

篠原 広行10、梶原 宏則10、中世古 和真10、橘 篤志10、橋本 雄幸20

"首都大学東京人間健康科学研究科 放射線科学域 "横浜創英短期大学 情報学科

はじめに

連続講座

第28回までで、レジストレーションについてその 基本から非剛体レジストレーションまで解説して きた。今回から直接MRIの画像再構成には使われ てないが、CTの世界ではよく使われている2次元 のファン(扇状)ビームと3次元のコーン(円錐状) ビームからの画像再構成について解説する。本稿 では2次元画像再構成で使われているファンビーム から投影データを取得する方法とその投影データ から画像再構成する方法について解説する。

- 1. パラレルビームとファンビーム
- 2. ファンパラ変換と投影再構成法
- 3. ファンビームからの直接再構成法

MRIの投影再構成法は、k空間を極座標系でス キャン(ラジアルスキャン)して画像再構成を行う。 図1に示すように、1方向をスキャンしたk空間の データを1次元フーリエ逆変換すると図2に示すよ うな実空間での被写体の同じ方向の投影データに なる。この場合、被写体に対してパラレルビーム (平行ビーム)で投影をとった投影データに相当する。

一方、ファンビームの投影データは図3に示すよ うに、1つのX線源から放射状に検出器に到達する ように投影をとる。そしてX線源と検出器を同時に 回転させて、全方向から投影データを取得する。 このファンビームの投影データは、k空間で直接 取得することはできない。よってファンビームの 投影データからの画像再構成問題は、k空間を考え

図1. k空間におけるラジアルスキャン(投影再構成法)

図2. パラレルビームの投影

別刷請求先:〒116-8551 東京都荒川区東尾久7-2-10 首都大学東京人間健康科学研究科放射線科学域 篠原 広行 TEL:03-3819-1211 FAX:03-3819-1406

図3. ファンビームの投影

検出器が扇状に並んだファンビームの幾何学的配置

図5.

検出器が直線状に並んだファンビームの幾何学的配置

ずに実空間でとられるデータについて考えていく。

ファンビームでの投影の幾何学的配置には2種類 あって、図4に示すように検出器が扇状に並んでい るものと、図5に示すように検出器が直線状に並ん でいるものとがある。

ファンビームの投影を数値シミュレーションで 作成する場合は、ファンビームのX線源から検出器 までの1つのラインをパラレルビームのラインに換算 することによって、パラレルビームと同じように作成 することができる。

図4に示すように検出器が扇状に並んでいる場合 のファンビームの投影データを $g_f(a, \theta_f)$ 、パラレ ルビームの投影データを $g_p(X_p, \theta_p)$ とし、X線源か らファンビームの回転中心(被写体空間の座標軸の 原点)までの距離を L_0 とすると、

$$\begin{bmatrix} X_{p} = L_{0} \sin \alpha \\ \theta_{p} = \theta_{f} + \alpha \end{bmatrix}$$
 (1)

と表すことができる。よって投影データの関係は、

$$g_{f}(a,\theta_{f})=g_{p}(L_{0}\sin a,\theta_{f}+a)$$
(2)

となる。図6に示した数値ファントムに対して、パラ レルビームで作成した投影と検出器が扇状に並んだ ファンビームで作成した投影のサイノグラムをそれ ぞれ図7(a)と(b)に示す。パラレルビームの投影 では、外側の楕円の投影の輪郭が左右対称になって いるのに対し、ファンビームの投影では左右非対称 になる。このずれは、線源の回転方向の違いによっ ても異なってくる。(2)式で示した関係は、線源が 反時計回りに回転するときのものであるが、逆に 時計回りに回転するときの投影データの関係は、

$$\mathbf{g}_{\mathrm{f}}(a,\theta_{\mathrm{f}}) = \mathbf{g}_{\mathrm{p}}(\mathrm{L}_{0}\sin a,\theta_{\mathrm{f}} - a) \tag{3}$$

と表される。線源の回転方向が反時計回りと時計 回りの投影データをそれぞれ図8(a)と(b)に示す。 左右のずれが逆向きになっている。このことより、 再構成においてもファンビームの場合は線源の回転 方向が重要になる。

また、図5に示すように、検出器が直線状に並んで いる場合のファンビームの投影データを $g_f(X_f, \theta_f)$ 、 パラレルビームの投影データを $g_p(X_p, \theta_p)$ とし、X線 源からファンビームの回転中心(被写体空間の座標 軸の原点)までの距離をL₀、X線源から検出器までの 距離をL_d(X_f座標軸の中心OとX線源を結ぶ距離) とすると、

$$\begin{pmatrix} X_{p}=L_{0} \frac{X_{f}}{\sqrt{X_{f}^{2}+L_{d}^{2}}} \\ \theta_{p}=\theta_{f}+\tan^{-1} \frac{X_{f}}{L_{d}} \end{pmatrix}$$

$$(4)$$

と表すことができる。よって投影データの関係は、

$$g_{f}(X_{f}, \theta_{f}) = g_{p}(L_{0} \frac{X_{f}}{\sqrt{X_{f}^{2} + L_{d}^{2}}}, \theta_{f} + \tan^{-1} \frac{X_{f}}{L_{d}})$$
 (5)

となる。図6に示した数値ファントムに対して、パラ レルビームで作成した投影と検出器が直線状に並ん

$$g_{f}(X_{f}, \theta_{f}) = g_{p}(L_{0} \frac{X_{f}}{\sqrt{X_{f}^{2} + L_{d}^{2}}}, \theta_{f} - \tan^{-1} \frac{X_{f}}{L_{d}})$$
 (6)

と表される。

2. ファンパラ変換と投影再構成法

ファンビームの投影からパラレルビームの投影に 変換することをファンパラ変換と呼ぶ。パラレル ビームの投影がファンビームの投影のどの位置にな るかを図10に示す。ファンビームは検出器が反時計

図6. 数値ファントムの画像

図7. 図4の配置で作成したファンビームの投影データ (a) パラレルビームの投影データ (b) ファンビームの投影データ(反時計回り)

図8. 回転方向を変えたファンビームの投影データ (a) 線源が反時計回りの場合の投影データ (b) 線源が時計回りの場合の投影データ 左右のずれ方が逆向きになる。

(a) (b)

図9. 図5の配置で作成したファンビームの投影データ (a) パラレルビームの投影データ (b) ファンビームの投影データ(反時計回り)

回りに回転したもので、図10(a)は扇形の検出器の 場合、図10(b)は直線状の検出器の場合を示して いる。検出器が反時計回りに回転している場合は、 パラレルビームのデータはファンビーム上で右上がり になっている。これは、図7や図9を見ても明らか である。

実際のファンパラ変換では、パラレルビームの投影 データを作成するので、パラレルビームの位置が ファンビームのどの位置になるかを計算して、その 位置のデータをファンビームの近接データから補間 することによって求める。よって、線源が反時計 回りに回転している場合は、(1)式および(4)式を 逆に解くことで計算式が求まる。検出器が扇状に 並んでいる場合は、(1)式をαとθfに対して解いて

$$\begin{pmatrix} \alpha = \sin^{-1} \frac{X_p}{L_0} \\ \theta_f = \theta_p - \sin^{-1} \frac{X_p}{L_0} \end{cases}$$
(7)

となり、投影データの変換は

$$\mathbf{g}_{\mathbf{p}}(\mathbf{X}_{\mathbf{p}}, \theta_{\mathbf{p}}) = \mathbf{g}_{\mathbf{f}}(\sin^{-1}\frac{\mathbf{X}_{\mathbf{p}}}{\mathbf{L}_{0}}, \theta_{\mathbf{p}} - \sin^{-1}\frac{\mathbf{X}_{\mathbf{p}}}{\mathbf{L}_{0}})$$
(8)

となる。また、検出器が直線状に並んでいる場合は、 (4) 式を X_f と θ_f に対して解いて

$$\left[\begin{array}{c} X_{f} = \frac{L_{d}X_{p}}{\sqrt{L_{0}^{2} - X_{p}^{2}}}\\ \theta_{f} = \theta_{p} - \tan^{-1}\frac{X_{p}}{\sqrt{L_{0}^{2} - X_{p}^{2}}} \end{array}\right]$$

となり、投影データの変換は

$$g_{p}(X_{p}, \theta_{p}) = g_{f}(\frac{L_{d}X_{p}}{\sqrt{L_{0}^{2} - X_{p}^{2}}}, \theta_{p} - \tan^{-1}\frac{X_{p}}{\sqrt{L_{0}^{2} - X_{p}^{2}}})$$
(10)

(9)

となる。

ファンビームの投影データからファンパラ変換を 行ってパラレルビームの投影データに変換した結果 を図11に示す。図11(a)は検出器が扇状に並んで いる場合で、図11(b)は検出器が直線状に並んで いる場合を示している。拡大率の違いによって横方 向の大きさが多少異なっているが、左右のバランス は元のパラレルビームと同様に左右対称の形に戻っ ている。ファンビームの投影データをパラレルビー ムの投影データに変換できれば、画像再構成は投影 再構成法 (FBP法)をそのまま用いることができる。

3. ファンビームからの直接再構成法

フーリエ変換に関するよく知られた定理によれば、 周波数空間でフィルタ関数H(ω)を掛け算すること

図10. ファンビームの投影とパラレルビームの投影の関係 (a) 扇状の検出器の場合 (b) 直線状の検出器の場合

は、実空間において、この関数の逆変換

$$h(X) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) e^{i\omega X} d\omega$$
(11)

を重畳積分 (convolution integral) することと等価 である。したがって、投影再構成法においてk空間 でフィルタ関数を掛け算する計算を、変数Xの領域 (実空間) で重畳積分により実行することもできる。 具体的には、フィルタ関数 $|\omega|$ と一致する関数を $\Phi(\omega)$ としフーリエ逆変換した関数を $\phi(X)$ とす れば、k空間でフィルタを掛ける計算は

$$q(X,\theta) = \int_{-\infty}^{\infty} g(X',\theta) \phi(X-X') dX'$$
(12)

のように表すこともできる。このような投影データ に対し実空間で重畳積分によってフィルタリングを 実行するようなフィルタ補正逆投影法を、とくに 重畳積分法、あるいはコンボリューション法と呼んで いる。標本化された投影データにおいて、フィルタ 関数が帯域制限された $| \omega |$ のRamachandran-Lakshiminarayananフィルタと呼ばれるものを利用 する場合、実空間の $\phi(X_i)$ は、

$$\phi(X_{i}) = \begin{cases} \frac{1}{4(\Delta X)^{2}} & i = 0\\ 0 & i : even \\ -\frac{1}{i^{2}\pi^{2}(\Delta X)^{2}} & i : odd \end{cases}$$
(13)

となる。ここで△Xは標本化したときのX_iの標本 間隔である。このフィルタの周波数空間での形と 実空間での形を図12に示す。

ファンビームの投影データに対しファンパラ変換 を用いずに直接再構成する場合は、この重畳積分法 を利用する。この手法は計算が複雑なので、簡単な 手順にして紹介する。この手順も扇状の検出器の

(a) (b)

図11.

ファンパラ変換でパラレルビームの投影に変換した投影データ (a)検出器が扇状に並んでいる場合のファンビームからパラレルビー ムに変換した投影データ

(b) 検出器が直線状に並んでいる場合のファンビームからパラレル ビームに変換した投影データ

図12. Ramachandran-Lakshiminarayanan フィルタの形状 (a) 周波数空間(k空間)での形状 (b) 実空間での形状

場合と直線状の検出器の場合とで式が若干異なっ てくるので、両方の場合に分けて解説する。

検出器が扇状の場合

- 手順1:ファンビームの投影データにL₀ cos aを 掛ける
- 手順2: Ramachandran-Lakshiminarayanan フィルタに (a/sina)²を掛けたものを投影 データに重畳する (フィルタ補正にあたる)
- 手順3:フィルタ補正した投影データを以下の式で 重み付けして逆投影する

$$f(x,y) = \frac{1}{2} \int_0^{2\pi} \frac{1}{w_1(x,y,\beta)^2} g_f'(\alpha,\beta) d\beta$$
(14)

ここで、 $\beta = \theta_f - a$ で

$$w_{1}(x, y, \beta) = \sqrt{\{L_{0} + t \sin(\beta - \phi)\}^{2} + \{t \cos(\beta - \phi)\}^{2}}$$

$$\begin{cases} x = t \cos\phi \\ y = t \sin\phi \end{cases}$$
(15)

である。

検出器が直線状の場合

- 手順1:ファンビームの投影データに $L_0/\sqrt{L_0^2 + X_f^2}$ を掛ける
- 手順2: Ramachandran-Lakshiminarayanan フィルタを投影データに重畳する (フィル タ補正にあたる)
- 手順3:フィルタ補正した投影データを以下の式で 重み付けして逆投影する

$$f(x,y) = \frac{1}{2} \int_0^{2\pi} \frac{1}{w_2(x,y,\beta)^2} g_f'(X_f,\beta) d\beta$$
(16)

ここで、
$$\beta = \theta_{\rm f} - \tan^{-1} \frac{X_{\rm f}}{L_{\rm d}}$$
で

 $w_{2}(\mathbf{x}, \mathbf{y}, \beta) = \frac{\mathbf{L}_{0} + t \sin(\beta - \phi)}{\mathbf{L}_{0}}$ $\begin{cases} \mathbf{x} = t \cos\phi \\ \mathbf{y} = t \sin\phi \end{cases}$ (17)

である。

この重み付け重畳積分法でファンビームから直接 再構成が可能である。実際にはファンパラ変換を 行った方が計算時間においても有利なのでファン パラ変換が使われることが多い。しかし、この考え 方は3次元のコーンビーム再構成に応用されている。

謝辞:本研究で使用したプログラムの開発は平成 17年度~平成22年度首都大学東京共同研究費(富士 フィルムRIファーマ株式会社)、および平成21年度 首都大学東京傾斜的配分研究費によるものである。