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Abstract 

This thesis proposes a method for classifying sightseeing images into different situations 
based on their visual and metadata features. The widespread use of digital cameras and smart 
phones has brought about a situation where tourists take lots of photos of memorable moments 
during their travels and upload these photos to web albums such as Flickr or Picasa. These sight-
seeing images then become useful resources for others who plan to visit the places shown in the 
images. As scenes of sightseeing spots vary from situation to situation, the impression one gets 
from viewing these images depends heavily on conditions such as the weather and season. If a 
web-based tourist service could provide tourists with different views of sightseeing spots in var-
ious situations, visitors would be able to plan their vacations by looking at the views they enjoy. 
That is, such a service would be useful for tourists to plan when and where to visit. 

To achieve this goal, a method that can classify various sightseeing images into various situ-
ations is required. Although image classification / annotation using visual and text features is 
becoming a major research topic in various fields, such as information retrieval and web intelli-
gence, image classification methods focusing on various situations have not been studied yet. 

One of the contributions of this thesis is to consider various situations and organize them in 
terms of their characteristics. The situations treated in this thesis are classified into weath-
er-related, time-related, and season-related ones. Weather-related situations include sunshiny and 
cloudy situations, and color features of sky regions are expected to be effective as a means of 
classifying them. On the other hand, time-related situations are characterized as certain times of 
the day such as sunrise/sunset, daytime, and night-time. Therefore, shooting date and time, i.e., 
metadata attached to the photos, are important features for such a classification. 

Different from weather-related and time-related situations, scenery change by season will 
depend on the characteristics of a sightseeing spot. It may happen that even though two sight-
seeing spots are geographically close, one maybe season-dependent and the other not. Therefore, 
sightseeing spots should also be classified into season-dependent and season-independent as a 
preprocessing for image classification. This thesis proposes different classification methods for 
each of these situation types. 

The thesis consists of six chapters. Chapter 1 describes the background and motivation. The 
vast amount of sightseeing images available in the web albums is an important resource for tour-
ists. The purpose of this thesis is to establish an efficient image classification method targeting 
sightseeing images showing various situations, which will add extra value to existing web-based 
tourist services. The related topics of the thesis, i.e., image classification / annotation, have at-
tracted a lot of research, and various features and integration methods have been studied. How-
ever, the major focus of these studies has been general-purpose processing; methods focusing on 
various situations have not been studied yet. This chapter defines and organizes the situations to 
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be handled in the thesis and discusses the challenges of classifying sightseeing images into each 
situation. 

Chapter 2 describes the existing applications of tourism informatics. Image classification 
and annotation methods based on supervised and unsupervised learning with various features are 
also covered as related work. 

Chapter 3 describes content-based image classification targeting weather-related and 
time-related situations. Visual features for identifying each target situation are considered from 
viewpoints such as composition of the photos and typical colors in each situation. The images are 
classified in a hierarchical manner, in each stage of which efficient color features, region of in-
terests (ROI), and cluster identification method are determined. Experimental results show that 
the proposed method can obtain clusters for each situation with high precision and recall. 

Chapter 4 focuses on time-related situations and extends the content-based image classifica-
tion method proposed in Chapter 3 by introducing filtering based on tag information. By using 
timestamps attached to images, clusters for the situations obtained by the content-based approach 
are verified to increase the accuracy of the classification. The time windows are adjusted by con-
sidering the geolocation of sightseeing spots, and this adjustment is based on information ob-
tained from the Web. Experimental results show that this method can improve precision while 
maintaining recall in most cases. 

Chapter 5 focuses on season-related situations and proposes a method for classifying sight-
seeing spots into season-dependent and season-independent ones as preprocessing for image 
classification. If image processing is required in order to extract features from photos, the net-
work load for downloading photos and the cost of image processing become a serious problem. 
To solve this problem, the statistical features of sightseeing spots calculated using metadata are 
proposed. Image processing is only applied to the spots classified as season-dependent by ma-
chine learning with the statistical features. Experimental results show that this method can clas-
sify actual sightseeing spots with high precision and recall. 

Chapter 6 summarizes the conclusions presented in Chapter 3 to Chapter 5. This thesis pro-
poses three kinds of image classification methods, each of which employs efficient visual and 
metadata features and integration methods for the target situations. The results of this thesis are 
meant to contribute to tourism and related applications, which are important issues in many cities 
including Tokyo. As the volume of images and metadata available on the Web is still increasing 
at a rapid rate, the contributions of the thesis may have numerous other applications. 
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1. Introduction 

Tourism informatics has been one of hot research topics with rapid development of 

Web technology [22], [23]. Travelers get used to looking for the information of sightseeing 

spots on official website or online forum for planning. Recently, web albums such as 

Flickr1 and Picasa2 become popular, to which tourists upload taken photos for online 

sharing. These images are useful for other people who are interested in visiting there.  

Generally speaking, the impression of a sightseeing spot heavily depends on a situa-

tion such as weather condition and season. For example, some spots are famous for its 

night view. Natural sceneries such as mountains, rivers, and gardens vary with seasons. 

Therefore, providing users with images of sightseeing spots with respect to each situation 

will help them planning their trips. 

Classification of sightseeing images into different situations is expected to add extra 

value to existing web-based tourist service. For example, Fig. 1.1 shows a screenshot of the 

prototype tourist service that maps only images of a certain situation, which are obtained 

by the method proposed in the thesis, based on geotag information. This kind of system is 

expected to be useful to users deciding when to visit which sightseeing spots. 

Such a tourist service requires a method for classifying various photos available on 

the Web into situations. Related works include image classification / annotation [6-12, 20, 

21, 39-42], and retrieval [1-5]. There are many effective methods for image retrieval, some 

of which are applied to web image searches [1-5]. The main purpose of image retrieval is 

to find similar images with a given (query) image. Image classification / annotation aims to 

identify concepts / classes related with a given image. In the case of image annotation, 

multiple concepts can be assigned to a single image. The ImageCLEF [39], which is an 

evaluation forum for the cross-language annotation and retrieval of images, organizes a 

task of photo annotation and retrieval. In ImageCLEF 2012 [40], 94 concepts are used for 

photo annotation task. 

Various visual features have been studied for these kinds of applications, such as color, 

shape, texture, and SIFT (Scale-Invariant Feature Transformation) [35]. Furthermore, be-
                                                 

 
1 http://www.flickr.com/ 
2 http://picasa.google.com/ 
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cause of spreading digital camera and GPS devices, the photos shared on web albums con-

tain not only image files but also those tag information such as EXIF (exchangeable image 

file format), geotag, and timestamp. These kinds of text information are becoming one of 

important features of images in addition to visual features. 

 

 
Fig. 1.1 Prototype of web-based tourist service system. (a) night-time, (b) sunrise/sunset, (c) cloudy, and (d) 

sunshiny situations. 

 

As above-mentioned, related topics of the thesis have recently been attracting many 

researchers in the world, and various features and integration methods of these features 

have been studied. However, major focuses of those studies have been on general-purpose 

processing. When we consider the application of web tourist services, efficient methods 

focusing on various types of situations should be established. However, related technolo-

gies including organization of various situations, effective features for situation discrimi-
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nation, and integration methods of those features have not been studied yet. 

This thesis proposes a method for grouping outdoor sightseeing images into catego-

ries of different situations. The proposed method focuses on outdoor sightseeing spots be-

cause indoor spots such as museums and aquariums are less affected by situations in terms 

of their exhibition contents. 

As we mention above, the view of sightseeing spot changes according to time and 

weather conditions. Because people can see physical objects and different color because 

the light would be reflected or refracted, the light source is an important factor for the vari-

ation of scene, no matter what it is natural or artificial. As sunlight changes according to 

the movement of the sun, a unit of time should be taken into account. However, the photos 

taken within few hours in the same place have not changed a lot because sun moves very 

slowly. People can feel the view has changed when the movement causes drastic change of 

sunlight, such as sunrise and sunset. As a result, it is enough to divide a day into night, 

sunrise/sunset, and daytime for the purpose of the thesis. On the other hand, the variation 

in sequence of days does not need to consider in the thesis, because the view would be 

similar within the same period of hours. Therefore, the situations of night-time, sun-

rise/sunset, and daytime are taken into account as time-related situations.  

Regarding longer-term variation, only the seasonal variation will influence the sight-

seeing images because the color of natural objects such as flowers, grasses, and trees has 

changed. Although scenery would change over the years, such change is neither periodical 

nor repeatable. That is, photos taken in the past and are totally different from current state 

cannot provide valuable information for tourists who want to determine when to visit there. 

Therefore, only the season-related situation is considered in the thesis as long-term varia-

tion. 

There is another kind of situation, weather, which could cause the change of view in 

non-periodic but repeatable manner. Weather can be roughly divided into sunshiny, cloudy, 

rainy, and snowy. The rainy situation is not suitable for sightseeing outside and taking 

photos, but the snow view is attractive. Because of the snow view appears in winter it is 

considered in seasonal situation. Therefore, it is enough to consider the sunshiny and 

cloudy situations as weather-related situation. 

Based on these considerations, Situations handled in this thesis are night-time, sun-

rise/sunset, cloudy, sunshiny, and season. This thesis organizes these situations in terms of 

the characteristics as shown in Table 1.1. Situations are classified into 3 types: weath-
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er-related, time-related, and season-related ones. 

 

Table 1.1 Types of situations. 

Type Situations 
Weather-related Sunshiny, Cloudy 

Time-related Night-time, Sunrise/Sunset, Daytime 
Season-related Spring, Summer, Autumn, Winter 

 

 

 

Fig. 1.2 Example photos of Mt. Fuji taken in sunshiny, cloudy, night-time, and sunrise/sunset situations. 

 

Fig. 1.2 shows example photos of sunshiny, cloudy, night-time, and sunrise/sunset 

situations. Those situations correspond to weather-related and time-related situations. 

Weather-related situations include sunshiny and cloudy situations. In order to discriminate 

sunshiny images from cloudy ones, color features of sky region are expected to be effective. 

On the other hand, important characteristic of time-related situations such as sunrise/sunset, 
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daytime, and night-time is that each situation occurs at certain times of the day. Therefore, 

shooting date and time, which is one of metadata attached to photos, is also important fea-

ture in addition to color features. 

Different from weather-related and time-related situations, scenery change by sea-

son-related situations will depend on the characteristics of a sightseeing spot. Even though 

two sightseeing spots are geographically close, one maybe season-dependent and the other 

not. For example, Ueno Park and Mt. Takao in Tokyo, and Kinkakuji in Kyoto are sea-

son-dependent, of which sceneries change according to colors of trees or flowers. On the 

other hand, the Rainbow Bridge, Roppongi Hills, and Disneyland, of which main objects 

are buildings, are examples of season-independent. Fig. 1.3 and Fig. 1.4 show the photos 

that were taken in January, April, July, and October 2011 of Ueno Park and Roppongi Hills 

respectively. Therefore, classifying sightseeing spots into season-dependent and sea-

son-independent ones is required as preprocessing of image classification. 

 

 

Fig. 1.3 Photos of Ueno Park taken in 2011. 
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Fig. 1.4 Photos of Roppongi Hills taken in 2011. 

 

Considering the different characteristics of these 3 situation types, this thesis proposes 

different classification methods for each type of situations. The thesis consists of 6 chap-

ters. Fig. 1.5 shows the organization of the thesis. 

 

 

Fig. 1.5 The organization of the thesis. 

 



 

 

 
7

Chapter 2 introduces existing applications of tourism informatics. Image classification 

/ annotation methods based on supervised / unsupervised learning with various features are 

also introduced as related work. 

Chapter 3 describes content-based image classification method targeting weath-

er-related and time-related situations. Visual features for identifying each target situation 

are considered from viewpoints such as composition of the photos and typical colors in 

each situation. The images are classified in a hierarchical manner, in each stage of which 

efficient color features, region of interests (ROI), and cluster identification method are de-

termined. Total 2373 images of 7 sightseeing spots on Flickr are collected, from which test 

data set are generated by manually classifying those images into target situations. Experi-

mental results show that the proposed method can obtain precision of 99.28% and recall of 

98.34% respectively in the best case. 

Chapter 4 focuses on time-related situations, and extends content-based image classi-

fication method proposed in Chapter 3 by introducing the filtering based on tag infor-

mation of images. By using timestamps attached to images, clusters for the situations ob-

tained by content-based approach are further verified to increase the accuracy of the classi-

fication. The time windows are adjusted by considering the geolocation of sightseeing 

spots, and this adjustment is based on information obtained from the Web. Total 15837 

images of 7 sightseeing spots are collected by setting a bounding box together with their 

geotag and shooting timestamps. After removing irrelevant images and giving labels of 

situations manually to remaining images, a data set containing 4412 images is generated. 

Experimental results show that the proposed method can improve precision while main-

taining recall in most cases. 

Chapter 5 focuses on season-related situations, and proposes a method for classifying 

sightseeing spots into season-dependent and season-independent ones as preprocessing for 

image classification. The proposed method employs machine learning approach, which re-

quires many photos as training data. If image processing is required in order to extract fea-

tures from photos, the network load for downloading photos and the cost of image pro-

cessing become a serious problem. To solve this problem, the statistical features of sight-

seeing spots calculated using metadata are proposed. Two-stage classification approach is 

also proposed, which consists of light-weight classification without actual images at the 

first stage and color-based classification applied to only the spots classified as sea-

son-dependent at the first stage. The experimental results show the proposed method 
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achieved precision of 75.9% and recall of 73.3% in a test set containing 80 sightseeing 

spots. 

Chapter 6 summarizes conclusions presented in Chapter 3 to Chapter 5, and discusses 

the contribution of the thesis. 
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2. Related Work 

2.1. Application of Tourism Informatics 

Since the 1980s, Information Communication Technologies (ICTs) have been bringing 

change to tourism globally [22]. The rapid growth in the number of online users as well as 

the increasing rate of online transactions can be clear evidences of the popularity of the 

technology [23]. With the development of search engines, high transportation speed of 

networks, and wide spread of digital cameras and smart phones, the convenience of plan-

ning and traveling experience is greatly improved for the tourists around the world. These 

technologies also make the tourism a big market having one of the biggest users of Web 

technologies. As a result, many innovative ideas have been constantly applied to the tour-

ism [36]. Sharda [36] introduced three important aspects of tourism informatics which in-

clude travel recommender systems, social communities, and user interface design. Various 

kinds of research were reviewed within these aspects such as knowledge-based travel ad-

visor systems, social networking for generating travel ideas, map-based interface, and Web 

2.0 tourism sites. 

Nowadays, tourism system provides not only the information of sightseeing spots but 

also personalized recommendations. Lucas et al. [24] have proposed a recommendation 

method and implemented a tourist recommender system. A clustering method is applied to 

classify users into several groups by using attributes such as age, postal code, level of edu-

cation, time spent on seeing an item, and number of mouse clicks. However, this kind of 

suggestion doesn’t take the visual attraction into account, despite the fact that sightseeing 

photos taken in different time can influence tourists’ decision on when to visit there. 

In a relatively short time Facebook3 has become a major social network service. 

White [37] has investigated the social aspects of tourism informatics based on the travel 

photographs posted on the Facebook. He explored how the photos which are taken, dis-

played and recorded on Facebook reinforce the travel experience for tourists. It was also 

investigated that how these images influence the travel decisions of those who view the 

photos. The check-in function of Facebook provides important record of visited places. 

                                                 

 
3 https://www.facebook.com/ 
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With the record, useful information about sightseeing spots such as photos, address, web-

site, or Email address, can be shown on the map of Facebook. It can guide the tourists who 

never visit there and help them to find other interesting places. Fig. 2.1 shows the counting 

of check-in on map of Facebook. 

 

 

Fig. 2.1 Check-in places shown on map of Facebook. 

 

Flickr provides online photo management and sharing application in the world. It also 

provides the World Map application, which can be used for searching and exploring 

geotagged photos with a map-based interface as shown on Fig. 2.2. Useful metadata such 

as EXIF (Exchangeable Image File Format) are also available on Flickr. Fig. 2.3 shows the 

EXIF data of photo on Flickr, which includes the information of shooting date, camera, 

ISO speed, resolution, latitude, longitude, etc. 
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Fig. 2.2 Geotagged photos shown on World Map of Flickr. 

 

 
Fig. 2.3 EXIF data available on Flickr. 
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A tourist service developed as both of a website and an application of smart phone, 

which is called foursquare4, is becoming popular recent year. It helps users to share and 

save the places they visit. Moreover, it provides personalized recommendation to inspire 

users when they are looking for what to do or where to go. Fig. 2.4 shows several sugges-

tions for sights, which are retrieved according to user’s location. The photo and infor-

mation of sights are displayed on the left side with corresponding label number tagged on 

the map. 

 

 
Fig. 2.4 Suggestions for sights shown on foursquare. 

 

                                                 

 
4 https://foursquare.com/ 
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2.2. Image Classification and Annotation 

2.2.1. Outline of Image Classification and Annotation 

Since the amount of available images on the Web grows up rapidly, effectively 

grouping these vast numbers of images into meaningful classes is useful in many kinds of 

applications, such as indexing of image databases [6], categorization of traveling images [7, 

8], classification or mining for large-scale image collections [29, 30], and browsing of 

video shots [9]. Generating or selection of representative image employs image classifica-

tion algorithm in process as well [31-34]. 

ImageCLEF [39] provides an evaluation forum for the cross-language annotation and 

retrieval of images. Among various tasks provided by ImageCLEF, those relating with im-

age classification is photo annotation tasks. Photo annotation aims to identify concepts re-

lated with a given image. Different from image classification that assigns one single class 

for each images, multiple concepts (classes) can be assigned to a single image. Total 94 

concepts such as time of day (day, night, sunrise/sunset), combustion (fire, smoke, fire-

works), and flora (tree, plant, flower, grass) were used in imageCLEF 2012 [40]. The im-

age set was annotated with 99 concepts such as the scene (indoor, outdoor, landscape), de-

picted objects (car, animal, person), and the representation of image content (portrait, graf-

fiti, art) in imageCLEF 2011 [41]. In imageCLEF 2010 [42], total number of used concepts 

were 93, which include abstract categories such as Family&Friends or Partylife, the time 

of day (day, night, sunny), and quality (blurred, underexposed). 

 

2.2.2. Machine Learning for Image Classification / Annotation 

Various machine learning methods including supervised and unsupervised learning 

have been applied to image classification. Vailaya et al. [6-8] attempted to use binary 

Bayesian classifiers for capturing high-level concepts from low-level image features. This 

method employs the approach of hierarchical classification of vacation images. Images are 

classified into indoor and outdoor classes on the first level, and outdoor images are further 

grouped into city and landscape classes. Landscape images are finally classified into sunset, 

forest, and mountain classes.  

In order to classify a much larger dataset of images, Li et al. [29] used multiclass 

support vector machines to learn models for various classification tasks from labeled da-
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taset of nearly two million images. The visual features obtained by clustering local interest 

point descriptors into a visual vocabulary are employed as descriptors. Textual tags at-

tached to photos by Flicker users are also considered as additional features.  

Quack et al. [30] proposed a mining method of objects and events. The retrieved pho-

tos are clustered according to the visual features of SURF (Speeded Up Robust Features) 

[38] and text features including tags, title, and description of photos. The resulting clusters 

are analyzed and automatically classified into objects and events. 

The image classification is also employed as a process for selection of representative 

image. Zhou et al. [31] proposed to use visual context learning to discover visual word sig-

nificance and developed Weighted Set Coverage algorithm to select canonical images con-

taining distinctive visual words.  

The canonical views for a tourist attraction should be representative of the site and 

exhibit a diverse set of views. Therefore, Yang et al. [32] employed visual features to en-

code the content of photographs and to infer the popularity of each photograph. After the 

encoding and the inference, they ranked photographs using a suppression scheme to keep 

popular views top-ranked while demoting duplicate views. After generating the ranking, 

canonical views at various granularities can be retrieved in real-time.  

Kennedy and Naaman [33] used unsupervised methods to extract representative views 

and images for each landmark. The location and other metadata, as well as tags associated 

with images, and visual features of images are used to generate representative sets of im-

ages. 

Unlike supervised learning methods, clustering methods group sets of unsupervised 

(unlabeled) data into clusters based on low-level visual features. Silakari et al. [10] focused 

on color feature of images. The color moment and Block Truncation Coding (BTC) are 

used to extract features and a K-means clustering algorithm is applied to group 1000 im-

ages into 10 clusters such as busses, dinosaurs, and flowers.  

Sleit et al. [11] utilized color histograms, Gabor filters, and Fourier transformation for 

color, texture, and shape feature extraction, respectively. Based on these features, images 

are classified based on K-means clustering. The resultant image database included four 

different groups : dinosaurs, flowers, busses and elephants.  

Huang [12] integrated a local SIFT (Scale Invariant Feature Transformation) feature 

with a global CLD (Color Layout Descriptor) feature and adopted an affinity propagation 

clustering algorithm that does not need to initialize the number of clusters. The bag of vis-
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ual word model is applied in e-clustering to enhance clustering performance. The dataset 

consists of 750 groups, each of which contains 4 images. 

In order to establish a clustering technique that can handle the massive amounts of 

user-generated photos, Papadopoulos et al. [20] have proposed image similarity graph that 

is constructed based on both visual and tag features and applied the community detection 

to efficiently identify clusters of images.  

Moellic, et al. [21] have proposed a clustering approach based on the shared nearest 

neighbors algorithm (SNN), which employs both textual data (tags) and visual features to 

build representative clusters. Its evaluation is conducted with 1,000 images, which are 

classified in ten well separated categories. 
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3. Visual Feature-Based Classification of Sightseeing Images 
into Weather-Related and Time-Related Situations 

3.1. Classification of Weather-Related and Time-Related Situations 

This chapter proposes image classification method targeting weather-related and 

time-related situations. Target situations include cloudy and sunshiny as weather-related 

situations and night-time, sunrise/sunset, daytime (cloudy and sunshiny) as time-related 

situations. Fig. 1.2 shows example images of each target situation. 

As noted in Chapter 1, the characteristic of weather-related situations is color features 

within sky region. Therefore, local color features extracted from sky region is expected to 

be useful. Although time-related situations has different characteristics from weath-

er-related ones, the same color features is expected to be useful as well. 

Based on these considerations, the proposed method in this chapter employs visual 

features for classifying sightseeing images into night-time, daytime, sunrise/sunset, cloudy, 

and sunshiny situations. One of the challenges the proposed method should solve is how to 

determinate the sky region of an image exactly enough to achieve accurate classification. 

Another challenge is how to identify the situation after separating images according to col-

or features. Preliminary analysis on sightseeing images has revealed that efficient extrac-

tion methods of sky region and criteria for the identification differ from each situation. 

Therefore, proposed method classifies images in hierarchical manner, in each stage of 

which efficient color features, region of interests (ROI), and cluster identification method 

are determined. 
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3.2. Hierarchical Organization of Image Classification Method 

As noted in Sec. 3.1, color features are the most basic information for weather-related 

and time-related situations and are easy to use for measuring similarity between images. 

Global color features contain many noise, however, that recognition becomes very difficult. 

For images in certain situations, there are specific color features in local regions that are 

meaningful in clustering. As shown in Fig. 1.2, sunshiny and sunset, for example, images 

have blue and orange colors in the sky area, respectively, so the proposed method extracts 

different color features in the region designated for each situation. Features required for 

discriminating images in a certain situation are different from situation to situation, so we 

divided the discrimination process into 3 stages. In each stage, based on extracted features, 

the K-means method [13, 14] is applied for clustering images by the situation. Clusters 

corresponding to specific situations are finally discriminated by the characteristic of each 

clusters centroid. 

 

 

Fig. 3.1 Hierarchical organization of situation categories. 

 

The hierarchical organization of situation categories as shown in Fig. 3.1 is consid-

ered in order to achieve the purpose of grouping images into categories for different situa-

tions. After sightseeing images are collected from photo sharing websites such as Flickr, 

most images are supposed to be distinguished into indoor scenes, outdoor scenes, and oth-

ers such as close-ups by using existing methods [6]. Input images for the proposed method 
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are outdoor photos of a target sightseeing spot. The overall procedure consists of three 

stages considering the hierarchical structure of situation categories. First, outdoor images 

are divided into night-time and daytime in the first stage. The second stage separates sun-

rise/sunset from other images among daytime images. In the third stage, categories of 

cloudy and sunshiny images are obtained from other images in the second stage. 

 

 

Fig. 3.2 Processing flow in each stage. 

 

The processing flow, as shown in Fig. 3.2, is applied in each stage. Some examples of 

image and diagram are also shown for illustration. A local color feature is first extracted. 

Then histogram vectors of color feature are calculated as input to K-means clustering. The 

situation discrimination method is then applied to identify clusters corresponding to target 

situation from obtained clusters. The procedure goes back to the block of local color fea-

ture extraction that corresponds to the beginning of the next stage. 
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3.3. Processing in the First Stage 

The goal of the first stage is to discriminate night-time images from others images. In 

human perception, darkness and brightness are commonly used for the recognition of day-

time and night-time [15], so brightness is useful for discriminating night-time images from 

others. Light or reflection in images influences results, however, if a global brightness fea-

ture is used.  

The rule of thirds [16, 17], which is a heuristic related to the composition of images, 

indicates that an image should be divided into 9 equal parts with two equally spaced hori-

zontal lines and two equally spaced vertical lines. Fig. 3.3 shows images of Mt. Fuji in 

daytime and night-time situations, each of which is divided with the principle of the rule of 

thirds. Important compositional elements should be placed along these lines or located at 

their intersections. A “beautiful” picture is supposed to satisfy this rule to some extent. 

 

 

Fig. 3.3 Application of the rule of thirds to images in daytime and night-time situations. 

 

According to our observation, brightness within the top one-third of a region contains 

enough color features to discriminate night-time images from others. As shown in Fig. 3.3, 

the top one-third of region in daytime has relatively high brightness than that in night-time, 

but other region does not because it would be covered by shadow or dark ground. 
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Fig. 3.4 Comparison of intensity and value components. 
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V Max=  (3.3) 

 

In our preliminary experiments, intensity and value components of HSV were com-

pared, and it was found that the value component was better than intensity in this applica-

tion, so the histogram of value component within the top one-third of an image is calculat-

ed as a local color feature in the first stage. Fig. 3.4 shows images of Mt. Fuji in sunshiny 
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and night-time situations, each of which original image and those intensity and value 

component are shown. It shows that the intensity of both images is similar, whereas the 

value is distinguishable. Eq. (3.1) to (3.3) shows the calculations of H, S, and V compo-

nents from RGB values. The range of R, G, and B component is [0, 1]. Max means the 

greatest value of R, G, and B. Min means the smallest value of R, G, and B. The range of H 

is [0, 360], and those of S and V are [0, 1], respectively. 

 

Table 3.1 Precision and recall values of night-time situation experimented on 

different threshold of value component. 

Number of Cluster Measure 
Threshold of Value component 

72 76 80 84 88 

2 clusters 
Precision (%) 100.00 90.90 91.67 92.00 88.89 

Recall (%) 46.67 66.67 73.33 76.67 80.00 

 

 
Fig. 3.5 Color histograms of value component calculated from the top 1/3 region of example images in day-

time and night-time situations. 
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Fig. 3.5 shows two examples of color histogram of value component, which is ex-

tracted from the top one-third of images in daytime and night-time situations. After con-

verting the range of value component from [0, 1] to [0, 255], the threshold of value com-

ponent is set to 84, which is determined based on results of preliminary experiments as 

shown in Table 3.1. After thresholding, a histogram with 2 bins is calculated as input to 

K-means clustering. Clusters are obtained by setting K at 2. The cluster with the higher 

value in a smaller bin is finally considered as a night-time situation, because the value 

component of night-time images in sky region is almost less than the threshold value. The 

illustration of situation discrimination in the first stage is shown in Fig. 3.6. The centroid of 

cluster 1 contains higher value in bin 1. Therefore, the cluster 1 (red part) is considered as 

night-time situation. 

 

 

Fig. 3.6 Illustration of situation discrimination in the first stage. 
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3.4. Processing in the Second Stage 

In the second stage, further grouping of other images, which are contained in the 

cluster other than the night-time one, into sunrise/sunset and daytime situations are consid-

ered. ROIs (regions of interest) in this stage include the sky region. The top one-third of an 

image usually contains other objects than the sky, however, such as clouds and mountain 

peaks, that affect color features of the region. Compared to the difference between 

night-time images and other images, the difference between sunrise/sunset images and 

daytime images is supposed to be small. In order to extract sky regions more exactly than 

what was done in the first stage, a region segmentation method using edge detection is 

proposed. The method consists of the following 9 steps, which are also shown in the block 

of local color feature extraction in Fig. 3.7: 

Step (1) Apply Canny edge detection [18] to obtain edge region (Re) of an input image. 

Step (2) Dilate Re with a 5x5 kernel by using a morphology operation. 

Step (3) Reverse the dilated Re to become non-edge region (Rne). 

Step (4) Get the global image threshold of a value component by using  

 Otsu’s method [19] and convert input images to binary images. 

Step (5) Get a binary image as the intersection of Rne and the binary image from step (4). 

Step (6) Apply 8-connectivity to the binary image from step (5). 

Step (7) Get the binary image of the maximal region. 

Step (8) Obtain the ROI by dilating the binary image from step (7) with a 5x5 kernel. 

Step (9) Extract the color feature within the ROI. 

Step (1) supposes that the land region of an image contains more complicated edges 

or texture than the sky region. Canny edge detection is therefore applied to find edges. 

In order to achieve the optimal edge detection, Canny proposed a multi-stage algo-

rithm. With the application of Gaussian filter for noise reduction, finding the intensity and 

gradient of images, non-maximum suppression for obtaining thin edges, and hysteresis 

thresholding with two thresholds, the multi-stage algorithm can detect a wide range of 

edges in images. 
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Fig. 3.7 Segmentation flow of ROI and example diagrams of histogram and K-means. 
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In Fig. 3.7 (1), the white region corresponds to detected edges. By applying steps (2) 

and (3), most objects such as land, buildings, and plants can be eliminated. Sometimes, 

however, edge detection is unavailable, for example, when the color of the land region is 

dark and this may lead to the extraction of an incorrect ROI. In order to avoid such prob-

lems, Otsu’s method is applied in step (4) to find a global image threshold of a value com-

ponent for eliminating dark land regions. The Otsu’s method is generally used to find an 

adaptive threshold for reduction of a gray level image to a binary image. Step (5) intersects 

binary images obtained in steps (3) and (4), i.e., pixels that are white in both images are 

colored white in the resulting image. 

In order to get individual connected regions, 8-connectivity is applied in step (6). 

Each connected region is labeled with a different value, which is indicated in different col-

ors as shown in Fig. 3.7 (6). Step (7) extracts the maximal region that is the basis of the 

ROI to be extracted. In Fig. 3.7 (7), the white region is the maximal region. Dilation is 

performed on the binary image of the maximal region to get a more precise ROI in step (8). 

Finally, color features within the ROI finally are extracted for clustering. 
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 (3.4) 

 

It is observed that sunset images have mostly yellow and red colors in sky regions, 

while others tend to have blue and white colors in sky regions. Based on this observation, 

Cb and Cr components of YCbCr space within a ROI are extracted as local color features 

at this stage. Eq. (3.4) shows the conversion from RGB components to YCbCr components. 

The number of bins is set to 128 and clusters to 8, respectively, according to the best re-

sults in preliminary experiments. Table 3.2 and Table 3.3 show the result of preliminary 

experiments using RGB and CbCr components respectively. It is seen that CbCr compo-

nents can obtain better result than RGB components for discriminating sunrise/sunset im-

ages from others. 
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Table 3.2 Precision and recall values of sunrise/sunset situation using RGB components. 

Number of Cluster 
RGB Components (Precision/Recall (%)) 

4 bins 8 bins 16 bins 32 bins 64 bins 

4 clusters 25.64/34.48 27.08/44.83 19.7/44.83 21.21/48.28 20.00/44.83 

8 clusters 100.00/31.03 95.45/72.41 100.00/58.62 92.00/78.31 100.00/10.34

16 clusters 100.00/24.14 100.00/24.14 100.00/24.14 100.00/27.59 100.00/44.83

 

Table 3.3 Precision and recall values of sunrise/sunset situation using CbCr components. 

Number of Cluster 
CbCr Components (Precision/Recall (%)) 

16 bins 32 bins 64 bins 128 bins 256 bins 

4 clusters 96.00/82.76 88.00/75.86 23.91/75.86 23.66/75.86 25.00/79.31 

8 clusters 92.31/41.38 95.65/75.86 93.33/96.55 93.55/96.67 92.00/79.31 

16 clusters 92.31/41.38 100.00/58.62 92.31/41.38 100.00/65.52 100.00/75.86
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Fig. 3.8 Sample images in obtained cluster 1 to 4 and histograms of Cb & Cr values of their centroids in the 

second stage. 
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Fig. 3.9 Sample images in obtained cluster 5 to 8 and histograms of Cb & Cr values of their centroids in the 

second stage. 
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Fig. 3.8 and Fig. 3.9 show examples of 8 clusters including sunrise/sunset ones ob-

tained. The figure consists of sample images in clusters and histograms of their centroids. 

Note that the sunrise/sunset cluster in Fig. 3.8 has smaller peaks than other clusters. The 

cluster having the smallest peak in the histogram of a centroid is therefore selected as a 

sunrise/sunset cluster. 
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3.5. Processing in the Third Stage 

The purpose of the final stage is to group remaining images from the second stage in-

to cloudy and sunshiny situations. The ROI is segmented by using the same method as that 

used in the second stage. Different combinations of HSV and YCbCr space were tested in 

preliminary experiments. Table 3.4 and Table 3.5 show the result of preliminary experi-

ments using saturation and CbCr components respectively. It is seen that CbCr components 

can obtain better result than saturation component for discriminating cloudy images from 

sunshiny. Therefore, Cb and Cr components were also employed as features in this stage. 

The number of bins is set to 32 and clusters to 8, respectively, according to the best results 

in preliminary experiments. 

 

Table 3.4 Precision and recall values of cloudy situation using saturation component. 

Number of Cluster 
Saturation Component (Precision/Recall (%)) 

32 bins 64 bins 128 bins 

4 clusters 88.46/53.49 80.00/78.26 88.46/53.49 

8 clusters 85.00/39.53 84.00/48.84 83.33/46.51 

 

Table 3.5 Precision and recall values of cloudy situation using CbCr components. 

Number of Cluster 
CbCr Components (Precision/Recall (%)) 

32 bins 64 bins 128 bins 

4 clusters 90.58/93.28 95.93/88.06 94.44/88.81 

8 clusters 91.30/94.03 84.87/96.27 93.23/92.54 

 

After K-means clustering, peak values of cluster centroids in the Cb component are 

compared to mean values of peak values for all cluster centroids. As shown in Fig. 3.8 and 

Fig. 3.9, it is observed that the distribution of Cb component in cloudy situation is narrow-

er than that one in sunshiny situation. Therefore, the cluster whose centroid has higher 

peak values in the Cb component than the mean value is selected as a cluster for a cloudy 

situation. Multiple clusters satisfying this condition are merged into one cluster. The rest of 

the extracted clusters are also merged and considered to be sunshiny cluster. 
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3.6. Experiments 

Experiments are conducted in order to evaluate the performance of each stage as pro-

posed in this chapter. In each stage, the proposed method is compared to several common 

color spaces such as RGB, HSV, and YCbCr for examining suitable color features for each 

specific situation. The effect of extracting features from the ROI is also evaluated through 

a comparison to global feature extraction. 

The proposed method is implemented using MATLAB. We collected images of 7 

sightseeing spots on Flickr, from which images corresponding to a situation (night-time, 

sunrise/sunset, cloudy and sunshiny) were selected and labeled manually. The range of 

height and width in resolution is [300, 500]. In order to evaluate the effectiveness and lim-

itations of the proposed method for various kinds of sightseeing spots, spots with different 

characteristics were selected, that is, Mt. Fuji and Mt. Takao were selected as typical natu-

ral scenes outside the city. Although Meiji Shrine is also famous as a natural scene, it is 

located inside the city and artifacts such as shrines and torii gate also exist in the area. 

Tokyo Tower, Daiba, and Tokyo’s Rainbow Bridge were selected as typical spots that 

were artifacts. In terms of the distribution of images over situations, some spots contained 

very small numbers of images in certain situations, i.e., sunrise/sunset images at Sensoji 

and Meiji Shrine. 

Five people took part in the labeling process, and an image was finally labeled only 

when all participants agreed on the label. Table 3.6 summarizes test dataset elements. 

 

Table 3.6 Test dataset summary. 

Search Words on 
Flickr 

Number of Images 

Night-time Sunrise/Sunset Cloudy Sunshiny Total Labeled 
Images 

Mt. Fuji 30 30 46 134 240 
Tokyo Tower 30 30 30 30 120 
Daiba 118 69 57 154 398 
Sensoji 93 17 226 217 553 
Meiji Shrine 42 4 145 113 304 
Mt. Takao 29 48 141 141 359 
Rainbow Bridge 
Tokyo 149 94 50 106 399 

 

In order to evaluate the performance of the proposed method, we applied the measures 
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of precision, recall, and F-measure commonly used in information retrieval. The precision 

(Eq. (3.5)) is measured by computing the ratio of the number of relevant images in a clus-

ter divided by the total number of images in the cluster. The recall (Eq. (3.6)) is computed 

by dividing the number of relevant images in a cluster by the total number of relevant im-

ages in the dataset. The F-measure (Eq. (3.7)) is a balanced mean between precision and 

recall. 

 

#      
#     

of relevant images in a clusterprecision
of images in a cluster

=  (3.5) 

 

 

#      
#   

of relevant images in a clusterrecall
of relevant images

=  (3.6) 

 

 

2 precision recallF
precision recall

×
= ×

+
 (3.7) 

 

Table 3.7 shows results for discriminating night-time images in the first stage for Mt. 

Fuji and Tokyo Tower. Values of precision and recall are measured by the proposed 

method (the value component of HSV space within the top one-third region of image), lo-

cal intensity (intensity within the top one-third region of image), global value (the value 

component of HSV space within the whole image) and global intensity (intensity within 

the whole image). Note that the value component performs better than intensity. It is ob-

served that the performance of intensity gets worse when a sunshiny image contains deep 

blue or dark sky as shown in Fig. 3.4. 

 

Table 3.7 Precision and recall values of night-time situation in the first stage. 

Method Mt. Fuji Tokyo Tower 
Precision (%) Recall (%) Precision (%) Recall (%) 

Proposed 92.00 76.67 96.67 96.67 
Local Intensity 87.50 70.00 96.43 90.00 
Global Value 77.42 80.00 78.38 96.67 
Global Intensity 65.00 86.67 79.41 90.00 
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Note also that results of local color feature are better than for global color features. In 

results for Mt. Fuji, although recall of the proposed method is lower than for methods us-

ing the global color feature, the precision of proposed method is much higher than for these 

methods. In the case of Mt. Fuji, it is observed that some images were taken at night using 

high exposure compensation. The sky areas of such images tended to be brighter than usual, 

which leads to incorrect classification and decreases recall values. The number of images 

for a sightseeing spot obtained from the Web is usually huge, so we consider precision 

more important than recall. 

In order to show the performance of the second and the third stages, the proposed 

method was compared to the following methods: 

 w/o-Otsu: This method is the same as the proposed method but skips step (4), as shown 

in Fig. 3.7. 

 Global-CbCr: This method uses Cb and Cr components within global images. 

 ROI-RGB: This method uses R, G and B components within the same ROI as that for 

the proposed method. 
 

Table 3.8 Precision and recall values of sunrise/sunset situations in the second stage. 

Method Mt. Fuji Tokyo Tower 
Precision (%) Recall (%) Precision (%) Recall (%) 

Proposed 93.55 96.67 96.67 100.00 
w/o-Otsu 92.86 86.67 96.55 93.33 
Global-CbCr 92.86 43.33 95.00 63.33 
ROI-RGB 90.91 66.67 75.00 70.00 

 

Table 3.9 Precision and recall values of cloudy situations in the third stage. 

Method Mt. Fuji Tokyo Tower 
Precision (%) Recall (%) Precision (%) Recall (%) 

Proposed 84.78 84.78 84.85 93.33 
w/o-Otsu 81.82 78.26 82.35 93.33 
Global-CbCr 82.05 69.57 85.19 76.67 
ROI-RGB 76.92 43.48 75.00 10.00 
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Table 3.10 Precision and recall values of sunshiny situations in the third stage. 

Method Mt. Fuji Tokyo Tower 
Precision (%) Recall (%) Precision (%) Recall (%) 

Proposed 91.30 94.03 92.31 80.00 
w/o-Otsu 90.00 94.03 92.00 76.67 
Global-CbCr 86.90 94.03 81.25 86.67 
ROI-RGB 79.11 93.28 52.73 96.67 
 

Table 3.8 shows results for sunrise/sunset situations in the second stage. Table 3.9 and 

Table 3.10 show results for cloudy and sunshiny situations respectively in the third stage. 

These tables show results for Mt. Fuji and Tokyo Tower. The proposed method gets the 

best results both for precision and recall in these three situations, except in the case of 

cloudy and sunshiny situations for Tokyo Tower. The precision of Global-CbCr is thus a 

little higher than for the proposed method in Table 3.9. Although precision is more im-

portant as mentioned above, the amount of difference in precision in this case is only 0.34 

percentage points but recall for the proposed method is about 16.7 percentage points higher 

than for Global-CbCr. The proposed method therefore still performs better than Glob-

al-CbCr. 

Results for w/o-Otsu indicate that adding thresholding of a global image with Otsu’s 

method is effective. A comparison of the proposed method and Global-CbCr shows that 

feature extraction from the ROI is effective. A comparison of the proposed method and 

ROI-RGB shows that the Cb and Cr component is more suitable than RGB space in the 

clustering of sunrise/sunset, cloudy and sunshiny situations. When we compare results for 

the proposed method for different situations, results of cloudy situations are worse than for 

other situations because the color feature extracted from cloudy images contains mostly 

white and gray, whereas Cb and Cr represent blue-difference and red-difference chroma 

components, respectively. 

Because the proposed method uses K-means clustering in each stage, results would be 

different in each execution, so experiments were conducted to calculate the best value, av-

erage and standard deviation (SD) by running 10 times. Table 3.11 shows results, which 

show that standard deviation is relatively small compared to average values in most cases. 

 

 



 

 

 
35

Table 3.11 Best value, average, and standard deviation for precision and recall. 

Spot Statistics 
Night-time 
(Precision 

/Recall (%)) 

Sunrise/Sunset
(Precision 

/Recall (%)) 

Cloudy 
(Precision 

/Recall (%)) 

Sunshiny 
(Precision 

/Recall (%)) 

Mt. Fuji 
Best 92.00/76.67 93.55/96.67 84.78/86.96 92.17/94.03 
Average 92.00/76.67 93.00/93.00 67.23/85.22 91.37/84.63 
S.D. 0.00/0.00 0.86/4.58 11.71/1.31 0.55/6.33 

Tokyo 
Tower 

Best 96.67/96.67 96.77/100.00 84.85/93.33 92.31/80.00 
Average 96.67/96.67 90.33/98.34 84.85/93.33 92.31/80.00 
S.D. 0.00/0.00 7.92/1.67 0.00/0.00 0.00/0.00 

Daiba 
Best 94.83/93.22 90.74/72.46 88.10/87.72 86.67/95.45 
Average 94.83/93.22 89.52/68.84 84.15/67.19 79.69/93.76 
S.D. 0.00/0.00 1.69/3.05 8.13/6.84 2.35/3.57 

Sensoji 
Best 88.30/89.25 12.66/58.82 94.34/88.50 86.31/66.82 
Average 88.30/89.25 12.57/58.82 94.34/88.50 86.31/66.82 
S.D. 0.00/0.00 0.18/0.00 0.00/0.00 0.00/0.00 

Meiji 
Shrine 

Best 75.47/95.24 6.67/50.00 90.08/91.03 86.57/58.41 
Average 75.47/95.24 6.67/50.00 87.72/86.14 79.22/54.51 
S.D. 0.00/0.00 0.00/0.00 2.02/4.01 5.44/3.29 

Mt. Takao 
Best 67.50/93.10 80.43/77.08 89.93/88.65 89.55/85.11 
Average 67.50/93.10 80.43/77.08 89.37/88.15 89.02/84.54 
S.D. 0.00/0.00 0.00/0.00 1.69/1.49 1.60/1.70 

Rainbow 
Bridge 
Tokyo 

Best 95.27/94.63 100.00/72.34 71.64/98.00 86.49/90.57 
Average 95.27/94.63 99.28/69.15 68.99/97.80 86.15/90.29 
S.D. 0.00/0.00 0.73/3.19 0.98/0.60 0.89/0.44 

 

In order to verify the effectiveness of the proposed hierarchical classification, it is 

compared to ordinary K-means using the same color features. That is, each image is repre-

sented with 258 attributes including values, Cb and Cr components. As noted in Section 3, 

the proposed method selects one cluster as a night-time situation and one cluster as a sun-

rise/sunset situation in the first and second stages respectively. In the third stage, 8 clusters 

are separated into cloudy and sunshiny situations, so the number of clusters is set to 10. 

After clustering, the same criterion of discrimination for each situation as for the proposed 

method is applied. 

We call this classification method the baseline method hereafter. Table 3.12 shows 

results of comparison in average precision and recall for 10 runs. 

The comparison of average F-measures is also shown in Table 3.13, where the highest 

score is marked with an asterisk (*). Note that the proposed method gets better results than 

the baseline method for all 4 situations for Daiba, Mt. Takao, and Tokyo’s Rainbow Bridge. 
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The proposed method also gets better results than the baseline method for 3 situations in 

four other spots. 

 

Table 3.12 Comparison of proposed method with baseline method in average of precision and recall. 

Spot Method 
Night-time 
(Precision 

/Recall (%)) 

Sunrise/Sunset
(Precision 

/Recall (%)) 

Cloudy 
(Precision 

/Recall (%)) 

Sunshiny 
(Precision 

/Recall (%)) 

Mt. Fuji Proposed 92.00/76.67 93.00/93.00 67.23/85.22 91.37/84.63 
Baseline 98.73/38.00 91.99/93.67 72.69/92.61 84.83/87.39 

Tokyo 
Tower 

Proposed 96.67/96.67 90.33/98.34 84.85/93.33 92.31/80.00 
Baseline 100.00/35.33 93.32/99.33 83.79/77.00 57.69/88.34 

Daiba Proposed 94.83/93.22 89.52/68.84 84.15/67.19 79.69/93.76 
Baseline 96.21/23.64 76.06/52.03 66.65/83.34 54.42/88.18 

Sensoji Proposed 88.30/89.25 12.57/58.82 94.34/88.50 86.31/66.82 
Baseline 96.41/86.67 12.91/51.76 91.81/75.13 70.52/70.14 

Meiji 
Shrine 

Proposed 75.47/95.24 6.67/50.00 87.72/86.14 79.22/54.51 
Baseline 81.82/21.43 2.69/25.00 88.23/68.28 65.28/82.83 

Mt. Takao Proposed 67.50/93.10 80.43/77.08 89.37/88.15 89.02/84.54 
Baseline 78.24/60.00 76.10/77.08 88.13/64.68 69.00/88.58 

Rainbow 
Bridge 
Tokyo 

Proposed 95.27/94.63 99.28/69.15 68.99/97.80 86.15/90.29 

Baseline 100.00/21.28 4.38/3.51 68.43/66.40 41.83/92.83 

 

Table 3.13 Comparison of proposed method with baseline method in average of F-measure. 

Spot Method Night-time 
(F-measure (%))

Sunrise/Sunset
(F-measure (%))

Cloudy 
(F-measure (%)) 

Sunshiny 
(F-measure (%))

Mt. Fuji Proposed 83.64 * 93.00 * 75.16 87.87 * 
Baseline 54.88 92.82 81.45 * 86.09 

Tokyo 
Tower 

Proposed 96.67 * 94.16 88.89 * 85.72 * 
Baseline 52.21 96.23 * 80.25 69.80 

Daiba Proposed 94.02 * 77.83 * 74.72 * 86.15 * 
Baseline 37.95 61.79 74.07 67.30 

Sensoji Proposed 88.77 20.71 * 91.33 * 75.32 * 
Baseline 91.28 * 20.67 82.64 70.33 

Meiji 
Shrine 

Proposed 84.21 * 11.77 * 86.92 * 64.58 
Baseline 33.96 4.86 76.98 73.02 * 

Mt. Takao Proposed 78.26 * 78.72 * 88.76 * 86.72 * 
Baseline 67.92 76.59 74.61 77.57 

Rainbow 
Bridge 
Tokyo 

Proposed 94.95 * 81.52 * 80.91 * 88.17 * 

Baseline 35.09 3.90 67.40 57.67 
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Note that the baseline method gets much lower recall than the proposed method for 

night-time situations in most cases. This is because it generates 10 clusters and the size of 

each cluster tends to be small. The proposed method, in contrast, generates only 2 clusters 

at the first stage for night-time situations, so it successfully groups night-time images in 

one cluster. Note also that the baseline method gets lower precision than the proposed 

method in sunshiny situations, and sometimes obtains very low performance such as in 

sunrise/sunset situations for Tokyo’s Rainbow Bridge. Such low performance is mainly 

caused by night-time images being grouped into the same clusters as sunshiny images (and 

also as sunrise/sunshiny images in the case of Tokyo’s Rainbow Bridge). The proposed 

method avoid getting such low performance, however, because of hierarchical classifica-

tion, because night-time images are caught in the first stage and do not affect clusters of 

other situations. 
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In order to measure the computational costs, the processing time of proposed method 

is measured for all situations. The arithmetic mean μ (Eq. (3.8)) and variance σ2 (Eq. (3.9)) 

is calculated, where N means the number of procedure running and xi means the computa-

tional costs of the ith procedure running. Table 3.14 shows result of average computational 

costs, i.e. mean and variance for 5 runs and total number of images in each spot. The pro-

cessing time depends on the number of images and the result shows that proposed method 

can process about 1.5 to 2 images in 1 second. It is also shown the variation of computa-

tional costs is under acceptable range. Since the major purpose of this application is to 

classify images into different situations in off-line processing, the real-time speed pro-

cessing is not needed. Therefore, it is acceptable to classify 1000 images in 10 minutes. 
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Table 3.14 Total number of images and computational costs of proposed method in average and variance. 

Spot Average (Second) Variance Total Number of Images
Mt. Fuji 163.96 1.44 240 
Tokyo Tower 59.29 1.25 120 
Daiba 201.78 6.86 398 
Sensoji 345.36 3.52 553 
Meiji Shrine 191.18 8.25 304 
Mt. Takao 240.63 5.22 359 
Rainbow Bridge 
Tokyo 189.10 11.47 399 

 

Fig. 3.10 shows sample images of Mt. Fuji contained in clusters for each situation that 

are obtained by the proposed method. Note that outdoor sightseeing images in night-time 

(a) and other (b) situations are easy to discriminate among by using the brightness of the 

top one-third of the region. After night-time images are isolated, it becomes difficult to 

discriminate sunrise/sunset (c) from daytime (d) because images may contain green or red 

leaves in the top one-third of the region. The specific ROI and available color space are 

therefore proposed. By extracting ROI, we get much more easily distinguishable colors 

such as orange in sunrise/sunset situations. The proposed method finally discriminates sun-

rise/sunset images (c) from daytime images (d) and cloudy images (e) from sunshiny im-

ages (f) in the second stage and the third stages, respectively. 
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Fig. 3.10 Images of individual situations for Mt. Fuji. (a) night-time and (b) other situations in the first stage. 

(c) sunrise/sunset situation and (d) daytime in the second stage. (e) cloudy and (f) sunshiny situations in the 

third stage. 
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4. Hybrid Approach Based on Visual and Metadata Features 
for Image Classification Targeting Time-Related Situations 

4.1. Utilization of Tag Information for Time-Related Situations 

This chapter proposes image classification method targeting time-related situation 

which includes night-time, sunrise/sunset, daytime (cloudy and sunshiny). 

The image classification method proposed in Chapter 3 is based on the visual per-

spective of situations. It is supposed that people recognize images belong to a certain situa-

tion according to the changes of brightness or color in local region. Therefore, color fea-

tures extracted from ROI, i.e. the sky region is expected to be useful for classifying weath-

er-related and time-related situations. However, some limitations exist in content-based 

classification method. Some images were mis-classified due to the sky region being cov-

ered by some objects such as roofs and trees. The light reflection also influences the result 

of classification. However, in the case of time-related situation, different situations such as 

night, sunrise/sunset, and daytime (cloudy and sunshiny) corresponds to different time of 

the day. For example, night images are taken after evening and before morning, while sun-

rise/sunset images are taken at either morning or evening. 

Based on this consideration, this chapter proposes a hybrid approach for improving 

the accuracy of classifying time-related situations. The proposed method consists of sever-

al stages, in each of which after applying content-based image classification, tag-based fil-

tering is applied to improve the accuracy of clustering. 
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4.2. Overall Procedure 

The overall processing flow as shown in Fig. 4.1 consists of three clustering and three 

filtering processes. It is observed in the collected image dataset that the classification of 

different situations by time information only has some challenges. For example, the sunrise 

and sunset time varies with the season. Moreover, there are some images with wrong 

shooting time. If time filtering process is applied prior to clustering, these kinds of image 

will be ignored and cause the result of clusters corresponding to specific situation to get 

worse. 

Therefore the content-based image classification method proposed in Chapter 3 is ap-

plied to divide the collected images into night-time cluster and other images at the begin-

ning. By using tag information, the images in night-time cluster are verified with the 

night-time filter, which separates mis-clustered images from night-time images. 

Other images which are not classified in night-time cluster and the mis-clustered im-

ages will be considered as input for next clustering process. This round of process corre-

sponds to the first stage as shown in Fig. 4.1. The other images are further divided into 

sunrise/sunset and daytime clusters at second stage by applying content-based image clas-

sification, which is followed by time filter for sunrise/sunset. At the 3rd stage, the cloudy 

images are discriminated from sunshiny images by content-based classification and day-

time filter for verification. 
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Fig. 4.1 Overall processing flow. 
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4.3. Definition of Time Window 

The situation handled in this chapter is time-related one which includes night, sun-

rise/sunset, and daytime (cloudy and sunshiny) as mentioned above. As different situations 

correspond to different time of the day, except that cloudy and sunshiny situation, this 

chapter sets time windows for each situation in order to filter out unsuitable images from 

clusters obtained by content-based image classification. As such time windows are sup-

posed to change according to seasons because of the change of sun rising and setting times, 

we investigated those times of target sightseeing spots (Tokyo, Shizuoka, and Kyoto in this 

chapter) from the website of National Astronomical Observatory of Japan5. Table 4.1 

shows sun rising and setting times in the first day of each month. In case of Tokyo Tower, 

Daiba, Sensoji, Meiji Shrine, and Rainbow Bridge Tokyo, sun rising and setting times of 

Tokyo are applied. Sun rising and setting times of Shizuoka are applied to Mt. Fuji. In the 

case of Arashiyama, it refers to the times of Kyoto. 

Table 4.1 Sun rising and setting times in the first day of each month at Tokyo, Shizuoka, and Kyoto. 

Year/Month 
Tokyo Shizuoka Kyoto 

Rising Setting Rising Setting Rising Setting 

2011/01 6:50 16:38 6:54 16:45 7:05 16:56 

2011/02 6:42 17:80 6:46 17:15 6:56 17:25 

2011/03 6:12 17:36 6:17 17:41 6:27 17:52 

2011/04 5:29 18:02 5:34 18:07 5:45 18:18 

2011/05 4:50 18:27 4:57 18:31 5:07 18:42 

2011/06 4:27 18:51 4:34 18:55 4:44 19:05 

2011/07 4:28 19:01 4:36 19:04 4:46 19:15 

2011/08 4:48 18:46 4:55 18:50 5:06 19:01 

2011/09 5:12 18:10 5:18 18:14 5:29 18:25 

2011/10 5:35 17:26 5:40 17:32 5:51 17:42 

2011/11 6:02 16:47 6:07 16:53 6:17 17:04 

2011/12 6:31 16:28 6:35 16:35 6:46 16:46 

                                                 

 
5 http://eco.mtk.nao.ac.jp/cgi-bin/koyomi/koyomix_en.cgi 
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Table 4.2 Time window as filters for different situations in April. 

Situation 
Time Window 

Tokyo Shizuoka Kyoto 

Sunrise 3:00 ~ 7:00 4:00 ~ 8:00 4:00 ~ 8:00 

Daytime (Cloudy & Sunshiny) 3:00 ~ 20:00 4:00 ~ 20:00 4:00 ~ 20:00 

Sunset 16:00 ~ 20:00 16:00 ~ 20:00 16:00 ~ 20:00 

Night-time 
1:00 ~ 7:00, 1:00 ~ 8:00, 1:00 ~ 8:00, 

16:00 ~ 24:00 16:00 ~ 24:00 16:00 ~ 24:00 
 

Considering such seasonal variation and the influence of weather conditions, the pro-

posed method employs different overlapping time windows in each month. For example, 

time windows for April are shown in Table 4.2. The range of each time window in sunrise 

and sunset is 4 hours. It is noted that time windows for daytime and night-time are set to 

include time windows of sunrise and sunset. 
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4.4. Hierarchical Classification with Time Filter 

4.4.1. Processing at the First Stage 

The goal of this stage is to discriminate night images from other images. In human 

perception, the darkness and brightness are commonly used for recognition of daytime and 

night [15]. Thus the brightness is useful for discriminating night images from others. At 

this stage, the histogram of value component within the top one-third region of an image is 

calculated as local color feature for K-means clustering. The situation discrimination is ap-

plied to separate the night and other clusters. The detailed description of the processing is 

given in Chapter 3. 

 

 
Fig. 4.2 Example of cloudy images that are mis-classified by content-based method but correctly classified 

by hybrid method. 

 

After clustering and discrimination process, the night-time filter considering the time 

window of night situation is applied to verify night-time cluster’s images. As noted in Sec. 

4.3, time window to be applied is selected according to the shooting date of an image. This 

process is expected to filter out images which contain very deep blue sky area but taken in 
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daytime, or those of which top region are covered by some object like plants. Such outliers 

will be merged with non-night cluster as input for next stage. Fig. 4.2 shows an example of 

images that are mis-classified by content-based method but correctly classified by hybrid 

method. Two cloudy images are mis-classified into night-time situation because the top 

one-third region is covered by some objects such as roof and tree. 

 

4.4.2. Processing at the Second Stage  

In this stage, a further grouping of images, which are contained in another cluster than 

night one, into sunrise/sunset and other situations is considered. In order to extract sky re-

gion containing no other objects as ROI, a region segmentation method using edge detec-

tion is employed, which is described in Sec. 3.4. The method consists of the following 5 

steps. 

Step (1) Apply Canny edge detection [18] to obtain edge region (Re) of an input image 

and then reverse the dilated Re which is dilated with 5x5 kernel by morphology 

operation to obtain non-edge region (Rne). 

Step (2) Get a global image threshold of value component by Otsu’s method [19] and 

convert input image to binary image. 

Step (3) Get a binary image as the intersection of Rne and the binary image from step (2) 

and then apply 8-connectivity on it to obtain the connected regions. 

Step (4) Get the binary image of maximal region and then obtain ROI by dilating the bi-

nary image with 5x5 kernel. 

Step (5) Extract the color feature within ROI. 

After applying these series of steps, the color histogram is calculated by extracting the 

Cb and Cr components of YCbCr within the ROI for clustering. 

Fig. 4.3 shows the examples of obtained 8 clusters including sunrise/sunset ones. The 

figure consists of sample images in the clusters and histograms of their centroids in terms 

of Cb and Cr components. It is seen that sunrise/sunset cluster has smaller peak than other 

clusters. Therefore, a cluster having the smallest peak in the histogram of a centroid is se-

lected as sunrise/sunset cluster. 
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Fig. 4.3 Sample images in obtained clusters and histogram of their centroids at second stage. 
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Fig. 4.4 Example of night-time images that are mis-classified by content-based method but correctly filtered 

and removed by hybrid method. 

 

After clustering and discrimination process, the time filter considering the time win-

dow of sunrise/sunset situation such as shown in Table 4.2 is applied to verify the taken 

time of images in sunrise/sunset cluster to improve the accuracy in this stage. Fig. 4.4 

shows an example of images that are mis-classified by content-based method but correctly 

filtered and removed by hybrid method. Because of light affection, two night-time images 

are mis-classified into sunrise/sunset situation. However, these kind of images can be fil-

tered out by proposed time windows. 

 

4.4.3. Processing at the Third Stage  

The purpose of the final stage is to group remaining images from the second stage in-

to cloudy and sunshiny situations. The ROI is segmented by the same method as the se-

cond stage. The Cb and Cr components are employed as features also in this stage for 

clustering. After K-means clustering, peak values between 16 and 32 of Cb component of 

clusters’ centroids are compared with mean value of peak values among all clusters. The 
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cluster of which centroid has the higher peak values in Cb component than the mean value 

is selected as a cluster of cloudy situation. When multiple clusters satisfy the condition, 

those are merged into one cluster. The rest of the extracted clusters are also merged and 

considered as sunshiny cluster. 

After clustering and discrimination process, the time filter considering the time win-

dow of daytime situation such as shown in Table 4.2 is applied to verify the taken time of 

images in both cloudy and sunshiny clusters to improve the accuracy in this stage. 
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4.5. Experiments 

Experiments are conducted in order to evaluate the performance of the proposed 

method. Comparison of hybrid method, content-based classification, and using timestamp 

only is conducted to evaluate the effectiveness of proposed hybrid method. 

The proposed method is implemented on Matlab and Java. We collected images of 7 

sightseeing spots with Flickr by setting a bounding box and recorded their geotag and 

shooting timestamp together with images. By using geotag information, the limited bound-

ary was constructed to filter out unsuitable images which were taken inside or far away 

from the target spots. The parameter settings such as query text, geo degrees of central 

point, collection range, and filter range for image collection are shown in Table 4.3, to-

gether with total number of collected images after such filtering. For example, the image 

set of Tokyo Tower was collected according to boundary of latitude (35.658610 ± 0.2) and 

longitude (139.745447 ± 0.2) and then filter boundary of latitude (35.658610 ± 0.00005) 

and longitude (139.745447 ±0.00005) was applied to eliminate the images which were 

taken inside the tower. Fig. 4.5 shows an example of collected and filtered region for Mt. 

Fuji. 

 

Table 4.3 Parameter settings of image collection. 

Query Text Area 
Central Point  

(Latitude, Longitude) 

Collection 

Range 

Filter 

Range 

Total 

Images

Tokyo Tower Tokyo 35.658610, 139.745447 0.2 0.00005 3,792 

Mt. Fuji Shizuoka 35.362596, 138.731232 0.4 0.07 2,409 

Daiba Tokyo 35.630599, 139.778449 0.05 0.0003 1,297 

Sensoji Tokyo 35.714751, 139.796685 0.05 0.0002 2,050 

Meiji Shrine Tokyo 35.676324, 139.69938 0.05 0.0003 1,981 

Rainbow Bridge 

Tokyo 
Tokyo 35.635604, 139.76635 0.2 0.00005 608 

Arashiyama Kyoto 35.015194, 135.677706 0.2 0 3700 
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Fig. 4.5 Collected and filtered region of Mt. Fuji. 

 

Various kinds of sightseeing spots with different characteristics such as natural scene 

and artificial scene are selected for evaluating the effectiveness and limitation of proposed 

method. The images correspond to a situation (night-time, sunrise/sunset, cloudy and sun-

shiny) were selected and labeled manually. Two people took part in the labeling process, 

and an image is labeled only when both of them agree to the label. Table 4.4 summarizes 

the obtained test dataset.  

In order to store sightseeing images and their metadata, a web application on a tomcat 

server is constructed to retrieve images and tag information from Flickr as shown in Fig. 

4.6. Tags are stored on Fuseki server in RDF (Resource Description Framework) format 

according to the designed data model. The Fuseki6 is a kind of SPARQL Endpoint pro-

vided by the Apache Jena project, which can store and retrieve data in RDF format. This 

application is also a prototype using the proposed method, i.e., the images in different situ-

ations can be displayed on map-based interface. 

 

 
                                                 

 
6 http://jena.apache.org/documentation/serving_data/index.html 
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Table 4.4 Test dataset. 

Spot 

Number of Images 

Night-time
Sunrise/

Sunset 
Cloudy Sunshiny 

Total Labeled 

Images 

Tokyo Tower 577 64 248 405 1,294 

Mt. Fuji 40 92 236 597 965 

Daiba 118 69 57 154 398 

Sensoji 93 17 226 217 553 

Meiji Shrine 42 4 145 113 304 

Rainbow Bridge Tokyo 149 94 50 106 399 

Arashiyama 54 39 226 180 499 
 
 
 

 
Fig. 4.6 System architecture for sightseeing images classification and rendering in different situations. 

 
In order to evaluate the performance of the proposed method, we apply the measures 

of precision and recall commonly used in information retrieval. The precision is measured 

by computing the ratio of number of relevant images in a cluster divided by the total num-
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ber of images in the cluster. The recall is computed by dividing the number of relevant im-

ages in a cluster by the total number of relevant images in the dataset. 

 

Table 4.5 Average precision and recall values (%) measured by different methods in each situation. 

Spot Method 
Night-time 

(Precision/Recall)

Sunrise /Sunset

(Precision/Recall)

Cloudy 

(Precision/Recall) 

Sunshiny 

(Precision/Recall)

Tokyo Tower 

Timestamp Only 59.47/97.92 7.55/85.94 22.85/98.79 37.22/98.52 

Content-based 98.08/88.73 48.28/87.05 72.54/77.50 78.15/84.79 

Hybrid 99.01/87.00 61.38/75.00 73.69/76.29 80.12/83.55 

Mt. Fuji 

Timestamp Only 6.77/100 14.56/89.13 25.19/100 63.18/99.16 

Content-based 65.38/85.00 71.05/58.70 74.20/78.90 88.37/89.70 

Hybrid 79.07/85.00 78.46/55.43 74.20/78.90 88.72/88.86 

Daiba 

Timestamp Only 47.97/100 27.14/82.61 15.19/96.49 41.71/98.05 

Content-based 94.83/93.22 89.59/67.97 86.36/66.67 75.13/96.10 

Hybrid 95.65/93.22 92.57/54.20 85.71/63.16 76.72/94.16 

Sensoji 

Timestamp Only 31.05/82.80 5.02/64.71 42.75/99.12 41.03/99.08 

Content-based 88.30/89.25 10.24/58.82 92.09/90.00 83.54/85.72 

Hybrid 92.00/74.19 15.33/35.29 93.36/90.00 84.23/85.26 

Meiji Shrine 

Timestamp Only 30.60/97.62 2.65/75.00 49.12/95.86 37.10/92.92 

Content-based 75.47/95.24 6.45/50.00 82.88/93.51 89.25/68.85 

Hybrid 86.67/92.86 12.50/25.00 89.24/90.76 91.26/67.97 

Rainbow 

Bridge Tokyo 

Timestamp Only 52.46/100 37.50/89.36 14.45/98.00 30.97/99.06 

Content-based 95.27/94.63 99.28/69.15 70.02/86.80 77.59/90.38 

Hybrid 95.92/94.63 100/67.02 72.09/84.80 78.54/89.43 

Arashiyama 

Timestamp Only 26.21/100 20.81/92.31 46.57/96.02 36.05/93.33 

Content-based 90.00/100 47.62/76.92 90.67/88.36 82.99/87.44 

Hybrid 94.74/100 84.38/69.23 91.69/84.69 82.95/82.55 

 
In order to evaluate the proposed hybrid method, the values of precision and recall are 

measured and compared with other two methods. 
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• Timestamp Only: this method verifies four situations by using only time windows 

(i.e. without content-based image classification). Different time window is applied to 

each image according to its shooting date. 

• Content-based: this method skips filtering processes with using time windows as 

shown in Fig. 4.1. 

• Hybrid (proposed method):  this method performs content-based image classifica-

tion first and then utilizes time windows to filter out outliers as shown in Fig. 4.1. 

 
Proposed method uses K-means clustering in each stage. That means result of execu-

tion is different in each time. Therefore, the experiment performs K-means 10 times for 

each stage and then calculates average precision and recall. 

Table 4.5 compares average precision and recall of hybrid approach (proposed method) 

and other two methods mentioned above. Precision values when using timestamp only is 

calculated as the ratio of correctly labeled images among all images within the corre-

sponding time window. In most cases, the proposed method can get the best results in pre-

cision. On the other hand, it is seen that recall of hybrid method tends to be lower than 

content-based method. It is because time filter filters out not only irrelevant but also rele-

vant images. However, better result in precision shows that more irrelevant (mis-clustered) 

images are filtered out as outliers. One of typical cases where the time filter is effective is 

sunrise/sunset situation in Arashiyama, of which precision improves about 37 points with 

only 8 point decrease of recall. 

Comparison between the content-based and timestamp only shows content-based ap-

proach is effective. Using timestamp only suffers from the worse precision in all of four 

situations. Although the time of sun rising and setting can be defined by the altitude of sun, 

the actual daytime and nighttime vary with position of a spot and season. Therefore, it is 

observed that many night-time and sunshiny images are contained in sunrise/sunset time 

window. From these results, it can be said that using timestamp information as a means for 

supplementing the performance of content-based image classification, which is our pro-

posed approach, is reasonable. 

In cloudy situation of Daiba and sunshiny situation of Arashiyama, average precision 

and recall of hybrid method are slightly lower than content-based method. That is because 

the number of cloudy images with wrong taken time is more than the number of irrelevant 
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images. Therefore, time windows filtered out too many relevant images and cause worse 

result. 

In order to compare overall performance between content-based and hybrid methods, 

Table 4.6 shows F-measure of both methods. In the table, the better result is marked with 

asterisk (*). It is seen the proposed method can get better result than the content-based 

method for all 4 situations in Meiji Shrine. The proposed method can also get better result 

than the content-based method for 3 situations in Tokyo Tower, Mt. Fuji, Sensoji, and 

Rainbow Bridge Tokyo. 

 

Table 4.6 Comparison of hybrid method and content-based method in F-measure (%). 

Spot Method Night-time Sunrise/Sunset Cloudy Sunshiny

Tokyo Tower 
Content-based 73.91 64.29 76.48 * 89.03 *

Hybrid 81.93 * 64.96 * 76.48 * 88.79 

Mt. Fuji 
Content-based 93.17 * 62.23 74.94 81.33 

Hybrid 92.62 67.51 * 74.97 * 81.80 *

Daiba 
Content-based 94.02 77.30 * 75.25 * 84.33 

Hybrid 94.42 * 68.37 72.73 84.55 *

Sensoji 
Content-based 88.77 * 17.44 91.03 84.62 

Hybrid 82.14 21.37 * 91.65 * 84.74 *

Meiji Shrine 
Content-based 84.21 11.43 87.87 77.73 

Hybrid 89.66 * 16.67 * 89.99 * 77.91 *

Rainbow Bridge Tokyo 
Content-based 94.95 81.52 * 77.51 83.50 

Hybrid 95.27 * 80.25 77.93 * 83.63 *

Arashiyama 
Content-based 94.74 58.82 89.50 * 85.16 *

Hybrid 97.30 * 76.06 * 88.50 82.75 
 
Comparison of the results among different situations shows that much worse results 

than other situations are sometimes obtained for sunrise/sunset situation by all of 3 meth-

ods. There are three reasons why such a result is obtained. First, the sunrise/sunset images 

are relatively rare in collected dataset as shown in Table 4.4 especially in Sensoji and Meiji 

Shrine. That is, it is difficult for small number of objects to form a cluster when applying 

K-means clustering. The second reason is that bad weather and lighting affected the color 
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feature of extracted ROI. Fig. 4.7 shows the sample images (top row) that are 

mis-classifiled into sunrise/sunset cluster and their ROI images (bottom row). The first and 

second sample images are labeled as cloudy and night respectively. It is seen that the color 

of cloud and light is similar to the sunrise/sunset color in the ROI. As the third reason, it is 

found that shooting date of some sunrise/sunset images is wrong. Such images correspond 

to false negatives by the time filter, which led to low precision. 

 

 
Fig. 4.7 Sample images (top row) that are mis-classified into sunrise/sunset cluster and their ROI (bottom 

row). The first and second image is labeled as cloudy and night situation respectively. 

 

Fig. 4.8 shows the classification results of Tokyo Tower and Mt. Fuji obtained by pro-

posed method. It is observed the images are correctly classified into night-time (a), sun-

rise/sunset (b), cloudy (c), and sunshiny (d) situations. 
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Fig. 4.8 Sample images of (a) night-time, (b) sunset/sunrise, (c) cloudy, and (d) sunshiny situations obtained 

by proposed hybrid method ( (1) Tokyo Tower and (2) Mt. Fuji). 
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5. Identification of Season-Dependent Sightseeing Spots Based 
on Metadata-Derived Features and Image Processing 

5.1. Identification of Season-Dependent Sightseeing Spots 

This chapter focuses on season-related situations. As noted in Chapter 1, main char-

acteristic of season-related situations is that scenery change by season-related ones will 

depend on a sightseeing spot. Even though two sightseeing spots are geographically close, 

it often happens one maybe season-dependent and the other not. For example, Fig. 5.1 

shows several photos of Shinjuku Gyoen and Rainbow Bridge Tokyo which were taken in 

April, July, November, and January. It is obvious that the color of objects such as flowers 

and leaves in the photos of Shinjuku Gyoen varies with different seasons but objects in the 

photos of the Rainbow Bridge Tokyo do not have such kinds of variation. Although both of 

these two spots are located in Tokyo, the Shinjuku Gyoen and the Rainbow Bridge Tokyo 

are season-dependent and season-independent, respectively. 

 

 

Fig. 5.1 Example photos of Shinjuku Gyoen and Rainbow Bridge Tokyo 

taken in April, July, November, and January. 

 

This thesis defines season-dependent spots as those of which scenery changes ac-

cording to season. On the other hand, spots of which scenery does not change according to 

season are called season-independent spots. As shown in above-mentioned example, it is 

difficult to recognize a sightseeing spot as season dependent / independent just according 

to location only. Although the supervised learning with visual features is expected to work 

well for such a classification, it consumes a lot of time to download photos of various sea-

sons and to apply image processing to many photos for each sightseeing spot. Therefore, 

this chapter proposes two-stage approach that employs a set of statistical data about a 
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sightseeing spot at the first stage and image processing at the second stage. Fig. 5.2 shows 

the overall processing flow of the proposed method. 

 

 
Fig. 5.2 Overall processing flow. 
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5.2. Machine Learning in the First Phase  

A web album such as Flickr does not only provide sightseeing photos but also the in-

formation about statistics such as the number of photos and tourists. The tourists mean 

those who uploaded their photos taken at a sightseeing spot to the web album. Because the 

scene of a season at a sightseeing spot attracts many people and lets them take photos, it 

makes this kind of data meaningful. For example, one of season-dependent spots in Tokyo 

is Shinjuku Gyoen and one of season-independent ones is Rainbow Bridge Tokyo. Fig. 5.3 

shows the monthly number of tourists in 2011 at Shinjuku Gyoen and Rainbow Bridge 

Tokyo, respectively. It is noted that Shinjuku Gyoen’s tourists in April are much more than 

other month because it is famous for cherry blossoms in spring. On the other hand, the 

number of tourists in Rainbow Bridge Tokyo is not so large in most months. 

 

 

Fig. 5.3 Monthly number of tourists of Shinjuku Gyoen and Rainbow Bridge Tokyo in 2011. 

 

Based on these considerations, this chapter employs the following ten attributes based 

on statistics for classifying sightseeing spots into season-dependent / independent ones. It 

is noted that the following attributes are based on statistics of recent 3 years. 
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(A1)  Average difference in normalized number of tourists between different years. At 

first 3 values are calculated, i.e., difference between 2009-2010 (A11), 2010-2011 

(A12), and 2011-2009 (A13). The average of these 3 values is considered as the 

first attribute. 

(A2)  Difference in the normalized average number of tourists between the highest month 

and the lowest month. An average number of tourists is calculated based on tourists 

from 2009 to 2011. 

(A3)  Peak month that has the most tourists during 2009 to 2011. The range of this attrib-

ute is {1,2,…,12}. 

(A4)  Month that has the least tourists during 2009 to 2011. The range of this attribute is 

{1,2,…,12}. 

(A5)  The normalized maximum number of tourists during 2009 to 2011. 

(A6)  The distance (in month) between the peak month and the second peak month. 

(A7)  Total number of tourists in 2009 (A71), 2010 (A72), and 2011 (A73). 

(A8)  Average difference in normalized number of tourists during 2009 to 2011 between a 

target spot and average of all spots. 
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Fig. 5.4 Illustration of attributes 1 and 7 for Shinjuku Gyoen and Rainbow Bridge Tokyo 

in 2009, 2010 and 2011. 

 

Fig. illustrates the attribute 1 and 7 calculated from the statistics about tourists of 

Shinjuku Gyoen and Rainbow Bridge Tokyo in 2009, 2010, and 2011. The attribute 2-6 

calculated for Shinjuku Gyoen during 2009 to 2011 is shown in Fig. 5.5. In order to calcu-

late attributes A1, A2, A5, and A8 based on the distribution of each month, the number of 

tourists in each month is normalized by dividing the value by total number of tourists in 

that year. These attributes represent monthly and yearly variation in the number of tourists. 

It is expected that tourists want to visit season-dependent spots in specific months such as 

peak month, whereas season-independent spots would not have such a specific month. 
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Fig. 5.5 Illustration of attributes 2-6 for Shinjuku Gyoen during 2009 to 2011. 

 

Attributes A3, A4, and A6 relate with the months having many / less number of tour-

ists. These are based on the assumption that different spots in Japan will have a peak of the 

number of tourists at similar months if such a peak relates with season. For example, if a 

sightseeing spot is famous for cherry blossoms, it will attract many tourists around April. 

Preliminary analysis of the collected data has revealed that the total number of tourists 

in season-dependent spots tends to be smaller than average of all spots. Considering this 

observation, attributes A7 are employed as features. It is noted that all of these attributes 

can be calculated only from metadata of a sightseeing spots, i.e. without downloading ac-

tual images. Flickr provides The App Garden7 that includes numerous API methods avail-

able for non-commercial use by developers. The API kits can support various program 

languages such as Java and PHP. The metadata of images such as shooting timestamps, 

                                                 

 
7 http://www.flickr.com/services/api/ 
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geotage, and the number of user can be retrieved with XML or JSON format by using these 

API methods. It is noted that many photos could be uploaded by the same user. Therefore, 

multiple photos uploaded by the same user will be considered as one user for calculating 

the number of tourists within the same month. 

A classifier is learned based on these 10 attributes. This chapter compares several 

common machine learning algorithms, of which results are shown in Sec. 5.5. 
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5.3. Image Processing in the Second Phase 

The season-dependent scenery attracts tourists owing to the changing color of trees or 

flowers, but season-independent one doesn’t have such season-dependent variation as 

mentioned above. Therefore, the color feature of images between different months is useful 

for season classification. By applying content-based classification processing after the first 

stage in Sec. 5.2, precision is expected to be improved. 

In order to extract color feature from specific region, i.e. the dilated edge region 

which can obtain the color of trees or flowers to reflect the season, image segmentation is 

employed. Furthermore, the HSV color space is used because human vision can distinguish 

different hues easily [25]. 

Only the season-dependent sightseeing spots which were classified in the machine 

learning phase (Sec. 5.2) are considered in this phase. In order to reduce the computational 

complexity, we focus on season months, which are defined as every 3 months in a year in-

cluding a peak month. For example, January, April, July, and October are season months if 

April is the peak month. Photos uploaded during such season months are downloaded from 

Flickr. The following six steps are applied for further classification. The photos of single 

candidate spot are used as input images for these procedures. Fig. 5.6 shows each step of 

the processing flow and example images of Shinjuku Gyoen. 

 

Step (1) The hue component of HSV is extracted from edge regions, which are segmented 

by Canny edge detection [18] and then dilated with 5×5 kernel by using a mor-

phology operation. The extracted hue component is represented as histogram, of 

which the number of bins is set to 32. 

Step (2) For each of season months, the L1 distance is calculated between each pair of 

images. The images are considered as neighbor each other if their distance is 

smaller than average distance of all pairs in that month. The image that has the 

most neighbor images is selected together with its neighbors. 

Step (3) Only the selected images in step 2 are considered in this step. The L1 distance is 

calculated for all image pairs, and the images of which distance is smaller than 

average distance of all images are considered neighbors each other. Only the im-

ages having fewer neighbors than average are selected in this step. 
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Step (4) Using the images which are selected in step 3, four centroids are calculated for 

each of season months. 

Step (5) Average distance between a centroid and images in each of season months (x) is 

calculated, which is called intra-cluster distance (Dintra(x)). As a result, 4 in-

tra-cluster distances are obtained from season months. 

Step (6) Distance between centroids of different months is calculated, which is called in-

ter-cluster distance. Let Dinter(x, y) represents distance between centroids of month 

x and y. If at least one pair (x, y) of season months satisfies the condition that 

Dinter(x, y) is greater than max(Dintra(x), Dintra(y)), this spot is classified as sea-

son-dependent. Otherwise, it is season-independent spot. 
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Fig. 5.6 Image processing flow in the second phase. 
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5.4. Experiments 

Experiments are conducted in order to evaluate the performance of proposed method. 

Sightseeing spots to be tested are selected from the sightseeing spot list available on the 

website of Japan National Tourism Organization (JNTO)8. There are total 1,576 spots listed 

on the website, among which 80 spots, for each of which more than 3,000 images exist on 

Flickr, were selected manually. Some spots found on the JNTO are famous artificial events 

such as Fuji Rock Festival, and Jidai Matsuri. As such spots are not suitable for our re-

search purpose, those were manually removed. 

After selection, the candidate spots should be defined as season dependent or inde-

pendent for evaluation. The following procedures are applied when judging sea-

son-dependent / independent. 

 Use exact text to search on Flickr. This means the spot name with double quotation 

marks such as “Ueno Park” is used for searching. 

 Examine first 100 images sorted by interesting option on Flickr. 

 The spot that contains more than 10 images corresponding to one season is considered 

as season dependent. 

In order to explain the third procedure, Fig. 5.7 and Fig. 5.8 show the first page of 

search result for Ueno Park and Roppongi Hills on Flickr respectively. The searching re-

sults are sorted with using interesting option. In Fig. 5.7, 14 photos, which are marked as 

red rectangles, contain cherry blossoms which are typical objects in spring. On the other 

hand, there is no photo containing such typical objects corresponding to a certain season in 

Fig. 5.8. Therefore, Ueno Park and Roppongi Hills are labeled as season-dependent and 

season-independent respectively. 

Table 5.1 shows the summary of test dataset. Among 80 spots, 30 spots are labeled as 

season-dependent and 50 spots are labeled as season-independent. 

 

                                                 

 
8 http://www.jnto.go.jp/eng/location/maps/ 
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Fig. 5.7 Photos of Ueno Park collected from Flickr. 
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Fig. 5.8 Photos of Roppongi Hills collected from Flickr. 
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Table 5.1 Summary of test dataset. 

Label Name of Sightseeing Spots 

Season- 
dependent 

Arashiyama  
Kyoto Byodo-in Chion-in Gosho Kyoto Hakuba Japan

Heian Shrine Himeji Castle Inokashira 
Park Karuizawa Kenrokuen 

Kinkakuji Kiyomizudera Koishikawa-K
orakuen Korakuen Lake Kawa-

guchi 
Matsumoto 

Castle Nagoya Castle Nanzenji Nara Park Niseko 

Odawara Cas-
tle Osaka Castle Rikugien Sankeien Shinjuku 

Gyoen 

Shirakawago Takaosan Tenryuji Tokyo Uni-
versity Ueno park 

Season- 
independent 

21st Century 
Museum of 

Contemporary 
Art Kanazawa 

Akihabara 
Aquarium 
Kaiyukan 

Osaka 

Atomic Bomb 
Dome Hiro-

shima 

Churaumi 
Aquarium 
Okinawa 

Daibutsu 
Kamakura Dotonbori Fushimi Inari 

taisha 
Ghibli Mu-

seum 
Haneda Air-

port 
Hiroshima 

Castle Kabukicho Karatsu Kasuga taisha Kumamoto 
Castle 

Kurashiki Kyoto Station
Landmark 

Tower Yoko-
hama 

Makuhari 
Messe Meiji Shrine 

Miyajima Mt. Fuji Narita Airport National Art 
Center Tokyo Nijo Castle 

Onomichi Open Air Mu-
seum Hakone

Peace Memo-
rial Park Hi-

roshima 

Rainbow 
Bridge Tokyo 

Roppongi 
Hills 

Sakuragicho Sanrio 
Puroland Sensoji Shimabara Shinsekai 

Shuri Castle Todaiji Tokyo Dis-
neyland Tokyo Dome 

Tokyo Inter-
national Fo-

rum 
Tokyo Mid-

town 
Tokyo Sky 

Tree Tokyo Tower Tsukiji Market Ueno Zoo 

Universal Stu-
dios Japan Unzen Japan Yamashita 

Park Yanagawa Yasaka Shrine
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5.4.1. Experimental Results of the First Phase 

The test datasets are processed with a data mining software WEKA [26]. In order to 

evaluate the performance of the proposed method, combination of 3 sets of attributes and 4 

machine learning algorithms are examined in the first phase. The 10-fold cross-validation 

is used to evaluate the performance of classifiers. The sets of attributes used for the ex-

periment are as follows: 

 Tourists: An attribute set consisting of 10 attributes calculated from the number of 

tourists within 2009 to 2011. This set is the same as proposed in Sec. 5.1. 

 Photos: An attribute set consisting of 10 attributes calculated from the number of pho-

tos within 2009 to 2011, by replacing the number of tourists with that of photos in the 

definitions in Sec. 5.1. 

 Mix: A combination set of tourists and photos. This set contains 20 attributes. 

The following 4 classifiers are employed for comparing the results of classification. 

 Naive Bayes: A Naive Bayes classifier using estimator classes [43]. 

 LibSVM: A library for Support Vector Machines [27, 28]. 

 JRip: A propositional rule learner, Repeated Incremental Pruning to Produce Error 

Reduction (RIPPER) [44]. 

 J48: A clone of the C4.5 decision tree learner [45]. 

 

Table 5.2 Comparison of different attribute sets (without discretization) applied on 4 classifiers. 

Attribute Set Classifier Precision (%) Recall (%) F-measure (%) 

Tourists 

Naive Bayes 71.4 83.3 * 76.9 * 
LibSVM 0 0 0 
JRip 73.1 * 63.3 67.9 
J48 71.9 76.7 74.2 

Photos 

Naive Bayes 38.7 80.0 52.2 
LibSVM 0 0 0 
JRip 63.6 46.7 53.8 
J48 40.0 6.70 11.4 

Mix 

Naive Bayes 51.0 83.3 * 63.3 
LibSVM 0 0 0 
JRip 71.4 66.7 69.0 
J48 71.9 76.7 74.2 
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Table 5.2 shows the experimental result in the first phase. It is seen that Naive Bayes 

with attribute set of Tourists can get the best result in f-measure and recall. The highest 

score is marked with an asterisk (*). Although precision of Naive Bayes is lower than JRip 

and J48, recall is higher. As irrelevant spots can be discriminated in the second phase, the 

first phase can assign higher priority to recall than precision. Therefore, attribute set of 

Tourists with Naive Bayes is the best combination in the first phase. 

As discretization is often used as preprocessing for data mining, another experiment is 

conducted, in which all attributes except A3 and A4 are discretized. The result is shown in 

Table 5.3. 

Table 5.3 shows the improvement of performance by libSVM compared with the result 

shown in Table 5.2, in which both of precision and recall are 0. However, its recall and 

F-measure are much worse than Naive Bayes’ ones. The experiment of applying Naive 

Bayes with attribute set of tourists can still obtain the best result in recall and F-measure. 

 

Table 5.3 Comparison of different attribute sets (with discretization) applied on 4 classifiers. 

Attribute Set Classifier Precision (%) Recall (%) F-measure (%) 

Tourists 

Naive Bayes 75.0 70.0 * 72.4 * 
LibSVM 81.8 * 30.0 43.9 
JRip 50.0 60.0 54.5 
J48 57.6 63.3 60.3 

Photos 

Naive Bayes 50.0 43.3 46.4 
LibSVM 55.6 16.7 25.6 
JRip 57.9 36.7 44.9 
J48 65.0 43.3 53.0 

Mix 

Naive Bayes 72.4 70.0 * 71.2 
LibSVM 10.0 6.7 12.5 
JRip 54.5 40.0 46.2 
J48 59.4 63.3 61.3 

 

5.4.2. Experimental Results of the Second Phase 

In the second phase, the test dataset contains 35 sightseeing spots which are classified as 

season-dependent spot in the first phase. In order to evaluate the proposed method in the 

second phase, color features extracted from different regions as well as different calcula-

tion of Dintra(x) in step 5 of Sec. 5.3 are calculated for comparison. 

 Hue & Avg. Distance of All: Hue component is extracted from whole image. Average 
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distance of all image pairs for each season month is used as Dintra(x). 

 Hue & Avg. Distance of Centroid: Hue component is extracted from whole image. The 

Dintra(x) is calculated as proposed in Sec. 5.3. 

 Hue on Edge & Avg. Distance of All: Hue component is extracted from edge region. 

Average distance of all image pairs for each season month is used as Dintra(x). 

 Hue on Edge & Avg. Distance of Centroid (Proposed method): Hue component is ex-

tracted from edge region. The Dintra(x) is calculated as proposed in Sec. 5.3. 

 

Table 5.4 Comparison of different image processing method. 

Method Precision (%) Recall (%) F-measure (%) 
Hue & 
Avg. Distance of All 66.7 32.0 43.3 

Hue & 
Avg. Distance of Centroid 74.1 80.0 76.9 

Hue on Edge & 
Avg. Distance of All 76.9 40.0 52.6 

Hue on Edge & 
Avg. Distance of Centroid 75.9 88.0 81.5 * 

 

Table 5.4 shows the experimental result in the second phase. The comparison of color 

features extracted from different region shows that hue component extracted from edge 

region performs better because the whole image contains many noises. On the other hand, 

typically seasonal objects such as flowers or leaves can be segmented by edge detection. It 

is also observed that using the proposed definition of Dintra(x) can get better result. The Avg. 

Distance of All is easily influenced by extreme image that is not similar to others in the 

same season month. Therefore, the proposed method, i.e. Hue on Edge & Avg. Distance of 

Centroid can get the best result in this phase. 

 

Table 5.5 Performace of proposed method including 1st and 2nd phase. 

Method Precision (%) Recall (%) F-measure (%) Correctly Classified 
Rate (%) 

1st Phase 71.4 83.3 76.9 81.3 
1st & 2nd Phase 75.9 73.3 74.6 81.3 

 

Table 5.5 compares the best result in the first phase and total result including the first 
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and second phases. It is seen that by applying the second phase, precision increases but re-

call decreases while keeping correctly-classified rate. That is, the number of false-negative 

increases but that of false-positive decreases. This result indicates the second phase con-

tributes to eliminate season-dependent spots misclassified at the first phase. 
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6. Conclusions and Future Research Directions 

This thesis proposes image classification methods targeting sightseeing spots of vari-

ous situations. Situation-oriented grouping of sightseeing images is useful for tourists 

planning when to visit which sightseeing spots as noted in Chapter 1. Although image clas-

sification / annotation methods for general-purpose have recently been studied by many 

researchers, the contribution of the thesis is that efficient image classification method is 

established based on organization of various kinds of situations and consideration on vari-

ous features and those integration in terms of characteristics of each situation. 

The situations handled in this thesis are classified into weather-related, time-related, 

and season-related types based on the characteristics of target situations. For weath-

er-related situations such as sunshiny and cloudy, color features of sky regions are utilized 

for classification. Time-related situations include night-time, daytime, and sunrise/sunset, 

each of which corresponds to different times of the day. On the other hand, in the case of 

season-related situations, whether or not scenery will change according to the situation de-

pends on the characteristics of a sightseeing spot. Therefore, a preprocessing for classify-

ing various sightseeing spots into season-dependent and season-independent spots is pro-

posed. 

A content-based image classification method is proposed for weather-related and 

time-related situations. The images are classified in a hierarchical manner. In each stage, 

the extraction of local color features is performed based on the composition of an image 

and typical colors in target situations. The proposed method can obtain high precision and 

recall for classifying images into target situations as shown in experimental results. 

The metadata information attached to images such as timestamps and geotag are em-

ployed for time-related situations to complement the content-based image classification. In 

order to increase the accuracy of the classification, the time windows, which can be ad-

justed according to the geolocation of sightseeing spots, are proposed as filters to verify the 

clusters obtained by content-based approach. Experimental results show that this hybrid 

approach can improve precision while maintaining recall in most cases. 

For season-related situations, a two-stage classification method is proposed for clas-

sifying sightseeing spots into season-dependent and season-independent ones as prepro-

cessing of image classification. In order to reduce the cost of image processing and net-

work load for downloading photos of target sightseeing spots, the statistical features of 



 

 

 
77

sightseeing spots are calculated using metadata only, based on which classifier is trained in 

the first stage. In the second stage, image processing is only applied to the spots classified 

as season-dependent in the first stage for improving the classification accuracy. Experi-

mental results show that the proposed method can classify actual sightseeing spots with 

high precision and recall. 

Regarding the contribution of this thesis, the proposed image classification methods 

can realize advanced web-based tourist services as noted in Chapter 1. Tourism is one of 

important and promising industrials for many countries, because tens of thousands of tour-

ists can bring considerable income to the countries. With the development of tourist ser-

vices, people tend to utilize these services when making plan, searching information or 

route planning on map, and sharing experiences and photos with friends. Therefore, the 

results of this thesis are meant to contribute to tourism and related applications such as 

recommendation services or auto-annotation on web albums. Furthermore, as the volume 

of images and metadata available on the Web is still increasing at a rapid rate, the contribu-

tion of the thesis may have numerous other applications. 
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