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Chapter 1

Introduction

A  .filter hank is a system that decomposes digital signals into several frequency 
subbands or reconstructs the original signals from the subband signals . The former 
is referred to as an analysis bank and the latter as a synthesis bank . Usually, 
filter banks are used as a pair of an analysis and synthesis bank and construct 

an analysis-synthesis system . Such analysis-synthesis systems have been finding 
a lot of applications in a wide area of signal processing so far, such as codecs 
of speech, audio, picture and video signals , restoration, recognition and adaptive 
filtering [1-31. This thesis deals with design issues of transfer functions of filters 

composing filter banks. Especially , such systems suitable for image processing 
will be focused on , and their implementation issues will also be discussed .

Subband signals Yj;(z)

X(z)

Analysis bank Synthesis bank

 V(z)

Figure 1.1: An analysis-synthesis system with filter banks .
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 8  CHAPTER 1. INTRODUCTION

1.1 Background

Filter banks are usually used as an analysis-synthesis system which is composed 

of an analysis and synthesis bank. The analysis bank is constructed with a bank 

of multiple filters and downsamplers, and the synthesis one is constructed with a 

bank of multiple filters and upsamplers. Figure 1.1 shows the typical structure, 

where Hk (z) and Fk (z) are digital filters and are called as the k-th channel anal-
ysis filter and synthesis filter, respectively. The box including Pk denotes the 
downsampler with the factor Pk, which decreases the sampling rate by discarding 
Pk - 1 succeeding samples in every Pk period and outputting the rest, and the 
box including t Pk denotes the upsampler with the factor Pk, which increases the 
sampling rate by inserting Pk - 1 zero-value samples between every two succeed-
ing signals. Signals decomposed into several frequency subbands by an analysis 
bank, denoted by Yk(z) in Fig. 1.1, are called subband signals. Filter banks are 
characterized and classified by the characteristics of analysis and synthesis filters , 
the factors of downsamplers and upsamplers, the number of channels and so forth . 

  If the reconstructed signals X(z) are identical to the original _1 (z), except for 
delay and scaling, then the analysis-synthesis system is said to be perfect recon-
struction (PR) filter banks. PR filter banks where filters in the synthesis bank are 
complex-conjugated temporal reversal of ones in the analysis bank are referred to 
as paraunitar' (PU) filter banks [ 1-3]. 

  In most applications, subband signals are processed. For example, they are 

quantized in the codec application. Any process for subband signals, however, 
affects the reconstructed signals. Thus, even though the PR system is used, the 
reconstructed signal differs from the original. In such a situation, the PU system 
has the advantage that it guarantees that the error energy in the reconstructed sig-
nal is to be the average of the error energy in the subband signals. This property 
also allows us to use optimal bit-allocation algorithms for subband codec (SBC) 
applications [4]. 

  Digital image data has a limited region of support in the spatial domain, and 
can be regarded as a finite-duration signal for each horizontal and vertical di-
rection. Filtering such a finite-duration signal is known to cause the data-size-
increasing problem that the result becomes longer than the original. Additionally, 
it is known that the human visual system is sensitive to the phase distortion. Thus, 
for image processing, this distortion has to be avoided. 

  The linear-phase (LP) property is of interest, since filter banks with the LP 
property can handle finite-duration signals by means of the symmetric extension 
method to avoid data-size-increasing problem [5-9]. In the symmetric extension 
method, a given finite-duration signal is extended symmetrically at the borders, 
followed by being convolved with LP filters. This technique allows us to limit 
the size of subband signals with less ringing artifacts than the periodic technique.
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Additionally, since the phase distortion can  be avoided by applying filters with the 
linear-phase property , it is desirable that all filters composing filter banks are linear 
phase when the system is applied to image processing. Thus, several linear-phase 
paraunitary filter banks (LPPUFBs) have been developed so far [2, 10-15] . 

  Although still and moving pictures can be dealt with as two and three dimen -
sional signals, respectively, the separable system which independently handles 
image data for each of the horizontal , vertical and temporal directions is popu-
larly applied. A general non-separable multidimensional (MD) system , however, 
releases the limitation in the separable one. Thus, MD processing has increasingly 
been used in image processing [ 16, 17], and interest in MD filter banks has risen 
[ 18-20]. One-dimensional LPPUFBs can be applied to construct MD separable 
systems. However, MD signals are generally non-separable , and this approach 
does not exploit their characteristics effectively . Furthermore, systems which con-
sist of 1-D two-channel filter banks don't have an overlapping solution with LP 
and PU properties. In order to overcome these disadvantages , non-separable MD-
LPPUFBs are required . In this thesis, MD-LPPUFBs are discussed , as well as 
1-D LPPUFBs.

1.2 Brief History

So far several 1-D LPPUFBs have been studied . The lattice and the modulation-
based structures in particular have received a lot of attention , because they enable 
us to design LPPUFBs in a systematic way, and some of them enable fast im-
plementation. Late in the eighties, Malver el al. developed a special type of 
LPPUFBs in which the length of all filters equals twice the number of chan -
nels [21, 22]. The system is known as the lapped orthogonal transform (LOT) , 
and has an fast implementation based on the lattice structure . More general sys-
tems in terms of the filter length were considered by Vetterli et al . [23] and Soman 
et al. [ 10]. Queiroz et al. [ 1 1, 12] have constructed the generalized LOT (GenLOT) 
and investigated the fast implementation based on the lattice structure . Initially, 
the lattice structure have been well studied for an even number of channels , and 
a large class of such systems are made possible to be designed by unconstrained 
non-linear optimization processes [2, 10-12]. Soman et al. showed the existence 
of odd-channel LPPUFBs and provided the lattice structure [ 10]. However, one 
of the analysis filters are restricted to be of length M , where Al is the number of 
channels. This limitation affects the achievable performance such as the coding 

gain and stop-band attenuation [4]. In parallel with these works, the modulation-
based LPPUFBs were also established by Lin and Vaidyanathan [ 13]. The design 
cost is known to be very efficient because just one prototype filter needs to be 
designed. A drawback to this , however, is that the class covered are limited.
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  The extension of the modulation-based systems to two dimension (2D) has 
been presented for [24, 25]. Early in the nineties, the lattice structure for two-
dimensional (2-D) LPPUFBs had already been discussed by Karlsson and Vet-
terli [ 18]. Then, the structures were developed based on the sophisticated 1-D 
works so that 2-D LPPUFBs can be designed in the similar way to 1-D ones [26] . 
The structure discussed by Kovacevic and Vetterli [26] , however, is for separable 
decimation, that is, rectangular decimation , with an even number of channels.

1.3 Aim of This Thesis

As was stated in the previous section, the lattice structures enable us to design LP-
PUFBs by using unconstrained non-linear optimization processes . This approach 
guarantees both of the LP and PU properties. However, non-linear optimization 
processes are sensitive to their starting guess and has no guarantee to yield the 
global minimum solution. Recently, Nagai et al. reduces the design problem to 
solving a set of linear equation iteratively so that the use of non-linear optimiza-
tion can be avoided [27, 28]. In compensation for this approach , object functions 
are restricted and some practical ones , such as the coding gain and stop-band at-
tenuation, are excluded. 

  In this thesis, let us consider applying a non-linear optimization process to the 
lattice structures of LPPUFBs for their design . As the first question, the design of 
I -D LPPUFBs is dealt with. To avoid at least insignificant local minimum solu-
tions, a lattice structure which makes the starting guess of the design parameters 
simple will be provided . Then, a recursive initialization design procedure will be 

proposed. The implementation issues are also discussed. 
  The LP property makes it possible to handle finite-duration signals by means 

of the symmetric extension method to avoid the size-increasing problem . Any 
extension method, however, treats extra signals generated by the extension , and 
has redundant operations. As the second question , the redundant operations in the 
symmetric extension will be discussed. 

  The third question is related to the design method of MD-LPPUFBs . So far, 
the extension of the lattice structure of 1-D LPPUFBS to multidimension for non-
separable decimation has never been discussed . In light of this fact, a lattice struc-
ture of MD-LPPUFBs is proposed, so that a large class of MD ones can be de-
signed in a systematic way. 

  The structure of MD-LPPUFBs can achieve higher coding gain than that of 
separable one. In compensation for this advantage, however , there is a drawback 
that the symmetric extension method can not be applied due to the point-wise 
symmetry of their filters. To use the method, filters have to be axial-symmetric
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(AS) for each dimension. Recently, Stanhil et al . stated this fact' in the article [29]. 
It proposes a design method of ASPUFBs . However, it requires us to solve a 
matrix equation under some conditions . As the final question , the lattice structure 
of ASPUFBs will be considered and the design procedure will be proposed .

1.4 Organization

This thesis is organized as follows:

1.4.1 Chapter 2: 1-D Linear-Phase Paraunitary Filter Banks 

Chapter 2 proposes two lattice structures of 1-D LPPUFBs which make the start-
ing guess of the design parameters simple for both of an even and odd number of 
channels. The proposed structure for an even number of channels can be regarded 
as a modification of the conventional GenLOT based on the discrete cosine tra ns-

form (DCT) [ 1 l , 12]. The DCT-based structure will be shown to be suitable for 
subband codec (SBC) applications . To avoid insignificant local minimum solu-
tions in the non-linear optimization process , the recursive initialization procedure 
is provided. Some design examples show the significance of the proposed pro -
cedure.The DCT-based structure will be shown to be suitable for subband codec 
(SBC) applications.

1.4.2 Chapter 3: Structure for Finite-Duration Sequences 

Chapter 3 proposes an efficient structure of GenLOT for finite -duration sequences , 
where the number of channels is even . The proposed structure is derived from the 
symmetric extension method , and enables us to limit the number of subband sam-
ples so that the total number of them equals to the number of original ones . In fact, 
the structure does not require any redundant operations involved in the extension 
of sequences. The proposed structure can be regarded as a generalized structure 
of LOT for finite-duration sequences . The proposed structure is shown to have 
less computational complexity than that of the conventional symmetric -extension 
approach. It is also shown that M-band discrete -time wavelet transforms (DTWT) 
for finite-duration sequences can be constructed with the proposed structure . 

  In addition, the application to JPEG/MPEG-compatible subband codec (SBC) 
systems is considered . Compatible here means the ability of SBC systems to 
encode and decode the standard bit-streams , that is, JPEG for still pictures and 
MPEG 1 and 2 for moving ones . Since the proposed structure consists of the 

'The word 'four-fold  symmetry- is used instead of "axial-symn,etrv."
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block DCT employed in JPEG and MPEG, the hardware-module or software-

routine of the block DCT can be shared in both of the standard and subband cod-

ing processes. In addition, modules or routines after DCT and GenLOT , such as 

quantization and entropy coding, can be used in common. The system enables us 
to efficiently realize the compatibility .

1.4.3 Chapter 4: MD Linear-Phase Paraunitary Filter Banks 

Chapter 4 proposes a lattice structure of MD-LPPUFBs. The lattice structure 
can produce MD-LPPUFBs whose filters all have the extended region of support 
JV (Ms), where M is the decimation matrix and E is a positive integer diag-
onal matrix (or extension matrix) under the condition that N (M) is reflection 
invariant. Since the system structurally restricts both the PU and LP properties , 
an unconstrained optimization process can be used to design it . The proposed 
structure is developed for both an even and odd number of channels , and includes 
the conventional 1-D system as a special case . It is also shown to be minimal, and 

the no-DC-leakage condition is presented. By showing some design examples , the 
significance of the proposed structure for both the rectangular and non-rectangular 

decimation cases will be verified . For the rectangular decimation case, it is shown 

that the structure achieves a higher coding gain for the isotropic acf model than 

that for the separable one. In particular , the proposed structure will be demon-
strated to generate a non-rectangular decimation LPPUFB with no DC leakage .

1.4.4 Chapter 5: 2-D Axial-Symmetric Filter Banks 

Chapter 5 will deal with axial-symmetric paraunitary filter banks (ASPUFBs) . 
Firstly, a 2-D binary-valued (BV) lapped transform (LT) , to which this thesis refers 
as the lapped Hadamard transform (LHT), will be proposed . LHT has basis im-
ages which are axial-symmetric (AS) and take only BV elements *1 with a scale 
of a power of 2. It is known that there is no 2 x 2-point separable ASLT , By taking 
non-separable BV basis, our proposed LHT achieves both the AS and overlapping 

properties for the 2 x 2-point transform. It will be shown that LHT of a larger size 
is provided with a tree structure. The characteristic was shown to be very similar 
to that of the 2-D HT, even if LHT differs from HT in that the basis images are 
overlapping and non-separable. 

  Next, a design method of ASPUFBs with a lattice structure , where filters are 
able to take continuous valued coefficients , will be proposed. The proposed 2-D 
LHT will be represented by the proposed structure as a special case . Since the 
AS and PU properties are guaranteed during the design phase , an unconstrained 
non-linear optimization process can be applied to the design of such filter banks .
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By showing some design examples , the significance of the proposed structure was 
verified. 

   Note that, all through this thesis , filters are assumed to have real coefficients . 

1.5 Notations 

All through this thesis, the following notations are used . 

o  : the null column vector . 

O : the null matrix. the Al x Al null matrix is particularly denoted by O . 

I~l : the Al x Al identity matrix [ 1 ]. When the size is obvious or not of interest ,     th
e subscript Al is omitted . 

J;,1 : the Al x Al reversal (or counter -identity) matrix . When the size is obvious 
    or not of interest, the subscript Al is omitted . 

I',11 : the Al x Al diagonal matrix which has +1 and —1 elements alternatively 
    on the diagonal. When the size is obvious or not of interest , the subscript     Al 

is omitted. 

Dm, T111, Bm : the Al x Al matrices defined by 

                             /Ir:tit~o 
Al =,                                                     (1.1) 

                      If 41 O \ T
1 =(1 .2) 0 J

l:~,J1

B11 =

 1 

1 
 f

 I(  I Al I M 

 IM -Ihr 

I z~ 

~ILzr~

Il~r~ 

2 -IL C

 AI: even

, .tI: odd

(1.3)

where Lxi and rzl denote the integer value of x and the smallest inte
ger 

greater than or equal to x, respectively. 

When the size is obvious or not of interest , the subscriptAl is omitted.
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P.'! the M x ill permutation matrix which permutes the even rows into the top 

half and the odd rows into the bottom half . For example,

P.1=

1 0 0 0 

0 0 1 0 

0 1 0 0 

 0 0 0 1

(1.4)

When the size is obvious or not of interest , the subscript  II is omitted.

  The product of an .1-I x 

lows:
M square matrix sequence A„ is represented as fol-

fi A'.= 
,1= rVs

AN A PVE - ... A:ti;• N < .V r: (1.5)

In addition, the 

as EL-        e—o An

block diagonal matrix consisting of L square matrix A„ 

by using the direct sum notation. For example ,

is denoted

   3  
     1 

e ~An,_ 
n=0

 A0  O 0 01 
O Al O 0 

O O A, O 

O 0 0 AO

 (1.6)

  The superscript `*' denotes complex conjugation , and the superscripts 'T' and `t' on a vector or matrix denote the transposition and hermitian transposition , 
respectively. Furthermore , the tilde notation over a vector or matrix denotes 
the paraconjugation [ 1 ], for example, E(z) = Et (2-1) , where the subscript `*' 
denotes the complex-conjugation of the coefficients. When the elements are real, 
it is reduced to E(z) = ET(y-1)



Chapter 2

1-D Linear-Phase Paraunitary Fi 

Banks
 lter

In this chapter, lattice structures of 1-D LPPUFBs which make the starting guess 
of the design parameters simple are proposed for both of an even and odd num-
ber of channels. The proposed structure for an even number of channels can 
be regarded as a modification of the conventional generalized lapped orth ogo-
nal transforms (GenLOT) based on the discrete cosine transform (DCT) [ 1 1

, 12]. Th
e DCT-based structure will be shown to be suitable for subband codec (SBC) 

applications. To avoid insignificant local minimum solutions in the non -linear 
optimization process, the recursive initialization procedure is proposed . Some de-
sign examples show the significance of the proposed procedure . In addition, to 
reduce the complexities in both of design and implementation , the simplification 
of the lattice strucutre will be also considered for applying it to an SBC system .

2.1 Review of Filter Banks

As a preliminary, let us review the Ili-channel maximally decimated uniform filter 
banks, and also the PU [ 1 ] and LP properties [10 ,231 

2.1.1 Al-channel Maximally Decimated Uniform Filter Banks 

Figure 1.1 shows a general structure of filter banks . The system which satisfies 
the condition that Ek101 1/Pk = 1 is called as maximally decimated filter banks, 
which means the total rate of the subband signals is equal to that of the origi nal. 
Besides, if the factor Pk is the same as those of the other channels , that is Pk = P f
or k = 0, 1, • • • , Al — 1, then the system is called as uniform filter banks . Max-

imally decimated uniform filter banks are those satisfying both of the conditions
,

15
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Subband signals Y,(~)
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H1(z)
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j ;t 1 
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Fo(z) 
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Analysis bank Synthesis bank 
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          Subband signals Yk(ti)
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 1 •
(z) .
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r ,1I
• •

r

•
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•

•

•

•
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•

•
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• •

•

•
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 (.  ) 

                         (b) Polyphase structure 

Figure 2.1: An analysis-synthesis system with one dimensional .V1-channel maximally 

         decimated uniform filter banks.
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and necessarily implies  Pk = aI for k = 0, 1, ... , A/ - 1. Figure 2.1 (a) shows 
a parallel structure of AI-channel maximally decimated filter banks [ 1 ], where Pi

k (z) and Fk (z) are the analysis and synthesis filters, respectively. The boxes including ,I, A/ and Al denote the downsampler and upsampler with the factor 
M, respectively. 

  The structure as shown in Fig. 2.1 (a) can always be rewritten in terms of the 
polyphase matrices as shown in Fig. 2.1 (b), where E(z) and R(z) denote the 
lI x Al polyphase matrices [1]  corresponding to analysis and synthesis banks, 
respectively. Let h(z) and f (z) be the Al x 1 column vectors defined by 

             h(z) = (Ho(z) Hi (z) ... H:tir-r (z))T (2.1) 
f (z) = (Fo(z) F1(z) ... Fnr-r (z))T , (2.2) 

respectively, and let

                  d(z) = (1-1...z-(M_1)) T                                          ti 

In terms of the polyphase matrices E(z) and R(z) , h(z) and f(z) 
represented as

(2.3)

are respectively

            h(z) = E(zm)d(z)(2 .4) 
fT(z) = z-(m-1)d(z)R(z`1) .                                                     (2.5) 

The analysis-synthesis system yielding the reconstructed output sequence X(z) 
which is identical to the input _Y(z), except for the delay and scaling, is referred 
to as the reconstruction (PR) filter banks. If E(z) and R(z) satisfy the following 
condition [ 1 ]:

                 R(z)E(z) = 

for some integer N, then the system has PR property .

(2.6)

2.1.2 Paraunitary (PU) Property 

If E(z) satisfies the following condition [ 1 ]: 

E(z)E(z) = IM_(2 .7) 
then it is said to be paraunitary (PU). 

  The condition as in Eq. (2.7) is sufficient to construct PR filter banks, since 
the PR property as in Eq. (2.6) is guaranteed by choosing the synthesis polyphase 
matrix as R(z) = z-NE(z) . When E(z) is causal FIR of order N , so is R(z) in 
this choice. Besides, it is of interest that the property as in Eq. (2.7) allows us to 
use optimal bit-allocation algorithms in the SBC applications [4].
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2.1.3 Linear-Phase (LP) Property

Assume that E(z) is real and causal FIR of order N. On this assumption, the 
corresponding analysis filters Hk(z) are also causal FIR with real coefficients and 
of order K = (N + 1).1I — 1. If E(z) further satisfies the following property 
[10,23]:

-,vF
mE(z-1)J,tir = (2.8)

then each analysis filter Hk (z) for even A: is symmetric and one for odd k is anti-
symmetric with the center of symmetry K/2 . When the number of channels :II is 
even, the analysis bank h(z) consists of M/2 symmetric and M/2 antisymmetric 
LP filters. On the other hand, the analysis bank h(z) consists of (M + 1)/2 sym-
metric and (_\I — 1)/2 antisymmetric LP filters. The system described in Eq. (2.8) 
satisfies the necessary condition for LP PR filter banks with respect to the numbers 

of symmetric and antisymmetric filters [ 10, Theorem 1, Colloraly 1].

2.2 Lattice Structure

The 1-D LPPUFBs which satisfy the conditions in Eqs . (2.7) and (2.8) has already 
been established in the articles [ 10, 14, 15] for even M . The conventional lattice 
structures are known to be complete for the class of even-channel LPPUFBs whose 
filters are real and of length a multiple of M. That is, those structures can realize 
any system for the given class. The representation proposed here covers the same 
class as them and the corresponding lattice structure is based on the type-II DCT 

(DCT-II) [30]. As a result, the proposed structure enables us to simply implement 
LPPUFBs holding better performance, such as coding gain (Appendix A) and 
stop-band attenuation, than that of the conventional DCT-based structure . 

  For odd M, Soman et al. showed the existence of LPPUFBs and provided the 
lattice structure [ 10]. The lattice structure , however, has the problem that one of 
the analysis and one of the synthesis filters are restricted to be of length M . This 
limitation affects the achievable performance . To solve this problem, Nagai et 
al. improved the lattice structure to cover larger class of LPPUFBs than Soman's 
system [27, 28]. In the article [27], to avoid the use of non-linear optimization , 
the design problem is reduced to solving a set of linear equations iteratively . In 
compensation for this approach, object functions are restricted and some practical 
ones, such as coding gain, are excluded. In this thesis, let us consider applying 
a non-linear optimization process to a lattice structure . Thus, in order to release 
the starting-guess problem , another odd-channel lattice structure which makes the 
starting guess of design parameters simple will be provided .
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   Furthermore, some comments on the regularity 

portant to construct Jf -hand wavelets [ 10, 14] and 
facts [2].

are also given, 

avoid the check

which is im-

erhoarcl arti-

2.2.1 For Even AI

In this section, a factorization technique of LPPUFBs satisfying of Eqs . (2.7) and 
(2.8) for even M is discussed. The proposed factorization provides a new structure 
of the DCT-based GenLOT , which covers the same class as that of the general 
form [ 14]. That is , it is complete for even-channel LPPUFB whose filters are real 
and of length a multiple of M , while the conventional DCT-based GenLOT is 
not. Since the lattice structure is based on the DCT -II , it has an advantage that a 
good initial guess in the design phase can be made especially for the coding gain . I
n addition, the reduced structure given by simplifying the entire structure 

yields th
e good approximation in terms of the coding gain with small complexity in it

s i
mplementation.

Overlap-Save Method Based on DCT 

In the following, an FIR filtering technique based on the DCT-II is provided. T
he technique can be regarded as a modification of the generalized overlap-save 

method (OLS) [3] and has an important role for factoralizing LPPUFB described 
in Eqs. (2.7) and (2.8). 

  Let H(z) be an FIR filter and e(z) be the M x 1 vector defined by

r 

where Ee(z) is the f-th type-I polyphase component of H(z) with the decomposi-
tion factor A/. In terms of e(z) , H(z) can be represented as H(z) = eh(zM)d(z) . 
In the followings, the factor M is assumed to be even . 

  In order to establish OLS with the DCT-II for FIR filtering , let us firstly de-
compose e(z) into the symmetric vector s(z) and antisymmetric vector a(z)

, as 
follows:

e(z) = s(z) + a(z) (2.10)

where

s(z) =
e(z) + Jme(z)

a(z) =

     9 

e(z) — Jnre(z)

(2.11)

2 (2.12)
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Note that s(z) and a(z) are uniquely determined from their own 11/2 x 1 bottom-
half vectors, which consist of their representative elements , respectively. By de-
noting the bottom-half vectors of s(z) and a(z) as sr(z) and ar(z) , respectively, 
e(z) can be represented as follows:

eT(z) = srT~za`~Tz/ J.~ 2 

I.1,,

  Then, let us define transform coefficient vectors gE(z 
ar(z), respectively, by

                    gE(z) = I'.}rCii~sr(z), 

2 

                     go(z) = I'.titSn;ar(z), 

where CI11 and Sdenote the 1lI-point orthonormal 
crete sine transform (DST) matrices [30], respectively. 

rTTI1rTTV s(z)=gL(z)I'.,fC:Ifand a(z) = go(z)F:AtS .tiIr, 
2 ten as-

(2.13)

) and go(z) of s' (z) and

(2.14)

(2.15)

DCT-II and type-IV dis-

Substituted the relations 

Eq. (2.13) can be rewrit-

            eT(z) = (gF (z) go(z)) PMMC11J:tir, (2.16) 
where the properties PA,rP_,~r = IAr, T Al Civr = ciLJA, and FA15 ti1 = C~tirJ ti1 
and the sparse matrix factorization of the DCT-II [30] 

C11 —1P7,/Ci.ti10 i:„J.~1         2 2(2 .17) 

i are used, where CIvr is the M-point orthonormal type-IV DCT matrix [30]. From 
Eq. (2.16), an equivalent structure to H(z) can be obtained as shown in Fig. 2.2. 
The structure can be regarded as a special case of the generalized OLS [3] using 
the DCT-domain filtering technique [31]. 

  Assume that the order of the polyphase component vector e(z) is N , which 
sometimes referred to as the overlapping factor in this thesis. In this case, the 
order of H(c) results in K = (N + 1)M —1. Note that if and only if H(z) is sym-
metric with the center of symmetry K/2 , that is, the case that z-NeT(z-1)J;tir = 
eT(z), then the following properties are satisfied with 'YE = 1 and yo = —1: 

                 gE(z) = 7 z-NgE(z-1),(2.18) 

                go(z) _ 7oz-Ngo(z-1)(2.19)

Additionally, 

K/2, that is,
if and only i 

the case that

f H(z) is antisymmetric with 
     eT(N-1)J~r= eT(z),

the center of symmetry 

the above properties are
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 C1,, Ps-,

gir(:~)
^

f ---------~i

z,+---r
v r

r y~

g,jz )

O

 H(:.)

Figure 2.2: A structure of DCT-based OLS for FIR filtering . The letters 'E' 
         represent even and odd coefficients , respectively.

and `O'

satisfied with wE = —1 and "to = 1 . These properties can be used to factorize 
LPPUI-iB. 

  Actually, we can replace the DCT-II matrix, C ti1, in Eq. (2.16) by any other 
orthonormal matrix consisting of symmetric or antisymmetric basis vectors . How-
ever, in the following, we just consider employing the DCT-II matrix on the as-
sumption that filter banks are applied to SBC systems of images , since the DCT-II 
matrix gives us a good initial guess in the design phase in terms of the coding gain 
and has several fast algorithms [30] . Note that the use of the DCT-II matrix does 
not necessarily mean that the resulting structure is inappropriate to any other cost 
functions.

New Structure of DCT Based GenLOT

In this section, by using the DCT-based OLS developed in the previous section
, let 

us discuss a factorization technique of LPPUFB satisfying Eqs. (2.8) and (2.7) for 
even M. The proposed factorization provides a new structure of the DCT-based 
GenLOT [ 1 1, 12], which covers the same class as that of the general form [ 14]. 

  Assume that E(z) is causal FIR of order N and satisfies the condition as in 
Eq. (2.8), and that the number of channels M is even. As mentioned before, on 
this assumption, the corresponding analysis filters Hk(z) are causal FIR of order 
K = (N +1).11  — 1, and the analysis bank h(z) consists of M/2 symmetric and 
i'tf/2 antisymmetric LP filters. 

  Let ek (z) be the type-I polyphase component vector of Hk (z) provided as in 
Eq. (2.9), that is, the transpose of the k-th row vector of E(z) . Since ek(z) can 
be represented with the DCT-II as in Eq. (2.16) and satisfies the LP properties 
Egs.(2.18) and (2.19), E(z) can be rewritten as the following form:

E(z) = P IG(z)PA/C ifJnr, (2.20)
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where G(z) is the _lI x 
vectors obtained from ek(

M matrix which consists of the transform coefficient 
ti) as in Egs.(2.14) and (2.15), and has the form

G(z) = f (Gi's(.:) Goa(z) 
GEA (") Gos ( ) 

In Eq. (2.21), GFS(z), GQA(z), GE.\(z) and Gos(z) denote 
of order N which satisfy the properties 

G-s(z) = z--1vG-S(z-1), 

G_,. (z) = —ti-~G-:~(~-t)

(2.21)

M/2 x M/2 matrices

(2.22) 

(2.23)

where the subscript '-' stands for either 'E' or 'O' . The top half sub-matrix of 
G(.) corresponds to symmetric filters and the rest does antisymmetric ones. 

  Then, let us consider factorizing G(z) satisfying the property Eq. (2.21) under 
the PU constraint Eq. (2.7). Note that if and only if E(z) is PU, the G(z) is PU 
since all of P .ti1, JAI and C of are PU. For convenience of the further discussion, 
let us define the M x M matrix F(z) by

Note that both of T11 

sented as

F(z) = T11Bti,G(z). (7.24)

and Ba1 are orthonormal. The matrix F(z) can be repre-

                      FF,(z) Fo(z)              F( z) =T~f
z-wFE(z-1) _z-NF0(z-'),(2.25) 

where FE(z) =GEs(Z)+GEA(z) and Fo(z) =Gos(z)+Go .A(.c). From Eq. (2.25), 
it can be verified that F(z) satisfies the following property: 

z-" JAfF'(z I )D.tir = F(z).(2.26) 

  Once the above relation was obtained, as done in the proof for [ 10, Theorem 
3], any F(z) can completely be factorized under the PU constraint Eq. (2.7) as 

           F(z) = TBR,vBA(z)BR.y_1B ... A(z)BR0, (2.27) 

where

Wm 0 R
,rz = 0 U

rn IAI 0 ) 
A(z) _           O 

ti-lI.~

(2.28)

(2.29)
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In the above equation, W,,, and U,,, are M/2 x M/2 orthonormal matrices. It 
should be noted that F(z) of which order is zero has the form F(2) = TBRo . S
ubstituted the relation G(z) = BTF(z) and Eq. (2.27), Eq. (2.20) can be repre-

sented as follows:

E(z) = PPT,„HR,n,Q(z) RoP,~tC~11J:~~1, 
                 rn= l

(2.30)

where Q(z) = BA(z)B , which is also PU. 
  From Eq. (2.30), notice that any PU analysis bank described in Eq. (2.8) for 

even A/ can always be constructed with the lattice structure as shown in Fi
g. 2.3, where the scaling factors 1/N/ involved in B are unified, so that the result is 

2-N. Conversely, we can utilize the structure to design LPPUFB by controlling W
,,, and Um. Because of the PU property of E(z) , the counterpart synthesis bank 

R(z) holding PR property is simply obtained as R(z) = z-NE(z) . 
  From Fig. 2.3, the structure can be regarded as a new representatio

n of the 
DCT-based GenLOT [ 1 1, 12]. The conventional DCT-based GenLOT is viewed 
as the special case that Ro = IA! . Note that the limitation of R0 affects the 
achievable performance such as coding gain and stopband attenuation

.

Fast Implementation

Fast implementation here means an efficient realization of filter banks by simpli-
fying their structural components to reduce the computational operations without 
significant loss of the performance. This simplification also contributes to reduc-
tion of the complexity in their design process. 

   The limitation of the conventional DCT-base GenLOT affects the performance 
of its fast implementation. The proposed GenLOT can overcome this problem. 

   In the entire structure as in Eq. (2.30), the number of free parameters, that is, 
rotation angles, to be optimized is (N +1) (M-2)M/4 , and the implementation re-
quires ia(C111)+(N+1).lf2/2 multiplications and a(Cti1)±(N+1)(AI-2)M/2+ 
2N11/ additions per block, where p.(C 1) and o'(CI1I1) denote the number of mul-
tiplications and additions of Al-point DCT -II , respectively, and it is assumed that 
each of W,,, and Urn requires M2/4 multiplications and (Al — 201/4 additions. 
As well known, DCT II has several ways of the fast implementation [30]

, and 
therefore, can be efficiently implemented. 

  To reduce both of the design and implementation complexities of the proposed 
GenLOT, let us consider simplifying the matrices W m and U,n as

Wm = I.,,, 

Uin = T'9T ,~~,.~,,—;3 . . . Tm.o

(2.31) 

(7.32)
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Y(8rn ,j)
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Figure 2.4: A simplified representation of the structure for the matrix  R
,n  (1t~1~ = 8)

for m = 0, 1, • • • , N, respectively, 
22], where

in the similar way to the type-I fast LOT [21 ,

   I, 0 0 

T.1,, =0 Y(0,n.i) 0 
O 0 I _

(2.33)

                   Y(~m a) _1cos1~„i,i— siner,c,i 
                      \SiIl(7,nicosHi(2.34) 

For example, Fig. 2.4 shows the simplified structure of the matrix R rn of Al = 8
. By this simplification, the number of rotation angles H i to be optimized is 

reduced to (N+ I) (M — 2)/2 , and the implementation complexity is also reduced 
to 1t(Cti1) + 3(N + 1)(M — 2)/2 multiplications and a(C 1) + 3(N + 1)(M — 2)/2 

+ 2NM additions per block, where it is assumed that each Urn requires 
301 — 2)/2 multiplications and 3(M — 2)/2 additions. 
  As will be shown experimentally , this simplification does not lead significant 
reduction of the coding gain . Note that the recursive initialization approach de-
scribed later is available , and that the proposed fast implementation can achieve 
higher coding gain than the conventional one .

2.2.2 For Odd M

In the following, a new product form of polyphase matrices satisfying both of 

Eqs.(2.7) and (2.8) for odd Al is proposed . The proposed product form provides 
a new lattice structure of LPPUFB .
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Overlap-Save Method with LP Orthonormal Matrices

For the latter discussion, let us provide an FIR filtering technique based on odd-
size LP orthonormal matrices in the similar way to the previous section . The tech-
nique can be regarded as a modification of the generalized overlap-save method 
described in Section 2.2.1, and has an important role for constructing LPPUFB 
for odd Al. 

  Let H(z) be an FIR filter and e(z) be the M x 1 vector defined by e(z) = 

                             r (E0 (z) El(:) • • • EA! _ i ( )) , where Ee(z) is the e-th type-I polyphase com-
ponent of H(z) with the decomposition factor Al. In the following, let us assume 
that the factor 111 is odd. 

  Firstly, let us decompose e(z) into the symmetric vector s(z) and antisymmet-
ric vector a(z) as in Eqs. (2.11) and (2.12). There is a relation e(z) = s(z) +a(z) . 
Note that s(z) and a(z) are uniquely determined from their own (AI + 1)/2 x 1 
and (Al — 1)/2 x 1 bottom vectors, respectively. 

  Let sr(z) and ar(z) be those bottom vectors of s(z) and a(z), respectively, and 
define transform coefficient vectors gr(z) and go (z) of sr(z) and a'.(z) by

gE(z) _ ------sr(z), 

go(z) AJm  ar(z).

(2.35)

(2.36)

where cDs and 43A denote arbitrary (Al + 1)/2 x (Al + 1)/2 and (Al — 1)/2 x 

(Al — 1)/2 orthonormal matrices, respectively. In terms of g (z) and go(z), the 
vector e(z) can be rewritten as follows:

e1 (z) = (g1(z) go(')) nCJ;~r,

where C is the Al x AI LP orthonormal matrix provided as follows:

                   1(CDsOI.~1-1 0 J,~1_1 \ 
C=pT~I 
             V ' O (1.q  

                                    \JA1-1 0 —I19-1/ 

Eq. (2.37) can be regarded as a special case of the generalized OLS ii 
domain filtering technique [3]. 

  When the order of the polyphase component vector e(z) is N , 
H(z) results in K = (N + 1)Al — 1. Note that if and only if H(z) i 
with the center of symmetry K/2, that is, the case that z-'ver(z_l)J 
then the following properties are satisfied with r: = 1 and 70 = —1:

gE(z) =  'yEz-:vgE(M-1). 

go( ~) = i0 gOl

(2.37)

(2.38)

d OLS in transform-

the order of 
is symmetric 

 J = er(ti),

(2.39) 

(2.40)
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In addition, if and only if H(z) is antisymmetric with the center of symmetry 
K/2, that is, the case that —z—ve"(z- ' )J AT = eT(z) , the above properties are 
satisfied with 'YE = —1 and ;o = 1 .

New Product Form

By using the OLS shown above, let us derive a new product form of LPPUFB for 
odd M. Let ek(z) be the type-I polyphase component vector of Hk(z) , that is, the 
transposition of the k-th row vector of E(z) . Since ek(z) can be represented as in 
Eq. (2.16), E(z) has the following form:

E(z) = PrG(z)CJ.11 , (2.41)

where G(z) is the M x Al matrix which consists of the transform coefficient 
vectors obtained from ek(z) as in Eqs.(2.35) and (2.36), and P denotes the _ i x Al 
matrix which permutes the even rows into the (M + 1)/2 top rows and the odd 
rows into the (Al — 1) /2 bottom rows. 

  Then, let us consider constructing G(z) under the PU constraint as in Eq. (2.7) 
and LP constraint as in Eq. (2.8). Note that if and only if E(z) is PU, G(z) is PU 
since all of P .11, J,\[ and C are PU. For convenience of the further discussion, let 
us define the Al x Al matrix F(z) by F(z) = T*[BA.[G(z). 

  It can be verified that if and only if F(z) is PU, then so is G(z). As a result, 
the PU property of F(z) implies that of E(z) . In addition, the LP property of E(z) 
as in Eq. (2.8) can be represented in terms of F(z) as follows:

z N JjtirF(z-~)~ ~r = F(2). (2.42)

The condition as in Eq. (2.42) is proven from the fact that the transform coefficient 
vectors included in G(z) satisfy Eqs.(2.39) and Eq. (2.40) with 7E = 1 and -yo = 
—1 for top (Al + 1) /2 row vectors, and with lE = —1 and o = 1 for bottom 
(Al — 1) /2 row vectors. 

  Let F„(z) be the matrix of order rn which satisfies both of PU property as in 
Eq. (2.7) and the condition as in Eq. (2.42), and let

REe

Roe

_(WEE 0 
O UEe 

WOe o O 

oT 1 OT 

O o UoeJ

(2.43)

(2.44)

where WE, is an (Al + 1)/2 x (Al + 1)/2 orthonormal matrix, and all of Woe, 
UEe and Uoe are (Al — 1)/2 x (Al — 1)/2 orthonormal matrices.
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   Then, we can construct F,,,+2(z), which also satisfies Eqs.(2.7) and (2.42), 
from F,,, as follows: 

Fm+2(z) = KE,Tr,.+2AE(z)Ko,rn+2A0(z)Fr»(z), (2.45) 

where KE.e = TBRE,eBT, Ko,e = TBRo,eBT, and 

/I M+1O )  
   y=46 

                           (TAt - i 0 

 A 

        o(z)=-~(2.47)                        OI M- ,  

  As a result, by constructing E(z) with the following product form, we can 
obtain LPPUFB described by Eqs.(2.7) and (2.8) for odd M and even N , where 
N is the order of E(z). 

L 

         E(z) = PTflitEeQE(z)RoeQ0(c)  REOCJ,ti!(2.48) 
-i 

where QE(z) = BAE(z)B, Q0(z) = BA°(z)B , and L = N/2. When N = 0, 
E(z) = PTRE0CJ .tir. 

  Eq. (2.48) provides us the lattice structure of LPPUFB for odd Al and even N 
as shown in Fig. 2.5. This system consists of (M + 1) /2 symmetric and (Al — 
1)/2 anti-symmetric filters of odd length. Note that the overlapping factor N is 
even when M is odd [ 15]. The product form guarantees both of the PU and LP 
properties. the counterpart synthesis bank holding perfect reconstruction is simply 
obtained because of the PU property [ 1 ]. 

  The product form as in Eq. (2.48) covers larger class of LPPUFB than that 

provided in the article [ 10]. Substituted 4c.s = I ,'i+1 and 4A = —J ;w, 1 , Eq. (2.48) 
results in the factorization given in the articles [27, 28]. Independently from this 
thesis, the factorization is shown to be minimal and complete for odd-channel 
LPPUFBs whose filters all have length (N + 1)M. Note that any choice of cbs 
and (DA does not affect the minimality and the completeness . As will be shown, 

proper choice of these matrices makes the starting guess of the design parameters 
simple, and these matrices contribute only for the starting guess and are fixed 

during the design phase.

2.2.3 No DC leakage 

The use of the LPPUFBs enables us to obtain Al-band LP orthonormal wavelets 
by iterating the decomposition [ 10, 14]. The condition that the continuous time
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wavelets have at least one vanishing moment is that 

           h(1) = E(1)d(1) = (V_l-I 0 0 • • 0)T , (2.49) 

where d(1) is the .1I x 1 vector whose elements are all '1'. In this case, there 
is no DC leakage into the higher frequency subbands. When applied to image 

processing, filter banks should have band pass and high pass filters that have no 
DC leakage [2]. This is because the DC leakage causes undesirable distortion, 
which is known as checkerboard artifacts, in the reconstructed images when the 
subband signals are processed. 

  Suppose that Eod(1) = (VM 0 0 • • • 0)T. In the proposed structure, 
the above condition can be reduced to 

                              1 oT 

                        _ 

         IJ wno V(2.50) 
it=O 

for even M, or

                LT 
or                u'of o _1 0\          HWEEoT1/WE0oV/(2.51 ) 

for odd M, where V is a ([M/21 — 1) x ([M/21 — 1) orthonormal matrix. The 
above condition is easily derived from the facts that Q(1) = I, QE (1) = I, and 

Qo(1) = I. 
  For an even number of channels, a design made by controlling the matrices R7, 

subject to Eq. (2.50) leads to LPPUFBs which have no DC leakage. The design 
can be achieved by restricting the matrix Wo to a matrix whose first column vector 

is the transposition of the first row vector of the product [ITT,=1 W,1] . Note that 
the inverse of the product is a candidate of Wo yielding no DC leakage. For odd 
_11, a design made by controlling the matrices REe and Rop subject to Eq. (2.51) 
leads to LPPUFBs without DC leakage. Similarly, this design can be achieved by 

properly choosing the matrix WEO.

2.3 Design Procedure

According to the factorization as in Eq. (2.30), we can construct any even-channel 
LPPUFB satisfying Eqs.(2.7) and (2.8) by controlling 2(N + 1) M/2 x AI/2 or-
thonormal matrices W,,, , and U11, in the structure as shown in Fig. 2.3. Since each 
W,,, and U7, can completely be characterized in terms of Al( Al —2)/8  Givens ro-
tations- (or planar rotations) [1,3], it is allowed to design such a system by means
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of an unconstrained optimization process to minimize (or maximize) some ob-
ject function. Both of the PU property as in Eq. (2.7) and the LP property as in 
Eq. (2.8) are guaranteed while designing since these constraints are structurally 
imposed. By controlling the matrices WEf , Wof, UIJ, and Uop, we can also de-
sign LPPUFBs for odd M. Since WE, can be characterized by (_lf + 1)01 -1)/8 
plane rotations, and each of the others can be done by (M — 1) (M — 3)/8 ones [ l ], 
a non-linear unconstrained optimization process can be used to design them . 

  Any non-linear optimization , however, has no guarantee to yield the global 
minimum solution, and the result is sensitive to the starting guess . Thus, there is 
a possibility of the result being worse than DCT . In this section, let us consider 
avoiding such an insignificant local minimum solution in the design phase .

2.3.1 For Even M

The lager overlapping factor N is , the more complex the starting guess becomes . 
One of the feasible approaches to guess the starting point is the evolutionary ap -

proach, which starts from lower order problems and uses the results as the starting 

points for higher order ones. 
  The following shows the proposed design procedure with an evolutionary ap -

proach. It is based on a technique of delay realization with the lattice structure , 
which will be shown as a lemma . The proposed procedure is as follows , where N 
is the overlapping factor, that is , the order of the polyphase matrix:

Step 1: Start with proper LPPUFB Eo(z) for even N or Ei (z) for odd N , for 
    example DCT-II or LOT. Then, set rn = 0 and optimize Eo(z) or set rn. = 1 

   and optimize E1(z).

Step 2: Initialize Em z(z) by using E„L(z) as E „L±2(z) = z-1E,n(z), and in-
    crement rn as rn E-- in + 2 .

Step 3: Optimize the system and to go Step 2 until the order reaches to V .

  Note that the starting guess of DCT-II or LOT in Step I is easily achieved , 
since the proposed structure is based on the DCT-II . DCT-II and LOT as starting 
guess are suitable especially for maximizing the coding gain. The above proce-
dure, however, can be applied to any object function , even if either DCT-II or LOT 
is chosen as the starting guess. The proposed procedure guarantees that the result 
is not inferior to the starting guess in terms of the given object function . 

  Although it does not guarantee the global minimum solution , experimental 
results show that it does not leads to an insignificant solution . In addition, there is 
a simple mapping procedure by which the initialization in Step 2 can be achieved 
in the lattice structure.
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The procedure is based on the following lemma:

Lemma 2.1. Let En ( z 
he verified that, when

) he a matrix of order n represented as in Eq. (2.30). It can

Rn . _ D,~,r (2.52)

there exists a matrix E 71-2( ), and the matrix En(

Ei1(

z) can be represented as follows: 

= (2.53)

Proof Substituted Eq. (2.52), R7ZQ(z 
Eq. (2.30), Eq. (2.53) holds.

)R7z-1Q( ) results in z-'I.ti.1. Hence, from

  Eq. (2.53) implies that the system E71,(z) is identical to the two lower order 
system En_2(z) but with the delay. Hence, when En _2(z) has good performance, 
for example high coding gain, so does E„(-z). From this fact, in order to design 
En (z), well-designed E7,_2(z) should be a good candidate for the starting guess, 
appended the section PTR,1Q(z)Rit_1Q(z)P with the matrices in Eq. (2.52). 

  Indeed, the proposed GenLOT is slightly inefficient compared with the con-
ventional general form. However, since the DCT-II is a good approximation to 
the optimum solution of the first transform matrix in the general form and has 
several fast algorithms [30], the complexity of the proposed structure is consider-
ably reduced by some simplification as discussed in Section 2.2.1, holding high 
coding gain. If desired, we can replace the DCT-II matrix by any other orthonor-
mal matrix with symmetric/antisymmetric basis vectors according to the object 
function.

2.3.2 For Odd ill

In the following, the proposed design procedure with an 

and a technique of delay realization for odd AI are shown 

dure is as follows, where N is the overlapping factor:

evolutionary approach 

. The proposed proce-

Step 1: Start with proper Eo(z), for example, by 
   DCT (DCT-I) as the matrix C and letting REO 

   optimize Eo(z).

Step 2: Initialize E2(e+l) (z) 
   increment as e + 1

by using E1e(z)

putting the AI-point 
= I m . Then, set e =

as E2(e±1) (

type-I 

0 and

  = ti-tE2e(z), and

Step 3: Optimize E2e(z) 
    is, e reaches to L =

, and go to Step 2 until the order 2e reaches to N, 
N/2.

that
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This procedure is applicable to any object function . Similar to the case of even-
number of channels , there is a simple mapping procedure by which the initializa-
tion in Step 2 can be achieved in the lattice structure . The procedure is based on 
the following lemma:

Lemma 2.2. Let  E„(z) be a matrix of order ri. provided as in Eq. (2.48) 
f = n/2. When

and

RD? = Roe = DAt. (2.54)

En (z)can be represented as follows:

En(z) = z-lE„_2(z). (2.55)

where E„_2 (Z) is a polyphase matrix of order n — 2, which satisfi 
PU properties.

es the LP and

Proof Substituted Eq. (2.54), RE,QE(z)Ro,Qo(z) results in ti-lI~t . Hence, 
from Eq. (2.48), Eq. (2.55) holds.^

  Eq. (2.55) implies that En( z) is identical to E.n_2(z) except for the delay. 
Thus, to design En(z), well-designed E„_2 (z) should be a good candidate for the 
starting guess, appended the section P7'REeQE(z)RoeQo(z)P with the matrices 
in Eq. (2.54). 

   In addition, the proposed procedure at least guarantees that the performance 
of the resulting system is not worse than that of the lower order system. In this 
point of view, the proposed structure is preferable since, by simply choosing the 
matrices (Ds and (DA as (,'1-I+1)/2-point  DCT-I and (M— 1) /2 -point type-III DCT 
(DCT-III), respectively, the matrix C in Eq. (2.48) can be set as the ? I-point DCT-
I [30], which provides a good starting guess of E0 (z) with REQ = Ititfor most 
practical object functions and has several fast algorithms [30]. In other words, 
insignificant local minimum solutions can be avoided and the matrix C can be 
efficently implemented.

2.4 Design Examples

In order to verify the significance of the proposed structure , some design examples 
are given.
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Table 2.1: Coding gain CsBc of several transforms , for an AR(l) signal with p = 0.95 
        and computational complexities (M = 8). N denotes the order of the corre-

        sponding polyphase matrix. #MUL's and #ADD's stand for the numbers of 

        multiplications and additions per block, respectively.

TRANSFORM  CSBC

[dB]

#MUL's

[/Block]

#ADD's

[/Block]

DCT-II I 8.825 13 29

LOT-Fast I n 9.198 22 54

Conventional

DCT-based GenLOT

2

3

9.180

9.360

77

109

109

149

Proposed

GenLOT

0

1

2

3

8.846

9.269

9.394

9.463

45

77

109

141

53

93

133

173

Proposed Fast

GenLOT

0

1

2

3

8.827

9.232

9.315

9.438

?2

31

40

49

38

63

88

113

2.4.1 For Even  1V1

The following shows the design examples of even-channel LPPUFBs with the 

proposed lattice structure, where the object function of optimization is chosen as 
the maximum coding gain Gsac• 

Table.2.1 shows the resulting GsBc'S of the proposed GenLOT and its fast 
structure which are optimized for an AR(1) signal with p = 0.95 (Appendix B), 
and also their implementation complexities, where the number of channels _l/ was 
fixed to 8. Those of DCT-II [30], the type-I fast LOT (denoted as LOT- FAST I) 

[21,22] and the conventional DCT based GenLOT [ 1 1, 12] are also shown, where 
any simplification for fast implementation is not assumed for the conventional 
GenLOT. 
  From Tab.2.1, the following things are noticed: 1) Gsnc of the proposed fast 

GenLOT is comparable to that of the entire structure, and the implementation is 
more efficient. 2) Gsac of the proposed fast GenLOT is higher than that of the 
conventional DCT-based GenLOT where no simplification is assumed, and the 
implementation is more efficient. Summarizing, the fast implementation of the 

proposed fast GenLOT is superior to the conventional technique in terms of the 
coding gain, in spite of the parameter reduction. 

  As an example, Table. 2.2 gives the optimized angles H,,,,i of the proposed
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Table 2.2: A design example of the proposed fast GenLOT: angles 0m .j 
AR(1) signal with p = 0.95 (M = 8, N = 3).

optimized for an

 OM.?

1

rrz

0 -0 .15g -0 .02g -0 .04;i

1 1.297 -0 .03g 0.93;r

1.177 -0 .01g 1.057

3 0.857 -0 .15g 1.197

fast GenLOT, where  Al = 8 and N = 3. Besides, the amplitude and 

responses of the optimized analysis filters Hk(z) are given in Fig. 2.6.
impulse

2.4.2 For Odd 1V1

In order to verify the significance of the proposed method for odd AI, some design 
examples are shown, where C is fixed as the M-point DCT-I matrix. Figure 2.7 (a) 
and (b) give the amplitude responses of 9 analysis filters designed for coding gain 
GsBC for AR(1) process with the correlation coefficient p = 0.95, and those for 
minimum stop-band attenuation As, respectively, where Al = 9, N = 6(L = 3) 
and each analysis filter has Al (N + 1) = 63 tap length. For maximizing As, 
transition-band width of each filter is set to 7r/2M = 7r/18 [rad]. These examples 
are obtained by using the routines ' fminu' for (a) and ' minimax' for (b) provided 
by MATLAB optimization toolbox [32]. The resulting coding gain and minimum 
stop-band attenuation are GsBC, = 9.65 [dB] and As = 30.9 [dB], respectively. 

  In Fig. 2.8, the resulting GsBC and As are shown for M = 3, 5, 7 and 9. 
The coding gain GSBC is maximized for AR(1) process with p = 0.95, and the 
minimum stop-band attenuation As is maximized with the transition-band-width 
7r/2AI [rad]. Figure 2.8 shows that, as the overlapping factor (or the order of 

polyphase matrix ) N increases, both of GSBC and As increase for M = 5.7 and 
9. This illustrates that the recursive initialization procedure does not yield worse 
solution than that of the system which is used as the starting guess. This statement 
is also true for Al = 3. However, the performance does not improved even if the 
order increases. This is because the LPPU condition is crucial for this case.

2.5 Summary

In this chapter, two new structures of ll-channel real-coefficient linear-phase pa-

raunitary filter banks (LPPUFBs) were proposed for both of even and odd M. The
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(a) Filters designed for maximizing coding gain GSBC for AR(1) process 
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(b) Filters designed for maximizing minimum stop-band attenuation, 
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Figure 2.7: Design examples: amplitude responses of 9 analysis filters, 
N = 6(L = 3) and the length of each filter is 63.

where /VT = 9,
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proposed structure for even _\I can be regarded as a new representation of the con-
ventional DCT-based GenLOT . The proposed structure for even :\I has the signif-
icant feature that a fast implementation is achievable by simplifying the structural 
componets without significant loss of the coding gain . It was also shown that 
the fast implementation is applicable to construct M -band linear-phase orthonor -
mal wavelets with regularity. Additionally , a lattice structure of odd-channel LP-
PUFBs was proposed, which solves the problem in the conventional structure 
shonw in [ 10] that one of the analysis and one of the synthesis filters are restricted 
to be of length \f. 

  With both of the proposed structures , it is allowed to design LPPUFBs by 
means of an unconstrained optimization process to minimize (or maximize) some 
object function. Both of the PU and LP properties are guaranteed while designing 
since these constraints are structurally imposed . 

  Any non-linear optimization, however , has no guarantee to yield the global 
minimum solution, and the result is sensitive to the starting guess . Thus, we 
considered avoiding insignificant local minimum solutions in the design phase , 
and proposed a recursive initialization design procedure by introducing a delay 
realization in the proposed structures . The recursive initialization procedure is 
applicable to any object function . Since the proposed structure for even f is 
based on DCT-II, it provides us a good initial guess especially for maximizing 
the coding gain. Some design examples showed the significance of the proposed 
method.
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Chapter 3

Structure for Finite -Duration

Sequences

In this chapter, an efficient structure of GenLOT (see Chapter 2) for finite-duration 
sequences is proposed , where the number of channels is even. The proposed struc-
ture is derived from the symmetric extension method [5-9] , and enables us to 
limit the number of subband samples so that the total number of them equals to 
the number of original ones. In fact , the structure does not require any redundant 
operations involved in the extension of sequences . The fast implementation pro-
vided in Section  2.2.1 is still available. Additionally, the proposed structure can 
be regarded as a generalized structure of LOT for finite-duration sequences . The 
proposed structure is shown to have less computational complexity than that of the 
direct symmetric-extension approach . It is also shown that ilI-band discrete-time 
wavelet transforms (DTWT) for finite-duration sequences can be constructed with 
the proposed structure.

  In addition, the application to JPEG/MPEG-compatible subband codec (SBC) 

systems is considered. Compatible here means the ability of SBC systems to 

encode and decode the standard bit-streams , that is, JPEG for still pictures and 
MPEG 1 and 2 for moving ones. Since the proposed structure consists of the block 

DCT employed in JPEG and MPEG , the hardware-module or software-routine of 
the block DCT can be shared in both of the standard and subband coding pro -
cesses. In addition, modules or routines after DCT and GenLOT , such as quan-
tization and entropy coding, can be used in common , since the subband signals 
have the identical format to that of the DCT coefficients . The system enables us 
to efficiently realize the compatibility .

This chapter uses the following notations:

41
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Suhhand ,ignak

(n.)

(

 E ,ti-

t1

-1
- 1 -M

L1,4.

1 V-1

'l r

 Analysis hank

yo(1) 

 /11(1) 

.11,11-1 (/)

Figure 3.1: Implementation of analysis process of lapped transforms.

  t BAll8Al • the 1I/2 x 211  matrices defined for even 1I as follows:

B ~11 

B ,11

(IA1/2 
(IA1/2

Iar/2) 
—IRI/2 )

(3.1) 

(3.2)

C ,11 the M x 111 orthonormal type-II DCT (DCT-II) matrix, of which k. n-th 

element is defined as follows: 

                \/----2k(n +,;)7r-\ [CA1]k,nA/ Ck cos  A/(3.3)

for k, n = 0, 1, 2, • • • , M — 1, where co = 1/0 and ck = 1 for k 0 [30]. 

  Although we consider applying GenLOT to image coding, the following dis-

cussion is dealt with in one-dimension on the assumption that the processing is 

separable.

3.1 Transform Matrix Representation 

GenLOT is a structure of even-channel LPPUFBs where all filters are of length a 

multiple of the number of channels, and known to be complete for such class of 

filter banks (see Chapter 2). Let EN (z) be the polyphase matrix of a GenLOT's 
analysis bank with the overlapping factor N. Now, EN (z) can be written in the 
following form: 

nr 
E(z) = Pti1 II R7nQ(z) EQJ:11,(3.4) 

in=1
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where

 Rn = O
0 )Urn 

   

I I .11

(3.5)

B 11, (3.6) 

           1743sQ 
(3_7)               E0 _~-                        O 43,E- J .1r 

/ 

where Wr„, U,,,,, oDs, and clIA are M/2 x 11/2 orthonormal matrices. When N = 
0, E0(ti) = P 11E0. Equation (3.4) is referred to as the general form of GenLOT. 
Substituted E0 = R0P.11CA,f, the form yields the expression as in Eq. (2.30). 

   The analysis process of GenLOT can be expressed by means of the corre-
sponding transform matrix EN as shown in Fig. 3.1, where EA is of size _lI x 
L1, = -1I x (N + 1)M, and 7 is the parameter which controls the overall system 
delay. The parameter will be introduced in the latter discussion, and it does not 
affect the property of GenLOT, but with the delay. 

   The GenLOT matrix EN can be obtained from the following property. Let 

Ern, = P 11Era•(3.8) 
where E,,1 is a GenLOT matrix of which overlapping factor is Inn., that is, 1I x 
(iii + 1) -1I matrix. Then, Er,,, can be represented in terms of E,„_1 as follows: 

                     Err, = R~raQEm-1•OA/(3 .9)                                        Q
lI,Em-1 

where 

                           1B :v--r0            Q =,
~DAlBAl Q B(3.10) 

Hence, the matrix EA' can be obtained by recursively using the relation in Eq. (3.9) 
from m. = 1 to N and the following relation: 

                EAT = P 1[Enr•(3 .11) 
   By controlling matrices Wm , Um, (13s and (PA, any GenLOT can be generated. 
In fact, the general form of GenLOT covers any LPPUFB where the number of 

decomposition Al is even, the length of each filter is a multiple of AI and the filter 

coefficients are real. 

  Let hk(n) be the impulse response of Hk(ti), then the following relation holds. 
hk(rr, + _ [EN]k•G,,-1-rr , n = 0, 1, 2, • • • , Lh — 1 (3.12) 

where Lh = (N+ 1)M and [E;v]k,,, denotes the k, n-th element of E;v. Each filter H
k (ti) is symmetric for even k and anti-symmetric for odd k.
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 ...T1°°
?!7 1111T ..-
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 n  'n

(a) HSHS (b) HAHA

Figure 3.2: Examples of symmetric-periodic sequences (SPS). The representative sam-

         ples x(n) are marked by open circles.

3.2 Symmetric Extension Method

In practical applications, still images and frames in moving pictures can be re-

garded as finite-duration signals in the horizontal or vertical direction. Note that 
linear-convolution of a finite-duration signal with a filter causes a result of longer 

duration than the original, that is, the size is increased. To limit the data-size-

increasing, let us consider utilizing the symmetric extension method for GenLOT 

in the similar way as discussed in the article [11, 12].

3.2.1 Assumption on Signal Extension 

In the following, some assumptions on the proposed structure to avoid the data-
size-increasing by means of the symmetric extension method are shown. 
  Let 11I be the number of channels of GenLOT, and x(n) be a finite-duration 

signal of length Lx, which has non-zero values only for n = 0, 1, 2 ... Lx — 1. 

Additionally, assume that Lz is a multiple of M as

L1 = (3.13)

for some positive integer Ly. Linear convolution of the signal x(n) with a filter of 
length LI, causes a signal of length Lh + L1 — 1. Thus, Lh —1 point size-increasing 

causes. 

  To avoid this data-size-increasing with the symmetric extension method, let us 

consider extending x(n) to the type HSHS symmetric-periodic sequences (SPS), 
where HSHS is the type of SPS that both the left and right points of representative 
samples have half-sample symmetry(HS) as shown in Fig. 3.2 (a) [31]. 

  In the following, :z(n) denotes the SPS of x(n). From the definition, the SPS
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 .z(n) is the sequence which satisfies the following equation [33]:

11 

                       (Ci + n + =:x C,—n— (3.14)

where Cx denotes a center of symmetry, which can be represented with an arbi-

trary integer p as

1                C
a: _ -- + pL1.(3.15) 

In addition, there exists the relation J-(n) = x(n) for n = 0, 1, 2, • - , Li — 1, and 
the period is 2Lr. 

  On the other hand, all filters in GenLOT considered here are of length L = 

(N + 1)M and either symmetric or antisymmetric. Hence, they have a center of 
symmetry. The center of the analysis filters Hk (z) provided in Eq. (3.12) can be 
expressed as

Ch =
— 1

+ _
(N + 1) M — 1

9
+7. (3.16)

Let Cy = (Cx + C1,,)/:1.1. If Cy satisfies the following equation:

Cy = — ~+ pLy, (3.17) 

then the data-size-increasing is avoided. Because the above equation implies that 

each subband signal yk(i) is the SPS of either HSHS or HAHA with the cen-
ter Cy and period 2Ly, where HAHA is the type of SPS that both the left and 
right points of the representative samples have half-sample antisymmetry (HA) as 
shown in Fig. 3.2(b) [31]. With the above Cy, there are L y representative samples 
in each subband signal, and the total results in LyM = Li representative samples. 
Eq. (3.17) is a sufficient condition to avoid the size-increasing. Note that there 
is another choice of Cy, that is, Cy = pLy. Equation (3.17) is, however, proper 
because it guarantees that the number of representative samples in each subband 
signal is equal to that of the others. 

  It can easily be verified that Eq. (3.17) is satisfied under the following condi-
tion:

Lh-1 Al — 1 (N+2)M-2       _—
2—_—2(3.18) 

  Note that we will assume this choice of -y in our proposed structure although it 
affects the causality of the system. Actually, the non-causality in spatial-domain 
is not as important as that in time-domain.
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3.2.2 Number of Extra Samples 

The following discusses the number of extra samples caused by the symmetric 
extension, where we suppose that L, >  _1-IN/2, which is usually satisfied in 

practical applications. 
  On the assumptions made in the previous section, GenLOT as shown in Fig. 

3.1 can be expressed as in Eq. (3.19).

Yg = E;ti'xi, 

where x is the LI,, x 1 vector defined from the SPS .t(n.) by 

ki = (.17(i:1f-^ L/,.-1).i(i,1f —Lh)......z(r:.11—^,))~ 

and ygi is the .1f x 1 vector expressed as follows: 

                  Ygi = (N0(1),;i(0), ...1/.\[-1(1))I 

where i k(i) is the k-th subband signal of :zJ(n). 
  Recall that each subband signal 9k(i) is an SPS. In detail,  

symmetry of the corresponding 

are HAHA with period 2L,r. These subband signals can be uniquel , 
from their own L,1 representative 

fact implies that the set of vectors 

reconstruct the original signal x(n) in the synthesis process. 
  From Eqs. (3.18)(3.19) and (3.20), it can be noticed 

.i•(n) for the range from n.=—y—Lj-1=—N.1I/21 
L. + N:1I/2 are required to obtain the representative 

 = 0. 1. 2, . • • , Ly — 1. In conclusion at here , N11 I extra sample 
operated in this symmetric extension.

(3.19)

(3.20)

(3.21)

                     signal 9k(i) is an SPS. In detail, ording to the 
                         lters, kW for even A: are HSHS, and for odd I~• 

                     These subband signals can be uniquely determined 
1~ — 1. This 

sufficient to perfectly

                                       that Li+ I samples in 
                                             1)M + = 
                                            subband vectors yg,, for 

                                          extra s have to be

3.2.3 Global Matrix Representation 

For the discussion in Section 3.3, it is worth globally representing the GenLOT 

process with the symmetric extension. Let x be the La x 1 vector defined from 
the original signal x(n,) of length Lx by 

x = WO), (1), ... x(Lz. — 1))' _(3.72) 

In addition, let yg be the Lx x 1 vector defined by 

r rI(3 23)                     Yg = (YY'.., ygc,y - i
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which consists of the representative subband signals . 
   Then, the following global matrix representation can be given . 

                 y =P'~Fv..VA..X•(3.24) g

where P is the L„ x L,r matrix defined by P = e ~1 "~ 1 P,11, F„,,„ is the (L, + 
(n. — m)af) x (L,r + nill) matrix defined by 

                          ( Ern .0.11, 
O .  0 F

71.711 -(3.25) 

                                                                                                                                                                                                           • 

                   0 E r,,. / 

and A;,>> is the (L,r + 277) x L.,, matrix defined for n < L.r by 

/J71, O 
A(;1) = I1_,r(3.26) 

0 Jr1 

which symmetrically extends the input vector . It can be noticed that 

3.3 Efficient Structure 

As was mentioned in the previous section , there are some redundant operations in 
Eq. (3.24). In the following , let us consider removing them. 

3.3.1 Elimination of Redundancy 

Let us consider eliminating the redundancy in the GenLOT as in Eq . (3.24). 
  Rewriting the right hand side of Eq. (3 .9) in terms of E, by recursively 

applying itself once more, we have 

                               / Em.-2 • 0,11 
Er1, = Grr1 0:11, Ern-2 ,0,11 (3.27) 

0:11,0 .11, Enl / 

where Gm is the ill x 3M matrix expressed as follows: 

Gr>7. = Rrr1Q Rrrr 1 Q • 0.11(3.28)                                    O
m. Rm.- 1 Q



48 CHAPTER 3. STRUCTURE FOR FINITE-DURATION SEQUENCES 

  By using  G,,,, let us define the (Lr + (n — rn) 11) x (L_, + (n — rn + 2)111) 
matrix S,, ,,71 by

SIL,ni. -

 Gm 

0  Gm  , 0 

0 , G m.

(3.29)

For even N 

For an even overlapping factor  N, Eq. (3.24) can be rewritten in terms of S„ 

follows:

Yg = PT SN,,'~rSN,N-2 ... SN,2FN,011ix. 

  From the following lemma, the extra operations can be removed. 

Lemma 3.1. Let us define the following 11 x 2M matrices G^n, G',!,, by 

         G" = 1-Z 
              17Wm -1 0                                 BA!0 

,n 4rn0Bti
1Z,,,-10 B11 

           _B _1,1Z7n- 1 0(13—                                                         ;1,10         G3 .n,——1Zrn0W0B
;11                                      ~rn-1 

where Z, = R,7zDMrBa1, and the Lx x L, matrix Sm by

S„~ =

Then, Eq. (3.30) can be  reduced 

Yg 

where Fo = Fo,o = e~eyoI 
Proof The matrix to has the 
following relation can be derived:

G a,O .,,O Al, 

Grn 10 Ail0 

OM, Grn 

O G„1 

,O_M,Gin 

   to 

ox, 

le property that E0JA,f 

F ̂ ',0A(j) . `7f=A(,~nvF o,

 DmEo•

'ism as 

(3.30)

(3.31) 

(3.32)

(3.33)

From this,

(3.34) 

  the 

(3.35)
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 where IQ') is the (L1. + 272) x Lr extension matrix for n < L.r defined by 

JDn O\ 
A(D) = ILx(3.36) 

\ O Dn/ 

where Dn is the n, x n, matrix defined, when n is a multiple of M, by 

O ... 0 D.tim\ 
0 • - - DA,/ 0 D

n =.(3.37 ) 

\Dn1 ... 0 O 

   In addition, the matrix Grn has the following properties: 

O DAT1 
              Gm(Dvi  0 = D ,11 G;;, ,(3.38) 

                             I.1-T O 
/ O I M \ 

Grn 0 Dm = DA/ G;,..(3.39) \
D:1T 0 

and 

            O 0 Dm 

Grn 0 Dm 0 = DmGrn •(3.40) 
                DA,/ 0 0 

Thus, the following relation can be derived: 

           SA(D) =IC'
()Sm.(3.41) 

           N(N(N                 rra+2 -rn)N-rn 

  Applying Eqs. (3.35) and (3.41) to Eq. (3.30), we can obtain the relation that 

           PT-S,~r(D) yg=PT-2 ... SN,2AA,NFox 

                                                                                                                                                                                         2 

                 = PTSN,:vS,~-.v-~2. . . A(t') S2Fx                                               =-,:-(N-2)0 

                = PTSN ,NA(A°)SN-2 ... S2F0x. (3.42) 

Consequently, Eq. (3.34) is proved.^
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Figure 3.3: Structures of GenLOT for finite-duration sequences.
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Figure 3.4: The structure of the matrix P . The letters  `E' and `0' denote the even and 
         odd channels. As an example, the structure of P8 is also given . Reversing 

         the direction of each arrow results in PT.
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Figure 3.5: The structure of the matrix R0 . Each branch carries M/2 samples. The 
         letters `E' and `0' denote the even and odd channels .
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Figure 3.6: A simplified representation of the structure for the matrix Sm. Each branch 
         carries M/2 samples. The letters `E' and `O' denote the even and odd chan-

            nels.

  Equation (3.34) implies that the redundancy caused by the signal extension is 

removed. Note that all of the matrices S,n,, Ro, P and Fo are of size L1 x L.r 
and do not require any signal extension. Figure 3.3 (a) shows the structure for 

finite-duration sequences. The structures for P and R0 are also given in Figs . 3.4 
and 3.5, respectively. PT is implemented by reversing the direction of each arrow 

in the structure shown in Fig. 3.4. Besides, the structure of S„, can be represented 

as shown in Fig. 3.6, since Eq. (3.33) is rewritten as follows:

1 -/2Wm_i0 01- 
Srn = Zrn 0 BZirn-1 0 B 

\ 0 0 2W771_1/
(3.43)

L1rL where Z, = e Ee Y pZrnand B = Eeyi Bm . Besides, Z„ = e E, _„ Zm 
and B = e Ef=0B.ti!

For odd N

For an odd number of overlapping factor N, Eq. (3.24) can be rewritten in terms 

of Sn ,„,, as follows:

Yg =PTS-V,NSNA-2...SN,.3F:~~lA~;wx.(3.44)
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Lemma 3.2. Let us define the  following M x (,AI + i\I/2) matrices E? , E11 and 
Li x L,,, matrix F a . 

              E~ = —1z,  2~sJ Ai 0                                                    (3.45)                2 
V 0 B.+1E0/ 

1 (B :17Eo0                Ei=~ZH
0\i-(13.^)(3.46) 

                            EI ,D.'1,0Al, 
       E1 0 

F1 = 0.1t,E1, 

              0, E1 
                                             0;1t,E 

Then, Eq. (3.44) can be reduced to 

yg = PrS,,; S,v_z ... S3F1x. 

Proof E1 given in Eq. (3.9) has the properties that 

E1J2M = D:1rE1,

(3.47)

(3.48)

(3.49)

 /  O J ti,1 
                  E1 J:,r 0 =D,rEi 

OM O 

/0 'l\ 
E1 0 J :,~ = DA.1E'i 

\JA.1 O/ 

Thus, there exists the following relation: 

                 FN1~(')=A(z'(w-a~F i .

(3.50)

(3.51)

(3.52)

As a result, in the similar way to the proof for Lemma 1, Eq. (3.44) is proved. ^ 

  Equation (3.44) implies that GenLOT with the symmetric extension method 

for odd N can also be implemented with no signal extension .
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3.3.2 Computational Complexity 

Now, let us discuss the computational complexity of the proposed structure. The 
efficiency by comparing with the structure corresponding to Eq. (3.24), that is, the 
redundant one will be shown. In the following, let us assume that the DCT-based 
fast GenLOT described in Section  2.2.1 is applied. 
  Let 11,(EN) and a(EN) be the numbers of multiplications and additions of E .v 

per block, respectively. Then, /.L(EN) and a(E,v) are obtained as follows: 

p(EN) _ p-x(EN) + /7,(3.53) 
a(EN) = apo(EN) + d.,(3.54) 

where /J,x (E;\) and co,x (EN) are the numbers of multiplications and additions of 
EN per block for infinite-duration signals (Section 2.2.1). These are provided as 
follows: 

p,x(E.v) = {1(Cm) + (N+1)p(U)(3.55) 
a:x.(EN) = a(CA1) + (N+1)a(U) + NM.(3.56) 

where p(Cm) and a(CAI) denote the numbers of multiplications and additions of 
C,11 per block, respectively, and /.1(U) and a(U) are those of Um, respectively. 

1.e(U) and c(U) are provided as p,(U) = a(U) = 3(M — 2)/2. 
p and d depend on the way of the realization for finite-duration signals. If we 

construct the system based on Eq. (3.24), that is, the redundant structure, those 
are provided as follows:

l ~a = --- ([L(C.!) + --------`2 
= — a(Cq,l) + --------a(U) + NM . 

Ly ^ 

  On the other hand, those of the proposed structure for even N result in 

1 /N 
                 p = -- —it(U) , 

Ly 2 

              1 
                    =—                  L(—Na(U)+ NM, 

y and for odd N, 

N/- _ -1((Cr) — 2p,(C.~,) +1~+ 1R(U), 
Ly2 

       =-1a(Cm) - 2a(Cm) + + 1a(U) + NM . 
Ly22

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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Table 3.1: Computational complexity of the DCT-based fast GenLOT with the symmetric 
        extension, for M = 8, L1 = 256 (Lv = 32).

 N Redundant  Structure Proposed Structure

(x(EN ) a(EN)
0 22.00 38.00 22.00 (100.0%) 38.00 (100.0%)

31.69 56.44 30.62 ( 96.6%) 54.12 (9.5.9%)
41.66 75.66 39.72 ( 95.3%) 71.22 (94.1 %)

3 51.91 95.66 48.34 ( 93.1%) 87.34 ( 91.3%)
4 62.44 116.44 57.44 ( 92.0%) 104.44 ( 89.7%)

5 73.25 138.00 66.06 ( 90.2%) 120.56 ( 87.4%)
6 84.34 160.34 75.16 (89.1%) 137.66(85.9%)

In the above equations, the division with a power of two, such as 1/2 and 1/4, and 
the multiplication with  —1 are not taken into account. 

  Table 3.1 shows the computational complexity of the structures with the signal 
extension expressed as in Eq. (3.24) and the proposed structure expressed as in 
Eqs. (3.34)(3.48), where it is assumed that M = 8 and L,. = 256 (Ly = 32), and 
the Wang's algorithm is used for DCT (fi(C8) = 13 and o(C8) = 29) [30, 34]. 
From Table 3.1, it can be noticed that , when the overlapping factor N is equal to 
or greater than 1, the proposed structure can save the computational complexity

, f
or example, about the 5% saving are achieved when N = 2.

3.3.3 Structure of the Inverse GenLOT

From the PU property of GenLOT, the structure of the synthesis process , that is, 
the inverse transform, is simply obtained from that of the analysis process , that is, 
the forward transform . 

   Let FN = PTSNS,v _2 • • • S2F0 for even N and FN = PTS _vSN_z • • • S.)Fi 
for odd N, then yg can be expressed as

yg = F,vx.(3.63) 

Note that the matrix Fo is orthonormal. In addition, from the fact that G~; Grr7' = 
IM' G7377 G  nT = I,tii, and G„1G i = Im, the orthonormality of S7, is verified. 
Furthermore, from the fact that EIET = Im,Ei El 1. = Inr and E? K7 = Im, F1 
is also orthonormal. Therefore , the following relation holds. 

FTNF_v = F:vF~- = IL,.(3.64) 
As a result, FN is orthonormal . Thus, the synthesis process can be achieved by 

processing from right to left and transposing each matrix in Fig. 3.3.
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3.3.4 Structure for M-Band DTWT 

Next, it is shown that the proposed structure can be applied to the construction of 
the linear-phase orthonormal  *1-band DTWT for finite-duration sequences. 

  The *-band DTWT can be realized by band decomposition of the channels 
of the low-pass filter Ho (z) in the M-channel filter bank, using the tree algorithm 
[35]. When the filter bank has the PU and LP properties, the generated DTWT 
is orthonormal and has the LP property. Thus, using GenLOT, it is possible to 

generate an orthonrmal linear-phase M band DTWT [ 14]. 
  The following discussion will be based on the structure shown in Fig. 3.1, 

where it is assumed that the matrix EN is given by Eqs. (3.9) and (3.11), and 
is given by Eq. (3.18). In addition, it is assumed that the original signal .r(n) of 
length Ls is extended to the type-HSHS SPS :z:(rt ), which is input to the DTWT.

Lemma 3.3. Let i?k1) (i1) he k-th subband channel output of the first-level, which 
is obtained by carrying out GenLOT on ZL(n,), and ykt) (ii) be k-th subband channel 
output of the e-th level, which is obtained by carrying out GenLOT on,ijof1(/e_1) 
forI = 2,3,4,... ,.C. 

  If the input length L. is given as

L1 = L ycAlc (3.65)

for an arbitrary positive integer L0 , then ,yA° (it) is HSHS for even k and HAHA 
for odd k, where the representative numbers of samples is Lye = LyL,1IG-e.

Proof. Lx satisfies the condition given in Eq. (3.13). Therefore, as discussed in 

Section 3.2.1, 0(ki)(i1) results in HSHS for even k and HAHA for odd k, where the 
number of the representative samples is Ly1 = LlicAlC-1. Since .9o1)(i1) is SPS 
of HSHS of length Ly1, 2) (i9) also results in HSHS for even k and HAHA for 
odd k. Obviously, the number of the representative samples is Ly2 = LyE_1I' 

As a result, this discussion can be repeated until the level G is reached , and the 
conclusion is obtained.^

  As discussed in Lemma 3.3, the process of GenLOT in each level is carried out 

under the assumption described in Section 3.2.1. Therefore, under the condition of 

Eq. (3.65), the proposed structure of GenLOT for finite-duration sequences can be 

directly applied in each level. As a result, for the entire M-band DTWT, avoiding 

the size-increasing with the symmetric extension method can be realized without 

redundancy.



56 CHAPTER 3. STRUCTURE FOR FINITE-DURATION SEQUENCES

3.3.4 Structure for M-Band DTWT

Next, it is shown that the proposed structure can be applied to the construction of 
the linear-phase orthonormal M-band DTWT for finite-duration sequences. 

  The  M-band DTWT can be realized by band decomposition of the channels 
of the low-pass filter Ho (z,) in the M-channel filter bank, using the tree algorithm 
[35]. When the filter bank has the PU and LP properties, the generated DTWT 
is orthonormal and has the LP property. Thus, using GenLOT, it is possible to 

generate an orthonrmal linear-phase M band DTWT [ 14]. 
  The following discussion will be based on the structure shown in Fig. 3.1, 

where it is assumed that the matrix EN is given by Eqs. (3.9) and (3.1 1 ), and ^r 
is given by Eq. (3.18). In addition, it is assumed that the original signal x(n) of 
length L, is extended to the type-HSHS SPS .1(n), which is input to the DTWT.

Lemma 3.3. Let i~ki)(ii) be k-th subband channel output of the first-level, which 
is obtained by carr~Ong out GenLOT on ~i,(n,), and ykt) (ie) be k-th subband channel 
output of the e-th level, which is obtained by out GenLOT onyof1 (i r_ 1 ) 
for F. = 2, 3, 4.... , .C. 

  If the input length L. is given as

L1 = Lyc=11'c (3.65)

for an arbitrary positive integer 4E, then yA° (if) is HSHS for even k and HAHA 
for odd k, where the representative numbers of samples is Lyi = Ly~.1IG-~.

Proof Lx satisfies the condition given in Eq. (3.13). Therefore, as discussed in 
Section 3.2.1, 0 1) (ii) results in HSHS for even k and HAHA for odd k, where the 
number of the representative samples is L,,1 = LyElic-1 Since 90(1) (i1)is SPS 

of HSHS of length Lo ,k.(2) (i2) also results in HSHS for even k and HAHA for 
odd k. Obviously, the number of the representative samples is Ly2 = Ly .calc 
As a result, this discussion can be repeated until the level G is reached, and the 

conclusion is obtained.^

  As discussed in Lemma 3.3, the process of GenLOT in each level is carried out 

under the assumption described in Section 3.2.1. Therefore, under the condition of 

Eq. (3.65), the proposed structure of GenLOT for finite-duration sequences can be 

directly applied in each level. As a result, for the entire M-band DTWT , avoiding 
the size-increasing with the symmetric extension method can be realized without 

redundancy.



58 CHAPTER 3. STRUCTURE FOR FINITE-DURATION SEQUENCES

 C

 xc

XI

• 

• 

a

xl
„-1

 X

 CA!
Y c

CM

•

•

•

Cm

YcO

 Yc

• 

• 

•

YcL—i

cc

 Bit-strea

0

Figure 3.7: A simplified representation of the structure of the block DCT coding sys-

         tem in the global representation. Decoding can be achieved by reversing the 

         direction of each arrow and transposing the matrix C.

where  Yci denotes the i-th DCT of the vector xi. Lastly , each yCt is processed, 
for example, quantized and entropy-coded. In MPEG, the difference between an 

original and the motion-compensated predictive signals are used as the input to 

the DCT. 

  It is worth globally representing the block DCT. Let x be the Lx x 1 vector 

defined from the original signal x(11) of length L1 as in Eq. (3.22). Then, the 
block DCT can also be expressed as follows:

where C is the LT x

yc = Cx.

Lx matrix defined by C = e ELy-1       e_oCm, and

  TTT Yc = (YcoYTi...Y~Ly-1)T

(3.68)

(3.69)

  From the orthonormality of C, the decoder can be constructed by reversing 

the direction of each arrow and transposing the matrix C in the structure shown in 

Fig. 3.7.

3.4.2 Requirements

In this thesis, we consider that the analysis-synthesis systems which satisfy the 

following requirements have to be used in the SBC systems which are compatible 

with the standards, as well as the PU and LP properties. 

  First requirement is the identical format of subband signals with the transform 

coefficients of the block DCT, such as the size of and the number of blocks so that
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subband signals can be processed in common with the transform coefficients of 

the block DCT. Second requirement is that the redundancy caused by the signal 

extension has to be removed. This is because signal extension causes the pre -

processing to extend the input signals and the post-processing to limit the output 
signals, as well as the redundant operations and the use of extra memory . The last 
requirement is that filter banks have to consist of the identical block DCT with the 

standard algorithms, since the overall structure of the compatible SBC system can 

be simplified by using the block DCT in common . 
  The LOT of finite-duration signals satisfies the identical format and achieves 

the symmetric extension approach without redundancy . However, the block DCT 
is half shifted and it does not consist of the identical block DCT with the stan -
dards. With the same reason , the proposed structure for odd-channel GenLOT in 
Fig. 3.3 (b) is not favorable. However , the proposed structure for an even number 
of channels shown in Fig . 3.3 (a) can yield the structure based on the identical 
block DCT with the standards .

3.4.3 Module/Routine Sharing 

Equation (3.23) shows that the set of subband signals y
g has the identical format 

with that of yc in Eq. (3.69) . Note that the choice of ^, in Eq . (3.18) makes it 
possible. In addition, Eqs. (3.34) and (3.48) imply that the redundancy caused by 
the signal extension is removed . 

  For the DCT-based GenLOT given in Eq . (2.30), Eq. (3.34) can be rewritten 
as follows:

Yg = P2'S,ti.S v_2 . . . S2R0PCx, (3.70) 

where Ro = Ip y 1 1 Ro. The above equation shows that the DCT-based Gen-
LOT with the symmetric extension can be implemented with the block DCT as 
in Eq. (3.68). In contrast, even applied Eq . (2.30), Eq. (3.48) does not include 
the block DCT as in Eq . (3.68), since each DCT is half-shifted as compared with 
one in Eq. (3.68) in the same way to the conventional LOT for finite duration 
sequences [22, 31]. 

  In conclusion at here, GenLOT with the symmetric extension method can be 
removed its redundancy , so that the structure for even N includes the block DCT 
as in Eq. (3.68). However, the statement is not true for odd N on the assumption 
made in Section 3.2.1. Hence , in the following, let us consider only for the case 
of even N. 

  Figure 3.8 shows a simplified JPEG/MPEG-compatible SBC system based on 
the proposed GenLOT structure . As was mentioned before, the international stan-
dard algorithms for image coding , such as JPEG and MPEG, employ the block
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DCT codec technique . In the proposed system shown in Fig . 3.8, if we choose 
the bottom path for DCT (denoted by the dashed line) , the system generates bit-
streams coded with the standard DCT coder . If we choose the top path for Gen-
LOT (denoted by solid line), however , it generates bit-streams coded with Gen-
LOT. 

   Obviously, the block DCT process can be used both of the DCT-based and 

the GenLOT-based systems in common . In addition, since the subband signals 

yg can have the same block size, for example M = 8, and the same number 
of blocks Ly with those of yc , the processing for yg, such as quantization and 
entropy-coding, can also be implemented in common with those for y

c. In other 
words, when the system is realized by hardware , modules of the block DCT and 
the processing after DCT and GenLOT can be shared , and then the area on VLSI 
results in smaller than that of the separate realization . In case of software, the 
corresponding routines can be shared , and then amount of required memory is 
saved. 

  The problem left here is how to choose quantization and Huffman tables . This 
problem is, however, trivial in the implementation because these tables are multi-

plexed to the bit-streams and not specified even in both JPEG and MPEG. Thus , 
the system satisfies all the requirements stated in the Section 3.4.2. Furthermore, 
the DCT-based fast implementation described in Section 2 .2.1 can be applied di-
rectly. Note that the statements here still hold in the two dimensional separable 

applications. 

  Equation (3.64) implies that a JPEG/MPEG-compatible subband decoding 

system can be obtained by reversing the direction of each arrow and transposing 

each matrix in the structure shown in Fig . 3.8. Note that my proposed structure 
of GenLOT does not yield different results from that of the conventional DCT -
based GenLOT with the symmetric extension method (Chapter 2) . Hence, any 
design result of the DCT-based GenLOT can be directly applied , and the coding 
performance holds.

3.5 Summary

In this chapter, a structure of GenLOT for finite-duration sequences was proposed 

so as to remove the redundancy caused by the symmetric extension method , and 
to limit the number of subband samples so that the total number of them equals 

to the number of original ones . In fact, the structure does not require any re-
dundant operations involved in the extension of sequences . The proposed struc-
ture was shown to have less computational complexity than that of the direct 

symmetric-extension approach . An M-band discrete-time wavelet transform for 

finite-duration sequences was also discussed , and the condition for the number of
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channels  aI was indicated. 

  In addition, we considered applying the proposed structure to the SBC systems 

which are compatible with JPEG and MPEG. As a result, it becomes possible 

that, when the system is realized by hardware, modules of the block DCT and 

the processing after DCT and GenLOT can be shared. In case of software , the 
corresponding routines can be shared. Hence, the SBC systems can simply encode 

or decode the standard bit-streams.



Chapter 4

MD Linear-phase Paraunitary 

Banks

Filter

A lattice structure of multidimensional (MD) real-coefficient linear -phase parau-
nitary filter banks is proposed, which makes it possible to design such systems in 

a systematic manner. The proposed structure can produce MD -LPPUFBs whose 

filters all have the region of support Al  (Ms) , where M and E are the decimation 
and positive integer diagonal matrices, respectively, and JU (N) denotes the set of 
integer vectors in the fundamental parallelepiped (FPD) of a matrix N [ 1 J. It is 
shown that if Al (M) is reflection invariant with respect to some center, then the re-
flection invariance of A1 (Ms) is guaranteed. This fact is important in construct-
ing MD linear phase filter banks, because the reflection invariance is necessary for 

any linear phase filter. Since the proposed system structurally restricts both the pa -

raunitary and linear-phase properties , an unconstrained optimization process can 
be used to design MD-LPPUFBs . The proposed structure is developed for both an 

even and an odd number of channels, and includes the conventional 1-D system as 

a special case. It is also shown to be minimal , and the no-DC-leakage condition 
is presented. Some design examples will show the significance of the proposed 

structure for both the rectangular and non-rectangular decimation cases . 
  The following notation is used throughout this chapter .

D : the number of dimensions.

z:

Zm

a Dx
r~1 vector which consists of variables in a D-dimensional Z-domain, that  is,Z7^Y• • •7,            ~0,~1,~ Zip-1)T.

: a product defined by

                                   Zm7np „m1...~rrD                                                                                 I-1                          —o ''1'D -1(4.1) 

where m is a D x 1 integer vector , and rnk denotes the k-th element of m.

63
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zM : a D x 1 vector whose d-th element is defined by 

             ~Z~d—^0~1-D-1(4.2) 

    where M is a D x D nonsingular integer matrix, and Mk, denotes the k-th 

     row and e-th column element of M. 

1 : the D x 1 vector whose elements are all '1'. 

1 : the D x 1 vector defined by [1:']k = 1 for k E S, otherwise 0, where 
SC {0,1,• • • ,D - 11. 

./1/- : the set of D x 1 integer vectors. 

a~ (N) : the set of integer vectors in the fundamental parallelepiped generated 
    with a D x D nonsingular integer matrix N, which is defined by (N) = 

{ Nx E Ar x E [0, 1)D1, where [a, b) D denotes the set of D x 1 vectors x 
    so that the d-th component satisfies a < 1d < b [ l ]. 

.I(N) = det(N) : the absolute determinant of N, which equals the number of 
    elements in N (N). 

  In addition, the superscript ̀T' on a vector or matrix denotes the transposition. 
Furthermore, the tilde notation -' over a vector or matrix denotes the paraconju-
gation [ 1 ], for example E(z) = E* (z-1), where the subscript ̀ *' denotes the 
complex-conjugation of the coefficients.

4.1 Linear-phase Property 

As a preliminary, this section reviews the LP condition of MD filters, 

with the reflection invariance of their region of support.

and deals

4.1.1 MD-LP Filters 

Let H(z) be a D-dimensional filter. If H(z) satisfies Eq. (4.3), it is said to be 
linear-phase (LP). 

             H(z) = z-c2(4.3) 

where ch is a D x 1 vector, which represents the center of filter H(z) , and ch E 
^i is `1' when the filter H(z) is symmetric and '-1' when it is antisymmetric 

with respect to (w.r.t.) the center c11. 
  In the following, a theorem with regard to the region of support is shown.
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Figure 4.1: Reflection with respect to ch(D = 2) .

Theorem 4.1. Let Ali, be the region of support of a filter H(z) . If the filter H(z) 
is linear-phase, then the following equation holds: 

{rh(n) n E Nh} = Nh,(4.4) 

where c1, is the center and rh (n) = 2ch — n, the reflection w.rt. ci, (see Fig. 4.1). 

Proof As the time-domain representation of Eq. (4.3), we have 

                 h(n) _ '/h(rh(n)).(4 .5) 

Hence, the relation N, = {rh(n)In E A/-h} C .// holds. In addition, it can be 
verified that {rh (rh (n)) n E Nh — Al,,} C . The fact that rh (rh (n)) = n 
implies that Nh — .At, C JV hi. The only solution is .tih = Ach. Therefore, Eq. (4.4) 
holds. 

  The property expressed by Eq. (4.4) is referred to as reflection invariance , and 
such a region of support is said to be reflection invariant .

4.1.2 Polyphase Representation 

Taking Theorem 4.1 into account , let us present the LP condition in the polyphase 
representation. 

  Any MD filter H(z) can be represented in terms of the polyphase filters with 
a nonsingular integer matrix M, which is referred to as a decimation matrix or 
factor, as follows: 

             H(z) _\z-rfEm(zM),(4 .6) 
me ,\;(m)
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where Er„ (z) denotes the m-th type-I polyphase filter of H(z) w.r.t. the decima-
tion matrix M [ 1 ]. 

   Now, let us show three lemmas with regard to extension of the region of sup-

port (M), and consider the LP property in the polyphase representation. In the 
following, we let E = diag(No + 1, N1 + 1, . • • + 1) with positive integers 
Nd, and refer to as an extension matrix. 

Lemma 4.2. Consider an extension matrix E. The region of support Al (E) is 
reflection invariant w.r.t. the following center: 

           = -1n,(4.7)                    - 9 

where n = (No, 1, ... , T 

Proof. Since the region of support N (E) forms a hyper-cube, the relation {n -
                                                             n n E (E.)). = (E) holds. Hence, the reflection invariance is satisfied w.r.t. 

the center c= in Eq. (4.7). 

Lemma 4.3. Consider the product of a decimation matrix M with an extension 
matrix E, that is, ME. The region of support J11 (ME) is expressed as follows: 

.Ar (ME) = {Mi + m i E ~~l (E), m E wi (M) }. (4.8) 

Proof From the fact that {Ex x E [0, 1)D} = {i + x i E .itir (E), x E [0, 1)°}, 

Ar(ME) = {MExENxE [0,1)D} 
             = {M(i + x) E N i E N (E) , x E [0, 1)D} (4.9) 

= {Mi +MxENiEN(E) ,xE [0,1)D}. 

Since {Mx E .Ai x E [0, 1)D1 = N (M) and Mi E Al, Eq. (4.8) is obtained. ^ 

Lemma 4.4. If and only if N (M) is reflection invariant w. r. t. some center cm, 
the extended region of support Al (ME) is also reflection invariant w.r.t. the fol-
lowing center c1,: 

Ch = Mc= + c;tij ,(4.10) 

where c= is the center of Ai (E). 

Proof From the assumption and Lemma 4.2, Al (M) and Al (E) are reflection 
invariant. Hence, the following equations are satisfied: 

N (M) = {r,1j(m) m E (M)},(4.11) 
N (E) _ {r=(i),i E (E)},(4.12)
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Figure 4.2: An example of extension (D = 2). 
.A/ (ME), respectively

cAt and ch are the centers of .A (M) and

where r .\t(m) = 2c4,1 — m and r=(i) = 2c, — i. 
  The above relations and Lemma 4 .3 then lead to 

N (ME) = {Mr=(i) + r,tir(m)li E N (u) m E N (M)} 
         = {2(Mc=+c ltit) — (IVIi+m) i E Air (E), m E JV (M) } 

        = {rh(k) k E ,V (ME)} , 

where rh(k) = 2(Mc= + cm) — k . That is, Ai (ME) is reflection  
Mc, + cat.

(4.13)

                                 Ni (ME) is reflection ariant w.r.t.

   Conversely, if N (Ms) is reflection invariant w.r.t. some center ch, then 

1V- (ME) = {2ch — kjk E N (ME)} 
       = {2ch — (Mi + E N (E) , m E N (M) } 

                                         (4.14)        = {Mr=(i) + (2(ch —Mc=) —m) i EN(E), m EN(M) }) 
_ {Mi + (2(ch —Mc=) E N (FL), m E N (M) }. 

Comparing this result with Eq. (4.8), it can be proven that N (M) is reflection 
invariant w.r.t. c tit = ch — Mc, .^ 

  Lemma 4.4 guarantees that the region of support N (M) can be extended by 
the matrix E while holding the reflection invariance . Figure 4.2 shows an example 
of the extension, where M = (2 'I) , u = (o °) and n = (° ). 
  On the basis of these lemmas , let us show the LP condition in the polyphase 
representation.
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Theorem 4.5. Consider an MD filter H(z) with an extended region of support 
Al (Ms) and let Em(z) he the m-th type-I polyphase filter w.r.t. M . If and only 
if H(z) is LP with some center ch, then the following equation holds: 

Em(Z) = Z 2c_ 1ErA,(m)(Z-1), m E (M),(4 .15) 

where cV is the center of N (~) and r,l1(m) = 2c,tit — m, and cm = ch — Mc 
Additionally, -7 is '1 'for a symmetric filter or `-1 ' for an antisvmmetric filter. 

Proof. From Lemma 4.4, (M) is reflection invariant w.r.t. the center cm. 
Hence, Eq. (4.3) is expressed as 

            H(z) = z-2ch7H(z-1) 

                   = z-2(Mc_+c;tt),.; `,zniErn(z-m) 

>2.,/ me-Ai(m)              = ZZ-r.u(m)E m(Z-M)(4.16) 
m E.V(M ) 

                     _ ---Z-m {Z-91\4c- Er:tf(m)(Z-M)l 
      rE.V(M)J 

Compared with Eq. (4.6), Eq. (4.16) leads to Eq. (4.15).^ 

  Note that the vector 2c, consists of the order of the polyphase matrix E(z), 
that is, 2c, = n = (No, N1, ... A'D- i )T. 

4.1.3 Ordering of Em(Z) 

Now, for the sake of convenience, let us order the polyphase filters Em(z) and 
modify their indexes as follows: 

Et(z) = Em,, (z), E = 0, 1, 2 • • , .1I — 1, (4.17) 

where me E N (M) and M = .1(M). By using this notation, let us define an 
lI x 1 polyphase vector e(z) by 

             e(z) = (Eo(z) Ei(z) ... E11_1(z))T . (4.18) 

This vector e(z) is related to H(z) as follows: 

                H(z) = eT(zM)dM(z),(4 .19) 

where 

dM(z) = (z-m Z-ml ... Z-ni."-1)T me E jU~(M). (4.20)
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      Figure 4.3: Stnictures of MD maximally decimated uniform filter banks . 

  On the assumption that Al (M) is reflection invariant, the polyphase filters can 
always be ordered so as to satisfy the following condition: 

rm(mf)=mm —i_e, e=0,1,2,•..,_lI-1.(4 .21) 

If the elements are ordered according to the above rule, then the LP condition in 
Eq. (4.15) simplifies to 

                  eT(z) = z-z~~ ier(Z-I) J~1(4 .22)
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MD-LPPU Filter Banks

In this section, let us review multidimensional (MD) maximally decimated uni-

form filter banks and discuss the paraunitary (PU) and linear-phase (LP) proper-

ties. The class dealt with in this thesis is also clarified.

4.2.1 Review of MD Filter Banks 

Figure 4.3 (a) shows a parallel structure of MD maximally decimated uniform 
filter banks with a factor M, where M and t M denote the down- and up-
samplers with the factor M, respectively. The number of channels is M = J(M) . 
If M is a diagonal matrix, then we refer to such systems as rectangular decimation 

filter banks, otherwise they are non-rectangular decimation.flter banks. 
   Decomposing each filter into the polyphase filters, the parallel structure can 

be equivalently represented as shown in Figure 4.3 (b), where E(z) is the type-I 

polyphase matrix of analysis bank and R(z) is the type-II polyphase matrix of 
synthesis hank [1]. These polyphase matrices are related to Hk(z) and FA. (z) as 
follows:

h(z) =

f(z) =

 Ho(z) 
Hl (z) 

H.ti1 1(z)) 

(z) Fi(z)(Fo(z) Fi(z) 
 dM(z-z)R(zM)

= E(zM)dM(z).

             T ... Fw1-i(z))

(4.23)

(4.24)

4.2.2 Class of Filter Banks 

In order to clarify which class of filter banks is dealt with in this thesis , the prop-
erties that the proposed filter banks possess are shown .

Paraunitary (PU) property 

Let us construct MD filter banks to be paraunitary (PU) [ 1 ]. If the polyphase 
matrix E(z) satisfies Eq. (4.25), it is said to be paraunitary. 

                 E(z)E(z) = I,,,r.(4.25) 

This condition is sufficient to construct perfect reconstruction (PR) filter banks, 
because the simple choice of the synthesis bank as R(z) = z-"E(z) with some 
D x 1 integer vector n results in R(z)E(z) = z-"I1,.1, which shows the system is
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PR [ 1 ]. Thus, in the following, only an analysis bank is dealt with. Since filters 
are let to have real coefficients, we actually consider those holding the property 
ET(z-I)E(z) = I.~.t.

Linear-phase (LP) property 

The individual filters in the proposed filter banks are designed to be linear-phase . 
In order to guarantee this property, let us choose the factor M such that N (M) 
is reflection invariant w.r.t. some center cm, and let the region of support of the 
filters be N (ME) according to Theorem 4.5 by using an extension matrix 

   Since the LP property of each filter Hk(z) can be expressed as in Eq. (4.22) 
in terms of its polyphase vector, the LP property of analysis bank E(z) can be 
represented as follows: 

                 E(z) = z-2c-D IE(z-I)Jm ,(4.26) 
where we assume that Hk(z) for k = 0. 1, • • • , rM/21 - 1 are symmetric and the 
rest are antisymmetric. 

   Here, note that the polyphase components are ordered according to Eq. (4.21), 
and the number of symmetric and antisymmetric filters are determined on the 
basis of Theorem 4.6, which is proven in the same way as Theorem I shown in 
the article [ 10]. 

Theorem 4.6. Consider matrix-M LP PR filter banks, whose filters all have the 
extended region of support AT (ME) . 

1. If M = J(M) is even, there are 1f/2 symmetric and M/2 antisymmetric 
    filters. 

  2. If :II = J(M) is odd, there are (II + 1)/2 symmetric and (M — 1)/2 
antisymmetric filters. 

Proof: Primarily, the LP condition is represented as E(z) = z-2c=I'AtE(z—I)J_1t i
nstead of Eq. (4.26), where FA" is an arbitrary _lI x M diagonal matrix whose 

diagonal elements are `1' or —1'. 
  By taking the trace of both sides of Eq. (4.26) and using the fact that E(z) is 

invertible, we have 

tr(FAf) = tr(z2c=E(z)J ti1E-1(z-I)) 
                                                                 4.2                       = tr(z2c=E-1(z-I)E(z)J ,~t),(7) 

where tr(N) is the trace of N . This equation should be satisfied for any value of 
z. Let us substitute z = 1 into this . 

tr(Fm) = tr(E-1(1)E(1)J;,t) 
(428)                            = tr(J

.1I)•
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The last equation implies that tr(F;,.f) = 0 
\ f . In other words, if M is even, then the 
to the number of antisymmetric ones, and 
symmetric filter.

for even M and tr(F 1) = 1 for odd 
number of symmetric filters is equal 

if M is odd, then there is one extra

Causality

Let E(z) be causal in all dimensions, since many results on 1-D LPPUFBs are 
derived under the condition that polyphase matrices are causal. Under this as-
sumption, most of the results can be applied to MD ones. Note that this does not 
necessarily mean the causality of h(z), which depends on the choice of the factor 
M. 
  For example, let us consider the 2-D case that the factor is given by 1\4 = 

( .; 11) and the polyphase matrix is provided as

E(z) =

 1 

0 

1 

0

0 

1  z-

0 

1 -z

0 
1{0}

0
1{0}

z_1{°}

-z

0

0

1{0} (4.29)

where  z-1{°} 

sions. From Eq. 

be expressed as

   The above matrix is easily found to be causal in all dimen-

(4.23), it can observe that the corresponding analysis filters can

h(z) =

 1 

 0 

1 

0 

1 

0 

0 0

z0 

y-}

0 0 

1 z—M1{o} 

0 0 

1 _z—M1{o} 

0 0 

1-1-V       y'04,1 

o o 

1-~       ~0^-1 

1+zo'3 
zl +zo2zi 

1_ r)3      ~o

 Z
 —mi{n}

—z 

  10  — 7 4o1 

 0 
_ -lv ~p -1 

 0

0 
—M1{a}

 1 

 "0  -1 
    ,y-1   -0 

-2 -1 
40 °'1

  -1 ,-1 `-'0 

-1 
-0 

-0 41

(4.30)

This last equation 

vance operator

illustrates that the analysis bank is not causal because the ad-

is involved, but this is permissible under the proposed structure.
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4.3 Lattice Structure
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In the previous section , the class of filter banks dealt with in this thesis was dis-
cussed. This section provides the proposed lattice structure for such filter banks . 
In the following, the structure for an even Al is firstly provided , and then that for 
an odd M. Their minimality and the no-DC-leakage condition are also shown .

4.3.1 For Even M 

To construct a lattice structure of MD-LPPUFBs , we consider formulating the 
order-increasing process of the polyphase matrix E(z) , while keeping both of the 
LP and PU properties. This approach is motivated from the process for that of 
1-D LPPUFBs (Chapter 2). 

  Let Em(z) be a polyphase matrix , whose d-th dimension order is 7n. We 
consider increasing the d-th dimension order m to rn + 1 as follows: 

Ern+1 (z)R{d1 Q{d} (z)Ern(z).(4 .31) 

where

R{~}_444} o \  ~~.O u{d}

/ 

                             r CPI* = BAr10} (z)BM.

WV} and U{d} denote ,lI/2 x M19 orthonorrnal matrices, and in addition

(4.32)

(4.33)

             {d}/I:i 0                     (z) = 

Although z-1{``} can simply be represented as ;71, we still use the vector notation 
for the consistent expression in multi-dimensions. 

  It can easily be verified that the PU property of Em(z) as in Eq. (4.25) results 
in that of E„Z+.1 (z), since Rid} and Q{d} (z) are PU. In addition, the LP property 
of Em(z) as in Eq. (4.26) provides that of E„t+1(z). Let us verify this fact. 

  Equation (4.31) can be rewritten as follows:

                  ((~{d}I{d}T                 E„t(z) =Q(Z)R' m+1Em+1(z)• 

By substituting the above equation into the LP condition of E m(z), that is, 

E7tt(z) = z- -DarE' ,n(z-r)J .tir,

(4.35)

(4.36)
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we have 

  Q{d} (zI)Rj{r~t} Ern.+l (z) = Z-2c_„t D;tiIQ{d} (z)R{~l}TEn~.+l(z-I)J,~,j, (4.37)                                                                    rn.+ 1 

where c`,,, is the center of N(7=2„t ), and E.„ is an extension matrix whose d-th 
diagonal element is in + 1, which is the d-th dimension order [2c-„t]d = rn, plus 
one. 

  From the fact that 

          R{n+1Q{d}(z)DnlQ{d}(z)R{„i+T= z—i{~t}Dnr, (4.38) 

Eq. (4.37) is reduced to 

E,,,±l (z) = z2c_m D 1tiiErn+l (ZI)Jar, (4.39) 

where 2c_7,,+1 = 2c_„ + 1{d}, namely, the d-th dimension order [2c,,,,+1 h1 equals 
i + 1. 

  The last result implies that E„Z+1 (z) sufficiently satisfies the LP condition as 
in Eq. (4.26), and the order of E„,±1 (z), e.g. n,rn.il = 2c~rrt Ll, has one more d-th 
dimension order than that of E,n(z), e.g. nm. = 2c_„1„ and the same order as each 
other for the other dimensions. 

  Therefore, by repeating the order-increasing process according to Eq. (4.31), 

we can extend the region of support of all filters, while keeping the LP and PU 

properties. This process is applicable to any dimension. As a result, it can 
be verified that the following product form generates a lattice structure of a D-

dimensional LPPUFB for even AT:

E(z) =

 Eo  =

D —1 AVd 

R{d} Q{d} (z) 
d=0 n=1 

N �o 

cDs 

0 cicoA B:ti1 Tm

 R1{;" Ea, (4.40)

(4.41)

where 43s and (DA are M/2 x *1/2 orthonormal matrices, which are fixed during 
the design phase and contribute only to the starting guess. The superscript '{N}' 
on R0 has no special meaning except for providing a consistent expression with 

the definition of R. The matrix E0 is also PU and LP. In the case of D = 

1, Eq. (4.40) is reduced to the factorization of an even number of channel 1-D 

LPPUFBs whose filters all have a multiple of the number of channels AI discussed 

in Section 2.2.1. Figure 4.4 shows an example of the proposed lattice structure, 

where M = ( 1~ ), u = (0 3) and n = (Z D. Note that the relation as in Eq. (4.23) 
is used.
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  By controlling the matrices wT {d} and U7{,`d1, we can design MD-LPPUFBs 
with the guarantee of the PU and LP properties. Since an N x N orthonormal 
matrix can be characterized by a combination of N(N-1)/2 Givens rotations with 
N sign parameters [ 1-3], designing such systems is made possible by means of 
an unconstrained nonlinear optimization process to minimize (or maximize) some 
object function by predetermining the sign parameters. Some design examples of 
the proposed structure will be given in Section 4.4.

4.3.2 For Odd Al 

For odd AI, a necessary condition for the components in the extension matrix E 
has to be shown firstly. The condition can be regarded as an extension of Collo-
rary 1 shown in the article [ 10] and Theorem 2 shown in the article [ 15] to the MD 
case.

Theorem 4.7. Consider matrix-M LP PR filter banks, whose filters all have the 
extended region of support Ai (ME), where E = diag(N0±1. N1+1. • • • .:~.t,_i 
1), and Nd > 1. If aI = 1(M) is odd, all of Ni for d E {0. 1, • • D - 11 are 
even.

Proof: Taking the determinant of both sides of Eq. (4.26), we have 

(z-2c=)Ardet(DA,fE(z-I)Jnr) = det(E(z)). (4.42) 

Note that this equation has to be satisfied with any value of z. 

  Let us define 1{d} = 1{d} - lid}, where d E {0, 1, • • • , D - 1} and {d} is the 
complement set of {d}. For example, when D = 4, 1{1} = (1, -1. 1, 1)T. 

  For odd M, by substituting z = 1{d} into Eq. (4.42), we obtain 

(_1)-wdMdet(Dm)(-1) At`  = 1, (4.43) 

where we use the multiplicative property of determinants and the facts that 2c- = 

(No, NI. • • • , ND-1)T,  (1{d})-I = 101, E(z) is invertible, and 

                                                                               - 

                                   ;1/(M-1)N1l  

              det(J,til) _ (-1) 2 = (-1) 2(4.44) 

for odd Al [ 15]. 

                                                                                - 

  When (.-11 - 1) /2 is even, det (D,tir) = 1 and (-1).1121= 1, otherwise, 
det(D,tij) = -1 and (-1) Al2 = -1. Therefore, (-1)-` 4A4 has to be 1. In 
other words, since _l1 is odd, Nd has to be even for any d. ^ 

  When the number of channels Al is odd, it can be verified that the product form 

in Eq. (4.45) generates a lattice structure of MD-LPPUFBs. Now, we redefine
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cDs and cf.;,, in Eq. (4.41) as 0i/21 x p1/21 and LM/2 x pI/21 orthonormal 
matrices, respectively , so that the expression of Eq. (4.41) can be used in common .

E(z)
 U— 1 Ld 

11 
e=1 

Ld�0

{d} R
E~ Q

{ct}(z)Roe}  (z) R`°}E0, (4.45)

where Ld = 

matrices RE{d

Ard/2, 
RoP},

which is guaranteed to be an integer 
  {d} (z), and Q0(z) are as follows:

since Nd is even. The

R{d} = WEe 
O 

     (IV{d} 
 {d}_OT R
Oe=o 

       O

QEd} (z) 
Qod} (z) _

O 

1 

0

O 

UEE} 

O 0T 

u d}l

B:~1AE}(z)Bm, 
B;ti1Aod} (z)Bm,

(4.46)

(4.47)

(4.48) 

(4.49)

where WF} is an 
Uod` are [M/2j x

[ItIo1 

[M/2] 

x rM/21 orthonormal matrix, and Wod} 
orthonormal matrices. In addition ,

UEe}, and

AL;(-11 (z)

A{0(11 (z)

/I 

/I

O

Lyi 
O

O 

z_1{d}I 

0 

If .11

(4.50)

(4.51)

  By controlling the matrices WEd}, Wod}, Ude}, and Uo,}, we can design MD-
LPPUFBs with the guarantee of the PU and LP properties . Since these matrices 
are orthonormal matrices and can be characterized by a combination of Givens ro -
tations [ 1-3], using an unconstrained nonlinear optimization process for designing 

such systems is possible . In the case of D = 1, Eq. (4 .45) is reduced to the fac-
torization of an odd number of channel 1-D LPPUFBs discussed in Section 2 .2.2. 

  Equation (4.45) is obtained in a similar way to the approach that was done for 

even M, since the following order-increasing process holds both of the PU and 

LP properties.

E2(e+1) (z) — RE
se±1QEd}\"1-``-'0,?-4-1‘%0{d}(Z)E(z)(4.52)
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where E,,,,(z) denotes a polyphase matrix of LPPUFBs, whose 
order is When E7G(z) is PU, the PU property of E2(e+1)(z) is 
let us verify only the LP condition. 

  Equation (4.52) gives the following relation: 

E'.,e(z) = QO4}(z-I)REi(+1Q} E2(f'+1)(Z) 

Substituting this into the LP condition of E2e(z), that is, 

                    E2e(z) = Z221 D .ti.E2e(z-I)J_tir, 

we have 

QErf}(z_I)REd~TIQd}(z—I)REde-}-IE2(e+1)(z) 
= z— PDAfQ({)d}(z)Rc)de+QEd}(z)REdeT1E''(e+1)—I)J.tir, 

where c,,„ is the center of JV(E,,,), and E„., is an extension matrix 
diagonal element is 772. + 1. 

  From the facts that

where

   dimension 

obvious. Thus,

REd} Q{~d} (z)DMQ0 } (z)nOrn = z-1{d} {d} (Z)DM, 
REd} QEd} (z) o{d} (z)]J Q{d} (z)R./}T _ z_1{d}

0{d}(z) _

IL 

 oT 

0

 o 0 

Z_1{d} OT 

0 I1
_4J

Eq. (4.55) can be reduced to 

 E2(e+1) (z) = z`(/±1) T-N~iE°~(e+1)(z-1) J J, 

where 2c= e = ± 21{d}, namely, the d-th dimension 
equals 2(e + 1). As a result, the d-th dimension order is 
2(e + 1) , holding the LP property.

(4.53)

(4.54)

(4.55)

whose (l-th

(4.56) 

(4.57)

(4.58)

(4.59)

ion order [2c=2(r+,jd 
increased from 2l' to

4.3.3 Minimality 

A structure is said to be minimal if it uses the minimum number of delay elements 

for its implementation [ 1 ]. For a 1-D causal PU system E(z) , it is known that 
deg (det (E(z))) = deg (E(z)), where deg(H(z)) denotes the degree of H(z) , 
that is, the minimum number of delay elements required to implement H(z) .
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   Now, let us investigate the degree of the proposed structure . Note that the 
degree in terms of the d-th dimension delay element z

(-1-'                                           (l1 can not be increased by 
choosing any value of delay elements of the other dimensions . Therefore, the 
following inequality holds . 

deg{d}(E(z)) > deg{d}(E(z{d})), d E {0. 1, ... , D — 11, (4.60) 

where deg{d} (E(z)) denotes the degree in terms of z
,71, and z{d} is a D x 1 vector 

whose elements are all `1' except for the d-th variable element z
d, that is, z{d} = 

zd1{d} + 10/. For example, z{1} _ (1 zl 1)T in three dimension. 
   It can be verified that the proposed structure has 

deg{d}(det(E(z{d}))) =  dlll d e {0, 1, ... , D — 1}. (4.61) 

2 This implies that deg{d} (E(z{d} )) = NdM/2 for d E {0, 1, • • • , D — 11, since E(
z{d}) can be regarded as a 1-D causal PU system E(zd). Consequently, we 

have 

             {d}                           A'(ill           deg(E(z)) > --------,d E {0, 1, ... D — 11. (4.62) 

The last inequality shows that the structure is minimal, since it uses N1M/2 delay 
elements for each dimension for its implementation. (Note that in the structure 
shown in Fig. 4.4, the down-samplers can be moved to the left side of the matrix 
E0 by using the noble identity [1], so that it is minimally implemented.)

4.3.4 No DC leakage 

When applied to subband image coding , filter banks should have band pass and 
high pass filters that have no DC leakage [2] . This is because the DC leakage 
causes undesirable distortion in the reconstructed images when the subband sig-
nals are severely quantized. 

  The no-DC-leakage condition in the MD analysis bank is expressed as 

          h(1) = E(1)dm(1) _ (\i1f 0 0 ... 0)7. , (4.63) 
where dm (1) is the AI x 1 vector whose elements are all ̀  1' . 

  Suppose that EodM(1) = ('IM , 0, 0, • . • , 0)7'. In the proposed structure, 
the above condition can be reduced to

D-1 IVd 

H  fJW} 
           d=0 n=1 

1vd -7,40

 w({)m} _ (1 0T 
o V (4.64)
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for even Al, or

 11  tW{d}  Woe  Et  07' 

~f=0 e=1 
L,1�0 

ere V is a ([M/21 — 1) 
n is easily derived from 

I.

      1  61) 
WEO 

o  V (4.65)

for odd *1, where V is a ([M/21 — 1) x (rAf/21 — 1) orthonormal matrix. The 
above condition is easily derived from the facts that Q{d}(1) = I, Q4d}(1) = I, 
and Q{od} (1) = I. 

  For even M, a design made by controlling the matrices R{d} in Eq. (4.32) sub-

ject to Eq. (4.64) leads to MD-LPPUFBs which have no DC leakage. The design 
can be achieved by restricting the matrix Wo°} to a matrix whose first column vec-

tor is the transposition of the first row vector of the product d~,l j-jN1W{d} 
ivd �0 

Note that the inverse of the product is a candidate of WoV} yielding no DC leak- 
age. For odd M, a design made by controlling the matrices RE,and R0 d,} in 
Eqs. (4.46) and (4.47) subject to Eq. (4.65) leads to MD-LPPUFBs without DC 
leakage. Similarly, this design can be achieved by properly choosing the matrix 

WT 
  A design example with no DC leakage will be shown in the next section.

4.4 Design Examples

In order to verify the significance of the proposed structure, let me show some 
design examples for both of the rectangular and non-rectangular decimation cases. 
These examples are designed by taking the Givens rotation angles, which appear 
in the factorization of the orthonormal matrices controlled during optimization , as 
the design parameters, and by using the routine `fminu' provided by the MATLAB 
optimization toolbox [32]. The sign parameters in the factorization of orthonormal 
matrices are heuristically determined. Although the examples shown here are in 
2D, the proposed structure is applicable to any dimension.

4.4.1 Rectangular Decimation 

For the design examples shown here, the object function of the optimization is 
chosen as the maximum coding gain CSBC [ 1, 4] for the isotropic autocorrelation 
function (acf) model (Appendix B), a representative non-separable one , with the 
correlation coefficient p = 0.95 [36]. The first matrix E0 is chosen to be the type-
II 2-D DCT for even M and the type-I 2-D DCT for odd Al [30], which can be 
rewritten as the form in Eq. (4.41).



4.4. DESIGN EXAMPLES  81

(a) Basis images of 16 analysis  filters
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(b) Amplitude responses of the 4 analysis filters whose subband 
  signals have the 4 highest variances.

Figure 4.5: A design example of MD-LPPUFBs with rectangular decimation Each filter 

has 12 x 12 taps. GSBC = 11.55 dB for the isotropic acf model with p = 

0.95. wd denotes the d-th dimension normalized angular frequency [rad] .
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Table 4.1: Coding gain  GSB{. of MD-LPPUFBs with rectangular decimation for the 

        isotropic acf model with p = 0.95. M and n denote the decimation ma-

        trix and the order of polyphase matrix, respectively. M denotes the number of 

          channels.

 M  M  nI
GsBc [dB]

SEPARABLE PROPOSED

2 0)

0 2)
4

(0, 0) 8.12 8.12

(1,1) 8.12 8.16

(2, 2) 8.12 8.88

3 0\

0 3)
9

(0, 0) 9.98 9.99

(1, 1)
(2, 2) 9.98 10.77

4 0

0 4
16

(0, 0) 10.75 10.78

(1, 1) 11.20 11.28

(2, 2) 11.42 11.55

  Table 4.1 shows the resulting  GSBC'S of the proposed lattice structure. Those 
of separable structures with 1-D LPPUFBs proposed in Chapter 2 are also shown. 
As an example, basis images and amplitude responses of analysis filters H (z) 
generated with the proposed structure are given in Fig. 4.5, where M = (o ,(34) and 

_ (:(3) ° ). The number of channels M is 16 and the number of taps is 12 x 12. 
In addition, the order of E(z) is n = (No, .1V1)T = (2, 2)T . 

  From Table 4.1, we notice that the GSBC of the proposed structure is higher 

than that of the separable structures. In particular, when M = (o ° ), the GSBC 
of the proposed structure becomes higher as the order increases, whereas that of 

the two-channel-based separable system does not. This is because the separable 

system can not have any overlapping solution, while the proposed structure can.

4.4.2 Non-rectangular Decimation 

Now, we have a design example of a non-rectangular decimation case, with which 
a separable system can not be constructed. The object function here is also chosen 
as the coding gain GsBC for the isotropic acf model with p = 0.95. 

  As an example, we choose the decimation matrix M and the extension ma-
trix E as M = 1) and E = (o ° ), where the number of channels M is 4 
and the number of taps of each filter is 24. In addition, the order of E(z) is 

 = (No, 1Nt)T = (1, 2)T. The structure shown in Fig. 4.4 corresponds to this 
example. 

  The basis images and the amplitude responses of the resulting analysis filters
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(a) Basis images of 4 analysis filters

Figure 4.6:
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        (b) Amplitude responses of 4 analysis filters 

A design example of MD-LPPUFBs with non-rectangular decimation , which 
is designed under the no-DC-leakage condition . Each filter has 24 taps. 
GSBC = 8.46 dB for the isotropic acf model with p = 0.95. wd denotes 
the d-th dimension normalized angular frequency [rad] .
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Table 4.2: Optimal matrices designed for maximizing the coding gain 

shown in Fig. 4.4 for the isotropic acf model with p = 0.95.

of the structure

d rt  w  {d} U{d}

c/J 0
-0 .4116 -0.9114\

0.9114 -0.4116/

0.9999 0.0101

0.0101 -0.9999

0 1

-0 .1771 0.9842

-0 .9842 -0.1771

0.1869 0.9824

-0 .9824 0.1869

1 1
(0.9990 -0.04561

0.0456 0.9990 J

-0 .9994 -0.0355\

-0 .0355 0.9994

1
0.9577 0.2877

-0 .2877 0.9577

0.9313-0.3642

-0 .3642 -0.9313

 Hk(z) are shown in Fig. 
are fixed as

4.6, where the matrices cbs and cl)A in the first matrix E0

1 1 
cbs=~ •a= 1

1 
-1

This choice guarantees that EodM (1) = (v/.l-I 0 0 • • • 
Wo} is chosen as the inverse of the product 
holds, that is, no DC leakage is caused. 

matrices W{(1} and U{"t} 

In this example, the coding gain results in a GSBC 

8.47dB when 

condition. These results are comparable.

0)I'.

(4.66)

roduct AVI}WP}Wl°}, so that Eq. (4.64) 
                            In Table 4.2, we give the resulting optimal

In addition, the matrix

       example, the coding gain results in a GSBC = 8.46 dB, whereas GSnc = 

hen optimizing the full structure without considering the no-DC-leakage

4.5 Summary

A lattice structure of MD-LPPUFBs was proposed. All filters in the system have 

the extended region of support N (Ms), where M is the decimation matrix and 
is a positive integer diagonal matrix (or extension matrix) under the condition that 
N (M) is reflection invariant, Since the system structurally restricts both the PU 
and LP properties, an unconstrained optimization process can be used to design 

it. The structure is developed for both an even and odd number of channels, and
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includes the conventional 1-D system as a special case . It was also shown to be 
minimal, and the no-DC-leakage condition was presented . By showing some de-
sign examples, the significance of the proposed structure for both the rectangular 

and non-rectangular decimation cases were verified . For the rectangular decima-
tion case, it was shown that the structure achieves a higher coding gain for the 

isotropic acf model than that for the separable one . In particular, the proposed 
structure overcomes the problem of separable MD-LPPUFBs in that they cannot 

be constructed with any overlapping filters when they are based on two -channel 

1-D systems. Furthermore, it was demonstrated that the proposed lattice structure 

can generate a non-rectangular decimation LPPUFB with no DC leakage .
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Chapter 5

2-D Axial-Symmetric Filter Banks

As was mentioned, LP filter banks are of interest for image processing . One of 
the reasons was stated in Chapter 2 that filter banks with this property can handle 
finite-duration signals by means of the symmetric extension method to avoid the 
size-increasing problem. In fact , this statement is true only for  1-D or separable 
systems, and the symmetric extension method , in general, can not be applied to 
MD non-separable systems even if it is LP. To use the method, filters have to be 
axial-symmetric (AS) for each dimension . Recently, Stanhil and Zeevi stated this 
fact, where the word "four-fold  symmetrv" is used instead of "axial-symmetry" 
in the article [29]. From such a background , this chapter will deal with axial-
symmetric paraunitary filter banks (ASPUFBs) . 

   Firstly, a 2-D binary-valued (BV) lapped transform (LT) is proposed . LT, here, 
means that the process with a PU filter bank with filters whose region of support is 
wider than that of Al (M), where M is the decimation matrix for 2-D signals. For 
l-D signals, it denotes process with a PU filter banks whose filters are longer than 
AI, where M is the decimation factor . The proposed LT has basis images which 
take only BV elements and satisfies the axial-symmetric (AS) property . In one di-
mension, there is no 2-point LT with the symmetric basis vectors , and the property 
is achieved only with the non-overlapping basis which the Hadamard transform 

(HT) has. Hence, in two dimension, there is no 2 x 2-point separable ASLT, and 
only 2-D HT can be the 2 x 2-point separable AS orthonormal transform . By tak-
ing non-separable BV basis images , this chapter shows that a 2 x 2-point ASLT 
can be obtained. Toward to the completion of this thesis , Stanhil et al. showed 
that 2 x 2-point ASLT can take only BV coefficients [29] . Since the proposed LT 
is similar to HT, it is referred to as the lapped Hadamard transform (LHT) . LHT 
of larger size is shown to be provided with a tree structure . 

  Stanhil et al. also proposed a design method of ASPUFBs , where filters can 
take continuous-valued coefficients [29] . However, it requires us to solve a matrix 
equation under some conditions. Thus, in this thesis , let us consider construct-

87
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ing a lattice structure of 2-D ASPUFBs, which makes it possible to design such 
filter banks in a systematic manner. ASPUFBs consist of non-separable axial-
symmetric (AS) filters, and can be regarded as a subclass of non-separable linear-

phase paraunitary (PU) ones. The proposed 2-D LHT can also be represented by 
this structure as a special case. Since the proposed system structurally restricts 
both the PU and AS properties, it can be designed by using an unconstrained opti-
mization process. A design example will be given to show the significance of the 
lattice structure. 

  Throughout this chapter, the following notation is used. 

I{", i{1} : the 2 x 2 matrices defined respectively by 

1{0} = diag(1, —1)(5.1) 

I{1} = (hag( —1, 1)(5.2)

z : a 2 x 1 vector which consists of variables in a 2-D .-L--domain, that is, z= 

    (z) zl )7 . 

zM : a2 x1 vector whose d-th element is defined by 

                                            zM_~mo,,iJ.11i,c1              irlZo(5.3 ) 

    where M is a 2 x 2 nonsingular integer matrix, and Mk ,e denotes the k-th 
    row and e-th column element of M.

z-I : the 2 x 1 vector defined by z-I = (z0-1 

en : the product defined by zm = zo" ° zi'L` , w 
1 k denotes the k-th element of m.

: the set of 2 x 1 integer vectors.

—1)7,
. ti[ 

here m is a 2 x 1 integer vector, and

5.1 Review of 2-D Transforms

As a preliminary, let us review 2-D lapped transforms (LTs). Note that 2-D 

LTs can equivalently represented as a 2-D maximally decimated paraunitary filter 

bank.
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Support region 

of a basis  image

Support region of a target block

Figure 5.1: Support region of a basis image in 2-D LT.

5.1.1 Lapped Transforms 

Let M be a 2 x 2 non-singular integer matrix and 6k (n) for k = 0, 1, • • • , _lI — 1 b
e 2-D functions which satisfy the condition 

E Ok(n)Ok*,(n - Mm) = ((k — k' )6(m). 
nEA-

                       k=0,1,•• ,.11-1, MN(5 .4) 

for the factor-M, where Al = det(M)J and 6(•) denotes the delta function. Equa-
tion (5.4) is the extension of the orthonormal condition of 1-D orthonormal trans-
forms to 2-D ones and corresponds to the paraunitary condition of filter banks 
with the factor M [ 1 ]. The functions 6k, (n) are called basis images. In addition, 
let {cpk,m} be the set of the array k,m(n) = Qk; (n - Mm), which is referred to 
as basis. 

  By using the basis {chk,m}, a 2-D orthonormal transform with the factor M of 
an input array x(n) is defined by

yk(m) = E x(n)ok,m(n),(5.5) 
n e. v 

for k = 0, 1, • • • , — 1, where yk(m) denotes the k-th transform coefficient 
array. Then, we have the inverse orthonormal transforms as follows:

nr-1 

x(n) = E yk(m)Ok.m(n). 
k=0 rricA 

If the elements in the basis images Ok (n) are real, Eq. (5.4) is reduced to 

E ok(n)0k,(n - Mm) = S(A: — 0)6(m). 
nEV

(5.6)

(5.7)
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In this chapter, for the sake of convenience, the transform as in Eq. (5.5) is re-
ferred to as a matrix-M transform. In general, the support region of basis images 
overlaps with that of blocks adjacent to the target one as shown in Fig.  5.1. Note 
that the 2-D HT consists of non-overlapping basis images, and that orthonormal 
transforms are not LTs with such basis images. 

  It can be verified that analysis and synthesis process in a paraunitary system is 
identical to the LTs in Eqs. (5.5) and (5.6), respectively, under the condition that

hk(n) = Ok(—n), 

fk(n) = Ok;(n)•

(5.8) 

(5.9)

where hk(n) and fk(n) denote impulse responses of the analysis and synthesis 
filters, respectively.

5.1.2 Axial-Symmetric Property

For 2-D LTs, the AS property is of interest because it is sufficient to the point-
wise symmetry of basis, that is, the linear-phase property of filter banks, and the 
symmetric extension method can directly be used [5-9]. 

  The AS property of a basis image Ok (n) is expressed as follows:

      no 2c0_no 
Ok(n) ~~k lZ = +6c rl,   ~1

(5.10)

    no) ,~no Ok(n)=Ok=+k ( 
       ni 2c1 — ni

(5.11)

where Ck is an integer multiple of 1/2 and denotes the center of symmetry in the 
k-th dimension. Furthermore, the vector c = (co c1)T denotes the center of the 
point-wise symmetry, where c E zN.

5.1.3 Hadamard Transform

Let us here review the 2-D HT and summarize its properties. Firstly, let us define 

a diagonal matrix Mp by

2P 0 M
P 0 2P

In the following, the matrix-Mr transform means 2P x 2P-point one.

(5.12)
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Uu(^n) 
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                         { 4,.m }  
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              Level 1Level 2 Level p 

             Figure 5.2: The tree structure of the 2p x 2p 2-D HT 

The 2 x 2 Hadamard Transform 

Let 6 F ?k, (n) be the k-th basis image of the matrix-Mr HT. For the factor M 
the basis images of HT are defined by 

                ~                      (1)=11 1 
2 1 1 

                      (1)1 (1 —1                       '
H1=9 0 —1 , 

               ~Hlz—j1 1 
                     1 1 

                       (1)_11—1                 ~
H32 —1 1 ' 

where 43fHik is the matrix representation of the basis imagei_ik(n), that is, 

           [4)rtkino,n}0tk(n)0(filk)(~no), no, nl=0, 1, 

                                           i where it is assumed that (i)Hlk (n°) = 0 for no $ 0, 1 or ni � 0, 1. 

Tree Structure of the 2P x 2p HT 

The basis images of the matrix-Mr HT can be simply obtained as

 {(;)H.m

( I )

 { "~~}i~.m}

91

 =  M1 ,

(5.13a) 

(5.13b) 

(5.13c) 

(5.13d)

(5.14)

(5.15)
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for k = 0. 1, • • . M — 1, where ((.z;));y and LE] denote the integer of .r modulo N 
and the integer value of x, respectively, and M = 2"-'1. The operator '0' denotes 

the Kronecker product. 

  Equation (5.15) implies that the matrix-Ma HT can be implemented with the 

p-level tree structure of the matrix-M1 HT as shown in Fig. 5.2, where the box 
including {o(iik n,} denotes the matrix-M1 HT. On the other hand, the inverse 
transform is implemented by reversing the direction of each arrow in Fig. 5.2. For 
the sake of simplification, no attention is taken to the ordering of the basis images, 
such as the sequency [37]. 

  The basis images of HT does not overlap with themselves by shifting with the 
factor M. Hence, we have 

            OFii)k(n — Mum) = ©Fik(n). n E V(Mp), 
m c,ti` 

                                                   (5.16) 

where N(M) denotes the set of the integer vectors in the fundamental paral-
lelepiped generated by M [ 1 ]. In this case, the condition as in Eq. (5.4) is reduced 
to 

                ((P)~P)_>,(P)(P)*                 \~Hk~IIti'~—L~IIk(n~4~Hk(n) 
n aA' 

                = S(k — k'). (5.17) 

where the notation KA, B) expresses the sum of the element-by-element products 
of two matrices A and B. It can be easily verified that the basis of 2-D HT satisfies 

the orthonormal property in Eq. (5.17) and are AS. 

  Now, the following show the properties of the 2-D HT . 

  • The basis {QIHPk,m} is orthonormal. In addition, the basis images O(n) are 
    AS, take only BV elements, and have no DC gain for k 0, that is, there is 

    no DC leakage [2]. 

  • The basis images 5(i_ (n) are separable and non-overlapping.

5.2 Lapped Hadamard Transform 

In the following, a 2-D binary-valued axial-symmetric lapped transform (BV 
ASLT), which is similar to the 2-D HT, is proposed. The main difference of 
the proposed BV-ASLT from HT is that it consists of a non-separable overlapping 
basis. In this chapter, the proposed BV-ASLT is referred as the lapped Hadamard 
transform (LHT).
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   By using the matrix  O, we can obtain the following AS basis images o k)(n) 
for the factor M1: 

                a,Lo = O OJ 
JO JOJ(5.19a) 

                  Ll}= O —OJ JO —JOJ) '(J.19b) 
                   ( 

                                                      (5.19c) —JO —JOJ 

              (1)( O —OJ—~1,3— —JOJOJ(5.19d) 

where [43()]~»o         Lk1lO,7~1= ~(I)Lk(n)=QLk(1)(,,,) for no, ni = 0, 1. 2. 3, where we assume 
that OLk(n) _ (n°) = 0 for no � 0, 1, 2, 3 or n1 � 0. 1, 2, 3. In the following, 
the fact that these basis images construct orthonormal basis is verified. 

   From Eq. (5.18), since 

                 (~(1},~(1)_(1)(1)                   LkLk')Lk(n)~Lk'(n) 
                                                    nE,~ 

=6(k—k') , (5.20) 

the orthonormality between the basis images is guaranteed . In addition, since 

(O, OJ) + (JO, JOJ) = 0,(5.21) 

(e, JO) ± (OJ, JOJ) = 0,(5.22) 

(e, JOJ) = (OJ, JO) = 0,(5.23) 
the orthogonality with respect to the shift by the matrix M

1 is guaranteed as 

 (so.,„~Lkso  sum, cf,Lk'si mQ) = l , (4k (n) Lk (n - Mim) = d(m), 
n`Ai 

      = nlo0101        m
rrtl E 0011(5.24)

5.2.1 The 2 x 2 Lapped Hadamard Transform 

Let O be a real matrix of size 2 x 2 which satisfies the following condition: 

                (a J1 OJJ) = E s'oo (nk_i (n) 
nE.A 

                  = lO(i)O(J), (5.18) 

for z. j = 0, 1, where J" = I, J1 = J and s;.;(n) = s,; (",','°) =
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where S01  = (I2 0), S11 = (0 I9) and St0 = I1 for i 

{0k?,,,,,} satisfies the orthonormality as in Eq. (5.4). 
  Here, we have one choice of the matrix e such as

=0.1. Hence, the basis

(5.25)

From the definition, the above choice generates the following LT basis images:

(1) _ 1 ~
LO

 (1)1 ~
LI 4

,,(1)=1

ab(1)_1 
 L3 4

-1 

1 

1 

-1 

-1 

1 

1 
-1 

-1 

1 

-1 

1 

-1 

1 

-1 

1

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
-1 

-1

1 

1 

-1 

-1

1 -1 

 1  1 

1 1 

1 -1 

-1 

-1 

-1 

-1 

 1 

 1 

  -1 

 -1

-1 

-1 

1 

1

1\ 

-1 

-1 

11 
  -1 

 1 

 -1 

 1 

 1 
  -1 

 1 

 -1

(5.26a)

(5.2 6b)

(5.26c)

(5.26d)

  Note that the transform with the above basis images consist of only BV ele-

ments +1 with the scale factor 1/4, which implies that the transform requires no 
multiplication. Figure 5.3 gives the basis images, and also the amplitude responses 

by regarding them as analysis filters in filter banks. 

  The matrix e is not unique, and therefore, we refer to the transform with this 

basis as the type-I LHT in this chapter. In the following, we give another choice 

of the matrix e.

    1 —1^ 0}~ —1 1 / (5.27)

Figure 5.4 shows the corresponding basis images and the amplitude responses. In 

this chapter, we refer the transform as the type-II LHT. 

  Assume that the matrix O consists of non-zero elements. In fact, on this as-

sumption, it can be shown that e must be BV with the absolute value 1/4. In 
addition, if and only if the number of negative elements in e is odd, that is one or
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three, Eq. (5.18) is satisfied . This implies that there are 8 choices of the matrix  e 
Note that, if the elements are not restricted to be non -zero , we have more choices, 
such as the HT, which are trivial . In the following section , all possible choices of 
the matrix e which satisfies Eq . (5.18) are shown.

5.2.2 Choices of e 

Let etc be the i , j-th element of the matrix O. Then, from Eq. (5.18) , 90 must 
satisfy the following equations: 

9020 + 0021 + efo + 0021 = 1(5 .28a) 
4 000001 + 010011 = 0(5 .28b) 

000010 + 001011 = 0(5 .28c) 

                  000011 + 001010 = 0(5 .28d) 

   Suppose that each element ej is non-zero . In this case, Eqs. (5 .28b) (5.28c) 
and (5.28d) lead the following equation: 

                    010011 001011eolelo      e
oo=—(5 .29) 0

01 010 011 

The above equation implies that 0f00f l = eol Of, = eol efo, that is, eg, = of o = of l . B
y expressing another element as in Eq. (5.29), we have the relation 

eoo = eol = 0210 = 02n. . (5.30) 

Namely, if e consists of non-zero elements , then the absolute value of each el-
ements must be the same as each other . In other words, U must be By . From E

q. (5.28a), the absolute value results in 
  Next, let us consider the number of negative elements in the matrix e . Clearly, 

Eqs. (5.28b) (5.28c) and (5 .28d) are satisfied , if and only if one term is positive 
and the other is negative . It is obvious that the condition is achieved if and only if 
the number of negative elements is one or three . 

  If e has zero-value elements , then the number of them must be three, other-
wise it conflicts Eqs . (5.28b)(5.28c) and (5.28d).

5.2.3 Tree structure of the 2P x 2P LHT 

Let us define the basis images of the matrix -M r 2-D LHT for p > 1 as 

                    4,Lk~L((k)).®~!PLJ), (5.31)
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for k  = 0, 1, . • • , M — 1. This definition holds all of the orthonormality , AS, BV 
and overlapping properties . 

   Equation (5.31) implies that the matrix-M
a 2-D LHT can be implemented with 

the tree structure of the matrix-M
a_1 HT appended with the matrix-M1 LHT as 

the leaves as shown in Fig. 5.5, where the hatched box including {0/(,1k).,,,} denotes 
the matrix-M1 LHT . The inverse transform is simply implemented by reversing 
the direction of each arrow in the structure . 

   As an example, the basis images of the matrix-M:3 , that is, 8 x 8-point type-I 
LHT is given in Fig 5.6, where each basis image is of size 16 x 16

, while the block 
size is 8 x 8. In the same way , we can obtain the basis images of the matrix-M

r LHT. 

  The following summarizes the properties of the 2 -D LHT . 

  • The basis {(4)m} is orthonormal. In addition, the basis images 4'(n) are 
    AS, take only BV elements , and have no DC gain for k ; 0, that is, there is 

    no DC leakage [2]. 

  • The basis images e k) (n) are non-separable, overlapping, and of size 2P x 2P 
    for the factor M . The overlapping ratio is 50% for each dimension . 

  It is important to note again that there is no separable basis which holds th
e 

overlapping and AS properties for the matrix -M1 transform . The proposed LHT, 
however, achieves those properties by introducing non -separable BV basis .

5.3 Axial-symmetric Filter Banks

For a larger decimation factor than 2 x 2 , there is potential that filters can take con-
tinuous valued coefficients . Next, let us consider constructing 2-D ASPUFBs , and d

eveloping the lattice structure which makes it possible to design it in a systematic 

manner. 

  Consider a parallel structure of filter banks shown in Fig. 4.3 (a), where Hk (z) 
and Fk(z) are the k-th analysis and synthesis filter, respectively. Let H(z) be a 
2-D filter whose d-th dimension order is Ld. If H(z) satisfies the condition that 

              H(z)=i'dz_2chd}Hk(z—i{d}), d E {0, 1} (5.32)

then the impulse response of H(z) 

2(L0,0)T,Ch1=2(0,L1)T, z = 
(Z0, '11)T•

has axial-symmetry, 

       \T_I{0} 
(Z0, Z1) , z

where -yd = +1, C{O} 
       T 

(71,z1) and
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  All of analysis and synthesis filters in axial-symmetric filter banks satisfy the 

condition in Eq. (5.32). In this section, 2-D AS filer banks of the following deci-

mation factor is dealt with: 

          M=M0 0 ,(5.33)                           0
llll 

where  M0 and M1 are even. In the followings, Al denotes the number of channels, 

where Al = *tM = Mol~h. 
  Let E(z) be a type-I polyphase matrix of an analysis bank and Nd be the d-th 

dimension order of E(z) (see Chapter 3). If E(z) satisfies the condition that 

           E(z) = z-2 d} r{d}E(z-i{d} )P{d}, d E {0, 11, (5.34) 

then the analysis bank consists of only AS filters, where c{9} = z (No, 0)T, c{ i } 
i-, (0, NOT [29]. r{d} and P{d} denote the M x M diagonal matrix with +1 

elements and permutation matrix defined by 

r{d}=I:2®(—I.2) d = 0                                                  (5.35) 
rx,r{°} d = 1

               P{d} _ ®Li=OJMo d= 0              J
MPd = 1 '(5.36) 

respectively, where ® denotes the direct sum of matrices [38]. It can be easily 
verified that the above diagonal and permutation matrices satisfy the condition 
shown in [29]. Note that the polyphase matrix E(z) is defined as the transpose of 
the one defined in the article. 

  The numbers of symmetric and anti-symmetric filters with respect to the axis-
wise symmetry should be the same as each other for each dimension, as well as 
those with respect to the point-wise symmetry [10]. In Eq. (5.34), this requirement 
is taken into account.

5.3.1 Proposed Lattice Structure 

In addition to the AS property, let us consider imposing filter banks to be PU. The 
condition for the PU property of E(z) is expressed by E(z)E(z) = IM. If the 
analysis bank holds the PU property, the counterpart synthesis bank yielding per-
fect reconstruction is simply obtained [ 1 ]. Thus, only analysis bank is discussed 
below.
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  In order to construct a lattice structure of 2-D ASPUFBs, let us consider for-

mulating the order increasing process of the polyphase matrix E(z), while keeping 
both of the PU and AS properties. 

  Let E„,(z) be a polyphase matrix, whose d-th dimension order is rn. Let us 
consider increasing the d-th dimension order in to ro. + 1 as follows: 

Er„+1(z) = S{d}TR{n+1 Q{d} (z)S{d}E,,,.(z). (5.37) 

where R0, Q{d} (z) and S{d} are the Al x Al paraunitary matrices defined by 

       R{d} = (F1 e F?,1) ®E U{d} (F At e F .tit) (5.38) 
                                               i=0

Q{d} (z) Bmil{d} (z)B;tir, (5.39)

and

s{d}
    I 

      T     F
tiI

e , d=0 

(F1+F)  d = 1
(5.40)

where

A{d} (z) = (2—1 { } I ,vr = I ar e (z'ii) (5.41)

Fm = TA,[PA., _

1 

0

0 

0

 000 

0 1 0 

0 0 1 

1 0 0

- 0 

• 0

• 0 

• 0

(5.42)

The matrices  U{`i} are arbitrary 111/4 x M/4 orthonormal matrices. 
  The PU property of E(z) results in that of E„t+i (z), since all of S{d} R{d} and 

Q{d} (z) are PU. In addition, the AS property of E„i(z) as in Eq. (5.32) propagates 
to E1 ±i (z). In the following, this fact is verified. 

  Let us consider increasing the d'-th dimension order from m to in + 1. Now, 
Eq. (5.37) can be rewritten as follows: 

E„i(z) = S{d/}TQ{d} (z_i~<l~} )R{d:} i S{di}Ern+l (z), (5.43)
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By substituting the above equation into the AS condition of  E
,,,  (z). we have 

Em+1(z) = z _,} V{1̀+1d} (Z)Err+i (Z—I{d} )p{d}, d E {0, 1} (5.44) 
where c{d} is a vector whose d-th element is m/2 , and 

V{d'}{d}(Z) = S{d'}TR{d'}Q{d'}(z)s{d}F{d}s{d'}TQW}(zi{`l'}i{'t})R{d'}TS{dl} (5
.45) 
   Let 1{°} = (1, 0)T and 1{1} = (0, 1)T. From the fact that 

                V{d`}{d}(z) = z_1{<'}r{d}d = d'(5 .46)                                  d d' 
Eq. (5.44) is reduced to 

  Era; 1(Z) =Z}+1 r{ }E., n~((z—I{d})P{d},d=d'd E{0
,1}(5.47)               z—zc~2 r{d}E

rn+1 (z—i{d} )p{d} , d� d' 
where c{d} is a vector whose d -th element is (m + 1)/2 . The last result implies =m+1 

that E,n,+1(z) sufficiently satisfies the AS condition, and the only d-th dimension 
order is increased. 

  Therefore, the following product form of the polyphase matrix provides us 
an ASPUFB of order (No, N1) which holds both of the PU and AS (Eq. (5.34)) 
properties.

E(z) =
 1 

 11 
 d=0

N41 

Ils {d}TR{d}n {d} (Zls{d} 
n=1G`1 

,Vd A0

 R~~}E() (5.48)

where E0 is an arbitrary M x M orthonormal matrix which 
satisfies the AS con-

dition that E0 = F{d}E0p{d} for d E {0, 11. The polyphase matrix of the type-II 
2-D DCT is a good candidate for the matrix E

0. E0 can be fixed during the design 
phase. 
   According to the product form in Eq . (5.48), we can obtain a lattice structure 
of ASPUFBs as shown in Fig . 5.7. Let us here summarize the properties of the 

proposed structure. 

  • By controlling the orthonormal matrices U{} the lattice structure can be 
    characterized, and then an ASPUFB can be designed . 

  • The system is causal and minimal . The region of support of all filters results 
in 1lh(No + 1) x M1(N1 + 1). 

In order to control the orthonormal matrices U{d}, we can use the Givens factor-
ization technique [1] .  Since the AS and PU properties are guaranteed during the 
design phase, ASPUFBs can be designed by means of an unconstrai ned non-linear 
optimization process .
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5.3.2 Minimality of Lattice Structure 

A structure is said to be minimal if it uses the minimum number of delay elements 
for its implementation [ 1 ]. For a 1-D causal PU system E(z), it is known that 
deg (det (E(z))) = deg (E(z)), where deg(H(z)) denotes the degree of H(z), 
that is, the minimum number of delay elements required to implement H(z). 

  Now, let us investigate the degree of the proposed structure. Note that the 
degree in terms of the 0-th (or 1-th) dimension delay element z1 (or z1-1) can 
not be increased by choosing any value of delay elements of the other dimension. 
Therefore, the following inequality holds. 

deg{d} (E(z)) > deg{d} (E(z{d})) 
                                  d = 0, 1, (5.49) 

where deg{d}(E(z)) denotes the degree in terms of z1, z{°} = (z0 1)T and z{1} = 

(1 z1)T 
  From, Eq. (5.52), it can be verified that the proposed structure has 

           deg{d} (det (E(z{d}))) =N(9 , d = 0, 1. (5.50) 

This equation implies that deg{d} (E(z{d})) = 2 for d = 0, 1, since E(z{d}) can be 
regarded as a 1-D causal PU system E(zd). Consequently, we have 

              d~'Vd M                deg{} (E(z)) > --------2, d = 0, 1. (5.51) 

The last inequality guarantees that the structure is minimal, since it is implemented 

with only ~ M/2 delay elements for each dimension.

5.3.3 Lattice Structure of 2-D LHT 

In this section, we show that the proposed 2-D LHT of the matrix-M1 can also be 
represented by the proposed lattice structure as a special case. It is also addressed 
that the transform can be efficiently implemented by the lattice structure. 

  Figure 5.8 shows the lattice structure of the matrix-M1 LHT, where 77z is a pa-
rameter of 1 or -1. The choices of y7 for all possible LHTs are given in Table 5.1. 
Types III and IV are other newly introduced variations, and Types I',II',III' and 
IV' are sign-reversed versions of the corresponding types, respectively. Note that 
it is represented as a causal system, although the definition in Eqs. (5.19a) (5.19b) 

(5.19c) and (5.19d) generate a non-causal one. 
  In the following, the polyphase representation of the structure for the delay 

chain d(z) = (1 z' z; 1 Z0-1 zi 1)T is provided [ 1 ]. 

     E(z) = Ril}Q{1}(z)5{1}S{o}TR10}Q{o}(z)S{o}Ram}Eo, (5.52)
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Table 5.1: The choices  of  'y, parameters for all possible LHTs.

TYPe 70 1 -Y2 73 I TYPe I ^~o I /i 72 ^r:3

I  1  -1 -I -1 I' -I 1 1 1

II -1 -1 1 -1 II' l 1 -1 1

III 1 -1 1 1 III' -1 1 -1 -1

IV 1 1 1 -1 IV' -1 -1 -I 1

where

 E =1

R{'}0- 

   -

1 

1 

1 

1

0 

0 

0

1 

1 
—1 

—1 

0 

!l 

0 

0

1 
-1 

-1

1 

0 

0 

r~z 

0

1\ 
—1 

1 
—1J 

0" 

0 0 

73)

(5.53)

(5.54)

 Rfo} _ Ril} = I4(5.55) 

In Eq. (5.52), the permutation matrix S{1}T which appears as the final building 

block according to Eq. (5.48) is omitted for the sake of simplification. 

  According to Eq. (5.5), the implementation of the matrix-M1 LHT requires 

bit shift operation for scaling with 1/4 and 60 additions per block. On the other 

hand, by using the lattice structure, the implementation complexity is reduced to 

24 additions per block with scaling by 1/8. Obviously, the lattice structure is 
directly applicable to the tree structure as shown in Fig. 5.5 so as to efficiently 

implement it.

5.4 Design Examples

In order to verify the significance of the proposed method, a design example is 
shown, where the object function of the optimization is chosen as the maximum 
coding gain [1]  for the isotropic autocorrelation function (act) model' with the 
correlation coefficient p = 0.95. Figure 5.9 shows the resulting basis images. The 
coding gain results in 11.432 [dB], whereas that of the corresponding separable 
structure with the 1-D LPPUFB (Chapter 2) is 11.418 [dB]. Table 5.2 compares 
the coding gain (denoted by PROP.) with those of the separable one (denoted by 

'See Appendix B
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Figure 5.9: Basis images of a design example of an ASPUFB , 
 No=N1=2.

where 7v10 = M1 = 4 and

Table 5.2: Coding gain Gsec of several MD-LPPUFBs with rectangular decimation 
        for the isotropic acf model with the correlation factor p = 0.95. M and 

(No, Nl )T denote the decimation matrix and the order of polyphase matrix, 
         respectively.

 M
 1V0

-r1

G[dB]
S E P. GEN. PROP.

4 0

0 4

(0, 0) 10.75 10.78 10.78

(1, 1) 11.20 11.28 11.21

(2, 2) 11.42 11.55 11.43
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SEP.). For reference, the coding gain of the corresponding non-separable one of 

general M-D LPPUFBs proposed in (Chapter 4) is also shown (denoted by GEN.). 
  As a result, it can be verified that our proposed structure possesses capability 

to take higher coding gain than that of separable one, holding the AS and PU 

properties.

5.5 Summary

In this chapter, a 2-D binary-valued (BV) lapped transform (LT), to which this 
thesis refers as the lapped Hadamard transform (LHT) , was proposed. LHT has 
basis images which are axial-symmetric (AS) and take only BV elements ±1 with 
a scale of a power of 2. It is known that there is no 2 x 2-point separable ASLT , 
By taking non-separable BV basis, our proposed LHT achieves both the AS and 
overlapping properties for the 2 x 2-point transform . It was shown that LHT of 
a larger size is provided with a tree structure. The characteristic was shown to be 
very similar to that of the 2-D HT, even if LHT differs from HT in that the basis 
images are overlapping and non-separable . 

  A design method of ASPUI Bs with a lattice structure was also proposed , 
where filters are able to take continuous valued coefficients . The 2-D LHT was 
shown to be efficiently implemented by the lattice structure. The AS and PU prop-
erties are guaranteed during the design phase. Thus, an unconstrained non-linear 
optimization process can be used to design it. By showing some design examples, 
the significance of the proposed structure was verified.



Chapter 6

Conclusions

This thesis dealt with the design method of transfer functions of filters in real -
coefficient linear-phase paraunitary filter banks and the implementation issues. 
The reason why this kind of filter banks was chosen as a topic of this thesis is 
that those are suitable for image processing and expected as an alternative to the 
conventional transform based processing , such as the Karhunen-Loeve transform , di

screte cosine transform (DCT) and the Hadamard transform (HT) . Efficient im-
plementation is of interest in practical applications since image processing known 
to require large amount of computations and memories . 

   Filter banks can be flexibly characterized , and therefore both of the design and 
implementation are highly dependent on the application . Image signals, such as 
still pictures and video movies , have some features that they have two or three 
direction, which are vertical , horizontal and sometimes temporal directions , and 
they are of finite hight and width in vertical and horizontal directions

, respec-
tively. In addition , the human visual system is known to be sensitive to the phase 
distortion. Thus, for image processing , filter banks have to be designed and imple-
mented by taking account of these aspects . Several researchers have considered 
that the linear-phase (LP) and paraunitary (PU) properties are particularly favor-
able. We agreed with these opinions , and have devoted  our effort to this topic for 
a few years. All of the results derived from those our works are written in this 
thesis. Following summarizes the contribusions of this thesis .

6.1 Contributions

To construct several LPPUFBs , this thesis focused on the use lattice structures , 
which have a form in cascade of order-one polyphase matrices satisfying so

me 
particular condition, according to the class dealt with. The lattice structure has 
been popularly used because of its simplicity , and some sophisticated structure
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had already been developed by several researchers. However, since most of the 

design approachs using the lattice structure requires non-linear optimization pro-

cesses, there has remained the starting guess problem so far.

Chapter 2 In Chapter 2, to avoid at least insignificant local minimum solu-

tions, a lattice structure which makes the starting guess of the design parameters 

simple was provided. Then, a recursive initialization design procedure was pro-

posed. Design examples illustrates that insignificant local minimum solutions can 
be avoided by the proposed procedure. For reducing the computational complex-

ity, the simplification of the proposed structure was also discussed, where it was 

shown to achieve higher coding gain with less computational complexities than 

those of the conventional one.

Chapter 3 An advantage to use the filters satisfying the LP property is that the 

symmetric extension method can be applied to avoid the size-increasing problem. 

Since image data has finite duration in the horizontal and vertical directions. In 

Chapter 3, a structure of LPPUFBs for finite-duration sequences was proposed 

with the symmetric extension method. The contribution of the proposed structure 

is that it does not require any redundant operations involved in the extension of 

signals. The proposed structure was shown to have less computational complexity 

than that of the direct symmetric-extension approach. An M-band discrete-time 

wavelet transform (DTWT) for finite-duration sequences was also discussed, and 

the condition for the number of channels M was indicated. In addition, we consid-

ered applying the proposed structure to the subband codec (SBC) systems which 

are compatible with JPEG and MPEG. The proposed SBC system was shown to 

be able to encode and decode the standard bitstreams.

Chapter 4 A lattice structure of multidimensional (MD) LPPUFBs has also 

been proposed. We had known that there is a lattice structure for non-separable fil-

ter banks with a rectangular decimation factor. Chapter 4 provided more general 

structure, which can produce non-separable filter banks with a non-rectangular 

decimation factor. Since the system structurally restricts both the PU and LP 

properties, an unconstrained optimization process can be used to design it. By 
showing some design examples, the significance of the proposed structure for 

both the rectangular and non-rectangular decimation cases were verified.

Chapter 5 The symmetric extension method, in general, can not be applied to 

MD systems even if it is LP. To use the method, filters have to be axial-symmetric 

(AS) for each dimension. From such a background, Chapter 5 dealt with axial-
symmetric paraunitary filter banks (ASPUFBs). In this chapter, a 2-D binary-
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valued (BV) lapped transform (LT) was proposed , where this thesis refers to it as 
the lapped Hadamard transform (LHT) . LHT has basis images which are axial -
symmetric (AS) and take only BV elements ±1 with a scale of a power of 2

. It 
was shown that LHT of a larger size is provided with a tree structure

. A design 
method of ASPUFBs with a lattice structure was also proposed

, where filters can 
take continuous valued coefficients . The 2-D LHT is also implemented by the 
structure, and is shown to require less computational complexities than the di

rect 
calculation. The AS and PU properties are guaranteed during the desi

gn phase. Th
us, an unconstrained non-linear optimization process can be used to desig

n it. S
ome design examples showed the significance of the proposed structur

e.

6.2 Open Problems

Although this thesis derived several new results on LPPUFBs
, there still remain 

some important questions . Let us summarize them as open problems . We hope 
that this thesis is helpful to solve these questions in future .

Recursive Initialization Procedure In Chapter 2, this thesis proposed a recur-
sive initialization procedure for the design of l-D LPPUFBs whose filters are all 
of length a multiple of the number of channels . Recently, Tran et al. showed 
that there is a more general lattice structure of LPPUFBs in terms of the filter 
length [15]. To design it with a non-linear optimization process , we have to take 
care the starting guess problem . Thus, it is worth investigating the recursive ini-
tialization procedure as well . 

  For MD systems, we have the same problem . That is how to avoid insignificant 
local minimal solutions in non-linear optimization processes . One might think of 
developing a recursive initialization procedure similar to the procedure for 1-D 
LPPUFBs. However , there are some questions. For example , which direction we 
should firstly increase the order horizontal or vertical , which we should increase 
the order alternately between different directions or in sequence for each directi on, 
and so forth.

Fast Implementation In Chapter 2, a fast implementation technique was devel-
oped for even-channel 1-D LPPUFBs . The corresponding structure was obtained 
by simplifying the structural components as well as the conventional fast imple-
mentation technique. 

  Note that the technique is suitable only for holding high coding gain
, and that 

the way of simplification is not unique . Therefore, there remain problems that we 
have no simplification technique suitable for any other object function

, and that
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there is a possibility of being a better way of simplifying the structure 

shown in this thesis. We need more investigation for these questions. 

  In addition, neither of odd-channel LPPUFB nor MD-LPPUFB has 

implementation. These are left as open problems.

than one

any fast

Structure for Finite-Duration Sequences In Chapter 3, an efficient structure 

for finite-duration sequences was proposed. The proposed structure was derived 

under the condition that filters and the input sequence are of length a multiple of 

the number of channels and the type of symmetry of an extended input sequence 

is HSHS. However, there is a possibility for us to have a different efficient struc-

ture under another condition. Furthermore, it has not been investigated how to 

construct it for MD systems yet.

Completeness In Chapters 4, this thesis dealt with lattice structures of MD-
LPPUFBs. In this thesis, we still have an important question whether the structure 
is complete for the class dealt with or not. The proof for the completeness of 1-
D LPPUFBs has already been shown in some articles [ 10, 271 However, their 
logic could not be applicable to general MD-LPPUFBs, since the proof requires 
us to solve an orthogonalization problem of multi-variable polynomial matrices. 
Our conjecture is that the proposed structure is complete for degree-factorable 
LPPUFBs' [ 18, 29,39], although this has not been proven yet. 

  In addition, the completeness of the lattice structure of ASPUFBs proposed in 
Chapter 5 is also under consideration.

Generalization of MD Systems It is also of interest to investigate another class 
of MD-LPPUFBs provided by releasing the constraint on the region of support of 
filters. 

  In Chapter 4, the region of support of filters is restricted to the set of integer 
vectors in the fundamental parallelepiped (FPD) region generated by the multipli-
cation of the decimation factor M and a diagonal matrix E consisting of integer 
diagonal elements. There remains the question if the region of support can be 

generalized as was done for 1-D LPPUFBs in the article [ 15]. 
  For ASPUFBs, we just considered the 2-D system and the decimation factor 

was restricted to be a diagonal matrix consisting of even diagonal elements. We 
still have questions for extending it to multi-dimension more than two and for 
releasing the restrictions with regard to the decimation factor.

   Although degree-factorable filter banks are defined in two dimensions, the extension to mul-

tiple dimensions is relatively easy.



Appendix A

Coding Gain of SBC Systems

The subband coding gain  GsBc is used to evaluate the usefulness of an SBC 
sys-

tem for a certain input sequence x(n) [1,4]. This criteria shows how much the sig-
nal to noise ratio (S/N) is improved from that of the b-bit PCM quantizer , where 
the average bit of the quantizers for the subband signals is assumed to be b. 

  Let a2PCMbe the quantization noise variance of the b-bit PCM quantizer. Then, 
we have

          27b 2                 aq,PCM=CX 2 -a,(A.1) 

where c is a constant of proportionality, which depends on the statistics of x(n) 
etc., and o x2 is the input variance. 

  Let aqSBCbe the noise variance of the SBC system. Then, the subband coding 
gain GsBC is defined by the ratio of Gry PcM to aq SBC, that is, 

                                     2 

                                         2q
,sBC           GSBC =2(A .2) aq,PCM 

where the followings are assumed: 

  • Filter banks are paraunitary (PU). 

  • The input sequence x(n) is real and zero mean wide sense stationar
y (WSS). 

  • The bit number of the PCM quantizer b is equal to the avera
ge bit number 

    of the quantizer for subband 1/M signals, that is, b=1'r                     g=/~koi bk, where bk 
    is the bit number of the quantizer for the k-th subband signal yk(n). 

  • The quantization noise variance of the k-th subband signal Uqk is propor-    tional to 2-2bk and the variance of subband signals Q 
y2k , that is, gqk c x 2-2bk 0.2k ,where c is a constant of proportionality independent from 

    the channel number k .
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  • Optimal bit-allocation is applied. That is, bk = b + 0.o{ayh /(flj.o1 a; )} 
   Optimal bit-allocation is the bit allocation for subband signals that minimizes 

the average of the quantization noise variance, that is, as = 1/M E! Q1 aqk, un-
der the condition that the average bit number is b. It can be verified that Eq. (A.2) 

can be rewritten in terms of the subband signal variances ayk as follows: 

             

t  z 

                                  :~1Ik=O         GsBC =~Uk() nr-11A.3 
                                ~z( ( k=0 Yk ) 

  The subband coding gain GsBC depends on not only the filter banks but also 
statistics of the input sequence :z(n). Thus, it is convenient for evaluating the 
usefulness of filter banks to use a model for the input sequence. For example, the 

first-order Malkov process or AR(1) process is known to match to image statictics. 
Appendix B deals with such first-order models.



Appendix B

First-Order Models

Autoregressive or Markov source models are very useful for evaluating image pro-
cessing systems. In this appendix , let us briefly review  first-order Markov models 
or AR(1). First-order models for two-dimensional sources are also discuss ed. For 
the detail, see the reference [36] .

B.1 First-Order Markov or AR(1) Process

Let zv (n) be the zero mean white noise-process. Then, the AR(1) process 3:(77) 
with zero mean and the correlation factor p is generated by

x(n) = w(n) + px(n — 1). (B.1)

In brief, for highly correlated process (p -* 1) , there is the tendency that two 
succeeding samples of the sequence take similar values one another . The AR(1) 
process with p = 0.95 is very frequently used as a model for image data . 
  Let o2U be the white noise variance. Then, the autocorrelation function (act) 

of AR(1) process R,„ (k) is given by

RXX(k) = uxp~ki (B.2)

where a _ o_w  — p2). 
  Next, we consider evaluating the subband coding gain of a PU filter bank 

whose filters all have the length L . To evaluate the subband coding gain Gssc (see 
Appendix A), it is useful to take an L-th order correlation matrix . The L-th order

I 15
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correlation matrix R

R„

rx of AR(1) process with the correlation factor p is given by

= E [xx r] _ (7

 1 

 P 

 P` 

PL-1

 P P2 PL - i 
 1 P ... PL-2 

P 1 ... PL-3 

                                        •                                                                 

• 

PL-?PL_3... 1

(B.3)

where x is a L x 1 vector consisting of L succeeding samples of the sequence 

 .r(n) and the function E[•] denotes the expectation of its argument. 
  Defining y as a M x 1 vector consisting of M subband signals, where the k-th 

element takes a sample of the k-th subband signal, we have the following relation: 

y = Px,(B.4) 

where 

[P]k,n = h.k(L — 1 — n)(B.5) 

for k = 0, 1. • • ,111—  1 and n = 0, 1, • • • , L — 1. In this equation, hk(n.) denotes 
the k-th analysis filter. 

  Thus, from the correlation matrix and the M x L matrix P, we can simply 

obtain the correlation matrix of the subband signals Ryy as follows: 

Ryy = E[YYT] = E[Px(Px)T] = PRXXPT•(B.6) 

  The variance of the k-th subband signal Qyk is obtained as the k-th diagonal 
element of R,,y, that is, 

2   gyk= [Ryy]k,k•(B.7) 

Thus, once a PU filter bank is given, the subbnad coding gain GSBc for AR(1) 
process with any correlation factor p can easily be obtained from Eq. (A.3).

B.2 First-Order Models for 2-D Sources

According to the article [36], we have two acfs commonly used for modeling 
image data. One is the separable model and the other is the isotropic model . The 
former is said to be appropriate especially to many artificial images, and the latter 
appropriate especially to images of natural objects. 

  The separable acf model is given by 

RXX(kh, kv) _ a2phkhlpylkvi,(B.8)
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where kh and k,, are the spatial shifts in horizontal and vertical image directions
, 

and ph and pv are the correlation factors for horizontal and vertical directions
, 

respectively. If ph = pv = p , the last equation is reduced to 

RXx (kh, kv)(B .9) 

   Unlike the separable model, the isotropic act' model is non-separable, and is 
given by 

RxX(kh, kv) = a2p( +q)1/2(B .10) 

This model has no preferred direction and is appropriate for natural objects. 
  Even for 2-D filter banks, by lexicographically arranging the array of the filter 

coefficients into a sequence, we can obtain the variance of the kh,kv-th subband signaloJtihk,in the similar way to the procedure described in the previous sec- 
tion. Note that we have to take care of ordering the elements in the correlation 
matrix Rxx according to the arrangement of the filter coefficients. Once the vari-
ances a2 Aare calculated, the subband coding gain GSBC is simply obtained as 
in Eq. (A.3).
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