗ P .

Let F = (F1 → F0 → F1⊗L) ∈ H0(QcohG(X,L,W )) and Q = (Q1 → Q0 → Q1⊗L) ∈
cohG(X,L, V ). If Exti(Qn, Fm) = 0 for each i > 0 and any n,m ∈ {0, 1}, then F is
Hom(Q,−)-acyclic object. In particular, if Q ∈ lfrG(X,L, V ), there is an isomorphism of

exact functors Hom(Q,−) ∼−→ RHom(Q,−).

Proof. The proof is similar to [LS, Lemma 2.38], and we leave the detail to the reader. □

Remark 4.27. In the above lemma, we can take P and Q as objects whose components
are flat sheaves.

Proposition 4.28 ([BFK1] Proposition 3.27). Let R ∈ cohG(X,L, V ). Then Hom(R,−) :
QcohG(X,L,W ) → QcohG(X,L,W − V ) is right adjoint to (−) ⊗ R : QcohG(X,L,W −
V )→ QcohG(X,L,W ).

Hom(R,−) : H0(QcohG(X,L,W )) → H0(QcohG(X,L,W − V )) is right adjoint to
(−) ⊗ R : H0(QcohG(X,L,W − V )) → H0(QcohG(X,L,W )) by the above proposition.
If I ∈ InjG(X,L,W ), J ∈ InjG(X,L,W − V ) and F ∈ lfrG(X,L, V ), then Hom(F, I) ∈
InjG(X,L,W − V ) and J ⊗R ∈ InjG(X,L,W ). Hence by Lemma 4.8 and Lemma 4.9 we
obtain an adjoint pair,

(−)⊗L R ⊣ RHom(R,−).

Definition 4.29. Let OX := (0→ OX → 0) ∈ cohG(X,L, 0). Then we define functors

(−)∨ := Hom(−,OX) : cohG(X,L,W )op → cohG(X,L,−W )

(−)L∨ := RHom(−,OX) : DcohG(X,L,W )op → DcohG(X,L,−W ).

Lemma 4.30 ([BFK1] Lemma 3.30, 3.11). The functor,

(−)L∨ : DcohG(X,L,W )op → DcohG(X,L,−W )

is an equivalence.
For F ∈ lfrG(X,L,W ), we have an isomorphism of functors,

F∨ ⊗ (−) ∼= Hom(F,−).
For E ∈ DcohG(X,L,W ), there is an isomorphism of functors,

EL∨ ⊗L (−) ∼= RHom(E,−).
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Lemma 4.31. Let E ∈ DcohG(X,L, V ) and F ∈ DcohG(X,L,W ). Let Y be a smooth
quasi-projective variety and let f : X → Y be a morphism. If E has a f -proper support,
both of E⊗LF and RHom(E,F ) have f-proper supports. In particular, if E has a f-proper
support, so is EL∨.

Proof. By the assumption, there exists an object E• ∈ Db(Z0(cohG(X,L, V ))) such that
Tot(E•) ∼= E and the morphism Supp(E•) → Y is proper. Since X is smooth and
for any M ∈ cohG(X) there exists a locally free equivariant sheaf P and a surjection
P → M , there exists an object P • ∈ Db(Z0(lfrG(X,L, V ))) which is isomorphic to E• in
Db(Z0(cohG(X,L, V ))). Then we have

E ⊗L F ∼= Tot(P •)⊗ F ∼= Tot(P • ⊗ F )

and

RHom(E,F ) ∼= Hom(Tot(P •), F ) ∼= Tot(Hom(P •, F )).

Hence it is sufficient to prove that closed subsets Supp(P • ⊗ F ) and Supp(Hom(P •, F ))
are contained in Supp(P •). But this follows from equalities

Supp(P • ⊗ F ) =
∪

i,j=0,1

Supp(P •
i ⊗ Fj)

Supp(Hom(P •, F )) =
∪

k,l=0,1

Supp(Hom(P •
k , Fl))

and the fact that for A•, B• ∈ Db(X), we have Supp(A• ⊗L B•) ⊂ Supp(A•) and
Supp(RHom(A•, B•)) ⊂ Supp(A•). □

4.2.4. Projection formula, flat base change and Grothendieck duality. Let X and Y be
smooth quasi-projective varieties and let G be an affine algebraic group acting on X and
Y . Let f : X → Y be an equivariant morphism. Take L ∈ PicG(Y ) and W ∈ H0(Y,L)G.

The following proposition is a version of projection formula for factorization categories.

Proposition 4.32 ([BFK1] Lemma 3.38). For objects E ∈ DQcohG(Y, L,W ) and F ∈
DQcohG(X, f

∗L, f∗W ), we have a natural isomorphism of exact functors,

Rf∗F ⊗L E ∼= Rf∗(F ⊗L Lf∗E).

Let Z be another smooth quasi-projective variety with G-action and let u : Z → Y be
an equivariant flat morphism. Consider the fiber product W := X ×Y Z,

W
f ′ //

u′

��

Z

u
��

X
f // Y.

Lemma 4.33 (cf. [BFK1] Lemma 2.19). We have a natural isomorphism of functors
between coherent sheaves,

u∗ ◦ f∗ ∼= f ′∗ ◦ u′∗ : QcohG(X)→ QcohG(Z).

Note that the above natural isomorphism of functors is a cwp-functor morphism. By
Lemma 3.19 (2), we have an induced isomorphism of functors between factorizations,

u∗ ◦ f∗ ∼= f ′∗ ◦ u′∗ : QcohG(X, f
∗L, f∗W )→ QcohG(Z, u

∗L, u∗W ).
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Since this isomorphism of dg-functors is of degree zero, there is a natural isomorphism of
exact functors,

u∗ ◦ f∗ ∼= f ′∗ ◦ u′∗ : H0(QcohG(X, f
∗L, f∗W ))→ H0(QcohG(Z, u

∗L, u∗W )).

Since u and u′ are flat, we have Lu∗ ∼= u∗ and Lu′∗ ∼= u′∗. For E ∈ DQcohG(X, f
∗L, f∗W ),

let I ∈ InjG(X, f
∗L, f∗W ) be an object which is quasi-isomorphic to E. Then we have

u∗ ◦Rf∗(E) ∼= u∗(f∗(I)) ∼= f ′∗(u
′∗(I)).

By the second property of right derived functor in Theorem 4.19 and Lemma 4.22, we see
that u′∗(I) is right f∗-acyclic, which implies f ′∗(u

′∗(I)) ∼= Rf ′∗(u
′∗(I)). Hence we have the

following:

Lemma 4.34. We have a natural isomorphism of functors

u∗ ◦Rf∗ ∼= Rf ′∗ ◦ u′∗ : DQcohG(X, f
∗L, f∗W )→ DQcohG(Z, u

∗L, u∗W ).

Definition 4.35. Let φ : X1 → X2 be a equivariant morphism of smooth G-varieties. We
define the relative dualizing bundle ωφ ∈ PicG(X1) as

ωφ := ωX1 ⊗ φ∗ω∨
X2
,

where ωXi ∈ PicG(Xi) is the canonical bundle on Xi with tautological equivariant struc-
ture.

In [EP], Positselski proved a version of Grothendieck duality for derived factorization
categories. In the following we give an immediate consequence of the Positselski’s result.

Theorem 4.36 (cf. [EP] Theorem 3.8). If f is proper, Rf∗ : DQcoh(X, f∗L, f∗W ) →
DQcoh(Y, L,W ) has a right adjoint functor f ! : DQcoh(Y, L,W )→ DQcoh(X, f∗L, f∗W ).
An explicit form of the functor f ! is the following:

f !(−) ∼= Lf∗(−)⊗ ωf [dim(X)− dim(Y )],

where the tensor product on the right hand side is given by Definition 4.24.

Proof. Let D•
Y be a dualizing complex on Y and write D•

X := f+D•
Y , where f

+ is a right

adjoint functor of the direct image Rf∗ : D
b(X)→ Db(Y ) of derived categories of coherent

sheaves. By [EP, Theorem 3.8], for any object E ∈ DcoQcoh(X, f∗L, f∗W ) and an object
F ∈ DcoQcoh(Y, L,W ) whose components Fi are flat sheaves, we have an isomorphism

HomDcoQcoh(Y,L,W )(Rf∗E,F ⊗D•
Y )
∼= HomDcoQcoh(X,f∗L,f∗W )(E, f

∗(F )⊗D•
X).

SinceX and Y are smooth, co-derived factorization categories are equal to absolute derived
factorization categories by Remark 4.4, and the structure sheaf OY is quasi-isomorphic
to a dualizing complex. We have f+OY ∼= ωX ⊗ f∗ω−1

Y [dim(X)− dim(Y )]. Since for any
object of DQcoh(Y,L,W ) is isomorphic to an object whose components are locally free,
in particular, flat, we obtain the theorem. □

4.2.5. Extension by zero. In this section we construct a relative left adjoint functor i! of
the inverse image i∗ of an open immersion i.

Let U be an open subvariety of X and let i : U ↪→ X be the open immersion. In what
follows we don’t consider G-actions until the next section.

Definition 4.37. For F ∈ coh(U), let F be coherent sheaf on X such that F |U ∼= F . Let

Z̃≥0 be the category such that Ob(Z̃≥0) = Z≥0 and whose sets of morphisms are defined
as follows:

HomZ̃≥0
(n,m) =

{
∅ if n < m

{≥nm} if n ≥ m
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Then we define an object i!(F ) ∈ Pro(coh(X)) as a functor i!(F ) : Z̃≥0 → coh(X) defined
by

i!(F )(n) := InF ,
where I is the ideal sheaf defining the complement X \ U . Since the object i!(F ) doesn’t
depend on the choice of an extension F by the following Lemma 4.38, this gives an exact
functor

i! : coh(U)→ Pro(coh(X)).

The functor i! is called the extension by zero of i. We also denote by i! the composition

coh(U)
i!−→ Pro(coh(X)) ↪→ Pro(Qcoh(X)).

Lemma 4.38. Let F ∈ coh(U) be an coherent sheaf on U , and let N ∈ coh(X) and
M ∈ Qcoh(X) be subsheaves of i∗(F ) ∈ Qcoh(X). If i∗(N) is contained in i∗(M), then
there is a positive integer n such that InN is contained in M .

Proof. Since we can take finite affine covering, it is enough to prove it for the case X =
Spec(A) and U = Spec(Af ) for some ring A and an element f ∈ A. Then I corresponds
to the ideal I = ⟨f⟩ of A generated by f . We consider F , N and M as corresponding
modules. Let {xk}1≤k≤r ⊂ N be a generator of N . Since i∗(N) = N ⊗A Af is contained
in i∗(M) = M ⊗A Af , for each k, there is an element yk ∈ M and nk ≥ 0 such that
xk⊗1 = yk⊗1/fnk in i∗(F )⊗Af . This implies that fnkxk = yk ∈M , since i∗(F )⊗Af ∼= F .
Set n := max{nk|1 ≤ k ≤ r}. Then we have InN ⊂M . □

Deligne proved that the extension by zero i! is a relative left adjoint to the inverse image
i∗.

Proposition 4.39 (cf. [Del] Proposition 4). For any F ∈ coh(U) and (G : I → Qcoh(X)) ∈
Pro(Qcoh(X)), we have an isomorphism

HomPro(Qcoh(X))(i!(F ), G) ∼= HomPro(Qcoh(U))(J(F ),Pro(i
∗)(G)),

where J : coh(U)→ Pro(Qcoh(U)) is the natural inclusion.

Proof. This is shown as follows;

HomPro(Qcoh(X))(i!(F ), G) = lim←−
i∈I

HomPro(Qcoh(X))(i!(F ), G(i))

∼= lim←−
i∈I

HomQcoh(U)(F, i
∗G(i))

= HomPro(Qcoh(U))(J(F ),Pro(i
∗)(G)),

where the isomorphism in the second line follows from [Del, Proposition 4]. □

Let L ∈ Pic(X) and let W ∈ H0(X,L). Then (Pro(L),Pro(W )) is a potential of
Pro(Qcoh(X)) and Pro(coh(X)). We denote their factorization categories by

QcohPro(X,L,W ) := F(Pro(Qcoh(X)),Pro(L),Pro(W ))

cohPro(X,L,W ) := F(Pro(coh(X)),Pro(L),Pro(W )).

The extension by zero i! is compatible with potentials with respect to (L|U ,W |U ) and
(Pro(L),Pro(W )). Hence the functor i! induces a dg-functor

i! : coh(U,L|U ,W |U )→ cohPro(X,L,W ).

Since i! : coh(U) → Pro(coh(X)) is an exact functor of abelian categories, i! preserves
acyclic objects. Hence i! : H

0(coh(U,L|U ,W |U )) → H0(cohPro(X,L,W )) naturally in-
duces an exact functor

i! : Dcoh(U,L|U ,W |U )→ DcohPro(X,L,W ).
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On the other hand, there is a natural functor DcohPro(X,L,W ) → Pro(Dcoh(X,L,W )).
Composing it with the embedding Pro(Dcoh(X,L,W ))→ Pro(DQcoh(X,L,W )) and i! :
Dcoh(U,L|U ,W |U )→ DcohPro(X,L,W ), we construct a functor

i! : Dcoh(U,L|U ,W |U )→ Pro(DQcoh(X,L,W )),

which is also denoted by the same notation i!.

Proposition 4.40. (1) The dg-functor i! : coh(U,L|U ,W |U ) → QcohPro(X,L,W ) is J-
left adjoint to Pro(i∗) : QcohPro(X,L,W )→ QcohPro(U,L|U ,W |U ), where J is the natural
embedding functor J : coh(U,L|U ,W |U )→ QcohPro(U,L|U ,W |U ).
(2) For any E ∈ Dcoh(U,L|U ,W |U ) and F ∈ DQcoh(X,L,W ), we have an isomorphism

HomPro(DQcoh(X,L,W ))(i!(E), ιPro(F )) ∼= HomDQcoh(U,L|U ,W |U )(E, i
∗(F )).

Proof. (1) Consider the following diagram,

coh(U)
i! //

J ''OO
OOO

OOO
OOO

Pro(Qcoh(X))

Pro(i∗)vvlll
lll

lll
lll

l

Pro(Qcoh(U))

where J is the natural embedding. Then Proposition 4.39 implies that i! is J-left adjoint
to Pro(i∗) (see Definition 3.22). Hence, (1) holds since the front adjunction J → Pro(i∗)◦i!
is a cwp-functor morphism.
(2) Let F

∼−→ J be an isomorphism in DQcoh(X,L,W ) such that the components of I are
injective quasi-coherent sheaves. Then i∗(I) is an object whose components are injective
quasi-coherent sheaves on U . By (1) and Lemma 4.8, the right hand side of the desired
isomorphism is isomorphic to

H0({ lim−→
n∈Z≥0

HomQcoh(X,L,W )(InE, I)}•).

Since taking direct limit is an exact functor, the above abelian group is isomorphic to

lim−→
n∈Z≥0

H0(HomQcoh(X,L,W )(InE, I)•),

which is isomorphic to the left hand side of the desired isomorphism by Lemma 4.8 again.
□

For later use, we will extend the extension by zero i! : coh(U) → Pro(Qcoh(X)) to a
functor defined on Qcoh(U). To do it, we need the following lemma.

Lemma 4.41 ([Del], Proposition 2). Let Y be a Noetherian scheme, and let F ∈ Qcoh(Y )
be a quasi-coherent sheaf. Denote by {Fk}k∈K the family of all coherent subsheaves of F .
Let θ(F ) ∈ Ind(coh(Y )) be a functor given by

K
θ(F )−→ coh(Y )

∈ ∈

k 7−→ Fk

Then θ(−) gives an exact equivalence

θ : Qcoh(Y )
∼−→ Ind(coh(Y )).
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Definition 4.42. We define an exact functor

i# : Qcoh(U)→ Ind(Pro(Qcoh(X)))

as the compositions

Qcoh(U)
θ−→ Ind(coh(U))

Ind(i!)−−−−→ Ind(Pro(coh(X))) ↪→ Ind(Pro(Qcoh(X)))

Remark 4.43. By the construction of i#, we have a natural isomorphism of functors

i#|coh(U)
∼= ιIndi!.

The following lemma will be necessary to prove Lemma 5.2.

Lemma 4.44. The notation is the same as above.

(1) We have a natural functor morphism

γ# : i# → ιInPri∗,

where ιInPr : Qcoh(X)→ Ind(Pro(Qcoh(X))). Restricting γ#, we obtain a natural
functor morphism

γ! : i! → ιProi∗.

such that ιIndγ! = γ#|coh(U).
(2) Consider the following cartesian square:

V := U ×X Y
j //

q

��

Y

p

��
U

i // X

We have a morphism between functors from coh(V ) to Ind(Pro(Qcoh(Y )))

λ : j#q
∗q∗ → ιIndPro(p

∗p∗)j!

such that the following diagram is commutative:

ιInPrj∗q
∗q∗

ιInPrδ // ιInPrp
∗p∗j∗ ιIndPro(p

∗p∗)ιProj∗

j#q
∗q∗

λ //

γq∗q∗

OO

ιIndPro(p
∗p∗)j!

ιIndPro(p
∗p∗)γ|coh(V )

OO

where δ : j∗q
∗q∗

∼−→ p∗p∗j∗ is a natural isomorphism of functors.

Proof. (1) Let F ∈ Qcoh(U) be a quasi-coherent sheaf on U , and let {Fk}k∈K be the
family of all coherent subsheaves of F . By definition, i#(F ) : K → Pro(Qcoh(U)) is a
functor given by i#(F )(k) = i!(Fk), and the object i!(Fk) ∈ Pro(Qcoh(U)) is the functor
given by

Z≥0 ∋ n 7→ InFk ∈ coh(U),

where Fk is a coherent subsheaf of i∗(Fk) such that i∗(Fk) ∼= Fk. Hence, the natural
inclusion Fk ↪→ i∗(F ) gives a morphism of functors

γ : i# → ιInPri∗.

(2) For F ∈ coh(V ), we will define a morphism λ(F ) : j#q
∗q∗(F )→ ιIndPro(p

∗p∗)j!(F ).
Let {Ek}k∈K be the family of all coherent subsheaves of q∗q∗(F ). Then the object
j#q

∗q∗(F ) ∈ Ind(Pro(Qcoh(Y ))) is given by the following functor

K −→ Pro(Qcoh(Y ))

∈ ∈

k 7−→ j!(Ek)
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In order to define a morphism λ(F ) : j#q
∗q∗(F )→ ιIndPro(p

∗p∗)j!(F ), it is enough to give
a family of morphisms {λ(F )k : j!(Ek)→ Pro(p∗p∗)j!(F )}k∈K in Pro(Qcoh(Y )) such that
for any inclusion v : Ek ↪→ El, the equation λ(F )k = λ(F )lj!(v) holds. Let J be the ideal
sheaf defining Y \ V , and let Ek and F be coherent subsheaves of j∗(Ek) and j∗(F ) with
j∗(Ek) ∼= Ek and j∗(F ) ∼= F respectively. Then the object j!(Ek) and Pro(p∗p∗)j!(F ) are
the following functors

Z≥0
j!(Ek)−→ Qcoh(Y )

∈ ∈

n 7−→ J nEk

Z≥0
Pro(p∗p∗)j!(F )−→ Qcoh(Y )

∈ ∈

m 7−→ Jmp∗p∗(F )
Ek is contained in j∗q

∗q∗(F ) and p∗p∗(F ) can be considered as a subsheaf of j∗q
∗q∗(F )

via the isomorphism δ(F ) : j∗q
∗q∗(F )

∼−→ p∗p∗j∗(F ). Since j∗Ek ∼= Ek is contained in
j∗p∗p∗(F ) ∼= q∗q∗(F ), there is a positive integer N such that JNEk is a subsheaf of
p∗p∗(F ) by Lemma 4.38. Let θλ(F )k : Z≥0 ∋ n 7→ n + N ∈ Z≥0 be a map, and let
λ(F )nk : j!(Ek)(n + N) → Pro(p∗p∗)j!(F )(n) be a morphism induced by the inclusion

JNEk ↪→ p∗p∗(F ). If we define a morphism λ(F )k : j!(Ek) → Pro(p∗p∗)j!(F ) as a map
of systems ({λ(F )nk}n∈Z≥0

, θλ(F )k) for each k ∈ K, then the family {λ(F )k}k∈K defines a
morphism λ(F ) : j#q

∗q∗(F )→ ιIndPro(p
∗p∗)j!(F ), and this gives a functor morphism

λ : j#q
∗q∗ → ιIndPro(p

∗p∗)j!.

The commutativity of the diagram follows since γ is induced by natural inclusions, and λ
is also induced by natural inclusions via δ. □

4.2.6. Integral functor for factorization. Let X1 and X2 be smooth quasi-project varieties
with actions of affine algebraic group G. Take a character χ of G, and let Oi(χ) be the
corresponding equivariant line bundle on Xi. Let Wi ∈ H0(Xi,Oi(χ))G be a G-invariant
section. Then the corresponding regular function Wi : Xi → A1 is χ-semi invariant, i.e.
W (g · x) = χ(g) ·W (x) for any g ∈ G and x ∈ Xi. Denote by πi : X1 × X2 → Xi the
projection for each i = 1, 2.

Throughout this section 4.2.6, dropping the script L from notation, we write DcohG(−, ∗)
instead of DcohG(−, L, ∗), because all equivariant line bundles in this section are the one
corresponding to the character χ.

Definition 4.45. For P ∈ DQcohG(X1 × X2, π
∗
2W2 − π∗1W1), we define the integral

functor ΦP with kernel P as

ΦP := Rπ2∗(π
∗
1(−)⊗L P ) : DQcohG(X1,W1)→ DQcohG(X2,W2).

Remark 4.46. If Q ∈ DcohG(X1 ×X2, π
∗
2W2 − π∗1W1) has a π2-proper support, then ΦQ

maps an object in DcohG(X1,W1) to an object in DcohQcohG(X2,W2). We also denote
by ΦQ the following composition

DcohG(X1,W1)
ΦQ−−→ DcohQcohG(X2,W2)

∼−→ DcohG(X2,W2).

For an object P ∈ DcohG(X1 × X2, π
∗
2W2 − π∗1W1), we define objects PR and PL in

DcohG(X1 ×X2, π
∗
1W1 − π∗2W2) as

PR := PL∨ ⊗ π∗1ωX1 [dim(X1)]

PL := PL∨ ⊗ π∗2ωX2 [dim(X2)].
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If G is trivial, we see that there are relative adjoint pairs of integral functors.

Proposition 4.47. Let P ∈ Dcoh(X1 ×X2, π
∗
2W2 − π∗1W1) be an object which has a π1-

proper support. Then for any objects E ∈ DQcoh(X1,W1) and F ∈ Dcoh(X2,W2), we
have an isomorphism

HomDQcoh(X2,W2)(F,ΦP (E)) ∼= HomDQcoh(X1,W1)(ΦPL(F ), E).

In particular, if P has a π2-proper support, then ΦPL : Dcoh(X2,W2) → Dcoh(X1,W1)
(resp. ΦPR) is a left (resp. right) adjoint functor of ΦP : Dcoh(X1,W1)→ Dcoh(X2,W2).

Proof. Since we already have the adjunction π∗2 ⊣ Rπ2∗, it is enough to obtain the following
isomorphism

HomDQcoh(X1×X2,π∗
2W2)(D,π

∗
1E ⊗L P ) ∼= HomDQcoh(X1,W1)(Rπ1∗(D ⊗

L PL), E)

for any objects D ∈ Dcoh(X1 ×X2, π
∗
2W2) and E ∈ DQcoh(X1,W1). This is proved in a

similar way to the proof of [Log, Lemma 4]. Compactify X2 and denote by X2 a smooth
proper variety containing X2 as an open subvariety. Let ι : X1 ×X2 ↪→ X1 ×X2 be the
open immersion, and let π1 : X1 ×X2 → X1 be the projection. Then π1 = π1 ◦ ι and π1
is a proper morphism. By Theorem 4.36 and Proposition 4.40, we obtain the following
isomorphism:

HomDQcoh(X1×X2,π∗
2W2)(D,π

∗
1E⊗LP ) ∼= HomPro(DQcoh(X1,W1))(Rπ1∗(ι!(D⊗

LPL∨)⊗ωπ1 [dim(X2)]), E)

Since the object PL∨ has a π1-proper support, there exists an object P • ∈ Db(Z0(coh(X1×
X2, π

∗
1W1 − π∗2W2))) such that PL∨ ∼= Tot(P •) and Supp(P •) is π1-proper, in particular,

ι-proper. By a similar reasoning to one of [Log, Lemma 4], we see that there is an
isomorphism

ι!((−)⊗L P •)
∼−→ ι∗((−)⊗L P •)

of functors from Db(Z0(coh(X1×X2, π
∗
2W2))) to Pro(Db(Z0(Qcoh(X1×X2, π

∗
1W1)))). By

taking totalizations of the above isomorphism, we obtain an isomorphism of functors

ι!((−)⊗L PL∨)
∼−→ ι∗((−)⊗L PL∨).

Hence, we have an isomorphism Rπ1∗(ι!(D⊗LPL∨)⊗ωπ1 [dim(X2)]) ∼= Rπ1∗(D⊗LPL). If
P has a π2-proper support, the integral functor ΦP maps Dcoh(X1,W1) to Dcoh(X2,W2),
and ΦPL maps Dcoh(X2,W2) to Dcoh(X1,W1) since PL has a π1-proper support by Lemma
4.31. Hence we have ΦPL ⊣ ΦP . Since (PL)R ∼= P , we obtain the other adjunction
ΦP ⊣ ΦPR . □

We will show that the composition of integral functors is also an integral functor. Let
X3 be another smooth quasi-projective G-variety, O3(χ) be the equivariant line bundle
corresponding to the character χ, and W3 ∈ H0(X3,O3(χ))

G be an invariant section. We
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define morphisms of varieties by the following diagram;

X1 ×X2

π1

ttjjjj
jjjj

jjjj
jjjj

jj
π2

**TTT
TTTT

TTTT
TTTT

TTT

X1 X2

X1 ×X2 ×X3

π12

OO

π13

ttjjjj
jjjj

jjjj
jjj π23

**TTT
TTTT

TTTT
TTTT

X1 ×X3

q1

OO

q3
**TTT

TTTT
TTTT

TTTT
TTT

X2 ×X3

p2

OO

p3
ttjjjj

jjjj
jjjj

jjjj
jj

X3

where all morphisms are projections. For two objects

P ∈ DcohG(X1 ×X2, π
∗
2W2 − π∗1W1)

Q ∈ DcohG(X2 ×X3, p
∗
3W3 − p∗2W2),

we set another object

P ⋆ Q := π13∗(π
∗
12P ⊗L π∗23Q) ∈ DcohG(X1 ×X3, q

∗
3W3 − q∗1W1).

For two complexes P • ∈ Db(cohX1 × X2) and Q• ∈ Db(cohX2 × X3), we also define
another object

P • ⋆ Q• ∈ Db(cohX1 ×X3)

in the same manner. Then we have the following:

Proposition 4.48. The notation is the same as above. The composition of integral func-
tors

DcohG(X1,W1)
ΦP−−→ DcohG(X2,W2)

ΦQ−−→ DcohG(X3,W3)

is isomorphic to the following integral functor

DcohG(X1,W1)
ΦP⋆Q−−−→ DcohG(X3,W3).

The similar result holds for integral functors of derived categories of coherent sheaves.

Proof. For the proof of the result for derived categories of coherent sheaves, see [Huy,
Proposition 5.10], for example. We can prove the result for derived factorization categories
in the same way. □

4.3. Support properties of factorizations. Following [EP, Section 1.10], we consider
set-theoretic supports of factorizations. In this section, X is a Noetherian scheme.

Definition 4.49. Let (X,χ,W )G be a gauged LG model, and let Z ⊂ X be a G-invariant
closed subset of X. We say that a factorization F ∈ QcohG(X,χ,W ) is set-theoretically
supported on Z if the supports Supp(Fi) of components of F are contained in Z.

Denote by

QcohG(X,χ,W )Z

the dg subcategory of QcohG(X,χ,W ) consisting of factorizations set-theoretically sup-
ported on Z. H0(QcohG(X,χ,W )Z) is a full triangulated subcategory ofH0(QcohG(X,χ,W )).
Denote by Acyclco(QcohG(X,χ,W )Z) the smallest thick subcategory ofH0(QcohG(X,χ,W )Z)
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which is closed under small direct sums and contains all totalizations of short exact se-
quences in Z0(QcohG(X,χ,W )Z). Set

DcoQcohG(X,χ,W )Z := H0(QcohG(X,χ,W )Z)/Acyclco(QcohG(X,χ,W )Z).

Similarly, denote by
cohG(X,χ,W )Z

InjG(X,χ,W )Z

the dg subcategory of cohG(X,χ,W ) and InjG(X,χ,W ), respectively, consisting of fac-
torizations set-theoretically supported on Z. Let Acycl(cohG(X,χ,W )Z) be the smallest
thick subcategory of H0(cohG(X,χ,W )Z) containing all totalizations of short exact se-
quences in Z0(cohG(X,χ,W )Z), and consider the Verdier quotient

DcohG(X,χ,W )Z := H0(cohG(X,χ,W )Z)/Acycl(cohG(X,χ,W )Z).

Lemma 4.50. Let A ∈ Acyclco(QcohG(X,χ,W )Z) and I ∈ H0(InjG(X,χ,W )Z). Then
we have

HomH0(QcohG(X,χ,W )Z)(A, I) = 0.

Proof. Since arbitrary direct sums of short exact sequences are exact and the totaliza-
tion functor commutes with arbitrary direct sums, it is enough to show that for a short
exact sequence A• : 0 → A1 → A2 → A3 → 0 in Z0(QcohG(X,χ,W )Z), we have
HomH0(QcohG(X,χ,W )Z)(Tot(A

•), I) = 0. This follows from a similar argument as in the
proof of [LS, Lemma 2.13]. □

By the above Lemma, we see that every morphism from Acyclco(QcohG(X,χ,W )Z) to
InjG(X,χ,W )Z factors through the zero object in H0(QcohG(X,χ,W )Z). Hence, by [LS,
Proposition B.2], we have the following lemma:

Lemma 4.51. Let F ∈ H0(QcohG(X,χ,W )Z) and I ∈ H0(InjG(X,χ,W )Z). Then the
natural map

HomH0(QcohG(X,χ,W )Z)(F, I)
∼−→ HomDcoQcohG(X,χ,W )Z (F, I)

is an isomorphism.

Furthermore, we have the following:

Lemma 4.52. The natural functor

H0(InjG(X,χ,W )Z)→ DcoQcohG(X,χ,W )Z

is an equivalence.

Proof. This follows from [BDFIK1, Cororally 2.25]. □
The following two propositions are G-equivariant versions of results in [EP, Section

1.10].

Proposition 4.53 (cf. [EP] Proposition 1.10).
(1) The natural functor

DcohG(X,χ,W )Z → DcoQcohG(X,χ,W )Z

is fully faithful, and its image is a set of compact generators.
(2) The natural functor

ιZ : DcoQcohG(X,χ,W )Z → DcoQcohG(X,χ,W )

induced by the embedding of dg categories ιZ : QcohG(X,χ,W )Z → QcohG(X,χ,W ) is
fully faithful.
(3) The functor

ιZ : DcohG(X,χ,W )Z → DcohG(X,χ,W )
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induced by the embedding of dg categories ιZ : cohG(X,χ,W )Z → cohG(X,χ,W ) is fully
faithful.

Proof. (1) It is enough to prove that any morphism F → A in H0(QcohG(X,χ,W )Z) from
F ∈ H0(cohG(X,χ,W )Z) to A ∈ Acyclco(QcohG(X,χ,W )Z) factors through some object
in Acycl(cohG(X,χ,W )Z). This follows from a similar argument as in the proof of [LS,
Lemma 2.15].

We show that DcohG(X,χ,W )Z generates DcoQcohG(X,χ,W )Z by using a similar dis-
cussion in the proof of [Pos1, Theorem 3.11.2]. By Lemma 4.51 and 4.52, it is enough to
show that for an object I ∈ H0(InjG(X,χ,W )Z) if

HomH0(QcohG(X,χ,W )Z)(F, I) = 0

for any F ∈ cohG(X,χ,W )Z , then idI : I → I is homotopic to zero. Consider the partially
ordered set of pairs (M,h), where M ⊂ I is a subfactorization of I and h : M → I is
a contracting homotopy of the embedding i : M ↪→ I, i.e. d(h) = i. By Zorn’s lemma,
the partially ordered set contains a maximal element. Hence it suffices to show that
given (M,h) with M ̸= I, there exists (M ′, h′) with M ⊊ M ′ and h′|M = h. Take a
subfactorization M ′ ⊂ I such that M ⊊ M ′ and M ′/M ∈ cohG(X,χ,W )Z . Since the
components of I are injective sheaves, the morphism h : M → I of degree −1 can be
extended to a morphism h′′ : M ′ → I. Denote by i : M ↪→ I and i′ : M ′ ↪→ I the
embeddings. Since the map i′ − d(h′′) is a closed degree zero morphism and vanishes
on M , it induces a closed degree zero morphism g : M ′/M → I. By the assumption, g
is homotopic to zero, i.e. there exists a homotopy c : M ′/M → I such that d(c) = g.
Then h′ = h′′ + c ◦ p : M ′ → I is a contracting homotopy for i′ extending h, where
p :M ′ →M ′/M is the natural projection.

The compactness of objects in DcohG(X,χ,W )Z follows from Lemma 4.51 and 4.52.
(2) and (3) follows from Lemma 4.52 and (1). □

Proposition 4.54 (cf. [EP] Theorem 1.10). Let U := X \Z be the complement of Z ⊂ X,
and let j : U → X be the open immersion.
(1)The restriction

j∗ : DcoQcohG(X,χ,W )→ DcoQcohG(U, χ,W |U )

is the Verdier localization by the thick subcategory DcoQcohG(X,χ,W )Z .
(2)The restriction

j∗ : DcohG(X,χ,W )→ DcohG(U, χ,W |U )
is the Verdier localization by the triangulated subcategory DcohG(X,χ,W )Z . The kernel
of j∗ is the thick envelope of DcohG(X,χ,W )Z in DcohG(X,χ,W ).

Proof. We can prove this by a standard discussion as in the proof of [EP, Theorem 1.10].
(1) Since j∗ has a right adjoint Rj∗ : DcoQcohG(U,χ,W |U ) → DcoQcohG(X,χ,W )

which is fully faithful, we see that j∗ is the Verdier (Bousfield) localization by its kernel
which is generated by cones of adjunctions F → Rj∗j

∗F for any F ∈ DcoQcohG(X,χ,W ).
We show that Ker(j∗) = DcoQcohG(X,χ,W )Z . Since the inclusion DcoQcohG(X,χ,W )Z

⊂ Ker(j∗) is trivial, it is enough to show that the cone of the adjunction F → Rj∗j
∗F ,

for any F ∈ DcoQcohG(X,χ,W ), is contained in DcoQcohG(X,χ,W )Z . By Lemma 7.6,
we may take F as an factorization whose components are injective quasi-coherent sheaves.
Then the adjunction comes from a closed morphism F → j∗j

∗F in Z0(QcohG(X,χ,W )).
Since its kernel and cokernel are objects in QcohG(X,χ,W )Z , so is the cone of the ad-
junction by an equivariant version of [LS, Lemma 2.7.c].

(2) By Proposition 4.53 (1) and [Nee], we have a fully faithful functor

DcohG(X,χ,W )/DcohG(X,χ,W )Z −→ DcohG(U, χ,W |U ),
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where (−) denotes the idempotent completion of (−). Since every morphism D →
E from D ∈ DcohG(X,χ,W ) to E ∈ DcohG(X,χ,W )Z factors through an object in
DcohG(X,χ,W )Z , the natural functor

DcohG(X,χ,W )/DcohG(X,χ,W )Z → DcohG(X,χ,W )/DcohG(X,χ,W )Z

is fully faithful. Hence we see that the natural functor

DcohG(X,χ,W )/DcohG(X,χ,W )Z → DcohG(U, χ,W |U )

is also fully faithful. This functor is essentially surjective since for every G-equivariant
coherent F ∈ cohGU there exists a G-equivariant coherent sheaf F ∈ cohGX such that
j∗F ∼= F and the coherent sheaves generate DcohG(U, χ,W |U ) by [BDFIK1, Corollary
2.29] □

4.4. Comonads induced by restriction and induction functors. In this section X
is a scheme. We construct restriction and induction functors and study comonads induced
by these functors.

Let G×lX and G×dX be the varieties G×X with different G-actions which are defined
as follows;

G×G×l X −→ G×l X

∈ ∈

(g, g′, x) 7−→ (gg′, x)

and
G×G×d X −→ G×d X

∈ ∈

(g, g′, x) 7−→ (gg′, gx).

Then the following morphisms

φ : G×l X −→ G×d X

∈ ∈

(g, x) 7−→ (g, gx)

and
π : G×d X −→ X

∈ ∈

(g, x) 7−→ x

are G-equivariant. The action σ : G×X → X on X is the composition π ◦ φ.
Let ι : X → G×X be a morphism defined by

X ∋ x 7−→ (e, x) ∈ G×X.

We define an exact functor ι∗ : QcohG(G×l X)→ QcohX as

QcohG(G×l X) −→ QcohX

∈ ∈

(F , θ) 7−→ ι∗F .

Lemma 4.55. (1) The functor ι∗ : QcohG(G×l X)→ QcohX is an equivalence.
(2) The functors φ∗ : QcohG(G×d X)→ QcohG(G×l X) and φ∗ : QcohG(G×l X)→

QcohG(G×d X) are equivalences.
(3) The functors π∗ : QcohG(X) → QcohG(G ×d X) and π∗ : QcohG(G ×d X) →

QcohG(X) are exact functors.
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Proof. (1)This is a special case of [Tho, Lemma 1.3.]
(2)The morphism φ is an isomorphism.
(3)Since π is smooth, in particular flat, and affine, π∗ and π∗ are exact functors. □

Definition 4.56. We define the restriction functor ResG : QcohG(X) → QcohX and
the induction functor IndG : QcohX → QcohG(X) as

ResG := ι∗ ◦ σ∗ and IndG := σ∗ ◦ (ι∗)−1.

Remark 4.57. Note that the restriction functor ResG : QcohG(X) → QcohX is isomor-
phic to the forgetful functor, i.e. ResG(F , θ) ∼= F .

Let L be an invertible G-equivariant sheaf, and letW be an invariant section of L. Then
the pair (L,W ) defines potentials of QcohG(X) and QcohX. Since the functors ResG and
IndG are cwp-functors, these functors induce functors of factorization categories

ResG : QcohG(X,L,W )→ Qcoh(X,L,W )

IndG : Qcoh(X,L,W )→ QcohG(X,L,W )

Since ι∗ is an equivalence, the adjoint pair σ∗ ⊣ σ∗ induces the adjoint pair

ResG ⊣ IndG.

Since the functors ResG and IndG are exact functors, we obtain the exact functor of derived
factorization categories

Π∗
G := ResG : DcoQcohG(X,L,W )→ DcoQcoh(X,L,W )

ΠG∗ := IndG : DcoQcoh(X,L,W )→ DcoQcohG(X,L,W ),

and these defines an adjoint pair

ΠG := ( Π∗
G ⊣ ΠG∗ ).

Remark 4.58. The functor Π∗
G sends objects in DcohG(X,L,W ) to objects in Dcoh(X,L,W ).

But the functor ΠG∗ does not preserve coherentness of components of factorizations.

Definition 4.59. We define a comonad TG on DcoQcoh(X,L,W ) induced by G-action as
the one induced by the adjoint pair ΠG := (Π∗

G ⊣ ΠG∗);

TG := T(ΠG),

where the notation is the same as in Example 2.2. Denote by ΓG is the comparison functor
of the adjoint pair ΠG := (Π∗

G ⊣ ΠG∗),

ΓG : DcoQcohG(X,L,W )→ DcoQcoh(X,L,W )TG .

We recall the definition of (linearly) reductiveness of algebraic groups.

Definition 4.60. Let H be an affine algebraic group over a field K.

(1) H is called reductive if the radical of H is a torus.
(2) H is called linearly reductive if every rational representations of H over K is

completely reducible.

Proposition 4.61 ([MFK] Appendix A). Let H be an affine algebraic group over a field
K of characteristic zero. Then H is reductive if and only if linearly reductive.
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Lemma 4.62. Assume that G is linearly reductive.
(1) The adjunction morphism

ε : idQcohGX → IndG ◦ ResG
is a split mono i.e., there exists a functor morphism η : IndG ◦ResG → idQcohGX such that
η ◦ ε = id. The adjunction morphisms

idQcohG(X,χ,W ) → IndG ◦ ResG

idDcoQcoh(X,L,W ) → ΠG∗Π
∗
G

are also split mono. In particular, the comparison functor ΓG : DcoQcohG(X,L,W ) →
DcoQcoh(X,L,W )TG is an equivalence.

(2) The restriction functors

ResG : Db(QcohGX)→ Db(QcohX)

ResG : DcoQcohG(X,L,W )→ DcoQcoh(X,W )

are faithful.

Proof. (1) We show that idDcoQcoh(X,L,W ) → ΠG∗Π
∗
G is a split mono. Since the adjunction

morphism id → ΠG∗Π
∗
G coincide with the adjunction morphism id → π∗π

∗, and the
morphism E → π∗π

∗E is equal to the morphism E ⊗ (OX → π∗π
∗OX) via the projection

formula, it is enough to show that OX → π∗π
∗OX is split mono. Since G is linearly

reductive, the homomorphism k → OG(G) of G-modules is split mono. This means that
the adjunction OSpec(k) → p∗p

∗OSpec(k) is split mono, where p : G → Spec(k) is the
morphism defining the base space. Hence by the cartesian square,

G×X π //

��

X

��
G

p // Spec(k),

we see that OX → π∗π
∗OX is also a split mono. The latter statement follows from

Proposition 2.7 and Lemma 4.10.
(2) We will prove that the upper functor ResG : Db(QcohGX)→ Db(QcohX) is faithful;

the proof of the faithfulness of the lower functor is similar. The functor morphism η :
IndG ◦ ResG → idQcohGX constructed in (1) naturally induces the functor morphism η :
IndG ◦ ResG → idDb(QcohGX) such that the composition with the adjunction morphism

idDb(QcohGX) → IndG ◦ ResG
η−→ idDb(QcohGX)

is the identity. Hence any morphism f in Db(QcohGX) factors through IndG ◦ ResG(f),
and so f = 0 if Res(f) = 0. □

Lemma 4.63. Let X ′ be another smooth quasi-projective variety with G-action and let
f : X ′ → X be a G-equivariant morphism. Let T′

G = T(Π′
G) be the comonad on

DQcoh(X ′, f∗L, f∗W ) induced by its G-action. Let P ∈ DcohG(X,L,W ) be an object.

Then there exist functor isomorphisms Ω∗ : Rf∗Π
′∗
G

∼−→ Π∗
GRf∗ and Ω∗ : Rf∗Π

′
G∗

∼−→
ΠG∗Rf∗ such that the following diagrams are commutative;

Π∗
GRf∗Π

′
G∗

Π∗
GΩ∗ // Π∗

GΠG∗Rf∗

εRf∗
��

Rf∗
ηRf∗ //

Rf∗η′

��

ΠG∗Π
∗
GRf∗

Rf∗Π
′∗
GΠ

′
G∗

Rf∗ε′ //

Ω∗Π′
G∗

OO

Rf∗ Rf∗Π
′
G∗Π

′∗
G

Ω∗Π′∗
G // ΠG∗Rf∗Π

′∗
G,

ΠG∗Ω
∗

OO
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where ε, ε′, η and η′ are adjunction morphisms. In particular, the direct image Rf∗ :
DQcoh(X ′, f∗L, f∗W )→ DQcoh(X,L,W ) is a linearizable functor with respect to T′

G and
TG with a linearization Ω := Π∗

GΩ∗ ◦ Ω∗Π′
G∗, and the following diagram is commutative:

DQcoh(X ′, f∗L, f∗W )T′
G

Rf∗Ω // DQcoh(X,L,W )TG

DQcohG(X
′, f∗L, f∗W )

Γ′
G

OO

Rf∗ // DQcohG(X,L,W ).

ΓG

OO

The similar results hold for the inverse image Lf∗ : DQcoh(X,L,W )→ DQcoh(X ′, f∗L, f∗W )
and the tensor product (−)⊗L Π∗

GP : DQcoh(X,L, V )→ DQcoh(X,L, V +W ).

Proof. We only give a proof for the case of the direct image. Let π : G × X → X and
π′ : G × X ′ → X ′ be natural projections, and set f := idG × f : G × X ′ → G × X. By
Lemma 4.55 (1) and (2), we have the following equivalences;

Φ : DQcohG(G×d X,π∗L, π∗W )
∼−→ DQcoh(X,L,W )

Φ′ : DQcohG(G×d X ′, π′
∗
f∗L, π′

∗
f∗W )

∼−→ DQcoh(X ′, f∗L, f∗W )

such that Π∗
G
∼= Φπ∗, ΠG∗ ∼= π∗Φ

−1, Π′
G
∗ ∼= Φ′π′∗ and Π′

G∗
∼= π′∗Φ

′−1. By the following
cartesian square

G×X ′ f //

π′

��

G×X

π

��
X ′ f // X,

we have isomorphisms of functors between categories of quasi-coherent sheaves;

ω∗ : f∗π
′∗ ∼−→ π∗f∗ and ω∗ : f∗π

′
∗

∼−→ π∗f∗.

By easy computation, we see that the following diagrams are commutative;

π∗f∗π
′
∗

π∗ω∗ // π∗π∗f∗

επf∗
��

f∗
ηπf∗ //

f∗ηπ′
��

π∗π
∗f∗

f∗π
′∗π′∗

f∗επ′ //

ω∗π′
∗

OO

f∗ f∗π
′
∗π

′∗ ω∗π′∗
// π∗f∗π

′∗.

π∗ω∗

OO

Since the functor morphisms in the above diagrams are cwp-functor morphisms, taking
H0(F(−)), we obtain similar isomorphisms of functors between homotopy categories of
factorization categories, and similar commutative diagrams of morphisms of exact functors
between homotopy categories of factorization categories. These isomorphisms of functors
and commutative diagrams induce isomorphisms of functors between derived factorization
categories

Ω
∗
: Rf∗π

′∗ ∼−→ π∗Rf∗ and Ω∗ : Rf∗π
′
∗

∼−→ π∗Rf∗
and the following commutative diagrams

π∗Rf∗π
′
∗

π∗Ω∗ // π∗π∗Rf∗

επRf∗
��

Rf∗
ηπRf∗ //

Rf∗ηπ′
��

π∗π
∗Rf∗

Rf∗π
′∗π′∗

Rf∗επ′ //

Ω
∗
π′
∗

OO

Rf∗ Rf∗π
′
∗π

′∗ Ω∗π′∗
// π∗Rf∗π

′∗.

π∗Ω
∗

OO

Since Rf∗Φ
′ ∼= ΦRf∗, applying the equivalences Φ and Φ′−1 to the above functor iso-

morphisms and commutative diagrams, we obtain the desired functor isomorphisms and
commutative diagrams.

The results for the inverse image and the tensor product are proved similarly. □
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5. Main results (Part I)

At first, we prepare notation used throughout this section. Let X1 and X2 be smooth
quasi-project varieties with actions of reductive affine algebraic group G over an alge-
braically closed field k of characteristic zero. For a character χ : G → Gm of G, take
χ-semi invariant regular functions Wi ∈ H0(Xi,OXi(χ))G on Xi. Let πi : X1 ×X2 → Xi

and qi : X1 ×A1 X2 → Xi be the projections and let j : X1 ×A1 X2 ↪→ X1 × X2 be the
embedding. We have the following commutative diagram:

X1 ×X2

π1

}}zz
zz
zz
zz
zz
zz
zz
zz
zz
zz

π2

!!D
DD

DD
DD

DD
DD

DD
DD

DD
DD

D

X1 ×A1 X2

j

OO

q1
vvmmm

mmm
mmm

mmm
mm

q2
((QQ

QQQ
QQQ

QQQ
QQQ

X1

W1
((QQ

QQQ
QQQ

QQQ
QQQ

QQQ
X2

W2
vvmmm

mmm
mmm

mmm
mmm

mm

A1

Abbreviating OXi(χ), we write

DQcohG(Xi,Wi) := DQcohG(Xi,OXi(χ),Wi)

and

DcohG(Xi,Wi) := DcohG(Xi,OXi(χ),Wi).

5.1. Equivariantization. The action of G on Xi induces an adjoint pair

Πi := ( Π∗
i ⊣ Πi∗ ),

where the functor Π∗
i and Πi∗ are given by restriction and induction functors respectively;

Π∗
i := ResG : DQcohG(Xi,Wi)→ DQcoh(Xi,Wi)

Πi∗ := IndG : DQcoh(Xi,Wi)→ DQcohG(Xi,Wi).

Denote by Ti be the comonad on DQcoh(Xi,Wi) induced by the adjoint pair Πi = (Π∗
i ⊣

Πi∗) and let Γi be the comparison functor of the adjoint pair Πi,

Γi : DQcohG(Xi,Wi)→ DQcoh(Xi,Wi)Ti .

Theorem 5.1. Let PG ∈ DcohG(X1 × X2, π
∗
2W2 − π∗1W1) be an object and set P :=

ResG(PG) ∈ Dcoh(X1 × X2, π
∗
2W2 − π∗1W1). Assume that P has a πi-proper support

(i = 1, 2). If the integral functor ΦP : Dcoh(X1,W1) → Dcoh(X2,W2) is fully faithful
(resp. equivalence), then the integral functor ΦPG : DcohG(X1,W1) → DcohG(X2,W2) is
fully faithful (resp. equivalence).

Proof. Set (PL)G := (PG)
L∨ ⊗ π∗2ωX2 [dim(X2)] ∈ DcohG(X1 × X2, π

∗
1W1 − π∗2W2) and

PL := ResG((PL)G) ∈ Dcoh(X1×X2, π
∗
1W1−π∗2W2). Then we have the following diagram.
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Dcoh(X1,W1)
ΦP

..
� v

))SSS
SSSS

SSSS
SSS

Dcoh(X2,W2)
ΦPL

nn
hH

uukkkk
kkkk

kkkk
kk

DQcoh(X1,W1)
ΦP ..

Π1∗




DQcoh(X2,W2)

Π2∗




ΦPL

nn

DQcohG(X1,W1)

Π∗
1

JJ

ΦPG ..
DQcohG(X2,W2)

Π∗
2

JJ

Φ(PL)G

nn

DcohG(X1,W1)
( �

55kkkkkkkkkkkkkk ΦPG
..

Π∗
1

OO

DcohG(X2,W2)
Φ(PL)G

nn
V6

iiSSSSSSSSSSSSSS

Π∗
2

OO

By Lemma 4.63, there exist functor isomorphisms Ω∗ : ΦPΠ
∗
1

∼−→ Π∗
2ΦPG , Ω∗ : ΦPGΠ1∗

∼−→
Π2∗ΦP , Ω

∗
L : ΦPLΠ

∗
2

∼−→ Π∗
1Φ(PL)G and ΩL∗ : Φ(PL)GΠ2∗

∼−→ Π1∗ΦPL such that the dia-
grams corresponding to (i) and (ii) in Lemma 2.11, namely the following diagrams, are
commutative.

Π∗
2ΦPGΠ1∗

Π∗
2Ω∗ // Π∗

2Π2∗ΦP

ε2ΦP
��

ΦPG
η2ΦPG //

ΦPGη1

��

Π2∗Π
∗
2ΦPG

ΦPΠ
∗
1Π1∗

ΦP ε1 //

Ω∗Π1∗

OO

ΦP ΦPGΠ1∗Π
∗
1

Ω∗Π∗
1 // Π2∗ΦPΠ

∗
1,

Π2∗Ω∗

OO

Π∗
1Φ(PL)GΠ2∗

Π∗
1ΩL∗ // Π∗

1Π1∗ΦPL

ε1ΦPL
��

Φ(PL)G

η1Φ(PL)G //

Φ(PL)G
η2

��

Π1∗Π
∗
1Φ(PL)G

ΦPLΠ
∗
2Π2∗

ΦPLε2 //

Ω∗
LΠ2∗

OO

ΦPL Φ(PL)GΠ2∗Π
∗
2

ΩL∗Π
∗
2 // Π1∗ΦPLΠ

∗
2,

Π1∗Ω∗
L

OO

where εi and ηi are adjunction morphisms of the adjoint pair (Π∗
i ⊣ Πi∗). Combining

Lemma 2.12 with Proposition 4.47 and Lemma 4.62, we see that if ΦP : Dcoh(X1,W1)→
Dcoh(X2,W2) is fully faithful, then ΦPG : DcohG(X1,W1)→ DcohG(X2,W2) is also fully
faithful.

Assume ΦP is an equivalence. Then, ΦPL is fully faithful functor. Applying the above
argument to ΦPL , we see that Φ(PL)G is also fully faithful. Set Ω := Π∗

2Ω∗ ◦ Ω∗Π1∗ and
ΩL := Π∗

1ΩL∗ ◦Ω∗
LΠ2∗. By Lemma 2.12, we see that ΦPG is an equivalence by the following

Lemma 5.2. □

Lemma 5.2. With notation same as above, the following diagram of functors from DcohG(X1,W1)
to DQcoh(X1,W1) is commutative;

(∗) : ΦPLΦPΠ
∗
1

ΦPL
ΦPΠ∗

1η1//

ωΠ∗
1

��

ΦPLΦPΠ
∗
1Π1∗Π

∗
1

ΦPL
ΩΠ∗

1// ΦPLΠ
∗
2Π2∗ΦPΠ

∗
1

ΩLΦPΠ∗
1// Π∗

1Π1∗ΦPLΦPΠ
∗
1

Π∗
1Π1∗ωΠ∗

1

��
Π∗

1

Π∗
1η1 // Π∗

1Π1∗Π
∗
1,

where ω : ΦPLΦP → idDcoh(X1,W1) is the adjunction morphism of (ΦPL ⊣ ΦP ). □

We will prove the above lemma in the next section.
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5.2. Proof of Lemma 5.2. In what follows, we will prove the above Lemma 5.2. Since
it seems difficult to verify the commutativity of the diagram (∗) directly, we will replace it
with another diagram (∗)′, and decompose the diagram (∗)′ into several diagrams whose
commutativity are easier to verify.

Take a smooth proper variety X2 containing X2 as an open subvariety as in the proof
of Lemma 4.47. Let i : X1 × X2 ↪→ X1 × X2 be the open immersion, and let π1 :
X1×X2 → X1 be the natural projection. Denote natural projections by pi : G×Xi → Xi,
p12 : G×X1 ×X2 → X1 ×X2 and p12 : G×X1 ×X2 → X1 ×X2, and set

π′i := 1G × πi : G×X1 ×X2 → G×Xi

i′ := 1G × i : G×X1 ×X2 → G×X1 ×X2

π1
′ := 1G × π1 : G×X1 ×X2 → G×X1.

Then objects QG := p∗12PG ∈ DcohG(G × X1 × X2, π
′
2
∗p∗2W2 − π′1

∗p∗1W1) and (QL)G :=
p∗12(PL)G ∈ DcohG(G×X1 ×X2, π

′
1
∗p∗1W1 − π′2

∗p∗2W2) define functors

ΨQG : DQcohG(G×X1, p
∗
1W1) −→ DQcohG(G×X2, p

∗
2W2)

F 7−→ π′2∗(π
′∗
1 (F )⊗L QG)

and
Ψ(QL)G : DQcohG(G×X2, p

∗
2W2) −→ DQcohG(G×X1, p

∗
1W1)

E 7−→ π′1∗(π
′∗
2 (E)⊗L (QL)G).

Note that QG has a π′i-proper support (i = 1, 2). Hence the functors ΨQG and Ψ(QL)G
preserve coherent factorizations.

Similarly, the objects Q := ResG(QG) ∈ Dcoh(G ×X1 ×X2, π
′
2
∗p∗2W2 − π′1

∗p∗1W1) and
QL := ResG((QL)G) ∈ Dcoh(G×X1 ×X2, π

′
1
∗p∗1W1 − π′2

∗p∗2W2) defines functors

ΨQ : DQcoh(G×X1, p
∗
1W1) −→ DQcoh(G×X2, p

∗
2W2)

F 7−→ π′2∗(π
′∗
1 (F )⊗L Q)

and
ΨQL : DQcoh(G×X2, p

∗
2W2) −→ DQcoh(G×X1, p

∗
1W1)

E 7−→ π′1∗(π
′∗
2 (E)⊗L QL).

By Lemma 4.55 the composition,

ι∗ ◦ φ∗ : DQcohG(G×X1, p
∗
1W1)

∼−→ DQcoh(X1,W1),

is an equivalence, and the following diagrams are commutative,

DQcohG(G×X1, p
∗
1W1)

ΨQG //

ι∗◦φ∗

��

DQcohG(G×X2, p
∗
2W2)

ι∗◦φ∗

��
DQcoh(X1,W1)

ΦP // DQcoh(X2,W2)

and

DQcohG(G×X2, p
∗
2W2)

Ψ(QL)G //

ι∗◦φ∗

��

DQcohG(G×X1, p
∗
1W1)

ι∗◦φ∗

��
DQcoh(X2,W2)

ΦP // DQcoh(X1,W1).

Let Ω′ : ΨQGp
∗
1p1∗

∼−→ p∗2p2∗ΨQG and Ω′
L : Ψ(QL)Gp

∗
2p2∗

∼−→ Ψ(QL)Gp
∗
1p1∗ be functor

isomorphisms induced by the functor isomorphisms Ω : ΦPΠ
∗
1Π1∗

∼−→ Π∗
2Π2∗ΦP and
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Ω′ : ΦPLΠ
∗
2Π2∗

∼−→ Π∗
1Π1∗ΦPL via the equivalence ι∗ ◦ φ∗ respectively. Via the equiv-

alence ι∗ ◦ φ∗, the diagram (∗) is commutative if and only if the following diagram is
commutative;

Ψ(QL)G
ΨQG

p∗
1

Ψ(QL)G
ΨQG

p∗1ηp1 //

ω′
Gp∗1

��

Ψ(QL)G
ΨQG

p∗
1p1∗p

∗
1

Ψ(QL)G
Ω′p∗1// Ψ(QL)G

p∗
2p2∗ΨQG

p∗
1

Ω′
LΨQG

p∗1// p∗
1p1∗Ψ(QL)G

ΨQG
p∗
1

p∗1p1∗ω′
Gp∗1

��
p∗
1

p∗1ηp1 // p∗
1p1∗p

∗
1 ,

where ω′
G : Ψ(QL)GΨQG → idDcohG(G×X1,p∗1W1) is the adjunction morphism of (Ψ(QL)G ⊣

ΨQG). Furthermore, since the restriction functor

ResG : DQcohG(G×X2, π
′
2
∗
p∗2W2)→ DQcoh(G×X2, π

′
2
∗
p∗2W2)

is faithful functor, in order to prove that the above diagram is commutative, it is enough
to show that the following diagram is commutative,

(∗)′ : ΨQLΨQp
∗
1

ΨQLΨQp
∗
1ηp1//

ω′p∗1
��

ΨQLΨQp
∗
1p1∗p

∗
1

ΨQLΩ
′p∗1// ΨQLp

∗
2p2∗ΨQp

∗
1

Ω′
LΨQp

∗
1// p∗1p1∗ΨQLΨQp

∗
1

p∗1p1∗ω
′p∗1

��
p∗1

p∗1ηp1 // p∗1p1∗p
∗
1,

where ω′ : ΨQLΨQ → idDcoh(G×X1,p∗1W1) is the adjunction morphism of (ΨQL ⊣ ΨQ).

To decompose the diagram (∗)′, we give the following:

Lemma 5.3. Given the following diagram of functors

A1

P1∗

��

F1
++ A2

G1

kk

P2∗

��

F2
++ A3

G2

kk

P3∗

��
A′

1

P ∗
1

KK

F ′
1

++ A′
2

G′
1

kk

P ∗
2

KK

F ′
2

++ A′
3

P ∗
3

KK

G′
2

kk

and isomorphisms of functors ΩFi : FiP
∗
i Pi∗

∼−→ P ∗
i+1Pi+1∗Fi and ΩGi : GiP

∗
i+1Pi+1∗

∼−→
P ∗
i Pi∗Gi, assume the adjunction (Gi ⊣ Fi) and (P ∗

i ⊣ Pi∗) for each i = 1, 2. Set F :=
F2 ◦ F1 and G := G1 ◦ G2, and denote by ω : GF → id the functor morphism given

by the composition GF = G1G2F2F1
G1ω2F1−−−−−→ G1F1

ω1−→ id, where ωi : GiFi → id is
the adjunction morphism. Let ΩF : FP ∗

1P1∗ → P ∗
3P3∗F and ΩG : GP ∗

3P3∗ → P ∗
1P1∗G

be the functor isomorphisms induced by ΩFi and ΩGi, i.e. ΩF := ΩF2F1 ◦ F2ΩF1 and
ΩG := ΩG1G2 ◦ G1ΩG2. For each i = 1, 2, consider the following diagrams of functor
morphisms

(♢)i : GiFiP
∗
i

GiFiP
∗
i ηi //

ωiP
∗
i

��

GiFiP
∗
i Pi∗P

∗
i

GiΩFiP
∗
i// GiP

∗
i+1Pi+1∗FiP

∗
i

ΩGiFiP
∗
i // P ∗

i Pi∗GiFiP
∗
i

P ∗
i Pi∗ωiP

∗
i

��
P ∗
i

P ∗
i ηi // P ∗

i Pi∗P
∗
i ,

where ηi : id→ Pi∗P
∗
i is the adjunction.



53

If the above diagrams (♢)1 and (♢)2 are commutative, and there exist isomorphisms of

functors µ : F ′
1P1∗P

∗
1

∼−→ P2∗P
∗
2F

′
1 and ν : F1P

∗
1

∼−→ P ∗
2F

′
1 with the following diagrams

(†) : F1P
∗
1 P1∗P

∗
1

ΩF1
P∗

1 //

νP1∗P
∗
1

��

P ∗
2 P2∗F1P

∗
1

P∗
2 P2∗ν

��

(††) : F ′
1P1∗P

∗
1

µ // P2∗P
∗
2 F

′
1

P ∗
2 F

′
1P1∗P

∗
1

P∗
2 µ // P ∗

2 P2∗P
∗
2 F

′
1 F ′

1

F ′
1η1

ccHHHHHHHHH η2F
′
1

;;vvvvvvvvv

commutative, then the following diagram (♢) is also commutative.

(♢) : GFP ∗
1

GFP ∗
1 η1 //

ωP ∗
1

��

GFP ∗
1P1∗P

∗
1

GΩFP
∗
1// GP ∗

3P3∗FP
∗
1

ΩGFP
∗
1// P ∗

1P1∗GFP
∗
1

P ∗
1 P1∗ωP ∗

1

��
P ∗
1

P ∗
1 η1 // P ∗

1P1∗P
∗
1 .

Proof. At first, we show that the following diagram is commutative;

(♣) : G2FP
∗
1

G2FP ∗
1 η1 //

ω2F1P ∗
1

��

G2FT1P
∗
1

G2F2ΩF1P
∗
1// G2F2T2F1P

∗
1

G2ΩF2F1P ∗
1// G2T3FP

∗
1

ΩG2
FP ∗

1// T2G2FP
∗
1

T2ω2F1P ∗
1

��
F1P

∗
1

F1P ∗
1 η1 // F1T1P

∗
1

ΩF1P
∗
1 // T2F1P

∗
1 ,

where Ti := P ∗
i Pi∗ for i = 1, 2, 3. By the commutativity of the diagram (†), the following

diagram is commutative;

F1P
∗
1

F1P ∗
1 η1 //

ν

��

F1P
∗
1P1∗P

∗
1

ΩF1P
∗
1 //

νP1∗P ∗
1

��

P ∗
2P2∗F1P

∗
1

P ∗
2 P2∗ν

��
P ∗
2F

′
1

P ∗
2 F

′
1η1 // P ∗

2F
′
1P1∗P

∗
1

P ∗
2 µ // P ∗

2P2∗P
∗
2F

′
1,

and we have P ∗
2 µ ◦ P ∗

2F
′
1η1 = P ∗

2 η2F
′
1 by the commutativity of the diagram (††). Hence

we see that, via the isomorphism of functors ν : F1P
∗
1

∼−→ P ∗
2F

′
1, the commutativity of the

diagram (♣) is equivalent to the commutativity of the following diagram

G2F2P
∗
2 F ′

1

G2F2P∗
2 η2F ′

1 //

ω2P∗
2 F ′

1

��

G2F2P
∗
2 P2∗P

∗
2 F ′

1

G2ΩF2
P∗
2 F ′

1 // G2P
∗
3 P3∗F2P

∗
2 F ′

1

ΩG2
F2P∗

2 F ′
1 // P∗

2 P2∗G2F2P
∗
2 F ′

1

P∗
2 P2∗ω2P∗

2 F ′
1

��
P∗

2 F ′
1

P∗
2 η2F ′

1 // P∗
2 P2∗P

∗
2 F ′

1.

This diagram is commutative by the commutativity of the diagram (♢)2.
Now we see that the diagram (♢) is commutative as follows;

P ∗
1 η1 ◦ ωP ∗

1 = T1ω1P
∗
1 ◦ ΩG1F1P

∗
1 ◦G1ΩF1P

∗
1 ◦G1F1P

∗
1 η1 ◦G1ω2F1P

∗
1

= T1ω1P
∗
1 ◦ ΩG1F1P

∗
1 ◦G1T2ω2F1P

∗
1 ◦G1ΩG2FP

∗
1 ◦GΩF2F1P

∗
1 ◦GF2ΩF1P

∗
1 ◦GFP ∗

1 η1

= T1ω1P
∗
1 ◦ T1G1ω2F1P

∗
1 ◦ ΩG1G2FP

∗
1 ◦G1ΩG2FP

∗
1 ◦GΩF2F1P

∗
1 ◦GF2ΩF1P

∗
1 ◦GFP ∗

1 η1

= T1ωP
∗
1 ◦ ΩGFP ∗

1 ◦GΩFP ∗
1 ◦GFP ∗

1 η1,

where the first equation (resp. the second equation) follows from the commutativity of
the diagram (♢)1 (resp. (♣)), and the third equation follows from the functoriality of the
functor isomorphism ΩG1 . □

The adjoint pair

ΨPL ⊣ ΨQ
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Dcoh(G×X1, p
∗
1W1)

ΨQ ..
Dcoh(G×X2, p

∗
2W2)

ΨQL

nn

is induced by the following three adjoint pairs

(1) : π1
′
! ⊣ π1′

∗

Dcoh(G×X1, p
∗
1W1)

π1′
∗

//
Dcoh(G×X1 ×X2, π1

′∗p∗1W1),
π1′!

nn

where π1
′
! := Rπ1

′
∗((−)⊗ p12∗ωπ1 [dim(X2)]).

(2) : i′∗((−)⊗L QL∨) ⊣ i′∗(−)⊗L Q

Dcoh(G×X1 ×X2, π1
′∗p∗1W1)

i′∗(−)⊗LQ
..
Dcoh(G×X1 ×X2, π

′
2
∗p∗2W2)

i′∗((−)⊗LQL∨)

oo

and

(3) : π′2
∗ ⊣ Rπ′2∗

Dcoh(G×X1 ×X2, π
′
2
∗p∗2W2)

Rπ′
2∗ ..

Dcoh(G×X2, p
∗
2W2).

π′
2
∗

oo

Hence the adjunction morphism ω′ : ΨQLΨQ → idDcoh(G×X1,p∗1W1) in the diagram (∗)′
is the composition

ΨQLΨQ = Rπ′1∗(i
′
∗(π

′
2
∗
Rπ′2∗(i

′∗π1
′∗(−)⊗L Q)⊗L QL∨)⊗ p12∗ωπ1 [dim(X2)])

ζ3−→ Rπ′1∗(i
′
∗(i

′∗π1
′∗(−)⊗L Q⊗L QL∨)⊗ p12∗ωπ1 [dim(X2)])

ζ2−→ Rπ′1∗(π1
′∗(−)⊗ p12∗ωπ1 [dim(X2)])

ζ1−→ idDcoh(G×X1,p∗1W1),

where for each i = 1, 2, 3, ζi is the functor morphism induced by the adjunction morphism
of the above adjunction pair (i). Hence, by Lemma 5.3 and Lemma 4.63, to prove that
the diagram (∗)′ is commutative, it is enough to prove that the following diagrams (∗)′i
are commutative;

(∗)′1 :

π1
′
!π1

′∗p∗1
π1′!π1

′∗p∗1ηp1//

ω′
1p

∗
1

��

π1
′
!π1

′∗p∗1p1∗p
∗
1

π1′!Ω1p∗1// π1
′
!p12

∗p12∗π1
′∗p∗1

ΩL1π1
′∗p∗1// p∗1p1∗π1

′
!π1

′∗p∗1

p∗1p1∗ω
′
1p

∗
1

��
p∗1

p∗1ηp1 // p∗1p1∗p
∗
1,

where Ω1 : π1
′∗p∗1p1∗

∼−→ p12
∗p12∗π1

′∗ and ΩL1 : π1
′
!p12

∗p12∗
∼−→ p∗1p1∗π1

′
! are the functor

isomorphisms given by Lemma 4.63, and ω′
1 : π1

′
!π1

′∗ → id is the adjunction morphism of
the adjoint pair (1).
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(∗)′2 :

i′Q∗i
′
Q
∗
p12

∗ i′Q∗i
′
Q

∗p12
∗ηp12 //

ω′
2p12

∗

��

i′Q∗i
′
Q
∗
p12

∗p12∗p12
∗i
′
Q∗Ω2p12

∗

// i′Q∗p12
∗p12∗i

′
Q
∗
p12

∗ΩL2i
′
Q

∗p12
∗

// p12∗p12∗i
′
Q∗i

′
Q
∗
p12

∗

p12
∗p12∗ω

′
2p12

∗

��
p12

∗ p12
∗ηp12 // p12∗p12∗p12

∗,

where i′Q∗(−) := i′∗((−) ⊗L QL∨) and i′Q
∗ := i′∗(−) ⊗L Q, and Ω2 : i′Q

∗p12
∗p12∗

∼−→
p12

∗p12∗i
′
Q
∗ and ΩL2 : i′Q∗p12

∗p12∗
∼−→ p12

∗p12∗i
′
Q∗ are the functor isomorphisms given by

Lemma 4.63, and ω′
2 : i

′
Q∗i

′
Q
∗ → id is the adjunction morphism of the adjoint pair (2).

(∗)′3 :

π′
2
∗
Rπ′

2∗p12
∗ π′

2
∗Rπ′

2∗p12
∗ηp12//

ω′
3p12

∗

��

π′
2
∗
Rπ′

2∗p12
∗p12∗p12

∗π
′
2
∗Ω3p12

∗
// π′

2
∗
p2

∗p2∗Rπ
′
2∗p12

∗ΩL3Rπ′
2∗p12

∗
// p12∗p12∗π

′
2
∗
Rπ′

2∗p12
∗

p12
∗p12∗ω

′
3p12

∗

��
p12

∗ p12
∗ηp12 // p12∗p12∗p12

∗,

where Ω3 : Rπ′2∗p12
∗p12∗

∼−→ p2
∗p2∗Rπ

′
2∗ and ΩL3 : π′2

∗p2
∗p2∗

∼−→ p12
∗p12∗π

′
2
∗ are the

functor isomorphisms given by Lemma 4.63, and ω′
3 : π′2

∗Rπ′2∗ → id is the adjunction
morphism of the adjoint pair (3).

In the following, for each i = 1, 2, 3, we will prove that the diagram (∗)′i is commutative.

• Proof of the commutativity of (∗)′1

Since the adjunction morphism ω′
1 : π1

′
!π1

′∗ → idDcoh(G×X1,p∗1W1) is a restriction of the

adjunction morphism ω′
1 : π1

′
!π1

′∗ → idDQcoh(G×X1,p∗1W1) of the adjoint pair

DQcoh(G×X1, p
∗
1W1)

π1′
∗

//
DQcoh(G×X1 ×X2, π1

′∗p∗1W1),
π1′!

nn

we have the functor morphism

ω′
1p

∗
1p1∗p

∗
1 : π1

′
!π1

′∗p∗1p1∗p
∗
1 → p∗1p1∗p

∗
1.

By the functoriality of ω′
1, to prove the commutativity of (∗)′1 it is enough to prove that

the following diagram is commutative;

(∗)′1a : π1
′
!π1

′∗p∗1p1∗
π1′!Ω1 //

ω′
1p

∗
1p1∗ **TTT

TTTT
TTTT

TTTT
TTT

π1
′
!p12

∗p12∗π1
′∗ ΩL1π1

′∗
// p∗1p1∗π1

′
!π1

′∗

p∗1p1∗ω
′
1ttjjjj

jjjj
jjjj

jjjj
jj

p∗1p1∗

The adjunction morphism

ω′
1 : π1

′
!π1

′∗ → id

is given by the composition of the following functor morphisms;

φ : π1
′
!π1

′∗(−) = Rπ1
′
∗(π1

′∗(−)⊗ p12∗ωπ1 [d2]) −→ (−)⊗L p∗1Rπ1∗ωπ1 [d2]

and

ψ : (−)⊗L p∗1Rπ1∗ωπ1 [d2] −→ (−),
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where d2 := dim(X2), the functor morphism φ is given by the projection formula and an
isomorphism Rπ1

′
∗p12

∗ ∼= p∗1Rπ1∗, whence φ is a functor isomorphism, and ψ is given as
follows. Let

σ : Rπ1∗ωπ1 [d2] −→ OX1

be the following composition of morphisms in Db(X1);

Rπ1∗ωπ1 [d2]
∼−→ Rπ1∗π1

!(OX1) −→ OX1 ,

where the morphism Rπ1∗π1
!(OX1)→ OX1 is induced by the adjunction morphism of the

adjoint pair,

Rπ1∗ ⊣ π1! Db(cohX1)
π1! ..

Db(cohX1 ×X2).
Rπ1∗

mm

Then the functor morphism ψ is given as

ψ := (−)⊗ p∗1Υ(σ),

where Υ : Db(X1) → Dcoh(X1, 0) is the functor defined in Definition 3.14. Hence it is
enough to prove that for any object F ∈ Dcoh(G×X1, p

∗
1W ) the following two diagrams

are commutative,

(∗)′1b : Rπ1
′
∗(π1

′∗p∗1p1∗(F )⊗ p12∗ωπ1 [d2])

π1′!Ω1

��

φp∗1p1∗ // p∗1p1∗(F )⊗L p∗1Rπ1∗ωπ1 [d2]

��
Rπ1

′
∗(p12

∗p12∗π1
′∗(F )⊗ p12∗ωπ1 [d2])

ΩL1π1
′∗

��

p∗1(p1∗(F )⊗L Rπ1∗ωπ1 [d2])

��
p∗1p1∗Rπ1

′
∗(π1

′∗(F )⊗ p12∗ωπ1 [d2])
p∗1p1∗φ // p∗1p1∗((F )⊗L p∗1Rπ1∗ωπ1 [d2])

and

(∗)′1c : p∗
1p1∗(F ) ⊗L p∗

1Rπ1∗ωπ1 [d2]
p∗1p1∗(F )⊗p∗1Υ(σ)

//

��

p∗
1p1∗(F ) ⊗ p∗

1OX1

�� **TTT
TTTT

TTTT
TTTT

T

p∗
1(p1∗(F ) ⊗L Rπ1∗ωπ1 [d2])

��

p∗1(p1∗(F )⊗Υ(σ)) // p∗
1(p1∗(F ) ⊗ OX1 )

��

p∗
1p1∗(F )

p∗
1p1∗((F ) ⊗L p∗

1Rπ1∗ωπ1 [d2])
p∗1p1∗((F )⊗p∗1Υ(σ))

// p∗
1p1∗((F ) ⊗ p∗

1OX1
),

44jjjjjjjjjjjjjjjj

where arrows with no symbols are natural isomorphisms.
At first, we show the diagram (∗)′1b is commutative. Since functor morphisms in the

diagram (∗)′1b are natural in F and ωπ1 [d2], we can replace the objects F and ωπ1 [d2] with

objects E ∈ Dlfr(G × X1, p
∗
1W ) and I ∈ DQcoh(X1 × X2, π1

∗W ) whose components I1
and I0 are injective sheaves respectively. Then derived functors in (∗)′1b are isomorphic
to underived functors, since the derived functor in the lowest row on the right side in
(∗)′1b is isomorphic to underived functor, and the direct images p1∗ and p12∗ maps locally
free sheaves to locally free sheaves, and the projection formulae for p1 and p12 hold in
categories of quasi-coherent sheaves without assuming locally freeness of sheaves. So it is
enough to prove that the commutativity of the similar diagram in the abelian category
Qcoh(G×X1). But this is checked by easy computations.

Next, we show the diagram (∗)′1c is commutative. The commutativity of two square
diagrams on the left side follows automatically by the functoriality. So we have only to
verify that the triangular diagram on the right side is commutative. But this is verified
by easy computations, and the detail is left to the reader.
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• Proof of the commutativity of (∗)′2
To decompose the diagram (∗)′2, we will embed the diagram (∗)′2 to a larger category.
Before embedding it, we provide some functors and some functor morphisms.

Since the functor i′# : Qcoh(G×X1×X2)→ Ind(Pro(Qcoh(G×X1×X2))), constructed
in Definition 4.42, is exact and compatible with potentials, it induces a functor

i′# : DQcoh(G×X1 ×X2, π
′
1
∗
p∗1W1)→ Ind(Pro(DQcoh(G×X1 ×X2, π′1

∗
p∗1W1))).

Let i′! : Dcoh(G × X1 × X2, π
′
1
∗p∗1W1) → Pro(DQcoh(G × X1 × X2, π′1

∗
p∗1W1)) be the

extension by zero, and set

i′Q!(−) := i′!((−)⊗L QL∨) and i′Q#(−) := i′#((−)⊗L QL∨).

Functor morphisms constructed in Lemma 4.44 (1) induces functor isomorphism

γQ! : i
′
Q!

∼−→ ιProi
′
Q∗

and functor morphism
γQ# : i′Q# → ιInPri

′
Q∗.

with ιIndγQ! = γQ#|Dcoh(G×X1×X2,π′
1
∗p∗1W1). Let ω′

2 : i′Q∗i
′∗
Q → id be the adjunction mor-

phism. Then the morphism ιProω
′
2 : ιProi

′
Q∗i

′∗
Q → ιPro is decomposed into the following

compositions

ιProi
′
Q∗i

′∗
Q

γ−1
Q!−−→ i′Q!i

′∗
Q

i′!i
′∗ωQ−−−−→ i′!i

′∗ ωi!−−→ ιPro,

where ωQ : (−)⊗L Q⊗L QL∨ → (−) and ωi′! : i
′
!i

′∗ → ιPro are the adjunction morphisms.

Furthermore, the functor morphism constructed in Lemma 4.44 (2) induces a functor
morphism

λ : i′#p
∗
12p12∗ → ιIndPro(p12

∗p12∗)i
′
!.

Now we are ready to decompose the diagram (∗)′2. Let Ωi′∗ : i′∗p
∗
12p12∗

∼−→ p12
∗p12∗i

′
∗

and Ω∗
i′ : i′∗p12

∗p12∗
∼−→ p∗12p12∗i

′∗ be natural functor isomorphisms. Set i′∗Q⊗Q∨(−) :=

i′∗(−) ⊗L Q ⊗L QL∨, and let Ωi
′∗
Q⊗Q∨ : i′∗Q⊗Q∨p12

∗p12∗
∼−→ p12

∗p12∗i
′∗
Q⊗Q∨ be the functor

isomorphism given by natural functor isomorphims Ω2 : i′∗Qp12
∗p12∗

∼−→ p∗12p12∗i
′
Q
∗ and

ΩQ∨ : p∗12p12∗(−)⊗L QL∨ ∼−→ p∗12p12∗((−)⊗L QL∨). Embedding the diagram (∗)′2 into the

category Ind(Pro(DQcoh(G×X1 ×X2, π′1
∗
p∗1W1))) by the inclusion

ιInPr : DQcoh(G×X1 ×X2, π′1
∗
p∗1W1) ↪→ Ind(Pro(DQcoh(G×X1 ×X2, π′1

∗
p∗1W1))),

the diagram (∗)′2 is decomposed into the following diagram

(a)

i′Q∗p12
∗p12∗i

′
Q
∗
p12

∗

ΩL2

))SSS
SSSS

SSSS
SSSS

i′Q∗i
′∗
Qp12

∗

(b)

ηp12 //

γ−1
Q!

��

i′Q∗i
′∗
Qp12

∗p12∗p12
∗

(c)

Ωi′∗
Q⊗Q∨

//

Ω2

55jjjjjjjjjjjjjjj
i′∗p12

∗p12∗i
′∗
Q⊗Q∨p12

∗

(d)

Ωi′∗ // p12∗p12∗i
′
Q∗i

′∗
Qp12

∗

γ−1
Q!

��
i′Q!i

′∗
Qp12

∗

(e)

ηp12 //

ωQ

��

i′Q#i
′∗
Qp12

∗p12∗p12
∗

Ωi′∗
Q⊗Q∨

//

γQ#

OO

ωQ

��

i′#p12
∗p12∗i

′∗
Q⊗Q∨p12

∗

(f)

λ //

γQ#

OO

ωQ

��

p12
∗p12∗i

′
Q!i

′∗
Qp12

∗

ωQ

��
i′!i

′
∗p12

∗ ηp12 //

ωi′
!

��

i′#i
′∗p12

∗p12∗p12
∗ Ω∗

i′ // i′#p12
∗p12∗i

′∗p12
∗ λ // p12∗p12∗i

′
!i
′∗p12

∗

ωi′
!

��
p12

∗ ηp12 // p12∗p12∗p12
∗,
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where functor morphisms attached to arrows are the ones which induce the functor mor-
phisms, and we omit embedding functors ιInPr and ιPro from the above diagram. The
diagram (a) is commutative, since ΩL2 is given by ΩQ∨ and Ωi′∗. The commutativity of
the diagrams (b), (c), (e) and (f) follows from the functoriality of functor morphisms, and
the diagram (d) is commutative by Lemma 4.44 (2). Hence, it is enough to verify the
commutativity of the following diagrams

(∗)′2a : i′∗p12
∗p12∗(−)⊗L Q⊗L QL∨

Ωi
′∗
Q⊗Q∨

//

ωQi
′∗p12∗p12∗

��

p∗12p12∗(i
′∗(−)⊗L Q⊗L QL∨)

p∗12p12∗ωQi
′∗

��
i′p12

∗p12∗(−)
Ω∗
i′ // p∗12p12∗i

′∗

and

(∗)′2b : ιIndi
′
!i

′
∗

i′#i′∗ηp12 //

ιIndω
i′
!

��

i′#i′∗p12
∗p12∗

i′#Ω∗
i′ // i′#p12

∗p12∗i
′∗ λi′∗ // ιIndPro(p12

∗p12∗)i
′
!i

′∗

ιIndPro(p12
∗p12∗)ω

i′
!

��
ιInPr

ιInPrηp12 // ιInPrp12
∗p12∗

We show that the diagram (∗)′2a is commutative. Let ΩQ : p∗12p12∗(−) ⊗L Q
∼−→

p∗12p12∗((−) ⊗L Q) be the natural functor isomorphism. Then, the functor morphism

Ω2 : i
′
Q
∗p12

∗p12∗
∼−→ p12

∗p12∗i
′
Q
∗ is the following compositions of functor morphisms

i′∗p12
∗p12∗(−)⊗L Q

((−)⊗LQ)Ω∗
i′−−−−−−−−→ p∗12p12∗i

′∗(−)⊗L Q
ΩQi

′∗

−−−→ p∗12p12∗(i
′∗(−)⊗L Q).

Moreover, the following diagram

i′∗p12
∗p12∗(−)⊗L Q⊗L QL∨

((−)⊗LQ⊗LQL∨)Ω∗
i′//

ωQi
′∗p12∗p12∗

��

p∗12p12∗i
′∗(−)⊗L Q⊗L QL∨

ωQp
∗
12p12∗i

′∗

��
i′p12

∗p12∗(−)
Ω∗
i′ // p∗12p12∗i

′∗

is commutative by the functoriality of the functor morphism ωQ. Hence, to show that the
diagram (∗)′2a is commutative, we have only to show the commutativity of the following
diagram

p∗12p12∗i
′∗(−)⊗L Q⊗L QL∨

ωQp∗
12p12∗i

′∗

++WWWW
WWWWW

WWWWW
WWWWW

WWWWW
((−)⊗LQL∨)ΩQi′∗// p∗12p12∗(i

′∗
Q(−))⊗L QL∨ΩQ∨ (i′∗(−)⊗LQ)

// p∗12p12∗(i
′∗
Q(−)⊗L QL∨)

p∗
12p12∗ωQi′∗

ssggggg
ggggg

ggggg
ggggg

g

p∗12p12∗i
′∗

Replacing the object P ∈ Dcoh(X1 × X2, π
∗
2W2 − π∗1W1) with an object in Dlfr(X1 ×

X2, π
∗
2W2 − π∗1W1), we may assume that the object Q = p∗12P is an object whose com-

ponents are locally free sheaves. Then, the functors in the above diagram are underived
functors. Hence, the commutativity of the diagram is verified by easy diagram chasing of
morphisms between quasi-coherent sheaves, which is left to the reader.

Since all of the functors in (∗)′2b are underived functors, the diagram (∗)′2b is also verified
by diagram chasing of map of systems, which is also left to the reader.

• Proof of the commutativity of (∗)′3
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By the functoriality of ω′
3, the following diagram is commutative:

π′2
∗Rπ′2∗p12

∗ π′
2
∗Rπ′

2∗p12
∗ηp12 //

ω′
3p12

∗

��

π′2
∗Rπ′2∗p12

∗p12∗p12
∗

ω′
3p

∗
12p12∗p

∗
12

��
p12

∗ p12∗ηp12 // p12
∗p12∗p12

∗

Hence, to prove that the diagram (∗)′3 is commutative, it is enough to prove the following
diagram is commutative:

π′2
∗Rπ′2∗p12

∗p12∗

ω′
3p

∗
12p12∗ **UUU

UUUU
UUUU

UUUU
UUU

π′
2
∗Ω3 // π′2

∗p∗2p2∗Rπ
′
2∗

ΩL3Rπ
′
2∗ // p∗12p12∗π

′
2
∗Rπ′2∗

p∗12p12∗ω
′
3ttiiii

iiii
iiii

iiii
ii

p∗12p12∗

Since we may replace any object in Dcoh(G × X1 × X2, π
′
2
∗p∗2W2) with an object whose

components are injective sheaves, the commutativity of the above diagram can be checked
by easy diagram chasing of morphisms between quasi-coherent sheaves, which is left to
the reader.

5.3. Main Theorem. At first, to state the main theorem, we give the definition of G-
linearizable objects.

Definition 5.4. Let X be a variety with G-action. An object F of Db(cohX) is called
G-linearizable, if F is in the essential image of the forgetful functor Db(cohGX) →
Db(cohX).

We need the following lemma, which is an opposite version of [Joh, Lemma 1.1.1].1 We
give a proof for the reader’s convenience.

Lemma 5.5 (cf. [Joh] Lemma 1.1.1). Let F : A → B be a functor between (arbitrary)
categories, and suppose that F admits a right adjoint functor G : B → A. Then, if there
exists an isomorphism of functors α : idA

∼−→ GF (α is not necessarily the adjunction
morphism), then F is fully faithful.

Proof. The isomorphism α implies that the following composition of maps is bijective;

Hom(A,A′)
F−→ Hom(F (A), F (A′))

G−→ Hom(GF (A), GF (A′)).

Hence it is enough to show that G is fully faithful on the image of F . Since the above
composition is bijective, G is full on the image of F . Let ε : idA → GF and δ : FG→ idB
be the adjunction morphisms. For any f ∈ Hom(F (A), F (A′)) we have

δF (A′) ◦ FG(f) ◦ F (εA) = f ◦ δF (A) ◦ F (εA) = f,

where the first equation follows from the functoriality of δ and the the second equation
follows from the property of the adjunction morphisms. Hence the following diagram is
commutative

Hom(F (A), F (A′))

G
��

Hom(F (A), F (A′))

Hom(GF (A), GF (A′))
F // Hom(FGF (A), FGF (A′)),

δF (A′)◦(−)◦F (εA)

OO

and hence G is faithful on the image of F . □
1I would like to thank Timothy Logvinenko for informing me about this lemma.
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Now we are ready to state and prove the main theorem.

Theorem 5.6. Let P ∈ Db(cohX1 ×A1 X2) be a G-linearizable object whose support is
proper over X1 and X2. If the integral functor Φj∗(P ) : Db(cohX1) → Db(cohX2) is an
equivalence (resp. fully faithful), then there is an integral functor

Φ
P̃G

: DcohG(X1,W1)→ DcohG(X2,W2)

which is also an equivalence (resp. fully faithful) for some P̃G ∈ DcohG(X1 ×X2, π
∗
2W2 −

π∗1W1).

Proof. Since P isG-linearizable, we may assume that there is an object PG ∈ Db(cohGX1×A1

X2) such that Π(PG) = P , where Π : Db(cohGX1 ×A1 X2) → Db(cohX1 ×A1 X2) is the
forgetful functor. Set

P̃G := j∗(Υ(PG)) ∈ DcohG(X1 ×X2, π
∗
2W2 − π∗1W1),

where Υ : Db(cohGX1 ×A1 X2) → DcohG(X1 ×A1 X2, 0) is the exact functor defined
in Definition 3.14, and j∗ : DcohG(X1 ×A1 X2, 0) → DcohG(X1 × X2, π

∗
2W2 − π∗1W1)

is the direct image of embedding j : X1 ×A1 X2 → X1 × X2. Let P̃ := ResG(P̃G) ∈
Dcoh(X1 ×X2, π

∗
2W2 − π∗1W1). Then we have

P̃ = j∗(Υ(P )) = j∗(Tot(τ(P ))) ∼= Tot(j∗(τ(P ))),

where τ : Db(cohX1 ×A1 X2) → Db(Z0(coh(X1 ×A1 X2, 0))) is the functor given by the
same manner as in just before Definition 3.14, and j∗ in the last one is the direct image

j∗ : D
b(Z0(coh(X1 ×A1 X2, 0)))→ Db(Z0(coh(X1 ×X2, 0)))

induced by an exact functor j∗ : Z0(coh(X1 ×A1 X2, 0)) → Z0(coh(X1 ×X2, 0)) between

abelian categories. Since Supp(j∗(τ(P ))) = Supp(P ), P̃ has a πi-proper support (i = 1, 2).
By Theorem 5.1, it is enough to show that if the integral functor Φj∗(P ) : D

b(cohX1) →
Db(cohX2) is an equivalence (resp. fully faithful), then the integral functor

Φ
P̃
: Dcoh(X1,W1)→ Dcoh(X2,W2)

is an equivalence (resp. fully faithful).
Assume that the integral functor Φj∗(P ) : D

b(cohX1)→ Db(cohX2) is fully faithful. The
integral functor Φj∗(P ) induces the extended functor Φ′

j∗(P ) : D(QcohX1) → D(QcohX2).

Then the functor Φ′
j∗(P ) is also fully faithful since it preserves any direct limit and any

object in the unbounded derived category D(QcohX1) is isomorphic to the direct limit of a
direct system of objects in Db(cohX1) by [TT, Proposition 2.3.2]. Hence by the argument
in the proof of [BDFIK1, Theorem 5.15], we obtain an isomorphism of functors

Φ′
P̃R
◦ Φ′

P̃
∼= idDQcoh(X1,W1),

where Φ′
P̃
: DQcoh(X1,W1)→ DQcoh(X2,W2) and Φ′

P̃R
: DQcoh(X2,W2)→ DQcoh(X1,W1)

are the extended functors from Φ
P̃

and its right adjoint Φ
P̃R

respectively. This isomor-

phism of functors induces the restricted isomorphism of functors

Φ
P̃R
◦ Φ

P̃
∼= idDcoh(X1,W1).

Since Φ
P̃
⊣ Φ

P̃R
by Proposition 4.47, this isomorphism implies that the functor Φ

P̃
:

Dcoh(X1,W1)→ Dcoh(X2,W2) is fully faithful by Lemma 5.5.
If the integral functor Φj∗(P ) : Db(cohX1) → Db(cohX2) is an equivalence, its left

adjoint functor Φj∗(P )L is fully faithful. Hence, by the above argument, we see that a left
adjoint functor Φ

P̃L
: Dcoh(X2,W2) → Dcoh(X1,W1) of the fully faithful functor Φ

P̃
is

also fully faithful. Hence Φ
P̃
is an equivalence. □
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5.4. Applications. In this last subsection, we give two applications of the main theorem.

5.4.1. Flops of three folds. Let X and X+ be smooth quasi-projective threefolds, and let
the diagram

X
f−→ Y

f+←−− X+

be a flop. Set Z := X ×Y X+ and let ι : Z → X ×X+ be the embedding.
In [Bri], Bridgeland shows the following theorem:

Theorem 5.7 ([Bri]). The integral functor

Φι∗(OZ) : D
b(cohX)→ Db(cohX+)

is an equivalence.

Let G be a reductive affine algebraic group acting on X, X+ and Y with the morphisms
f and f+ equivariant. Take a semi invariant regular function WY : Y → A1, and set
W := f∗WY and W+ := f+∗WY . Consider the following cartesian square;

X ×A1 X+

vvmmm
mmm

mmm
mmm

mmm

((QQ
QQQ

QQQ
QQQ

QQQ

X

W
((QQ

QQQ
QQQ

QQQ
QQQ

QQQ X+

W+

vvlll
lll

lll
lll

lll
l

A1

The embedding ι : Z → X ×X+ factors through X ×A1 X+, i.e. ι is the composition of
embeddings i : Z → X ×A1 X+ and j : X ×A1 X+ → X ×X+. Set

P := i∗(OZ) ∈ Db(cohX ×A1 X+).

Since flopping contractions f and f+ are proper morphisms, the support of P is proper
over X and X+. Furthermore, the object OZ ∈ Db(cohZ) has a tautological G-equivariant
structure. Hence, P is a G-linearizable object. Consequently, we obtain the following
corollary of Theorem 5.6:

Corollary 5.8. We have an equivalence of derived factorization categories;

Φ
P̃G

: DcohG(X,W )
∼−→ DcohG(X

+,W+).

We define K-equivalence of gauged LG models. The above gauged LG models (X,W )G

and (X+,W+)G are K-equivalent.

Definition 5.9. Let X1 and X2 be smooth varieties with group G-actions, and let W1 :
X1 → A1 and W2 : X2 → A1 be χ-semi invariant regular functions for some character
χ : G → Gm. The gauged LG models (X1,O(χ),W1)

G and (X2,O(χ),W2)
G are called

K -equivalent, if there exists a common G-equivariant resolution of X1 and X2

Z
p

xxppp
ppp

ppp
ppp

p
q

&&NN
NNN

NNN
NNN

NN

X1 X2

such that p∗W1 = q∗W2 and p∗ωX1
∼= q∗ωX2 .

By Corollary 5.8 or [Seg, Conjecture 2,15], it is natural to expect the following conjec-
ture:



62 Y. HIRANO

Conjecture 5.10. If two gauged LG models (X,O(χ),WX)
G and (Y,O(χ),WY )

G are
K-equivalent, then their derived factorization categories are equivalent;

DcohG(X,WX) ∼= DcohG(Y,WY ).

The above conjecture for K-equivalent gauged LG models of trivial σ-type is proposed
by Kawamata [Kaw]. The converse of the above conjecture is not true in general. A
counterexample to the converse of the Kawamata’s conjecture is given by Uehara [Ueh].

5.4.2. Equivariantizations of derived equivalences. Let G be a reductive affine algebraic
group, and let X1 and X2 be smooth quasi-projective varieties with G-actions.

Corollary 5.11. Let P ∈ Db(cohX1 ×X2) be an object. Assume that P is G-linearizable
object and the support of P is proper over X1 and X2. Choose an object PG ∈ Db(cohGX1×
X2) such that Π(PG) ∼= P , where Π : Db(cohGX1×X2)→ Db(cohX1×X2) is the forgetful
functor. If the integral functor ΦP : Db(cohX1) → Db(cohX1) is an equivalence (resp.
fully faithful), then the integral functor

ΦPG : Db(cohGX1)→ Db(cohGX2)

is also an equivalence (resp. fully faithful).

Proof. Extend the G-action to G×Gm-action by Gm acting trivially. Then P is G×Gm-

linearizable. By Theorem 5.6, there is an object P̃G×Gm ∈ DcohG×Gm(X1 ×X2, 0) which
induces an equivalence (resp. fully faithful)

Φ
P̃G×Gm

: DcohG×Gm(X1, 0)→ DcohG×Gm(X2, 0).

By Proposition 4.6 and equivalences cohGXi
∼= coh[Xi/G] for each i = 1, 2, we have

equivalences

Ωi : DcohG×Gm(Xi, 0) ∼= Db(cohGXi).

Since the following diagram

DcohG×Gm(X1, 0)
Φ
P̃G×Gm //

Ω1

��

DcohG×Gm(X2, 0)

Ω2

��
Db(cohGX1)

ΦPG // Db(cohGX2)

is commutative, the integral functor ΦPG is also an equivalence (resp. fully faithful). □

Corollary 5.11 is shown if the group G is finite by Ploog [Plo, Lemma 5]. We can also
prove Corollary 5.11 for finite group actions by the result of [Ela2].

6. Relative singularity categories

Relative singularity categories are introduced in [EP], and it is shown that derived fac-
torization categories (with some conditions on regular functions) are equivalent to relative
singularity categories. In this section, we recall the definition and properties of relative
singularity categories.
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6.1. Triangulated categories of relative singularities. Let X be a quasi-projective
scheme, and let G be an affine algebraic group acting on X. Throughout this section,
we assume that X has a G-equivariant ample line bundle. If X is normal, this condition
is satisfied by [Tho, Lemma 2.10]. The equivariant triangulated category of singularities
Dsg
G (X) of X is defined as the Verdier quotient of Db(cohGX) by the thick subcategory

Perf G(X) of equivariant perfect complexes. Following [Orl1], we consider a larger cate-
gory Dcosg

G (X) defined as the Verdier quotient of Db(QcohGX) by the thick subcategory
LfrG(X) of complexes which is quasi-isomorphic to bounded complexes of equivariant lo-
cally free sheaves (not necessarily of finite ranks). If G is trivial, we denote the singularity
categories by Dcosg(X) or Dsg(X).

We recall relative singularity categories following [EP]. Let Z ⊂ X be a G-invariant
closed subscheme of X such that OZ has finite G-flat dimension as an OX-module i.e.,
the G-equivariant sheaf OZ ∈ cohG(X) has a finite resolution F • → OZ of G-equivariant
flat sheaves on X. Under the assumption, we have the derived inverse image Li∗ :
Db(QcohGX)→ Db(QcohGZ) between bounded derived categories for the closed immer-
sion i : Z → X. This functor preserves complexes of coherent sheaves; Li∗ : Db(cohX)→
Db(cohZ).

Definition 6.1 ([EP] Section 2.1). We define the following Verdier quotients

Dcosg
G (Z/X) := Db(QcohGZ)/⟨Im(Li∗ : Db(QcohGX)→ Db(QcohGZ))⟩⊕

Dsg
G (Z/X) := Db(cohGZ)/⟨Im(Li∗ : Db(cohGX)→ Db(cohGZ))⟩,

where ⟨−⟩ (resp. ⟨−⟩⊕) denotes the smallest thick subcategory containing objects in (−)
(resp. and closed under infinite direct sums which exist in Db(QcohGZ)). The quotient
category Dsg

G (Z/X) is called the equivariant triangulated category of singularities
of Z relative to X. If G is trivial, we denote the categories defined above by Dcosg(Z/X)
or Dsg(Z/X).

Proposition 6.2. Assume that G is reductive. We have natural Verdier localizations by
thick subcategories

πco : Dcosg
G (Z)→ Dcosg

G (Z/X)

π : Dsg
G (Z)→ Dsg

G (Z/X).

Proof. It is enough to show that LfrG(Z) ⊂ ⟨Im(Li∗ : Db(QcohGX) → Db(QcohGZ))⟩⊕
and Perf G(Z) ⊂ ⟨Im(Li∗ : Db(cohGX)→ Db(cohGZ))⟩. These inclusions follow from the
assumption that X has a G-equivariant ample line bundle L. The proofs of the inclusions
are similar, and we prove the only former inclusion. It is enough to show that any G-
equivariant locally free sheaf E on Z is a direct summand of a bounded complex whose
terms are direct sums of invertible sheaves of the form i∗L⊗n. By [Tho, Lemma 1.4], there

is a bounded above locally free resolution E• ∼−→ E whose terms are as above. For any
n > 0, we have the following triangle in Db(QcohGZ)

σ≥−nE• → E → H−n(σ≥−nE•)[n+ 1]→ σ≥−nE•[1],

where σ≥−n denotes the brutal truncation. If we choose a sufficiently large n ≫ 0, we
have

HomDb(QcohGZ)
(E,H−n(σ≥−nE•)[n+ 1]) = 0

by [Orl1, Lemma 1.12], since the restriction functor ResG : Db(QcohGZ)→ Db(QcohZ) is
faithful by Lemma 4.62 (2). Hence the above triangle splits, and E is a direct summand
of the complex σ≥−nE•. □
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Remark 6.3. Note that, ifX is regular, then the thick subcategory ⟨Im(Li∗)⟩ ⊂ Db(cohGZ)
coincides with its thick subcategory Perf G(Z) of equivariant perfect complexes of Z.
Hence the quotient category Dsg

G (Z/X) is same as Dsg
G (Z). Similarly, Dcosg

G (Z/X) is also
same as Dcosg

G (Z) when X is regular.

The exact functors ResG : QcohGZ → QcohZ and IndG : QcohZ → QcohGZ induce
functors between relative singularity categories

ResG : Dcosg
G (Z/X)→ Dcosg(Z/X)

IndG : Dcosg(Z/X)→ Dcosg
G (Z/X).

We need the following lemma in the proof of the main result.

Lemma 6.4. Assume that G is reductive. Then the restriction functor

ResG : Dcosg
G (Z/X)→ Dcosg(Z/X)

is faithful.

Proof. This follows from a similar argument as in the proof of Lemma 4.62 (2). □

6.2. Direct images and inverse images in relative singularity categories. Let X1

and X2 be quasi-projective schemes with actions of an affine algebraic group G. Assume
that X1 and X2 have G-equivariant ample line bundles. Let f̃ : X2 → X1 be a G-
equivariant morphism. Let Z1 be a G-invariant closed subscheme of X1 such that OZ1

has finite G-flat dimension as a OX1-module, and let Z2 be the fiber product Z1 ×X1 X2.

Denote by f the restriction f̃ |Z2 : Z2 → Z1 of f̃ to Z2. We assume that the cartesian
square

Z2
f //

��

Z1

��
X2

f̃ // X1

is exact in the sense of [Kuz]. Then, OZ2 also has finite G-flat dimension as a OX2-module.

Furthermore, we assume that f̃ has finite G-flat dimension, i.e. the derived inverse image
Lf̃∗ : D−(QcohGX1) → D−(QcohGX2) maps Db(QcohGX1) to Db(QcohGX2). Then f
also has finite G-flat dimension.

In the above setting, the derived inverse image Lf∗ : Db(QcohGZ1) → Db(QcohGZ2)
induces exact functors

f◦ : Dcosg
G (Z1/X1)→ Dcosg

G (Z2/X2)

f◦ : Dsg
G (Z1/X1)→ Dsg

G (Z2/X2),

and the derived direct image Rf∗ : D
b(QcohGZ2)→ Db(QcohGZ1) induces a right adjoint

functor of f◦ : Dcosg
G (Z1/X1)→ Dcosg

G (Z2/X2)

f◦ : D
cosg
G (Z2/X2)→ Dcosg

G (Z1/X1).

If f is a proper morphism, the direct image Rf∗ : Db(cohGZ2) → Db(cohGZ1) between
bounded complexes of coherent sheaves induces a right adjoint functor

f◦ : D
sg
G (Z2/X2)→ Dsg

G (Z1/X1)

of f◦ : Dsg
G (Z1/X1)→ Dsg

G (Z2/X2).
LetX be a quasi-projective scheme with an action of an affine algebraic group G, and let

U ⊂ X be a G-invariant open subscheme. Let Z ⊂ X be a G-invariant closed subscheme
such that OZ has finite G-flat dimension, and consider the fiber product UZ := Z ×X U .
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Denote by l̃ : U → X and l : UZ → Z the open immersions. Then we have the following
exact cartesian square:

UZ
l //

��

Z

��
U

l̃ // X.

Lemma 6.5. The inverse image

l◦ : Dcosg
G (Z/X)→ Dcosg

G (UZ/U)

is a Verdier localization by the kernel of l◦.

Proof. The direct image Rl∗ : Db(QcohUZ) → Db(QcohZ) is fully faithful and right
adjoint to the inverse image l∗ : Db(QcohZ) → Db(QcohUZ). By [Orl2, Lemma 1.1], the
direct image functor l◦ : Dcosg

G (Z/X) → Dcosg
G (UZ/U) is fully faithful. Hence, l◦ admits a

right adjoint functor which is fully faithful, and this implies the result. □

6.3. Relative singularity categories and derived factorization categories. In this
section, X and G are the same as in section 6.1, and we assume that G is reductive.
Let χ : G → Gm be a character of G, and let W : X → A1 be a χ-semi invariant
regular function. In this section, we assume that the corresponding G-invariant section
W : OX → O(χ) is injective. For example, if W is flat, this condition is satisfied. Denote
by X0 the fiber of W over 0 ∈ A1, and let i : X0 → X be the closed immersion. We have
an exact functor τ : QcohGX0 → Z0(QcohG(X,χ,W )) defined by

τ(F ) :=
(
0→ i∗(F )→ 0

)
.

We define a natural functor

Υ : Db(QcohGX0)→ DcoQcohG(X,χ,W )

as the composition of functors

Db(QcohGX0)
τ−→ Db(Z0(QcohG(X,χ,W )))

Tot−−→ DcoQcohG(X,χ,W ).

The functor Υ annihilates the thick category ⟨Im(Li∗)⟩⊕ ⊂ Db(QcohGX0), since its
nonequivariant functor Υ : Db(QcohX0)→ DcoQcoh(X,W ) annihilates ResG(⟨Im(Li∗)⟩⊕)
(see the proof of [EP, Theorem 2.7 and Theorem 2.8]) and the restriction functor ResG :
DcoQcohG(X,χ,W )→ DcoQcoh(X,W ) is faithful. Hence it induces an exact functor

Υ : Dcosg
G (X0/X)→ DcoQcohG(X,χ,W ).

Similarly, we have the following exact functor

Υ : Dsg
G (X0/X)→ DcohG(X,χ,W ),

and the following diagram is commutative;

Dcosg
G (X0/X)

Υ // DcoQcohG(X,χ,W )

Dsg
G (X0/X)

Υ //

OO

DcohG(X,χ,W ),

OO

where the vertical arrows are natural inclusion functors (which are fully faithful).

Theorem 6.6 (cf. [EP] Theorem 2.7, Theorem 2.8.). The functors

Υ : Dcosg
G (X0/X)→ DcoQcohG(X,χ,W )

Υ : Dsg
G (X0/X)→ DcohG(X,χ,W )

are equivalences.
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In order to prove the above theorem, we need to construct the quasi-inverse of Υ. We
say that a G-equivariant quasi-coherent sheaf F ∈ QcohGX is W -flat, if the morphism
of sheaves W : F → F ⊗ L is injective. Denote by FlatWG (X,χ,W ) the dg full subcate-
gory of QcohG(X,χ,W ) consisting of factorizations whose components are W -flat. Then
H0(FlatWG (X,χ,W )) is a full triangulated subcategory ofH0(QcohG(X,χ,W )). Denote by
Acyclco(FlatWG (X,χ,W )) the smallest thick subcategory of H0(FlatWG (X,χ,W )) contain-

ing all totalizations of short exact sequences in the exact category Z0(FlatWG (X,χ,W )).
Consider the corresponding Verdier quotients

DcoFlatWG (X,χ,W ) := H0(FlatWG (X,χ,W ))/Acyclco(FlatWG (X,χ,W )).

The restriction functor ResG : QcohG(X,χ,W )→ Qcoh(X,W ) and the induction functor
IndG : Qcoh(X,W )→ QcohG(X,χ,W ) preserve factorizations whose components are W -
flat sheaves since ResG : QcohGX → QcohX and IndG : QcohX → QcohGX are exact
functors. Hence the restriction and the induction functors induce the following functors

ResG : DcoFlatWG (X,χ,W )→ DcoFlatW (X,W )

IndG : DcoFlatW (X,W )→ DcoFlatWG (X,χ,W ),

and these functors are adjoint to each other;

ResG ⊣ IndG.

Lemma 6.7. The natural functor

DcoFlatWG (X,χ,W )→ DcoQcohG(X,χ,W )

is an equivalence.

Proof. At first, we prove that the functor is essentially surjective. Let F ∈ DcoQcohG(X,χ,W )
be an object. Since X has a G-equivariant ample line bundle, there are G-equivariant lo-
cally free sheaf Ei and a surjective morphism pi : Ei → Fi in QcohGX for each i = 0, 1.
Let E ∈ QcohG(X,χ,W ) be the factorization of the following form

E :=
(
E1 ⊕ E0

W⊕idE0−−−−−→ E1(χ)⊕ E0

idE1(χ)
⊕W

−−−−−−−→ E1(χ)⊕ E0(χ)
)
.

Then p1 and p0 define a natural surjective morphism p : E → F in Z0(QcohG(X,χ,W )).
The kernel K := Ker(p) of p is in Z0(FlatWG (X,χ,W )) since the components of K are
subsheaves of W -flat sheaves. Hence the totalization Tot(C•) of the complex

C• : · · · → 0→ K ↪→ E → 0→ · · ·

with the cohomological degree of E zero is in DcoFlatWG (X,χ,W ), and we see that the
natural morphism Tot(C•)→ F induced by p is an isomorphism in DcoQcohG(X,χ,W ).

To show the functor DcoFlatWG (X,χ,W )→ DcoQcohG(X,χ,W ) is fully faithful, it suf-
fices to prove that for any morphism f : E → F in H0(QcohG(X,χ,W )) with F ∈
H0(FlatWG (X,χ,W )) and the cone of f in Acyclco(QcohG(X,χ,W )), there exists a mor-

phism g : F ′ → E with F ′ ∈ H0(FlatWG (X,χ,W )) such that the cone of f ◦ g is in
Acyclco(FlatWG (X,χ,W )) (see [LS, Proposition B.2. (ff1 )op]). By the above argument in

the previous paragraph, we can find a morphism g : F ′ → E with F ′ ∈ H0(FlatWG (X,χ,W ))
such that the cone of g is in Acyclco(QcohG(X,χ,W )), and then the cone of f ◦ g is in
H0(FlatWG (X,χ,W )) ∩Acyclco(QcohG(X,χ,W )). Hence it is enough to show that

H0(FlatWG (X,χ,W )) ∩Acyclco(QcohG(X,χ,W )) ⊆ Acyclco(FlatWG (X,χ,W )).

For this, let A ∈ H0(FlatWG (X,χ,W )) ∩ Acyclco(QcohG(X,χ,W )) be an object. We
already know that ResG(A) ∈ Acyclco(FlatW (X,W )) by [EP, Corollary 2.6 (a)]. Note
that the restriction functor ResG : DcoFlatWG (X,χ,W ) → DcoFlatW (X,W ) is faithful by
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a similar argument as in the proof of Lemma 4.62 (2). Hence the fact that ResG(A) ∈
Acyclco(FlatW (X,W )) implies that A ∈ Acyclco(FlatWG (X,χ,W )). □

For an object F =
(
F1

φF1−−→ F0
φF0−−→ F1(χ)

)
∈ Z0(FlatWG (X,χ,W )), define an object

Ξ(F ) ∈ Dcosg
G (X0/X) by Ξ(F ) := Cok(φF1 ). It is easy to see that this defines the following

exact functor

Ξ : H0(FlatWG (X,χ,W ))→ Dcosg
G (X0/X).

If G is trivial, this exact functor annihilates Acyclco(FlatW (X,W )) by [EP, Theorem 2.7,
2.8]. Hence, since ResG : Dcosg

G (X0/X) → Dcosg(X0/X) is faithful, we obtain the exact

functor Ξ : DcoFlatWG (X,χ,W ) → Dcosg
G (X0/X). By Lemma 6.7, we have the left derived

functor of Ξ;

LΞ : DcoQcohG(X,χ,W )→ Dcosg
G (X0/X).

Proof of Theorem 6.6: We will show that the functors Υ and LΞ are mutually inverse.
Let E ∈ DcoQcohG(X,χ,W ) be an object. By Lemma 6.7 we may assume that E ∈
DcoFlatWG (X,χ,W ). Then

ΥLΞ(E) ∼= ΥΞ(E) =
(
0→ Cok(φE1 )→ 0

)
,

and the surjective morphism E0 ↠ Cok(φE1 ) induces the natural surjective morphism
ϕE : E → ΥΞ(E) in Z0(QcohG(X,χ,W )). Since the kernel of ϕE is the factorization(
E1 = E1

W−→ E1(χ)
)
and it is isomorphic to the zero object in H0(FlatWG (X,χ,W )), the

morphism ϕE : E → ΥΞ(E) is an isomorphism in DcoQcohG(X,χ,W ). It is easy to see
that the isomorphisms ϕ(−) define an isomorphism of functors

ϕ : idDcoQcohG(X,χ,W )
∼−→ ΥLΞ.

Let F ∈ Dcosg
G (X0/X) be an object. Then we may assume that F ∈ QcohGX0. Take

a surjective morphism p : P ↠ i∗F with P locally free. Set K := Ker(p) ∈ QcohGX

and Q :=
(
K

i−→ P
W−→ K(χ)

)
∈ QcohG(Xχ,W ), where i : K → P is the natu-

ral inclusion. Consider the natural surjective morphism π : Q →
(
0 → i∗F → 0

)
in

Z0(QcohG(X,χ,W )). Then the kernel of π is the factorization
(
K = K

W−→ K(χ)
)
, and

it is isomorphic to the zero object in H0(QcohG(X,χ,W )). Hence π is an isomorphism

in DcoQcohG(X,χ,W ), and so we have a natural isomorphism ψF : LΞΥ(F )
∼−→ F in

Dcosg
G (X0/X) defined as the composition LΞΥ(F )

∼−→ ΞΥ(Q) = Cok(i) = F . We need to
show that the isomorphisms ψ(−) are functorial in (−). Since the restriction functor ResG
is isomorphic to the forgetful functor ForgG, we have a natural isomorphism of functors

σ : ResGLΞΥ
∼−→ LΞΥResG defined by the composition

ResGLΞΥ
∼−→ ForgGLΞΥ = LΞΥForgG

∼−→ LΞΥResG,

and the following diagram is commutative

ResGLΞΥ(F )
ResG(ψF ) //

σF ((QQ
QQQ

QQQ
QQQ

QQ
ResG(F )

LΞΥResG(F )

ψResG(F )

77ooooooooooo

Hence we see that the isomorphisms ψ(−) are functorial by the fact that the isomorphisms
ψ(−) are functorial if G is trivial and that the functor ResG is faithful. This completes the
proof of the former equivalence.
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The latter equivalence follows from [EP, Remark 2.7], which is a generalized result of
[EP, Theorem 2.7]. □

7. Main results (Part II)

Let X be a smooth quasi-projective variety, and let G be a reductive affine algebraic
group acting on X. Let E be a G-equivariant locally free sheaf of rank r, and let s ∈
Γ(X, E∨)G be a G-invariant section of E∨. Denote by Z ⊂ X the zero scheme of s. We
assume that s is regular, i.e. the codimension of Z in X is r. Let

V(E(χ)) := Spec(Sym(E(χ)∨))

be a vector bundle over X with the G-action induced by the equivariant structure of the
locally free sheaf E(χ). Denote by V(E(χ))|Z the restriction of the vector bundle V(E(χ))
to Z. Let j : Z ↪→ X and i : V(E(χ))|Z ↪→ V(E(χ)) be the closed immersions, and let
q : V(E(χ)) → X and p : V(E(χ))|Z → Z be the projections. Now we have the following
commutative diagram:

V(E(χ))|Z
i //

p

��

V(E(χ))
q

��
Z

j // X.

The invariant section s induces a χ-semi invariant regular function

Qs : V(E(χ))→ A1.

Let W : X → A1 be a χ-semi invariant regular function on X. The function W induces
χ-semi invariant functions on Z, V(E(χ)) and V(E(χ))|Z , which we denote by the same
notation W (by abuse of notation). Since the inverse image p∗ and the direct image i∗
are exact and commutative with arbitrary direct sums as functors between categories of
quasi-coherent sheaves, these induce (underived) functors

p∗ : DcoQcohG(Z, χ,W )→ DcoQcohG(V(E(χ))|Z , χ,W )

i∗ : D
coQcohG(V(E(χ))|Z , χ,W )→ DcoQcohG(V(E(χ)), χ,W +Qs).

Restricting the composition i∗p
∗ : DcoQcohG(Z, χ,W )→ DcoQcohG(V(E(χ)), χ,W +Qs)

to DcohG(Z, χ,W ), we obtain an exact functor

i∗p
∗ : DcohG(Z, χ,W )→ DcohG(V(E(χ)), χ,W +Qs).

Shipman proved that the above functor i∗p
∗ is an equivalence when G = Gm trivially

acts on X and W = 0 (see also [Isi]):

Theorem 7.1 ([Shi] Theorem 3.4). The composition

i∗p
∗ : DcohGm(Z, χ1, 0)

∼−→ DcohGm(V(E(χ1)), χ1, Qs)

is an equivalence.

The goal of this section is to show the following main result which is an analogy of the
above theorem.

Theorem 7.2. Assume that W |Z : Z → A1 is flat. The functor

i∗p
∗ : DcohG(Z, χ,W )→ DcohG(V(E(χ)), χ,W +Qs)

is an equivalence.
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Remark 7.3. Let S be a smooth quasi-projective variety, and let G be an affine reductive
group acting on S. Let W : S → A1 be a χ := χ1+χ2-semi invariant non-constant regular
function for some characters χi : G→ Gm. Let X := V(O(χ1)) ∼= S×A1

x1 be the G-vector

bundle over S, and let s ∈ Γ(X,O(χ1))
G be the section corresponding to the χ1-semi

invariant function S × A1
x1 → A1 which is defined as the projection (s, x1) 7→ x1. Then,

S is isomorphic to the zero scheme of s, and the G-vector bundle V(O(−χ1)(χ)) over X
is isomorphic to the G-variety S × A2

x1,x2 , where the G-weights of xi is given by χi. By
Theorem 7.2, we have the following equivalence

DcohG(S, χ,W ) ≃ DcohG(S × A2
x1,x2 , χ,W + x1x2).

This kind of equivalence is know as Knörrer periodicity, so the above theorem is considered
as a generalization of the original Knörrer periodicity [Knö, Theorem 3.1].

7.1. Koszul factorizations. Let (X,χ,W )G be a gauged LG model such that X is a
smooth variety. Let E be a G-equivariant locally free sheaf on X of rank r, and let

s : E → OX and t : OX → E(χ)

be morphisms in cohGX such that t ◦ s = W · idE and s(χ) ◦ t = W . Let Zs ⊂ X be the
zero scheme of the section s ∈ Γ(X, E∨)G. We say that s is regular if the codimension of
Zs in X equals to the rank r.

Definition 7.4. We define an object K(s, t) ∈ lfrG(X,χ,W ) as

K(s, t) :=
(
K1

k1−→ K0
k0−→ K1(χ)

)
where

K1 :=

⌈r/2⌉−1⊕
n=0

(
2n+1∧

E)(χn), K0 :=

⌊r/2⌋⊕
n=0

(
2n∧
E)(χn)

and

ki := t ∧ (−)⊕ s ∨ (−).

The following property will be necessary in section 7.2.

Lemma 7.5 ([BFK1] Lemma 3.21 and Proposition 3.20).
(1) We have a natural isomorphism

K(s, t)∨ ∼= K(t∨, s∨).

(2) If s is regular, we have a natural isomorphisms in DcohG(X,χ,W )

OZs ∼= K(s, t) and OZs ⊗
r∧
E∨(χ−1)[−r] ∼= K(s, t)∨,

where OZs :=
(
0→ OZs → 0

)
and

∧r E∨(χ−1)[−r] is a complex in cohGX.

7.2. Integral functors in Gorenstein cases. We define integral functors between de-
rived factorization categories. For simplicity, we consider the case when G is trivial. Let
X1 and X2 be Gorenstein quasi-projective schemes, and let Wi : Xi → A1 be a regular
function. We denote the projection by πi : X1 ×X2 → Xi for each i = 1, 2.

In order to define integral functors in Gorenstein cases, we need the following lemmas:

Lemma 7.6. Assume that the scheme X is Noetherian. The natural functor

H0(InjG(X,χ,W ))→ DcoQcohG(X,χ,W )

is an equivalence.
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Proof. Since the abelian category QcohGX of G-equivariant quasi-coherent sheaves is a
locally Noetherian Grothendieck category, it has enough injective objects, and coproducts
of injective objects are injective. Hence the result follows from [BDFIK1, Cororally 2.25].

□

Lemma 7.7 ([EP] Corollary 2.3.e and 2.4.a). Let (X,W ) be a LG model. Assume that
the scheme X is a Gorenstein separated scheme of finite Krull dimension with an ample
line bundle. Then the functor

DcoLFr(X,W )→ DcoQcoh(X,W )

induced by the embedding of dg functor LFr(X,W )→ Qcoh(X,W ) is an equivalence.

Note that, since X1 and X2 are Gorenstein, so is X1 × X2 (cf. [TY]). By the above
lemmas, for P ∈ DcoQcoh(X1×X2, π

∗
2W − π∗1W ), we can define the integral functor with

respect to P , denoted by ΦP , as the following functor

Rπ2∗(π
∗
1(−)⊗L P ) : DcoQcoh(X1,W1)→ DcoQcoh(X2,W2).

Similar result to Proposition 4.48 holds for integral functors in Gorenstein cases.

7.3. Lemmas for the main theorem. In this section, we provide some lemmas for the
main result. Throughout this section, we consider the case when G is trivial.

Set

ωj :=
r∧
(IZ/I2Z)∨ and ωi := p∗ωj ,

where IZ is the ideal sheaf of Z in X. These are invertible sheaves on Z and V(E)|Z
respectively. We define an exact functor

i! : DcoQcoh(V(E),W +Qs)→ DcoQcoh(V(E)|Z ,W )

as i!(−) := Li∗(−) ⊗ ωi[−r]. By [EP, Theorem 3.8], the above functor i! is right adjoint
to i∗ : D

coQcoh(V(E)|Z ,W )→ DcoQcoh(V(E),W +Qs). Let

K := K(q∗s, t) ∈ lfr(V(E), Qs)

be the Koszul factorization of q∗s ∈ Γ(V(E), q∗E∨) and t ∈ Γ(V(E), q∗E), where t is the
tautological section. By abuse of notation, we denote by OZ the object in coh(Z, 0) of the
following form (

0→ OZ → 0
)
.

Lemma 7.8. Consider the case when W = 0. We have isomorphisms

i∗p
∗(OZ) ∼= K and p∗i

!(K) ∼= OZ
in Dcoh(V(E), Qs) and in DcoQcoh(Z, 0) respectively.

Proof. These isomorphisms follow from Lemma 7.5. In particular, the former isomor-
phism is an immediate consequence. Note that ωi ∼= i∗

∧r q∗E∨. We obtain the latter
isomorphism as follows;

p∗i
!(K) ∼= p∗Li

∗(OZ ⊗
r∧
q∗E∨[−r]) ∼= p∗Li

∗(K∨) ∼= p∗Li
∗(OZt∨ ) ∼= OZ ,

where the last isomorphism follows from the fact that the zero section Z ⊂ V(E) is
isomorphic to the fiber product of closed subschemes V(E)|Z ↪→ V(E) and Zt∨ ↪→ V(E). □

Lemma 7.9. The functor

i∗p
∗ : DcoQcoh(Z,W )→ DcoQcoh(V(E),W +Qs)

is fully faithful.
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Proof. The functors i∗p
∗ and p∗i

! can be represented as integral functors

i∗p
∗ ∼= Φk∗OV(E)|Z

and p∗i
! ∼= Φk∗ωi[−r],

where k := p × i : V(E)|Z → Z × V(E) and kernels OV(E)|Z and ωi[−r] are objects in
Dcoh(V(E)|Z , 0). By easy computation, we see that there exists an object P ∈ DcoQcoh(Z, 0)
such that p∗i

! ◦ i∗p∗ ∼= Φ∆∗P
∼= (−) ⊗ P , where ∆ : Z → Z × Z is the diagonal embed-

ding. Substituting W = 0, by Lemma 7.8, we have an isomorphism P ∼= OZ . But P
doesn’t depend on the function W . Hence, for any W , we have an isomorphism of func-
tors p∗i

! ◦ i∗p∗ ∼= Φ∆∗P
∼= idDcoQcoh(Z,W ). By Lemma 5.5, this implies that the functor

i∗p
∗ : DcoQcoh(Z,W )→ DcoQcoh(V(E),W +Qs) is fully faithful. □

7.4. Proof of the main theorem. In this section, we prove the main theorem. Recall
that G is a reductive affine algebraic group acting on a smooth quasi-projective variety
X. Since X is smooth, there is a G-equivariant ample line bundle on X. In what follows,
we assume that W |Z : Z → A1 is flat.

At first, we consider relative singularity categories. Let Z0, V |Z0 and V0 be the fibers of
W : Z → A1, W : V(E(χ))|Z → A1 and W +Qs : V(E(χ))→ A1 over 0 ∈ A1 respectively.
Denote by p0 : V |Z0 → Z0 and i0 : V |Z0 → V0 the restrictions of p and i respectively. By
[Kuz, Corollary 2.27], the following cartesian squares are exact

V |Z0

p0 //

��

Z0

��

V |Z0

i0 //

��

V0

��
V(E)|Z

p // Z V(E)|Z
i // V(E).

Since p and i have finite flat dimensions, we have exact functors of relative singularity
categories

p0
◦ : Dcosg

G (Z0/Z)→ Dcosg
G (V |Z0/V(E)|Z)

i0◦ : D
cosg
G (V |Z0/V(E)|Z)→ Dcosg(V0/V(E)) = Dcosg

G (V0).

Then the following diagram is commutative

Dcosg
G (Z0/Z)

i0◦p0
◦

//

Υ
��

Dcosg
G (V0)

Υ
��

DcoQcohG(Z,W )
i∗p∗ // DcoQcohG(V(E(χ)),W +Qs).

Furthermore, we compactify V0 and V |Z0 . The compactifying technique appeared in
[Orl2]. Let

P := P(E(χ)⊕OX) = Proj(Sym(E(χ)⊕OX)
∨)

be the projective space bundle overX with a G-action induced by the equivariant structure
of E(χ)⊕OX . Then we have a natural equivariant open immersion

l : V(E(χ))→ P.

Denote by l|Z : V(E(χ))|Z → P |Z the pull-back of l by the closed immersion i : P |Z → P .
Now we have the following cartesian square

V(E(χ))|Z
l|Z //

i
��

P |Z

i
��

V(E(χ)) l // P.

Denote by q : P → X the natural projection, and let p := q|Z : P |Z → Z be the pull-back
of q by the closed immersion j : Z → X. Let P0 be the G-invariant subscheme of P
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defined by the G-invariant section s⊕W ∈ Γ(P,O(1)(χ))G which is corresponding to the
composition

OP
q∗(s⊕W )−−−−−−→ q∗(E ⊕ O(χ−1))∨

σ−→ OP (1)(χ),
where σ is the canonical surjection, and let P |Z0 be the zero scheme defined by the invariant

section i
∗
(s⊕W ) ∈ Γ(P |Z ,O(1)(χ))G. Since the pull-back of s⊕W (resp. i

∗
(s⊕W )) by

the open immersion l (resp. l|Z) is equal to W + Qs (resp. W ), we have the following
exact cartesian square

V |Z0

l|Z0 //

i0
��

P |Z0

i0
��

V0
l0 // P0.

Denote by p0 : P |Z0 → Z0 be the pull-back of p : P |Z → Z by the closed immersion Z0 →
Z. Since the morphisms i0 : P |Z0 → P0 and p0 : P |Z0 → Z0 have finite Tor dimensions, the
direct images Ri0∗ : Db(cohP |Z0) → Db(cohP0) and Rp0∗ : Db(cohP |Z0) → Db(cohZ0)
induce the following exact functors (cf. [TT, Proposition 2.7]),

i0◦ : D
sg
G (P |Z0)→ Dsg

G (P0)

p0◦ : D
sg
G (P |Z0)→ Dsg

G (Z0).

Now we have the following commutative diagram

Dsg
G (Z0)

i0◦p0
◦

//

π

��

Dsg
G (P0)

l0
◦

��
Dsg
G (Z0/Z)

i0◦p0
◦

// Dsg
G (V0),

where the vertical arrow on the left side is a Verdier localization by Proposition 6.2.

Remark 7.10. If Z is smooth, the above vertical arrows are equivalences. Indeed, in
that case, the singular locus Sing(P0) is contained in V0, whence l0

◦ is an equivalence by
a similar argument in the proof of [Orl1, Proposition 1.14]. The equivalence of π follows
from Remark 6.3.

Let i0
!
: Db(cohGP0)→ Db(cohGP |Z0) be the functor defined by

i0
!
:= Li0

∗
(−)⊗

r∧
(I/I2)∨[−r],

where I is the ideal sheaf of i0 : P |Z0 ↪→ P0. The functor i0
!
is a right adjoint functor of

i0∗ : Db(cohGP |Z0) → Db(cohGP0). Indeed, these functors are adjoint when G is trivial
by [Har, III Theorem 6.7, Corollary 7.3], and the isomorphism

Hom(i0∗(A), B) ∼= Hom(A, i0
!
(B)),

where A ∈ Db(cohP |Z0) and B ∈ Db(cohP0), commutes with G-actions on each vector

space of morphisms by the property in [Har, III Proposition 6.9.c]. Hence we see that i0
!

is right adjoint to i0∗ by [BFK2, Lemma 2.2.8]. Denote by

i0
♭
: Dsg

G (P0)→ Dsg
G (P |Z0)

the functor induced by i0
!
. By the above argument, we have the following adjoint pair

i0◦ ⊣ i0
♭
.

Similarly, we have a right adjoint functor

i0
♭ : Dcosg

G (V0)→ Dcosg
G (V |Z0/V(E(χ))|Z)
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of i0◦ : D
cosg
G (V |Z0/V(E(χ))|Z)→ Dcosg

G (V0).

Proof of Theorem 7.2: We have the following commutative diagram

Dsg
G (Z0/Z)

i0◦p0
◦

//

Υ
��

Dsg
G (V0)

Υ
��

DcohG(Z, χ,W )
i∗p∗ // DcohG(V(E(χ)), χ,W +Qs),

where the vertical arrows are equivalences by Theorem 6.6. Hence it suffices to show that
the functor i0◦p0

◦ : Dsg
G (Z0/Z)→ Dsg

G (V0) is an equivalence.
At first, we prove that the functor i0◦p0

◦ : Dcosg
G (Z0/Z) → Dcosg

G (V0) is fully faithful.
Let

εG : idDcosg
G (Z0/Z) → p0◦i0

♭ ◦ i0◦p0◦

be the adjunction morphism of the adjoint pair i0◦p0
◦ ⊣ p0◦i0

♭. It is enough to show
that for any object A ∈ Dcosg

G (Z0/Z), the cone CG(A) of the morphism εG(A) : A →
p0◦i0

♭◦i0◦p0◦(A) is the zero object. But the object ResG(CG(A)) is isomorphic to the cone

C(A) of the adjunction morphism of ε(ResG(A)) : ResG(A) → p0◦i0
♭ ◦ i0◦p0◦(ResG(A))

of the adjoint pair of functors between Dcosg(Z0/Z) and Dcosg(V0). Since we have the
following commutative diagram

Dcosg(Z0/Z)
i0◦p0

◦
//

Υ
��

Dcosg(V0)

Υ
��

DcoQcoh(Z,W )
i∗p∗ // DcoQcoh(V(E),W +Qs),

where the vertical arrows are equivalences by Theorem 6.6, the functor i0◦p0
◦ is fully

faithful by Lemma 7.9. This implies that the object C(A) is the zero object. Hence CG(A)
is also the zero object since the restriction functor ResG is faithful by Lemma 6.4. Hence
i0◦p0

◦ : Dcosg
G (Z0/Z)→ Dcosg

G (V0) is fully faithful. This implies that i0◦p0
◦ : Dsg

G (Z0/Z)→
Dsg
G (V0) is also fully faithful, since the natural inclusions Dsg

G (Z0/Z) → Dcosg
G (Z0/Z) and

Dsg
G (V0)→ Dcosg

G (V0) are fully faithful by Theorem 6.6 and Proposition 4.53 (1).
It only remains to show that the functor i0◦p0

◦ : Dsg
G (Z0/Z) → Dsg

G (V0) is essentially
surjective. Consider the following commutative diagram:

Dsg
G (Z0)

i0◦p0
◦

//

π

��

Dsg
G (P0)

l0
◦

��
Dsg
G (Z0/Z)

i0◦p0
◦

// Dsg
G (V0)

By a similar argument as in the proof of [Orl1, Lemma 1.11], we see that every object in
Dsg
G (V0) is isomorphic to an object F [k] for some G-equivariant coherent sheaf F and for

some integer k ∈ Z. Hence the vertical arrow on the right hand side in the above diagram is
essentially surjective, since for every object E in cohGV0 there exists an object E in cohGP0

such that l0
∗(E) ∼= E. Thus, we only need to prove that i0◦p0

◦ : Dsg
G (Z0) → Dsg

G (P0) is
essentially surjective. To prove that, it is enough to show that the right adjoint functor

p0◦i0
♭
: Dsg

G (P0)→ Dsg
G (Z0) is fully faithful. Since the restriction functor ResG : Dsg

G (P0)→
Dsg(P0) is faithful by Lemma 6.4 and [PV, Proposition 3.8], it follows from [Orl2, Theorem

2.1] that the adjunction i0◦p0
◦◦p0◦i0

♭ → idDsg
G (P0) is an isomorphism of functors by a similar

argument as in the proof of the fully faithfulness of i0◦p0
◦ : Dcosg

G (Z0/Z) → Dcosg
G (V0) in

the previous paragraph. □
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7.5. Cases when W = 0. In the previous section, we prove the main result assuming
that W |Z : Z → A1 is flat. In this section, we consider the cases when W = 0. In this
cases, using results in [Shi], we can show the following:

With notation as above, consider Gm×G-action on X induced by the projection Gm×
G→ G. Let θ : Gm ×G→ Gm be the character defined as the projection. Since the first
factor of Gm ×G trivially acts on X, the G-equivariant locally free sheaf E has a natural
Gm ×G-equivariant structure.

Proposition 7.11. We have an equivalence

Db(cohGZ)
∼−→ DcohGm×G(V(E(θ)), θ,Qs).

Proof. By Proposition 4.6, we obtain an equivalence

Db(cohGZ)
∼−→ DcohGm×G(Z, θ, 0).

Hence it is enough to show the functor

i∗p
∗ : DcohGm×G(Z, θ, 0)→ DcohGm×G(V(E(θ)), θ,Qs)

is an equivalence.
By Lemma 7.9, it follows that

i∗p
∗ : DcoQcohGm(Z, χ1, 0)→ DcoQcohGm(V(E(χ1)), χ1, Qs)

is fully faithful since the forgetful functor DcoQcohGm(Z, χ1, 0)→ DcoQcoh(Z, 0) is faith-
ful. Furthermore, the above functor i∗p

∗ is an equivalence since the right orthogonal of the
image of the restricted functor i∗p

∗ : DcohGm(Z, χ1, 0) → DcoQcohGm(V(E(χ1)), χ1, Qs)
vanishes by the argument in [Shi, Theorem 3.4]. In particular, the right adjoint functor

p∗i
! : DcoQcohGm(V(E(χ1)), χ1, Qs)→ DcoQcohGm(Z, χ1, 0)

of i∗p
∗ is also fully faithful.

Next we will show that the functor

i∗p
∗ : DcoQcohGm×G(Z, θ, 0)→ DcoQcohGm×G(V(E(θ)), θ,Qs)

is an equivalence. Let

εGm×G : idDcoQcohGm×G(Z,θ,0)
→ p∗i

! ◦ i∗p∗

be the adjunction morphism. To show that the functor i∗p
∗ : DcoQcohGm×G(Z, θ, 0) →

DcoQcohGm×G(V(E(θ)), θ,Qs) is fully faithful, we will prove that the adjunction morphism
εGm×G is an isomorphism of functors. For this, it suffices to show that for any object
F ∈ DcoQcohGm×G(Z, θ, 0) the cone CGm×G(F ) of the morphism εGm×G(F ) : F → p∗i

! ◦
i∗p

∗(F ) is the zero object. Recall that the categories QcohGmZ and QcohGm×GZ are
equivalent to the categories Qcoh[Z/Gm] and QcohG[Z/Gm] respectively, where [Z/Gm]
denotes the quotient stack, and we can consider the restriction and the induction functors
for algebraic stacks as in section 4.4. Let πG : QcohGm×GZ → QcohGmZ be the functor
corresponding to the restriction functor ResG : QcohG[Z/Gm] → Qcoh[Z/Gm] via the
equivalences QcohGmZ

∼= Qcoh[Z/Gm] and QcohGm×GZ
∼= QcohG[Z/Gm]. Then πG

naturally induces the following exact functor

πG : DcoQcohGm×G(Z, θ, 0)→ DcoQcohGm(Z, χ1, 0),

and πG has the right adjoint functor σG : DcoQcohGm(Z, χ1, 0) → DcoQcohGm×G(Z, θ, 0)
induced by the induction functor. Since the argument in the proof of Lemma 4.62 works
for algebraic stacks, the adjunction morphism id→ σG ◦ πG is a split mono. Hence πG is
faithful. The object πG(CGm×G(F )) is isomorphic to the cone CGm(F ) of the adjunction
morphism εGm(πG(F )) : πG(F )→ p∗i

! ◦ i∗p∗(πG(F )), and CGm(F ) is the zero object since
the functor i∗p

∗ : DcoQcohGm(Z, χ1, 0) → DcoQcohGm(V(E(χ1)), χ1, Qs) is fully faithful.
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Hence we see that the object CGm×G(F ) is also the zero object since πG is faithful. By an
identical argument, we see that the right adjoint functor

p∗i
! : DcoQcohGm×G(V(E(θ)), θ,Qs)→ DcoQcohGm×G(Z, θ, 0)

is also fully faithful. Hence the functor

i∗p
∗ : DcoQcohGm×G(Z, θ, 0)→ DcoQcohGm×G(V(E(θ)), θ,Qs)

is an equivalence.
By Proposition 4.53 (1), we see that the equivalence i∗p

∗ : DcoQcohGm×G(Z, θ, 0) →
DcoQcohGm×G(V(E(θ)), θ,Qs) induces an equivalence of the compact objects

i∗p
∗ : DcohGm×G(Z, θ, 0)→ DcohGm×G(V(E(θ)), θ,Qs),

where (−) denotes the idempotent completion of (−). But DcohGm×G(Z, θ, 0) on the left
hand side is already idempotent complete since it is equivalent to Db(cohGZ). Hence the
functor

i∗p
∗ : DcohGm×G(Z, θ, 0)→ DcohGm×G(V(E(θ)), θ,Qs)

is an equivalence. □
7.6. Orlov’s theorem for gauged LG models. In this section, we obtain a gauged LG
version of the following theorem of Orlov.

Theorem 7.12 ([Orl3] Theorem 40). Let X ⊂ PN−1
k be the hypersurface defined by a

section f ∈ Γ(PN−1
k ,O(d)). Denote by F the corresponding homogeneous polynomial.

(1) If d < N , there is a semi-orthogonal decomposition

Db(cohX) = ⟨OX(d−N + 1), ...,OX ,DcohGm(ANk , χd, F )⟩.
(2) If d = N , there is an equivalence

Db(cohX) ∼= DcohGm(ANk , χd, F ).
(3) If d > N , there is a semi-orthogonal decomposition

DcohGm(ANk , χd, F ) = ⟨k, ..., k(N − d+ 1),Db(cohX)⟩.

We combine the main result with the theory of variations of GIT quotients to obtain a
gauged LG version of the above theorem. For the theory of variations of GIT quotients,
see [BFK2] or [BDFIK3, Section 2]. This kind of approach to Orlov’s theorem appeared in
[Shi], [BFK2], and [BDFIK3], and our argument is similar to the one in [BDFIK3, Section
3].

Let S be a smooth quasi-projective variety with Gm-action, and set

Q := S × AN × A1.

For i = 1, 2, set Gi := Gm, and let G := G1 ×G2. For a positive integer d > 1, we define
a G-action on Q as follows;

G×Q ∋ (g1, g2)× (s, v1, ...vN , u) 7→ (g2 · s, g1v1, ..., g1vN , g−d1 g2u) ∈ Q,
where the action · is the original Gm-action on S. Let λ : Gm → G be the character defined
by λ(a) := (a, 1). Denote by Zλ the fixed locus of λ-action on Q. Then Zλ coincides with
the zero section S × 0 × 0 ⊂ Q. Furthermore, set S+ := {q ∈ Q | lim

a→0
λ(a)q ∈ Zλ} and

S− := {q ∈ Q | lim
a→0

λ(a)−1q ∈ Zλ}. Then

S+ = S × AN × 0 and S− = S × 0× A1.

Denote by Q+ (resp. Q−) be the complement of S+ (resp. S−) in Q. Then the stratifica-
tions

Q = Q+ ⊔ S+ and Q = Q− ⊔ S−
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are elementary wall crossings in the sense of [BFK2].

LetW : S → A1 be a χ1-semi invariant function which is flat. Let f ∈ Γ(PN−1
S ,O(d))Gm

be a non-zero Gm-invariant section, and denote by F : ANS → A1 the corresponding regular

function. Since Q is the trivial line bundle over ANS , the function F induces a regular

function F̃ : Q→ A1. Then the function

W + F̃ : Q→ A1

is a χ0,1-semi invariant regular function, where W is the pull-back of W : S → A1 by the
projection Q → S, and χ0,1 : G → Gm is the character defined by χ0,1(g1, g2) := g2. By
[BFK2, Lemma 3.4.4] and [BFK2, Theorem 3.5.2], we have the following:

Proposition 7.13. Let t± be the λ-weight of the restriction of relative canonical bundle
ωS±/Q to Zλ, and set µ := −t+ + t−. Let χ : G → Gm be the character defined by
χ(g1, g2) := g1g2.
(1) If µ < 0, there exist fully faithful functors

Υ− : DcohG/λ(Zλ, χ1,W + F̃ )→ DcohG(Q−, χ0,1,W + F̃ )

Φ− : DcohG(Q+, χ0,1,W + F̃ )→ DcohG(Q−, χ0,1,W + F̃ ),

and we have the following semi-orthogonal decomposition

DcohG(Q−, χ0,1,W + F̃ ) = ⟨Υ−(µ+ 1), ...,Υ−,Φ−(DcohG(Q+, χ0,1,W + F̃ ))⟩,
where we denote by Υ−(n) the the essential image of the composition (−)⊗O(χn) ◦Υ−.
(2) If µ = 0, we have an equivalence

DcohG(Q−, χ0,1,W + F̃ ) ∼= DcohG(Q+, χ0,1,W + F̃ ).

(3) If µ > 0, there exist fully faithful functors

Υ+ : DcohG/λ(Zλ, χ1,W + F̃ )→ DcohG(Q+, χ0,1,W + F̃ )

Φ+ : DcohG(Q−, χ0,1,W + F̃ )→ DcohG(Q+, χ0,1,W + F̃ ),

and we have the following semi-orthogonal decomposition

DcohG(Q+, χ0,1,W + F̃ ) = ⟨Υ+, ...,Υ+(−µ+ 1),Φ+(DcohG(Q−, χ0,1,W + F̃ ))⟩,
where we denote by Υ+(n) the the essential image of the composition (−)⊗O(χn) ◦Υ+.

Since Zλ = S × 0× 0, the function F̃ vanishes on Zλ ⊂ Q. Hence we have

DcohG/λ(Zλ, χ1,W + F̃ ) ∼= DcohGm(S, χ1,W ).

Next, we have

Q− = S × AN \ 0× A1.

Since F |S×AN\0 ∈ Γ(S×AN \0,O(χ−d,0)
∨)G and Q− = V(O(χ−d,1)), Theorem 7.2 implies

the following equivalence;

DcohG(Q−, χ0,1,W + F̃ ) ∼= DcohG(Z, χ0,1,W ),

where Z ⊂ S × AN \ 0 is the zero scheme of F . Moreover, the quotient stack [Z/G1] is

isomorphic to the hypersurface X in the projective space bundle PN−1
S over S defined by

the invariant section f ∈ Γ(PN−1
S ,O(d))G2 . Hence we have an equivalence

DcohG(Z, χ0,1,W ) ∼= DcohG2(X,χ1,W ).

On the other hand, we have

Q+ = S × AN × A1 \ 0.
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We consider another action of G on Q+ as follows;

G×Q+ ∋ (g1, g2)× (s, v, u) 7→ (gd1 · s, g1v, g−d1 g2u) ∈ Q+.

We denote by Q̃+ the new G-variety. Then we have a G-equivariant isomorphism

φ : Q̃+
∼−→ Q+,

given by φ(s, v, u) := (u · s, v, u), where u ∈ A1 \ 0 is considered as a point in Gm. Since

G2 trivially acts on the first two components S × AN of Q̃+, we have

[Q̃+/G2] ∼= S × AN × [A1 \ 0/G2] ∼= ANS .
Hence we have the following equivalence

DcohG(Q+, χ0,1,W + F̃ ) ∼= DcohG1(ANS , χd,W + F ),

where, on the right hand side, G1-action is given by the following

G1 × S × AN ∋ g1 × (s, v) 7→ (gd1 · s, g1v).
Finally, note that µ = d−N and that the twisting by the G-equivariant invertible sheaf

O(χ) corresponds to the twisting, in DcohG2(X,χ1,W ), by the G2-equivariant invertible
sheaf O(1) on X which is the pull-back of the tautological G2-equivariant invertible sheaf

on PN−1
S . Combining Proposition 7.13 and the above argument, we obtain the following

gauged LG version of the Orlov’s theorem:

Let S be a smooth quasi-projective variety with a Gm-action, and let W : S → A1 be a
χ1-semi invariant regular function which is flat. Consider Gm-actions on ANS and on PN−1

S
given by

Gm × ANS ∋ t× (s, v1, ..., vN ) 7→ (td · s, tv1, ...tvN ) ∈ ANS
Gm × PN−1

S ∋ t× (s, v1 : ... : vN ) 7→ (t · s, v1 : ... : vN ) ∈ PN−1
S .

Theorem 7.14. For d > 1, let f ∈ Γ(PN−1
S ,O(d))Gm be a non-zero invariant section, and

let F : ANS → A1 be the corresponding χd-semi invariant regular function. Let X ⊂ PN−1
S

be the hypersurface defined by f , and assume that the morphism W |X is flat.
(1) If d < N , there are fully faithful functors

Φ : DcohGm(ANS , χd,W + F )→ DcohGm(X,χ1,W )

Υ : DcohGm(S, χ1,W )→ DcohGm(X,χ1,W ),

and there is a semi-orthogonal decomposition

DcohGm(X,χ1,W ) = ⟨Υd−N+1, ...,Υ0,Φ(DcohGm(ANS , χd,W + F ))⟩,
where Υi denotes the essential image of the composition (−)⊗O(i) ◦Υ.

(2) If d = N , we have an equivalence

DcohGm(X,χ1,W ) ∼= DcohGm(ANS , χd,W + F ).

(3) If d > N , there are fully faithful functors

Ψ : DcohGm(X,χ1,W )→ DcohGm(ANS , χd,W + F )

Υ : DcohGm(S, χ1,W )→ DcohGm(ANS , χd,W + F ),

and there is a semi-orthogonal decomposition

DcohGm(ANS , χd,W + F ) = ⟨Υ0, ...,ΥN−d+1,Ψ(DcohGm(X,χ1,W ))⟩,
where Υi denotes the essential image of the composition (−)⊗O(χi) ◦Υ.
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Remark 7.15. (1) We can view Orlov’s Theorem 7.12 as the case when S = Spec k and
W = 0 in the above theorem.
(2) If N > 1, the assumption that W |X is flat is satisfied whenever W : S → A1 is flat.
(3) For positive integers a1, ..., aN , applying the similar argument to the G-action on Q
defined by

G×Q ∋ (g1, g2)× (s, v1, ...vN , u) 7→ (g2 · s, ga11 v1, ..., g
aN
1 vN , g

−d
1 g2u) ∈ Q,

we can obtain the similar result for the hypersurface X in weighted projective stack bundle
PN−1
S (a1, ..., aN ) := [S ×AN \ 0/G1] over S defined by the section corresponding to a G1-

invariant section F ∈ Γ(ANS ,O(χd))G1 .
(4) Of course, Orlov’s theorem in [Orl3] is much more general. It covers noncommutative
situations unlike our setting.
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270, Birkhäuger Boston, Inc., Boston, MA, 2009.

[Orl4] D. Orlov, Landau-Ginzburg models, D-branes and mirror symmetry, Mat. Contemp. 41 (2012),
75-112.

[Plo] D. Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), no. 1,
62-74.

[PV] A. Polishchuk and A. Vaintrob, Matrix factorizations and singularity categories for stacks, Ann.
Inst. Fourier (Grenoble). 61:7 (2011), 2609-2642.

[Pos1] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule cor-
respondence, Mem. Amer. Math. Soc. 212 (2011), no. 966.

[Pos2] L. Positselski, Contraherent cosheaves, arXiv:1209:2995.
[Pre] L. Previdi, Locally compact objects in exact categories, Internat. J. Math. 22 (2011), no. 12,

1787-1821.
[Qui] D. Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Proc. Conf.,

Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147. Lecture Notes in Math., Vol. 341,
Springer, Berlin 1973.

[Ren] J. V. Rennemo, The homological projective dual of Sym2P(V ), arXiv:1509.04107.
[Seg] E. Segal, Equivalence between GIT quotients of Landau-Ginzburg B-models, Comm. Math. Phys.

304 (2011), no. 2, 411-432.
[ST] E. Segal and R. Thomas, Quintic threefolds and Fano elevenfolds, arXiv:1410.6829.
[Shi] I. Shipman, A geometric approach to Orlov’s theorem, Compos. Math. 148 (2012), no. 5, 1365-

1389.
[Tho] R. W. Thomason, Equivariant resolution, linearization, and Hilbert’s fourteenth problem over

arbitrary base schemes, Adv. in Math. 65 (1987), no. 1, 16-34.
[TT] R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of schemes and of derived cate-

gories, The Grothendieck Festschrift, Vol. III, 247-435, Progr. Math., vol. 88, Birkhäuser Boston,
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