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Structured abstract 

Objectives: Number of lymph nodes to be removed are determined from residual counts. 

Estimating residual radioactivity in lymphatic nodes before a biopsy in advance is useful for 

reducing surgical operation time. The purpose of this study was to estimate total radioactivity of 

a small hot spot in single-photon emission computed tomography (SPECT) of a torso phantom. 

Methods: Cross-calibration study was performed to convert counts in SPECT images to 

radioactivity. A simulation study was performed to estimate the size of volume of interest (VOI) 

covering a hot spot corrupted with full width at half maximum (FWHM) between 8 and 16 mm. 

The estimation of total radioactivity was validated in a torso phantom study using small sources. 

Results: True radioactivity was approximately equal to integrated values of hot spots using the 

VOI with a diameter of 40 mm in our simulation study. The difference was less than18% in 

cases of more than 9.4 kBq. Conclusions: The total radioactivity in small sources simulating a 

typical sentinel node was estimated from SPECT images using a VOI of 40 mm in a torso 

phantom study. Because the difference from actual values were less than 10% on average when 

radioactivities were more than 9.4 kBq, the total radioactivity of a lymph node can be estimated 

in a clinical examination. 
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Introduction 

Sentinel lymph node (SLN) biopsy has been widely accepted as a method for staging regional 

lymph nodes for patients with melanoma [1-4]. The biopsy is performed by intradermal 

injection of a vital blue dye or a radioactive tracer, or both, around the melanoma. It has been 

demonstrated that use of the blue dye in combination with the radioactive tracer leads to optimal 

detection and identification of SLNs for melanoma. 

Planar lymphoscintigraphy is routinely employed to visualize sentinel nodes and afferent 

lymphatic vessels preoperatively and to determine their number and location. However, 

single-photon emission computed tomography/computed tomography (SPECT/CT) has two 

advantages over planar lymphoscintigraphy. The tomographic nature of the technique and CT 

correction for attenuation and scatter of the gamma ray signals provide better sentinel node 

visualization [5]. Contamination, nodes close to the injection site, and overweight patients are 

noted instances in which SLNs are better identified and localized by SPECT/CT than planar 

lymphoscintigraphy in clinical situations [6-8]. After the SLN is identified through both in vivo 

imaging on a gamma camera and surveying with a gamma probe, a gamma probe is utilized to 

measure residual counts in the lymphatic nodes to identify and remove any additional hot lymph 

nodes [3, 9]. Therefore, lymph nodes that are to be removed are not determined from residual 

counts before surgical operations. 

We have focused on estimating residual total radioactivity in lymphatic nodes, because it will 

reduce operation time if such lymph nodes are determined before a biopsy is performed. The 

radioactivity is calculated from voxel counts in SPECT images using a calibration factor 

obtained by imaging a phantom containing a known concentration of the same radionuclide 

used in clinical examination [10]. However, the quantitative accuracy of radioactivity 

measurements with SPECT can be compromised by partial volume error [11]. The poor spatial 

resolution of the SPECT imaging system causes a “spill-out” phenomenon. The sum of the 

intensities of all the voxels that is attributable to an object still reflects the total amount of 

radioactivity within it. However, the intensities of individual voxels no longer accurately reflect 

the concentration of the radioactivity contained within them. Therefore, total radioactivity can 

be measured by a volume of interest (VOI) of larger size as including spilled out intensity. 

However, if the total radioactivity is measured including radioactivity of other hot spots using 

oversized VOI, results in overestimated measurements. Therefore, accurate estimation needs to 



determine appropriate VOI size according to the image resolution and SLNs size. The purpose 

of this study was to estimate the total radioactivity of a hot spot in SPECT images of a torso 

phantom using the VOI of size determined by a simulation study. 

 

Materials and Methods 

Image processing 

SPECT/CT image data were acquired by Symbia T16 (Siemens AG, Medical Solutions, 

Erlangen, Germany). This system has a dual-head variable-head gamma camera equipped with 

low-energy low-penetration (LELP) collimators (21% window centered on the 140keV energy 

peak of Tc-99m) and a 16-multislice spiral CT component. The LELP collimators are 

specifically designed for lymphoscintigraphy to avoid “shine-through” artifacts from injection 

sites. The SPECT projection data (128 × 128 matrix, 30 frames) were acquired using 6° angular 

steps in a 16 s time frame throughout the study. In addition, the SPECT images (128 × 128 

matrix; voxel size: 4.8 mm × 4.8 mm × 4.8 mm) were reconstructed with three-dimensional 

ordered subset expectation maximization including scatter correction with dual energy window 

method and CT-based attenuation correction using six subsets and eight iterations [12-14]. A CT 

scan with 130 kVp and 70 mAs using adaptive dose modulation (CARE Dose 4D) was 

performed subsequent to SPECT acquisition. The CT reconstruction used smooth and medium 

kernels (B8s and B40s, respectively) with a slice thickness of 3 mm. 

 

Cross-calibration study 

A cross-calibration study used a cylindrical phantom of a volume of 5640 mL (diameter, 200 

mm; height, 200 mm). This phantom was filled with radioactivity concentrations of Tc-99m of 

5.4, 15.5 and 44 MBqmL−1and was scanned three times at the center of the field of view (FOV) 

with a 250-mm detector radius. Furthermore, the image processing described in Section “Image 

processing” was applied. 

Average count values (Mave) in the obtained SPECT images were measured in a 100-mm 

diameter region of interest at the center of the images with slice position between −48 and +48 

mm so that the central axial FOV would be at a slice position of 0 mm. The cross-calibration 

factor (Fc) is expressed as follows: 
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where Cphan BqmL−1 denotes the radioactivity concentration in the cylindrical phantom, and 

Vvoxel mL denotes the voxel volume,0.11mL in this study. 

 

Simulation study 

We simulated a point spread function using a voxel size of 0.5 mm × 0.5 mm × 0.5 mm in 

image data with original programs (Visual Studio 2010 Professional, Microsoft). Uncorrupted 

sphere hot spots with a diameter of 2, 4, 6, 8 and 10 mm at the center of the images were 

convolved by a 3D-Gaussian kernel with an FWHM of 8, 10, 12, 14 and 16 mm. The images 

were simulated with no background activity. Integral in the simulated images were measured in 

spherical VOIs with a diameter of 10, 20, 30, 40, 50, 60 and 70 mm at the center of a hot spot. 

The totals were divided by the total value of the uncorrupted sphere hot spots in the simulated 

images according to FWHM, which values were UCRs. The VOI size was determined for a 

torso phantom study where these values were more than 95% in the simulation study. 

 

Torso phantom study to validate estimation of radioactivity 

The phantom study used a torso phantom (Kyotokagaku co, LTD, Japan) with small 

radioactive source inserts (a length of 5 mm× a diameter of 4 mm). The inserts contained 

Tc-99m with radioactivities between 1.7 kBq and 2.1 MBq to simulate clinical cases. They were 

inserted at specific positions to simulate an aortic bifurcation LN (A), an iliac LN (B), and an 

inguinal LN (C) in the torso phantom (Fig. 1). The inserted phantom was scanned three times at 

the center of the FOV. In addition, the image processing described in Section “Image processing” 

was applied with auto contouring for the distance between the phantom and detectors. 

The total radioactivities were estimated using Fc within spherical VOIs with a diameter of 40 

mm determined by the simulation study. The estimated radioactivities were compared with the 

true radioactivities in the inserted source as a relative difference. The relative difference D is 

defined as 

100
t
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−
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where Ae denotes the estimated radioactivity from the obtained SPECT images within VOIs, and 



At denotes the actual (true) total radioactivity in the source insert. Then, the three calculated D 

values were averaged (Dave) from repeated SPECT imaging data. 

 

Results 

Cross-calibration study 

Fc was 14.4 ± 0.3 Bqcount−1second-1, using the torso phantom study. 

 

Simulation study 

The UCRs became larger with increasing VOI size, before reaching a plateau at a larger size 

(Fig. 2). The difference from an object size at an FWHM of 8 mm was greater in a 16 mm VOI 

than that in a smaller VOI size. The UCRs became larger than 0.95 when using a VOI 40 mm in 

diameter, when the spatial resolution was less than an FWHM of 16 mm, and the uncorrupted 

sphere hot spot was smaller than 10 mm. 

 

Torso phantom study to validate estimation of radioactivity 

All sources were depicted with a radioactivity level ranging between 9.4 kBq and 2.1 MBq. 

However, the source of position (A) was not depicted with a radioactivity of 5.7 kBq in two 

SPECT images of the three and was not depicted with a radioactivity of 1.7 kBq in any of the 

three images. The source of position (B) was also not depicted with a radioactivity of 5.7 kBq in 

one of the three images, nor with a radioactivity of 1.7 kBq in any of the images. The source of 

position (C) was depicted with a radioactivity of 5.5 kBq in all three images, but not depicted 

with a radioactivity of 1.7 kBq in one of three images. 

The absolute values of Dave showed less than 18% error in the radioactivities between 9.4 kBq 

and 2.1 MBq, and the absolute maximum value was 11% in radioactivities between 81 kBq and 

2.1 MBq (Fig. 3). The Dave values showed means of −9.2%, 0.96% and −0.085%, respectively, at 

(A), (B), and (C) in a radioactivity range 9.4 kBq–2.1 MBq. The D values showed a larger 

variance in the hot spots of all the positions having lower radioactivity levels. 

 

Discussion 

An object size of less than 10 mm was simulated in this simulation study because sentinel 

lymphoscintigraphy is not performed in lymphonodes larger than 10 mm, which are frequently 



interpreted as metastases by other types of examination. The 3D-Gaussian filters used also 

simulated image resolution in a clinical SPECT image because its FWHM commonly ranges 

from 7 mm to 15 mm [15]. Therefore, we thought that the SLN hot spot was enclosed by a VOI 

40 mm in diameter, including the counts spilled-out in a clinical examination, because this 

simulation study would be relevant for determining the VOI size. The estimation of 

radioactivity should use a controlled VOI size according to the amount of spill-out or the image 

resolution in a SPECT image. Its VOI size tended to be less dependent on the object size if the 

image resolution is low. 

We believe this torso phantom study could be useful for simulating a patient with malignant 

melanoma of a lower extremity because a typical SLN ranges in size from 4 to 6 mm, the total 

radioactivity ranges from 1.1 to 1.8 MBq, and the absolute uptake in the surrounding tissues is 

extremely low [16, 17]. In addition, Renee et al. performed a torso phantom study simulating 

breast lymphoscintigraphy with a total activity in the node between 37 kBq and 370 kBq. 

In the present study, the Dave values were lower than 0% in the hot spot of (C) and were 

approximately 0% in the hot spots of (A) and (B), with radioactivity ranging between 9.4 kBq 

and 2.1 MBq. However, when the radioactivity was less than 5.5 kBq, either the hot spots were 

not depicted in the SPECT images or the estimation of radioactivity was inaccurate. Therefore, 

an accurate estimation of its radioactivity might be complicated. 

Shcherbinin et al reported relative errors of approximately 5% while estimating total 

radioactivity in a phantom study. Furthermore, the results of our phantom study were 

quantitatively accurate and comparable to results obtained by other phantom studies [15, 18 and 

19]. However, in our study, the relative error of estimation was greater at radioactivities between 

9.4 and 27 kBq because the size of the inserted radioactivity sources was smaller and the filled 

radioactivities were lower. The error of estimation would depend on the accuracy of the 

attenuation and scatter correction [20]. Moreover, the precision of estimation was reduced as the 

radioactivity of the inserted sources decreased because the statistical error was increasing as the 

detected counts were decreasing. 

The present study has several limitations; spill-in from injection sites were not taken into 

account. Therefore, we believe that the overall accuracy should be assessed in a clinical study. 

The estimation of radioactivity would be overestimated in the presence of other hot spots 

around the estimated SLN because of the effect of spilled-in counts from hot spots. However, 



this effect can be decreased if the VOI size covering the corrupted hot spot is decreased by 

spatial resolution correction processing. Thus, it is possible to estimate the total radioactivity of 

a lymph node consuming more than approximately 10 kBq in a clinical examination. Therefore, 

unnecessary biopsy procedures might be avoided because of preoperative identification of SLNs 

to perform. 

In conclusion, the total radioactivity in small sources simulating a typical sentinel node was 

estimated from SPECT images using a VOI with a diameter of 40 mm in a torso phantom study. 

Because the difference from actual values were less than 10% on average when radioactivities 

were more than 9.4 kBq, the total radioactivity of a lymph node can be estimated in a clinical 

examination. 
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Figure 1. The positions of source inserts in the torso phantom. 

(a), (b), and (c) denote the positions of sources simulated an aortic bifurcation LN (A), an iliac 

LN (B), and an inguinal LN (C) in the phantom. 

 

 

 

 

Figure 2. UCRs as function of VOI volumes for FWHM of 3D-Gaussian kernel. 

UCR is 1.0 when the total voxel value of hot spot is equal to the value integrated inside a VOI. 

(a) and (b) denote uncorrupted sphere hot spots were convolved by a 3D-Gaussian kernel with 

an FWHM of 8 and 16 mm, respectively.  

 

 

 

 



 
 

Figure 3. Dave as a function of radioactivity of the inserted sources. 

Dashed lines denote a Dave of 0%. (a) and (b) denote a position (A) in radioactivities ranging 

from 9.7kBq to 0.17 MBq and ranging from 0.42 MBq to 2.1 MBq, respectively. (c) and (d) 

denote a position (B) in radioactivities ranging from 9.7 kBq to 0.17 MBq and ranging from 

0.42 MBq to 2.1 MBq. (e) and (f) denote a position (C) in radioactivities ranging from 9.4 kBq 

to 0.17 MBq and ranging from 0.41 MBq to 2.0 MBq. 


