文一 -論

7

高効率手法を適用した静粛超音速航空機の多分野融合最適設計*1 Multidisciplinary Design Optimization of Silent Supersonic Transport with Efficient Optimization Techniques

瀬 戸 直 Λ^{*2} ·牧 野 好 Π^{*3} ·高 戸 谷 健 *3 ·金 崎 雅 博 *2 Naoto SETO, Yoshikazu MAKINO, Takeshi TAKATOYA and Masahiro KANAZAKI

Key Words: Multidisciplinary Design, Supersonic Wing, Global Optimization, Design Knowledge

Abstract : In this study, high efficient design tool is developed with several informatics approaches for Multidisciplinary Design Optimization (MDO) and knowledge discovery of supersonic wing design. In this design, Multi-Objective Genetic Algorithm (MOGA) is applied as an optimizer, while Kriging model is also used to reduce computational cost. To obtain the information of the design space, functional ANalysis Of VAriance (ANOVA) and Parallel Coordinate Plot (PCP) is applied. For Kriging model construction, 107 sample points are evaluated. This tool is applied to the multidisciplinary design problem of supersonic wing. The objective functions are to maximize lift to drag ratio and to minimize sonic boom intensity at supersonic cruise, and to minimize wing weight. According to the results, there are trade-off relationships among three objective functions. The ANOVA results indicate that the cambers of the wing section at the root and the kink have an influence on the lift to drag ratio, the inner wing sweep back angle affects the sonic boom intensity, and the camber of wing section at the kink and aspect ratio affect the wing weight. The design space information could be visualized quantitatively from the sampling results with PCP technique. Since the design space exploration using MOGA is carried out based on Kriging surrogate models, the proposed MDO process is effective in terms of computational cost.

1. はじめに

近年の航空機開発においては、環境適合性を含めた多様 な性能要求を満たす航空機の開発が求められており, 計算機 支援による高度な設計手法が効率面で期待されている.特 に,超音速航空機(SuperSonic Transport: SST) 開発で は,空力性能向上以外にソニックブームの問題を解決する必 要があり、設計目的は多目的となる. このように解決が難し い事柄を多数含む機体の最適設計問題には遺伝的アルゴリ ズム(Genetic Algorithm: GA)と応答曲面法を用いた最 適化技術の適用が効果的であり、世界的にも応用研究が盛ん である. 文献 1) では, 超音速ビジネスジェットを対象に低 フィデリティ計算結果から検討を始め応答曲面法を用いて, 逐次的に評価のフィデリティを上げていく最適化手法が提 案されている.我が国の超音速航空機関連研究においても 宇宙航空研究開発機構(JAXA)で計算機支援による手法 が検討され,1990年代から無推力実験機 NEXST-1 開発等 に最適化法が適用された2). 2005年からは、ソニックブー ムの低減を実証するための静粛超音速研究機 (Silent SuperSonic Technology Demonstrator: S³TD)の開発(第

1 図) が行われており、その一貫として超音速概念設計ツー ルの開発³⁾ や GA に基づく MDO⁴⁾ も行われている.

文献 4) では非構造格子オイラー解析に基づく高度な空力 計算を MDO に適用している.こうした高度な空力計算に 基づく設計は実設計に有用な設計データを取得することが でき,詳細設計に適している.一方で,S³TD の技術の継 承が期待される次世代 SST の概念設計を短期間で行うには 計算コストが問題となるため,高度な空力解析に基づく設 計手法の適用は困難となる.

そこで本研究では次世代 SST の概念検討を効率的に行 うため、多目的遺伝的アルゴリズム (Multi-Objective Genetic Algorithm: MOGA) と Kriging モデル、データマ イニング法などを主体とした多目的設計探査^{4~6)}の着想を 取り入れ、効率的に MDO を行うことができるツールの構 築及び、汎用化を試みた結果を報告する. ツールの構築で は Kriging モデルの適用に必要なサンプリングの効率を高 めるため、線形パネル法解析により短時間で空力評価を行 うこととした. さらに、本ツールを S³TD の主翼の多分野 融合設計に適用し、有効性を確認した. この最適設計では SST で重要な要素である空力・ソニックブーム・翼重量の低 減を目的関数とした. また、設計効率の高さを生かし、制 約条件として水平尾翼の舵角によるトリム安定を考慮する など、現実の問題に即したものにできるようにした.

^{*1 © 2011} 日本航空宇宙学会

平成 22 年 6 月 28 日原稿受付

^{*2} 首都大学東京大学院システムデザイン研究科

^{*3} 宇宙航空研究開発機構航空プログラムグループ

第1図 JAXA 静粛超音速研究機 S³TD 2.5 次形状

2. 適用する設計手法

2.1 多目的設計の効率化 最適化問題の解法には様々な 手法が提案されているが、本研究では以下に示す MOGA と Kriging モデルを組み合わせることにより、計算コスト の低い効率的な MDO ツール構築を行った.

2.1.1 Kriging モデル 高効率な MDO ツールの構築 を目指し,計算コスト削減のために近似手法を用いる.複数 の目的関数を同時に評価する本研究においては大域的な解 情報を得るために MOGA を適用するが,MOGA は多点同 時探索を行うため解が収束するまでの計算回数が多く,解 空間の傾向をつかむまでに時間がかかる.そこで,計算コス ト低減のために解空間を近似する手法の1つである Kriging モデル⁵⁾を取り入れる.Kriging モデルはサンプル点群の 相関を考慮した近似手法であり多峰性が予想される問題に おいても高い精度で近似解を得られることが知られている. Kriging モデルによる任意の設計点 x_i での近似解 $y(x_i)$ は (1)式で与えられる.

$$y(x_i) = \mu + \varepsilon(x_i) \quad (i = 1, 2, \dots, N) \tag{1}$$

ここで, µはサンプル点群の目的関数評価値の平均値, εは µからの偏差, N は設計変数の数である.本研究における 初期のサンプル点は実験計画法の一種であるラテン超方格 法⁵⁾により取得した.

2.1.2 多目的遺伝的アルゴリズム Kriging モデルに よる近似解上での非劣解探索には、大域性に優れた領域 分散遺伝的アルゴリズム (Divided Range MOGA: DR-MOGA)^{6,7)}を適用した.GAは生物界における進化過程 を模した計算アルゴリズム(第2図)で、多点同時探索によ り大域的な解を得られることが知られている.優れた個体 を選択して、交叉や突然変異といった遺伝的操作を行うこ とにより、次の世代を形成し最適解を探索するというのが 基本的概念である。DRMOGA は得られている解を、定め られた世代ごとに指定する目的関数値でソートを行い、サ ブ母集団を形成したうえで、そのサブ母集団内で MOGA を行う手法である. サブ母集団内で独立して遺伝的操作を 行い、定めた世代ごとにサブ母集団間で個体の移住操作を 行う. DRMOGA の特徴として、サブ母集団ごとに進化を 進めることにより、母集団での解の多様性が高められるこ とが挙げられる.

MOGA で非劣解探査を行う場合,計算量が多くなってし

第2図 遺伝的アルゴリズムの計算フローチャート

まう. そこで, 評価値を近似モデルで代用する方法が考えら れる. しかしながら, この方法ではサンプル点間で予測誤差 がある部分で必ずしも実際の最適な解とならないことがあ る. そこで, 本研究では Kriging 予測値の最適性と予測誤 差の影響を同時に評価する *EI* (Expected Improvement) 値⁵⁾ を用いる. *EI* 値は次の (2), (3) 式で表され, 両式と も最大化を行うことで目的関数の最適値近傍で誤差が残る ところを中心に探索することができる^{5,6)}.

目的関数の最大化を図りたい場合, EI 値は変数 x の近 似関数 \hat{y} に対して (2) 式に示すように表現される.

$$E[I(x)] = (\hat{y} - f_{\max}) \Phi\left[\frac{\hat{y} - f_{\max}}{s^2}\right] + s\phi\left[\frac{\hat{y} - f_{\max}}{s^2}\right]$$
(2)

ここで、 s^2 は最小2 乗誤差、 Φ は標準正規分布関数、 ϕ は 確率密度関数である。また、 f_{max} は Kriging モデルを作成 する際に取得したサンプル点群の最大評価値である。同様 に、目的関数の最小化を図りたい場合、*EI* 値は (3) 式に示 すように表現される。

$$E[I(x)] = (f_{\min} - \hat{y}) \Phi\left[\frac{f_{\min} - \hat{y}}{s^2}\right] + s\phi\left[\frac{f_{\min} - \hat{y}}{s^2}\right]$$
(3)

fmin は Kriging モデルを作成する際に取得したサンプル 点群の最小評価値である. MOGA を用いて (2), (3) 式の x に対する同時最大化問題を解くことにより,大域的探索 の結果として EI 値に関する非劣解集合を得る. これらの 集合からいくつかの解を取り出し,改めて実際の評価値を 求めた後に追加サンプル点とすることで,近似解の最適解 近傍における精度向上と最適解の探索を図ることができる. 本研究では EI 値に関する非劣解集合を第3図に示すよう に N 個のクラスタに分け,そのクラスタ内において平均 を示す設計変数を追加サンプル点とした. クラスタリング には k 近傍法⁸⁾ を用いた.

2.1.3 寄与度解析 各目的関数への設計変数の寄与度を 定量的に調べるため,多変量解析手法の1つである分散

第3図 EI 値に基づく追加サンプルの決定

解析 (ANalysis Of Variance: ANOVA)^{5,6)} を適用した. ANOVA では構築した近似モデルにおける各設計変数によ る分散を解析し,設計変数の主効果や相互作用分を推算す る.寄与度の大きさは上記の分散量に基づき,分散量が大 きいほど寄与度の割合も大きい.目的関数に対する設計変 数の寄与度を定量的に見ることは設計問題全体の把握や設 計変数の絞込みに有効である.

2.1.4 平行座標表示 本研究では多数の設計変数を設定 しているが、それらの範囲は様々である.これら多変量デー タを可視化するのに有効な統計グラフによるデータマイニン グ法として平行座標表示 (Parallel Coordinate Plot: PCP) を利用する. PCP では各設計変数や目的関数等の変量をそ の変動幅で規格化し、すべての変量の軸を平行にならべ直 線でつなぐ、本研究では、個体が持つ有次元の変量 a_i の 規格化量を p_i とし、(4)式により規格化する.

$$p_i = \frac{a_i - a\min_i}{a\max_i - a\min_i} \tag{4}$$

ここで、 $a \min_i$ は変量 iの下限値、 $a \max_i$ は上限値である. この a_i が $a \min_i$ なら $p_i = 0$, $a \max_i$ なら $p_i = 1$ となる.

2.2 目的関数の評価手法

2.2.1 空力・ブーム評価 空力評価には JAXA 開発によ る CAD-based Automatic Panel Analysis System (CA-PAS)³⁾を用いた. CAPAS では線形化された圧縮性ポテン シャル方程式.

$$(M_{\infty}^2 - 1)\varphi_{xx} - \varphi_{yy} - \varphi_{zz} = 0 \tag{5}$$

を解く.ここに、 φ は速度ポテンシャル、 M_{∞} は主流マッ ハ数である.(5)式を線形パネル法で解き数値解を求める. 第4図に表面圧力分布の解析結果例を示す.この圧力分布 より、全機周りの揚力係数 C_L ,抗力係数 C_D ,揚抗比L/Dなどが求められる.

線形パネル法では得られたポテンシャル分布から機体周 囲の任意の場所における近傍場圧力波形が推算されるが, 線形解析では衝撃波本来の非線形的な空間伝播が考慮され

第4図 CAPAS による表面圧力分布計算結果例 (M = 1.6, C_L = 0.105 における S³TD 2.5 次形状解析結果)

ない. そこで、衝撃波の伝搬を考慮するために Whitham の理論に基づいた非線形修正を施す⁹⁾. この修正では機体 表面の圧力分布より (6) 式で Whitham の F 関数を求め、(7) 式で推算される波形の歪み Δx を推算し、近傍場圧力 波形を修正する. 擾乱の伝搬速度の違いから結果として 2 値以上の値を有してしまった波形を等面積則¹⁰⁾ に従って補 正を施し衝撃波による不連続圧力上昇を模擬している.

$$F(x) = \sqrt{\frac{\beta\gamma}{2}}C_P \tag{6}$$

$$\Delta x = -\frac{(\gamma+1)}{\sqrt{2\beta^3}}\sqrt{r}F(x) \tag{7}$$

ここで, r は衝撃波の伝播距離 (m), γ は比熱比, $\beta = \sqrt{M^2 - 1}$, M はマッハ数である. (6), (7) 式で修正した 圧力波形に基づき, Thomas の波形パラメータ法¹¹⁾ により 大気の影響を含めた地上におけるソニックブーム圧力波形 を推算する.

2.2.2 主翼重量推算 構造解析には,汎用の有限要素解 析コードである MSC/NASTRAN 2005R3 を用いた.本 研究では主翼にかかる静荷重のみを考慮し,主翼にかかる 想定荷重を(8)式で定義した.

主翼重量は、(8)式の静荷重要求を満たす構造部材の重 量の積算値として NASTRAN により出力される値を用い た.構造部材は後述する構造モデルにより板厚,桁厚,複 合材積層数,複合材配向角,アルミ材・複合材の接合位置 を手動で調整した.

構造解析では、主翼 FEM 要素をコード方向に 50 分割、 スパン方向に 20 分割した. NASTRAN 入力用空力荷重 データは、節点と要素に対し CAPAS で得られた圧力分布 データを補問して作成した. なお、無人機を想定した S³TD 主翼設計では、荷重倍数は 6 G、安全率は 1.25 と設定した.

3. 問題設定

3.1 設計対象 設計対象はS³TD 2.5 次設計の主翼形状 であり、想定される機体は胴体長 13.8 m、全幅 7.2 m、総 重量 4000 kg である. 主翼は内翼を NACA64 シリーズ、

(63)

	Design variable	Lower bound	Upper bound
dv1	Sweepback angle at inboard section	57 (°)	$69(^{\circ})$
dv2	Sweepback angle at outboard section	40 (°)	50 (°)
dv3	Twist angle at wing root	0 (°)	2 (°)
dv4	Twist angle at wing kink	$-1(^{\circ})$	0 (°)
dv5	Twist angle at wing tip	$-2(^{\circ})$	$-1(^{\circ})$
dv6	Maximum thickness at wing root	3%c	5%c
dv7	Maximum thickness at wing kink	3%c	5%c
dv8	Maximum thickness at wing tip	3%c	5%c
dv9	Aspect ratio	2	3
dv10	Wing root camber at $25\% c$	-1% c	2%c
dv11	Wing root camber at $75\% c$	-2% c	1%c
dv12	Wing kink camber at $25\% c$	-1% c	2%c
dv13	Wing kink camber at $75\% c$	-2% c	1%c
dv14	Wing tip camber at $25\% c$	-2% c	2%c

第5図 S³TD 2.5 次形状の主翼平面形

第6図 主翼構造解析モデル12)

外翼をレンズ翼とし定義する.設計の飛行条件はマッハ数 *M* = 1.6, 巡航高度は 14.0 km とした.

第5図に示す主翼を設計対象とし,内翼・外翼それぞれ の後退角と翼根・キンク・翼端3断面での断面形状を定義 することによって設計空間を定義する.設計変数とその変 数範囲を第1表にまとめる.内翼は亜音速前縁,外翼は超 音速前縁となるようにし,胴体はS³TD 2.5 次形状に固定 とした.

3.2 主翼構造モデル 主翼構造¹²⁾ は内翼をアルミ材,外 翼を複合材とする. 第6 図は構造モデルの平面形と構造様 式の模式図である.

内翼は外板と桁骨を有する板骨構造とし,翼厚が十分に あるとする。外板と桁骨の接合は剛結合とし,後方の主要 な荷重を受け持つ桁は JAXA の超音速実験機 NEXST-1²⁾ の構造に準じて,5本桁とした。内翼の強度要求は全要素 で Von-Mises 応力が 200 MPa 未満とした。

第7図 ハニカム・サンドイッチ構造12)

外翼は翼厚が薄いとして複合材によるフルデプス・ハニ カム・サンドイッチ構造を想定し、板厚方向に分割しない シェル要素とした. 第7図にハニカム・サンドイッチ構造 の模式図を示す.各節点での翼厚から上面と下面のスキン 材の板厚を差し引いた厚みをコア材としてある.前縁・後 縁と翼端では翼厚が薄いためコア材の厚みをゼロとしたが、 スキン材厚は減ずることなく厚みを保持するものと仮定し た.外翼複合材の破壊判定は複合材では広く用いられてい る Tsai-Wu クライテリアの初期破損を採用した¹²).

S³TD は翼内に燃料を積載せず,装備品もほとんど搭載し ないことから,FEM 解析においては,集中荷重等は考慮し なかった.また,内翼と外翼の接合は十分な剛性を持つビー ム要素で結合されている.内・外翼のスキン材はQUAD4 のシェル要素でモデル化し桁もシェル要素である.内・外 翼の結合部はCBAR でモデル化した.なお,翼根部の桁位 置と翼根前縁においては,6自由度完全拘束条件を課した.

内翼の強度要求を満たすようにスキン材の板厚とフレー ム材の桁厚を設定し、また外翼では複合材の繊維方向と積 層数を設定した.各サンプルに対して、上記の条件を満足 できる最大の外翼領域(複合材領域)を設定した上で、外 板と桁の厚みを手動で調整して静荷重条件を満たす最小の 厚みを求めた.よって、構造部材を決定する変数は全部で 5つになり、個体により外翼領域は異なる.

3.3 目的関数 本研究における設計目的は空力性能向 上・ソニックブーム低減・主翼重量の低減であり,多分野融合 問題となる.多目的設計問題における目的関数は, *M* = 1.6

第8図 ΔP の定義と衝撃波の伝播

での超音速巡航時(設計揚力係数: $C_L = 0.105$)における L/Dの最大化とソニックブームをもたらす地上での圧力変 化 ΔP (第8図)の最小化,及び主翼重量 W_{wing} の最小 化であり,(9)式で示される.

Maximize	L/D $(M = 1.6)$	
Minimize	ΔP	(0)
Minimize	$W_{ m wing}$	(9)
subject to	$Design C_L = 0.105$	

なお,ソニックブーム評価においてはロバスト性を確保す るため機体直下のみではなく,横方向のブーム強度分布も 考慮してブームカーペット内の最大値を評価した.

(9) 式をそれぞれ Kriging モデルで近似したうえで,(2),
(3) 式で示された *EI* 値による表現を行うと,実際には(10)
式に示す 3 つの関数の同時最大化を考えることになる.

Maximize

$$EI_{L/D} = (\hat{y} - L/D_{\max}) \Phi\left(\frac{\hat{y} - L/D_{\max}}{s^2}\right) + s\phi\left(\frac{\hat{y} - L/D_{\max}}{s^2}\right)$$

Maximize

$$EI_{\Delta P} = (\Delta P_{\min} - \hat{y}) \, \Phi\left(\frac{\Delta P_{\min} - \hat{y}}{s^2}\right)$$

$$+ s\phi\left(\frac{\Delta P_{\min} - \hat{y}}{s^2}\right)$$
(10)

Maximize

$$EI_{W_{\text{wing}}} = (W_{\text{wing,min}} - \hat{y}) \Phi\left(\frac{W_{\text{wing,min}} - \hat{y}}{s^2}\right) + s\phi\left(\frac{W_{\text{wing,min}} - \hat{y}}{s^2}\right)$$

3.4 制約条件 空力評価においては3迎角の計算から 2次関数補間により揚力-抗力曲線を求め,所定の*C_L*に対応する*C_D*を求める.さらに,機体のトリム安定を取るために,重心と風圧中心が同じ点に来るよう舵角を設定する. トリム安定を取る舵角決定のために,2舵角条件での空力 性能評価を CAPAS で行って風圧中心位置を求め,得られ た風圧中心位置から補間して重心と一致する舵角条件の空 力性能を再度評価する.

また,モーメント基準点を固定するため,平均空力翼弦 のコード方向の25%位置を固定し従属的に翼胴の接合位置 を変化させた.これらを制約条件として与えることで,実 機を意識した現実的な解が期待できる.

4. 結 果

4.1 目的関数空間 3.3 節で定義した設計問題を2章で 概説した手法により多目的解を得る.本研究では、まず、75 点のサンプル点から初期の近似解を構築した後、(10)式を MOGA で解くことにより追加サンプルを求めた.追加サ ンプリングは3回行い、初期サンプル点のほかに32の追 加サンプル点の再評価を行った.(なお、k近傍法による1 回あたりの追加サンプルは20 個としたが、構造の制約を 満たすことができないサンプルは除外している.)第9 図に 初期サンプルと追加サンプルの評価値のプロットを3つの 目的関数の組み合わせについてそれぞれ示す.初期サンプ ルはひし形、追加サンプルは正方形、S³TD 2.5 次形状を正 三角形で示す.これらの図から、追加サンプルのほとんど が非劣解集合を形成していることが分かる.これは EI 値 最大化に基づく追加サンプリングが目的関数間のトレード オフ把握に有効であることを示している.

第9図 (a) に L/D と ΔP についてのプロットを示す. これらの目的関数空間にはトレードオフが見られる. S³TD の機体規模,飛行条件であれば ΔP は 1.0 psf (1.00 psf = 47.88 N/m²) 以下程度の低ブーム特性が期待されるが、本 設計でも ΔP が 1 より小さい 2 つの解が求められた. 一方 で、その個体の L/D は 6 程度であるが、仮にこれを 0.5 程度上げようとすると ΔP は 1.2 psf まで上昇してしまう といったトレードオフの関係が見られる.

第9図 (b) は L/D と W_{wing} についての解空間を示す. W_{wing} が200 kg 台と小さな解も存在するが、この時の L/Dは6を下回っている。一方で L/D を7程度まで引き上げ る解を考えると、 W_{wing} は 400 kg に倍増してしまう。こ の差は離陸総重量が 4000 kg の研究機に対して無視できる ものではなく、L/D と W_{wing} にも強いトレードオフの関 係があると言える。

第9図(c) に $\Delta P \ge W_{wing}$ の解空間について示す. ここ では ΔP が 1 を下回る 2 つの個体について注目してみる. これらの W_{wing} を 100 kg 減らすことを考えると, ΔP は 1.1 psf を超えることになり,この 2 つの目的関数間にも厳 しいトレードオフがあることが分かる.

以上の結果から,本設計で定義した主翼の設計空間内で 目的関数同士に有意なトレードオフが観察できることが分 かった.以上に述べた目的関数間のトレードオフが明らか になることはSSTの空力設計を検討する上で重要な指針に なると考えられる.

4.2 寄与度解析 4.1 節で得たサンプル点を利用して, 各目的関数に対して分散解析を行った.その結果を第10図

に示す.

第10図(a)は L/D に関する寄与度解析結果を示す.第 10図(a)から,翼根とキンクでのキャンバ(dv10~13)が 巡航 L/D を決定する大きな要因となっていることが分か る.これは超音速巡航時に亜音速前縁となる内翼でのキャ ンバを取ることにより揚力を積極的に得ているためだと思 われる.本研究では,外翼については超音速前縁としたた め,超音速巡航時における外翼の寄与が小さい.外翼の寄 与度分析を含めた,実際の設計には遷音速での性能も目的 関数とする必要があると考えられる.

第10図(b)は ΔP に関する寄与度解析結果を示す.第

第10図 各目的関数に対する寄与度解析結果

10 図 (b) から、内翼後退角 (dv1) が ΔP に対して大きく 寄与していることが分かる。内翼後退角変化によって主翼 の MAC 位置が変化するため、モーメント基準点の固定と いう設計問題上の制約条件を満たすように主翼取り付け位 置も従属的に変化する。これが S³TD 2.5 次形状の等価断 面積分布 (機軸方向に沿っての幾何学的断面積分布と揚力 分布をそれと等価な断面積分布に変換したものとを足し合 わせたもの)¹⁰⁾ に大きく影響するため、内翼後退角が ΔP に大きく寄与していると考えられる。

第10図(c)は W_{wing} に関する寄与度解析結果を示す. 第10図(c)から,主翼重量に大きく寄与しているのは翼根 翼厚,アスペクト比,キンクキャンバ(*dv6*,9,12,13)で あることが分かる.キンクでの翼型形状が W_{wing} に影響す るのは,超音速巡航時には主に内翼で主翼全体の空気力を 受けるためと考えられる.また,アスペクト比や翼厚が翼 重量に大きな寄与度を示していることは一般的な翼設計の

第11 図 サンプリングから得られた各目的関数に対する上位 5 個体 に対する PCP 結果

知見とも合致する.特に,コード長が最も長く,空気力が 大きく働く個所である翼根部分の厚さの寄与度は多くなっ ている.

4.3 **PCP**による設計結果の可視化 本研究で行ったサンプル群を, PCPにより各目的関数に対して上位5個体をソートし可視化した. その結果を第11 図に示す.

第 11 図 (a) は L/D 最大化に関する PCP を示す. この 図より L/D 向上に関しては,寄与度解析で大きな割合を占 めていた翼根・キンクキャンバ ($dv10 \sim dv13$)の範囲を適切 な範囲に絞る必要がある.また寄与度解析の結果からは分か らなかったがキンク捩りと翼根翼厚 (dv4, 6) は下限値に集 まっており,高い L/D を得るのに最適な位置が設計空間の 下限にあると考えられる.以上のことから, PCP から得ら れた結果を本研究で設定した設計空間内で高 L/D の主翼 を設計する際には、キンク捩り dv4を -0.8度付近、翼根翼 厚 dv6を 3%c付近、翼根とキンクキャンバを表す $dv10 \sim$ dv13をそれぞれ -0.5%c, -0.64%c, 0.75%c, 0.22%c付 近に求めれば高い L/Dを得られることが予測できる.

13

第11 図 (b) は ΔP 最小化に関する PCP を示す. この図 より ΔP 低減に関しては,内翼後退角 (dv1)を大きくし, キンクでの捩り下げ (dv4)を小さくすると概ね ΔP が低減 される傾向を示した. また,等価断面積分布に影響が大き い内翼側の翼厚 (dv6, 7)やアスペクト比 (dv9)等について も適切な値が絞られている.以上のことから,本研究の設 計空間内で ΔP が小さい個体を設計したい場合,内翼後退 角 (dv1)を 66 度,キンクでの捩り下げ (dv4)を -0.9 度付 近,翼根とキンクの厚さ (dv6, 7)を 3%c 付近,アスペク ト比 (dv9)を 2.3 付近にすること等により低 ΔP が得られ ると予測できる.

第 11 図 (c) は W_{wing} 最小化に関する PCP を示す.こ の図より Wwing 低減に関しては、寄与度解析で考察した 翼根翼厚,アスペクト比,キンクキャンバ (dv6,9,12,13) の他に内翼後退角 (dv1) と翼根 25% c でのキャンバ (dv10) が絞り込まれている. これらのことから, 内翼後退角が浅 くアスペクト比が小さい個体が主翼重量を軽減するという 一般的な知見の他、翼断面最適化による内翼側の空力荷重 を適切に行うことが必要であることが定量的に理解できる. 以上のことから、本研究の設計空間内で Wwing が小さい 個体を設計したい場合, 内翼後退角 (dv1) を 57.3 度付近, 翼根 25%c でのキャンバ (dv10) を −0.48%c 付近に、翼根 翼厚,アスペクト比,キンクキャンバ (dv6,9,12,13) を それぞれ 4%c, 2.1, -0.9%c, -0.18%c 付近に設定するこ とが適切であると予測されるが、このような設計を行うと 第11図(c)の結果からブーム強度が強くなってしまってい る点は十分注意する必要がある.

4.4 形状による目的関数への影響 第12 図に各目的関数について最も優秀となった解(極限解)の平面形と各代表位置(翼根・キンク・翼端)での翼断面, C_P 分布,尾翼断面,ブーム波形を示す.第12 図 (a)はL/D最大の個体 (Design A),第12 図 (b)は ΔP 最小の個体 (Design B),第12 図 (c)は主翼重量最小の個体 (Design C)であり,図中に示される点線は本研究での参照機体である S³TD 2.5 次形状のものであり,初期形状とした S³TD 2.5 次形状について第13 図に別途示す.第2表には Design A~C 及びS³TD 2.5 次形状の各目的関数値を示し,第3表には Design A~C の各設計変数値を示す.また,第14 図は Design A~C についての等価断面積分布を示している.

第12図(a)と第3表より, Design Aは dv1 が小さく翼 根で薄翼である.また, dv10 が負であることから翼根前方 では負キャンバとなっていることも分かる.これは、コード 長の長い内翼を中心に、翼厚を薄くし、キャンバを抑える ことで特に内翼での造波抵抗を軽減した結果と考えられる. 第12図(b)と第3表より, Design Bは dv1 が大きく、深

い後退角である. この形状は第 14 図に示すように Darden の分布に近い理想的な等価断面積分布を実現しているが, 大きな後退角によって主翼付け根付近の断面積を抑える結 果となったと思われる. 第 10 図 (b) においても,内翼後退 角が ΔP に高い寄与を示すことが分かっており,形状から も内翼後退角が重要なパラメータであると確認できる.

第13図 2.5 次形状の目的関数計算結果

第2表 代表個体に対する各目的関数の計算結果

	L/D	$\Delta P \ (psf)$	$W_{\rm wing}~({\rm kg})$	AoA (°)
Design A	7.02	1.19	612	2.5
Design B	6.08	0.97	502	2.7
Design C	5.61	1.53	276	2.6
2.5th design	6.90	0.98	691	2.1

第3表 代表個体に対する各設計変数値

	Design A	Design B	Design C
dv1	$59.8(^{\circ})$	64.9 (°)	$57.3(^{\circ})$
dv2	47.7 (°)	$46.3(^{\circ})$	41.7 (°)
dv3	$0.57(^{\circ})$	1.80 (°)	1.30 (°)
dv4	$-0.84(^{\circ})$	$-0.98(^{\circ})$	$-0.79(^{\circ})$
dv5	$-1.31(^{\circ})$	-1.20 (°)	$-1.95(^{\circ})$
dv6	3.06% c	3.00% c	4.02% c
dv7	4.18% c	3.00% c	4.77% c
dv8	3.58% c	4.95% c	3.16% c
dv9	2.33	2.37	2.01
dv10	-0.65% c	-0.21% c	0.00% c
dv11	0.17% c	-0.80% c	0.98% c
dv12	0.34% c	0.79% c	-0.98% c
dv13	-0.03% c	0.88% c	-0.44% c
dv14	-0.33% c	1.25% c	-0.35% c

第12図(c)と第3表より、Design Cは Design A, Bと 比べて dv1,9が小さい平面形となった.これにより各代表 断面のコード長が大きくなり実際の代表断面の翼厚も大き い.また dv12,14が負であるので、キンク・翼端断面形状 においては負キャンバとなっている.他方、水平尾翼舵角 は他の形状と異なり正の揚力を発生するような角度となっ ている.Design A, Bでは主翼で機体重量を支えるのに十 分な揚力を発生し、水平尾翼は専らトリム安定を取るのに 用いられている.Design Cについては主翼構造重量を抑 えるために空力荷重が小さくなった結果、主翼での揚力が 小さく、水平尾翼で不足した揚力を分担していることを示 している.こうしたことは制約条件を満たすようにトリム 安定を制約として最適設計を行った結果であり、高効率設 計手法の導入によって初めて得られた知見と言える.

第14図 代表個体に対する等価断面積分布

5. ま と め

本研究では高効率で汎用性の高いSSTのMDOツールを 構築した.その最適設計プロセスにKrigingモデルを用い ることで、効率の高さを実現し、MOGAによる大域的な探 索を利用して汎用的な設計情報構築ツールとした.MOGA により解く問題は、各目的関数のKrigingモデルに対して モデルの誤差を考慮して定義される EI 値の同時最大化問題 とした.また、空力評価をCAPAS で行うことで、計算コ ストの低減を図り、短期間での設計知識獲得を可能とした.

本ツールを用いて、S³TD 2.5 次形状の主翼形状を対象に 設計を行った.目的関数は揚抗比の最大化とブーム強度の 最小化,主翼重量の最小化の多目的最適化問題である.ま た,舵角の変化によるトリム安定の確保などを制約条件と して付与した.MOGA により各目的関数の EI 値最大化 問題を解いた結果から各目的関数間のトレードオフ情報を 取得した.また,分散解析による結果から,翼根とキンク キャンバが揚抗比に,内翼後退角がブーム強度に,主翼重 量は内翼後退角とアスペクト比が大きく関わっていること などが確認できた. また、すべての制約条件を満たしながら進化計算による 大域的最適設計を進めることは計算コストが大きくなり汎 用ワークステーションでは現実的ではないが、本研究で構 築した Kriging モデルと CAPAS による設計ツールを用い ることにより、有用な設計情報を現実的な計算コストで得 ることができた.

15

参考文献

- Seongim, C., Juan, J. A. and Illan, K. M.: Multi-Fidelity Design Optimization of Low-Boom Supersonic Business Jet, J. Aircraft, 45 (2008), pp. 106–118.
- 2) 堀之内茂,大貫 武,吉田憲司,郭 東潤,徳川直子,滝沢 実, 進藤重美,町田 茂,村上義隆,中野英一郎,高木正平,柳 良 二,坂田公夫:小型超音速実験機(ロケット実験機);NEXST-1 の基本設計結果について,JAXA-RR-05-044,2006.
- 3) 牧野好和,牧本卓也:超音速機概念設計ツール CAPAS の開発, 第 40 回流体力学講演会/航空宇宙数値シミュレーション技術シ ンポジウム,2008, pp. 275-276.
- Chiba, K., Yoshikazu, M. and Takeshi, T.: Multidisciplinary Design Exploration of Wing Shape for Supersonic Technology Demonstrator, AIAA Paper 2007-4167, 2007.
- Jeong, S. and Obayashi, S.: Multi-Objective Optimization Using Kriging Model and Data Mining, Korea Soc. Int. J., 7 (2006), pp. 1–12.
- Kanazaki, M., Tanaka, K., Jeong, S. and Yamamoto, K.: Multi-Objective Aerodynamic Exploration of Elements' Setting for High-Lift Airfoil Using Kriging Model, J. Aircraft, 44 (2007), pp. 858–864.
- (7) 廣安知之,三木光範,渡邉真也:領域分散型多目的遺伝的アルゴ リズム,情報処理学会論文誌,41 (2000), pp. 79–89.
- 8) 宮本定明: クラスタ分析入門—ファジィクラスタリングの理論と応用,森北出版, 1989.
- 9) Gerald, B. W.: The Flow Pattern of a Supersonic Projectile, Communication in Pure and Applied Mathematics, 5 (1952), pp. 301–348.
- 10) 牧野光雄:ソニッムブーム—その理論と現象,産業図書, 2000.
- Thomas, C. L.: Exploration of Supersonic Boom Pressure Signatures by the Waveform Parameter Method, NASA TN D-6832, 1972.
- 12) 高戸谷健,笠原利行,千葉一永,牧野好和:静粛超音速機の多目 的最適形状設計(構造関連),第40回流体力学講演会/航空宇宙 数値シミュレーション技術シンポジウム 2008 論文集,2008, pp. 121-123.