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Abstract. In this thesis, we consider stationary drift-diffusion equations us-
ing energy methods. More precisely, we consider divergence form elliptic equa-

tions with drift terms −div (A∇u) + b · ∇u = µ in a domain Ω ⊂ Rn (n ≥ 3).

First, we give Harnack type inequalities. Next, we give global and local weak-
type L1 − Ln/(n−2),∞ estimates and also give pointwise potential estimate

iterating local version of L1 − Ln/(n−2),∞ estimates. Moreover, we derive a

pointwise lower bound of non-negative supersolutions. These estimates have
many applications. For example, the pointwise estimate immediately gives a

necessary and sufficient condition for continuity of solutions, and also, we can
prove Wiener’s criterion using these estimate.
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CHAPTER 1

Introduction

In this thesis, we consider pointwise behavior of weak solutions to divergence
form stationary linear drift-diffusion equations with force terms

(1) Lu = −div (A(x)∇u) + b(x) · ∇u = µ in Ω,

where Ω is an open set in Rn with n ≥ 3. Our assumption on A is standard. The
matrix valued function A = A(x) belongs to (L∞(Ω))n×n and there is a positive
constant ν > 0 such that

(A(x)ξ) · ξ ≥ ν|ξ|2 ∀ξ ∈ Rn, x ∈ Ω.

We assume that the right-hand side µ is expressed as µ = µ+−µ− each of which is
a finite non-negative Radon measure in H−1(Ω) = (H1

0 (Ω))
∗. If µ ∈ L2n/(n+2)(Ω),

then µ is immediately decomposed as above. The aim of this thesis is to give quan-
titative regularity estimates for weak solutions to (1) under appropriate conditions
on b. Throughout the thesis, we assume that vector field b belongs to (L2

loc(Ω))
n,

but we give stronger conditions for b depending on situations. Roughly speaking,
we will assume that |b|(x) = O(|x|−1) in the sense of integral average and it satisfies
a geometric condition or a smallness condition. We assume that b is expressed as

b = b0 + b1

and
divb0 = 0

in the sense of distributions and b1 is sufficiently ‘small’ with respect to the min-
imum eigenvalue of A. Under these assumptions (see assumptions (21), (38) and
(56) for the precise meaning of this smallness conditions), we will derive the two-
sided pointwise Riesz potential type estimate, which is one of the main results of
this thesis,

(2)
1

C
Iµ2 (x0, R) ≤ u(x0) ≤ C

(
ess inf
B(x0,R)

u+ Iµ2 (x0, 2R)

)
for nonnegative solution to Lu = µ ≥ 0 in B(x0, 2R), where I

µ
2 (x0, R) is a truncated

version of Riesz potential of µ. Later, we will see that its meaning is different
respectively when deriving estimates type of (4), (2). Once these estimates have
been obtained, we get (2) immediately by combining these estimates. If b = 0,
more generally, if divb = 0, then b1 = 0 and it is small in any senses, thus, we
can prove the two-sided pointwise potential bounds (2). However, it is necessary
again to treat equations directly when we prove each estimate. Each of one is not
automatically derived from the previous one. In this thesis, we derive (2) using a
method of nonlinear potential theory. This method has two advantages. First, by
using energy methods, we can use the divergence-free structure of drifts naturally.
Secondly, this method does not rely on the existence of Green’s function, so, our
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6 1. INTRODUCTION

method can apply to elliptic equation with strongly singular drifts directly. In
the proof, we give new global and local weak-type L1 −Ln/(n−2),∞ estimates. See,
Theorem 50, Theorem 53 and Theorem 64. The local weak-type estimate (Theorem
53) seems new even in the case of b = 0 whenever A 6= I (see, [31] and [8]). Also,
using one of these estimates, we give a shorter proof of the estimate in [5, 36].

To think about why the divergence-free condition is effective, we shall recall
the following flow independent energy estimate for solutions to Lu = µ with homo-
geneous Dirichlet boundary data:

‖∇u‖L2(Ω) ≤ C‖µ‖H−1(Ω).

If divb = 0, then we can take C = ν. Indeed, testing the equation by u, we have∫
Ω

A∇u · ∇udx+

∫
Ω

(b · ∇u)udx = 〈µ, u〉(H−1(Ω),H1
0 (Ω)).

However, the second term in the left-hand side vanishes by integration by parts, so,
we can get the desired flow-independent estimate. Such a cancellation is often used
in analysis of equations related with fluid dynamics. In recent years, Berestycki,
Hamel, and Nadirashvili [4] proved a uniform flow-independent lower bound of the
first Dirichlet eigenvalue. In recent years, Berestycki, Kiselev, Novikov and Ryzhik
proved flow-independent global Lp − L∞ (p > n/2) bounds, and applied them to
semilinear problems [5, 36]. For other usages of the divergence-free condition, see
also [71, 4, 59, 44, 42]. There are related results for parabolic equations. For
example, Carlen and Loss [9] gave an on-diagonal heat kernel estimate with the op-
timal constant, and applied them to two dimension Navier-Stokes equations. Osada
[65] introduced consideration of generalized divergence form and gave an Aronson
type estimate for parabolic equation with divergence-free drifts. He rewrote the
parabolic equations with divergence free drifts ∂tu+ b · ∇u−4u = 0 as

∂tu− div ((I + V )∇u) = 0

using an anti-symmetric matrix valued function V (x) = (Vij(x)) ∈ (L∞(Ω))n×n

which satisfies b(x) = (bi(x)) =
(∑n

j=1 ∂jVij(x)
)
. Note that the same idea is often

found in the different context by many authors. After years, Liskevich and Zhang
[52] gave an Aronson-type estimates for weak fundamental solutions to parabolic
equations with singular drifts. Their assumptions on drifts are closely related to
our assumption (38). See also [43, 67]. Nazarov and Ural′tseva [64] gave parabolic
Harnack inequality for equations with divergence-free space-time singular drifts
using Morrey spaces. Friedlander and Vicol [23] and Seregin, Silvestre, Šverák and
Zlatoš [68] gave parabolic Harnack inequality for equations with divergence-free
L∞(BMO−1) drifts.

We briefly discuss the history and the background of the subject on quantitative
properties of weak solutions to divergence form elliptic equations. First of all, we
recall the basics of weak solutions of divergence form linear elliptic equations with
bounded measurable coefficients

(3) −div (A(x)∇u) = 0.

From theory of functional analysis and calculus of variation, existence theorems
of weak solutions of these equations are not difficult, but its regularity estimates
had been an important problem in the first half of last century since Hilbert’s 19th
problem. In 1957, De Giorgi [17] proved Hölder continuity of weak solutions. Moser
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[62, 63] gave a new proof of De Giorgi’s theorem using Harnack’s inequality. He
proved the following: If u is a nonnegative weak solution to (3) in Ω, then

(4) ess sup
B(x0,R/2)

u ≤ C ess inf
B(x0,R/2)

u

whenever B(x0, 2R) ⊂ Ω, where C is a constant depending only on n, ν and
‖A‖L∞(Ω). De Giorgi’s theorem follows from this inequality and an iteration argu-
ment directly. Note that their proofs do not depend on the modulus of continuity
of A(x) neither.

After few years, Littman, Stampacchia and Weinberger [53] considered Green’s
function of linear elliptic equations (3) with the homogeneous Dirichlet boundary
condition. In other words, they construct a solution G(x, y) to the Dirichlet prob-
lem with measure data −div (A∇G(x, y)) = δy, where δy is Dirac’s delta measure
centered at y ∈ Ω. They used De Giorgi-Moser’s uniform estimates and solutions of
perturbed equations. They also proved that pointwise behavior of G(x, y) is equiv-
alent to that of the Laplace equation. From the representation formula of Green’s
function of the Laplace equation, they established the Riesz potential estimates

(5) G(x, y) ≤ C|x− y|2−n

and

(6) G(x, y) ≥ 1

C
|x− y|2−n if |x− y| ≤ 1

2
dist(y, ∂Ω).

They also gave Wiener’s boundary regularity criterion using the equivalence of
the Green functions. Their proof of Wiener’s criterion was not quantitative, but,
Maz′ya [56] gave a modulus of continuity of solutions of near boundary at about
the same time. Grüter and Widman [28] introduced a mollified version of Green’s
function and gave another definition of Green’s function. More precisely, they
considered a sequence of functions {Gρ,y}ρ>0 ⊂ H1

0 (Ω) (y ∈ Ω, ρ > 0) such that
each of which satisfies

−div (A∇Gρ,y) =
1

|B(y, ρ)|
1B(y,ρ) in Ω,

moreover, defined Green’s function as the limit G(x, y) = limρ→0Gρ,y(x) using
uniform estimates

(7) ‖Gρ,y‖Ln/(n−2),∞(Ω), ‖∇Gρ,y‖Ln/(n−1),∞(Ω) ≤ C(n)

and ∫
Ω\B(y,R)

|∇Gρ,y|2 dx ≤ C(n)Rn−2 ∀R > 0.

Their construction methods of Green’s function are frequently used at present.
They also gave estimates (5) and (6) directly. Moreover, they gave a Maz′ya-type
estimate using Green’s function. For further results about Wiener’s critrion, see
also [19, 21, 22, 15, 61].

De Girogi and Moser’s arguments do not depend on the linearity of equations,
so, their estimates were immediately extended to solutions to quasilinear equations

(8) −divA(x,∇u) = 0,
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where A : Ω× Rn → Rn is a Carathéodory function which satisfies

|A(x, z)| ≤ L|z|p−1,

A(x, z) · z ≥ ν|z|p,
(A(x, z2)−A(x, z1)) · (z2 − z1) > 0

∀x ∈ Ω, ∀z, z1 6= z2 ∈ Rn

for some constants 1 < p < ∞ and 0 < ν ≤ L < ∞. For example, if A(x, z) =
|z|p−2z, then these conditions are fulfilled, and (8) becomes the p-Laplacian equa-
tion. Existence theorems of weak solutions to these equations follows from theory
of monotone operators. For such weak solutions, we can show Harnack’s inequality
and Hölder continuity: see standard textbooks [51, 41, 47, 25, 26, 33, 55] and
the references therein.

Since these equations are nonlinear, the concept of Green’s function is not
available. However, we can get an analog of (7) using truncated test functions.
By using these estimates and weak convergence methods, we reach the concept of
equation with measure data such as −divA(x,∇u) = δy; see e.g. [6, 37, 3, 7,
16]. Unfortunately, uniqueness of such generalized solutions is not clear in general.
Thus, an appropriate definition of a class of very weak solutions to quasilinear
equations has been treated by many authors. On the other hand, Maz′ya [57] gave
a sufficient condition of the Wiener boundary regularity for quasilinear equations
(8). Necessity of this condition was considered by Lindqvist and Martio [50]. After
years, Kilpeläinen and Malý [37, 38] proved the following two-sided pointwise
estimate: if u is a non-negative solution to the equation −divA(x,∇u) = µ ≥ 0 in
Ω, then,

(9)
1

C
Wµ

p (x0, R) ≤ u(x0) ≤ C

(
inf

B(x0,R)
u+Wµ

p (x0, 2R)

)
whenever B(x0, 2R) ⊂ Ω, where C is a constant depending only on n, ν and L, and
Wµ

p (x0, R) is the Wolff potential of µ which defined by

Wµ
p (x0, R) =

∫ R

0

(
sp−nµ(B(x0, s))

)1/(p−1) ds

s
.

Note that if p = 2, then the Wolff potential is a truncated version of Riesz potential.
They proved necessity of Maz′ya’s condition using the second inequality of (9).
Conversely, sufficiency follows from the first inequality. Trudinger and Wang [70]
gave another proof of (9) for more general equations. For other proofs of this
pointwise estimate, see also [45, 31]. For related results and topics of this estimate,
see textbooks of nonlinear potential theory [33, 55].

Another extension of equations (3) is an equation with lower order terms. This
problem is taken up by quite many authors including Morrey [60]. Quasilinear
equations with lower order terms can also be considered, in fact, the above references
treated such equations. We will focus on linear equations with drift terms. From
standard results, if b ∈ (Lp(Ω))n with p > n then solutions to the equation (1) are
Hölder continuous and Harnack’s inequality holds for nonnegative solutions. Note
that it is not necessary to prove Harnack-type estimates. Indeed, Stampacchia [69]
proved Harnack’s inequality for elliptic equation with small Ln(Ω) drifts. Recently,
Nazarov and Ural′tseva [64] gave a similar estimate for arbitrary Ln(Ω) drifts using
Safonov’s technique [66]. For equations with more general drifts, see also [68, 64,
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29]. Stampacchia also gave existence of Green’s function for elliptic equations with
Lp(Ω) (p > n) drifts. For Green’s function for elliptic equation with drift terms,
see also [14, 35, 40, 42].

Organization of the thesis In Chapter 3, we derive basic properties of super-
solutions and subsolutions to the homogeneous equation Lu = 0. We also give Har-
nack’s inequality for nonnegative solutions. See Theorem 47. In Chapter 4, we prove
a global flow-independent estimate. Moreover, we prove the local L1 − Ln/(n−2),∞

estimate and the potential upper bound (2). See Theorem 53 and Theorem 55.
In Chapter 5, we prove the potential bound of (2). See Theorem 71. Moreover,
we discuss the continuity of solutions and Wiener’s criterion as application of the
potential bounds.
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CHAPTER 2

Preliminaries

1. Notation

We use the following notation in this thesis. Let U and U ′ be open sets in
Rn. For a Banach space X, we denote by X∗ the dual of X. Here, ess supA f and
ess infA f are the essential supremum and essential infimum of f on A.

• B(x0, R) := {x ∈ Rn; |x− x0| < R}.
• {A := Rn \A.
• dist(x,A) := inf{|x− y| : y ∈ A}.
• diamA := sup{|x− y| : x, y ∈ A}.
• |A| := the Lebesgue measure of a measurable set A.
• −
∫
A
f dx := 1

|A|
∫
A
f dx.

• 1A(x) := the indicator function of A.
• f+ := max{f, 0}, f− := max{−f, 0}
• oscA f := ess supA f − ess infA f .
• U ′ b U :⇔ U ′ ⊂ U and U ′ is compact.
• C∞

c (U) := the set of all infinitely-differentiable functions with compact
support in U .

• ∇f = ( ∂f∂x1
, . . . ∂f∂xn

)T , divF :=
∑n
i=1

∂Fi

∂xi
, 4f := div (∇f) =

∑n
i=1

∂2f
∂x2

i
.

The Sobolev space H1(Ω) is the set of all weakly differentiable functions f such
that ‖f‖H1(Ω) is finite, where

‖f‖2H1(Ω) := ‖f‖2L2(Ω) + ‖∇f‖2L2(Ω).

The space H1
0 (Ω) is the closure of C∞

c (Ω) in H1(Ω). We say that a function f
belongs to H1

loc(Ω) if ‖f‖H1(D) <∞ for all D b Ω. We write (H1
0 (Ω))

∗ as H−1(Ω).

Moreover, we introduce the Dirichlet space D1,2(Ω) as follows:

D1,2(Ω) = {u ∈ H1
loc(Ω); ∇u ∈ (L2(Ω))n}.

The space D1,2
0 (Ω) is the completion of C∞

c (Ω) with respect to the norm ‖∇·‖L2(Ω).

From the Poincaré inequality, if Ω is bounded, then D1,2
0 (Ω) = H1

0 (Ω). Below,

when Ω is bounded, we write D1,2
0 (Ω) as H1

0 (Ω). We write the duality pairing

on (D1,2
0 (Ω))∗ × D1,2

0 (Ω) as 〈·, ·〉Ω. Throughout this article, the letters C denote
positive constants whose values may be different at different instances. When the
value of a constant in significant, it will be clearly stated.

2. Sobolev spaces

First, we recall some properties of Sobolev spaces:

Lemma 1 ([33, p.18]). Suppose that ϕ ∈ C1(R), ϕ′ is bounded, and u ∈ H1(Ω).
If ϕ ◦ u ∈ L2(Ω), then ϕ ◦ u ∈ H1(Ω).

11



12 2. PRELIMINARIES

Lemma 2 ([33, p.20]). If u and v belong to H1(Ω), then max{u, v} and min{u, v}
belong to H1(Ω). Moreover,

∇max{u, v}(x) =

{
∇u(x) if u(x) ≥ v(x)

∇v(x) if u(x) ≤ v(x)

and

∇min{u, v}(x) =

{
∇u(x) if u(x) ≤ v(x)

∇v(x) if u(x) ≥ v(x).

In particular, if u ∈ H1
loc(Ω) and k ∈ R, then

∇u = 0 a.e. on {x ∈ Ω; u(x) = k}.

Lemma 3 ([33, p.21]). Suppose that u and v belong to H1(Ω) ∩ L∞(Ω). Then

(1) uv ∈ H1(Ω) ∩ L∞(Ω) and

∇(uv) = v∇u+ u∇v.

(2) If, in addition, u ∈ H1
0 (Ω) ∩ L∞(Ω), then uv ∈ H1

0 (Ω) ∩ L∞(Ω).

3. Riesz potentials and the capacity

Next, we recall properties of Riesz potentials. See also [1, 25, 33, 58, 46].

Definition 4. Let µ be a non-negative Radon measure in Ω. For x0 ∈ Ω and
0 < R ≤ dist(x0, ∂Ω), we define

Iµ2 (x0, R) =

∫ R

0

s2−nµ(B(x0, s))
ds

s
.

Since
∫ R
|x0−x| s

1−n ds = (n−2)−1(|x0−x|2−n−R2−n), by Fubini’s thereom, we

have

Iµ2 (x0, R) =

∫ R

0

s1−n

(∫
B(x0,R)

1{|x0−x|<s} dµ(x)

)
ds

=

∫
B(x0,R)

(∫ R

0

s1−n1{|x0−x|<s} ds

)
dµ(x)

=
1

n− 2

∫
B(x0,R)

(|x0 − x|2−n −R2−n) dµ(x).

Thus, if u is the solution to the Dirichlet problem{
−4u = µ in B(x0, R)

u = 0 on ∂B(x0, R),

then u(x0) = (n − 2)−1Iµ2 (x0, R) (see e.g. [34, p.19]). In particular, for any 0 <
R ≤ ∞,

Iµ2 (x0, R) ≤ Iµ2 (x0,∞) =
1

n− 2

∫
B(x0,R)

dµ(x)

|x0 − x|n−2
.
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Lemma 5. Let Rm = 2−mR for m = 0, 1, . . .. Then there is a constant C,
depending only on n and p, such that

1

C
Iµ2 (x0, R) ≤

∞∑
m=0

R2−n
m µ(B(x0, Rm))

≤
∞∑
m=0

R2−n
m µ(B(x0, Rm)) ≤ CIµ2 (x0, 2R).

Proof. We only prove the latter inequality. Since µ is a non-negative measure,
we have ∫ 2R

0

s2−nµ(B(x0, s))
ds

s
=

∞∑
m=0

∫ 2Rm

Rm

s2−nµ(B(x0, s))
ds

s

≥
∞∑
m=0

∫ 2Rm

Rm

s2−nµ(B(x0, Rm))
ds

s

= C(n)

∞∑
m=0

R2−n
m µ(B(x0, Rm)).

By a similar calculation, we can get the first inequality. �

Next, we recall the definition of capacity:

Definition 6. Let Ω be an open set in Rn. For a compact set K ⊂ Ω, we take

∗ cap(K,Ω) := inf

{∫
Ω

|∇ϕ|2 dx; ϕ ∈ C∞
c (Ω), ϕ ≥ 1 on K

}
.

Moreover, for E ⊂ Ω, we define

cap(E,Ω) := inf
E⊂U⊂Ω
U ; open

sup
KbU

∗ cap(K,Ω).

The number cap(E,Ω) is called the capacity of the condenser (E,Ω).

Lemma 7. The set function E 7→ cap(E,Ω), E ⊂ Ω, satisfies the following
properties:

(1) If E1 ⊂ E2, then

cap(E1,Ω) ≤ cap(E2,Ω).

(2) If Ω1 ⊂ Ω2 and E ⊂ Ω1, then

cap(E,Ω2) ≤ cap(E,Ω1).

(3) If E =
⋃∞
i=0Ei ⊂ Ω, then

cap(E,Ω) ≤
∞∑
i=0

cap(Ei,Ω).

Definition 8. We say that a property holds quasieverywhere, abbreviated q.e.,
if it holds except on a set of capacity zero.
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Definition 9. Let Ω be an open set in Rn. A function u : Ω → [−∞,∞] is a
quasicontinuous function in Ω if for every ε > 0, there is an open set V such that
C2(V ) < ε and the restriction of u to Ω \ V is finite and continuous, where C2(V )
is the Sobolev capacity of V which defined by

C2(V ) = inf

{∫
Rn

|u|2 + |∇u|2 dx; u ∈ H1(Rn), u ≥ 1 a.e. in V

}
.

If u ∈ H1(Ω), then the limit

lim
R→0

−
∫
B(x0,R)

u(x) dx = u(x0)

exists and defines u quasieverywhere in Ω. Moreover, we have the following:

Lemma 10 ([33, pp.89-90]). Suppose that u ∈ H1(Ω). Then there exists a
quasicontinuous function v such that u = v a.e. in Ω. Moreover, a function u ∈
H1(Ω) belongs to H1

0 (Ω) if and only if there is a quasicontinuous function v in Rn
such that u = v a.e. in Ω and v = 0 q.e. in {Ω.

4. Lorentz spaces and embedding theorems

Next, we recall the definition of the Lorentz spaces Lp,q(Ω).

Definition 11. For 0 < p ≤ ∞ and 0 < r ≤ ∞, we take

Lp,r(Ω) :=
{
f : Ω → R measurable; ‖f‖Lp,r(Ω) <∞

}
,

where

‖f‖Lp,r(Ω) =

(
p

∫ ∞

0

(
t|{x ∈ Ω; |f(x)| ≥ t}|1/p

)r dt
t

)1/r

and
‖f‖Lp,∞(Ω) := sup

t>0
t |{x ∈ Ω; |f(x)| ≥ t}|1/p.

The space Lp,∞ is also called the weak-Lp space. By definition,

‖|f |q‖Lp,r(Ω) = ‖|f |‖qLpq,rq(Ω).

The quantity ‖ · ‖Lp,∞(Ω) does not satisfy the triangle inequality, in general. How-
ever, it satisfies the quasi triangle inequality

‖f + g‖Lp,∞(Ω) ≤ Cp
(
‖f‖Lp,∞(Ω) + ‖g‖Lp,∞(Ω)

)
.

Moreover, it satisfies the following Fatou-type property (see [27, p.14]); for any
measurable function sequence {fj}∞j=1, we have

(10) ‖ lim inf
j→∞

|fj | ‖Lp,∞(Ω) ≤ Cp lim inf
j→∞

‖fj‖Lp,∞(Ω).

The following Hölder-type inequality is well-known:

Lemma 12 ([27, p.52]). Let 1 < p, p′ <∞ and 1/p+ 1/p′ = 1. Then

(11)

∣∣∣∣∫
Ω

fg dx

∣∣∣∣ ≤ ‖f‖Lp,1(Ω)‖g‖Lp′,∞(Ω).

By using Lorentz spaces, the usual Sobolev’s inequality

‖f‖L2n/(n−2),2(Rn) ≤ S(n)‖∇f‖L2(Rn), ∀f ∈ D1,2
0 (Rn)

is improved as follows:
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Lemma 13 ([2]). Let n > 2. Then, the embedding into Lorentz space

‖f‖L2n/(n−2),2(Rn) ≤ S2‖∇f‖L2(Rn), ∀f ∈ D1,2
0 (Rn)

holds, where

S2 = S2(n) = |B(0, 1)|−1/n 2

n− 2
.

Here, |B(0, 1)| is the Lebesgue measure of the unit ball in Rn.

Recently, the best constant of the following embedding was obtained:

Lemma 14 ([11]). Let n > 2. Then, the embedding into Lorentz space

‖f‖L2n/(n−2),∞(Rn) ≤ S∞‖∇f‖L2(Rn), ∀f ∈ D1,2
0 (Rn)

holds, where

Sp,∞ = n−1/2|B(0, 1)|−1/n

(
1

n− 2

)1/2

.

Remark 15. Since Lp ⊂ Lp,∞ (see [27]), from the usual Sobolev inequality,

the embedding D1,2
0 (Rn) ↪→ L2n/(n−2),∞(Rn) is well-known. Nevertheless, we cite

Lemma 14, because this sharp embedding is useful for our argument. For the ex-
tremal functions of this inequality, see Theorem 2 in [11]. For details, see Theorem
64. On the other hand, as arguments in [54], if Lemma 14 holds, then we can show

the embedding D1,2
0 (Rn) ↪→ L2n/(n−2),2(Rn).

Let us recall the following Marcinkiewicz interpolation theorem:

Lemma 16 ([27, p.56]). Let 0 < r ≤ ∞, 0 < p0 < p1 ≤ ∞ and 0 < q0 < q1 ≤
∞. Let T be a linear operator defined on the set of simple functions on Ω. Assume
that for M0,M1 <∞ the following restricted weak type estimates hold:

‖T (1A)‖Lq0,∞(Ω) ≤M0|A|1/p0 ,

‖T (1A)‖Lq1,∞(Ω) ≤M1|A|1/p1 ,
for all A ⊂ Ω with |A| <∞. Fix 0 < θ < 1 and let

1

q
=

1− θ

q0
+

θ

q1
and

1

p
=

1− θ

p0
+

θ

p1
.

Then there exists a constant M , which depends on K, p0, p1, q0, q1, M0, M1, r
and θ, such that for all functions f in the domain of T and in Lp,r(Ω) we have

‖T (f)‖Lq,r(Ω) ≤M‖f‖Lp,r(Ω).

Lemma 17 ([27, p.63]). Let 1 < p, q, r <∞ satisfy

1

q
+ 1 =

1

p
+

1

r
,

and let 0 < s ≤ ∞. Then for all f ∈ Lq,s(Rn) and g ∈ Lr,∞(Rn),

‖f ∗ g‖Lq,s(Rn) ≤ C(p, q, r, s)‖g‖Lr,∞(Rn)‖f‖Lq,s(Rn),

where (f ∗ g)(x) =
∫
Rn f(x− y)g(y) dy.
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5. Miscellaneous facts

Lemma 18 ([25, p.166]). Let Ω be a convex domain, and let f ∈ W 1,1(Ω).
Suppose that there is a constant M such that∫

Ω∩B(y,r)

|∇f |dx ≤Mrn−1

for all balls B(y, r) ⊂ Ω. Then, there exist positive constants σ0 and C depending
only on n such that ∫

Ω

exp(
σ

M
|u− uΩ|) dx ≤ C(diamΩ)n

whenever σ < σ0|Ω|(diamΩ)−n.

Lemma 19 ([26, p.220]). Let {Um}∞m=0 be a sequence of non-negative numbers.
Assume that

Um+1 ≤ CbmU1+α
m

for all m ≥ 0, where C > 0, b > 1 and α > 0. Assume also that

U0 ≤ C−1/αb−1/α2

.

Then Um → 0 as m→ ∞.

Lemma 20 ([26, p.191]). Let 0 < ρ < R. Let Z(t) be a bounded non-negative
function in the interval [ρ,R]. Assume that for ρ ≤ t < s ≤ R we have

Z(t) ≤ A(s− t)−α + θZ(s)

with A ≥ 0, α > 0 and θ ∈ (0, 1). Then,

Z(ρ) ≤ C(α, θ)A(R− ρ)−α.



CHAPTER 3

Energy estimates and related results

In this chapter, we introduce weak solutions to the equations Lu = µ in Ω using
the divergence structure of equations:

〈Lu, ϕ〉 =
∫
Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx = 〈µ, ϕ〉Ω,

where A and b satisfy

(12) A(x) ∈ (L∞(Ω))n×n, (A(x)ξ) · ξ ≥ ν|ξ|2 ∀ξ ∈ Rn, x ∈ Ω

and

b = b0 + b1, divb0 = 0.

If the bilinear form 〈Lu, v〉 is bounded and coercive, i.e. if

|〈Lu, v〉| ≤ C‖∇u‖L2‖∇v‖L2 ,

1

C
‖∇u‖2L2 ≤ 〈Lu, u〉,

then, from the Lax-Milgram theorem, this operator gives a one-to-one relation
between H1

0 (Ω) solutions and H
−1(Ω) data. Therefore, we can get uniqueness and

existence of weak solutions to Dirichlet problems. Moreover, in the same condition,
we can show Caccioppoli type estimates. Consequently, we obtain some estimates
from De Giorgi-Moser theory. In particular we will prove a Hölder estimate of
solutions (Theorem 44) and a Harnack estimate for nonnegetive solutions (Theorem
47). Our framework allows that b = O(|x|−1). It include equations

(13) Lu = −4u+
βx

|x|2
· ∇u = 0 in Ω = B(0, 1),

where β ∈ R. From Hardy’s inequality∫
Rn

|u|2

|x|2
dx ≤

(
2

n− 2

)2 ∫
Rn

|∇u|2 dx

the bilinear form 〈Lu, v〉 is bounded on H1
0 (Ω). Moreover, if β < (n−2)/2, then by

using the best constant of Hardy’s inequality and integrating by parts, we can show
the coercivity of 〈Lu, v〉. Thus, uniqueness of weak solutions to Dirichlet problems
follows. On the other hand, this equation has a classical solution

(14) u(x) =

{
c|x|2−n+β β 6= n− 2

c log |x| β = n− 2

in Rn\{0}. If β > (n−2)/2, then this solution is a weak solution because u ∈ H1(Ω).
Therefore, uniqueness of weak solutions to the Dirichlet problem does not hold.
Thus, an appropriate smallness assumption is necessary. For further properties of
this operator, see also [48]. Throughout this chapter, we assume the conditions

17
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(17) and (21) on the drift b, which will be explained precisely in Section 1 and
Section 2.

1. Definition of weak solutions

Let us state a first assumption on drift b. Let b ∈ (L2
loc(Ω))

n. We say that

|b|2 belongs to the class of admissible measures M1,2
+ if there is a constant C > 0

which satisfies ∫
Ω

|b|2|ϕ|2 dx ≤ C2

∫
Ω

|∇ϕ|2 dx

for all ϕ ∈ C∞
c (Ω). For b ∈ (L2

loc(Ω))
n with |b|2 ∈ M1,2

+ , we define

(15) |||b|||Ω := inf

{
C > 0;

∫
Ω
|b|2ϕ2 dx∫

Ω
|∇ϕ|2 dx

≤ C2, ∀ϕ ∈ C∞
c (Ω) ϕ 6= 0

}
.

From Theorem 1 in [58, p.189], there is a constant C such that

1

C
|||b|||Ω ≤ sup

K; compact⊂Ω

(
1

cap(K,Ω)

∫
K

|b|2 dx
)1/2

≤ C|||b|||Ω.

From this characterization (or by using a bump function), we have

sup
B(y,2r)⊂Ω

(
1

rn−2

∫
B(y,r)

|b|2 dx

)1/2

≤ C|||b|||Ω.

On the other hand, from a result in [20] (see also [13] and [12]), for any ε > 0,
there is a constant C = C(n, ε) such that

|||b|||Rn ≤ C sup
B(y,r)⊂Rn

(
1

rn−2(1+ε)

∫
B(y,r)

|b|2(1+ε) dx

)1/2(1+ε)

.

Other sufficient conditions are as follows: According to Lemma 13, we have∫
Ω

|b|2φ2 dx ≤ ‖|b|2‖Ln/2,∞(Ω)‖ϕ2‖Ln/(n−2),1(Ω)

= ‖b‖2Ln,∞(Ω)‖ϕ‖
2
L2n/(n−2),2(Ω) ≤ S2

2‖b‖2Ln,∞(Ω)‖∇ϕ‖
2
L2(Ω).

Thus, if b ∈ (Ln,∞(Ω))n, then the quantity |||b|||Ω is finite:

|||b|||Ω ≤ S2‖b‖Ln,∞(Ω).

In particular, if |b(x)| ≤ C/|x − x0|, then |||b|||Ω < ∞. On the other hand, if Ω is
a Lipschitz domain, then we have Hardy’s inequality∫

Ω

|ϕ|2

dist(x, ∂Ω)2
dx ≤ C

∫
Ω

|∇ϕ|2 dx.

Therefore, if |b(x)| ≤ Cdist(x, ∂Ω)−1, then |||b|||Ω < ∞. This vector field b need
not belong to (Ln,∞(Ω))n in general, because it may be strongly singular near the
boundary.

If |||b|||Ω is finite, then, by using Cauchy-Schwarz inequality, we have∣∣∣∣∫
Ω

b · ∇uv dx
∣∣∣∣ ≤ (∫

Ω

|b|2v2 dx
)1/2(∫

Ω

|∇u|2 dx
)1/2

≤ |||b|||Ω‖∇u‖L2(Ω)‖∇v‖L2(Ω)
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for all u ∈ D1,2(Ω) and v ∈ D1,2
0 (Ω). Thus, the bilinear form

(16) 〈Lu, v〉 =
∫
Ω

A∇u · ∇v + (b · ∇u)v dx

is bounded on D1,2
0 (Ω):

|〈Lu, v〉| ≤ (‖A‖L∞(Ω) + |||b|||Ω)‖∇u‖L2(Ω)‖∇‖L2(Ω).

For more sharp sufficient (and necessary) conditions for boundedness of (16), see
[59].

Hereafter, for simplicity of notation, we write

(17) B = ‖A‖L∞(Ω) + |||b0|||Ω, B∗ = B + |||b1|||Ω
and assume that B∗ is finite. Under these boundedness conditions, let us define
weak solutions to Lu = µ as follows:

Definition 21. Let µ ∈ D−1,2(Ω). We say that a function u ∈ H1
loc(Ω) is a

weak solution to the equation Lu = µ in Ω if

(18)

∫
Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx = 〈µ, ϕ〉Ω

for all ϕ ∈ C∞
c (Ω). We say that a function u ∈ H1

loc(Ω) is a weak supersolution to
the equation Lu = µ in Ω if

(19)

∫
Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx ≥ 〈µ, ϕ〉Ω

for all ϕ ∈ C∞
c (Ω), ϕ ≥ 0. Moreover, we say that a function u ∈ H1

loc(Ω) is a
weak subsolution to the equation Lu = µ in Ω if −u is a weak supersolution to the
equation Lu = µ in Ω.

When u ∈ D1,2(Ω), from density of C∞
c (Ω) in D1,2

0 (Ω), (19) holds for all ϕ ∈
D1,2

0 (Ω), ϕ ≥ 0. Similarly, (19) holds if ϕ ∈ D1,2
0 (Ω) has a compact support. From

this fact, if u is a supersolution and a subsolution to the equation Lu = µ in Ω,
then u is a solution to the same equation because∫

Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx =

∫
Ω

A∇u · ∇ϕ+ + (b · ∇u)ϕ+ dx

−
∫
Ω

A∇u · ∇ϕ− + (b · ∇u)ϕ− dx

= 〈µ, ϕ+〉 − 〈µ, ϕ−〉 = 〈µ, ϕ〉.
Conversely, if u is a solution to Lu = µ in Ω, then u is a supersolution and a
subsolution to the same equation.

If u ∈ H1
loc(Ω) is a supersolution to Lu = 0 in Ω, then the distribution

C∞
c (Ω) 3 ϕ 7→

∫
Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx

is non-negative. Thus, there is a unique non-negative Radon measure µ such that

(20)

∫
Ω

ϕdµ =

∫
Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx ∀ϕ ∈ C∞
c (Ω).

The measure µ = µ[u] is called the Riesz measure (or Riesz mass) of u. From the
definition and boundedness of 〈Lu, v〉, for any supsersolution u, µ[u] ∈ D−1,2(D)
whenever D b Ω.
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Definition 22. Suppose that u ∈ H1
loc(Ω) is a supersolution to Lu = 0 in Ω.

We say that a non-negative Radon measure µ = µ[u] is the Riesz measure of u if
(20) holds.

From the assumption on A, we have the following Kato type inequality. Note
that this lemma holds without the coercivity of the bilinear form 〈Lu, v〉.

Lemma 23. Suppose that u is a subsolution to Lu = µ in Ω, where µ is the
measure in H−1(Ω). then u+ is a subsolution to the equation Lu+ = µb{u>0} in Ω.
In particular,

(1) If u is a subsolution to the equation Lu = 0 in Ω, then for any k ∈ R,
(u− k)+ is a subsolution to the equation Lu = 0 in Ω.

(2) If u is a supersolution to the equation Lu = 0 in Ω, then for any k ∈ R,
(u− k)− is a supersolution to the equation Lu = 0 in Ω.

Proof. For k > 0, we takeHk(t) =
1
kTk(t), where Tk(t) = min{max{t,−k}, k}.

Note that for any t > 0, Hk(t) → 1 as k → 0. Fix any non-negative function
ϕ ∈ C∞

c (Ω). Testing the equation by Hk(u+)ϕ, we have∫
Ω

A∇u · ∇(Hk(u+)ϕ) + (b · ∇u) (Hk(u+)ϕ) dx ≤
∫
Ω

(Hk(u+)ϕ) dµ.

Therefore,∫
Ω

A∇u · ∇Hk(u+)ϕdx+

∫
Ω

{A∇u+ · ∇ϕ+ (b · ∇u+)ϕ}Hk(u+) dx

≤
∫
Ω

(Hk(u+)ϕ) dµ.

Let k → 0. Since the first term in the left-hand side is non-negative, the Lebesgue
dominated convergence theorem yields∫

Ω

A∇u+ · ∇ϕ+ (b · ∇u+)ϕdx ≤
∫
Ω

1{u>0}ϕdµ.

This implies the desired assertion. �

The following logarithmic Caccioppoli inequality also holds without the coer-
civity of 〈Lu, v〉:

Lemma 24. Let u ≥ ε > 0 be a positive weak supersolution to Lu = 0 in
Ω. Then, there exists a constant C depending only on B∗/ν such that for any
η ∈ C∞

c (Ω), ∫
Ω

|∇ log u|2η2 dx ≤ C

∫
Ω

|∇η|2 dx.

Proof. Let us choose a test function u−1η2. Then we have

0 ≤
∫
Ω

A∇u · ∇(u−1η2) dx+

∫
Ω

(b · ∇u) (u−1η2) dx.

Therefore,∫
Ω

A∇u · ∇uu−2η2 dx ≤ 2

∫
Ω

A∇u · ∇ηu−1η dx+

∫
Ω

(b · ∇u)u−1η2 dx.

Since ∇ log u = ∇uu−1, we have∫
Ω

A∇ log u · ∇ log uη2 dx ≤ 2

∫
Ω

A∇ log u · ∇ηη dx+

∫
Ω

(b · ∇ log u) η2 dx.



2. THE COMPARISON PRINCIPLE AND EXISTENCE THEOREMS 21

From the Cauchy-Schwarz inequality,

ν

∫
Ω

|∇ log u|2η2 dx ≤ 2‖A‖L∞(Ω)

(∫
Ω

|∇η|2 dx
)1/2(∫

Ω

|∇ log u|2η2 dx
)1/2

+

(∫
Ω

|b|2η2 dx
)1/2(∫

Ω

|∇ log u|2η2 dx
)1/2

.

This implies that ∫
Ω

|∇ log u|2η2 dx ≤ 4
(B∗)2

ν2

∫
Ω

|∇η|2 dx.

We arrived at the desired inequality. �

2. The comparison principle and existence theorems

In general, even if |||b|||Ω is finite, the bilinear form (16) need not be coercive on

D1,2
0 (Ω). However, if |||b1|||Ω < ν, then the bilinear form (16) is coercive on D1,2

0 (Ω)
since

〈Lu, u〉 =
∫
Ω

A∇u · ∇u+ (b · ∇u)udx

=

∫
Ω

A∇u · ∇udx+

∫
Ω

(b0 · ∇u)udx+

∫
Ω

(b1 · ∇u)udx

≥ (ν − |||b1|||Ω) ‖∇u‖
2
L2(Ω),

In particular, when

(21) |||b1|||Ω ≤ ν

2
,

the bilinear form (16) is coercive on D1,2
0 (Ω):

〈Lu, u〉 ≥ ν

2
‖∇u‖2L2(Ω).

For simplicity, hereafter we assume (21).

Lemma 25. Let Ω be a bounded open set. Let u, v ∈ H1(Ω). Suppose that
Lv − Lu is a non-negative measure in H−1(Ω) and (u− v)+ ∈ H1

0 (Ω). Then

(22) u(x) ≤ v(x) for a.e. x ∈ Ω.

Proof. Testing the equation by (u− v)+ ∈ H1
0 (Ω), we have

0 ≤ 〈(Lv − Lu), (u− v)+〉Ω

=

∫
Ω

A∇v · ∇(u− v)+ + (b · ∇v)(u− v)+ dx

−
∫
Ω

A∇u · ∇(u− v)+ + (b · ∇u)(u− v)+ dx,

hence ∫
Ω

A∇(u− v) · ∇(u− v)+ dx ≤ −
∫
Ω

(b · ∇(u− v))(u− v)+ dx.

If (u − v)+(x) 6= 0, then (u − v)(x) = (u − v)+(x). Therefore, from assumption
(21), this implies that (

ν − ν

2

)∫
Ω

|∇(u− v)+|2 dx ≤ 0.
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Since (u− v)+ ∈ H1
0 (Ω), we have u ≤ v a.e. in Ω as required. �

From the theory of variational inequality ([41]), we have the following existence
theorem for obstacle problems:

Lemma 26. Let Ω be a open set. For any measurable function g : Ω → [−∞,∞]
and θ ∈ D1,2(Ω), we define

(23) Kg,θ(Ω) :=
{
u ∈ D1,2(Ω); u ≥ g a.e., u− θ ∈ H1

0 (Ω)
}
.

Let µ ∈ D−1,2(Ω). Then, the variational inequality∫
Ω

A∇u · ∇(v − u) + (b · ∇u)(v − u) dx ≥ 〈µ, (v − u)〉Ω ∀v ∈ Kg,θ(Ω)

has a unique solution u ∈ Kg,θ(Ω) whenever Kg,θ(Ω) 6= ∅.

Proof. This theorem follows from a general theorem in [41, pp24-26,32]. How-
ever, we give a (concrete) full proof for completeness.

Step 1. First of all, we reduce the problem to a simple variational inequality
with parameter. Take

K = (−θ) +Kg,θ ⊂ D1,2
0 (Ω)

and

f = µ− Lθ.
From the assumption on Kg,θ, the set K is closed and convex. Moreover, we de-
compose bilinear form 〈Lu, v〉 as follows:

a0(u, v) =
1

2
(〈Lu, v〉+ 〈Lv, u〉) ,

V (u, v) =
1

2
(〈Lu, v〉 − 〈Lv, u〉) .

For t ∈ [0, 1], we take

at(u, v) = a0(u, v) + tV (u, v).

Since 〈Lu, u〉 ≥ α‖∇u‖2L2(Ω) with α = ν/2,

at(u, u) ≥ α‖∇u‖2L2(Ω)

for all t. Fix t ∈ [0, 1]. Let us show existence of a function u ∈ K such that

(24) at(u, (v − u)) ≥ 〈f, (v − u)〉 ∀v ∈ K,

where f is any functional in D−1,2(Ω). If it is proved that (24) has a solution with
t = 1, then the proof of lemma is complete.

Step 2. We first prove the case of t = 0. Let us consider the minimizing problem

(25) (d :=) inf
u∈K

I(u),

where

I(u) =
1

2
a0(u, u)− 〈f, u〉.

Since

I(u) ≥ α

2
‖∇u‖2L2(Ω) − ‖f‖(D1,2(Ω))∗‖∇u‖L2(Ω)

≥ − 1

2α
‖f‖2(D1,2(Ω))∗ ,
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we have d is bounded from below. Choose {uj}∞j=1 ⊂ K so that

d ≤ I(uj) ≤ d+ j−1.

Then from the parallelogram law ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2,

α‖∇(uj − ui)‖2L2(Ω) ≤ a0(uj − ui, uj − ui)

= 2a0(uj , uj) + 2a0(ui, ui)− 4a0(
1

2
(uj + ui),

1

2
(uj + ui))

= 4I(uj) + 4I(ui)− 8I(
1

2
(uj + ui))

≤ 4(j−1 + i−1).

Thus, {uj}∞j=1 is a Cauchy sequence in K. Let u = limj→∞ uj . Then u ∈ K and
I(u) = d. For any v ∈ K and ε ∈ [0, 1], we have u+ ε(v − u) ∈ K, Since

d

dε

∣∣∣∣
ε=0

I(u+ ε(v − u)) ≥ 0,

it follows that u satisfies (24). Thus, the minimizing problem (25) had a solution
in K. Next we show the uniqueness. Let u1 and u2 be solutions to the same data
f . Then, since

at(u1, (u1 − u2)) ≤ 〈f, (u1 − u2)〉
and

at(u2, (u1 − u2)) ≥ 〈f, (u1 − u2)〉,
we have

α‖∇(u1 − u2)‖2L2(Ω) ≤ at((u1 − u2), (u1 − u2)) ≤ 0.

Thus, the solution is unique.
Step 3. To treat general cases, we use a method of continuity. Assume that

(24) is solvable with t = τ1. Let

M = sup{|V (u, v)|; u, v ∈ D1,2
0 (Ω), ‖∇u‖L2(Ω), ‖∇v‖L2(Ω) ≤ 1}

and fix τ2 > τ1 such that 0 < (τ2 − τ1) < α/M . Let us define the mapping

T : D1,2
0 (Ω) → K by u = Tw if

aτ1(u, v − u) ≥ 〈F (w), (v − u)〉 ∀v ∈ K,

where F (w) is a bounded linear functional on D1,2
0 (Ω) defined by

〈F (w), ϕ〉 = 〈f, ϕ〉 − (τ2 − τ1)V (w,ϕ) ∀ϕ ∈ D1,2
0 (Ω).

Let wi ∈ D1,2
0 (Ω) (i = 1, 2) and ui = T (wi). Then, since

at(u1, (u1 − u2)) ≤ 〈F (w1), (u1 − u2)〉

and

at(u2, (u1 − u2)) ≥ 〈F (w2), (u1 − u2)〉,
we have

‖∇u1 −∇u2‖L2(Ω) ≤
1

α
(τ2 − τ1)M‖∇w1 −∇w2‖L2(Ω)

with α−1(t − τ)M < 1. Thus, T is a contraction mapping on K. Therefore, there
is a unique function u such that

aτ1(u, v − u) ≥ 〈f, (v − u)〉 − (τ2 − τ1)V (u, v) ∀v ∈ K.



24 3. ENERGY ESTIMATES AND RELATED RESULTS

Therefore, (24) is solvable with t = τ2. Iterating this argument, we arrive at the
desired assertion. �

Remark 27. If A is symmetric and divb = 0, then a0(u, v) =
∫
Ω
A∇u · ∇v dx

and V (u, v) =
∫
Ω
(b · ∇u)v dx.

Corollary 28. Suppose that Ω is a bounded open set. Let µ ∈ H−1(Ω), and
let θ ∈ H1(Ω). Then the Dirichlet problem{Lu = µ in Ω

u = θ on ∂Ω.

has a unique weak solution u ∈ θ +H1
0 (Ω).

Definition 29. Assume that Kg,θ(Ω) 6= ∅, where Kg,θ(Ω) is the set defined
by (23). A function u ∈ θ +H1

0 (Ω) is called a solution to the obstacle problem in
Kg,θ(Ω) if ∫

Ω

A∇u · ∇(v − u) + (b · ∇u)(v − u) dx ≥ 0 ∀v ∈ Kg,θ(Ω).

If u is a solution to the obstacle problem in Kg,θ(Ω), then u is a supersolution
to the equation Lu = 0 in Ω. Conversely, if u is a supersolution to the equation
Lu = 0 in Ω, then u is a solution to the obstacle problem in Ku,u(D) for any D b Ω.

Lemma 30. Suppose that u is a solution to the obstacle problem in Kg,θ(Ω).
Let v ∈ H1(Ω) be a supersolution to the equation Lv = 0 in Ω such that min{u, v} ∈
Kg,θ(Ω). Then v ≥ u a.e. in Ω.

Proof. Note that u −min{u, v} = (u − v)+ ≥ 0. From the assumptions, we
have

0 ≤
∫
Ω

(A∇v) · ∇(u−min{u, v}) + (b · ∇v)(u−min{u, v}) dx

−
∫
Ω

(A∇u) · ∇(u−min{u, v}) + (b · ∇u)(u−min{u, v}) dx,

hence

0 ≥
∫
Ω

A∇(u− v) · ∇(u− v)+ dx+

∫
Ω

(b · ∇(u− v))(u− v)+ dx.

This implies that

0 ≥
∫
Ω

A∇(u− v)+ · ∇(u− v)+ dx+

∫
Ω

(b · ∇(u− v)+)(u− v)+ dx

≥ ν

2

∫
Ω

|∇(u− v)+|2 dx.

Therefore, |{x ∈ Ω; (u− v)(x) > 0}| = 0. �

Lemma 31. A function u ∈ H1(Ω) is a solution to the obstacle problem in
Kg,u(Ω) if and only if u is a solution to the obstacle problem in Kg,u(D) whenever
D ⊂ Ω is open.



2. THE COMPARISON PRINCIPLE AND EXISTENCE THEOREMS 25

Proof. Assume that u is a solution to the solution to the obstacle problem in
Kg,u(Ω). For any v ∈ Kg,u(D), the function

ṽ =

{
v in D,

u otherwise

belongs to Kg,u(Ω). Thus, we have∫
D

A∇u · ∇(v − u) + (b · ∇u)(v − u) dx

=

∫
Ω

A∇u · ∇(ṽ − u) + (b · ∇u)(ṽ − u) dx

≥ 〈µ, (ṽ − u)〉Ω = 〈µ, (v − u)〉D.

Therefore, u is a solution to the solution to the obstacle problem in Kg,u(D). The
converse follows by taking D = Ω. �

Lemma 32. Suppose that u ∈ H1(Ω) is a solution to the obstacle problem in
Kg,θ(Ω), and that D ⊂ Ω is open. If there is a subsolution v to the equation Lv = 0
in D with g ≤ v ≤ u a.e. in D, then u is a solution to the equation Lu = 0 in D.
In particular, if there is a constant c such that g ≤ c ≤ u in D, then then u is a
solution to the equation Lu = 0 in D.

Proof. Let h ∈ u+H1
0 (D) be the solution to the equation Lh = 0 in D. From

the comparison principle, g ≤ v ≤ h ≤ u in D. From Lemma 31, u is a solution
to the obstacle problem in Kg,u(D). Since h ∈ Kg,u(D), it follows from Lemma 30
that u ≤ h in D. Therefore, u = h a.e. in D. �

Next, we introduce the Poisson modification of supersolutions and L-equilibrium
potentials.

Definition 33. Suppose that u is a supersolution to the equation Lu = 0 in
Ω. For D b Ω, we define

P (u,D) =

{
uD in D,

u otherwise,

where uD ∈ u+H1
0 (D) is the solution to the Dirichlet problem Lu = 0 in D.

Take D b D′ b Ω. Then, from Lemma 32, v is the solution to the obstacle
problem in Kg,u(D′), where

g =

{
−∞ in D,

u otherwise.

Therefore, we have the following:

Lemma 34. Suppose that u is a supersolution to the equation Lu = 0 and
v = P (u,D) is the Poisson modification of u in D. Then,

(1) v is a solution to the equation Lu = 0 in D.
(2) v is a supersolution to the equation Lu = 0 in Ω.
(3) v ≤ u in Ω.
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Definition 35. Let Ω be a bounded open set, and let E be a closed set (in Rn)
which is contained in Ω. We say that a function u is the L-equilibrium potential of
(E,Ω) if u is the solution to the obstacle problem in K1E ,0(Ω) with respect to L.
Moreover, we denote

u = R(E,Ω) = R(E,Ω;L).

If u = R(E,Ω), then u = min{u, 1} = 1 q.e. on E. Hence, u satisfies the
boundary condition u = 1 on ∂E in Sobolev’s sense. However, in general, it does
not satisfy the boundary condition in the classical sense.

3. Caccioppoli’s inequality and related results

Under (21), we also get the following local version of energy estimate. This
estimate is also called Caccioppoli’s inequality.

Lemma 36. Let u be a weak subsolution to Lu = 0 in Ω. Then, there exists a
constant CE depending only on B/ν such that for any η ∈ C∞

c (Ω),∫
Ω

|∇u+|2η2 dx ≤ CE

∫
Ω

u2+|∇η|2 dx.

Proof. For k > 0, we take ū = min{u, k}. Let us choose the test function
ū+η

2. Then we have

0 ≥
∫
Ω

A∇u · ∇(ū+η
2) dx+

∫
Ω

(b · ∇u) (ū+η2) dx.

Note that if ū+(x) 6= 0, then ∇u(x) = ∇u+(x). Therefore,

0 ≥
∫
Ω

A∇u+ · ∇(ū+η
2) dx+

∫
Ω

(b · ∇u+) (ū+η2) dx,

and hence∫
Ω

A∇u+ · ∇ū+η2 dx ≤ −2

∫
Ω

A∇u+ · ∇η ū+η dx−
∫
Ω

(b0 · ∇u+) ū+η2 dx

−
∫
Ω

(b1 · ∇u+) ū+η2 dx.
(26)

We shall estimate the third term of the right-hand side in (26). By Young’s in-
equality ab ≤ ε

2a
2 + 1

2εb
2, for any ε1 > 0,∣∣∣∣∫

Ω

(b1 · ∇u+) ū+η2 dx
∣∣∣∣ ≤ ε1

2

∫
Ω

|∇u+|2η2 dx+
1

2ε1

∫
Ω

|b1|2(ū+η)2 dx

≤ ε1
2

∫
Ω

|∇u+|2η2 dx+
1

2ε1
|||b1|||2Ω

∫
Ω

|∇(ū+η)|2 dx.

From Jensen’s inequality, for any a, b ≥ 0 and θ ∈ (0, 1), we have

(a+ b)2 =

(∫ θ

0

a

θ
+

∫ 1

θ

b

1− θ

)2

≤
∫ θ

0

(a
θ

)2
+

∫ 1

θ

(
b

1− θ

)2

=
a2

θ
+

b2

1− θ
.

Therefore, taking θ = (1 + ε2)
−2 with ε2 > 0, we get∫

Ω

|∇(ū+η)|2 dx ≤ (1 + ε2)
2

∫
Ω

|∇ū+|2η2 dx+
(1 + ε2)

2

(1 + ε2)2 − 1

∫
Ω

ū2+|∇η|2 dx.
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Taking ε1 = (1 + ε2)
−1|||b1|||Ω and combining these inequalities, we obtain∣∣∣∣∫

Ω

(b1 · ∇u+) ū+η2 dx
∣∣∣∣ ≤ (1 + ε2)|||b1|||Ω

∫
Ω

|∇u+|2η2 dx

+
(1 + ε2)

2{(1 + ε2)2 − 1}
|||b1|||Ω

∫
Ω

u2+|∇η|2 dx.
(27)

Next we shall estimate the second term of the right-hand side in (26). We have∫
Ω

(b0 · ∇u+)ū+η2 dx =

∫
Ω

(b0 · ∇ū+)ū+η2 dx+

∫
Ω

(b0 · ∇(u− k)+)ū+η
2 dx.

Note that ∣∣∣∣∫
Ω

(b0 · ∇(u− k)+) ū+η
2 dx

∣∣∣∣
≤
(∫

Ω

|b0|2(ū+η)2 dx
)1/2(∫

Ω

|∇(u− k)+|2η2 dx
)1/2

≤ |||b0|||Ω

(∫
Ω

|∇(ū+η)|2 dx
)1/2(∫

Ω

|∇(u− k)+|2η2 dx
)1/2

.

Thus, since divb0 = 0, by integrating by parts, we have∫
Ω

(b0 · ∇u+) ū+η2 dx = −
∫
Ω

(b0 · ∇η) ū2+η dx+ o(1).

On the other hand, for any ε3 > 0, we have∣∣∣∣∫
Ω

(b0 · ∇η) ū2+η dx
∣∣∣∣ ≤ ε3

2

∫
Ω

|b0|2(ū+η)2 dx+
1

2ε3

∫
Ω

ū2+|∇η|2 dx

≤ ε3
2
|||b0|||2Ω

∫
Ω

|∇(ū+η)|2 dx+
1

2ε3

∫
Ω

ū2+|∇η|2 dx.

Therefore, taking ε3 = ε4/|||b0|||2Ω, we get∣∣∣∣∫
Ω

(b0 · ∇u+) ū+η2 dx
∣∣∣∣ ≤ ε4

∫
Ω

|∇u+|2η2 dx

+

(
ε4 +

|||b0|||2Ω
2ε4

)∫
Ω

u2+|∇η|2 dx+ o(1).

(28)

Finally, we estimate the first term of the right-hand side in (26). By Young’s
inequality, for any ε5 > 0, we have

(29) −2

∫
Ω

A∇u+ · ∇η ū+η dx ≤ ε5

∫
Ω

|∇u+|2η2 dx+
1

ε5
‖A‖2L∞(Ω)

∫
Ω

u2+|∇η|2 dx.

Let ε2 = 1/2, ε4 = ν/8 and ε5 = ν/16. Combining (26)-(29) and taking the limit
k → +∞, we obtain

(30)

∫
Ω

|∇u+|2η2 dx ≤ C

(
B2

ν2
+ 1

)∫
Ω

u2+|∇η|2 dx.

We arrived at the desired inequality. �

The following two lemmas are direct consequences of Caccioppoli’s inequality.
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Lemma 37. Let E be a closed subset of Ω, and let u = R(E,Ω). Suppose that
K is a compact subset of Ω. Then,

µ[u](K) ≤ B∗(CE)
1/2 cap(E ∩K,Ω).

where CE is the constant as in Lemma 36.

Proof. Since u is a solution to the equation Lu = 0 in Ω \ E, it follows that

µ[u](K \ E) ≤ µ[u](Ω \ E) = 0,

so

µ[u](K) = µ[u](E ∩K).

Take η ∈ C∞
c (Ω) such that η = 1 on E ∩K. Then we have

µ[u](E ∩K) ≤
∫
Ω

η2 dµ[u] ≤
∫
Ω

A∇u · ∇η2 + (b · ∇u)η2 dx

≤ ‖A‖L∞(Ω)

(∫
Ω

|∇η|2 dx
)1/2(∫

Ω

|∇u|2η2 dx
)1/2

+

(∫
Ω

|b|2η2 dx
)1/2(∫

Ω

|∇u|2η2 dx
)1/2

≤ B∗
(∫

Ω

|∇η|2 dx
)1/2(∫

Ω

|∇u|2η2 dx
)1/2

.

Since 0 ≤ u ≤ 1, it follows from Lemma 36 that

µ[u](K) ≤ B∗(CE)
1/2

∫
Ω

|∇η|2 dx.

Taking the infimum with respect to η, we arrive at the desired inequality. �

Lemma 38. Let {uj}∞j=1 be a non-decreasing sequence of supersolutions to Lu =
0 in Ω which converges to a function u almost everywhere. Suppose that one of the
following conditions is fulfilled:

(1) u ∈ L∞
loc(Ω).

(2) u ∈ H1
loc(Ω).

Then, u ∈ H1
loc(Ω) and u is a supersolution to Lu = 0 in Ω. Moreover, there exists

a sequence of bounded supersolutions {vj}∞j=1 such that µ[vj ] → µ[u] weakly.

Proof. (1). Fix D′ b D b Ω and choose η ∈ C∞
c (D) such that η ≡ 1 in D′.

Let k = ess supD u < ∞, and let vj = (k − uj). Then {vj}∞j=1 is a nonincreasing
sequence of subsolutions. According to Caccioppoli’s inequality, we have a constant
C such that ∫

D′
|∇vj |2 dx ≤ CE

∫
Ω

v2j |∇η|2 dx ≤ C.

Therefore, taking a subsequence, we may assume that {∇uj}∞j=1 converges weakly

in L2(D′). Moreover, from the monotonicity of {uj}∞j=1, this subsequence converges

weakly to ∇u in L2(D′). Using the diagonal argument with respect to D′ and D,
we can choose a subsequence {∇uj}∞j=1 such that ∇uj → ∇u weakly in L2

loc(Ω).

Therefore, u ∈ H1
loc(Ω). Moreover, since b ∈ (L2

loc(Ω))
n, we have∫

Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx = lim
j→∞

∫
Ω

A∇uj · ∇ϕ+ (b · ∇uj)ϕdx ≥ 0
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for any ϕ ∈ C∞
c (Ω) with ϕ ≥ 0. This implies that u is a supersolution to Lu = 0

in Ω and µ[uj ] → µ[u] weakly.
(2). For any fixed l ∈ R, {min{uj , l}}∞j=1 is an increasing sequence of superso-

lutions. Therefore, from the previous result, min{u, l} is a supersolution. By using
Lebesgue’s dominated convergence theorem, we have∫

Ω

A∇u · ∇ϕ+ (b · ∇u)ϕdx

= lim
l→∞

∫
Ω

A∇min{u, l} · ∇ϕ+ (b · ∇min{u, l})ϕdx ≥ 0

for any ϕ ∈ C∞
c (Ω), ϕ ≥ 0. Thus, u is a supersolution in Ω and µ[min{u, l}] → µ[u]

weakly. �

Remark 39. In the proof, {∇uj}∞j=1 converges weakly in L2
loc(Ω). However, in

general, it need not converges weakly in L2(Ω). For instance, consider the functions

uj = min{j(1− |x|2), 1} ∈ H1
0 (B(0, 1)).

Then, {uj}∞j=1 is a monotone increasing sequence of supersolutions to −4u = 0

and uj → 1 as j → ∞. However, 1 /∈ H1
0 (B(0, 1)). In this case, the Riesz measures

{µ[uj ]}∞j=1 concentrate on ∂B(0, 1).

4. Harnack-type inequalities and Hölder estimates

In this section, we establish Harnack-type inequalities. Moreover, we give in-
terior and boundary Hölder estimates using a weak Harnack inequality. First, we
give a local L2 − L∞ (or Lp − L∞) estimate using De Giorgi’s iteration methods.
For another proof of this estimate (Moser’s methods), see also [33, pp.63-66].

Theorem 40. Let u be a subsolution to Lu = 0 in Ω. Then, for any γ > 0,
there exists a constant CB depending only on n, B/ν and γ such that

ess sup
B(x0,λR)

u+ ≤ CB
(1− λ)n/γ

(
−
∫
B(x0,R)

uγ+ dx

)1/γ

,

whenever B(x0, R) ⊂ Ω.

Proof. First, we prove the case of γ = 2. Let 0 ≤ l < h < ∞. From Lemma
12, we have ∫

Ω

((u− h)+η)
2 dx ≤‖((u− h)+η)

2‖Ln/(n−2),∞(Ω)

× |{x ∈ Ω; u(x) ≥ h} ∩ supp η|2/n.
By using Lemma 14 and Lemma 36, we have

‖((u− h)+η)‖2L(2n/(n−2),∞)(Ω) ≤ S2
∞

∫
Ω

|∇((u− h)+η)|2 dx

≤ S2
∞(CE + 1)

∫
Ω

(u− h)2+|∇η|2 dx.

Here, S∞ is the constant as in Lemma 14. On the other hand, from Chebyshev’s
inequality, we have

|{x ∈ Ω; u(x) ≥ h} ∩ supp η| ≤ 1

(h− l)2

∫
supp η

(u− l)2+ dx.
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Combining the two inequalities, we get∫
Ω

((u− h)+η)
2 dx ≤ C‖∇η‖2L∞

(h− l)4/n

(∫
supp η

(u− l)2+ dx

)1+2/n

.

For m = 0, 1, . . ., set

Bm = B(x0, (λ+
1

2m
(1− λ))R)

and take ηm ∈ C∞
c (Bm) such that

ηm+1 ≡ 1 on Bm+1, |∇ηm| ≤ 2m+1

(1− λ)R
.

Let k > 0 be a constant to be chosen later. Taking km = (1− 1
2m )k and substituting

h = km+1, l = km and η = ηm, we obtain

1

k2
−
∫
Bm+1

(u− km+1)
2
+ dx ≤ C

(1− λ)2
(41+2/n)m

(
1

k2
−
∫
Bm

(u− km)2+ dx

)1+2/n

.

Let α = 2/n, b = 41+2/n and

Um =
1

k2
−
∫
Bm

(u− km)2+ dx.

Then this inequality is rewritten as Um+1 ≤ C(1−λ)−2bmU1+α
m . Thus, from Lemma

19, choosing

k2 =

(
C

(1− λ)2

)1/α

b1/α
2

−
∫
B0

u2+ dx,

we have Um → 0 as m→ ∞. This implies that

ess sup
B(x0,λR)

u2 ≤ k2.

If γ > 2, then the assertion follows from the Hölder’s inequality. For γ < 2, we use
a rescaling argument. Let 0 < λ < 1 and 0 < r < R. Take β = 2/γ.

ess sup
B(x0,λr)

u ≤

(
C2
B

(1− λ)n
−
∫
B(x0,r)

(ess sup
B(x0,r)

u+)
2−γuγ+ dx

)1/2

= (ess sup
B(x0,r)

u+)
1−1/β


(

C2
B

(1− λ)n
−
∫
B(x0,r)

uγ+ dx

)1/γ


1/β

.

From Young’s inequality ab ≤ εap + C(ε)bp
′
, we get

ess sup
B(x0,λr)

u ≤ 1

2
(ess sup
B(x0,r)

u+) +

(
C(γ)C2

B

(1− λ)n
−
∫
B(x0,r)

uγ+ dx

)1/γ

.

Let ρ = λr, h(ρ) = ess supB(x0,ρ) u and

A = sup
0<r<R

(
C(γ)C2

B−
∫
B(x0,r)

uγ dx

)1/γ

.

Then this inequality is rewritten as

h(ρ) ≤ 1

2
h(r) +A(r − ρ)−n/γ ,
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so, it follows from Lemma 20 that h(ρ) ≤ CA(R− ρ)−n/γ . This implies that

ess sup
B(x0,λR)

u+ ≤ C

(1− λ)n/γ

(
−
∫
B(x0,R)

uγ+ dx

)1/γ

.

We arrived at the desired estimate. �

Lemma 41. Let u be a weak supersolution to Lu = 0 in Ω. Suppose that x0 ∈ Ω
is a Lebesgue point of u. Then

u(x0) = lim
R→0

−
∫
B(x0,R)

udx = lim
R→0

ess inf
B(x0,R)

u.

In particular, u is lower semicontinuous after redefinition in a set of measure zero.

Proof. We follow the method in [49, pp.82-83]. Since u(x0) − u is a weak
subsolution to Lu = 0 in Ω, by using Theorem 40, we have

ess sup
B(x0,R)

(u(x0)− u) ≤ CB−
∫
B(x0,2R)

(u(x0)− u)+ dx

≤ CB−
∫
B(x0,2R)

|u(x0)− u|dx

for any 0 < R < dist(x0, ∂Ω)/2. The right-hand side goes to 0 as R → 0 since x0
is a Lebesgue point of u. Therefore,

u(x0) ≤ lim
R→0

ess inf
B(x0,R)

u ≤ lim
R→0

−
∫
B(x0,R)

udx = u(x0).

This completes the proof. �

Combining Theorem 40, Lemma 24 and Lemma 18, we obtain the following
weak Harnack inequality. For another proof of this inequality, see also [63, 26, 64,
18].

Theorem 42. Let u be a non-negative weak supersolution to Lu = 0 in Ω.
Then, there exist constants γ > 0 and CW depending only on n and B/ν such that(

−
∫
B(x0,R)

uγ dx

)1/γ

≤ CW ess inf
B(x0,R/2)

u,

whenever B(x0, 2R) ⊂ Ω.

Proof. Let ε > 0 and v = log(u+ ε). Then from Lemma 24 we have(
−
∫
B(y,r)

|∇v|dx

)2

≤ −
∫
B(y,r)

|∇v|2 dx ≤ Cr−2

for any y ∈ B(x0, R) and 0 < r ≤ R. Fix any positive constant 0 < γ < σ(n)/C1/2,
where σ(n) is the constant as in Lemma 18. Then, it follows from Lemma 18 that∫

B(x0,R)

exp(γ|v − c|) dx ≤ CRn,
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where c =
∫
B(x0,R)

v dx. Since∫
B(x0,R)

(u+ ε)γ dx ·
∫
B(x0,R)

(u+ ε)−γ dx

=

∫
B(x0,R)

exp(γv) dx ·
∫
B(x0,R)

exp(−γv) dx

=

∫
B(x0,R)

exp(γ(v − c)) dx ·
∫
B(x0,R)

exp(−γ(v − c)) dx,

we have

(31)

(
−
∫
B(x0,R)

(u+ ε)γ dx

)1/γ

≤ C

(
−
∫
B(x0,R)

(u+ ε)−γ dx

)−1/γ

.

On the other hand, testing the equation by (u+ ε)−γ/2−1ϕ with non-negative ϕ ∈
C∞
c (Ω), we get∫

Ω

A∇(u+ ε) · ∇((u+ ε)−γ/2−1ϕ) + (b · ∇(u+ ε))((u+ ε)−γ/2−1ϕ) dx ≥ 0.

Therefore,

2

−γ

(∫
Ω

A∇(u+ ε)−γ/2 · ∇ϕ+ (b · ∇(u+ ε)−γ/2)ϕdx

)
≥ (1 +

γ

2
)

∫
Ω

A∇(u+ ε) · ∇(u+ ε) (u+ ε)γ/2−2ϕdx ≥ 0.

Since (u+ε)−γ/2 ∈ H1
loc(Ω), this implies that (u+ε)−γ/2 is a subsolution to Lu = 0.

Therefore, from Theorem 40, we get

ess sup
B(x0,R/2)

(u+ ε)−γ/2 ≤ CB

(
−
∫
B(x0,R)

(u+ ε)−γ dx

)1/2

,

hence

(32) ess inf
B(x0,R/2)

(u+ ε) ≥ 1

C
2/γ
B

(
−
∫
B(x0,R)

(u+ ε)−γ dx

)−1/γ

.

Combining (31) and (32), we arrive at(
−
∫
B(x0,R)

(u+ ε)γ dx

)1/γ

≤ CW ess inf
B(x0,R/2)

(u+ ε).

Taking the limit ε→ 0, we complete the proof. �

Corollary 43. Let Ω be a connected open set, and let u be a lower semicon-
tinuous weak supersolution to Lu = 0 in Ω. If u has an interior minimum point,
then u is constant in Ω

Proof. Let ū = u− ess infΩ u. From the lower semicontinuity of ū, E = {x ∈
Ω; ū(x) = 0} is a closed subset of Ω. On the other hand, if x0 ∈ E, then for
sufficiently small R > 0, we have(

−
∫
B(x0,R)

ūγ dx

)1/γ

≤ CW ess inf
B(x0,R/2)

ū = 0.
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Therefore, E is a open subset of Ω. Since Ω is connected, this implies E = Ω. �

Theorem 44. Let u be a (bounded) weak solution to Lu = 0 in Ω. Then, u is
locally Hölder continuous in Ω. Moreover, there exist constants C and β depending
only on n and B/ν such that

osc
B(x0,ρ)

u ≤ C
( ρ
R

)β
osc

B(x0,2R)
u,

whenever B(x0, 2R) ⊂ Ω. Moreover, for any γ > 0, there exist a constant C
depending only on n, B/ν and γ such that

osc
B(x0,ρ)

u ≤ C
( ρ
R

)β (
−
∫
B(x0,4R)

|u|γ dx

)1/γ

,

whenever B(x0, 4R) ⊂ Ω.

Proof. Let

M(R) = ess sup
B(x0,R)

u, m(R) = ess inf
B(x0,R)

u

and ω(R) =M(R)−m(R). Since u is a solution to Lu = 0 in B(x0, 2R), applying
Theorem 42 for u−m(2R) and M(2R)− u, we get(

−
∫
B(x0,R)

(u−m(2R))γ dx

)1/γ

≤ CW (m(R/2)−m(2R))

and (
−
∫
B(x0,R)

(M(2R)− u)γ dx

)1/γ

≤ CW (M(2R)−m(R/2)).

On the other hand, from the quasi-triangle inequality, we have

ω(2R) ≤ C(γ)

|B(x0, R)|1/γ
(
‖M(2R)− u‖Lγ(B(x0,R)) + ‖u−m(2R)‖Lγ(B(x0,R))

)
.

Therefore, combining these inequalities, we obtain

ω(2R) ≤ C(ω(2R)− ω(R/2)),

hence

ω(R/2) ≤ C − 1

C
ω(2R).

Iterating this estimate, we arrive at

osc
B(x0,ρ)

u ≤ C
( ρ
R

)β
osc

B(x0,2R)
u,

where β = − log4(
C−1
C ). This completes the proof. �

Theorem 45. Let D b Ω, and let θ ∈ H1(D) ∩ C(D). Let u ∈ θ +H1
0 (D) be

the weak solution to Lu = 0 in D. Assume that D satisfies the following volume
density condition at x0 ∈ ∂D: There exist positive constants α ∈ (0, 1) and R0 > 0
such that

(33) |B(x0, R) \D| ≥ α|B(x0, R)|
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for all 0 < R < R0. Then u is continuous at x0. Moreover, there exist constants C
and β ∈ (0, 1) depending only on n, B/ν and α such that

ω(ρ) ≤ C
( ρ
R

)β
ω(2R) + ωθ(2R)

for any 0 < R < min{R0,dist(x0, ∂Ω)/2}, where

ω(R) = osc
D∩B(x0,R)

u, ωθ(R) = osc
∂D∩B(x0,R)

θ.

Proof. For simplicity of notation, we let

M(R) = ess sup
D∩B(x0,R)

u, m(R) = ess inf
D∩B(x0,R)

u, ω(R) =M(R)−m(R)

and

Mθ(R) = sup
∂D∩B(x0,R)

θ, mθ(R) = inf
∂D∩B(x0,R)

θ, ωθ(R) =Mθ(R)−mθ(R).

Since ∂D is compact, from the maximum principle, these quantities are finite. For
fixed R > 0, we consider the function

v =

{
min{u,mθ(2R)} in D,

mθ(2R) in B(x0, 2R) \D.

Let ṽ be the solution to the obstacle problem in Kv,v(B(x0, 2R)). Since ṽ is a
solution to the obstacle problem in Kv,v(D ∩ B(x0, 2R)) (Lemma 31) and v is a
supersolution in D ∩ B(x0, 2R), we see that ṽ = v a.e. in D ∩ B(x0, 2R) (Lemma
32). Applying Theorem 42 for ṽ −m(2R) in B(x0, 2R), we get(

−
∫
B(x0,R)

(ṽ −m(2R))γ dx

)1/γ

≤ CW ess inf
B(x0,R/2)

(ṽ −m(2R)).

It follows from (33) and the definition of v that

(mθ(2R)−m(2R))α1/γ ≤ (mθ(2R)−m(2R))

(
|B(x0, R) \D|
|B(x0, R)|

)1/γ

≤

(
−
∫
B(x0,R)

(ṽ −m(2R))γ dx

)1/γ

.

Therefore, we get

mθ(2R)−m(2R) ≤ C(m(R/2)−m(2R)),

where C = α−1/γCW . From a similar argument, we can show that

M(2R)−Mθ(2R) ≤ C(M(2R)−M(R/2)).

Combining the two inequalities, we obtain

ω(2R)− ωθ(2R) ≤ C(ω(2R)− ω(R/2)),

hence

ω(R/2) ≤ C − 1

C
ω(2R) +

1

C
ωθ(2R).

Iterating this estimate, we arrive at the assertion. �
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Remark 46. We say that a bounded open set D has an (exterior) corkscrew
at x0 ∈ ∂D if there are constants λ ∈ (0, 1) and R0 > 0 such that the ball B(x0, R)
contains a ball B(y, λR) ⊂ {D whenever 0 < R ≤ R0. Also, we say that D has
an exterior cone at x0 ∈ ∂D, if there is a truncated cone in {D with vertex at x0.
From the definition,

x0 has an exterior cone =⇒ x0 has a corkscrew =⇒ x0 satisfies (33).

In particular, if D has a Lipschitz boundary, then (33) holds for any x0 ∈ ∂D.

Combining Theorem 40 and Theorem 42, we get the following Harnack’s in-
equality.

Theorem 47. Let u be a non-negative weak solution to Lu = 0 in Ω. Then,
there exists a constant CH depending only on n and B/ν such that

ess sup
B(x0,R/2)

u ≤ CH ess inf
B(x0,R/2)

u,

whenever B(x0, 2R) ⊂ Ω. Moreover, if D b Ω is connected, then, there exists a
constant C depending only on n, B/ν, D and Ω such that

ess sup
D

u ≤ C ess inf
D

u.

Proof. The first assertion immediately follows from Theorem 40 and Theorem
42. Let R = dist(D, ∂Ω)/2. Since D is connected and D is compact, we can cover
D by a chain of balls {Bm}Mm=1 such that each radius is R/2 and Bm ∩Bm+1 6= ∅
for m = 1, . . .M − 1. Then, it follows from Theorem 47 that

ess sup
D

u ≤ (CH)M ess inf
D

u.

This completes the proof. �

The following Harnack’s convergence theorem and a one-sided Liouville-type
theorem are standard consequences of Harnack’s inequality.

Corollary 48. Let {uj}∞j=1 be a non-decreasing sequence of continuous weak
solutions to Lu = 0 in Ω. Assume that there is a point x0 ∈ Ω such that {uj(x0)}∞j=1

converges a finite value. Then, u is a continuous function belonging to H1
loc(Ω) and

u is a weak solution to Lu = 0 in Ω.

Proof. Fix D b Ω such that x0 ∈ D. Since {uj}∞j=1 is a non-decreasing
sequence, we have ui − uj ≥ 0 for any i ≥ j. By Theorem 47,

ess sup
D

(ui − uj) ≤ C ess inf
D

(ui − uj).

From the assumption, the right-hand side is a Cauchy sequence. Hence, {uj}∞j=1

converges locally uniformly and u ∈ C(Ω) ⊂ L∞
loc(Ω). From Lemma 38, u belongs

to H1
loc(Ω) and satisfies the equation Lu = 0 in Ω. �

Corollary 49. Let u be a weak solution to Lu = 0 in Rn. If u is bounded
from below (or above) in Rn, then u is a constant.

Proof. Applying Harnack’s inequality for v = u− ess infRn u, we get

ess sup
B(x0,R/2)

v ≤ CH ess inf
B(x0,R/2)

v → 0 as R→ 0.

Therefore, u ≡ ess infR u in Rn. �





CHAPTER 4

Potential upper bounds

If u is a superharmonic function in B(x0, R) = Ω, then, from the Riesz decom-
position theorem (see, [34, p.159]),

u(x) =

∫
Ω

GΩ(x, y) dµ(y) + h(x),

where GΩ(·, ·) is the Green function for Ω and h is the greatest harmonic minorant
of u on Ω. If h = 0, in other words, if u = 0 on ∂Ω, then, from the upper pointwise
estimate of Green’s function

(34) GΩ(x, y) ≤
1

(n− 2)n|B(0, 1)|
|x− y|2−n,

we have the weak-type estimate

(35) ‖u‖Ln/(n−2),∞(Ω) ≤ C(n)µ(Ω).

On the other hand, for any x ∈ B(x0, R/2), we have the upper bound

h(x) ≤ sup
B(x0,3R/4)

h = sup
∂B(x0,3R/4)

h ≤ sup
y∈∂B(x0,3R/4)

−
∫
B(y,R/4)

hdx

≤ C(n)−
∫
B(x0,R)\B(x0,R/2)

hdx ≤ C(n)−
∫
B(x0,R)\B(x0,R/2)

u+ dx

from the comparison principle and the mean value property. Thus, generally, we
have the local pointwise bound

(36) u+(x0) ≤ C

(
−
∫
B(x0,R)\B(x0,R/2)

u+ dx+ Iµ2 (x0, 2R)

)
and the local weak-type estimate

R2−n‖u+‖Ln/(n−2),∞(B(x0,R/2))

≤ C

(
−
∫
B(x0,R)\B(x0,R/2)

u+ dx+R2−nµ(B(x0, R))

)
.

(37)

From the results in [53] and [28], the existence of Green’s function and the pointwise
estimate of Green’s function (34) also hold for equations (3). Therefore, a similar
decomposition argument also works for equations

−div (A∇u) = µ ≥ 0.

Moreover, using the De Giorgi and Moser local boundedness estimate (Theorem
40) we can obtain local estimates. Unfortunately, due to the effects of drift, we can
not use this argument for (1). Under condition (21), the estimate (34) does not
holds in general. The condition (21) is a sufficient condition to relate solutions and

37
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H−1 data, However, this condition is not sufficient to relate solutions and measure
data. Moreover, even if (38) holds, the existence of Green’s function is not clear.

In this chapter, considering about the relation between the upper bounds of
solutions and the measure data, we establish the global weak-type estimate (35),
the local weak-type estimate (36) and the potential upper bound (37) under the
assumption (21) and the additional assumption (38). Our method differs from the
Green function method. We first prove (35) using a truncation function and energy
method. Next, we consider its local version (37). Finally, iterating (37), we get
(36). These arguments are based on the nonlinear potential theory.

1. Global weak-type estimates

Hereafter, we assume that

(38) ‖(divb)+‖Ln/2,1(Ω) ≤
ν

4S2
∞

in addition to (21). Under these conditions, we have the following global L1 −
Ln/(n−2),∞ estimate:

Theorem 50. Let µ be a finite Radon measure in (D1,2
0 (Ω))∗, and let u ∈

D1,2
0 (Ω) be a weak solution to Lu = µ in Ω. Then

(39) ‖u‖Ln/(n−2),∞(Ω) ≤
4S2

∞
ν

|µ|(Ω),

(40) ‖∇u‖Ln/(n−1),∞(Ω) ≤
4S∞

ν
|µ|(Ω)

and

(41) ‖∇Tk(u)‖2L2(Ω) ≤
4k

ν
|µ|(Ω)

for all k > 0.

Proof. First, we prove (39). Taking the test function Tk(u), we get∫
Ω

Tk(u) dµ =

∫
Ω

A∇u · ∇Tk(u) + (b · ∇u)Tk(u) dx

=

∫
Ω

A∇u · ∇Tk(u)− (b · ∇Tk(u))u− divbuTk(u) dx.

If ∇Tk(u)(x) 6= 0, then Tk(u)(x) = u(x). Therefore,∫
Ω

Tk(u) dµ =

∫
Ω

A∇Tk(u) · ∇Tk(u)− (b · ∇Tk(u))Tk(u)− divbuTk(u) dx.

This implies that

ν

∫
Ω

|∇Tk(u)|2 dx ≤ k

(
|µ|(Ω) +

∫
Ω

(divb)+|u|dx
)
+

∫
Ω

b0 · ∇(
1

2
Tk(u)

2) dx

+

(∫
Ω

|b1|2Tk(u)2 dx
)1/2(∫

Ω

|∇Tk(u)|2 dx
)1/2

.

By using integration by parts, the second term in the right-hand side is zero. Thus,
from (21), we have

ν

2

∫
Ω

|∇Tk(u)|2 dx ≤ k

(
|µ|(Ω) +

∫
Ω

(divb)+|u|dx
)
.
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From Lemma 14, we get

k2|{x ∈ Ω; |u(x)| ≥ k}|(n−2)/n ≤ 2S2
∞
ν

k

(
|µ|(Ω) +

∫
Ω

(divb)+|u|dx
)
.

Dividing by k and taking the supremum over k > 0, we get

‖u‖Ln/(n−2),∞(Ω) ≤
2S2

∞
ν

(
|µ|(Ω) + ‖(divb)+‖Ln/2,1+(Ω)‖u‖Ln/(n−2),∞(Ω)

)
.

From (38), this implies (39). Since∫
{x∈Ω; |u(x)|<k}

|∇u|2 dx =

∫
Ω

|∇Tk(u)|2 dx ≤ 4k

ν
|µ|(Ω)

for any k > 0, we have (41). By Chebyshev’s inequality we have

l2|{x ∈ Ω; |∇u(x)| ≥ l and |u(x)| < k}| ≤ 4k

ν
|µ|(Ω).

Since

|{x ∈ Ω; |u(x)| ≥ k}| ≤
(
4S2

∞|µ|(Ω)
νk

)n/(n−2)

,

we have

|{x ∈ Ω; |∇u(x)| ≥ l}| ≤ 4k

νl2
|µ|(Ω) +

(
4S2

∞|µ|(Ω)
νk

)n/(n−2)

.

Therefore, choosing

k = Sn/(n−1)
∞

(
4|µ|(Ω)
ν

)1/(n−1)

l(n−2)/(n−1),

we obtain

|{x ∈ Ω; |∇u(x)| ≥ l}| ≤ Sn/(n−1)
∞

(
4|µ|(Ω)
ν

)n/(n−1)

l−n/(n−1).

This implies that

‖∇u‖Ln/(n−1),∞(Ω) = sup
l>0

l|{x ∈ Ω; |∇u(x)| ≥ l}|(n−1)/n ≤ 4S∞

ν
|µ|(Ω).

We arrived at the desired estimate (40). �

Remark 51. It is necessary to add the condition (38) to lead Theorem 50.
Consider the case of A = I, b = εx/|x|2 and Ω = B(0, R). For sufficiently small
positive ε > 0, (21) holds; however (38) does not hold. Let us consider functions

ur(x) = min{|x|2−n+ε, r2−n+ε} − 1.

Then ur are supersolutions to Lu = 0, moreover, their Riesz measures are repre-
sented by ∫

Ω

ϕdµ[ur] =
(n− 2− ε)

rn−1−ε

∫
∂B(0,r)

ϕdHn−1

for all ϕ ∈ C∞
c (Ω), ϕ ≥ 0, where Hn−1 is the (n−1) dimension Hausdorff measure.

Then ur → |x|2−n+ε − 1 and µ[ur] → 0 as r → 0. Therefore, under (21), the
estimates (39), (40) and (41) do not hold in general.
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Remark 52. More generally, if u ∈ H1
0 (Ω) is the weak solution to the equation

Lu+ c · ∇u = −div (A∇u) + (b+ c) · ∇u = µ

with

‖c‖Ln,1(Ω) ≤
ν

8S∞
,

then we have

‖u‖Ln/(n−2),∞(Ω) ≤ 8S2
∞|µ|(Ω)

and

‖∇u‖Ln/(n−1),∞(Ω) ≤ 8S∞|µ|(Ω).
Indeed, from (40), we have

‖∇u‖Ln/(n−1),∞(Ω) ≤
4S∞

ν

(
‖c · ∇u‖L1(Ω) + |µ|(Ω)

)
≤ 4S∞

ν
‖c‖Ln,1(Ω)‖∇u‖Ln/(n−1),∞(Ω) +

4S∞

ν
|µ|(Ω).

From the assumption on c, this implies that

‖∇u‖Ln/(n−1),∞(Ω) ≤
8S∞

ν
|µ|(Ω).

Consequently, we have

‖u‖Ln/(n−2),∞(Ω) ≤
4S2

∞
ν

(
‖c · ∇u‖L1(Ω) + |µ|(Ω)

)
≤ 4S2

∞
ν

‖c‖Ln,1(Ω)‖∇u‖Ln/(n−1),∞(Ω) +
4S2

∞
ν

|µ|(Ω) ≤ 8S2
∞
ν

|µ|(Ω).

2. Local L1 − Ln/(n−2),∞ estimates and potential upper bounds

When b = 0, the previous global weak-type L1 − Ln/(n−2),∞ estimate is well-
known. However, its local version is not known valid even if b = 0. Below, we give
a local weak-type estimate using the Poisson modification technique based on the
method in Trudinger and Wang [70]. For an analog for p-Laplacian equations, see
[31].

Theorem 53. Let u be a weak solution to Lu = µ+ − µ− in Ω. Then, for any
γ > 0, there exist constants C1 depending only on n, B/ν and γ and C2 depending
only on n such that

R2−n‖u±‖Ln/(n−2),∞(B(x0,R/2)) ≤ C1

(
−
∫
B(x0,R)\B(x0,R/2)

uγ± dx

)1/γ

+
C2

ν
R2−nµ±(B(x0, R)),

whenever B(x0, R) b Ω.

Proof. We prove only the estimate on u+. Set D = B(x0, R) \ B(x0, R/2)
and B∗ = B(x0, 3R/4). By definition, ∂B∗ b D. We divide the proof into several
steps:

Step 1. First, we take a comparison function v ∈ H1
loc(Ω) as follows:{Lv = 0− µ− in D,

v = u in Ω \D.
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By Lemma 28, this function v can be defined. From the comparison principle, we
have

v(x) ≤ u(x) for a.e. x ∈ D.

Step 2. Next, we shall estimate the size of
∫
B∗

d(Lv)+ (see (42)). For k > 0, we

take Hk(t) =
1
kTk(t), where Tk(t) = min{max{t,−k}, k}. Note that for any t > 0,

Hk(t) → 1 as k → 0. Choose ψ ∈ H1
0 (B∗) such that 0 ≤ ψ ≤ 1, and consider the

non-negative function ϕ = ψHk(u− v). This function belongs to H1
0 (D)∩L∞(D),

because Hk(u − v) ∈ H1
0 (D) ∩ L∞(D) and ψ ∈ H1(D) ∩ L∞(D). By using this

function, we have

0 ≤ 〈µ+, ϕ〉D = 〈(Lu− Lv), ϕ〉D

=

∫
D

A∇u · ∇(ψHk(u− v)) + (b · ∇u)ψHk(u− v) dx

−
∫
D

A∇v · ∇(ψHk(u− v)) + (b · ∇v)ψHk(u− v) dx

=

∫
D

{(A∇u · ∇ψ + (b · ∇u)ψ)− (A∇v · ∇ψ + (b · ∇v)ψ)}Hk(u− v) dx

+

∫
D

(A∇u−A∇v) · (∇Hk(u− v))ψ dx.

From positivity of ψ and uniform ellipticity of A, the second term of the right-hand
side can be estimated by∫

D

(A∇u−A∇v) · (∇Hk(u− v))ψ dx

=
1

k

∫
{x∈D; (u−v)(x)<k}

(A∇u−A∇v) · ∇(u− v)ψ dx

≤ 1

k

∫
{x∈D; (u−v)(x)<k}

(A∇u−A∇v) · ∇(u− v) dx.

Since 〈(Lu− Lv), ϕ〉D = 〈µ+, ϕ〉D, taking ϕ = Tk(u− v), we get∫
{x∈D; (u−v)(x)<k}

(A∇u−A∇v) · ∇(u− v) dx

≤ k

(
µ+(D) +

∫
Ω

(divb)+(u− v) dx

)
+

∫
D

b0 · ∇(
1

2
Tk(u− v)2) dx

+

(∫
D

|b1|2Tk(u− v)2 dx

)1/2(∫
D

|∇Tk(u− v)|2 dx
)1/2

.

This implies that

1

k

∫
{x∈D; (u−v)(x)<k}

(A∇u−A∇v) · ∇(u− v) dx

≤ µ+(D) + ‖(divb)+‖Ln/2,1(D)‖u− v‖Ln/(n−2),∞(D)

+
1

k
|||b1|||D‖∇Tk(u− v)‖2L2(D).

It follows from Theorem 50 ((39) and (41)) that

1

k

∫
{x∈D; (u−v)(x)<k}

(A∇u−A∇v) · ∇(u− v) dx ≤ 4µ+(D).
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Therefore, we get∫
D

{(A∇v · ∇ψ + (b · ∇v)ψ)− (A∇u · ∇ψ + (b · ∇u)ψ)}Hk(u− v) dx ≤ 4µ+(D).

Let k → 0. By the Lebesgue dominated convergence theorem, we then obtain∫
A

{(A∇v · ∇ψ + (b · ∇v)ψ)− (A∇u · ∇ψ + (b · ∇u)ψ)} dx ≤ 4µ+(D).

Since v = u in Ω \D and D ⊂ B(x0, R), it follows that∫
B(x0,R)

{(A∇v · ∇ψ + (b · ∇v)ψ)− (A∇u · ∇ψ + (b · ∇u)ψ)} dx ≤ 4µ+(B(x0, R)).

On the other hand, since B∗ ⊂ B(x0, R), we have∫
B(x0,R)

A∇u · ∇ψ + (b · ∇u)ψ dx = 〈µ, ψ〉B∗ ≤ µ+(B(x0, R)).

Consequently, we obtain

(42) sup
ψ∈H1

0 (B∗)
0≤ψ≤1

∫
B(x0,R)

A∇v · ∇ψ + (b · ∇v)ψ dx ≤ 5µ+(B(x0, R)).

Step 3. Next, we shall estimate the upper part of u, or the effect of external
force. Note that v = u in B(x0, R/2). Let

l = sup
∂B∗

v+ := inf{l ∈ R; (v+ − l)+ ∈ H1
0 (B∗)}.

Since v is a subsolution to Lv = 0 in D, it follows from Theorem 40 that

(43) 0 ≤ l ≤ C(n)CB

(
−
∫
D

vγ+ dx

)1/γ

<∞.

Using this l, we consider the function

ψ = Hk((v+ − l)+) (k > 0).

Then, it follows from (42) that∫
B∗

A∇v · ∇ψ − (b · ∇ψ) v dx−
∫
B∗

divb v ψ dx ≤ 5µ+(B(x0, R)).

Therefore, from (21),

ν

2k

∫
B∗

|∇min{(v+ − l)+, k}|2 dx

≤ 5µ+(B(x0, R)) + ‖(divb)+‖Ln/2,1(B∗)‖v+‖Ln/(n−2),∞(B∗).

From Lemma 14, this implies that

‖(v+ − l)+‖Ln/(n−2),∞(B∗) ≤
10S2

∞
ν

µ+(B(x0, R))

+
2S2

∞
ν

‖(divb)+‖Ln/2,1(B∗)‖v+‖Ln/(n−2),∞(B∗).

(44)
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Step 4. Finally, we estimate the lower part of u, or the effect of value around.
Since 0 ≤ v+ ≤ (v+ − l)+ + l, we have

‖v+‖Ln/(n−2),∞(B∗) ≤ ‖(v+ − l)+ + l‖Ln/(n−2),∞(B∗)

≤ ‖(v+ − l)+‖Ln/(n−2),∞(B∗) + l|B∗|(n−2)/n.

Therefore, combining this inequality, (43) and (44), we obtain

‖v+‖Ln/(n−2),∞(B∗) ≤ C(n)Rn−2CB

(
−
∫
D

vγ+ dx

)1/γ

+
10S2

∞
ν

µ+(B(x0, R))

+
2S2

∞
ν

‖(divb)+‖Ln/2,1(B∗)‖v+‖Ln/(n−2),∞(B∗).

It follows from (38) that

‖v+‖Ln/(n−2),∞(B(x0,R/2)) ≤ 2C(n)Rn−2CB

(
−
∫
D

vγ+ dx

)1/γ

+
20S2

∞
ν

µ+(B(x0, R)).

Since v = u in B(x0, R/2) and v ≤ u in D, replacing v by u, we arrive at the desired
estimate. �

Remark 54. If µ ≥ 0, then we can give a simpler proof. Indeed, the following
claim holds: Suppose that u is a supersolution to Lu = 0 in Ω and D b Ω. Then
the Poisson modification v = P (u,D) of u in D satisfies

µ[v](D) ≤ 2µ[u](D).

To prove this, let us choose a function η ∈ C∞
c (Ω) such that η ≡ 1 on D and

0 ≤ η ≤ 1. Since u = v on supp∇η, we have∫
Ω

η dµ[u] =

∫
Ω

A∇u · ∇η − (b · ∇η)u− divbu η dx

=

∫
Ω

A∇v · ∇η − (b · ∇η)v − divb v η dx−
∫
Ω

divb (u− v) η dx

=

∫
Ω

η dµ[v]−
∫
Ω

divb (u− v) dx.

Note that v ≤ u from the comparison principle. Therefore, it follows from Theorem
50 that

µ[v](D) ≤ µ[u](D) + ‖(divb)+‖Ln/2,1(D)‖u− v‖Ln/(n−2),∞(D)

≤ 2µ[u](D).

Therefore, replacing Step 2 by this estimate, we can get the same estimate.

Using Theorem 53 and an iteration argument, we reach the truncated Riesz
potential estimates. The concept of our iteration method is due to Kilpeläinen and
Malý [38]. The following modified version of iteration method is in [30, 31].
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Theorem 55. Let u be a weak solution to Lu = µ+ − µ− in Ω. Suppose that
x0 is a Lebesgue point of u. Then there exists a constant CU depending only on n,
B/ν such that

u±(x0) ≤ CU


(
−
∫
B(x0,R)\B(x0,R/2)

uγ± dx

)1/γ

+
1

ν
I
µ±
2 (x0, 2R)

 ,

whenever B(x0, 2R) ⊂ Ω

Proof. We prove the estimate only of u+. Let θ ∈ (0, 1) be a sufficiently
small constant to be chosen later. For m = 0, 1, . . ., we take Rm = 2−mR, Bm =
B(x0, Rm) and

l0 = 0, lm+1 = lm +
1

(θ|Bm+1|)(n−2)/n
‖(u− lm)+‖Ln/(n−2),∞(Bm+1).

From the definition of lm, for any m ≥ 1,

(45) ‖(u− lm−1)+‖Ln/(n−2),∞(Bm) = (lm − lm−1)(θ|Bm|)(n−2)/n

holds. Assume that lm > lm−1. Then we have

|{x ∈ Bm; u(x) ≥ lm}| = |{x ∈ Bm; (u(x)− lm−1)+ ≥ lm − lm−1}| ≤ θ|Bm|.

Therefore, by using Lemma 12, we get∫
Bm

(u− lm)+ dx ≤ C(n)|{x ∈ Bm; u(x) ≥ lm}|2/n‖(u− lm)+‖Ln/(n−2),∞(Bm)

≤ C(n)(θ|Bm|)2/n‖(u− lm)+‖Ln/(n−2),∞(Bm),

This implies that

−
∫
Bm

(u− lm)+ dx ≤ C(n)θ2/n
1

|Bm|(n−2)/n
‖(u− lm−1)+‖Ln/(n−2),∞(Bm)

= C(n)θ2/n
1

|Bm|(n−2)/n
‖(u− lm−1)+‖Ln/(n−2),∞(Bm).

On the other hand, applying Theorem 53 for u− lm with γ = 1, we have

1

|Bm+1|(n−2)/n
‖(u− lm)+‖Ln/(n−2),∞(Bm+1) ≤ C1−

∫
Bm\Bm+1

(u− lm)+ dx

+
C2

ν
R2−n
m µ+(Bm).

Combining the two inequalities, we get

(lm+1 − lm) ≤ C(n)C1θ
2/n(lm − lm−1) +

C(n)

θ(n−2)/nν
R2−n
m µ+(Bm).

On the other hand, if lm = lm−1, then lm+1 = lm by (45). Therefore, this inequality
holds for any m ≥ 1. Choose θ > 0 such that C(n)C1θ

2/n ≤ 1/2. Summing over
m = 1, 2, . . .M , we get

lM+1 − l1 ≤ 1

2
lM +

C(n, θ)

ν

M∑
m=1

R2−n
m µ+(Bm).
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Taking the limit M → ∞, we then obtain

1

2
l∞ :=

1

2
lim
M→∞

lM ≤ l1 +
C(n, θ)

ν

∞∑
m=1

R2−n
m µ+(Bm).

On the other hand, by Theorem 53, we have

l1 =
1

(θ|B1|)(n−2)/n
‖u+‖Ln/(n−2),∞(B1)

≤ 1

θ(n−2)/n

C1

(
−
∫
B0\B1

uγ+ dx

)1/γ

+
C2

ν
R2−n

0 µ+(B0)

 .

Therefore, we get

l∞ ≤ C(n, θ)


(
−
∫
B0\B1

uγ+ dx

)1/γ

+
1

ν

∞∑
m=0

R2−n
m µ+(Bm)

 .

By Lemma 5, the right-hand side may be assumed to be finite; therefore, (lm −
lm−1) → 0 as m→ ∞. Thus, it follows from Lemma 12 that

−
∫
Bm

(u− lm)+ dx ≤ C(n)θ(lm − lm−1) → 0 as m→ ∞.

Hence

lim
m→∞

−
∫
Bm

(u− l∞) dx ≤ lim
m→∞

−
∫
Bm

(u− l∞)+ dx ≤ lim
m→∞

−
∫
Bm

(u− lm)+ dx = 0.

Therefore,

u(x0) = lim
m→∞

−
∫
Bm

udx ≤ l∞.

Consequently, we arrive at

u(x0) ≤ C(n, θ)


(
−
∫
B(x0,R)\B(x0,R/2)

uγ+ dx

)1/γ

+
1

ν
I
µ+

2 (x0, 2R)

 .

This completes the proof. �

Corollary 56. Let u be a weak solution to Lu = µ ≥ 0 in Ω. Let x0 be a
Lebesgue point of u. Then there exists a constant CU ′ depending only on n and B/ν
such that

u(x0) ≤ CU ′

(
ess inf
B(x0,R)

u+
1

ν
Iµ2 (x0, 2R)

)
,

whenever B(x0, 2R) ⊂ Ω.

Proof. Combine Theorem 42 and Theorem 55. �
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3. Applications of upper bounds

Using Theorem 55, we can give some sufficient conditions of interior regularity.

Corollary 57. Let u be a weak solution to Lu = µ+ − µ− in Ω.

(1) Assume that

lim
R→0

sup
x∈B(x0,R)

I
|µ|
2 (x0, R) = 0

for some x0 ∈ Ω. Then u is continuous at x0. Moreover, if

lim
R→0

sup
x0∈D

I
|µ|
2 (x0, R) = 0

for D b Ω, then u is continuous in D.

(2) If µ ∈ L
n/2,1
loc (Ω), then u ∈ C(Ω).

(3) If µ ∈ Lp,rloc(Ω) with
1

q
=

1

p
− 2

n

and 0 < r ≤ ∞, then u ∈ Lq,rloc(Ω).

Proof. Without loss of generality, we may assume that x0 is a Lebesgue point
of u. From Theorem 55,

|u(x)− u(x0)| ≤ C

(
−
∫
B(x,R)

|u− u(x0)|dx+
1

ν
I
|µ|
2 (x,R)

)
.

Taking the supremum for x ∈ B(x0, R), we get

ess sup
B(x0,R)

|u− u(x0)| ≤ C

(
−
∫
B(x0,2R)

|u− u(x0)|dx+ sup
x∈B(x0,R)

1

ν
I
|µ|
2 (x,R)

)
.

The first term of the right-hand side goes to 0 as R→ 0. From the assumption on
µ, we obtain

lim
R→0

ess sup
B(x0,R)

|u− u(x0)| = 0.

The second assertion follows from the first assertion. The third assertion is a
consequence of Lemma 17. �

Corollary 58. Let u be a weak solution to Lu = µ ≥ 0 in Ω. If there are
constants K and ε > 0 such that

µ(B(x,R)) ≤ KRn−2+ε

for all x ∈ Ω, Then there exists constants C1, C2 and β > 0 depending only on n
and B/ν such that

osc
B(x0,ρ)

u ≤ C1

( ρ
R

)β
osc

B(x0,5R)
u+

C2

ν
KRε,

whenever B(x0, 5R) ⊂ Ω.

Proof. Let

M(R) = ess sup
B(x0,R)

u, m(R) = ess inf
B(x0,R)

u, ω(R) =M(R)−m(R).
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From Corollary 56 and the assumption on µ, we have

M(R)−m(5R) = sup
B(x0,R)

(u−m(5R))

≤ sup
x∈B(x0,R)

CU ′

(
inf

B(x,2R)
(u−m(5R)) +

1

ν
Iµ2 (x, 4R)

)

≤ CU ′

(
inf

B(x0,R)
(u−m(5R)) +

1

ν
sup

x∈B(x0,R)

Iµ2 (x, 4R)

)

≤ CU ′(m(R)−m(5R)) + CU ′
C(n)

ν
KRε.

Since M(5R) −M(R) ≤ CU ′(M(5R) −M(R)), combining the two inequality, we
obtain

ω(5R) ≤ CU ′(ω(5R)− ω(R)) + CU ′
C(n)

ν
KRε,

hence

ω(R) ≤ CU ′ − 1

CU ′
ω(5R) +

C(n)

ν
KRε.

Iterating this estimate, we get the desired inequality. �

From the method in [39], we can estimate the growth order of non-negative
subsolutions:

Corollary 59. Let u be a non-negative solution to Lu = µ ≤ 0 in Ω. Then
there exist constants C and 0 < λ < 1 depending only on n, ν and B such that

ess sup
B(x0,λR)

u ≤ 2u(x0) +
C

ν

(
Iµ2 (x0, 2R) +R2−nµ(B(x0, 2R))

)
,

whenever B(x0, 2R) ⊂ Ω.

Proof. Choose a natural number M such that(
2CU

2CU − 1

)M−1

≤ 2CH ≤
(

2CU
2CU − 1

)M
,

and take λ = 2−M . We divide the proof two cases.
Case 1. Assume that for all m = 1, . . .M ,

sup
B(x0,2−mR)

u ≤
(
2CU − 1

2CU

)
sup

B(x0,21−mR)

u.

Then,

sup
B(x0,2−MR)

u ≤ 1

2CH
sup

B(x0,R)

u.

Let h be the solution to the Dirichlet problem{
Lh = 0 in B(x0, 2R)

h = u on ∂B(x0, 2R),

and let k = (2CH)−1 supB(x0,R) u. By the comparison principle, h ≥ 0 in B(x0, 2R).
It follows from Theorem 47,

inf
B(x0,R)

h ≥ 1

CH
sup

B(x0,R)

h =
1

CH
sup

B(x0,R)

u = 2k.



48 4. POTENTIAL UPPER BOUNDS

Thus, from the assumption on u,

inf
B(x0,λR)

(h− u) ≥ 2k − k = k.

Consider the function w = min{h− u, k}. Then from Lemma 14,

k2C(n)(λR)n−2 ≤ k2|{x ∈ B(x0, 2R); w(x) ≥ k}|(n−2)/n

≤ S2
∞

∫
B(x0,2R)

|∇w|2 dx.

On the other hand, from Theorem 50 we have∫
B(x0,2R)

|∇w|2 dx ≤ 4k

ν
µ(B(x0, 2R)).

Therefore,

k ≤ C(n)

ν
(λR)2−nµ(B(x0, 2R)).

This implies that

(46) sup
B(x0,R)

u ≤ (
C(n)CH2M(n−2)

ν
)R2−nµ(B(x0, 2R)).

Case 2. Otherwise, there is a natural number m ∈ [1,M ] such that

sup
B(x0,2−mR)

u >

(
2CU − 1

2CU

)
sup

B(x0,21−mR)

u.

Then we have (
CU − 1

2

)
sup

B(x0,21−mR)

u ≤ CU sup
B(x0,2−mR)

u.

Let us consider the function supB(x0,21−mR) u− u. Then, we have

CU inf
B(x0,2−mR)

(
sup

B(x0,21−mR)

u− u

)
= CU

(
sup

B(x0,21−mR)

u− sup
B(x0,2−mR)

u

)

≤ 1

2
sup

B(x0,21−mR)

u.

Thus, applying Corollary 56 for supB(x0,21−mR) u− u, we get

sup
B(x0,21−mR)

u− u(x0) ≤
1

2
sup

B(x0,21−mR)

u+
CU
ν

Iµ2 (x0, 2
1−mR).

Therefore,

(47) sup
B(x0,21−mR)

u ≤ 2u(x0) + 2
CU
ν

Iµ2 (x0, 2
1−mR).

Thus, combining (46) and (47), for any case, we have

sup
B(x0,2−MR)

u ≤ 2u(x0) +
C

ν

(
Iµ2 (x0, 2R) +R2−nµ(B(x0, 2R))

)
.

We arrived at the desired inequality. �

Next, we give a necessary condition of for the solvability of the Dirichlet prob-
lem.
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Definition 60. Let Ω be a open set, and let E be a closed subset of Ω. We
say that E is thin at x0 with respect to L if x0 is not a limit point of E or there is
a quasicontinuous supersolution to Lu = 0 in a neighborhood of x0 such that

lim inf
x→x0
x∈E

u > u(x0)

(
= lim
R→0

−
∫
B(x0,R)

udx

)
.

Theorem 61. Let E be a closed subset of Ω, and let x0 be a limit point of E.
Suppose that

(48)

∫ R0

0

s2−n cap(E ∩B(x0, s), B(x0, 2s))
ds

s
<∞

for some R0 > 0. Then E is thin at x0 with respect to L.

Proof. Let 0 < R < min{R0/2,dist(x0, ∂Ω)} be a constant to be chosen later.
Let

u = R(E ∩B(x0, R), B(x0, 2R)).

From Theorem 50, we have

−
∫
B(x0,R)

udx ≤ C(n)R2−n‖u‖Ln/(n−2),∞(B(x,R))

≤ C(n)

ν
R2−nµ[u](B(x0, 2R))

=
C(n)

ν
R2−nµ[u](B(x0, R)).

Combining this inequality and Theorem 55, we get

u(x0) ≤ CU

(
−
∫
B(x0,R)

udx+
1

ν
I
µ[u]
2 (x0, 2R)

)

≤ CU (C(n) + 1)

ν

∫ 2R

0

s2−nµ[u](B(x0, s))
ds

s
.

From Lemma 37, we have

µ[u](B(x0, s)) ≤ B∗(CE)
1/2 cap(E ∩B(x0, s), B(x0, 2R))

≤ B∗(CE)
1/2 cap(E ∩B(x0, s), B(x0, 2s)).

Therefore,

C

ν

∫ 2R

0

s2−nµ[u](B(x0, s))
ds

s

≤ C(n,
B
ν
)

∫ 2R

0

s2−n cap(E ∩B(x0, s), B(x0, 2s))
ds

s
.

From assumption, we can take the right-hand side less than 1/2 by choosing R
sufficiently small. On the other hand, from definition, u = 1 q.e. on E. Therefore,

lim inf
x→x0
x∈E

u = 1 >
1

2
≥ lim
R→0

−
∫
B(x0,R)

udx.

Since u is a supersolution to Lu = 0 in B(x0, 2R), E is thin at x0 with respect to
L. �
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Example 62. Let us recall Lebesgue’s spine:

D = {x = (x1, x2, x3) ∈ R3; |x| < 1 and u(x) < 2},

where

u(x) =

∫ 1

0

sds√
(x1 − s)2 + x22 + x23

.

Then, {D is thin at x = 0 with respect to −4, and (48) holds at x0 = 0 (see [34,
pp.144-145] and Corollary 77). Thus, {D is thin at x = 0 with respect to L.

4. Divergence-free drifts

In this section, we give further remarks for equations with divergence-free drifts.
Since we do not need the perturbation arguments, we can obtain the optimal con-
stants for some estimates (see, (49), (50), (52) and the first term in (54)).

Theorem 63. Assume that divb = 0. Let u be a supersolution to Lu = 0 in
Ω, and let D b Ω. Then the Poisson modification v = P (u,D) of u in D satisfies
the charge conservation

(49) µ[v](D) = µ[u](D).

Conversely, assume that

A(x) ∈ (C1(Ω))n×n, b ∈ (Ln(Ω))n

and (49) holds for any Poisson modification. Then divb = 0 in the sense of
distributions.

Proof. Choose a function η ∈ C∞
c (Ω) such that η ≡ 1 on D and 0 ≤ η ≤ 1.

Since u = v on supp∇η, we have∫
Ω

η dµ[u] =

∫
Ω

A∇u · ∇η − (b · ∇η)udx

=

∫
Ω

A∇v · ∇η − (b · ∇η)v dx =

∫
Ω

η dµ[v].

Hence (49) holds We show the converse. Since ‖b‖Ln(Ω′) → 0 as |Ω′| → 0, replacing
Ω by a sufficiently small subdomain Ω′, we can assume that |||b|||Ω is sufficiently
small. Thus, without loss of generality, we may assume that 〈Lu, v〉 is coercive. Fix
any ϕ ∈ C∞

c (Ω) and take an open set D b Ω such that suppϕ ⊂ D. Then, since

f = Lϕ = −div (A∇ϕ) + b · ∇ϕ ∈ L2n/(n+2)(D),

we can take functions wp, wm ∈ H1
0 (D) such that

Lwp = f+ and Lwm = f− in D.

Then ϕ = wp − wm. Let u ∈ H1
0 (Ω) be the solution to the Dirichlet problem

Lu = f+ in Ω and let v = P (u,D). Choose a sequence of smooth functions {ηj}∞j=1

such that each of which satisfies ηj ≡ 1 on D, 0 ≤ ηj ≤ 1 and ηj ↓ 1D as j → ∞.
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Then, for each j,∫
Ω

ηj dµ[u]−
∫
Ω

ηj dµ[v]

=

∫
Ω

A∇u · ∇ηj − (b · ∇ηj)udx−
∫
Ω

A∇v · ∇ηj − (b · ∇ηj)v dx

+

∫
Ω

b · ∇((u− v)ηj) dx

=

∫
Ω

b · ∇(u− v) dx.

Therefore, from assumption,

0 = lim
j→∞

(∫
Ω

ηj dµ[u]−
∫
Ω

ηj dµ[v]

)
=

∫
Ω

b · ∇(u− v) dx =

∫
Ω

b · ∇wp dx.

Applying the same argument for wm, we can show that∫
Ω

b · ∇ϕdx =

∫
Ω

b · ∇wp dx−
∫
Ω

b · ∇wm dx = 0− 0 = 0.

Therefore, divb = 0 in the sense of distributions. �

Theorem 64. Assume that divb = 0. Let µ be a finite Radon measure in
H−1(Ω), and let u ∈ H1

0 (Ω) be a weak solution to Lu = µ in Ω. Then

(50) ‖u‖Ln/(n−2),∞(Ω) ≤
S2
∞
ν

|µ|(Ω),

(51) ‖∇u‖Ln/(n−1),∞(Ω) ≤
S∞

ν
|µ|(Ω)

and

(52) ‖∇Tk(u)‖2L2(Ω) ≤
k

ν
|µ|(Ω)

for all k > 0. Here, S∞ is the constant as in Lemma 14.

Remark 65. The constant S2
∞/ν in (50) is sharp. We note that the sharpness

of (50) has been mentioned in [10] in the case of L = −4. For 0 < r < R, consider
the superharmonic functions

ur,R(x) = min{|x|2−n, r2−n} −R2−n ∈ H1
0 (B(0, R)).

Then, its Riesz measure µr,R = µ[ur,R] satisfies

µr,R(B(0, R)) = (n− 2)n|B(0, 1)|.

Since

‖ur,R‖Ln/(n−2),∞(Rn) = sup
r2−n−R2−n>k>0

k

(k +R2−n)
|B(0, 1)|(n−2)/n,

the functions ur,R are archive the sharp constant when R → ∞ or r → 0. Let
us consider an example of equations with nontrivial drift. For smooth function
φ : R → R, we take

bφ(x) =

(
∂φ(|x|)
∂x2

,−∂φ(|x|)
∂x1

, 0, . . . , 0

)T
.



52 4. POTENTIAL UPPER BOUNDS

By definition, divbφ = 0. Moreover, since

bφ · ∇ur,R = 0.

we have
−4ur,R + bφ · ∇ur,R = −4ur,R = µr,R.

Remark 66. By using a parabolic equation, we can give another proof of (50).
Let us consider the parabolic problem

∂tu+ b · ∇u− div (A∇u) = 0 in Ω, u = 0 on ∂Ω.

Then, from a method in [9], we have

(53) ‖u(·, T )‖L∞(Ω) ≤
1

(4πT )n/2
‖u(·, 0)‖L1(Ω).

Moreover, testing the equation by Hk(u) and taking the limit k → 0, we can show
the maximum principle

‖u(·, T )‖L1(Ω) ≤ ‖u(·, 0)‖L1(Ω).

Since U(x) =
∫∞
0
u(x, T ) dT satisfies the equation LU = u0, by using an interpola-

tion argument (see e.g [24]), we can reach the desired estimate.

By using (50), (51) and a duality argument, we can give another proof of the
estimate in [5]; see also [36].

Corollary 67. Assume that divb = 0. Let f ∈ Ln/2,1(Ω) and F ∈ (Ln,1(Ω))n.
Let u ∈ H1

0 (Ω) be a weak solution to

Lu = f + divF in Ω.

Then u is bounded. Moreover, we have the estimate

(54) ‖u‖L∞(Ω) ≤
S2
∞
ν

‖f‖Ln/2,1(Ω) +
S∞

ν
‖F‖Ln,1(Ω).

Proof. Let L∗ be the formal adjoint operator of L:
L∗v = −div (AT∇v + bv) = −div (AT∇v)− b · ∇v.

Here, AT is the transpose of A. We note that L∗ satisfies the assumptions in Lemma
64. Fix any function g ∈ H−1(Ω) ∩ L1(Ω), g ≥ 0. Take v ∈ H1

0 (Ω) such that

L∗v = g in Ω.

By the definition of v∫
Ω

ug dx = 〈u,L∗v〉Ω = 〈Lu, v〉Ω =

∫
Ω

fv − F · ∇v dx.

Therefore, by using (50) and (51), we get∣∣∣∣∫
Ω

ug dx

∣∣∣∣ ≤ ‖f‖Ln/2,1(Ω)‖v‖Ln/(n−2),∞(Ω) + ‖F‖Ln,1(Ω)‖∇v‖Ln/(n−1),∞(Ω)

≤
(
S2
∞
ν

‖f‖Ln/2,1(Ω) +
S∞

ν
‖F‖Ln,1(Ω)

)
‖g‖L1(Ω).

This implies that

ess sup
Ω

u ≤ S2
∞
ν

‖f‖Ln/2,1(Ω) +
S∞

ν
‖F‖Ln,1(Ω).

According to the same argument, we can estimate ess infΩ u. �
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Using Lemma 16 we get the following estimates:

Corollary 68. Assume that divb = 0. Suppose that

1

q
=

1

p
− 2

n
, p ∈

(
1,

n

2

)
and 0 < r ≤ ∞. Let µ ∈ H−1(Ω) ∩ Lp,r(Ω) and let u ∈ H1

0 (Ω) be a weak solution
to Lu = µ in Ω. Then

‖u‖Lq,r(Ω) ≤
C(n, p, r)

ν
‖µ‖Lp,r(Ω).





CHAPTER 5

Potential lower bounds

In the previous chapter, we established potential upper bounds of solutions.
Next, we shall derive a potential lower bound of non-negative supersolutions. If u
is a non-negative superharmonic functions in B(x0, 2R) = Ω. Then, from the Riesz
decomposition theorem, we have the lower bound

u(x) =

∫
Ω

GΩ(x, y) dµ(y) + h(x) ≥
∫
Ω

GΩ(x, y) dµ(y).

Recall the pointwise lower estimate of Green’s functions

GΩ(x, y) ≥
1

C
|x− y|2−n ∀x ∈ B(y, dist(y, ∂Ω)/2).

Combining the two lower bounds, we arrive at

(55) u(x0) ≥
1

C

∫
B(x0,R)

dµ(x)

|x0 − x|n−2
≥ 1

C
Iµ2 (x0, R).

From results in [53] and [28], existence of the Green function and the estimate (55)
also holds for equations of type (3) except for the difference of constant. Unfortu-
nately, even under condition (38), the lower bound does not holds in general. In
this chapter, considering about the relation between the lower bounds of solutions
and the measure data, we establish the potential lower bound (55) under the as-
sumptions (21), (38) and the additional assumption (56). More precisely, we derive
Corollary 72. This two-sided estimate yields a necessary and sufficient condition of
boundary regularity.

1. The lower potential estimate

For further properties of supersolutions, we assume that

(56) ‖(divb)−‖Ln/2,1(Ω) ≤
ν

8S2
∞(CH)α

in addition to (21) and (38), where CH is the constant as in Theorem 47 and α is
a geometric constant to be chosen later (see (62)). Since CH depends on B/ν, this
assumption depends also on B/ν. Under these conditions, we have the following:

Lemma 69. Let u be a lower semicontinuous supersolution to Lu = µ ≥ 0 in
Ω. Then there exists a constant C depending only on n and B/ν such that

R2−nµ(B(x0, R)) ≤ B∗C

(
inf

B(x0,R)
u− inf

B(x0,2R)
u

)
,

whenever B(x0, 2R) ⊂ Ω.

55
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Proof. Take η ∈ C∞
c (B(x0, 5R/4)) such that 0 ≤ η ≤ 1 and η = 1 on

B(x0, R). Let w ∈ H1
0 (B(x0, 2R)) be the solution to the Dirichlet problem

Lw = ηµ in B(x0, 2R).

By the minimum principle, w ≥ 0 in B(x0, 2R). Let

M := ess sup
∂B(x0,3R/2)

w, m := ess inf
∂B(x0,3R/2)

w.

Since Lw = 0 in B(x0, 2R) \ B(x0, 5R/4), these quantities are well-defined. From
the maximum principle,

0 ≤ w ≤M in B(x0, 2R) \B(x0, 3R/2).

Notice that according to the Harnack inequality, we have

(57) M ≤ (CH)αm,

where α is a constant depending only on n. Let us consider the function

w̃ := min{w,M}.

From the minimum principle, w̃ ≥ m in B(x0, 3R/2). Choose φ ∈ C∞
c (B(x0, 2R))

such that

φ ≡ 1 in B(x0, 3R/2), |∇φ| ≤ C

R
.

Then, since w̃φ2 ≥ m in B(x0, 3R/2) ⊃ B(x0, 5R/4), we have

m(ηµ)(B(x0, 2R))

≤
∫
B(x0,2R)

(w̃φ2) d(ηµ)

≤
∫
B(x0,2R)

A∇w · ∇(w̃φ2) dx+

∫
B(x0,2R)

(b · ∇w)(w̃φ2) dx.

(58)

Since supp∇φ ⊂ B(x0, 2R) \ B(x0, 3R/2), it follows that if ∇(w̃φ2)(x) 6= 0, then
w̃(x) = w(x). Therefore, by using Young’s inequality, we get∫

B(x0,2R)

A∇w · ∇(w̃φ2) dx

≤ C‖A‖L∞(Ω)

(∫
B(x0,2R)

|∇w̃|2φ2 dx+M2

∫
B(x0,2R)

|∇φ|2 dx

)
.

(59)

Likewise, since∫
B(x0,2R)

(b · ∇w)
(
w̃φ2

)
dx

= −
∫
B(x0,2R)

(
b · ∇(w̃φ2)

)
w dx−

∫
B(x0,2R)

(divb)ww̃φ2 dx

= −
∫
B(x0,2R)

(b · ∇w̃)w̃φ2 dx− 2

∫
B(x0,2R)

(b · ∇φ)w̃2φ dx

−
∫
B(x0,2R)

divbww̃φ2 dx,
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using (21), we get∫
B(x0,2R)

(b · ∇w)(w̃φ2) dx

≤ C|||b|||Ω

(∫
B(x0,2R)

|∇w̃|2φ2 dx+M2

∫
B(x0,2R)

|∇φ|2 dx

)
+M‖(divb)−‖Ln/2,1+(Ω)‖w‖Ln/(n−2),∞(B(x0,2R)).

(60)

The second term of the right-hand side can be estimated by (39):

‖w‖Ln/(n−2),∞(B(x0,2R)) ≤
4S2

∞
ν

(ηµ)(B(x0, 2R)).

Since (M−w)+ =M− w̃ is a subsolution to Lu = 0 in B(x0, 2R), Lemma 36 yields

(61)

∫
B(x0,2R)

|∇w̃|2φ2 dx ≤ CEM
2

∫
B(x0,2R)

|∇φ|2 dx.

Combining these inequalities (57)-(61), we get

m(ηµ)(B(x0, 2R)) ≤ B∗ (CCE(CH)2α
)
m2Rn−2

+

(
(CH)α

4S2
∞
ν

‖(divb)−‖Ln/2,1(Ω)

)
m(ηµ)(B(x0, 2R)).

Therefore, if (divb)− is small enough such that

(62) ‖(divb)−‖Ln/2,1(Ω) ≤
ν

8S2
∞(CH)α

,

then we have

m(ηµ)(B(x0, 2R)) ≤ B∗Cm2Rn−2,

where C is a constant depending only on n and B/ν. If m = 0, then, from the
strong minimum principle, (ηµ) ≡ 0. Thus,

R2−n(ηµ)(B(x0, 2R)) ≤ BCm.

On the other hand, from the comparison principle, we have

w ≤ u− inf
B(x0,2R)

u in B(x0, 2R).

Therefore,

m ≤ inf
B(x0,3R/2)

(u− inf
B(x0,2R)

u) ≤ inf
B(x0,R)

(u− inf
B(x0,2R)

u).

Consequently,

R2−n(ηµ)(B(x0, 2R)) ≤ B∗C

(
inf

B(x0,R)
u− inf

B(x0,2R)
u

)
.

From the definition of η, we obtain

R2−nµ(B(x0, R)) ≤ B∗C

(
inf

B(x0,R)
u− inf

B(x0,2R)
u

)
.

We arrived at the desired estimate. �



58 5. POTENTIAL LOWER BOUNDS

Remark 70. It is necessary to add the condition (56) to lead Lemma 69.
Consider the case of A = I, b = −εx/|x|2, Ω = B(0, 2). For sufficiently small
positive ε > 0, the conditions (21) and (38) hold, but (56) does not hold. For
0 < r < 1, let us consider the non-negative functions

ur(x) = min{|x|2−n−ε, r2−n−ε} − 22−n−ε.

Then, ur are supersolutions to Lu = 0 in B(0, 2), moreover, their Riesz measures
µ[ur] satisfy

µ[ur](B(0, 1)) = (n− 2 + ε)n|B(0, 1)|r−ε.

In particular, µ[ur](B(0, 1)) → ∞ as r → 0. On the other hand, we have

inf
B(0,1)

ur − inf
B(0,2)

ur = 1− 22−n−ε.

Therefore, under (21) and (38), this lower bound does not hold in general.

Iterating Lemma 69, we arrive at the following pointwise lower bound estimate
of non-negative supersolutions.

Theorem 71. Let u be a lower semicontinuous non-negative supersolution to
Lu = µ ≥ 0 in Ω. Then there exists a constant CL depending only on n and B/ν
such that

u(x0) ≥
1

B∗CL
Iµ2 (x0, R),

whenever B(x0, 2R) ⊂ Ω.

Proof. For k = −1, 0, 1, . . ., take Rk = 2−kR and Bk = B(x0, Rk). Then,
from Lemma 69, for all k ≥ 0, we obtain

R2−n
k µ(Bk) ≤ B∗C

(
inf
Bk

u− inf
Bk−1

u

)
.

By summing over all k = 0, 1, . . ., we get

u(x0) = lim
k→∞

ess inf
Bk

u ≥ 1

B∗C

∞∑
k=0

R2−n
k µ(Bk).

We arrived at the desired estimate. �

Combining Corollary 56 and Corollary 71, we obtain the following two-sided
bound:

Corollary 72. Let u be a non-negative solution to Lu = µ ≥ 0 in Ω. Then
there exists a constant C depending only on n and B/ν such that

1

B∗C
Iµ2 (x0, R) ≤ u(x0) ≤ C

(
ess inf
B(x0,R)

u+
1

ν
Iµ2 (x0, 2R)

)
,

whenever x0 is a Lebesgue point of u and B(x0, 2R) ⊂ Ω.
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2. Applications of the potential lower bound

From Theorem 71, we obtain estimates of the Riesz measure of supersolutions
to the equation Lu = 0 in Ω:

Corollary 73. Let u be a lower semicontinuous supersolution to Lu = 0 in
Ω, and let µ be its Riesz measure.

(1) If u is finite at x0 ∈ Ω, then, there exists a constant R > 0 such that

Iµ2 (x0, R) <∞.

Moreover, if u is bounded in D b Ω, then, there exists a constant R > 0
such that

sup
x0∈D

Iµ2 (x0, R) <∞.

(2) If u is continuous at x0 ∈ Ω, then

lim
R→0

sup
x∈B(x0,R)

Iµ2 (x0, R) = 0.

Moreover, if u is continuous in D b Ω, then

lim
R→0

sup
x0∈D

Iµ2 (x0, R) = 0.

(3) Assume that there exist constants K and β > 0 such that

|u(x0)− u(x)| ≤ K|x0 − x|β

for any x ∈ B(x0, 2R) ⊂ Ω. Then there exists a constant C such that for
any 0 < r ≤ R,

µ(B(x0, r)) ≤ CKrn−2+β .

Proof. (1) Take a small ball such that B(x0, 2R) ⊂ Ω. Since u is lower
semicontinuous, infB(x0,2R) u > −∞. Applying Theorem 71 for u − infB(x0,2R) u,
we get the first assertion. (2) Since u is continuous at x0, for any ε > 0, we can
choose a positive number r > 0 such that

|u(x)− u(x0)| ≤
ε

2B∗CL

for any x ∈ B(x0, 3r), where B∗ and CL is the same constant as in Theorem 71.
Then, for any x ∈ B(x0, r), we have

Iµ2 (x, r) ≤ B∗CL(u(x)− inf
B(x,2r)

u)

≤ B∗CL(|u(x)− u(x0)|+ |u(x0)− inf
B(x,2r)

u|)

≤ B∗CL2
ε

2BCL
= ε.

(3) Fix 0 < r ≤ R. According Theorem 71, we have

r2−nµ(B(x0, r)) ≤ C(n)

∫ r

0

ρ2−nµ(B(x0, ρ))
dρ

ρ

≤ C(n)B∗CL

(
u(x0)− inf

B(x0,2r)
u

)
≤ C(n)B∗CLKr

β .

This completes the proof. �
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Next, we give a growth order estimate of non-negative subsolutions to Lu = 0
in Ω. This is an analog of Nevanlinna’s theorem in higher dimensional Euclidean
spaces (see [32]).

Corollary 74. Let u be a non-negative solution to Lu = µ ≤ 0 in B(x0, R).
Assume that u(x0) = limR→0 −

∫
B(x0,R)

udx = 0. Then there exist constants C and

0 < λ < 1 depending only on n and B/ν such that

1

B∗C
Iµ2 (x0, λR/2) ≤ ess sup

B(x0,λR)

u ≤ C

ν
Iµ2 (x0, R).

Proof. The latter inequality was proved in Corollary 59. Applying Theorem
71 for supB(x0,λR) u− u in B(x0, λR), we get

1

B∗C
Iµ2 (x0, λR/2) ≤ ess sup

B(x0,λR)

(u− u(x0)) = ess sup
B(x0,λR)

u.

This completes the proof. �

Example 75. To understand the above theorem, we recall examples of entire
non-negative subharmonic functions.

(1) Let u = max{1−|x|2−n, 0} and µ = 4u. Then, Iµ2 (0, R) = 0 for 0 < R ≤ 1
and

Iµ2 (0, R) =

∫ R

1

s2−n(n− 2)n|B(0, 1)|ds
s

= C(n)(1−R2−n)

for R > 1.
(2) If u = max{x1, 0} and µ = 4u, then,

Iµ2 (0, R) =

∫ R

0

s2−nn|B(0, 1)|sn−1 ds

s
= C(n)R.

(3) If u = |x|2 and µ = 4u = 2n, then,

Iµ2 (0, R) =

∫ R

0

s2−n2nsn
ds

s
= C(n)R2.

3. Wiener’s criterion

From Lemma 69, we can give a sufficient condition of boundary regularity of
solutions. This method is due to Maz′ya [57]. See also [33].

Lemma 76. Assume that D b Ω and x0 ∈ ∂D. Let 0 < R < dist(x0, ∂Ω)/2
and

u = 1−R({D ∩B(x0, R), (B(x0, 2R)).

Then for any 0 < ρ ≤ R,

u ≤ exp(− 1

C

∫ R

ρ

s2−n cap({D ∩B(x0, s), B(x0, 2s))
ds

s
)

in B(x0, ρ), where C > 0 is a constant depending only on n and B/ν.
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Proof. For m = 0, 1, 2, . . . , we take Rm = 2−mR and Bm = B(x0, Rm). Let

vm = R({D ∩Bm, 2Bm).

Then, from Lemma 69, we have

R2−n
m µ[vm](Bm) ≤ B∗C inf

Bm

vm.

On the other hand, it follows from Theorem 50 that

cap({D ∩Bm, 2Bm) ≤ ‖∇T1(vm)‖2L2(2Bm)

≤ 4

ν
µ[vm](2Bm) =

4

ν
µ[vm](Bm).

Therefore,
R2−n
m cap({D ∩Bm, 2Bm) ≤ C inf

Bm

vm.

Let
am = R2−n

m cap({D ∩Bm, 2Bm).

Then, since et ≥ 1 + t, we have

vm ≥ 1

C
am ≥ 1− exp(− 1

C
am) in Bm,

hence

1− vm ≤ exp(− 1

C
am) in Bm.

Since u = 1− v0, we have

u ≤ exp(− 1

C
a0) in B0.

This implies that

u ≤ exp(− 1

C
a0) = exp(− 1

C
a0)(1− v1) on ∂B1.

On the other hand, from definition, u = 0 q.e. on {D ∩ B0. Therefore, combining
two estimates and using the comparison principle, we get

u ≤ exp(− 1

C
a0)(1− v1) in D ∩B1.

Hence,

u ≤ exp(− 1

C
a0)(1− v1) in B1.

From the estimate for v1,

u ≤ exp(− 1

C
a0) exp(−

1

C
a1) in B1.

Choose an integer M such that 2−(M+1)R ≤ ρ ≤ 2−MR. By induction, we get

u ≤
M∏
m=0

exp(− 1

C
am) = exp(− 1

C

M∑
m=0

am) in BM ⊃ B(x0, ρ).

By a simple calculation, we can show that

M∑
m=0

am ≥ 1

C(n)

∫ R

ρ

s2−n cap({D ∩B(x0, s), B(x0, 2s))
ds

s
.

This completes the proof. �
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Theorem 77. Suppose that D b Ω, x0 ∈ ∂D and θ ∈ H1(D) ∩ C(D). Let
u ∈ θ +H1

0 (D) be the weak solution to Lu = 0 in D. Then, there exists a constant
C depending only on n and B/ν such that for any 0 < ρ ≤ R < dist(x0, ∂Ω)/2,

ω(ρ) ≤ ω(2R) exp(− 1

C

∫ R

ρ

s2−n cap({D ∩B(x0, s), B(x0, 2s))
ds

s
)

+ ωθ(2R),

where

ω(R) = osc
D∩B(x0,R)

u, ωθ(R) = osc
∂D∩B(x0,R)

θ.

In particular, if ∫ R

0

s2−n cap({D ∩B(x0, s), B(x0, 2s))
ds

s
= +∞,

then u is continuous at x0.

Proof. Without loss of generality, we may assume that θ(x0) = 0. For fixed
R > 0, we consider the function

U = sup
B(x0,2R)

u(1−R({D ∩B(x0, R), B(x0, 2R))) + max
∂D∩B(x0,2R)

θ.

Note that max
∂D∩B(x0,2R)

θ ≥ 0. Therefore, from the comparison principle

U ≥ sup
B(x0,2R)

u ≥ u on D ∩ ∂B(x0, 2R).

On the other hand,

U ≥ max
∂D∩B(x0,2R)

θ ≥ u on ∂D ∩B(x0, 2R).

Hence,

U ≥ u on ∂(D ∩B(x0, 2R)).

From the comparison principle,

U ≥ u in D ∩B(x0, 2R).

From a similar argument, if

U = inf
B(x0,2R)

u(1−R({D ∩B(x0, R), B(x0, 2R))) + min
∂D∩B(x0,2R)

θ,

then

U ≤ u in D ∩B(x0, 2R).

Therefore,

osc
B(x0,ρ)

u ≤ sup
B(x0,ρ)

U − inf
B(x0,ρ)

U.

From Lemma 76, the assertion follows. �

Corollary 78. Let D b Ω, and let θ ∈ H1(D)∩C(D). Let u ∈ θ+H1
0 (D) be

the weak solution to Lu = 0 in D. Assume that D satisfies the following capacity
density condition at x0 ∈ ∂D: There exist positive constants α ∈ (0, 1) and R0 > 0
such that

(63)
cap({D ∩B(x0, R), B(x0, 2R))

cap(B(x0, R), B(x0, 2R))
≥ α
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for all 0 < R ≤ R0. Then u is continuous at x0. Moreover, there exist constants C
and β ∈ (0, 1) depending only on n, B/ν and α such that

ω(ρ) ≤ C
( ρ
R

)β
ω(2R) + ωθ(2R)

for any 0 < ρ < R ≤ min{R0,dist(x0, ∂Ω)/2}.

Remark 79. The volume density condition (33) yields the capacity density
condition (63). Indeed, by taking

u = R(B(x0, R) \D,B(x0, 2R);−4),

it follows from Theorem 50 and Lemma 37 that

|B(x0, R) \D|(n−2)/n ≤ ‖u‖Ln/(n−2),∞(B(x0,2R))

≤ S2
∞µ[u](B(x0, 2R))

≤ C(n) cap({D ∩B(x0, R), B(x0, 2R)).

The converse does not hold. Indeed,

D = B(0, 1) \ {(x, y, 0); x ≥ 0, y ∈ R} ⊂ R3

satisfies (63) at 0 ∈ ∂D. However, (33) does not hold at 0.
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drift. SIAM J. Math. Anal., 42(6):2484–2498, 2010.
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Equations, 252(1):505–540, 2012.

[69] G. Stampacchia. Le problème de Dirichlet pour les équations elliptiques du second ordre à
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