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tative Hermann actions. A Hermann action is a generalization of isotropy
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1. INTRODUCTION

In Riemannian geometry, often submanifolds appear with special properties.
For example, minimal submanifolds have been studied by many mathematicians.
In spacial cases of minimal submanifolds, there are austere submanifolds and to-
tally geodesic submanifolds. Austere submanifolds are associated with special La-
grangian submanifolds in the cotangent bundle of the hypersphere. In addition, har-
monic maps and biharmonic maps are interesting submanifolds. Geometric proper-
ties listed above are described by the local structure of submanifolds. A reflectivity
and a weakly reflectivity are geometric properties which require a global structure
of submanifolds. Reflective submanifolds and weakly reflective submanifolds are
totally geodesic and austere, respectively.

To understand these geometric properties, it is an important problem which
constructs an example. One method for constructing examples is a method using
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2 SHINJI OHNO

Lie group actions. W. Hsiang and H. B. Lawson constructed many examples of
minimal hypersurfaces in the hypersphere using cohomogeneity one action on the
hypersphere. This method can be applied to other geometric properties.

The author have studied Lie group actions on Riemannian symmetric spaces,
such as isotropy representations and isotropy actions of compact symmetric spaces.
The second fundamental form of orbits of such actions are expressed by root system.
O. Ikawa ([I]) introduced the notion of symmetric triad as a generalization of the
notion of irreducible root system to study orbits of commutative Hermann actions.
O. Ikawa expressed orbit spaces of Hermann actions by using symmetric triads,
and gave a characterization of the minimal, austere and totally geodesic orbits of
Hermann actions in terms of symmetric triads.

In this thesis, we consider commutative Hermann actions and associated ac-
tions on compact Lie groups, and express the minimal, austere, weakly reflective,
biharmonic properties of orbits of these actions in terms of symmetric triads.

In Section 2, we review the notion of root systems and symmetric triads. In
particular, a minimal point, an austere point and a totally geodesic point are dis-
cussed.

In Section 3, we recall the definition of weakly reflective submanifolds, and their
fundamental properties, and we gave sufficient conditions for orbits of these actions
to be weakly reflective. Using the sufficient conditions, we obtain many examples
of weakly reflective submanifolds in compact symmetric spaces.

In Section 4, we give a characterization of biharmonic orbits of commutative
Hermann actions and associated actions on Lie groups in terms of symmetric tri-
ads. Using the characterization, we give examples of biharmonic submanifolds in
compact symmetric spaces which is not necessarily hypersurfaces. The contents of
this section is based on joint work with T. Sakai and H. Urakawa.

The author would like to express his deepest gratitude to his advisor, Professor
Takashi Sakai. The author is also very grateful to Professor Osamu Ikawa, Professor
Hiroyuki Tasaki, Professor Hiroshi Tamaru and Professor Hajime Urakawa for their
discussions, valuable comments.

2. HERMANN ACTIONS AND SYMMETRIC TRIADS

2.1. Symmetric triads. O.Ikawa ([I]) introduced the notion of symmetric triad as
a generalization of the notion of irreducible root system to study orbits of Hermann
actions. Ikawa expressed orbit spaces of Hermann actions by using symmetric
triads, and gave a characterization of the minimal, austere and totally geodesic
orbits of Hermann actions in terms of symmetric triads. We recall the notions of
root system and symmetric triad. See [I] for details.

Let (a, (-,-)) be a finite dimensional inner product space over R. For each « € a,
we define an orthogonal transformation s, : @ — a by

2{a, H)

sq(H)=H — Wa (H € a),

namely s, is the reflection with respect to the hyperplane {H € a | (o, H) = 0}.

Definition 2.1. A finite subset ¥ of a\ {0} is a root system of a, if it satisfies the
following three conditions:
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(1) Span(X) = a.

(2) If o, B € 3, then s,(5) € X.

3) 2o, B)/{a,a) €Z (o, €X).
A root system of a is said to be irreducible if it cannot be decomposed into two
disjoint nonempty orthogonal subsets.

Let X be a root system of a. The Weyl group W (X) of ¥ is the finite subgroup
of the orthogonal group O(a) of a generated by {s, | a € L}.

Definition 2.2 ([I] Definition 2.2). A triple (£, %, W) of finite subsets of a \ {0}
is a symmetric triad of a, if it satisfies the following six conditions:

(1) ¥ is an irreducible root system of a.

(2) X is a root system of a.

B) (L)W =W, S=XUW.

(4) ¥ N W is a nonempty subset. If we put | := max{||a|| | @ € ENW}, then

SAW ={aeX||al <1}
(5) Forao e Wand A € Z\ W,

(a,A)
(a,q)
(6) Forae Wand A € W\ X,

2 is odd if and only if s,(\) € W\ X.

2 {o, A) is odd if and only if s,(A\) € X\ W.
(o, )

Let (f], 3, W) be a symmetric triad of a. We set
T={Hcal|(\H)c (n/2)Z (AeD)},
Isow ={H ca|(\H) e (n/2)Z (AeXnNW)}.

A point in I' is called a totally geodesic point. It is known that I' = I'snp. We
define an open subset a, of a by

o= {Hea ‘ \H) ¢ 72, (o, H) ¢%+wz}.
e, aeW

A point in a, is called a regular point, and a point in the complement of a,. in a is
called a singular point. A connected component of a, is called a cell. The affine
Weyl group W (%, S, W) of (£,%, W) is a subgroup of the affine group of a, which
defined by the semidirect product O(a) x a, generated by

(25 [pemm e o2

The action of (sx, (2n7/(\, A))A) on a is the reflection with respect to the hyperplane
{H € a| (\ H) = nr}, and the action of (sq,((2n + 1)7/{a,a))a) on a is the
reflection with respect to the hyperplane {H € a | (o, H) = (n+1/2)7}. The affine
Weyl group W(i, 3, W) acts transitively on the set of all cells. More precisely, for
each cell P, it holds that

a= U sP.

sEW(E,2,W)

aeVV,neZ}.
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We take a fundamental system I of i; We denote by ©F the set of positive
roots in . Set T = 3+t NY and W+ = T NW. Denote by II the set of simple
roots of 3. We set

Wo={aeWt |a+AgW (Aell)}.

From the classification of symmetric triads, we have that W{ consists of the only
one element, denoted by &. We define an open subset Py of a by

(2.1) Poz{Hea‘<d,H><g, <>\,H>>O(>\6H)}.
Then P, is a cell. For an nonempty subset A C ITU {a}, set

H € Py (A H) >0 (Ne ANTI)
(n, H) =0 (pell\A)

Py = <(x)2) (facA) (-

W H
N = my2) (it g A)
then
Py = U P2 (disjoint union).
ACTIU{&}

Definition 2.3 ([I] Definition 2.13). Let (X,%, W) be a symmetric triad of a.
Consider two mappings m and n from ¥ to R>o := {a € R | a > 0} which satisfy
the following four conditions:

(1) For any X € X,
(1-1) m(}) = m(=X), n(A) = n(~N),
(1-2) m(X) > 0 if and only if XA € %,
(1-3) n(A\) > 0if and only if A € W.
(2) When A € &, a € W, s € W(X), then m(\) = m(s())), n(a) = n(s(a)).
(3) When X € X, 0 € W(X), then m(\) 4+ n()\) = m(a(N\) + n(a(N)).
(4) Let A e ZINW, a € W. If 2(a, \) /{av, ) is even, then m(A\) = m(sq(N)).
If 2{a, A)/{c, @) is odd, then m(N\) = n(sq(N)).

We call m(A) and n(«) the multiplicities of A and «, respectively.

Let (3,3, W) be a symmetric triad of a with multiplicities m and n. For H € a,
we set

mip=— Y m(\)cot(\, H)A + > n(«) tan{a, H)a.
Aext acWt
(\HYERZ, (o, H)YE(m/2)+nZ

The vector mpy is called the mean curvature vector at H. A vector H € ais a
minimal point if myg = 0.

Proposition 2.4 ([T Theorem 2.14 ). Let (%,%, W) be a symmetric triad of a with
multiplicities. For H € a and 0 = (s,X) e W(X, X2, W), set H = cH € a, then

mpgygr = s(mH).

Theorem 2.5 ([I] Theorem 2.24 ). For any nonempty subset A C ITU {a}, there
exists a unique minimal point H € POA.
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A vector H € a is an austere point if the subset of a with multiplicities defined
by

{—cot(\, H)A (multiplicity= m()\)) | A € ©*,(\, H) & 77}
U {tan(a, H)a (multiplicity= n(a)) |« € W, (a, H) & (7/2) + 7Z}

is invariant with multiplicities under the multiplication by —1. An austere point is
a minimal point.

Proposition 2.6 ([I] Theorem 2.18). A point H € a is austere if and only if the
following three conditions holds:

(1) (N H) € (7/2)Z for any A € (E\ W)U (W \ X).

(2) 2H € I'saw .

(3) m(A\) =n(A) for any A € XNW with (\, H) € (n/4) + (7/2)Z.

Ikawa gave the classification of symmetric triad and determined austere points
for symmetric triads with multiplicities.

2.2. Minimal orbits and austere orbits. In this section, we consider Hermann
actions and associated actions on Lie groups which are hyperpolar actions on com-
pact symmetric spaces. A. Kollross ([Kol]) classified the hyperpolar actions on
compact irreducible symmetric spaces. By the classification, we can see that a
hyperpolar action on a compact symmetric space whose cohomogeneity is two or
greater, is orbit-equivalent to some Hermann action.

Let G be a compact, connected, semisimple Lie group, and K7, Ko be closed
subgroups of G. For each i = 1,2, assume that there exists an involutive automor-
phism 6; of G which satisfies (G, )0 C K; C Go,, where Gy, is the set of fixed points
of 6; and (G;)o is the identity component of Gp,. Then the triple (G, K7, K2) is
called a compact symmetric triad. The pair (G, K;) is a compact symmetric pair for
i =1,2. We denote the Lie algebras of G, K; and K5 by g, ¥ and £, respectively.
The involutive automorphism of g induced from 6; will be also denoted by 6;. Take
an Ad(G)-invariant inner product (-,-) on g. Then the inner product (-,-) induces
a bi-invariant Riemannian metric on G and G-invariant Riemannian metrics on
the coset manifolds M; := G/K; and M; := K3\G. We denote these Riemannian
metrics on G, My and My by the same symbol (-, -). These Riemannian manifolds
G, My and M, are Riemannian symmetric spaces with respect to (-, -). We denote
by m; the natural projection from G to M; (i = 1,2), and consider the following
three Lie group actions:

o (Ko x K1) G : (ko k1)g = kaghkit ((ka, k1) € Ko x Ky),

o Ko My : kQ’]Tl(g) = Wl(kgg) (kg S KQ),

o K1~ My :kyma(g) = ma(ghy!) (k1 € Ky),
for g € G. The three actions have the same orbit space, and in fact, the following
diagram is commutative:

G L) M2
Wll iﬁ'l
M1 ~—) KQ\G/Kl,
o

where 7; is the natural projection from M; to the orbit space Ko\G/K;. Ikawa
computed the second fundamental form of orbits of Hermann actions in the case
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0105 = 026,. We can apply Tkawa’s method to the geometry of orbits of the (K3 x
K,)-action. For g € G, we denote the left (resp. right) transformation of G by L,
(resp. Rg). The isometry on M; (resp. Ms) induced by L,y (resp. Ry) will be also
denoted by the same symbol Ly (resp. Ry).
For i =1,2, we set
m; = {X € g 6:(X) = —X}.
Then we have an orthogonal direct sum decomposition of g that is the canonical
decomposition:
g==8 om,.
The tangent space Ty, ) M; of M; at the origin m;(e) is identified with m; in a
natural way. We define a closed subgroup G12 of G by

G2 ={g € G|0:(g) = 02(9)}.
Hence ((G12)0, K12) is a compact symmetric pair, where K5 is a closed subgroup
of (G12)o defined by
Ko = {k € (G12)0 | 61(k) = k}.
The canonical decomposition of ((G12)g, K12) is given by
g2 = (81 NEz) @ (my Nmy).

Fix a maximal abelian subspace a in m; N my. Then exp(a) is a torus subgroup
in (G12)o. Then exp(a), 7 (exp(a)) and mo(exp(a)) are sections of the (Ky x Kj)-
action, the Ks-action and the Kj-action, respectively. To investigate the orbit
spaces of the three actions, we consider a equivalent relation ~ on a defined as
follows: For Hy,Hs € a, Hy ~ Hy if Koexp(Hq1)K; = Koexp(Hz)K;. Clearly,
we have Hy ~ Hy if and only if Koy (exp(H;)) = Kaomi(exp(Hz)), and similarly,
Hy, ~ Hj if and only if Kyme(exp(H;)) = Kima(exp(Hz)). Then we have a/~=
K5\G/K;. For each subgroup L of G, we define

Np(a)={k e L|Ad(k)a = a},

Zp(a)={ke L|Ad(k)H =H (H € a)}.
Then Zy(a) is a normal subgroup of Ny (a). We define a group J by

J={(s],Y) € Nk, (0)/Zr, 1, (@) x 0 | exp(=Y)s € K1}
The group J naturally acts on a by the following:
([s|, Y)H = Ad(s)H+Y (([s],Y) € J, H € a).
Matsuki ([M]) proved that
K)\G/K, = a/J.

Hereafter, we suppose 6,05 = 626,. Then we have an orthogonal direct sum decom-
position of g:

g= (& Nk) B (my Nme) & (& Nmy) & (my N E).
We define subspaces of g as follows:
to={X et;Nty|[a,X]={0}},
Vi Nme) ={X €ty Nmy | [a, X] = {0}},
Viming)={X em Nt |[a, X]={0}}.
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For \ € q,

tbh={Xetnt|[H[HX]]=—-(\H?>X (Heca)},
X)) =—(\ H)’X (H €a)},
]l =\ H)’X (H € a)},
=\ H)?X (H € a)}.

my={X em Nmy|[H [H
Viieinmy) ={X et Nmy | [H,[H X
Viimint)={X em, Nt | [H [H X
We set

Y ={rea\ {0} [&x#{0}},
W ={a €a\ {0} | Vs (b2 N my) # {0}},
Y =NUW.
It is known that dim ¢, = dimm, and dim V)\J- (& Nmy) = dim V/\J- (my N &) for
each A € ¥. Thus we set m(\) := diméy, n(\) := dim V(8 Nmy). Notice that
¥ is the root system of the pair ((Gi2)o, K12), and ¥ is a root system of a (see

[I]). We take a basis of a and the lexicographic ordering > on a with respect to the
basis. We set

St={AeX|A>0}, 2t =2nxt, wh=wnxt.
Then we have an orthogonal direct sum decomposition of g:
g—EO@ZEA@a@ZmA@V&ﬂmQ ZV Elﬁmg
Aes+ Aes+ acW+
S7] V(m1 n EQ) ©® Z V(j(ml N EQ)
aeEW+
Furthermore, we have the following lemma.
Lemma 2.7 ([I] Lemmas 4.3 and 4.16). (1) For each \ € ¥7F, there exist or-

thonormal bases {5)\,1‘};1(1/\) and {T/\,i}?i(f\) of €\ and my respectively such
that for any H € a,

[Ha S}\,’i] = <)\7H>T)\,i7 [H7 T)\,i] = _<>\7H>S)\,i7 [S)\,ivT)\,i] = Aa

Ad(exp H)Sx,; = cos(\, H)Sx; + sin(\, H)T) ;,
Ad(exp H)T»,; = —sin{\, H)S»; + cos(\, H)T) ;.
(2) For each o« € W, there exist orthonormal bases { X, j };ioi) and {Yaﬁj}?g)
of V:H(e; Nmy) and V- (my N &) respectively such that for any H € a
[H, Xo ;] = (@, H)Ya;, [H, Yol = —(a, H)Xoj,  [Xaj, Yol =

Ad(exp H)X,,j = cos{o, H) X, ; + sin{a, H)Y, j,
Ad(exp H)Y, ; = —sin{o, H) X, ; + cos{a, H)Y, ;
Using Lemma 2.7, Tkawa proved the following theorems.

Theorem 2.8 ([I] Lemma 4.22). Let x = exp H for H € a. Then we have:
(1) dL;'*By(dLy (T ), dLy (T, ;) = cot({u, H))[Txi, Sp4]*,
(2) dL;'Bp(dLy(Ya,i), dLy (YBJ)) = — tan((6, >)[Ya,uX5,j]L7
(3) Bir(dLy (Y1), dLy (¥2) =0,
(4) Br(dLs(Thi),dLy(Y2)) =0,
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(5) BH(de(Ya,i)a de(Y2)) =0,
(6) dL;'Br(dLy(Tx),dLs(Ys,5)) = —tan((8, H))[Txi, Xa,]*

for
M€ S with (A H), (u, H) ¢ 7Z, 1< i <m(N), 1< <miu),
a,B €W with (o, H), (3, H) & g +7Z, 1 <i<n(a), 1<j<n(B),
Yl,YQ c V(m1 n Ez)

Here X+ is the normal component, i.e. (Ad(z~1)ms)Nmy-component, of a tangent
vector X € my.

Theorem 2.9 ([I] Corollaries 4.23, 4.29, 4.24, and [GT] Theorem 5.3). Let g =

exp(H) (H € a). Denote the mean curvature vector of Komi(g) C My at m1(g) by

mi;. Then we have:

(1)

dLg_lm}{:— Z m(X) cot(\, H)X + Z n(a) tan({a, H)a.

xext acWwt
(\H)grZ (a, HYg(m/2)+7L

(2) The orbit Kom(g) C My is austere if and only if the finite subset of a
defined by

{=Xcot(\, H) (multiplicity =m(\)) | A € BT, (\, H) & 77}
U{atan{a, H) (multiplicity = n(a)) |« € W (o, H) & (7/2) + 7nZ}

18 invariant under the multiplication by —1 with multiplicities.
(3) The orbit Komi(g) C My is totally geodesic if and only if (A, H) € (m/2)Z
for each A € 7.

We can apply Theorem 2.9 for orbits K1ma(g) C My. Thus, we have the following
corollary.

Corollary 2.10 ([I] Corollary 4.30). The orbit Komi(g) is minimal (resp. austere,
totally geodesic) if and only if K1ma(g) is minimal (resp. austere, totally geodesic).

Now we consider the second fundamental form of orbits of the (K2 x K1)-action
on G. For H € a, we set

Yy={ eX|(NH)enZ}, Wg={aeW |{a,H) € (n/2)+ 7Z},
YSp=YgUWy, XL =S"NSy, Wir=WTnWy, X, =S, 0w}
Let g = exp(H) (H € a). Then we have

d
Ty(KagKy) = { pn exp(tXs)gexp(—tX7)

(2.2) =dL,((Ad(g) ") + £1)

X1 S 31, X2 S BQ}
t=0

=dLy [toVimNnk)e > me > Vimnt)

AESH\Zy aeWH\Wg
(2.3) AVt Nm)o Y o Y VN m2)> ,
rext aeWt
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(24) T (KagKy) = dLy((Ad(g) 'mg) Nmy)
(2.5) = dL, (a@ doma Y Vim m&)) .
xexf; aEWY

For X = (Xq, X;) € g X g, we define a Killing vector field X* on G by

(X*)p = i exp(tXs)pexp(—tXy) (pe@).

dt

t=0
Then
(X")p = (de)(Ad(p)_ng - X1)
holds. If Xo = 0, then X™ is a left invariant vector field. Denote by V the Levi-
Civita connection on G. By Koszul’s formula, we have the following.

Lemma 2.11 ([O] Lemma 3). Let g € G, X = (X3, X1), Y = (Y3,Y7) € g x g.
Then we have

1
(Vx-Y*), = —§dLg[Ad(g)_1X2 — X1, Ad(g9)" 'Y + V4.

9
Proof. By Koszul’s formula, we have
UV x-Y*, Z) =X*(Y*, Z) + Y*(Z, X*) — Z(X*,Y*)
+ (XY 2) = (Y7, 2], X7) +([2,X7], Y7)
for any X = (X2,X;), Y = (Yo,Y1) € g x g, Z € g. We compute the right side of
the above equation at e. Since (Y*,Z), = (Ad(h™1)Ys — Y1, Z) (h € G), we have
(XY, 2)). = - (Ad(exp(—1(X"))Ya ~ ¥i, Z)lg
= (=[(X")e, Yal, Z) = (=[X2 = X1, Y3], Z).

Similarly, we have
(YZ,X"))e = (—[Ya — Y1, X3], Z).
Since (X*,Y*), = (Ad(h™1) X3 — X1, Ad(h™1)Y2 — Y1) (h € G), we have

Z(X* V") = %(Ad(exp(—tZ))Xg — X1, Ad(exp(—tZ))Y2 — Y1)|t=0

= %(Ad(exp(—tZ))Xg7 Y1) + (— X1, Ad(exp(—tZ))Y2)|t=0
= <[Z’ X2]aY1> + <X1’ [Z’Y2]> = <Z> [X2>Y1]> + <Z’ [Y2aX1]>
=(Z,[X2, 1] + [Y2, Xi]).
Note the sign of the commutator product of X(G) and g x g. Then we have
(X7, Y] = —(adgxg (X)Y)".
Thus,
(X", Y"],Z)e = (—ad(X2)Y2 + ad(X;1) Y1, Z).
Since Z = (0, —Z)* we have
(IV*, 2], X*). = (—ad(Y1)Z, Xz — X1) = (Z,ad(Y1)(X2 — X1),
(12, X*],Y")e = —(Z,ad(X1) (Yo — Y7)).
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Therefore, we have
2(Vx-Y")e =(—[X2 — X1, Y2]) + (—[Y2 — Y1, Xp]) — ([X2, V1] + [Y2, Xu])
+ (= [X2, Vo] + [X1, Y1) — ([Y1, X2 — Xu]) + (—[X1, Y2 — V1))
=[Xo — X1, Yo + V1| + [X1, Y2 + V1 — Y2 + Y]]
+ [ X2, Yo — Y1 — Y1 — Y5
=[Xo — X1, =Y + V1] + 2[X; — X, Y]]
=—[Xo— X1, Y2+ V1]
Hence we obtain
(2.6) (Vx«Y™) = f%[ngXl,YngYl].
Since dL, is an isometry, we have
(Vx-Y")g =dLy(V g1 5.dLg Y 7).
Further, we have

(dL;'X*)p =dL;

g

YX*)gn = dL; *dLyn(Ad(gh) ™' X — X1)
= dLy(Ad(h) "' Ad(g) "' X — X))
= (Ad(9)"'X2, X1);  (he@).

Thus,
AL, X" = (Ad(g) ' Xa, X1)*

holds. Summarizing the above, we obtain

1
(Vx-Y7), = —§dLg[Ad(9)71X2 — X1, Ad(9)"'Y2 + V1],

O

For H € a, we denote the second fundamental form of the orbit KogK; C G by
Bpy. By Lemma 2.11, we can express By for H € a.

Theorem 2.12 ([O] Theorem 3). For H € a, we set g = exp(H) and
Vi= Z my & Z Vj(ml N EQ),

AeESH\Z gy a€EWH\Wg
V=) 6o Y Viinm).
Aext acW+

Then we have the following:

(1) For X € ¥y, Bu(dLy(X),Y) =0 whereY € Ty(K29K1).
(2) For X € V(El ﬂmg),

B 0 (Y €t1 @V (miNty))
dL; ' B (dLy(X),dLy(Y)) = _%[X, YR (Y eWn).
(3) For X € V(myNky),

1 0 (Y e V(miNty) ® V)
AL, ' Br(dLy(X),dLy(Y)) = Lx vt (vew
2 o
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(4) For Sy, (AeX™, 1<i<m(\),
0 (Y € V)

AL By (dLy(Sx.i),dLy(Y)) = 1
g H( g( A,) g( )) —i[SA,i,Y]L (YEVl).

(5) For Xo,; (e W, 1<i<n(a)),
0 (Y € Vo)

AL ' By (dLy(Xa.),dLy(Y)) =
7 k(o) o _%[Xa,mY]L Y ew).

(6) ForTh; (A€ ST\ Xy, 1 <i<m()),
o dL;'By(dLy(Tx i), dLy(T, ;) = cot(u, H)[Tx i, Sy ]+
where  p € LT\ Xy, 1<j<m(u).
] dLg_lBH(dLg(T)\,i),dLg(Yﬁ,j)) = —tan(ﬁ,H) [T,\)i,)(,@)j}l
where B € WH\ Wy, 1<j<n(f).
(7) For Yy, (a € WH\ Wy, 1<i<n(a)),

ALy By (dLg(Yai),dLy(Vs5)) = — tan(B, H)[Yai, X5
where € W\ Wy, 1<j<n(B)).
Here, X is the normal component, i.e. the ((Ad(g)~'ma) N my)-component, of a
tangent vector X € g.

Proof. By a simple calculation, we have the following:
For X € &, dL,(X) = (X,0);.

For X € V(?l ﬂmg) qu( ) ( ) .
ForXEV(mlﬂEQ dL( ):( )

For S)\z ()\EE+ 1<z<m()\ ) (S)\z) (0,—5)\71');.
For Th; A€ 2T\ Zp,1 <i<m(N),

_ S)‘77; .
dLg(T)\7i) = (Sln<)\’fl>, — C0t<)\, H>S)\’»L)g

o For X ; (a € WH, 1 <i<n(a)), dLy(Xa,) = (0, —Xa )5
e ForY,, (¢ € WH\Wg,1<i<n(a)),

Yozi
Lg(Yas) = [ —2
dLy(Ya.s) <cos<a,H>

Then, applying Lemma 2.11, we have follows.
For (1), let X € ;. Then we can calculate as follows:

e ForY € ¢,
L
Br(dLg(X),dLy(Y)) = (V(aa()-1x,0 (Ad(g) 'Y, 0)")

- —§dLg([X, Yt =0

*

,tan(a,H}Xa7i> )
g

since [X,Y] € £, is a tangent vector.
o For Y € V(¢ Nmy),
1

By (dLy(X),dLg(Y)) = (V(ad(g)-1x,0- (0, =Y)")

= —%dLg([X, ~Y])t =0
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since [X,Y] € ¢; is a tangent vector.
e ForY ¢ V(m1 n EQ),

BH(dLg(X)vdLg(Y)) = (V(Ad(g)*lx,o)*(Ad(g)_ly7 O)*):
= —%dLg([X, YDt =0

since [X,Y] € V(my N&y) is a tangent vector.
e For Sy, (A eX™, 1<i<m(N),
L
By (dLg(X),dLg(Sx)) = (V(aa(g)-1x,0 (0, =Sxi)"),,
1
= =5 dLy([X,=Sxi]) " =0

since [X, —S) ;] € ¥ is a tangent vector.
e For X, ; (a e W, 1<j <n(a)),

B (dLg(X),dLg(Xa,;)) = (V(ad(g)-1x,0) (0, —Xa,;)*)

1
= AL, ([X,~Xa )" =0

L
g9

since [X, X, ;| € ¥ is a tangent vector.
e For T\ ; (A e X\ Xg, 1 <i<m(N),

1 —Shi +
1 X *
Br(dLy(X),dLy(Tx;)) = (v(Ad(g)_lXﬁ)*(Ad(Q) Mv_COt<>\aH>SA,i) )g
1
= =5 dL([X, =2 cot(\, H)Sy; = Thil) = = 0
since [X, Sy ;] € & and [X,T) ;] € m, are tangent vectors.
e ForY,; (¢ € WH\ Wy, 1<j<n(a)),
\ +
_ a, %
By (dLy(X),dLy(Ya,j)) = (V(Ad(g)lX,O)*(Ad(g) lmytan@’H)Xa,j) )g
= f%dLg([X, 2tan{o, H) X4 j — Ya,])= =0

since [X, X, ;] € €1 and [X,Y, ;] € V- (my NEy) are tangent vectors.
For (2), let X € V(¥ Nmy). Then we can calculate as follows:
e ForY € V(El ﬂmg),

Bu(dLy(X),dLy(Y)) = (Vo,—x)-(0,=Y)"),
= —dLy([X, Y] =0

since [X,Y] € V(m; N€y) is a tangent vector.
e For Y € V(m; Nty),
_ L
Bir(dLy(X),dLy(Y)) = (Vo,-x)- (Ad(9)'Y.0)")’

= —%dLg([X,Y])L.

Then, [X,Y] € a and ([X,Y],H") = (X,[Y,H']) for all H € a, thus
[X,Y] =0. Hence Br(dLy(X),dLy(Y)) = 0.
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e For Sy, (A eXt, 1<i<m(N),

1

B (dLg(X),dLg(Sx)) = (V(o,-x)- (0, =Sx4)"),

1
= —5dLy([X, —Sxi)T =0

since [X, Sy ;] € £ is a tangent vector.
e For X, ; (a e Wt, 1<j<n(a)),

oL
B (dLg(X),dLg(Xa5)) = (V(0,-x)+ (0, = Xay)"),

1
= =5 dLy([X, = Xa )" =0

since [X, X, ;] € ¥ is a tangent vector.
e For T)\,i ()\ ext \ Y, 1<i< m()\)),

1

_1 —Sxni .
BH(dLg(X),dLg(T)\ﬂ)) = <V(0’X)* (Ad(g) 1m’_00t<>\’H>5/\7i) )g

1
= 7§dLg([X, —2cot(\, H)Sx; + Tai])*t

1
= —idLg([X, +Tyq) "

since [X, Sy ;] € £ is a tangent vector.
e ForY,; (a € WH\ Wy, 1<j<n(a)),
Yo +

Bir(dLy (), 4L,y Vo)) = (Voo (Adlo) ™

,tan(a,H>Xa,j)*>

g
1
= —5dL, (X, 2tan(a, H) Xa; + Ya,))*

1
= — 5Ly (X, Ya)*

since [X, X, ;] € ¥ is a tangent vector.
For (3), let X € V((my N#&y). Then we can calculate as follows:
e ForY e V(m1 n EQ),
_ L
B (dLy(X),dLg(Y)) = (V(x,0)- (Ad(g) 7Y, 0) >g
1
= —idLg([X, Y]+ =o.

since [X,Y] € £ is a tangent vector.
e For Sy, (A eXt, 1 <i<m(N),

Biy(dLy(X).dLy(S11)) = (Vx.0 (0. ~$2.)")

1 1
= —§dLg([X7 —Sxl)" = §dLg([X7 Sxl)*
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e For X, ; (a e W, 1<j<n(a)),

1

By (dLy(X),dLg(Xa 5)) = (Vix,0 (0, —Xa)"),

1 1
= =5 Lo ([X, = Xo )" = 5dLg([X, Xa )™
e For T\, (A e X\ Xy, 1 <i<m(N)),
Br(dLy(X),dLy(Tx ) = Bu(dLg(Tx ), dLg(X))
L
- (V<Ad<g)lmf%7—cot<A,H>sA.,i>*(X’ 0 )

1
= —idLg([T,\,i,X])l =0

g9

since [X, T ;] € ¢ is a tangent vector.
e ForY,; (¢ € WH\ Wy, 1<j<n(a)),

By (dLg(X)v dLg(Ya,j)) = BH(dLg (Ya,j)v dLg(X))

1
- (v(Ad(g)lmfgf an (o, 1) X )+ (50 0) )

JH) g

1
= — 5Ly (Yo, X =0

since [X,Y, ;] € £ is a tangent vector.
For (4),let A € T and 1 <4 < m()\). Then we can calculate as follows:
e For S, ; (neXt, 1<j<m(u),

1

Bry(dLg(Sxi),dLg(Sp.)) = (Vo,-5,.,)- (0. =Sx4)")

1
= *QdLg([SA,ia *Su,j])l =0

since [S) 4, Su,;] € & is a tangent vector.
e For X, ; (a e Wt, 1<j<n(a)),

ol
BH(dLg(S/\,i)7dLg(Xa7j)) = (v(07fSA,i)* (Ov _Xa,j) )g

1
= —idLg([SM, ~Xa )T =0

since [S)q, Xa,j] € €1 is a tangent vector.
e For T, ; (neXT\ Xy, 1<j<m(p),

Bu(dLg(Sxi),dLg(Ty,5)) = Bu(dLg(T),;), dLg(Sx:))

1
- <V<Ad<g>1si,,if;;;>,cot<u,H>su,j>*(0’ ~) )

1 1
= —§dLg([Tu,j» —Sx)T = —§dLg([5A,ivTu,j])L-

g
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e ForY,; (¢ € WH\ Wy, 1<j<n(a)),

BH(dLg(SA,i)v dLg (Ya,j)) = BH(dLg (Ya,j)v dLg (S/\,q',))
1

- <V(Ad(g)lm:g;fm,tanm,H)xa,j)*(o’ —Sx.i) )g

1 1
= —§dLg([Ya7j» —Sx)T = —§dLg([5AmYa,j])L-

For (5), let « € WT and 1 < j < n(a). Then we can calculate as follows:

e For X3, (Be W, 1<i<n(B)),
1L

Bp(dLg(Xa,5),dLy(Xp.),) = (V(0,- X0+ (0, =X54)")
1
= =5 dLg([Xaj, —Xpil) " =0

since [X,j, Xg,;] € €1 is a tangent vector.
e For T)\,i ()\ ext \ Y, 1< < m()\)),

By (dLy(Xa,j),dLg(Tx,i)) = Bu(dLy(Tyi),dLy(Xa,;))

1
B (V(Ad@)1sm<sﬁ’é>v—cot<x,H>sk,i)*(0’ ~Xa.g) )

1 1
= _idLg([TA,ia _*Xa,j])L = _idLg([Xa,jvTuyj])l~

g

e For Y/g@ (ﬂ S W+\WH7 1<i< n(ﬁ))v

Bu(dLy(Xa,;),dLg(Yp,i)) = Br(dLy(Yp,i),dLg(Xa,j))
i

- (V(Ad(g)1m:{’,;fm,tan<ﬁ,H)xﬁ,i)*(0’ _Xa-,j) )

1 1
= — 5Ly ([Voi, X))t = 5L ([ Xy, Vaal)

g

For (6),let A € X7\ Xy and 1 < i < m()\). Then we can calculate as follows:
e For T, (neXt\ Xy, 1<j<m(pn),

BH(dLg (T)\J)a dLg(ij))
L

_S .
_ -1 22 _ O\ *
N (V(Ad(g)lsh,f%,—COt<>\7H>S>\,i)*(Ad(g) sin{u, H)’ cot{u, H)Sy,;) )g
1

- _idLg([Tm —2cot(p, H) Sy, j + Ty i) = cot(p, H)ydLg[Tx i, Sy 5]

e ForY,; (¢ € WH\ Wy, 1<j<n(a)),

By (dLg(Tx,i),dLy(Ya.j))
V. . 1

— e Ad(g) 1 —21
<V(Ad(g)1sh‘<sm,—cot()\,H)SA,i)*( (9) cos(a, H)

,tan(a,H)Xa’j)*>
g

1
= —§dLg([T>\7Z-,2tan(a,H>Xa7j + Yo ;)T = —tan(a, HYdLy([Tx i, Xa;])*

15
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For (7), let o, 3 € WH\ Wg, 1 <j <n(a)and 1 <i < n(B). Then we have

BH(dLg (Ya,j)v dLg (Yﬁ,i))
1

(Ad(g)" —_ tan(s, H>Xﬂ,i>*)

- <V<Ad<g>1m§:;7m,tan<a,H>xa,j> cos(B, H)

g9

1
= — Ly (Yas, 2 tan(3, H)X 5 + Yail)* = tan(8, H)Ly([Yag, Xaal) -
Then, we have the consequence. O

We denote the mean curvature vector of the orbit KogK; at g by mpy. By
Theorem 2.12, we can see that the following corollary.

Corollary 2.13 ([O] Corollary 2). For H € a,

dL;lmH =- Z m(A) cot{\, H)\ + Z n(a) tan{a, H)c.
AESH\Ex A€W\ Wy

Moreover, dL;lmH = dLg_lm}{ holds. Hence, an orbit KogK1 C G is minimal if
and only if Komi(g) C My is minimal.

Proof. By Theorem 2.12, we have
dL,'Bp(dLy(X),dLy(X)) =0 (X € &),
AL, By (dLg(Tx),dLg(Tx ) = —cot(A, H)A (A€ 7\ g, 1<i<m(N),
dL;'Bp(dLy(Ya,;),dLg(Ya,;)) = tan(a, H)a (a € WH\ Wy, 1< j <n(a)).

Thus we have

dLg_lmH =— Z m(A) cot(\, H)\ + Z n(a) tan{o, H)a.
AENH\S QA€W H\ Wi
Moreover, by (1) of Theorem 2.9, we obtain dL,'my = dL; 'm}. O

Next, we consider austere orbits of the (K x Kj)-action on G. By using
(3, %, W), Tkawa gave a necessary and sufficient condition for an orbit of the Kj-
action to be an austere submanifold. Similarly, in the (K2 x K7)-action, we also
have a necessary and sufficient condition for an orbit to be an austere submanifold.
We investigate the set of eigenvalues of the shape operator A%%s¢ of KygK, C G for
each normal vector dLy¢ € Ty KogKy = dLy((Ad(g)~'mg) Nmy). For each g € G,
we denote the isotropy subgroup of the (K3 x Ki)-action on G at g by (K2 x K1),.
Notice that (K3 x K1), is isomorphic to the isotropy subgroup (K1)x,(4) of the
Ki-action at m2(g). The isotropy subgroup (Ky x Ki)4 acts on the normal space
T, (K2gK,) by the differential of the (K3 x K1)-action. Then we have

Ak, k1 )y (AL () = “Thagexp(ki’| = dLy(Ad(k)E).
t=0
Therefore, the representation of (Ks x Ki)4 is equivalent to the adjoint represen-
tation of (K1)x,(g) on (Ad(g)~'mz) Nmy. Since Lie((K1)r, ) = €1 N (Ad(g)'E2),
the Lie algebra Lie((K1)r,(q)) ® ((Ad(g)~'mz)Nmy) is an orthogonal symmetric Lie
algebra with respect to 6;. Moreover, when g € exp(a), a is a maximal abelian sub-
space of ((Ad(g) 'mg)Nmy). Thus, a is a section of the representation of (K1), (g)
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on (Ad(g)'my) Nmy. Therefore, we have
(2.7) U d(ka, k1)gdLg(a) = T, KygKy.
(k2,k1)€(K2><K1)g

Thus, without loss of generality we can assume £ € a. Hence, by Theorem 2.12 we
have

(2.8) AM9E(dL,(Sy ), dLy(Tx ;)
0 —(1/2)(,€)
= (dLg(SA,i>vdLg(T>\,i)) [ 7(1/2)0\’@ —cot()\,H></\,§> ]
A eXt\ Sy, 1 <i<m(N),

(2.9) Ao (dLg(Xa, ), dLg(Ya ;)

0 —(1/2){,€)
= (dLg(Xa,j)adLg(Ya;j)) |: 7(1/2)<a,£> tan(a,H><0¢7§> :|

(a e WH\Wg, 1< <n(a)),

for X ety @ V(El ﬂmz) D V(m1 ﬂ?g) &) Z)\EZE D ZaEW;; Val(él ﬂmg),

(2.10) AsEdL, (X) = 0.
Therefore, the set of eigenvalues of A%Ls¢ is given by
cos(\, H) £ 1 .
2.11 —_— Itipl = L\
(2.11) { 2sin(n 1) (X, €) (multiplicity = m(\)) ‘ AeXTN H}
sin{a, H) £ 1 o +
{ W(a, &) (multiplicity = n(a)) | a« € W\ WH}

U{0 (multiplicity = 1)}
where [ = dim({%o D ZAEZ;} t\ D V(El N mg) D ZaeWﬁ VaL(El N mg) D V(m1 n 22))

Proposition 2.14 ([IST2] p.459). Let E be a finite subset of a finite dimensional
vector space a with an inner product (,). Then, (i) and (ii) are equivalent.

(i) For any & € a, the set {{(a,&) | a € E} with multiplicity is invariant under
the multiplication by —1.
(ii) The set E is invariant under the multiplication by —1.

Thus, we have the following corollary.

Corollary 2.15 ([O] Corollary 3). Let g = exp(H) (H € a). Then the orbit
KogK1 C G is austere if and only if the finite subset of a defined by

cos(\, H) £ 1
{_ 2sin(\, H)

sin{a, HY £ 1

{ 2cos{a, H)

A (multiplicity = m(X)) ‘ Aexty ZH}

a (multiplicity = n(a))

OéEW+\WH}

is invariant under the multiplication by —1.

It is easy to prove that the following proposition.
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Proposition 2.16 ([O] Proposition 5). For each H € a,

E ={-Xcot(\, H) (multiplicity=m(\)) | A € T\ g}
U{atan({a, H) (multiplicity = n(a)) | a € W\ Wy}

18 invariant under the multiplication by —1 with multiplicities if and only if

,_f cos(\H)E1 o n
E —{ EETIWIE A (multiplicity =m(X)) | Ae X7\ Xy

{ sin{o, H) + 1

3 cos(ar ) a (multiplicity = n(«))

QEW+\WH}

is tnvariant under the multiplication by —1 with multiplicities.

Proof. The equation E = —F holds if and only if (i) and (ii) hold, where

(i) (\H)Y € (n/4)Z (A€ ¥t \ Zg),
(i) if (X, H) € (n/4) + (7/2)Z, then m(A) = n(A).

When E = —E holds, for each A € X1\ Xy, if (A, H) € (7/2)Z, then it holds either

one of the following:
e A€ Xy and
sin(A, H) +1 _ sin(\,H) —1
2cos(\, H) ~ 2cos(\, H) °

e )\ Wy and
_cos(A\, H) +1  cos(A\, H) — 1

2sin(\, H) ~ 2sin{\, H)

Further, if (X, H) € (7/4) + (7/2)Z, then it holds either one of the following:

e m(A) =n(\) and

cos(\, H) +1  sin(\, H) +1 cos(\,H) —1 sin(\,H)—1

osin(\, HY  2Zeos(\H) 0% Tosin(N H) | 2cos(h H)

e m()\) =n()\) and

cos(\, H) +1  sin(\, H) —1 . cos(A\, H) —1  sin(\, H) +1
2sin(\, H) ~ 2cos(\,H) ’ 2sin(\, H) ~ 2cos(\,H)
This implies that £ = —E’. The converse is shown by the same way.

O

Corollary 2.17 ([O] Corollary 4). Let g = exp(H) (H € a). The orbit KogK; C G

is austere if and only if Kom(g) C My is austere.

Remark 2.18. There is no correspondence in totally geodesic orbits. For example,
when #; and 65 cannot be transformed each other by an inner automorphism of g,
KyeK; C G is not totally geodesic, but Kamy(e) C M is totally geodesic (see (4)

and (5) in Theorem 2.12).
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3. WEAKLY REFLECTIVE SUBMANIFOLDS IN COMPACT SYMMETRIC SPACES

Ikawa, Sakai, and Tasaki ([IST2]) proposed the notion of weakly reflective sub-
manifold as a generalization of the notion of reflective submanifold ([Le]). In [IST2],
they detected a certain global symmetry of several austere submanifolds in a hy-
persphere, and classified austere orbits and weakly reflective orbits of the linear
isotropy representation of irreducible symmetric spaces. They gave a necessary and
sufficient condition for orbits of the linear isotropy representation of irreducible
symmetric spaces to be an austere submanifold (further, weakly reflective subman-
ifold) in the hypersphere in terms of root systems. We would like to generalize
this fact to compact Riemannian symmetric spaces. However, it is known that
austere orbits of the isotropy action of compact symmetric spaces are reflective
submanifolds. Therefore, we consider Hermann actions, which are a generalization
of isotropy actions of compact symmetric spaces. Ikawa ([I]) classified austere orbits
of commutative Hermann actions. However, weakly reflective orbits have not been
classified yet. In this section, we give sufficient conditions for orbits of Hermann
actions to be weakly reflective in terms of symmetric triads.

3.1. Weakly reflective submanifolds. We recall the definitions of reflective sub-

manifold and weakly reflective submanifold. Let (M, (,)) be a complete Riemann-
ian manifold.

Definition 3.1 ([Le]). Let M be a submanifold of M. Then M is a reflective
submanifold of M if there exists an involutive isometry o of M such that M is a

connected component of the fixed point set of op;. Then, we call oy, the reflection
of M.

Definition 3.2 ([IST2]). Let M be a submanifold of M. For each normal vector
¢ € T-M at each point x € M, if there exists an isometry o¢ on M which satisfies
oe(x) =z, 0e(M) = M and (dog),(§) = —¢, then we call M a weakly reflective
submanifold and o¢ a reflection of M with respect to €.

If M is a reflective submanifold of M, then o is a reflection of M with respect to
each normal vector ¢ € T;- M at each point € M. Thus, a reflective submanifold
of M is a weakly reflective submanifold of M. Notice that a reflective submanifold
is totally geodesic, but a weakly reflective submanifold is not necessarily totally
geodesic.

Definition 3.3 ([HL]). Let M be a submanifold of M. We denote the shape
operator of M by A. M is called an austere submanifold if for each normal vector
€ € T;-M, the set of eigenvalues with their multiplicities of A% is invariant under
the multiplication by —1.

It is clear that an austere submanifold is a minimal submanifold. Tkawa, Sakai
and Tasaki proved that a weakly reflective submanifold is an austere submanifold.

Lemma 3.4 ([IST2] p. 439). Let G be a Lie group acting isometrically on a
Riemannian manifold M. For x € M, we consider the orbit Ga. If for each
¢ € T;-Gx, there exists a reflection of Gx at x with respect to &, then Gz is a
weakly reflective submanifold of M.

Proposition 3.5 ([IST2] Proposition 2.7). Any singular orbit of a cohomogeneity
one action on a Riemannian manifold is a weakly reflective submanifold.
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Proposition 3.6 ([IST2] Proposition 2.9). Let G be a connected Lie group acting
isometrically on a complete, connected Riemannian manifold M. Suppose that the
action of G on M is cohomogeneity one with two singular orbits. If there exists a
principal orbit which is a weakly reflective submanifold of M, then it has a same
distance from two singular orbits and two singular orbits are isometric.

3.2. Sufficient conditions for orbits to be weakly reflective. In the previous
section, we saw a correspondence of austereness of orbits of the (K3 x K7 )-action and
the Ka-action. In this section, we consider weakly reflective orbits of the (Ko x K )-
action, the Ks-action and the Kj-action, and give two sufficient conditions for an
orbit to be weakly reflective. The first sufficient condition is the following:

Theorem 3.7 ([O] Theorem 4). Assume Ki and Ko are connected. Let g =
exp(H) (H € a). If (\,H) € (w/2)Z for any A € X, then the orbit KogKy C G is
weakly reflective.

Proof. We set o = Lgﬂngl. Then o satisfies the following conditions:

(1) o(9) = 9,
(2) O'(KggKl) = KggKl,

(3) do(€) = —¢ (€ € T, (KagKy)).
Clearly, o(g) = g holds. By Lemma 2.7, we have
Ad(*)X =X (X €ty),
Ad(g®)Sr: = —Sx; (AeXT,1<i<m(N),
Ad(g*) Yo, = Yo (@€ WH 1< 5 <n(a)).
Thus, we have Ad(g?)€s = &. Since Ko is connected, we have g?Ksg~2 = Ks. In

addition, since 6105 = 6301, we have 01¢; = €5. Thus, we also have 6, (K3) = Ko.
Therefore, for (ko, k1) € Ko x K,

o(kagki') = (g°01(k2)g~?)gky ' € K29Ki.
Hence, U(KggKl) = KggKl. Since TgJ‘(KggKl) = dLg(Ad(g)*l(mg) n ml), we

have

do (&) = dLgb1(dL, " (€)) = —dLgdL; " (§) = —¢
Therefore, o is a reflection of KygK; at g with respect to each normal vector
dLgf S T;‘(KggKl) O
Corollary 3.8 ([O] Corollary 5). The orbit KoeK1 C G is weakly reflective.

Remark 3.9. Under the same condition as Theorem 3.7, we can prove that the
orbits Komi(g9) C My and Kyme(g) C Ma are weakly reflective. However, Tkawa
proved Komi(g) C My and Kyma(g) C My are reflective. Hence Kami(g) C M; and
Kima(g) C My are totally geodesic, but KogK; is not necessarily totally geodesic.

Let W(f), 3, W) be a subgroup of the affine group O(a) x a which is generated
by

2nm (2n+ 1)m
{( |A|2A) ’“E’”EZ}“{G“’ ol “)

Then, we have the following lemma.

aeW, neZ}.
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Lemma 3.10 ([I] Lemmas 4.4 and 4.21).
WE, S, W) cJ
Using the above lemma, we have the following lemma.

Lemma 3.11 ([O] Lemma 5). Let g = exp(H) (H € a). Then, for each A € Yy,
there exists ky € Nk, (a), such that

R E - R

(2)

d (m, exp < 28 f;> A) kA)g (dL,€) = dLy(sxE) (€ € a).

Proof. By the definition of VT/(fJ7 ¥, W), for each \ € Su,

(\ H) o
<s>\,2 Y A) cW(E, %, W).

Since W (X, %, W) C J, there exists ky € N, (a), such that

(02 550) = (2550

By the definition of J, we have

exp <—2<)\’H> )\> k) € K.

AN
For (1),
(l@\, exp (— 2<</)\\:g> A) kA) g = kyexp(H)k; " exp (2<</)\\:f>> )\)
=exp (Ad(kx)H) exp <2<<))\\,>I\1>T> )\) = exp (S)\H + 2<</)\\7§1>I> =exp(H) =g
For (2),
(b e (25 B) (@16 = Grew (T 16| = dLima(o)
(I

Proposition 3.12 ([0] Proposition 6). For any H € a, if Sy is nonempty, then

Yy is a root system of Span(Xg).

Proof. We set g = exp(H). We consider the orthogonal symmetric Lie algebra
((Ad(g)~"t2) Nt1) @ ((Ad(g)~'mg) Nmy).

By Lemma 2.7, we can decompose the Lie algebra as the following;:

(Eo@ dMowa Y Vi ﬂmg)) ® (a@ dYooma Y V;(mmez))

Xext; aEWY xexf; aEWS

It is the root space decomposition of the orthogonal symmetric Lie algebra with
respect to a. (]
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For each H € a, denote by W (X ) the Weyl group of Xp. The second sufficient
condition is the following:

Theorem 3.13 ([O] Theorem 5). Let g = exp(H) (H € a). If span(Xy) and
—id, € W(Xg), then KogKy C G, Komi(g) C My and Kima(g) C My are weakly
reflective.

Proof. By the equation (2.7), it is sufficient to prove the existence of a reflection with
respect to dL,¢ for each € € a. Since —id, € W (Zg), there exist 1, ..., € Xy
such that s, ---s,, = —ids. By Lemma 3.11, there exists k,, € Ng,(a) for each
wi (1 <i<1). We set

iaH
K, = exp (—2<” >m> k. € K,
<,ui7ui>

and
o= (kMN k:“)"'(km, kl/l«l> S (K2 X K]_)
Then, o is a reflection of K2gK; with respect to dL,¢ for each £ € a. Indeed,
U(Q) =9 0(K29K1) = KogKi, dU(dLg(§>) = dLgsul S (5) = _dLgf

hold. Similarly, o1 = k,, ---k,, is a reflection of Kami(g) at m1(g) with respect
to dLy(§). The isometry o = k), ---k,, is a reflection of Kima(g) at ma(g) with
respect to dRy(&). O

Applying Theorems 3.13 and 3.7, we have new examples of weakly reflective
submanifolds in compact symmetric spaces. We assume that (G, K, K») satisfies
one of the following conditions (A), (B) or (C).

(A): G is simple and 6; and 63 can not transform each other by an inner
automorphism of g.

(B): There exist a compact connected simple Lie group U and a symmetric
subgroup K of U such that

G=UxU, K =AG={(u,u)|uecU}, Ki=KxK.

(C): There exist a compact connected simple Lie group U and an involutive
outer automorphism o such that

G=UxU, K;=AG={(u,u)|uelU},
Ky = {(u1,u2) | (0(uz), o(ur)) = (u1,u2)}-
Ikawa proved the following theorem.

Theorem 3.14 ([I2] Theorem 3.1). Let (G, K1, K3) be a compact symmetric triad
which satisfies one of the conditions (A), (B) or (C). Then the triple (3,5, W) de-
fined as above is a symmetric triad with multiplicities. Conversely every symmetric
triad is obtained in this way.

It is known the following proposition.

Proposition 3.15 ([Ti]). Let ¥ be a irreducible root system of a. Then —idy &
W(X) if and only if ¥ = A,., Do.y1, Eg (r > 2).
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Let IT = {A1,..., A} be a fundamental system of 3, and set Wy = {a}. We
define H; € a by the following equations:

Then, {Hy,...,H,} is a basis of a. We have the following lemma.

Lemma 3.16 ([O] Lemma 6). Span(Xy) = a if and only if H =0, Hy, ..., H, for
H € Po.
Proof. By definition of ¥z, we have

2(\, H)
( AN

2(\, H)
(A A)

A) eW(E, 2, W), <s,“, )\) H=H

for each \ € Yp. By Proposition 2.4, we have symy = my for A € Sy Thus,
if Span(f)H) = a, then myg = 0. On the other hand, for H € Py, there exists the
nonempty subset A C I1U {a} such that H € P$*. By Lemma 2.25 in [I], £ and
Wx does not depend on H, but only A. Thus, when Span(Xy) = a, each point in
P£ is a minimal point. Therefore, by Theorem 2.5, if when Span(Xy) = a, then
P = {H}. This implies that H is a vertex of Py. Therefore, H = 0, Hy,..., H,.
Conversely, when H = 0, Hy, ..., H,, we have Span(Xp) = a. O

For each symmetric triad of a, austere points are classified in [I]. Using the
classification, we investigate Y, (1 <i < r) for each type of symmetric triads.

In order to state our results below, we shall follow the notations of irreducible
root systems and the set of positive roots in [Bo]. For instance,

Bf ={e;te;j|1<i<j<riu{e|1<i<r},
Cf:{ei:tej|1§i<j§7"}u{2ei|1§i§r}7
Dt ={e;te; |1<i<j<r},
BC  ={e;tej|1<i<ji<riu{e|1<i<r}u{2e|1<i<r}.
For the set of positive roots above, the sets of simple roots are given as follows:
OBNH=OBCH ={ =€ —e2,..., 1 =€r_1 — €, \r = €.},
HCH ={ M =e1—e2.c; A1 =€ 1 — €, A = 261},
ODN) ={ i =e1—e2,...c; M1 =€ 1 =€ Ar = €1 + €}

3.2.1. Type I-B,. £t =Bf, Wt ={e; |1 <i<r},
G=er =M+ +A.

(1) When m(=e;) = n(+e;). A point H € Py is austere which is not totally geodesic
if and only if H = (1/2)H,. Since span(Xy) # a, the point (1/2)H, does not
satisfies the sufficient condition in Theorem 3.13.
(2) When m(=e;) # n(+e;). If H € Py is austere then it is totally geodesic. In this
case, H; is a totally geodesic point for each 1 < i <.

A compact symmetric triad whose symmetric triad is type I-B,. is one of the
following:

(1) (SO(r+ s+1), SO(r + s) x SO(t), SO(r) x SO(s +1)) (r<t, 1<s),
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(2) (G, K1, K3) which satisfies condition (C) where
(U,Fix(0)) = (SO(2m + 2n + 2),S0(2m + 1) x SO(2n + 1))
forr=m+mn, m > 2.
3.2.2. Type I-C,. X =CF, Wt =D,
O~[:el+62 :)\1+2)\2+"'2>\r71+>\r~

Then a point H € P, is austere which is not totally geodesic if and only if H =
H; (2<i<r-—1), (1/2)H;. For each H; = (7/4)(e1 +---+¢;) (2<i<r—1),
we have

Z}}i =Hes—e | 1<s<t<i}U{feste|i+1<s<t<r}

U{2e;|i+1<s<r},
Wi =f{es+e |1<s<t<i}

Hence, EH,- =D, @ C,_;. Therefore, by Proposition 3.15 and Theorem 3.13, if ¢ is
even, then Kyexp(H;)K1 C G, Kam(exp(H;)) C My, Kima(exp(H;)) C My are
weakly reflective. When 4 is odd, since —id, ¢ W(X), H; does not satisfies the
sufficient condition in Theorem 3.13.
A compact symmetric triad whose symmetric triad is type I-C,. is one of the

following:

(1) (SO(4r), SO(2r) x SO(2r), U(2r)),

(2) (SU(2r), SO(2r), S(U(r) x U(r))),

(3) (B7, SU@), Es-U(1)) (r=3),

(4) (G, K1, K3) which satisfies condition (C) where

(U,Fix(o)) =(SU(2r),S0(2r)) (r>2) or
(SU(2r),Sp(r)) (r=>2).

3.2.3. Type I-BC,-A]. ¥t =BCH, W+ ={e; |1 <i<r},
O~[:€1 :)\1++>\r

(1) When m(=e;) = n(+e;). A point H € Py is austere which is not totally geodesic
if and only if H = (1/2)H,.. Since span(Xz) # a, H does not satisfies the sufficient
condition in Theorem 3.13
(2) When m(=e;) # n(%e;). If H € Py is austere then it is totally geodesic. In this
case, H; is a totally geodesic point for each 1 < i <r.
A compact symmetric triad whose symmetric triad is type I-BC,-AY is one of

the following:

(1) (SU(r—+s+t), S(U(r+s)xU)), S(U(r) xU(s+1))) (r<t, 1<s),

(2) (Sp(r+s+t), Sp(r+s) x Sp(t), Sp(r) x Sp(s+1t)) (r<t, 1<s)),

(3) (SO(4r+4), U2r+2), U'(2r +2)).
Where, we set

Infl
-1

J:

—in-1

1
and define U(n)" := {g € SO(2n) | JgJ ! = g}.
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3.2.4. Type I-BC,-B,. ¥t =BCH, W+ =B},
a=e1+exs =X +2X\o+ -+ 2\,.

When 7 = 2, if m(+e; & ea) = n(te; £ ea), then H € Py is austere which is not
totally geodesic if and only if H = (1/2)Hy, Hs. If m(Le; £ es) # n(Ler £ ea),
then H € P, is austere which is not totally geodesic if and only if H = H,. Since
Hy = (7/4)(e1 +€2), we have £, = {e1 —ea}, Wi = {e1 +es}. Thus Y, = A3

When r > 3, H € P, is austere which is not totally geodesic if and only if

(1/2)H1, H;, (2<i<r). Foreach H; = (n/4)(e1+---+e€;) (2<i<r),
we have » u, =2 D; ®BCT™ ¢, Therefore, by Proposition 3.15 and Theorem 3.13, if
i is even, then Ky exp(H )K1 C G, Kom(exp(H;)) C My, Kima(exp(H;)) C Mo
are weakly reflective for each 2 < ¢ < r. When ¢ is odd, since —id, € W(X), H;
does not satisfies the sufficient condition in Theorem 3.13 for 3 < ¢ < r. Since
span(fl(l/g)Hl) # a, the point (1/2)H; does not satisfies the sufficient condition in
Theorem 3.13.

A compact symmetric triad whose symmetric triad is type I-BC,-B,. is one of
the following;:

(1) (SO(2r + 2s), S(O(2r) x O(2s)), U(r+s)) (r<s),
(2) (Eg, SU(6)-SU(2), SO(10) - U(1)) (r =2),
(3) (E7, SO(12)-SU(2), Ee-U(1)) (r=2).

3.2.5. Type I-F4. ¥+ = Ff, W+ = {short roots in F4} = Dy, TT = {\; = ey —
€3, )\2 = €3—¢€y4, )\3 = €4, )\4 = (1/2)(61762763764)}, a= €] = )\1+2)\2+3A3+2>\4
A point H € P, is austere which is not totally geodesic if and only if H = Hy =
(w/2)e1. Then we have

, = {£ea, tes, teq, t(ea £ es), (ea £ eq), H(e3 L eq)},
, = {xe1,x(e; £ ea), t(e1 L e3), £(e1 eq)}.
Hence
S}, = BY.
Therefore, by Proposition 3.15 and Theorem 3.13, the orbits Ksexp(H4)K; C G,
Komi(exp(Hy)) C My and Kyma(exp(Ha)) C My are weakly reflective.

A compact symmetric triad whose symmetric triad is type I-F4 is one of the
following:

(1) (Es, Sp(4), SU(6) - SU(2)),

(2) (E7, SU(8), SO(12) - SU(2)),

(3) (Es, SO(16), E7-SU(2)),

(4) (G, K1, K3) which satisfies condition (C) where

(U,Fix(0)) =(Fs,Sp(4)) or(Fs, Fy).

3.2.6. Type II-BC,.. ¥+ =B}f, W+ = BC/,

a=2e; =2\ + -+ 2\,
A point H € P, is austere which is not totally geodesic ifand only if H = H; (1 <
i <r). For H; = (w/4)(e1 + -+ + ¢;), we have Z?I,i ~ C; ® B,_;. Therefore,

by Proposition 3.15 and Theorem 3.13, Ksexp(H;)K; C G, Kom(exp(H;)) C
My, Kima(exp(H;)) C My are weakly reflective for each 1 <14 <.
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A compact symmetric triad whose symmetric triad is type II-BC,. is one of the
following:
(1) (SU(r+s), SO(r +s), S(U(r) x U(s))) (r <s),
(2) (SO(4r +2), SO(2r +1) x SO(2r + 1), U(2r + 1)),
(3) (Ee, Sp(4), SO(10)-U(1)) (r=2).

3.2.7. Type 1II-A,. By Proposition 3.15, —id, & W( ~) Moreover, for each H € a,
W(Eg) € W(Z) since Xy C . Hence —idq ¢ W (Zg). Thus, any austere point
does not satisfies the sufficient condition in Theorem 3.13.
A compact symmetric triad whose symmetric triad is type III-A,. is one of the

following:

(1) (SU(2r +2), Sp(r+1), SO(2r + 2)),

(2) (Es, Sp(4), Fu) (r=2), -

(3) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose

root system is type A,  (condition (B)).

3.2.8. Type ITL-B,. S+ — W+ = B+
h=-¢e1+es =N +2X o+ -+ 2\,.

A point H € Py is austere which is not totally geodesic if and only if H =
(1/2)Hy, H; (2<i<r).

For each H; = (w/4)(ex + -+ + €;), we have Z~)H ~ D; @ B,_;. Therefore,
by Proposition 3.15 and Theorem 3.13, if i is even, then orbits Ky exp(H;)K; C
G, Kami(exp(H;)) € My, Kyme(exp(H;)) C My are weakly reflective for each
2 < i <r. When i is odd, since —id, & W (X), H; does not satisfies the sufficient
condition in Theorem 3.13. Since span(Xy,) # a, the point (1/2)H; does not
satisfies the sufficient condition in Theorem 3.13.

A compact symmetric triad whose symmetric triad is type III-B,. is one of the
following:

(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type B, (condition (B)).

3.2.9. Type III-C,.. Xt =W =},
5[:261 :2>\1+"'+2)\7«71+)\T.

If m(42e;) # n(+2e;), then a point H € P, is austere which is not totally
geodesic if and only if H = H; (1 < i < r—1). If m(£2e;) = n(£2e;), then
H € Py is austere which is not totally geodesic if and only if H = (1/2)H,., H; (1 <
i <1 —1). For each H; = (m/4)(e1 + -+ ¢;) (1 <i <r —1), we have Xp, =
C; ® C,_;. Therefore, by Proposition 3.15 and Theorem 3.13, Ksexp(H;)K; C
G, Komi(exp(H;)) € My, Kyme(exp(H;)) C My are weakly reflective for each
1<i<r-—1. Since span(i(l/g)H,r,) # a, the point (1/2)H, does not satisfies the
sufficient condition in Theorem 3.13. A compact symmetric triad whose symmetric
triad is type III-C,. is one of the following:

(1) (SU(4r), S(U(2r) x U(2r)), Sp(2r)),

(2) (Sp(2r), U(r), Sp(r) x Sp(r)),

(3) (UxU,A(UxU), K x K) where (U, K) is a compact symmetric pair whose
root system is type C,  (condition (B)).



GEOMETRIC PROPERTIES OF ORBITS OF COMMUTATIVE HERMANN ACTIONS 27

3.2.10. Type III-BC,.. ¥T = W+ = BC/,
5[:261 :2)\1++2)\r

A point H € P, is austere which is not totally geodesic if and only if H =
H; (1 <i<r). Foreach H; = (m/4)(e1 +---+¢;) (1 <i <r), we have Sy, =
C; @ BC,._;. Therefore, by Proposition 3.15 and Theorem 3.13, Ksexp(H;)K; C
G, Komi(exp(H;)) € My, Kime(exp(H;)) C My are weakly reflective for each
1< <r.

A compact symmetric triad whose symmetric triad is type III-BC,. is one of the
following:

(1) (SU(2r +2s), S(U(2r) x U(2s)), Sp(r +s)) (r <s),
(SU(2(2r + 1)), S(U(Qr +1) xU(2r+1)), Sp(2r+1)) (1<),
(Sp(r+s), U(r+s), Sp(r) x Sp(s)) (r<s),

(Eg, SU(6) -SU(2), Fy) (r=1),

(Eg, SO(10) -U(1), Fy) (r=1),

(F4, Sp(3) - Sp(1),50(9))  (r=1),

(UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type BC,  (condition (B)).

\_/\_/\_/\/\/\/

(2

(3
(4
(5
(6
(7

3.2.11. Type IILD,. S+ = W+ = D7,
a=e;+es=A +2 0+ +2 2+ A1 + A

A point H € P, is austere which is not totally geodesic if and only if H; (2 <i < r—
D), (1/2)Hy, (1/2)Hy—y, (1/2)Hy, (1/2)(Hi+Hr 1), (1/2)(Hi+H:), (1/2)(Hy1+
H,). For each H; = (m/4)(ex + -+ ) (2 < i < r—2), we have Xy, =
D; ® D,._;. Therefore, by Proposition 3.15 and Theorem 3.13, if r and ¢ are even,
then Ky exp(H;) K1 C G, Kom(exp(H;)) C My, Kyma(exp(H;)) C My are weakly
reflective for each 1 < ¢ < r. When H = H; (i or r is odd), (1/2)Hy, (1/2)H,_1,
(1/2)H,, (1/2)(H1+H,_1), (1/2)(H1+H,), (1/2)(H,—1+ H,), H does not satisfies
the sufficient condition in Theorem 3.13.
A compact symmetric triad whose symmetric triad is type III-D,. is one of the
following:
(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type D,.  (condition (B)).

3.2.12. Type I1I-Eg. By Proposition 3.15, —idq ¢ W( ). Moreover, for each H € qa,
W(Xg) € W(E) since ¥y C . Hence —id, ¢ W (). Thus, each austere point
does not satisfies the sufficient condition in Theorem 3.13.
A compact symmetric triad whose symmetric triad is type III-Eg is one of the
following:
(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type Eg  (condition (B)).

3.2.13. Type III-E7. Z+ = W+ = E}i_, 1= {/\1,)\2,)\3, )\4,/\5,)\6,)\7},
@ =2A1 + 2Xg + 43 4+ 4hy + 3X5 4 206 + A1

A point H € Py is austere which is not totally geodesic if and only if H =
H,, Hy, Hg, (1/2)H;. Since span(% (1/2)H,) 7 @, the point (1/2)H7 does not sat-
isfies the sufficient condition in Theorem 3.13.



28 SHINJI OHNO

(1) When H = Hl. ‘We have EIJ’:h = EJF ﬂspanZ{)\g, )\3, /\4, /\57 )\6, )\7}, W;I_I = {d}
Since (&, \;) =0 (2<i<7), Xy, L Wy,. Hence, Xy, is isomorphic to X, & Wy,
as a root system. Since {2, A3, Ay, A5, X6, A7} is a fundamental system of Xpy,, we
can see Xz, = Dg. Hence, we have §~JH1 > Dg @ Ay. Therefore, by Proposition 3.15
and Theorem 3.13, Kyexp(H1)K1 C G, Kam(exp(Hy)) C My, Kyma(exp(Hy)) C
My are weakly reflective.

(2) When H = H,. We have

E}i—}z :E+ N SpanZ{Ala)\37)\47A57>\67)‘7}7
Wi, ={Ao, Ao+ A7, Ao+ X6 + A7, Ao+ A5 + X6+ A7, Ao+ Aa+ As + A6 + Ar,
Ao+ A3+ A+ A5+ Ag + A7, /\0+)\1+>\3+)\4+)\5+/\6+)\7},
where A\g = A1 + 2Ag + 2A3 + 3M4 + 2X5 + Ag. Hence,
HH2 = {)\07>\17)\3;)\47)\57>\67)\7}

is a fundamental system of 2H2- For i = 1,3 < ¢ < 6, we have (Ao, ;) =
0, (Mo, A7) = (X6, A7). Thus, 11, corresponds to the Dynkin diagram of type A~.
Therefore, we obtain ¥z, = A;. By Proposition 3.15, we have —id, & W(2g,).
Thus, Hs does not satisfies the sufficient condition in Theorem 3.13.
(3) When H = Hg. Similarly, we set Ag = A2 + Az + 24 + 2A5 + 206 + A7. Then,
the set

e = {Xos A1, A2, Az, A, A5, A}

is a fundamental system of f)HG. For 2 < i < 5,0 = 7, we have (g, \;) =
0, (Mo, A1) = (A1, As). The set Iy, corresponds to the Dynkin diagram of type
D¢ & A;. Thus, we have f}Hﬁ = Dg @ A;. Therefore, by Proposition 3.15 and
Theorem 3.13, K> exp(Hg)Kl C G, Kgm(exp(HG)) C M; and KﬂTg(GXp(Hg)) C
Ms are weakly reflective.
A compact symmetric triad whose symmetric triad is type I1I-E; is one of the
following:
(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type E7  (condition (B)).

3.2.14. Type III-Eg. E+ = W+ = E;, II = {)\1,)\2,)\37>\4,)\5,)\6,/\7,)\8}, a =
21 43Xy + 4X3 + 64 + 5As + 46 + 3M7 + 2Xg. A point H € Py is austere which
is not totally geodesic if and only if H = H;, Hs.

(].) When H = Hl. We set, )\0 = 2)\1 + 2)\2 + 3)\3 + 4)\4 + 3)\5 + 2)\6 + /\7. Then,
the set Iy, = {Mo, A2, A3, Ay, A5, X6, A7, Ag} is a fundamental system of f)Hl. For
each 2 <14 < 7, we have (\g, \;) = 0,{Xg, As) = (A7, As). Thus Iy, corresponds
to the Dynkin diagram of type Dg. Hence, iHl = Dg. Therefore, by Propo-
sition 3.15 and Theorem 3.13, we have Ksexp(H1)K; C G, Kom(exp(Hy)) C
My, Kimy(exp(Hy)) C My are weakly reflective.

(2) When H = Hg. We have EEB =yt N spanZ{/\l,)\g,)\g,/\4,/\5,)\6, /\7}, WHS =
{a}. For each 1 < i < 7, we have (&, A\;) = 0. Thus, ¥y, L Wg,. Hence ng
is isomorphic to ¥ Hy = YHy ® Wh, as a root system. Since the set of simple
roots {A1, A2, Az, Ay, As, Ag, A7} is a fundamental system of Yp,, we can see that
Yu, = E7. Thus, leS =~ E; @ Ay. Therefore, by Proposition 3.15 and Theorem
3.13, Ko exp(Hs) K1 C G, Kam(exp(Hs)) C My, Kyme(exp(Hs)) C Mo are weakly
reflective.
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A compact symmetric triad whose symmetric triad is type I1I-Eg is one of the
following:
(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type Eg  (condition (B)).

3.2.15. Type III—F4 EJF = VVJr == FZ, II = {)\1 == 62763,)\2 = 63764,)\3 = 64,)\4 =
(1/2)(e1 —ea —e3 —eq)}, & = e + ey = 2\ + 3o +4A3 +2)\4. A point H € P, is
austere which is not totally geodesic if and only if H = Hy = (7w/4)(e1 + e2), Hy =
(7'('/2)61.
(1) When H = H;. We have f]Hl 2 Cy4. Therefore, by Proposition 3.15 and The-
orem 3.13, Kyexp(H1)K, C G, Kom(exp(Hy)) C My, Kimy(exp(Hi)) C My are
weakly reflective.
(2) When H = Hy. We have 2H4 & B4. Therefore, by Proposition 3.15 and
Theorem 3.13, Ksexp(H4)K1 C G, Komi(exp(Hy)) C My, Kima(exp(Hy)) C Mo
are weakly reflective.

A compact symmetric triad whose symmetric triad is type III-F4 is one of the
following:

(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type Fy  (condition (B)).

3.2.16. Type IH—G2 E+ = W+ = G;, II = {)\1 = €1 — 62,)\2 = —261 — e + 63},
a = —e; —eg+ 2e3 =3\ + 2)s.

A point H € Py is austere which is not totally geodesic if and only if H =
H, = (1/12)(—e1 — €2 + 2e3) = (7/12)(3A1 + 2X2). We have ©f; = {\}, W} =
{3A1 + 2X2}. Thus, f)EQ = {A1, 3\ + 2)\3} Therefore, by Proposition 3.15 and
Theorem 3.13, Kyexp(Hz2)K1 C G, Kom(exp(Hz)) C My, Kima(exp(Hsz)) C Ms
are weakly reflective.

A compact symmetric triad whose symmetric triad is type I1I-Gg is one of the
following:

(1) (UxU,A(UxU),K x K) where (U, K) is a compact symmetric pair whose
root system is type Go  (condition (B)).

4. BIHARMONIC SUBMANIFOLDS IN COMPACT SYMMETRIC SPACES

Harmonic maps play a central role in geometry;they are critical points of the
energy functional E(p) = (1/2) [}, |de|* vy for smooth maps ¢ of (M, g) into (N, h).
The Euler-Lagrange equations are given by the vanishing of the tension filed 7(y).
In 1983, J. Eells and L. Lemaire [EL1] extended the notion of harmonic map to

biharmonic map, which are, by definition, critical points of the bienergy functional

Bae) =5 [ 1T vy

After G.Y. Jiang [J] studied the first and second variation formulas of E5, extensive
studies in this area have been done (for instance, see [CMO], [IIU2], [IIU], [II],
[LO2], [MO1], [OT?2], [S1], etc.). Notice that harmonic maps are always biharmonic
by definition. One of the important main problems is to ask whether the converse is
true. B.Y. Chen raised ([C]) so called B.Y. Chen’s conjecture and later, R. Caddeo,
S. Montaldo, P. Piu and C. Oniciuc raised ([CMO]) the generalized B.Y. Chen’s
conjecture:
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Every biharmonic submanifold of the Fuclidean space R™ must be harmonic (min-
imal).

Every biharmonic submanifold of a Riemannian manifold of non-positive curva-
ture must be harmonic (minimal).

For the generalized Chen’s conjecture, Ou and Tang gave ([OT], [0OT2]) a counter
example in a Riemannian manifold of negative curvature. The Chen’s conjecture
was solved affirmatively in the case of surfaces in the three dimensional Euclidean
space ([C]), and the case of hypersurfaces of the four dimensional Euclidean space
([D], [HV]), and the case of generic hypersurfaces in the Euclidean space ([KUJ).

Furthermore, Akutagawa and Maeta gave (JAM]) a final supporting evidence to
the Chen’s conjecture: Every complete properly immersed biharmonic submanifold
of the Euclidean space R"™ is minimal.

It is also known (cf. [NU1], [NU2|, [NUG]): every biharmonic map ¢ : (M,g) —
(N, h) of a complete Riemannian manifold (M, g) into another Riemannian manifold
(N, h) with non-positive sectional curvature with finite energy and finite bienergy
is harmonic.

On the contrary to the above, the case that the target space (N, h) whose sec-
tional curvature is non-negative, theory of biharmonic maps and/or biharmonic
immersions is quite different. In 1986, Jiang [J] and in 2002, Oniciuc [On] con-
structed independently different examples of proper biharmonic immersions into
the spheres. Here, proper biharmonic means that biharmonic, but not harmonic.

In this section, we study biharmonic submanifolds in compact symmetric spaces,
and then we characterize the biharmonic property of orbits of commutative Her-
mann actions and associated actions in terms of symmetric triad with multiplicities
(see Theorems 4.4 and 4.6 ). Moreover, we determine all the biharmonic hypersur-
faces in the irreducible symmetric spaces of compact type which are regular orbits
of commutative Hermann actions of cohomogeneity one (cf. Theorem 4.9). When
cohomogeneity of the actions are two or greater, we obtain many examples of proper
biharmonic submanifolds in compact symmetric spaces (see Subsection 4.6).

4.1. Preliminaries. We first prepare the materials for the first and second vari-
ational formulas for the bienergy functional and biharmonic maps. Let us recall
the definition of a harmonic map ¢ : (M,g) — (N,h), of a compact Riemannian
manifold (M, g) into another Riemannian manifold (V, k), which is an extremal of
the energy functional defined by

B = [ elo)u,
M
where e() := (1/2)|dp|? is called the energy density of ¢. That is, for any variation
{1} of ¢ with o = ¢,

d

(4.1) =

B(gr) = /M h(r(9), Vo, =0,

t=0

where V € T'(p~ 1T N) is a variation vector field along ¢ which is given by V(z) =
%L:O%(Jﬁ) € Ty)N, (x € M), and the tension field of ¢ is given by 7(p) =
S Bo(es,e;) € T(¢ 'TN), where {e;}7, is a locally defined orthonormal frame
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field on (M, g), and B, is the second fundamental form of ¢ defined by

Vdp)(X,Y)
Vxdp)(Y)
x(dp(Y)) —dp(VxY),

for all vector fields X,Y € X(M). Here, V, and V" are Levi-Civita connections
on TM, TN of (M,g), (N,h), respectively, and V, and V are the induced ones on
@ ITN, and T*M ® o TN, respectively. By (4.1), ¢ is harmonic if and only if
7(p) = 0.

The second variation formula is given as follows. Assume that ¢ is harmonic.
Then,

B,(X,Y) =

—

<4 3

d2
| Ee= [ 1w vy,

where J is an elliptic differential operator, called the Jacobi operator acting on
(¢~ !TN) given by

(4.2) J(V)=AV - R(V),

where AV = V'VV = — AV, Ve,V — vvqeiV} is the rough Laplacian and
R is a linear operator on I'(p~*T'N) given by R(V) = Y.i~, R"(V.dy(e;))dp(e;),
and R" is the curvature tensor of (N,h) given by R"(U, V)W = V. (VW) —
VL (VEW) — VFU,V]W for U,V,W € X(N).

J. Eells and L. Lemaire [EL1] proposed polyharmonic (k-harmonic) maps and
Jiang [J] studied the first and second variation formulas of biharmonic maps. Let

us consider the bienergy functional defined by

Bae) = 5 [ 1),

where |V|2 = h(V,V), V € T(p 1TN).
The first variation formula of the bienergy functional is given by

d

dt

 Bap) = /M h(ra(), Vv

Here,
2(¢) == J(7(9)) = A(7(¥)) = R(7(9)),
which is called the bitension field of ¢, and J is given in (4.2).
A smooth map ¢ of (M, g) into (N, h) is said to be biharmonic if 72(p) = 0.

By definition, every harmonic map is biharmonic. We say, for an immersion ¢ :
(M, g) — (N, h) to be proper biharmonic if it is biharmonic but not harmonic.

4.2. Biharmonic isometric immersions. In the first part of this section, we first
show a characterization theorem for an isometric immersion ¢ of an m dimensional
Riemannian manifold (M, g) into an n dimensional Riemannian manifold (N, h)
. . =L . .
whose tension field 7(y) satisfies that Vx7(¢) =0 (X € X(M)) to be biharmonic,

where VL is the normal connection on the normal bundle T+ M. Let us recall the
following theorem due to [J]:
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Theorem 4.1 ([OSU] Theorem 3.1). Let ¢ : (M™,g) — (N™, h) be an isometric

immersion. Assume that ﬁj}T((p) =0 for all X € X(M). Then, ¢ is biharmonic
if and only if the following holds:

— Z h(r(p), R"(dp(e;), diler))do(er)) di(e;)
7,k=1
+ Z h(t By (ej,er)) Byl(ej, ex)
7,k=1
(4.3) - Z R"((¢), dp(e;)) d(e;) = 0,

where {e;}7 is a locally deﬁned orthonormal frame field on (M, g).

Here, let us apply the following general curvature tensorial properties ([KN], Vol.
I, Pages 198, and 201) to the first term of the left hand side of (4.3):
h(Wy, R"(W3, Wy)Ws) = h(W3,R" (W1, Wa)Wa),
(W; € X(N),i=1,2,3,4).
Then, we have
h(7(),R" (do(e;), dp(er))dp(er))
= h(dp(e;), R"(7(¢). dp(er))dp(er)).-
Therefore, for the first term of (4.3), we have that

Zh de(e;) ZRh ), dp(ex))dp(er)) dp(e;)

is equal to the tangential part of >, R"(7(¢), d¢p(er)) dp(ey). Thus, the equation
(4.3) is equivalent to

(ZRh ), dip( €k))d¢(€k)>T

+ Z h(1(p), By(ej,ex)) By(ej, ex)

7,k=1
(4.4) — ZRh ). do(er)) dp(er) =0,

where W T and W+ mean the tangential part and the normal part of W € X(N),
respectively. We have, by comparing the tangential part and the normal part of
the equation (4.4), it is equivalent to that

(ZRh ), dg( e;c))dw(ek))T —0, and

(ZRh ), do(er)) de(ex ) Z h(1(p), By(ej,ex)) By(ej, ex)-

7,k=1
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These two equations are equivalent to the following single equation:

(4.5) ZRh ©),do(er)) dp(er) Z h(1(p), By(ej,er)) By(ej, ex).
7,k=1

Summarizing the above, we obtain:

Theorem 4.2 ([OSU] Theorem 3.2). Let ¢ : (M™,g) — (N™, h) be an isometric

immersion. Assume that 6;7'(4,0) =0 for all X € X(M). Then, ¢ is biharmonic
if and only if (4.5) holds.

By Theorem 4.2, we can see that the following theorem.

Theorem 4.3. Let (M™,g) and (N™, h) be Riemannian manifolds. Let o : M —

N be a isometric immersion which satisfies W;T(go) (X € X(M)). Then ¢ is
biharmonic z'f and only if

(4.6) Z p), dple:)dp(ei))” = > BolAr (e, dioed))

holds.

4.3. Characterization theorem. In the previous section, we saw the second fun-
damental forms of orbits of the commutative associated actions and the Hermann
actions. In this section, we obtain a necessary and sufficient condition for orbits to
be biharmonic submanifolds.

First, we consider orbits of the (K5 x Kj)-action.

Theorem 4.4. Let (G, K1, K>) be a commutative compact symmetric triad. For
H € a, we set v = exp(H). Then the orbit Kox K1 is biharmonic if and only if

S L ) (5 - (corbh 1)?) o

AETH\Z

+ > n(a)dL;'(th),q) (g—(tan@c,H))z) o
aeWH\Wgy

+ > m(u)dLy (ra), e+ Y n(B)AL; (ta), B)B =0
pest BeEW )

holds.

Proof. Let R be the curvature tensor of (G,{(,)). Since G is a symmetric
space, we have
RY(dLy(X),dL(Y))dLy(Z) = —dL.([[X,Y], Z]) (X,Y,Z € g).
Hence, we have
o RO (1g,dLy(T:))dLy(Tx ;) = (N, dL; Y (7a))d L (N\)
()\ E YT\ Xg, 1 <i<m(N),
o RO (1g,dLy(Sx))dL.(Sx:) = (N, dL; (15r))d L, ()
(Aext, 1<z<m( )),
o RY) (1y,dL;(Ya;))dL.(Y,

ag) = A\ dL (ma))dLy (@)
(aGW*\WH 1 <j<n(a)),
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o RV (1h,dLy(Xa,j))dLy(Xa;) = (A ALy (7a))d Ly (@)
(aeWt, 1<) <n(a)),
o R (1g,dL,(X))dL,(X) =0 (X €t ® V(i Nme)®)V(myNey)).
On the other hand, by Theorem 2.12, we have

By (ATH dL, (T)\,i)a dLy (Tk,i))
— _ %<dLI()\)7 TH>BH(dL;z:(S)\,i)7 de(T)\,Z))
—{(dLy(N), Tr) cot({N\, HY) B (dLy (T i), dL(Th4))

=(dLy(\), i) (i + (cot(A,H>)2> dLg(\)

for A€ 2T\ g, 1 <i<m(N),

By (ArydLy(Sx:), dLz(Sxq))
_ %<dLm()\)7TH)BH(sz(T,\_jLde(SA,i))

:immm, 7o) d Ly (N)

for A€ 2T\ Xy, 1 <i<m(N),

[ ]
Br(Ar,dLy (Y ;),dLy(Ya,j))

- %<de (a)a 7—H>BH (dLﬁc (Xa,j)v dL; (Ya,j))
—(dLy(a), ma) tan({a, H)) By (dLy(Ye ), ALy (Ya 5))

=(dL,(a),TH) <411 + (tan{a, H))Q) dL; ()

for o € W\ Wy,1<j <n(a),

B (ArydLy(Xo,j), dLe(Xa 5))
= (AL (0),7) By (AL (Ya ). AL X))

:i<de(Oz),TH>de(a)

fora € WH\ Wy,1<j <n(a),

BH(ATHdLZ'(X)’ dLa:(X)) =0

for X € to @ V(&1 Nma) &V (m1NE2) & 35 cxt 01 S X e V(e Nmy).

Therefore, by Theorem 4.3, we have the consequence. (]
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When dima = 1, we have the following corollary.

Corollary 4.5. Let (G, K1, K3) be a commutative compact symmetric triad. Sup-
pose the condition dima = 1. Then, for H € a, if Koexp(H)K; is regular, then
the orbit Ky exp(H)K; C G is biharmonic if and only if

(51, Q) (m(a) {2 — (cot(a, H>)2} + dm(20) {z - (cot(2a,H>)2}
+n(a) {2 ~ (tan(a, H>)2} +d4n(20) {2 _ (tan<2a,H>)2}) ~0

holds. Where a« € ¥ and if A ¢ & (resp. X ¢ W), then m(\) =0 (resp. n(A) =0)
for A€ a.

Next we consider commutative Hermann actions.

Theorem 4.6. Let (G, K1, K>) be a commutative compact symmetric triad. For
H € a, we set x = exp(H). Then Kaym(z) is biharmonic if and only if

> mdL; (), A) (1 = (cot(, H))?) A
AEXTH\ZH

+ Z n(a){dL; " (ti), o) (1 — (tan{e, H))*) =0
aeWH\Wy

holds.

Proof. Let R be the curvature tensor of (M, (,)). Since G is a symmetric
space, we have

R(dLy(X),dLy(Y))dLy(Z) = —dL,([[X,Y], Z]) (X,Y,Z € my).
Hence, we have
o for \eXT\ Ty, 1 <i<mN),
R (13,d Ly (T ;))dLy(Ti) = (e, dLy(N))dLy[Sh i, T ]
= (15, dLy(N))dLy(N),
o fora € WH\Wg,1<j<m(a),
RO (75, dLy(Ye ;)AL (Ya ;) = (7o, ALy (2))d Ly [ X o i, Ya 4]
= (11, dLy())dLy(cv),

o RO (1, dL,(X))dL,(X) =0 for X € V(m; Nty).
On the other hand, by Lemma 2.8, we have
[ ]
By (Ar, dLy(Th;), dLy (T )
= — (1, dLy(N))(cot{\, H))Ba(dLy (T ), dLs(Tx;))
= (t11,dLy(\))(cot(\, H))*dLy ()

for A\ e T\ Xy, 1<i<m(N),
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BH(ATH de (Ya,j)v dLa: (Yaﬂj»
= —(Tu, dL())(tan(er, H)) B (dLy(Ya,;), dLs (Ya,;))
= (1, dL,())(tan{c, H))?*dL,(c)

for c € W\ Wy,1<j <n(a),
o Bi(As, dLy(X),dLo(X)) = 0 for X € V(my NEy).

By Theorem 4.3, we have consequence. (I

Corollary 4.7. Let (G, K1, K3) be a commutative compact symmetric triad. Sup-
pose the condition dima = 1. Then, for H € a, if Kom (exp(H)) is regular, then
the orbit Komy(exp(H)) C M is biharmonic if and only if

(tr, a) (m(e) {1 = (cot{a, H))*} + 4m(2a) {1 — (cot(2c, H))?}
+n(a) {1 — (tan(e, H))*} + 4n(2a) {1 — (tan(2a, H))?*}) =0

holds. Where o € 3 and if \ ¢ & (resp. X\ ¢ W), then m()\) =0 (resp. n(A) =0)
for A€ a.

4.4. Biharmonic orbits of cohomogeneity one Hermann actions. In this
section, applying Corollary 4.7 we will study biharmonic regular orbits of cohomo-
geneity one Hermann actions.

Let (G, K1, K3) be a commutative compact symmetric triad where G is semisim-
ple. It is known that the tension field of an orbit of a Hermann action is parallel

in the normal bundle (see [IST1)), i.e. ﬁ)l(TH = 0 for every vector field X on the
orbit Kom (z).

Hereafter we assume that dima = 1. Since the cohomogeneity of Ks-action on
M; and that of Kj-action on Ms are equal to dim a, regular orbits of Ks-actions
(resp. Kj-action) are homogeneous hypersurfaces in M; (resp. Ms). Hence we can
apply Corollary 4.7 for regular orbits of these actions. Clearly, Ko7 () is a regular
orbit if and only if Kma(z) is also a regular orbit. Therefore, we have the following
proposition.

Proposition 4.8. Let © = exp H for H € a. Suppose that Komi(x) is a regular
orbit of Ka-action on My, so Kima(x) is also a regular orbit of Ki-action on Ms.
Then,

(1) An orbit Komi(x) is harmonic if and only if Kima(x) is harmonic.
(2) An orbit Komi(x) is proper biharmonic if and only if Kyime(x) is proper
biharmonic.

Proof. The triad (27 3, W) does not depend on the order of K; and Ks. Thus,
by Corollary 4.7, we have the consequence. (I

If G is simple and 6, # 65, then for a commutative compact symmetric triad
(G, K, K>) the triple (X,%, W) is a symmetric triad with multiplicities m()\) and
n(a) (cf. Theorem 3.14). In this case, for x = exp H (H € a), the orbit Kom () is
regular if and only if H is a regular point with respect to (, %, W).

All the symmetric triads with dima = 1 are classified into the following four

types ([1}):
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| | = [ W' [a

11I-B, {a} {a} @
I-BC; |{«a,2a} | {a} e
1I-BC,4 {a} | {a,2a} | 2
III-BCy | {a,2a} | {a,2a} | 2«

Let ¥ := (&, H) for H € a. Then, by (2.1), P ={H €a|0<9 <7/2} is a cell
in these types. If M is simply connected, then the orbit space of Ks-action on M,
is identified with Py = {H € a | 0 < 9 < 7/2}, more precisely, each orbit meets
71 (exp Py) at one point. A point in the interior of the orbit space corresponds to
a regular orbit, and there exists a unique minimal (harmonic) orbit among regular
orbits. On the other hand, two endpoints of the orbit space correspond to singular

orbits. These singular orbits are minimal (harmonic), moreover these are weakly
reflective ([IST2]).

4.4.1. Type I1I-B;. By Corollary 4.7, the biharmonic condition is equivalent to
m(a) +n(a) = m(a)(cot ¥)? + n(a)(tan¥)?
for H € Py. Thus we have

tan¥ =1, or

On the other hand, by (1) of Theorem 2.9, the harmonic condition 77 = 0 is
equivalent to

—m(a) cot ¥ + n(a) tand = 0.

Thus we have

tand =

Therefore, the situation is divided into the following two cases:
(1) When m(a) = n(«a), if an orbit Ky () is biharmonic, then it is harmonic.
(2) When m(«) # n(a), an orbit Komi(x) is proper biharmonic if and only if
(tan)? = 1 for H € Py. In this case, a unique proper biharmonic orbit
exists at the center of Py, namely ¢ = w/4.

4.4.2. Type I-BC;. We denote my := m(«), ms := m(2a) and ny := n(«) for short.
Then, by Corollary 4.7, the biharmonic condition is equivalent to

my +ny + 4my = my(cot ¥)? + ny (tan9)? + 4mo(cot 209)%.

Thus, we have

2 mi+n+6mo £ \/(m1 +nq + 6ma)? — 4(ny + ma)(my + ma)
2(ny + ma)

By (1) of Theorem 2.9, the harmonic condition 777 = 0 is equivalent to

(tan )

—my cot ¥ + nq tand — 4mo cot 29 = 0.
Thus, we have
2 Ty + me

tan v .
(tan.d) ny + ms
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Since
0 < my +ny + 6mg — \/(ml +nq + 6ms)? — 4(ng + mo)(my + my)
2(n1 + ma)
mi + Mo
ny + ma
< my + ni + 6meo + \/(ml +n1 + 6m2)2 — 4(711 + mg)(ml + mg)
2(n1 + ma) ’

an orbit Ko7 (z) is proper biharmonic if and only if

5 mi+ng+6moE\/(my +ny +6m2)? — 4(ny + ma)(my +mo)

(tan ) 20 £ ma)

holds for H € Py. Furthermore, a unique harmonic regular orbit exists between
two proper biharmonic orbits in F.

4.4.3. Type 1I-BC;. By the definition of multiplicities, if 2o € W, then m(a) =
n(a). Hence we denote m; := m(a) = n(a) and ny := n(2«). Then, by Corol-
lary 4.7, the biharmonic condition is equivalent to

2my + 4ny = mq ((cot(9/2))* + (tan(9/2))?) + 4na(tan ).

(tan 9)? — ne £ \/n3 — dnamy 1 n [ng — 4m1.

By (1) of Theorem 2.9, the harmonic condition 7 = 0 is equivalent to

Thus, we have

my (= cot(9/2) + tan(9/2)) + 2ns tan ¥ = 0.

Thus, we have
2 _ M

(tan ) = —.

UP)
Therefore, the situation is divided into the following three cases:

(1) When ny < 4my, if Kom(x) is biharmonic, then it is harmonic.

(2) When ng = 4my, an orbit Koem(x) is proper biharmonic if and only if
(tan¥)? = 1/2 for H € P.

(3) When ng > 4my, an orbit Kom (z) is proper biharmonic if and only if

(tan 9)? — ng £+ \/n3 — dnamy

2712

holds for H € Py, since

2 2
mq ng — /N5 — 4dnomy ng + /N5 — 4dnomy
0<—< 2 < : :

U») 21’L2 2TL2
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4.4.4. Type III-BC;. By the definition of multiplicities, if 2a € W, then m(a) =
n(a). Hence we denote m; := m(a) = n(a), mg := m(2«a) and ng := n(2a). Then,
by Corollary 4.7, the biharmonic condition is equivalent to

2my + 4ma + 4ny = my ((cot(9/2))? + (tan(9/2))?) + 4ma(cot ¥)? + dny(tan 9)?.

Thus, we have

mo + No + \/(mQ + TLQ)Q — 4n2(m1 —+ m2)
2’/12
mo + No + \/(mg — n2)2 — 4n2m1

2712

(tan®)? =

By (1) of Theorem 2.9, the harmonic condition 7 = 0 is equivalent to
my (tan(d/2) — cot(9/2)) — 2mg cot ¥ + 2ny tan ) = 0.

Thus, we have
(tan )2 = mi At me
T2
Therefore, we obtain the following results:

(1) When (mo—nz)%—4nsmy < 0, if Komy(2) is biharmonic, then it is harmonic.

(2) When (mg — n2)? — 4ngmy = 0, an orbit Koy (z) is proper biharmonic if
and only if (tan¥)? = (ma + na2)/2ny for H € P.

(3) When (mg — na)? — 4ngmy > 0, an orbit Koy (z) is proper biharmonic if

and only if
(tan)? = me +ng £ \/(mg —ng)? — 4dngmy

2712

for H € P,.
For the proof of (2), we will show that
mi + mo mo + No
* )
%) 2712

If (mq +m2)/ne = (M2 +mn2)/(2n2), then 2my +mg —no = 0. Hence (mg —nso)? —

dnomy = —4mq(my + mg) < 0, which is a contradiction.
For the proof of (3), we will show that

mi + mo y me +no £ \/(mg —ng)? — 4dnaymy

U») 2712

If the equality holds, then we have (2m; +mg —n2)? = (ma —ng)? —4nam;. Hence
4mq(my + mg) = 0, which is a contradiction.

In fact, in the cases of type III-BCy, a compact symmetric triad which is not (1)
is only (Es,SO(10) - U(1), Fy) in the list below. In this case,

mi + mo - mg + ng — \/(mg —n9)? — 4dnomy
N9 2n9
< mo + Nno + \/(mg — TLQ)Z — 4n2m1

2ﬂ2

holds.
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Let b > 0, ¢ > 1 and ¢ > 1. Each commutative compact symmetric triad
(G, K1, K3) where G is simple, 6, ¢ 63 and dima = 1 is one of the following (see

[12]):

Type 111-B;
! (G, Ky, K») | (m(a),n(a)) |
(SO(I+b+c),SO(1 +b) x SO(c),SO(b +¢)) | (c—1,b)
(SU(4),Sp(2),50(4)) (2,2)
(SU(4),S(U(2) x U(2)),Sp(2)) (3,1)
(Sp(2),U(2),Sp(1) x Sp(1)) (1,2)
Type I-BC;
! (G, K1, K») | (m(a),m(2a),n(e)) |
(SO(2 + 29), SO(2) x SO(29), U(1 +q)) (2(¢—1),1,2(¢ - 1))
(SU(L+b+¢),S(U(1+0b) x U(e)),S(U1) x U(b+¢)) (2(c—1),1,20)
(Sp(1 +b+¢),Sp(1 +b) x Sp(c),Sp(1) x Sp(b +¢)) (4(c—1),3,4b)
(SO(8),U(4),U(4)") (4,1, 1)
Type 1I-BC,
! (G,K1,K>) | (m(a),n(a),n(2a)) |
(SO(6),U(3),S0(3) x SO(3)) (2,2,1)
(SU(1 +4¢),S0(1 +¢),S(U(1) x U(g))) | (¢—1,¢—1,1)
Type III-BC;
’ (G, K1, K>) \ (m(a), m(2a),n(a),n(2a)) ‘
(SU(2 +2¢),S(U(2) x U(29)),Sp(1 +¢q)) | (4(g—1),3,4(¢—1),1)
(Sp(1 +¢),U(1 + ), Sp(1) x Sp(q)) (2(¢—1),1,2(¢ — 1),2)

(E6,SU(6) - SU(2),Fy) (8,3,8,5)
(Eg,SO(10) - U(1),Fy) (8,7,8,1)
(F4,Sp(3) - Sp(1), Spin(9)) (4,3,4,4)

Here, we define U(4) = {g € SO(8) | JgJ~* = g} where
I3
-1

1

and I; denotes the identity matrix of  x [.

4.5. Classification theorem. Summing up the previous sections, we classify all
the biharmonic hypersurfaces in irreducible compact symmetric spaces which are
orbits of commutative Hermann actions, namely we obtain the following theorem.

Theorem 4.9 ([OSU] Theorem 6.1). Let (G, K1, K2) be a commutative compact
symmetric triad where G is simple, and suppose that Ka-action on My = G/K; is
cohomogeneity one (hence Ki-action on My = Ko\G is also cohomogeneity one).
Then all the proper biharmonic hypersurfaces which are reqular orbits of Ks-action
(resp. Kj-action) in the compact symmetric space My (resp. Ms) are classified
into the following lists:

(1) When (G, K1, K3) is one of the following cases, there exists a unique proper
biharmonic hypersurface which is a regular orbit of Ko-action on My (resp.
Ki-action on Ms).
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(1-1) (SO(1+b+c), SO(1+b)xSO(c), SO(b+c¢)) (b>0,¢c>1, c—1#Db)
(1-2) (SU(4), S(U(2) x U(2)), Sp(2))
(1-3) (Sp(2), U(2), Sp(1) x Sp(1))

(2) When (G, K, Ks3) is one of the following cases, there exist exactly two

distinct proper biharmonic hypersurfaces which are reqular orbits of of K-
action on My (resp. Ki-action on Ms).
-1) (SO(2 +2q), SO(2) x SO(2¢9), U(1+4q)) (¢>1)

(SU(14+b+c¢), S(U(L+b)xU(e)), S(UL)xU(b+c)) (b>0,c>1)
(Sp(14+b+¢), Sp(1+b) x Sp(c), Sp(1) x Sp(b+¢)) (b>0, c>1)
(SO(8), U(1), U(4))

(Es, SO(10) - U(1), Fy)

(SO(1 +q), SO(q), SO(q)) (¢ >1)

(F4, Spin(9), Spin(9))

When (G, K1, Ks) is one of the following cases, any biharmonic regular
orbit of Ky-action on My (resp. Ki-action on M) is harmonic.

(3-1) (SO(20¢), SO()XSO() SO(2¢—1)) (¢>1)
(3-2) (SU(4), Sp(2), SO( )

(3-3) (S0O(6), U(3), SO(3) x SO(3))

(3-4) (SU(1+q), SO(1+4q), S(U(1) x U(q))) (¢>1)
(3-5) (SU(2+261) S(U(2) x U(2g)), Sp(1+4¢q)) (¢>1)
(3-6) (Sp(1+4q), U(1+4q), Sp(1) x Sp(q)) (¢>1)
(3-7) (Es, SU(6) - SU(2), Fy)

(3-8) (F4, Sp(3)-Sp(1), Spin(9))

Remark 4.10. In Theorem 4.9, we determined all the biharmonic hypersurfaces in
irreducible compact symmetric spaces which are orbits of commutative Hermann
actions.

(1) In the previous section we assumed 61 4 05. If 1 ~ 05, then the action of
K5 on Mj is orbit equivalent to the isotropy action of K7 on M;. We will
discuss these cases in Section 6.3.

(2) The commutative condition 6105 = 607 is essential for our discussion.
Indeed, there exist some Hermann actions where 0165 # 6260,. Moreover
there exist some hyperpolar actions of cohomogeneity one on irreducible
compact symmetric spaces which are not Hermann actions (cf. [Kol]).

We shall explain details of the cases (1-1), (2-2) and (3-1) in Theorem 4.9, and
give new examples of proper biharmonic orbits. By Proposition 4.8, a proper bi-
harmonic orbit Kom () in M; corresponds to a proper biharmonic orbit Kjma(x)
in M>. In particular, we can obtain new examples of proper biharmonic orbits
corresponding to some known examples.

We consider the isotropy subgroups of orbits of Hermann actions. For x =
exp H (H € a), we define the isotropy subgroups

(K2)r () = {k € Ka | kmi(z) = m1(2)},

(K1) ry(z) = {1k € K1 | kma(z) = m2(2) }-

Then we can show that (K2)x,(») = (K1)r,(») by an inner automorphism of G.
The orbit Kami(x) (resp. Kima(z)) is diffeomorphic to the homogeneous space
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Ko /((K2)r, () (resp. K1/((K1)ry(a)))- If Komi(2) is a regular orbit, then Kima(x)
is also a regular orbit, and we have Lie((K2)x, (2)) = Lie((K1)r,(2)) = fo-

Example 1. Let (G, K1, K2) = (SO(1+b+¢),SO(1+b) x SO(c),SO(b+¢)) (b >
0, ¢ > 1). This is the case of (3-1) when ¢ — 1 = b, otherwise the case of (1-1) in
Theorem 4.9. In this case, the involutions #; and 6, are given by

01(k) = I kI,  O2(k) =LKL (k€ G),
where

—1I 0
I = 1<I<b .
! { 0 DNypre } (lsisb+o)

Then, we have the canonical decompositions g = £, & m; = €, & my as

I R B e s

E2{|:8 )O(] ’Xeso(b+c)}, mg{{_?X )0(} ‘XGMLHC(R)}.

Thus, we have

0 0 O
X b
tne=4|0 X 0 Y€5°() :
_O 0 Y 6506
[0 0 X
m; Nmyg = 0 0 0 X eM; (R
_—tX 0 0 ]
[0 X 0]
BHLNmy = —tX 0 0 XGMlb
i 0 0 0_
[0 0 0 ]
m; Ney = 0 0 X XGMbc
_O —tX 0 ]

We take a maximal abelian subspace a in m; Nmy as

0 0 X
X=10,...,0,9
a=(¢HW) = 0 0 0 £9’ R, V]
—tX 0 0 €
Then we have
[0 0 0 O
g — 0 X 0 0 X € so(b)
0= 0 0 Y 0 Y €so(c—1) [’
|00 0 0
V(El ﬂmg) = {0},
[0 0 0 0
0 0 X 0
V(m1 ﬂ?g): 0 —tX 0 0 XGMb’cfl(R)
| 0 0 0 0
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Let E/ be a matrix whose (i, j)-entry is one and all the other entries are zero.
We define A] := E} — E}. Then, we can see

[H(9), A]] = —0A] ., (2<j<bto),
[H(9), Ay, ) = 0A] 2<j<b+e).
We define a vector o € a by (H(¥),a) =9 (¥ € R). Then
ta =Span{Ajf) ... AVC. %

m, = Span{A?‘b, el AT‘C},
V;(El Nmy) = Span{A%, o A}*b},

Vi (miNne) = Span{Af,, ..., AT, ).

Hence, in this case, we have
>t ={a}, Wtr={a}, m(a)=c—-1, n(a)=0»>.

Let z¢p = exp(H(mw/4)). By the computation in Section 4.4.1, we can see that
Komi(x9) and Kyma(xo) are biharmonic hypersurfaces in M; and Ms, respectively.
These orbits exist at the center of the orbit space Py = {H(d) | 0 < 9 < 7/2}.
When ¢ — 1 = b, these orbits are harmonic. When ¢ — 1 # b, these are not har-
monic, hence proper biharmonic. The orbit Kam(z0) is the Clifford hypersurface
SP(1/4/2) x 8¢71(1/v/2) = (SO(1 + b) x SO(c))/(SO(b) x SO(c — 1)) embedded in
the sphere ST¢(1) = SO(1 + b+ ¢)/SO(b + ¢) = M5 ([J]). On the other hand, the
orbit Koy (x0) is diffeomorphic to SO(b+¢)/(SO(b) x SO(¢—1)), i.e. the universal
covering oig_/real flag manifold, and embedded in the oriented real Grassmannian
manifold G14,(R1TPT¢) 2 SO(1 + b + ¢)/(SO(1 + b) x SO(c)) = M; as the tube
of radius 7/4 over the totally geodesic sub-Grassmannian E}’vb(Rb*C). The orbit
Komi(xp) in M7 gives a new example of a proper biharmonic hypersurface in the
oriented real Grassmannian manifold.

Example 2. Let (G, K1, K3) = (SU(1+b+¢),S(U(1+b) xU(c)),S(U(1) x U(b+
¢))) (b >0, ¢ > 1). This is the case of (2-2) except for b = 0 in Theorem 4.9. In
this case, the involutions 6; and 0, are given by
01(k) = I1 kI, O2(k) = I1kI; (ke@).
Analogous to the previous example, in this case, we have
YT ={a,2a}, W = {a}, m(a)=2(c—1), m(2a) =1, n(a) = 2b.

Therefore, the symmetric triad (iE,W) is of type I-BC;. By the computation
in Section 4.4.2, we have two distinct proper biharmonic hypersurfaces in M;, and
also in Ms. More precisely, let z+ = exp(H(¥+)) where J1 is a solution of the
equation

o mi+ng+6my+ \/(ml + n1 + 6ma)? — 4(ny + ma)(my + ma2)
o 2(n1+m2)
(c=1)+b+3+/((c—1)+b+3)2—(2b+1)(2(c—1)+1)
2b+1

Then Ko (24) and Kqma(x4) are proper biharmonic hypersurfaces in M; and Mo,
respectively. The orbit Kyma(x1) =2 S(U(1+b) x U(c))/S(U(b) x U(c—1) x U(1)) is

(tan )
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the tube of radius 9+ over the totally geodesic CP? in the complex projective space
CPY ¢~ SU(1+b+¢)/S(U(1) x U(b+¢)) = My (see Theorem 5 in [IIU]). On the
other hand, the orbit Kam(z+) = S(U(1) x U(b+¢))/S(U(b) x U(c—1) x U(1)) is
the tube of radius ¥+ over the totally geodesic sub-Grassmannian G(C**°) in the
complex Grassmannian manifold G4 (C++¢) = SU(1+b+-¢)/S(U(1+b) x U(c)) =
M. The orbit Komi(x4) in M; gives a new example of a proper biharmonic
hypersurface in the complex Grassmannian manifold.

In the above argument, we supposed that 61 % 65 in order to use the classification
of commutative compact symmetric triads. However, we can apply our method to
the cases of #; ~ 05. When 6; ~ 6, a Hermann action is orbit equivalent to the
isotropy action of a compact symmetric space (see [I]). Hence, it is sufficient to
discuss the cases of isotropy actions, that is, #; = 6. When 6; = 65, we have
W = (, since & Nmy = my N €y = {0}. Thus we have Y = . Moreover, ¥ is
the root system of the compact symmetric space M; with respect to a. Since we
consider the cases of dima = 1, the rank of M; equals to one. All the simply
connected, rank one symmetric spaces of compact type are classified as follows:

S, CPY, HP?, OP* (¢>2).
The isotropy actions of these symmetric spaces correspond to the cases (2-6), (2-2)
with b = 0, (2-3) with b = 0, and (2-9) in Theorem 4.9, respectively. Except for the
case of OP2?, homogeneous biharmonic hypersurfaces in compact, rank one sym-
metric spaces were classified ([IIU2], [ITU]). Therefore, we consider the octonionic
projective plane OP? = F,; /Spin(9).
Let (G, K1, K3) = (Fy,Spin(9), Spin(9)) with 6; = 6. This is the case of (2-9)
in Theorem 4.9. Since K1 = K5, we denote
Eizélzéz, m:=m; = mo.

We define an Ad(G)-invariant inner product on g by (-,-) = —Killing(-,-). Fix
a maximal abelian subspace a in m. Then we have ¥t = {«,2a} and m(a) =
8, m(2a) = 7 ([He], Page 534). By letting n(a) = n(2«) = 0 in Corollary 4.7 since
WT =0, we can see that the biharmonic condition is equivalent to

9 = 2(cot{a, H))? + 7(cot(2cr, H))?.

Thus we have

25 4+ 2+/130
15 '
The harmonic condition 77 = 0 is equivalent to

4cot{a, H) + 7cot(2a, H) = 0.

(cot{c, H))? =

Thus we have 7

t{a, H))? = —.

(cot(a, H))* =

Since

25 — 2v/130 < 7 < 25+ 2+/130
15 15 15 ’

an orbit K (x) is proper biharmonic if and only if

(cot(a H>)2 — 25+ 2v130
’ 15

0<
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holds for H € a with 0 < (o, H) < 7/2. Furthermore, a unique harmonic regular
orbit exists between two proper biharmonic orbits in {H € a | 0 < (o, H) < 7/2}.
These regular orbits are diffeomorphic to S'° embedded in QP2.

4.6. Cases of cohomogeneity two or greater. When dima = 1, proper bihar-
monic orbits are classified in [OSU]. Hence we consider cases of dima > 2. In
particular, we consider cases of dima = 2. Then cohomogeneity two commutative
Hermann action classified into the following cases:

e isotropy actions (K; = K3)
— Type A,
x (SU(3),50(3)),
x (SU(3) x SU(3),SU(3)),
* (SU(6),5p(3)),
* (Eg, Fy),
Type Bq
* (SO(3) x SO(3),S0(3)),
+ (SO(4 +n),50(2) x SO(2 + 1)),

— Type Cs
« (5p(2),U(2)),
+ (Sp(2) x Sp(2),Sp(2)),
* (Sp(4),Sp(2) x Sp(2)),
* (SU(4),5(U(2) x U(2))),
* (SO(8), U(4)),
— Type BCs
x (SU(4+n),S(U(2) x U2+n)))
x (SO(10),U(5)),
x (Sp(4+n),Sp(2) x Sp(2 + n)),
* (Eg, T' - Spin(10)),
— Type G2

x (G2,50(4)),
* (G2 X GQ,GQ),
e When (91 76 92)
— Type I-B,
* (SO(2+s+t),S0(245) xSO(t),SO(2) xSO(s+1)) (2 < t,1 < s5),
(m(e1),m(e; —e2),n(e1)) = (t —2,1,s),
x (SO(6),S0(3) x SO(3)) (o-action),

— Type I-C,
* 801(82)), SO(4) x SO(4),U(4)), (m(ey —ez),m(2e1),n(e; —ez)) =
* E?Ul(‘ll)),50(4)7S(U(2)XU(2))), (m(e1—ea),m(2e1), n(e1—ez)) =
x (SU(4),S0(4)) (o-action),
x (SU(4),Sp(2)) (o-action),
— Type I-BCy—A2
* (SU24+s+t),S(U(2+s)xU(t)), S(U(2) xU(s+t))) (2 < t,1 < s),
(m(e1), m(er — ez), m(2e1),n(e1)) = (2(t = 2),2,1,2s),
% (Sp(2+s+1t),Sp(2+s) x Sp(¢),Sp(2) x Sp(s+1)) (2 < t,1 < s),
(m(er),mler — ea),m(2e), nler)) = (4(t — 2),4,3,4s),
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« (S0(12),U(6), U(6)"),
(m(e1),m(e; —ez),m(2e1),n(er)) = (4,4,1,4),
Type I—BCQ—BQ
x (SO(4 + 25),S0(4) x SO(2s),U(2+ 5)) (2 < s), (m(er), m(e; —
62)7m(261)7 (61 - 62)) (2(8 - 2)7 1 2);
* (Es,SU(6) - SU(2),SO(10) - U(1)),
(m(e1),m(e; — ea), (261) n(e; —eq)) = (4,4,1,2),
x (E7,50(12)-SU(2), Eg-U(1)) (m(e1), m(e1 —ea),m(2e1),n(e; —
e2)) = (8,6,1, 2)7
Type 1I-BC,
x (SU(2+ s),S0(2 + 5),S(U(2) x U(s))) (2 < s), (m(e1), m(ex —
) (261)) (S 2,1 71)3
(50(10) SO(5) x 50(5), U(5)),
(m(e1), m(e1 — ez),n(2e1)) = (2,2,1),
* (B, Sp(4),50(10) - U(1)) (m(er), m(er — ea),n(2e1)) = (4,3, 1),
Type I1I-A4
* (SU(6),5p(3),50(6)), (m(e1 — e2),nler —e2)) = (2,2),
¢ (Eo,Sp(4), Fy), (m(es — e2), n(ex — ) = (4,4),
x (UxUAWU xU),K x K), (condition B)
Type I1I-Bo
x* (UxU,A(U xU),K x K), (condition B)
Type I11-Cy
© (SU(S),S(U(4) x U(4)), Sp(4),
(m(e1 —e2),m(2e1),n(er — ea),n(2e1)) = (4,3,4,1),
« (Sp(4), U(4),5p(2) x Sp(2),
(m(e1 — ea), m(Qel) n(e; —ez2),n(2e1)) = (2,1,2,2),
x (U x U, A( U),K x K), (condition B)
Type III-BCs
* (SU(4+42s),S(U(4) x U(2s)),Sp(2+s)) (2 < s), m(e1), m(e; —
e2), m(2e1),n(2e1) = (4(s — 2),4,3,1),
« (SU(10), 8(U(5) x U(5)), $p(5)),
m(er), m(er — ez),m(2e1),n(2e1) = (4,4,1,3),
x* (UxU,A(U xU),K x K), (condition B)
Type III-Go
* (UxU,A(U xU),K x K), (condition B)

e reducible cases

Cases of K1 = Ko
When ¥ N W = (), Hermann actions are orbit equivalent to isotropy actions.

Hence, we consider isotropy actions of compact symmetric spaces. We set a basis
{Hu}aen of a as follows;

<HOC’IB>:O(Q#IB’ a’IBEH)7 <Ha7&>:7r7

where & is the highest root of .. We set a subset Py of a by

Py={Hea|(Ha) >0 (aecll), (Ha) <.

then we have

PO{ZtaHa|ta>0(a€H), Zta<1}.

a€Pi a€cll
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4.6.1. Type As. We set
a={&er+&ex+&zes [ &+ &+ 8§ =0}
Then, we have
ST ={ar =€ —ey, a0 = €3 —e3,a1 + g}, W =19,
m = m(«a) (€ 3).
When H = tH,, (0 <t< 1), we have ¥}; = {az2}. Hence we have
T = mcot{aq, Hyay + mcot{ay + ag, HY (a1 + az) = mcot{ay, H) (201 + az).
Thus the orbit Kom(exp H) is harmonic if and only if {(«q, H) = 7/2.
By Theorem 4.6, the orbit Ky (exp H) is biharmonic if and only if
0 =m(rg,a1)(1 — (cot{ay, H))?)ay
+m (T, a1 + ) (1 — (cot{ag + ag, H))?) (o + o)
=m(rs, a1)(1 — (cot{ay, H))?) (201 + o)
Thus we have 7y = 0, {(ay, H) = (1/4)7, (3/4)w. Therefor, the orbit Kom (exp H)
is proper biharmonic if and only if (a1, H) = (1/4)7, (3/4)~.
By the same argument, we have the followings:
e The orbit Kom(exp H) is proper biharmonic if and only if (as, H) =
(1/4)m, (3/4)m for H =tH,, (0 <t <1).
e The orbit Kymi(exp H) is proper biharmonic if and only if (ay,H) =
(1/4)m, (3/4)m for H =tHy, + (1 —t)H,, (0<t < 1).

4.6.2. Type Bo and Cy. We set
Y ={a; =e; — g, a9 = €3,1 +ag,a1 +2az}, W =10,
a =01+ 200 =€ + e,
and
my = mfey), ma = m(e; — es).
(1) When H =tH,, (0 <t < 1), we have X}; = {e2}. By Theorem 2.9, we have
T = — mg cot{ay, Hyay — my cot{ay + ag, H) (a1 + a2)
— mg cot{ay + 2as, H) (a1 + 2a2)
= —(2mg + my) cot{ay, H) (a1 + ao).
Hence, 7y = 0 if and only if (a1, H) = 7/2. By Theorem 4.6, Ko (exp(H)) is
biharmonic if and only if
0 =ma (s, a1)(1 — (cot{ay, H))?)oy
+ ma (T, a1 + a2)(1 — (cot{ay, H>)2)(a1 + as)
+ mo (T, a1 + 200) (1 — (cot(ag, H))?)(aq + 2az)
=(11, 1) (2mg 4+ m1) (1 — (cot{ay, H))*) (o + as).

Therefore, the orbit Komy(exp(H)) is biharmonic if and only if 77 = 0 or (o, H) =
w/4, (3/4)w. In particular, Komi(exp(H)) is proper biharmonic if and only if
<a17 H> = 71-/47 (3/4)7T
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(2) When H =tH,, (0 <t < 1), we have %}, = {e; — ea}. By Theorem 2.9, we
have

T = — my cot{ae, HYas — my cot{ay + ag, H) (a1 + ag)
— mg cot{ag + 2a9, H) (a1 + 2a2)
= —my cot{ag, H) (a1 + 2as)
— (1/2)yma(cot{asg, H) — tan{ag, H))(a1 + 2as)
=—(1/2){(2m1 4+ ma) cot{ag, H) — mg tan{aq, H)} (a1 + 2a2).

Hence, 7y = 0 if and only if

ma
t H)Y? = ——= |
(cotlan, H))* = 52

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

0 =my (s, az)(1 — (cot{az, H))?)ao
+mi (T, a1 + az)(1 — (cot{ag, H))?) (a1 + az)
+ mo (T, a1 + 200) (1 — (cot (200, H))?) (a1 + 200)
=+ my (T, az)(1 — (cot{ag, H))*) (a1 + 20)
+ Mo (T, 200) (1 — (cot (200, H))?) (a1 + 200)
=(11, a2){m1(1 — (cot(ag, H))?)
+ 2ma(1 — (1/4)(cot{az, H) — tan(ag, H))*)} (a1 + 2a0)
=(1/2){tr, ) {(2m1 + m2) (1 — (cot{a, H))?)
+mo(1 — (tan{ag, H))?) + 4mao} (o + 2as).

Therefore, the orbit Kom (exp(H)) is biharmonic if and only if 77 = 0 or
(2my + mo)(1 — (cot(ag, H))?) + ma(1 — (tan(ag, H))?) +4my =0
holds. This equation is equivalent to
((2my + ma)(cot(az, H))* — ma) ((cot{as, H))* — 1) = 4ma(cot(az, H))>.

Since mg > 0, the solutions of the equation are not harmonic. Hence the orbit
Kom (exp(H)) is biharmonic if and only if

my + 3may £ \/m? + dmyms + 8m3

t H))? =
(cot{a, H)) DT

(3) When H = tH,, + (1 —t)H,, (0 < t < 1), we have X}, = {e; + e2} and
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(g, HY = (7/2) — {1, H). By Theorem 2.9, we have
TH = — Mg cot{ay, H)ag —my cot{ag, H)as — mq cot{ay + ag, H) (a1 + a2)
= — mg cot{ay, Hyay —my cot ((7/2) — (o, H)/2))cra
—my cot ((m/2) + ({a1, H)/2)) (o1 + a2)
= — mg cot{ay, H)ay — mq tan({aq, H) /2)ag + mq tan({ay, H)/2)(a1 + a2)
= — mg cot{aq, H)ay + mq tan({aq, H)/2)a;
=— (1/2)ma(cot({a1, H)/2) — tan({a1, H)/2))ay + mq tan({ay, H)/2)ay
=(1/2){—mg cot({c1, H)/2) + (2m1 4+ m2) tan({cn, H)/2) } .

Hence, 7y = 0 if and only if

o) -

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =mao (g, a1)(1 — (cot{a, H>)2)a1 + my{TH, a2)(1 — (Cot<a2,H>)2)a2
+my Ty, a1 + az)(1 — (cot{ag, H))*) (a1 + az)
= (T, 1) (1 — (cot{ay, H))*) oy — (1/2)my (T, 1) (1 — (tan({ca, H)/2))?) s
T (1/2)ma (7, @) (1 — (tan({as, H)/2))%) (01 + a2)
=mo (T, 1) (1 — (cot{ay, H))*)aq + (1/2)my (T, a1)(1 — (tan({cw, H)/2))?)a
= (1/4)(7ar, r){4ma +ma(1 — (cot((a1, H)/2))?)
+(2my +m2)(1 — (tan((az, H)/2))?) }au.
Therefore, the orbit Kom(exp(H)) is biharmonic if and only if 77 = 0 or
4mg 4+ mao(1 — (cot((ag, H)/2))?) 4+ (2m1 + ma)(1 — (tan({az, H)/2))?*) =0
holds. This equation is equivalent to
(ma(cot({ar, H)/2))* = (2m1+mz))((cot((ar, H)/2))* ~1) = dma(cot({ar, H)/2))*.

Since mgy > 0, the solutions of the equation are not harmonic. Hence the orbit
Ko (exp(H)) is biharmonic if and only if

my + 3ma £ \/m3 + dmyms + 8m3
ma

(cot((ar, H)/2))* =
holds.

4.6.3. Type BCsy. We set
YT ={a; =e; — e2,a0 = €3, a1 + a9, 1 + 209, 202, 201 + 202},
Wt =0, &=2a;1 + 2as,

and

my =m(er), ma =m(e; —ea), ms = m(2ey).
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— +

- (5] ) - 9 * )
(1) When H = tH,, (0 <t < 1), we have ¥}, = {e2,2e2}. By Theorem 2.9, we
have

T = — mg cot{ay, HYay — my cot{ay + ag, H) (a1 + ag)
— mg cot{a1 + 2a9, H) (a1 + 2a2) — mg cot(2a1 + 2ai0, H) (201 + 2a2)
— (2mgy + my) cot{ay, H)(a1 + az) — mg(cot{ay, H) — tan{ay, H)) (a1 + a2)
= {—(m1 4 2ma + m3) cot{ay, H) + mz tan{ay, H)} (a1 + as).

Hence, 7y = 0 if and only if

(cot{ay, H))? = 13

holds. By Theorem 4.6, Kom (exp(H)) is biharmonic if and only if
0 =ma(Ta, a1)(1 — (cot{ay, H))*)a
+my(ra, a1 + az)(1 — (cot{ay, H))?)(ay + az)
+ma(Ta, a1 + 2a0) (1 — (cot(ag, H))?)(aq + 2az)
+ ma (T, 200 4 2a2) (1 — (cot(2a1, H))?)2(ay + az)
=(T#, 1) (2mg +my) (1 — (cot{ay, H))*) (o + as)
g an)(4 + (1 — (cot{ar, H))?) + (1 — (tan(ar, H))?))(a1 + az)
=(1m, 1){(2ma + mq +m3)(1 — (cot(ay, H))?)
+ms(1 — (tan{ay, H))?) + 4ms}(oq + ag).
Therefore, the orbit Kom(exp(H)) is biharmonic if and only if 74 = 0 or
(2mg + m1 +m3)(1 — (cot{ay, H))?) + ms(1 — (tan{ay, H))?) + 4mz = 0
holds. This equation is equivalent to
((2ma +my + mg3)(cot{ar, H))*> — ms)((cot(ay, H))* — 1) = dmg(cot{ay, H))>.

Since m3 > 0, the solutions of the equation are not harmonic. Hence the orbit
Kym(exp(H)) is proper biharmonic if and only if

(cot{ay, H))?

_my +2ma + 6mg £ \/(ml + 2mgy + 6ms) — 4(m1 + 2ma + m3)ms
mia + 2m2 + ms )

(2) When H = tH,, (0 <t < 1), we have X}, = {e1 — ea}. By Theorem 2.9, we
have
T = — my cot{ag, Hyas — mq cot{ay + ag, H) (a1 + a2)
— mg cot{ay + 2ae, H)(ay 4 2a2)
— mg cot(2ag, H)2as — ms cot(2aq + 22, H)2(a; + a2)
= —my cot{az, H)(a1 + 2a3)
— (1/2)ma(cot{az, H) — tan{as, H))(aq + 2as)
— mg(cot{ag, H) — tan{(aq, H))(a1 + 2a2)
— (1/2){(2m1 + ma + 2ms3) cot{ag, H) — (m2 + 2m3) tan(as, H) }a1 + 2as).
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Hence, 74 = 0 if and only if

mo —+ 2m3

t{ag, H))? = :
(CO <042, >) 2mq + mo + 2ms

By Theorem 4.6, the orbit Kom;(exp(H)) is biharmonic if and only if

0 =my(ta, az)(1 — (cot{ag, H))?)as
+my(Ta, a1 + az)(1 — (cot{ag, H))?)(ay + az)
+ma(Ta, a1 + 200) (1 — (cot (2, H))?) (a1 + 202)
+ma(Ta, 200) (1 — (cot (2, H))?)2az
+ ma (T, 200 4 2a2) (1 — (cot(2aq, H))?)2(ay + az)
=+ my(1a, az)(1 — (cot{as, H))?) (a1 + 2a0)
+ 2ma (T, ) (1 — (cot(2a, H))?) (a1 + 200)
+ 4dms (T, o) (1 — (cot (2, H))?) (a1 + 200)
=(11, a2){m1(1 — (cot(az, H))?)
+ (2ma + 4m3)(1 — (1/4)(cot{az, H) — tan(ag, H))?)}ay + 2a0)
=(1/2) (T, ) {(2m1 + ma + 2m3)(1 — (cot(ag, H))?)
+ (mag + 2m3) (1 — (tan{ag, H))?) 4 4(ma + 2m3) (a1 + 2az).

Therefore, the orbit Komy(exp(H)) is biharmonic if and only if 77 = 0 or

(2m1 + ma + 2m3)(1 - (C0t<a27H>)2)
+ (ma + 2m3)(1 — (tan{a, H))?) + 4(my + 2m3) = 0

holds. This equation is equivalent to

((2mq + ma + 2mg3)(cot{az, H))? — (ma + 2m3)) ((cot{az, H))* — 1)
= 4(m2 + 2m3)(cot<a2, H>)2

Since mg + 2mg > 0, the solutions of the equation are not harmonic. Hence the
orbit Ko (exp(H)) is proper biharmonic if and only if

my + 3(ma + 2m3) £+ /m3 + 4my (ma + 2m3) + 8(ma + 2m3)?
2mq + mo + 2mg3 '

(COt<OZz,H>)2 =
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(3) When H = tH,, + (1 —t)H,, (0 <t < 1), we have ¥}, = {& = 2¢;} and
(g, H) = (7/2) — (a1, H). By Theorem 2.9, we have
TH = — mg cot{ay, HYay —my cot{ag, H)as

— my cot(ay + ag, H) (a1 + aa) — mg cot{ay + 2as, H) (a1 + 2a3)

= —mgy cot{ay, H)yay — my cot ((7/2) — (a1, H))as
—my cot(m/2)(ar + az) — ma cot (r — (o, H)) (o + 2a2)
—mgcot (m — (2a1, H)) 20
= —mg cot{ay, Hyay — my tan{ay, H)as
+ mg cot{ay, H) (a1 + 2a3)
+ ma(cot{ay, H) — tan{ay, H))as
— (m1 + mg) tan(ay, H)as + (2ma + mg3) cot{ay, H)as.

(

— ms C0t<2042, >2OLQ
(
(

Hence, 77 = 0 if and only if

m1+m3

t H))? = )
(cot{au, H)) DT —

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
)

0 =ma(Ta, a1)(1 — (cot{ay, H))*)o
+my(Ta, az) (1 — (cot{ag, H))?)ay
+mi (T, a1 + az)(1 — (cot{ay + az, H))?) (a1 + as)
+ ma(Ta, a1 + 200) (1 — (cot{ag + 200, H))?) (a1 + 2a3)
+ ma (T, 200) (1 — (cot (200, H))?) 200
=m (T, 1) (1 — (cot{ay, H))*)ay
+my(ta, az)(1 — (tan{ay, H))?*)as
+ma(Ta, a1 + 200) (1 — (cot{ay, H))?)(aq + 2as)
+ma(t, 200) (1 — (cot (201, H))?) 200
=mi (T, 1) (1 — (cot{ay, H))*)ay
—my (T, 1) (1 — (tan(aq, H))?)a
— mao (T, 1) (1 — (cot{aq, H))?) (a1 + 2a)
—ma{tg, 1) (44 (1 — (cot{ay, H))?) + (1 — (tan{ay, H))?))as
— (1, 1) {(m3 + 2my) (1 — (cot{ay, H))?)
+ (my +m3)(1 — (tan{ay, H))?) + 4ms}as.
Therefore, the orbit Kom(exp(H)) is biharmonic if and only if 77 = 0 or
(m3 + 2ms) (1 — (cot{ay, H))?) + (mq +ms3)(1 — (tan(aq, H))?) +4msz =0
holds. This equation is equivalent to

((ms + 2ma)(cot(an, H))? — (m1 + mg)) ((cot{ay, H))* — 1) = 4ms(cot(as, H))?
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Since m3 > 0, the solutions of the equation are not harmonic. Hence the orbit
Kom (exp(H)) is proper biharmonic if and only if

mi + 2m2 + 6m3 + \/(ml - 2m2)2 + 8m3(m1 + 2m2 + 4m3)

(cot({a1, H)))* = 2(2ma + m3)

holds.

4.6.4. Type Go. We set
Y = {aq, a0, a1 + o, 201 + o, 30 + an, 3aq + 200}, W =),

(a1, 1) =1, (o1, a0) = —=, (a2, ) =3,

2
a = 3a; + 2a9,
and
m=m(ar) = m(az).

(1) When H = tH,, (0 <t < 1), we have ¥}, = {az2}, W/ = (. By Theorem 2.9,
we have
T = — mcot(ay, Hya; — mcot{ayg + as, H) (a1 + as)

—mecot{2aq + ag, H) (20 + ag) — mcot(3ay + ag, H)(3a1 + a2)

— mecot{3aq + 2asg, H) (301 + 2a)

= —m{cot(ay, H) + cot(2a1, H) + 3 cot(3a, H) } (201 + a2)

cot(ay, H) cot(2aq, H)
cot{ay, H) + cot(2a,

——m{c0t<a1,H)+cot<2a1,H>-|—3 I;>1}(2a1 + a9).

Thus, 7y = 0 if and only if

t H) cot(2 H) -1
{cot(al,H> + cot(2ay, H) —|—3CO (a1, H) cot (201, H) } =0.

cot(a, H) + cot(2ay, H)
Since

cot{aq, H) cot(2a1, H) — 1
cot{ay, H) + cot(2ay, H)
cot(ay, H) + cot(2ay, H))* + 3{cot(ay, H) cot(2ay, H) — 1}

cot{ay, H) + cot(2aq, H) + 3

Il
—~

(3cot{ay, H) — tan(aq, H))? + g{cot@q, H)(cot{ay, H) — tan{ay, H)) — 2}

(3cot{ay, H) — tan(aq, H))? + %{(cot(al, H))? -3}

[(3cot{ay, H) — tan{ay, H))? + 6{(cot(ar, H))* — 3}]

[9(cot(ay, H))*> — 6 + (tan(ay, H))* 4 6(cot(ay, H))* — 18]

N N e N o Y R SN e

[15(cot{a, H))? — 24 + (tan{ay, H))?]

The equation is equivalent to

15(cot(ay, H))* — 24(cot(ay, H)) +1 = 0.
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Since 0 < (a1, H) < (7/3), 7y = 0 if and only if

12 ++/129
15 '

(cot{ay, H))? =
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

0 =m{ (1, 1) (1 — (cot{ay, H))*)ay
T, o 4 ao) (1 — (cot(ar + agz, H))?)(a1 + az)

+

+ (TH, 201 + a2) (1 — (cot (20 + ag, H))?) (201 + )

+ (111,301 4 o) (1 — (cot (3o + o, H))?) (301 + a)

+ (TH, 301 + 2a2) (1 — (cot(3ay + 2az, H)?)(3ay + 2a0)}

=m(r, a1){(1 — (cot{ar, H))?)
+2(1 — (cot(2ay, H))?) + 9(1 — (cot(3ay, H))*)} (201 + o).

Then, we have
(1 — (cot{ay, H))?) + 2(1 — (cot (201, H))?) + 9(1 — (cot (31, H))?)
=12 — [(cot{ay, H))? + 2(cot(201, H))* + 9(cot(3ay, H))?|

cot{a, H) cot(2ay, H) — 1 2
cot{ay, H) + cot{2ay, H) '

=12 — |(cot{ay, H))? + 2(cot (201, H))* +9 (

Thus, the orbit Ky (exp H) is biharmonic if and only if
0 ={(cot{ay, H))* + 2(cot(2ay, H))*}(cot{ay, H) 4 cot (21, H))?

+ 9(cot{ay, H) cot(20y, H) — 1)% — 12(cot{ay, H) + cot(2a, H))?

:%{(S(CO‘c(al, H))? — 2 — (tan{ay, H))?)(3cot{ay, H) — tan(ay, H))?}
+ %{(cot(al, H))? — 3} — 3(3cot{ay, H) — tan({ay, H))?

:é{(S(cotml, H))? — 26 — (tan(ay, H))?)(3cot(ay, H) — tan{ay, H))?}
+ ng{(cotml, H))* — 6(cot(ar, H))? + 9}*

:é{45(cot<a1, H))* — 378(cot{ay, H))* 4 318
— 30(tan{a, H))? + (tan{aq, H))*}

_ (tan(ay, H))*

8
+ 318(cot (v, H))* — 30(cot(ay, H))* + 1}.

{45(cot(ay, H))® — 378(cot(ay, H))®

We set = = (cot(a, H))? and

f(x) = 452" — 37823 + 3182 — 302 + 1.
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Then,
daf 3 2 2
d—(az) = 180x° — 1026z~ + 636z — 30 = 6(z — 5)(30z° — 21z + 1)
x
21 + /321 21 — /321
e (o 2y ()
Since

F(1/3) = (128/9) > 0, ﬁu/za) 2§4 S0, f(5) = —6824 < 0 and (7) = 6112 > 0,

the equation f(z) = 0 has distinct two solutions for (1/3) < z. Therefore, there
exist 0 < t_, ¢4 < 1 such that the orbits Komy(exp(t+ Hy,)) are biharmonic. Since

f<12+15¢ﬁ> 40

the orbits Kom (exp(t+H,,)) are proper biharmonic.

(2) When H = tH,, (0 < t < 1), we have ¥}, = {ay}, W, = 0. By Theorem
2.9, we have

T = — mecot{ag, H)as — mcot{a; + ag, H) (a1 + as)
—mcot(20y + g, H) (201 + a2) — mcot(3aq + ag, H)(3aq + ag)
— mecot{3aq + 2as9, H)(3a1 + 2a)
= —m{2cot{aa, H) + cot(2as, H)} (31 + 2az)

1
=— §m{5 cot{ag, H) — tan(ae, H)} (3a1 + 2a2).

Hence, 74 = 0 if and only if
1

(cot{ag, H))? = 5

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =m{ {1, ) (1 — (cot{ag, H))*)ay
+ (a1, a1 + @) (1 — (cot{ay + o, H))?) (a1 + )
+ (111, 201 + o) (1 — (cot (20 + o, H))?) (201 + az)
+ (11,301 + o) (1 — (cot (3 + o, H))?)(3a + az)
+ (111,301 + 20a2) (1 — (cot(3a1 + 200, H))?) (301 + 200)}
=2m{7p, ) {(1 — (cot{aa, H))?) 4 (1 — (cot(2az, H)?*)}(3ay + 2a)

:%mﬁg,ag){f)(l — (cot{ag, H))?) + (1 — (tan{ag, H))?) + 4}(3aq + 2a2).
Therefore, the orbit Kom (exp(H)) is biharmonic if and only if 77 = 0 or
5(1 — (cot{aw, H))?) + (1 — (tan{ao, H))*) +4 =0
holds. This equation is equivalent to

(5(cot(az, H))* — 1) ((cot{as, H))* — 1) = 4(cot{az, H))>.
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Thus, the solutions of the equation are not harmonic. Hence the orbit Koy (exp(H))
is proper biharmonic if and only if

(cotfon, H)? = 22205

holds.

(3) When H = tH,, +(1—t)H,, (0 < t < 1), we have F, = {3a; +as}, Wi = 0.
We set ¥ = (w/6)t. Then,

(a1, H) = 20, (az, H) = g — 30
By Theorem 2.9, we have
T = — m{cot(29)ay + cot((7/2) — 3)aa + cot((7/2) — F) (a1 + )
+ cot((m/2) + 9) (201 + a2) + cot((m/2) + 39) (301 + a2)}
= —m{cot(20) + tan ¥ + tan(39) }a;.

Since
cot ¥ + cot(299)

tan(39) = cot ¥ cot(29) — 1°
7y = 0 if and only if|
0 =(cot(2¢) — tan ) (cot ¥ cot(2¢) — 1) — 3(cot ¥ + cot(2¢}))
={(cot¥9)* — 24(cot ¥)* + 15} /(cot )
Since 0 < ¥ < (7/6), cot ¥ > /3. Hence 7y = 0 if and only if,

(cot9)? = 12 4+ /129.
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =m{ {1y, 1) (1 — (cot{ay, H))*)ay

+ (11, a2) (1 — (cot{ag, H))?)ay
+ (111, (1 + 2))(1 — (cot{ay + o, H))?) (a1 + aa)
+ (111, (201 + a2)) (1 — (cot (20 + o, H))?) (201 + a3)
4+ (1a, (3ay + a2))(1 — (cot (3o + o, H))?) (301 + an)}

=(m/2) (s, a1){2(1 — (cot(29))*)ay — 3(1 — (cot((7/2) — 39))*)az
— (1= (cot((/2) = 0))*) (a1 + az) + (1 = (cot((7/2) + 9))*) (21 + az)
+3(1 — (cot((m/2) + 39)%)(3a1 + az)}

=(m/2)(ra, a1){2(1 — (cot(29))*)a; — 3(1 — (tan(39))?)a
— (1= (tan(¥))*) (a1 + a2) + (1 — (tan(9))?) (201 + az)
+3(1 — (tan(39)?) (301 + az)}

=(m/2) (s, a1){2(1 — (cot(29))?) + (1 — (tan(®9))?) + 9(1 — (tan(39))?)}oy.

H
H

Therefore, Kom(exp(H)) is biharmonic if and only if 77 = 0 or

2(1 — (cot(29))?) + (1 — (tan(¥))?) + 9(1 — (tan(399))?) =0
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holds. Then we have

2(1 — (cot(209))?) + (1 — (tan(¥9))?) + 9(1 — (tan(399))?)
(cot(29) + cot(19))?
((cot(29))(cot(F)) — 1)2

=(12 — 2(cot(20))? — (tan(¥))2) — 9

Thus Ko (exp(H)) is biharmonic if and only if 77 = 0 or
{12 — 2(cot(219))? — (tan(¥9))?}((cot(209))(cot(d9)) — 1)? — 9(cot(29) + cot(¥))? =0
Then,
{12 — 2(cot(299))? — (tan(9))?}((cot(29))(cot(¥)) — 1)? — 9(cot(209) + cot(¥9))?
={12 — (1/2)(cot(¥) — tan(v))* — (tan(¥))?} x (1/4){(cot(¥9))* — 3}2
+ (9/4){3 cot(¥9) — tan(¥)}?
— (1/8)[{(cot(19))? — 26 + 3(tan())*}{ (cot(¥))* — 6(cot(¥)))* 4 9}
+ 18{9(cot(19))? — 6 + (tan(v))?}]
— (1/8)[(cot(19))® — 32(cot(19))* + 330(cot(19))* — 360 + 45(tan(d)))?]
— (1/8)(tan())?[(cot(9))® — 32(cot(9))® + 330(cot(9))* — 360(cot(19))? + 45]
We set = (cot(19))? and

. ~

~—

f(z) = 2* — 3223 + 33027 — 3602 4 45.

Then,
%(x) = 4(32® — 242? + 165z — 90)
d>f
ﬁ(x) =12(x — 5)(z — 11)
Since

df df
—1152>0, 2 (3) =864 >0, L (11) =
F(3) = 1152 > 0, —(3) = 864 > 0, ——(11) = 608 > 0,

(df /dx)(x) > Oandf(xz) > 0 for 3 < x. Thus the equation f(z) = 0 has no solu-
tion for 3 < z. Therefore, if the orbits Kom(exp(t+H,,)) is harmonic, then it is
harmonic.

Cases of 01 ¢ 0,
Letae{aeW' |a+AgW (Aell)}.
4.6.5. Type I-By and I-BCy-A2. We set
E+ = {61 :l: 62,61,62,261,262}, W+ = {61762},

M={a;=e1 —es,as =€}, a=a;+as =€
and

my = m(er), mao =m(e; +e2), ms =m(2e1),n1 =nler),
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where, if (3, %, W) is type I-By, then ms = 0.
(1) When H = tH,, (0 < t < 1), we have ¥}, = {a2,2a2} and W;; = 0. By
Theorem 2.9, we have
T = — mg cot{ay, H)ay — mq cot{ay + ag, H) (a1 + ag)
— mg cot(ag + 2as, H) (a1 + 2a2) — mg cot(2(a; + as), H)2(a1 + a2)
+ nq tan{ay + ag, H) (a1 + az2) + ny tan{as, H)as
= — {(2mg + mq) cot{ay, H)ey + mg cot(2ay, H)2e1} + nqy tan{aq, H) (a1 + as)
= — {(2mg + mq) cot{a, H)ey + ms(cot{as, H) — tan{ay, H))e1 }
+ ny tan{aq, H) (o + as)
={—(2mg + my + m3) cot{a1, H) + (n1 + m3) tan{ay, H) }e;.
Hence we have that 77 = 0 if and only if
ny + ms
mi +2ms +mg’

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

(cot{ay, H))? =

0 =mo (T, a1)(1 — (cot{ay, H))*)ay
+my(Ta, a1 + az)(1 — (cot{ay + ao, H))?)(ay + az)
+ma(Ta, a1 + 209) (1 — (cot{ay + 20, H))?) (a1 + 20a)
+ma(ta, 2(a1 + az))(1 — (cot(2(aq + az), H))?*)2(a; + o)
+ 0y (1a, (a1 + a2))(1 — (tan{og + oo, H))?) (a1 + az)
+ 11 {TH, o) (1 — (tan(ag, H))?)ay
=(15, a1){(2mg + m1)(1 — (cot{ay, H))?) + 4ms(1 — (cot(2ay, H))?)
+n1(1 — (tan{ay, H))?)}e
=(1, a1){(m1 + 2mgy +m3)(1 — (cot{ay, H))?) + 4ms
+ (n1 +m3)(1 — (tan{ay, H))?)}e;.
Therefore, Koy (exp(H)) is biharmonic if and only if 77 = 0 or
(4.7)  (my + 2mg + m3)(cot(ay, H))*
— {(my + 2ma +m3) + (n1 +m3) + 4ms}(cot{ay, H))* +ny +m3 =0
holds. Since 7 = 0 if and only if

ni + ms
t H)Y? = ——

(cot(an, ) =

Ko (exp(H)) is proper biharmonic if and only if
(cot(ay, H))?

{ —(mi1+2ma+6ms +n1):lz\/(m1 +2mo+6mz+ny)2—4(m1+2ma+m3)(ni1+ms) (

m3>0)

ms ZO)

2(’”7,1 +2mo +m3)
1

Let H; and H_ denote the solutions of the biharmonic equation (4.7) such that
(cot{ay, H_))? < (cot{ay, H))?. Let Hy denotes the harmonic point such that
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0< <C¥1,H0> < 7T/2. Since

(m1 + 2mg + m3)(cot(ay, H))*
+ {(my + 2ma +m3) + (n1 + ms) + 4msz}(cot{ay, H))* +ny +mz =0

if and only if

{(m1 + 2ms + ma)(cot{an, H))? = (n1 + ma)}((cot(ar, H))* = 1)
=4ms(cot{ay, H))?,

if mg > 0, then

<041,H,> < <0517H0> < <Oé1,H+>.

(2) When H = tH,, (0 < t < 1), we have ¥}, = {ay}, W;; = 0. By Theorem
2.9, we have

T = — my cot{ag, HYag —my cot{ag + ag, H)(ay + as)

— mg cot(ay + 2ag9, H) (a1 + 2a3) — mg cot(2(a; + az), H)2(a1 + a2)
— mg cot(2aq, H)2as
+ nq tan{ag + ag, H) (a1 + ag) + nq tan{as, H)as

= — my cot{ay, Hyas — my cot{as, H)(ay + as)
— mg cot (22, H) (a1 + 2a2) — m3 cot (22, H)2(a1 + a2)
— mg cot(2aq, H)2as
+ np tan({ae, H)(aq + a2) + ny tan{asg, H)as

= —my cot{ag, H)(ay + 2as)
— (ma + 2mg) cot(2aa, HY (a1 + 2a2)
+ ny tan{ae, H)(aq + 2a9)

1
25{—(2m1 + mg + 2mg3) cot{aa, H)
+ (2n1 + ma + 2ms3) tan{ag, H) } (a1 + 2a2).

Hence, 77 = 0 if and only if

_ 2ny +mg + 2mg

t{ag, H))? = :
(CO <042, >) 2mq + mo + 2mg3
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By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =m (Tr, az)(1 — (cot(ag, H))?)ay
+my(Ta, a1 + az)(1 — (cot{ay + ao, H))?)(ay + az)
+ ma(Ta, a1 + 200) (1 — (cot(ag + 200, H))?) (a1 + 2a3)
+ma(ta, 2(a1 + a2))(1 — (cot(2(ag + az), H))?*)2(a; + as)
+ma (T, 200) (1 — (cot (2, H))?)2arz
+n1{TH, (a1 + a2))(1 — (tan(ag + agz, H))?)(aq + az)
+ o, o) (1 — (tan(ag, H))?)ay
=+ my(1h, az)(1 — (cot{as, H))?) (a1 + 2a0)
+ 2mo (T, ) (1 — (cot (2, H))?) (a1 + 20r0)
+ dms (T, ) (1 — (cot(2a, H))?) (a1 + 2a0)
+n1 (T, o) (1 — (tan(ag, H))?) (a1 + 2az)
=(1a, a2){m1(1 — (cot{ag, H))?) + (2ma + 4m3)(1 — (cot(2az, H))?)
+n1(1 — (tan{ag, H))*)} (a1 + 2a0).
Therefore, Koy (exp(H)) is biharmonic if and only if 77 = 0 or
0 =m (1 — (cot{ag, H))?) + (2mg 4 4m3)(1 — (cot(2az, H))?)
+n1(1 — (tan{as, H))?)
holds. The equation is equivalent to
((2m1 +ma + 2mg3)(cot(az, H))* — (2n1 + ma + 2m3))((cot{az, H))* — 1)
= (2mg + 4ms3)(cot{a, H))?.

Since 2ms9 + 4mg3 > 0, the solutions of the equation are not harmonic. Hence the
orbit Ko (exp(H)) is proper biharmonic if and only if

(cot({an, H)))?

_m1 + 1 + l :l: \/(m1 + n1 + l)2 — (2TL1 + meo + ng)(le + mo + 2m3)
B 2n1 + ma + 2mgs

holds, where | = 2my + 2mg

(3) When H = tH,, +(1—t)H,, (0 <t < 1), we have X}; = 0, W, = {a1 +az}.
We set ¢ = (a1, H). Then, {ag, H) = (7/2) — . By Theorem 2.9, we have

TH = — mg cot{ay, H)ay — my cot{as, H)ag
—my cot{ay + ag, H) (a1 + ag) — mg cot{a + 2ag, H) (a1 + 2a)
— mg cot(2aq, H)2as
+ nq tan{ag, H)as
= — mg cot(P)a; — my cot((r/2) — F)aa — mq cot(mw/2) (a1 + a)
— mg cot(m — V) (a1 + 2a2) — mg cot(m — 209)(2a2) + 1y tan((w/2) — 9)ae
={(2m2 + ms + n1) cot(¥) — (m1 + mg3) tan(?) }as
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Hence, 74 = 0 if and only if

m1+m3
COtOé,H 2:—.
(cot{az, H)) ST r——

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =ma(Ta, a1)(1 — (cot{ay, H))*)o
+my (T, az)(1 — (cot{ag, H))?)an
+ mao(T, a1 + 2a3) (1 — (cot{ay + 200, H))?)(aq + 200)
+ms (T, 200) (1 — (cot (2, H))?)2az
+ny (1a, (a1 + a2))(1 = (tan{og + oo, H))?) (a1 + az)
=(1, a1){ma(1 — (cot ¥)?)a; —m1(1 — (tan¥)?)ay
—my(1 — (cot9)?) (a1 + 2az) — 4ms(1 — (cot 209)*)ag + ni(1 — (cot ¥)?)as}
= — (12, a1){(2ma +n1)(1 — (cot 9)?) + m1(1 — (tan®)?)
+ 4ms(1 — (cot 20)%) }az
= — (11, a1){(2ma + ny +m3)(1 — (cot ¥)?)
+ (my +m3)(1 — (tan)?) + 4ms}as.
Therefore, Kom(exp(H)) is biharmonic if and only if 77 = 0 or
0 = {(2ma +ny +m3)(1 — (cot ¥)?) + (my +m3)(1 — (tan9)?) + 4mz}
holds. The equation is equivalent to
((2ma +m3 + ny)(cot ¥)* — (my +mg3))((cot ¥9)* — 1) = dmg(cot 9)>.

Since m3 > 0, the solutions of the equation are not harmonic. Hence the orbit
Kym (exp(H)) is proper biharmonic if and only if

(cot )2

(m1 + 2m2 + 6m3 + nl) :l: \/(ml + 2m2 + 711)2 —|— 8m3(m1 + 2m2 + 4m3 + nl)
2(2m2 +m3 +TL1)

holds.

4.6.6. Type I-C,. We set
ut = {61 + 62,2617262}7W+ = {61 — €2,€1 + 62},
MI={a; =€ —ez,a2 =2e3}, & =01+ a2 =€ +es.

When we set mq; = m(e; + ea), ma = m(2e1),n1 = n(e; + e3), then we have same
result as cases of Type I-Bs.

4.6.7. Type I-BCy—B;y. We set
YT ={e; £eg,e1,e9,201,2e0 ), WH = {e; £ea,e1, 62},
M={ag =e1 —ez, a3 =e€2}, @ =01 +2as =e1 + e
and

my = m(e1), ma =m(e; + ea), ms =m(2e1), n1 =nler), ne =n(er + ea).
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Since ey € ENW, e1 — ey € W and (2{e1,e1 — ea))/({e1 — e2,e1 — ea)) is odd, by
definition of multiplicities, we have m; = m(e1) = n(e1) = n;.
(1) When H = tH,, (0 <t < 1), we have X}, = {ag,2a2}, W;; = 0. By Theorem
2.9, we have
TH = — mg cot{ay, H)ay — my cot{ay + ag, H) (a1 + ag)
— mg cot(ay + 2as, H) (a1 + 2a2) — mg cot(2(a; + as), H)2(a1 + a2)
+ ng tan({ay, H)ay + ng tan{as, H)as
=+ nq tan(ozl + a9, H>(Oé1 + Otg) “+ N9 tan(al + 20[27 H>(Oé1 + 20[2)
= — (2mg + mq) cot{aq, H)ey — 2mg cot(2ay, H)e;
(2ng + nq) tan{ay, H)e;
={—(m1 + 2my + m3) cot(a, H) + (my + 2ny + m3) tan(ay, H) }fe;.
Hence we have 7y = 0 if and only if

mq + 2ng + ms

t H) = — "=~
(coton, H))? = T AT

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

0 =ma(ta, a1)(1 — (cot{ay, H))?*)o

+my (e, a1 + az)(1 — (cot{ay + ag, H))?)(ay + az)
+ ma(Ta, a1 + 200) (1 — (cot{ay + 200, H))?) (a1 + 20a)
+ma(ta, 2(a1 + a2))(1 — (cot(2(a1 + az), H))?)2(ay + as)
+no(tr, n)(1 — (tan(aq, H))*)ay
+n1(th, (a1 + a2))(1 — (tan(ag + az, H))?) (a1 + az)
+na(7r, (1 + 2a2)) (1 = (tan(aq + 2az), H))?)(a + 2as)

= (71, a1){ma(1 — (cot{ar, H))?)ar +mi (1 — (cot{ar, H))?)(a; + as)
+4ms(1 — (cot(2ay, H))?) (a1 + az)
+ (n1 + 2n2)(1 — (tan{ay, H))?) (a1 + 2a3)}

=(1, a1){(m1 + 2mgy +m3)(1 — (cot{ay, H))?)
+ (mq + 2no + m3)(1 — (tan(ag, H))?) + 4ms}(aq + as).

Therefore, Kom(exp(H)) is biharmonic if and only if 77 = 0 or
0 =(my + 2ma + m3)(1 — (cot{ay, H))?)
+ (ma1 + 2n2 +m3)(1 — (tan(as, H))?) + 4ms
holds. The equation is equivalent to
((ma + 2ma + m3)(cot{az, H))* — (mq + 2ns + mg)) ((cot{as, H))* — 1)
= 4ma(cot{ag, H))?.
Since mg > 0, the solutions of the equation are not harmonic. Set

a=mi+ 2mo +mg3, b =n1 + 2ns +m3, ¢ = 4ms.
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Hence the orbit Ko (exp(H)) is proper biharmonic if and only if

5 a+btcEt\/la+b+c)—4ab
N 2a
a+btcEty/(a+b)?+c(2(a+b)+o)
N 2a

(cot({a, H)))

holds.

(2) When H = tH,, (0 <t < 1), we have ¥}, = {ay}, W;; = 0. By Theorem
2.9, we have
T = — my cot{ag, HYag —my cot{ag + ag, H)(aq + as)
— mg cot(ay + 2aq9, H) (a1 + 2as) — mg cot(2(a; + az), H)2(a1 + az)
— mg cot(2aq, H)2as
+ ng tan({aq, H)ay
+ ny tan{ay + ag, H) (a1 + ag) + natan{ag + 2as, H) (a1 + 2a2)
= —my cot{ag, H)(aq + 2as) — (ma + 2ms3) cot(2as, H) (a1 + 2as)
+ ny tan{ae, H) (a1 4 2a2) + no tan(2as, H) (aq + 2a2)
={—(2m1 + ma + 2m3) cot(2aq, H) + ns tan(2aqs, H) } (a1 + 2a0).
Hence we have 7 = 0 if and only if

(cot(2az, HY)? 12

" 2my +ma + 2ms
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =my(Ta, az)(1 — (cot{ag, H))?)a
+my(ta, a1 + az)(1 — (cot{ay + oo, H))?) (a1 + az)
+ma(Ta, a1 + 200) (1 — (cot{ay + 20, H))?) (a1 + 20a)
+ma(ta, 2(a1 + a2))(1 — (cot(2(aq + az), H))?*)2(ay + as)
+ma(Ta, 200) (1 — (cot 2(a, H))?)209
+no{th, on) (1 — (tan(aq, H))?)ay
+n1{TH, (a1 + a2))(1 — (tan(ag + agz, H))?) (a1 + az)
+na(TH, (a + 200)) (1 — (tan(a 4 2az), H))?)(a + 2a3)
=(1#, a2){m1(1 — (cot{ag, H))?) + ny (1 — (tan{ag, H))?)
+ (2ma + 4m3)(1 — (cot(2az, H))?) + 2na(1 — (tan(2az, H))?)} (a1 + 2as)
=2(, ) {(2m1 4+ mg + 2m3)(1 — (cot(2a, H))?)
+na(1 — (tan(2az, H))?) — 4ms}(oq + 2a).
Therefore, Komy(exp(H)) is biharmonic if and only if 77 = 0 or
0 =(2my + ma + 2m3)(1 — (cot (2, H))?)
+na(1 — (tan(2aq, H))?) — 4ms
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holds. The equation is equivalent to

((2m1 + ma + 2ms)(cot (202, H))? = 2n2) ((cot{az, H))* = 1)
= — 4ms(cot(ag, H))?.

Since mg > 0, the solutions of the equation are not harmonic. When

(—2my 4+ mag + 2ms3 + ny)? — 4(2my + may + 2m3)ny > 0

the orbit Ky (exp(H)) is proper biharmonic if and only if

N [+ \/l2 — 4(2m1 + mo + 2m3)n2
- 2(2m1 =+ mo —+ 2m3)

(cot((202, H)))?

holds, where [ = —2my + mg + 2mg + ns.

(3) When H = tH,, +(1—t)H,, (0 < t < 1), we have ©F, = 0, Wi = {a;+2a2}.
We set 20 = (aq, H). Then (a2, H) = (7/4) — 9. By Theorem 2.9, we have

T = — mg cot(29)a; — my cot((r/4) — F)aa — mq cot((w/4) + 9) (a1 + as)
— ma cot(m/2)(aq + 2a2) — mg cot((w/2) + 29)2(1 + az)
— mgcot((m/2) — 29)2as
+ nag tan(29)aq + nq tan((w/4) — F)as + ny tan((w/4) — 9) (a1 + asg)
= — mg cot(2¢); — 2mq tan(29)as + 2mq tan(29)(aq + as)
+ ng tan(29) oy
={—ma cot(29) + (2mq1 + m3 + nz) tan(29) }ay.

Hence we have 7y = 0 if and only if

2 2
(cot(20))? = At =ms - na
ma
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By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =ma(ra, a1)(1 — (cot(29)))ay
+my(ty, az)(1 — (cot((m/4) — 9))*)az
+my(Ta, a1 + az)(1 — (cot((r/4) +9))}) (a1 + az)
+ma(TH, a1 + 200) (1 — (cot(m/2))?) (a1 + 2a)
+ma(ta, 2(a1 + az))(1 = (cot((7/2) + 20))H)2(a1 + az)
+ma(Ta, 200) (1 — (cot((7/2) — 209))?)2az
+na (T, 1) (1 — (tan(20))?) oy
+ny{TH, ) (1 — (tan((7/4) — 9))%)ay
+ (T, (a1 + az)(1 — (tan((7/4) +9))%) (a1 + az)
=(Ta, a1 + a2){2ma(1 — (cot(29))*)ay
+mi{(1 = (cot((m/4) = 9))?) + (1 — (tan((w/4) — 0))*) }a2
+mi{(1 = (cot((m/4) +9))%) + (1 = (tan((7/4) +9))*)} (o1 + az)
+2ms(1 — (tan(29))?)(2a1) 4 2no(1 — (tan(29))?) (1)}
=(Ta, a1 + a2){2ma(1 — (cot(29))*)ay + 4m; tan(29)ay
— 4my tan(209)% (a1 + az) + (4ms + 2ns) (1 — (tan(29))?)ay }
=2(7T, a1 + ag){ma(1 — (cot(29))?)
+ (2my + 2ms3 4+ n2)(1 — (tan(209))?) — 2my }oy.
Therefore, Ko (exp(H)) is biharmonic if and only if 77 = 0 or
0 =(ma(1 — (cot(29))?) + (2m1 + 2m3 + na)(1 — (tan(29))?) — 2m,
holds. The equation is equivalent to
{ma(cot(209))? — (2my + 2ms + n2) }((cot(209))? — 1) = —2m; (cot(20))%.
Since m1 > 0, the solutions of the equation are not harmonic. When
(2m3 + mao + ma)? — 4mo(2my + 2ms + ny) > 0,
the orbit Ko7 (exp(H)) is proper biharmonic if and only if

2777,3 —+ mo + Mo + \/ ng —+ mo + mg) — 4m2(2m1 + 2m3 + TLQ)

(cot(209))? =

2m2

holds.

4.6.8. Type II-BCy. We set
E+ = {61 + 62761762}7W+ = {el + 62761762;2617262}7
II = {Oél =e1 — €9, :62}, a =201 + 200 = 2e4

and

my =m(er), ma =m(e; +e2),n1 =nle1), na =nle; +ea), ng =n(2eq).

65
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Since ej,e1 +e2 € XNW, 2e; € W and (2(eq,2e1))/({2¢e1,2¢1)) = 1 and (2{e1 +
e2,2e1))/({2e1,2e1)) = 1 are odd, by definition of multiplicities, we have m; =
m(er) = n(e1) = ni, ma =m(er + e2) = nle; + e2) = no.

(1) When H = tH,, (0 <t < 1), we have ¥}, = {az2}, W;; = 0. By Theorem 2.9,
we have

T = — ma cot{ay, Hyay —my cot{aq + ag, H) (a1 + as)
— mg cot{ay + 2aa, H) (g + 2a2)
+ ma tan{aq, H)ag + mo tan{ag, H)as
+ my tan{ag + ag, H)(aq + ag) + ma tan{ay + 2as, H) (o + 2as)
+ ns tan(2aq + 209, H) (20 + 2a)
= — 2mgo{cot{ay, H) — tan{ay, H)} (a1 + az)
—my{cot{ar, H) — tan{a, H) }(a1 + ag)
+ 2ngz tan(2aq, H)(aq + as)
=2{—=(mq + 2m2) cot(2a1, H) + n3 tan(2ay, H) }e;.
Hence we have 7 = 0 if and only if

(cot(2a, HY)? = — 2

my +2mso’
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

0 =ma(ta, a1)(1 — (cot{ay, H))*)o
+my(ta, a1 + az)(1 — (cot{ay + oo, H))?) (a1 + az)
+ma(Ta, a1 + 200) (1 — (cot{ay + 200, H))?) (a1 + 20a)
+ma(ra, a1)(1 — (tan{ay, H))?)oy
+ma (T, (o1 + a2))(1 = (tan{an + ag, H))?)(an + az)
+ma (T, (1 4 2a2)) (1 — (tan(ag + 200), H))?)(aq + 2az)
+ n3(7r, 2(1 + @2)) (1 — (tan(2(on + az), H))?)2(a1 + az)
=2(rsr, a1){(m1 + 2my) ((1 — (cot(a, H))?) + (1 — (tan{ay, H))?))
+4ns(1 — (tan(20q, H))*)} (a1 + az)
=2(7p, o) {—4(my + 2my)(cot(2aq, H))? 4 4nz(1 — (tan(20q, H))*)} (a1 + az)
=8(7p, 1) {—(m1 + 2ms)(cot(2a1, H))? + n3(1 — (tan(2aq, H))*)} a1 + az).
Therefore, Ko (exp(H)) is biharmonic if and only if 77 = 0 or
0 = — (mq + 2mg)(cot(2ay, H))? 4+ nz(1 — (tan(2a1, H))?)
holds. The equation is equivalent to
{(mq + 2ma)(cot(2aq, H))? — n3}((cot(2a1, H))* — 1)
— (mq + 2ms)(cot (20, H))?

Since my + 2mg > 0, the solutions of the equation are not harmonic. When n3 —
4(my + 2mg)ng > 0, the orbit Ko (exp(H)) is proper biharmonic if and only if

ns £ \/n3 — 4(my + 2ma)ns
2(mq + 2my)

(cot((2an, H)))* =
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holds.

(2) When H = tH,, (0 < t < 1), we have ¥}, = {ay}, W;; = 0. By Theorem
2.9, we have

o, HYas — my cot{ag + ag, H) (a1 + as)
a1 +2042,H>(Oé1 + 20&2)

TH = — my cot{
(
+ mq tan{ag, H)as
+ my tan{ag + ag, H)(aq + az) + ma tan{ay + 2as, H) (o + 2as)
+ nztan(2(aq + a2), H)2(aq + as)
+ n3 tan(2aq, H)2aq
= —mq cot{ag, H) (a1 + 2a2) — ma cot(2aq, H) (a1 + 2a2)
+ my tan{ag, H)(aq + 2as) + me tan{2as, H) (o + 2as)
+ n3 tan(2ae, H)2(a; + 2a2)
={—(2m1 + m2) cot(2as, H) + (m2 + 2n3) tan(2aq, H) } (a1 + 2a2).

— My cot

Hence we have 77 = 0 if and only if

ms + 2n3
t (200, H))? = ———=.
(eot(20, H))? = 22t 21

By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =my (s, az)(1 — (cot{az, H))?)ao
+mi{th, a1 + az)(1 — (cot{ay + ag, H))?) (a1 + as)
+ Mo (T, a1 + 200) (1 — (cot{ay + 200, H))?) (o + 2a3)
+mi (T, a2)(1 — (tan(as, H))?)az
+ my (T, (1 + a2))(1 — (tan{ag + ag, H))?) (o + o)
+ mao (T, (a1 4 202))(1 — (tan(oy + 2a0), H))?) (a1 + 2az)
+n3(T, 2(0 4+ )Y (1 — (tan(2(ay + @), H))?)2(ay + az)
+ n3(Ta, 202) (1 — (tan 2(ao, H))?)200
=(rH, a2>{m1((1 — (cot{ag, H))?) + (1 — (tan(ag,H>)2))
+ ma(1 — (cot(2a, H))?) + 2ma(1 — (tan(20, H))?)
+ 4nz(1 — (tan(2a, H))*)} (a1 + 2a0)
=(111, ag){—4m; (cot(2az, H))? 4+ 2ma(1 — (cot(2az, H))?)
+ 2ma(1 — (tan(2aq, H))?)
+ 4ng(1 — (tan(2a, H))*)} (a1 + 20)
=(111, a){—(4my + 2my)(cot(2az, H))?
+ (2mg + 4n3) (1 — (tan(2az, H))?) — 4m } (o + 2a).
Therefore, Komy(exp(H)) is biharmonic if and only if 77 = 0 or
0 =(2my +ma)(1 — (cot(2aq, H))?)
+ (mg + 2n3)(1 — (tan(200, H))?) — 2m,
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holds. The equation is equivalent to

((2m1 + ma)(cot(2as, H))? — (ma + 2n3)) ((cot(2as, H)) — 1)
= — 2m; (cot (209, H))?.

Since 2my > 0, the solutions of the equation are not harmonic. When
(mg +n3)? — (2m1 + ma)(ma + 2n3) > 0
the orbit Ky (exp(H)) is proper biharmonic if and only if
(cot((2az, H)))?

Mg +n3 £ \/(mg + n3)2 — (2m1 + mg)(m2 + 27”&3)
(2mqy + mg)

holds.

(3) When H = tH,, + (1 —t)H,, (0 <t < 1), we have ¥}, = 0, W = {a =
201 + 202} We set ¥ = (2aq, H). Then (2ag, H) = (7/2) — 9. By Theorem 2.9,

we have
T = — mg cot{ay, HYay — my cot{as, HYas — my cot{ay + ag, H) (a1 + ag)
(o1 + 2a9, H) (a1 + 2a0)
+ mg tan{ay, H)ay + mq tan{ae, H)as + my tan{ag + ag, H) (a1 + as)
+ mo tan{ag + 2ag, H) (g + 2a)
+ n3 tan(2aq, H)2a0
= — mg(cot{ay, H) — tan{ay, H))ay — my(cot{ag, H) — tan{ws, H))as
— ma(cot{ay + 2a, H) — tan(a;y + 2, H)) (a1 + 2a2)
+ ng tan((7/2) — 9)(2a2)
= — 2mg cot(P)ay — 2my cot((mw/2) — ¥)ae
— 2mg cot(m — 9) (a1 + 2a2) + 2n3 tan((7/2) — ¥)as
=2{(2mq + n3) cot(¥) — my tan(I) }as.

— My cot

Hence we have 7y = 0 if and only if

my
t9)?2 = ——
(cot v) 2mo + ng3
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By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =may(ta, a1)(1 — (cot{ay, H))?)oy
+my(Ta, az) (1 — (cot{ag, H)?)ay
+my (e, a1 + az)(1 — (cot{ay + ag, H))?)(ay + az)
+ma(Ta, a1 + 200) (1 — (cot{ay + 200, H))?) (a1 + 20a)
+ ma (1, a1)(1 — (tan{ay, H))?)oy
+my (T, az) (1 — (tan(az, H))?)as
+my(ra, (g 4+ a2)(1 — (tan(ag + ag, H))?)(aq + o)
(1 — (tan{ag + 209, H))?) (a1 + 200)

)
+ m2<7'H,a1 + 2042>
— (tan(2az, H))?)20s

+ ns(TH, 2a9) (1
= — mo(Th, 1) (cot{ay, H) — tan{ay, H))*ay
— my (T, ) (cot{ag, H) — tan{ag, H))?asy
— Mo (T, a1 + 2ai)(cot{ay + 20, H) — tan{ay + 2aq, H))?(a; + 2a0)
+ n3(TH, 202) (1 — (cot 9)?) 20
= — dmy(Th, a1 )(cot 9)2ay + dmy (T, 1) (cot((7/2) — 9))?an
+ dma (T, aq)(cot(m — 9))2 (o 4 2a2) — 4ng (T, 1) (1 — (cot 9)?)ay
= — 41y, 1) {2ma(cot ¥)? + mq (tan¥)? — nz(1 — (cot ¥)?) }ay
=4(t, ) {(2ma 4 n3)(1 — (cot 9)?) + my (1 — (tand)?) — (2ma + my) }a
Therefore, Koy (exp(H)) is biharmonic if and only if 77 = 0 or
0 = (2mg 4+ n3)(1 — (cot ¥)?) +my (1 — (tan¥)?) — (2mg +my)
holds. The equation is equivalent to
{(2mg + n3)(cot 9)* — m1}((cot(9))* — 1) = —(2my + my)(cot(209))%.
Since 2mo + my > 0, the solutions of the equation are not harmonic. When
n3 — 4(2msy + n3z)m; > 0,

the orbit Ko7y (exp(H)) is proper biharmonic if and only if

(cot9)? = n3 £ \/n2 — 4(2ma + n3z)m;
2(2m2 + n3)

holds.

4.6.9. Type I1I-A5. We set
a={r1e; +z2e3 + 7363 | T; €ER, 71 + 22 + 23 = 0},
and
ST =W ={e; — e, ea —e3, e; —e3},
IMI={a;1 =e1 —eg,a =3 —e3},& = ay + g,

m:=m\) =n()) (Ae).
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(1) When H = tH,, (0 <t < 1), we have ¥}, = {az2}, W;; = (. By Theorem 2.9,

we have
T =m{— cot{a, Hyay — cot{aq + ag, H) (a1 + )
tan{ay, H)ay + tan{as, H)as + tan{ag + ag, H) (a1 + a2)}
=m{— cot{aq, H) + tan{ay, H)} (21 + a2).

Hence we have that 77 = 0 if and only if (o, H) = 7/4. By Theorem 4.6, the orbit
Ko (exp(H)) is biharmonic if and only if

0 =m{{rg, 1) (1 — (cot{ay, H))*)ay
T, o1 4 o) (1 — (cot(ag + ag, H))?)(aq + az)
i, on) (1 = (tan(an, H))?) oy
T, ) (1 — (tan(ag, H))?)ay
T, + o) (1 — (tan(ag + ag, H))?) (o + as)
=m(rs,a1){(1 = (cot(ar, H))?) + (1 — (tan(ay, H))
= —m(ry, a1)(cot{ay, H) — tan{ay, H))?* (201 + az)

+
+
+
+ }
)} (201 + as)

Hence, the orbit Komq(exp(H)) is biharmonic if and only if (o, H) = w/4. There-
fore, if the orbit Kom(exp(H)) is biharmonic, then that is harmonic.

(2) When H = tH,, (0 < t < 1), we have ¥}, = {a;}, W}, = 0. By the same
calculation as (1), we have that the orbit Kom(exp(H)) is biharmonic if and only
if {ag, H) = 7/4 and if the orbit is biharmonic, then that is harmonic.

(3) When H = tH,, + (1 —t)Hq, (0 <t < 1), we have ¥, = 0, W}, = {a1 + as}.
By the same calculation as (1), we have that the orbit Kom(exp(H)) is biharmonic
if and only if (a1, H) = /4 and if the orbit is biharmonic, then that is harmonic.

4.6.10. Type III-By and III-Cs. We set
E+ = {61 + €2, €1, 62}, VV+ = {61 + €2, €1, 62},

H:{alzel—eg,agzeg}, &:()41+2042:61+62

and

m1 =m(e1), ma =m(e; +ez),n1 =nler), no =nler + e2).
Since e € XNW, e; +e3 € W and (2(e1,e1 + e2))/({e1 + ea,e1 + e2)) = 1 is odd,
by definition of multiplicities, we have m; = m(e1) = n(e1) = ny.
(1) When H = tH,, (0 <t < 1), we have %}, = {az2}, W;; = 0. By Theorem 2.9,
we have

TH = — mg cot{ay, Hyay — my cot{ay + ag, H) (a1 + ag)
— mg cot{ay + 2ag9, H) (a1 + 2a2)

+ mo tan{ay, H)ay + ma tan{as, H)as

+ mq tan{ag + @, H) (a1 + @) + ma tan{ay + 2a9, H) (a1 + 2a)
— (2ma + my) cot{a, H) (a1 + a2)

+ (2ng + mq) tan{ay, H) (a1 + a2)
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Hence we have 7y = 0 if and only if
ng —+ mq

t(201, H))? = .
(cot(2av, H)) DT -

By Theorem 4.6, the orbit Kom;(exp(H)) is biharmonic if and only if

0 =ma (s, a1)(1 — (cot{ay, H))?)oy
4+ my (Ta, a1 + ) (1 — (cot{ag + ag, H))?) (o + o)
+ mo (T, a1 + 202) (1 — (cot{ay + 20, H))?) (o + 20a2)
+ mo (T, 1) (1 — (tan{ay, H))?)an
+ my (T, (1 + a2))(1 — (tan{oy + ag, H))?) (o + as)
+ mo (T, (o + 202)) (1 — (tan(a + 2a), H))?)(a + 2a0)

=(ra, a1){(2ma +m1)(1 — (cot{ar, H))?)

(2n9 +m1)(1 — (tan{ay, H))*)} g + 2as).

Therefore, Kom(exp(H)) is biharmonic if and only if 7;7 = 0 or
0 = (2ms + ma)(1 — (cotlan, H))*)(2ns + my)(1 — (tanfay, H))?)
holds. The equation is equivalent to
{(2mg + mq)(cot{ay, H))?* — (2ng +m1)}((cot{ay, H))* —1) =0
Therefore, when msy # ns the orbit Komy(exp(H)) is proper biharmonic if and only
if
(cot(2ar, H) =1 (ie.{an, H) = (x/4))

holds.

(2) When H = tH,, (0 <t < 1), we have ¥}, = {1}, Wi = 0. By Theorem
2.9, we have
TH = — my cot{ag, H)ag —my cot{ag + ag, H)(ay + as)

— mg cot{ay + 2, H) (a1 + 2a2)
+ my tan{asg, H)ag + my tan{ay + as, H) (a1 + ag)
+ ng tan{ay + 2ag, H) (a1 + 2as)

= — mq(cot{ae, H) — tan{ag, H))(a1 + 2a2)
— mg cot (22, H) (a1 + 2a2)
+ na tan(2a09, H) (a1 + 2a2)

={—(2m1 + ma) cot(2aq, H) + ns tan(2aq, H) } (a1 + 22).

Hence we have 7 = 0 if and only if
no

t(2a9, H))? = ———.
(cot (2010, H))? = 5L
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By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

0 =my(Ta, az)(1 — (cot{ao, H))?)ao

+my(Ta, a1 + az)(1 — (cot{ay + ag, H))?)(ay + az)
+ ma(Ta, a1 + 200) (1 — (cot{ay + 200, H))?) (a1 + 2a)
+my (i, az)(1 — (tan(ag, H))?)as
+my(Ta, a1 + az)(1 — (tan{ay + oo, H))?) (a1 + o)
+ no(TH, o 4 202) (1 — (tan(ay + 2ag, H))?)(aq + 2a2)

=mi (1, a2){(1 — (cot(az, H))?) + (1 — (tan(az, H))?)} a1 + 2a2)
+my(Ta, az)(1 — (cot(2ag, H))?) (o 4 20a3)
+ o (TH, a)(1 — (tan(2a, H))?) (a1 + 2a0)

=(rp, az){—4m1 (cot(2az, H))? + 2my(1 — (cot(2az, H))?)
+ 2n5(1 — (tan(2az, H))?*)} (a1 + 2az)

= (111, 200){(2my 4 m2) (1 — (cot (2, H))?)
+na(1 — (tan(2az, H))?) — 2my } o + 2az)

Therefore, Kom(exp(H)) is biharmonic if and only if 77 = 0 or
0 = (2my 4+ ma)(1 — (cot(2az, H))?) + na(1 — (tan(2aq, H))?) — 2my
holds. The equation is equivalent to
((2m1 +ma)(cot(2as, H))* — na) ((cot(2az, H))* — 1) = —2m (cot (202, H))?
Since 2my > 0, the solutions of the equation are not harmonic. When
(mg +n2)? — 4(2my + mo)ng > 0

the orbit Ko7y (exp(H)) is proper biharmonic if and only if

my + ng & \/(m2 + 712)2 — 4(2m1 + mg)ng
2(2m1 + mz)

(cot((20, H)))* =

holds.

(3) When H = tH,, + (1 —t)H,, (0 <t < 1), we have X}, = 0, W} = {a =
a1 + 202} We set ¥ = (o, H). Then (209, H) = (7/2) — 9. By Theorem 2.9, we
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have
TH = — mg cot{ay, HYay — my cot{ay, H)Yas — my cot{a + as, H) (a1 + ag)
+ ng tan({ay, HYay + my tan{as, H)as + my tan{ag + ag, H) (a1 + a2)
= — mg cot{ay, Hyay — mq(cot(as, H) — tan{as, H))as
—mq(cot{ay + ag, HY — tan{ay + oo, H)) (a1 + a2)
+ no tan{ay, H)ay
= — mg cot(¥)ay + ng tan(d)a; — 2mq cot((n/2) — F)as
—my cot((w/2) + ¥) (a1 + az)
= — mg cot(¥)ay + ng tan(P)ag — 2my tan(¥)as + my tan(¥) (a1 + az)
={—mg cot(9) + (na + 2my) tan(V) }a;.

Hence we have 7y = 0 if and only if

2
(cot9)? = "2 F M1

By Theorem 4.6, the orbit Kom; (exp(H)) is biharmonic if and only if
0 =ma(ta, a1)(1 — (cot{a, H))*)ay 4+ mq (Ta, ) (1 — (cot{ag, H)?*)a
+my (i, a1 + az)(1 — (cot{ay + oo, H))?) (a1 + az)
+no(ra, an) (1 — (tan(ay, H))*)aq + my(th, ) (1 — (tan{ag, H))?)as
+my(ra, (a1 + ao)(1 — (tan(ag + ag, H))?) (o + ao)
=(1a, a1){ma(1 — (cot(ar, H))?) + na(1 — (tan{ay, H))?)}ay
+my(ra, a2){(1 — (cot(ay, H)?) 4+ (1 — (tan{as, H)*) }ao
+my Ty, a1 + a2){(1 — (cot{ay + ag, H)?)
+ (1 — (tan{oy + oo, H)?)}ay + az)
=(1a, a1){ma(1 — (cot(ar, H))?) + na(1 — (tan{ay, H))?*)}ay
— my (T, o) (cot(ag, H) — tan{ag, H)) s
—my (T, 01 + az)(cot{ay + ag, H) — tan{ay + ag, H))*(aq + o)
=(111, a1){ma(1 — (cot(ay, H))?) + no(1 — (tan{ay, H))?)}ay
— 4dmy (T, az)(cot((m/2) — ) an
—dmy (T, a1 + ag)(cot((/2) + )% (a1 + az)
=(1#, a1){ma(1 — (cot{ar, H))?) + na(1 — (tan{ay, H))?) — 2m; (tan )}y
=(11, a1} {ma(1 — (cot(ay, H))?) + (ny + 2my)(1 — (tan{ay, H))?) — 2m1 }oy.
Therefore, Kom(exp(H)) is biharmonic if and only if 77 = 0 or
0 = ma(1 — (cot{ay, H))?) 4 (ng 4+ 2mq)(1 — (tan(ay, H))?) — 2m,
holds. The equation is equivalent to
{ma(cot¥)? — (na + 2m1)}((cot(1))? — 1) = —2m; (cot(¥9))?.
Since my > 0, the solutions of the equation are not harmonic. When

(m2 -+ TL2)2 — 4m2(n2 + le) > 0,
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the orbit Ko7y (exp(H)) is proper biharmonic if and only if

2 _ (mg + ’Ilg) + \/(mg -+ Tlg)Q — 4m2(n2 + 2m1)

(cot ) T

holds.

4.6.11. Type III-BC3. We set

EJr = W+ = {61 + 62,61,62,261,262},

II = {a1 — €1 —€2,02 = 62}, a= 2C¥1 +2OZ2 = 261,

my = m(er), ma =m(e; + e2), ms = (2e1),

n1 =n(e1), ne =n(er + ea), ng = (2e1).

Since ej,e1 +e3 € XNW, 2e; € W and (2{(e1,2e1))/({2e1,2e1)) = 1 and (2(e1 +
e2,2e1))/({2e1,2e1)) = 1 are odd, by definition of multiplicities, we have m; =
m(er) =n(er) = ni,me =m(er + e3) = ne; + e2) = no.

(1) When H = tH,, (0 <t < 1), we have ¥}, = {az,2as}, W,y = 0. By Theorem
2.9, we have

T = — mg cot{ay, Hyay —my cot{aq + ag, H) (a1 + )

— mg cot{ay + 2an, H) (g + 2a2) — mg cot(2a1 + 2ae, H) (201 + 2ax2)
+ ma tan{a, H)ag + mq tan{ag, H)as
+ my tan{ay + ag, H)(aq + as) + ma tan{ay + 2as, H) (o + 2as)
+ nsz tan(2aq + 2ae, H) (20 + 2a)

= — meo{cot{ay, H) — tan{ay, H) }ay
—my{cot{ay, H) — tan{a, H) }(a1 + ag)
— mgo{cot{ay, H) — tan{ay, H)} (a1 + 2a2)
— mg cot(2a1, H)(2a1 + 2a2) + ng tan(2aq, HY (201 + 2a2)

= — 4dmg cot(2aq, HY (a1 + as) — 2my cot(2aq, H) (a1 + a)
—2mgcot(2aq, H) (a1 + ag) + 2ng tan(2aq, H) (a1 + ag)

=2{—(2mqy + my + mg3) cot(2ay, H) + ng tan{2ay, H)} (a1 + ag).

Hence we have 7y = 0 if and only if

ns
t(2a;, H))? = ——————.
(cot(2en, H)) mq + 2mg + mg
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By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if

0 =mo (1, a1)(1 — (cot{ay, H))*)ay
+my(Ta, a1 + az)(1 — (cot{ay + oo, H))?) (a1 + az)
+ ma(T, a1 + 2a2) (1 — (cot{ay + 200, H))?) (a1 + 200)
+ma (T, 200 4 2a2) (1 — (cot(2aq + 200, H))?) (20 + 2a3)
+ mo (T, 1) (1 — (tan(ag, H))?)az
( tan{og + ag, H))?) (o + o)
tan(a + 2a2), H))?) (o 4 20a2)
+n3(TH, 201 + 200) (1 — (tan(20; + 2a, H))?) (201 + 2a)
=(r, o0 ){—2mg(cot{ay, H) — tan{ay, H))? — my(cot(ay, H) — tan{ay, H))?
+4ms(1 — (cot(2ay, H))?) + 4nz(1 — (tan(2a1, H))?) oy + o)
=(r, 0 ){(8mg + 4my + 4m3)(1 — (cot (20, H))?)
+4n3(1 — (tan(20, H))?) — (8mg 4 4m1) oy + o)
=4(t, 1) {(2ma 4+ my 4+ m3)(1 — (cot(2ay, H))?)
+n3(1 — (tan(2ay, H))?) — (2mg +m1)}(oq + ao).

+ my{tH, (a1 + a2))(1 —
+ mo(Th, (a0 + 2a2)) (1 —

—_—

~  —~

Therefore, Koy (exp(H)) is biharmonic if and only if 757 = 0 or

0 = (2mg 4+ m1 +m3)(1 — (cot(2ay, H))?) + n3(1 — (tan(2ay, H))?) — (2mg + mq)

holds. The equation is equivalent to

{(2mg + m1 4+ m3)(cot(2ay, H))2 — nsz}((cot(2ay, H))2 -1)
—(2mg + my)(cot (20, H))?.

Since (2ms 4+ my) > 0, the solutions of the equation are not harmonic. When
(m3+n3)%—4(2ma+m1+m3)ng > 0, the orbit Komy (exp(H)) is proper biharmonic
if and only if

ms3 + n3 & \/(mg, + 713)2 - 4(2m2 +mq + m3)n3

(cot((2a1, H)))? = 2(2mg + mq1 + m3)

holds.
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(2) When H = tH,, (0 <t < 1), we have ¥}, = {ay}, Wi = 0. By Theorem
2.9, we have
T = — my cot{as, HYas — my cot{a + as, H) (a1 + as)
— mg cot{ay + 2ag, H)(aq + 2a2)
— mg cot(2aq, H)(2a2) — mg cot(2a1 + 2a0, H) (201 + 2a2)
+ my tan{ag, H)as + mq tan{ay + as, H) (a1 + a2)
+ mo tan{ag + 2a, H) (a1 + 2a)
+ n3tan(2as, H)(2as) 4+ ng tan(2aq + 200, H) (201 + 2a2)
= — mq(cot{ae, HY — tan{aa, H))(aq + 2a2) — ma cot(2ag, H) (a1 + 2as)
+ mg tan(2ag, H)(ay + 2as) — 2mg cot(2ag, H) (as + 2as)
+ 2n3 tan(2ae, H) (a2 + 2a2)
={—(2m1 + mqo + 2mg3) cot(2c2, H) + (Mg + 2n2) tan(2an, H) Hoa + 2a2).

Hence we have 77 = 0 if and only if

2
(cot(2as, H))? = ma ¥ 2N

2mq + ma + 2msg
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =my(Ta, az)(1 — (cot{ao, H))?)ao

+my(Ta, a1 + az)(1 — (cot{ay + ag, H))?)(ay + az)
+ma(Ta, a1 + 200) (1 — (cot(ay + 200, H))?) (a1 + 2a3)
+m3(Ta, 20) (1 — (cot(2az, H))?)(20r2)
+ma (T, 200 4 2a2) (1 — (cot(2aq + 20, H))?) (201 + 20a2)
+my(Ta, az)(1 — (tan{ag, H))?*)as
+my(Ta, a1 + az)(1 — (tan{oy + oo, H))?) (a1 + o)
+ mo(Th, a1 + 2a) (1 — (tan{og + 20, H))?) (o + 20a2)
+ n3(TH, 2a2) (1 — (tan(2aq, H))?)(2az)
+n3(Ta, 201 + 202) (1 — (tan(2aq + 2az, H))?) (201 + 20)

=my (7, az){(1 — (cot({az, H))?) + (1 — (tanfaz, H))*)} (a1 + 2az)
+ 2ma (T, o) (1 — (cot (202, H))*) (a1 + 2ar)
+ 2mo (T, o) (1 — (tan(2as, H))?) (a1 + 2a0)
+ 4mz (T, o) (1 — (cot (202, H))*) (o + 20)
+4ng (i, az) (1 — (tan(2am, H))?) (o + 2az)

=2(7a, az){—2my (cot(2az, H))* + (ma + 2m3)(1 — (cot(202, H))?)
+ (g + 2n3)(1 — (tan(2az, H))?)} a1 + 2a3)

=(Ta, 202){(2m1 + mag + 2m3)(1 — (cot(2aa, H))?)
+ (2 + 2n3)(1 — (tan(2az, H))?) — 2m; }(og + 2as).
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Therefore, Kom(exp(H)) is biharmonic if and only if 757 = 0 or

0 =(2my + mg + 2m3)(1 — (cot(2az, H))?)
+ (g + 2n3) (1 — (tan(2az, H))?) — 2m,

holds. The equation is equivalent to

((2m1 gt 2m3)((}0t<2052, H>)2 _ (m2 + 2n3))(((}0t<20¢2, H>)2 _ 1)
= — 2my (cot(2az, H))?

Since 2my > 0, the solutions of the equation are not harmonic. When
(m2 +ms3 + n3)2 — (2m1 + mo + 2m3)(m2 + 2’/12) >0
the orbit Kom (exp(H)) is proper biharmonic if and only if

(cot((20z, H)))?

_m2 —+ ms -|—’Il3 :|: \/(’ITLQ —+ ms + TL3)2 — (2m1 —+ mao —+ 2m3)(m2 —+ 2712)
B 2mq + mo + 2ms

holds.

s

(3) When H = tH,, + (1 — t)H,, (0 <t < 1), we have X}, = 0,W;; = {a =
201 + 2ao = 2e1}. We set ¥ = (2a1, H). Then (2ay, H) = (7/2) — 9. By Theorem

2.9, we have

(a1, Hyay — my cot(ag, H)as —my cot{ag + ag, H) (a1 + as)
(o1 + 2a0, H) (1 4 2a2) — mi3 cot (20, H) (2a2)
+ ma tan{aq, H)ay + mq tan{asg, H)ag + my tan{a; + as, H) (1 + ag)
+ ma tan{ag + 29, H) (a1 + 2an) + ng tan(2as, H)(2a)
= — mg(cot{ay, H) — tan{ay, H))ay — my(cot{as, H) — tan{ag, H))ay
— ma(cot{ay + 2as, H) — tan(ay + 22, H)) (a1 + 2a2)
— mg cot(2aa, H)(2a2) + ng tan(2aq, H) (2as)
= — 2mg cot(¥)ay — 2my cot((m/2) — ¥)ag — 2mg cot(m — 9) (a1 + 2a2)
—mg cot((m/2) — F)2as 4+ ng tan((7/2) — ¥)2as
={(4ma + 2n3) cot(¥) — (2my + 2m3) tan((7/2) — ¥) }as.

TH = — My cot

— Mo cot

Hence we have 77 = 0 if and only if

mi +ms
t _—
(co ) 2ma +n3
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By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =mo(Tr, 1) (1 — (cot(ar, H))*)aq + my (e, as)(1 — (cot{ag, H)?)ay
+my (o, a1 + az) (1 — (cot{ay + ao, H))?) (a1 + )
+ mo (T, a1 + 200) (1 — (cot{ay + 200, H))?) (a1 + 2a3)
+ma(Ta, 200) (1 — (cot (200, H))?)(200)
+ mo (1, 1) (1 — (tan{ay, H))?)oq + my (1, o) (1 — (tan(ag, H))?)ay
+ma(ta, (a1 + a2))(1 — (tan{ay + ao, H))?) (e + )
+ mo (1, (1 4 2a2)) (1 — (tan(aq + 200, H))?) (a1 + 2a0)
+n3(TH, 202) (1 — (tan(2aq, H))?)(2az)
=may(ra, a1){(1 — (cot(ay, H))?) + (1 — (tan(ay, H))*)}u
+ma (1o, a2){(1 — (cot{ag, H))?) + (1 — (tan(ag, H))?)}ay
+ mo (1, a1 + 20){(1 — (cot{a; + 2a, H))?)
+ (1 — (tan{ay + 2a, H))*)}aq + 20)
+ ma (T, 200) (1 — (cot((m/2) — 9))?)(2a2)
+n3(TH, 2a2) (1 — (tan((7/2) — 9))?)(2az)
= — dmo (T, ay)(cot(9)) 2oy — 4my (T, ag)(cot((m/2) — 9)) 2z
— dmy (T, a1 + 20) (cot(m — 9))? (o 4 20a2)
+ ma (T, 200) (1 — (tan(19))?)(2a2) + n3 (T, 2a2) (1 — (cot(19))?)(2a2)
=47, o) {—2ma(cot(9))? — my (tan(9))? 4+ m3)(1 — (tan(d))?)
+n3(1 — (cot(0))?)
=4, o) {(2ma 4+ n3)(1 — (cot(¥9))?)
+ (mq +m3)(1 — (tan(9))?) — (2ma + m1)Yas.

Therefore, Kom (exp(H)) is biharmonic if and only if 74 = 0 or
0= (2m2 +n3)(1 — (cot(9))?) + (m1 +m3)(1 — (tan(9))?) — (2ma + m1)
holds. The equation is equivalent to
{(2ma + ng)(cot )2 — (my + ma)}((cot(9))2 — 1) = — (1 + 2m) (cot(9))2.
Since my + 2mo > 0, the solutions of the equation are not harmonic. When
(ms + n3)* — 4(2ma + n3)(m1 +m3) > 0,

the orbit Ky (exp(H)) is proper biharmonic if and only if

(m3 + n3) £1/(ms3 + n3)2 — 4(2ma + n3)(my +ms)
2(2’”7,2 + ng)

(cot¥)? =

holds.
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4.6.12. Type ITI-G5. We set
EJr = VVJr = {Oél,Oég, a1 + a9, 20&1 + a9, 30[1 + a9, 30[1 + 20[2},

3
(a1, 1) =1, (o, a0) = 5 (ag,ag) =3,
a = 3a; + 2as,

and

my = m(ay), me = m(az).
(1) When H = tH,, (0 <t < 1), we have X}, = {a2}, W;; = 0. By Theorem 2.9,
we have

T = —my cot{aq, Hyay — mq cot{aq + as, H) (a1 + a2)
—my cot(2a1 + o, H)(2a1 + ag) — ma cot(3ay + o, H)(3a1 + a2)
— ma cot(3aq + 2ae, H)(3a1 + 2a2)
—my tan{aq, Hyay — my tan{ay + ag, H) (a1 + a2)
—my tan(2aq + a9, HY(201 + ag) — mo tan{3aq + ago, H)(3a1 + as)
— ma tan(3ay + 29, H) (31 + 2a)
= [ — mi{(cot{as, H) — tan{ay, H)) + (cot(204, H) — tan(20, H))}
— 3ma(cot(3ay, H) — tan(3ay, H))| (20 + a2)
=2[ — my{cot(2ay, H) + cot(4ay, H)} — 3ma cot (6o, H)| (201 + a2)

Hence we have 7 = 0 if and only if
—ma{cot(2ay, H) + cot(4ay, H)} — 3mg cot(bay, H) = 0.
By Theorem 4.6, the orbit Kom;(exp(H)) is biharmonic if and only if
0 =my(ta, a1)(1 — (cot{ay, H))*)ay
(a1 + a2))(1 = (cot((a1 + az), H))?)(a1 + az)
(Tr, (200 4+ a2)) (1 — (cot{(20 + ), H))?) (a1 + a)
+ mo (T, (3a1 + az)) (1 — (cot((3a1 + az), H))?)(3a1 + az)
+ma(TH, (3a1 + 209)) (1 — (cot{(3as + 2az), H))?) (3 + 2az)
4+ my (T, 1) (1 — (tan{ay, H))?)ay
(
(
(
(

+ ma <TH7

+my TH,

+my{ry, (01 + a2))(1 — (tan{(ay + az), H))?) (o1 + az)

4+ ma (T, (201 + a2)) (1 — (tan((2a1 + az), H))?) (201 + as)

+ ma(Ty, (3a1 + a2))(1 — (tan{(3ay + az), H))?)(3a1 + o)

+ mo (T, (3a1 + 200)) (1 — (tan{(3ay + 2a2), H))?) (3 + 2az)

=(r, ) {—m1(cot{ay, H) — tan{ay, H))* — 2my(cot(2a1, H) — tan(2aq, H))?
— 9my(cot(3ay, H) — tan(3ay, H))?} (204 + ay)

= — 41y, o) {my(cot(2ay, H))* + 2my (cot(4ay, H))?
+ 9ma(cot(6ary, H))*} (201 + o).
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Therefore, Kom (exp(H)) is biharmonic if and only if 7 = 0 or

0 = my (cot(2ay, H))? + 2my (cot(4ay, H))? + 9ma(cot(6ay, H))?
holds. Clearly,

my(cot(20, H))? + 2my (cot{4ay, H))? + 9ma(cot(6ay, H))? > 0

for 0 < t < 1. Therefore, if the orbit Kom(exp(H)) is biharmonic, then it is
harmonic.

(2) When H = tH,, (0 < t < 1), we have ¥}, = {ay}, W;; = 0. By Theorem
2.9, we have

T = — Mg cot{aa, Hyas — my cot{as + ag, H) (a1 + ao)
—my cot(2a1 + ag, HY(201 + az) — mag cot(3ay + ag, H)(3a1 + az)
— mg cot(3ay + 2a, H)(3a1 + 2a3)
(ag, Hyas — my tan(ay + ag, H) (a1 + az)
—my tan(2aq + a9, HY(2a1 + a) — mo tan{3aq + ag, H)(3a1 + as)
— mgtan(3ay + 2a, HY(3aq + 2a)
= [ — ma{(cot{az, H) — tan{az, H)) + (cot(2az, H) — tan(2az, H))}
— my(cot{az, H) — tan{ag, H))] (3oq + 2a2)
= — 2[(mq + ma) cot(2a1, H) + mg cot{dan, H)| (31 + 2a2)

— mo tan

Hence we have 7y = 0 if and only if
(my 4+ ma) cot(2a1, H) + mg cot(day, H) = 0.
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =ma(Ta, az)(1 — (cot{az, H))?)ao

+ma (T, (a1 + az))(1 = (cot((ar + az), H))?)(a1 + az)
+ma(Ta, (201 + az))(1 — (cot((2a1 + az), H))?) (a1 + as)

+ mo(Ta, (3a1 + az))(1 — (cot((3a1 + az), H))?)(3aq + ay)

+ mo(Ta, (3a + 20)) (1 — (cot{(3ay + 2az), H))?) (30 + 2az)

(
(
(
+ mo (T, a2) (1 — (tan{as, H))?)as
+my{TE, (a1 + a2))(1 — (tan{(a; + az), H))?)(aq + az)
+my{TE, (201 + @)Y (1 — (tan{(20 + az), H))?)(2a1 + )

< (1= (tan{(3a1 + az), H))*) (301 + a2)

( V(1 — (tan((3a; + 2a2), H))?)(3a1 + 2a2)
(

— (T, @) [(mq + ma)(cot{az, H) — tan(ay, H))?

)
+ mo(TH, (3041 + a2)>
-+ Mo TH, (30[1 =+ 20[2)

)
+ 2ma(cot(2a1, H) — tan(20, H))?] (201 + o).

Therefore, Koy (exp(H)) is biharmonic if and only if 77 = 0 or
0 = (my + mg)(cot(20a, H))? + 2ma(cot(day, H))?
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holds. Clearly,
(m1 4+ ma)(cot(2aa, H))? + 2ma(cot(day, H))? > 0

for 0 < t < 1. Therefore, if the orbit Kom(exp(H)) is biharmonic, then it is
harmonic.

(3) When H = tH,, + (1 — t)H,, (0 < t < 1), we have X}, = 0,W;; =
{3a1 +2as}. We set ¥ = (aq, H). Then (2ap, H) = (7/2) — 3¢ and 0, < ¥ < (7/6).
By Theorem 2.9, we have

T = — my cot{ay, HYay — ma cot{ag, H)as — my cot{ay + ag, H) (a1 + a2)
— mq cot(2a1 + ag, H)(2a1 + aa) — mg cot(3aq + ag, H)(3a1 + az)
— mq tan{ay, H)ay — mo tan{ag, H)as — mq tan{ay + ag, H) (a1 + a2)
— ma tan(Qal + a9, H> (20&1 + Otg) — ma tan<3a1 + a9, H>(30él + 042)
=2[—m; cot{2ay, H)ay — ma cot(2a, H)ag — my cot(2(ag + as), H) (a1 + a2)
—my cot(2(2a1 + az), H) (201 + a2) — mia cot(2(3ay + ), H) (31 + an)]
= — 2[my cot(29)ay + ma cot((m/2) — 39)ag + my cot((7/2) — V) (a1 + a2)
+mycot((m/2 + ) (201 + a2) — ma cot((7/2) + 39) (31 + a2)]
= — 2[my cot(29)a; — my tan(39)(3a1) — my tan(d)a].
Hence we have 7 = 0 if and only if
my cot(29) — 3ma tan(39) — my tan(¥) = 0.
By Theorem 4.6, the orbit Ko (exp(H)) is biharmonic if and only if
0 =my (T, 1) (1 — (cot(ay, H))?)as + ma(Ta, az)(1 — (cot{as, H))?*)as
+ma(ra, (a1 + az))(1 = (cot((a1 + az), H))?) (a1 + az)
+ mi (th, (200 + @2))(1 — (cot{(2a1 + @), H))?) (a1 + )
+ Mo \TH, (30&1 + a2)>

/\/\

( ), H))*
( — (cot{(3ay + o), H))?)(3ay + o)
+my{ty, a)(1 — (tan{oy, H))?)ay + mao(Tw, az)(1 — (tan{az, H))?)as
+m(, (a1 + a2)) (1 — (tan((a1 + az), H))?) (a1 + az)
+mi{ty, (201 + a2))(1 — (tan{(2ay + az), H))*) (201 + o)
+ma(Ta, (3a1 + a2))(1 — (tan((3aq + az), H))?)(3aq + as)
= — my(Th, a1)(cot(29)) %y — ma(TH, ) (cot((m/2) — 319))% s
(i1, (1 + az))(cot((m/2) — 9))* (a1 + az)
(tr, (201 4+ @2)
( )

2aq + (3/2)ma(tan(39))2(3a1) + (1/2)m4 (tan(¥9))?a;]
)2+ (9/2)ma(tan(39))? + (1/2)m (tan(d9))?]e.
Therefore, Kom(exp(H)) is biharmonic if and only if 77 = 0 or

0 = my(cot(29))? + (9/2)ma(tan(39))? + (1/2)m (tan(19))?
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holds. Clearly,
mi(cot(29))? + (9/2)ma(tan(39))? + (1/2)m; (tan(d9))? > 0

for 0 < t < 1. Therefore, if the orbit Kom (exp(H)) is biharmonic, then it is
harmonic.

4.6.13. Tables of proper biharmonic orbits. By the above arguments, we obtain
many examples of proper biharmonic submanifolds in compact symmetric spaces
as orbits of Hermann actions. The co-dimension of these submanifolds are greater
than two, since we consider singular orbits of cohomogeneity two action.

Theorem 4.11. Let (G, K1, K3) be a compact symmetric triad which satisfies the
one of the following conditions (A), (B) or (C) in Theorem 3.14. Assume that the
Ky-action on My = G/Kis cohomogeneity two. Then, for each orbit type which is
an one parameter family in the orbit space, we can divide into the following three
cases:

(1) There exists a unique proper biharmonic orbit.

(2) There exist exactly two distinct proper biharmonic orbit.

(3) Any biharmonic orbit is harmonic.

We list results of the above computations below.
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