
ii 

 

 
 

TOKYO METROPOLITAN UNIVERSITY 

 

 

 

 

 

Estimation of Plant Flowering Phenology in Urban Ecosystems using 

Remote Sensing Techniques 

 

 

 

 

 

DOCTORAL DISSERTATATION SUBMITTED 

TO 

THE GRADUATE SCHOOL OF URBAN ENVIRONMENTAL SCIENCES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR 

THE DEGREE OF DOCTOR OF TOURISM SCIENCE 

 

 

 

DEPARTMENT OF TOURISM SCIENCE 

 

 

 

 

 

 

 

BY 

Noordyana Binti Hassan 
 

SEPTEMBER 2015 

 



iii 

 

Estimation of Plant Flowering Phenology in Urban Ecosystems 

using Remote Sensing Techniques 

 

 

 

 

 

 

 

 

 

 

 

  

Noordyana Binti Hassan 

 

 

 

 



iv 

 

Table of Contents 
 

Acknowledgements .................................................................................................................. viii 

ABSTRACT ............................................................................................................................... ix 

LIST OF FIGURES ................................................................................................................... xi 

LIST OF TABLES ................................................................................................................... xiii 

Chapter 1  General Introduction ................................................................................................. 1 

1.1 Significance of studies on urbanization ................................................................................ 1 

1.2 Effects of urbanization on phenological events .................................................................... 2 

1.3 Remote sensing approach for monitoring plant phenological events ................................... 2 

1.4 Cherry blossom phenological events and its cultivation history .......................................... 4 

1.5 Research Objectives .............................................................................................................. 5 

Chapter 2 Materials and Methods............................................................................................... 7 

2.1 Materials ............................................................................................................................... 7 

2.1.1 Cherry blossoms............................................................................................................. 7 

2.1.2 Morphological data ........................................................................................................ 9 

2.1.3 Remotely sensed data ..................................................................................................... 9 

2.2 Methodology ....................................................................................................................... 10 

2.2.1 Spectral data collection ................................................................................................ 10 

2.2.2 Moving average ........................................................................................................... 11 



v 

 

Chapter 3 A Review on Spectral Mixture Analysis: The Contribution to Plant Flowering 

Phenology Study in Urban Landscape ...................................................................................... 13 

3.1 Issues in monitoring plant phenology using remote sensing approach............................... 13 

3.1 Plant spectral characteristics ............................................................................................... 17 

3.2 Plant spatial characteristics ................................................................................................. 20 

3.3 Temporal changes in plant characteristics .......................................................................... 22 

3.4 Hard and soft classifications ............................................................................................... 24 

3.5  Linear Mixed Model .......................................................................................................... 25 

3.6  Endmember selection ......................................................................................................... 28 

3.7 Endmember variability in plant .......................................................................................... 29 

3.8 Summary ............................................................................................................................. 30 

Chapter 4 Remote Detection of Flowering Somei Yoshino (Prunus × yedoensis) in an Urban 

Park using IKONOS Imagery: Comparison of Hard and Soft Classifiers............................ 32 

4.1 Introduction .................................................................................................................... 32 

4.2  Materials and Methodology ............................................................................................... 34 

4.2.1 Study site .......................................................................................................................... 34 

4.2.2 Materials ...................................................................................................................... 35 

4.2.3 Methodology .................................................................................................................... 37 

4.3 Results ................................................................................................................................. 47 

4.4 Discussion ........................................................................................................................... 50 



vi 

 

4.5 Summary ............................................................................................................................. 51 

Chapter 5 Inter-Specific Differences in Spectral Properties of Flowers among 45 Cherry 

Cultivars....................................................................................................................................... 53 

5.1 Introduction ......................................................................................................................... 53 

5.2 Materials and Methodology ................................................................................................ 55 

5.2.1 Study Site ..................................................................................................................... 55 

5.2.2 Materials ...................................................................................................................... 58 

5.2.2.2 Spectral data acquisition ........................................................................................... 58 

5.2.2.3 Morphological data ................................................................................................... 60 

5.2.2.4 Colour extraction using cherry blossoms spectral properties ................................... 61 

5.3 Results ................................................................................................................................. 63 

5.3.1 Spectral properties of 45 cherry blossoms cultivars .................................................... 63 

5.3.2 Spectral reflectance differences at petal level and branch level .................................. 65 

5.3.3 Differences among colours estimated using vegetation indices .................................. 67 

5.3.4 Evaluation of Cherry blossoms colours using vegetation indices ............................... 69 

5.4 Discussion ........................................................................................................................... 72 

5.4.1 Spectral properties of 45 cherry cultivars .................................................................... 72 

5.4.2 Evaluation of Cherry blossoms colours using spectral properties ............................... 72 

5.5 Summary ............................................................................................................................. 76 



vii 

 

Chapter 6 General Discussion and Conclusion ........................................................................ 77 

6.1 Issues on urban plant monitoring using remotely sensed data ............................................ 77 

6.2 Identification of flowering cherry at landscape level ......................................................... 78 

6.3 Spectral properties difference of 45 cherry blossoms cultivars .......................................... 79 

References ................................................................................................................................. 81 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

Acknowledgements 

First, I would like to express my deepest gratitude to my supervisor, Assoc. Prof. Dr. Shinya 

Numata for all his guidance, assistance, advice, understanding, encouragement and appreciation extended 

to me in studies as well as life in Japan. Without his guides, it may be impossible to complete this 

dissertation. Comments and suggestions from reviewers, Prof. Dr. Toshio Kikuchi, Prof. Dr. Hiroshi 

Matsuyama and Prof. Sr. Dr. Mazlan Hashim were greatly improved this dissertation.  

I also would like to thank my co-supervisor, Prof. Sr. Dr. Mazlan Hashim in Universiti Teknologi 

Malaysia for all his guidance, support, advice and encouragement towards me. Without him, I’m unable to 

pursue my study in Tokyo Metropolitan University.   

I would like to acknowledge the support and assistance given to me for statistical analysis by Assoc. 

Prof. Dr. Tetsuro Hosaka and my fellow doctoral candidate, Muna Maryam Azmy, Huda Farhana 

Mohammad Muslim, Mohd Rizaludin Mahmud and Widiyatno. Thanks to all lecturers and students in the 

Department of Tourism Science, Tokyo Metropolitan University for all comments and suggestions for 

improving this study. 

I also would like to thank Tokyo Metropolitan Government for providing me a scholarship, Asian 

Human Resource Fund to pursue my study in Tokyo, Japan. I would like to thank Forestry and Forest 

Products Research Institute (FFPRI), Japan especially to Mr. Hiroshi Yoshimaru and Mr. Kojiro Iwamoto 

for the guidance and permission given to collect sakura samples in Tama Forest Science Garden, Hachioji, 

Tokyo. 

My special thanks goes to my family and Mohd Hisham B Haris in Malaysia for endless support 

and affection.  Finally, I would like to thank my friends in Malaysia and Japan for their support and 

companionship. Last but not least, my thanks to the person who direct and indirectly have given a hand and 

idea for helping me completing this dissertation. 



ix 

 

ABSTRACT 

Phenology is the study of the timing of recurrent biological events, the causes of the timing with 

regard to biotic and abiotic forces, and the interrelation among phases of the same or different species. Plant 

reproductive phenology such as flowering and fruiting is closely related to nature-based tourism. For 

example, cherry blossom viewing during spring season is able to provide great amounts of social and 

economic benefits in Japan. On the other hand, plant reproductive phenology is one of the indicators to 

monitor climate change since the trend of spring phenology is able to reflect effects of climate change. It is 

well known that reproductive phenology of plants in urban areas has changed due to urban and global 

temperature increment in recent years. Therefore, monitoring reproductive phenology is crucial not only to 

identify biological and physiological status of cherry blossoms, but also to understand potential risk of 

nature-based tourism. However, monitoring reproductive phenology at highly heterogeneous urban area is 

a challenge at landscape level as the spectral signal of flower is generally weak. Utilizing remotely sensed 

technique could provide spatial and temporal extend datasets of plant reproductive phenology in 

heterogeneous environment. Therefore, this study aimed to develop remote sensing technology to monitor 

spring phenology in urban area. 

Firstly, the ability to identify flowering cherry trees at landscape level was investigated to explore 

the existing remote sensing technique ability in identifying cherry blossoms in urban park. To test the ability 

of remote sensing technique, hard and soft classifications were employed on IKONOS image in 

identification of flowering cherry trees in urban park which has been investigated. Results of this study 

indicate that soft classifier employed on IKONOS image performed better than hard classifier in identifying 

flowering cherry trees in urban park. Results also suggest that both methods are able to classify cherry 

blossoms in an urban landscape, but soft classifier classified that cherry blossoms are more accurate than 

hard classifier. Therefore, I conclude that the accuracy of soft classifier could decrease due to the limited 

number of available bands (four for IKONOS) and the existence of endmembers, such as dry grass in this 
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study, with stronger signals than flowers. Therefore to overcome misclassification problem in order to 

improve soft classification accuracy, spectral characteristics and its properties exploration must be carried 

out.  

Secondly, spectral properties of flowering cherry were explored as an input to develop spectral 

library at petal and branch levels, and effects of morphological characteristics were investigated. Effects of 

morphological characteristics were evaluated using established vegetation indices. The properties of 

flowering cherry at petal and branch levels varied at visible wavelength. The spectral properties variation 

at petal and branch levels may be due to morphological effects. In addition, results indicated that spectral 

radiometer evaluation of pink element was inconsistent from petal to branch level while green and yellow 

elements were consistent at petal to branch level. Despite that, results showed that spectral radiometer visual 

evaluation was consistent with human visual evaluation at petal level but inconsistent at branch level.  As 

a conclusion, spectral properties of cherry cultivars collected in this study can be used to develop spectral 

library that can be used to identify cherry cultivars at landscape level. Besides that, consistency of spectral 

radiometer visual evaluation with human visual evaluation at petal level may suggest that spectral 

radiometer data can be used to identify cherry cultivars. Thus, it is recommended to develop cherry blossom 

index as each of cherry cultivars has different spectral pattern. Besides that, effects of phylogenetic and 

other morphological characteristics of cherry cultivars towards spectral properties should be further explore. 

 Based on the results obtained in this thesis, I strongly suggest that remote sensing techniques may 

have potential to monitor urban flowering plant spring phenological event even the urban landscape was 

highly heterogeneous. By using remote sensing approach, cherry blossoms spring phenological event can 

be monitored frequently and could improve the cherry blossoms management as cherry blossoms provide 

economic and social benefits. 
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Chapter 1     

General Introduction 

 

 

 

1.1 Significance of studies on urbanization 

 

Recently, urban growth is increasing rapidly where 45% of populations in the world are 

living in urban areas and estimates to increase to over than 60% in 2030 (United Nations, 2007). 

The urban area is expected to continue to grow in the future in emergence of very large urban 

agglomerations in developing country (Berry, 1990; United Nations, 2007).This is due to 

localization of population from rural to urban area. Urbanization extremely influence biodiversity 

and ecosystem function as well as climate and quality of life (Luck and Wu 2002 ; Li et al., 2011). 

One of the ecological consequences of urbanization is the urban heat island (UHI) effect, which 

leads to higher temperature in urban area than surrounding suburban or rural areas. UHI effect is 

one of the global climate change indicator that burden urban environments especially urban 

vegetation phenological event (Li et al. 2011).  
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1.2 Effects of urbanization on phenological events 

 

Plant phenology has received much attention as it was strongly controlled by climate 

(Gordo and Sanz 2010). For example, Fitter et al. (1995) found that flowering timing in 90% of 

243 studied plant species in England was significantly related to temperatures where the 

overwhelming majority of plants were able to tune their flowering dates accordingly to particular 

temperature condition of each year. In addition, Doi and Katano (2008) found that spring 

phenological events and autumn phenological events have been advanced and delayed, 

respectively, in recent decades, and both events tend to extend the length of growing season. 

Meanwhile, Aono and Kazui (2008) found that spring phenological events of cherry blossom for 

732 years in Kyoto has changed according to imbalance temperature.  Thus, phenological event 

monitoring is crucial to be monitored. However, lack of spatiotemporal data might be one of 

limitation to study phenological event (Numata et al., 2003, 2013; Badeck et al., 2004).  

 

1.3 Remote sensing approach for monitoring plant phenological events 

 

Remote sensing technology has been utilized in recent years at regional and geographical 

scale to assess inter-annual variation in phenology of deciduous vegetation (Delbart et al. 2006). 

Satellite remotely senses and measures the surface radiation based on visible and infrared 

wavelengths to monitor phenological cycle (Badeck et al. 2004). Satellite data and ground 

measurement can provide complementary information as the surface radiation measured by 

satellite can provide photosynthesis information which correlates with ground data especially the 
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change of reflectance across red-edge wavelength which shows the characteristics features of 

photosynthesis active, chlorophyll-bearing plant organ (Myneni et al. 1997). Moreover, satellite 

data have capability to provide temporally frequent data where inter-annual variations and 

temporal trends in phenology can be observed. As satellite data can provide spatial data at large 

area extent, phenological pattern of entire globe especially place without ground observation can 

be carried out (Badeck et al. 2004; Botta et al. 2000). 

 

However, mixed pixels occurrences in satellite image have challenged phenological studies 

as most satellites that provide temporally frequent data have coarse spatial resolution. High 

heterogeneity area like urban area with multiple land cover types may cause mixed pixels 

frequently occurred in coarse spatial resolution satellite image. Mixed pixels occurrences were 

inevitable when the target is smaller than instantaneous field of view (IFOV). Mixed pixels 

occurrences caused by multiple spectral responses in an IFOV where those spectral were mixed 

(Keshava and Mustard, 2002; Kanniah et. al., 2007; Boardman and Kruse, 2011; Quintano et. al., 

2012). Due to spectrally mixed, observation on urban plant phenological events at landscape level 

will be a challenge. Despite that, remote sensing experts found that spectral mixing also a challenge 

to monitor phenological stages at canopy level. Spectral mixing occurrences at canopy levels due 

to plant canopy structure and spectral reflectance from soil. Therefore, to overcome mixed pixels 

at landscape level and spectral mixing at canopy level, researchers have developed spectral mixture 

analysis (SMA) approach which will be further discuss in Chapter 2. 
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1.4 Cherry blossom phenological events and its cultivation history 

 

Flowering cherries are the most popular ornamental trees in Japan and flower 

synchronously in the spring in temperate zones of the Northern Hemisphere. Flowering cherries 

are of interest because they provide social and economic benefits from cherry blossom viewing, 

and they provide important information on the long-term impacts of climate change (Aono & Saito, 

2010; Aono, 2014; Primack et al., 2009). Researchers have carried out numerous of studies on 

cherries flowering events and cultivation. This is because flowering cherries spring phenological 

event has shifted due to climate change (Aono, 1997; Yasuyuki Aono & Saito, 2010; Yasuyuki 

Aono, 2014). Thus, monitoring flowering cherries spring phenological event at landscape level is 

essential especially flowering cherries that been planted in urban areas. However, monitoring 

flowering cherries is challenging because urban environments are highly heterogeneous and the 

flowers produce a weak spectral signal. Besides that, there are more than hundreds flowering 

cherries in Japan. 

 

Flowering cherries have been cultivated for more than 1,000 years (Flower Association of 

Japan 1982; Kuitert 1999). In Japan, more than 200 traditional cultivars are known (Kobayashi 

1992), and they show diverse floral characteristics, including traits seldom found in the wild. 

Morphological studies on Japanese flowering cherry cultivars were initiated in the early twentieth 

century (Koidzumi 1913; Miyoshi 1916; Wilson 1916). Later works established a taxonomy for 

these cultivars (Flower Association of Japan 1982; Kawasaki 1993) that is now widely accepted 

(Ohba et al. 2007). Due to high number of flowering cherry cultivars, there are variations in their 
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morphology and phylogeny trait. Thus, this variations made monitoring at landscape level more 

challenging due to its canopy structure and also various number of cultivars.  

 

1.5 Research Objectives 

 

The aim of this study is to develop remote sensing technology to monitor reproductive 

phenology in urban ecosystem. Numerous of studies on plant phenology that utilized remotely 

sensed data have been carried out (Reed et al. 1994; Zhang et al. 2003; Zhang et al. 2001). 

However, there are no attempt was carried out on plant reproductive organ except leaves. To 

achieve the aim of this study, a few objectives have been set up: (i) to estimate flowering cherry 

trees in a urban landscape using remote-sensing approach: Landscape level and (iii) to identify 

inter-specific variations in spectral properties of flowers by developing spectral library.  

 

This study emphasize on the ability of remote sensing technique to estimate plant flowering 

phenology in urban ecosystems (Figure 1-1). In Chapter 2, spectral mixture analysis would be 

explained in details and it contribution to monitor plant flowering phenology. In Chapter 3, 

flowering cherry in urban park was identified at landscape level by utilizing IKONOS image. In 

this chapter, spectral mixture analysis and traditional image classifications abilities to identify 

flowering cherry.  Spectral mixing is possible at canopy level where spectral variability from 

different plant reproductive organs. Spectral properties of cherry cultivars and inter-specific 

differences in spectral properties variations were identified in Chapter 5 to develop flowering 
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cherry spectral library. As a conclusion, results obtained in this thesis indicate that remote sensing 

technology have potential to monitor flowering plant spring phenological event in high 

heterogeneous urban landscape as it can be identified by using soft classifier and the accuracy of 

the classification can be improved by utilizing spectral library obtained in Chapter 5. Therefore, 

remote sensing techniques can be used to improve flowering plant management in urban area 

effectively as flowering plant like cherry blossoms were of interest in nature-based tourism during 

spring season and it give high impact on social and economic benefits.  
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Chapter 2 

Materials and Methodology 

 

 

 

2.1 Materials 

 

2.1.1 Cherry blossoms 

 

Forty five flowering cherry cultivars from twelve taxonomy groups were collected (as 

listed in Table 1) from Tama Forest Science Garden (TFSG; Hachioji, Tokyo, Japan) of the 

Forestry and Forest Products Research Institute (FFPRI). Flowering cherries (members of Prunus 

subgenus Cerasus, Rosaceae) are the most popular ornamental trees in Japan, and have been 

cultivated for more than 1,000 years (Flower Association of Japan 1982, Kuitert 1999). There are 

more than 200 traditional cultivars in Japan (Kobayashi 1992), which mainly differ in flower color, 

form, size and number of petals. Some have been exported widely and are grown world-wide. 

Most cultivars have been clonally propagated to avoid the dilution or loss of their unique 

characteristics and many are believed to have originated from native Japanese taxa (Kawasaki 

1993, Koidzumi 1913, Kuitert 1999, Miyoshi 1916) (Table 2-1).  
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Table 2-1: Forty five cherry cultivars from twelve taxonomy groups 

 Taxonomy groups Flower cherry cultivars 

1 Prunus lannesiana 

(1)Matsume hayazaki,  (2)Kyoto-no-mikurumagaeshi, 

(3)Angyou-no-shirayuki, (4)Angyou-no-ukon, (5)Kyoto-

no-omuro ariake, (6)Angyou no Yokihi, (7)Angyou-no-

shirotae, (8)Angyou-no-fukurokujyu, (9)Angyou-no-

fugenzo, (10)Angyou-no-ichiyo, (11) Gioiko, 

(12)Angyou-no-shogetsu, (13) Sano-no-Taihaku, (14) 

Jindai-no-surugadai-nioi, (15) Uzu-zakura, (16) Kyoto-no-

ohsawazakura, (17) Angyou-no-ojochin, (18) Beni-yutaka, 

(19) Sarasa, (20) Angyou-no-Edo,(21) Angyou-no-

hatazakura, (22) Shizuka 

2 
P. incisa var. incisa (1 

cultivar) 
Kiyosumi-no-mamezakura 

3 
P. campanulata  (Wild 

Cherry) 
Mishima-no-kanhizakura 

4 Prunus Yoko 

5 P. × yedoensis (4 cultivars) 
(1) Somei yoshino, (2) Soto-ori-hime, (3) Sendai Yoshino 

(4) Akebono 

6 P. jamasakura (6 cultivars) 

(1) Sakunami yamazakura, (2) Wild yamazakura, (3) 

Tsukushi zakura, (4) Mishima-no-sendaiya, (5) Kyoto-

no-hiyoshizakura, (6) Keta-shirokiku  

7 P. pendula (3 cultivars) 
(1) Taiunji-no-shidarezakura, (2) Chichibu benishidare,  

(3) Sano-no-yaebenishidare 

8 P. kanzakura (2 cultivar) (1)Kanzakura, (2) Kawazu-zakura 

9 
P. incisa var. Incisa 

(Kinkiensis) 
Yamasaki-no-kinkimamezakura 

10 P. × takaenakae Mishima-no-tokaizakura 

11 P. × subhirtella Koshi-no-higan 

12 P. taiwaniana Yuki-no-mushazakura 
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2.1.2 Morphological data 

 

Biological properties of cherry cultivar were examined by referring to morphology and 

phylogeny data of twenty three cherry cultivars obtained from published book by Parks and Open  

Space Association of Japan and FFPRI databased (http://db1.ffpri-

tmk.affrc.go.jp/sakura/home.php) which contain information on diameter of flower, number of 

petal of each cultivar, characteristic of flower layer and color of each cultivar.  

 

To identify the relationships of cherry cultivars spectral properties with other cherry 

cultivar biological properties (i.e. chemical content in the petal), few vegetation indices were 

identify in order to obtained information on chemical content in the flower petal by using spectral 

information.   

 

2.1.3 Remotely sensed data 

 

Multispectral IKONOS image [four bands: blue (445–516 nm), green (506–595 nm), red 

(632–698 nm), and near infra-red (NIR; 752–853 nm)] with 4-m resolution was used. The 

IKONOS data were recorded over the study area on 1 April 2006 and were purchased from Pasco, 

Japan. The image was chosen because flowering cherry was in full bloom at the time, according 

to information provided by the Japanese Meteorological Agency (JMA). The purchased data were 

radiometrically corrected and geo-referenced to the Universal Transverse Mercator (UTM) 
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coordinate system, zone 54, WGS84 datum. This data were used to identify flowering cherry tree 

at landscape level which will be further explained in Chapter 4. 

 

 

2.2 Methodology 

 

2.2.1 Spectral data collection 

 

Forty five flowering cherry cultivars samples were collected in TFSG from end of March 

until end of April, 2014. Spectral data were acquired by using hyperspectral radiometer (ASD 

Fieldspec Pro). Spectral data were collected at a spectral range 0.35–2.5 µm with spectral interval 

3.3 nm. The spectral reflectance of each cultivar were measured in a laboratory under dark 

conditions using a spectroradiometer mounted at a nadir position 20 cm above the target with a 

25° field of view. We recorded ten readings for each sample and calculated the average of spectral 

data for further analyses. The sensor was calibrated using a white Spectralon panel prior to data 

collection.  
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2.2.2 Moving average 

 

In the field of digital signal processing, the definition of a spectrum s0(λ) in Eq. (2-2) 

observed by a spectrometer is given by the sum of the true signal of the spectrum st(λ) and the 

noise n(λ) where λ indicates wavelength. 

 

𝑠0(λ) = st(λ) +  n(λ) 

 (2-1) 

 

Thus, the definition of spectral smoothing is the estimation of st(λ) in Eq. 2-2 from the 

observed spectrum so(λ). An estimate ŝt(λ) can be calculated by the convolution of the observed 

spectrum so(λ) with a weighting function (i.e. smoothing filter) g(λ) chosen by the practitioner: 

 

𝑠𝑡(λ) = 𝑠0(λ) ∗ 𝑔(λ) 

(2-2) 

 

The operator * denotes convolution integral (Oppenheim and Schafer, 1975; Lyon, 2004). 

There are many types of smoothing filters g(λ) adopted by remote sensing practitioners for 

hyperspectral applications including linear and non-linear methods (Savitzky and Golay 1964; 
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Kawata and Minami, 1984; Tsai and Philpot, 1998; Foody et al., 2004; Schmidt and Skidmore, 

2004). The most popularly used smoothing filters is moving average (Vaiphasa 2006).  

A mean filter simply takes the mean spectral value of all points within the specified window 

as the new value of the middle point of the window in Eq. 2-3. 

 

 ŝ (λ) =
∑ 𝑠(λ𝑖)

𝑛
  

(2-3) 

 

where n (number of sampling points) is the filter size and j is the index of the middle point of the 

filter. If the user specifies an even number of points as the filter size, the mean is assigned as the 

new value of the nearest point right of the center (longer wavelength).  
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Chapter 3 

A Review on Spectral Mixture Analysis: The Contribution to Plant 

Flowering Phenology Study in Urban Landscape  

 

 

 

3.1 Issues in monitoring plant phenology using remote sensing approach 

 

Phenology, by definition, means the timing of recurring biological phases (e.g. unfolding 

of leaves) (Linderholm 2006; Menzel et al. 2006). Phenology of many organism types in terrestrial 

ecosystems has been clearly identified to be disturbed by climatic changes (Walther et al. 2002; 

Parmesan and Yohe 2003; Root et al. 2003). In recent years, remote sensing satellite data have 

been used at regional and global geographic scales as an objective means to assess the inter-annual 

variations in the phenology of deciduous vegetation.  

 

The majority of remote sensing efforts across the region have fit vegetation growth curves 

as remote sensing dataset able to provide spatially and temporally extend data, such as AVHRR 

and MODIS (Liang et al. 2011; Beurs and Henebry 2010; Fisher et al. 2006). For example, White 

et al.(1997) compared AVHRR derived Normalized Difference Vegetation Index (NDVI) to lilac 

leaf out with a mean absolute error of 26 days. A MODIS derived Enhanced Vegetation Index 

(EVI) was used by Zhang et al. (2003) to predict full canopy cover at Hubbard Brook with a mean 
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absolute error of 10 days. Liang et al. (2011) improved accuracy to a mean absolute error of 2 days 

using MODIS derived EVI and weighting field observations by dominant forest community type. 

However, these studies are utilizing coarse spatial resolution data which is several scale-based 

limitations at regional perspective especially urban landscape. This due to large degree of 

heterogeneity in urban landscape (mixed pixels) the use of such coarse resolution assessments 

limits the evaluation of spatial variability in phenology (Fisher et al., 2006; Ibanez et al., 2010; 

Kramer and Hänninen, 2009).  

 

Most studies have implemented Normalized Difference Vegetation Index (NDVI) derived 

from the NOAA/AVHRR (Advanced Very High Resolution Radiometer) sensors for some time 

now to evaluate phenological characteristics over larger areas and time periods (Badeck et al. 2004; 

Doktor et al. 2009; Bégué et al. 2011). Other studies have also implemented new sensors with a 

higher spectral and spatial resolution for deriving vegetation phenology such as MODIS 

(MODerate Resolution Imaging Spectroradiometer) and SPOT-VEGETATION (Jönsson et al. 

2010; S. Li et al. 2010). Several authors have used the NDVI temporal profile to derive and model 

phenological key stages such as budburst and senescence (e.g. Botta et al. 2000), whereas Myneni 

et al. (1997) used the NDVI to monitor plant growth. However, deriving and modelling phenology 

based on the NDVI is not always straightforward and subject to some difficulties. Deriving the 

phenology in heterogeneous landscapes such as urban area with several species of vegetation and 

other land cover types can therefore be problematic (Doktor et al. 2009; Hu, Inannen, and Miller 

2000; Schwartz and Reed 1999; Lausch et al. 2015).  
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The identification of plant phenology based only on certain spectral wavelengths limits the 

opportunity to investigate the significance of other important biochemical–biophysical vegetation 

parameters to characterise the phenological changes to vegetation. Remote sensing could also 

detect such changes by using wavelengths outside the range included in NDVI (Nakaji et al. 2006; 

Jönsson et al. 2010; Grace et al. 2007). Hyperspectral remote-sensing data have a high spectral 

range of 400–2500 nm with a spectral resolution of 2.5–10 per spectral band. They are thus ideally 

suited to answer questions about deriving indicators of seasonal vegetation changes. Hyperspectral 

imagery has been applied more frequently over recent years. With the launch of the satellite 

hyperspectral sensors EnMAP (Environmental Mapping and Analysis Program) foreseen for 2017, 

the routine implementation of hyperspectral satellites will be possible for a more precise spectral 

diagnostic and quantitative monitoring of the status and phenology of vegetation over larger areas 

(Lausch et al. 2015).  

 

Previous investigations based on the implementation of airborne hyperspectral sensors 

show that in addition to the previously used phenology indicators, there are others that will be able 

to model the senescence of vegetation over time more accurately (Ye et al. 2009; Filella et al. 

2004; Nakaji, Oguma, and Fujinuma 2006). In this way, Ye et al. (2009) and Dzikiti et al. (2011) 

were able to show in their investigations on citrus vegetation based on hyperspectral imagery that 

the photochemical reflectance index (PRI) is very suitable for characterising vegetation phenology. 

Nakaji et al. (2006) were also able to quantify seasonal changes in coniferous forests by using the 

PRI. Kneubühler (2002) also confirms that the phenological stages can be differentiated from one 

another by looking at the water content of the vegetation. Kneubühler (2002) even considers the 
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water content of vegetation to be one of the most promising vegetation parameters used to estimate 

and derive phenological stages. Filella et al. (2004) looked at how the remote sensing vegetation 

indices NDVI and PRI responded to seasonal and annual changes in an early successional stage of 

the canopy for Mediterranean coastal shrubland. They were able to show that the NDVI and PRI 

are good indicators strongly reflecting the species. 

 

So far, those studies were focusing on plant leaves only and there are no plant phenology 

monitoring was carried out based on plant reproductive organs spectral signal as they believed 

flower spectral signal are weak and it is impossible to monitor plant phenology especially in high 

heterogeneous urban landscape (Chen et al. 2009). However, by utilizing high spatial resolution 

and hyperspectral remote sensing data and availability of spectral mixture analysis in remote 

sensing technique, plant spring phenology of urban plant can be identify more accurately based on 

plant reproductive organ spectral signal. In the following subsections, the fundamental concepts 

related to the extraction of biophysical parameters of vegetation, particularly in identifying 

vegetation species from spatial and spectral aspects were discussed. 
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3.1 Plant spectral characteristics 

 

 

Most of the studies at the initial stage are focused on spectra measured from leaves only. 

(e.g. Miller & O’Neill 1997; Daughtry 2001). Some later studies have selected components of 

plant stands such as branches of tree, stacks of branches, barks and soil (e.g. Williams 1991). 

Detailed plant characteristics, such as the structure of plant canopies and their physiological 

condition may valuable in monitoring plant physiological status (Avissar 1996). However, there 

are less studies focused on plant reproductive organs to monitor plant physiological status. This is 

may be because of spectral signal characteristics of plant reproductive organs are weak and not 

suitable to be used in high heterogeneous urban landscape. Nevertheless, exploration on spectral 

properties of plant reproductive organs are important as it may contribute to spectral reflectance at 

crown canopy level. In addition, flowering status of plant could reflect ecological process in 

assessing plant phenological response to global warming (Chen et al. 2009). Herold et al. (2004) 

suggest that the visible region of the electromagnetic spectrum provides the most prominent 

spectral information required for separating urban land cover materials. Moreover, most of 

researchers found that visible and near infrared are the most pertinent spectral region to identify 

vegetation (Gates et al. 1965). Thus, plant reproductive organs may also have their sensitive 

spectral regions as leaves. Therefore, in order to carry out spectral analysis in monitoring plant 

phenology, the knowledge on factor’s that controlling plant reflectance is important. 
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There are few dominant factors controlling leaf reflectance in the region from 0.35 to 2.6 

μm, namely various leaf pigments in the palisade mesophyll, including the chlorophyll a and b, 

and β-carotene. Pioneering research demonstrated the importance of understanding how pigments, 

internal scattering and leaf water contents affects the reflectance and transmittance properties of 

leaves  (Gausman et al. 1969; Gates et al. 1965; Allen and Richardson 1968; Knipling 1970). The 

spectral reflectance characteristic of healthy, green vegetation for the wavelength interval 0.4-2.6 

μm is shown in Figure 3-1. It shows that the primary chlorophyll absorption bands occur at 0.43-

0.45μm and 0.65-0.66μm in the visible region while the primary water absorption bands occur at 

0.97, 1.19, 1.45, 1.94, and 2.7μm.  
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Figure 3-1: Spectral properties of a healthy, green vegetation for the wavelength interval 0.4 to 2.6 μm (after Hoffer, 1978) 
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3.2 Plant spatial characteristics 

 

As been discussed in previous section, there are few factors that influenced plant spectral 

reflectance. Other than the factors that dominate plant spectral reflectance, there are also other 

attributes at leaf, branch and canopy level that affect the spectral properties of plants. At leaf scale, 

the spectral reflectance recorded was controlled by (1) leaf biochemical properties (e.g water, 

photosynthetic pigments, structural carbohydrates) which create wavelength specific absorption 

features and (2) leaf morphology (e.g. cell-wall thickness, air spaces, cuticle wax) that affect 

photon scattering (Asner 1998; Dar a. Roberts et al. 2004). Spectral variability at visible region 

are low due to strong absorption by chlorophyll (Cochrane 2000). The spectral response at near 

infrared gives high transmittance and reflectance result from photon scattering within leaf air-cell 

wall interfaces, such as in spongy mesophyll (Grant, 1987; Woolley, 1971). In shortwave infrared 

1 (SWIR1) and shortwave infrared 2 (SWIR2), water absorption tends to obscure other absorption 

features produced by biochemical constituents (e.g., lignin and cellulose) (Asner, 1998). 

 

At the branch scale, the spatial arrangement of canopy elements (for example, leaves, 

shoots, reproductive organs, bark) and their light-absorbing and scattering properties dominate. 

The electromagnetic radiation scatters among these components will tend to increase the 

expression of leaf biochemical absorption features, especially within crowns with large, densely-

distributed and/or horizontally-oriented leaves (Asner, 1998). Relative to leaf scales, these factors 

are known to increase branch-scale spectral variability and enhance separability of certain 

vegetation and broadleaf trees (Roberts et al., 2004). This has been proven by Fung et al. (1998) 
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by using a laboratory derived, branch-scale hyperspectral data (400–900 nm, 90 bands) and a linear 

discriminant classifier to discriminate 12 subtropical tree species. 

 

  The electromagnetic radiation scattering received by the sensors at canopy scale was 

depended on architectural arrangement of vegetation and other non-vegetation components that 

exist within the canopy (Asner, 1998). Aardt and Wynne (2007) have shown that the spectrum 

within visible, near infrared and shortwave infrared regions are useful for discriminating species 

of temperate forest conifer and hardwood species when using in situ crown-scale hyperspectral 

data (sunlit sides of crowns). By using the spectral derivatives analysis, the best overall 

classification accuracies of 84% were achieved for conifer species and 93% for hardwood species. 

Cochrane (2000) provides the investigation of tropical forest crown-scale hyperspectral data for 

automated species recognition (350–1050 nm data). The study used laboratory spectra from 11 

tree species to simulate branch and crown scales. From the study, it was proven that the species 

discrimination was possible at crown scales, while the accuracy decrease at branch and leaf scales. 

Crown-scale spectra were best separated in the visible-near infrared transition (i.e., the ‘‘red 

edge’’) and near infrared regions.  

 

 Most studies carried out at leaf, branch and canopy level focused on plant leaves in forest 

and no study was discovered on flowering plant in urban landscape like cherry blossoms. Cherry 

blossom was grouped into two type of cherry blossom which is (1) the flower blooms before the 

leaf flushing and (2) the flower blooms as the leaf flushed. Many studies have reported the factors 

that controlling plant flowers (e.g. Chittka & Shmida 1994; Arnold et al. 2010) where flower also 

have similar characteristics that control its spectral reflectance. For example, pigments existed in 
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the flower (e.g. anthocyanin and carotenoid) was the factor that controlling spectral reflectance. 

However, no further study was carried out at flower, branch and canopy level of flowering plant.   

 

 

3.3 Temporal changes in plant characteristics 

 

 

Temporal changes in plant characteristics play an important role in identification of plant 

types or plant biophysical parameters extraction from remotely sensed data. Intimate knowledge 

of plants temporal phenological cycle is necessary for selecting the most appropriate date for data 

collection especially for flowering plant phenology.  

 

Plant spectral reflectance properties can be influenced by background soil or understory 

materials present that cause spectral properties different due to different in plant percent canopy 

closure, soil moisture, and biomass. Discrimination of two different plant types is possible when 

the proportion background materials present within instantaneous field of view. The amount of 

understory background materials present is largely a function of the stage of the plant in its 

phenological cycle. Thus, identification of phenological cycle characteristics of flowering plant at 

initial stage is essential in identifying tree species using remotely sensed data. This information is 

then used to determine the optimum time of the year to collect the remotely sensed data when 

discriminating one vegetation type from another.  
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There is another important temporal factor which cannot be overlooked, that is, the plant 

productive growth period. All vegetation needs water to grow. The productive growth period is 

always associated with the most intense periods of precipitation and associated cloud cover. As a 

result, the identification of the optimum date of remotely sensed data must be planned using the 

phenological calendar with the consideration of spectral limitation, as passive mode remote 

sensing always has cloud coverage problem. If considerable clouds free being an important criteria, 

then higher temporal resolution sensor may be needed. It is useful to review the phenological 

cycles of both natural plant systems and managed agricultural systems in order to gain an insight 

as how important the cycles are when attempting to use remote sensing to extract the vegetation 

biophysical parameters (Jensen, 2000). 

 

However, monitoring plant phenological cycle using remotely sensed data was challenging 

especially for monitoring spring phenology in urban area. Spatially and spectral extend dataset are 

needed in order to monitor spring phenology in urban area due to multiple land cover type in urban 

ecosystems may cause mixed pixel. Nevertheless, not all high spatial resolution satellite image has 

temporally frequent data. Therefore, spectral mixture analysis (SMA) approach might be usable in 

monitoring spring phenology in urban ecosystems. According to Keshava and Mustard (2002), 

spectral unmixing is a process of decomposing mixed pixels into a collection of constituents 

spectra or endmembers and a set of corresponding fractions called abundances which indicates the 

proportions of each endmembers in a scene. Endmembers are spectra that is a proxies for materials 

on the ground and normally it’s corresponds to familiar microscopic object in the scene (Keshava 

and Mustard 2002; Adams and Gillespie 2006). 
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3.4 Hard and soft classifications 

 

 

Image classification approaches have been used to identify tree species and their 

composition (Foody and Cutler 2006) to detect land use changes (Kerr & Ostrovsky 2003; Munyati 

2000), and to identify plant conditions (Zhang et al. 2014) based on the spectral signal of canopy 

greenness. Two approaches have been used in previous studies: (1) hard classification and (2) soft 

classification. Hard classification selects the class label with the greatest likelihood of being 

correct and unambiguously assigns each pixel to a single class (Schowengerdt, 2006; Foody, 

2010). The decision boundaries of the feature space are well defined for hard classification. In soft 

classification, pixels are assigned based on the relative abundance of each class in the spatially and 

spectrally integrated multi-spectrum of each pixel (Schowengerdt, 2006).Therefore, the decision 

boundaries of the feature space are considered fuzzy (Schowengerdt, 2006) in soft classification 

because each pixel can have multiple or partial class memberships (Foody, 2002 and Wang 1990). 

Due to its ability to assign multiple classes to a single pixel, soft classification has been widely 

used to monitor mineral, soil, and vegetation status, especially in highly heterogeneous areas, 

because it can divide multiple spectral responses within a pixel and provide proportional 

information for each class. 

 

Spectral mixture analysis (SMA) a part of soft classification approach can be implemented 

without constrains (e.g., Harsanyi & Chang 1994), but physically meaningful abundance estimates 

are often obtained by constraining the coefficients to sum to unity and to be positive (Adams et al. 

1993). The accuracy of SMA is often quantified based on the fit between the modeled and observed 
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mixed spectral signals. Model fit can be assessed by an error metric such as the residual term ε 

(Rogge et al. 2006) or the Root Mean Square error (RMSE; Roberts et al. 1998). In cases where 

accurate ground reference data are available, the suitability of the selected endmembers and the 

quality of the subpixel abundance estimates can be assessed more reliably by checking the 

discrepancy between the estimated and real endmember fractions (Plaza et al. 2004). The fraction 

abundance error (Rogge et al., 2006; Somers et al. 2009) and the coefficient of determination 

(Elmore et al. 2000; McGwire 2000; Zhang et al. 2004) are widely used discrepancy measures. 

 

 

3.5  Linear Mixed Model 

 

 

According to Somers et al. (2011), generally mixed pixels can be modelled either by using 

linear mixed model (LMM) or nonlinear mixed model (NLMM). Mixed pixels can be considered 

as linear if the features or mixtures of the pixels components appeared in spatially segregate pattern 

as shown in Figure 3-2 (Keshava and Mustard, 2002). Figure 3-2 shows that the spectral 

reflectance appeared in systematic linear combinations without interference from others 

reflectance. This systematic linear combination of mixtures known as macroscopic mixtures 

(Heinz and Chang, 2001; Singer and McCord, 1979). However, systematic reflectance is 

depending on the heterogeneity of the land surface and it should be spatially segregate pattern. 

High heterogeneity of ground surface may affects the systematic linear combinations of spectral 

reflectance due to reflectance scatterings from other materials existed in that area.  



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Linear mixed model theory 

(Modified from Bioucas-Dias et al., 2012) 
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 To achieve satisfactory of abundance results, two abundances constrain should be taken 

into considerations which are (1) non-negativity and (2) sum-to-one (Raksunthorn and Du, 2010; 

Raksunthorn and Du, 2009; Chen et al., 2013). Raksunthorn and Du (2009) stated that LMM may 

provide satisfactory results as it ignoring multiple scattering effects but, too many endmembers 

involved in LMM may result abundances estimations error as the model sensitive to the noise, 

atmospheric contamination and trivial spectral variations. LMM has been utilized in many types 

of applications study such as mineral soil (Mustard & Pieters, 1987, 1989; Nash & Conel, 1974; 

Shipman & Adams, 1987) and vegetation (e.g. Arai, 2008; Borel & Gerstl, 1994; Chen & Vierling, 

2006; Huete, 1986; Ray & Murray, 1996; Roberts et al., 1993; Somers et al., 2009; Zarco-Tejada 

et al., 2001). Although LMM has obvious advantage, in some situations, it may be not appropriate 

due to multiple light scattering effects especially when observing complex vegetated surfaces 

(Chen et al., 2013; Ray and Murray, 1996). Therefore, LMM might be not giving encourage results 

to study phenological pattern of flowering due to the complexity of tree structure and soil 

background effects especially trees in tropics which have high density of forested area. High 

complexity of tree structures needs more than two endmembers to decompose mixed pixel problem 

and may cause multiple light scattering from other endmembers. Therefore, nonlinear mixed 

model is better to be used to study phenological pattern of flowering plant.  
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3.6  Endmember selection 

  

 

 Endmember selection plays an important role to obtain optimum results of Spectral 

Mixture Analysis (SMA)(Somers et al., 2011; Elmore, 2000) especially in plant phenological 

studies. As stated in previous section, too many endmembers may cause misleading unmixing 

output. Raksuntorn and Du (2010) said that endmembers selections also depending on the number 

of bands of the data used. The number of endmembers cannot exceed the number of bands. As the 

hyperspectral data was used for the study, the number of endmember can be more than two but if 

multispectral data were used, the number of endmember cannot exceed than two endmember 

(Raksunthorn and Du, 2009).  

 

 Thus, many types of endmembers selection method have been proposed to fulfil SMA 

requirement for example N-FINDR (Winter, 1999), pixel purity index (PPI, Boardman et al., 

1995), and virtual endmembers (Tompkins et al., 1997).  Endmember also can be defined by 

building spectral library based on the spectral reflectance collected using spectro-radiometer (e.g. 

Hassan and Hashim, 2011; Asner and Lobell, 2000; Roberts et al., 1998).  

 

 

 

 

 



29 

 

 

3.7 Endmember variability in plant 

 

 

 SMA provides fractions estimates accuracy that always affected by residual spectral errors 

caused by inaccurate atmospheric corrections, insufficient signal-to-noise ratio and model 

structure input (Borel and Gerstl, 1994). Bateson et al. (2000) add that SMA might be 

compromised by variation of canopy structure and biochemistry when a single endmember 

spectrum represents top-of-canopy reflectance. Meanwhile Asner (1998) emphasized that plants 

reflectance would be influenced by primarily functions of tissue (leaf, woody stem, and standing 

litter), optical properties of the plants itself, canopy biophysical attributes (e.g. leaf and stem area, 

leaf and stem orientation and foliage clumping), soil reflectance, illumination condition and 

viewing geometry. Thus, for flowering phenology study that applying SMA, biochemical of the 

flower should be extract first for endmember selection and to avoid endmember variability during 

SMA process.  

 

Endmember variability reduction has been used to achieve abundance optimization.  

Endmember variability can be classified into two types (1) variability within an endmember class 

(intra-class variability) (Somers et al., 2011) and (2) the similarity among endmember (inter-class 

variability) (Zhang et al., 2006). For plant applications, the main problem usually classified as 

inter-class variability due to similarity of spectral reflectance among endmembers. For example, 

crops and weeds spectral reflectance almost similar in Somers et al. (2009) study. Thus, the 

accuracy of classification would be low. Gong and Zhang (1999) stated that spectral reflectance 

similarity among endmembers may lead to unstable inverse matrix and hampers the estimation 
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accuracy. Numerous of studies regarding endmember variability reduction approaches have been 

carried out as reviewed by Somers et al. (2011).  

 

 

3.8 Summary 

 

 

 Plant phenology study has been carried out by many scientists using remote sensing 

technology. However, most of the studies are fully utilized spectral information of plant leaves. 

On the other hand, most of them are utilizing normalized different vegetation index (NDVI) to 

monitor plant phenology. There are few studies are focusing on spring phenological event using 

NDVI and some of studies have utilized hyperspectral data to monitor plant phenology. However, 

there are no study use spectral information of reproductive organ which may also contribute to 

spectral reflectance at branch to crown level as most scientist believed that plant reproductive 

organs have weak spectral signal. In addition monitoring spring phenological event in urban 

ecosystems using coarse spatial resolution was challenging as it contain multiple land cover types 

that cause mixed pixels. Thus, utilizing spectral mixture analysis (SMA) might be one of solution 

to monitor spring phenological event by using spectral information of plant reproductive organs. 

In order to achieve abundance satisfactory in SMA, an endmember selection is important to be 

taken into considerations especially for plants phenological studies. This is because plants have 

complex structure where every single part of plants may reflect the radiance from sun towards 

sensor including chemical content in the plants. Therefore, for spring phenology study, endmember 

variability reductions plays a crucial role in SMA as flower may contains similar water content 
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and chemical with other parts of the tree. Most of the studies reviewed mostly focused on canopy 

layer of the plants including nonphotosythetic part and soil. However, flower has been neglected 

as it gives weak reflectance especially in visible spectrum but flower may reflect high reflectance 

in infrared spectrum as it contains water.  
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Chapter 4 

Remote Detection of Flowering Somei Yoshino (Prunus × yedoensis) in an 

Urban Park using IKONOS Imagery: Comparison of Hard and Soft 

Classifiers  

 

 

 

4.1 Introduction 

 

Plant phenology is gaining attention as an important indicator of global and local climate 

change. Ground observations on a large spatial scale are expensive and time consuming, so 

remotely sensed data have been used to detect changes in plant phenology, such as leaf-out, 

senescence and dormancy (Reed et al. 1994; Zhang et al. 2003; Zhang et al. 2001), and flowering 

(Zhang et al. 2003; Delbart et al. 2006; Ahl et al. 2006; Testa 2014). Most studies have focused on 

changes in basic vegetation indices, such as the Normalised Difference Vegetation Index (NDVI) 

(Zhang et al. 2003; Delbart et al. 2006; Ahl et al. 2006). However, vegetation indices do not utilise 

the full information content of remotely sensed imagery in the way that image classification 

methods can (Foody and Cutler 2006), especially for phenological events. Vegetation indices 

typically focus on certain spectral bands that represent the spectral reflectance of canopy 

greenness, and therefore, provide little information on flowering status, flower abundance, and 

flowering dates (Chen et al. 2009). Moreover, the spectral bands used by vegetation indices may 
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sometimes represent ground features such as soil that can cause errors in classifying land cover 

type (Huete 1988).  

 

 Image classification approaches have been used to identify tree species and their 

composition (Foody and Cutler 2006), to detect land use changes (Kerr and Ostrovsky 2003; 

Munyati 2000), and to identify plant condition (Zhang et al. 2014) based on the spectral signal of 

canopy greenness. Two approaches have been used in previous studies: (1) hard classification and 

(2) soft classification. Hard classification selects the class label with greatest likelihood of being 

correct and unambiguously assigns each pixel to a single class (Schowengerdt 2007; Foody 2002). 

The decision boundaries of the feature space are well defined for hard classification. In soft 

classification, pixels are assigned based on the relative abundance of each class in the spatially and 

spectrally integrated multi-spectrum of each pixel (Schowengerdt 2007). Therefore, the decision 

boundaries of the feature space are considered fuzzy (Schowengerdt 2007) in soft classification 

because each pixel can have multiple or partial class membership (Wang 1990; Foody 2002). Due 

to its ability to assign multiple classes to a single pixel, soft classification has been widely used to 

monitor mineral, soil, and vegetation status, especially in highly heterogeneous areas, because it 

can divide multiple spectral responses within a pixel and provide proportional information for each 

class. 

 

 Cherry blossoms of Prunus species flower synchronously in the spring in temperate zones 

of the Northern Hemisphere. Cherry blossoms are of interest because they provide social and 

economic benefits from cherry blossom viewing, and they provide important information on the 
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long-term impacts of climate change (Aono & Saito, 2010; Aono, 2014). However, identification 

of cherry blossoms is challenging because urban environments are highly heterogeneous and the 

flowers produce a weak spectral signal. Therefore, an initial hypothesis can be made where soft 

classifier approach may be more useful to identify cherry blossoms in urban areas due to its ability 

to separate multiple spectral responses from different land cover types.  

 

 In this study, the ability of hard and soft classifiers to identify cherry blossoms in an urban 

landscape from high spatial resolution images was explored. The most common cherry cultivar in 

Japan, Somei Yoshino (hereafter SY) (Prunus × yedoensis) was chosen, for identification of cherry 

blossoms. Maximum Likelihood (ML) was used as a hard classification method and Mixture 

Tuned Matched Filtering (MTMF) as a soft classification method. The accuracy of these two 

classifiers using was compared high-spatial-resolution IKONOS imagery of an urban park in 

Tokyo, Japan. 

 

 

4.2  Materials and Methodology 

 

4.2.1 Study site 

 

The study was conducted in Yanagisawanoike Park, Hachioji City, Tokyo, Japan 

(35°37’06.28” N, 139°22’36.17” E, altitude 128 m). The dominant tree cultivar in the park is a 
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deciduous cherry, Somei Yoshino (Prunus × yedoensis). It is mixed with other cherry cultivars, 

such as Kanzakura (Prunus sato-zakura ‘Sekiyama’), Mamezakura (Prunus incisa), and 

Shidarezakura (Prunus sapchiana), as well as other deciduous trees, such as Japanese red pine 

(Pinus densiflora) and hornbeam (Carpinus laxifolia), and evergreen trees, including camphor 

(Cinnamomum camphora), Chinese evergreen oak (Quercus mysinaefolia), and Japanese black 

pine (Pinus thunbergii). The mean canopy size of the flowering SY trees was 5 m and the mean 

height was 3 m.   

 

4.2.2 Materials  

 

4.2.2.1 Remotely sensed data 

 

A multispectral IKONOS image [four bands: blue (445–516 nm), green (506–595 nm), red 

(632–698 nm), and near infra-red (NIR; 752–853 nm)] with 4-m resolution was used. The 

IKONOS data were recorded over the study area on 1st April 2006 and were purchased from Pasco, 

Japan. The image was chosen because SY was in full bloom at the time, according to information 

provided by the Japanese Meteorological Agency (JMA). The purchased data were radiometrically 

corrected and geo-referenced to the Universal Transverse Mercator (UTM) coordinate system, 

zone 54, WGS84 datum. Reflectance data conversion was conducted on the image to estimate 

areas of blooming SY. To avoid multiple spectral responses, asphalt roads and lakes were masked 
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using a threshold approach. Each features of the study site in IKONOS image were firstly digitized 

and overlaid in Google Earth and were measured approximately. 

 

4.2.2.2 Spectral data collection 

 

To validate the spectral reflectance of flowering SY in the IKONOS image, we collected 

spectral reflectance data of flowering SY in Yanagisawanoike Park using a spectroradiometer 

(ASD Fieldspec Pro) in April 2014. The data were collected at a spectral range of 0.35–2.5 µm 

with a spectral interval of 3.3 nm. The spectral reflectance of ten flowers from five blooming SY 

individuals were measured in a laboratory under dark conditions using a spectroradiometer 

mounted at a nadir position 20 cm above the target with a 25° field of view. Ten readings for each 

sample was recorded and calculated the average of spectral data. The sensor was calibrated using 

a white Spectralon panel prior to data collection. 

 

4.2.2.3 Ground data collection  

 

In addition to the spectroradiometer measurements, XY-coordinates of flowering SY trees, 

soil, dry grass, and evergreen trees was collected using a handheld GPS unit (Garmin GPSmap 

60CSx) on 1st April 2014. According to the park manager and Google Earth, the SY trees on this 
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date were the same as in the 2006 imagery. We used these coordinates as reference data to assess 

classification accuracy. 

 

4.2.3 Methodology 

 

4.2.3.1 Methods used to identify flowering SY 

 

Two types of image classification were used to identify flowering SY from IKONOS 

imagery: hard classification and soft, or fuzzy, classification. Maximum Likelihood (ML) was 

used for hard classification, as it has been widely used for many purposes, such as discrimination 

of tree species (Dian et al. 2013; Miao et al. 2011). Mixture Tuned Matched Filtering (MTMF) 

was used for soft classification because it has been used to identify targets in highly heterogeneous 

areas, such as urban areas, by decomposing the pixel into its constituent classes and estimating the 

proportion of each class.  

 

4.2.3.1.1 Maximum Likelihood Classification 

 

To obtain optimal classification using ML, the spatial and spectral information for a set of 

training pixels was first examined. We collected spatial information on texture using the Gray 

Level Co-occurrence Matrix (GLCM) method on the IKONOS image with a 3×3 window. The 
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mean, variance, entropy, homogeneity, contrast, dissimilarity, second moment, and correlation of 

pixels for each training area was calculated (Fig. 4-1). Because there was spatial variability and 

contrast among classes, textural analysis was used in addition to the spectral information to 

improve the classification results.  
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Figure 4-1: Mean values of textural features calculated from training pixels. Textural analysis conducted on the IKONOS image 

included mean, variance, entropy, homogeneity, contrast, dissimilarity, second moment, and correlations for each class. 
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Spectral information from training pixels of the IKONOS image was extracted (Fig. 4-2). 

The spectral pattern of each class varied enough to discriminate the classes. Dry grass had higher 

reflectance, and evergreen trees had lower reflectance, compared to flowering SY. However, the 

spectral pattern and magnitude of soil and evergreen trees were almost identical. Therefore, we 

conducted a spectral separability test to determine the distinctness of each class. 

 

 

Figure 4-2: Mean spectral signature of the IKONOS image used to select training areas for each 

class. 
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Transform Divergence (TD) was applied to the IKONOS image to select the features with 

the greatest degree of statistical separability. TD is used to evaluate spectral variability among 

classes of training areas. A TD value of 1.90–2.00 indicates good to excellent separation between 

classes, while a value <1.70 indicates poor class separation (Jensen 2005). The TD results 

demonstrated good class separability (TD = 2.00) between flowering SY, soil, dry grass, and 

evergreen trees. However, the TD value was 1.73 for flowering SY and dry grass and 1.83 for 

flowering SY and evergreen trees, indicating weak separabililty of these classes. Soil and 

evergreen trees had even lower separability, with a TD value of 1.65. However, classes with lower 

separability were able to distinguish based on spatial evaluation (Fig. 4-1). Therefore, flowering 

SY, soil, dry grass, and evergreen trees was used as the training classes for ML classification. To 

obtain optimal accuracy of the ML classification, the four spectral bands of the IKONOS imagery 

was supplemented with four bands of local texture information (variance). Thus, a total of eight 

bands were used in this classification. 

 

2.3.1.2 Mixture Tuned Matched Filtering 

 

MTMF is a linear process of unmixing that is widely used to identify plant species (Dehaan 

et al. 2007; Parker Williams and Hunt 2002; Mitchell and Glenn 2009). There are two phases in 

the MTMF algorithm: the Matched Filter (MF) calculation to estimate abundance, and the Mixture 

Tuning (MT) calculation to identify false-positive results.  
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MT assesses the probability of an MF estimation error for each pixel based on mixing 

feasibility. Abundances in MTMF must obey two critical feasibility constraints: (1) they must be 

non-negative, and (2) the abundances for each pixel must sum to one. Calculated infeasibility 

represents the distance of the pixel from the line connecting the target spectrum and the 

background mean, measured in terms of standard deviations using the appropriate mixing 

distribution for the MF score of that pixel. MT and MF scores can be jointly interpreted to provide 

good sub-pixel detection and false-positive rejection (Boardman and Kruse 2011).  

 

The endmember of MTMF is a spectrum representing ground surface materials (Adams 

and Gillespie 2006). In this study, we assigned a single endmember for MTMF classification of 

flowering SY by selecting ten pure pixels of flowering SY. We averaged the spectral data from 

the IKONOS imagery for these ten data points to create a single composite target spectra that was 

used as the endmember for MTMF classification.  

 

2.3.2 Infeasibility scores 

 

Infeasibility scores are used to confirm the classification of flowering SY from the MTMF 

classifier. The best match is indicated by an MF score close to one and an infeasibility score close 

to zero (Sugumaran et al. 2007). However, according to Brelsford and Shepherd (2014), certain 

spectral signatures can generate large positive MF scores that are indicated as false positives in 

MTMF. In this study, the cumulative distribution function (CDF) was used to identify an 
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infeasibility score for 36 points where flowering SY was confirmed by GPS ground-truthing. 

These 36 points were distributed across 40 pixels in the IKONOS imagery. The MF scores of these 

40 pixels was assigned to five groups to identify the best infeasibility score, which lies between 

0.01 and 0.1 and represents the highest MF score (0.8 ≤ MF ≤ 1.2) (Fig. 4-3).
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Figure 4-3: Best infeasibility scores for 36 points of flowering SY used to identify the feasibility of Matched Filter (MF) scores. 
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2.3.3 Accuracy assessment   

The accuracy of MTMF and ML classification of flowering SY was assessed by comparing 

to ground-truthed data. Both user’s and producer’s accuracy for both classification methods was 

calculated. According to Congalton (1991), producer’s accuracy is the ability of the IKONOS 

imagery to classify a certain target (number of individual classes correctly classified / total number 

of reference data), while user’s accuracy is the probability that a classified pixel actually represents 

that category (number of pixels classified on the map / number of pixels in the image that actually 

represent that category). The percentage of all classes correctly classified was evaluated using 

overall accuracy and the kappa coefficient, which measures the level of agreement of the overall 

accuracy. The overall accuracy and kappa coefficient was calculated as in Eq. 4-1 and 4-2: 

 

𝑶𝑨 =
∑ 𝒏𝒌𝒌

𝒒
𝒌=𝟏

𝒏
 

(4-1) 

 

 

𝐾̂ =
𝑛 ∑ 𝑛𝑘𝑘 − ∑ 𝑛𝑘+ × 𝑛+𝑘

𝑞
𝑘=1

𝑞
𝑘=1

𝑛2 − ∑ 𝑛𝑘+ × 𝑛+𝑘
𝑞
𝑘=1

 

(4-2) 
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where 𝑞 is the number of rows in the matrix, 𝑛𝑘𝑘  is the number of observations in row k and 

column k of the error matrix, 𝑛𝑘+  and 𝑛+𝑘  are the marginal totals of row k and column k, 

respectively, and 𝑛 is the total number of observations. 

 

  The number of flowering SY trees in Yanagisawanoike Park is limited by the presence of 

a lake. This made it impossible to take a random sample of at least 50 plots for each land cover 

class, which is ideal. Laba et al. (2010) had a similar problem due to the limited areas of certain 

vegetation classes, and suggested using the largest possible number of plots. The numbers of 

training and test pixels used for each class in ML and MTMF classification are shown in Table 4-

1. 

 

Table 4-1: Number of training pixels and test pixels for each class for ML and MTMF classification. 

 ML classification MTMF classification 

Training pixels Test pixels Test pixels 

Flowering SY 10 36 36 

Soil 12 40 40 

Dry grass 18 40 40 

Evergreen trees 15 40 40 
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4.3 Results 

 

The percentages of each land cover feature in the IKONOS image of the park were: 19% 

SY trees, 19% asphalt roads, 18% deciduous trees, 17% evergreen trees, 15% pedestrian roads, 

8% grass areas, and 4% lake (Fig. 4-4a). 

 

The MF scores, which represent the abundance of pixels in each category, ranged from 

-2.698 to 2.947 (Fig. 4-4b). Pixels representing masked asphalt road and lake had negative MF 

scores. Thus, the MF scores were interpreted as zero target abundance, similar to previous studies 

(Sankey et al. 2010; Mundt, Streutker, and Glenn 2007; Robichaud et al. 2007). The 36 points of 

flowering SY were distributed across 40 pixels with 0.8 ≤ MF ≤ 1.2 (Fig. 4-4b), indicating more 

than 80% flowering SY per pixel. Pixels with MF scores < 0.8 represented bare soil and MF scores 

> 1.2 represented dry grass and evergreen trees. Infeasibility scores from the MTMF classification 

ranged from 0.01 to 16.854. Each MF score in the MTMF classification had its own infeasibility 

score that indicated the class to which the pixel belonged. Pixels identified as flowering SY had 

infeasibility scores ranging from 0.001 to 0.1. 

 

The IKONOS image used in this study had high variation and contrast among the training 

classes. Therefore, we supplemented the image with four grey level co-occurrence (variance) 

bands for the ML classification. However, the TD showed that separability of flowering SY, dry 
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grass, and evergreen trees was poor. The ML classification identified most of the soil pixels as 

evergreen trees (Fig. 4-4c), even though texture analysis was conducted before ML classification.  

 

The MTMF classification had 62.2% overall accuracy and a kappa coefficient of 0.507, 

compared to 48.7% overall accuracy and a kappa coefficient 0.321 for the ML classification. 

User’s accuracy of the MTMF classification of flowering SY (48.1%) was higher than that of ML 

classification (39.4%). The poor overall accuracy of the ML classification was primarily due to 

misclassification of soil (user’s accuracy: 37%, producer’s accuracy: 25%). ML misclassified 

60.6% of flowering SY as dry grass or evergreen trees (Fig. 4-4c). However, the producer’s 

accuracy of the MTMF classification (72.2%) was lower than that of the ML classification 

(77.7%). MTMF tended to misclassify flowering SY as dry grass or soil. 
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Figure 4-4: Land classification and identification of flowering SY in Yanagisawanoike Park. (a) Dominant 

features of the study area, (b) MF scores of MTMF classification (red colour represents flowering SY with 

MF scores ranged from 0.8 to 1.2), and (c) ML classification of the IKONOS image. 
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4.4 Discussion  

 

Results obtained indicate that, in terms of overall accuracy and Kappa coefficient, MTMF 

classified flowering SY in an urban park more accurately than ML. However, the producer’s 

accuracy of the MTMF classification was slightly lower than the ML due to misclassification of 

flowering SY pixels as soil or dry grass (Table 4-2). This may be due to the limited number of 

available bands for ML (four bands for IKONOS). MTMF can achieve higher classification 

accuracy by using hyperspectral data. William and Hunt (2002) demonstrated that MTMF 

classification worked well to identify leafy spurge in hyperspectral Airborne Visible Infrared 

Imaging Spectrometer (AVIRIS) images. In addition, the existence of an endmember with a 

stronger signal than flowers, such as dry grass in this study, may have limited the user’s accuracy 

of MTMF classification. Therefore, additional endmembers may be needed to improve the 

performance of MTMF for classifying flowering SY trees. 

 

In contrast, the ML classifier identified flowering SY with relatively high producer’s 

accuracy (Table 4-2).  However, misclassification of soil as evergreen trees may be the cause of 

the low overall accuracy. Most of the pixels representing soil were assigned as evergreen trees, 

and pixels of deciduous trees were often assigned as soil. Cherry blossoms precede the leaf flushing 

of other deciduous trees, which had no leaves at the time of the imagery. Because soil has higher 

reflectance than branches or trunks, deciduous trees were often misclassified. Therefore, adding a 

training class for deciduous trees could improve the accuracy of ML classification.  
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 Plant leaves, rather than flowers, have often been used (Zhang et al. 2003; Delbart et al. 

2006; Ahl et al. 2006) to observe plant phenology from remotely sensed data because the spectral 

signal of flowers is generally weaker than that of leaves. We confirmed that cherry blossoms of 

SY have weaker spectral signals than dry grass (Fig. 4-1), but MTMF classification has 

considerable potential in terms of enabling their accurate separation (Fig. 4-4).  

 

4.5 Summary 

 

Results suggest that MTMF classification is more accurate than ML classification for 

identifying plant flowering phenology in a highly heterogeneous urban landscape. However, the 

number of spectral bands can limit the producer’s accuracy of MTMF classification. Therefore, 

utilisation of hyperspectral data with high spatial resolution such as AVIRIS might be useful to 

identify flowering phenology in urban ecosystems. 
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Table 4-2: Accuracy assessment for Maximum Likelihood (ML) and Mixture Tuned Matched Filtering (MTMF) 

classifications of flowering SY trees. The values for each class represent the number of ground-truthed points used to 

evaluate the accuracy of classification. 

ML Classifier 

Class Label 

Reference 

Sum 

User ̕s 

accuracy 

(%) 

Overall 

accuracy 

(%) 

Kappa 

coefficient A B C D 

Somei Yoshino A 28 7 20 16 71 39.4 48.7 0.321 

Soil B 1 10 2 2 22 37   

Dry grass C 5 3 18 2 28 64.2   

Evergreen Trees D 2 20 0 20 42 47.6   

Sum  36 40 40 40 156    

Producer’s 

accuracy (%) 
 77.7 25 45 50     

MTMF Classifier 

Class Label 

Reference 

Sum 

User ̕s 

Accuracy 

(%) 

Overall 

accuracy 

(%) 

Kappa 

coefficient A B C D 

Somei Yoshino A 26 10 10 8 54 48.1 62.2 0.507 

Soil B 5 26 5 5 41 63.4   

Dry grass C 5 4 25 5 39 64.1   

Evergreen Trees D 0 0 0 20 20 100   

Sum  36 40 40 40 156    

Producer’s 

accuracy (%) 
 72.2 65 62.5 50     
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Chapter 5 

Inter-Specific Differences in Spectral Properties of Flowers among 45 

Cherry Cultivars 

 

 

 

  5.1 Introduction 

 

Cherries (members of the Prunus) are the most popular ornamental trees in Japan and have 

been cultivated for more than 1000 years (Flower Association of Japan 1982; Kuitert 1999). There 

are 200 traditional cultivars that are known in Japan (Kobayashi 1992), and they show diverse 

floral characteristics (Kato et al., 2014).  The long history of cultivation has caused significant 

confusion over the origins of these cultivars, and Kato et al. (2014) suggested that morphological 

variations among flowering cherry cultivars may arise through a complex sequence of 

hybridizations.   

 

Hyperspectral imagers, currently available on airborne platforms, provide increased 

spectral resolution over existing space-based sensors that can document detailed information on 

the distribution of vegetation community types, and sometimes species (Zomer et al. 2009). 

Current efforts using today’s remote sensing satellites may not have sufficient resolution, either 

spatially or spectrally, to monitor flowering cherries conditions. For example, within a Landsat 
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image (30 m resolution) a majority of pixels are mixtures of several plant species or spectral 

response from others. Increasing the number of ‘‘pure pixels’’ through improved spatial resolution 

removes a large source of error in the remote sensing analysis.  

 

Spectral matching techniques can be used to identify species or vegetation types based on 

spectral data collected in the field (Underwood 2003), through laboratory analysis (Schmidt and 

Skidmore 2003), or extracted directly from the images (Underwood et al., 2006). Developing 

spectral libraries is the key to improving our capacity to utilize the full mapping potential from 

these new sources of data provided by airborne and advanced space-borne hyperspectral imagers. 

 

Moreover, the spectral reflectance signature of living organisms provides important 

information to evaluate their biological characteristics and physiological status. Hyperspectral 

imaging techniques have been recently focused due to improvement of usability.  Therefore, 

several studies have been conducted to examine the effectiveness of the hyperspectral techniques 

in biological sciences (Matsuda et al. 2012). Some studies attempt to measure leaf pigments such 

as chlorophyll, carotenoid, and anthocyanin in identification of biological and physiological status 

of plant (Ustin et al. 2009, Lichtenthaler 1987). Commonly, identification of biological and 

physiological status of plant in most studies utilized hyperspectral sensing at landscape and canopy 

levels using remotely sensed satellite data. However, there are few studies on plant materials 

except leaves.  
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In-situ hyperspectral measurement is needed to evaluate spaceborne or airborne 

hyperspectral information especially identifying biological and physiological status of urban 

flowering plant like cherry blossoms.  Therefore, detail in-situ hyperspectral measurement is 

needed to obtain concrete spectral data of plant materials such as flower, leaves, buds and branch. 

Thus, two types of spectral measurements of flowering cherry blossoms were carried out in this 

study by using (1) plant probe and (2) pistol grip methods. Initial hypothesis of using these two 

different methods can be made where the measured spectral reflectance at petal level were 

consistent with actual cherry blossoms flower colour than that of branch level.  

 

In this study, the relationship between spectral properties of cherry cultivars and visual 

characteristics was identified. Colours of cherry blossoms flowers were evaluated using 

hyperspectral radiometer and spectral properties of flowering cherry cultivars were determined. 

Then, colours of cherry blossom flowers were evaluated using established vegetation indices. 

 

5.2 Materials and Methodology  

 

5.2.1 Study Site 

 

Forty five cherry blossoms cultivars samples were collected in Tama Forest Science 

Garden (TFSG) managed by Forestry and Forest Products Research Institute (FFPRI) (Figure 5-

1). TFSG was located at the foot of Mount Takao, Hachioji, Tokyo, Japan (35°38'46.41"N, 
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139°16'44.06"E, altitude 3.6 km). TFSG is comprised of cherry tree preservation forest, 

arboretums and experimental forest. The size of cherry tree preservation forest in TFSG is around 

8-ha.  This cherry tree preservation forest contains over 1,600 cherry trees gathered from all over 

Japan. These include cultivated varieties handed down from before the Edo Era and clones of cherry 

trees designated as protected species (Outline of Tama Forest Science Garden, 2013).  
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(Map not to scale) 

Figure 5-1: Tama Forest Science Garden, Hachioji managed by FFPRI Tama.
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5.2.2 Materials 

 

5.2.2.1 Sample collection 

 

 Forty five cherry cultivars samples were collected in TFSG and one cultivar was collected 

near Tokyo Metropolitan University campus (Table 2-1). Those cultivars have been classified into 

twelve taxonomic groups as listed in Table 2-1 (Kato et al. 2014). Those cultivars are comprised 

of wild and cultivated cherry blossoms. Spectral properties of all cultivars were measured and 

morphological effects of cherry cultivars were investigated.  

 

5.2.2.2 Spectral data acquisition 

 

Two approaches were used to acquire spectral data of forty five flowering cherry cultivars: 

(1) by using plant probe (Figure 5-2a) and (2) pistol grip (Figure 5-2b). One or two petals of each 

cultivar spectra were acquired by using plant probe where the petal was placed within the clip of 

the plant probe. The sensor of plant probe were calibrated using Spectralon panel. Spectral of each 

cultivar was recorded ten times and the average spectral was used in further analyses. The purpose 

of acquiring spectral data of petal for each cultivar using plant probe is to estimate the chemical 

contents in each cultivar petal. 
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Figure 5-2: Spectral data acquisition of forty five flowering cherry cultivars using (a) plant probe and (b) pistol grip. 

 

a) 

25° 

b) 
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Meanwhile, pistol grip was used to measure spectral reflectance of flowering cherries 

branch. Spectral data of each cultivar was generated in the laboratory under dark conditions by 

using pistol grip mounted at a nadir position with a 25° field of view and height of 20 cm above 

the target with a single 75W halogen lamp as a source of energy (Figure 5-2b). For each cultivar, 

10 readings were recorded. Before the recording of each sample, the sensor was calibrated using a 

white Spectralon panel (Dian et al. 2013). 

 

5.2.2.3 Morphological data 

 

To measure effect of morphological characteristics, all cultivars were classified into four 

main colours of cherry flower which are light pink, pink, white and green based on published book 

by Parks and Open Space Association of Japan and Sakura database provided by FFPRI, Japan 

(http://db1.ffpri-tmk.affrc.go.jp/sakura/home.php). The amount of flowers, leaves and twigs were 

calculated for each colour group (Figure 5-7). Pearson’s chi-square test used to identify the 

relationship between flowers, leaves and twigs compositions for each colour group. 

 

To identify the relationships of cherry cultivars spectral properties with other cherry 

cultivar biological properties (i.e. chemical content in the petal), few vegetation indices were used 

in order to obtained information on chemical content in the flower petal that represents colour of 

cherry blossoms flower by using spectral information.  
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5.2.2.4 Colour extraction using cherry blossoms spectral properties 

 

Before develop a new vegetation index for distinguishing cherry flower colours, 

established vegetation indices (VIs) were first used to test the ability of flower spectral signal to 

provide flower colour information. This is due to weak flower spectral signal (Chen et al. 2009). 

Thus, to identify cherry blossoms colour using spectral properties of cherry flower established VIs 

in Table 5-1 were used. Each vegetation index represent colour of cherry blossoms colours; green 

represents Modified Chlorophyll Absorption Index (MCARI) represent green colour, pink 

represents Modified Anthocyanin Index (MARI) and yellow represents Carotenoid Reflectance 

Index (CRI). Vegetation indices used in this study were just used to evaluate colour estimation 

using spectral properties of cherry blossoms flower and not to measure chemical in the flower.  

  

Table 5-1: Vegetation indices used in this study to identify cherry blossoms colours. 

 Vegetation index expression Reference 

Modified 

Chlorophyll 

Absorption Index 

(MCARI) 

 

1.5 [2.5(𝜌800−𝜌670)−1.3 (𝜌800−𝜌550)]

√(2×𝜌800+1)2−(6×𝜌800−5×√𝜌670)−0.5

    (1) 

 

(Haboudane  

2004) 

Modified 

Anthocyanin 

Index (MARI) 𝜌800 (
1

𝜌550
) − (

1

𝜌700
)                       (2) 

(Gitelson et al. 

2001) 

Carotenoid 

Reflectance Index 

(CRI)  (
1

𝜌510
) − (

1

𝜌550
)                    (3) 

(Gitelson et al. 

2002) 
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5.2.2.5 Statistical Analyses 

 

Statistical analyses were performed using the software ‘‘R’’ (R Development Core Team 

2012). Spectral reflectance differences at petal and branch levels were evaluated using one-way 

ANOVA. Meanwhile, relationship among colours was estimated using VIs and were examined 

using Pearson’s correlation test. 

 

  Colours estimated using VIs were evaluated using generalized linear mixed models 

(GLMMs) with log-link functions and gaussian error distributions using the R package, lme4 

(Bates et al., 2013). Actual cherry blossoms flower colour groups were treated as fixed effects, 

while cherry cultivars were treated as a random effects. Post hoc tests of pairwise differences 

among colour groups were carried out using multiple comparisons for general parametric models 

with the R package, multcomp (Hothorn, Bretz, and Westfall 2008). 
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5.3 Results 

 

5.3.1 Spectral properties of 45 cherry blossoms cultivars 

 

Raw spectral reflectance of cherry blossoms cultivar ranging from 350 nm to 2500 nm 

obtained by plant probe and pistol grip approaches shown in Figure 5-3. Figure 5-3a shows spectral 

signature of cherry blossoms petal by using plant probe that is also known as petal level 

measurement. Most of cherry blossoms cultivars absorb ultraviolet reflectance (350nm-380nm). 

Spectral pattern of flowers of each cultivar varies at visible wavelength (400nm to 700nm) and 

spectral pattern at infrared wavelength is similar. Meanwhile, spectral reflectance pattern collected 

using pistol grip that also known as branch level are slightly different with plant probe among 

cherry blossom cultivars because at pistol grip level, spectra of the whole branch that contain 

flowers, leaves and branch of cherry blossoms was collected as shown in Figure 5-3b. Spectral 

patterns of cherry blossoms cultivars has high variations among cultivars at visible wavelength 

(400nm – 700nm) (Figure 5-3b). However, spectral absorption at both plant probe and pistol grip 

measurements are the same which is around 1350nm and 1850nm. 
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Figure 5-3: Spectral properties of forty five cherry blossoms cultivars at (a) petal and (b) branch levels. 

a)  

b)  
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5.3.2 Spectral reflectance differences at petal level and branch level 

 

The significant relationship between colours estimated at petal and branch levels was 

evaluated using Pearson’s correlation test. Figure 5-4 show the correlation test result of pink, green 

and yellow elements at petal and branch levels. Results indicate that pink element estimated using 

MARI is significantly correlated at two different types of measurements.  This is because all 

cultivars have pink element at petal and branch levels. Meanwhile, green and yellow elements 

estimated using MCARI and CRI, respectively are not correlated at petal and branch levels because 

only two cultivars have green elements and one cultivar have yellow elements at petal level. 
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Figure 5-4: Relationship identification between spectral reflectance measured using pistol and plant probe for pink, green and yellow elements. 
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5.3.3 Differences among colours estimated using vegetation indices 

 

 Three types of colours were estimated using established VIs at petal and branch levels. 

Significant relationship between colours estimated were identified using Pearson’s correlation test 

at both petal and branch levels. Results showed that there are no significant different among 

colours estimated at petal level. This is due to low pigments concentrations in flower petal 

especially chlorophyll and carotenoid. Conversely, colours estimated at branch levels were 

significantly different among them due to the existence of other plant organs s leaves and twig 

(Figure 5-5). 
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Figure 5-5: Relationship among colours estimated using VI at branch level.
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5.3.4 Evaluation of Cherry blossoms colours using vegetation indices 

 

Forty five cherry cultivars were divided into four types of colours based on published book 

by Parks and Open Space Association of Japan and FFPRI databased. The colours estimated using 

VIs were evaluated.  Results showed that spectral radiometer evaluation of pink element was 

inconsistent from petal to branch level (Figure 5-6). Meanwhile, green and yellow elements were 

consistent at petal to branch levels.  In addition, results showed that spectral radiometer evaluation 

was consistent with the human visual evaluation of cherry flower colour at petal level. Estimated 

green element at petal level was significantly different (z = 66.23, P < 0.001, GLMM) with human 

visual evaluation where green element was higher in green colour cherry blossom flower than 

other colours (z = 22.45, P < 0.001, multiple comparison for GLMM). While pink element was 

significantly different with human visual evaluation (z =  61.95, P < 0.001, GLMM)  where pink 

element was significantly higher in pink (z = 34.23 , P < 0.001, multiple comparison for GLMM) 

than other colors. Conversely, yellow element did not significantly different with the actual cherry 

blossoms flower colours (Figure 5-6a).  

 

Contrary to results at petal level, spectral radiometer evaluation at at branch level was 

inconsistent with human visual evaluation (Figure 5-6b). Results showed that green element was 

significant (z= 23.53, P < 0.001, GLMM) where green element in green cherry blossoms flower at 

branch level was significantly higher than other cherry blossoms flower colours (z = 5.63, P < 

0.001, multiple comparisons for GLMM). Spectral radiometer evaluation of pink element did not 
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significantly different with human visual evaluation (z = 3.762, P = 0.288, GLMM). This result 

was inconsistent with pink at petal level as pink element estimated using VI able to show pink 

colour of cherry flower. Spectral radiometer evaluation of yellow element also did not show any 

significant different with human visual evaluation (z = 0.606, P = 0.8951). This result was 

consistent with yellow element estimated at petal level. 
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Figure 5-6: Cherry blossoms colour estimation using spectral properties for green, light pink, pink and 

white cherry cultivars measured at (a) petal level and (b) branch level. Different lowercase letters indicate 

significant differences in means among colours (p < 0.05, multiple comparisons for GLMM).

Green Light 

pink 
Pink White 

a) Petal level b) Branch level 

c 

a 

b 

b 

P
in

k
 (

M
A

R
I)

 

c b 

b 

a 

G
re

en
 (

M
C

A
R

I)
 

c 

a a b 

Y
el

lo
w

 (
C

R
I2

) 

Green Light 

pink 
Pink White 

Visual evaluation 

S
p

ec
tr

a
l 

ra
d

io
m

et
er

 e
v
a
lu

a
ti

o
n

 



72 

 

 

5.4 Discussion 

  

  5.4.1 Spectral properties of 45 cherry cultivars  

 

All cherry blossoms cultivars are absorbing ultraviolet signals for both plant probe (at 

360nm – 380nm) and pistol grip (at 350nm – 380nm) measurements. Chittka et al. (1994) stated 

that generally flower spectral reflectance have high ultraviolet absorption than the one with 

ultraviolet reflections. In addition, spectral variations at petal and branch level are different. This 

is may be due to spectral measurement condition. At petal levels, only spectral reflectance of 

flower petal was measured. Contrary to petal level, spectral reflectance of whole branch was 

collected. Thus, multiple spectral responses were recorded by hyperspectral radiometer sensor and 

caused higher spectral variations than at petal level measurement. However, spectral absorption at 

both plant probe and pistol grip measurements are the same which is around 1350nm and 1850nm. 

These absorptions are due to water content in both flowers and leaves at petal and branch levels 

measurement (Allen and Richardson 1968; Knipling 1970). 

 

5.4.2 Evaluation of Cherry blossoms colours using spectral properties 

 

 Results indicated that spectral radiometer evaluation of pink element was inconsistent from 

petal to branch level (Figure 5-6). This is because of weak spectral signal of flower petal at petal 

level and high spectral contributions of high amount of leaves and twigs at branch level (Figure 5-
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7). Meanwhile, green and yellow elements were consistent at petal to branch levels (Figure 5-6). 

This is because at both petal and branch levels, green element is high in flower petal at petal level 

and leaves at branch level. Moreover, yellow element is consistent from petal to branch level 

because flower petal at petal level do not have any yellow pigment or contain less yellow pigment.   

 

In addition, results showed that spectral radiometer evaluation was consistent with the 

human visual evaluation of cherry flower colour at petal level (Figure 5-6a). Pink and green 

elements are consistent with human visual evaluation because flower petal has pigment that is 

sensitive to the vegetation indices used. In addition, no other spectral contribution in spectral 

properties of flower at petal level as it has been measured using plant probe with 0° instantaneous 

field of view. Contrary to results at petal level, results showed that spectral radiometer evaluation 

of pink element at branch level was inconsistent with human visual evaluation. This may be due 

to leaf amount is higher in light pink at branch level (Figure 5-7). However, the amount of leaves 

and flowers are slightly different but pink element unable to show the actual flower colour at 

branch level. This is because cherry blossoms flower spectral signals are weaker than leaves 

spectral signals (Chen et al. 2009).   

 

Conversely, spectral radiometer evaluation of green element was consistent at branch level 

because in the green groups, all attributes (leaves and flower) was green in colour. Even light pink 

group has the highest amount of leaves (Figure 5-7), light pink group do not have highest green 

element because in light pink group, some leaves was red in colour and some flower’s sepals are 
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also red in colour. In addition, there are spectral contribution from light pink and white flower that 

mixed at branch level as the spectral reflectance was measured using pistol grip with 25° 

instantaneous field of view. Meanwhile, results of yellow element at branch level was consistence 

with results at petal level. This may be due to flower and leaves colour which may be have slightly 

low of yellow element.   
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Figure 5-7: Characteristics of each colour group that represents cherry cultivars proportions and compositions of twigs, flowers and 

leaves. 
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5.5 Summary 

 

Results suggest that spectral properties of cherry cultivars can be used as an endmember in 

image classification approach to obtain more accurate cherry cultivars identification. Besides that, 

results suggest that spectral radiometer evaluation of pink element at petal level was inconsistent 

with the evaluation at branch level. While spectral radiometer evaluation of green and yellow 

elements at petal level was consistent with evaluation at branch level. However, spectral 

radiometer evaluation of pink and green element was consistent with human visual evaluation. 

Contrary to petal level, spectral radiometer evaluation of pink element was inconsistent with 

human visual evaluation. While spectral radiometer evaluation of green element was consistent 

with human visual evaluation.      
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Chapter 6 

General Discussion and Conclusion 

 

6.1 Issues on urban plant monitoring using remotely sensed data 

 

As discussed in Chapter 3, urban plant monitoring using remotely sensed data might face 

mixed pixel problem due to complex urban ecosystems. Therefore, remote sensing experts have 

carried out a big number of studies focused on spectral mixture analysis (SMA) to identify and 

monitor urban plant phenology from leaf, branch to canopy scale. However, a few studies focused 

on a plant reproductive organ and most of studies are focused on leaves and structure of the tree. 

This is most probably because most of the urban plant that been focused on was non-flowering 

plant or evergreen plant.   

 

Conversely, the situation in Japan is relatively different as the flowering plant is the 

dominant plant planted in urban area and flowering cherry is the most common ornamental plant 

that can be found in urban area. This is because flowering cherries are of interest and one of the 

source of social and economic benefits. In addition, ecologists in Japan has used flowering cherries 

phenological cycle information as one of the indicators in monitoring long-term impacts of climate 

change in Japan. Thus, monitoring flowering cherries is vital.  
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Nevertheless, it is believed that flowering cherries identification and monitoring in urban 

area using remotely sensed data might face the same problem as monitoring evergreen and non-

flowering plant in urban area. Thus, Chapter 3 was suggested that spectral properties of 

reproductive organ at flower, branch and canopy level must be identified as it can be used as 

endmember in SMA. 

   

6.2 Identification of flowering cherry at landscape level 

 

Urban plant status identification is vital to perpetuate urban ecosystems sustainability. 

Therefore, it is important to monitor them frequently. However, monitoring flowering plant in 

urban ecosystems using satellite remotely sensed data is a challenge due to high heterogeneity of 

urban features and weak spectral signal of flowering plant especially flowering cherries. Many 

studies has been carried out in identifying and monitoring urban plant using satellite remotely 

sensed data. Remote sensing experts have examined numerous of methods to identify and monitor 

urban plant such as by using image classification methods and vegetation indices.  

 

Nevertheless, most of studies on urban plant monitoring using those methods are focused 

on evergreen and non-flowering plant. Therefore, study on flowering plant identification using 

satellite remotely sensed data was carried out as in Chapter 4. In this chapter, hard and soft 

classifiers were used which is Maximum Likelihood classification (MLC) as hard classifier and 
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Mixture Tuned Matched Filtering (MTMF) as soft classifier. This study was carried out to identify 

the ability of hard and soft classifiers in identifying flowering cherry trees in an urban park.  

 

Results of this study indicate that soft classifier identify flowering cherry tree more 

accurate than hard classifier.  This is because limited number of bands of IKONOS image has limit 

the accuracy of classification. Moreover, low accuracy achieved due to the existence of dry grass 

in study area.  Therefore, additional endmember is needed to achieve higher accuracy. However, 

hyperspectral image is needed in order to add number of endmember.  

 

In addition, results of this study also suggest that further study on spectral properties of 

flower at flower, branch and canopy level is important to be carried out as suggested in Chapter 3 

since this study has proven that flower spectral signal can be mixed with other spectral signal.  

 

6.3 Spectral properties difference of 45 cherry blossoms cultivars 

 

Hyperspectral sensing is able to provide information on physiological status of flowering 

plant. Commonly, physiological status of evergreen or non-flowering plant was carried out. Thus, 

we believed that hyperspectral sensing is able to provide physiological status of flowering plant 

like flowering cherry. Flowering cherries have a unique characteristics as it have been cultivated 

since long time ago and have caused morphological and phylogenetic diverse characteristics (Kato 

et al., 2014).  
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 In Chapter 5, the investigation on spectral properties of flowering cherry has been carried 

out. Results of this study indicate that all colours estimated at petal level was consistent with actual 

cherry blossoms flower colours (Figure 5-6a). Conversely, only green and yellow elements were 

consistent with actual cherry blossoms colour at branch level due to leaves existence (Figure 5-

6b). While pink element are not significantly different with actual cherry blossoms colours due to 

weak spectral signals of flowers at branch level. However, only pink element was inconsistent 

from petal to branch levels. While green and yellow elements is consistence at petal to branch 

levels (Figure 5-6) .This is because some of cherry cultivars flower were green in colour and at 

branch level, some cherry cultivars have leaves which contain pigment that represent green 

element. As a conclusion, spectral properties of cherry blossoms flowers at petal level can be used 

as endmember to improve soft classification accuracy while monitoring flowering cherry. 

 

 As a conclusion, results obtained in this thesis strongly suggest that remote sensing 

techniques may have the potential to monitor and estimate urban flowering plant spring phenology 

event although urban landscape is highly occupied by numerous land cover types. Results in this 

thesis might be useful to monitor spring phenological event of flowering plant in urban area as it 

could improve cherry blossoms management especially in highly heterogeneous areas as cherry 

blossoms could provide social and economic benefits towards nature-based tourism. Besides that, 

this study would be important input to improve satellite development in future. 
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