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Abstract

This thesis aims to develop a novel asymptotic expansion (AE) homogenization

and localization analysis for advanced composite structures by relieving periodic-

ity in the thickness direction. Introduction of relieved periodicity is an enhanced

approach in homogenization and localization method whereby the years developed

method usually implements the periodicity in three directions, i.e. in-plane and out-

of-plane directions of the unit-cell. In this regard, a modified periodic function is

introduced in the numerical formulation. The present formulation and finite element

implementation of AE homogenization and localization method are given, and uti-

lized to investigate several types of composites, namely 2-D laminated composites,

brick composites, 3-D orthogonal interlock composites and sandwich composites.

Homogenized thermomechanical properties and stress responses within the unit-cell

due to application of thermal and mechanical loads are of the main interests. It

is found that relieving periodicity in the thickness direction has larger influence

on the analyses of composites having geometrical and/or material non-uniformity

in the in-plane direction. Some certain results of homogenization and localization

analysis are compared with analytical and finite element analysis results. Based on

the obtained outcomes, it can be emphasized that the application of free-traction

boundary condition only on the top and bottom surfaces of the macroscopic model

cannot accurately simulate the real condition. The relieving periodicity throughout

the thickness direction of unit-cell is necessary in order to be able to obtain the

accurate results.

Keywords: Homogenization, localization, asymptotic expansion, relieved period-

icity, unit-cell
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Chapter 1

Introduction

1.1 Background

1.1.1 Composites in Aircraft Structures

Application of composite materials in aircraft structures have been intensely increas-

ing in the late decades. Starting in 1960s, commercial airplane manufacturers have

shown a great interest in composites use due to its beneficial properties as com-

pared to metallic materials. The excellent strength-to-weight ratio of composites is

the main contributing factor to the rapid growth of composite materials in aircraft

structures application whereby significant weight reduction is expected. The reduced

aircraft weight directly leads to the reduction of fuel cost and, on the other hand,

creates possibility to increase aircraft payload, which means escalating airline rev-

enue. Moreover, the other benefits of composites, such as good corrosion resistance

and durability, can reduce airline operating cost due to maintenance circumstances.

These facts are great selling points for a commercial aircraft.

Fig. 1.1 [1] shows that the increase of composites use in commercial aircraft struc-

tures over time is non-linear as can be approximated by an exponential graph. Due

1



Chapter 1. Introduction 2

Figure 1.1: The use of composite materials in commercial aircraft [1]

to the very strict safety requirements particularly for commercial aircraft, composite

materials were gradually used in three stages [2]. The early use of composite mate-

rials was limited on tertiary structures, for instance cabin interior and galleys. The

next stage is application on secondary structure in the 1970s, and then development

for primary structures, such as stabilizers, wings and fuselage, over the last three

decades. The recent use of composite materials in aircraft structures has exceeded

50% of total airframe weight.

The increase of composite application consequently advances composite technology

in many aspects, such as design process, manufacturing, maintenance, as well as the

analysis of composite properties and behavior [3]. In regard to the properties and

behavior of composites, experimental and numerical analyses are commonly per-

formed. Recently, numerical analysis plays an important role in the investigation

of composite materials and structures. Particularly for advanced composite struc-

tures, e.g. 3-D composites and sandwich honeycomb composites, numerical analysis
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usually considers the composites from the viewpoint of several hierarchical scales,

which is called multi-scale analysis.

1.1.2 Multi-scale Modeling Approach

Advanced composite structures often come with heterogeneous constituents with

a very complex architecture. The complexity of composite structures causes their

detail properties are very difficult to be experimentally investigated [4]. With the

aim of reducing experimental efforts, numerical analysis can be a suitable method.

However, an explicit modeling of the complex composite structures leads to a cum-

bersome and costly computational analysis. An excellent technique to deal with this

problem is by performing multi-scale analysis. This analysis enables heterogeneous

and complex structures to be observed from several hierarchical spatial scales. Con-

sequently, such kind of approach creates a possibility to separately investigate the

behavior and properties of the complex structure in each spatial scale with some

appropriate idealization.

Multi-scale analysis in advanced composite structure is commonly performed in three

hierarchical scales, namely micro-scale, meso-scale and macro-scale [5]. Micro-scale

is the scale in which fiber and matrix are incorporated as a representative volume

element (RVE) of a fiber tow or yarn with certain volume fraction. The equivalent

properties of the tows (or simply laminates in 2-D composites) are then used in the

analysis in meso-scale. In meso-scale, fiber tows architecture representing the whole

composite structures is explicitly built. Subsequently, the obtained equivalent prop-

erties are employed for the analysis in macro-scale representation. In macro-scale,

composite is considered to be a homogeneous structure having equivalent properties

and behavior of the tows architecture. External loading conditions are applied on

the homogeneous-considered structure.

Recently, multi-scale analysis is developing rapidly and commonly performed by
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employing methods with averaging scheme to bridge between scales. A study of

periodic boundary condition for multi-scale analysis in the prediction of equivalent

stiffness of 3-D woven composites was performed by Wang et al. [6]. The calculation

of equivalent stiffness was based on volume averaging technique. In the framework

of asymptotic expansion analysis, multi-scale homogenization method had been em-

ployed for the thermomechanical analyses, e.g. for the prediction of the properties

of random heterogeneous materials [7] and 3-D orthogonal interlock composites [8].

Xing et al. [9] developed a multi-scale eigenelement method for periodical composite

structures.

In certain extent, multi-scale analysis was employed in damage analyses of com-

posites under fatigue load [10] and impact load [11, 12]. Multi-scale analysis of

fiber-reinforced composites was done by Wu et al. [13] by employing mean-field

homogenization method. The matrix phase is considered as a non-linear isotropic

material embedding damage. Multi-scale damage analysis was also performed by

Visrolia and Meo [14] for the analysis of 3-D weave composites. The analysis was

based on asymptotic homogenization utilizing meso-scale unit-cell model.

1.1.3 Overview of Homogenization and Localization Analy-

sis

The early development of homogenization technique was mainly to analyze compos-

ites properties which gained a wider interest since the emergence of modern fiber

composites in 1960s [15]. Some early analyses focused on the prediction of composite

properties and behavior in microstructural level. Hashin and Shtrikman established

variational formulations to analyze the elastic behavior of anisotropic and nonhomo-

geneous body [16] as well as multiphase materials [17]. An analysis for calculating

the average stress of matrix in a system containing inclusions was done by Mori and

Tanaka [18]. Some other early studies on the analysis of composite microstructure
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(i.e. micro-scale level) can be found in the review paper of Kanoute et al. [19]. In

textile composites, meso-scale RVE models were employed to investigate the stiffness

and strength of woven fabric composites [20].

Homogenization regards heterogeneous structure as a homogeneous body possessing

equivalent properties and behavior of its heterogeneous form. By performing homog-

enization analysis, the heterogeneous structure can be evaluated by focusing on its

representative volume element. Such kind of analysis is worth to be done mainly due

to the excellent computational cost. Moreover, the use of RVE consequently simpli-

fies modeling efforts since all constituents of composite structures are not explicitly

built. The aforementioned facts yield homogenization to be a preferable method

in the determination of the equivalent properties of composite structures. After

obtaining the equivalent properties, structural responses within the heterogeneous

RVE due to application of external load on homogeneous structure can be evaluated

by means of localization analysis, which can be seen as a reverse of homogenization

analysis [21].

Homogenization is commonly employed by means of standard volume averaging tech-

nique or else asymptotic expansion technique. In hierarchical spatial representation,

both techniques implement different volume averaging schemes. Standard averaging

technique employs the averaging operator to the representative volume element as

well as global structure of interest, whereas asymptotic expansion technique focuses

on the averaging scheme of RVE or unit-cell [22]. This fact yields that the asymp-

totic technique can be powerful when dealing with composites structure consisting

periodic microstructure [23], whereby the periodicity is considered in the modeling

and analysis of unit-cell.

The asymptotic expansion (AE) homogenization method has been widely employed

in the analysis of composite materials and structures since the publishing of the

research of Guedes and Kikuchi [24]. The research presented a rigorous strong form

formulation of AE homogenization method. The formulation is applicable for gen-

eral composite structures. AE homogenization method has also been used to analyze

several types of composites, for instance textile composites [25–27] and metal-matrix
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composites [28]. In the case of linear thermoelasticity, asymptotic expansion tech-

nique was developed in the framework of homogenization by Francfort [29]. Several

researchers also employed AE homogenization method by incorporating thermal ef-

fects in order to obtain mechanical properties as well as the coefficients of thermal

expansions (CTE) [7, 30, 31].

With the aim of investigating structural response within a unit-cell, localization

analysis can also be performed in the framework of asymptotic analysis. This analy-

sis aims to obtain local stresses within a unit-cell in a microscopic representation due

to the application of external loading on the homogeneous macrostructure. Several

studies, e.g. in Refs. [24, 25, 32], performed asymptotic expansion homogenization

and localization analyses by excluding thermal effects. In fact, the thermal effects,

in terms of thermal residual stresses, may affect the damage behavior of composites

[33, 34].

In homogenization and localization analysis, periodicity plays an important role in

determining both homogenized equivalent properties as well as local structural re-

sponse within the unit-cell. The years developed method usually implements the

periodicity in three directions (i.e. x-, y- and z- directions). This means that the

unit-cell is assumed to be infinitely repeated in those three directions. In Ref. [35],

such kind of periodicity was deemed able to meet a good numerical accuracy in the

analysis of particle-reinforced and fiber-reinforced composites. Nevertheless, com-

posite laminates, especially in aircraft structures, are very thin. In addition, several

types of composites, e.g. 3-D composites and sandwich honeycomb composites, do

not possess repeating pattern in the thickness direction. Analysis of such kind of

composites necessitates a model which represents the whole thickness of unit-cell

(i.e. finite-thickness unit-cell model). Woo and Whitcomb [36] suggested to con-

sider the influence of finite thickness effect in the analysis of textile composites as

a future study. In this regard, the unit-cell should not be assumed to be repeated

infinitely in the thickness direction. In other words, the unit-cell possesses only in-

plane periodicity.
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The existence of only in-plane periodicity was considered in several studies by em-

ploying plate theory. Rostam-Abadi et al. [37] performed a design analysis of com-

posite laminates by AE homogenization method. The analysis utilized Kirchhoff-

Love plate theory for the assumption of the displacement field. The Kirchhoff-Love

theory in AE homogenization method was also employed by Buannic et al. [38]

in the analysis of corrugated core sandwich panels. The aforementioned researches

utilized asymptotic analysis on the evaluation of equivalent plate properties (i.e.

by means of homogenization scheme) while the assessment of structural response

within the structure, obtainable by localization analysis, was not considered. An

AE homogenization analysis utilizing Kirchhoff-Love plate theory was also done by

Lapeyronnie et al. [39]. In this analysis, macroscopic structural responses of 3-D

layer-to-layer angle-interlocked composite was represented by using homogeneous

isotropic cell, and compared to those of 3-D heterogeneous cell. Cai et al. [40] con-

sidered the existence of only in-plane periodicity in AE homogenization analysis of

periodic plate structures. The analysis investigated the effective properties of hon-

eycomb plate and excluded the detailed stress responses of the unit-cell. Analytical

solutions of an orthotropic multilayered rectangular plate were proposed by He et

al. [41], whereby the plate was considered to possess small periodicity in one of in-

plane directions. The study employed plane-strain assumption for the constitutive

relation, while the thickness effects are investigated by calculating the so-called state

vectors on the top and bottom surfaces of the plate.

1.2 Problem Statements and Objectives

As described earlier in the previous section, AE homogenization and localization

analysis in some cases of advanced composite structures necessitates the use of

finite-thickness unit-cell model. Correspondingly, the periodicity in both in-plane

directions is of considered, while that of the thickness direction is relieved. However,
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the available literatures show that the consideration of only in-plane periodicity is

limited in the plate theory. The implementation of such periodicity in complex com-

posites, with highly heterogeneity and non-uniformity within their microstructure,

needs deeper analysis. This fact becomes the main motivation of this thesis.

This thesis generally aims to develop a novel asymptotic expansion homogenization

and localization analysis by considering the existence of only in-plane periodicity in

composite structure. In this regard, a modified periodic function is introduced in

the numerical formulation. The developed formulation in this thesis is numerically

implemented by an in-house code written in Fortran 90, and applicable for general

composites structures.

The objectives of this thesis are listed below:

1. to mathematically formulate the AE homogenization and localization analysis

by relieving periodicity in the thickness direction

2. to implement the formulation into finite element framework for the thermo-

mechanical analysis of composites

3. to provide numerical examples by analyzing 2-D composites, brick composites,

3-D composites and sandwich structures

4. to investigate the effects of relieving periodicity in the thickness direction as

well as the utilization of finite-thickness unit-cell to the effective properties of

composites and the stress responses within the unit-cell

1.3 Overview of the Thesis

This thesis is divided into five chapters as follows:

Chapter 1 presents the background and overview of this thesis. Literature study on

multi-scale modeling approach in the analysis of composites is given. Some published
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works reviewed in the literature study show that homogenization and localization

are powerful methods to deal with unit-cell in hierarchical multi-scale analysis. Lit-

erature reviews on the development of homogenization and localization method are

also presented. With regard to the consideration of only in-plane periodicity, several

related works are found. However, the available works in the literature are only

limited to the extension of plate theory.

Chapter 2 discusses the concept and formulation of asymptotic expansion (AE) ho-

mogenization and localization method. An overview of the standard technique with

3-D periodicity (i.e. in in-plane and out-of-plane directions) is also presented. With

respect to the enhanced approach implemented in this thesis, a modified periodic

function is introduced in order to relieve the periodicity in the thickness direction.

This is to facilitate the analysis of finite-thickness unit-cell model in which the

unit-cell is considered to be infinitely repeated only in the in-plane direction of the

macroscopic structure. For such kind of analysis, the periodic function is modi-

fied so that: (i) in microscopic representation, microstructural variables within the

unit-cell vary in three-directions (i.e. in-plane and out-of-plane directions) and are

periodic only in in-plane directions; (ii) in macroscopic representation, the variables

vary only in the in-plane directions. The formulation used in this thesis uses the

principle of virtual works as a governing equation, and is derived based on linear

thermomechanical constitutive relation in both fiber and matrix phases. The uti-

lization of asymptotic expansion series on the displacement field into the governing

equation results in three hierarchical equations.

Chapter 3 presents the finite element implementation of AE homogenization and

localization method with relieved periodicity in the thickness direction. The hier-

archical equations are implemented in finite element framework, and then used to

perform homogenization analysis (calculation of characteristic displacement vectors

(also known as correctors) for both elastic and thermal problems, and homogenized

thermomechanical properties) as well as localization analysis (calculation of stress

responses within the unit-cell).

Chapter 4 discusses the case studies and results of homogenization and localization
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analyses. In order to understand the effects of relieving periodicity in the thickness

direction as well as the utilization of finite-thickness unit-cell model, the analyses are

performed to investigate several types of composites namely 2-D laminated compos-

ites, brick composites, 3-D orthogonal interlock composites and honeycomb sandwich

composites. Homogenized thermomechanical properties and stress responses within

the unit-cell due to application of thermal and mechanical loads are of the main

interests. Some certain results are then compared to those of standard analysis with

3-D periodicity as well as analytical and finite element analysis.

Chapter 5 summarizes and concludes the findings acquired in this thesis. It is found

that relieving periodicity in the thickness direction shows insignificant influence in

the analysis of 2-D laminated composites, in both homogenization and localization

analyses. It is recommended to implement the relieving periodicity when the com-

posites have geometrical and/or material non-uniformity in the in-plane direction.

Excellent agreements between homogenization and analytical results are noted in

the results of 2-D laminated composites. With regard to the results of localization

analysis, it is found that the application of free-traction boundary condition only

on the top and bottom surfaces of the macroscopic model cannot accurately simu-

late the real condition. This is shown by the different stress responses between the

results of standard and present analyses, particularly in the region nearby the top

and bottom surfaces of the unit-cell.



Chapter 2

Asymptotic Expansion (AE)

Homogenization and Localization

2.1 Overview of the Standard Technique

2.1.1 General Concept

Multi-scale analysis generally considers a structure from at least two spatial scales,

which commonly named microscopic and macroscopic scales. The macroscopic scale

is a scale when a structure is viewed ‘with the naked-eye’, or in other word, with-

out looking at the detail of the structure. Contrarily, microscopic scale is the scale

whereby the detail structure is seen ‘by looking through a microscope’. Macrostruc-

ture, or global structure, is usually regarded to possess equivalent properties and

behavior of its microstructure. In multi-scale analysis, asymptotic expansion ho-

mogenization and localization method can be effectively and efficiently employed to

analyze macrostructure which consists of periodic and heterogeneous microstructure

by considering both spatial scales. Viewed from macroscopic scale, the microstruc-

ture (i.e. unit-cell) is assumed very small and periodic, viz. infinitely repeated within

11
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the macrostructure. The two aforementioned spatial scales are shown in Fig. 2.1,

whereby Fig. 2.1(a) is a unit-cell in microscopic scale, whilst Figs. 2.1(b) and (c)

are heterogeneous (Ωε) and homogeneous (Ω) macrostructure in macroscopic scale.

The unit-cell consists of “solid part” ¥ and “hollow part” θ. It is noted that the

unit-cell is heterogeneous and periodic. The coordinate system of microscopic scale

is y = (y1, y2, y3), while that of macroscopic scale is x = (x1, x2, x3). A very small

positive number ε = x/y is used to correlate both scales. When ε approaches zero,

the heterogeneous macrostructure (Fig. 2.1(b)) can be regarded as a homogeneous

system (Fig. 2.1(c)).

Figure 2.1: (a) Heterogeneous and periodic unit-cell, (b) heterogeneous
macrostructure, (c) homogeneous macrostructure

The aforementioned scheme is called homogenization, in which is beneficial to obtain

equivalent properties and behavior of heterogeneous and periodic microstructure in

macroscopic representation. The reverse scheme, called localization, is able to find

out the structural responses within the unit-cell in microscopic representation due

to certain loading applied on the homogeneous macrostructure. Dealing with such

kind of multi-scale problem, asymptotic expansion analysis has a good capability
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in transferring the properties and behavior of microstructure into macroscopic rep-

resentation, and vice versa [23]. In Fig. 2.2(a), a homogeneous macrostructure is

subjected to uniaxial traction loading whereby four unit-cells (UC), namely UC1,

UC2, UC3 and UC4, are identified as its subset. For simplicity reason, the unit-

cells are represented by two-dimensional figure whereby each of them has two black

bricks and two white bricks. Line A-A’ represents the distance between UC1 and

UC4. The structural responses due to external loading, in terms of stress (σ11) and

displacement (u1), are shown in Fig. 2.2(b) and (c), respectively. In Fig. 2.2(b),

σ0 and σH denote actual stress and homogenized stress whereby the actual stress

is periodic and the homogenized stress is constant. In Fig. 2.2(c), uε and u0 de-

note actual displacement and macroscopic displacement. The actual displacement

is periodic and the macroscopic displacement is changing within line A-A’ in linear

manner.

Figure 2.2: (a) Homogeneous macrostructure subjected to uniaxial tension load-
ing, (b) stress response of the unit-cell, (c) displacement response of the unit-cell
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2.1.2 Periodic Function

Microstructural variables within the unit-cell vary when are viewed from the view-

point of microscopic and macroscopic scales. Accordingly, a vector function g is

introduced as a function of macroscopic coordinate x and microscopic coordinate y

as follows

gε(x) = g(x,y) (2.1)

where y = x/ε. The vector function considers that the periodicity exists on the

microscopic coordinate y, which is called Y-periodic. Standard technique is imple-

mented by assuming that the unit-cell is periodic in three directions (x1, x2 and x3).

Due to Y-periodicity, Eq. (2.1) can be expressed as follows

g(x,y) = g(x,y+Y) = g(x1, x2, x3, y1 + Y1, y2 + Y2, y3 + Y3) (2.2)

where Y denotes the dimension of the unit-cell. According to the chain rule, deriva-

tives of g with respect to macroscopic coordinate x can be obtained by the following

equation

∂

∂xi
[g(x,y)] =

∂g

∂xi
+

1

ε

∂g

∂yi
(2.3)

When the heterogeneous macrostructure is considered as a homogeneous system,

the following expressions are employed to take the limit of integration of Y-periodic

function as ε approaches zero from the positive side

lim
ε→0+

∫
Ωε

Φε(x)dΩ → 1

|Y |

∫
Ω

∫
¥
Φ(x,y)dY dΩ (2.4)
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lim
ε→0+

ε

∫
Sε

Φε(x)dS → 1

|Y |

∫
Ω

∫
S

Φ(x,y)dSdΩ (2.5)

where |Y | is the unit-cell volume; x = x1, x2, x3; y = y1, y2, y3; dΩ = dx1dx2dx3 and

dY = dy1dy2dy3.

2.2 Enhanced Approach: Relieving Periodicity in

the Thickness Direction

2.2.1 General Concept

This thesis considers an enhanced approach of homogenization and localization anal-

ysis by relieving periodicity in the thickness direction (i.e. out-of-plane direction)

[42]. In this regard, the heterogeneous macrostructure, depicted in Fig. 2.3(a) is

composed of heterogeneous and periodic microstructure (i.e. unit-cell) shown in Fig.

2.3(b) whereby the whole thickness of macrostructure is represented by a single unit-

cell. Such kind of unit-cell is called finite-thickness unit-cell model. It is noteworthy

that the enhanced approach is proposed to facilitate two types of finite-thickness

unit-cell: (i). with repeating pattern in thickness direction, (ii). with non-repeating

pattern in thickness direction. The modeling of finite-thickness unit-cell model aims

to consider the finite thickness effects. Consequently, this enhanced approach neces-

sitates the relieving periodic boundary condition in the out-of-plane direction. In

this case, the unit-cell is considered to be periodic only in the in-plane direction of

the macroscopic structure, whilst top and bottom surfaces of the unit-cell are free-

boundaries. In other words, the top and bottom surfaces are independent between

each other and their deformation may not be the same.
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Figure 2.3: (a) Heterogeneous macrostructure, (b) heterogeneous, periodic unit-
cell with free-boundaries at the top and bottom surfaces

2.2.2 Modified Periodic Function

In present approach, due to the nonexistence of periodicity in the thickness direction,

periodic vector function is modified into the following equation

gε(x) = g(x,y) = g(x1, x2, x3, y1 + Y1, y2 + Y2) (2.6)

where Y1 and Y2 are the dimensions of unit-cell in direction -1 and -2.

Due to non-periodic condition in the thickness direction, x3 is regarded as a finite

scale and very small as compared to x1 and x2. Thus, x3 is assumed that can be

approximated by the following expression

x3 ≈ εy3 (2.7)

In consequence, the modified periodic vector function is now expressed as follows
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gε(x) = g(x,y) = g(x1, x2, y1 + Y1, y2 + Y2, y3) (2.8)

Expression (2.8) means that: (i) in microscopic representation (y coordinate sys-

tem), microstructural variables within the unit-cell vary in three-directions (i.e. in-

plane and out-of-plane directions) and are periodic only in in-plane directions; (ii)

in macroscopic representation (x coordinate system), the variables vary only in the

in-plane directions.

In accordance with the utilized assumption, derivatives of the modified periodic

vector function with respect to macroscopic coordinate x are as follows

∂gε

∂x1
=

∂g

∂x1
+

1

ε

∂g

∂y1
(2.9)

∂gε

∂x2
=

∂g

∂x2
+

1

ε

∂g

∂y2
(2.10)

∂gε

∂x3
=

1

ε

∂g

∂y3
(2.11)

Limit of integration of Y-periodic function, employed when the heterogeneous macrostruc-

ture is considered as a homogeneous system, can be expressed as follows

lim
ε→0+

∫
Ωε

Φε(x)dΩ → 1

|Y |

∫
Ω

∫
¥
Φ(x,y)dY dΩ (2.12)

lim
ε→0+

ε

∫
Sε

Φε(x)dS → 1

|Y |

∫
Ω

∫
S

Φ(x,y)dSdΩ (2.13)

where |Y | is the unit-cell volume; x = x1, x2; y = y1, y2, y3; dΩ = dx1dx2 and

dY = dy1dy2dy3.
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2.2.3 Formulation of AE Homogenization and Localization

Method

In this thesis, formulation of AE homogenization and localization method employs

principle of virtual work as a governing equation. The principle of virtual work which

has a powerful capability in solving structural problems in equilibrium condition is

mathematically expressed by the following equation:

∫
Ωε

σεij
∂vi
∂xj

dΩ =

∫
Ωε

f εi vidΩ +

∫
Γt

tividΓ +

∫
Sε

pεividS (2.14)

where σij denotes the stresses acting on the domain Ω, xj is macroscopic coordinate

system, fi is body force, ti is traction force acting on boundary Γt, p is traction

on surface S (see Fig. 2.3(b)), and vi is virtual displacement. It is noted that

superscript ε denotes the variable of total region (i.e. including microstructure).

In linear thermomechanical problem, stress-strain relationship can be expressed as

follows

σεij = Cε
ijkl(e

tot
kl − etkl) (2.15)

where Cijkl denotes elastic constants tensor, etotkl is total strain and etkl is thermal

strain. Eqs. (2.16) and (2.17) respectively represent total strain-displacement rela-

tionship and thermal strain.

etotkl =
1

2

(
∂uεk
∂xl

+
∂uεl
∂xk

)
(2.16)

etkl = αεkl∆T (2.17)
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where uk denotes actual displacement, αkl is coefficient of thermal expansion and

∆T is temperature difference. The substitution of Eqs. (2.16) and (2.17) into Eq.

(2.15), and consideration of the symmetry of elastic tensor, yields that the stress

can be re-expressed as the following form

σεij = Cε
ijkl

(
∂uεk
∂xl
− αεkl∆T

)
(2.18)

Substitution of Eq. (2.18) into Eq. (2.14) yields a governing equation as follows

∫
Ωε

Cε
ijkl

(
∂uεk
∂xl
− αεkl∆T

)
∂vi
∂xj

dΩ =

∫
Ωε

f εi vidΩ +

∫
Γt

tividΓ +

∫
Sε

pεividS (2.19)

Numerical formulation is derived by employing a governing equation given in Eq.

(2.19) whereby the actual displacement uεk is represented by asymptotic expansion

series

uεk(x) = u0k(x,y) + εu1k(x,y) + ε2u2k(x,y) + ... (2.20)

By substituting Eq. (2.20) into Eq. (2.19), the governing equation can be expanded

as follows

∫
Ωε

Cε
ijkl

(
∂(u0k + εu1k + ε2u2k + ...)

∂xl
− αεkl∆T

)
∂vi
∂xj

dΩ =

∫
Ωε

f εi vidΩ+∫
Γt

tividΓ +

∫
Sε

pεividS

(2.21)

It is noted that the formulation considers the thermal effects through the incorpo-

ration of thermal strain in Eq. (2.21). By employing Eqs. (2.9)-(2.11) to take the
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derivatives of actual and virtual displacements, three hierarchical equations based

on the order of ε are obtained as follows

Order of ε−2:
1

ε2

∫
Ωε

Cε
ijkl

∂u0k
∂yl

∂vi
∂yj

dΩ = 0 (2.22)

Order of ε−1:
1

ε

∫
Ωε

Cε
ijkl

[
∂u0k
∂yl

∂vi
∂xj

+

(
∂u0k
∂xl

+
∂u1k
∂yl
− αεkl∆T

)
∂vi
∂yj

]
dΩ

=

∫
Sε

pεividS

(2.23)

Order of ε0:

∫
Ωε

Cε
ijkl

[(
∂u0k
∂xl

+
∂u1k
∂yl
− αεkl∆T

)
∂vi
∂xj

+

(
∂u1k
∂xl

+
∂u2k
∂yl

)
∂vi
∂yj

]
dΩ =∫

Ωε

f εi vidΩ +

∫
Γt

tividΓ

(2.24)

Subsequently, the hierarchical equations are solved by assuming that their limits

exist when ε→ 0+. The next subchapters explain the derivation of the hierarchical

equations in a more detail manner.

2.2.3.1 Order of ε−2

By multiplying Eq. (2.22) by ε2, and employing expression (2.12) to take the limit

as ε→ 0+, following equation is obtained

1

|Y |

∫
Ω

∫
¥
Cijkl

∂u0k
∂yl

∂vi
∂yj

dY dΩ = 0 (2.25)

Virtual displacement v is arbitrary and can be a function of either macroscopic

coordinate x (v = v(x)) or microscopic coordinate y (v = v(y)). Eq. (2.25) will
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automatically be satisfied if v = v(x). However, choosing v = v(y) will result

in an expanded form of Eq. (2.25) after applying integration by parts and Gauss’

divergence theorem as follows

1

|Y |

∫
Ω



−
∫

¥

∂

∂yj

(
Cijkl

∂u0k
∂yl

)
vi(y)dY +

∫
S

Cijkl
∂u0k
∂yl

njvi(y)dS

+

∫
Y1

Cijkl
∂u0k
∂yl

njvi(y)dY1 +

∫
Y2

Cijkl
∂u0k
∂yl

njvi(y)dY2

+

∫
Yt

Cijkl
∂u0k
∂yl

njvi(y)dYt +

∫
Yb

Cijkl
∂u0k
∂yl

njvi(y)dYb


dΩ = 0 (2.26)

The square bracket of Eq. (2.26) consists of six integral terms. In this regard,

the third and fourth terms cancel each other due to the existence of the in-plane

periodicity (i.e. in each pair of surfaces Y1 and Y2), while the fifth and sixth terms are

zero due to the free-traction condition on the top and bottom surfaces (i.e. surfaces

Yt and Yb). In accordance with the mathematical treatment described in Ref. [24],

the remaining equation is satisfied by the following expression

u0k = u0k(x) = u0k(x1, x2) (2.27)

where u0k represents macroscopic displacement. Expression (2.27) asserts that the

macroscopic problem is regarded as a two-dimensional (2-D) problem.

2.2.3.2 Order of ε−1

By multiplying Eq. (2.23) by ε, and employing expressions (2.12) and (2.13) to take

the limit as ε→ 0+, following equation is obtained
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1

|Y |

∫
Ω

∫
¥
Cijkl

[
∂u0k
∂yl

∂vi
∂xj

+

(
∂u0k
∂xl

+
∂u1k
∂yl
− αkl∆T

)
∂vi
∂yj

]
dY dΩ

=
1

|Y |

∫
Ω

∫
S

pividSdΩ

(2.28)

By choosing v = v(x), and considering the expression (2.27), following statement is

obtained

∫
S

pivi(x)dS = 0 (2.29)

By choosing v = v(y), and considering Eq. (2.29), following equation is obtained

1

|Y |

∫
Ω

∫
¥
Cijkl

[(
∂u0k(x)

∂xl
+
∂u1k
∂yl
− αkl∆T

)
∂vi(y)

∂yj

]
dY dΩ = 0 (2.30)

where u1k denotes microscopic displacement which is obtained by involving the solu-

tion of variational problem [24] as follows

u1k(x,y) = −χpqk (y)
∂u0p(x)

∂xq
− ψk(y) (2.31)

where χ and ψ are the characteristic displacement vectors, or correctors, for elastic

and thermal problem, respectively.

By substituting Eq. (2.31) into Eq. (2.30), following equation is obtained

1

|Y |

∫
Ω

∫
¥
Cijkl

∂u0k(x)

∂xl

∂vi(y)

∂yj
dY dΩ − 1

|Y |

∫
Ω

∫
¥
Cijkl

∂χpqk
∂yl

∂u0p(x)

∂xq

∂vi(y)

∂yj
dY dΩ

− 1

|Y |

∫
Ω

∫
¥
Cijkl

(
∂ψk
∂yl

+ αkl∆T

)
∂vi(y)

∂yj
dY dΩ = 0

(2.32)
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Eq. (2.32) is microscopic equilibrium equation (1st order) which can be expressed in

a compact form as follows

1

|Y |

∫
Ω

∫
¥


(
Cijkl − Cijpq

∂χklp
∂yq

)
∂u0k(x)

∂xl

−Cijpq
(
∂ψp
∂yq

+ αpq∆T

)
 ∂vi(y)

∂yj
dY dΩ = 0

i, j, k, p, q = 1, 2, 3; l = 1, 2

(2.33)

Eq. (2.33) can be decoupled into two equations for separately calculating the elastic

and thermal correctors (i.e. χ and ψ, respectively). Thus, the correctors are obtained

by the following equations

Elastic problem:

∫
¥

(
Cijkl − Cijpq

∂χklp
∂yq

)
∂vi(y)

∂yj
dY = 0

i, j, k, p, q = 1, 2, 3; l = 1, 2

(2.34)

1

|Y |

∫
¥
χklp dY = 0 (2.35)

Thermal problem:

∫
¥
Cijpq

(
∂ψp
∂yq

+ αpq∆T

)
∂vi(y)

∂yj
dY = 0

i, j, p, q = 1, 2, 3

(2.36)

1

|Y |

∫
¥
ψpdY = 0 (2.37)

2.2.3.3 Order of ε0

By employing expression (2.12) to take the limit of Eq. (2.24) as ε→ 0+, following

equation is obtained
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1

|Y |

∫
Ω

∫
¥
Cijkl

[(
∂u0k
∂xl

+
∂u1k
∂yl
− αkl∆T

)
∂vi
∂xj

+

(
∂u1k
∂xl

+
∂u2k
∂yl

)
∂vi
∂yj

]
dY dΩ =

1

|Y |

∫
Ω

∫
¥
fividY dΩ +

∫
Γt

tividΓ

(2.38)

By choosing v = v(x), macroscopic equilibrium equation can be obtained as follows

∫
Ω

[
1

|Y |

∫
¥
Cijkl

(
∂u0k(x)

∂xl
+
∂u1k
∂yl
− αkl∆T

)
dY

]
∂vi(x)

∂xj
dΩ =∫

Ω

(
1

|Y |

∫
¥
fidY

)
vi(x)dΩ +

∫
Γt

tivi(x)dΓ

(2.39)

Substitution of Eq. (2.31) into Eq. (2.39) yields the compact form of macroscopic

equilibrium equations as follows

∫
Ω

C0
ijkl(x)

∂u0k(x)

∂xl

∂vi(x)

∂xj
dΩ =

∫
Ω

τij(x)
∂vi(x)

∂xj
dΩ +

∫
Ω

σtij(x)
∂vi(x)

∂xj
dΩ+∫

Ω

bi(x)vi(x)dΩ +

∫
Γt

ti(x)vi(x)dΓ

i, k, p, q = 1, 2, 3; j, l = 1, 2

(2.40)

where

C0
ijkl(x) =

1

|Y |

∫
¥

(
Cijkl − Cijpq

∂χklp
∂yq

)
dY (2.41)

τij(x) =
1

|Y |

∫
¥
Cijpq

∂ψp
∂yq

dY (2.42)

σtij(x) =
1

|Y |

∫
¥
Cijpqαpq∆TdY (2.43)
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bi(x) =
1

|Y |

∫
¥
fidY (2.44)

By choosing v = v(y), microscopic equilibrium equation (2nd order) can be obtained

as follows

∫
¥
Cijkl

(
∂u1k
∂xl

+
∂u2k
∂yl

)
∂vi(y)

∂yj
dY =

∫
¥
fivi(y)dY (2.45)
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Chapter 3

Finite Element Formulation

3.1 Finite Element Formulation in Homogeniza-

tion Scheme

3.1.1 Characteristic Displacement Vector

Characteristic displacement vectors, or correctors, for elastic and thermal problem

(i.e. χ and ψ, respectively) are calculated by employing microscopic equilibrium

equations (1st order). In finite element viewpoint, the equations can be re-expressed

in the vectors form as follows

Elastic problem:

∫
¥n

{ε}T{C}kldYn −
∫

¥n

{ε}T [C]{χ̇}kldYn = 0 (3.1)

Thermal problem:

∫
¥n

{ε}T [C]{ψ̇}dYn +

∫
¥n

{ε}T [C]{α}∆TdYn = 0 (3.2)

27



Chapter 3. Finite Element Formulation 28

where

{χ̇}kl = [B]{χ}kl (3.3)

{ψ̇} = [B]{ψ} (3.4)

{ε} = [B]{v} (3.5)

where [C] denotes the elastic constants matrix, {C}kl is the column ‘kl ’ of matrix [C],

[B] is the strain shape function matrix which is obtained by taking the derivatives

of shape function matrix [N ], {v} is the virtual displacement vector, {χ}kl is the

elastic corrector vector of mode ‘kl ’, and {ψ} is the thermal corrector vector. The

symbol ¥n indicates the n–th element of domain ¥.

By removing the virtual displacement vector {v}, Eqs. (3.1) and (3.2) can be ex-

pressed as follows

Elastic problem:

∫
¥n

[B]T [C][B]dYn{χ}kl =

∫
¥n

[B]T{C}kldYn (3.6)

Thermal problem:

∫
¥n

[B]T [C][B]dYn{ψ} = −
∫

¥n

[B]T [C]{α}∆TdYn (3.7)

It is important to note that in Eq. (2.34), l = 1, 2, and according to the symmetric

property of χ, calculation of elastic correctors results in three independent modes of

χ, namely χ11, χ22 and χ12.
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3.1.2 Periodic Boundary Condition

Calculation of correctors employs periodic boundary conditions which are applied

on the surfaces of unit-cell normal to the in-plane directions. Top and bottom sur-

faces of the unit-cell are free boundaries which means both surfaces are independent

from each other and may possess different deformation in terms of magnitude and

direction. The aforementioned conditions can be mathematically expressed by the

following statements

{χ}kl(0, y2, y3) = {χ}kl(Y1, y2, y3) (3.8)

{χ}kl(y1, 0, y3) = {χ}kl(y1, Y2, y3) (3.9)

{χ}kl(y1, y2, 0) 6= {χ}kl(y1, y2, Y3) (3.10)

where Y1, Y2 and Y3 are the unit-cell dimension in direction-1, -2 and -3, respectively.

The inequality represented in expression (3.10) indicates that the top and bottom

surfaces of the unit-cell are independent from each other. It is important to note

that expressions (3.8)-(3.10) are also valid for the thermal correctors by means of

replacing {χ}kl with {ψ}.

3.1.3 Homogenized Thermomechanical Properties

Homogenized elastic constants are calculated by using Eq. (2.41). In finite element

viewpoint, Eq. (2.41) can be expressed in the ‘kl’ column of the matrix of [C] as

follows



Chapter 3. Finite Element Formulation 30

{C0}kl =
∑
n

1

|Y |

∫
¥n

{C}kl − [C][B]{χ}kldY (3.11)

Homogenized coefficient of thermal expansion is calculated by employing the follow-

ing equation

α0
kl =

S0
ijkl

∆T

[
1

|Y |

∫
¥
Cijpq

(
∂ψp
∂yq

+ αpq∆T

)
dY

]
(3.12)

or in the matrix and vector forms as follows

{α0} =
[S0]

∆T

∑
n

1

|Y |

∫
¥n

[C]([B]{ψ}+ {α}∆T )dY (3.13)

where [S0] is homogenized compliance matrix, i.e. inverse of homogenized elastic

constants matrix [C0]. It is important to note that in Eq. (2.40), subscripts ‘j, l’ =

1, 2 and in accordance with the symmetry of stresses and strain energy densities [43],

the formulation consequently results in the in-plane homogenized thermomechanical

properties.

3.2 Finite Element Formulation in Localization

Scheme

3.2.1 Calculation of Stresses

Stresses acting on each point of domain can be calculated by following equation

σεij = Cijkl

(
∂uεk
∂xl
− αkl∆T

)
(3.14)
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By incorporating the actual displacement uεk stated in Eq. (2.20) and its derivatives

into Eq. (3.14), following equation is obtained

σεij = Cijkl

[(
∂u0k
∂xl

+
∂u1k
∂yl
− αkl∆T

)
+ ε

(
∂u1k
∂xl

+
∂u2k
∂yl

)
+ ε2(...)

]
(3.15)

Eq. (3.15) can be re-expressed in an asymptotic form as follows

σεij = σ0
ij + εσ1

ij + ε2(...) (3.16)

where σ0
ij denotes the first approximation of stresses. By substituting Eq. (2.31)

into the first approximation of stresses, following equation is obtained

σεij ≈ σ0
ij(x,y) =

(
Cijkl − Cijpq

∂χklp
∂yq

)
∂u0k
∂xl
− Cijpq

∂ψp
∂yq
− Cijpqαpq∆T (3.17)

In finite element viewpoint, the first approximation of stress can be expressed as

follows

{σ0} =
[
[C]kl − [C][B][χ]kl

]
[B]{u0} − [C][B]{ψ} − [C]{α}∆T (3.18)

or

{σ0} =
[
[C]kl − [C][B][χ]kl

]
{e0} − [C][B]{ψ} − [C]{α}∆T (3.19)

where {e0} = [B]{u0}. It is noted that in present method, {χ}33 = {χ}23 = {χ}31 =

0 and e033 = e023 = e031 = 0 since macroscopic model analysis is a two-dimensional

problem. In Eq. (3.19), subscript and superscript ‘kl’ indicate that the matrix

arrangements are based on column ‘kl’.

Homogenized stresses of the unit-cell σHij is calculated by using the following equation
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σHij = C0
ijkl

(
∂u0k
∂xl
− α0

kl∆T

)
(3.20)

Relationship between σHij and σ0
ij can be established by employing averaging opera-

tors to Eq. (3.17) as follows

1

|Y |

∫
¥
σ0
ijdY =

1

|Y |

∫
¥

(
Cijkl − Cijpq

∂χklp
∂yq

)
dY

∂u0k
∂xl
−

1

|Y |

∫
¥
Cijpq

∂ψp
∂yq

dY − 1

|Y |

∫
¥
Cijpqαpq∆TdY

(3.21)

By substituting Eqs. (2.41) and (3.12) into Eq. (3.20), the same results as those of

the right hand side of Eq. (3.21) are obtained. The relationship between σH and σ0

is thus expressed in finite element viewpoint as follows

{σH} =
∑
n

1

|Y |

∫
¥n

{σ0}dY (3.22)
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Case Studies and Results

4.1 2-D Laminated Composites

4.1.1 Numerical Model

Unit-cell of 2-D laminated composites is schematically depicted in Fig. 4.1. In this

figure, the composite is composed of several plies with certain orientation based on

the longitudinal direction of fiber phase. Stacking sequence of the plies is defined

by ordering every ply from the top to the bottom. There are two models of 2-D

laminated composites utilized in the analysis. Model 1 has 20 plies with the stack-

ing sequence of [+45/90/-45/02/+45/902/-45/0]S; and Model 2 is 8-ply laminated

composite with the stacking sequence of [±45/0/90]S.

Model 1 is composed of plies utilizing carbon fiber T-800 as the fiber phase and

epoxy XNR/H6813 as the resin phase. The model uses Vft (i.e. fiber volume frac-

tion of tow/ply) of 45% for every ply [44]. Model 2 utilizes carbon fiber T-300 as the

fiber phase, while the resin phase is epoxy EP828. The Vft of all plies of this model

is 55%. It is noted that the equivalent properties of each ply are calculated by stan-

dard homogenization method with 3-D periodicity utilizing a micro-scale unit-cell

33
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Figure 4.1: Schematic unit-cell model of 2-D laminated composites and ply
numbering sequence

model consisting fiber and matrix phases arranged in hexagonal array. Thermome-

chanical properties of carbon fiber T-800 [44, 45], carbon fiber T-300 [44, 46], epoxy

XNR/H6813 [44] and epoxy EP828 [47, 48] are given in Table 4.1. Subscripts ‘L’

and ‘T ’ denote longitudinal and transverse directions of fiber phase, respectively. It

is noted that the properties of fiber phases are assumed transversely isotropic.

Table 4.1: Thermomechanical properties of carbon fibers and epoxy resins

Properties
Carbon fiber

T-800
Carbon fiber

T-300
Epoxy

XNR/H6813
Epoxy
EP828

EL (GPa) 294 220 8.96 3.4
ET (GPa) 6.5 13.8 8.96 3.4
GLT (GPa) 18.2 11.35 3.45 1.26
GTT (GPa) 6.5 5.5 3.45 1.26

νLT 0.32 0.2 0.35 0.35
νTT 0.41 0.25 0.35 0.35

αL (/◦C) -5.6×10−7 -4.1×10−7 6.5×10−5 6.45×10−5

αT (/◦C) 5.6×10−6 5.6×10−6 6.5×10−5 6.45×10−5
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4.1.2 Homogenization Analysis

4.1.2.1 Homogenized Thermomechanical Properties

As described in Section 3.1.3, the present homogenization analysis results in in-plane

homogenized thermomechanical properties, viz. Young’s moduli of E1 and E2, shear

modulus of G12, Poisson’s ratio of ν12 and coefficients of thermal expansion of α1 and

α2. The homogenized in-plane thermomechanical properties of both models of 2-D

laminated composites are listed in Table 4.2. It is important to note that subscript

‘1’ denotes longitudinal direction of composite structure, while subscripts ‘2’and ‘3’

denote transverse orientation of composite structure in in-plane and out-of-plane

directions, respectively. In order to investigate the influence of relieving periodic-

ity in the thickness direction of the unit-cell to the homogenized thermomechanical

properties, the results of both standard (3-D periodicity) and present (2-D period-

icity) analyses are given. The results show that the influence of relieving periodic

boundary condition on the top and bottom surfaces of the unit-cell is insignificant

in the case of 2-D laminated composites. This is revealed by the same outcomes

from both models obtained by standard and present analyses.

Table 4.2: Homogenized thermomechanical properties of 2-D laminated com-
posites

Properties
Model 1 Model 2

Standard
Analysis

Present
Analysis

Standard
Analysis

Present
Analysis

E1 (GPa) 58.45 58.45 45.85 45.85
E2 (GPa) 58.45 58.45 45.85 45.85
G12 (GPa) 16.69 16.69 16.62 16.62

ν12 0.231 0.231 0.315 0.315
α1 (/◦C) 5.67×10−6 5.67×10−6 3.12×10−6 3.12×10−6

α2 (/◦C) 5.67×10−6 5.67×10−6 3.12×10−6 3.12×10−6

The homogenized thermomechanical properties obtained from homogenization anal-

ysis are validated with those obtained by analytical calculation in Refs. [49, 50].



Chapter 4. Case Studies and Results 36

Table 4.3: Homogenization and analytical results

Properties Homogenization Analytic
E1 (GPa) 58.45 58.45
G12 (GPa) 16.69 16.69

ν12 0.231 0.231
αL (/◦C) 5.67×10−6 5.67×10−6

The comparison between homogenization and analytical results is presented in Ta-

ble 4.3. In this table, homogenized thermomechanical properties (i.e. E1, G12, ν12,

α1) of Model 1 are utilized to perform numerical validation. It is noted that the

homogenization analysis yields the same results between the standard and present

methods (see Table 4.2). The results presented in Table 4.3 exhibit excellent agree-

ments between homogenization and analytical results, whereby the same outcomes

are obtained in the results of elastic moduli, Poisson’s ratio as well as coefficient of

thermal expansion. This fact emphasizes that homogenization can be deemed an

excellent method in obtaining equivalent properties of 2-D laminated composites.

4.1.3 Localization Analysis

Localization analysis employs an infinite macroscopic model as shown in Fig. 4.2(a).

In this figure, the dash-dotted lines indicate that the macroscopic model is infinite

in both in-plane directions (x1 and x2). The macroscopic model utilizes the homo-

geneous properties obtained by homogenization analysis of the unit-cell model of

2-D laminated composite. Localization analysis necessitates macroscopic strain (e0)

in the calculation of stress responses within the unit-cell. The strain has a role in

transferring the structural response due to external loading applied on macroscopic

model into unit-cell representation. In the analysis, Model 2 is employed, and the

stress responses are investigated by extracting the stresses along a representative

line intersecting the thickness of unit-cell (i.e. Line A) as shown in Fig. 4.2(d).

In essence, localization analysis obtains six components of stresses. However, stress

distributions of σ11 and σ22 are chosen as the representatives of the dominant stress
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in thermal loading case, while the results of biaxial loading case are represented by

σ11 and τ12. Stress distributions along Line A due to application of thermal and

biaxial loading are respectively presented in Figs. 4.3 and 4.4. In the figures, the

vertical axis indicates normalized thickness coordinate (y3/h), where h is the thick-

ness of macroscopic model (h = 2 mm). The corresponding ply orientations along

the thickness direction of the unit-cell are described in the right side of the figures.

Figure 4.2: Localization analysis: (a) homogeneous macroscopic model, (b)
thermal loading case, (c) biaxial tension loading case, (d) representative line of

Model 2
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4.1.3.1 Stresses due to Thermal Loading

In thermal loading case, the homogeneous macroscopic model is subjected to temper-

ature difference ∆T of -130 ◦C and constrained in order not to move in the in-plane

direction as shown in Fig. 4.2(b). It is noted that the top and bottom of its sur-

faces are free-traction boundaries. In present analysis, this condition is represented

by e011 = e022 = e012 = 0. Meanwhile, standard analysis regards the macroscopic

model analysis as three-dimensional problem. Therefore, in order to calculate all

macroscopic strain components of the homogeneous infinite macroscopic model, the

following equation is utilized

σMij = C0
ijkl(e

0
kl − α0

kl∆T ) (4.1)

where σM denotes the stresses acting on the macroscopic model, C0
ijkl is homog-

enized elastic constants, e0kl is macroscopic strain and α0
kl is homogenized coeffi-

cients of thermal expansion. In thermal loading case described in Fig. 4.2(b),

e011 = e022 = e023 = e031 = e012 = 0 and σM33 = 0 (due to free-traction boundaries on the

top and bottom surfaces). Thus, e033 is obtained as -7.29×10−3.

The stress responses within the unit-cell of Model 2, obtained from both present and

standard analyses, are validated by those of analytical analysis based on classical

laminate theory (CLT). The stress responses are displayed in Fig. 4.3. The figure

shows that the present analysis results of σ11 and σ22 coincide with those of standard

analysis. This indicates that relieving periodicity in the thickness direction of the

unit-cell yields negligible effects in the stress calculation of 2-D laminated composite

due to application of temperature difference. Regarding to the comparison with an-

alytical results, excellent agreements are noticed between the stress results obtained

by localization analysis and CLT. This fact indicates that localization analysis ob-

tains reasonable results.



Chapter 4. Case Studies and Results 39

Figure 4.3: Stresses along the thickness of Model 2 due to thermal loading

4.1.3.2 Stresses due to Mechanical Loading

In mechanical loading case, the macroscopic model is subjected to biaxial tensile

loading which is schematically depicted in Fig. 4.2(c). This loading case is repre-

sented by macroscopic strain of e011 = 1×10−3 and e022 = 5×10−4. In present analysis

e033 = 0 is given when calculating the stress responses, while in standard analysis

e033 = -5.94×10−4 is obtained by Eq. (4.1) whereby σM33 = 0 as the representative

of the free-traction boundaries on the top and bottom surfaces. It is noted that in

mechanical loading case, ∆T is zero due to nonexistence of temperature difference.

The obtained stress responses are shown in Fig. 4.4. The figure elucidates that,

similar with the results of thermal loading case, standard and present analyses yield

the same stresses outcomes. This fact asserts that, in the case of 2-D laminated

composites, standard localization analysis is deemed as a sufficient analysis for the

calculation of stresses within the unit-cell. In Fig. 4.4, it is also shown that the

results of localization analysis and CLT are in excellent agreements.
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Figure 4.4: Stresses along the thickness of Model 2 due to biaxial loading

4.2 Brick Composites

4.2.1 Numerical Model

Fig. 4.5 shows the schematic model of unit-cell of brick composites. The unit-cell

consists of 8 bricks arranged in an alternating pattern. Two kinds of materials

are employed whereby blue and white bricks represent Material 1 and Material 2,

respectively. In the analysis, two models are utilized. Model 1 utilizes Al 7075-T6 as

Material 1 and AISI 302 Stainless Steel as Material 2; Model 2 utilizes Al 7075-T6

as Material 1 and Al 2024-T3 as Material 2. Thermomechanical properties of Al

7075-T6 [51], Al 2024-T3 [52] and AISI 302 Stainless Steel [53] are given in Table

4.4.
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Figure 4.5: Schematic unit-cell model of brick composites

Table 4.4: Thermomechanical properties of aluminum and steel phases

Properties Al 7075-T6 Al 2024-T3 AISI 302
E (GPa) 71.7 73.1 193
G (GPa) 26.9 28 77.2

ν 0.33 0.33 0.25
α (/◦C) 2.36×10−5 2.32×10−5 1.78×10−5

4.2.2 Homogenization Analysis

4.2.2.1 Characteristic Displacement Vector

As described in Section 3.1.1, three modes of elastic correctors (χ11, χ22 and χ12)

and thermal corrector (ψ) are obtained by the present homogenization analysis. The

elastic and thermal correctors of brick composites are presented in Fig. 4.6. In this

figure, the correctors are based on the results of Model 1. The contour elucidates

the distribution of normalized characteristic displacement magnitude with respect

to the maximum value of each mode.

Fig. 4.6 may not be able to clearly show the different deformation on the top and

bottom surfaces of the unit-cell resulted from present analysis. In order to better

understand the present deformation of correctors, the result of χ11 is again shown
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Figure 4.6: Correctors of brick composites: (a) χ11, (b) χ22, (c) χ12, (d) ψ

in Fig. 4.7. In this figure, the corrector is given in its undeformed shape for the

sake of simplicity in showing the magnitude. In Fig. 4.7(c), it can be seen that

the magnitude of corrector on the top and bottom surfaces are different between

each other. This fact is different with the results of corrector on the surfaces normal

to the in-plane directions shown in Figs. 4.7(a) and (b). The different corrector

magnitudes between top and bottom surfaces ensure that the periodicity in the

thickness direction has been successfully relieved.

4.2.2.2 Homogenized Thermomechanical Properties

Table 4.5 lists the homogenized in-plane thermomechanical properties of brick com-

posites. In this table, the results of Model 1 and Model 2 are given. The same
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Figure 4.7: Corrector of brick composites (χ11): (a) periodic in direction -1, (b)
periodic in direction -2, (c) non-periodic in direction -3
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homogenized properties in directions -1 and -2 are induced by the isotropic property

of both utilized materials. In Table 4.5, the results of both standard and present

analyses are given. The results elucidate that relieving periodicity in the thickness

direction is significant especially for the results of elastic moduli (E1 and E2) as well

as ν12 of Model 1, whereby the differences of about 2-5% are noted. Nevertheless,

Model 2 shows nearly same outcomes for all homogenized thermomechanical prop-

erties. This is due to the similar values of thermomechanical properties between Al

7075-T6 and Al 2024-T3, which make Model 2 tends to equalize the behavior of 2-D

laminated composites with uniform material configuration in the in-plane direction.

These aforementioned facts show the necessity of employing present homogenization

analysis with 2-D periodicity when non-uniformity exists in the in-plane direction

of composites.

Table 4.5: Homogenized thermomechanical properties of brick composites

Properties
Model 1 Model 2

Standard
Analysis

Present
Analysis

Diff. (%)
Standard
Analysis

Present
Analysis

Diff. (%)

E1 (GPa) 117.8 114.7 2.67 72.4 72.39 0.01
E2 (GPa) 117.8 114.7 2.67 72.4 72.39 0.01
G12 (GPa) 46.51 46.09 0.91 27.45 27.44 0.04

ν12 0.292 0.308 5.50 0.330 0.330 0.00
α1 (/◦C) 2.03×10−5 2.04×10−5 0.29 2.34×10−5 2.34×10−5 0.00
α2 (/◦C) 2.03×10−5 2.04×10−5 0.29 2.34×10−5 2.34×10−5 0.00

4.2.3 Localization Analysis

Similar with 2-D laminated composites case, two loading cases (i.e. thermal loading

and biaxial tension loading) are subjected to the infinite macroscopic model shown

in Fig. 4.2(a). The macroscopic model utilizes homogeneous properties of brick

composites obtained from homogenization analysis. Schematic representations of

the two loading cases are given in Figs. 4.2(b) and (c). In this localization analysis,

Model 1 is employed, and stress responses along two representatives lines (i.e. Lines

A and B) are extracted to investigate the influence of relieving periodicity in the
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thickness direction. Fig. 4.8 shows the location of two representative lines within

the unit-cell as well as the corresponding unit-cell constituents.

Figure 4.8: Localization analysis of brick composites: two representative lines
of unit-cell model (Model 1)

4.2.3.1 Stresses due to Thermal Loading

In thermal loading case, temperature difference ∆T of -130 ◦C is given to the

homogeneous macroscopic model. Present analysis utilizes macroscopic strain of

e011 = e022 = e012 = 0 to represent the responses of macroscopic model, while in stan-

dard analysis e033 of -4.83×10−3 is also given to represent the free-traction boundary

condition on the top and bottom surfaces of 3-D homogeneous macroscopic model.

The macroscopic strain values are calculated based on Eq. (4.1).

In this analysis, stress responses within the unit-cell of Model 1, obtained from both

present and standard analyses, are validated by a comparable finite element analy-

sis. A finite element model is built by combining 49 unit-cells to establish a 7×7-cell

brick composite model. The boundary condition represented in Fig. 4.2(b) is then

given to the 7×7-cell FE model. Fig. 4.9(a) shows the results of FE analysis in

terms of σ11 whereby the stress distribution is concisely seen to better approximate

the result of present analysis shown in Fig. 4.9(c) than that of standard analysis
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in Fig. 4.9(b). It is noteworthy that localization analysis substantively produces a

rigorous accuracy for infinite problem.

In Fig. 4.9(a), the stress responses obtained by FE analysis shows periodic behavior

(i.e. repeating stress pattern) in both in-plane directions (direction -1 and -2), with

the exception on the stresses nearby outer boundary. A deeper investigation is per-

formed by extracting the stresses along Lines A and B. In this regard, the results

of localization analysis are compared by those of FE analysis within the cells inside

red box (see Fig. 4.9(a)). For σ11 and σ22, the results of FE analysis and present

analysis are in a better agreement as compared to those of standard analysis, albeit

both present and standard localization analyses obtain nearly similar values. Nev-

ertheless, a good agreement between the results of FE analysis and present analysis

is clearly noted in the result of σ33 as shown in Figs. 4.10(b) and (d). In these

figures, standard analysis cannot obtain stress results that approximate those of FE

analysis. The aforementioned facts indicate that relieving periodicity in the thick-

ness direction of the unit-cell affects the stress calculation of brick composites due

to application of temperature difference.

Some parametric studies are performed in order to understand the effectiveness of

FE modeling in the validation of localization analysis results. The first study is done

by varying number of elements of each FE model cell. In this study, 7×7-cell brick

composite model are employed whereby number of elements of each cell is varied

by 64, 512 and 1728 elements. It is noted that the localization analysis utilizes a

unit-cell model with 1728 elements. Fig. 4.11 shows the stresses along Line A of the

cell. From this figure, number of elements exhibits significant effects to the obtained

stresses results. The stresses obtained from model with fewer number of elements

(i.e. 64 and 512 elements) are different with the results of present localization

analysis, particularly for σ33. From Fig. 4.11, the best agreement is noticed in the

results of FE model with the same number of unit-cell elements (i.e. 1728 elements).

A parametric study by varying number of cells is also performed. In this regard,

FE models with 3×3-cell, 5×5-cell and 7×7-cell are built whereby each model has
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Figure 4.9: Stress σ11: (a) FEM, (b) standard localization, (c) present localiza-
tion
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Figure 4.10: Stresses along Lines A and B due to thermal loading

1728 elements. Stresses along Line A of the center cell are extracted and listed

in Table 4.6. The obtained results show that the increment of number of cells

does not significantly affect the stresses within the center cell of FE model. The

aforementioned parametric studies assert that number of elements of FE model

plays a more important role than number of cells in the numerical validation of

localization analysis using FE analysis.
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Figure 4.11: Influence of FEM number of elements on the stresses results

Table 4.6: Influence of FEM number of cells on the stresses results

y3/h
FEM 3×3 cell FEM 5×5 cell FEM 7×7 cell
σ11 (MPa) σ11 (MPa) σ11 (MPa)

0.125 395.78 394.88 394.52
0.250 432.76 431.83 431.45
0.375 405.07 404.23 403.88
0.625 476.72 475.42 474.89
0.750 433.51 432.27 431.79
0.875 481.07 479.69 479.18

4.2.3.2 Stresses due to Mechanical Loading

In mechanical loading case, the analysis utilizes macroscopic strain of e011 = 1×10−3

and e022 = 5×10−4 to represent biaxial tension loading subjected to the macroscopic

model. In present analysis e033 = 0 is given when calculating the stress responses,

while in standard analysis e033 = -6.19×10−4 is given to represent the free-traction

boundaries on the top and bottom surfaces.

In this analysis, the stress responses obtained from both present and standard anal-

yses are also validated by a comparable finite element analysis employing 7×7-cell

brick composite model. The model is subjected to in-plane macroscopic strain (i.e.
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e011 = 1×10−3 and e022 = 5×10−4) with boundary condition represented in Fig. 4.2(c).

Similar with the results of thermal loading case, Fig. 4.12 shows that the stress

distribution obtained from FE analysis has a better agreement with that of present

analysis. In order to understand the stress responses throughout the thickness direc-

tion, Fig. 4.13 presents the stresses obtained by localization and FE analyses. The

numerical validation shown in Fig. 4.13 elucidates that present analysis can obtain

stress results with good approximation with those of FE analysis. Meanwhile, stan-

dard analysis cannot obtain stress results which represent the real condition whereby

free-traction boundaries are given on the top and bottom surfaces of macroscopic

model.

A mechanical loading case implementing pure shear load is also performed. In

this case, the analysis utilizes macroscopic strain of e012 = 4×10−4. A numerical

validation is conducted by means of a finite element analysis employing 7×7-cell

brick composite model with boundary condition represented in Fig. 4.14.

Similar with the results of previous loading cases, Fig. 4.15 shows that the stress

distributions τ12 obtained through present localization and FE analyses are in a good

agreement. It is noted here that localization analysis should obtain more accurate

results due to its effectiveness in modeling pure shear loading without any rotation.

In order to better understand the stress responses throughout the thickness direc-

tion, Table 4.7 lists the stresses obtained by localization and FE analyses. From this

table, present analysis results clearly show better approximations with those ob-

tained by FE analysis whereby the differences between both analyses are less than

1%. Meanwhile, standard analysis cannot obtain accurate results particularly in the

region nearby top and bottom surfaces. These again indicate that relieving period-

icity in the thickness direction of the unit-cell is necessary in the stress calculation

of brick composites.
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Figure 4.12: Stress σ22: (a) FEM, (b) standard localization, (c) present local-
ization
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Figure 4.13: Stresses along Lines A and B due to biaxial loading

Figure 4.14: Schematic of FE analysis under shear loading
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Figure 4.15: Stress τ12: (a) FEM, (b) standard localization, (c) present local-
ization

Table 4.7: Stress τ12 along Line A

y3/h
τ12 %Diff. (w.r.t. FEM)

Standard
Analysis

Present
Analysis

FEM
Standard
Analysis

Present
Analysis

0.042 10.58 10.13 10.16 4.09 0.32
0.208 10.79 10.59 10.68 1.08 0.82
0.375 10.74 10.66 10.72 0.15 0.58
0.625 27.70 27.97 28.02 1.17 0.21
0.792 26.99 27.23 27.23 0.88 0.00
0.958 29.14 28.73 28.77 1.28 0.14
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4.3 3-D Orthogonal Interlock Composites

4.3.1 Numerical Model

Two kinds of unit-cell model in meso-scale, viz. infinite-thickness (IT) and finite-

thickness (FT) models are built based on the optical microscopy and the schematic

architecture of 3-D orthogonal interlock composites shown in Figs. 4.16(a) and (b).

The analysis utilizes a single stack unit-cell model for the IT model (one-stack IT

model) and a model consisting of six unit-cell stacks for the FT model (six-stack

FT model), respectively shown in Figs 4.16(c) and (d). The IT model consists of

three fiber tows (x-, y-, z- tows) and resin-rich region. It is noted that, in addition

to IT model constituents, the FT model also considers the existence of horizontal

portion of z-tow in the upper part of the unit-cell as well as the selvage yarn in its

lower part. In the unit-cell, the x- and y-tows tows utilize T-300 as the fiber phase,

while that of z-tow and selvage yarn is T-900. The resin phase of all fiber tows and

resin-rich region is epoxy EP828. Tows’ fiber volume fraction (Vft) of x- and y- tows

is 55%, whilst Vft of z-tow is 50%. The selvage yarn is idealized so that possesses the

same Vft as z-tow. The homogenized thermo-mechanical properties of fiber tows,

selvage yarn and resin-rich region are shown in Table 4.8 [42]. It is reminded that the

properties are calculated by standard homogenization method with 3-D periodicity

utilizing a micro-scale unit-cell model consisting fiber and matrix phases arranged

in hexagonal array. In Table 4.8, subscripts ‘L’ and ‘T ’ of tows and selvage yarn

respectively denote longitudinal and transverse directions of the fiber phase.

4.3.2 Homogenization Analysis

4.3.2.1 Characteristic Displacement Vector

The elastic correctors (χ11, χ22 and χ12) and thermal corrector (ψ) of 3-D orthogonal

interlock composites are shown in Fig. 4.17. The correctors are shown based on
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Figure 4.16: 3-D orthogonal interlocked composite: (a) side-view observed from
optical microscopy, (b) schematic architecture, (c) infinite-thickness (IT) unit-cell

model, (d) finite-thickness (FT) unit-cell model

Table 4.8: Homogenized thermomechanical properties of fiber tows, selvage yarn
and resin-rich region of 3-D orthogonal interlock composites

Properties
x-tow & y-tow z-tow & selvage yarn resin-rich region

T-300 (Vft = 55%) T-900 (Vft = 50%) EP828
EL (GPa) 122.55 148.7 3.4
ET (GPa) 7.13 4.96 3.4
GLT (GPa) 3.25 3.21 1.26
GTT (GPa) 2.53 2.45 1.26

νLT 0.263 0.335 0.35
νTT 0.414 0.476 0.35

αL (/◦C) 5.03×10−7 2×10−7 6.45×10−5

αT (/◦C) 3.94×10−5 4.5×10−5 6.45×10−5
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the results of six-stack FT model. Fig. 4.17 shows that the obtained correctors

are the same between the opposing faces in the in-plane direction, while those of

the top and bottom surfaces of the unit-cell are different. This concludes that

the periodicity in the thickness direction has been successfully relieved. For the

better understanding, Fig 4.18 shows the comparison of corrector χ12 obtained from

standard and present analyses. In this figure, unlike the result of present analysis,

the corrector obtained from standard analysis has the same deformation between

the top and bottom surfaces of the unit-cell.

Figure 4.17: Elastic and thermal correctors of 3-D orthogonal interlock com-
posites: (a) χ11, (b) χ22, (c) χ12, (d) ψ
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Figure 4.18: Elastic corrector (χ12): (a) standard analysis, (b) present analysis

4.3.2.2 Homogenized Thermomechanical Properties

The present analysis is developed to analyze the FT unit-cell model representing the

whole thickness of structure. However, with aim of understanding the influence of

relieving periodicity in the thickness direction with respect to the in-plane properties

of 3-D orthogonal interlock composites, the IT model is also built and analyzed

by employing the standard method with 3-D periodicity. In this regard, the IT

model has an in-plane stack (one-stack model), while FT models are represented

by six, seven, eight, nine and ten-stack models. The employment of FT unit-cell

models with increasing number of in-plane stacks consequently leads to the different

results between FT and IT models. The differences are caused by not only different

periodic boundary conditions, but also the different unit-cell composition due to

the existence of horizontal portion of z-tow and selvage yarn. Hence, in order to

evaluate the influence of only relieving periodicity in the thickness direction, the

FT models are also analyzed by using the standard method with 3-D periodicity.

Fig. 4.19 exhibits the effects of relieving periodicity in the thickness direction as
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well as the increment of in-plane stack of the unit-cell to the homogenized in-plane

properties of 3-D orthogonal interlock composites. The effects are investigated by

means of the normalized value of the in-plane properties obtained by FT model

calculated by present method with respect to those obtained by both IT and FT

models calculated by standard method. Due to the idealization in the modeling of

the unit-cell, several homogenized properties have the same value (i.e. E1 = E2,

α1 = α2). In general, Fig. 4.19 shows that the normalized results have a tendency

to approach 1.0 with the increment of in-plane stack. This fact is reasonable in

the sense that adding the number of in-plane stack will increase the constraint

within the unit-cell so that the average strain will approximate the value of those

calculated by standard method. Moreover, the addition of in-plane stack in the FT

model will reduce the contribution of horizontal portion of z-tow and selvage yarn

to the total Vf of the unit-cell. This will increase the possibility of average strain to

approximate the value of that obtained by the IT model. Figs. 4.19(a) and (b) show

that the normalized values of Young’s moduli (E1 and E2) and shear modulus (G12)

with respect to those of FT model are insensitive to the increment of in-plane stack,

whereby the differences are less than 1%. However, the utilization of IT model shows

more profound effects to the Young’s moduli. Meanwhile, Figs. 4.19(c) and (d) show

that the employment of present analysis has a larger influence in Poisson’s ratio of

ν12, and coefficients of thermal expansion (CTE) of α1 and α2, whereby differences

of up to about 4% are noticeable. The results also show that the differences will

increase as the number of in-plane stack decreases. The aforementioned facts show

that when the aim of analysis is to obtain in-plane homogenized properties of 3-D

composites, present analysis with FT model should be employed especially when the

composite consists of a few numbers of in-plane stack.
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Figure 4.19: Normalized value of homogenized thermomechanical properties:
(a) E1, E2, (b) G12, (c) ν12, (d) α1, α2

4.3.3 Localization Analysis

In this analysis, the infinite macroscopic model shown in Fig. 4.2(a) is also subjected

to two loading cases (i.e. thermal loading and biaxial tension loading) which are

schematically represented in Figs. 4.2(b) and (c). In this localization analysis, six-

stack FT unit-cell model is employed, and the stress responses are investigated by

extracting the stresses from four representative lines intersecting the thickness of the

unit-cell. The four lines, shown in Fig. 4.20, are Line A, Line B, Line C and Line

D.
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Figure 4.20: Localization analysis of 3-D orthogonal interlock composites: four
representative lines of unit-cell model

4.3.3.1 Stresses due to Thermal Loading

In thermal loading case, temperature difference ∆T of -150 ◦C is given to the

homogeneous macroscopic model. Present analysis utilizes macroscopic strain of

e011 = e022 = e012 = 0 to represent the responses of macroscopic model. In standard

analysis, e033 of -8.45×10−3 is also given to represent the free-traction boundary con-

dition on the top and bottom surfaces of macroscopic model. In this analysis, a

3×3-cell 3-D orthogonal interlock composite model is built for the sake of numerical

validation using FE analysis. The model is constrained in order not to move in the

in-plane direction as represented in Fig. 4.2(b). Similar with the result of brick

composites, Fig. 4.21(a) shows periodic stress pattern in both in-plane directions

(direction -1 and -2). However, in the case of 3-D orthogonal interlock composite,
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the different stress pattern nearby outer surfaces induced by the boundary effects is

not significant. In Fig. 4.21, the stress results of FE analysis again show a better

approximation with the results of present analysis as compared to those of standard

analysis.

Stress distributions along Lines A, B, C and D due to application of thermal loading

are shown in Fig. 4.22 (for those of Lines A and B) and Fig. 4.23 (for those of Lines

C and D). In the figures, the vertical axis indicates normalized thickness coordinate

(y3/h), where h = 3.576 mm. The corresponding unit-cell constituents along each

line are described in the right side of the figures. In this regard, X denotes x-tow; Y

denotes y-tow; Z denotes z-tow; Z-h denotes horizontal portion of z-tow; R denotes

resin rich region; S denotes selvage yarn.

The stress results shown in Figs. 4.22 and 4.23 elucidate that standard and present

analyses obtain different stress results in terms of stress values and patterns. For

the results of σ11 and σ22, the results of standard and present analyses are not

significantly different, except in the region nearby the top and bottom surfaces.

Nevertheless, the considerably different stress values and patterns between the out-

comes of both analyses are noticed in the result of σ33. In Figs. 4.22(d) and 4.23(b),

the stress responses are different throughout the thickness of the unit-cell whereby

the differences are getting larger in the region nearby the top and bottom surfaces of

the unit-cell. In addition, Figs. 4.22(b) and 4.23(d) show that the significant differ-

ences are not only found in the region nearby the top and bottom surfaces, but also

in the whole thickness of the unit-cell. Particularly in Fig. 4.23(d), the difference

of about 25% between standard and present analyses is very important to be no-

ticed because the through-thickness reinforcement (i.e. z-tow) experiences very high

stress (σ33). With regard to the numerical validation, Figs. 4.22 and 4.23 show that

good agreements are compared between the stress results obtained by the present

analysis and the comparable FE analysis. These facts emphasize that application of

free-traction boundary condition only on the top and bottom surfaces of macroscopic

model is not able to obtain accurate stress within the unit-cell of 3-D orthogonal
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Figure 4.21: Stress σ11: (a) FEM, (b) standard localization, (c) present local-
ization
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interlock composites. When the unit-cell possesses through-thickness reinforcement,

the real free-traction condition necessitates the relieving periodic boundary condition

throughout its thickness.

Figure 4.22: Stresses along Lines A and B due to thermal loading
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Figure 4.23: Stresses along Lines C and D due to thermal loading
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4.3.3.2 Stresses due to Mechanical Loading

In mechanical loading case, macroscopic strains of e011 = 1×10−3 and e022 = 5×10−4

are utilized to represent biaxial tension loading. Present analysis utilizes e033 = 0

in the calculation stress responses, while in standard analysis e033 = -5.63×10−4 is

given to represent the free-traction boundaries on the top and bottom surfaces of

macroscopic model.

Stress responses obtained from localization analysis are also validated by those ob-

tained from a comparable FE analysis employing 3×3-cell 3-D orthogonal interlock

composite model. Similar with the previous cases, Fig. 4.24 shows that the stress

distribution of FE analysis has a better agreement with that of present analysis.

The slight different stress distributions on the surfaces normal to the in-plane di-

rections between the results of localization and FE analysis are found. This fact is

reasonable in the sense that the stresses calculated by localization analysis are based

on periodic boundary condition whilst those of FE analysis are influenced by the

prescribed boundary condition on the FE model. In order to understand the stress

responses throughout the thickness direction, the obtained stresses are shown in Fig.

4.25 (for those of Lines A and B) and Fig. 4.26 (for those of Lines C and D). With

the exception for the region nearby the top and bottom surfaces, the results show

that σ11 and σ22 obtained by both standard and present analyses nearly coincide.

Similar with the stresses due to thermal loading, significant differences between the

results of standard and present analyses are found in the result of σ33 in terms of

stress values and patterns, as shown in Figs. 4.25(b), 4.25(d), 4.26(b) and 4.26(d).

It is noteworthy that the differences are not only found in the region nearby the top

and bottom surfaces, but also in the whole thickness of the unit-cell. The aforemen-

tioned facts assert that the relieving periodic boundary condition in the thickness

direction of unit-cell model having through-thickness reinforcement would result in

the different and more accurate stress values and patterns [42].
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Figure 4.24: Stress σ33: (a) FEM, (b) standard localization, (c) present local-
ization
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Figure 4.25: Stresses along Lines A and B due to biaxial loading
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Figure 4.26: Stresses along Lines C and D due to biaxial loading
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4.4 Sandwich Composites

4.4.1 Numerical Model

This analysis investigates unit-cell model of honeycomb sandwich composites as

shown in Fig. 4.27. In this figure, tc denotes core thickness, b denotes core width, a

denotes core length, hc denotes core height and tf denotes face thickness.

Figure 4.27: Unit-cell model of CFRP-Al honeycomb sandwich composites

Four unit-cell models of honeycomb sandwich composites are built, i.e. Models

H1-H4. Geometrical configurations of the unit-cell models of CFRP-Al sandwich

composites as well as stacking sequence of the face laminates are given in Table 4.9,

while the thermomechanical properties of CFRP face prepreg sheet and aluminum

core are listed in Table 4.10 [54, 55]. It should be noted that, for the sake of
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simplicity, the analysis utilizes the homogenized properties of face laminate lay-

up obtained by standard homogenization method with 3-D periodicity. Due to

the consideration of numerical accuracy in the analysis, a modeling idealization is

performed by thickening the thickness of Al core to ten times of its actual size. As

the consequence of such idealization, in the analysis, the elastic moduli (Young’s

and shear moduli) of core, included in Table 4.10, are altered into its 1/10 value

[55, 56].

Table 4.9: Geometrical configuration of sandwich composite unit-cell models

Model
Face Core

tf
(mm)

Stacking
Sequence

tc
(mm)

b
(mm)

a
(mm)

hc
(mm)

H1 0.2 [0/±60]S 0.01778 9.525 16.5 18.5
H2 0.2 [0] 0.01778 9.525 16.5 18.5
H3 0.2 [90] 0.01778 9.525 16.5 18.5
H4 0.2 [0/90]S 0.01778 9.525 16.5 18.5

Table 4.10: Material properties of CFRP face prepreg sheet and Al honeycomb
core (L and T directions correspond to those of 0° face lamina)

Properties Face (T-300/Q-122) Core (Al 5056)
EL (GPa) 140 68.6
ET (GPa) 11 68.6
GLT (GPa) 5.84 26.4
GTT (GPa) 4.44 26.4

νLT 0.3 0.3
νTT 0.28 0.3

αL (/◦C) -7×10−7 2.35×10−5

αT (/◦C) 3×10−5 2.35×10−5

4.4.2 Homogenization Analysis

4.4.2.1 Characteristic Displacement Vector

Fig. 4.28 shows the typical modes of elastic and thermal correctors of honeycomb

sandwich composites. In this figure, the correctors are based on those of Model H2.

The obtained correctors show that the out-of-plane periodicity has been successfully
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relieved. This is described by the same characteristic deformations between the

opposing faces in the in-plane direction, while the deformations on the top and

bottom surfaces of the unit-cell are different as shown by the opposing direction of

correctors between each other.

Figure 4.28: Elastic and thermal correctors of honeycomb sandwich composites:
(a) χ11, (b) χ22, (c) χ12, (d) ψ

4.4.2.2 Homogenized Thermomechanical Properties

Table 4.11 lists the in-plane homogenized properties of unit-cell models H1-H4. The

properties obtained from both standard and present analyses of each model are

presented. Based on the obtained homogenized properties, the influence of relieving

periodicity in the thickness direction shows insignificant effects for the homogenized
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elastic moduli and Poisson’s ratio whereby differences of less than 1% with the

results of standard analysis are compared. However, the present analysis is found to

be more influential in the calculation of CTE. The results given in Table 4.11 show

that Models H2 and H3 result in larger differences of homogenized CTE between

both homogenization analyses as compared to those of Models H1 and H4. It is noted

that Models H2 and H3 utilize unidirectional ply laminate (i.e. 0◦ laminate and 90◦

laminate, respectively) with highly different values between E1 and E2 as well as

α1 and α2. These facts assert that the present analysis with relieved periodicity in

the thickness direction should be employed in the analysis of sandwich composites,

particularly if the faces have large different values between the thermomechanical

properties in both in-plane directions.

Table 4.11: Homogenized thermomechanical properties of Models H1-H4

Model Analysis
Properties

E1

(GPa)
E2

(GPa)
G12

(GPa)
ν12

α1

(/◦C)
α2

(/◦C)
Standard 1.213 1.206 0.421 0.338 3.863×10−6 3.696×10−6

H1 Present 1.210 1.206 0.420 0.338 3.816×10−6 3.707×10−6

Diff. (%) 0.25 0.00 0.12 0.03 1.22 0.30
Standard 3.006 0.302 0.128 0.443 -3.449×10−7 3.348×10−5

H2 Present 3.003 0.301 0.128 0.443 -3.713×10−7 3.350×10−5

Diff. (%) 0.10 0.20 0.39 0.14 7.37 0.06
Standard 0.308 2.999 0.128 0.045 3.333×10−5 -4.009×10−7

H3 Present 0.306 2.998 0.128 0.045 3.342×10−5 -4.070×10−7

Diff. (%) 0.91 0.03 0.39 0.02 0.27 1.51
Standard 1.680 1.673 0.128 0.081 3.828×10−6 3.732×10−6

H4 Present 1.677 1.672 0.128 0.081 3.793×10−6 3.731×10−6

Diff. (%) 0.18 0.06 0.31 0.02 0.92 0.03

4.4.3 Localization Analysis

In this localization analysis, an infinite macroscopic model shown in Fig. 4.29(a) is

utilized as the homogeneous macroscopic model. Macroscopic strain (e0) are given

in the calculation of stress responses within the unit-cell to represent the loading
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condition in Fig. 4.29(b). It is again noted that the top and bottom of its surfaces

are free-traction boundaries.

Figure 4.29: Localization analysis: (a) homogeneous beam model, (b) thermal
loading case, (c) unit-cell model of honeycomb sandwich composites

4.4.3.1 Stresses due to Thermal Loading

In this thermal loading case, due to the loading case described in Fig. 4.29(b), the

macroscopic strain can be calculated by the following equation

e0kl = α0
kl∆T (4.2)

Localization analysis of sandwich composites utilizes ∆T of -120 ◦C as the thermal

load. In the analysis, numerical validation is performed by building a 7×7-cell hon-

eycomb sandwich composite model implementing the boundary condition described

in Fig. 4.29(b). In the numerical validation described in Fig. 4.30, the stresses act-

ing on the top and bottom faces of the unit-cell (Model H2) calculated by present
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localization analysis show a good agreement with those of FE analysis. Meanwhile,

standard analysis result exhibits larger difference with that of FE analysis.

Figure 4.30: Stress σ11 of Model H2: (a) FEM, (b) standard localization, (c)
present localization

The stress distribution of the one-eighth of Model H2 is shown in Fig. 4.31. In

this figure, the stresses acting on the core are not significantly different between

the results of standard and present analyses. However, compared to the result of

standard analysis, the stress distribution acting on the hexagonal face obtained by
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present analysis shows a better agreement with that of FE analysis. The afore-

mentioned facts show the necessity of employing present analysis for the sake of

obtaining accurate stress results in sandwich composites.

Figure 4.31: Stress σ11 of the one-eighth of Model H2: (a) FEM, (b) standard
localization, (c) present localization

Table 4.12 lists the homogenized thermomechanical properties and average stresses

σ̄11 and σ̄22 of the face of Models H1-H4. In this table, the relieving periodicity in

the thickness direction shows more profound effects in the results of models with

unidirectional laminate faces (i.e. Models H2 and H3) whereby the thermomechan-

ical properties in directions -1 and -2 are highly different. In both models, the
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Table 4.12: Homogenized properties and average stress of face (Models H1-H4)

Model
Elastic Modulus CTE Average Stress, σ̄ (MPa)
E1

(GPa)
E2

(GPa)
α1

(/◦C)
α2

(/◦C)
Analysis σ̄11 σ̄22

Standard -16.56 -15.71
H1 55.1 55.1 2.1×10−6 2.1×10−6 Present -16.24 -15.69

Diff. (%) 1.94 0.16
Standard -7.40 -4.77

H2 140 11 -7×10−7 3×10−5 Present -6.96 -4.78
Diff. (%) 6.11 0.34
Standard -4.55 -6.39

H3 11 140 3×10−5 -7×10−7 Present -4.66 -6.32
Diff. (%) 2.54 1.06
Standard -16.55 -15.71

H4 75.9 75.9 2.1×10−6 2.1×10−6 Present -16.23 -15.69
Diff. (%) 1.95 0.15

differences of 6.11% and 2.54% are found in the results of σ̄11, while the outcomes of

average stresses of the face of Models H1 and H4 (i.e. with the same properties in

both in-plane directions) are not significantly different. These facts assert that the

present analysis should be employed in the analysis of sandwich composites, partic-

ularly if the faces have large different thermomechanical properties in both in-plane

directions.
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Conclusions and

Recommendations

5.1 Conclusions

In this thesis, mathematical framework and finite element implementation of asymp-

totic expansion (AE) homogenization and localization method have been proposed

by including the thermomechanical effects. A novel enhanced homogenization and

localization analysis is also proposed by considering the finite thickness effect of unit-

cell model. This enhanced analysis deals with the development of unit-cell model of

composites structure having relieved periodicity in through-thickness direction (i.e.

on the top and bottom surfaces of the unit-cell). In this analysis, the mathematical

treatment yields that the macroscopic problem is regarded as a two-dimensional (2-

D) problem.

The proposed AE homogenization and localization method is performed to investi-

gate several types of composites namely 2-D laminated composites, brick composites,

3-D orthogonal interlock composites and sandwich composites. For the analysis of

2-D laminated composites (composites with uniform geometrical and material con-

figuration in in-plane direction), the standard analysis (3-D periodicity) and present

77
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analysis (2-D periodicity) yield the same outcomes in terms of homogenized thermo-

mechanical properties (viz. elastic moduli, Poisson’s ratio and coefficients of thermal

expansion) as well as the stress responses within the unit-cell. These facts assert

that, in the case of 2-D laminated composite, standard homogenization and local-

ization analysis is deemed as a sufficient analysis for the calculation of homogenized

thermomechanical properties as well as stresses within the unit-cell.

In the analysis of 2-D laminated composites, excellent agreements between homog-

enization and analytical results are noted whereby the same outcomes are obtained

in the results of equivalent thermomechanical properties. The stresses within the

unit-cell obtained by localization analysis are also in excellent agreements with those

obtained by classical laminate theory.

The relieving periodicity in the thickness direction has more profound effects in

the analysis of composites with geometrical and/or material non-uniformity in the

in-plane direction. In the analysis of brick composites, 3-D orthogonal interlock com-

posites and sandwich composites, in general, standard and present analyses result

in different outcomes of homogenized thermomechanical properties. The differences

tend to increase if the composite constituents possess large different material proper-

ties. Numerical validation of localization analysis with a comparable finite element

analysis emphasizes that relieving periodicity throughout the thickness direction of

unit-cell is necessary to accurately simulate the real free-traction condition. Different

stress responses between the results of standard and present analyses are particu-

larly found in the region nearby the top and bottom surfaces of the unit-cell. In

accordance to this finding, the analysis also reveals profound effects of the relieving

periodicity in the results of sandwich composites with unidirectional face laminate.
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5.2 Recommendations

Several potential future works and recommendations for other researchers as exten-

sions of this study are listed below:

1. More realistic unit-cell model (especially for 3-D textile composites) can be

developed by considering: (i) shape improvement of cross-section of fiber tows

and resin region; (ii) fiber tow undulation; (iii) variation of width and thickness

of the fiber tows.

2. Extension analysis can be performed by investigating another loading condi-

tions and considering initial damage as well as damage progression.

3. Numerical calculation of thermal and elastic correctors can be decoupled into

seven independent calculations (for standard method) and four independent

calculations (for present method). Thus, parallel computing technique can be

implemented to simultaneously calculate the independent corrector modes.

4. Extension analysis aims to consider the free-edge effects of composites can be

performed by relieving the periodicity in in-plane transverse direction (prelim-

inary formulation is given in the appendix).
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Appendix A

Preliminary Formulation of AE

Homogenization Method with

Relieving Periodicity in Both

Transverse Directions

A.1 Periodic Function

In this preliminary formulation, periodicity only exists in the longitudinal direction

of composites (direction -1). Correspondingly, periodic vector function is altered

into the following equation

gε(x) = g(x,y) = g(x1, x2, x3, y1 + Y1) (A.1)

where Y1 is the dimensions of unit-cell in direction -1.

By concerning that x2 and x3 are finite and very small as compared to x1, it is
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assumed that x2 and x3 can be approximated by expressions (A.2) and (A.3), re-

spectively

x2 ≈ εy2 (A.2)

x3 ≈ εy3 (A.3)

The modified periodic vector function can be re-expressed as follows

gε(x) = g(x,y) = g(x1, y1 + Y1, y2, y3) (A.4)

Derivatives of the modified periodic vector function with respect to macroscopic

coordinate x are as follows

∂gε

∂x1
=

∂g

∂x1
+

1

ε

∂g

∂y1
(A.5)

∂gε

∂x2
=

1

ε

∂g

∂y2
(A.6)

∂gε

∂x3
=

1

ε

∂g

∂y3
(A.7)

Limit of integration of Y-periodic function can be expressed by explicitly specifying

one-dimensional macroscopic problem as follows

lim
ε→0+

∫
Ωε

Φε(x)dΩ → 1

|Y |

∫ L

0

∫
¥
Φ(x,y)dY dL (A.8)
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lim
ε→0+

ε

∫
Sε

Φε(x)dS → 1

|Y |

∫ L

0

∫
S

Φ(x,y)dSdL (A.9)

where |Y | is the unit-cell volume; x = x1; y = y1, y2, y3; and dY = dy1dy2dy3.

A.2 Formulation of AE Homogenization Method

The three hierarchical equations, given in Eqs. (2.22)-(2.24), are solved by assuming

that their limits exist when ε→ 0+. The derivation of the hierarchical equations is

explained in the following steps

Order of ε−2

By multiplying Eq. (2.22) by ε2, and employing expression (A.8) to take the limit

as ε→ 0+, following equation is obtained

1

|Y |

∫ L

0

∫
¥
Cijkl

∂u0k
∂yl

∂vi
∂yj

dY dL = 0 (A.10)

Choosing v = v(x) will automatically satisfy Eq. (A.10). However, choosing v =

v(y) yields an expanded form of Eq. (A.10) after applying integration by parts and

Gauss’ divergence theorem as follows

1

|Y |

∫ L

0



−
∫

¥

∂

∂yj

(
Cijkl

∂u0k
∂yl

)
vi(y)dY +

∫
S

Cijkl
∂u0k
∂yl

njvi(y)dS

+

∫
Y1

Cijkl
∂u0k
∂yl

njvi(y)dY1 +

∫
Y2

Cijkl
∂u0k
∂yl

njvi(y)dY2

+

∫
Y3

Cijkl
∂u0k
∂yl

njvi(y)dY3


dL = 0 (A.11)
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The square bracket of Eq. (A.11) consists of five integral terms. The third term

will result in zero due to the existence of periodicity in direction -1 (i.e. periodic

boundary condition on the pair surfaces of Y1), while the fourth and fifth terms are

zero due to the free-traction condition on the surfaces normal to both transverse

directions -2 and -3 (i.e. each pair of surfaces Y2 and Y3). The remaining equation

is satisfied by representing macroscopic displacement u0k as follows

u0k = u0k(x) = u0k(x1) (A.12)

Expression (A.12) confirms that the macroscopic problem is regarded as a one-

dimensional (1-D) problem.

Order of ε−1

By multiplying Eq. (2.23) by ε, and employing expressions (A.8) and (A.9) to take

the limit as ε→ 0+, following equation is obtained

1

|Y |

∫ L

0

∫
¥
Cijkl

[
∂u0k
∂yl

∂vi
∂xj

+

(
∂u0k
∂xl

+
∂u1k
∂yl
− αkl∆T

)
∂vi
∂yj

]
dY dL

=
1

|Y |

∫ L

0

∫
S

pividSdL

(A.13)

By choosing v = v(x), and considering the expression (A.12), following statement

is obtained

∫
S

pivi(x)dS = 0 (A.14)

Choosing v = v(y) and considering Eq. (A.14) yield

1

|Y |

∫ L

0

∫
¥
Cijkl

[(
∂u0k(x)

∂xl
+
∂u1k
∂yl
− αkl∆T

)
∂vi(y)

∂yj

]
dY dL = 0 (A.15)
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By substituting Eq. (2.31) into Eq. (A.15), the microscopic equilibrium equation

(1st order) is obtained as follows

1

|Y |

∫ L

0

∫
¥


(
Cijkl − Cijpq

∂χklp
∂yq

)
∂u0k(x)

∂xl

−Cijpq
(
∂ψp
∂yq

+ αpq∆T

)
 ∂vi(y)

∂yj
dY dL = 0

i, j, k, p, q = 1, 2, 3; l = 1

(A.16)

Elastic and thermal correctors (χ and ψ) are calculated by decoupling Eq. (A.16)

as follows

Elastic problem:

∫
¥

(
Cijkl − Cijpq

∂χklp
∂yq

)
∂vi(y)

∂yj
dY = 0

i, j, k, p, q = 1, 2, 3; l = 1

(A.17)

1

|Y |

∫
¥
χklp dY = 0 (A.18)

Thermal problem:

∫
¥
Cijpq

(
∂ψp
∂yq

+ αpq∆T

)
∂vi(y)

∂yj
dY = 0

i, j, p, q = 1, 2, 3

(A.19)

1

|Y |

∫
¥
ψpdY = 0 (A.20)

It is noteworthy that in Eq. (A.17), l = 1, and due to the symmetric property of χ,

one independent mode of elastic corrector is calculated, namely χ11.

Order of ε0

By employing expression (A.8) to take the limit of Eq. (2.24) as ε→ 0+, following

equation is obtained
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1

|Y |

∫ L

0

∫
¥
Cijkl

[(
∂u0k
∂xl

+
∂u1k
∂yl
− αkl∆T

)
∂vi
∂xj

+

(
∂u1k
∂xl

+
∂u2k
∂yl

)
∂vi
∂yj

]
dY dL =

1

|Y |

∫ L

0

∫
¥
fividY dL+

∫
Γt

tividΓ

(A.21)

By choosing v = v(x) and substituting Eq. (2.31) into Eq. (A.21), the compact

form of macroscopic equilibrium equation can be obtained as follows

∫ L

0

C0
ijkl(x)

∂u0k(x)

∂xl

∂vi(x)

∂xj
dL =

∫ L

0

τij(x)
∂vi(x)

∂xj
dL+

∫ L

0

σtij(x)
∂vi(x)

∂xj
dL+∫ L

0

bi(x)vi(x)dL+

∫
Γt

ti(x)vi(x)dΓ

i, k, p, q = 1, 2, 3; j, l = 1

(A.22)

where

C0
ijkl(x) =

1

|Y |

∫
¥

(
Cijkl − Cijpq

∂χklp
∂yq

)
dY (A.23)

τij(x) =
1

|Y |

∫
¥
Cijpq

∂ψp
∂yq

dY (A.24)

σtij(x) =
1

|Y |

∫
¥
Cijpqαpq∆TdY (A.25)

bi(x) =
1

|Y |

∫
¥
fidY (A.26)



Bibliography

[1] Anon. Status of FAA’s actions to oversee the safety of composites airplanes.

Technical Report GAO-11-849. U.S. Government Accountability Office, 2011.

[2] W.G. Roeseler, B. Sarh, and M.U. Kismarton. Composites structures: The

first 100 years. In Proc. 16th International Conference on Composite Materials,

Kyoto, Japan, 2007.

[3] C. Zweben. Advanced composites for aerospace applications, A review of current

status and future prospects. Composites, pages 235–240, 1981.

[4] R. Rolfes, G. Ernst, M. Vogler, and C. Huhne. Material and failure models for

textile composites. In Mechanical response of composites, pages 27–56. Springer

Science + Business Media B.V., 2008.

[5] S.V. Lomov, D.S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, and

S. Hirosawa. Meso-FE modelling of textile composites: Road map, data flow

and algorithms. Composites Science and Technology, 67:1870–1891, 2007.

[6] X.F. Wang, X.W. Wang, G.M. Zhou, and C.W. Zhou. Multi-scale analyses

of 3D woven composite based on periodicity boundary conditions. Journal of

Composite Materials, 41(14):1773–1788, 2007.

[7] S.S. Vel and A.J. Goupee. Multiscale thermoelastic analysis of random hetero-

geneous materials Part I: Microstructure characterization and homogenization

of material properties. Computational Materials Science, 48:22–38, 2010.

87



Bibliography 88

[8] M.R.E. Nasution, N. Watanabe, A. Kondo, and A. Yudhanto. Thermome-

chanical properties and stress analysis of 3-D textile composites by asymptotic

expansion homogenization method. Composites: Part B, 60:378–391, 2014.

[9] Y.F. Xing, Y. Yang, and X.M. Wang. A multiscale eigenelement method and

its application to periodical composite structures. Composites Structures, 92:

2265–2275, 2010.

[10] J. Rannou, N. Limodin, J. Rethore, A. Gravouil, W. Ludwig, M-C. Baietto-

Dubourg, J-Y. Buffiere, A. Combescure, F. Hild, and S. Roux. Three dimen-

sional experimental and numerical multiscale analysis of a fatigue crack. Com-

puter Methods in Applied Mechanics and Engineering, 199:1307–1325, 2010.

[11] F.V. Souza, D.H. Allen, and Y.R. Kim. Multiscale model for predicting dam-

age evolution in composites due to impact loading. Composites Science and

Technology, 68:2624–2634, 2008.

[12] G. Nilakantan, M. Keefe, T.A. Bogetti, R. Adkinson, and J.W. Gillespie Jr. On

the finite element analysis of woven fabric impact using multiscale modeling

techniques. International Journal of Solids and Structures, 47:2300–2315, 2010.

[13] L. Wu, L. Noels, L. Adam, and I. Doghri. A multiscale mean-field homogeniza-

tion method for fiber-reinforced composites with gradient-enhanced damage

models. Computer Methods in Applied Mechanics and Engineering, 233-236:

164–179, 2012.

[14] A. Visrolia and M. Meo. Multiscale damage modelling of 3D weave composite

by asymptotic homogenisation. Composite Structures, 95:105–113, 2013.

[15] Z. Hashin. Analysis of composite materials - A survey. Journal of Applied

Mechanics, 50:481–505, 1983.

[16] Z. Hashin and S. Shtrikman. On some variational principles in anisotropic and

nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10:

335–342, 1962.



Bibliography 89

[17] Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic

behaviour of multiphase materials. Journal of the Mechanics and Physics of

Solids, 11:127–140, 1963.

[18] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of

materials with misfitting inclusions. Acta Metallurgica, 21:571–574, 1973.

[19] P. Kanoute, D.P. Boso, J.L. Chaboche, and B.A. Schrefler. Multiscale methods

for composites: A review. Archives of Computational Methods in Engineering,

16:31–75, 2009.

[20] T. Ishikawa and T.W. Chou. Stiffness and strength behavious of woven fabric

composites. Journal of Materials Science, 17:3211–3220, 1982.

[21] C. Yan. On homogenization and de-homogenization of composite materials.

PhD Thesis. Drexel University, Philadelphia, 2003.

[22] Y. Davit, C.G. Bell, H.M. Byrne, L.A.C. Chapman, L.S. Kimpton, G.E. Lang,

K.H.L. Leonard, J.M. Oliver, N.C. Pearson, R.J. Shipley, S.L. Waters, J.P.

Whiteley, B.D. Wood, and M. Quintard. Homogenization via formal multi-

scale asymptotics and volume averaging: How do the two techniques compare?

Advances in Water Resources, 62:178–206, 2013.

[23] A. Bensoussan, J.L. Lion, and G. Papanicolaou. Asymptotic analysis for peri-

odic structures. North-Holland Pub. Co., Amsterdam, 1978.

[24] J.M. Guedes and N. Kikuchi. Preprocessing and postprocessing for materials

based on the homogenization method with adaptive finite element methods.

Computer Methods in Applied Mechanics and Engineering, 83:143–198, 1990.

[25] P.W. Chung, K.K. Tamma, and R.R. Namburu. Asymptotic expansion ho-

mogenization for heterogeneous media: computational issues and applications.

Composites: Part A, 32:1291–1301, 2001.



Bibliography 90

[26] T. Matsuda, Y. Nimiya, N. Ohno, and M. Tokuda. Elastic–viscoplastic behavior

of plain-woven GFRP laminates: Homogenization using a reduced domain of

analysis. Composite Structures, 79:493–500, 2007.

[27] S.L. Angioni, M. Meo, and A. Foreman. A comparison of homogenization

methods for 2-D woven composites. Composites: Part B, 42:181–189, 2011.

[28] J.A. Oliveira, J. Pinho-da-Cruz, and F. Teixeira-Dias. Asymptotic homogeni-

sation in linear elasticity. Part II: Finite element procedures and multiscale ap-

plications. Computational Materials Science, 45:1081–1096, 2009.

[29] G.A. Francfort. Homogenization and linear thermoelasticity. SIAM Journal on

Mathematical Analysis, 14(4):696–708, 1983.

[30] Y.M. Shabana and N. Noda. Numerical evaluation of the thermomechanical

effective properties of a functionally graded material using the homogenization

method. International Journal of Solids and Structures, 45:3494–3506, 2008.

[31] A. Dasgupta, R.K. Agarwal, and S.M. Bhandarkar. Three-dimensional mod-

eling of woven-fabric composites for effective thermo-mechanical and thermal

properties. Composites Science and Technology, 56:209–223, 1996.

[32] J. Pinho-da-Cruz, J.A. Oliveira, and F. Teixeira-Dias. Asymptotic homogeni-

sation in linear elasticity. Part I: Mathematical formulation and finite element

modelling. Computational Materials Science, 45:1073–1080, 2009.

[33] T. Hobbiebrunken, B. Fiedler, M. Hojo, S. Ochiai, and K. Schulte. Microscopic

yielding of CF/epoxy composites and the effect on the formation of thermal

residual stresses. Composites Science and Technology, 65:1626–1635, 2005.

[34] L. Yang, Y. Yan, J. Ma, and B. Liu. Effects of inter-fiber spacing and thermal

residual stress on transverse failure of fiber-reinforced polymer–matrix compos-

ites. Computational Materials Science, 68:255–262, 2013.



Bibliography 91

[35] G.A. Kassem. Micromechanical material models for polymer composites through

advanced numerical simulation techniques. PhD Thesis. RWTH Aachen Uni-

versity, Aachen, 2009.

[36] K. Woo and J.D. Whitcomb. Effects of fiber tow misalignment on the engineer-

ing properties of plain weave textile composites. Composite Structures, 37(3/4):

343–355, 1997.

[37] F. Rostam-Abadi, C.M. Chen, and N. Kikuchi. Design analysis of composite

laminate structures for light-weight armored vehicle by homogenization method.

Computers and Structures, 76:319–335, 2000.

[38] N. Buannic, P. Cartraud, and T. Quesnel. Homogenization of corrugated core

sandwich panels. Composite Structures, 59:299–312, 2003.

[39] P. Lapeyronnie, P.L. Grognec, C. Binetruy, and F. Boussu. Homogenization

of the elastic behavior of a layer-to-layer angle-interlock composite. Composite

Structures, 93:2795–2807, 2011.

[40] Y. Cai, L. Xu, and G. Cheng. Novel numerical implementation of asymptotic

homogenization method for periodic plate structures. International Journal of

Solids and Structures, 51:284–292, 2014.

[41] W. He, W. Chen, and H. Qiao. Two-scale analytical solutions of multilayered

composite rectangular plates with in-plane small periodic structure. European

Journal of Mechanics A/Solids, 40:123–130, 2013.

[42] M.R.E. Nasution, N. Watanabe, A. Kondo, and A. Yudhanto. A novel asymp-

totic expansion homogenization analysis for 3-D composite with relieved pe-

riodicity in the thickness direction. Composites Science and Technology, 97:

63–73, 2014.

[43] R.F. Gibson. Principle of composite material mechanics., 3rd ed. CRC Press,

Florida, 2012.



Bibliography 92

[44] A. Yudhanto. Mechanical characteristics and damage mechanisms of stitched

carbon/epoxy composites under static and fatigue loads. PhD Thesis. Tokyo

Metropolitan University, Tokyo, 2013.

[45] M. Trinquecoste, J.L. Carlier, A. Derre, P. Delhaes, and P. Chadeyron. High

temperature thermal and mechanical properties of high tensile carbon single

filaments. Carbon, 34:923–929, 1996.

[46] P. Tan, L. Tong, and G.P. Steven. Behavior of 3D orthogonal woven

CFRP composites. Part II. FEA and analytical modeling approaches. Com-

posites: Part A, 31:273–281, 2000.

[47] A. Yudhanto, Y. Iwahori, N. Watanabe, and H. Hoshi. Open hole fatigue char-

acteristics and damage growth of stitched plain weave carbon/epoxy laminates.

International Journal of Fatigue, 43:12–22, 2012.

[48] H. Mibayashi. Damage development analyses of 3D-CFRP by using node sepa-

ration method. Master Thesis. Tokyo Metropolitan University, Tokyo, 2003.

[49] T.A. Bogetti, C.P.R. Hoppel, and W.H. Drysdale. Three-dimensional effective

property and strength prediction of thick laminated composite media. U.S. Army

Research Laboratory, Aberdeen, 1995.

[50] P.C. Chou, J. Carleone, and C.M. Hsu. Elastic constants of layered media.

Journal of Composite Materials, 6(1):80–93, 1972.

[51] Asm aerospace specification metals inc., . URL http://asm.matweb.com/

search/SpecificMaterial.asp?bassnum=MA7075T6.

[52] Asm aerospace specification metals inc., . URL http://asm.matweb.com/

search/SpecificMaterial.asp?bassnum=MA2024T3.

[53] Asm aerospace specification metals inc., . URL http://asm.matweb.com/

search/SpecificMaterial.asp?bassnum=MQ302AP.

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T3
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T3
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ302AP
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ302AP


Bibliography 93

[54] N. Watanabe, H. Sato, and Y. Nishi. Thermal buckling behavior in Al hon-

eycomb sandwich plates with very thin CFRP faces. In Proc. 38th AIAA/AS-

ME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-

ence. Paper No. AIAA-97-1249, Kissimmee, FL, 1997.

[55] N. Watanabe and K. Teranishi. Thermal stress analysis for Al honeycomb sand-

wich plates with very thin CFRP faces. In Proc. 36th AIAA/ASME/ASCE/AH-

S/ASC Structures, Structural Dynamics, and Materials Conference, Paper No.

AIAA-95-1394, New Orleans, LA, 1995.

[56] N. Watanabe and K. Teranishi. Stiffness and buckling analysis for sand-

wich plates with thermal buckling CFRP face sheets: Qualitative approach. In

Proc. 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, Paper No. AIAA-94-1575, Hilton Head, SC, 1994.



Bibliography 94



Acknowledgements

All praise belongs to Allah, the most compassionate, the most merciful, who always

has solution for every problem. In the completion of this work, I received invaluable

help and support from many individuals and institutions. I would like to express my

sincere gratitude to my advisor, Prof. Naoyuki Watanabe for his excellent supervi-

sion and academic supports during my PhD study at Tokyo Metropolitan University

(TMU). I would also like to thank Tokyo Metropolitan Government for the gener-

ous funding and scholarship under the project of Asian Network of Major Cities 21

(ANMC-21) and Asian Human Resources Fund program. My sincere gratitude goes

to Dr. Arief Yudhanto (KAUST) and Dr. Atsushi Kondo (e-Xtream Engineering,

MSC Software), who selflessly helped and supported me during my research. I am

deeply indebted to Prof. Masahito Asai who has been a wonderful host at TMU.

I would like to extend my gratefulness to my PhD thesis committee: Prof. Hiroshi

Suemasu (Sophia University), Prof. Koichi Kitazono (TMU) and Prof. Satoshi

Kobayashi (TMU), for their review, critics and comments. Many thanks to my res-

ident advisor in Hirayama, Prof. Ayumu Inasawa, and staff of TMU International

Center (Ms. Yamada, Ms. Sasaki, Ms. Suzuki) and Hino Campus (Mr. Kodaira)

for their kind help and support. I would like to gratefully acknowledge the support

from former and current members of Watanabe Laboratory, especially Dr. Satoshi

Morooka, Mr. Jonny Herwan, Mr. Worawat Parasil, Mr. Prabij Joshi, Mr. Saharat

Chantanumataporn, Prof. Shumpei Ozawa (Chiba Tech), my tutor Mr. Suguru

Takahashi (Sumitomo Precision), Mr. Yousuke Oishi (Fuji Heavy Industries), Mr.

Yasuhito Mikami, Mr. Norimasa Goto, Mr. Takuya Yoshida et al. Living in Japan

would not be easier without heartfelt companionship with Indonesian friends (Dr.

Mochamad Dady Ma’mun, Ms. Ressa Octavianty, Dr. Triwanto Simanjuntak, the

late Dr. Agus Trilaksono, Dr. Sugeng Supriyadi, Dr. Fahamsyah Hamdan Latief,

Dr. Bambang Bakri, Mr. Banung Grahita, Mr. Bakhtiar Yusuf, Mr. Azhar Aulia

Saputra, Ms. Nurjanah, Mr. Pramudita Satria Palar et al.). My sincere gratitude

also goes to Prof. Bambang Kismono Hadi and Dr. Djarot Widagdo, who had intro-

duced composite and structural mechanics during my study at Bandung Institute

of Technology. This study would not be possible without generous prayers from my

family (Tajuddin Nasution family), in-laws (Miswar Zein family) and my big family

in Indonesia. Last but not the least, I would like to sincerely thank my wife Meizanti

Listiyani Zein for her love, prayers, patience and encouragement.

95



Acknowledgements 96



Vita

Author was born in Yogyakarta, a special monarchy region in Indonesia, in June

1988. He received his bachelor of engineering degree (Sarjana Teknik) from the De-

partment of Aeronautics and Astronautics, Bandung Institute of Technology (ITB),

Indonesia, in July 2010. He then enrolled to the same department to continue

his master course under ITB Voucher scholarship, while he was also working as a

research and teaching assistant at ITB. One year later, he received his master of

engineering degree (Magister Teknik). In October 2011, he pursued his doctoral de-

gree at the Department of Aerospace Engineering, Tokyo Metropolitan University,

Japan, under the Asian Human Resources Fund program.

97



Vita 98



The research reported in this thesis was carried out at the Department of Aerospace

Engineering, Graduate School of System Design, Tokyo Metropolitan University, 6-6

Asahigaoka, Hino-shi, Tokyo 191-0065, Japan.

This research is financially supported by Tokyo Metropolitan Government under the

project of Asian Network of Major Cities 21 (ANMC-21).

This thesis is typeset using LATEX, under Ubuntu Linux operating system.


	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Background
	1.1.1 Composites in Aircraft Structures
	1.1.2 Multi-scale Modeling Approach
	1.1.3 Overview of Homogenization and Localization Analysis

	1.2 Problem Statements and Objectives
	1.3 Overview of the Thesis

	2 Asymptotic Expansion (AE) Homogenization and Localization
	2.1 Overview of the Standard Technique
	2.1.1 General Concept
	2.1.2 Periodic Function

	2.2 Enhanced Approach: Relieving Periodicity in the Thickness Direction
	2.2.1 General Concept
	2.2.2 Modified Periodic Function
	2.2.3 Formulation of AE Homogenization and Localization Method
	2.2.3.1 Order of -2
	2.2.3.2 Order of -1
	2.2.3.3 Order of 0



	3 Finite Element Formulation
	3.1 Finite Element Formulation in Homogenization Scheme
	3.1.1 Characteristic Displacement Vector
	3.1.2 Periodic Boundary Condition
	3.1.3 Homogenized Thermomechanical Properties

	3.2 Finite Element Formulation in Localization Scheme
	3.2.1 Calculation of Stresses


	4 Case Studies and Results
	4.1 2-D Laminated Composites
	4.1.1 Numerical Model
	4.1.2 Homogenization Analysis
	4.1.2.1 Homogenized Thermomechanical Properties

	4.1.3 Localization Analysis
	4.1.3.1 Stresses due to Thermal Loading
	4.1.3.2 Stresses due to Mechanical Loading


	4.2 Brick Composites
	4.2.1 Numerical Model
	4.2.2 Homogenization Analysis
	4.2.2.1 Characteristic Displacement Vector
	4.2.2.2 Homogenized Thermomechanical Properties

	4.2.3 Localization Analysis
	4.2.3.1 Stresses due to Thermal Loading
	4.2.3.2 Stresses due to Mechanical Loading


	4.3 3-D Orthogonal Interlock Composites
	4.3.1 Numerical Model
	4.3.2 Homogenization Analysis
	4.3.2.1 Characteristic Displacement Vector
	4.3.2.2 Homogenized Thermomechanical Properties

	4.3.3 Localization Analysis
	4.3.3.1 Stresses due to Thermal Loading
	4.3.3.2 Stresses due to Mechanical Loading


	4.4 Sandwich Composites
	4.4.1 Numerical Model
	4.4.2 Homogenization Analysis
	4.4.2.1 Characteristic Displacement Vector
	4.4.2.2 Homogenized Thermomechanical Properties

	4.4.3 Localization Analysis
	4.4.3.1 Stresses due to Thermal Loading



	5 Conclusions and Recommendations
	5.1 Conclusions
	5.2 Recommendations

	A Preliminary Formulation of AE Homogenization Method with Relieving Periodicity in Both Transverse Directions
	A.1 Periodic Function
	A.2 Formulation of AE Homogenization Method

	Bibliography
	Acknowledgements
	Vita

