連続講座

断層映像法の基礎 第27回 解像度変換

篠原 広行10、軽部 修平10、中世古 和真10、梶原 宏則10、橋本 雄幸20

"首都大学東京人間健康科学研究科 放射線科学系 "横浜創英短期大学 情報学科

はじめに

第26回ではベクトル表現での逆変換のサンプリ ングが等間隔ではない場合の変換ベクトルの補間 と逆変換の方法を解説した。このベクトル表現で の変換は、非剛体の位置合わせに対応させることが できる。位置合わせをする対象が非剛体の場合に、 対象を幾つかのグリッド(格子)に分解し、それぞれ のグリッドで剛体の変換ベクトルを算出することで 非剛体に対応させるマルチグリッドレジストレー ションという方法がある。この方法では、グリッド に分解する際に、計算コストを考慮して解像度を 変換する操作を行う。今回は、マルチグリッドレジ ストレーションで使われる解像度変換に焦点を当て、 リサンプリングによる方法とウェーブレット変換 を用いる方法について解説する。

リサンプリング リサンプリング ネ形解像度変換 3次多項式解像度変換 ウェーブレット変換 連続ウェーブレット変換 離散ウェーブレット変換

2-3 多重解像度解析

1. リサンプリング

マルチグリッドで位置合わせを行なうときに、最初 から細かいグリッドを設けるのは効率が悪いので、 対象画像を低解像度に変換してから全体を大まかな グリッドに分けてグリッドごとに変換ベクトルを 算出する。その後、グリッド内の解像度を回復させ、 その中をさらにグリッドに分けて変換ベクトルを 算出する。こうすることにより、グリッド内の画素 数を変えずにグリッド内で効率よく変換ベクトルの 計算を行なうことができる。ここで用いる解像度 変換で最も単純な方法は、画素をリサンプリング する方法である。リサンプリングには線形で行う 方法の他、さまざまな関数を用いてリサンプリング する方法が存在する。ここでは、画素の平均化に 相当する線形の方法と3次多項式関数を用いた リサンプリングの方法を解説する。

1-1 線形解像度変換

解像度を変換する最も単純な方法は、線形的に リサンプリングする方法である。線形的なリサン プリングを式で表すと、

$f(x,y) = (x-x_0)(y-y_0) f(x_1,y_1)$	
$+(x_1-x)(y-y_0)f(x_0,y_1)$	(1)
$+(x-x_0)(y_1-y)f(x_1,y_0)$	(1)
$+(x_1-x)(y_1-y)f(x_0,y_0)$	

別刷請求先:〒116-8551 東京都荒川区東尾久7-2-10 首都大学東京人間健康科学研究科放射線科学系 篠原 広行 TEL:03-3819-1211 FAX:03-3819-1406 となる。それぞれの関係は図1に示す。解像度を半分にする場合は、

$$\begin{cases} x = \frac{x_0 + x_1}{2} \\ y = \frac{y_0 + y_1}{2} \end{cases}$$
(2)

なので、

$$g(\mathbf{x}, \mathbf{y}) = \frac{1}{4} \{ f(\mathbf{x}_1, \mathbf{y}_1) + f(\mathbf{x}_0, \mathbf{y}_1) \\ + f(\mathbf{x}_1, \mathbf{y}_0) + f(\mathbf{x}_0, \mathbf{y}_0) \}$$
(3)

となり、図2に示すように上下左右の4つの画素を 平均化することに相当する。この解像度を半分にす る操作を繰り返すことにより、図3に示すように解像 度を1/2、1/4、1/8と低くしていくことができる。 線形解像度変換の場合は、リサンプリングした画素 の値は隣接する4つの画素値から求めることになる。

1-2 3次多項式解像度変換

リサンプリングの方法で次に単純な方法は、3次 多項式関数に当てはめてリサンプリングする方法で ある。3次多項式の場合は、図4に示すように対象と なる点の周りの16点の値から求めることになる。 1方向の3次多項式補間は、

$$g(\mathbf{x}) = b_0 f(\mathbf{x}_{-1}) + b_1 f(\mathbf{x}_0) + b_2 f(\mathbf{x}_1) + b_3 f(\mathbf{x}_2)$$

$$b_0 = -\frac{1}{6} t(t-1)(t-2)$$

$$b_1 = \frac{1}{2} (t+1)(t-1)(t-2)$$

$$b_2 = -\frac{1}{2} t(t+1)(t-2)$$

$$b_3 = \frac{1}{6} t(t+1)(t-1)$$

$$t = \mathbf{x} - \mathbf{x}_0$$

(4)

と表すことができ、これを横方向と縦方向にそれ ぞれ行うことによりリサンプリングを実行する。 解像度を半分にする場合は、t=1/2となるので1方向 のリサンプリングは、

図1. 2次元の線形補間の座標と 関数の値

図2. 解像度を1/2に変換 上下左右の4つの画素が平均されて1つの画素になる。

図3. 解像度を1/2、1/4、1/8に線形解像度変換した画像 (a) 原画像 (b) 解像度1/2 (c) 解像度1/4 (d) 解像度1/8

(d)

(a)

(b) (c)

$$g(x) = -\frac{1}{16} f(x_{-1}) + \frac{9}{16} f(x_0) + \frac{9}{16} f(x_1) - \frac{1}{16} f(x_2)$$
(5)

となる。よって、2次元の16個の重み付けは図5のようになる。この方法で画像の解像度を1/2、1/4、1/8 と低くした画像を図6に示す。

2. ウェーブレット変換

解像度を変える方法に、ウェーブレット変換を用い る方法がある。そこで、この節ではウェーブレット 変換について解説する。

2-1 連続ウェーブレット変換

ウェーブレット変換は、時間または位置の概念を 含めて周波数解析を行なうものである。周波数解析 で最も有名なのはフーリエ変換であるが、そのフー リエ変換では周波数解析をする際に時間や位置の 概念を含めることはできない。ウェーブレット変換 は、**図7**に示すようなマザーウェーブレットと呼ばれ る有限の小さな波を考え、任意の関数をその波の 幅と波と波の間隔をパラメータとするウェーブレット 関数の和に変換するものである。マザーウェーブレッ トを $\Psi(t)$ とするとウェーブレット関数 $\Psi_{a,b}(t)$ は、

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi(\frac{t-b}{a})$$
(6)

と表される。ウェーブレット変換する任意の関数を f(x)とするとウェーブレット変換の係数W(a,b)は、

$$W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(x) \psi^*(\frac{t-b}{a}) dt$$
(7)

と表すことができ、これを連続ウェーブレット変換 と呼んでいる。ここで、・は複素共役を表し、変数aは 周波数の逆数、変数bは時間または位置に相当する。 つまりウェーブレット係数W(a,b)は、時間(または 位置)bにおける周波数1/aの成分であるといえる。

2-2 離散ウェーブレット変換

コンピュータで解析するときは、変換式を離散化 する必要がある。離散化したウェーブレット関数 $\Psi_{j,k}$ [n]は、

$$\psi_{j,k}[n] = \sqrt{2^{j}} \psi(2^{j}n - k)$$
 (8)

と表され、その関数を用いた離散ウェーブレット 変換は、

図4. 2次元の3次多項式補間の座標と関数の値

1 256	$-\frac{9}{256}$	$-\frac{9}{256}$	1/256
$-\frac{9}{256}$	81 256	81 256	$-\frac{9}{256}$
$-\frac{9}{256}$	$f(x, y)$ $\frac{81}{256}^{\circ}$	$\frac{81}{256}$	- 9/256
1/256	$-\frac{9}{256}$	$-\frac{9}{256}$	1/256

図5. 解像度を1/2にするときの2次元3次多項式 補間の重み付け

連続講座◆断層映像法の基礎 第27回:篠原 広行、他

$$W[j,k] = \sum_{n=0}^{N-1} f[n] \psi^*_{j,k}[n]$$
(9)

と表される。また、離散ウェーブレット関数がN個の j,kの組み合わせに対して正規直交基底であれば 離散ウェーブレット逆変換が存在し、その式は、

$$\mathbf{f}[\mathbf{n}] = \sum_{\mathbf{j},\mathbf{k}} \mathbf{W}[\mathbf{j},\mathbf{k}] \boldsymbol{\psi}_{\mathbf{j},\mathbf{k}}[\mathbf{n}]$$
(10)

となる。

離散ウェーブレット関数でもっとも有名な関数に ハール関数と呼ばれるものがある。離散ウェーブレッ ト変換を行う場合、マザーウェーブレットのほかに スケーリング関数、またはファザーウェーブレットと 呼ばれる関数が必要となる。フーリエ変換で言えば 直流成分のようなものである。ハールのマザーウェー ブレットは、

$$\psi_{\text{Haar}}(t) = \begin{cases} 1 & (0 \le t < 1/2) \\ -1 & (1/2 \le t < 1) \\ 0 & (\text{otherwise}) \end{cases}$$
(11)

であり、スケーリング関数は、

$$\phi_{\text{Haar}}(t) = \begin{cases} 1 & (0 \le t < 1) \\ 0 & (\text{otherwise}) \end{cases}$$
(12)

と表される。これをグラフで表したものを図8に 示す。また、マザーウェーブレットとスケーリング 関数にはツースケール関係といわれるものがあり、

$$\begin{cases} \phi_{\text{Haar}}(t) = \phi_{\text{Haar}}(2t) + \phi_{\text{Haar}}(2t-1) \\ \psi_{\text{Haar}}(t) = \phi_{\text{Haar}}(2t) - \phi_{\text{Haar}}(2t-1) \end{cases}$$
(13)

と表すことができる。この関係をグラフで表すと 図9のようになる。この関係は、多重解像度解析の 際に重要な役割を果たす。

図6. 解像度を1/2、1/4、1/8に3次多項式解像度変換した画像 (a) 原画像 (b) 解像度1/2 (c) 解像度1/4 (d) 解像度1/8

(a) ハールのマザーウェーブレット (b) ハールのスケーリング関数

離散ウェーブレット変換によく用いられる関数に は、ハール関数のほかにドベシィのウェーブレット 関数がある。一般的なツースケール関係は、

$$\begin{cases} \phi(t) = \sum_{k} p_{k} \phi(2t-k) \\ \psi(t) = \sum_{k} q_{k} \phi(2t-k) \end{cases}$$
(14)

と表される。ここで数列 {pk} と {qk} はツースケー ル数列と呼ばれる。ドベシィの場合は特有のパラメー タNによってツースケール数列の値が変化するが、

 $\sum_{k=0}^{2N+1} p_k = \sqrt{2}$ $\sum_{k=0}^{2N+1} p_k^2 = 1$ $\sum_{k=0}^{2N+1} p_k p_{k+2n} = 0 \text{ (n \neq 0)}$ (15)

の条件式から数列 {pk} が導き出される。また数列 |qk| は、

$$q_k = (-1)^k p_{2N-1-k}$$

(16)

(b) マザーウェーブレットと1/2スケーリング関数の関係

(b)

となる。N=1の場合は、ドベシィの数列 {pk} は、

$$\{\mathbf{p}_0, \mathbf{p}_1\} = \{1/\sqrt{2}, 1/\sqrt{2}\}$$
(17)

となり、ハールのウェーブレットと等しくなる。N=2 の場合のドベシィの数列 {p_k} は、

$$\{\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\} = \left\{\frac{1+\sqrt{3}}{4\sqrt{2}}, \frac{3+\sqrt{3}}{4\sqrt{2}}, \frac{3-\sqrt{3}}{4\sqrt{2}}, \frac{1-\sqrt{3}}{4\sqrt{2}}\right\} (18)$$

となる。

2-3 多重解像度解析

1次元で考えた場合、ハールのウェーブレットを用 いて解像度を1つ下げると

$$\mathbf{f}_{-1}[\mathbf{k}] = \frac{1}{2} (\mathbf{f}_0[2\mathbf{k}] + \mathbf{f}_0[2\mathbf{k}+1])$$
(19)

と表すことができる。これは、2つの画素の平均を 計算したことになる。逆に1つ上のレベルの関数を レベルの下の関数から考えると、

$$f_0(t) = f_{-1}(t) + e_{-1}(t)$$
(20)

と表すことができる。ここで e₋₁(t) は誤差を表す。 解像度を下げた場合、もとの関数の隣り合う値の 平均を計算したので、誤差 e₋₁(t) はその平均からの 差となる。その様子を図10に示す。さらに解像度を 下げると、

$$f_{-2}[k] = \frac{1}{2} (f_{-1}[2k] + f_{-1}[2k+1])$$
(21)

となり、よって

$$f_0(t)=f_{-2}(t)+e_{-2}(t)+e_{-1}(t)$$

(22)

図10. 平均と誤差の関係

と表すことができる。ここでe-2(t)はさらに解像度 を下げたときの誤差を表す。このように解像度を下 げた関数とその誤差の関数で分解していくことがで きる。このように解像度をいろいろ変えながら信号 の解析を行うことを多重解像度解析と呼んでいる。 レベルを1つ下げるウェーブレット変換を行うと、平均 の近似によって作成された低域成分(L成分)と元の 関数との誤差から算出される高域成分 (H成分) に 分けられる。

2次元で多重解像度解析を行う場合は、横方向にレベルを1つ下げる1次元ウェーブレット変換を行い、 さらに縦方向にレベルを1つ下げる1次元ウェーブレ ット変換を行う。その模式図を図11に示す。解像度 のレベルをさらに下げる場合は、LL成分に対して

(b) 横方向にウェーブレット変換を行いL成分とH成分に分解

(c) 縦方向にウェーブレット変換を行いLL成分、LH成分、HL成分、HH成分に分解

図12. ハールのウェーブレットを用いた多重解像度解析 (a)原画像 (b) 深さ-1(1/2の解像度) (c) 深さ-2(1/4の解像度) (d) 深さ-3(1/8の解像度)

 図13. ドベシィのN=2のウェーブレットを用いた多重解像度解析
 (a)
 (b)
 (c)
 (d)

(a) 原画像 (b) 深さ-1(1/2の解像度) (c) 深さ-2(1/4の解像度) (d) 深さ-3(1/8の解像度)

同様の操作を行う。ハールのウェーブレットで画像 の解像度変換を行った結果を図12に示す。ハールの ウェーブレットで行った解像度変換は、線形解像度 変換と同じ結果になる。ドベシィのN=2のウェーブ レットで解像度変換を行った結果を図13に示す。 ドベシィの解像度変換を行った結果を図13に示す。 ドベシィの解像度変換を行ったときの周波数特性は、 Nが大きくなるに連れて遮断特性のすぐれたローパ スフィルタのようになり、より高域成分が削除され るようになる。よって、ハールに比べてドベシィの 低解像度では、高域成分が早めに遮断されるような 画像になっている。図12と図13に示したハールと ドベシィのH成分を10倍に強調して表示した画像を、 それぞれ図14と図15に示す。図14と図15のH成分 を比べてみると、図14のハールではH成分にも低域 成分が残っていて多少なめらかさが見られる。一方、 図15のドベシィでは遮断特性が良いためにH成分が より細かくなっており、低域成分がより強く遮断さ れている様子がうかがえる。

謝辞:本研究で使用したプログラムの開発は平成 17年度~平成20年度首都大学東京共同研究費(富士 フィルムRIファーマ株式会社)、および平成20年度 首都大学東京傾斜的配分研究費によるものである。

図14. ハールのウェーブレットを用いた多重解像度解析のH成分を10倍強調して表示 (a) 原画像(b) 深さ-1(1/2の解像度)(c) 深さ-2(1/4の解像度)(d) 深さ-3(1/8の解像度)

(a) (b) (c) (d)

図15. ドベシィのN=2のウェーブレットを用いた多重解像度解析のH成分を10倍強調して表示 (a) 原画像(b) 深さ-1(1/2の解像度)(c) 深さ-2(1/4の解像度)(d) 深さ-3(1/8の解像度) (a) (b) (c) (d)