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DERIVED FACTORIZATION CATEGORIES OF GAUGED
LANDAU-GINZBURG MODELS

YUKI HIRANO

ABSTRACT. In the first half of this thesis, for a given Fourier-Mukai equivalence of
bounded derived categories of coherent sheaves on smooth quasi-projective varieties,
we construct Fourier-Mukai equivalences of derived factorization categories of gauged
Landau-Ginzburg (LG) models. As an application, we obtain some equivalences of de-
rived factorization categories of K-equivalent gauged LG models. This result is an equi-
variant version of the result of Baranovsky and Pecharich, and it also gives a partial
answer to Segal’s conjecture. As another application, we prove that if the kernel of
the Fourier-Mukai equivalence is linearizable with respect to a reductive affine algebraic
group action, then the derived categories of equivariant coherent sheaves on the varieties
are equivalent. This result is shown by Ploog for finite groups case.

In the second half, we prove a Knorrer periodicity type equivalence between derived
factorization categories of gauged LG models, which is an analogy of a theorem proved
by Shipman and Isik independently. As an application, we obtain a gauged LG version
of Orlov’s theorem describing a relationship between categories of graded matrix factor-
izations and derived categories of hypersurfaces in projective spaces, by combining the
above Knorrer periodicity type equivalence and the theory of variations of GIT quotients
due to Ballard, Favero and Katzarkov.
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1. INTRODUCTION

When X is a scheme, G is an affine algebraic group acting on X, x : G — G, is a
character, and W : X — Al is a y-semi invariant regular function, we call data (X, x, W)¢
a gauged Landau-Ginzburg (LG) model. Following Positselski [Posl], [EP], we consider the
derived factorization category of (X, x, W)Y, denoted by

Dcohg (X, x, W).

Derived factorization categories are simultaneous generalizations of bounded derived cat-
egories of coherent sheaves on schemes, and of categories of (graded) matrix factorizations
of (homogeneous) polynomials.

Derived factorization categories play an important role in Homological Mirror Sym-
metry for non-Calabi-Yau varieties [Orl4], and are useful to study derived categories of
coherent sheaves on algebraic stacks. For example, studying windows in derived factor-
ization categories gives a new technique to obtain some equivalences or semi-orthogonal
decompositions of derived categories of algebraic stacks [Seg], [BFK2]. Moreover, by us-
ing derived factorization categories, we obtain new approach to Kuznetsov’s homological
projective duality [BDFIK2], [ADS], [ST], [Ren].

1.1. Main results (Part I).

1.1.1. Background and motivation. Since derived factorization categories are generaliza-
tions of the bounded derived category of coherent sheaves, it is natural to expect similar-
ities between derived categories and derived factorization categories; such similarities are
observed in [Vel], [BP], [LS], for example. In the present paper, we obtain equivalences
between derived factorization categories of certain gauged LG models from equivalences
between derived categories of smooth quasi-projective varieties.

1.1.2. Statements. Let X; and Xy be smooth quasi-projective varieties over an alge-
braically closed field k of characteristic zero, and G be a reductive affine algebraic group
acting on each X;. Let W; : X; — A! be a y-semi invariant regular function on X; for
some character y : G — G,,,, and m; : X1 X X9 — X; be the projections. Consider the



fibre product
X1 XAl X2

Xl/ \Xg
k‘&l/

and let j: X7 X1 Xo — X7 X X9 be the embedding.
An object P € Db(cth 1 X a1 X2) whose support is proper over Xy defines the integral
functor

®; (py : DP(cohX;) — DP(cohXy) (=) — Rmau(mi (=) @Y j.(P)).
On the other hand, the object P induces an object P e Dcoh(X x Xo, msWo — mi W)

and it defines the integral functor
&5 : Deoh(X1, Wi) — Deoh(Xa, Wa) (=) — Ramau(n}(—) @" P).

Furthermore, if the object P is G-linearizable, i.e. it is in the essential image of the
forgetful functor

IT : DP(cohg X1 x 41 Xa) — DP(coh X x 41 Xo),
then the object P induces an object Py € Deohg (X1 X Xo, maWo — i W7) and it defines
the integral functor

(I)ﬁc : DCOhg(Xl, Wl) — DCOhg(XQ, W2) (_) — Rﬂ'g*(ﬂ'f(—) ®L -f)G)
The main result of the present paper is the following:

Theorem 1.1 (Theorem 5.6). Let P € DP(coh X x 41 X3) be a G-linearizable object whose
support is proper over X1 and Xa. If the integral functor ®; (py : DP(cohX;) — DP(cohXy)
is an equivalence (resp. fully faithful), then so is Cpﬁc : Deohg (X1, W1) — Deohg (X, Wa).

This theorem is proved when the group G is trivial, the functions W; are flat, and X;
are smooth Deligne-Mumford stacks, in [BP]. Combining Theorem 1.1 with the result in
[Bri], we obtain the following;:

Corollary 1.2. Let X and X+ be smooth quasi-projective threefolds, and let the diagram
+
xLyd xt
be a flop. Let G be a reductive affine algebraic group acting on X, X and Y with the

morphisms f and f+ equivariant. Take a semi invariant reqular function Wy : Y — Al
and set W := f*Wy and W+ := f™*Wy. Then we have an equivalence

Dcohg (X, W) = Deohg (X, WT).

The gauged LG models (X, W) and (X+, W)Y in Corollary 1.2 are K-equivalent.
Here, K-equivalence means that there exists a common equivariant resolution of the vari-
eties such that the pull-backs of the functions of LG models, and the classes of canonical
divisors, coincide. We expect the following conjecture, which is a generalization of [Seg,
Conjecture 2.15]:

Conjecture 1.3. If two gauged LG models are K-equivalent, then their derived factoriza-
tion categories are equivalent.

Conjecture 1.3 for gauged LG models with trivial G,,-actions and trivial functions is
proposed in [Kaw].
As another corollary of Theorem 1.1, we obtain the following result.
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Corollary 1.4. Let P € DP(cohX; x X5) be an G-linearizable object whose support is
proper over X1 and X3. Let Pg € DP(cohg X x Xs) be an object with TI(Pg) = P, where
II is the forgetful functor. If the integral functor ®p : DP(cohX;) — DP(cohXy) is an
equivalence (resp. fully faithful), then so is ®p, : DP(coh,X1) — Db(cthXg).

Corollary 1.4 is obtained in the case of smooth projective varieties with finite group
actions by [Plo, Lemma 5|; see also [KS]. We can also prove Corollary 1.4 for a finite
group G by using [Ela2, Theorem 5.2].

1.2. Main results (Part II).

1.2.1. Background and motivation. Orlov proved the following semi-orthogonal decom-
positions between bounded derived categories of hypersurfaces in projective spaces and
categories of graded matrix factorizations [Orl3].

Theorem 1.5 ([Orl3] Theorem 40). Let X C }P’ka_l be the hypersurface defined by a

section f € F(P]kv_l, O(d)). Denote by F' the corresponding homogeneous polynomial.
(1) If d < N, there is a semi-orthogonal decomposition

DP(cohX) = (Ox(d — N +1),...,Ox, Dcohg,, (AY, xa, F)).
(2) If d = N, there is an equivalence
DP(cohX) = Dcohg,, (ALY, xa, F).
(3) If d > N, there is a semi-orthogonal decomposition
Dcohg,, (AY, x4, F) = (k, ..., k(N — d +1),DP(cohX)).

While Orlov’s approach was algebraic, there are geometric approaches to the above
theorem [Shi], [BFK2], [BDFIK3|, where a version of Knorrer periodicity [Shi], [Isi] and
homological variations of GIT quotients [Seg], [H-L], [BFK2] are the main tools. Combi-
nations of Knorrer periodicity and the theory of variations of GIT quotients also imply
homological projective dualities [BDFIK2], [ADS], [ST], [Ren].

In part II, we prove another version of Knorrer periodicity [Kné|, which is a derived
(or global) version, and we combine it with the theory of variations of GIT quotients by
[BFK2] to obtain a gauged LG version of Orlov’s theorem.

1.2.2. Statements. Let k be an algebraically closed field of characteristic zero. Let X be
a smooth quasi-projective variety over k, and let G be a reductive affine algebraic group
acting on X. Let £ be a G-equivariant locally free sheaf of finite rank, and choose a
G-invariant regular section s € T'(X,£Y)¢. Denote by Z C X the zero scheme of 5. Let
X : G — G, be a character of G, and set £(x) := E®O(x), where O(x) is the G-equivariant
invertible sheaf corresponding to x. Then £(x) induces a vector bundle V(E(x)) over X
with a G-action induced by the equivariant structure of £(x). Let ¢ : V(E(x)) — X
and p : V(E(x))|z — Z be natural projections, and let i : V(E(x))|z — V(E(x)) be
a natural inclusion. The regular section s induces a y-semi invariant regular function
Qs : V(E(x)) — Al. The first main result in this paper is the following:

Theorem 1.6. Let W : X — Al be a x-semi invariant regular function, such that the
restricted function Wz : Z — Al is flat. Then there is an equivalence

i.p* : Deohg(Z, x, W|z) = Dcoha(V(E(X)), X, @W + Qs).

The above result is an analogy of Shipman’s and Isik’s result, where they consider
the case when G = G,,, the G-action on X is trivial, x = idg,,, and W = 0 [Shi],
[Isi]. Furthermore, the above theorem can be considered as a generalization of Knorrer
periodicity to a derived and G-equivariant version. The proof of the above theorem is quite
different from Shipman’s and Isik’s proofs, and we consider relative singularity categories
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introduced in [EP], which are equivalent to derived factorization categories, and use results
in [Orl2].

To state the next result, let S be a smooth quasi-projective variety over k with a Gy,-
action, and let W : S — A! be a x1 := idg,, -semi invariant regular function which is flat.
Let d > 1 and N > 0 be positive integers, and consider G,,-actions on Ag =5 A{CV and
on ngl =5 X P]kvfl given by

d

Gm X AY 5t % (s,v1,...,0n5) = (t%- 5, tv1, ..tuy) € AY

GmxIP’]SV_l StX (s,v1:.cion) = (B 8,01 ..t UN) E]P’]SV_I.

Denote by the same notation W : Agv — Al and W : Pg_l — A the pull-backs of
W : S — Al by the natural projections respectively. Combining the above derived Knorrer
periodicity with the theory of variations of GIT quotients, we obtain the following gauged
LG version of the Orlov’s theorem:

Theorem 1.7. Let X C ]P’g_l be the hypersurface defined by a Gy,-invariant section
f e T(PY1,0(d)®", and assume that the morphism W : Py ~t — Al is flat on X.
Denote by F : Ag — Al the regular function induced by f.

(1) If d < N, there are fully faithful functors

® : Deohg,, (AY, xa, W + F) — Dcohg,, (X, x1, W)

T : Dcohg,, (S, x1, W) — Dcohg,, (X, x1, W),

and there is a semi-orthogonal decomposition
DCOth (Xa X1 W) = <Tdi+17 ) TO: (I)(DCOth (Ajsva Xds W+ F>)>7

where Y; denotes the essential image of the composition (—) @ O(i) o Y.

(2) If d = N, there is an equivalence

Dcohg,, (X, x1, W) = Dcohg,, (AY, xa, W + F).

(3) If d > N, there are fully faithful functors

¥ : Deohg,, (X, x1, W) — Deohg,, (AY, xa, W + F)

T : Dcohg,, (S, x1, W) — Dcohg,, (Ag, Xd, W + F),
and there is a semi-orthogonal decomposition
Dcohg,, (AY, X, W + F) = (Yo, ..., Y N—a+1, ¥(Dcohg,, (X, x1, W))),

where Y; denotes the essential image of the composition (—) @ O(x;) o Y.

Since we have an equivalence

DP(cohX) = Deohg,, (X, x1,0),

m

where the G,,-action on X is trivial, we can view Orlov’s theorem as the case when
S = Speck and W = 0 in the above theorem.
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1.3. Notation and conventions.

e For an integer n € Z, we denote by x, : G, — G,, the character of the 1-
dimensional algebraic torus G,, defined by

Xn(t) :=t".

e For a character x : G — Gy, of an algebraic group G, we denote by O(x) the
G-equivariant invertible sheaf (Ox, A : 7*Ox = 0*Ox) associated to x, where
m:GxX — X and 0: G x X — X are the projection and the morphism defining
the G-action respectively. For any g € G, Ay := Aoy« x : Ox = g*Ox is given as
the composition

OX M) OX 1) g*(’)x

of the multiplication by x(g) € G,, and the natural isomorphism Ox = ¢*Oyx.
For a G-equivariant quasi-coherent sheaf F' on a G-scheme, we set

F(x) = F® O(x).

e Throughout this article, unless stated otherwise, all schemes and categories are
over an algebraically closed field k of characteristic zero.

1.4. Acknowledgments. The author would like to express his deep gratitude to his
supervisor Hokuto Uehara for his valuable advice and many suggestions to improve this
paper and continuos support. A part of this article was written whilst the author was
visiting the School of Mathematics at the University of Edinburgh during the period from
October 2015 to March 2016. He appreciates the hospitality, and he would like to express
his deep gratitude to Michael Wemyss for fruitful discussions and many suggestions to
improve this paper. Finally, I would like to thank Timothy Logvinenko and Ed Segal for
their comments. The author is a Research Fellow of Japan Society for the Promotion of
Science. He is partially supported by Grant-in-Aid for JSPS Fellows #26-6240.

2. COMODULES OVER COMONADS

Categories of comodules over comonads are main tools to obtain the main result. In this
section, we recall the definitions of comonads and comodules over comonads, and provide
basic properties of them, following [Ela2].

2.1. Comodules over comonads. Let C be a category. We start by recalling the defi-
nitions of comonads on C and comodules over a comonad.

Definition 2.1. A comonad T = (7', ¢, §) on the category C consists of a functor T : C —
C and functor morphisms € : T — ide and § : T — T2 such that the following diagrams
are commutative:

T 2. 72 T2, 72
|\ |
5 Te 5 Ts
72 €T 72 T 73

Example 2.2. Let P = (P* - Py) be an adjoint pair of functors P* : C — D and
P.:D—C, and let np : id¢ — Py P* and ep : P*P, — idp be the adjunction morphisms.
Set Tp := P*P, and ép := P*npP,.. Then T(P) := (Tp,ep,0p) is a comonad on D.
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Definition 2.3. Let T = (7,¢,6) be a comonad on C. A comodule over T is a pair
(C,0¢) of an object C' € C and a morphism 6 : C — T'(C) such that

(1) £(C) 0 b = ide

(2) the following diagram is commutative:

C —O—C——>T(C

ecl T(0c)
r(c) 2L 12(0).

Given a comonad T on C, we define the category Ct of comodules over the comonad T
as follows:

Definition 2.4. Let T = (T, ¢,0) be a comonad on C. The category Ct of comodules over
T on C is the category whose objects are comodules over T and whose sets of morphisms
are defined as follows;

Hom((C1,0¢,), (C2,0c,)) :=={f:C1 — Co | T(f) 0o 0c, =0c,0 f}.
For a full subcategory B C C, we define the full subcategory CB CCr as
Ob(CE) := {(C,6¢c) € Ob(Cr) | C = B for some B € B}.

Remark 2.5. Let (C,00) € Cr?. By definition, there exist an object B € B and an
isomorphism ¢ : C = B. If we set 0p := T(¢)0ce !, then the pair (B,0p) is an object
of C% and ¢ gives an isomorphism from (C,0¢) to (B,6p) in C% )

For a comonad which is given by an adjoint pair (P* 4 P.), we have a canonical functor,
called comparison functor, from the domain of P* to the category of comodules over the
comonad.

Definition 2.6. The notation is the same as in Example 2.2. For an adjoint pair P =
(P* 4 P.), we define a functor
I'p:C— DT( P)
as follows: For any C' € C and for any morphism f in C
I'p(C) = (P*(C), P*(np(C))) and T'p(f):= P*(f).
This functor is called the comparison functor of P. Restricting I'p to a full subcategory
B C C, we have a restricted functor
P*(B
Tplg:B—D (<))
The following proposition gives sufficient conditions for a comparison functor to be fully
faithful or an equivalence.

Proposition 2.7 ([Elal] Theorem 3.9, Corollary 3.11). The notation is the same as in
Example 2.2.

(1) If for any C € C, the morphism np(C) : C — P.P*(C) is a split mono, i.e. there
is a morphism (o : P.P*(C) — C such that ( onp(C) = id¢, then the comparison
functor U'p : C — Dy(py is fully faithful.

(2) If C is idempotent complete and the functor morphism np : id¢c — P.P* is split
mono, i.e. there exists a functor morphism ¢ : P.P* — id¢ such that ( on = id,
then I'p : C — Dy(py is an equivalence.
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2.2. Functors between categories of comodules. We introduce the notion of lin-
earizable functors which induce natural functors between categories of comodules. Let A
(resp. B and C) be a category and let T4 = (T'4,64,04) (resp. Tg = (Ip,ep,05) and
Te = (T¢,ec,dc)) be a comonad on A (resp. B and C).

Definition 2.8. A functor F': A — B is called linearizable with respect to T 4 and Tg,
or just linearizable, if there exists an isomorphism of functors
Q:FTy = TgF

such that the following two diagrams of functor morphisms are commutative :

(1) FT4 & TgF (2) FT4 L TgF
Fk« »AF F(;Al TrQoQT léBF
F FT? ErA L TEF

We call the pair (F, ) a linearized functor with respect to T 4 and Tg, and the isomor-

phism of functors €2 is called a linearization of F' with respect to T 4 and Tg.

If F: A — Bis a linearizable functor with a linearization Q : FT 4 = TgF, we have an
induced functor

Fq : -A']I'A — BTB
defined by
Fo(A,04) = (F(A),Q(A) 0 F(8.4)) and Fo(f) == F(f).

Lemma 2.9. Let F': A — B and G : B — C be linearizable functors with linearizations
O : FTy4 = TgF and ¥ : GTg = TG respectively. Then the composition GF is a
linearizable functor with linearization 2 ;== VF o G® and (GF)q = Gy Fo.

Proof. By definition it is sufficient to prove that
GFepg=¢cGF o) and TeQoQT40GFé = 6cGF o (.
The former one of the above equations follows from easy diagram chasing as follows.
GFep=G(egF o®) =GepF oGO = (e¢cGoV)F o GO = e¢GF 0,

where the first and third equations follow from the commutativity of the diagrams corre-
sponding to (1) in Definition 2.8. The latter one is verified as follows;

TeQo QT 40 GFdy
=TeVF oTeGPoVFT 40 GPT 40 GFdy
=TeVF oUIgF o GTg® o GO®T 4 0 GF4
=TeVF o UVIRF o G(Tg® o ®T 40 Fé4)
=TcVF o UVIgF o G(0pF o ®)
= (TeV o VT o Gop)F o GP
= (0cGo¥V)F oGP
=6cGF o,
where the second equation follows from the functoriality of ¥, and the fourth and the

sixth equations follow from the commutativity of the diagrams corresponding to (2) in
Definition 2.8. g
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The next proposition gives a sufficient condition for a restriction of the functor Fgq
associated with a linearized functor (F, () to be fully faithful or an equivalence.

Proposition 2.10. Let F : A — B be a linearizable functor with a linearization ) :
FoTy = TgoF. Let C C A be a full subcategory of A and let D C B be a full subcategory
of B containing F(C). Assume the following condition:

*): Hom(C,T%(C' I Hom(F(C ,EF(T%(C")) is an isomorphism for any C,C" € C
A A
andn=1,2.

If Flc : C — D is fully faithful (resp. an equivalence), then the functor
. 4AC D
FQ"A%A : 'ATA — BTB
is also fully faithful (resp. an equivalence).

Proof. Assume F¢ is fully faithful. At first we show that Fg is fully faithful on ACTA.

Let C = (C,0c) and = (C',0¢1) be objects of .A%A. By Remark 2.5, we may assume
that C' and C’ are objects of C. For f,g € Hom(é, 67) C Homyu(C,C"), if Fo(f) = Fal(g),
then F'(f) = F(g) as morphisms in B. Since F' is fully faithful on C, this implies that
Jf = g as morphisms in A, whence f = g in At ,. Hence Fy is faithful.

Take any morphism h € Hom(Fq(C), Fo(C")). Since F is full on C, there exists a
morphism f € Hom(C,C") such that F(f) = h, and we have the following commutative
diagram:

F(bc) Q)

() F(T4(C))

F(f)l lTB(F(f))
F(Oor)

Ts(F(C))

Q(C)

F(C) F(Ta(C") — Tp(F(C"))

By the functoriality of €2, the following diagram is commutative:

Q(C
FTaC)) 2 (R (C)
F(TA(f))l lTB(Fm)
Q)

F(T4(C")) —— Tp(F(C"))
Combining commutativity of the above diagrams, we have
F(Ta(f)obc) = F(0¢ o f)

since Q(C’) is an isomorphism. By the condition (%) in the assumption, we see that
TA(f) obc = 6 o f, which implies that f is a morphism in .A%A. Hence Fg is full.
Assume F|¢ is an equivalence. We verify that the functor F| A AS P B%?B is
essentially surjective. Since F'|¢ is an equivalence, it is sufficient to prove that for any object
(B,0p) € B%B with B = F(C) for some C € C, there exists an object (C,0¢) € .ACTA such
that Fo(C,0c) = (B,0p). By the condition (x), we know that there exists a morphism
0c : C — T4(C) such that F(0¢c) = Q(C) ™ 00y : F(C) = F(T4(C)). To show that
the pair (C, f¢) is an object of At ,, we check two conditions in Definition 2.3. Considering
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the following commutative diagram:;

F(C) N e - F(T4(C))
Ts(F(C))
es(F(C))
F(C)

we see that F(e4(C) o 0c) = idp(c). Since Fc is fully faithful, we obtain
eA(C) obc =idc,

which is the first condition in Definition 2.3. By the following commutative diagram;

F(Ta(C))
F(oc)
Q(0)
F(O) R Tr(F(C))
Or(c) TBWF(C))l F(Ta(bc))
TB(F(C)) W Tg(F(C))
Q(C) TB(Q(C))OM

F(T4(C)) e F(T3(C)),

we see that F(04(C) o fc) = F(T4(0¢) o 6¢). By the condition (x), we obtain
6A(C) 0 b0c =Ta(0c) o bc,

which is the second condition in Definition 2.3. Hence, the pair (C, f¢) is a comodule over
T 4, and we see that Fo(C,0c) = (F(C),0r)) by the construction of (C,0c). O

The following lemma gives a useful criteria for a functor to be linearizable with respect
to comonads which are constructed from “compatible” adjoint pairs.

Lemma 2.11. Assume that we have the following diagram of functors;

A—7F B
AT
Pl | P Q| |«
y )

A—F B
where P := (P* 4 P,) and Q := (Q* 4 Q) are adjoint pairs. Assume that we have two

~

isomorphisms of functors Q* : FP* = Q*F' and Q. : F'P, = Q.F. LetQ: FTp = ToF
be the composition of functor morphisms Q*Q,0Q* P,. Consider the following two diagrams
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of functor morphisms:

*Q* F/
)  QFPYEQQrF (i) T QY
Q*P*T lEQF F/npl TQ*Q*
FP*P, Fep F F/P*P*M)Q*FP*

If the above two diagrams are commutative, then (F,Q) is a linearized functor with respect
to T(P) and T(Q), and there exists an isomorphism of functors ¥ : Fol'p = ToF".

Proof. We verify that the diagrams corresponding to ones in Definition 2.8 are commu-
tative. The commutativity of (i) immediately implies the commutativity of the diagram
corresponding to (1) in Definition 2.8. We show that if the diagram of (ii) is commutative,
the diagram corresponding to (2) in Definition 2.8 is commutative. By the functoriality
of 1" and nq, the following diagrams of functor morphisms are commutative;

Q* Py

FP*P, Q*F'P,
FP*in*l lQ*F’nPP*
FP*P. PP, 2 o«pp prp,
and
e, — " Q. PP,
Ql lQ*Q*Q*
Q.F(B)—2%" - Q.Q°Q.F.

Hence, we have equations of functor morphisms
(a): Q*P.P*P,o FP'npP, = Q*F'npP, o Q*P,
and
(B):  1eQ.F o = Q.Q"Q, ongF'P..
We see that the diagram corresponding to (2) in Definition 2.8 is commutative as follows;

T o QTp o Fép
= TQ(Q*Q* 0o Q*P,) o (Q*Q o Q*P)Tpo Fép
= Q" Qu(Q*Q 0 VP 0 (Q*Q 0 Q* PP P, o FP*npP.
= Q" Q.Q'0 0 Q' Q.0 P, 0 Q*QLP* P, o (W P.P* P, o FP*npP,)
(a) = = Q" Q:Q" 2 0 Q* Q" P 0 Q*QP*P, 0 (Q*F'np P, o Q*P,)
=Q"Q.:Q* N 0 (Q* QO P 0 Q* QP P 0o Q*F'npP,) 0o AP,
= Q"Q:Q N 0 Q" (Q: 0 Q. P* 0 F/np)Rk o O*P,
(ii) = = Q" Q.Q*Qu 0 Q" o F' P 0 Q* P,
= Q" (Q.Q" 0 nQF/P*) o Q*P,
(b) = = Q*(1gQ.F 0 0.) o P
= Q"'NQQ+F 0 Q" 0 Q' P,
= 6gF o),
where the fourth, seventh and ninth equations follow from the above equation (a), the

commutativity of (ii) and the above equation (b) respectively. Hence (F, () is a linearized
functor.
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Forany A € A, let ¥(A) := Q*(A). By constructions, we have FoI'p(A) = (FP*(A),QP*(A)o
FP*np(A)) and T F'(A) = (Q*F'(A), Q*ngoF’'(A)). We show that ¥(—) defines a functor
morphism ¥ : FoI'p — I'gF’. So we have to verify that Q*(A) is a morphism in By for
each A € A, i.e., verify the following diagram is commutative:

QP*(A)oFP*np(A)

FP*(4) To(FP*(4))
Q*(A)i lTQ(Q*(A))
QP (4) — LD g QrF(4))

By the functoriality of Q* and the commutativity of (ii), we see that the above diagram
is commutative as follows:

To(Q*(A)) o QP*(A) o FP*np(A)
= QQQ" (A) o Q*QP*(A) o Q*P,P*(A) o FP*np(A)
= Q" Q27 (A) 0 Q" P (A) o {Q* (PP (A)) o FP*(1p(A))}
functoriality of Q* — = Q*Q.Q"(A) 0o Q*QP*(A) o {Q*F'(np(A)) 0 Q*(A)}
= Q{Q.27(4) o QA P*(A) o F'(np(A))} 0 Q" (A)
(il) = = QnF'(A) 0 ©*(A).
Hence ¥(—) defines a functor morphism, and it is an isomorphism. O
In the following, we give an important lemma to prove the main theorem. Notation is
same as the above lemma. Let G : B — A and G’ : B’ — A’ be functors. Let C C A,
DcB,C' c A and D' C B be full subcategories with F'(A) C D, G(D) Cc C, P*(C') cC

and Q*(D’') € D. Now we have the following diagram of functors;

Flc

D
Glp
F

1\ G 1\
P*| P*l \P* *‘x 1Oy x|,

Fl
A/ T Bl
~—

G/
F/|C/

G\

C

c’ D’

~ ~

Let QO : FP* = Q*F, Qp, : F'P. = Q.F, QF : GQ* = P*G’ and Q. : G'Q. = P.G
be isomorphisms of functors such that the diagrams corresponding to (i) and (ii) in Lemma
2.11, namely the following diagrams, are commutative.

Q*F/P* Q Q Q*Q*F F/ Q Q*Q*F/
Q*P*T lEQF F’npl TQ*Q*
FP,pr — 1P F Fe.p—2" o Fpr,
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P*G,Q* LQ*) P*P,G G’ npG P*P.G’
Q*Q*T lwc G%Ql Tm
G Q.Q*

GQ.QF ——2 G ¢'Q.Q" —2Y . p.GQr,

Set Qp := Q* Qg 0 V5 Ps and Qg := P* Qg 0 Q5 Q..

Lemma 2.12. Notation is same as above. Assume that the adjunction morphisms np :
id = P,P* and ng :id — Q«Q* are split mono, and for any D € D and A € A there is a
natural isomorphism

¥(D,A) : Homg(D, F(A)) = Hom4(G(D), A)
which is functorial in D and A. Then, if Flc : C — D is fully faithful, so is F'|c: : C' — D'.

Moreover, if Fle and G'|p are fully faithful and the following diagram (x) of functor
morphisms is commutative, F'|c/ is an equivalence. Define a diagram by

GFP* GQ * Q *
®):  GFP'|e " GFPP.P* e U o Q. F P Y pr PGP
wP*i \LP*P*LUP*
P*
P = P*P.P*|c,

where w : GF|¢ — id¢ is the adjunction morphism of the adjoint pair (G|p 4 F|c) given
by X(—, *).

Proof. By the assumption and Lemma 2.11, (F,Qr) and (G, Q¢) are linearized functor,
and we have the following commutative diagram of functors

Foplac
c T(P) D
Az (p) Br)
Tpler T T Tolpr
c’ e D

Since the adjunction morphisms np and 7¢ are split mono, the comparison functors I'p :
A" — Appy and I'q : B’ — Bryg) are fully faithful functors by Proposition 2.7.

We show that if F|c¢ is fully faithful, then the condition (%) in Proposition 2.10 is
satisfied, i.e. the map F' : Hom(C1,TE(C2)) — Hom(F(Ch), F(TH(C2))) is bijective for
any C; € C and n = 1,2. Consider the following commutative diagram of maps

Hom(C1, T3(Ca)) i), Hom(G(F(C1)), TH(CY))

\ (Cl),Tﬁ(Cﬂ)

Hom(F(Cy), F(TR(Cy)))

Since F'|¢ is fully faithful, w(C}) is an isomorphism, whence the maps in the above diagram
except for F' are bijective. Hence, the condition (%) in Proposition 2.10 is satisfied, and
we see that if F|¢ is fully faithful, then F’|¢ is also fully faithful by Proposition 2.10.
Assume that F|¢c and G'|p are fully faithful and that the diagram (x) is commutative.
Since the diagram (%) is commutative, the functor morphism wP*|¢/ : GF|c P*|¢cr — P*|¢r
induces a functor morphism w’ : Gg o Fo, o I'p|ler = I'p|er. Since F|c is fully faithful,
w' is an isomorphism of functors. Since we have Gq, o Fo, o'ples = T'p o G’ o F'|e
and I'p is fully faithful, the functor isomorphism w’ implies an isomorphism of functors
G'F'|cr =5 ider. Hence G’|p : D' — C' is an equivalence, and therefore, F'|¢/ is also an
equivalence. O
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3. DERIVED FACTORIZATION CATEGORIES

In this section, we give definitions and foundations of categories with potentials, and
construct derived factorization categories of them. We also construct functors between
factorization categories from cwp-functors.

3.1. Factorization categories. Let A be an exact category in the sense of Quillen (see
[Qui]). First of all, we define potentials on A.

Definition 3.1. A potential of A is a pair (®, W) of an exact equivalence ® : A = A
and a functor morphism W : id4 — ® such that ®W = W®. The triple (A, &, W) is
called a category with a potential.

Let (®, W) be a potential of A. A factorization of (¢, W) is a sequence in A
A A
A= <A1 LA I{N <I>(A1)>

such that ¢§ o @il = W (A1) and ®(¢f) o it = W (Ap). Objects A; and Ag in the above
sequence are called components of the factorization A.

Definition 3.2. For a category with a potential (A, ®, W), we define a dg-category
S(A, @, W), whose objects are factorizations of (®, W), as follows. For two factorizations
A, B € §(A,®, W), the set of morphisms Hom(A, B) is a complex
Hom(A, B) := @ Hom(A, B)"
nez

with a differential d on Hom(A, B) given by

d(f) = ¢Pof— (1)1 fop? if f € Hom(A,B)™),
where

Hom(A, B)*" := Hom(A;, ®"(B1)) ® Hom(Ag, ®"(By))

Hom(A, B)*"*! := Hom(A;, ®"(By)) ® Hom(Ag, ®""(By)).

We call §(A, &, W) the factorization category of (A, ®, W).

For any dg-category D, we define two categories Z°(D) and H°(D) whose objects are
same as D and whose morphisms are defined as follows;

Hom zo(py (4, B) := Z°(Homp(4, B))
Hom o(p) (A, B) := H’(Homp (A, B)),

where Homp (A, B) in the right hand sides are considered as complexes.

Remark 3.3. The categories Z°(F(A, ®, W)) and H°(F(A, @, W)) are generalizations of
categories of classical matrix factorizations introduced by Eisenbud [Eis].

Let A, B be objects in Z°(F(A, ®,W)). Then the set of morphisms from A to B can
be described as follows:

Hom zo(z(4,0,w)) (4, B) = {(f1, fo) | fi : Ai = B; and the diagram (x) is commutative. }

ot 7
(*) : Al ! AO 0 (D(Al)
fll lfo ‘L(b(fl)
B B

By ! By 0 d(By)
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The set of morphisms in the category HY(F(A, ®, W)) can be described as the set of
homotopy equivalence classes of Hom zo(z(4,5,w)) (4, B);

Hompo(g4,0,w)) (A, B) = Homzgo(g(a.e,w)) (4, B)/ ~

Two morphisms f = (f1, fo) and g = (g1, 90) in Homyoz4 a,w)) (A, B) are homotopy
equivalence if there exist morphisms

ho: Ay — By and h;: ®(A;) — By
such that fo = @'ho + hipg and ®(f1) = 1 + ®(ho) (7).
Definition 3.4. For each ¢ = 0,1, we have a natural exact functor
(—)i: Z°(F(A, 2, W) — A
defined by (A; ﬁ Ay i ®(A;)); := A;. This functor extends to an exact functor of
their derived categories,

(=)i : DP(Z°%(F(A, @, W))) — DP(A).

Proposition 3.5. The category Z°(F(A, ®,W)) is an exact category. Furthermore, if A
is abelian category, then Z°(F(A, ®,W)) is an abelian category.

Proof. Assume that A is abelian category. At first, we show that Z°(F(A, @,
abelian category. For any morphism f = (fi, fo) : A — Bin Z°(F(A, @, W)), let

W)) is an

be the kernel of f; : A; — B; for each i = 0,1. By the universal property of kernels, there
exist morphisms go{( : K1 — Ky and goé( : Ko — ®(K) such that the following diagram is
commutative:

K K
K — Ko N B(K)
k1 l \L ko i <I>(k1)
A A
A —0 Ao A p(A)

Since we have an equality ®(k1) o (pf o pX) = ®(k;) 0 W(Kl) and @ (k1) is injective, we
have & o oI = W(K1). Similarly, we see that ®(pI€) o plf = W (Ky). Hence,

o ol
K = (K1 — KO — (I)(Kl))

is an object of Z°(F(A, ®,W)). Since, K; is the kernel of f;, K is the kernel of f. Similarly,
we see that Z°(F(A, ®,W)) admits cokernel of any morphism, and we obtain a natural
isomorphism Im(f) = Coim(f). Hence, Z°(F(A, ®,W)) is an abelian category.

Next, we show that Z%(F(A, ®,W)) is an exact category. Let A be the category of left
exact functors from A to the category of abelian groups (in a fixed universe containing
A). By [Qui], the category A is an abelian category, and we have a fully faithful functor

h:A— A,
such that h embeds A as a full subcategory of A closed under extensions, and a sequence

A - A— A

in A is exact if and only if A carries it into an exact sequence in A 7(th3 category A is called
the abelian envelope of A). We define an exact autoequivalence ® : 4 — A and a functor
morphism W : id5 — @ as follows: For an object F € A, we define ®(F) := Fo (9°P)~!
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A and W(F) := FWP(®P)~1 : F — Fo (®°P)~! where WoP(®°P)~! :id gop — (®°P)~!
is the composition

o op)—1

idAOp 1> PP o ((I)op)fl WP (9°P) ((I)op)fl

Since the functor h is compatible with potentials, it induces a fully faithful functor

Z°(F(A, @, W) — Z°(F(A, @, W)).
By this embedding, we obtain a natural structure of exact category on Z%(F(A, ®, W)). O

For an object A € Z°(F(A, @, W)), we can construct a twisted-periodic infinite sequence
Com(A) = (Com(A)*,d%) in A with d ! o dy = W (Com(A)?) as follows;
Com(A)% := ®'(A4y), Com(A)*1 .= di(A),

dif =0 (¢g),  diThi=2(o1),
For a morphism f = (f1, fo) € Homgzog(a,.0,w)) (A4, B) C Hom(A1, By) @ Hom(Ag, By), we
define a morphism Com(f) = (Com(f)*) from Com(A) to Com(B) as follows:

Com(f)* :=®'(fo)  Com(f)* ' :=®"(f))

Y
Definition 3.6. Let C* = (--- — C' <% ¢! — ...) be a bounded complex of
ZO(F(A, @, W)). We define the totalization of C* as an object Tot(C*®) € Z°(F(A, @, W))
in a similar way to construct the total complex of a double complex, i.e.,

Tot(C*) := (T1 & Ty 22 &(T1)),

@ Com(C*),

itj=—1
ttlcom(cry = Com(3a)! + (~1)'d.

Let ©* : C* — D* be a morphism of complexes of Z°(F(A,®, W)). We define a
morphism Tot(¢*) : Tot(C*) — Tot(D*) in Z°(F(A, &, W)) as

Tot(¢*) := (71, 70),

where

where
7—l’COm(Ci)j i= Com(yp").
Taking totalizations gives an exact functor

Tot : ChP(Z°(F(A, @, W))) — Z°(F(A, &, W)).

In what follows, we will see that the category H°(F(A, ®,W)) has a structure of a
triangulated category.

Definition 3.7. We define an automorphism 7' on H°(F(A, ®, W)), which is called the
shift functor, as follows. For an object A € H°(F(A, ®, W)), we define an object T(A)
as

T(4) = (A~ @A) —, 3 ()

and for a morphism f € Hom(A, B), a morphism T'(f) € Hom(7T'(A),T(B)) is suitably
defined. For any integer n € Z, denote by (—)[n] the functor 77" (—).
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Definition 3.8. Let f : A — B be a morphism in Z°(F(A, ®, W)). We define its mapping
cone Cone(f) to be the totalization of the complex

(~--—>0—>Ai>B—>O—>--~)

with B in degree zero.

A sequence in H(F(A, ®,W)) of the form

ALy B L Cone(f) & A,
where 7 is the natural injection and p is the natural projection, is called a standard triangle
and a sequence which is isomorphic to a standard triangle is called distinguished triangle.

Proposition 3.9. HY(F(A, ®,W)) is a triangulated category with respect to its shift func-
tor and its distinguished triangles.

Proof. This follows from an argument similar to a proof showing that homotopy categories
of exact categories are triangulated categories. O

Following Positselski (cf. [Posl] or [EP]), we define derived factorization categories.

Definition 3.10. Denote by Acycl® (A, ®, W)) the smallest thick subcategory of HO(F(A, ®, W))
containing all totalizations of short exact sequences in Z°(F(A, @, W). E € H'(F(A, ®,W))

is called absolutely acyclic if it lies in Acycl®™ (A, ®,W)). The absolute derived factorization
category of (A, &, W) is the Verdier quotient

DS (A, @, W) := HOF(A, &, W))/Acycl?™ (A, &, W)

Definition 3.11. Assume .4 admits small coproducts. Denote Acycl®(A, ®, W)) the
smallest thick subcategory of H(F(A, ®, W)) containing all totalizations of short exact se-
quences in Z°(F(A, ®, W) and closed under taking small coproducts. E € HO(F(A, &, W))
is called co-acyclic if it lies in Acycl® (A, &, W). The co-derived factorization category
of (A, ®, W) is the Verdier quotient

D(A, ®, W) := H*(F(A, &, W))/Acycl®(A, ®, W)

Remark 3.12. (1)Let £ be an exact category, and take a complex E* in &;

_1 dnt dr
E*=... vt L prn Sy prtl

We say that the complex E* is exact if all kernels and images of differentials exist, and
for any n € Z, we have natural isomorphisms
Im(d" ') = Ker(d").

Let B be an abelian category, and let C be a strictly full additive subcategory of B which
is closed under extensions. The category C has a natural structure of an exact category.
If C admits either all kernels or all cokernels, then a bounded complex in C is exact in the
above sense if and only if the complex is exact in B.

(2)Note that in the definitions of Acycl®®(A, ®, W) and Acycl®(A, ®, W), we can replace

the words “totalizations of short exact sequences” with “totalizations of bounded exact
sequences”.

By the next lemma, we see that the totalization functor
Tot : ChP(Z°(F(A, &, W))) — Z°(F(A, &, W)

induces a functor

Tot : KP(Z°(F(A, @, W))) — HY(F(A, &, W))
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which is an exact functor of triangulated categories. This functor naturally induces an
exact functor

Tot : DP(Z°(F(A, &, W))) — DPS(A, &, ).

Lemma 3.13. Let ¢* : C* — D* be a morphism in ChP(Z°(F(A, &, W))). If p* is homo-
topic to zero, i.e. ¢* =0 in KP(Z°(F(A, ®,W))), then Tot(¢*) = 0 in HO(F(A, &, W)).

Proof. Let 6e @ C* — C'T! and 6%, : D' — D! be differentials of complexes C* and
D*, and set
S = (S Sy 2% B(Sy)) := Tot(C*®),

T=(Ty % Ty &% &(T))) := Tot(D*)
and
T = (71, 70) := Tot(¢*),

where 7, : 5p = Tj. If * =0 in KP(Z°(F(A, ®,W))), then there exist morphisms A’ :
C' — D! such that ¢’ = (5ZD_.1hi + hit16L,,. We define two morphisms o : Sg — T} and
o1:®(S1) = Tpin A as

01l com(ciy = Com(h')!
for each [ = 0,1. Then we have
(5100 + ®(01)t0) | Com(C)i
= (Com(d%a")! + (—1)"'d),: ;) Com(h') + ®(o1)(Com(6pe)’ + (—1)'d2,)
= Com(0%.")?Com(R')7 + (—1)i*1d‘£i,1Com(hi)j + Com (A1) Com(6%e )7 + (—1)iC0m(hi)j+1déi
= Com (05" + h'T15te )
= T0|com(ci)i s
where dgi,l and d’ . are morphisms in the infinite sequences Com(D*~!) and Com(C?)
respectively. Hence, we have 19 = s10¢ + ®(01)tg. Similarly, we obtain ®(m) = sgo1 +
®(09)®(t1). Hence, Tot(p®) = 0 in HO(F(A, @, W)). O
Consider an exact functor of exact categories
T A— Z°(F(A, @,0)),
which is defined by
T(A) =(0—A—0).
Then this functor induces an exact functor of triangulated categories
7:DP(A4) = D(Z°(§(A, 2,0))).
Definition 3.14. We define an exact functor
T :DP(A) = D*®(A, @,0)
as the composition

DP(A) 5 D(Z°(F(A, 8,0))) =% DP*( A4, &, 0).



19

3.2. cwp-functors. Let (A, &4, Wy), (B,®p,Wg) and (C,Pc,We) be categories with
potentials.

Definition 3.15. Let ' : A — B be an additive functor. F' is compatible with po-
tentials with respect to (®4,W4) and (P, Wp) if there exists a functor isomorphism
o: F®4 = ®gF such that WsF = 00 FW4. We call the pair (F, o) a cwp-functor and
write

uaa):QAaéAJMCU_%(Baéva%»

We just say F is a cwp-functor and write F' : (A, ® 4, W) — (B, P, W) when there is
no confusion about what o is.

A cwp-functor (F,0) : (A, @4, W) — (B, P, W) induces a natural dg-functor
S(FEU):SLAvéAJVVA)_%S(B>¢87MGﬁ

as follows. For objects A, B € (A, ®4,W4) and for a morphism f € Hom(A;, % (B;)),
we define

Flpf) o(A1)oF ()

3(F,0)(4) = (F(41) =25 F(4) D5(F(A1)))

and
S(F,0)(f) = 0"(Bj) o F(f) € Hom(F(4;), 25(F(B;))),

where 0" : F®" = ®%F is the functor isomorphism induced by o. By the construction,
we see that the morphism §(F, o) : Hom(A, B) — Hom(§(F,0)(A),F(F,0)(B)) preserves
degrees of complexes and is compatible with differentials.

In the following lemma, we give fundamental properties of dg-functors give as §(—).
Since the proof is straightforward, we skip the proof.

Lemma 3.16. Let (F,0) : (A, @4, W4) — (B, 25, Wp) and (G, 1) : (B,®5,Wg) —
(C, ®¢c, We) be cwp-functors. Then we have
(1) (Go F,7F o Go) is a cwp-functor, and we have

S(GoF,7F oGo) =F§(G, 7)o F(F,0).

(2) If F is fully faithful, so is §(F,o).
(3) If F is an equivalence, so is §(F,0).

Definition 3.17. Let (F,0), (F',0’) : (A, ®4,W4) — (B, 5, W) be cwp-functors and
let a: F — F’ be functor morphism. We say that « is a cwp-functor morphism if the
following diagram of functor morphisms is commutative.

Fo, —2> dpF
a@Al l@ga
F'd 4~ dpF!

If a is a cwp-functor morphism, we write a : (F,0) — (F',0").

A cwp-functor morphism « : (F,0) — (F’,0’) induces a functor morphism
() : §(F,0) = F(F' o)
defined by
F(@)(A) := (a(A1),a(Ap)) € Hom(F(Ay), F'(A1)) ® Hom(F (Ag), F'(Ap)).
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Since « is a cwp-functor morphism, the following diagram is commutative,

F(pd o(A1)oF(p#

F(An) — e p(g) T (1))
a(Al)J/ Oé(Ao)l l‘I’B(a(Al))
F! A a_/ A1)oF' A
FrAy) — L prag) TR G (pray),

which means that §(a)(A4) € Z°(Hom(F(A), F'(A))) for any A € F(A, &4, W4).

Definition 3.18. Let (F,0), (F',0’) : (A, ®4, W) — (B, @5, W) be cwp-functors and let
a: (F,0) = (F',0') be a cwp-functor morphism. For a cwp-functor (G, i) : (C, ®¢, We) —
(A, @4, W 4), we define a cwp-functor morphism

a(Gyp): (FoG,uF oGo) — (F' oG, uF' o Go')

as a(G, p)(C) = a(G(C)) for any C' € C. Similarly, for a cwp-functor (H,v) : (B, ®5, Wg) —
(C, ®¢c, We), we define a cwp-functor morphism

(H,v)a: (HoF,vFoHo)— (Ho F',vF' o Ho')
as (H,v)a(A) := H(a(A)) for any A € A.

The next lemma gives fundamental properties of functor morphisms given as §(—). The
proof is left to the reader.

Lemma 3.19. Let (F,0), (F',0') and (F",0") be cwp-functors from (A, @4, W4) to
(B, ®,Wg) and let o : (F,0) — (F',0') and 5 : (F',0') — (F",0") be cwp-functor
morphisms. Then

(1) Boa: (F,o) = (F",0") is a cwp-functor morphism, and we have
F(Boa)=F(B)oF(a)

(2) If v is an isomorphism of functors, so is §(a).
(3) For a cwp-functor (G, p) : (C,®c, We) — (A, P4, W4), we have

$(a(G, 1)) = F(a)F(G, w).
Similarly, for a cwp-functor (H,v) : (B, ®, W) — (C, ®c, We), we have
S((H,v)o) = §(H,v)§(a).

Next, we introduce the notion of cwp-adjunction of cwp-functors.

Definition 3.20. Let (F,o0) : (A, &4, W4) — (B, @5, Wp) and (G, 1) : (B, P, Wi) —
(A, @4, W 4) be cwp-functors. We say that (F, o) is left cwp-adjoint to (G, 7), denoted
by (F,o) - (G,7), if F is left adjoint to G and adjunction morphisms are cwp-functor
morphisms.

Lemma 3.21. In the same notation as above, assume (F,o) 4 (G,7) and lete : (FG,0Go
Fr) —idg and n:idg — (GF,7F o Go) be adjunction morphisms which are cwp-functor
morphisms. Then §(F,o) 4§(G, 1) and

F(e) : §(F,0) oF(G,7) — idyB,0s,ws)

3(77) : id&'(A,CI)A,WA) — S(G7 T) o S(F7 O')
are the adjunction morphisms of the adjoint pair §(F,o) 4§(G, 7).
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Proof. Since € : FG — idg and 7 : id4 — GF are adjunction morphisms of the adjoint
pair F' 4 G, the following compositions are identities of functors;

F—>FGF—>F and G GFG 5 G.

By Lemma 3.16 and Lemma 3.19, the following compositions are also identities of dg-

functors;

F(F,0) 3BV, ~ k)G, 7)F(F,0) SBED, 2(p o)

and

3(m)3(G7) 3(G,7)S(e)

3(G,7) §(G,7)8(F,0)3(G,7) $(G 7).
Hence, we have an adjunction §(F,c) 4 §(G, 1), and F(¢) and §(n) are adjunction mor-
phisms. O

We give definitions of relative adjoint functors and basic properties of it after [Ulm].

Definition 3.22. Let C;, C5 and D be categories and let F' : C; — D, G : D — C and
J : C; — Cy be functors. F' is called left J-relative adjoint to G (or J-left adjoint to
G) if for each C' € C1, D € D there is an isomorphism

Homp (F(C), D) = Home, (J(C),G(D))

which is functorial in C and D.
Dually, F is called right J-relative adjoint to G (or J-right adjoint to G) if for
each C € C1, D € D there is an isomorphism
Homp(D, F(C)) =2 Home, (G(D), J(C))

which is functorial in C' and D.

Remark 3.23.

(1) Relative adjointness is not symmetric property, i.e. although F' is J-left adjoint to G,
G is not J-right adjoint to F' in general.

(2) If F is J-left adjoint to G, there is a functor morphism

w:dJ — GF
such that p(C) : J(C) — G(F(C)) corresponds to idp(cy.
Similarly, if F'is J-right adjoint to G, there is a functor morphism
v:GF —J

such that v(C) : G(F(C)) — J(C) is corresponding to idp(c)-
The above functor morphisms 4 : J — GF and v : GF — J are called the front
adjunction.

By the next lemma, we see that the existence of a front adjunction implies a relative
adjunction.

Lemma 3.24 ([Ulm] Lemma 2.7). The notation is the same as in Definition 3.22. The
functor F is J-left adjoint to G if and only if there exists a functor morphism v : J — GF
such that for each C € C1 and D € D the composition of maps

Hom(F(C), D) 2= Hom(G(F(C)), G(D)) —tDCD),

s a bijection.
Sitmilarly, F is J-right adjoint to G if and only if there exists a functor morphism
v:GF — J such that for each C € C1 and D € D the composition of maps

Hom(D, F(C)) % Hom(G(D), G(F(C))) 2@,

Hom(J(C),G(D))

Hom(G(D), J(C))
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1s bijective.
Similarly, the notion of relative cwp-adjunction is given in the following.

Definition 3.25. In the same notation as in Definition 3.22, let (®;, W;) and (¥,V)
be potentials of C; and D respectively. Let (F,o) : (C1,®1,W1) — (D, ¥, V), (G,7) :
(D, ¥, V) — (Ca, &2, W) and (J, 1) : (C1, Py, W1) — (Ca, P2, W3) be cwp-functors. (F, o) is
called (J, n)-left cwp-adjoint to (G, 7) if F is J-left adjoint to G and the front adjunction
is cwp-functor morphism.

Dually, we say (F, o) is (J,n)-right cwp-adjoint to (G, 7) if F' is J-right adjoint to G
and the front adjunction is cwp-functor morphism.

Lemma 3.26. Notation is the same as in Definition 3.25. If (F,o0) is (J,n)-left cwp-
adjoint to (G,7) and p : J — GF is the front adjunction, then §(F,o) is §(J,n)-left
adjoint to F(G, 1) and the front adjunction is §(p) : F(J,n) = F(G,7)F(F,0).

Similarly, if (F,o) is (J,n)-right cwp-adjoint to (G, T) and v is the front adjunction,
then §(F, o) is §(J,n)-right adjoint to §(G,T) and the front adjunction is F(v).

Proof. 1f (F, o) is (J,n)-left cwp-adjoint to (G, 7), then the front adjunction p: J — GF
is cwp-functor morphism, and the composition

G(-)

Hom(F(C), D) —= Hom(G(F'(C)),G(D)) Hom(n(€).G(D)),

Hom(J(C),G(D))

is a bijection. Hence, the composition of morphisms

Hom(§(F,0)(C), D) 225, Hom({§(G, 7) o §(F, 0) HC), §(G, 7)(D))

and

Hom({§(G, 7)o§(F, 0)}(C), $(G, 7)(D)) Hom(§(J,n)(C), $(G, 7)(D))

is also bijective. By Lemma 3.24, we see that §(F, o) is §(J, n)-left adjoint to F(G, 1), and
the front adjunction is §(u) : §(J,n) = §(G,7)§(F, 0).
The latter statement can be proved in a similar way. ([l

Hom(§(u)(C),5(G,7)(D))

In what follows, we define cwp-bifunctors.

Definition 3.27. Let P : A x B — C be a bifunctor. We say that P is compatible
with potentials with respect to (P4, Wa), (&5, Wi) and (¢, We) if there are bifunctor
isomorphisms o 4 : P(®4 x idg) = ®cP and o5 : P(idg x ®5) = ®¢P such that
o4(A, B) o P(Wa(A), B) + o5(A, B) o P(A, Wis(B)) = We(P(A, B))
and
Pe(oB(A, B)) 0 04(A, 25(B)) = Pc(0a(A, B)) o 05(Pa(A), B)

for any A € A and B € B. By the latter equation above, o4 and o5 induce a natural func-
tor isomorphism o™ : P(®" x ®}) = &P for any m,n € Z. The triple (P,0.4,03)
is called cwp-bifunctor and we write

(Pyoa,08): (A, @4, Wa) x (B, @5, Wg) = (C, Pc, We).

For a cwp-bifunctor (P,o4,08) : (A, P4, Wa) x (B, 5, Wi) — (C,Pc, We), we define
a dg-bifunctor

F(P,oa,08) : F(A, s, Wa) @ F(B, 5, W5) = F(C,Pc, We)
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A
as follows. For any object A = (A4 “L A ——> D 4(A1)) € F(A, Py, Wy) and B =
B
(B1 v, By H ®3(B1)) € F(B, P, Wg), we define the object §(P,0.4,08)(A,B) €
F(C, @c, We) as

(P(AI’BO)@P(A07B1) =L P(Ag, By)®®c(P(A1, Br)) <% ‘I’C(P(AlvBO))@‘I’C(P(AOaBl)>>a

. :< P(p,id) P(id, ¢f) )
Y7 \—o5(A1, B1) o P(id,v¥) o4(A1, B) o P(pf,id)

where

and
o <UA<A1,Bo)oP<soa*,id) —<I>c<P(id,wlB>>>
0 op(Ag, Br) o P(id, v§)  ®c(P(pf,id))

For a morphism f : (A,B) — (A", B’) in §(A, P4, W4) ® F(B,®5, Wg), we define the
morphism F(P,o4,08)(f) : F(P,oa,08)(A,B) — §(P,04,08)(A’, B") by the following
rule,

(VDo (4, B o PoT ) i == 1
(—l)ldeg(hkﬁl)am’”(Ag, By) o P(gf" hiy) otherwise

where g/ € Hom4(A;, @ (A})) and hy; € Homp(By, ®5(B))).

(P oa,08)(9; ® hiy) == {

Definition 3.28. Let @ : A°® x B — C be a bifunctor. We say that Q) is compatible
with potentials with respect to (P4, W4), (Pg, Wg) and ($¢, We) if there are bifunctor
isomorphisms 74 : Q((@?f)_l x idg) = ®cQ and 75 : Q(idy x ®5) = ®cQ such that

—7A(A, B) 0 Q((@F)H(WP(A)), B) + 15(A, B) 0 Q(A, Wi(B)) = We(Q(A, B))
and

O (15(A, B)) 0 Ta(A, @5(B)) = ®c(ra(A, B)) o 15((2F) "' (A), B)

for any A € A and B € B, where &% : A = AP is the opposite equivalence of ® 4
and Wflp : @?f — id gop is the opposite functor morphism of W 4. By the latter equation
above, T4 and 75 induce a natural functor isomorphism 7" : Q(®"} x ®p) = &~"TNQ
for any m,n € Z. The triple (Q, 74, 73) is called cwp-bifunctor and we write

(Q,7a,78) + (A, @4, WA)P x (B, @5, W5) — (C, ¢, We).

For a cwp-bifunctor (Q, 7.4, 78) : (A, &4, W4)°P x (B, &g, W5) — (C, e, We), we define
a dg-bifunctor

S(Qa TA, TB) : S(Av D 4, WA)Op ® S(Bv g, WB) — 5(07 D¢, WC)

as follows. For any object A = (A1 — Ao —> D 4(A1)) € F(A, P4, WA)P and B =

(B ¢—1> BO ®3(B1)) € (B, P, Wg), we define the object F(Q,74,78)(A, B) €

g(c7 q)C7 WC) as

(‘I’c_l(Q(Al,Bo))@Q(Ao,BO “5 Q(Ao, Bo)®Q(Ar, B1)) <% Q(ALBO)@@C(Q(AO,Bl)))v
where
= <Q(so6‘,id> o ((r9) (A1, Bo)) ™ Q(id,w13>>
! O, (18(A1, B1) 0 Q(id, ¥F))  Q(ef',id)

and
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o — < —Q(p1,1d) Q(id, v7) >
0 \78(Ao, B1) 0 Q(id, ¥F) —7a(Ao, B) o (Q(@ (8),id))

For a morphism f : (A,B) — (A", B’) in F(A, &4, W4)® ® F(B, Py, Wg), we define the
morphism §(Q, 7.4,78)(f) : F(Q,74,78)(A, B) — §(Q,7a,78)(A’, B') by the following

rule,

g(Q) TA, TB)(g'LJ & hk l)
_ J g a0 (A), B)) 0 QUotly, higy) o T (Ar, Bo) ) if i=1k=0
(—l)i_kH(I)g‘(TO’"(A;-, By) o Qg7 hig)) © 7™0(A;, By)™!)  otherwise
where g/ € Hom aer (974 (4;), A}) and hy; € Hom(By, ®3(B))).

3.3. ind/pro-categories and their factorization categories. In this section, we re-

call the notion of ind-categories and pro-categories, and study factorization categories of

ind/pro-categories. For the detail of ind/pro-categories, see [CP] or [Kas], for example.
At first, we recall the definition and the foundations of ind/pro-categories.

Definition 3.29. A small category Z is called filtering if the following properties hold;

(1) For any objects 4,7’ € Z, there exist an object j € Z and morphisms 7 — j and
7 — 7.

(2) For two morphisms u, v : k' — k in Z, there exist an object [ € Z and a morphism
w : k — [ such that wou=wow.

A small category J is called cofiltering if its opposite category J°P is filtering.

Definition 3.30. Let C be a category.
(1) We define the ind-category of C, denoted by Ind(C), as follows:

An object of Ind(C) is a functor D : Z — C with Z filtering. For two objects D : Z — C
and F : J — C, we define the set of morphisms as

Homyyq(c) (D, E) := lim lim Home (D(i), E(j))-
1€L jeTJ
(2) We define the pro-category of C, denoted by Pro(C), by the following:

An object of Pro(C) is a functor P : Z — C with Z cofiltering. For two objects P:Z — C
and ) : J — C, we define the space of morphisms as

HomPro(C) (Pv Q) = m mHomC(P(l)vQ(]))
JET €L

Remark 3.31. (1) We have a natural equivalence
Pro(C) = Ind(C°?)°P

(2) Let¢ D : T — C and E : J — C be objects of Ind(C). The set of morphisms
Hompyqc) (D, E) is interpreted as the set of equivalence classes of maps of systems de-
fined as follows:

A map of systems from D to F is a pair ¢ = ({¢;}iez,0,) where 6, : Ob(Z) —
Ob(J) is a map from Ob(Z) to Ob(J), and ¢; € Hom¢(D(7), E ( ‘p( i))), such that for any
morphism v : ¢ — ¢’ in Z there are j € J, u: 0,(i) — j and «' : 6,(i') — j such that the
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following diagram is commutative:

D(i") — %X E(0,(1"))

Two maps of systems ¢ = ({¢;}icz,0,) and ¢ = ({¢; }icz,0y) are equivalent if for each
i € I, there exist j € Ob(J), u : 0,(i) — j and v : 0y(i) — j such that the following
diagram commutes:

We denote by [¢] the morphism from D to E in Ind(C) corresponding to the equivalence
class of a map of systems ¢. With this notation one can easily write down the composition
of [¢] € Hom(D, F) and [¢)] € Hom(E, H), where H : K — C. The composition is given
by

[¥] o [¢] = [({¥e, ) © Pitiez; by © O,)].

(3) Let P:Z — C and Q : J — C be objects of Pro(C). Similarly to (2), the set
Homp, ey (P, Q) is interpreted as the set of equivalence classes of maps of systems defined
by the following:

A map of systems from P to Q is a pair ¢ = ({¢;}jes,0,) where 0, : Ob(J) —
Ob(Z) is a map from Ob(J) to Ob(Z) and ¢; € Home(P(6,(j)), Q(J)), such that for any
morphism v : j — j' in J there are i € Z, u : i — 0,(j) and v : i — 6,(j") such that the
following diagram is commutative:

Two maps of systems ¢ = ({p;}jes,0,) and ¥ = ({¢j}e7,0y) are equivalent if for each
Jj € J, there exist i € Ob(Z), u : i — 0,(j) and v : i — 6y(j) such that the following
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diagram commutes:

y?(ew(jK

u ®j

P(3) . Q)
P(0y(5))

We denote by [¢] the morphism from P to @ in Pro(C) corresponding to the equivalence
class of a map of systems ¢. Let [p] € Hom(P, Q) and [¢)] € Hom(Q, R) be morphisms,
where R : L — C. The composition of [¢] with [¢/] is given by

[¥] o [¢] = [({1x © ©o,, (k) trek, Op © Oyp)].

Definition 3.32. For C € C, +(C) : m — C is the functor from the category ﬁi with
a unique object, 1, and a unique morphism, id;, defined by +(C)(1) := C. «(—) defines
natural functors

UInd C — Ind(C)
tpro : C — Pro(C).
By the constructions, the functors ¢r,q and tpy, are fully faithful.

Remark 3.33. Ind(—) defines an endofunctor on the category of functors, i.e.
(a) A functor F' : C — D induces a natural functor

Ind(F) : Ind(C) — Ind(D)

as follows: For an object D : T — C € Ind(C), the object Ind(F)(D) is defined by
FoD :ZI — D. For another object D' : 7/ — C and for a morphism [¢| : D — D',
Ind(F)([¢]) is defined by [({F(¢:)}iez,0,)]. The following diagram is commutative.

Ind(F)

Ind(C) Ind(D)
LInd T T"Ind
C E D

(b) Let F,G : C — D be functors. A functor morphism « : F' — G induces a natural
functor morphism

Ind(a) : Ind(F') — Ind(G)
as follows: For an object D : Z — C € Ind(C), the morphism Ind(«)(D) is defined by
[({aD(i) }iez, idz)].
Similarly, Pro(—) defines an endofunctor on the category of functors, i.e.
(a') A functor F': C — D induces a natural functor
Pro(F') : Pro(C) — Pro(D)

as follows: For an object P : T — C € Pro(C), the object Pro(F)(P) is defined by
(FoP :7I — D). For another object P’ : T/ — C and for a morphism [¢] : P — P/,
Pro(F)([¢]) is defined by [((F(¢i))iez,0,)]. The following diagram is commutative.

Pro(C) —)__ pro(D)
C a D
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(b') Let F,G : C — D be functors. A functor morphism « : F — G induces a natural
functor morphism

Pro(a) : Pro(#") — Pro(G)
as follows: For an object P : Z — C € Pro(C), the morphism Pro(a)(P) is defined by
[(aP(i))iez, idz)].

Proposition 3.34. We have the following:

(1) If C is an abelian category, then the categories Ind(C) and Pro(C) are abelian
categories.
(2) If € is an exact category, then the categories Ind(E) and Pro(€) are exact cate-

gories.
(3) If F : A — B is an exact functor of exact categories, then the functors Ind(F) :
Ind(A) — Ind(B) and Pro(F) : Pro(A) — Pro(B) are exact functors.

Proof. (1) This follows from [Kas, Theorem 8.6.5.]

(2) This is [Pre, Proposition 4.18.]

(3) Since we can take abelian envelopes of the exact categories A and B, and extend the
functor F' to a functor between the abelian envelopes (see the proof of Proposition 3.5),
we may assume that A and B are abelian categories. Then we obtain the result by [Kas,
Corollary 8.6.8.] O

Let (A, ® 4, W4) be a category with a potential. Then
Ind(A, @4, W4) := (Ind(A), Ind(®4), Ind(V))
Pro(A, ® 4, W4) := (Pro(A), Pro(®4), Pro(W))
are categories with potentials. Since the natural functor tyq : A — Ind(A) (resp. tpyo :

A — Pro(A)) is compatible with potentials with respect to (® 4, W) and (Ind(® 4), Ind(WV))
(resp. (Pro(®4),Pro(WW))), it induces a natural fully faithful functor

F(tma) : §(A, @4, Wa) — FInd(A, @4, Wa)
(resp. F(tpro) : (A, g, W) — FPro(A, &4, Wy) ).
Let (F,0): (A, &4, W4) — (B, ®5,Wp) be a cwp-functor. Then
Ind(F, o) := (Ind(F),Ind(0)) : Ind(A, P4, W4) — Ind(B, 23, W)
Pro(F,o) := (Pro(F),Pro(c)) : Pro(A, ®4, W4) — Pro(B, &5, W5)
are cwp-functors, and the following diagrams are commutative:

FInd(F,0) §Pro(F,o)
FInd(A, @4, Wa) SInd(B, @5, Ws) SPro(A, @4, Wa) §Pro(B, &5, W)
F(Lmd)T TS(LInd) S(LPro)T Tf"(bpm)
F(F,0) 3(F0)
(A, P, Wy) ——— > F(B, 5, Ws) S(A, @p,Wa) ———— F(B, 25, W5)

4. DERIVED FACTORIZATION CATEGORIES OF GAUGED LG MODELS

Let X be a scheme and let G be an affine algebraic group acting on X over an alge-
braically closed field k of characteristic zero. Let o : G x X — X be the morphism defining
the action, 7 : G x X — X be a projection and ¢ : X — G x X be an embedding given by
x +— (e,x), where e € G is the identity of group G.
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4.1. Equivariant sheaves and factorization categories of gauged LG models.

Definition 4.1. A quasi-coherent (resp. coherent) G-equivariant sheaf is a pair (F,6)
of a quasi-coherent (resp. coherent) sheaf F and an isomorphism 6 : 7*F = ¢*F such
that
0 =idr and ((1g x0)o(sx 1X))*9 o(lg xm)*0 = (m x 1x)*0,

where m : G x G — G is the multiplication and s : G x G — G x G is the switch of
two factors. A G-invariant morphism ¢ : (Fi,61) — (F2,02) of equivariant sheaves is a
morphism of sheaves ¢ : F; — F2 which is commutative with 6;, i.e. c*po08; =030 p.

We denote by Qcohg(X) (resp. cohg(X)) the category of quasi-coherent (resp. coher-
ent) G-equivariant sheaves on X whose morphisms are G-invariant morphisms. And we
denote by Inj;(X), LFrg(X) and lfrg(X) the full subcategories of Qcohs(X) consisting
of injective quasi-coherent equivariant sheaves, locally free equivariant sheaves and locally
free equivariant sheaves of finite ranks.

Let L € Picg(X) be a G-equivariant invertible sheaf on X and let W € H(X, L) be
an invariant section of L.

Definition 4.2. We call the data (X,L,W)® a gauged Landau-Ginzburg model
or gauged LG model, for short. We sometimes drop the script L from the notion
(X, L,W)%, and write (X, W)Y if there is no confusion.

The pair (L,W) := ((-) ® L, (—) ® W) is a potential of Qcohg(X), cohg(X), Injo(X),
LFrg(X) and lfrg(X), where W is considered as the morphism W : Ox — L corresponding
to the section of L.

Definition 4.3. We define factorization categories of (X, L, W)% as

Qcohg (X, L, W) := F(Qcohy(X), L, W)
cohg (X, L, W) := §(cohg(X), L, W)
Injo(X, L, W) :=§F(Inj(X), L, W)
)

LFrg(X, L, W) := §(LFra(X), L, W)
frq(X, L, W) :=§(frq(X), L,W).
We define categories of acyclic factorizations as
Acycls (X, L, W) := Acycl®®(Qcohg(X), L, W)
Acycl@ (X, L, W) := Acycl®(Qcohg(X), L, W)
and derived factorization categories are defined as
DQcohg (X, L, W) := D*3(Qcohy(X), L, W)
Dcohg (X, L, W) := D*3(cohg(X), L, W)
DLFrq(X, L, W) := D*(LFrg(X), L, W)
Dlfrg(X, L, W) := D*(lfrq(X), L, W).
We call the category Dcohg (X, L, W) the derived factorization category of a gauged
LG model (X, L, W)©. For E, F € Qcohg(X, L, W), we say E and F are quasi-isomorphic
if £ and F' are isomorphic in DQcohg (X, L, W). We denote by D¢onQcohg (X, L, W) the
full subcategory of DQcohg (X, L, W) whose objects are quasi-isomorphic to objects in
Dcohg(X, L, W).
Similarly, we consider coderived factorization categories;
D*Qeohg (X, x, W) = H*(Qeohg(X, x, W) /Acycl(Qeohg (X, x, W))
DLFrg (X, x, W) := HY(LFrq(X, x, W))/Acycl®(LFra (X, x, W)).
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If G is trivial, we drop the subscript G in the above notations.

Remark 4.4. By Lemma 4.10, if X is smooth variety, then Acycl (X, L, W) = Acycl@ (X, L, W)
and hence DQcohg (X, L, W) = D*°Qcohq (X, x, W).

Definition 4.5. A gauged LG model (X, O(x),0)%*®m such that the potential is zero,
the character x : G x G,,, — G, is projection, and the action of G, is trivial, is called of
o-type. If G is trivial, the gauged LG model (X, O(x),0)¢™ of o-type is called of trivial

o-type.

The derived factorization category of a gauged LG models of o-type is equivalent to
bounded derived category of coherent sheaves on some algebraic stack.

Proposition 4.6 (cf.[BFK2], Corollary 2.3.12). Let (X, O(x),0)“*%" be a gauged LG
model of o-type. Then we have equivalences

Dcohgyg,, (X, O(x),0) = DP(coh[X/G]).

The following lemma is necessary to replace objects of DQcoh (X, L, W) or Dcohg (X, L, W)
to ones with injective (or locally free) components. These replacements ensure that we
can define derived functors between derived factorization categories from exact functors
between homotopy categories of factorization categories.

Lemma 4.7 (cf. [LS], Lemma 2.10.). Assume that X is a smooth variety. Then we have

(1) For any F € Qcohg(X,L,W) there ezists a bounded exact sequence 0 — F —
I = ... = 1" = 0 in Z°Qcohg (X, L,W)) with all I'™ € Injo(X,L,W). In
particular, there is an isomorphism F — Tot(I*) in DQcohg (X, L, W).

(2) For any object F' of Qcohg (X, L, W) (resp. cohg(X, L, W)) there ezists a bounded
ezact sequence 0 — P — -+ — PY — F — 0 in Z%Qcohg(X,L,W)) (resp.
Z%cohg (X, L, W))) with all P™ in LFrg(X, L, W) (resp. lfrg(X,L,W)). In par-
ticular, we have an isomorphism Tot(P®) — F.

Proof. This is an equivariant version of [LS, Lemma 2.10]. Since Qcohg(X, L, W) has
enough injective objects and for any equivariant sheaf F € Qcohn(X) there exist an
equivariant locally free sheaf P and surjection P — E (see e.g. [CG, Proposition 5.1.26]),
the exact sequences can be constructed in a similar way as in [LS, Lemma 2.10]. U

Lemma 4.8 ([BFK1] Proposition 3.11). Assume X is a smooth variety. We have

Hom po(qeon (x,2,w)) (4, 1) = 0

for any A € Acycla(X,L,W) and I € H(Inj(X, L,W)). Moreover, the following com-
positions are equivalences;

H®(Inj(X, L, W)) = H°(Qcohg(X, L,W)) — DQcoh (X, L, W)
HO(injo (X, L,W)) — H(Qcohg(X, L,W)) — Dcohg(X, L, W),
where injo (X, L, W) is the dg-subcategory of Injo(X,L,W) consisting of factorizations
which are quasi-isomorphic to factorizations with coherent components.
Since the embedding H°(inj(X, L, W)) — H°(Inj(X, L, W)) is fully faithful, so is
Dcohg(X, L, W) — DQcohg(X, L, W)
by the above lemma. Hence we have a natural equivalence,

Dcohg (X, L, W) = DeonQeohg (X, L, W)
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Lemma 4.9 ([BFK1] Proposition 3.14). Assume X is a smooth variety. The following
natural functors are equivalences:

DLFr¢ (X, L, W) — DQcohg (X, L, W)
Dlfr¢(X, L, W) — Dcohg (X, L, W)

Lemma 4.10 (cf. [LS], Corollary 2.23.). Assume X is a smooth variety. The categories
H°(Qcohg (X, L,W)), H(Inju(X, L,W)), Acyclg(X,L,W) and DQcohg (X, L, W) are
closed under arbitrary direct sums and therefore idempotent complete.

Proof. We can prove this in a similar way as in [LS, Corollary 2.23]. O
We define the supports of factorizations and complexes of factorizations as follows:

Definition 4.11. Let E € Z°(cohg(X, L,W)). The support Supp(E) of E is defined as
Supp(FE) := Supp(E1) U Supp(Ep).
For an object E* € DP(Z%(cohg(X, L, W))), we define the support Supp(E*) of E* as

Supp(E*) := | J Supp(H'(E*)).
€L

Remark 4.12. By definition the support of E* € DP(Z°(cohg (X, L,W))) is the union of
supports of objects Ef € DP(X), i.e. Supp(E*) = Ui:O,l Supp(E?), where the support of
a complex in DP(X) is defined by the union of supports of its cohomologies.

In the following, we define properness of the “support” of an object in Dcohg (X, L, W)
by using totalization.

Definition 4.13. Let f : X — Y be a morphism of schemes. A closed subset Z of X

is called f-proper if the composition Z — X i> Y is a proper morphism. We denote
by cohﬁG(X, L,W) the full subcategory of cohg(X,L, W) consisting of objects whose
supports are f-proper.

Let F' be an object in Dcohg (X, L, W). We say F has a f-proper support if there
exists an object ['* € DP(Z%(cohg(X, L, W))) such that Tot(F*®) is isomorphic to F in
Dcohg (X, L, W) and the closed subset Supp(F*®) is f-proper.

We denote by Décohg(X, L, W) the full subcategory of Dcohg(X, L, W) consisting of
objects which have f-proper supports.

Remark 4.14.

(1) DL cohg (X, L, W) is strictly full subcategory, i.e. closed under isomorphisms in Deohe (X, L, W).
(2) If f is proper morphism then Dfcohg (X, L, W) = Deohg(X, L, W).

(3) Let g : Y — Z be another morphism of quasi-projective varieties. If F' € Dcohg(X, L, W)

has a g o f-proper support, then F' has a f-proper support.

(4) An object E € Dcohg (X, L, W) which is quasi-isomorphic to F' € cohéG(X, L, W) has

a f-proper support.

4.2. Functors of factorization categories of gauged LG models. Throughout this
section, we assume X is a smooth variety. In what follows, we define exact functors
between derived equivariant factorization categories.
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4.2.1. Derived functors between triangulated categories. In this section, we recall defini-
tions and generalities on derived functors of exact functors of triangulated categories after
[Mur|. Let D be a triangulated category, and let C be a full subcategory of D with Verdier
quotient @ : D — D/C. Throughout this section, all functor morphisms of exact functors
are assumed to be commutative with shift functors, i.e. if « : FF — G is a functor mor-
phism between exact functors F,G : T — T’ of triangulated categories 7 and 7' with
shift functors ¥ : 7 — 7 and X' : 7" — T, then « satisfies the commutativity of the
following diagram of functor morphisms,

FYy ——==Y'F

W e

Gy —=Y'G.

Definition 4.15. Let F' : D — T be an exact functor of triangulated categories. The
right derived functor of F (with respect to C) is a pair (RF,() of an exact functor
RF : D/C — T and functor morphism ¢ : FF — RF o ) with the following universal
property: for any exact functor G : D/C — T and functor morphism p: F' — G o @) there
is a unique functor morphism 7 : RF — G making the following diagram commute:

F

PR

RFoQ GoQ.

We will often drop the subcategory C and ¢ from the notation, and say simply that RF
is right derived functor of F'.

Remark 4.16. By the definition, if right derived functor exists, it is unique up to natural
equivalence.

Definition 4.17. Let F' : D — 7T be an exact functor. An object A € D is right F-
acyclic with respect to C if the following condition holds: if s : A — B is a morphism
with cone in C, there is a morphism t : B — C with cone in C such that F(ts) is an
isomorphism.

Remark 4.18. If A € D is a right F-acyclic with respect to C and in C, then F'(A) = 0.

The following theorem will be applied several times in the following sections to construct
exact functors between derived factorization categories.

Theorem 4.19 ([Mur| Theorem 116). Let F': D — T be an exact functor. AssumeC is a
thick subcategory of D. Suppose that for each object X € D there exists a right F-acyclic
object Ax and a morphism nx : X — Ax with cone in C. Then F admits a right derived
functor (RF, () with the following properties

(1) For any object X € D we have RF(X) = F(Ax) and {(X) = F(nx).

(2) An object X € D is right F-acyclic if and only if ((X) is an isomorphism in T .

There are similar definitions and results for left derived functors. See [Mur] for the
detail.
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4.2.2. Direct and inverse image. Let Y be another smooth quasi-projective variety with
an action of G, defined by 7: GXY — Y, and let f : X — Y be an equivariant morphism,
ie. foo=T10o(lg x f).

For the morphism f, the direct image fi : Qcohy(X) — Qcohg(Y) and the inverse
image f*: Qcohg(Y) — Qcoh(X) are defined by

Jo(F,0) == (fo(F), (L x f)0) and f*(F,0) := (f*F, (1 x [)"0).

Let L € Picg(Y) be an equivariant invertible sheaf on Y and let W € H°(Y, L)“ be an
invariant section of L. Then we have potentials (f*L, f*W) and (L, W) of Qcoh(X) and
Qcoh(Y) respectively. By the natural isomorphisms of functors f,.((—)®f*L) = f.(—)®L
and f*((—)® L) = f*(—) ® f*L, we see that the direct image f, and inverse image f* are
compatible with potentials with respect to (f*L, f*W) and (L, W) (see Definition 3.15).
So we have direct image f, and inverse image f*, denoted by the same notation as usual
ones, between factorization categories

fs : Qeohg (X, f*L, f*W) — Qcohg(Y, L, W)
[ Qeohg (Y, L,W) — Qecohg(X, f*L, f*W).
Taking H%(—) of these dg-functors, we have exact functors
fr : H°(Qeohg (X, f*L, f*W)) — H°(Qcohg (Y, L, W))

J* : H(Qeohg(Y, L, W)) = HY(Qeohg (X, f*L, f*W)).
Since these exact functors don’t send acyclic objects to acyclic ones in general, we need
to take derived functors of them. In the following, we give a proposition that implies
existences of derived functors and two lemmas about them, following [LS]. Since the
proofs are same as [LS], we will omit proofs.
Denote the following compositions by same notation f, and f*,

fie: H(Qeohg (X, f*L, f*W)) = H°(Qeohg(Y, L, W)) = DQcohg (Y, L, W)
f*: H°(Qcohg (Y, L, W)) — H°(Qcohg (X, f*L, f*W)) — DQcohg (X, f*L, f*W).
By Lemma 4.7 and Theorem 4.19, we have the following:

Proposition 4.20 (cf. [LS] Theorem 2.35).

(1) The functor f. : H°(Qcohs(X, f*L, f*W)) — DQcoh(Y, L, W) admits a right
derived functor Rf, : DQcohq (X, f*L, f*W) — DQcohn(Y, L, W) with respect to
Acyclqg(X, f*L, f*W).

(2) The functor f* : H°(Qcohg (Y, L, W)) — DQcoh (X, f*L, f*W) has a left derived
functor Lf*DQcohg(Y, L, W) — DQcohq(X, f*L, f*W') with respect to Acyclg(Y, L, W).
This left derived functor maps to Dcohg(Y, L, W) to Dcohg (X, f*L, f*W).

The right derived functor R f, doesn’t map an object E € Dcohg (X, f*L, f*W) to an
object in Dcohg(Y, L, W) in general. But the following Lemma 4.21 implies that if E
has a f-proper support, then Rf,(E) is isomorphic to an object in Dcohg (Y, L, W). In
particular, if f is proper morphism then R f, maps an object in Dcohg (X, f*L, f*W) to
an object which is isomorphic to an object in Dcohg(Y, L, W) and we also denote by R f.
the following composition

Deohe (X, f*L, FW) 2% DoowQeohg (Y, L, W) = Deohe (Y, L, W).

Lemma 4.21 ([LS] Lemma 2.40). Let F € Ch?(Z%(Qcohy(Y,L,W)). If each H(F) €
DQcohg (Y, L, W) is isomorphic to an object in Dcohg(Y, L, W), then so is Tot(F').
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Lemma 4.22 ([LS] Lemma 2.38). Let E = (E; — Eg — E1®f*L) € H°(Qcohg (X, f*L, f*W))
and assume that Rif.(E,) = 0 in Qcohs(Y) for any i > 0 and each n = 0,1. Then E is
right fe-acyclic. In particular, if f is affine morphism then we have a canonical isomor-
phism of functors f, — Rf..

Similarly, if F = (F1 — Fy — F1 ® L) € H*(Qcohg(Y, L, W)) and L7 f*(F,,) = 0 in
Qcohy(X) for any j > 0 and each m = 0,1, then F is left f*-acyclic. In particular, if f
is flat morphism then Lf* = f*.

Since the direct image f : Qcohg(X) — Qcohg(Y) is right cwp-adjoint to the inverse
image f* : Qcohg(Y) — Qcohn(X) with respect to potentials (f*L, f*W) and (L, W),
fx : Qeohg (X, f*L, f*W) — Qcohg (Y, L, W) is right adjoint to f* : Qcohg(Y, L, W) —
Qcohg (X, f*L, f*W), whose adjunction morphisms are of degree zero. Taking H°(—),
we see that f, : H°(Qcohg(X, f*L, f*W)) — H°(Qcohg(Y,L,W)) is right adjoint to
f*: H(Qcohg(Y, L, W)) — H°(Qcohy(X, f*L, f*W)). Thus, by [Mur, Theorem 122],
we obtain the following adjoint pair:

Lf*4Rf.

4.2.3. Tensor product and local Hom. Let L € Picg(X) and V,W € H(X, L)%,

Taking tensor product gives a bifunctor (—)®(—) : Qcohg(X)xQcohg(X) — Qeohg(X).
Note that this functor is compatible with potentials with respect to potentials (L, V),
(L,W) and (L,V + W) (see Definition 3.27). So it induces a dg-bifuctor

(=) ® (=) : Qeohg (X, L, V) ® Qeoh (X, L, W) — Qcohg(X, L,V + W).
If we fix an object P € Qcohg (X, L, W), we have an exact functor
(-)® P : H°(Qcohg(X,L,V)) = DQcohg (X, L,V + W).

Proposition 4.23. The functor (—)® P : H%(Qcohy(X, L,V)) — DQcohy (X, L,V +W)
has a left derived functor (—) @ P : DQcohg(X, L, V) — DQcohgs(X, L,V + W) with
respect to Acycla(X,L, V). If P € cohg(X,L,W) then this left derived functor maps
Dcohg (X, L, V) to Decohg(X, L,V +W).

Proof. The proof is very similar to the proof of [LS, Theorem 2.35 (b)], and the detail is
left to the reader. O

Definition 4.24. For any complex C* € DP(Qcohy (X)), we define an exact functor
(=) @Y C* : DQcohg (X, L, W) — DQcohg(X, L, W)
as
Eolct .= Egt1(C*),
where T : DP(Qcoh, (X)) — DQcohy(X, L,0) is the functor defined in Definition 3.14.
We denote by E® C* if E @V Y(C*) = E® Y(C*).

Taking local Hom gives a bifunctor Hom(—, —) : cohg (X )P x Qcohg(X) — Qcohg(X).
Note that this bifunctor is compatible with potentials with respect to potentials (L, V),
(L,W) and (L,W — V) (see Definition 3.28). So it induces a dg-bifunctor

Hom(—,—) : cohq(X, L, V) ® Qcohg(X, L, W) — Qcohg (X, L, W — V).
If we fix an object @ € cohg(X, L, V'), we have an exact functor
Hom(Q, —) : H*(Qcohg (X, L, W)) — DQcohg (X, L, W — V)
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Proposition 4.25. The functor Hom(Q, —) : H°(Qcoh (X, L, W)) — DQcoh (X, L, W —
V') has a right derived functor RHom(Q, —) : DQcohg(X, L,W) — DQcoh(X, L, W —-V)
with respect to Acyclg (X, L, W).

Proof. The proof is very similar to the proof of [LS, Theorem 2.35 (a)], and the detail is
left to the reader. O

By Lemma 4.21, if £ € Dcohg (X, L, W), then RHom(Q, E) € DeonQeohg (X, L, W —
V). We use same notation RHom(Q, —) for the composition

M DeonQeohg (X, L, W — V) = Deohg(X, L,W - V).

Dcohg (X, L, W)
Lemma 4.26. Let E = (E; — Ey — E1 ® L) € H°(Qcoh(X,L,V)) and P = (P, —
Py — Pi®L) € Qcohg (X, L, W). If Tor'(Ey,, P,,) = 0 for anyi > 0 and anyn,m € {0,1},
then E is (—) ® P-acyclic object. In particular, if P € LFrg(X, L, W), then there is an
isomorphism of exact functors (—) @ P = (—) ® P.

Let F = (I — Fy — F1® L) € H(Qcohg (X, L,W)) and Q = (Q1 — Qo — Q1 ®L) €
cohg(X,L, V). If Ext'(Qn, F) = 0 for each i > 0 and any n,m € {0,1}, then F is
Hom(Q, —)-acyclic object. In particular, if Q € lfrq(X, L, V), there is an isomorphism of
exact functors Hom(Q, —) = RHom(Q, —).

Proof. The proof is similar to [LS, Lemma 2.38], and we leave the detail to the reader. O

Remark 4.27. In the above lemma, we can take P and () as objects whose components
are flat sheaves.

Proposition 4.28 ([BFK1] Proposition 3.27). Let R € cohg(X, L, V). Then Hom(R,—) :
Qcohg (X, L, W) — Qcohg(X,L,W — V) is right adjoint to (—) ® R : Qcohg(X,L, W —
V) — Qcohg(X, L, ).

Hom(R,—) : HY(Qcohg(X,L,W)) — HY(Qcohg(X,L,W — V)) is right adjoint to
(=) ® R : H(Qcohg(X,L,W —V)) — H®(Qcohg(X, L,W)) by the above proposition.
If I € Injo(X,L, W), J € Injo(X,L,W —V) and F € lfrg(X,L,V), then Hom(F,I) €
Injo(X,L,W —V)and J® R € Inj;(X, L, W). Hence by Lemma 4.8 and Lemma 4.9 we
obtain an adjoint pair,

(=) @¥ R 4 RHom(R, -).

Definition 4.29. Let Oy := (0 = Ox — 0) € cohg(X, L,0). Then we define functors
(—)Y := Hom(—,Ox) : cohg(X, L, W)°? — cohg(X, L, —W)
(=) := RHom(—,Ox) : Deohg(X, L, W)°P — Dcohg(X, L, —W).

Lemma 4.30 ([BFK1| Lemma 3.30, 3.11). The functor,
(=)™ : Dcohg(X, L, W)°P — Dcohg(X, L, —W)

s an equivalence.
For F € lfrq(X, L,W), we have an isomorphism of functors,

FY ® (=) = Hom(F,-).
For E € Dcohg (X, L, W), there is an isomorphism of functors,
EW ol (-) = RHom(E, -).
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Lemma 4.31. Let E € Dcohg(X,L,V) and F € Dcohg(X,L,W). LetY be a smooth
quasi-projective variety and let f : X — Y be a morphism. If E has a f-proper support,
both of EQYF and RHom(E, F) have f-proper supports. In particular, if E has a f-proper
support, so is ELV.

Proof. By the assumption, there exists an object £* € D?(Z%(cohg(X,L,V))) such that
Tot(E*) = E and the morphism Supp(E®) — Y is proper. Since X is smooth and
for any M € cohg(X) there exists a locally free equivariant sheaf P and a surjection
P — M, there exists an object P* € DP(Z°(lfrg(X, L,V))) which is isomorphic to E* in
DP(Z%cohg(X, L,V))). Then we have

E @Y F = Tot(P*) ® F = Tot(P* ® F)
and
RHom(E, F) = Hom(Tot(P*), F') = Tot(Hom(P*, F)).
Hence it is sufficient to prove that closed subsets Supp(P* ® F') and Supp(Hom(P*, F'))

are contained in Supp(P*). But this follows from equalities

Supp(P* @ F) U Supp(P; ® Fj)
1,j=0,1

Supp(Hom(P*®, F)) = U Supp(Hom(Py, Fy))
k,1=0,1

and the fact that for A*,B* € DP(X), we have Supp(A4°® @ B*) C Supp(A®) and
Supp(RHom(A®, B*)) C Supp(A®*). O

4.2.4. Projection formula, flat base change and Grothendieck duality. Let X and Y be
smooth quasi-projective varieties and let G be an affine algebraic group acting on X and
Y. Let f: X — Y be an equivariant morphism. Take L € Picg(Y) and W € HO(Y, L)“.

The following proposition is a version of projection formula for factorization categories.

Proposition 4.32 ([BFK1] Lemma 3.38). For objects E € DQcohg(Y,L, W) and F €
DQcohg (X, f*L, f*W), we have a natural isomorphism of exact functors,

Rf.F oV E~Rf.(F &V Lf*E).

Let Z be another smooth quasi-projective variety with G-action and let v : Z — Y be
an equivariant flat morphism. Consider the fiber product W := X xy Z,

f/

W ——Z7
x-t.vy

Lemma 4.33 (cf. [BFK1] Lemma 2.19). We have a natural isomorphism of functors
between coherent sheaves,

u* o fi & flou™ : Qeohy(X) — Qeohy(Z).

Note that the above natural isomorphism of functors is a cwp-functor morphism. By
Lemma 3.19 (2), we have an induced isomorphism of functors between factorizations,

u* o fi 2 flou™ : Qeohg (X, f*L, f*W) — Qeohg(Z,u* L, u*W).
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Since this isomorphism of dg-functors is of degree zero, there is a natural isomorphism of
exact functors,
u* o f. =2 flou : H(Qeohg (X, f*L, f*W)) — H°(Qcohg(Z,u* L, u*W)).

Since u and v’ are flat, we have Lu* = u* and Lu* = «'*. For E € DQcohq (X, f*L, f*W),
let I € Injo(X, f*L, f*W) be an object which is quasi-isomorphic to E. Then we have

u" o Rf.(E) = u”(f.(I)) = fi(u"(I)).
By the second property of right derived functor in Theorem 4.19 and Lemma 4.22, we see
that v™*(I) is right f.-acyclic, which implies f,(u™*(I)) = Rf.(u*(I)). Hence we have the
following:

Lemma 4.34. We have a natural isomorphism of functors
woRfy 2 RS, ou”™ : DQecohy (X, f*L, f*W) — DQcohg(Z, u* L, u*W).

Definition 4.35. Let ¢ : X; — X5 be a equivariant morphism of smooth G-varieties. We
define the relative dualizing bundle w, € Picg(X1) as

e *x
Wy 1= wx, ® Y Wy,,

where wy, € Picg(X;) is the canonical bundle on X; with tautological equivariant struc-
ture.

In [EP], Positselski proved a version of Grothendieck duality for derived factorization
categories. In the following we give an immediate consequence of the Positselski’s result.

Theorem 4.36 (cf. [EP] Theorem 3.8). If f is proper, Rfy : DQcoh(X, f*L, f*W) —
DQcoh(Y, L, W) has a right adjoint functor f' : DQcoh(Y, L, W) — DQcoh(X, f*L, f*W).
An explicit form of the functor f' is the following:

F1(=) 2L (-) @ wyldim(X) — dim(Y)],
where the tensor product on the right hand side is given by Definition 4.24.

Proof. Let Dy be a dualizing complex on Y and write D% := f* Dy, where T is a right
adjoint functor of the direct image R.f, : DP(X) — DP(Y) of derived categories of coherent
sheaves. By [EP, Theorem 3.8], for any object E € D®°Qcoh(X, f*L, f*W) and an object
F € D°Qcoh(Y, L, W) whose components F; are flat sheaves, we have an isomorphism

Hompeoqeon(v,L,w) (R E, F' ® DY) = Hompeoqeon(x, f+L,pw) (B, f*(F) ® D).
Since X and Y are smooth, co-derived factorization categories are equal to absolute derived
factorization categories by Remark 4.4, and the structure sheaf Oy is quasi-isomorphic
to a dualizing complex. We have f+Oy =2 wy ® f*w; ' [dim(X) — dim(Y)]. Since for any
object of DQcoh(Y, L, W) is isomorphic to an object whose components are locally free,
in particular, flat, we obtain the theorem. ]

4.2.5. Extension by zero. In this section we construct a relative left adjoint functor 4y of
the inverse image ¢* of an open immersion s.

Let U be an open subvariety of X and let ¢ : U < X be the open immersion. In what
follows we don’t consider G-actions until the next section.

Definition 4.37. For F € coh(U), let F be coherent sheaf on X such that F|y = F. Let
Z;o be the category such that Ob(i\;o) = Z>o and whose sets of morphisms are defined
as follows:

0 if n<m

{>n} it n>m

Home;O (n,m) = {
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Then we define an object 4)(F') € Pro(coh(X)) as a functor 4(F) : Z;) — coh(X) defined
by
i(F)(n) := T'F,
where 7 is the ideal sheaf defining the complement X \ U. Since the object i(F") doesn’t
depend on the choice of an extension F' by the following Lemma 4.38, this gives an exact
functor
iy : coh(U) — Pro(coh(X)).
The functor 4, is called the extension by zero of i. We also denote by i, the composition
coh(U) SR Pro(coh(X)) < Pro(Qcoh(X)).

Lemma 4.38. Let F' € coh(U) be an coherent sheaf on U, and let N € coh(X) and

M € Qcoh(X) be subsheaves of i+(F) € Qcoh(X). If i*(N) is contained in i*(M), then
there is a positive integer n such that I™N is contained in M.

Proof. Since we can take finite affine covering, it is enough to prove it for the case X =
Spec(A) and U = Spec(Ay) for some ring A and an element f € A. Then Z corresponds
to the ideal I = (f) of A generated by f. We consider F';, N and M as corresponding
modules. Let {z}}1<x<r C N be a generator of N. Since i*(N) = N ®4 Ay is contained
in *(M) = M ®4 Ay, for each k, there is an element y, € M and n, > 0 such that
@1 = yp®1/f™ in i, (F)®Ay. This implies that " x), = yp € M, since i (F)®A; = F.
Set n := max{ng|l < k <r}. Then we have I"N C M. O

Deligne proved that the extension by zero 4 is a relative left adjoint to the inverse image

.

Proposition 4.39 (cf. [Del] Proposition 4). For any F' € coh(U) and (G : T — Qcoh(X)) €
Pro(Qcoh(X)), we have an isomorphism

HomPro(Qcoh(X)) (Z'(F)v G) = HomPro(Qcoh(U))(J(F)7 PI‘O(Z*)(G)),
where J : coh(U) — Pro(Qcoh(U)) is the natural inclusion.

Proof. This is shown as follows;
HomPro(Qcoh(X)) (i! (F)7 G) = @ HomPro(Qcoh(X)) (i! (F)7 G(Z))
1€L
= @1 Hochoh(U) (F7 Z*G(l))
i€l

= HomPro(Qcoh(U))(‘](F)’ PI‘O(Z*)(G)),

where the isomorphism in the second line follows from [Del, Proposition 4]. O

Let L € Pic(X) and let W € H°(X,L). Then (Pro(L),Pro(W)) is a potential of
Pro(Qcoh(X)) and Pro(coh(X)). We denote their factorization categories by

Qcohp, (X, L, W) := §(Pro(Qcoh(X)), Pro(L), Pro(W))
cohpyo(X, L, W) := §(Pro(coh(X)), Pro(L), Pro(W)).

The extension by zero 4y is compatible with potentials with respect to (L|y, W) and
(Pro(L),Pro(W)). Hence the functor 4, induces a dg-functor

7 COh(U,L|U,W|U) — CthrO(X,L, W)

Since iy : coh(U) — Pro(coh(X)) is an exact functor of abelian categories, i preserves
acyclic objects. Hence i, : H°(coh(U, L|y, W|y)) — H°(cohpy(X, L, W)) naturally in-
duces an exact functor

i1 : Deoh(U, L|y, W) — Deohpyo (X, L, W).
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On the other hand, there is a natural functor Dcohp,o(X, L, W) — Pro(Dcoh(X, L, W)).
Composing it with the embedding Pro(Dcoh(X, L, W')) — Pro(DQcoh(X, L, W)) and i :
Dcoh(U, L|y, W|y) — Dcohpyo(X, L, W), we construct a functor

i1 : Deoh(U, L|y, W) — Pro(DQcoh(X, L, W)),
which is also denoted by the same notation ;.

Proposition 4.40. (1) The dg-functor i : coh(U, L|y, W|y) — Qcohpyo(X, L, W) is J-
left adjoint to Pro(i*) : Qcohpyo(X, L, W) — Qcohpyo(U, L7, Wy ), where J is the natural
embedding functor J : coh(U, L|y, W|y) — Qcohpyo (U, L|y, Wlu).

(2) For any E € Dcoh(U, L|y, W|y) and F € DQcoh(X, L, W), we have an isomorphism

Homp,(Dqeoh(x,2,w)) (i1 (E); tpro(F)) = Hompqeon(u, 1|y, W) (E 1 (F))-
Proof. (1) Consider the following diagram,

i

coh(U)

Pro(Qcoh(X))

x%

Pro(Qcoh(U))

where J is the natural embedding. Then Proposition 4.39 implies that ¢, is J-left adjoint
to Pro(i*) (see Definition 3.22). Hence, (1) holds since the front adjunction J — Pro(i*)oi
is a cwp-functor morphism.

(2) Let F =+ J be an isomorphism in DQcoh(X, L, W) such that the components of I are
injective quasi-coherent sheaves. Then i*([) is an object whose components are injective
quasi-coherent sheaves on U. By (1) and Lemma 4.8, the right hand side of the desired
isomorphism is isomorphic to

HO({ hgﬂ Hochoh(X,L,W)(InE 1}*).

TLEZZO
Since taking direct limit is an exact functor, the above abelian group is isomorphic to

lim H°(Homqeon(x,z.w)(Z"E, 1)*),
TlGZzU

which is isomorphic to the left hand side of the desired isomorphism by Lemma 4.8 again.
([
For later use, we will extend the extension by zero 4 : coh(U) — Pro(Qcoh(X)) to a

functor defined on Qcoh(U). To do it, we need the following lemma.

Lemma 4.41 ([Del], Proposition 2). LetY be a Noetherian scheme, and let F' € Qcoh(Y')
be a quasi-coherent sheaf. Denote by {Fy}rex the family of all coherent subsheaves of F.
Let O(F) € Ind(coh(Y)) be a functor given by

Jog coh(Y)
W w
k +— Fy

Then 0(—) gives an exact equivalence

6 : Qcoh(Y) = Ind(coh(Y)).



39

Definition 4.42. We define an exact functor
i4 : Qcoh(U) — Ind(Pro(Qcoh(X)))
as the compositions

Qcoh(U) LN Ind(coh(U)) Ind(a), Ind(Pro(coh(X))) < Ind(Pro(Qcoh(X)))

Remark 4.43. By the construction of 7, we have a natural isomorphism of functors

i |coh(t) = tndl-

The following lemma will be necessary to prove Lemma 5.2.

Lemma 4.44. The notation is the same as above.
(1) We have a natural functor morphism
V# - Z# — LInPri*a
where tpr : Qecoh(X) — Ind(Pro(Qcoh(X))). Restricting vy, we obtain a natural

functor morphism
Y i1 — LProlx-

such that L = Y#lcon()-
(2) Consider the following cartesian square:

J

Vi=UxxY Y
Ql p
U ‘ X

We have a morphism between functors from coh(V') to Ind(Pro(Qcoh(Y")))
At Juq" g = tmaPro(p™p.) i

such that the following diagram is commutative:

. UInPr0 . .
UnPrisq" @ ——> UInprD* Pulfis === tnd PTO(D*Ps) tPro s
Yq* qx T TnndPrO(p*p*)’ﬂcomw
. A .
J#q" G« tindPro(p*p.) i

where 6 : juq*qe — P Psjx is a natural isomorphism of functors.
J J

Proof. (1) Let F € Qcoh(U) be a quasi-coherent sheaf on U, and let {Fj}recx be the
family of all coherent subsheaves of F. By definition, i4(F) : K — Pro(Qcoh(U)) is a
functor given by iy (F)(k) = i1(F}), and the object i(F}) € Pro(Qcoh(U)) is the functor
given by

Zzo oONn > In?}g S COh(U),
where Fj is a coherent subsheaf of i.(F})) such that i*(Fy) = Fj. Hence, the natural
inclusion F, — i,(F) gives a morphism of functors

v ’i# — Llnpri*.

(2) For F € coh(V), we will define a morphism A(F) : jxq*¢:(F) — tmaPro(p*ps)ji(F).
Let {Ex}rex be the family of all coherent subsheaves of ¢*q.(F). Then the object
J#q*¢«(F) € Ind(Pro(Qcoh(Y))) is given by the following functor

K — Pro(Qcoh(Y))
w w
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In order to define a morphism A(F) : juq*q«(F) = tmaPro(p*p«)j1(F), it is enough to give
a family of morphisms {A(F)g : ji(Eg) — Pro(p*p«)51(F)}kex in Pro(Qcoh(Y')) such that
for any inclusion v : Ej, < Ej, the equation A(F'); = A\(F);ji(v) holds. Let J be the ideal
sheaf defining Y \ V, and let Ej and F be coherent subsheaves of j.(FE)) and j.(F) with

7*(Ey) & Ey and j*(F) = F respectively. Then the object ji(E) and Pro(p*p.)ji(F) are
the following functors

ZZD J@)) QCOh(Y)
7 Y
n o+  J'E

Pro(p*p«)ji (F)

Z>¢ Qcoh(Y)
W w
m — T™p*p.(F)

E}, is contained in j.q*q.(F) and p*p.(F) can be considered as a subsheaf of j.q*q.(F)
via the isomorphism &(F) : j.q*q.(F) = p*psju(F). Since j*Ej = E}, is contained in
7*p*p«(F) = q*q.(F), there is a positive integer N such that JVE} is a subsheaf of
p*p«(F) by Lemma 4.38. Let OrxF), * Z>0 2 n+— n+ N € Z>o be a map, and let
AE)E = 51(Eg)(n + N) — Pro(p*ps«)ji(F)(n) be a morphism induced by the inclusion
INE), — p*p.(F). If we define a morphism A(F), : j51(E) — Pro(p*p«)ji(F) as a map
of systems ({\(F)} }nezso, Orr),) for each k € K, then the family {\(F)x}rex defines a
morphism A(F') : juq*q«(F) = tmaPro(p*p.)s1(F), and this gives a functor morphism

A Juq ¢ = tmaPro(p*ps) .

The commutativity of the diagram follows since -y is induced by natural inclusions, and A
is also induced by natural inclusions via 9. O

4.2.6. Integral functor for factorization. Let Xy and X9 be smooth quasi-project varieties
with actions of affine algebraic group G. Take a character y of G, and let O;(x) be the
corresponding equivariant line bundle on X;. Let W; € HO(X;, O;(x))¢ be a G-invariant
section. Then the corresponding regular function W; : X; — A! is y-semi invariant, i.e.
Wi(g-z) = x(g) - W(z) for any g € G and = € X;. Denote by m; : X; x Xo — X, the
projection for each ¢ =1, 2.

Throughout this section 4.2.6, dropping the script L from notation, we write Dcohg(—, *)
instead of Dcohg(—, L, *), because all equivariant line bundles in this section are the one
corresponding to the character y.

Definition 4.45. For P € DQcohg (X7 x Xo, m3Wo — miW7), we define the integral
functor ®p with kernel P as

®p := Rmg. (7} (=) @ P) : DQcoh (X1, W1) — DQcohg(Xa, Wa).

Remark 4.46. If Q € Dcohg (X x Xo, m3Wo — mfW7) has a ma-proper support, then ®¢
maps an object in Dcohg (X1, Wi) to an object in DeopQcohg (X, Wa). We also denote
by ®¢ the following composition

® ~
DCOhg(Xl, Wl) —Q> DCOhQCOhG(XQ, WQ) — DCOhG'(XQ, Wz)
For an object P € Dcohg (X1 x Xa, msWo — niW7), we define objects Pr and P, in
DCOhCT'(Xl X Xg,wal — W;WQ) as
Pr := PV @ miwy, [dim(X1)]
Pr = PV ® mhwyx,[dim(X2)].
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If G is trivial, we see that there are relative adjoint pairs of integral functors.

Proposition 4.47. Let P € Dcoh(X; x Xo, m5Wo — i W7) be an object which has a w1 -
proper support. Then for any objects E € DQcoh(X1,W1) and F € Dcoh(Xq, Wa), we
have an isomorphism

Hompqeon(xo,ws) (F; p(E)) = Hompqeon(x,,wy) (Pp, (F), E).

In particular, if P has a wa-proper support, then ®p, : Dcoh(Xa, W) — Dcoh(Xy, W)
(resp. ®p,) is a left (resp. right) adjoint functor of ®p : Dcoh(X1, W1) — Dcoh(Xa, Wa).

Proof. Since we already have the adjunction 75 4 Rma,, it is enough to obtain the following
isomorphism

HomDQcoh(X1 XXQJT;WQ)(D7 ﬂ—TE ®L P) = HomDQcoh(Xl,Wl)(RTfl*(D ®L PL): E)

for any objects D € Dcoh(X; x Xo, m5Ws) and E € DQcoh(X;, Wi). This is proved in a
similar way to the proof of [Log, Lemma 4]. Compactify X5 and denote by X a smooth
proper variety containing X, as an open subvariety. Let ¢ : X7 x X5 < X7 x X5 be the
open immersion, and let 77 : X X X5 — X be the projection. Then 71 = 7 o v and 7
is a proper morphism. By Theorem 4.36 and Proposition 4.40, we obtain the following
isomorphism:

Hompqeon(x, xX2,7r;W2)(D77TTE®LP) = HomPro(DQcoh(xl,Wl))(RWT*(L!(D®LPLV)®wﬁ[dim(X2)]),E)

Since the object PLV has a 71-proper support, there exists an object P* € D”(Z%(coh (X7 x
Xo, mW1 — m3Ws))) such that PYY = Tot(P*) and Supp(P*) is m1-proper, in particular,
t-proper. By a similar reasoning to one of [Log, Lemma 4], we see that there is an
isomorphism

u((=) @Y P*) = u((-) @ P*)

of functors from DP(Z%(coh(X1 x Xa, m3W5))) to Pro(DP(Z°(Qcoh(X1 x Xa, miW1)))). By
taking totalizations of the above isomorphism, we obtain an isomorphism of functors

u((=) @ PYY) = w((-) @ PYY).

Hence, we have an isomorphism R71, (u(D @Y PMV) @ wa[dim(X,)]) 2 Rm (D&Y Pp). If
P has a my-proper support, the integral functor ® p maps Dcoh(X1, W1) to Dcoh(Xo, Wa),
and ®p, maps Dcoh (X, W) to Deoh (X7, W) since Pr, has a m1-proper support by Lemma
4.31. Hence we have ®p, 4 ®p. Since (Pr)r = P, we obtain the other adjunction
Bp 4 Dp,. 0

We will show that the composition of integral functors is also an integral functor. Let
X3 be another smooth quasi-projective G-variety, Os(x) be the equivariant line bundle
corresponding to the character x, and W3 € H(X3,O3(x)) be an invariant section. We
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define morphisms of varieties by the following diagram;

X1><X2

q1 X1 X X2 X X3 p2

T3 23

X1 x X3 X9 x X3
X3
where all morphisms are projections. For two objects
P € Dcohg (X1 X Xo, m5Wo — i W1)
Q@ € Dcohg(Xa x X3, p3 W3 — p5Wa),

we set another object
P % Q := my3.(mfo P @ 753Q) € Deohg (X1 x X3, 3 W3 — ¢;Wh).

For two complexes P* € DP(cohX; x X5) and Q°* € DP(cohX, x X3), we also define
another object

P* xQ* € DP(cohX; x X3)

in the same manner. Then we have the following:

Proposition 4.48. The notation is the same as above. The composition of integral func-
tors
o
Deohg (X1, Wi) 22 Deoha(Xa, Wa) —2 Deohg (X3, Wa)
1s 1somorphic to the following integral functor

PxQ

o
DCOhg(Xl, Wl) E— DCOhg(Xg, Wg).
The similar result holds for integral functors of derived categories of coherent sheaves.

Proof. For the proof of the result for derived categories of coherent sheaves, see [Huy,
Proposition 5.10], for example. We can prove the result for derived factorization categories
in the same way. g

4.3. Support properties of factorizations. Following [EP, Section 1.10], we consider
set-theoretic supports of factorizations. In this section, X is a Noetherian scheme.

Definition 4.49. Let (X, x, W)% be a gauged LG model, and let Z C X be a G-invariant
closed subset of X. We say that a factorization F' € Qcohs (X, x, W) is set-theoretically
supported on Z if the supports Supp(F;) of components of F' are contained in Z.

Denote by
QCOhG(X7 X W)Z
the dg subcategory of Qcohs (X, x, W) consisting of factorizations set-theoretically sup-

ported on Z. H%(Qcohg(X, x, W)z) is a full triangulated subcategory of H%(Qcohg (X, x, W)).
Denote by Acycl®(Qcohg (X, x, W)z) the smallest thick subcategory of H?(Qcohg (X, x, W)z)
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which is closed under small direct sums and contains all totalizations of short exact se-
quences in Z%(Qcohq (X, x, W)z). Set
D°Qcohg (X, x, W)z = HO(Qcth(X, X, W)z)/Acycl®(Qcohg (X, x, W)z).

Similarly, denote by

cohg (X, x, W)z

Ian(Xv X5 W)Z
the dg subcategory of cohg (X, x, W) and Inj, (X, x, W), respectively, consisting of fac-
torizations set-theoretically supported on Z. Let Acycl(cohg(X, x, W)z) be the smallest

thick subcategory of H(cohg(X,x,W)z) containing all totalizations of short exact se-
quences in Z%(cohg (X, x, W)z), and consider the Verdier quotient

DCOhG(X7 X W)Z = HO(COhG(X7 X5 W)Z)/ACYCI(COhG(X7 X W)Z)
Lemma 4.50. Let A € Acycl®(Qcohg(X,x, W)z) and I € H(Injo(X,x,W)z). Then
we have
Hom 0(Qeong (x,x,w) ) (4: 1) = 0.

Proof. Since arbitrary direct sums of short exact sequences are exact and the totaliza-
tion functor commutes with arbitrary direct sums, it is enough to show that for a short
exact sequence A* : 0 — Al — A2 — A3 — 0 in Z°%Qcohgy(X,x,W)z), we have
Hom 0(qeong (x,x,w) ) (Tot(A*), I) = 0. This follows from a similar argument as in the
proof of [LS, Lemma 2.13]. O

By the above Lemma, we see that every morphism from Acycl®(Qcohg (X, x, W)z) to
Inj: (X, x, W)z factors through the zero object in H°(Qcohg (X, x, W)z). Hence, by [LS,
Proposition B.2], we have the following lemma:

Lemma 4.51. Let F € H°(Qcohs(X,x,W)z) and I € H(Injo(X,x,W)z). Then the
natural map

Hom 110 (o (X W) 7) (B> 1) = Hompeogeon, (x,x,w) , (1)
s an isomorphism.

Furthermore, we have the following:

Lemma 4.52. The natural functor
HO(Ian(X7 X W)Z) - DCOQCOhG(X7 X W)Z
s an equivalence.

Proof. This follows from [BDFIK1, Cororally 2.25]. O

The following two propositions are G-equivariant versions of results in [EP, Section
1.10].

Proposition 4.53 (cf. [EP]| Proposition 1.10).
(1) The natural functor

DCOhG(X7 X W)Z — DCOQCOhG(X7 X W)Z

18 fully faithful, and its image is a set of compact generators.
(2) The natural functor

tz : DQcohg (X, x, W)z — D°Qcohgs (X, x, W)

induced by the embedding of dg categories vz : Qcohg (X, x, W)z — Qcohg(X, x, W) is
fully faithful.
(3) The functor

tz : Deohg(X, x, W)z — Dcohg (X, x, W)
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induced by the embedding of dg categories vz : cohg(X, x, W)z — cohg(X, x, W) is fully
faithful.

Proof. (1) It is enough to prove that any morphism F' — A in H°(Qcohg (X, x, W)z) from
F € H%cohg(X,x,W)z) to A € Acycl®(Qcohy (X, x, W)z) factors through some object
in Acycl(cohg (X, x, W)z). This follows from a similar argument as in the proof of [LS,
Lemma 2.15].

We show that Dcohg (X, x, W)z generates D°Qcohq (X, x, W)z by using a similar dis-
cussion in the proof of [Posl, Theorem 3.11.2]. By Lemma 4.51 and 4.52, it is enough to
show that for an object I € H(Inj(X, x, W)z) if

Hom f0(qeon g (x,x,w) ) (F> 1) = 0

for any F' € cohg (X, x, W)z, then id; : I — I is homotopic to zero. Consider the partially
ordered set of pairs (M, h), where M C I is a subfactorization of I and h : M — I is
a contracting homotopy of the embedding i : M < I, i.e. d(h) = i. By Zorn’s lemma,
the partially ordered set contains a maximal element. Hence it suffices to show that
given (M,h) with M # I, there exists (M', ') with M C M’ and h'[p;y = h. Take a
subfactorization M’ C I such that M C M’ and M'/M € cohg(X,x,W)z. Since the
components of I are injective sheaves, the morphism h : M — I of degree —1 can be
extended to a morphism h” : M’ — I. Denote by i : M — I and ¢/ : M’ — I the
embeddings. Since the map i’ — d(h”) is a closed degree zero morphism and vanishes
on M, it induces a closed degree zero morphism g : M’'/M — I. By the assumption, g
is homotopic to zero, i.e. there exists a homotopy ¢ : M'/M — I such that d(c) = g.
Then W/ = " +cop : M’ — I is a contracting homotopy for 7' extending h, where
p: M'— M'/M is the natural projection.

The compactness of objects in Dcohg (X, x, W)z follows from Lemma 4.51 and 4.52.
(2) and (3) follows from Lemma 4.52 and (1). O

Proposition 4.54 (cf. [EP] Theorem 1.10). Let U := X\ Z be the complement of Z C X,
and let 5 : U — X be the open immersion.
(1) The restriction

j* : D°Qcohg (X, x, W) — D°Qcohq (U, x, W|r)

is the Verdier localization by the thick subcategory D°Qcohqg (X, x, W)z.
(2) The restriction

j* : Deohg (X, x, W) — Deohg(U, x, W|v)

is the Verdier localization by the triangulated subcategory Dcohg (X, x, W)z. The kernel
of j* is the thick envelope of Dcohg (X, x, W)z in Deohg (X, x, W).

Proof. We can prove this by a standard discussion as in the proof of [EP, Theorem 1.10].

(1) Since j* has a right adjoint Ryj. : D*°Qcohq (U, x, W|r) — D°Qcohg(X, x, W)
which is fully faithful, we see that j* is the Verdier (Bousfield) localization by its kernel
which is generated by cones of adjunctions F' — Ryj.j*F for any F' € D°Qcohq (X, x, W).

We show that Ker(j*) = D°Qcohg (X, x, W)z. Since the inclusion D*°Qcohq (X, x, W)z
C Ker(j*) is trivial, it is enough to show that the cone of the adjunction F' — Rj,.j*F,
for any F' € D°Qcohg (X, x, W), is contained in D°Qcohq (X, x,W)z. By Lemma 7.6,
we may take F' as an factorization whose components are injective quasi-coherent sheaves.
Then the adjunction comes from a closed morphism F' — j,.j*F in Z°(Qcohg (X, x, W)).
Since its kernel and cokernel are objects in Qcohqn (X, x, W)z, so is the cone of the ad-
junction by an equivariant version of [LS, Lemma 2.7.c|.

(2) By Proposition 4.53 (1) and [Nee|, we have a fully faithful functor

DCOhG(X7 X5 W)/DCOhG<X7 X W)Z — DCOhG(U7 X5 W‘U)a
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where (—) denotes the idempotent completion of (—). Since every morphism D —
E from D € Dcohg(X,x,W) to E € Dcohg(X, x, W)z factors through an object in
Dcohg (X, x, W)z, the natural functor

Dcohg (X, x, W) /Dcohg (X, x, W)z — Dcohg (X, x, W)/Dcohg (X, x, W)z

is fully faithful. Hence we see that the natural functor
Dcohg (X, x, W)/Dcohg (X, x, W)z — Dcohg (U, x, W)

is also fully faithful. This functor is essentially surjective since for every G-equivariant
coherent F' € cohgU there exists a G-equivariant coherent sheaf F' € cohgX such that
J*F = F and the coherent sheaves generate Dcohg (U, x, W|y) by [BDFIK1, Corollary
2.29)] 0

4.4. Comonads induced by restriction and induction functors. In this section X
is a scheme. We construct restriction and induction functors and study comonads induced
by these functors.

Let G x! X and G x?% X be the varieties G x X with different G-actions which are defined
as follows;

GxGx'X — Gx'X
w w
(9,9",2) +— (99 7)
and
GxGx1X — Gx¥X
w w
(9,9 %)  +— (99 97).
Then the following morphisms

p:Gx'X — Gx%X
W W
(9,x) —  (g9,97)

and
T:Gx4X — X
w w
(9,z) +— x

are G-equivariant. The action ¢ : G x X — X on X is the composition 7 o (.
Let ¢t : X — G x X be a morphism defined by

X sz (e,2) € G x X.
We define an exact functor ¢* : Qeohy (G x! X) — QcohX as

Qcoh; (G x! X) — QcohX
w w
(F.,0) —  F.

Lemma 4.55. (1) The functor 1* : Qcohg (G x! X) — QcohX is an equivalence.
(2) The functors ¢* : Qcohs (G x? X) — Qcohg (G x! X) and ¢, : Qeohg (G x! X) —
Qcoh (G x? X) are equivalences.
(3) The functors ©* : Qcohs(X) — Qcohg(G x4 X) and 7, : Qeohg(G x% X) —
Qcohy(X) are exact functors.
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Proof. (1)This is a special case of [Tho, Lemma 1.3.]
(2)The morphism ¢ is an isomorphism.
(3)Since 7 is smooth, in particular flat, and affine, 7* and 7, are exact functors. ]

Definition 4.56. We define the restriction functor Resg : Qcohn(X) — QcohX and
the induction functor Indg : QecohX — Qcohn(X) as

Resg :=t*oo* and Indg:=o.0(*)7h

Remark 4.57. Note that the restriction functor Resq : Qcohg(X) — QcohX is isomor-
phic to the forgetful functor, i.e. Resg(F,0) = F.

Let L be an invertible G-equivariant sheaf, and let W be an invariant section of L. Then
the pair (L, W) defines potentials of Qcohs(X) and QcohX. Since the functors Resg and
Indg are cwp-functors, these functors induce functors of factorization categories

Resqg : Qeohg (X, L, W) — Qcoh(X, L, W)
Indg : Qeoh(X, L, W) — Qcohq(X, L, W)
Since ¢* is an equivalence, the adjoint pair ¢* - o, induces the adjoint pair
Resg 1 Indg.

Since the functors Resg and Indg are exact functors, we obtain the exact functor of derived
factorization categories

IT¢, := Resg : D°Qcohg (X, L, W) — D°Qcoh(X, L, W)
IIgs = Indg : D°Qcoh(X, L, W) — D“Qcohq (X, L, W),
and these defines an adjoint pair
g = (105 4 gy ).

Remark 4.58. The functor ITf, sends objects in Dcohg (X, L, W) to objects in Dcoh(X, L, W).
But the functor Ilg, does not preserve coherentness of components of factorizations.

Definition 4.59. We define a comonad T on D°Qcoh(X, L, W) induced by G-action as
the one induced by the adjoint pair Ilg := (IIf; 4 Ilgy);

Tq:= T(HG)v

where the notation is the same as in Example 2.2. Denote by I'¢ is the comparison functor
of the adjoint pair g := (IIf, 4 Ilgy),

¢ : D°Qcohg (X, L, W) — D*°Qcoh(X, L, W)r,,.

We recall the definition of (linearly) reductiveness of algebraic groups.

Definition 4.60. Let H be an affine algebraic group over a field K.

(1) H is called reductive if the radical of H is a torus.
(2) H is called linearly reductive if every rational representations of H over K is
completely reducible.

Proposition 4.61 ([MFK] Appendix A). Let H be an affine algebraic group over a field
K of characteristic zero. Then H is reductive if and only if linearly reductive.
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Lemma 4.62. Assume that G is linearly reductive.
(1) The adjunction morphism

€ 1 idQeon,x — Indg o Resg
s a split mono i.e., there exists a functor morphism n : Indg o Resg — idqeoh,x such that
noe =1id. The adjunction morphisms

idQeong (x,x,w) — Indg o Resg

idpeoqeon(x,z,w) — a1l
are also split mono. In particular, the comparison functor I'¢ : D°Qcohg (X, L, W) —
D®Qcoh(X, L, W)t,, is an equivalence.
(2) The restriction functors

Resq : DP(Qcoh X) — DP(QeohX)

Resg : D°Qcohg (X, L, W) — DQcoh(X, W)
are faithful.

Proof. (1) We show that idpeoqeon(x,r,w) — eIl is a split mono. Since the adjunction
morphism id — gl coincide with the adjunction morphism id — 7", and the
morphism E — m,m*F is equal to the morphism F ® (Ox — m,.m*Ox) via the projection
formula, it is enough to show that Ox — mw*Ox is split mono. Since G is linearly
reductive, the homomorphism k — Og(G) of G-modules is split mono. This means that
the adjunction Ogpecr)y — PxP*Ospec(k) 18 split mono, where p : G — Spec(k) is the
morphism defining the base space. Hence by the cartesian square,

GxX—= X

L,

G & Spec(k),

we see that Ox — mw*Ox is also a split mono. The latter statement follows from
Proposition 2.7 and Lemma 4.10.

(2) We will prove that the upper functor Resg : DP(Qcoh; X ) — DP(QcohX) is faithful;
the proof of the faithfulness of the lower functor is similar. The functor morphism 7 :
Indg o Resg — idqeon,x constructed in (1) naturally induces the functor morphism 7 :
Indg o Resg — idpp(qeon,, x) Such that the composition with the adjunction morphism

. UNF
ldDb(QCOhGX) — IndG e} ReSG — ldDb(QCOhGX)

is the identity. Hence any morphism f in DP(QcohX) factors through Indg o Resg(f),
and so f =0 if Res(f) = 0. O

Lemma 4.63. Let X' be another smooth quasi-projective variety with G-action and let
[+ X' = X be a G-equivariant morphism. Let Ty, = T(Il;) be the comonad on
DQcoh(X', f*L, f*W) induced by its G-action. Let P € Dcohg(X, L, W) be an object.

Then there exist functor isomorphisms Q* : Rf II'e, = IR [, and Q, : RfII,, =
IR fe such that the following diagrams are commutative;

1T, Q. R fx

TR 1L, T R R, e I5R S,

QI T ieRf* Rfm’l THG*Q*
* Rf.e’ * QuIT'¢ *

RfIVGIT, — 2 RS, Rf.II, 1T © TG REITE,
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where €, ', n and ' are adjunction morphisms. In particular, the direct image Rfy :
DQcoh(X', f*L, f*W) — DQcoh(X, L, W) is a linearizable functor with respect to Ty, and
Tq with a linearization Q = II5Q, o Q*Il,,, and the following diagram is commutative:

Rf*Q

DQcoh(X', f*L, W), DQcoh(X, L, W)t
r/GT TFG
DQeohg (X, f*L, f*W) — DQcohg (X, L, W).

The similar results hold for the inverse image L f* : DQcoh(X, L, W) — DQcoh(X', f*L, f*
and the tensor product (—) @Y II% P : DQeoh(X, L, V) — DQcoh(X, L,V + W).

Proof. We only give a proof for the case of the direct image. Let m : G x X — X and
7' : G x X' — X' be natural projections, and set f :=idg x f: G x X' - G x X. By
Lemma 4.55 (1) and (2), we have the following equivalences;
® : DQcohy (G x4 X, n* L, 7*W) = DQcoh(X, L, W)
®' : DQcohg (G x X', 7" f*L, 7" f*W) = DQcoh(X', f*L, f*W)
such that ITf, & &n*, g, & m, @71 11" = &'’ and I}, & n,®' ! By the following
cartesian square

GxX’L>G><X

ﬂ,l lﬂ'
x—1 .x

we have isomorphisms of functors between categories of quasi-coherent sheaves;

o frt St f, and @y : fuml S T f,.

By easy computation, we see that the following diagrams are commutative;

*7 —
T forr! T T fy . o mh T o
w* !, T isﬂf* fenp l Tﬂ*w*
fie Do —
f*ﬂl*ﬂ/ —/> f* f*7r>/k7r/* L) W*f*ﬂ/*

Since the functor morphisms in the above diagrams are cwp-functor morphisms, taking
H°(F(-)), we obtain similar isomorphisms of functors between homotopy categories of
factorization categories, and similar commutative diagrams of morphisms of exact functors
between homotopy categories of factorization categories. These isomorphisms of functors
and commutative diagrams induce isomorphisms of functors between derived factorization
categories
Q" Rf S RS and O, Rf. S mRY,

and the following commutative diagrams

Ty —= Nx=R f«

TR for, T*mRf, Rf. T R fy

Q*ﬂ';T lEﬂRf* Rf*nﬂ/l Tﬂ'*ﬂ*
r* Rfien T e Q" T oI*

Rf."n, ————Rf, R fim,m R fm

Since Rf.® = ®Rf,, applying the equivalences ® and @' to the above functor iso-
morphisms and commutative diagrams, we obtain the desired functor isomorphisms and
commutative diagrams.

The results for the inverse image and the tensor product are proved similarly. O

W)
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5. MAIN RESULTS (PART I)

At first, we prepare notation used throughout this section. Let X; and X5 be smooth
quasi-project varieties with actions of reductive affine algebraic group G over an alge-
braically closed field k£ of characteristic zero. For a character x : G — Gy, of G, take
X-semi invariant regular functions W; € H°(X;, (’)Xi(x))G on X;. Let m; : X1 x X9 — X;
and ¢; : X1 Xu1 Xo = X; be the projections and let j : X7 x 1 Xo < X1 X X9 be the
embedding. We have the following commutative diagram:

X1><X2

\

Abbreviating Ox;, (), we write

Xo

\//

DQcohg (X, W;) := DQcohq (X, Ox,(x), Wi)

and

Dcohg (X, W;) := Deohg(Xi, Ox, (x), Wi).

5.1. Equivariantization. The action of G on X; induces an adjoint pair
where the functor I} and II;, are given by restriction and induction functors respectively;

IT; := Resg : DQcohg (X, W;) — DQcoh(X;, W;)

IL;, := Indg : DQcoh(X;, W;) — DQcohg (X5, Wi).

Denote by T; be the comonad on DQcoh(X;, W;) induced by the adjoint pair IT; = (II} -
I1;+) and let I'; be the comparison functor of the adjoint pair II;,

T;: DQCOhg(Xi, VVZ) — DQCOh(XZ‘, WZ)’H‘Z

Theorem 5.1. Let Pg € Dcohg(X; x Xo,m3Wo — wfW7) be an object and set P :=
Resg(Pg) € Dcoh(Xy x Xo,m3Wo — nifWh). Assume that P has a m;-proper support
(1 = 1,2). If the integral functor ®p : Dcoh(X1, W1) — Dcoh(Xq, Wa) is fully faithful
(resp. equivalence), then the integral functor ®p, : Dcohg(X1, Wi) — Dcohg(Xa, Wa) is
fully faithful (resp. equivalence).

Proof. Set (Pp)g := (Pg)¥W ® mhwx,[dim(X3)] € Deohg(X; x Xo, miWq — 75 Wa) and
P, :=Resq((Pr)a) € Deoh(Xy x Xo, W1 —m3Ws). Then we have the following diagram.
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Qp
DCOh()(l7 Wl) DCOh(Xg, Wg)
®p,
" /
DQCOh()(l7 Wl) DQCOh(XQ, Wg)
I H;?: Enl* z:z H2< )Hg* I3
DQCOhG(Xl, Wl) DQCOhG(XQ, Wg)
/ *rL)g
®p,
Dcohg (Xl, W1) - e —— DCOhG'(XQ, Wg)
P

By Lemma 4.63, there exist functor isomorphisms Q* : ¢ pIIj = IE®p,, Q. : ®p 11 =
o, ®p, Qf : ®p 115 = I[P p,), and Qr. : B(p,) 12 — 11, Pp, such that the dia-
grams corresponding to (i) and (ii) in Lemma 2.11, namely the following diagrams, are

commutative.

. 5. . n2®pg .
Q*Hl*T l&‘zq)p (IDPGnl\L THQ*Q*
" Pper * Q.11 *
@ pIIT1II op @ p 114,117 15, ® pII7,
D, p ) Tlp — e T o ey e
1*(Pr)gt2* 11 ®p, (Pr)c k¥ (PL)e
Q’iﬂz*T iﬂ‘PPL @(PL)anl TH”Q’E
" q>PL€2 % QL*HE %
O p, 15115, Op, D (py ) Haully 11, ®p, 115,

where ¢; and 7; are adjunction morphisms of the adjoint pair (II} = II;;). Combining
Lemma 2.12 with Proposition 4.47 and Lemma 4.62, we see that if ®p : Dcoh(X, W7) —
Dcoh(Xy, Wh) is fully faithful, then ®p, : Dcohg (X1, W) — Dcohg(Xsa, Wa) is also fully
faithful.

Assume ®p is an equivalence. Then, ®p, is fully faithful functor. Applying the above
argument to ®p,, we see that ®(p, ), is also fully faithful. Set 2 := TI50. o Q"I and
Qp = 11Q,0Q7 IIs,. By Lemma 2.12, we see that ®p, is an equivalence by the following
Lemma 5.2. U

Lemma 5.2. With notation same as above, the following diagram of functors from Dcohg (X1, Wh)
to DQcoh(X1, W1) is commutative;

@p, PpIlTm QL@ pIl;

(*) : (I)qu)pﬂl —_— @pL@pH Hl*Hl H (I)pLHQHQ*(I)pH* E— H*Hl*@pL@pﬂl

wH’{\L J{Hfﬂl*wr{;
Iym
IT; II7 10, 117,
where w : ®p, ®p — idpeon(x,,w,) 8 the adjunction morphism of (®p, 4 @p). O

We will prove the above lemma in the next section.
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5.2. Proof of Lemma 5.2. In what follows, we will prove the above Lemma 5.2. Since
it seems difficult to verify the commutativity of the diagram (x) directly, we will replace it
with another diagram (x)’, and decompose the diagram ()’ into several diagrams whose
commutativity are easier to verify.

Take a smooth proper variety X, containing X, as an open subvariety as in the proof
of Lemma 4.47. Let i : X; x X9 — X; x X5 be the open immersion, and let 77 :

X1 x Xo — X1 be the natural projection. Denote natural projections by p; : G x X; — Xj,
P12 i G x X1 x Xo— Xy xXoand p1a: G x X1 x X9 — X7 x X9, and set

W;::].GX']Ti:GXXlXXQ—)GXXi
i =1gxi:Gx X1 xXo—GxX;1 xXg
T =1lgx71:G x X1 x Xo = G x X;.

Then objects Q¢ := pis P € Deohg(G x Xy x Xo, mh psWao — 7" piW1) and (Qr)g =
pio(Pr)g € Deohg (G x X x Xo, ) *piWy — " p5Ws) define functors

Tq. : DQeohg(G x X1,piW1) — DQeohg(G x X, psWa)

F — w7 (F) &% Qa)

and
V(g.)e - DQeohg (G x Xa,p3Wa) — DQceohg(G x X1,piWh)

E — 1L (5 (E) @ (Qr)e)
Note that Q¢ has a w}-proper support (i = 1,2). Hence the functors ¥q, and Yo
preserve coherent factorizations.
Similarly, the objects @ := Resg(Qg) € Deoh(G x Xy x Xo, wh " psWo — w4 *pi W) and
Q1 := Resg((Qr)c) € Deoh(G x X x Xo, ) *piWy — 7" psWs) defines functors

Wg : DQcoh(G x X1, piWi) — DQcoh(G x Xa, phWa)

F — m (P (F) @b Q)
and
Vg, : DQcoh(G x Xa,p5W3) — DQcoh(G x X1, piWh)
E — () @Y Qr).
By Lemma 4.55 the composition,
¥ o ¢* : DQcoh (G x X1, piW1) = DQcoh (X1, W1),
is an equivalence, and the following diagrams are commutative,

v
DQeohg (G x X1, piWi) — S DQeohg(G x X, psWa)

L*op* \L l t*op*

DQCOh(Xl, Wl) DQCOh(XQ, WQ)

and

\\
DQcohg (G x Xa, psWa) —2C

L*op* \L

DQcoh(Xa, Wa)

DQcohq (G x X1, piWh)

lL*Ogo*

r DQcoh (X1, W7).

Let Q' : Woupipie — pip2¥q, and Q) : ¥(g, )32 — ¥(Q,)Pip1« be functor
isomorphisms induced by the functor isomorphisms 2 : @ pIITII, = II3115,®p and
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OV @p I3, = II7111,®p, via the equivalence t* o ¢* respectively. Via the equiv-
alence ¢* o ¢*, the diagram (%) is commutative if and only if the following diagram is

commutative;

Y(@Qp)eeaPinm Y@ Pi [ Foy

Yo e YeePl Ve ¥eepipixpi —> Y Q) oP3P2sYogPi — > PiP1:¥(Qp)c Yoo Pl
w’c;p’{l \LPIPHW’GP’{
.
. P1Mpy * *
Py P1P1xP1>s

where w1 ¥,y Qi — 1dpcohg (Gx Xy p;wy) 18 the adjunction morphism of (Yo
Vg, ). Furthermore, since the restriction functor

Resg : DQcoh (G x Xo, mh ™ psWa) — DQcoh(G x Xa, wh " psWa)

is faithful functor, in order to prove that the above diagram is commutative, it is enough
to show that the following diagram is commutative,

Vo, ¥oprinm, Vg, p] VL Yop;
(*)/ : \IJQL\I’QPT — Vg, ‘PQplp1*p1 . ‘I’QLP2P2*‘IJQP1 I p1pl*‘I’QL ‘I’QP1
W't J{ ipi‘pl*w’pi‘
anp1
21 PIP1PT

where W' : Ug, ¥ — idDpeoh(Gx xy,p1wy) 18 the adjunction morphism of (Yo, 1¥q).
To decompose the diagram (x)’, we give the following:

Lemma 5.3. Given the following diagram of functors

F1 F2
Ay As As
4 G1 G \
[ f ’ a
Pl | p | p Pl P
| J )
\ y Fi \
Al Als
! e

and isomorphisms of functors Qp, : F; P} Py — Pl Py Fy and Qg, @ GiPl o Piyax =
P*P;.G;, assume the adjunction (G; F) and (P} 4 Piy) for each i = 1,2. Set F :=

FyoFy) and G := G1 o Ga, and denote by w : GF — id the functor morphism given

by the composition GF = G1G9FyF; M G F, id, where w; : G;F; — id is

the adjunction morphism. Let Qp : FP{P1, — PyP3,F and Qg : GPy P, — Py PG
be the functor isomorphisms induced by QF, and Qg,, i.e. Qp = Qp,F1 o [»Qp and
Qa = Qg,Ga 0 G1Q¢g,. For each i = 1,2, consider the following diagrams of functor
morphisms

G;F;P*n; i
()i - GiFiP} P ppr G o B P prp, G Py
w; Pi* \L \LPZ_* Piw; Pi*
Pi*m'

where n; : id — P P* is the adjunction.

1
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If the above diagrams ()1 and ()2 are commutative, and there exist isomorphisms of
functors p: F{ P P} = Py PyF| and v : F1 P = P;F| with the following diagrams

*

* * Qry Py * * / * H * 1/
("') : F1P1 P]_*Pl P2 PQ*F]_PI (TT) : F1P1*P1 PQ*Pz Fl
uPl*Pl*l lP;Phu \ /
pr F1/771 772F1/
P;F!P,P; 2l . PP, PF! F!
commutative, then the following diagram () is also commutative.
FPym GQp P QuFP;
() : GF Py GF P} P\,P{ — GP; P3,F P —— P/ P1.GF Py
wPf l \LPI*Pl*wPI*
Pn
Py - P;PP;.

Proof. At first, we show that the following diagram is commutative;

GoFPfm G2F29F1 Pr GQQF2F1P1* QGQFPI*
(%) : Gy F P GoF T\ Pf — ' Gy Fy Ty F\ P} =~ GoT3FPf ——>'"TyGoF Py
wQFIPfl \LTzwzFlPl*
FyPrm Qp P’
F\ P} : BT P : Ty Fy Py,

where T; := PP, for i = 1,2,3. By the commutativity of the diagram (f), the following
diagram is commutative;

* FiPrm * * QFlPl* * *
V\L \LuPl*Pl* iP;Pz*z/
Py F{m Pip
P;F! P;F! P, P} P} Py, PiF,

and we have Pju o PfF{n = PynoF| by the commutativity of the diagram ({f). Hence

we see that, via the isomorphism of functors v : Fy P} = Py F{, the commutativity of the
diagram (é) is equivalent to the commutativity of the following diagram

,  G2FaPimpF] , Gy PIFY . QG FeP3Fy ,
* * * * * * *
G2F2P2 Fl G2F2P2 PQ*P2 Fl _— G2P3 Pg*FQPQ Fl —_— P2 PQ*G2F2P2 Fl
wngF{i lPZ*PQ*NQPQ*Fl’
* ’
* 7o/ P32l * * 7n/
Py F; Py Py, Py F;.

This diagram is commutative by the commutativity of the diagram ({)s.
Now we see that the diagram (<) is commutative as follows;

PimowP] =Tiwi Pf o Qg F1 P} o G1Qp, P o G1F1P{'n1 o Giwa F1 Py
= Thwi P 0 Qg F1P{ o GiTowa F1 Pf 0 G1Q¢, F Py o GQp, F1 P o GFyQp P o GF Py
= Thw1 P} o ' Giwa F1 P} 0 Qg G2 F P} 0 G1Q¢, F Py o GQp, F1 P o GFyQ g, Pl o GFP{'m
=TwP} o QaF P} o GQpP; o GF P},

where the first equation (resp. the second equation) follows from the commutativity of

the diagram (<{); (resp. (é)), and the third equation follows from the functoriality of the
functor isomorphism Qg . O

The adjoint pair
Up, 4¥g
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vq
Dcoh(G x X1, piWi) " Dcoh(G x Xo, p5Wa)

‘IIQL

is induced by the following three adjoint pairs
(1) : 7y A"

7"

Deoh(G x X1,piWi) _ ~ Deoh(G x Xj x Xo, 71 piWh),

il
(Y

where 71| := RA1,((—) ® P2 war[dim(X3)]).
(2) : i ((—) @ QW) i (—) @™ Q
o ir(-)ete
Dcoh(G x X1 x Xo, 71 " piW1) Dcoh(G x X1 x Xo, wh*psWa)
() Q™)
and

(3) : wh" A R,

R,
Dcoh(G x X1 x X, 7h " psWo) Dcoh(G x Xo, p5Wa).

/¥
)

Hence the adjunction morphism w’ : Ug, Ug — idpeoh(Gx X, piwy) in the diagram (%)’

is the composition

Vo, U = Ry, (i) (75" Rah, (77" (—) @¥ Q) @ Q") ® prz*wr[dim(X3)))
& R, (i, (77 () @ Q @ QYY) ® piztwr[dim (X2)))
2, R, (71 (—) ® Pz war|dim (X))

¢,
= idpeon(Gx Xy piwr)>

where for each ¢ = 1,2, 3, (; is the functor morphism induced by the adjunction morphism
of the above adjunction pair (7). Hence, by Lemma 5.3 and Lemma 4.63, to prove that
the diagram (x)" is commutative, it is enough to prove that the following diagrams (x)’

(]
are commutative;

()1 :

7r1,7r1 p177p17/ % ﬂlVQIPL/ . * QL17'|'1 p1
7F1|771 p1 E—— 7T117T1 p1p1*p1 —> T1\P12 P12+71 P1 4>p1P1*7T117T1 p1
w'lp’l‘l lpfpl*wipf
anm
* * *
b1 P1P1+P7;,

where Q1 : 71 pip1s — P12 Pia.71 - and Q1 : P12 Pz, — Pip1+71, are the functor
isomorphisms given by Lemma 4.63, and w] : 7171’ — id is the adjunction morphism of
the adjoint pair (1).
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(#)5 :

g A iQ.iq P12 prs . iQ*szm iy QLQ'LQ piz”
tQxtq P12 ZQ*ZQ P12 P2, iz > 1Q«DP12 Plz*lQ Pzt —— Pz p12*ZQ*ZQ Pz’
) ——x R — y—
Wy P12 i lplz P12,WaP12
R m*771712 e
P12 P12 P124P12

~

where i, (=) = iL((-) @ QYY) and if," := i""(-) @ Q, and O : i{," P2 P12 —
P12*p12*i’Q* and Qs @ ig,p12" P12, = P12*P12,dg, are the functor isomorphisms given by
Lemma 4.63, and wj : g, i — id is the adjunction morphism of the adjoint pair (2).

(#)3 :

my"Rmy p12*n 7\' *Qspi2* QpsRmy p1a*
7 / 2 2 x Plg* ] * 2 %

Ty Ry, p12™ YR, p1o*pr2,p12” ——= 15 pa*po  Rh pra* ——= p1o*pio, mh "Rarh pro*
wfa,pu*l lplz*l)n*wépn*
. P12 7pyo * *

P12 P12 P124P12°,

where Q3 @ Rmh p1o*p1a, — pa*p2, Rrh, and Qps @ w4 pe*pe, — pia*pie,m," are the
functor isomorphisms given by Lemma 4.63, and w} : 75,"Rna}, — id is the adjunction
morphism of the adjoint pair (3).

In the following, for each ¢ = 1,2, 3, we will prove that the diagram (x); is commutative.

e Proof of the commutativity of ()]
Since the adjunction morphism wj : 71171 = idpeoh(aix X, oW 18 a restriction of the
adjunction morphism w} : 71171 — idpQeon(ax X, piwy) of the adjoint pair

—%
71']_/

DQcoh(G x X1,piWh) DQcoh(G x X x Xo, 7" piWy),

T

we have the functor morphism
VAR * | ——/—% % * * *
W1P1P1«P1 * T1ITL P1P1xP1 —7 P1P1«P1-

By the functoriality of w}, to prove the commutativity of ()] it is enough to prove that
the following diagram is commutative;

, 71 QL17T1 *
(%)) TN Pip1s ————> T D12 D121 ———— DipiT
*
plpl*

The adjunction morphism
[ — .
wy T —id
is given by the composition of the following functor morphisms;
p i (—) = R (w1 (=) ® bz warlda]) — (=) @ piRAT,wer[da)]

and
¥ (=) @ piRALwarlda] — (—),
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where ds := dim(X3), the functor morphism ¢ is given by the projection formula and an
isomorphism R71,p12* = piR71,, whence ¢ is a functor isomorphism, and 1) is given as
follows. Let

o : R7,wald2] — Ox,

be the following composition of morphisms in DP(X1);
R, warlds] = R (Ox,) — Ox,,

where the morphism R77, 77 (Ox,) — Ox, is induced by the adjunction morphism of the
adjoint pair,

R7, 477 DP(cohX;) DP(cohX; x X5).

Then the functor morphism ) is given as
¢ = (=) @piY(0),
where T : DP(X;) — Dcoh(X1,0) is the functor defined in Definition 3.14. Hence it is

enough to prove that for any object F' € Dcoh(G x X1, piW) the following two diagrams
are commutative,

T (71 —_— Wp*pl* L
(%) : R7L (T1" pip1«(F) @ Pra*wrr[da]) ! Pp1(F) @Y piRAT s [do]
mfﬂll \L
QLM‘l”l J/
* ! (1% — % PIP1xp . Lo e
PipLRTL (T (F) ® Prz*wrrlds]) ————— pip1((F) @~ pi R71.warlda])
and
4 L _ i1« (F)®pFY(0)
(*)ie - Pip1+(F) @ piRAT. wrrda] pip1.(F) ® piOx,
* Li _ I (P1+(F)®Y (o)) ) l \ )
P1(p1+(F) @ R7T wayld2]) Pi(p1<(F) ® Ox,) Pip1<(F)
L l - prl*((F)g)pTT(o')) \L /
Pip1-((F) @ piRTT . wrylda)) p1p1(F) ® piOx, ).

where arrows with no symbols are natural isomorphisms.

At first, we show the diagram (), is commutative. Since functor morphisms in the
diagram ()}, are natural in F' and way[da], we can replace the objects F' and wz[da] with
objects E € DIfr(G x Xi,piW) and I € DQcoh(X; x Xo,m*W) whose components I;
and Iy are injective sheaves respectively. Then derived functors in (%)}, are isomorphic
to underived functors, since the derived functor in the lowest row on the right side in
()} is isomorphic to underived functor, and the direct images p1. and pi2, maps locally
free sheaves to locally free sheaves, and the projection formulae for p; and pi2 hold in
categories of quasi-coherent sheaves without assuming locally freeness of sheaves. So it is
enough to prove that the commutativity of the similar diagram in the abelian category
Qcoh(G x X1). But this is checked by easy computations.

Next, we show the diagram (x)). is commutative. The commutativity of two square
diagrams on the left side follows automatically by the functoriality. So we have only to
verify that the triangular diagram on the right side is commutative. But this is verified
by easy computations, and the detail is left to the reader.
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e Proof of the commutativity of (x))
To decompose the diagram (x)5,, we will embed the diagram (*)} to a larger category.
Before embedding it, we provide some functors and some functor morphisms.

Since the functor 7, : Qeoh(G x X1 x X3) — Ind(Pro(Qcoh(G x X1 x X3))), constructed
in Definition 4.42, is exact and compatible with potentials, it induces a functor

i’y : DQeoh(G x X1 x X, 7} "p{W1) — Ind(Pro(DQeoh(G x X1 x Xz, 7, piW1))).
Let i : Deoh(G x X1 x Xo,m"piWi) — Pro(DQcoh(G x X; x fg,ﬂ*p’{wl)) be the

extension by zero, and set
(=) =) @" QYY) and igy(-) = ik((-) " QY).

Functor morphisms constructed in Lemma 4.44 (1) induces functor isomorphism

"}/Q! : ib! 1) LproilQ*
and functor morphism
Y+ : Z/Q# — LInPri/Q*'
With tmdYQr = YQ#|Deoh(@x xy x Xo,m i) Let wh Z’Q*z/é‘ — id be the adjunction mor-
phism. Then the morphism tpow} : LproilQ *2’5 — Lpro is decomposed into the following
compositions

/s ’!’ fWQ e Wil
LPrO’LQ*’LQ —) ZQ]’LQ I Z]'L — LPI‘O?

where wg : (—) @ Q @ Q*Y — () and wy : i3 — tpyo are the adjunction morphisms.
Furthermore, the functor morphism constructed in Lemma 4.44 (2) induces a functor
morphism

A ¢ ilypiopioe = tndPro(piz*Pia, )i

Now we are ready to decompose the diagram (*)5. Let Qi @ i4D5op12« —> P12 D12is
and QF : i*P12*Pi2, — Piop12+’* be natural functor isomorphisms. Set ZQ®Q\/( ) =
i"™(-) L Q @ QUV, and let QQ®QV : ZQ®va12 Doy — P12 p12*2Q®Q\/ be the functor
1som0rphlsm given by natural functor isomorphims s : zQplg Plo, — pmplg*zQ and

Qov 1 piopiae(—) @Y QY 5 piopra((—) @ QMY). Embedding the diagram (x)} into the
category Ind(Pro(DQcoh(G x X1 x Xo, E*p{Wl))) by the inclusion

umpr - DQeoh(G x X1 x Xa, @ piW1) < Ind(Pro(DQcoh(G x X x Xz, 7, piWh))),

the diagram (x)), is decomposed into the following diagram

. - e
Z’Q*plz*pm*lb pi2”
g e Pz —
Lo«tQP12 ZQ*ZQPU “P12.P12 Hl*pu p12*ZQ®QvP12 *>P12 P12*ZQ*ZQP12
Taor © Qi T (0) Tw# (d) Tar
Qi'*
o v} g ket % QBQVY. . — A R S —
! / / / ! / ! /
igiiopi2” ZQ#ZQ*]?12*P12*2?12* - Z#Plz*P12*25®QvP12* *>p12*p12*lQ!ZQ*P12*
weQ (e) WQi lwc@ o)) weQ
g s g e W P e
Z§Z;P12* Z%ﬁl/*pu*pm*plz* — Z;#plz*pm*ll*plz* —>p12*p12*lfl'*p12*
“if @i

. 712 e
P12 P12 P124P12°,
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where functor morphisms attached to arrows are the ones which induce the functor mor-

phisms, and we omit embedding functors ti,pr and tpyo from the above diagram. The
diagram (a) is commutative, since Qrs is given by Qgv and Q.. The commutativity of
the diagrams (b), (¢), (e) and (f) follows from the functoriality of functor morphisms, and
the diagram (d) is commutative by Lemma 4.44 (2). Hence, it is enough to verify the
commutativity of the following diagrams

’L/

Q5 ov
ro. Pk L L HLV QeQ * s L L HLV
(*)2(1 . v P12 p12*(_) ® Q ® Q p12p12*(1 (_) ® Q & Q )
wQi*P12* P12, i lpfgplz*in'*
QF
./ e % * - /%
i'P12" P24 (—) P12DP12x2
and
’ Ys i;#i,*nm ) Rk — I%EQ:(/ -/ * e A i’ S
(%)% ¢ LInd %1, iy P12 Piz, — i p12"P12,4"" —— tmaPro(piz D1z, )it
“Ind ¥/ l lqndprwm*m*)wil’
“InPrpig .
LInPr LInPrP12 P124

We show that the diagram (x)h, is commutative. Let Qg : piopio«(—) @Y Q@ =
piop12«((—) ®¥ Q) be the natural functor isomorphism. Then, the functor morphism
0 : Z’Q*m*ﬁ* = plg*plg*z"@* is the following compositions of functor morphisms

P (- Q) Qqi™* .
P12 P12.(—) ® Q -4 P12p12*l (-)® " Q . S p12P12*(2/ (-) & Q).

Moreover, the following diagram

®LQ®LQLV)Q*
7 Piop12«d’™ (—) @Y Q @ QLY

lepfgplz*i’*

" P12 i (—) @Y Q @Y Q

in/*E*m* \L
) —— Q:/ * ES
1 P12 p12*(—) P1oDP12x17

is commutative by the functoriality of the functor morphism wg. Hence, to show that the

diagram (*)5, is commutative, we have only to show the commutativity of the following
diagram

" ) ) QTY)Qqi Qqv (@™ (-)®"Q)
Piap124d* (—) @ Q @ QL\(/ > PiaP12+( ZQ ) @ QY ————piypi2. ZQ( ) @t QMY)
p12p12*l

Replacing the object P € Dcoh(X; x Xo, m3Wo — nfW1) with an object in Dlfr(X; x
Xo, m5Wo — i W1), we may assume that the object @ = pi,P is an object whose com-
ponents are locally free sheaves. Then, the functors in the above diagram are underived
functors. Hence, the commutativity of the diagram is verified by easy diagram chasing of
morphisms between quasi-coherent sheaves, which is left to the reader.

Since all of the functors in ()}, are underived functors, the diagram (x)5, is also verified
by diagram chasing of map of systems, which is also left to the reader.

e Proof of the commutativity of (x);
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By the functoriality of wj, the following diagram is commutative:

m*Rrl, _p12*n
/* / 2 2% P12 ;% ’ % %
Ty Ry, p12* Ty Ry, p12*p12.012
wéplz* i lwépTQplg*pT2
*
% P12 Tp1o « %
P12 P12 P124P12

Hence, to prove that the diagram (%)% is commutative, it is enough to prove the following
diagram is commutative:

7 Q3
! * ! * 2 /¥ % / * ! * !
Up Rﬂg*pn P12y ————> Ty pQPQ*Rﬂ'Q* P12P12xTo Rﬂ'g*

/ !
wW3PToP12+ PiaP124wh

*
P1oP12«

Since we may replace any object in Dcoh(G x X1 x Xo, wb*psWs) with an object whose
components are injective sheaves, the commutativity of the above diagram can be checked
by easy diagram chasing of morphisms between quasi-coherent sheaves, which is left to
the reader.

QLgRﬂ'é*

5.3. Main Theorem. At first, to state the main theorem, we give the definition of G-
linearizable objects.

Definition 5.4. Let X be a variety with G-action. An object F' of D"(cohX) is called
G-linearizable, if F is in the essential image of the forgetful functor DP(cohgX) —
DP(cohX).

We need the following lemma, which is an opposite version of [Joh, Lemma 1.1.1].} We
give a proof for the reader’s convenience.

Lemma 5.5 (cf. [Joh] Lemma 1.1.1). Let F' : A — B be a functor between (arbitrary)
categories, and suppose that F' admits a right adjoint functor G : B — A. Then, if there

exists an isomorphism of functors o : idy — GF (a is not necessarily the adjunction
morphism), then F' is fully faithful.

Proof. The isomorphism « implies that the following composition of maps is bijective;
Hom(A4, A") L Hom(F(A), F(A")) G, Hom(GF(A),GF(A")).

Hence it is enough to show that G is fully faithful on the image of F'. Since the above
composition is bijective, G is full on the image of F'. Let ¢ :id4 — GF and § : FG — idg
be the adjunction morphisms. For any f € Hom(F(A), F(A")) we have

Spary o FG(f) o F(ea) = fodpyo Flea) = f,
where the first equation follows from the functoriality of 6 and the the second equation

follows from the property of the adjunction morphisms. Hence the following diagram is
commutative

Hom(F(A), F(A")) Hom(F(A), F(A"))
Gi Tam/)o()oF(sA)
Hom(GF(A), GF(A")) Y . Hom(FGF(A), FGF(A")),
and hence G is faithful on the image of F. 0

1 would like to thank Timothy Logvinenko for informing me about this lemma.
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Now we are ready to state and prove the main theorem.

Theorem 5.6. Let P € DP(cohX; x,1 X3) be a G-linearizable object whose support is
proper over X1 and Xa. If the integral functor ®; (py : DP(cohX;) — DP(cohXs) is an
equivalence (resp. fully faithful), then there is an integral functor

(I)ﬁG : DCOhg(Xl, Wl) — DCOhG(XQ, WQ)

which is also an equivalence (resp. fully faithful) for some ﬁg € Dcohg (X1 x Xo, msWo —
WTWl) .
Proof. Since P is G-linearizable, we may assume that there is an object Pg € DP(cohg XX z1

X3) such that II(Pg) = P, where II : DP(cohgX; x 41 X3) — DP(cohX; x1 Xo) is the
forgetful functor. Set

ﬁG = ]*(T(Pg)> S DCOhg(Xl X XQ,W;WQ — ﬂle),
where T : DP(cohgX; x1 Xo) — Dcohg(X; x4 X3,0) is the exact functor defined
in Definition 3.14, and j, : Dcohg (X7 X1 X9,0) — Dceohg(Xy x Xo, m3Wo — i Wh)

is the direct image of embedding j : X1 x,1 Xo — X1 x Xo. Let P := Resq(Pg) €
Dcoh(X; x Xo, m3Wo — i W1). Then we have

P = j(Y(P)) = j«(Tot(7(P))) = Tot(j.(7(P))),
where 7 : DP(cohX] x 41 X5) — DP(Z%(coh(X; x 41 X2,0))) is the functor given by the
same manner as in just before Definition 3.14, and j, in the last one is the direct image
4x : DP(Z%(coh(X| x 41 X2,0))) — DP(Z°%(coh(X] x X5,0)))

induced by an exact functor j, : Z%(coh(X; x 41 X2,0)) — Z%coh(X; x X5,0)) between
abelian categories. Since Supp(j«(7(P))) = Supp(P), P has a m;-proper support (i = 1, 2).
By Theorem 5.1, it is enough to show that if the integral functor ®; (p) : DP(cohX;) —
DP(cohX>) is an equivalence (resp. fully faithful), then the integral functor

@ﬁ : DCOh(Xl,Wl) — DCOh(XQ,Wg)

is an equivalence (resp. fully faithful).

Assume that the integral functor ®; (p) : DP(cohX;) — DP(cohXy) is fully faithful. The
integral functor ®; py induces the extended functor <I>;.* P D(QcohX;) — D(QcohXs).
Then the functor Q);* (P) is also fully faithful since it preserves any direct limit and any
object in the unbounded derived category D(QcohX) is isomorphic to the direct limit of a
direct system of objects in DP(cohX;) by [T'T, Proposition 2.3.2]. Hence by the argument
in the proof of [BDFIK1, Theorem 5.15], we obtain an isomorphism of functors

cblﬁR 0 @5 2 idpqeon(xy, 1)
where 5 : DQcoh(X1, W) — DQcoh(Xs, W») and @;SR : DQcoh (X2, Wa) — DQcoh(X1, W)

are the extended functors from ® 5 and its right adjoint ® P respectively. This isomor-
phism of functors induces the restricted isomorphism of functors

QISR o) (I)ﬁ = ldDCOh(X1,W1)'

Since &5 4 & P by Proposition 4.47, this isomorphism implies that the functor ® :
Dcoh(X7, W1) — Dcoh(Xa, Ws) is fully faithful by Lemma 5.5.

If the integral functor ®; py : D’(cohX;) — DP(cohXy) is an equivalence, its left
adjoint functor ®; (py, is fully faithful. Hence, by the above argument, we see that a left
adjoint functor ®5 : Dcoh(Xz, W2) — Decoh(Xy, W1) of the fully faithful functor @3 is

also fully faithful. Hence ®5 is an equivalence. O
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5.4. Applications. In this last subsection, we give two applications of the main theorem.

5.4.1. Flops of three folds. Let X and X be smooth quasi-projective threefolds, and let
the diagram

+
x4y xt

be a flop. Set Z := X xy X" and let v : Z — X x X T be the embedding.
In [Bri], Bridgeland shows the following theorem:

Theorem 5.7 ([Bri]). The integral functor
®,, (0,) : D’(cohX) — D"(cohX )
is an equivalence.

Let G be a reductive affine algebraic group acting on X, X and Y with the morphisms
f and f* equivariant. Take a semi invariant regular function Wy : Y — Al and set
W = f*Wy and W+ := f**Wy. Consider the following cartesian square;

X X AL X+

X/ \)ﬁ
xy/

The embedding ¢+ : Z — X x X factors through X x,1 X, i.e. ¢ is the composition of
embeddings i : Z — X X, X" and j: X xp1 XT — X x X*. Set

P :=1i,(0yz) € DP(cohX x,1 X7T).
Since flopping contractions f and f* are proper morphisms, the support of P is proper
over X and X*. Furthermore, the object Oz € D"(cohZ) has a tautological G-equivariant

structure. Hence, P is a G-linearizable object. Consequently, we obtain the following
corollary of Theorem 5.6:

Corollary 5.8. We have an equivalence of derived factorization categories;

@5 Deohg(X, W) = Deohg(X+, WH).

We define K-equivalence of gauged LG models. The above gauged LG models (X, W)¢
and (X, W)Y are K-equivalent.

Definition 5.9. Let X; and X» be smooth varieties with group G-actions, and let Wi :
X; — Al and W5 : Xy — A! be y-semi invariant regular functions for some character
X : G = Gy,. The gauged LG models (X1, O(x), W1)¢ and (Xo, O(x), Wa)© are called
K-equivalent, if there exists a common G-equivariant resolution of X; and Xs

such that p*W; = ¢*Ws and p*wyx, = ¢*wx,.

By Corollary 5.8 or [Seg, Conjecture 2,15], it is natural to expect the following conjec-
ture:
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Conjecture 5.10. If two gauged LG models (X,0(x), Wx)¢ and (Y,O(x), Wy)¢ are
K -equivalent, then their derived factorization categories are equivalent;

Dcohg (X, W) 2 Deohg (Y, Wy).

The above conjecture for K-equivalent gauged LG models of trivial o-type is proposed
by Kawamata [Kaw]. The converse of the above conjecture is not true in general. A
counterexample to the converse of the Kawamata’s conjecture is given by Uehara [Ueh].

5.4.2. Equivariantizations of derived equivalences. Let G be a reductive affine algebraic
group, and let X; and X» be smooth quasi-projective varieties with G-actions.

Corollary 5.11. Let P € DP(cohX; x X3) be an object. Assume that P is G-linearizable
object and the support of P is proper over X1 and Xs. Choose an object Pg € Db(cothl X
X5) such that TI(Pg) = P, where I1 : DP(cohg X1 x Xo) — DP(cohX; x X5) is the forgetful
functor. If the integral functor ®p : DP(cohX;) — DP(cohXy) is an equivalence (resp.
fully faithful), then the integral functor

Op, : Db(cothl) — Db(cothg)

is also an equivalence (resp. fully faithful).

Proof. Extend the G-action to G x Gp,-action by Gy, acting trivially. Then P is G X Gy,
linearizable. By Theorem 5.6, there is an object Pgxg,, € Dcohgxa,, (X1 X X2,0) which
induces an equivalence (resp. fully faithful)

o5 : Deohgxa,, (X1,0) = Deohgxa,, (X2,0).

Pexem

By Proposition 4.6 and equivalences cohgX; = coh[X;/G] for each ¢ = 1,2, we have
equivalences

Q; : Deohgxa,, (X;,0) 2 DP(cohg X;).

Since the following diagram

¢)~
Paxem

DCOthGm (Xl, 0) DCOhGXGm (Xg, 0)

Qp,

DP(cohgX:) < DP(cohgX>)

is commutative, the integral functor ®p, is also an equivalence (resp. fully faithful). O

Corollary 5.11 is shown if the group G is finite by Ploog [Plo, Lemma 5]. We can also
prove Corollary 5.11 for finite group actions by the result of [Ela2].

6. RELATIVE SINGULARITY CATEGORIES

Relative singularity categories are introduced in [EP], and it is shown that derived fac-
torization categories (with some conditions on regular functions) are equivalent to relative
singularity categories. In this section, we recall the definition and properties of relative
singularity categories.
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6.1. Triangulated categories of relative singularities. Let X be a quasi-projective
scheme, and let G be an affine algebraic group acting on X. Throughout this section,
we assume that X has a G-equivariant ample line bundle. If X is normal, this condition
is satisfied by [Tho, Lemma 2.10]. The equivariant triangulated category of singularities
D¥(X) of X is defined as the Verdier quotient of D”(cohsX) by the thick subcategory
Perf(X) of equivariant perfect complexes. Following [Orll], we consider a larger cate-
gory D™ (X) defined as the Verdier quotient of D”(Qcoh;X) by the thick subcategory
Lfro(X) of complexes which is quasi-isomorphic to bounded complexes of equivariant lo-
cally free sheaves (not necessarily of finite ranks). If G is trivial, we denote the singularity
categories by D*¢(X) or D*¢(X).

We recall relative singularity categories following [EP]. Let Z C X be a G-invariant
closed subscheme of X such that Oz has finite G-flat dimension as an Ox-module i.e.,
the G-equivariant sheaf Oy € cohg(X) has a finite resolution F'* — Oz of G-equivariant
flat sheaves on X. Under the assumption, we have the derived inverse image Li* :
DP(Qcoh; X) — DP(Qcoh;Z) between bounded derived categories for the closed immer-
sion i : Z — X. This functor preserves complexes of coherent sheaves; Li* : Db(cth ) —
DP(cohZ).

Definition 6.1 ([EP] Section 2.1). We define the following Verdier quotients
DY*¥(Z/X) := DP(QcohyZ) /(Im(Li* : D’(QeohgX) — DP(Qcoh2)))®

D¥(Z/X) := D"(cohgZ)/(Im(Li* : D"(cohgX) — DP(cohg2))),

where (—) (resp. (—)®) denotes the smallest thick subcategory containing objects in (—)
(resp. and closed under infinite direct sums which exist in DP(Qcoh,Z)). The quotient
category DSGg(Z /X) is called the equivariant triangulated category of singularities
of Z relative to X. If G is trivial, we denote the categories defined above by D°%8(Z/X)
or D%(Z/X).

Proposition 6.2. Assume that G is reductive. We have natural Verdier localizations by
thick subcategories

7 : DG (Z) — DG (Z/X)
m:DE(Z) = DE(Z/X).

Proof. Tt is enough to show that Lfrs(Z) € (Im(Li* : D’(QcohX) — DP(Qceoh; Z)))®
and Perfs(Z) C (Im(Li* : DP(cohgX) — DP(cohgZ))). These inclusions follow from the
assumption that X has a G-equivariant ample line bundle L. The proofs of the inclusions
are similar, and we prove the only former inclusion. It is enough to show that any G-
equivariant locally free sheaf F on Z is a direct summand of a bounded complex whose
terms are direct sums of invertible sheaves of the form i* L®". By [Tho, Lemma 1.4], there
is a bounded above locally free resolution E* = E whose terms are as above. For any
n > 0, we have the following triangle in D(Qcoh2)

0= "E* - E — H (0= "E*)[n+ 1] = 0= "E*[1],

where 02~" denotes the brutal truncation. If we choose a sufficiently large n > 0, we
have

Home(QcthZ) (Ev H—H(UZ—TLE')[“ + 1}) =0
by [Orll, Lemma 1.12], since the restriction functor Resg : DP(QcohsZ) — DP(QcohZ) is

faithful by Lemma 4.62 (2). Hence the above triangle splits, and F is a direct summand
of the complex o= "E"*. O
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Remark 6.3. Note that, if X is regular, then the thick subcategory (Im(Li*)) C DP(cohgZ)
coincides with its thick subcategory Perf,(Z) of equivariant perfect complexes of Z.
Hence the quotient category DgF(Z/X) is same as DF(Z). Similarly, D5 (Z/X) is also

same as D, "#(Z) when X is regular.

The exact functors Resg : QcohyZ — QcohZ and Indg : QecohZ — Qcoh;Z induce
functors between relative singularity categories

Resq : DS8(Z/X) — D8(Z/X)

Indg : D%(Z/X) — D& (Z/X).
We need the following lemma in the proof of the main result.
Lemma 6.4. Assume that G is reductive. Then the restriction functor
Resg : DG™(Z/X) — D% (Z/X)
18 faithful.
Proof. This follows from a similar argument as in the proof of Lemma 4.62 (2). g

6.2. Direct images and inverse images in relative singularity categories. Let X3
and Xs be quasi-projective schemes with actions of an affine algebraic group G. Assume
that X; and X5 have G-equivariant ample line bundles. Let f : Xo — Xq be a G-
equivariant morphism. Let Z; be a G-invariant closed subscheme of X; such that Oz,
has finite G-flat dimension as a Ox,-module, and let Zs be the fiber product Z; xx, Xos.
Denote by f the restriction f |z, + Zo — Zp of f to Zs. We assume that the cartesian
square

f

Ly ——— 7

L,

Xy X4

is ezact in the sense of [Kuz]. Then, O, also has finite G-flat dimension as a Ox,-module.
Furthermore, we assume that f has finite G-flat dimension, i.e. the derived inverse image
Lf* : D~(QcohgX;) — D~ (QcohgXs) maps DP(QcohsX1) to DP(Qcohy Xy). Then f
also has finite G-flat dimension.

In the above setting, the derived inverse image Lf* : D”(QcohsZ;) — DP(QcohgZ)
induces exact functors

fo : Dg)Sg(Zl/Xl) — Dg)sg(ZQ/XQ)
fo : Dng(Zl/Xﬁ — DSGg(ZQ/Xg),
and the derived direct image R f. : D’(QcohZ2) — DP(Qcoh; Z;) induces a right adjoint
functor of f°: D5 #(Z1/X1) = DG #(Z2/ X2)
fo : DG8(Z2/ X2) = DG8(Z1/ X1).

If f is a proper morphism, the direct image Rf, : D”(cohgZs) — DP(cohgZ;) between
bounded complexes of coherent sheaves induces a right adjoint functor

fo : DE(Z2/ X2) — DE(Z1/X1)

of £ DE(Z1/X1) = DE(Za) Xa).

Let X be a quasi-projective scheme with an action of an affine algebraic group G, and let
U C X be a G-invariant open subscheme. Let Z C X be a G-invariant closed subscheme
such that Oz has finite G-flat dimension, and consider the fiber product Uy := Z xx U.
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Denote by [:U— X andl:Uyz — Z the open immersions. Then we have the following
exact cartesian square:
Z
!
Lemma 6.5. The inverse image
1°:DE™®(Z/X) — D& (U2 /U)

1s a Verdier localization by the kernel of [°.

Proof. The direct image Rl, : D?(QcohUz) — DP(QcohZ) is fully faithful and right
adjoint to the inverse image I* : D’(QcohZ) — DP(QcohUy). By [Orl2, Lemma 1.1], the
direct image functor l, : D5™#(Z/X) — D (Uz/U) is fully faithful. Hence, [° admits a
right adjoint functor which is fully faithful, and this implies the result. O

Uy !

|

U

—

6.3. Relative singularity categories and derived factorization categories. In this
section, X and G are the same as in section 6.1, and we assume that G is reductive.
Let x : G — G,, be a character of G, and let W : X — A! be a y-semi invariant
regular function. In this section, we assume that the corresponding G-invariant section
W : Ox — O(x) is injective. For example, if W is flat, this condition is satisfied. Denote
by X the fiber of W over 0 € A, and let i : Xy — X be the closed immersion. We have
an exact functor 7 : Qeohy Xg — Z9(Qcohy (X, x, W)) defined by

7(F) = (o i (F) = 0).
We define a natural functor
T : D’(QcohyXo) — D®Qcohg (X, x, W)
as the composition of functors
D" (Qeoh Xo) T DP(Z°(Qeohg (X, x, W))) —2% DPQeohg (X, x, W).

The functor Y annihilates the thick category (Im(Li*))® C DP(Qcoh;Xy), since its
nonequivariant functor Y : D’(QcohXy) — D®Qcoh(X, W) annihilates Resg ((Im(Li*))®)

(see the proof of [EP, Theorem 2.7 and Theorem 2.8]) and the restriction functor Resg :
D Qcohgs (X, x, W) — D°Qcoh(X, W) is faithful. Hence it induces an exact functor

T : DS (Xo/X) — D®Qceohg (X, x, W).
Similarly, we have the following exact functor
T : D& (Xo/X) = Deohg (X, x, W),
and the following diagram is commutative;
T

DE%(Xo/X) D Qeoha (X, X, W)

]

DSC,T‘OI(XO/X) DCOhG(X7XaW)a

where the vertical arrows are natural inclusion functors (which are fully faithful).
Theorem 6.6 (cf. [EP] Theorem 2.7, Theorem 2.8.). The functors
T : D& (X0/X) — DQeohg (X, x, W)
T : DF(Xo/X) — Deohg (X, x, W)
are equivalences.
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In order to prove the above theorem, we need to construct the quasi-inverse of T. We
say that a G-equivariant quasi-coherent sheaf F' € QcohsX is W-flat, if the morphism
of sheaves W : F — F ® L is injective. Denote by Flatg;V(X, X, W) the dg full subcate-
gory of Qcohg (X, x, W) consisting of factorizations whose components are W-flat. Then
HO(Flaty (X, x, W)) is a full triangulated subcategory of H°(Qcoh(X, x, W)). Denote by
Acycl®(Flat{y (X, x, W)) the smallest thick subcategory of HO(Flaty (X, x, W)) contain-
ing all totalizations of short exact sequences in the exact category Z°(Flaty (X, x, W)).
Consider the corresponding Verdier quotients

DFlatyy (X, x, W) := H(Flaty (X, x, W))/Acycl® (Flat¥ (X, x, W)).

The restriction functor Resg : Qcohg (X, x, W) — Qcoh(X, W) and the induction functor
Indg : Qeoh(X, W) — Qcohg (X, x, W) preserve factorizations whose components are W-
flat sheaves since Resg : Qcoh X — QcohX and Indg : QcohX — Qcohy X are exact
functors. Hence the restriction and the induction functors induce the following functors

Resg : DFlaty (X, x, W) — D®Flat" (X, W)
Indg : DFlat™ (X, W) — D®Flatyy (X, x, W),
and these functors are adjoint to each other;
Resg - Indg.
Lemma 6.7. The natural functor
DFlat{y (X, x, W) — D®Qcohg(X, x, W)
1§ an equivalence.

Proof. At first, we prove that the functor is essentially surjective. Let F' € D°Qcohq (X, x, W)
be an object. Since X has a G-equivariant ample line bundle, there are G-equivariant lo-
cally free sheaf F; and a surjective morphism p; : E; — F; in Qcohg X for each ¢ = 0, 1.
Let E € Qcohg (X, x, W) be the factorization of the following form

W@idEO

idE1(>c>e‘9W
E = (E1 @ By ——2 By(x) ® By —",

Ey(x) @ Eo(x))-

Then p; and po define a natural surjective morphism p : E — F in Z°(Qcohg(X, x, W)).
The kernel K := Ker(p) of p is in Z°(Flat{y (X, x, W)) since the components of K are
subsheaves of TW-flat sheaves. Hence the totalization Tot(C*) of the complex

c*: - ->0->K—>F—=>0—--

with the cohomological degree of F zero is in DCOFlath (X, x, W), and we see that the
natural morphism Tot(C*®) — F induced by p is an isomorphism in D®°Qcohq (X, x, W).
To show the functor DFlaty (X, x, W) — D®Qcohg (X, x, W) is fully faithful, it suf-
fices to prove that for any morphism f : E — F in H°(Qcohg(X,x, W)) with F €
HO(Flat{y (X, x, W)) and the cone of f in Acycl®(Qcohgs (X, x, W)), there exists a mor-
phism g : F' — E with F/ € HO(Flat¥ (X, x, W)) such that the cone of f o g is in
Acycl®(Flatly (X, x, W)) (see [LS, Proposition B.2. (ff1)°?]). By the above argument in
the previous paragraph, we can find a morphism g : F’ — E with F' € H°(Flat (X, x, W))
such that the cone of g is in Acycl®(Qcohq (X, x, W)), and then the cone of f o g is in
HO(Flaty (X, x, W)) N Acycl®®(Qcohg (X, x, W)). Hence it is enough to show that

HO(Flaty (X, x, W)) N Acycl®(Qcohg (X, x, W)) C Acycl®(Flaty (X, x, W)).

For this, let A € H°(Flatyy (X, x, W)) N Acycl®(Qcohg(X, x, W)) be an object. We
already know that Resg(A) € Acycl®(Flat" (X, W)) by [EP, Corollary 2.6 (a)]. Note
that the restriction functor Resg : DFlaty (X, x, W) — D®Flat" (X, W) is faithful by



67

a similar argument as in the proof of Lemma 4.62 (2). Hence the fact that Resg(A4) €
Acycl®(Flat™ (X, W)) implies that A € Acycl®(Flatd (X, x, W)). O

F F
For an object F' = (Fl RN AN Fl(x)> € Z°(Flat{y (X, x,W)), define an object

E(F) € D& (Xo/X) by E(F) := Cok(p!"). It is easy to see that this defines the following
exact functor

= HO(Flatfy (X, x, W)) — D&*8(Xo/X).
If G is trivial, this exact functor annihilates Acycl®(Flat" (X, W)) by [EP, Theorem 2.7,
2.8]. Hence, since Resg : D58 (Xo/X) — D8(X(/X) is faithful, we obtain the exact
functor = : D®Flatd (X, x, W) — D™ (Xo/X). By Lemma 6.7, we have the left derived
functor of =;

L

(11

: D°Qcohg (X, x, W) — Dcc?sg(Xo/X).

Proof of Theorem 6.6: We will show that the functors T and L= are mutually inverse.
Let E € D“Qcohg (X, x,W) be an object. By Lemma 6.7 we may assume that E €
DFlatly (X, x, W). Then

TLE(E) = TE(E) = (0 Cok(¢f) = 0),
and the surjective morphism Ey — Cok(p) induces the natural surjective morphism
¢p : E — YE(E) in Z%(Qcohgs (X, x,W)). Since the kernel of ¢ is the factorization

(E1 -5 % E (X)) and it is isomorphic to the zero object in HO(Flat{y (X, x, W)), the

morphism ¢g : E — TE(E) is an isomorphism in D®°Qcohq (X, x, W). It is easy to see
that the isomorphisms ¢(_ define an isomorphism of functors

¢ . idDCOQCOhG(X,X,W) :> TL=.

Let F' € D™ (Xo/X) be an object. Then we may assume that F € QcohgXy. Take
a surjective morphism p : P — i, F with P locally free. Set K := Ker(p) € QcohsX
and Q = (K & P v, K(x)) € Qcohg(Xx,W), where i : K — P is the natu-
ral inclusion. Consider the natural surjective morphism 7 : @ — (0 — W — O) in
Z°(Qeohg(X, x, W)). Then the kernel of r is the factorization (K = K v, K(x)), and
it is isomorphic to the zero object in H(Qcohg (X, x, W)). Hence 7 is an isomorphism
in D°Qcohy (X, x, W), and so we have a natural isomorphism r : LEY(F) = F in
D" (Xo/X) defined as the composition LEY(F) = EY(Q) = Cok(i) = F. We need to
show that the isomorphisms 1_) are functorial in (—). Since the restriction functor Resg
is isomorphic to the forgetful functor Forg,, we have a natural isomorphism of functors
0 : ResgLEY = LEYResg defined by the composition

ResgLEY = ForgLEY = LEYForg,; — LEYResq,
and the following diagram is commutative

Resg (Yr)

ResqgLEY(F) Resq(F)
x %SG(;
LEYResg (F)

Hence we see that the isomorphisms ¢(_) are functorial by the fact that the isomorphisms
() are functorial if G is trivial and that the functor Resg is faithful. This completes the
proof of the former equivalence.
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The latter equivalence follows from [EP, Remark 2.7], which is a generalized result of
[EP, Theorem 2.7]. O

7. MAIN RESULTS (PART II)

Let X be a smooth quasi-projective variety, and let G be a reductive affine algebraic
group acting on X. Let £ be a G-equivariant locally free sheaf of rank r, and let s €
I'(X,EY)% be a G-invariant section of £¥. Denote by Z C X the zero scheme of s. We
assume that s is regular, i.e. the codimension of Z in X is r. Let

V(E(x)) = Spec(Sym(£(x)"))

be a vector bundle over X with the G-action induced by the equivariant structure of the
locally free sheaf £(x). Denote by V(E(x))|z the restriction of the vector bundle V(E(x))
to Z. Let j: Z — X and i : V(E(x))|z — V(E(x)) be the closed immersions, and let
q:V(E(x)) — Xand p: V(E(x))|z — Z be the projections. Now we have the following
commutative diagram:

V(EW) |z ——= V(EX))
pi lq
z— 1 X
The invariant section s induces a y-semi invariant regular function

Qs V(E() — AL

Let W : X — A! be a y-semi invariant regular function on X. The function W induces
x-semi invariant functions on Z, V(E(x)) and V(E(x))|z, which we denote by the same
notation W (by abuse of notation). Since the inverse image p* and the direct image i,
are exact and commutative with arbitrary direct sums as functors between categories of
quasi-coherent sheaves, these induce (underived) functors

p* : DCOQCOhG(Zu X W) — DCOQCOhG(V(E(X)) |Zv X5 W)

Uy DCOQCOhG(V(S(X))‘Zv X W) - DCOQCOhG(V(g(X))7 X, W+ Qs)

Restricting the composition i,p* : D°°Qcohq(Z, x, W) — D°Qcoh(V(E(X)), x, W + Qs)
to Deohg(Z, x, W), we obtain an exact functor

ixp” : Deohg(Z, x, W) — Deoha(V(E(x)), x, W + Qs).

Shipman proved that the above functor i,p* is an equivalence when G = Gy, trivially
acts on X and W = 0 (see also [Isi]):

Theorem 7.1 ([Shi] Theorem 3.4). The composition
l*p* : DCOth (27 X1, 0) l> DCOth (V(g(Xl))v X1, Qs)
is an equivalence.

The goal of this section is to show the following main result which is an analogy of the
above theorem.

Theorem 7.2. Assume that Wy : Z — Al is flat. The functor
ip* : Deohg(Z, x, W) — Deohg (V(E(x)), x; W + Qs)

s an equivalence.
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Remark 7.3. Let S be a smooth quasi-projective variety, and let G be an affine reductive
group acting on S. Let W : S — Al be a x := x1 + Y2-semi invariant non-constant regular
function for some characters x; : G — Gy, Let X := V(O(x1)) = S x AL, be the G-vector
bundle over S, and let s € T'(X,O(x1))¢ be the section corresponding to the yi-semi
invariant function S x A}Cl — Al which is defined as the projection (s,z1) + z1. Then,
S is isomorphic to the zero scheme of s, and the G-vector bundle V(O(—x1)(x)) over X
is isomorphic to the G-variety S x A2 where the G-weights of x; is given by x;. By

xT1,r2)
Theorem 7.2, we have the following equivalence

Dcohg (S, x, W) ~ Dcohg (S x Aglm,x, W + z1x9).

This kind of equivalence is know as Knérrer periodicity, so the above theorem is considered
as a generalization of the original Knorrer periodicity [Kno, Theorem 3.1].

7.1. Koszul factorizations. Let (X, x, W) be a gauged LG model such that X is a
smooth variety. Let £ be a G-equivariant locally free sheaf on X of rank r, and let

s:&—=0x and t:0x — &(x)

be morphisms in cohgX such that tos =W -idg and s(x) ot = W. Let Zs C X be the
zero scheme of the section s € T'(X,EY)%. We say that s is regular if the codimension of
Zs in X equals to the rank r.

Definition 7.4. We define an object K(s,t) € lfrq(X, x, W) as

K(s,t) := (K1 My Ko 2 Kl(X))

where
[r/2]1-1 2n+1 [r/2] 2n
Ki= P (Ao,  Ko=EP AKX
n=0 n=0
and

ki =tAN(=)@dsV(—).

The following property will be necessary in section 7.2.

Lemma 7.5 ([BFK1] Lemma 3.21 and Proposition 3.20).
(1) We have a natural isomorphism

K(s,t)Y = K(tY,sY).

(2) If s is regular, we have a natural isomorphisms in Dcohg (X, x, W)

Oz, 2 K(s,t) and Oz, @ N\&EV(x -] = K(s,t)",

s

where Oz, := (0 — Oz, — O) and \" &Y (x 1)[~r] is a complex in cohgX .

7.2. Integral functors in Gorenstein cases. We define integral functors between de-
rived factorization categories. For simplicity, we consider the case when G is trivial. Let
X1 and X5 be Gorenstein quasi-projective schemes, and let W; : X; — A! be a regular
function. We denote the projection by m; : X1 x X9 — X, for each i =1, 2.

In order to define integral functors in Gorenstein cases, we need the following lemmas:

Lemma 7.6. Assume that the scheme X is Noetherian. The natural functor
HO(Ian<X7 X5 W)) - DCOQCOhG(X7 X5 W)

is an equivalence.
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Proof. Since the abelian category QcohsX of G-equivariant quasi-coherent sheaves is a
locally Noetherian Grothendieck category, it has enough injective objects, and coproducts
of injective objects are injective. Hence the result follows from [BDFIK1, Cororally 2.25].

O

Lemma 7.7 ([EP] Corollary 2.3.e and 2.4.a). Let (X,W) be a LG model. Assume that
the scheme X is a Gorenstein separated scheme of finite Krull dimension with an ample
line bundle. Then the functor

DCLEr(X, W) — D®Qcoh(X, W)
induced by the embedding of dg functor LFr(X, W) — Qcoh(X, W) is an equivalence.

Note that, since X; and Xy are Gorenstein, so is X7 x X5 (cf. [TY]). By the above
lemmas, for P € D®°Qcoh(X; x Xo, 73 W — 7{ W), we can define the integral functor with
respect to P, denoted by ®p, as the following functor

Rimo. (7} (=) @ P) : D®Qcoh(X1, W;) — D®Qcoh(Xo, Wa).
Similar result to Proposition 4.48 holds for integral functors in Gorenstein cases.
7.3. Lemmas for the main theorem. In this section, we provide some lemmas for the

main result. Throughout this section, we consider the case when G is trivial.
Set

T
wj = /\(IZ/I%)V and  w; = p'wj,
where 7 is the ideal sheaf of Z in X. These are invertible sheaves on Z and V(&)|z
respectively. We define an exact functor

it : D°Qcoh(V(E), W + Q,) — D®Qcoh(V(E)|z, W)

as i'(—) := Li*(—) ® wi[~r]. By [EP, Theorem 3.8], the above functor 4' is right adjoint
to iy : D°Qcoh(V(E)|z, W) — D°Qcoh(V(E), W + Qs). Let

K = K(¢"s,t) € ifr(V(E),Qs)

be the Koszul factorization of ¢*s € T'(V(€),¢*EY) and t € T'(V(E),q*E), where t is the
tautological section. By abuse of notation, we denote by Oy the object in coh(Z,0) of the
following form

<0 — Oz — 0).
Lemma 7.8. Consider the case when W = 0. We have isomorphisms
ip*(O7) 2K and p.'(K) =0y
in Dcoh(V(E),Qs) and in D°°Qcoh(Z,0) respectively.

Proof. These isomorphisms follow from Lemma 7.5. In particular, the former isomor-

~Y

phism is an immediate consequence. Note that w; = i* A" ¢*€Y. We obtain the latter
isomorphism as follows;
.l ~Y 23 A * oV ~ -k VY ~v - % ~
pei' (K) = p.Li*(0z ® N\ ¢*€Y[—r]) = pLi*(K") = p.Li*(Og,,) = Og,

where the last isomorphism follows from the fact that the zero section Z C V(&) is
isomorphic to the fiber product of closed subschemes V(€)|z < V() and Z;v — V(). O

Lemma 7.9. The functor
ixp" : D°Qcoh(Z, W) — D*°Qcoh(V(E), W + Qs)
18 fully faithful.
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Proof. The functors i,p* and p,i' can be represented as integral functors
- Y '! Y
P" = Op 0y, and P’ = Pp ),

where k 1= p x i : V(£)|z = Z x V() and kernels Oyg)|, and w;[—7] are objects in
Dcoh(V(E)|z,0). By easy computation, we see that there exists an object P € D°Qcoh(Z,0)
such that p,i' 0 iyp* = ®a p = (=) ® P, where A : Z — Z x Z is the diagonal embed-
ding. Substituting W = 0, by Lemma 7.8, we have an isomorphism P = Oz. But P
doesn’t depend on the function W. Hence, for any W, we have an isomorphism of func-
tors pyi' 0 dyp* = A, p = idpeoqeon(z,w)- By Lemma 5.5, this implies that the functor
i5xp* : D°Qcoh(Z, W) — D*°Qcoh(V(E), W + Q) is fully faithful. O

7.4. Proof of the main theorem. In this section, we prove the main theorem. Recall
that G is a reductive affine algebraic group acting on a smooth quasi-projective variety
X. Since X is smooth, there is a G-equivariant ample line bundle on X. In what follows,
we assume that W|y : Z — Al is flat.

At first, we consider relative singularity categories. Let Zy, V|z, and V be the fibers of
W:Z— AL W:V(EWN)|z— Al and W + Qs : V(E(x)) — Al over 0 € A! respectively.
Denote by po : V|z, = Zo and ig : V|z, — Vo the restrictions of p and i respectively. By
[Kuz, Corollary 2.27], the following cartesian squares are exact

Vg —2 Z Vg —2 Vo
L |
V(&)|z Z V(€)lz V(E).

Since p and i have finite flat dimensions, we have exact functors of relative singularity
categories
po° : DG (20/Z) = DG (Vz,/V(E)|z)
ino : D& (V20 /V(€)|z) = D*8(Vo/V(E)) = D™ (V).
Then the following diagram is commutative

D% (Z0/2) L D (V%)
Tl lr
D°Qohg (Z, W) — %= D*Qeohg (V(E(x)). W + Qs)-

Furthermore, we compactify Vy and V|z,. The compactifying technique appeared in
[Orl2]. Let

™)

P :=P(&(x) ® Ox) = Proj(Sym(&(x) @ 0x)")
be the projective space bundle over X with a G-action induced by the equivariant structure
of £(x) ® Ox. Then we have a natural equivariant open immersion

V(X)) — P.

Denote by I|z : V(E(x))|z — P|z the pull-back of I by the closed immersion i : P|; — P.
Now we have the following cartesian square

VEN)) 7 —Z = Py
V(E(X) — P.

Denote by g : P — X the natural projection, and let p := q|z : P|z — Z be the pull-back
of ¢ by the closed immersion j : Z — X. Let Py be the G-invariant subscheme of P
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defined by the G-invariant section s © W € T'(P, O(1)(x))% which is corresponding to the

composition
q* (seW o _ o
op L, e w0 S 0p(1) (),

where o is the canonical surjection, and let P|z, be the zero scheme defined by the invariant
section i (s @ W) € I'(P|z,0(1)(x))€. Since the pull-back of s & W (resp. i (s ® W)) by
the open immersion [ (resp. [l|z) is equal to W + Qg (resp. W), we have the following
exact cartesian square

Uz,

V’Zo P|Zo
iol ilo
Vo . n

Denote by pg : P|z, — Zo be the pull-back of p : P|z — Z by the closed immersion Zy —
Z. Since the morphisms i : P|z, — Py and pg : P|z, — Zo have finite Tor dimensions, the
direct images Rig, : DP(cohP|z,) — DP(cohPy) and Rpg, : DP(cohP|z,) — DP(cohZy)
induce the following exact functors (cf. [TT, Proposition 2.7]),

Z.Oo : Dség(P|Zo) — DSC?(P())

Poo : DG (Plz,) = D (Zo)-
Now we have the following commutative diagram

100P0°

D& (Zo) D& (Po)
| o
DSGg(ZO/Z) i00P0° Dng(‘/—O),

where the vertical arrow on the left side is a Verdier localization by Proposition 6.2.

Remark 7.10. If Z is smooth, the above vertical arrows are equivalences. Indeed, in
that case, the singular locus Sing(Fp) is contained in Vj, whence [y° is an equivalence by
a similar argument in the proof of [Orll, Proposition 1.14]. The equivalence of 7 follows
from Remark 6.3.

Let 7o DP(cohgPy) — DP(cohg P|z,) be the functor defined by
— —x% A
i =Ly (=) ® \(Z/T%)"[-],

where Z is the ideal sheaf of i : P|z, < Py. The functor %! is a right adjoint functor of
iox : DP(cohgP|z,) — DP(cohgPy). Indeed, these functors are adjoint when G is trivial
by [Har, Il Theorem 6.7, Corollary 7.3], and the isomorphism

Hom(ip,(A), B) = Hom(4, iy (B)),
where A € DP(cohP|z,) and B € DP(cohPp), commutes with G-actions on each vector

space of morphisms by the property in [Har, Il Proposition 6.9.c]. Hence we see that %!
is right adjoint to ig, by [BFK2, Lemma 2.2.8]. Denote by

@' DE(R) > DE(Plz,)
the functor induced by %!. By the above argument, we have the following adjoint pair
o0 170
Similarly, we have a right adjoint functor
io” : DE™®(Vo) = D™ (Vlz,/V(E()|2)
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of igo : D * (V]2 /V(E(X))|z) = D * (Vo).

Proof of Theorem 7.2: We have the following commutative diagram

10 opoo

D(Z0/2) D (Vo)

o I

Dcohg(Z, x, W) bl Dcohg(V(E(x)), x, W + Qs),

where the vertical arrows are equivalences by Theorem 6.6. Hence it suffices to show that
the functor igopo°® : DF(Z0/Z) — DE (Vo) is an equivalence.

At first, we prove that the functor igopo® : DG 5(Zo/Z) — D *8(Vp) is fully faithful.
Let

L. . b . o
£G ldDg’Sg(Zo/Z) — D000 © 10oP0

be the adjunction morphism of the adjoint pair ig,pp° - pooiob. It is enough to show

that for any object A € D™®(Zo/Z), the cone Cg(A) of the morphism eg(A4) : A —
pooioboioopoo(A) is the zero object. But the object Resg(Ca(A)) is isomorphic to the cone
C(A) of the adjunction morphism of e(Resg(A)) : Resq(A) — pooio’ © ipepo®(Resg(A))
of the adjoint pair of functors between D¢(Z,/Z) and D®8(1},). Since we have the
following commutative diagram

10 opoo

De%(Z0/2) Ds(V)

o |

De°Qcoh(Z, W) —2 D°Qcoh(V(E), W + Qs),

where the vertical arrows are equivalences by Theorem 6.6, the functor ig,po° is fully
faithful by Lemma 7.9. This implies that the object C'(A) is the zero object. Hence Cg(A)
is also the zero object since the restriction functor Resg is faithful by Lemma 6.4. Hence
i0op0° : DG 8(Z0/Z) — DG (Vy) is fully faithful. This implies that igopo° : D (Z0/Z) —
DE(Vp) is also fully faithful, since the natural inclusions D¢ (Zo/Z) — D§™®(Zo/Z) and
DE (Vo) — D™ (Vp) are fully faithful by Theorem 6.6 and Proposition 4.53 (1).

It only remains to show that the functor igopo°® : D (Zo/Z) — D (Vp) is essentially
surjective. Consider the following commutative diagram:

D¥(Zo) — T DE(Py)
S
D (Zo/2) — 22—~ DB (V)

By a similar argument as in the proof of [Orll, Lemma 1.11], we see that every object in
DE(Vp) is isomorphic to an object F[k] for some G-equivariant coherent sheaf F and for
some integer k € Z. Hence the vertical arrow on the right hand side in the above diagram is
essentially surjective, since for every object E in cohgVj there exists an object E in cohg P,
such that {o*(E) = E. Thus, we only need to prove that i9,pp° : DF(Zo) — DF(F) is
essentially surjective. To prove that, it is enough to show that the right adjoint functor
Pooio. - DE(Py) — D& (Zo) is fully faithful. Since the restriction functor Resg : D (Fy) —
D%8(P) is faithful by Lemma 6.4 and [PV, Proposition 3.8], it follows from [Orl2, Theorem
2.1] that the adjunction 79, p° 011700%b — istGg( py) Is an isomorphism of functors by a similar
argument as in the proof of the fully faithfulness of igopo® : DG #(Zo/Z) — D¢ 8 (V) in
the previous paragraph. ]
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7.5. Cases when W = 0. In the previous section, we prove the main result assuming
that Wz : Z — Al is flat. In this section, we consider the cases when W = 0. In this
cases, using results in [Shi|, we can show the following:

With notation as above, consider G,, X G-action on X induced by the projection G,, x
G — G. Let 0 : G, x G — G,,, be the character defined as the projection. Since the first
factor of G,, x G trivially acts on X, the G-equivariant locally free sheaf £ has a natural
G, X G-equivariant structure.

Proposition 7.11. We have an equivalence
DP(cohgZ) = Dcohg,, xa(V(£(6)),0,Qs).
Proof. By Proposition 4.6, we obtain an equivalence
DP(cohgZ) = Deohg,, xa(Z, 6,0).
Hence it is enough to show the functor

Z*p* : DCOhG XG(Z> 97 0) — DCOthXG(V(g(G))v 97 Qs)

m

is an equivalence.
By Lemma 7.9, it follows that

ixp* : DQcohg (Z,x1,0) = D°Qcohg,  (V(E(x1)), X1, Qs)

is fully faithful since the forgetful functor D°°Qcohg, (Z, x1,0) — D®Qcoh(Z,0) is faith-
ful. Furthermore, the above functor 7,p* is an equivalence since the right orthogonal of the
image of the restricted functor i,p* : Dcohg,, (Z, x1,0) — D®Qcohg, (V(E(x1)), X1, @s)
vanishes by the argument in [Shi, Theorem 3.4]. In particular, the right adjoint functor

p*@.! : DCOQCOth (V(S(XI))7 X1, QS) — DCOQCOth (Z’ X1 O)

of i,p* is also fully faithful.
Next we will show that the functor

ixp* : DQcohg, ,(Z,0,0) = D°Qcohg, «o(V(E(H)),0,Qs)
is an equivalence. Let
€CmxG T 1dDeoqeohg  (2,0,0) — pui' 0isp”

be the adjunction morphism. To show that the functor i,p* : D°Qcohg .o(Z,0,0) —
D®Qcohg, .c(V(E(9)),0,Q5) is fully faithful, we will prove that the adjunction morphism
€G,,xG 1s an isomorphism of functors. For this, it suffices to show that for any object
F € D®Qcohg, ,(Z,0,0) the cone Cg,,xc(F) of the morphism eg,, x(F) : F' — psi' o
ixp*(F) is the zero object. Recall that the categories Qcohg Z and Qcohg, .gZ are
equivalent to the categories Qcoh[Z/G,,] and Qcoh;[Z/G,,] respectively, where [Z/G,]
denotes the quotient stack, and we can consider the restriction and the induction functors
for algebraic stacks as in section 4.4. Let mg : Qcohg oZ — Qcohg Z be the functor
corresponding to the restriction functor Resg : Qcohg[Z/Gy] — Qcoh[Z/Gyy,] via the
equivalences Qcohg, Z = Qcoh[Z/Gy,] and Qcohg, 2 = Qcohg[Z/Gy,]. Then g
naturally induces the following exact functor

ng : D*°Qcohg, «q(Z,6,0) — DQcohg (Z,x1,0),

and 7g has the right adjoint functor og : D°°Qcohg,  (Z, x1,0) — D®Qcohg, «(Z,6,0)
induced by the induction functor. Since the argument in the proof of Lemma 4.62 works
for algebraic stacks, the adjunction morphism id — og o ¢ is a split mono. Hence 7g is
faithful. The object 7¢(Cg,,xc(F)) is isomorphic to the cone Cg,, (F') of the adjunction
morphism eg,, (7q(F)) : 1g(F) — pyi' 0 iup*(ng(F)), and Cg,, (F) is the zero object since
the functor i,p* : D®°Qcohg (7, x1,0) — D°Qcohg, (V(E(x1)), x1,Qs) is fully faithful.
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Hence we see that the object Cg,, x(F) is also the zero object since mg is faithful. By an
identical argument, we see that the right adjoint functor

psi' 1 DPQeohg (V(E(F)),0,Qs) — DQecohg (2, 0,0)
is also fully faithful. Hence the functor
ixp* : DQcohg, (Z,0,0) = D°Qcohg, «o(V(E(H)),0,Qs)

is an equivalence.
By Proposition 4.53 (1), we see that the equivalence i.p* : D°°Qcohg ,(Z,60,0) —
D®Qcohg, .c(V(E()),0,Qs) induces an equivalence of the compact objects

Z*p* : DCOthXG(Z7 9’ 0) _> DCOthXG(V(E(Q))? 07 QS)7

where (—) denotes the idempotent completion of (—). But Dcohg,, «c(Z,6,0) on the left
hand side is already idempotent complete since it is equivalent to DP(cohgZ). Hence the
functor

i*p* : DCOthXg(Z, 9, 0) — DCOthXg(V(E(Q)), 0, Qs)
is an equivalence. 0

7.6. Orlov’s theorem for gauged LG models. In this section, we obtain a gauged LG
version of the following theorem of Orlov.

Theorem 7.12 ([Orl3] Theorem 40). Let X C Pg‘l be the hypersurface defined by a

section f € F(P]kvfl, O(d)). Denote by F the corresponding homogeneous polynomial.
(1) If d < N, there is a semi-orthogonal decomposition

DP(cohX) = (Ox(d — N + 1), .., Ox, Deohg,, (A, xa, F)).
(2) If d = N, there is an equivalence
DP(cohX) = Dcohg, (AY, x4, F).
(3) If d > N, there is a semi-orthogonal decomposition
Dcohg,, (AY, x4, F) = (k, ..., k(N — d +1),DP(cohX)).

We combine the main result with the theory of variations of GIT quotients to obtain a
gauged LG version of the above theorem. For the theory of variations of GIT quotients,
see [BFK2] or [BDFIK3, Section 2]. This kind of approach to Orlov’s theorem appeared in
[Shi], [BFK2], and [BDFIK3], and our argument is similar to the one in [BDFIK3, Section
3.

Let S be a smooth quasi-projective variety with G,,-action, and set

Q:=5 x AN x AL,
For i = 1,2, set G; := Gy, and let G := G x G4. For a positive integer d > 1, we define
a G-action on () as follows;
G x Q3 (g91,92) X (5,01, ..05,u) = (g2 5, 9101, ..., 10N, 1 “g2u1) € Q,

where the action - is the original G,,-action on S. Let A : G,,, — G be the character defined

by A(a) := (a,1). Denote by Z) the fixed locus of A-action on Q). Then Z coincides with

the zero section S x 0 x 0 C . Furthermore, set Sy := {q € Q | lirr(l)/\(a)q € Z)} and
a—

S_:={qeq] lir%)\(a)_lq € Z)}. Then
a—

S, =8xAYx0 and S_=8x0xA

Denote by Q4 (resp. @_) be the complement of S; (resp. S_) in ). Then the stratifica-
tions

Q=Q+USy and Q=0Q_-US_
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are elementary wall crossings in the sense of [BFK2].

Let W : S — A! be a x1-semi invariant function which is flat. Let f € F(Pg‘l, O(d))Cm
be a non-zero G,,-invariant section, and denote by F’: Afgv — A the corresponding regular
function. Since @ is the trivial line bundle over Ag , the function F' induces a regular
function F : Q@ — A'. Then the function

W+F:Q— Al

is a Xo,1-semi invariant regular function, where W is the pull-back of W : S — A' by the
projection @ — S, and xo,1 : G = Gy, is the character defined by x0,1(g1,92) := g2. By
[BFK2, Lemma 3.4.4] and [BFK2, Theorem 3.5.2], we have the following:

Proposition 7.13. Let t4 be the A\-weight of the restriction of relative canonical bundle
ws, /@ to Zx, and set p = —ty +t_. Let x : G — Gy, be the character defined by

x(91,92) = 9192
(1) If u < 0, there exist fully faithful functors

T_ : Deohga(Zx, x1, W + ﬁ) — Dcohg(Q-, x0,1, W + ﬁ)
o DCOhG(Q+7XU,17 W+ ﬁ) - DCOhG(Q*a X0,1, W+ ﬁ)a
and we have the following semi-orthogonal decomposition
Deohg(Q—, x0.1, W+ F) = (Y_(u+1),...,T_, ®_(Dcohg(Q4, x0.1, W + F))),

where we denote by T _(n) the the essential image of the composition (—) ® O(x™) o T_.
(2) If p =0, we have an equivalence

Dcohg(Q—, x0,1, W + ﬁ) = Dcohg(Q+, x0,1, W + ﬁ’)
(3) If u > 0, there exist fully faithful functors
T : Deohgya(Za, x1, W + F) — Deoha(Q+, xo.1, W + F)

&, : Deohg(Q-—, x0,1, W + ﬁ) — Dcohg(Q+, Xo,1, W + ﬁ),
and we have the following semi-orthogonal decomposition
DCOhG’(Q—‘m X0,1, W+ ﬁ) = <T+7 Sx) T+(—M + 1)7 (I)+(DCOhG(Q—7 X0,1, W+ ﬁ))>7
where we denote by Y (n) the the essential image of the composition (=) @ O(x™) o T4.

Since Zy = S x 0 x 0, the function F vanishes on Z » C Q. Hence we have
Dcohg/y(Zx, x1, W + F) = Deohg,, (S, x1, W).
Next, we have
Q_=SxAV\0x AL
Since F'lgyamo € I'(S ANN0,0(x—40)")% and Q- = V(O(x_a.1)), Theorem 7.2 implies
the following equivalence;
DCOhg(Q,, X0,15 W + ﬁ) = DCOhg(Z, X0,15 W),

where Z € S x AN \ 0 is the zero scheme of F. Moreover, the quotient stack [Z/G1] is
isomorphic to the hypersurface X in the projective space bundle IP’JSY ~1 over S defined by
the invariant section f € F(Pg ~1 O(d))%2. Hence we have an equivalence

Dcoha(Z, x0,1, W) = Dcohg, (X, x1, W).
On the other hand, we have
Qr =S x AV x A\ 0.
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We consider another action of G on ()4 as follows;
G x Q+ 3 (91,92) x (s,v,u) — (gil . s,glv,gl_dggu) €Q.
We denote by @1 the new G-variety. Then we have a G-equivariant isomorphism
w: @: = Q4,

given by ¢(s,v,u) := (u - s,v,u), where u € A1\ 0 is considered as a point in Gyy,. Since
Gy trivially acts on the first two components S x AN of Q. we have

[Q4/Ga] = 8 x AN x [A'\ 0/Gs] = AY.
Hence we have the following equivalence

Dcohg(Q+, x0,1, W + f) = Dcohg, (Ag, Xd, W + F),

where, on the right hand side, G-action is given by the following

G1 xS x AN 3 g; x (s,0) = (i - 5, 910).

Finally, note that uy = d — N and that the twisting by the G-equivariant invertible sheaf
O(x) corresponds to the twisting, in Dcohg, (X, x1, W), by the Ga-equivariant invertible
sheaf O(1) on X which is the pull-back of the tautological Ga-equivariant invertible sheaf
on IP’ng ~1. Combining Proposition 7.13 and the above argument, we obtain the following
gauged LG version of the Orlov’s theorem:

Let S be a smooth quasi-projective variety with a G,,-action, and let W : § — Al be a
x1-semi invariant regular function which is flat. Consider G,,-actions on Ag and on Pg -1
given by

G X Ag St X (8,0V1,...,UN) > (td -8, tvy, ... tuy) € A]SV

Gmegfl StX (8,011 ion) = (B 8,010 ..t 0N) €]P’g71.

Theorem 7.14. Ford > 1, let f € F(ngl, O(d))®™ be a non-zero invariant section, and

let F : Ag — Al be the corresponding xq-semi invariant reqular function. Let X C Pg_l
be the hypersurface defined by f, and assume that the morphism W|x is flat.
(1) If d < N, there are fully faithful functors

P : Dcthm(Ag,Xd, W + F) — Dcohg,, (X, x1, W)
T : Dcohg,, (S, x1, W) — Dcohg,, (X, x1, W),

and there is a semi-orthogonal decomposition
DCOth (Xa X1 W) = <Tdi+17 L) TO: (I)(DCOth (Ajsva Xds W+ F>)>7

where T; denotes the essential image of the composition (—) ® O(i) o Y.

(2) If d = N, we have an equivalence
Dcohg,, (X, x1, W) = Dcohg,, (AY, xa, W + F).

(3) If d > N, there are fully faithful functors
¥ : Deohg,, (X, x1, W) — Deohg,, (AY, xa, W + F)
T : Dcohg,, (S, x1, W) — Dcohg,, (AY, xg, W + F),

and there is a semi-orthogonal decomposition

DCOhG (Ag¢ Xd» W+ F) = <T07 X TN—d—Hv \IJ(DCOth (X> X1, W))>7

m

where Y; denotes the essential image of the composition (—) @ O(x;) o Y.
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Remark 7.15. (1) We can view Orlov’s Theorem 7.12 as the case when S = Spec k and
W =0 in the above theorem.
(2) If N > 1, the assumption that W/|x is flat is satisfied whenever W : S — Al is flat.

(3) For positive integers ay,...,an, applying the similar argument to the G-action on @
defined by

G X Q > (91792) X (svvlv '-‘UN7U) — (92 : 879?11)17 "‘79?NUNagl_d92u) S Q7

we can obtain the similar result for the hypersurface X in weighted projective stack bundle
ngl(al, wnay) =[S x AN\ 0/G] over S defined by the section corresponding to a G-
invariant section F' € T(AY, O(x4))".

(4) Of course, Orlov’s theorem in [Orl3] is much more general. It covers noncommutative
situations unlike our setting.
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