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Abstract

This thesis concentrates on the efficient solution methods of H 2/H∞ optimal control
problems for input-delay and preview systems. Although the problems can be reformulated
to the ones for delay-free systems by augmenting the state space of the controlled systems,
the numerical solution of the Riccati/KYP (Kalman-Yakubovich-Popov) equations for the
augmented systems requires special efforts, and complicates controller tuning. On the other
hand, it is known that the optimal control laws for certain classes of time-delay systems can
be constructed without solving the augmented Riccati/KYP equations. Such design problems
are called reduced-order construction problems in this thesis. The solutions of the reduced-
order construction problems are still limited in theoretical and practical perspectives. The
main purpose of the thesis is to propose a new approach for the reduced-order construction
problems, which enables to derive the optimal output feedback controllers for input-delayed
and preview systems in a unified manner. We focus on the internal dynamics of the overall
systems, and decompose it toward the H 2 and H∞ performance objectives.

The fundamental idea of our approach is first introduced for the discrete-time input-
delayed H 2/H∞ control problems. The state decomposition enables to solve the output
feedback problem through the simpler ones, namely, the full information and output esti-
mation problems. The discrete-time optimal controllers are obtained in the Smith predictor
form. They are constructed from the Riccati/KYP equations for the delay-free systems.

The solution procedure is further extended to the continuous-time preview H 2/H∞ control
problems in an output feedback setting. The optimal utilization of the preview information is
exploited at the full information and output estimation problems. The clear structures of the
optimal controllers are revealed as the combination of the finite-dimensional observers and
preview-feedforward compensation.

In the H∞ control problems for the input-delayed and preview systems, the J-spectral
factorization techniques in the literature are employed. Their interconnection to the aug-
mented Riccati/KYP equations is clarified by reviewing the techniques from a view point of
the internal state dynamics.
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Notation

• Mij : The (i, j) block of a linear operator or matrix M .

• σ (M): The set of the spectra of a linear operator M or set of the eigenvalues of a square
matrix M .

• Js: A block matrix which defines a symplectic inner product; Js :=
[
O −I
I O

]
.

• H(z−l): The orthogonal complement of z−lH 2 in H 2.

• W 2,1([0, l]): The Sobolev space of the functions weakly differentiable in L2([0, l]).

• Ta b: The transfer function from the input b to the output a.

• G∼: The para-conjugate of the transfer function G.

• P1 � P2: The Redheffer’s star product of two-input-output systems P1 and P2; For P1 :
(w1, u1) → (z1, y1) and P2 : (w2, u2) → (z2, y2), P1 � P2 denotes the system obtained by
connecting y1 and z2 to w2 and u1, respectively.

• C (P ): The chain scattering representation of a two-input-output system P ; C (·) defines
the two-input-output system C (P ) : (y, u) → (w, z) from P : (w, u) → (z, y).

• C−1 (G): The inverse chain scattering representation of a two-input-output system G;
C−1 (·) is the inverse mapping of C (·).

• S(Φ): The Schur complementation transform of a two-input-output system Φ; S(·) defines
the two-input-output system S(Φ) : (h, u) → (−y, k) from Φ : (y, u) → (h, k).

• S−1(Ω): The inverse Schur complementation transform of a two-input-output system Ω;
S−1(·) is the inverse mapping of S(·).

• δφ, θ: The Kronecker’s delta; δφ, θ = 1 if φ = θ, and δφ, θ = 0 if φ �= θ.

• Γθ: The trace operator; It evaluates the values of f(·) ∈W 2,1([0, l],Rn) at θ: Γθf = f(θ).

• δθ: The delta function which has its support at θ.

• H(θ): The step function; H(θ) = 1 if θ > 0, and H(θ) = 0 if θ < 0.
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Chapter 1 Introduction

1.1 Background of research

Dynamical systems such as chemical, transport, and flexible structure systems are often
modeled as input-delayed systems. Predictive control strategies [11], [43] are systematic ways
to compensate the adverse effects of the input-delays. Time-delays are also employed to
formulate preview control problems, where efficient use of future information is investigated
to improve control performances [60]. They have applications in active suspension of vehicles,
positioning of cranes, and shape control of rolling mills.

The state-space augmentation is known as the standard and straightforward technique
which allows us to apply general theories of delay-free systems to state or input-output delayed
systems. The technique regards the past history of state or input-output signals as state
variables, and rewrites the delayed systems into the delay-free forms. Since the dimensions
of the overall systems including the past history increases according to the delay lengths, the
overall systems in the delay-free forms are called the augmented systems.

In the discrete-time settings, the H 2/H∞-optimal control laws can be determined, in
principle, by solving the matrix Riccati/KYP (Kalman-Yakubovich-Popov) equations for the
augmented systems. However, the numerical computation of their solutions suffers from
complexity and inaccuracy due to the increased orders and special structures of the delay
elements [4]. In the continuous-time setting, the overall system including preview lags is an
infinite-dimensional system, and the associated Riccati equation turns out to be a couple of
nonlinear PDEs (partial differential equations). Although they can be approximately solved
by gridding spatial domains and by selecting interpolating functions, such approximations
raise stability concerns on the resulting controlled systems [25].

1.2 Motivation for reduced-order construction methods

To overcome the difficulties associated with the state augmentation, a state-prediction
approach for the discrete-time input-delayed LQ control is proposed in [43]. The optimal
state feedback gain and control cost are constructed from the standard Riccati equation for
the corresponding delay-free system. It is also shown that the Hermitian matrix defining the
optimal control cost is in fact the stabilizing solution of the standard Riccati equation for
the augmented system. In the continuous-time settings, it has been known that the solutions
of the operator Riccati equations can be found in some control problems [61]. The class of
input-output delayed systems for which the operator Riccati equations are explicitly solvable
has been expanding [28], [30].

In this thesis, we define the reduced-order construction problems as those of constructing
the optimal control laws for time-delay systems without solving the augmented Riccati/KYP
equations. The reduced-order construction methods enable to avoid the numerical difficulties
and lead to simplification of controller tuning process. The studies in [23], [47] indicate the
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reduced-order construction methods developed for the control of input-delayed systems can
be generalized for that of the infinite-dimensional systems with inner functions at the control
input. The optimal control problems for them have been studied from the operator theoretic
perspectives [9], [22], and the explicit solutions are obtained in terms of finite-dimensional
matrix operations. We cite reduced-order construction methods relevant for input-delayed
and preview control problems in the two subsections below.

1.2.1 Previous results for input-delayed control systems

The results in [34] and [47] can be regarded as the extensions of that in [43] to the discrete-
time LQG and H 2 control problems, respectively. The former deals with multiple input-output
delays entering different channels. The result requires solving the control Riccati equation
with its order increasing according to the time delay lengths when the number of the input
delays is more than one. The latter studies the H 2 control problem where the input delay
is generalized to a general inner function, and revealed the relationship between the inner
function and achievable control performance. However, no causally implementable form of
the optimal controller is provided. The relevant results for delayed-measurement systems with
its performance index as the closed-loop H∞ norm are reported in [17], [56], [8]. In [17], [56],
the solution of the H∞ filtering problem under one-step delayed measurement is constructed
from the standard Riccati equation for the delay-free case. However, generalization of their
construction methods to the multi-step delayed case is not straightforward. In [8], an alter-
native approach based on the J-spectral factorization theory is developed to the H∞ filtering
problem under multi-step delayed measurement. It requires constructing interactor matrices
as many times as the delay length to cancel infinite zeros due to the delay element, and hence
the resulting solution is not as simple as that in [43].

The continuous-time theory is more mature than the discrete-time one in that it can
handle the H∞ performance objective in output feedback settings. In [38], [40], an H 2 control
problem for a generalized rational plant with a single input-delay is solved finding constraints
on the associated finite-dimensional problem. In [36], the fundamental technique of reducing
an delayed J-spectral density to delay-free one is proposed . In the subsequent papers [37],
[38], this technique is enhanced to treat the continuous-time H∞ problem for a generalized
rational plant with a single input-delay. The dynamic programming solutions for the H 2 and
H∞ performance objectives are given in [44] and in [52], respectively. In [28], explicit solutions
of operator H∞-type Riccati equations are constructed via state transformation and integral
equations. The corresponding operator H 2-type Riccati equations can be solved using similar
techniques.

Among the above continuous-time results, the resulting H∞ controller is parameterized
using the Riccati equations in the standard H∞ problem in [38]. And the structure of them
is identified as the Smith-type one, which consists of the finite-dimensional H∞ controller for
the unstable dynamics and the measurement compensation part based on the past history
of the control input. However, it is not a trivial question whether the discrete-time H∞

controller can be also parameterized using the standard Riccati or KYP equations and im-
plemented in the Smith form for the following reasons: 1) the discrete-time KYP equations
have more complicated structures than the continuous-time counterparts; 2) The approach in
[37], [38] involves the preliminary step where the inner function at the control input channel
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is regarded as a part of the controller. The step requires auxiliary arguments to guarantee
the causality of the controller and elaborate manipulation of transfer functions to obtain the
final implementation form.

1.2.2 Previous results for preview control systems

The reduce-order construction methods for the continuous-time H 2/H∞ preview control
problems have been obtained in parallel approaches for the input-delayed problems. However,
most of them are limited to the full information settings. For brevity, we cite mainly the results
in the continuous-time settings. In [31], [38], the continuous-time fixed-lag smoothing prob-
lems are solved by reducing the infinite-dimensional J-spectral density to a finite-dimensional
one. That technique can be regarded an extension of the J-spectral factorization technique
for the input delay systems in [36]. The problem setting can be regarded as dual to the
full information preview control problems. In [53], [54], both continuous- and discrete-time
preview control problems are tackled via a unified game theoretical method by splitting the
optimization intervals. In [45], the idea similar to [53], [54] is applied to the H 2 controller
design. In [28], the established state transformation technique is capable of dealing with the
input delay and preview information at the same time.

In preview control systems, the control input is allowed to utilize the future information
of external signals. Such situations can be artifically realized with sensors reading the in-
coming signals. In active suspension control [31], the road profiles in front of vehicles can be
available with displacement sensors. They are regarded as preview information and utilized
for improving riding comfort or road handling. In rolling mill control [7], rough steel is fed
through a series of rollers to shape it into desired forms. Upstream variation in steel thickness
and roll gaps can be given to downstream controllers as preview information. As for large
and complex control systems, it is difficult to prepare sensors enough to measure all the state
variables and disturbances. In active suspension control, either the displacement or velocity
of dumpers is often measured [18], [35]. In rolling mill control, the tension variation around
rollers is estimated using disturbance observes when accurate measurement is difficult under
the rolling environment [19], [62]. From the viewpoint of the practical applications, it is im-
portant to identify the measurement information patterns based on which optimal preview
control problems are explicitly solvable.

The output feedback H 2 controller design methods are reported in [32], [57]. However,
the exact optimality of the overall closed-loop system is not guaranteed because the available
preview information is not considered in their first design stages. In the former method, the
state-space Youla parameterization is employed for the stabilization of the system at the first
stage. At this stage, the stabilizing feedback gains can be chosen arbitrarily, only if they are
stabilizing. The Youla parameter is determined by the orthogonality principle in H 2 space at
the second stage. In the latter method, the standard finite-dimensional H 2 controller for the
non-preview case is constructed at the first stage. At this state, the fact that the control input
can act in advance of the disturbance is ignored. The preview information is incorporated
into the additional compensation [27] at the second stage.

H∞ preview controller synthesis based on partial information on state variables and dis-
turbances is addressed in [26], where the partial information on the state variables is free from
measurement noise. The state transformation in [28] enabled to solve the operator Riccati
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equations explicitly. A competing approach with the operator Riccati equation approach is
the J-spectral factorization approach originated in [36]. The preview control problem in the
full information setting can be easily solved by dualizing the results in [31], [38]. However,
the application of the technique to the output feedback setting needs further investigation.
This is because, in contrast to the input-delay problem [38], the preview action is difficult to
be regarded as the constraint on the controller.

1.3 Contributions of this work

The thesis proposes alternative reduce-order construction methods of the H 2/H∞ optimal
controllers for the input and preview systems. We focus on the internal dynamics of the
overall systems, and decomposes it to derive the delay-free systems which play a key role for
the H 2/H∞ performance optimization. Our approach enables to derive the optimal output
feedback controller in a unified manner. The output feedback problem is solved through
the simpler ones, namely the full information and output estimation ones. The internal
state decomposition approach is applicable in both continuous-time and discrete-time settings.
Below we explain how the proposed approach achieves the contributions, and reveals the new
insights in the reduced-oder construction problems.

1.3.1 Discrete-time H 2 input-delayed control

The output feedback stabilization of a discrete-time single-input input-delayed system is
described as a preliminary result. We focus on the state-space representation of the input
delay element, and introduce a state transformation to derive a Smith predictor.

Motivated by the state transformation, the internal state decomposition approach is in-
troduced to derive the reduced-order construction method for the discrete-time input-delayed
H 2 control problem. The causality and stability constraints imposed by the delay element
are resolved more simply in comparison with the previous approach [23], [40], [47].

We obtain the optimal controller in the Smith predictor form from the Riccati equations
for the corresponding delay-free system. The resulting controller has the different structure
from those in the state predictor form [34]. It is implemented with the observer for the
possibly unstable dynamics and a measurement compensation part based on the past history
of the control input.

1.3.2 Discrete-time H∞ input-delayed control

We pursues a parameterization of the discrete-time H∞ suboptimal controllers for the
input-delayed systems. A discrete-time counterpart of the J-spectral factorization technique
in [36] and [37] is developed as the main tool. In contrast to the previous research [37, 38, 21],
the first step is to simplify the original problem to an one-sided model matching problem,
and to apply the J-spectral factorization technique to the latter. The second step is to
formulate an output estimation problem in order to realize the control law based on partial
information. Focusing on the relationship between the state variables of the irrational and
reduced rational J-spectral densities, the measured output is modified in order to reduce the
output estimation problem to finite-dimensional one. It is revealed that the parameterization
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of the H∞ controllers is obtained only by solving the standard KYP equations and checking
the matrix eigenvalues. They are implemented in the Smith form using the past history of
the control input.

The above-mentioned J-spectral factorizability condition composes a part of the solvability
conditions for the output feedback problem. The min-max optimization approach is also
considered in the full information setting to obtain an alternative solvability condition. We
extend the optimization technique in [52] into the discrete-time setting, and construct the
stabilizing solution of the standard KYP equation for the augmented system from that for
the delay-free systems. Furthermore, the J-spectral factorizability condition is proved to be
equivalent to the H∞ disturbance attenuation condition by analyzing the initial finite-time
response of the input-delay system, and consequently that approach is confirmed to yield the
same control law as the min-max optimization approach.

1.3.3 Continuous-time H 2 preview control

We investigate the effectiveness of the state decomposition in designing H 2 preview con-
trollers. The output feedback controller is constructed through the full information and output
estimation problems. Contrary to the previous design methods [32], [57], we exploit the avail-
able preview information at all the design stages, and derive the output feedback controller
guaranteeing the exact optimality. The preview controller can be given the interpretation as
the finite-dimensional observer combined with preview-feedforward compensation.

In the full information problem, we utilize the fact that the optimal state feedback law is
obtained as the solution of the corresponding model matching problem. We introduce alterna-
tive state transformations to solve the model matching problem via the spectral factorization
theory [17]. One of the state transformations defines the state decomposition parallel to that
in the discrete-time input-delayed H 2 control problem. In the output estimation problem, we
employ the newly introduced state variable to describe the infinite-dimensional generalized
plant in the form amenable to the explicit solution.

1.3.4 Continuous-time H∞ preview control

We extend the design procedure of solving the full information and output estimation prob-
lems to the H∞ control case. The clear structure of the preview controller is again identified
as the combination of the finite-dimensional observer and preview-feedforward compensation.
It is shown to be possible to construct the H∞ preview control law based on the information
pattern different from those in [26].

In the full information problem, the technique of reducing an irrational J-spectral density
to rational one [38] is employed. We clarify the relationship between the state variables of the
infinite-dimensional and reduced finite-dimensional J-spectral densities by introducing the
state transformations. The explicit solution to the control-type operator Riccati equation is
found by combining the proposed state transformations.
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1.4 Organization of this thesis

The thesis consists of six chapters including this chapter. The rest of the thesis is organized
as follows:

Chapter 2 addresses the H 2 control problem for the discrete-time input-delayed systems.
The fundamental idea of the state decomposition approach is introduced based on the deriva-
tion of a Smith predictor for a single input-delay system. The efficient implementation of the
optimal controller in the Smith predictor form is provided.

Chapter 3 pursues a parameterization of the discrete-time H∞ suboptimal controllers. A
discrete-time counterpart of the J-spectral factorization technique in [36] is developed. A
discrete-time counterpart of the min-max optimization technique in [52] is also considered.
The stabilizing solution of the augmented KYP equation and another characterization of the
solvability are provided using that for the delay-free case.

Chapter 4 shows that the internal state decomposition approach is also effective to derive
the H 2 preview output feedback controller. The clear structure of the optimal controller
is identified as the combination of the finite-dimensional observer and preview-feedforward
compensation. Contrary to the previous design methods [32], [57], the proposed one enables
to derive the output feedback controller archiving the exact optimal performance.

Chapter 5 extends the preview control design method to the H∞ control case. Our design
method leads to the H∞ preview controller based on the information pattern different from
those in the previous research [28]. As an additional note, the relationship between the J-
spectral factorization technique in [31], [38] and the operator Riccati equation is presented.

Chapter 6 reviews the H 2/H∞ controller design methods obtained in the previous chap-
ters, and summerizes the features of them. The future subjects of research are stated with
reference to the strength and limitations of the proposed approach.
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Chapter 2 Discrete-time H 2 input-delayed control

2.1 Introduction

This chapter is concerned with the discrete-time H 2 control problem under the setup in
Fig. 2.1, where P+ is an input-delayed generalized plant and K+ is a controller to design. The
generalized plant P+ consists of the l-step delay function z−l and delay-free generalized plant
P . The continuous-time counterpart of the problem is solved in [40], where the delay function
e−sl exists at the control input. The more general continuous- and discrete-time problems are
studied in [23], [47], where the delay functions e−sl and z−l are generalized to the continuous-
and discrete-time inner functions m(s) and m(z), respectively. The previous approach in
[23], [40], [47] regards the existence of the delay or inner function as the constraint on the
stabilizing controller for the delay-free generalized plant P , and restrict the Youla parameter
for the delay-free problem so that the causality and stability are preserved. The approach
successfully characterizes the increase of the optimal cost due to the delay or inner functions in
a closed form, and allows us to interpret the deteriorating effect of the time-delay or unstable
zeros. However, it is difficult to see how the unstable dynamics of P+ is stabilized, and in the
discrete-time setting [47] the explicit optimal controller is not given.

We derive a new solution method by decomposing the state variable of P into the sum
of the possibly unstable and stable ones. The former has the dimension independent of the
delay length l. The latter has the the dimension equal to l multiplied by the number of the
control inputs. Our solution method does not require considering the causality and stability
constraints imposed by the input delay. The state decomposition approach reveals a new
interpretation of stabilization process, and leads to the explicit form of the discrete-time H 2

optimal controller. For the derivation of the solution method, two preparations are made; 1)
To describe the fundamental idea of the state decomposition approach, a discrete-time Smith-
predictor for a single input-delay system is derived based on state-space representation; 2)
To utilize the H 2 orthogonality principle effectively, an alternative discrete-time truncation
operator to the literature [47] is introduced.

This chapter is organized as follows. In Section 2.2, the problem formulation and as-
sumptions are stated. In Section 2.3, the discrete-time Smith-predictor is derived based on
state-space representation. In Section 2.4, the alternative discrete-time truncation operator
is introduced. In Section 2.5, the state decomposition approach is developed to cope with
the input delay, and the explicit optimal controller is derived. In Section 2.7, the input-delay
effect on the sampled-data H 2 control performance is analyzed using the obtained results. In
Section 2.8, the proofs left in the previous sections are given.

2.2 Problem formulation

We address the H 2 control problem for the input-delayed plant P+. The focus is on the
parameterization of the stabilizing controller K+ through the delay-free control problem. The

7
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Figure 2.1: Control system with input delay.

delay-free part P is assumed to be

P =
[
P11 P12

P21 P22

]
=

⎡⎣ A B1 B2

C1

C2

D11 D12

D21 O

⎤⎦ , (2.1)

and satisfies the same assumptions (A1)-(A2) as in the standard H 2 control problem [20].

(A1) (A, B2) and (A, C2) are stabilizable and detectable, respectively.

(A2) For ∀ θ ∈ [−π, π],
[
A− ejθI B2

C1 D12

]
and

[
A− ejθI B1

C2 D21

]
are of full column rank and

of full row rank, respectively.

The above assumptions ensure the existence of the positive semidefinite stabilizing solutions
X and Y of the following control- and filtering-type Riccati equations:

Q+A∗XA−X − (S∗ +B∗
2XA)∗R−1

c (S∗ +B∗
2XA) = O, Rc := R+B∗

2XB2 > O,

Q́+AY A∗ − Y −
(
Ś∗ +AY C∗

2

)
Ŕ−1

c

(
Ś∗ +AY C∗

2

)∗
= O, Ŕc := Ŕ+ C2Y C

∗
2 > O,

where the following definitions are used for simplicity:[
Q S
S∗ R

]
:=

[
C1 D12

]∗ [
C1 D12

]
,

[
Q́ Ś∗

Ś Ŕ

]
:=

[
B1

D21

] [
B1

D21

]∗
.

Furthermore, the nonsingularity of the state matrix A is required in our approach.

(H) The matrix A is nonsingular.

Based on the preliminaries in Sections 2.3 and 2.4, the discrete-time H 2 optimal controller
is derived via the full information and output estimation problems.
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2.3 Consideration on the Smith predictor

Two well-known stabilization methods for time-delay systems are the Smith’s method and
the finite spectrum assignment method. In the former method, the adverse effects of time-
delays are eliminated from the closed-loop systems via loop-shifting arguments with internal
models [46], [48], and the resulting controller is called the Smith predictor. In the latter
method, the feedback control laws which relocate the finite number of unstable spectra of the
time-delay systems are constructed via state-predictive transformations [11] and the resulting
controller is called the finite spectrum assignment controller. In [40], it is revealed that the
H 2 optimal controller for the continuous-time single input-delay system has a Smith predic-
tor structure, and can be recast as the observer-predictor-based finite spectrum assignment
controller.

In this section, we derive a discrete-time Smith predictor and observer-predictor-based
controller for a single input-delay system via Krein’s formula [13], which expresses the solu-
tions of Sylvester equations by complex integration. The presentation in this section has an
important implication for deriving our solution method.

Consider the discrete-time single input-delay system P (z) z−l (l is a positive integer):

x(n+ 1) = Ax(n) +Bu(n− l)
y(n) = Cx(n).

For technical reasons, we assume that A is nonsingular and the pairs (A,B) and (A,C) are
stabilizable and detectable, respectively. Let us define the collection of the past control inputs:

υ(n) :=

⎡⎢⎢⎢⎣
υ(1, n)
υ(2, n)

...
υ(l, n)

⎤⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎣
u(n− 1)
u(n− 2)

...
u(n− l)

⎤⎥⎥⎥⎦ ∈ R
l·dimu.

By augmenting the state space from R
dimx to R

dimx ×R
l·dimu, the input-delay system can be

rewritten as the delay-free system:[
x(n+ 1)
υ(n + 1)

]
=
[
A BΓ1

O S
] [
x(n)
υ(n)

]
+
[
O
∆l

]
u(n), (2.2)

y(n) = Cx(n),

where

S :=

⎡⎢⎢⎢⎢⎢⎢⎣
O I
O I
...

. . .
... I
O O · · · · · · O

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
l·dimu×l·dimu,

∆l :=
[
OT OT · · · OT IT

]T ∈ R
l·dimu×dimu,

Γ1 :=
[
I O O · · · O

] ∈ R
dimu×l·dimu.
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In Eq. (2.2), the possibly unstable mode of x(n) is influenced by the stable mode of υ(n)
through BΓ1. To eliminate BΓ1, we consider the following transformation:[

I Ux

O I

] [
A− zI BΓ1

O S − zI

] [
I −Ux

O I

]
=
[
A− zI BΓ1 − (AUx − UxS)
O S − zI

]
, (2.3)

where Ux ∈ R
dim x × R

l·dimu is a matrix, which should satisfy the Sylvester equation

AUx − UxS = BΓ1

to make the (1, 2) block in Eq. (2.3) zero. Using Krein’s formula, we can find the solution:

Ux =
1

2πj

∮
∂σ(A)

(zI −A)−1BΓ1 (zI − S)−1 dz

= A−1BΓ1 +A−2BΓ1S + · · · +A−lBΓ1S l−1,

where the following identity is used:

(zI − S)−1 =
I

z
+

S
z2

+ · · · + S l−1

zl
.

Introducing a new state variable xR(n) by the equation[
x(n)
υ(n)

]
=
[
I −Ux

O I

] [
xR(n)
υ(n)

]
, (2.4)

the input-delay system is represented as[
xR(n+ 1)
υ(n + 1)

]
=
[
A O
O S

] [
xR(n)
υ(n)

]
+
[
A−lB

∆l

]
u(n),

y(n) = C
[
I −Ux

] [xR(n)
υ(n)

]
,

where its state-transition matrix is block-diagonalized.
Temporarily, let us assume all the state variables are available. We choose the following

state feedback gain for xR(n):
FR := FAl,

where F is such that A+A−lBFR = A−l (A+BF )Al is stable. Since S is stable, the following
state feedback law stabilizes the dynamics of xR(n) and υ(n):

u(n) =
[
FR O

] [xR(n)
υ(n)

]
.

Next, we introduce the following standard observer to estimate xR(n) and υ(n):[
xR

c (n+ 1)
υc(n+ 1)

]
=
[
A O
O S

] [
xR

c (n)
υc(n)

]
+
[
A−lB
∆l

]
u(n) +

[
LR

x

LR
υ

](
C
[
I −Ux

] [xR
c (n)
υc(n)

]
− y(n)

)
.
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Let LR
x := L be such that A+LC is stable and LR

υ := O, then the above observer is rearranged
into the following form:[

xR
c (n+ 1)
υc(n + 1)

]
=
[
A+ LC −LCUx

O S
] [
xR

c (n)
υc(n)

]
+
[
A−lB

∆l

]
u(n) −

[
L
O

]
y(n),

u(n) =
[
FR O

] [xR
c (n)
υc(n)

]
.

Since the choice of the observer gains preserves the stable dynamics of υc(n), the state esti-
mation error converges to zero. The obtained observer is depicted in Fig. 2.2, where the FIR
(finite impulse response) operator Π(z) is defined by

Π(z) := −
(
A−1z−l +A−2z−(l−1) + · · · +A−lz−1

)
= (zI −A)−1

(
z−lI −A−l

)
.

The observer has the structure of the Smith predictor in the sense that the measured output
y(n) is modified to another measured output yR(n) using the past history of the control input:

yR(n) = y(n) − CΠ(z)Bu(n).

The Smith predictor can be recast as the observer-predictor-based controller if the state
variables of the Smith predictor is changed by the equation[

xc(n)
υc(n)

]
=
[
I −Ux

O I

] [
xR

c (n)
υc(n)

]
.

The structure of the observer-predictor-based controller is depicted in Fig. 2.3. The variables
xc(n) and p(n) in Fig. 2.3 can be regarded as the estimation and l-step ahead prediction of
the state variable x(n), respectively.[

xc(n+ 1)
υc(n+ 1)

]
=
[
A+ LC BΓ1

O S
] [
xc(n)
υc(n)

]
+
[
O
∆l

]
u(n) −

[
L
O

]
y(n),

u(n) = F
[
Al AlUx

] [xc(n)
υc(n)

]
.

The key points observed here are that the Smith predictor stabilizes the possibly unstable
dynamics of xR(n) ignoring the stable dynamics of υ(n), and that it is equivalently transformed
into the state predictor form.

Remark 1. If Fig. 2.2 and Fig. 2.3 are compared with Fig. 5 and Fig. 4 in [41], respectively,
it can be verified that the structures of the resulting controllers are similar to those of the
continuous-time Smith predictor and observer-predictor-based controller. In the following, it is
noted briefly that the same idea as in the discrete-time setting is also applicable to deriving the
continuous-time Smith predictor and observer-predictor-based controller for the single input-
delay system P (s) e−ls (l is a positive real number):

ẋ(t) = Ax(t) +Bu(t− l),
y(t) = Cx(t).
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Figure 2.2: Smith predictor.

y u
P (z)

z−1L

A+ LC
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F

Al B(z)Π

B

p

z−l

z−l

Figure 2.3: Observer-predictor-based controller.

Based on the state-space framework in [50], we rewrite the above input-delay system as the
infinite-dimensional descriptor system:

d

dt

[
I O
O Eυ

] [
x(t)
υ(θ, t)

]
=
[
A BΓ0

O Aυ

] [
x(t)
υ(θ, t)

]
+
[
O
∆l

]
u(t),

where

Eυ :=
[
I
O

]
, Aυ :=

[
∂
∂θ
−Γl

]
, ∆l :=

[
O
I

]
,

and Γ0, Γl are operators which evaluate the values of υ(θ, t) at θ = 0, l, respectively. The
domains of the above operators are defined as follows:

D (Eυ) , D (Aυ) , D(Γ0) := W 2,1([0, l], R
dimu).
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The following transformation corresponds to that in Eq. (2.3):[
I Ux

O I

] [
A− sI BΓ0

O Aυ − sEυ

] [
I −UxEυ

O I

]
=
[
A− sI BΓ0 − (AUxEυ − UxAυ)
O Aυ − sEυ

]
, (2.5)

where Ux : L2
(
[0, l], R

dimu
)×R

dimu → R
dimx is an operator, which should satisfy the Sylvester

equation
AUxEυ − UxAυ = BΓ0

to make the (1, 2) block of Eq. (2.5) zero. The operator Ux can be found explicitly via Krein’s
formula and employed to introduce the new state variable xR(t):[

x(t)
υ(t)

]
=
[
I −UxEυ

O I

] [
xR(t)
υ(t)

]
.

Stabilizing the dynamics of xR(t) by the same reasoning as in the discrete-time setting, the
continuous-time Smith predictor can be constructed. Furthermore, it is internally equivalent
to the observer-predictor-based controller.

2.4 Truncation operator

In this section, we introduce an alternative discrete-time truncation operator to simplify
the derivation of the discrete-time H 2 optimal solution. In contrast to the previous research
[47], the proposed truncation operator satisfies a stricter orthogonality condition.

We denote the orthogonal complement of z−lH 2 in H 2 by H(z−l). This space is charac-
terized by

H(z−l) =
{
f ∈ H 2

⏐⏐ zlf ∈ H 2⊥
}
.

The elements of H(z−l) are matrix polynomials in z−1 of (l − 1)-th order. The alternative
discrete-time truncation operator is defined in the following definition.

Definition 1. For a given G(z) =
[
A B

C D

]
with the nonsingular state matrix A, an alter-

native truncation operator τz−l [G] (z) applied to G(z) is defined as follows:

τz−l [G] (z) := G(z) − z−lGz−l(z) ∈ H(z−l), Gz−l(z) :=
[
A AlB

C CAl−1B

]
.

The term “truncation” comes from the fact that τz−l [G] (z) represents the first l impulse
responses of G(z) (Fig. 2.4):

τz−l [G] (z) = D +
CB

z
+ · · · + CAl−2B

zl−1
. (2.6)

In the previous research [47], the discrete-time truncation operator is defined for a general
inner function m(z). When the inner function is restricted to z−l, it is defined as in the
following definition.
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Figure 2.4: Impulse responses of τz−l [G] and τ̃z−l [G].

Definition 2. For a given G(z) =
[
A B

C D

]
with the nonsingular state matrix A, the previ-

ous truncation operator τ̃z−l [G] (z) applied to G(z) is defined as follows:

τ̃z−l [G] (z) := G(z) − z−lG̃z−l(z) ∈ H(z−(l+1)), G̃z−l(z) :=
[
A AlB

C O

]
.

It can be verified that

τ̃z−l [G] (z) = D +
CB

z
+ · · · + CAl−2B

zl−1
+
CAl−1B

zl
, (2.7)

and therefore τz−l [G] (z) represents the first l + 1 impulse responses of G(z). Moreover, the
relationship between τ̃z−l [G] (z) and τz−l [G] (z) is given by

τ̃z−l [G] (z) = τz−(l+1) [G] (z) ∈ H(z−(l+1)).

2.5 Solution via closed-loop reduction

2.5.1 Full information problem

The state variable x(n) of P follows the difference equation

x(n+ 1) = Ax(n) +B1w(n) +B2u(n− l).

Referring to the state transformation used in Section 2.3, we introduce new state variables
xR(n) and ε(n), which follow Eq. (2.8) and Eq. (2.9), respectively:

xR(n+ 1) = AxR(n) +B1w(n) +A−lB2u(n), (2.8)

ε(n+ 1) = Aε(n) +
(
z−lI −A−l

)
B2u(n). (2.9)
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Figure 2.5: Decomposition of P+ by state feedback.

Note that x(n) is decomposed into the sum of xR(n) and ε(n):

x(n) = xR(n) + ε(n).

The above xR(n) and ε(n) correspond to xR(n) and −V υ(n) in Section 2.3, respectively.
Since the transfer function from B2u(z) to ε(z):

Π(z) := (zI −A)−1
(
z−lI −A−l

)
is strictly causal and stable, we try to stabilize the dynamics of xR(n) by state feedback. Let
us make the change of the control input

ũ(n) := −FRxR(n) − FR
21w(n) + u(n), FR := FAl, (2.10)

where F and FR
21 are to be determined in Lemma 1. We represent the regulated output z(z)

by w(z) and ũ(z) (Fig. 2.5):

z(z) = P+c(z)w(z) +N+12(z)ũ(z). (2.11)

Lemma 1. The transfer functions P+c and N+12 defined by

P+c(z) = τz−l [P11] (z) + z−l

[
A+B2F AlB1 +B2F

R
21

C1 +D12F DR
11 +D12F

R
21

]
,

N+12(z) = z−l

[
A+B2F B2

C1 +D12F D12

]
,

DR
11 := C1A

l−1B1, (2.12)

FR
21 := −R−1

c

(
D∗

12D
R
11 +B∗

2XA
lB1

)
, (2.13)

F := −R−1
c (S∗ +B∗

2XA)
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Figure 2.6: Output transformation.

satisfy the orthogonality condition

N∼
+12(z)P+c(z) ∈ H 2⊥,

and the isometry condition
N∼

+12(z)N+12(z) = Rc.

Proof. Subsection 2.8.1.

From Lemma 1, under the condition Tũ w ∈ H 2, the H 2 norm of Tz w can be decomposed
as follows:

‖Tz w‖2
2 = ‖P+c‖2

2 +
∥∥∥R1/2

c Tũ w

∥∥∥2

2
. (2.14)

Moreover, the following state feedback law is H 2-optimal:

u(n) = FRxR(n) + FR
21w(n) = FRx(n) − FRΠ(z)B2u(n) + FR

21w(n).

2.5.2 Output estimation problem

To minimize the scaled H 2 norm of Tũ w in Eq. (2.14), we consider the output estimation
problem for the auxiliary generalized plant P+ tmp (Fig. 2.5). The realization of P+ tmp is
given as follows:

ε(n+ 1) = Aε(n) +
(
z−lI −A−l

)
B2u(n),

xR(n+ 1) = AxR(n) +B1w(n) +A−lB2u(n),

ũ(n) = −FRxR(n) − FR
21w(n) + u(n),

y(n) = C2x
R(n) + C2ε(n) +D21w(n).
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Since ε(n) is determined by u(n) strictly causally, we consider the generalized plant PR
+ tmp of

which the measured output is given by

yR(n) := y(n) − C2ε(n) = C2x
R(n) +D12w(n)

instead of y(n) (Fig. 2.6). The realization of PR
+ tmp is given as follows:

xR(n+ 1) = AxR(n) +B1w(n) +A−lB2u(n),

ũ(n) = −FRxR(n) − FR
21w(n) + u(n),

yR(n) = C2x
R(n) +D21w(n).

By applying the standard solution method to the H 2 output estimation problem for PR
+ tmp,

we obtain the following theorem.

Theorem 1. Under the assumptions (A1)-(A2) and (H), the stabilizing controller K+ is
parameterized as shown in Fig. 2.7. It consists of the measurement compensation part:

yR(z) = y(z) − C2Π(z)B2u(z),

and the observer-based controller KR
+ estimating the state variable xR(n):

KR
+ = Fl(JR

+ , L
R
22 +Q+(z)), LR

22 :=
(
FR

21D
∗
21 + FRY C∗

2

)
Ŕ−1

c ,

where ∀Q+ ∈ H 2 is the Youla parameter. The realization of JR
+ is given as follows:

xR
c (n+ 1) =

(
A+A−lB2F

R + LC2

)
xR

c (n) − LyR(n) +A−lB2µ(n),

u(n) = FRxR
c (n) + µ(n),

ν(n) = −C2x
R
c (n) + yR(n),

where L := −
(
Ś∗ +AY C∗

2

)
Ŕ−1

c .

Furthermore, the H 2-optimal controller is obtained when Q̃(z) = O and the corresponding
optimal cost E+ is given by

E2
+ = ‖P+c‖2

2 +
∥∥∥∥R1/2

c

[
A+ LC2 B1 + LD21

−FR + LR
22C2 −FR

21 + LR
22D21

]∥∥∥∥2

2

, (2.15)

where

‖P+c‖2
2 = ‖τz−l [P11]‖2

2 +
∥∥∥∥[ A+B2F A−lB1 +B2F

R
21

C1 +D12F DR
11 +D12F

R
21

]∥∥∥∥2

2

. (2.16)

The controller given in Theorem 1 is in the Smith form shown in Fig. 2.7. The first
and second terms on the right-hand side of Eq. (2.15) represent control and estimation costs,
respectively. Furthermore, ‖τz−l [P11]‖2

2 in Eq. (2.16) represents the control cost which cannot
be affected by any control.
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Figure 2.7: Stabilizing controller in Smith form.

Remark 2. In the derivation of the optimal controller, the delay element C2ΠB2 of P+ tmp

is canceled out of the closed-loop interconnection by the internal model technique [46]. If
there exists a delay mismatch between the delay element and its internal model, the obtained
controller fails in stabilizing the closed-loop system. It inherits the intrinsic weakness to the
delay mismatch like other classes of Smith predictors [16].

One possible remedy for the uncertain or time-varying delay is to apply the robust H∞

design method [1], [46] where the delay variation is regarded as the multiplicative pertur-
bation and its gain is covered by an appropriate weighting function. However, the design
method neglects the phase margin information, and cannot reflect the possible trajectories of
the time-varying delay on the resulting controller. Utilization of both the gain and phase mar-
gin information is expected to yield better robust stability conditions [12], [16], [33]. Practical
design methods are also proposed to incorporate delay-scheduling rules into the convex LPV
controllers for bilateral teleoperation [10] and canal flow control [5].

2.6 Increase of the optimal cost

Theorem 1 in the previous section derived the causally implementable form of the optimal
controller, which was not obtained in the previous research [47]. The previous approach,
however, revealed how the Youla parameter for the delay-free problem should be constrained
by the existence of the input delay. This section shows that Theorem 1 leads to the same
result as in [47]

The following theorem is cited from [47]. It is stated using the alternative truncation
operator introduced in Section 2.4. We provide another proof based on Theorem 1.

Theorem 2 (Nishio-Kashima [47]). z−lK+(z) has the structure of the stabilizing controller
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of the standard H 2 problem (Fig. 2.8):

z−lK+(z) = Fl(J, L22 +Q(z)), (2.17)

where

J :=

⎡⎣ A+B2F + LC2 −L B2

F
−C2

O I
I O

⎤⎦ ,
L22 := (F21D

∗
21 + FY C∗

2 ) Ŕ−1
c , F21 := −R−1

c (D∗
12D11 +B∗

2XB1) ,

and the Youla parameter Q(z) is constrained by

Q(z) = τz−l [Θ] (z) + z−lQ̃(z), (2.18)

∀Q̃(z) ∈ H∞ (⊂ H 2
)
, Θ(s) :=

[
A L

F −L22

]
.

Furthermore, the optimal cost E+ is given by

E2
+ = E2 +

∥∥∥R1/2
c τz−l [Θ] Ŕ1/2

c

∥∥∥2

2
, (2.19)

where E is the optimal cost of the standard delay-free H 2 control problem.

Proof. Subsection 2.8.2.

Eq. (2.19) shows that the increase of the optimal cost incurred by z−l is given by the
scaled H 2 norm of the alternative truncation operator. In [47], the Youla parameter Q(z) in
Eq. (2.17) is constrained by

Q(z) = τ̃z−l [Θ] (z) + z−lQ̃+(z), ∀Q̃+(z) ∈ H∞ (⊂ H 2
)
. (2.20)

Since the two terms on the right-hand side of Eq. (2.20) are not orthogonal to each other, the
optimal cost cannot be attained with Q̃+(z) = O.

Remark 3. The state decomposition approach proposed in this chapter can be extended to
the class of multiple input delay systems where the differently delayed channels are decoupled
each other:

x(n+ 1) = Ax(n) +B1w(n) +
N∑

i=1

B2/iui(n− li),

z(n) = C1x(n) +
N∑

i=1

D12/iui(n− li),

y(n) = C2x(n) +D21w(n).

In the multiple input-delay case, the state decomposition should be introduced more carefully
to determine the state feedback gains for each of the control input channels. One of promis-
ing guidelines is to consider the spectral factorization of Φ+ 22 := P∼

+ 12P+ 12 where P+ 12 is
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Figure 2.8: Constraint on the Youla parameter.

the transfer function from the control input u(z) :=
[
u1(z)T u2(z)T . . . uN (z)T

]T to the
regulated output z(z):

P+ 12 :=
[
A

[
B2/1 B2/2 . . . B2/N

]
C1

[
D12/1 D12/2 . . . D12/N

] ]
⎡⎢⎢⎢⎣
z−l1I O

z−l2I
. . .

O z−lN I

⎤⎥⎥⎥⎦ .
The appropriate state decomposition can be derived by transforming the state-variables of the
spectral density Φ+22 as in the Chapters 4 and 5.

Remark 4. The discrete-time state matrix A is assumed to be invertible in Chapters 2 and 3 to
implement the H 2 and H∞ controllers in the Smith predictor form. However, the assumption
is restrictive in purely discrete-time control problems, and can be avoided by realizing the
optimal controller in the predictor form [43], [34]. In [43], the optimal LQ state feedback law
is constructed from the Riccati equation for the delay-free system by regarding the following
l-step prediction as the new state variable:

x(n+ l) = Alx(n) +Al−1B2u(n) +Al−2B2u(n− 1) + . . .+B2u(n − l).

If the exogenous disturbance is ignored, the state variable xR(n) introduced in this chapter and
l-step prediction is related by AlxR(n) = x(n+ l). In [34], the results in [43] are extended to
the LQG control problem. The multiple input and output delays are dealt with provided that
each of input and output channels is delayed by the respective one time length.

The optimal output feedback controllers in [34] and this chapter are obtained by the dif-
ferent routes and implemented in the different forms. In [34], the first step is to estimate
the future state variable under the noise. The second step is to replace the noise-free predic-
tion for the optimal state feedback (initially found in [43]) with the optimal estimation based
on the separation theorem. The procedure provides the observer-predictor-based controller as
shown in Fig. 2.3. The LQ control laws in [43], [34] indicate room for improvement in the
input-delayed H∞ controller design method.
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Figure 2.9: Setup of sampled-data control.

z−kh

z(t) w(t)

H

S

F lp

K+

P

P c

Figure 2.10: Replacement of e−sl with z−kh.

2.7 Example

This section illustrates the input-delay effect on the sampled-data H 2 control perfor-
mance. In the sampled-data setting, we design the discrete-time controller K+ for the follow-
ing continuous-time input-delayed generalized plant P+ c (Fig. 2.9):

P+ c := Pc

[
I O
O e−slI

]
, Pc =

⎡⎢⎢⎣
0.09

[
0.05 0.03

]
4.8[

0.6
0.16

]
0.8

[
0 0
0 0

] [
0.95
0.6

]
[
0.03 0.7

]
0

⎤⎥⎥⎦ .
The control input to P+ c is interpolated with the zero-order hold H. The measured output
from P+ c is filtered with the low-pass filter Flp(s) = 1/ (1 + s) and then discretized with the
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Figure 2.11: Input-delayed H 2 optimal cost.

impulse sampler S.
We assume that the time-delay length l and sampling period Ts are discretized by the

following equations:

l = δh (h = 0, 1, 2, . . .) , Ts =
δ

k
(k = 1, 2, 3, . . .) ,

where δ = 0.5 is a scaling parameter. This assumption yields the following commuting
relationship:

e−slH = Hz−kh. (2.21)

Note that the increase of the time-delay length or decrease of the sampling period results in
the larger discrete-time input-delay length kh.

By Eq. (2.21), we obtain the following discrete-time input-delay system (Fig. 2.10):

P+ :=
[
I O
O SFlp

]
Pc

[
I O
O e−slH

]
= P

[
I O
O z−khI

]
, (2.22)

where

P :=
[
I O
O SFlp

]
Pc

[
I O
O H

]
.

The optimal controller K+ can be determined as that for P+ by Theorem 1.
The optimal H 2 control cost determined by Theorem 2 is depicted in Fig. 2.11. From

Fig. 2.11, we observe that the optimal cost is monotonically increasing with respect to the
time-delay length, while it is monotonically decreasing with respect to the sampling period.
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Remark 5. The time-delay length l is assumed to be the multiple of the sampling Ts in the
example. Let us mention the general case where

l = mTs + p (m : nonnegative integer, 0 ≤ p < Ts) ,

and the continuous-time input uc(t) is the zero-order interpolation of the discrete-time input
u(n): uc(t) = Hu(t). In this case, the continuous-time evolution equation

ẋc(t) = Acxc(t) +Bc 1wc(t) +Bc 2uc(t− l),

xc(0) = 0, wc(t) = δ(t)w (w : constant vector)

is equivalently discretized into the following discrete-time one:

x(n+ 1) = Ax(n) +B1w(n) +B2mu(n−m) +B2 ru(n−m− 1),

x(n) = xc(nTs), w(n) = δ(n + 1)w,

A := eAcTs , B2m :=
∫ Ts−p

0
eAθdθB2, B2 r :=

∫ Ts

Ts−p
eAθdθB2.

Note that the two lengths of delay enter the same control input channel simultaneously. Never-
theless, in [42], the LQ state feedback law for the above input-delay system is also constructed
from the delay-free Riccati equation. Unfortunately, the derivation is based on direct algebraic
manipulation and the underlying theme is unclear. Therefore, the extension of the result in
[42] to the output feedback case is not straightforward.

2.8 Proofs

2.8.1 Proof of Lemma 1

By direct calculation, P+c and N+12(z) in Eq. (2.11) are expressed as follows:

P+c(z) = z−l

[
A+A−lB2F

R B1 +A−lB2F
R
21

C1A
l +D12F

R D12F
R
21

]
+D11 − C1Π(z)AlB1, (2.23)

N+12(z) = z−l

[
A+A−lB2F

R A−lB2

C1A
l +D12F

R D12

]
.

Noting that A+A−lB2F
R = A−l (A+B2F )Al, N+12(z) is further expressed as

N+12(z) = z−lN12(z), N12(z) =
[

A+B2F B2

C1 +D12F D12

]
.

Since N12(z) is the inner function which appears in the standard delay-free H 2 control prob-
lem, N+12(z) satisfies the isometry condition.

Next, let us substitute the right-hand side of the following equation into Eq. (2.23) to
determine the matrix DR

11:

D11 = z−lDR
11 +

(
D11 − z−lDR

11

)
.
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The substitution yields

P+c(z) =
{[

A B1

C1 D11

]
− z−l

[
A AlB1

C1 DR
11

]}
+ z−l

[
A+B2F AlB1 +B2F

R
21

C1 +D12F DR
11 +D12F

R
21

]
.

(2.24)

By choosing DR
11 as defined in Eq. (2.12), the first term on the right-hand side of Eq. (2.24)

becomes τz−l [P11] (z):

P+c(z) = τz−l [P11] (z) + z−l

[
A+B2F AlB1 +B2F

R
21

C1 +D12F DR
11 +D12F

R
21

]
.

We further determine FR
21 to satisfy the orthogonality condition. We calculate N∼

+12(z)P+c(z)
as follows:

N∼
+12(z)P+c(z) =

[
A+B2F B2

C1 +D12F D12

]∼(
zlτz−l [P11] (z) +

[
A+B2F AlB1 +B2F

R
21

C1 +D12F DR
11 +D12F

R
21

])
=
[

A+B2F B2

C1 +D12F D12

]∼
zlτz−l [P11] (z)

+
[

A+B2F B2

DR∗
11 (C1 +D12F ) +B∗

1A
l ∗X(A+B2F ) O

]∼
+
{(
D∗

12D
R
11 +B∗

2XA
lB1

)
+RcF

R
21

}
. (2.25)

Since the first and second terms on the right-hand side of Eq. (2.25) belong to H 2⊥, we choose
FR

21 as defined in Eq. (2.13) so that the constant term in Eq. (2.25) becomes zero.

2.8.2 Proof of Theorem 2

Using the manipulation employed in [38], [40], we can show that

z−lK+(z) =Fl(
[
O z−lI
I −C2Π(z)B2

]
, Fl(JR

+ , L
R
22 + Q̃(z)))

=Fl(J, −FΠ(z)AlL+ z−l
(
LR

22 +Q+(z)
)
). (2.26)

Referring to Eq. (2.26), we define the Youla parameter Q(z) by

Q(z) := − L22 − FΠ(z)AlL+m(z)
(
LR

22 + Q̃(z)
)

(2.27)

=
{[

A L

F −L22

]
− z−l

[
A L

FAl −LR
22

]}
+ z−lQ+(z).

At this point, the equality −LR
22 = FAl−1L can be verified by direct calculation. Therefore,

we have Eq. (2.18). From Eqs. (2.18), (2.26) and (2.27), we obtain Eq. (2.17).
Since the first and second terms of the right-hand side of Eq. (2.18) belong to H(z−l) and

z−lH 2, respectively, the following identity holds:∥∥∥R1/2
c QŔ1/2

c

∥∥∥2

2
=
∥∥∥R1/2

c τz−l [Θ] Ŕ1/2
c

∥∥∥2

2
+
∥∥∥R1/2

c Q̃Ŕ1/2
c

∥∥∥2

2
. (2.28)
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Furthermore, the result of the standard H 2 control problem yields the following identity:

‖Tzw‖2
2 = E2 +

∥∥∥R1/2
c QŔ1/2

c

∥∥∥2

2
. (2.29)

From Eqs. (2.28) and (2.29), the optimal cost E2
+ = min

˜Q∈H∞ ‖Tz w‖2
2 is attained with

Q̃(z) = O and given by Eq. (2.19).

2.9 Conclusion

This chapter considered the H 2 control problem for the discrete-time input-delay system.
We developed the closed-loop reduction solution method, and revealed the Smith structure of
the optimal controller. The main point of our approach is to decompose the dynamics of the
state variable of the controlled plant, and to stabilize that of the delay-independent order.
The decomposition is implied by the state transformation of the single input-delay system.

The overall stabilizing controller was parameterized with the internal model C2ΠB2 and
observer KR

+ estimating the newly introduced state variable. Although the orders of the Ric-
cati equations required for the implementation are reduced, the resulting controller remains
of the same order as the input-delayed controlled plant. Since the observer KR

+ is constructed
for the delay-free generalized plant PR

tmp, the order of it can be reduced further, for example,
by LMI techniques [51] at the expense of the exact optimality. In [41], the technique for ap-
proximating the distributed control law for the continuous-time Smith predictor is developed
based on the small gain theorem. The approximation technique can be extended to reduce
the order of the internal model C2ΠB2.

We can also derive the optimal controller and cost for the corresponding continuous-time
H 2 control problem in a similar way. Contrary to the previous approach [23] and [40], our
approach can avoid the preliminary procedure of finding the causality and stability constraints
on the Youla parameter for the delay-free problem.
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Chapter 3 Discrete-time H∞ input-delayed control

3.1 Introduction

This chapter pursues a parameterization of the H∞ suboptimal controllers for the discrete-
time input-delay system by decomposing the internal state variables in a similar way to
Chapter 2. The output feedback problem is solved through the full information and output
estimation problems. A discrete-time counterpart of the J-spectral factorization technique
in [36] is developed to deal with the full information problem. Focusing on the relationship
between the state variables of the input-delayed and delay-free J-spectral densities, the mea-
sured output is modified in order to reduce the output estimation problem to the delay-free
one. The J-spectral factorization approach yields the parameterization of the discrete-time
H∞-suboptimal controllers in the Smith form. The J-spectral factorizability condition com-
poses a part of the solvability conditions for the output feedback problem. It requires verifying
the regularity of the subblock of the symplectic matrix on the unbounded interval.

In the full information problem, we also consider the min-max optimization approach to
construct the H∞ state feedback law. The min-max optimization approach yields the H∞

disturbance attenuation condition which requires tracing the input-delay parameter on the
finitely many points, and hence is more tractable than the J-spectral factorizability condition.
Furthermore, the interpretation between the J-spectral and min-max optimization approaches
are provided via finite-horizon �2-gain analysis.

The min-max optimization is adopted for the H∞ disturbance attenuation along the lines
of [52]. The essential idea is to partition the cost functional into two terms according to
whether they are affected by the control input. We extend it into the discrete-time setting,
and construct the stabilizing solution of the standard KYP equation for the augmented system
from that for the delay-free case. The LQ reduced-order construction [43] is always possible
if there exists the positive semidefinite stabilizing solution of the delay-free Riccati equation.
Contrary to it, we newly reveal that the H∞ disturbance attenuation condition requires the
the additional positive definiteness on the solution of the delay-free KYP equation.

This chapter is organized as follows. In Section 3.2, the problem formulation and assump-
tions are stated. In Section 3.3, as a preliminary, a discrete-time counterpart of the comple-
tion operator [37] employed for the continuous-time J-spectral factorization is introduced. In
Section 3.4, the original output feedback problem is first simplified to the full information
problem. The discrete-time J-spectral factorization technique is developed after recasting
the full information problem as the one-sided model matching problem. Furthermore, it is
described how the output feedback problem is solved based on the state decomposition ap-
proach. In Section 3.5, the H∞ state feedback law is constructed in another way via the
min-max optimization. Moreover, the equivalence to the J-spectral factorization approach is
provided explicitly. In Section 3.6, the numerical example of calculating the achievable H∞

performance is considered. In Section 3.7, the proofs left in the previous sections are given.
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Figure 3.1: Control system with input delay.

3.2 Problem formulation

Consider the discrete-time input-delay system depicted in Fig. 3.1. The input-delayed
generalized plant P+ consists of the l-step input delay z−l and delay-free generalized plant P .
Our objectives are to derive a tractable solvability condition of the H∞ control problem for
P+, and to reveal the transparent structure of the controller K+ rendering the closed-loop L2

gain less than a given γ:
‖Tz w‖∞ < γ,

where Tz w is the transfer function from the disturbance w to the regulated output z.
We assume that the delay-free generalized plant P in Fig. 3.1 is given by

P =
[
P11 P12

P21 P22

]
=

⎡⎣ A B1 B2

C1

C2

O D12

D21 O

⎤⎦ ,
and make the following assumptions (X), (Y), and (H).

(X) The standard H∞ full information problem in the delay-free case is solvable. In other
words, for ∀λ ≥ γ, the KYP equation

F ∗
λRmmc λFλ = Q+A∗XλA−Xλ,

−Rmmc λFλ = S∗ +B∗XλA,

Rmmc λ = Rmmλ +B∗XλB,

B :=
[
B1 B2

]
, S :=

[
O S2

]
, Rmmλ :=

[−λ2I O
O R2

]
,[

Q S2

S∗
2 R2

]
:=

[
C1 D12

]∗ [
C1 D12

]
has the positive semidefinite stabilizing solution Xλ such that

Ac λ := A+B1F1 λ +B2F2 λ
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is stable, and Rmmc λ satisfies the following definiteness conditions:

Rmmc22 λ > O,

−λ2Λc λ := Rmmc11 λ −Rmmc 12 λR
−1
mm c 22 λRmm c21 λ < O.

(Y) The standard H∞ full control problem in the delay-free case is solvable. Therefore, the
KYP equation

LγŔmm c γL
∗
γ = Q́+AYγA

∗ − Yγ ,

−Ŕmmc γL
∗
γ = Ś + CYγA

∗,

Ŕmmc γ = Ŕmm γ + CYγC
∗,

C :=
[
C1

C2

]
, Ś :=

[
O

Ś2

]
, Ŕmm γ :=

[−γ2I O

O Ŕ2

]
,[

Q́ Ś∗
2

Ś2 Ŕ2

]
:=

[
B1

D21

] [
B1

D21

]∗
has the positive semidefinite stabilizing solution Yγ such that the following matrix is
stable:

Ác γ := A+ L1 γC1 + L2 γC2.

(H) The matrix A is invertible, and hence the following symplectic matrix HFHλ is well-
defined:

HFHλ := H−1
FH δ λHFHσ =

[
A− 1

λ2B1B
∗
1A

−∗Q − 1
λ2B1B

∗
1A

−∗

A−∗Q A−∗

]
,

where (HFH δ λ, HFHσ) is the symplectic pair given by

HFH δ λ :=
[
I 1

λ2B1B
∗
1

O A∗

]
, HFHσ :=

[
A O
Q I

]
.

From the nth power of HFHλ, we define the following symplectic matrices for simplicity:

Eλ(n) := (HFHλ)n , EX λ(n) :=
[
I O
Xλ I

]
Eλ(n)

[
I O

−Xλ I

]
. (3.1)

Furthermore, we introduce the following definitions using Eλ(n):[
BD

2 λ(n)
SD

2 λ(n)

]
:= D−1

λ (n)
[
B2

S2

]
, Dλ(n) := HFH δ λEλ(n)H−1

FH δ λ.
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χ

Figure 3.2: Impulse response of χz−l [G] (z).

3.3 Completion operator

The following continuous-time completion operator is defined in [37] for the delay function
e−sl (l is a positive number) in relation with the J-spectral factorization technique.

Definition 3. For a given continuous-time delay function e−sl and state-space system G(s) =[
A B

C O

]
, the continuous-time completion operator χe−sl [G] (s) is defined as follows:

χe−sl [G] (s) := Gχe−sl(s) − e−slG(s), Gχe−sl(s) :=
[
A e−AlB

C O

]
.

Referring to Definition 3, the discrete-time completion operator is introduced below. It is
employed for the J-spectral factorization in Section 3.4.1.

Definition 4. For a given discrete-time delay function z−l and state-space system G(z) =[
A B

C CA−1B

]
, the discrete-time completion operator χz−l [G] (z) is defined as follows:

χz−l [G] (z) := Gχz−l(z) − z−lG(z) ∈ H(z−l), Gχz−l(z) :=
[
A A−lB

C CA−(l+1)B

]
.

The impulse response of χz−l [G] (z) is given by

χz−l [G] (n) =
{
CAn−(l+1)B (n = 0, 1, · · · , l − 1)
O (n = l, l + 1, · · ·) .

Like the continuous-time counterpart, this impulse response completes that of z−lG(z) in the
interval 0 ≤ n < l as shown in Fig. 3.2.
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3.4 Solution via closed-loop reduction

3.4.1 Full information problem

Our approach focuses on the model matching problem associated with the full information
problem, where the internal state and exogenous disturbance are available for the control
purpose. To find an H∞ control law, the discrete-time J-spectral factorization technique is
developed. In the previous research [37], [38], the continuous-time J-spectral factorization
technique is applied to the one-block problem formulated after parameterizing the standard
H∞ controller for the delay-free generalized plant. In contrast to [37], [38], the model matching
problem treated in this section is a two-block problem. Consequently, an alternative kind of
J-lossless factors of the input-delayed generalized plant P+ is identified.

Denote the available disturbance by ymm := w, then the generalized plant P+ mm from
(w, u) to (z, ymm) is given by

P+ mm = Pmm

[
I O
O z−lI

]
, Pmm :=

[
I O
P11 P12

]
.

If the original control problem in Section 3.2 is solvable, then for ∀λ ≥ γ, the following model
matching problem for P+ mm should also be solvable.

[MM] Find a causal transfer function Tu w from the disturbance w to the control input u
such that

P11 + P12mTu w ∈ H∞ and ‖P11 + P12mTu w‖∞ < λ.

The model matching problem [MM] can be recast as the following J-spectral factorization
problem [SF] [17], and the solution of [MM] is parameterized as follows:

Tu w = Fl(C−1 (M+ λ), Tũ w̃), ∀Tũ w̃ ∈ H∞ such that
∥∥∥R1/2

mmc 22 λTũ w̃ΛR (−1/2)
c λ

∥∥∥
∞
< λ,

where M+ λ is the J-spectral factor of the J-spectral density and Tũ w̃ denotes the family of
the transfer functions from w̃ to ũ.

[SF] Define the J-spectral density Φ+λ: (ymm, u) → (w, z) by the equation

Φ+ λ := C (P+ mm)∼
[−λ2I O
O I

]
C (P+ mm) .

Then, find the J-spectral factorization of Φ+λ which satisfies the following conditions
(SF1) and (SF2):

(SF1) There exist positive definite matrices ΛR
c λ, RR

mmc22 λ and a stable J-spectral
factor M+ λ : (w̃, ũ) → (ymm, u) with strictly causal

(
M−1

+ λ

)
12

such that

Φ+λ = M−∼
+ λ

[−λ2ΛR
c λ O

O RR
mmc22 λ

]
M−1

+ λ. (3.2)
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(SF2) The transfer function N+λ : (w̃, ũ) → (w, z) defined below is a J-inner function.

N+λ := C (P+ mm)M+ λ. (3.3)

The main purpose of this section is to solve the problem [SF] for λ = γ, or equivalently for
∀λ ≥ γ. By analyzing the structure of Φ+ λ, the J-spectral factorization problem is reduced
to that for some delay-free J-spectral density. The reduction technique is initially introduced
in the continuous-time setting [36]. In the subsequent analysis, the relationship between the
state variables of Φ+λ and ΦR

+λ is clarified from a viewpoint of decomposition of the internal
state dynamics as in Chapter 2.

Before proceeding, the following causal and stable function is defined via the discrete-time
completion operator:

χz−l λ(z) := χz−l

[(
P∼

11P11 − λ2I
)−1

P∼
11P12

]
(z),

and is decomposed into the constant matrix χz−l0 λ and the strictly causal function χz−l�λ(z)
as follows:

χz−l λ(z) = χz−l0 λ + χz−l�λ(z).

It is verified that χz−l0 λ = 1
λ2B

∗
1A

−∗SR
2 λ and

χz−l�λ(z) = −
[− 1

λ2B1

O

]∗
H−∗

FHσJs (zI −HFHλ)−1
(
z−lI − E−1

λ (l)
)
H−1

FH δ λ

[
B2

S2

]
− 1
λ2
B∗

1A
−∗S2z

−l,

where
[
BR

2 λ

SR
2 λ

]
:= D−1

λ (l)
[
B2

S2

]
and Dλ(l) := HFH δ λEλ(l)H−1

FH δ λ = HFHσEλ(l)H−1
FHσ.

In the following lemma, we transform the input-delayed Φ+λ into the delay-free ΦR
+ λ. For

the transformation, we use χz−l�λ(z) rather than χz−l λ(z) to meet the strict causality of(
M−1

+ λ

)
12

required in (SF1).

Lemma 2. The J-spectral density ΦR
+λ defined by

ΦR
+λ :=

[
I χz−l�λ

O I

]∼
Φ+λ

[
I χz−l�λ

O I

]
(3.4)

is a delay-free J-spectral density. Furthermore, the state variables (x, p) of Φ+ and (xR, pR)
of ΦR

+ are related as follows: [
x(z)
p(z)

]
=
[
xR(z)
pR(z)

]
+
[
Πx λ(z)
Πp λ(z)

]
u(z), (3.5)

where Πλ(z) :=
[
Πx λ(z)T Πp λ(z)T

]T is the strictly causal and stable transfer function de-
fined by [

Πx λ(z)
Πp λ(z)

]
:= (zI −HFHλ)−1

(
z−lI − E−1

λ (l)
)
H−1

FH δ λ

[
B2

S2

]
.
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Proof. Define Ω+: (hmm, u) → (−ymm, k) as the Schur complementation transform of Φ+:
Ω+ := S(Φ+). Its realization is given by[

x(n+ 1)
p(n+ 1)

]
= HFHλ

[
x(n)
p(n)

]
+H−1

FH δ λ

[− 1
λ2B1 B2z

−l

O S2z
−l

] [
hmm(n)
u(n)

]
,[−ymm(n)

k(n)

]
=
[− 1

λ2B1 B2z
−l

O S2z
−l

]∼
H−∗

FHσJs

[
x(n)
p(n)

] [− 1
λ2 I

1
λ2B

∗
1A

−∗S2z
−l

O R2 −B∗
2A

−∗S2

] [
hmm(n)
u(n)

]
.

Referring to the above realization, we define the delay-free ΩR
+λ : (hmm, u) → (−yR

mm, k
R) by

the following state-space realization:[
xR(n+ 1)
pR(n+ 1)

]
= HFHλ

[
xR(n)
pR(n)

]
+H−1

FH δ λ

[− 1
λ2B1 BD

2 λ(l)
O SD

2λ(l)

] [
hmm(n)
u(n)

]
,[−yR

mm(n)
kR(n)

]
=
[− 1

λ2B1 BD
2 λ(l)

O SD
2 λ(l)

]∗
H−∗

FH σJs

[
xR(n)
pR(n)

]
+
[ − 1

λ2 I
1
λ2B

∗
1A

−∗SD
2 λ(l) − χz−l0 λ

−χ∗
z−l0 λ

R2 −B∗
2A

−∗S2

] [
hmm(n)
u(n)

]
.

By comparing the realizations of Ω+ and ΩR
+, the following properties are observed:

1. The difference
[
x(z)
p(z)

]
−
[
xR(z)
pR(z)

]
is independent of hmm(z) and determined by u(z),

namely, the identity in Eq. (3.5) holds.

2. The difference zl

[
x(z)
p(z)

]
−Eλ(l)

[
xR(z)
pR(z)

]
is independent of u(z) and determined by hmm(z)

as follows:

zl

[
x(z)
p(z)

]
− Eλ(l)

[
xR(z)
pR(z)

]
=
(
zlI − Eλ(l)

)
(zI −HFH)−1H−1

FH

[
− 1
λ2
B1

O

]
hmm(z).

These properties yield the following identity:

ΩR
+λ = Ω+λ +

[
O χz−l�λ

χ∼
z−l�λ

O

]
.

Taking the inverse Schur complementation transform S−1(·) of this identity, we obtain Eq. (3.4).

Remark 6. In Lemma 2, it is explicitly stated that the state variables (x, p) should be decom-
posed as in Eq. (3.5) when the J-spectral density Φ+λ is transformed according to Eq. (3.4).
Note that as λ→ ∞, Eλ(l) becomes the lower triangular matrix, and the first row in Eq. (3.5)
coincides with the internal state decomposition proposed in the corresponding H 2 control prob-
lem in Chapter 2.
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By Lemma 2, the delay-free ΦR
+λ is obtained by multiplying Φ+λ by the bi-stable transfer

function and its para-conjugate from the right and left, respectively. Moreover, χm�λ in
Eq. (3.4) is strictly causal. Therefore, it is necessary for (SF1) that there exists a stable
J-spectral factor MR

+ λ with strictly causal
(
M

R(−1)
+λ

)
12

such that

ΦR
+λ = M

R (−∼)
+ λ

[−λ2ΛR
c λ O

O RR
mmc22 λ

]
M

R (−1)
+ λ . (3.6)

This necessity is equivalent to the following conditions (C1) and (C2).

(C1) The KYP equation

FR ∗
λ RR

mm c λF
R
λ = Q+A∗XR

λ A−XR
λ ,

−RR
mmc λF

R
λ =

[
O SD

2λ(l)
]∗ +

[
B1 B

D
2 λ(l) −B1χm0 λ

]∗
XR

λ A,

RR
mmc λ = RR

mmλ +
[
B1 B

D
2 λ(l) −B1χm0 λ

]∗
XR

λ

[
B1 B

D
2 λ(l) −B1χm0 λ

]
, (3.7)

where RR
mmλ :=

[ −λ2I λ2χz−l0 λ

λ2χ∗
z−l0 λ

RR
mm 22 λ

]
and

RR
mm22 λ := R2 −B∗

2A
−∗S2 +BD∗

2 λ (l)A−∗SD
2 λ(l) − λ2χ∗

z−l0 λχz−l0 λ,

has the stabilizing solution XR
λ such that the following matrix is stable:

AR
c λ := A+B1F

R
1 λ +

(
BR

2 λ −B1χm0 λ

)
FR

2 λ.

(C2) The Hermitian matrix RR
mmc λ in Eq. (3.7) satisfies the following definiteness conditions:

RR
mm c22 λ > O, −λ2ΛR

c λ := RR
mmc11 λ −RR

mmc12 λR
R (−1)
mm c 22 λR

R
mm c21 λ < O.

Remark 7. Since Eλ(θ) is a symplectic matrix, the following identity holds:

D−∗
λ (θ)

[
O −A−∗

A−1 O

]
D−1

λ (θ) =
[
O −A−∗

A−1 O

]
.

Therefore, −B∗
2A

−∗S2 +BD∗
2 λ (θ)A−∗SD

2 λ(θ) is an Hermitian matrix.

The following lemma represents the stabilizing solution of the KYP equation in (C1) using
that of the standard KYP equation in (X).

Lemma 3. Suppose that for any fixed λ ≥ γ, the KYP equation in (X) has the stabilizing
solution Xλ. Then, the condition (C1) is equivalent to the following condition (E).

(E) The (2, 2) block of EX λ(n) defined by Eq. (3.1) is regular for n = l:

det EX 22 λ(l) = det (XλE12 λ(l) + E22 λ(l)) �= 0.
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If the above condition (E) is satisfied, XR
λ , AR

c λ and FR
λ =:

[
FR T

1 λ FR T
2 λ

]T ∈ R
(dimw+dimu)×dim x

are constructed as follows:

XR
λ = (XλE12 λ(l) + E22 λ(l))−1 (XλE11 λ(l) + E21 λ(l)) , (3.8)

AR
c λ = E∗

X 22 λ(l)Ac λE−∗
X 22 λ(l), (3.9)

FR
1 λ =

1
λ2
B∗

1X
R
λ A

R
c λ + χz−l0 λF

R
2 λ, (3.10)

FR
2 λ = F2 λE−∗

X 22 λ(l). (3.11)

Proof. Subsection 3.7.1.

The following theorem gives a constructive solution of [SF], and the parameterization of the
solutions of [MM] are obtained from it.

Theorem 3. Suppose that the assumptions (X) and (H) are satisfied. The J-spectral factor-
ization of Φ+ γ satisfying (SF1)-(SF2) exists if and only if the following conditions (J1)-(J2)
are satisfied.

(J1) For ∀λ ≥ γ, the condition (E) in Lemma 3 is satisfied.

(J2) For ∀λ ≥ γ, the condition (C2) before Lemma 3 is satisfied.

Under the existence conditions, the J-spectral factor M+ λ in (SF1) is given as follows:

M+ λ =
[
I χz−l�λ

O I

]
MR

+ λ, (3.12)

where

MR
+ λ :=

⎡⎣ AR
c λ B1 BR

2 λ −B1χz−l0 λ

FR
1 λ

FR
2 λ

I O
O I

⎤⎦[ I O
FR

21 λ I

]
, (3.13)

FR
21 λ := −RR(−1)

mmc 22 λRmmc 21 λ.

Moreover, the J-inner function N+λ in (SF2) is given as follows:

N+λ = NλN
z−l

+ λ ,

where

Nλ :=

⎡⎣ Ac λ B1 B2

F1 λ

C1 +D12F2 λ

I O
O D12

⎤⎦[ I O
F 21 λ I

]
, (3.14)

F21 λ := −R−1
mmc 22 λRmmc 21 λ, (3.15)

N z−l

+λ :=
[

I O
−F21 λ I

]{
−
[

1
λ2B

∗
1A

−∗Q+ F1 λ
1
λ2B

∗
1A

−∗

F2 λ O

](
z−lI − E−1

λ (l)
)

· (zI −HFHλ)−1 [(∗1) (∗2)] +
[
I − 1

λ2B
∗
1A

−∗S2z
−l

O z−lI

]}[
I O

FR
21 λ I

]
, (3.16)

34



wz

u
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γ
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γ

� γχ z−l

Figure 3.3: Factorization of P+ mm.

(∗1) := −
[

I
−Xλ

]
E−∗

X 22 λ(l)B1, (∗2) := H−1
FH δ λ

[
B2

S2

]
−
[

I
−Xλ

]
E−∗

X 22 λ(l)
(
BD

2 λ(l) −B1χz−l0 λ

)
.

Proof. Subsection 3.7.2.

By taking the inverse chain scattering representation of the equality C (P+ mm) = N+ γM
−1
+ γ ,

P+ mm is factorized as
P+ mm = P+ stb γ � P+ mm tmp γ ,

where P+ stb γ := C−1 (N+ γ) and P+ mm tmp γ := C−1
(
M−1

+ γ

)
. By Eq. (3.12), the first output

yR
mm of MR

+ λ is given by

yR
mm(n) = ymm(n) − χz−l� γ(z)u(n), (3.17)

and P+ mm tmp γ has the structure shown in Fig. 3.3. In the figure, PR
+ mmtmp γ is defined

by PR
+ mmtmp γ := C−1

(
M

R(−1)
+ γ

)
. Moreover, P+ stb γ is J-lossless because N+ γ is a J-inner

function. Corollary 1 below represents a solution of [MM] in a form of state feedback law. It
is derived by focusing on the relationship between the state variables x(n) and xR(n).

Corollary 1. Suppose that the J-spectral factorizability conditions (J1)-(J2) are satisfied.
Then, the following state feedback law is stabilizing, and suppresses the H∞ norm of Tz w

below the given γ:

u(n) = F p R
2 γ x(n) + FR

21 γw(n) −
{
F p R

2 γ Πx γ(z) + FR
21 γχz−l� γ(z)

}
u(n), (3.18)

where F p R
2 λ is defined by

F p R
2 λ := FR

2 λ − FR
21 λF

R
1 λ.
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Proof. By Fig. 3.3, the control law

u(n) = Fl(C−1
(
MR

+ γ

)
, O)yR

mm(n)

makes the transfer function from w̃ to ũ zero, and is realized in the following form:

u(n) = F p R
2 γ x

R(n) + FR
21 γy

R
mm(n). (3.19)

It is an H∞ control law since P+ stb γ is J-lossless. Furthermore, Eq. (3.19) is rewritten as in
Eq. (3.18) using Eqs. (3.5) and (3.17), and recalling that ymm(n) = w(n).

3.4.2 Output estimation problem

In the previous section, we solved the J-spectral factorization problem [SF] and factorized
the generalized plant P+ mm, which is associated with the model matching problem [MM], as
shown in Fig. 3.3. Based on the factorization, we solve the original output feedback problem
by reducing it to a delay-free output estimation problem.

Recall that the state variable x(z) of the delay-free generalized plant P is decomposed as
the sum of xR(z) and Πx λ(z)u(z) in Eq. (3.5). Our principle is to estimate xR instead of x
along the corresponding H 2 solution method in Chapter 2.

The original measured output y is constructed with the state variable xR and measured
output yR

mm of PR
+ mmtmp γ as follows (Fig. 3.4):

y(n) = C2x(n) +D21w(n)

= C2x
R(n) +D21y

R
mm(n) +

{
C2Πx γ(z) +D21χz−l� γ(z)

}
u(n) (∵ Eqs. (3.5) and (3.17))

=
(
C2 +D21F

R
1 γ

)
xR(n) +D21w̃(n) +

{
C2Πx γ(z) +D21χz−l� γ(z)

}
u(n). (3.20)

In Eq. (3.20), the following equation from Eq. (3.13) is used:

yR
mm(n) = FR

1 γx
R(n) + w̃(n).

Let P+ tmp γ : (w̃, u) → (ũ, y) be the generalized plant, which is derived by replacing the
measured output ymm of P+ mmtmp γ : (w̃, u) → (ũ, ymm) with the measured output y of
P+. From Eq. (3.20), it is seen that P+ tmp γ consists of the delay-free generalized plant
PR

+ tmp γ : (w̃, u) → (ũ, yR) and the following part:

y(n) = yR(n) +
{
C2Πx γ(z) +D21χz−l� γ(z)

}
u(n). (3.21)

The structure of P+ tmp is also depicted in Fig. 3.5. The generalized plant P+ tmp γ is in output
estimation form, and its state-space realization is given as follows:

xR(n+ 1) =
(
A+B1F

R
1 γ

)
xR(n) +B1w̃(n) +

(
BD

2 γ(l) −B1χz−l0 γ

)
u(n),

ũ(n) = −FR
2 γx

R(n) − FR
21 γw̃(n) + u(n),

yR(n) =
(
C2 +D21F

R
1 γ

)
xR(n) +D21w̃(n).

The discussion so far shows that P+ is factorized as P+ = P+ stb γ �P+ tmp γ . Since P+ stb γ

is J-lossless, the following equivalences hold by Redheffer’s lemma [59]:
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C2 x +D21Π γ � γχ z−l

Figure 3.4: Construction of measured output y.

1. Stabilization of P+ ⇐⇒ Stabilization of P+ tmp γ .

2. ‖Tz w‖∞ < γ ⇐⇒
∥∥∥RR(1/2)

mmc γ Tũ w̃ΛR (−1/2)
c γ

∥∥∥
∞
< γ.

Therefore, the H∞ control problem for P+ is reduced to that for P+ tmp γ .
The second term on the right-hand side of Eq. (3.21) is the strictly causal and stable

transfer function multiplied to u. We include its copy into the controller K+ as shown in
Fig. 3.6, where KR

+ is the undetermined part of K+. Then the problem of parameterizing the
controller K+ for P+ tmp γ is reduced to that of parameterizing the controller KR

+ for PR
+ tmp γ .

In the sequel, we solve the delay-free H∞ control problem for PR
+ tmp γ , and obtain the

parameterization of KR
+ . Noting that PR

+ tmp γ is in the output estimation form, it is done via
the factorization of the J-spectral density Φ́R

+tmp:

Φ́R
+tmp γ := ṔR∼

+ τ γ

[
−γ2Λ́R

tmp γ O

O ẂR
tmp γ

]
ṔR

+ τ γ , Λ́R
tmp γ := R

R (−1)
mm c 22 γ , Ẃ

R
tmp γ := ΛR (−1)

c γ ,

where

ṔR
+ τ γ :=

[
ÁR ∗

τ γ ĆR ∗
τ γ

B́R ∗
τ γ D́R ∗

τ γ

]
,

ÁR
τ γ := AR

c γ , Ć
R
τ γ :=

[ −FR
2 γ

C2 +D21F
R
1 γ

]
, D́R

τ γ :=
[
I −FR

21 γ

O D21

]
,

B́R
τ γ :=

[− (
BD

2 γ(l) −B1χz−l0 γ

)
B1 +

(
BD

2 γ(l) −B1χz−l0 γ

)
FR

21 γ

]
.

The solvability of the H∞ output estimation problem for PR
+ tmp γ , or equivalently the J-

spectral factorizability of Φ́R
+ tmp γ coincides with the following conditions (T1) and (T2).
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Figure 3.5: Structure of P+ tmp.

(T1) The KYP equation

LR
tmp γŔ

R
tmp c γL

R ∗
tmp γ = Q́R

tmp γ + ÁR
τ γY

R
tmp γÁ

R ∗
τ γ − Y R

tmp γ ,

−ŔR
tmp c γL

R ∗
tmp γ = ŚR

tmp γ + ĆR
τ γY

R
tmp γÁ

R ∗
τ γ ,

ŔR
tmp c γ = ŔR

tmp γ + ĆR
τ γY

R
tmp γĆ

R ∗
τ γ , (3.22)[

Q́R
tmp γ ŚR ∗

tmp γ

ŚR
tmp γ ŔR

tmp γ

]
:=

[
B́R

τ γ

D́R
τ γ

][
−γ2Λ́R

tmp γ O

O ẂR
tmp γ

][
B́R

τ γ

D́R
τ γ

]∗
has the positive semidefinite stabilizing solution Y R

tmp γ such that the following matrix
is stable:

ÁR
τ c γ := ÁR

τ γ + LR
tmp1 γĆ

R
τ1 γ + LR

tmp2 γĆ
R
τ2 γ .

(T2) The Hermitian matrix ŔR
tmp c γ in Eq. (3.22) satisfies the following definiteness condi-

tions:

ŔR
tmp c 22 γ > O, −γ2Λ́R

tmp c γ := ŔR
tmp c 11 γ − ŔR

tmp c 12 γŔ
R (−1)
tmp c 22 γŔ

R
tmp c 21 γ < O.

The relationship between the stabilizing solutions of the KYP equations in (Y) and (T1)
are given in the following lemma.

Lemma 4. Under the condition (Y), the existence of the positive semidefinite stabilizing
solution Y R

tmp γ in (T1) is equivalent to the following condition (Z):

(Z) The maximal eigenvalue of YγX
R
γ is less than γ2: λmax

(
YγX

R
γ

)
< γ2.

If the above condition is satisfied, Y R
tmp γ , ÁR

τ c γ and LR
tmp γ =:

[
LR

tmp1 γ LR
tmp2 γ

]
are given by

Y R
tmp γ = ZR(−1)

γ Yγ , Á
R
τ c γ = ZR(−1)

γ Ác γZ
R
γ ,
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Figure 3.6: Internal model structure of K+.

LR
tmp1 γ = ZR (−1)

γ

(
BD

2 γ(l) +
1
γ2
Ác γYγS

D
2 γ(l) + L2 γD21χz−l0 γ

)
, LR

tmp2 γ = ZR(−1)
γ L2 γ ,

where ZR
γ := I − 1

γ2
YγX

R
γ .

Proof. Subsection 3.7.3.

After parameterizing KR
+ from the J-spectral factor of Φ́R

+tmp γ , the complete structure of
K+ is identified as shown in Theorem 4 below. In the theorem, the condition (T1) is replaced
with the condition (Z) by Lemma 4.

Theorem 4. Under the assumptions (X), (H) and (Y), the discrete-time H∞ controller K+

for P+ exists if and only if the J-spectral factorizability conditions (J1)-(J2), and the output
estimation conditions (Z) and (T2) are satisfied.

If the existence conditions are satisfied, the H∞ controller K+ : (y, µ) → (u, ν) is param-
eterized in the Smith predictor form (Fig. 3.7). It consists of the measurement compensation
part:

yR(n) = y(n) − {
C2Πx γ(z) +D21χz−l� γ(z)

}
u(n)

and the observer-based controller KR
+ estimating the state variable estimating xR:

KR
+ = Fl(JR

+ γ , L
R
tmp12 +Q+(z)), LR

tmp12 γ := −ŔR
tmp c 12 γŔ

R(−1)
tmp c 22 γ ,

where ∀Q+(z) ∈ H∞ is the Youla parameter such that∥∥∥Λ́R(−1/2)
tmp c γ Q+Ŕ

R(1/2)
tmp c 22 γ

∥∥∥
∞
< γ.
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Figure 3.7: Discrete-time H∞ suboptimal controllers in Smith form.

The realization of JR
+ γ is given by

JR
+ γ :=

⎡⎣ AR
c γ + LR

tmp2 γ

(
C2 +D21F

R
1 γ

) −LR
tmp2 γ LR

tmp1 γ

FR
2 γ

− (
C2 +D21F

R
1 γ

) O I
I O

⎤⎦ .

Remark 8. Theorem 4 claims that the output feedback controller exists if and only if both
of the full information and output estimation problems are solvable. The solvability of the
full information problem requires the J-spectral factorizability conditions (J1)-(J2). The solv-
ability of the output estimation problem requires the conditions (Z) and (T2). Note that the
conditions (E) and (C2) should be checked for infinitely many points of λ. Therefore, the im-
plementation of the H∞ requires more computational burden than the H 2 control case where
the H 2 controller in the Smith form was implementable under the solvability of the delay-free
H 2 control problem.

3.5 Alternative solvability condition via min-max optimization

The J-spectral factorizability conditions (J1)-(J2) compose a part of the solvability con-
ditions for the output feedback problem. It requires verifying the regularity of the subblock
of the symplectic matrix on the unbounded interval. In this section, we consider the min-max
optimization approach in the full information problem. While the J-spectral factorization the-
ory enables to generalize the delay function to general inner functions in the frequency-domain
representation [21], the min-max optimization theory is suitable for considering time-domain
specifications such as the initial-condition uncertainty and finite-horizon control [17].

The min-max optimization approach yields the H∞ disturbance attenuation condition
which requires checking the matrix positive definiteness only on finitely many points. Fur-
thermore, the J-spectral factorizability condition is proved to be equivalent to the H∞ distur-
bance attenuation condition, and consequently that approach is confirmed to yield the same
control law as the min-max optimization approach.
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Consider the multi-step input-delayed plant P+ FI:

x(n+ 1) = Ax(n) +B1w(n) +B2u(n− l), (3.23)
z(n) = C1x(n) +D12u(n− l),

where the state variable x(n) and disturbance w(n) are assumed to be available for the control
purpose, and the delay length l is a non-negative integer. First, let us review the technique
of the state-space augmentation. According to it, the state variable υ(n) maintaining the
history of the past control input are introduced:

υ(n) :=

⎡⎢⎢⎢⎣
υ(1, n)
υ(2, n)

...
υ(l, n)

⎤⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎣
u(n− 1)
u(n− 2)

...
u(n− l)

⎤⎥⎥⎥⎦ ∈ R
l·dimu.

Then, P+ FI is rewritten into the delay-free form:[
x(n+ 1)
υ(n+ 1)

]
= Ã

[
x(n)
υ(n)

]
+ B̃1w(n) + B̃2u(n),

z(n) = C̃1

[
x(n)
υ(n)

]
+ D̃12u(n),

Ã :=
[
A B2Γ1

O S
]
, B̃1 :=

[
B1

O

]
, B̃2 :=

[
O
∆l

]
, C̃1 :=

[
C1 D12Γ1

]
, D̃12 := O,

S :=

⎡⎢⎢⎢⎢⎢⎢⎣
O I
O O I
...

. . . . . .
... O I
O O · · · · · · O

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
l·dimu×l·dimu,

∆l :=
[
OT OT · · · OT IT

]T ∈ R
l·dimu×dimu,

Γ1 :=
[
I O O · · · O

] ∈ R
dimu×l·dimu.

Referring to the above augmented state-space representation, let us introduce the following
assumptions (A+1)-(A+2).

(A+1)
(
Ã, B̃2

)
is stabilizable.

(A+2) For ∀ θ ∈ [−π, π],

[
Ã− ejθI B̃2

C̃1 D̃12

]
is of full column rank.

Under the assumptions (A+1)-(A+2), the H∞ control problem with the performance bound
γ is solvable if and only if the solution of the standard KYP equation

F̃ ∗
λ R̃mm c λF̃λ = Q̃+ Ã∗X̃λÃ− X̃λ,

−R̃mm c λF̃λ = S̃∗ + B̃∗X̃λÃ,

R̃mmc λ = R+
mmλ + B̃∗X̃λB̃, (3.24)
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B̃ :=
[
B̃1 B+2

]
, S̃ :=

[
O O

]
,

Q̃ :=
[
Q S2Γ1

Γ∗
1S

∗
2 Γ∗

1R2Γ1

]
, R̃mmλ :=

[−λ2I O
O O

]
,

[
Q S2

S∗
2 R2

]
:=

[
C1 D12

]∗ [
C1 D12

]
for the augmented system satisfies the following conditions (FI+1)-(FI+2) for λ = γ.

(FI+1) The solution X̃λ is a positive semidefinite matrix such that Ã+ B̃F̃λ is stable.

(FI+2) R̃mmc λ satisfies the definiteness conditions:

R̃mm c22 λ > O, −λ2Λ+
c λ := R̃mmc11 λ − R̃mmc12 λR̃

−1
mm c 22 λR̃mm c21 λ < O.

If the conditions (FI+1)-(FI+2) are satisfied for λ = γ, then the H∞ state feedback law is
given by

u(n) =
(
F̃2x γ − F̃21 γF̃1x γ

)
x(n) +

(
F̃2υ γ − F̃21 γF1υ γ

)
υ(n) + F̃21 γw(n), (3.25)

where F̃ix λ and F̃iυ λ (λ ≥ γ, i = 1, 2) are the subblocks of F̃λ partitioned as

F̃λ =

[
F̃1 λ

F̃2 λ

]
∈ R

(dim w+dimu)×(dim x+l·dimu),

F̃1 λ =
[
F̃1x λ F̃1υ λ

]
∈ R

dimw×(dim x+l·dimu), F̃2 λ =
[
F̃2x λ F̃2υ λ

]
∈ R

dimu×(dim x+l·dimu)

conformably with w(n), u(n), x(n) and υ(n), and F̃21 λ (λ ≥ γ) is defined by

F̃21 λ := −R̃−1
mmc 22 λR̃mmc 21 λ. (3.26)

Note that the augmented matrix Ã is sparse and singular even if A is not. Moreover, its
order is given by dimx + l, and increases linearly with respect to the delay length. Those
properties of Ã make it difficult to compute X̃λ for large delay lengths [4], [49].

In the sequel, we consider the min-max optimization approach for the efficient construction
of the discrete-time H∞ state feedback law. The computation of the stabilizing solution of
the augmented KYP equation is reduced to that of the standard KYP equation

F ∗
λRmm c λFλ = Q+A∗XλA−Xλ,

−Rmm c λFλ = S∗ +B∗XλA,

Rmmc λ = Rmmλ +B∗XλB,

B :=
[
B1 B2

]
, S :=

[
O S2

]
, Rmm λ :=

[−λ2I O
O R2

]
associated with the H∞ full information problem in the delay-free case.
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The assumption (X) ensures the assumptions (A+1)-(A+2), and that, in the delay-free
case (l = 0), the H∞ state feedback law is obtained as follows:

u(n) = (F2 γ − F21 γF1 γ)x(n) + F21 γw(n),

where F1 λ and F2 λ (λ ≥ γ) are the subblocks of Fλ partitioned as

Fλ =
[
F1 λ

F2 λ

]
∈ R

(dimw+dimu)×dimx

conformably with w(n) and u(n), and F21 λ (λ ≥ γ) is defined by F21 λ := −R−1
mmc 22 λRmmc21 λ.

3.5.1 Min-max optimization approach

Let us focus on the following min-max optimization problem:

max
w∈�2[0,∞)

min
u∈�2[0,∞)

Jλ(x(0), υ(0); w, u),

where the infinite-horizon functional Jλ(x(0), υ(0); w, u) is defined by

Jλ(x(0), υ(0); w, u) :=
∞∑

n=0

‖z(n)‖2
2 − λ2 ‖w(n)‖2

2

for w ∈ �2([0, ∞), R
dimw) and u ∈ �2([0, ∞), R

dimu). We reduce the infinite-horizon opti-
mization to the maximization of the finite-horizon cost functional

JFH λ(x(0), υ(0); w) := x∗(l)Xλx(l) +
l−1∑
n=0

‖z(n)‖2
2 − λ2 ‖w(n)‖2

2 .

This enables to characterize the discrete-time H∞ disturbance attenuation condition in terms
of the following backward Riccati difference equation:

Xλ(n− 1) = Q+A∗
(
I − 1

λ2
Xλ(n)B1B

∗
1

)−1

Xλ(n)A, (n = l, l − 1, . . . , 1) , Xλ(l) = Xλ.

(3.27)

The following preliminary lemma ensures the solution of the finite-horizon optimization.

Lemma 5. The following conditions (N) and (R) are equivalent:

(N) The cost functional JFH λ(x(0), υ(0); w) is negatively coercive under the zero initial con-
dition:

JFH λ(0, 0; w) ≤ −ε2 ‖w‖2
�2[0, l−1] (3.28)

for ∃ ε > 0 and ∀w(·) ∈ �2([0, l − 1], R
dimw).

(R) The solution Xλ(n) of the Riccati difference equation satisfies the definiteness conditions:

λ2I −B∗
1Xλ(n+ 1)B1 > O (n = l − 1, l − 2, . . . , 0) .
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If either of them is satisfied, the finite-horizon optimization admits the unique maximizer,
and its value is given by the quadratic form

max
w∈�2[0, l−1]

JFH λ(x(0), υ(0); w) =
[
x(0)
υ(0)

]∗
X̃λ

[
x(0)
υ(0)

]
,

where X̃λ is some positive semidefinite matrix.

Proof. The equivalence of the conditions (N) and (R) is shown by the dynamic programming
argument [15], [17].

The condition (R) enables to complete the square in JFH λ(x(0), υ(0); w) as follows:

JFH λ(x(0), υ(0); w) =
[
x(0)
υ(0)

]∗
X̃λ

[
x(0)
υ(0)

]
−

l−1∑
n=0

∥∥∥(λ2I −B∗
1Xλ(n)B1

)1/2 (w(n) − w∗(n))
∥∥∥2

2
,

(3.29)

where w∗(n) and X̃λ are constructed using the Riccati difference equation. By Eq. (3.29),
the unique maximizer is w∗.

Choosing the disturbance w(n) = 0 in Eq. (3.29), we have the identity[
x(0)
υ(0)

]∗
X̃λ

[
x(0)
υ(0)

]
= JFH λ(x(0), υ(0); 0) +

l−1∑
n=0

∥∥∥(λ2I −B∗
1Xλ(n)B1

)1/2
w∗(n)

∥∥∥2

2
.

Therefore, X̃λ is positive semidefinite.

The following lemma shows that the value of the mim-max optimization is equal to that
of the finite-horizon optimization.

Lemma 6. The H∞ full information problem with the performance bound λ is solvable, only
if the condition (R) in Lemma 5 is satisfied. Moreover, the state feedback strategies:

w∗(n) =

{
arg max

w∈�2[0, l−1]
JFH λ(x(0), υ(0); w) (0 ≤ n ≤ l − 1)

F1 λx(n) (n ≥ l)
, (3.30)

u∗(n) = F2 λx(n + l) (n ≥ 0) (3.31)

attain the optimal value of the min-max optimization, and it is expressed as

Jλ(x(0), υ(0); w∗, u∗) = max
w∈�2[0, l−1]

JFH λ(x(0), υ(0); w).

Proof. Let us split Jλ(x(0), υ(0); w, u) as follows:

Jλ(x(0), υ(0); w, u) = JFH λ(x(0), υ(0); w) +
∞∑

n=0

‖z(n+ l)‖2
2 − λ2 ‖w(n + l)‖2

2 ,
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where the first term on the right-hand side is independent of the control input as in [52]. By
the assumption (X), the above equation is rewritten as

Jλ(x(0), υ(0); w, u) =JFH λ(x(0), υ(0); w)

+
∞∑

n=0

∥∥∥R1/2
mmc 22 λ {u(n) − umin(n)}

∥∥∥2

2
− λ2

∞∑
n=0

∥∥∥Λ1/2
c λ {w(n + l) − F1 λx(n+ l)}

∥∥∥2

2
,

where umin(n) is temporarily defined by

umin(n) := (F2 λ − F21 λF1 λ) x(n+ l) + F21 λw(n + l). (3.32)

Hence, the control input u(n) := umin(n) minimizes Jλ(x(0), υ(0);w, u), and the minimum is
given by

Jλ(x(0), υ(0); w, umin) = JFH λ(x(0), υ(0); w) − λ2
∞∑

n=0

∥∥∥Λ1/2
c λ {w(n + l) − F1 λx(n+ l)}

∥∥∥2

2
.

(3.33)

The following disturbance on the horizon [l, ∞) maximizes the second term of the right-hand
side of Eq. (3.33):

w∗(n+ l) := F1 λx(n+ l) (n = 0, 1, . . .) . (3.34)

Substituting Eq. (3.34) into Eq. (3.32) with w(n+ l) := w∗(n+ l), we find the control input
in Eq. (3.31).

If an H∞ control law exists, for ∃ ε > 0, the following inequalities should hold under the
zero initial condition:

min
u∈�2[0,∞)

Jλ(0, 0; w, u) ≤ −ε2 ‖w‖2
�2[0,∞) ≤ −ε2 ‖w‖2

�2[0, l−1] .

Substituting w∗(n + l) in Eq. (3.34) into the above inequalities leads to Eq. (3.28). This
implies, by Lemma 5, the necessity of the condition (R) and the existence of the maximizer
of JFH λ(x(0), υ(0); w).

The optimal strategies in Eqs. (3.30) and (3.31) are in time-varying form. We prepare
the following lemma to rewrite them into time-invariant form in Lemma 9.

Lemma 7. Introduce the auxiliary variables p(n) ∈ R
dimx and

κ(n) :=
[
κ(1, n)T κ(2, n)T · · · κ(l, n)T

]T ∈ R
l·dimu.

Then w∗(n) and u∗(n) in Eqs. (3.30) and (3.31) are generated from the following time-
invariant equations:

x(n + 1) = Ax(n) +B1w∗(n) +B2Γ1υ(n), (3.35)
A∗p(n+ 1) = Qx(n) + p(n) + S2Γ1υ(n), (3.36)
υ(n + 1) = Sυ(n) + ∆lu∗(n), (3.37)

S∗κ(n + 1) = Γ∗
1S

∗
2x(n) − Γ∗

1B
∗
2p(n+ 1) + κ(n), (3.38)

0 = −B∗
1p(n+ 1) − λ2w∗(n), (3.39)

0 = ∆∗
l κ(n+ 1) +R2u∗(n), (3.40)

p(n+ l) = −Xλx(n+ l). (3.41)
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Proof. First we remark on the generation of w∗(n) (0 ≤ n ≤ l − 1). Introduce p(n) as the
Lagrange multiplier for the state variable x(n) on the horizon [0, l − 1], then the first-order
conditions for the extremum of JFH λ(x(0), υ(0); w) are given by Eqs. (3.35)-(3.37), (3.39)
and the following equation:

p(l) = −Xλx(l). (3.42)

Hence, w∗(n) (0 ≤ n ≤ l − 1) is generated from Eqs. (3.35)-(3.37), (3.39) and (3.42).
Second we remark on the generation of w∗(n) (n ≥ l) and u∗(n) (n ≥ 0). Noting that

κ(n) in Eqs. (3.38) and (3.40) acts as the lead element which transfers the future signal
S∗

2x(n+ l)−B∗
2p(n+ l+1) to the current control input u∗(n), it is verified that w∗(n) (n ≥ l)

and u∗(n) (n ≥ 0) are generated from Eqs. (3.35)-(3.40) and (3.42).
In summary, w∗(n) and u∗(n) are generated from Eqs. (3.35)-(3.40) and (3.42). We

can replace this Eq. (3.42) with Eq. (3.41), since the constraint in Eq. (3.42) is positively
invariant under the time evolution defined by Eqs. (3.35)-(3.40).

The following lemma is introduced to solve the two-point boundary-value problem defined
by Eqs. (3.35), (3.36) and (3.41). It enables to derive the optimal strategies in time-invariant
form and the corresponding value of Jλ(x(0), υ(0); w, u) in Lemma 9. Furthermore, the posi-
tive semidefinite matrix defining the optimal value is assured to be the stabilizing solution of
the augmented KYP equation in Lemma 10.

Lemma 8. Under the assumption (H), the following conditions (D1) and (D2) are equivalent:

(D1) The Riccati difference equation (3.27) is well-defined for n = l − 1, l − 2, . . . , 0:

det
(
I − 1

λ2
Xλ(n + 1)B1B

∗
1

)
�= 0. (3.43)

(D2) The (2, 2) block of EX λ(l−n) defined by Eq. (3.1) is regular for n = l−1, l−2, . . . , 0:

det (XλE12 λ(l − n) + E22 λ(l − n)) �= 0. (3.44)

If either of the above conditions is satisfied, the solution Xλ(n) of the backward Riccati dif-
ference equation is represented as

Xλ(n) = (XλE12 λ(l − n) + E22 λ(l − n))−1 (XλE11 λ(l − n) + E21 λ(l − n)) . (3.45)

Proof. Subsection 3.7.4.

Lemma 9. The optimal strategies in Eqs. (3.30) and (3.31) are represented in the following
time-invariant forms for any time instant n ≥ 0:

w∗(n) = F̃1x λx(n) + F̃1υ λυ(n), (3.46)

u∗(n) = F̃2x λx(n) + F̃2υ λυ(n), (3.47)
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where the feedback gains are constructed as follows:

F̃1x λ := − 1
λ2
B∗

1A
−∗ {Q−Xλ(0)} ,

F̃1υ λ :=
[
F̃1υ λ(1) F̃1υ λ(2) · · · F̃1υ λ(l)

]
,

F̃1υ λ(θ) := − 1
λ2
B∗

1A
−∗

{
S2 δ1,θ −

[
Xλ(0) I

]
H−1

FH δ λ

[
BD

2 λ(θ)
SD

2 λ(θ)

]}
(θ = 1, 2, . . . , l) ,

F̃2x λ := F̃2λ {E11 λ(l) − E12 λ(l)Xλ(0)} ,
F̃2υ λ :=

[
F̃2υ λ(1) F̃2υ λ(2) · · · F̃2υ λ(l)

]
,

F̃2υ λ(θ) := F2λ

[E11 λ(l) − E12 λ(l)Xλ(0) O
]
H−1

FH δ λ

[
BD

2 λ(θ)
SD

2 λ(θ)

]
(θ = 1, 2, . . . , l) ,

and Xλ(0) is given by Eq. (3.45) with n = 0. Moreover, let X̃λ be the positive semidefinite
matrix defining the optimal value of the min-max optimization:

Jλ(x(0), υ(0); w∗, u∗) =
[
x(0)
υ(0)

]∗
X̃λ

[
x(0)
υ(0)

]
,

and partition it conformably with x(0) and υ(0) as

X̃λ =

[
X̃x λ X̃xυ λ

X̃υx λ X̃υ λ

]
. (3.48)

Then each of the above blocks is given as follows:

X̃x λ := Xλ(0),

X̃xυ λ :=
[
X̃xυ λ(1) X̃xυ λ(2) · · · X̃xυ λ(l)

]
,

X̃xυ λ(θ) :=
[
Xλ(0) I

]
H−1

FH δ λ

[
BD

2 λ(θ)
SD

2 λ(θ)

]
(θ = 1, 2, . . . , l) ,

X̃υx λ := X̃∗
xυ λ,

X̃υ λ :=

⎡⎢⎢⎢⎢⎣
X̃υ λ(1, 1) X̃υ λ(1, 2) · · · X̃υ λ(1, l)

X̃υ λ(2, 1) X̃υ λ(2, 2) · · · ...
...

...
. . .

...
X̃υ λ(l, 1) · · · · · · X̃υ λ(l, l)

⎤⎥⎥⎥⎥⎦ ,

X̃υ λ(φ, θ) :=
(
R2 − S∗

2A
−1B2

)
δφ, θ + SD ∗

2 λ (φ)A−1BD
2 λ(θ)

− 1
λ2
SD∗

2λ (φ)A−1B1B
∗
1A

−∗SD
2λ(θ) +BD∗

2 λ (φ)Xλ(0)BD
2 λ(θ) (if 1 ≤ θ ≤ φ ≤ l) ,

X̃υ λ(φ, θ) := X̃υ λ(θ, φ)∗ (if 1 ≤ φ < θ ≤ l) .
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Proof. Fix the time instant n ≥ 0 and focus on the evolution equations (3.35)-(3.41) on the
horizon [n, n+ l]. By the variation of constants formula, the state variables x(n + t) and
p(n + t) (t = 0, 1, . . . , l) in the two-point boundary-value problem defined by Eqs. (3.35),
(3.36) and (3.41) are expressed with the state variables x(n) and υ(n) as follows:[

x(n + t)
p(n+ t)

]
=Eλ(t)

[
I

−Xλ(0)

]
x(n)

+
t−1∑
θ=0

Eλ(t)
[

I O
−Xλ(0) O

]
H−1

FH δ λ

[
BD

2 λ(θ + 1)
SD

2 λ(θ + 1)

]
υ(θ + 1, n)

−
l−1∑
θ=t

Eλ(t)
[

O O
Xλ(0) I

]
H−1

FH δ λ

[
BD

2 λ(θ + 1)
SD

2λ(θ + 1)

]
υ(θ + 1, n). (3.49)

Substituting p(n+ t)|t=1 and x(n+ t)|t=l into Eqs. (3.39) and (3.31), respectively, Eqs. (3.46)
and (3.47) are derived.

Next let us derive the closed-form expression for X̃λ in Eq. (3.48). As noted in the proof of
Lemma 7, the conditions for the extremum of JFH λ(x(0), υ(0); w) are given by Eqs. (3.35)-
(3.37), (3.39) and (3.42). Then the summand of JFH λ(x(0), υ(0); w) is represented by the
increment of Re p∗(n)x(n) as follows:

‖z(n)‖2
2 − λ2 ‖w(n)‖2

2 = {Re p∗(n+ 1)x(n + 1) − Re p∗(n)x(n)}
+ Reυ∗(n+ 1, 0)B∗

2x(n) − Re υ∗(n+ 1, 0)S∗
2p(n+ 1)

+ υ∗(n+ 1, 0)R2υ(n+ 1, 0).

Summing the above equations for n = 0, 1, . . . , l − 1, we have the equation

JFH λ(x(0), υ(0); w∗) = − Re p∗(0)x(0) +
l−1∑
n=0

Re
(
H−1

FH δ λ

[
B2

S2

]
υ(n+ 1, 0)

)∗
Js

[
x(n+ 1)
p(n+ 1)

]

+
l−1∑
n=0

Reυ∗(n+ 1, 0)
(
R2 − S∗

2A
−1B2

)
υ(n + 1, 0).

Substituting x(n + t)|t=1 and p(n + t)|t=1 derived from Eq. (3.49) into the above equation,
the closed-form expression is determined.

Lemma 10. The positive semidefinite matrix X̃λ and feedback gain F̃λ constructed in Lemma 9
satisfy the augmented KYP equation, and Ã+ B̃F̃λ is stable.

Proof. Subsection 3.7.5.

The following theorem characterizes the discrete-time H∞ disturbance attenuation condi-
tion in terms of the Riccati difference equation.

Theorem 5. Under the conditions (X) and (H), the H∞ full information problem with the
performance bound γ is solvable if and only if the following conditions (DA1)-(DA2) are
satisfied.
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(DA1) For λ = γ, the condition (R) is satisfied.

(DA2) For λ = γ, X̃λ constructed in Lemma 9 satisfies the definiteness conditions in (FI+2).

Proof. By Lemma 6, the condition (DA1) is necessary. Moreover, by Lemma 10, X̃γ is the
stabilizing solution. Therefore, by the uniqueness of the stabilizing solution, it should satisfy
the definiteness conditions in (FI+2). The converse is obvious.

By summarizing Lemma 9 and Theorem 5, the design procedure for the H∞ state feedback
law with the performance bound γ is described as follows.

(Step1) Check the condition (DA1) by iterating the Riccati difference equation in Eq. (3.27).
If it is satisfied, apply Lemma 9 to construct F̃γ and X̃γ in Eqs. (3.46)-(3.48) with λ = γ.

(Step2) Check the condition (DA2) by substituting X̃γ into the right-hand side of Eq. (3.24)
with λ = γ. If it is satisfied, define F̃21 γ by Eq. (3.26) with λ = γ. Then implement
the state feedback law in Eq. (3.25).

3.5.2 Interpretation of approaches

In Subsections 3.4.1 and 3.5.1 we presented the two independent approaches for the
reduced-order construction of the H∞ state feedback law. Their feasibility conditions, namely,
the H∞ disturbance attenuation conditions (DA1)-(DA2) and the J-spectral factorizability
conditions (J1)-(J2) were seemingly different. In this section, we verify that the resulting
control laws are identical by focusing on a common interpretation to the conditions (DA1)
and (J1).

Define Gλ as the input-out mapping from {w(n)}l−1
n=0 to

(
{z(n)}l−1

n=0 , X
1/2
λ x(l)

)
under the

zero initial condition that x(0) = 0 and υ(0) = 0:

[
z

X
1/2
λ x(l)

]
= Gλw. The operator describes

the response of the regulated output and terminal state variable while the control input cannot
affect them due to the input-delay.

For the proof of the equivalence, we focus on the fact that the inequalities sup
w

‖Gλw‖2

‖w‖2

< λ

or λ2I − G∗
λ Gλ > O holds if and only if the condition (N) in Lemma 5 is satisfied.

The following lemma characterizes the eigenvalue configuration of G∗
λ Gλ in terms of the

symplectic matrix Eλ(n). It can be regarded as a discrete-time counterpart of Theorem 13.5.1
in [6].

Lemma 11. Let Mλ := σ (G∗
λ Gλ) \{0} be the set of the non-zero eigenvalues of G∗

λ Gλ. It is
characterized as follows:

Mλ =
{
µ2

∣∣ µ > 0 such that det (XλE12 µ(l) + E22 µ(l)) = 0
}
.

Proof. Subsection 3.7.6.
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We further derive the following lemma by interpreting the conditions (DA1) and (J1) as
the positive definiteness of the operator λ2I − G∗

λ Gλ.

Lemma 12. The conditions (DA1) in Theorem 5 and (J1) in Theorem 3 are equivalent.

Proof. ((J1) ⇒ (DA1)) Since Xλ is continuous and monotonically non-increasing with respect
to λ ≥ γ [17], there exists c ≥ γ such that for ∀λ > c the following inequality holds.

λ2I − G∗
λ Gλ > O. (3.50)

We show that the inequality (3.50) also holds for γ ≤ ∀λ ≤ c by contradiction. Suppose
that the inequality (3.50) does not hold for γ ≤ ∃λ ≤ c. Since the eigenvalues of λ2I −G∗

λ Gλ

are continuous with respect to λ, there exists γ ≤ λ0 ≤ c such that

σ
(
λ2

0I − G∗
λ0

Gλ0

) � 0. (3.51)

Note that the following inclusion holds by Lemma 11.

σ
(
λ2

0I − G∗
λ0

Gλ0

)
=
{
λ2

0

}− σ
(G∗

λ0
Gλ0

) ⊂ {
λ2

0

}− {0} ∪Mλ0 . (3.52)

By Eqs. (3.51) and (3.52), λ2
0 ∈ Mλ0 . Hence, we have

det (Xλ0E12 λ0(l) + E22 λ0(l)) = 0.

This contradicts the condition (E) for λ = λ0. Therefore, Eq. (3.50) holds for γ ≤ ∀λ ≤ c.
Substituting λ = γ into Eq. (3.50) and applying Lemma 5, we reach the condition (DA1).

((DA1) ⇒ (J1)) The inequality sup
w

‖Gγw‖2

‖w‖2

< γ holds by Lemma 5. By the non-increasing

monotonicity of Xλ, we have the following inequalities for ∀λ ≥ γ:

sup
w ∈ �2[0, l − 1]

w �= 0

‖Gλw‖2

‖w‖2

≤ sup
w ∈ �2[0, l − 1]

w �= 0

‖Gγw‖2

‖w‖2

< γ ≤ λ.

Again by Lemma 5, the condition (R) is satisfied for ∀λ ≥ γ. Furthermore, the condition (R)
implies the condition (E) by Lemma 8.

The following theorem claims the equivalence between the H∞ disturbance attenuation
condition in Theorem 5 and the J-spectral factorizability condition in Theorem 3. It also
evinces that the condition (J2), a part of the J-spectral factorizability condition, can be
weakened to the following condition (Jw2) for the multi-step delay functions.

(Jw2) For λ = γ, the condition (C2) is satisfied.

Theorem 6. The H∞ disturbance attenuation conditions (DA1)-(DA2), the J-spectral fac-
torizability conditions (J1)-(J2) and the weaker conditions (J1)-(Jw2) are equivalent.
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Proof. ((DA1)-(DA2) ⇒ (J1)-(J2)) By Lemma 12, the condition (J1) is satisfied. Therefore,
for ∀λ ≥ γ, RR

mm c λ in Eq. (3.7) is constructed by Lemma 3.
Recall that the conditions (DA1)-(DA2) are necessary and sufficient for the H∞ distur-

bance attenuation with the performance bound γ. This implies that for ∀λ ≥ γ, R̃mmc λ in
Eq. (3.24) is constructed by Lemma 9, and that the definiteness conditions on it in (FI+2)
are satisfied.

By direction calculation, it is verified that the weight matrices RR
mm c λ and R̃mmc λ con-

structed as above are equal:
RR

mmc λ = R̃mmc λ. (3.53)

This equality and the definiteness conditions on R̃mmc λ in (FI+2) enforce that those onRR
mm c λ

in (C2) be satisfied for ∀λ ≥ γ.
((J1)-(J2) ⇒ (J1)-(Jw2)) This direction is obvious.
((J1)-(Jw2) ⇒ (DA1)-(DA2)) By Lemma 12, the condition (DA1) is satisfied. Hence, X+ γ is
constructed by Lemma 9, and Eq. (3.53) with λ = γ holds. Then the condition (Jw2) implies
the condition (DA2).

The following theorem claims that the two approaches yield the identical control law.
Note that the representation z−θu(n) (θ = 1, 2, . . . , l) used in the J-spectral factorization
approach corresponds to u(n − θ) = υ(θ, n) in the augmented state-space approach.

Theorem 7. The H∞ state feedback law obtained in Corollary 1 is identical to that con-
structed following the steps (Step1)-(Step2).

Proof. By Lemmas 3 and 9, the state feedback gains of x(n) are identical: FR
1 γ = F̃1x γ ,

FR
2 γ = F̃2x γ . By Eqs. (3.26), (3.15) and (3.7) with λ = γ, the disturbance feedforward gains

of w(n) are also identical: FR
21 γ = F̃21 γ .

Since both of Πx γ(z) and χz−l� γ(z) are strictly causal, and of lth-order finite impulse
response, the third term on the right-hand side of Eq. (3.18) is rewritten as{

F γ(1)z−1 + F γ(2)z−2 + · · · + F γ(l)z−l
}
u(n)

for the appropriate matrices F γ(θ) (θ = 1, 2, . . . , l). Furthermore, it is verified that F γ(θ) is
identical to the state feedback gain of υ(θ, n), namely, F̃2υ γ(θ)− F̃21 γF̃1υ γ(θ) constructed by
Lemma 9 with λ = γ.

Remark 9. Both of the J-spectral factorizability conditions (J1)-(J2) and H∞ disturbance
attenuation conditions (DA1)-(DA2) explicitly indicate the additional requirements for the
corresponding delay-free KYP equation in (X) while the LQ reduced-order construction in
[43] is always possible if the Riccati equation for the delay-free case only has the positive
semidefinite stabilizing solution.

The J-spectral factorizability conditions (J1)-(J2) involves checking the regularity of EX 22 λ(l)
for the varying performance bound λ ≥ γ and fixed delay length θ = l. Due to this property
the J-spectral factorizability conditions (J1)-(J2) are suitable for finding the achievable per-
formance limits for large input delays. On the other hand, the H∞ disturbance attenuation
conditions (DA1)-(DA2) require the definiteness of λ2I − BT

1 Xλ(l − θ)B1 for θ ∈ [1, l] and
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fixed performance bound λ = γ. Therefore, the H∞ disturbance attenuation conditions (DA1)-
(DA2) are suitable for computing the maximal delay length for which a given performance
bound γ is achievable.

From the viewpoint of numerical accuracy, it seems that the H∞ disturbance attenuation
conditions (DA1)-(DA2) are superior to the J-spectral factorizability conditions (J1)-(J2)
because the former require only checking the matrix positive definiteness on finitely many
points of the parameter. The correspondence of the state feedback gains in Theorem 7 allows
us to implement the output feedback controller in Theorem 4 by replacing the J-spectral
factorizability condition with the H∞ disturbance attenuation condition.

3.6 Example

Consider the input-delayed second order system

x(n+ 1) =
[
1.1 0.1
0 −0.8

]
x(n) +

[
0.3
1.2

]
w(n) +

[
0.6
2.3

]
u(n− l),

z(n) =
[
1.2 0.3

]
x(n) + 2.2u(n − l).

The augmented KYP equation for this system has the order of 2 · (2 + l). The bisection
method of solving it iteratively is a straightforward way to compute the achievable full infor-
mation H∞ performance γopt

+ FI(l). However, numerical computation of its stabilizing solution
requires special effort [4], [49]. The results in this chapter enable to check the solvability of
the full information problem by only solving the KYP equations for the delay-free case and
checking the eigenvalue configurations. In the following subsections, we illustrate the features
of Theorems 3 and 5 by calculating γopt

+ FI(l) based on them.

3.6.1 Performance limit via J-spectral factorization

Let us calculate γopt
+ FI(l) based on Theorem 3. First, we need to find the minimal perfor-

mance bound γopt
+ E(l) satisfying the condition (J1). Its concrete expression is given by

γopt
+ E(l) = inf

{
γ > γopt

FI

∣∣ det EX 22 λ(l) �= 0 (∀λ ≥ γ)
}
,

where γopt
FI = 1.14 is the achievable H∞ performance for the delay-free case. Therefore, γopt

+ E(l)
is determined by the roots of the equation detEX 22 λ(l) = 0.

Since an upper bound for λ guaranteeing the non-zeroness of det EX 22 λ(l) is not available,
we traced det EX 22 λ(l) up to a sufficiently large λ, and determined the values of γopt

+ E(l) as
depicted in Fig. 3.8.

Next, we check the condition (J2) to determine γopt
+ FI(l) as follows:

γopt
+ FI(l) = inf

{
λ > γopt

+ FI (22)(l)
∣∣ ΛR

c λ > O
}
,

where γopt
+FI (22)(l) is defined using γopt

+ Ric(l):

γopt
+FI (22)(l) := inf

{
λ > γopt

+ Ric(l)
∣∣ RR

mm 22 λ > O
}
.
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Figure 3.8: Calculation of γopt
+ E(l) for 11 ≤ l ≤ 15.

From the graphs of λmin(RR
mm 22 λ) and λmin(ΛR

c λ) in Figs. 3.9 and 3.10, the definiteness con-
ditions on RR

mm λ are satisfied for ∀λ ≥ γopt
+ E(l). Therefore, in this example, γopt

+ FI(l) is found
to be equal to γopt

+E(l) (Table 3.1).
The values of γopt

+ FI(l) determined as above is depicted in Fig. 3.11. It is observed that the
achievable H∞ performance severely deteriorates as the input-delay length increases.

Table 3.1: Values of γopt
+ E , γopt

+ FI (22) and γopt
+ FI.

������λ
l

11 12 13 14 15

γopt
+ E 4.48 5.13 5.84 6.61 7.45

γopt
+FI (22) 4.48 5.13 5.84 6.61 7.45
γopt
+ FI 4.48 5.13 5.84 6.61 7.45
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Figure 3.9: Positive definiteness of RR
mm22 λ.

λ
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λ

R
λ

Figure 3.10: Positive definiteness of ΛR
c λ.

3.6.2 Performance limit via min-max optimization

In this subsection, we calculate γopt
+ FI(l) based on Theorem 5, and explain the advantages

of the disturbance attenuation conditions (DA1)-(DA2) over the J-spectral factorizability
conditions.

The first step is to find the minimal performance bound γopt
+ Ric(l) satisfying (DA1). Intro-
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Figure 3.11: Performance deterioration.

duce the following forward Riccati difference equation:

Xλ(θ + 1) = Q+A∗
(
I − 1

λ2
Xλ(θ)B1B

∗
1

)−1

Xλ(θ)A (θ = 0, 1, 2, . . .) , Xλ(0) = Xλ.

For fixed l and λ, the values of Xλ(l − θ) in (DA1) are given by Xλ(l − θ) = Xλ(θ) for
θ = 0, 1, . . . , l. Therefore, γopt

+ Ric(l) (γopt
+ Ric(0) := γopt

FI ) is determined as follows:

γopt
+ Ric(l) = inf

{
λ > γopt

+ Ric(l − 1)
∣∣ f(λ; l) > 0

}
,

where f(λ; l) := λmin(λ2I − B∗
1Xλ(l − 1)B1). We begin with finding γopt

+ Ric(l) as the zero of
f(λ; l) for l = 1. Then, we continue the same procedure recursively incrementing l as shown
in Fig. 3.12.

The recursive nature of the above procedure is suitable for successive examination of the
performance deterioration along the increasing input delay. More importantly, if we once find
a zero of f(λ; l), we can stop tracing it at that point. This is because λ2I −BT

1 Xλ(l − 1)B1

is proved to be non-decreasing with respect to λ > γopt
+ Ric(l − 1) [55].

From Figs. 3.8 and 3.12, we see that γopt
+ Ric(l) = γopt

+ E(l) for each delay length. This
coincidence of their values is consistent with the equivalence claimed in Lemma 12. For
λ > γopt

+ Ric(l) = γopt
+ E(l), as noted in the proof of Theorem 6, the equality R̃mm λ = RR

mmλ

holds, and hence the definiteness condition (DA2) on R̃mmλ is guaranteed by the definiteness
condition (J2) on RR

mm λ. Consequently, the calculation of γopt
+FI(l) by checking (DA1)-(DA2)

yields the same achievable performance.
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Figure 3.12: Calculation of γopt
+ Ric(l) for 11 ≤ l ≤ 15.

3.7 Proofs

3.7.1 Proof of Lemma 3

The KYP equation in (C1) is rewritten as the following generalized eigenvalue problem:

ΦR
+ σ λBR

λ = ΦR
+ δ λBR

λA
R
c λ, (3.54)

where BR
λ :=

[
IT −XR T

λ FR T
1 λ FR T

2 λ

]T,

ΦR
+ δ λ :=

⎡⎣ I O
O A∗

O
O

O (†1)∗ O

⎤⎦ , ΦR
+σ λ :=

⎡⎣ A O
Q I

(†1)
(†2)

(†2)∗ O RR
mm λ

⎤⎦ ,
(†1) =

[
B1 BD

2 λ(l) −B1χz−l0 λ

]
, (†2) =

[
O SD

2 λ(l)
]
.

After lengthy equivalence transformations, Eq. (3.54) is rewritten as follows:

Φσ λBλ = ΦδBλA
R
c λ, (3.55)

where Bλ :=
[
αT

λ − (Xλαλ + βλ)T φT
λ FR T

2 λ

]T
,
[
αλ

−βλ

]
:= EX λ(l)

[
I

Xλ −XR
λ

]
,

φλ :=FR
1 λ +

1
λ2
B∗

1A
−∗ (Q−XR

λ

)− 1
λ2
B∗

1A
−∗Qαλ +

1
λ2
B∗

1A
−∗ (Xλαλ + βλ) − 1

λ2
B∗

1A
−∗S2F

R
2 λ,

Φδ :=

⎡⎣ I O
O A∗

O
O

O B∗ O

⎤⎦ , Φσ λ :=

⎡⎣ A O
Q I

B
S

S∗ O Rmmλ

⎤⎦ .
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By the KYP equation in (X), the following identity holds:⎡⎣ I O
A∗

c λXλ I
O
F ∗

λ

B∗F ∗
λ O I

⎤⎦ (Φσ λ − zΦδ)

⎡⎣ I O
−Xλ I

O
O

Fλ O I

⎤⎦ = Φ×
σ λ − zΦ×

δ λ,

where

Φ×
δ λ :=

⎡⎣ I O
O A∗

c λ

O
O

O B∗ O

⎤⎦ , Φ×
σ λ :=

⎡⎣ Ac λ O
O I

B
O

O O Rmmc λ

⎤⎦ .
By the above identity, Eq. (3.55) is further rewritten as follows:

Φ×
σ λB×

λ = Φ×
δ λB×

λA
R
c λ, (3.56)

where B×
λ :=

[
αT

λ −βT
λ (φλ − F1 λαλ)T

(
FR

2 λ − F2 λαλ

)T ]T
.

From the second row of Eq. (3.56), we have

βλ −A∗
c λβλA

R
c λ = O. (3.57)

Since both Ac λ and AR
c λ are stable,

O = −βλ = EX 21 λ(l) + EX 22 λ(l)
(
Xλ −XR

λ

)
. (3.58)

Suppose that EX 22 λ(l) is not regular, then there exists v �= 0 such that vEX 22 λ(l) = 0.
Premultiplying v to Eq. (3.58), we have vEX 21 λ(l) = 0, and hence

[
0 v

] EX λ(l) = 0. This
contradicts the regularity of EX λ(l). Consequently, EX 22 λ(l) is regular.

By Eq. (3.58), XR
λ is given by Eq. (3.8) and

αλ = E−∗
X λ 22(l). (3.59)

Substituting Eqs. (3.58) and (3.59) into Eq. (3.56), we have Eq. (3.9). 3rd and 4th rows of
Eq. (3.56) yield

φλ − F1 λαλ = O, FR
2 λ − F2 λαλ = O.

From these equations, we obtain Eqs. (3.10)-(3.11).

3.7.2 Proof of Theorem 3

By Lemma 2, the conditions (C1) and (C2) are necessary, and the J-spectral factor M+ λ

is constructed as in Eq. (3.12). By Lemma 3, (C1) is replaced with (Σ).
For sufficiency, we prove that N+ λ defined by Eq. (3.3) is a J-inner function. By Eqs.

(3.4) and (3.6), Φ+λ is factorized as in Eq. (3.2) with M+λ in Eq. (3.12). Therefore, N+ λ

defined as in (SF2) satisfies the following identity:

N∼
+ λ

[−λ2I O
O I

]
N+ λ =

[−λ2ΛR
c λ O

O RR
mm c22 λ

]
. (3.60)
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On the other hand, using the transfer function

Mλ :=

⎡⎣ Ac λ B1 B2

F1 λ

F2 λ

I O
O I

⎤⎦[ I O
F21 λ I

]
,

we rewrite N+ λ as follows:

N+ λ = C (Pmm)Mλ ·M−1
λ

[
I χz−l�λ

O z−lI

]
MR

+ λ = Nλ ·N z−l

+λ ,

where Nλ and Nm
+ λ are equal to Eqs. (3.14) and (3.16), respectively. This fact is implied in

[63], [64]. Note that Nλ is the J-inner function which appears in the standard H∞ problem,
and satisfies the identity

N∼
λ

[−λ2I O
O I

]
Nλ =

[−λ2Λmm c λ O
O Rmm c22 λ

]
. (3.61)

In the following lemma, N z−l

+ λ is shown to be a J-inner function as well. Its proof is done by
an argument similar to the proof of Theorem 5.3 in [36]

Lemma 13. For ∀λ ≥ γ, N z−l

+λ is a J-inner function.

Proof. From Eqs. (3.60) and (3.61), Nm
+ λ is the J-unitary function which satisfies

Nm∼
+λ

[−λ2Λc λ O
O Rmmc22 λ

]
Nm

+ λ =
[−λ2ΛR

c λ O
O RR

mmc22 λ

]
. (3.62)

To show that it is a J-inner function, it suffices to show that Gλ(z) := N z−l

+11 λ(z) is bi-stable
for ∀λ ≥ γ [59]. From Eq. (3.16), Gλ is written as Gλ = I+ G̃λ, where G̃λ is a stable function
such that

∥∥∥G̃λ

∥∥∥
∞

→ 0 as λ → ∞. Therefore, by the small gain theorem, there exists c > 0

such that for ∀λ > c, G−1
λ is stable. Next, suppose that for γ ≤ ∃λ0 ≤ c, G−1

λ0
is unstable.

Then, by Nyquist’s theorem, there exists θ0 such that detGλ0(e
jθ0) = 0. Hence, for ∃ v �= 0,

we have Gλ0(e
jθ0)v = 0. On the other hand, from the (1, 1) block in Eq. (3.62), the following

equality holds:

−λ2
0Λ

R
c λ0

= −λ2
0G

∗
λ0

(ejθ0)Λc λ0Gλ0(e
jθ0) +N z−l ∗

+ 21 λ0
(ejθ0)Rmm c22 λ0N

z−l

+ 21 λ0
(ejθ0).

By multiplying v and v∗ from the right and left, respectively, we have a contradiction.

Consequently, N+ λ is a J-inner function because it is the products of the J-inner functions
Nλ and N z−l

+ λ .
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3.7.3 Proof of Lemma 4

To find the relationship between the solutions of the KYP equations in (T1) and (Y), we
apply the method in [20] of augmenting the pencils associated with them. First, the KYP
equation in (T1) is rewritten as the following generalized eigenvalue problem:

Φ́extR
+tmp σ γBτ γ = Φ́ext R

+ tmp δ γBτ γÁ
R ∗
τ c γ , (3.63)

where Bτ γ :=
[
IT −Y R T

tmpγ LR∗T
tmp1 γ LR∗T

tmp2 γ ψR∗T
tmp γ

]T,

Φ́ext R
+ tmp δ γ :=

⎡⎢⎢⎣ Φ́R
+tmp δ γ

O
O

O

O C1 O O

⎤⎥⎥⎦ , Φ́ext R
+ tmp σ γ :=

⎡⎢⎢⎣ Φ́R
+ tmp σ γ

O
O

O

O O O −γ2I

⎤⎥⎥⎦ ,

Φ́R
+ tmp δ γ :=

⎡⎣ I O

O ÁR
τ γ

O
O

O ĆR
τ γ O

⎤⎦ , Φ́R
+ tmp σ γ :=

⎡⎢⎣ ÁR ∗
τ γ O

Q́R
tmp γ I

ĆR ∗
τ γ

ŚR ∗
tmp γ

ŚR
tmp γ O ŔR

tmp γ

⎤⎥⎦ .
In Eq. (3.63), the unknown variable ψR

tmp γ is introduced to augment the pencil Φ́R
+tmp σ γ −

zΦ́R
+tmp δ γ to the pencil Φ́extR

+tmp σ γ−zΦ́ext R
+tmp δ γ . Similarly, the KYP equation in (Y) is rewritten

as the following generalized eigenvalue problem:

Φ́ext R
mmσ γBµ γ = Φ́extR

mm δ γBµγÁ
∗
c γ , (3.64)

where Bµγ :=
[
IT −Y T

γ L∗T
1 γ L∗T

2 γ ψR∗T
γ

]T,

Φ́extR
mm δ γ :=

⎡⎢⎢⎣ Φ́mm δ γ

O
O

O

O − (
FR

2 γ − FR
21 γF

R
1 γ

)
O O

⎤⎥⎥⎦ ,

Φ́extR
mmσ γ :=

⎡⎢⎢⎣ Φ́mmσ γ

O
O

O

(�1) (�2) (�3) −γ2Λ́R
tmp γ

⎤⎥⎥⎦ ,
(�1) = γ2Λ́R

tmp γ

(
BD

2 γ(l) −B1χz−l0 γ

)∗ − FR
21 γB

∗
1 , (�2) = γ2Λ́R

tmp γ

(
BD

2 γ(l) −B1χz−l0 γ

)∗
XR

γ ,

(�3) =
[
O −FR

21 γD
∗
21

]
,

Φ́mm δ :=

⎡⎣ I O
O A

O
O

O C O

⎤⎦ , Φ́mmσ γ :=

⎡⎣ A∗ O

Q́ I

C∗

Ś∗

Ś O Ŕmm γ

⎤⎦ .
In Eq. (3.64), the unknown variable ψR

γ is introduced to augment the pencil Φ́mmσ γ −zΦ́mm δ

to the pencil Φ́ext R
mmσ γ − zΦ́ext R

mm δ γ . It is determined from the last column in Eq. (3.64) and
given by

ψR
γ = BD

2 γ(l) +
1
γ2
Ác γYγS

D
2γ(l) + (B1 + L2 γD21)χz−l0 γ .
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Using the KYP equation in (C1), it is verified that the pencils Φ́ext R
+ tmp σ γ − zΦ́ext R

+tmp δ γ and
Φ́extR

mmσ γ − zΦ́extR
mm δ are related as follows:

Ul γ

(
Φ́ext R

+tmp σ γ − zΦ́extR
+tmp δ γ

)
Ur γ = Φ́extR

mmσ γ − zΦ́ext R
mm δ, (3.65)

where

Ul γ :=

⎡⎢⎢⎢⎢⎢⎣
I − 1

γ2A
∗XR

γ
1
γ2S

D
2 γ(l) O − 1

γ2C
∗
1

O I − 1
γ2 Q́X

R
γ BD

2 γ(l) O O

O O O O I

O − 1
γ2 Ś2X

R
γ D21χz−l0 γ I O

O 1
γ2F

R ∗
21 γB

∗
1X

R
γ I − FR

21χz−l0 γ O O

⎤⎥⎥⎥⎥⎥⎦ , Ur γ :=

⎡⎢⎢⎢⎢⎣
I 1

γ2X
R
γ O O O

O I O O O
O O O O I
O O O I O

O O I O O

⎤⎥⎥⎥⎥⎦ .

Eq. (5.30) implies that the solutions of KYP equations in (T1) and (Y) are related as follows:

Bτ γZ
R ∗
γ = Ur γBµ γ .

3.7.4 Proof of Lemma 8

For the proof of the representation (3.45), see Lemma 3.5.2 in [2]. We prove the equivalence
of (D1) and (D2) by induction. Let 0 ≤ k ≤ l− 1 be an integer, and suppose that Eqs. (3.43)
and (3.44) are equivalent and Eq. (3.45) holds for k ≤ ∀n ≤ l− 1. Each block of the identity
Eλ(l − k)HFH λ = Eλ(l − (k − 1)) is employed in the subsequent equations.

By Eq. (3.45) for n = k, we have the identity

det
(
I − 1

λ2
Xλ(k)B1B

∗
1

)
· detA−∗

= det (XλE12 λ(l − k) + E22 λ(l − k))−1 det (Xλ · (∗1) + (∗2))
= det (XλE12 λ(l − k) + E22 λ(l − k))−1 det (XλE12 λ(l − (k − 1)) + E22 λ(l − (k − 1))) ,

(∗1) = E11 λ(l − k)HFH 12 λ + E12 λ(l − k)HFH 22 λ,

(∗2) = E21 λ(l − k)HFH 12 λ + E22 λ(l − k)HFH 22 λ,

which means that Eqs. (3.43) and (3.44) are also equivalent for n = k − 1.
If either of Eqs. (3.43) and (3.44) is satisfied for n = k− 1, by the definition of Xλ(k− 1),

Xλ(k − 1) = (Xλ · (∗1) + (∗2))−1 (Xλ · (∗3) + (∗4))
= (XλE12 λ(l − (k − 1)) + E22 λ(l − (k − 1)))−1

· (XλE11 λ(l − (k − 1)) + E21 λ(l − (k − 1))) ,

(∗3) = E11 λ(l − k)HFH 11 λ + E12 λ(l − k)HFH 21 λ,

(∗4) = E21 λ(l − k)HFH 11 λ + E22 λ(l − k)HFH 21 λ,

which means that Eq. (3.45) also holds for n = k − 1.
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3.7.5 Proof of Lemma 10

Direct substitution shows that X̃λ and F̃λ constructed in Lemma 9 satisfy the augmented
KYP equation.

To prove the stability of Ã+B̃F̃λ, we use the block matrix Uλ =
[
Uλ(1) Uλ(2) · · · Uλ(l)

]
,

Uλ(θ) := H−1
FH δ λ

[
BD

2 λ(θ)
SD

2λ(θ)

]
(θ = 1, 2, . . . , l) .

Let us partition Uλ conformably with x(n) and p(n):

Uλ =
[
Ux λ

Up λ

]
∈ R

(dimx+dimx)×(l·dimu),

and transform Ã+ B̃F̃λ by the equation

Ac λ :=
[
I −Ux λ

O I

]−1 (
Ã+ B̃F̃λ

)[ I −Ux λ

O I

]
. (3.66)

The (1, 2)-block of Ac λ is calculated as

(Ux λS −AUx λ +B2Γ1) +B1

(
F̃1υ λ − F̃1x λUx λ

)
+ Ux λ∆l

(
F̃2υ λ − F̃2x λUx λ

)
.

This is zero since both of the underlined parts vanish. Therefore, we find that Ã+ c λ is a lower
triangular matrix as shown below and that it is stable:

Ac λ =
[E∗

X 22 λ(l)Ac λE−∗
X 22 λ(l) O

∆lF2x λ S
]
.

Remark 10. In the J-spectral factorization approach, the state variables x(z) and p(z) are
decomposed as in Eq. (3.5). Through the correspondence z−θu(n) = u(n − θ) = υ(θ, n), the
decomposition is interpreted as the state transformation[

xR(n)
pR(n)

]
=
[
x(n)
p(n)

]
+
[
Ux λ

Up λ

]
υ(n).

This means that Ac λ defined by Eq. (3.66) describes the state transition of xR(n) and υ(n)
under the optimal strategies w∗(n) and u∗(n) given in Lemma 9.

3.7.6 Proof of Lemma 11

We give a simpler proof than that of the continuous-time formula in [6] by the argument
used in the proof of Theorem 6 in [29]. For a given parameter µ > 0, we determine whether
there exists a non-zero w for the eigenequation

(
µ2I − G∗

λ Gλ

)
w = 0. Let z̃ be the output

of Gλ: z̃ := Gλw, then the existence of w �= 0 is equivalent to that of
[
wT z̃T

]T �= 0 to
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the following equation:
[−µ2I G∗

λ

Gλ −I
] [
w
z̃

]
=
[
0
0

]
. Furthermore, this equation is equivalently

rewritten as [
x(n+ 1)
p(n+ 1)

]
= HFHµ

[
x(n)
p(n)

]
, (3.67)

x(0) = 0, p(l) = −Xλx(l), (3.68)

w(n) = − 1
µ2
B∗

1p(n+ 1), z(n) = C1x(n) (0 ≤ n ≤ l − 1) .

In the above equations, w and z̃ are regarded as the outputs of the linear system given by
Eqs. (3.67)-(3.68). One of the important techniques in [29] is to characterize the existence of
a non-zero output in terms of the internal state variables.

Lemma 14. The existence of a non-zero
[
wT z̃T

]T is equivalent to that of a non-zero ter-
minal state x(l).

Proof. We prove the lemma by contraposition. Suppose that
[
wT z̃T

]T is zero. Then,
considering the realization of Gλ, we have x(l) = 0. Conversely, suppose that x(l) is zero.
Then, solving Eq. (3.67) backwards in the time instant n, we have

[
wT z̃T

]T = 0.

It is seen that the existence of a non-zero terminal state x(l) is equivalent to the condition
that det (XλE12 µ(l) + E22 µ(l)) = 0 by substituting the equality x(0) = 0 into the following
equation: [

x(0)
p(0)

]
=E−1

µ (l)
[
x(l)
p(l)

]
=
[ E∗

22 µ(l) −E∗
12 µ(l)

−E∗
21 µ(l) E∗

11 µ(l)

] [
I

−Xλ

]
x(l).

3.8 Conclusion

This chapter addressed the H∞ control problem for the discrete-time input-delay system.
The proposed solution method is based on the reductions of closed-loop systems, where the
one-sided model matching and output estimation problems are successively formulated. It
is revealed that the results similar to those in the continuous-time setting [38] hold: The
parameterization of the H∞ controllers is obtained only by solving the KYP equations for the
delay-free case and checking the matrix eigenvalues. They are implemented using the past
history of the control input.

As a supplementary result, the min-max optimization is adopted for the H∞ disturbance
attenuation in the full information problem. The stabilizing solution of the augmented KYP
equation and another characterization of the solvability are provided using the KYP equation
for the delay-free case. The J-spectral factorizability condition is proved to be equivalent to
the H∞ disturbance attenuation condition by analyzing the initial finite-time response of the
input-delay system.
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Chapter 4 Continuous-time H 2 preview control

4.1 Introduction

In Chapters 2 and 3, the explicit H 2 and H∞ optimal controllers are obtained in the Smith
predictor form by the state decomposition approach. In Chapters 4 and 5, we extend the state
decomposition approach for the continuous-time H 2 and H∞ preview controller syntheses in
a continuous-time output feedback setting. The preview output feedback problems are solved
through the full information and output estimation ones in a way consistent with the input-
delayed problems. While the H 2 and H∞ input-delayed controllers involved the internal
feedback of the past history of the control input, it is revealed that the H 2 and H∞ preview
controllers are realized based on the observers incorporating the future information of the
exogenous disturbance.

In [32], [57], the continuous-time H 2 preview controller designs are reported under the
settings where only the partial information of the state variables is available. Both of the
designs require the preliminary steps before applying the principal theories [27], [31], and do
not guarantee the exact H 2 optimality of the overall closed-loop systems; 1) At the prelim-
inary step of [32], the Youla parameterization technique is employed to modify the output
feedback configuration to the two-sided model matching configuration, and the choice of the
stabilizing gains involves arbitrariness. The Youla parameter optimal for the model match-
ing configuration is determined by the orthogonality principle in H 2 space [31]; 2) At the
preliminary step of [57], the standard finite-dimensional H 2 controller for the non-preview
case is constructed ignoring the advantage that the control input can act in advance of the
disturbance. The preview information is incorporated as the additional input compensation
based on the technique for the full information case [27].

Contrary to [32], [57], our design method exploits the available preview information at both
the full information and output estimation problems, and yields the output feedback controller
achieving the exact optimal performance. In the full information problem, we construct the
optimal state feedback law via the one-sided model matching problem. To solve the model
matching problem based on the spectral factorization theory, alternative state transformations
are introduced referring to the infinite-dimensional state-space representation of the spectral
density. In the output estimation problem, we focus on the state transformations defining
the state decomposition parallel to that in Chapter 2. The generalized plant in the output
estimation form is shown to have the structure amenable to the explicit solution, if it is
described with the newly introduced state variable.

This chapter is organized as follows. In Section 4.2, the problem formulation and assump-
tions are stated. In Section 4.3, the optimal state feedback law and corresponding optimal
cost is obtained via the one-sided model matching problem. In Section 4.4, the optimal out-
put feedback controller is constructed based on the results of Section 4.4. In Section 4.5, a
numerical example is presented to illustrate the H 2 preview control performance in the time
and frequency domains. In Section 4.6, the proofs left in the previous sections are given.

63



z

u
K+

e−sl

P

P+

w0

wl

y0

yl

Figure 4.1: Preview control system.

4.2 Problem formulation

Let us formulate the preview control system as shown in Fig. 4.1. The exogenous dis-
turbance w(t) is partitioned as w(t) =:

[
w0(t)T wl(t)T

]T, where wl(t) is previewable and
w0(t) is not. The controller K+ can act on the controlled plant P without delay while the
previewable disturbance wl(t) is delayed by the preview length l. The generalized plant
P : (w, u) → (z, y0) is partitioned conformably with w0(t) and wl(t):

P :=

⎡⎣ A
[
B1/0 B1/l

]
B2

C1

C2/0

[
O O

]
D12[

D21/00 D21/0l

]
O

⎤⎦ .
The overall system P+ : (w, u) → (z, y) (y(t) :=

[
y0(t)T yl(t)T

]T) including P and the
delay element e−sl is described as follows:

ẋ(t) = Ax(t) +B1/0w0(t) +B1/lwl(t− l) +B2u(t), (4.1)

z(t) = C1x(t) +D12u(t), (4.2)[
y0(t)
yl(t)

]
=
[
C2/0x(t) +D21/00w0(t) +D21/0lwl(t− l)

wl(t)

]
.

It is noted that the delayed-disturbance is given by wl(t− (l− θ)) = ω(θ, t) (0 ≤ θ ≤ l), where
ω(θ, t) follows the PDE

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = wl(t).

We derives the stabilizing controller K+ minimizing the H 2 norm of the transfer function
Tz w from w to z. The following conditions (A1)-(A3) are assumed throughout this chapter.

(A1) (A, B2) and
(
A, C2/0

)
are stabilizable and detectable, respectively.

(A2) For ∀ω ∈ R,
[
A− jωI B2

C1 D12

]
and

[
A− jωI B1/0

C2/0 D21/00

]
are of full column rank and of

full row rank, respectively.
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Figure 4.2: Model matching problem.

(A3) D12 and D21/00 are of full column rank and of full row rank, respectively.

The above assumptions ensure the existence of the positive semidefinite stabilizing solutions
X and Y R to the following control- and filtering-type Riccati equations.

Q+A∗X +XA− (S2 +XB2)R−1
2 (S2 +XB2)

∗ = O, (4.3)

Q́0 +AY R + Y RA∗ −
(
Ś∗

2/0 + Y RC∗
2/0

)
Ŕ−1

2/0

(
Ś∗

2/0 + Y RC∗
2/0

)∗
= O, (4.4)

where the following definitions are used for simplicity.[
Q S2

S∗
2 R2

]
:=

[
C1 D12

]∗ [
C1 D12

]
,

[
Q́0 Ś∗

2/0

Ś2/0 Ŕ2/0

]
:=

[
B1/0

D21/00

] [
B1/0

D21/00

]∗
.

The following Hamiltonian matrix is associated with the Riccati equation (4.3).

H :=
[
A−B2R

−1
2 S∗

2 B2R
−1
2 B∗

2

Q− S2R
−1
2 S∗

2 − (
A−B2R

−1
2 S∗

2

)∗] .
4.3 Model matching and spectral factorization

Let us focus on the following model matching problem [MM]. The problem is to optimize
the transfer function of the boxed part in Fig. 4.2.

[MM] Find the transfer function Tu w from w to u which is a solution of the following
optimization problem.

Minimize ‖P+11 + P+12Tu w‖2
2 with respect to Tu w.

Subject to Tu w, P+11 + P+12Tu w ∈ H 2.
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One of the solution methods, which is amenable to transfer function representation, is based
on the following spectral factorization of Φ+22 := P∼

+12P+12 [17]:

Φ+22 = M−∼
+22R2M

−1
+22, (4.5)

where M−1
+22 is the spectral factor and M−∼

+22 is its adjoint factor. If the above spectral factor
M−1

+22 is obtained, the solution of [MM] is given as follows:

Tu w = −M+22

{
R−1

2 M∼
+ 22P

∼
+ 12P+ 11

}
+
, (4.6)

where { · }+ denotes the casual and stable part of the transfer function.
In this section, we introduce a series of state transformations for the spectral factorization

of Φ+22. by explicitly considering the state-space dynamics of the delay element. We choose
the L2 space as the state space of the delay element, and denote the adjoint variable of ω(θ, t)
(0 ≤ θ ≤ l) by α(φ, t) (0 ≤ φ ≤ l). Then, the realization of Φ−1

+22 : k → u is given as follows:[
ẋ(t)
ṗ(t)

]
= H

[
x(t)
p(t)

]
+
[
B1/l

O

]
Γ0ω(t) +

[
B2

S2

]
R−1

2 k(t),

Eωω̇(t) = Aωω(t),

Eαα̇(t) = −Aαα(t) +

[
O[

O −B∗
1/l

]] [x(t)
p(t)

]
,

u(t) = −R−1
2

[
S∗

2 −B∗
2

] [x(t)
p(t)

]
+R−1

2 k(t).

In the above state-space representation, the following operators on L2([0, l],Rdim wl) are used.
Each of their domains is W 2,1([0, l],Rdimwl).

Eω :=
[
I
O

]
, Aω :=

[
∂
∂θ
−Γl

]
, Eα :=

[
I
O

]
, Aα :=

[− ∂
∂φ

−Γ0

]
.

We introduce the following state transformations (4.7)-(4.9) to perform the spectral factor-
ization: ⎡⎣[xp

]
α

⎤⎦ =:
[
I O
V I

]⎡⎣[xp
]

αR

⎤⎦ , (4.7)

⎡⎣[xp
]
ω

⎤⎦ =:
[
I −UEω

O I

]⎡⎣[xR

pR

]
ω

⎤⎦ , (4.8)

αR× := αR + Ξω. (4.9)

The operators V :=
[
Vx Vp

]
, U and Ξ in Eqs. (4.7)-(4.9) are defined as follows:

[
Vx Vp

] [x
p

]
(φ) :=

[
O B∗

1/l

]
eHφ

[
x
p

]
(0 < φ < l) for (x, p) ∈ R

dimx × R
dimx, (4.10)
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U

[
f
g

]
:=

[
B1/l

O

]
g +

∫ l

θ=0
e−Hθ

[
B1/l

O

]
f(θ)dθ for (f, g) ∈ L2([0, l],Rdimwl) × R

dimwl , (4.11)

Ξω(φ) := −
∫ φ

θ=0
B∗

1/l

{
eHθ

}
21
B1/lω(φ− θ)dθ (0 < φ < l) for ω ∈ L2([0, l],Rdim wl). (4.12)

Note that UEωω(t) =:
[
{UEω}T

x {UEω}T
p

]T
ω(t) is given by

[{UEω}x

{UEω}p

]
ω(t) =

∫ l

θ=0
e−Hθ

[
B1/l

O

]
ω(θ, t)dθ.

The transformations in Eqs. (4.7)-(4.9) enable us to perform the spectral factorization
explicitly considering the state-space representation of the delay element.

Lemma 15. Let us choose (x, ω) as the state variable of the causal and stable spectral factor
M−1

+22 in Eq. (4.5). Then, we can choose the following state variable (p×, α×) defined by[
p×

α×

]
:=

[
pR×

αR× + Vpp
R×

]
as that of the anticausal and antistable spectral factor M−∼

+22 in Eq. (4.5). Furthermore, the
state variable (p×, α×) is obtained by transforming the adjoint variable (p, α) as follows:[

p×

α×

]
:=

[
p
α

]
+ X̃

[
x
ω

]
, (4.13)

where the operator X̃ is constructed by the equation

X̃ :=
[

X X{UEω}x + {UEω}p

VpX − Vx VpX{UEω}x + Vp{UEω}p + Ξ

]
. (4.14)

Proof. Subsection 4.6.1.

4.4 Solution via closed-loop reduction

4.4.1 Full information problem

The disturbance-delayed system P+ is in the class of the Pritchard-Salamon system, and
therefore the H 2 optimal state feedback law is constructed from the positive semidefinite
stabilizing solution X̃ of the associated operator Riccati equation. Specifically, the optimal
cost is given by the equation

E2
+FI := min ‖P+11 + P+12Tu w‖2

2 = tr B̃∗
1X̃B̃1, (4.15)
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with the appropriately defined disturbance input operator B̃1, and the solution in Eq. (4.6)
is represented by the following state feedback law:

u∗(t) = F̃2xx(t) + F̃2ωω(t), (4.16)

where F̃2x and F̃2ω are determined from X̃. In this section, we exploit the above facts to
obtain a solution of the full information problem, and construct the optimal feedback law
based on the results in the previous section.

First, let us rewrite the delayed equations (4.1)-(4.2) as the delay-free form by noting that
wl(t− (l − θ)) (0 ≤ θ ≤ l) is given as the weak solution of the partial differential equation

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = wl(t).

Let X0 be R
dimx × L2([0, l],Rdimwl) and X1 be R

dimx ×W 2,1([0, l],Rdim wl). In the homoge-
neous boundary condition case, i.e., when wl(t) = 0, the infinitesimal generator ÃH : D(ÃH) :=
X1 → X0 of the system P+ is given as follows:

ÃH

[
x
ω(·)

]
=

[
Ax(t) +B1/lω(0)

∂ω

∂θ
(·)

]
for

[
x
ω(·)

]
∈ R

dimx ×W 2,1([0, l],Rdimwl),

where ÃH is an unbounded operator on X0 := R
dimx × L2([0, l],Rdim wl), and its domain is

given by

D
(
ÃH

)
=
{[

x
ω(·)

]
∈ R

dimx ×W 2,1([0, l],Rdimwl)
⏐⏐⏐ω(l) = 0

}
.

The operator ÃH can be extended to that from D(Ã) := X0 to X−1 := D(Ã∗
H)∗. Using the

extension Ã, the state equations (4.1)-(4.2) can be rewritten as follows:[
ẋ(t)
ω̇l(t)

]
= Ã

[
x(t)
ω(t)

]
+ B̃1w(t) + B̃2u(t),

z(t) = C̃1

[
x(t)
ω(t)

]
+D12u(t).

B̃1 :=
[
B̃1/0 B̃1/l

]
, B̃1/0 :=

[
B1/0

O

]
, B̃1/l :=

[
O

δl(·)Idim wl

]
,

B̃2 :=
[
B2

O

]
, C̃1 :=

[
C1 O

]
.

The following operator Riccati equation corresponds to the LQ optimal control problem for
the the above-represented system.

Q̃+ Ã∗X̃ + X̃Ã−
(
S̃2 + X̃B̃2

)
R−1

2

(
S̃2 + X̃B̃2

)∗
= O, (4.17)

Q̃ := C̃∗
1 C̃1, S̃2 := C̃∗

1D12.
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The positive semidefinite stabilizing solution X̃ : X−1 → X1 yields the optimal state feedback
gain F̃2 as follows:

F̃2 = −R−1
2

(
S̃∗

2 + B̃∗
2X̃

)
. (4.18)

If F̃2 is partitioned conformably with x and ω: F̃2 =:
[
F̃2x F̃2ω

]
, then the optimal state

feedback law u∗(t) in Eq. (4.16) is obtained.
The following lemma assures that the operator X̃ used for the spectral factorization in

Lemma 15 is the positive semidefinite stabilizing solution of the Riccati equation (4.17).

Lemma 16. The operator X̃ constructed in Eq. (4.14) is the positive semidefinite stabilizing
solution of the Riccati equation (4.17).

Proof. Subsection 4.6.2

By Lemma 16, we obtain the following proposition which gives the explicit representation
of the optimal state feedback gain and corresponding optimal cost.

Proposition 1. The optimal state feedback gain F̃2 =
[
F̃2x F̃2ω

]
in Eq. (4.18) and the

corresponding optimal cost E+FI in Eq. (4.15) are given as follows:

F̃2x = −R−1
2 (S∗

2 +B∗
2X) , (4.19)

F̃2ω = F̃2x {UEω}x +R−1
2

[
S∗

2 −B∗
2

]
UEω, (4.20)

E2
+ FI = trB∗

1/0XB1/0 + trB∗
1/l

{
X −X

(
G− e

˜Ac xlGe
˜A∗
c xl
)
X
}
B1/l, (4.21)

where ÃR
c x := A+B2F̃2x is stable, and G is the positive semidefinite solution of the Lyapunov

equation
ÃR

c xG+GÃR ∗
c x +B2R

−1
2 B∗

2 = O.

Proof. Substituting Eq. (4.14) into the right-hand side of Eq. (4.18), we have Eqs. (4.19)-
(4.20). Similarly, we substitute Eq. (4.14) into the right-hand side of Eq. (4.15), and use the
following identities to obtain Eq. (4.21).

T−1
X HTX =

[
ÃR

c x B2R
−1
2 B∗

2

O −ÃR ∗
c x

]
, TX :=

[
I O

−X I

]
,

S−1
G T−1

X HTXSG =

[
ÃR

c x O

O −ÃR ∗
c x

]
, SG :=

[
I G
O I

]
.

Remark 11. By integrating the identity

d

dθ
e
˜AR
c xθGe

˜AR ∗
c x θ + e

˜AR
c xθB2R

−1
2 B∗

2e
˜AR ∗
c x θ = O,
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we see that G satisfies the equation

G− e
˜AR
c xlGe

˜AR ∗
c x l =

∫ l

θ=0
e
˜AR
c xθB2R

−1
2 B∗

2e
˜AR ∗
c x θ dθ.

Therefore, the optimal cost E+ in Eq. (4.21) is monotonically nonincreasing with respect to
the preview length l.

The expression (4.21) is identical to that derived in [45]. Since the matrix ÃR
c x is stable,

the asymptotic value of E+FI is given by

E2
+FI

∣∣
l→∞ = trB∗

1/0XB1/0 + trB∗
1/l (X −XGX)B1/l.

4.4.2 Output estimation problem

Let us introduce the following difference of the actual control input and the optimal state
feedback control law:

ũ(t) := u(t) −
(
F̃2xx(t) + F̃2ωω(t)

)
. (4.22)

Since the state feedback gains are determined from the positive semidefinite stabilizing solu-
tion of the Riccati equation (4.17), the following equality holds:

‖Tz w‖2
2 = E2

+FI +
∥∥∥R1/2

2 Tũ w

∥∥∥2

2
,

where Tũ w denotes the transfer function from w to ũ.
In the output feedback setting, the optimal state feedback law in Eq. (4.16) is not im-

plementable. In this section, we obtain the output feedback controller as the minimizer of
the scaled H 2 norm of Tũ w. Let us define the generalized plant P+ tmp : (w, u) → (ũ, y) by
replacing the regulated output z(t) of P+ : (w, u) → (z, y) with ũ(t) in Eq. (4.22).

Recall that the state transformation in Eq. (4.7) introduced the new state variable xR(t).
The transformation can be seen decomposing the state-variable x(t) as follows:

x(t) = xR(t) − UEωω(t),

where xR(t) follows the finite-dimensional dynamics and the second term is given as the output
of the PDE.

In the similar manner to the discrete-time H 2 control problem in Chapter 2, we describe
P+ tmp using th state-variable xR(t) instead of x(t), and obtain the following state-space
realization of P+ tmp:

ẋR(t) = AxR(t) −B2R
−1
2

[
S∗

2 −B∗
2

]
UEωω(t) +B1/0w0(t) +BR

1/lwl(t) +B2u(t),

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = wl(t),

ũ(t) = −F̃2/xx
R(t) −R−1

2

[
S∗

2 −B∗
2

]
UEωω(t) + u(t),

y0(t) = C2/0x
R(t) − C2 {UEωl}x ω(t) +D21/00w0(t) +D21/0lwl(t− l),

yl(t) = wl(t),
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where the following definition is used:

[
BR

1/l

SR
1/l

]
:= e−Hl

[
B1/l

O

]
.

Referring to the above state-space realization of P+ tmp, we define the new input uR(t)
and output

[
yR
0 (t)T yR

l (t)T
]T from u(t) and

[
y0(t)T yl(t)T

]T as follows:

uR(t) := u(t) −R−1
2

[
S∗

2 −B∗
2

]
UEωω(t),

yR
0 (t) := y0(t) + C2 {UEωl}x ω(t),

yR
l (t) := yl(t).

We observe that P+ tmp has the structure shown in Fig. 4.3. The delay-free generalized plant
PR

+ tmp : (w, uR) → (ũ, yR) (yR :=
[
yRT
0 yR T

l

]T ∈ R
dim y0 × R

dim yl) is described with the
state variable xR:

PR
+ tmp :=

⎡⎢⎢⎢⎣
A

[
B1/0 BR

1/l

]
B2

−F̃2x[
C2/0

O

] [
O O

]
I[

D21/00 O

O I

] [
O
O

]
⎤⎥⎥⎥⎦ .

Moreover, Π0l and ∆l in Fig. 4.3 are the FIR systems described with the infinite-dimensional
state variable ω, and their time-domain input-output characteristics are represented as follows:

Π0lyl(t) := −D21/0lyl(t− l) +
[
C2/0 O

] ∫ l

θ=0
e−Hθ

[
B1/l

O

]
yl(t− (l − θ))dθ, (4.23)

∆lyl(t) := R−1
2

[
S∗

2 −B∗
2

] ∫ l

θ=0
e−Hθ

[
B1/l

O

]
yl(t− (l − θ))dθ. (4.24)

The above structure of P+ tmp exhibits the relationship between the stabilizing control law
and the value of the cost function.

Theorem 8 (H 2 preview output feedback law). Under the assumptions (A1)-(A3), there
exists a parameterization of the stabilizing controller K+ : y → u shown in Fig. 4.4. The
preview feedforward elements Π0l and ∆l are given by Eqs. (5.8)-(5.9). KR

+ : yR → uR is pa-

rameterized with the Youla parameter Q+ ∈ H 2 : ν → µ
(
ν :=

[
νT
0 νT

l

]T ∈ R
dim y0 × R

dim yl

)
as follows:

KR
+ = Fl(JR

+ , Q+), (4.25)

JR
+ :=

⎡⎢⎢⎢⎢⎣
ÃR

c x + LR
2

[
C2/0

O

]
−LR

2 B2

F̃2x

−
[
C2/0

O

] [
O O

]
I[

I O
O I

] [
O
O

]
⎤⎥⎥⎥⎥⎦ ,

LR
2 :=

[
LR

2/0 LR
2/l

]
:=

[
−
(
Ś∗

2/0 + Y RC∗
2/0

)
Ŕ−1

2/0 −BR
1/l

]
. (4.26)
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Figure 4.3: Structure of P+ tmp.
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Figure 4.4: Structure of K+.

Furthermore, the optimal controller is obtained when Q+ = O and the corresponding
optimal cost E+ is given by

E2
+ = min ‖Tu w‖2

2 = E2
+FI + trR2F̃2xY

RF̃ ∗
2x, (4.27)

where E2
+ FI is determined in Eq. (4.21).

Proof. Referring to the structure of P+ tmp in Fig. 4.3, we introduce KR
+ , namely, the unde-

termined part of the controller K+ as shown in Fig. 4.4. Noting that Π0l and ∆l are causal
and stable systems, we can cancel them out of the interconnection between P+ tmp and K+.
Therefore, KR

+ is determined as the observer-based H 2 controller for the generalized plant
PR

+ tmp in the output estimation form.
The optimal observer KR

+ is constructed from the positive semidefinite solution Y R of the
following filtering-type Riccati equation:

Q́tmp +AY R + Y RA∗ −
(
Ś∗

tmp2 + Y R

[
C2/0

O

]∗)
Ŕ−1

tmp2

(
Ś∗

tmp2 + Y R

[
C2/0

O

]∗)∗
= O,
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where [
Q́tmp Ś∗

tmp2

Śtmp2 Ŕtmp2

]
:=

⎡⎢⎣
[
B1/0 BR

1/l

]
[
D21/00 O

O I

]⎤⎥⎦
⎡⎢⎣
[
B1/0 BR

1/l

]
[
D21/00 O

O I

]⎤⎥⎦
∗

.

It is verified that the above Riccati equation coincides with the Riccati equation (4.4), and
hence the standard calculation yields the optimal observer gain LR

2 in Eq. (4.26) and following
closed-loop performance expression:

‖Tz w‖2
2 = E2

+FI + trR2F̃2xY
RF̃ ∗

2x +

∥∥∥∥∥R1/2
2 Q+

[
Ŕ

1/2
2/0 O

O I

]∥∥∥∥∥
2

2

. (4.28)

4.5 Example

This section examines the relationship between the preview length and the H 2 control
performance by active suspension control of a quarter-car model. The model of the active
suspension [14] is shown in Fig. 4.5. The state variables ηb(t), ηw(t) and ηr(t) represent
the longitudinal displacements of the load, wheel and road profile, respectively. We use the
following values for their mass, damping coefficient and stiffness constant:

mb = 400 [kg], cb = 1000 [Ns/m], kb = 5000 [N/m],
mw = 400 [kg], kw = 50000 [N/m].

The controller K+ reads the incoming information of the road profile yl(t) = wl(t) :=
ηr(t+ l), and exert the control input or force u(t) based on the following measurement output:

y0(t) = (η̇b(t) − η̇w(t)) + w0(t), (4.29)

where w0(t) is considered as a measurement noise. The first term on the right-hand side
of Eq. (4.29) is the relative velocity between the load and wheel, and the second term is
a measurement noise. Since the acceleration of the load η̈b(t) reflects driving comfort, the
regulated output z(t) is defined so that its L2 norm incorporates the square integral of η̈b(t):

‖z‖2
2 =

∫ ∞

0
η̈b(t)2 + ρ2u(t)2 dt, ρ := 0.001 [m/Ns2].

Under the above setup, the values of the optimal cost E+ with respect to the preview
length l is determined by Eqs. (4.21) and (4.27). From Fig. 4.6, it is seen that E2

+ sufficiently
reaches its asymptotic value 7.3 · 104 within the preview length l = 1 [s].

The frequency response of the transfer function Tη̈b ηr from ηr to η̈b is depicted in Fig. 4.7.
The gain tends to lower along the increasing preview length. It is also observed that the
increase of the preview length does not contribute to the decrease of the peak around ω =
35 [s−1]. The phase plot is set within the range [−π, π]. If not set inside it, the phase decreases
monotonically as the band increases.
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Figure 4.5: Quarter-car model.

The time responses of η̈b(t) and u(t) is depicted in Fig. 4.8, where the road profile ηr(t)
is set as follows:

ηr(t) =

⎧⎪⎨⎪⎩
0 (0 ≤ t < 1)
0.05

(
1 − cos

π

4
(t− 1)

)
(1 ≤ t < 5)

0 (t ≥ 5)

.

Although the discontinuity of ηr(t) at t = 5 [s] causes the large oscillations, the preview action
enables to produce the less peak responses (Tab. 4.1).

Table 4.1: Maximum peak values of time response.
������

l
0 [s] 0.2 [s] 0.4 [s] 0.6 [s]

maxt|η̈b(t)| 2.78 [m/s2] 2.32 [m/s2] 2.05 [m/s2] 1.71 [m/s2]
maxt|u(t)| 1.99 [N] 1.75 [N] 1.51 [N] 1.39 [N]
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Figure 4.6: H 2 performance improvement with preview.
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Figure 4.7: Frequency response of Tη̈b ηr .
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4.6 Proofs

4.6.1 Proof of Lemma 15

After applying the state transformations (4.7)-(4.9), the state-space realization of Φ−1
+22 :

k → u is given as follows:[
ẋR(t)
ṗR(t)

]
= H

[
xR(t)
pR(t)

]
+
[
B2

S2

]
R−1

2 k(t),

Eωω̇(t) = Aωω(t),

Eαα̇
R×(t) = −Aαα

R×(t) − EαV

[
B2

S2

]
R−1

2 k(t),

u(t) = −R−1
2

[
S∗

2 −B∗
2

] [xR(t)
pR(t)

]
+R−1

2

[
S∗

2 −B∗
2

]
UEωω +R−1

2 k(t).

The dynamics of
(
xR, pR

)
is decoupled from that of

(
ω, αR×) in the above realization. Noting

that the solution X of the Riccati equation in Eq. (4.3) triangularize the Hamiltonian matrix
H, the spectral factorization of Φ+22 is completed by the state transformation[

xR(t)
pR(t)

]
=:

[
I O

−X I

] [
xR(t)
pR×(t)

]
.

4.6.2 Proof of Lemma 16

Partition X̃ in Lemma 15 conformably with
[
xT ωT

]T: X̃ =:

[
X̃xx X̃xω

X̃ωx X̃ωω

]
. Then each

of the subblocks are represented by

X̃xxx = X̃K
xxx,

X̃xωω =
∫ l

θ=0
XK

xω(θ)ω(θ) dθ, X̃ωxx(φ) = X̃K
ωx(φ)x,

X̃ωωω(φ) =
∫ l

θ=0
XK

ωω(φ, θ)ω(θ) dθ (0 < φ < l) ,

where X̃K
ij (i, j = x, ω) are defined as follows:

X̃K
xx := X, X̃K

xω(θ) :=
[
X I

]
e−Hθ

[
B1/l

O

]
, X̃K

ωx(φ) := X̃K
xω(φ)∗,

X̃K
ωω(φ, θ) :=

[
B∗

1/l O
]
e−H∗φ

[
X H(θ − φ)I

H(φ− θ)I O

]
e−Hθ

[
B1/l

O

]
(0 < θ, φ < l) .

Since the above defined X̃K
ij (i, j = x, ω) satisfy the following system of PDEs, X̃ in Eq. (4.14)
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is a solution of the operator Riccati equation (4.17).

Q+A∗X̃K
xx + X̃K

xxA−
(
S2 + X̃K

xxB2

)
R−1

2

(
S2 + X̃K

xxB2

)∗
= O,

− ∂

∂θ
X̃K

xω(θ) +A∗X̃K
xω(θ) −

(
S2 + X̃K

xxB2

)
R−1

2 B∗
2X̃

K
xω(θ) = O,

− ∂

∂φ
X̃K

ωx(φ) + X̃K
ωx(φ)A− X̃K

ωx(φ)B2R
−1
2

(
S2 + X̃K

xxB2

)∗
= O,

− ∂

∂φ
X̃K

ωω(φ, θ) − ∂

∂θ
X̃K

ωω(φ, θ) − X̃K
ωx(φ)B2R

−1
2 B∗

2X̃
K
xω(θ) = O,

X̃K
xω(0) = X̃K

xxB1/l, X̃
K
ωω(φ, 0) = X̃K

ωx(φ)B1/l,

X̃K
ωx(0) = B∗

1/lX̃
K
xx, X̃

K
ωω(0, θ) = B∗

1/lX̃
K
xω(θ)

(0 < θ, φ < l).

To show the stability of Ã+B̃2F̃2, we transform its domain and range spaces by Eq. (4.8).
The realization of Ã+ B̃2F̃2 after the transformation is described as follows:

ẋR(t) =
(
A+B2F̃2x

)
xR(t) +B2R

−1
2

[
S∗

2 −B∗
2

]
UEωω(t),

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = 0.

This system is stable as A+B2F̃2x is a stable matrix.
To show the positive semidefiniteness of X̃, we rewrite the Riccati equation (4.17) as the

Lyapunov equation(
Q̃− S̃∗

2R
−1
2 S̃2 + X̃B̃2R

−1
2 B̃∗

2X̃
)

+
(
Ã+ B̃2F̃2

)∗
X̃ + X̃

(
A+ B̃2F̃2

)
= O.

Since Ã + B̃2F̃2 is a stable, X̃ is positive semidefinite by the results on operator Lyapunov
equations [24].

4.7 Conclusion

The design method of the continuous-time H 2 preview controller is derived along the
lines of Chapter 2. We solved the output feedback problem by simplifying it to the full
information and output estimation ones, and guaranteed the exact optimal performance by
the orthogonality principle in H 2 space.

In the full information problem, we introduced the state transformations to perform the
spectral factorization considering the state variable of the delay element. By the spectral
factorization, the optimal state feedback law is constructed as a solution of the one-sided
model matching problem. One of the state transformations defines the decomposition of
the state variable x(t) of the finite-dimensional generalized plant P . In the output estimation
problem, we employed the state decomposition to describe the infinite-dimensional generalized
plant in the form amenable to the explicit solution. The essential part of the output feedback
controller, which is estimating the possibly unstable state variable xR(t), is determined.
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Chapter 5 Continuous-time H∞ preview control

5.1 Introduction

This chapter extends the design method in Chapter 4 to the H∞ preview output feedback
control problem. The output feedback controller is constructed through the full information
and output estimation problems. The technique of reducing an infinite-dimensional J-spectral
density to finite-dimensional one is employed to deal with the full information problem. It is
initially proposed for a continuous-time input-delayed mixed sensitivity problem in [36] and
extended to the fixed-lag smoothing problems in [31], [38]. We introduce the state transforma-
tions, which are parallel to the one proposed in Chapter 4, to find the relationship between the
state variables of the infinite-dimensional and reduced finite-dimensional J-spectral densities.
The explicit stabilizing solution of the control-type operator Riccati equation is constructed
by combining the proposed state transformations. One of the state transformations defines the
decomposition of the state variable of the controlled plant. The subsequent output estimation
problem is reduced to finite-dimensional one along the lines of Chapter 4.

In the recent study [30], the H∞ output feedback controller for the more general class of
input-delayed and preview systems are obtained by solving the operator Riccati equations via
the other kind of state transformations. However, the proposed state transformation allows us
to reveal the following aspects of the preview control problems; 1) The H∞ output feedback
preview controller is implemented as the combination of the finite-dimensional observer and
preview-feedforward compensation; 2) There exists the direct relationship between the J-
spectral factorization techniques in [31], [38] and the stabilizing solution of the operator
Riccati equation.

This chapter is organized as follows. In Section 5.2, the problem formulation and assump-
tions are stated. In Section 5.3, the original output feedback problem is first restricted to the
full information problem where the state and disturbance are available for the control. After
extracting the J-lossless factor of the generalized plant associated with the one-sided model
matching problem, the full information setting is extended to the output feedback setting. In
Section 5.4, the positive semidefinite stabilizing solution of the control-type operator Riccati
equation is constructed via the proposed state transformations. In Section 5.5, a design ex-
ample of a H∞ preview tracking system is presented. In Section 5.6, the proofs left in the
previous sections are given.
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Figure 5.1: Preview control system.

5.2 Problem formulation

Let us formulate the H∞ preview control problem for the following generalized plant P+:

ẋ(t) = Ax(t) +B1/0w0(t) +B1/lwl(t− l) +B2u(t),

z(t) = C1x(t) +D12u(t),[
y0(t)
yl(t)

]
=
[
C2/0x(t) +D21/00w0(t) +D21/0lwl(t− l)

wl(t)

]
.

The overall control system is depicted as in Fig. 5.1, where P is the finite-dimensional gener-
alized plant defined by

P :=

⎡⎣ A
[
B1/0 B1/l

]
B2

C1

C2/0

[
O O

]
D12[

D21/00 D21/0l

]
O

⎤⎦ ,
and K+ is the controller to design. In the setup, wl(t) is regarded as preview information and
l is a preview length. The information on x(t) is assumed to be partially available through
y0(t), and the preview information is assumed to be fully available through yl(t).

The problems are to obtain a tractable solvability condition on the H∞ control problem
for P+, and to reveal the clearly interpretable structure of the controller K+ which archives
the following pefromance based on the partial information y(t) :=

[
y0(t)T yl(t)T

]T:

sup
w∈L2, w �=0

‖z‖2

‖w‖2

< γ, w(t) :=
[
w0(t)T w1(t)T

]T
.

The following conditions (A1)-(A3) are assumed throughout this chapter.

(A1) (A, B2) and
(
A, C2/0

)
are stabilizable and detectable, respectively.

(A2) For ∀ω ∈ R,
[
A− jωI B2

C1 D12

]
and

[
A− jωI B1/0

C2/0 D21/00

]
are of full column rank and of

full row rank, respectively.
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(A3) D12 and D21/00 are of full column rank and of full row rank, respectively.

For simplicity, the following definitions are used.[
Q S2

S∗
2 R2

]
:=

[
C1 D12

]∗ [
C1 D12

]
,

[
Q́0 Ś∗

2/0

Ś2/0 Ŕ2/0

]
:=

[
B1/0

D21/00

] [
B1/0

D21/00

]∗
.

5.3 Solution via closed-loop reduction

5.3.1 Full information problem

We begin with simplifying the original problem to the full information problem, where all
the information on the state variables and exogenous disturbances can be utilized to construct
the control law. We apply the J-spectral factorization techniques in [31], [38] to this simplified
problem. The possible straightforward approach to the full information problem is to dualize
the results in [31], [38]. In [31], [38], however, the relationship between the state variables
of the infinite-dimensional and reduced finite-dimensional J spectral densities are not clearly
mentioned. In contrast to [31], [38], we clarify the relationship by introducing the new state
transformations, which are along the lines in Chapter 2.

Denote the available disturbances by ymm :=
[
yT
mm0 yT

mm l

]T :=
[
wT

0 wT
l

]T and let
P+ mm be the transfer function from (w, u) to (z, ymm). Note that P+ mm is the generalized
plant corresponding to the following model matching problem [MM].

[MM] Find the causal transfer function Tu w which satisfies the following conditions:

P+ 11 + P+ 12Tu w ∈ H∞ and ‖P+ 11 + P+ 12Tu w‖∞ < γ.

As in Subsection 2.5.1, the model matching problem [MM] can be recast as the following J-
spectral factorization problem [SF] [17], and the solution of [MM] is parameterized as follows:

Tu w = Fl(C−1 (M+), Tũ w̃), ∀Tũ w̃ ∈ H∞ such that
∥∥∥R1/2

2 Tũ w̃

∥∥∥
∞
< γ,

where M+ is the J-spectral factor of the J-spectral density and Tũ w̃ denotes the family of the
transfer functions from w̃ to ũ.

[SF] Define the J-spectral density Φ+ : (ymm, u) → (hmm, k) by

Φ+ := C (P+ mm)∼
[−γ2I O
O I

]
C (P+ mm) .

Then, find the J-spectral factorization of it which satisfies the following conditions.

(SF1) There exists a stable J-spectral factor M+ : (w̃, ũ) → (ymm, u) such that

Φ+ = M−∼
+

[−γ2I O
O R2

]
M−1

+ . (5.1)
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(SF2) The transfer function N+ : (w̃, ũ) → (w, z) defined by N+ := C (P+ mm)M+ is
a J-inner function.

Before starting to solve the problem [SF], define the following Hamiltonian matrices

H0 :=
[
Aν P1/0 + P2

Qν −A∗
ν

]
, Hl :=

[
Aν P1/0 + P1/l + P2

Qν −A∗
ν

]
,

where

Aν := A−B2R
−1
2 S∗

2 , Qν := Q− S2R
−1
2 S∗

2

P1/0 := − 1
γ2
B1/0B

∗
1/0, P1/l := − 1

γ2
B1/lB

∗
1/l, P2 := B2R

−1
2 B∗

2 .

Furthermore, let p(t) be the adjoint variable of x(t), and introduce the new state variables
xR(t) and pR(t) as follows: [

xR(t)
pR(t)

]
:=

[
x(t)
p(t)

]
+ UEωlωl(t). (5.2)

In Eq. (5.2), the operators U and Eω are defined as follows:

U

[
f
g

]
:=

[
B1/l

O

]
g +

∫ l

θ=0
e−H0θ

[
B1/l

O

]
f(θ)dθ for (f, g) ∈ L2([0, l],Rdim wl) × R

dimwl , (5.3)

and Eω :=
[
I
O

]
: L2([0, l],Rdimwl) → L2([0, l],Rdimwl) × R

dimwl . Hence, UEωω(t) =:[
{UEω}T

x {UEω}T
p

]T
ω(t) is given by[{UEω}x

{UEω}p

]
ω(t) =

∫ l

θ=0
e−H0θ

[
B1/l

O

]
ω(θ, t) dθ.

The following Lemma 17 and Theorem 9 are the dual results to those in [31], [38]. In our
proofs, the new state-variable transformations are introduced using the explicit solutions of
the Sylvester equations, and it is made clear that the state variable x(t) should be changed to
the above-introduced xR(t) to solve [SF]. This fact is essential to extend the full information
setting to the output feedback setting in Subsection 5.3.2.

Lemma 17. The delayed J-spectral density Φ+ is linked with the delay-free ΦR
+ by the trans-

formation
ΦR

+ = MFIR ∼
+ Φ+M

FIR
+ . (5.4)

The transfer function MFIR
+ : (yR

mm, u
R) −→ (ymm, u)

(
yR
mm :=

[
yR T
mm0 yR T

mm l

]T) is given by
the following state-space realization:

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = yR

mm l(t),

ymm0(t) = F̃R
1/0lω(t) + yR

mm0(t), ymm l(t) = yR
mm l(t),

u(t) = F̃R
2/lω(t) + uR(t),
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where the state feedback gains are defined by

F̃R
1/0l := − 1

γ2

[
O −B∗

1/0

]
UEω, F̃

R
2/l := R−1

2

[
S∗

2 −B∗
2

]
UEω.

Moreover, ΦR(−1)
+ : (hR

mm, k
R) −→ (yR

mm, u
R)

(
hR

mm :=
[
hR T

mm0 hR T
mm l

]T) has the following
state-space realization:[

ẋR(t)
ṗR(t)

]
= e−H0lHle

H0l

[
xR(t)
pR(t)

]
− 1
γ2

[
B1/0

O

]
hR

mm 0(t) −
1
γ2

[
BR

1/l

SR
1/l

]
hR

mm l(t) +
[
B2

S2

]
R−1

2 kR(t),

yR
mm0(t) =

1
γ2

[
O −B∗

1/0

] [xR(t)
pR(t)

]
− 1
γ2
hR

mm 0(t),

yR
mm l(t) =

1
γ2

[
SR ∗

1/l −BR∗
1/l

] [xR(t)
pR(t)

]
− 1
γ2
hR

mm l(t),

uR(t) = −R−1
2

[
S∗

2 −B∗
2

] [xR(t)
pR(t)

]
+R−1

2 kR(t),

where

[
BR

1/l

SR
1/l

]
:= e−H0l

[
B1/l

O

]
.

Proof. Subsection 5.6.1.

From the realization of MFIR
+ , the impulse responses from yR

mm l(t) to ymm0(t) and u(t) are
of finite-time duration. The following theorem gives a tractable solvability condition to [SF],
and constructs the J-spectral factor explicitly.

Theorem 9 (J-spectral factorization). The problem [SF] is solvable if and only if the following
condition (X) is satisfied.

(X) The Riccati equation associated with the Hamiltonian matrix e−H0lHle
H0l has the posi-

tive semidefinite stabilizing solution XR such that the following matrix is stable:

ÃR
c x := A+B1/0F̃

R
1/0x +BR

1/lF̃
R
1/lx +B2F̃

R
2/x,

where F̃R
1/0x, F̃

R
1/lx and F̃R

2/x are the state feedback gains defined by

F̃R
1/0x :=

1
γ2
B∗

1/0X
R, F̃R

1/lx :=
1
γ2

(
SR ∗

1/l +BR ∗
1/lX

R
)
, F̃R

2/x := −R−1
2

(
S∗

2 +B∗
2X

R
)
.

Suppose that the above condition is satisfied. Introduce the intermediate signals w̃ :=
[
w̃T

0 w̃T
l

]T
and ũ as the outputs from M−1

+ or the inputs to N+. Then, the inverse of the J-spectral factor
M+ : (w̃, ũ) −→ (ymm, u) is given by

M+ = MFIR
+ MR

+ ,
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where MR
+ : (w̃, ũ) −→ (yR

mm, u
R) is given by the following state-space realization:

ẋR(t) = ÃR
c xx

R(t) +B1/0w̃0(t) +BR
1/lw̃l(t) +B2ũ(t),

yR
mm0(t) = F̃R

1/0xx
R(t) + w̃0(t),

yR
mm l(t) = F̃R

1/lxx
R(t) + w̃l(t),

uR(t) = F̃R
2/xx

R(t) + ũ(t).

Moreover, N+ : (w̃, ũ) −→ (w, z) is given by the state-space following realization:

ẋR(t) = ÃR
c xx

R(t) +B1/0w̃0(t) +BR
1/lw̃l(t) +B2ũ(t),

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = F̃R

1/lxx
R(t) + w̃l(t),

w0(t) = F̃R
1/0xx

R(t) + F̃R
1/0lω(t) + w̃0(t),

wl(t) = F̃R
1/lxx

R(t) + w̃l(t),

z(t) =
(
C1 +D12F̃

R
2/x

)
xR(t) +

(
−C1{UEω}x +D12F̃

R
2/l

)
ω(t) +D12ũ(t).

Proof. Since ΦR
+ in Eq. (5.4) is multiplied by the bi-stable transfer function and its para-

conjugate from the right and left, respectively, it is necessary and sufficient for (SF1) that the
Riccati equation associated with the state-transition matrix e−H0lHle

H0l of ΦR(−1)
+ has the

stabilizing solution. By the state transformation:[
xR

pR

]
=:

[
I O

−XR I

] [
xR

pR×

]
, (5.5)

the following factorization of ΦR(−1)
+ is obtained.

ΦR(−1)
+ = MR

+

⎡⎣− 1
γ2
I O

O R−1
2

⎤⎦MR∼
+ . (5.6)

By Eqs. (5.4) and (5.6), Eq. (5.1) is obtained and N+ is a J-unitary system:

N∼
+

[−γ2I O
O I

]
N+ =

[−γ2I O
O R2

]
.

Next, it is shown to be necessary and sufficient for (SF2) that XR is positive semidefinite.
By the J-unitariness of N+, the J-inner condition on N+ is equivalent to the stability of
N−1

+11. We see that the latter is equivalent to the stability of A+ B2F̃
R
2/x from the following

state-space realization of N−1
+11 : w −→ w̃:

ẋ(t) =
(
A+B2F̃

R
2/x

)
xR(t) −B1/0F̃

R
1/0lω(t) +B1/0w0(t) +BR

1/lwl(t),

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = wl(t),

w̃0(t) = −F̃R
1/0xx

R(t) − F̃R
1/0lω(t) + w0(t),

w̃l(t) = −F̃R
1/lxx

R(t) + wl(t).
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Figure 5.2: Factorization of P+ mm.

By expanding e−H0lHle
H0l as

e−H0lHle
H0l = H0 − 1

γ2
e−H0l

[
B1/l

O

] [
B∗

1/l O
]
e−H∗

0 lJ−1
s , (5.7)

we have the identity[
I O
XR I

]
e−H0lHle

H0l

[
I O

−XR I

]
=

[
ÃR

c x − 1
γ2B1/0B

∗
1/0 − 1

γ2B
R
1/lB

R ∗
1/l +B2R

−1
2 B∗

2

O −ÃR ∗
c x

]
.

The (2, 1) block in the above matrix is zero, andXR satisfies the following Lyapunov equation.(
Qν +XRP2X

R + γ2F̃R ∗
1/0xF̃

R
1/0x + γ2F̃R ∗

1/lxF̃
R
1/lx

)
+
(
A+B2F̃

R
2/x

)∗
XR +XR

(
A+B2F̃

R
2/x

)
= O.

Moreover,
(
A+B2F̃

R
2/x,

[
F̃RT

1/0x F̃R T
1/lx

]T
)

is detectable since AR
c is stable. Therefore, by the

results on Lyapunov equations, A+B2F̃
R
2/x is stable if and only if XR is positive semidefinite.

By (SF2), the chain scattering representation C (P+ mm) is factorized as C (P+ mm) =
N+M

−1
+ . Taking the inverse chain scattering representation of this identity, we have P+ mm =

P+ stb � P+ mm tmp, where P+ stb := C−1 (N+) and P+ mm tmp := C−1
(
M−1

+

)
(Fig. 5.2).

5.3.2 Output estimation problem

In this subsection, we derive the H∞ preview output feedback law based on the results in
Subsection 5.3.1. Recall that we factorized the generalized plant P+ mm as shown in Fig. 5.2.
The significance of this factorization lies in that the upper part of the star-product intercon-
nection is a lossless system. Conveniently, P+ is also factorized in such a way. Let P+ tmp be
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Figure 5.3: Factorization of P+.

the generalized plant defined by replacing the measured output ymm(t) of P+ mm tmp with the
measured output y(t) of P+. Then, we have the factorization P+ = P+ stb � P+ tmp. This is
because the original measured output y(t) is represented by the state variables (xR(t), ωl(·, t))
and the exogenous disturbance w̃(t) to P+ mm tmp. See the following state-space realization of
P+ tmp and Fig. 5.3:

ẋR(t) =
(
A+B1/0F̃

R
1/0x +BR

1/lF̃
R
1/lx

)
xR(t)

−B2F̃
R
2/lωl(t) +B1/0w̃0(t) +BR

1/lw̃l(t) +B2u(t),

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = F̃R

1/lxx
R(t) + w̃l(t),

ũ(t) = −F̃R
2/xx

R(t) − F̃R
2/lω(t) + u(t),

y0(t) =
(
C2 +D21/00F̃

R
1/0x

)
xR(t) +D21/0lω(0, t)

+
(
−C2 {UEω}x +D21/00F̃

R
1/0l

)
ω(t) +D21/00w̃0(t),

yl(t) = F̃R
1/lxx

R(t) + w̃l(t).

We used the state variable xR(t) instead of x(t) to describe P+ tmp, which is in output esti-
mation form.

Since P+ stb is J-lossless, the H∞ problem for P+ is reduced to that for P+ tmp by Red-
heffer’s lemma. From the above state-space realization of P+ tmp, we observe that P+ tmp has
the structure shown in Fig. 5.4. The finite-dimensional generalized plant PR

+ tmp : (w̃, uR) →
(ũ, yR) is described with the state variable xR(t):

PR
+ tmp :=

⎡⎢⎢⎢⎢⎣
(∗)

[
B1/0 BR

1/l

]
B2

−F̃R
2/x[

C2 +D21/00F̃
R
1/0x

F̃R
1/lx

] [
O O

]
I[

D21/00 O

O I

]
O

⎤⎥⎥⎥⎥⎦ ,
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Figure 5.4: Structure of P+ tmp.
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Figure 5.5: Structure of K+.

(∗) = A+B1/0F̃
R
1/0x +B1/lF̃

R
1/lx.

The FIR systems Π0l and ∆l are described by the following input-output relationship:

Π0lyl(t) := −D21/0lyl(t− l) +
[
C2/0 − 1

γ2
Ś2/0

] ∫ l

θ=0
e−H0θ

[
B1/l

O

]
yl(t− (l − θ)) dθ, (5.8)

∆lyl(t) := R−1
2

[
S∗

2 −B∗
2

] ∫ l

θ=0
e−H0θ

[
B1/l

O

]
yl(t− (l − θ)) dθ. (5.9)

Referring to the structure of P+ tmp, we introduce KR
+, namely, the undetermined part of the

controller K+ as shown in Fig. 5.5. Noting that Π0l and ∆l are causal and stable systems,
we can cancel them out of the interconnection between P+ tmp and K+. Then, the problem of
parameterizing the H∞ controller K+ for P+ tmp is reduced to that of parameterizing the H∞

controller KR
+ for PR

+ tmp. The explicit form of H∞ controller is obtained using the following
KYP equation: [

LR ∗
1

LR ∗
2/0

]∗ [−γ2I O

O Ŕ2/0

] [
LR ∗

1

LR ∗
2/0

]
= Q́0 +AY R + Y RA∗, (5.10)

−
[−γ2I O

O Ŕ2/0

] [
LR ∗

1

LR ∗
2/0

]
=
[
O

Ś2/0

]
+
[
C1

C2/0

]
Y R. (5.11)
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The KYP equation is associated with the H∞ control problem for the following generalized
plant in full control form.

ṔR
+ FC :=

⎡⎣ A B1/0

[
I O

]
C1

C2/0

O
[
O I

]
D21/00

[
O O

]
⎤⎦ . (5.12)

Theorem 10 (H∞ preview output feedback law). Under the assumptions (A1)-(A3), the
H∞ control problem for P+ is solvable if and only if the conditions (X) in Theorem 9, (Y)
and (Z) below are satisfied.

(Y) The KYP equation in Eqs. (5.10)-(5.11) has the positive semidefinite stabilizing solution
Y R such that ÁR

c := A+ LR
1 C1 + LR

2/0C2/0 is stable.

(Z) The spectral radius condition ρ
(
Y RXR

)
< γ2 is satisfied, and hence the inverse of

ZR := I − 1
γ2Y

RXR is well-defined.

If the above solvability conditions are satisfied, the H∞ preview output feedback controller
K+ : (y, µ) → (u, ν) (ν :=

[
νT
0 νT

l

]T ∈ R
dim y0 × R

dim yl) is implemented as shown in
Fig. 5.5. It consists of the FIR systems Π0l and ∆l in Eqs. (5.8)-(5.9), and the following
finite-dimensional system KR

+:
KR

+ = Fl(JR
+ , Q+(s)),

where ∀Q+ ∈ H∞ is the Youla parameter satisfying the condition∥∥∥∥∥R1/2
2 Q+

[
Ŕ2/0 O

O I

]1/2
∥∥∥∥∥
∞
< γ,

and JR
+ is defined by

JR
+ :=

⎡⎣ AR
c + LR

tmp 2 · (†) −LR
tmp 2 LR

tmp 1

F̃R
2

−(†)
O I
I O

⎤⎦ , (†) =

[
C2/0 +D21/00F̃

R
1/0x

F̃R
1/lx

]
,

LR
tmp 1 := ZR (−1)

(
B2 + LR

1 D12

)
, LR

tmp 2 :=
[
LR

tmp 2/0 LR
tmp 2/l

]
,

LR
tmp 2/0 := ZR(−1)LR

2/0, L
R
tmp 2/l := −ZR(−1)

(
BR

1/l +
1
γ2
Y RSR

1/l

)
.

Proof. Subsection 5.6.2.

The finite-dimensional system KR
+ is interpreted as the H∞-type observer estimating the state

variable xR(t). The FIR systems Π0l and ∆l shape the measured output y0(t) and control
input uR(t) using the preview information yl(t) = wl(t).
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Remark 12. Theorem 10 claims that the H∞ preview output feedback controller exists if
and only if both of the full information and output estimation problems are solvable. The
solvability of the full information and output estimation problems are equivalent to the J-
spectral factorizability condition (X), and the couple of the conditions (Y) and (Z), respectively.

The remarkable difference between the existence conditions for the input-delayed and pre-
view H∞ controllers in Theorems 4 and 10 lies in the J-spectral factorizability conditions.
While the J-spectral factorizability condition for the input-delayed controller should be checked
for infinitely many points of the performance bound λ ≥ γ, the H∞ preview controller achiev-
ing the performance bound γ is characterized independently of the larger performance bound
parameter λ > γ.

5.4 Solution of operator Riccati equation

In Subsection 5.3.1, the H∞ state feedback law is obtained as a solution of the model
matching problem by the J-spectral factorization technique. The disturbance-delayed system
P+ is in the class of the Pritchard-Salamon system [24], and therefore the H∞-state feedback
law can be also constructed from the positive semidefinite stabilizing solution of the associated
operator Riccati equation. In this section, it is noted that the explicit solution of the operator
Riccati equation is found from the proposed state transformations.

We prepare the following lemma along the proofs of Lemma 17 and Theorem 9.

Lemma 18. Suppose that the condition (X) in Theorem 9 is satisfied. Let the adjoint vari-
ables of x and ω be p and α, respectively. Then, the state variables (p×, α×) of the adjoint of
the J-spectral factor M−1

+ is obtained by the following transformation:[
p×

α×

]
=
[
p
α

]
+ X̃

[
x
ω

]
. (5.13)

The operator X̃ in Eq. (5.13) is constructed by

X̃ :=
[

XR XR{UEωl}x + {UEωl}p

VpX
R − Vx VpX

R{UEωl}x + Vp{UEωl}p + Ξ

]
, (5.14)

where EωU is given by Eq. (5.3), and V :=
[
Vx Vp

]
is the multiplication operator defined by

[
Vx Vp

] [x
p

]
(φ) :=

[
O BT

1/l

]
eH0φ

[
x
p

]
(0 < φ < l) for (x, p) ∈ R

dimx × R
dimx, (5.15)

and Ξ is the integral operator defined by

Ξω(φ) := −
∫ φ

θ=0
BT

1/l

{
eH0θ

}
21
B1/lω(φ− θ)dθ (0 < φ < l) for ω ∈ L2([0, l],Rdim wl).

(5.16)
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Proof. By Eqs. (5.5) and (5.24), we have[
pR×

αR×

]
=
[
pR

αR

]
+
[
XR O
O Ξ

] [
xR

ω

]
.

Replacing xR, pR and αR in the above equation with x, p and α by Eqs. (5.2) and (5.22), we
have the equation [

pR×

αR× + Vpp
R×

]
=
[
p
α

]
+ X̃

[
x
ω

]
.

Defining (p×, α×) as the left side of the above equation, we obtain Eq. (5.13).

Let X0 be R
dimx × L2([0, l],Rdimwl) and X1 be R

dimx × W 2,1([0, l],Rdimwl). In the
homogeneous boundary condition case, i.e., when wl(t) = 0, the infinitesimal generator
ÃH : D(ÃH) := X1 → X0 of the disturbance-delayed system P+ mm is given as follows:

ÃH

[
x
ω(·)

]
=

[
Ax(t) +B1/lω(0)

∂ω

∂θ
(·)

]
for

[
x
ω(·)

]
∈ R

dimx ×W 2,1([0, l],Rdim wl)

where ÃH is an unbounded operator on X0 := R
dimx × L2([0, l],Rdim wl), and its domain is

given by

D
(
ÃH

)
=
{[

x
ω(·)

]
∈ R

dimx ×W 2,1([0, l],Rdimwl)
⏐⏐⏐ω(l) = 0

}
.

By defining X−1 := D(A∗
+ H)∗, we have the following dense and continuous inclusions:

X1 ⊂ X0 ⊂ X−1. Then, P+ mm is described in the framework of [24] as follows:[
ẋ(t)
ω̇l(t)

]
= Ã

[
x(t)
ω(t)

]
+ B̃1w(t) + B̃2u(t),

z(t) = C̃+

[
x(t)
ω(t)

]
+D12u(t), ymm(t) = w(t),

where the infinitesimal generator Ã : D(Ã) := X0 → X−1 is the extension of ÃH and

B̃1 :=
[
B̃1/0 B̃1/l

]
, B̃1/0 :=

[
B1/0

O

]
, B̃1/l :=

[
O

δl(·)Idim wl

]
,

B̃2 :=
[
B2

O

]
, C̃1 :=

[
C1 O

]
.

The following Riccati equation in Eq. (5.17) is associated with the above representation. In
Theorem 11, the operator X̃ constructed in Lemma 18 is shown to be the positive semidefinite
stabilizing solution of it.

Q̃+ Ã∗X̃ + X̃Ã+
1
γ2
X̃B̃1B̃

∗
1X̃ −

(
X̃B̃2 + S̃2

)
R−1

2

(
X̃B̃2 + S̃2

)∗
= O, (5.17)

Q̃ := C̃∗
1 C̃1, S̃2 := C̃∗

1D12.

90



Theorem 11. Suppose that the condition (X) in Theorem 9 is satisfied. Then, the operator X̃
constructed by Eq. (5.14) is the positive semidefinite solution of the operator Riccati equation
(5.17) such that Ãc := Ã + B̃1F̃1 + B̃2F̃2 is stable, where F̃1 and F̃2 are the state feedback
gains given by

F̃1 :=
1
γ2
B̃∗

1X̃, F̃2 := −R−1
2

(
B̃∗

2X̃ + S̃∗
2

)
.

Proof. Subsection 5.6.3.

Theorem 11 exhibits that the operator Riccati allows the representation in the form of the
composite of the state transformation operators (Eq. (5.14)), and more interestingly that its
positive definiteness is assured by the matrix condition (X). Recalling that the state transfor-
mation operators are introduced for the J-spectral factorization, Lemma 18 and Theorem 11
shows a direct link between the J-spectral factorization technique and the stabilizing solution
of the operator Riccati equation.

5.5 Example

It is reported that the discrete-time LQ preview controller significantly reduces the phase-
lag of the tracking response in [60]. As an example, we apply the formula in Theorem 10
to designing a preview tracking system, and demonstrate that the resulting controller also
improves the phase characteristics.

Suppose that the transfer function G(s) =
0.2 (s− 0.8)
s2 + s+ 0.34

from the control input u(t) to

the controlled output v(t) be given. The control objective is to make v(t) track the delayed
reference r(t− l) (r(t) = wl(t)) in the bandwidth less than the frequency ω = 1. The tracking

system configuration is shown in Fig. 5.6. The weighting function F (s) =
3

2s + 1
emphasizes

the tracking error e(t) in the low bandwidth, and the parameter ε = 0.1 adjusts the magnitude
of the measurement noise n(t) (= w0(t)).

For each value of the preview length l, the achievable performance γopt(l) is calculated by
the bisection method, and the central controller is determined for the upper bound γ(l) :=
1.01 · γopt(l). The frequency response of Tv r(s) esl is depicted in Fig. 5.7. Note that esl is
multiplied to Tv r(s) to reflect the purpose to suppress the tracking error after the time t = l.

From Fig. 5.7, the gain of the previewed response approaches 1 as the preview length
increases. Although the phase of the previewed response leads excessively in the high band-
width, its lag is suppressed around the frequency ω = 1. Therefore, the designed preview H∞

controller yields better tracking performance compared to the standard H∞ controller.
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Figure 5.6: Preview tracking system.

ω

ω

Figure 5.7: Frequency response of Tv r(s) esl.
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5.6 Proofs

5.6.1 Proof of Lemma 17

By changing the input-output signals of Φ+ : ((hmm 0, ymm l), k) → ((ymm0, −hmm l), u),
define Ω+ : ((hmm 0, ymm l), k) → ((ymm 0, −hmm l), u). Note that the state-space realization
of C (P+ mm)∼ : (a, b) → (hmm, k)

(
a =

[
aT

0 aT
l

]T) is given by

ṗ(t) = −A∗p(t) + C∗
1b(t),

∂α

∂t
(φ, t) =

∂α

∂φ
(φ, t) (0 < φ < l), α(0, t) = B∗

1/lp(t),

hmm 0(t) = −B∗
1/0p(t) + a0(t), hmm l(t) = −α(l, t) + al(t),

k(t) = −B∗
2p(t) +D∗

12b(t).

Therefore, the state-space realization of Ω+ is calculated as follows:[
ẋ(t)
ṗ(t)

]
= H0

[
x(t)
p(t)

]
+
[
B1/l

O

]
Γ0ω(t) − 1

γ2

[
B1/0

O

]
hmm0(t) +

[
B2

S2

]
R−1

2 k(t), (5.18)

Eωω̇(t) = Aωω(t) +
[
O
I

]
ymm l(t), (5.19)

Eαα̇l(t) = −Aαα(t) −
[
O B∗

1/l

] [x(t)
p(t)

]
, (5.20)

ymm0(t) = − 1
γ2

[
O B∗

1/0

] [x(t)
p(t)

]
− 1
γ2
hmm 0(t),

−hmm l(t) = Γlα(t) + γ2ymm l(t),

u(t) = R−1
2

[−S∗
2 B∗

2

] [x(t)
p(t)

]
+R−1

2 k(t).

The following operators on L2([0, l],Rdimwl) are used. Each of their domains isW 2,1([0, l],Rdimwl).

Eω :=
[
I
O

]
, Aω :=

[
∂
∂θ
−Γl

]
, Eα :=

[
I
O

]
, Aα :=

[− ∂
∂φ

−Γ0

]
.

First, referring to Eqs. (5.18) and (5.20), we consider the following transformation.[
I O

−EαV I

] [
H0 − sI O

−
[
O BT

1/l

]
−Aα − sEα

] [
I O
V I

]

=

[
H0 − sI O

−
[
O BT

1/l

]
− EαV H0 −AαV −Aα − sEα

]
. (5.21)

Using Krein’s formula [13], we determine V which makes the (2, 1) block of Eq. (5.21) zero
by the following complex integration.

V

[
x
p

]
(φ) = − 1

2πj

∮
σ(H0)

(sEα +Aα)−1
[
O B∗

1/l

]
(sI −H0)

−1

[
x
p

]
ds (0 < φ < l).
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This is calculated as in Eq. (5.15). Using it, we introduce the new state variable αR by the
equation ⎡⎣[xp

]
α

⎤⎦ =:
[
I O
V I

]⎡⎣[xp
]

αR

⎤⎦ . (5.22)

Similarly, referring to Eqs. (5.18)-(5.19), we consider the following transformation.

[
I U
O I

]⎡⎣H0 − sI

[
B1/l

O

]
Γl

O Aω − sEω

⎤⎦[ I −UEω

O I

]
=

⎡⎣H0 − sI

[
B1/l

O

]
Γl −H0UEω + UAω.

O Aω − sEω

⎤⎦ .
(5.23)

Using Krein’s formula again, we determine U which makes the (1, 2) block in Eq. (5.23) zero
by the following complex integration. For (f, g) ∈ L2([0, l],Rdimwl) × R

dimwl ,

U

[
f
g

]
=

1
2πj

∮
σ(H0)

(sI −H0)
−1

[
B1/l

O

]
Γl (sEω −Aω)−1

[
f
g

]
ds.

This is calculated as in Eq. (5.3). Using it, we have introduced the new state variables xR

and pR in Eq. (5.2). Finally, we make the following state variable transformation using Ξ
defined by Eq. (5.16).

αR× := αR + Ξω. (5.24)

After the state transformations in Eqs. (5.22), (5.2) and (5.24), the state-space realization
of Ω+ is given as follows:[

ẋR(t)
ṗR(t)

]
= H0

[
xR(t)
pR(t)

]
− 1
γ2

[
B1/0

O

]
hmm 0(t) +

[
B2

S2

]
R−1

2 k(t) + U

[
O
I

]
ymm l(t),

∂ω

∂t
(θ, t) =

∂ω

∂θ
(θ, t) (0 < θ < l), ω(l, t) = ymm l(t),

∂αR×

∂t
(φ, t) =

∂αR×

∂φ
(φ, t) − V

(
− 1
γ2

[
B1/0

O

]
hmm0(t) +

[
B2

S2

]
R−1

2 k(t)
)

(0 < φ < l), (5.25)

αR×(0, t) = 0,

ymm0(t) =
1
γ2

[
O −B∗

1/0

] [xR(t)
pR(t)

]
− 1
γ2
hmm0(t) − 1

γ2

[
O −B∗

1/0

]
UEωω(t), (5.26)

−hmm l(t) = αR×(l, t) + V

[
xR(t)
p(t)

]
(l) + γ2ymm l(t), (5.27)

u(t) = −R−1
2

[
S∗

2 −B∗
2

] [xR(t)
pR(t)

]
+R−1

2 k(t) +R−1
2

[
S∗

2 −B∗
2

]
UEωω(t). (5.28)

Referring to Eqs. (5.26), (5.27) and (5.28), we define the input-output signals by the equations

uR(t) := u(t) − F̃R
2/lω(t), kR(t) := k(t),
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yR
mm0(t) := ymm0(t) − F̃R

1/0lω(t), hR
mm 0(t) := hmm0(t),

yR
mm l(t) := ymm l(t), hR

mm l(t) := hmm l(t) + αR×(l, t).

Then, the input-output relationship between the above signals are represented by MFIR
+ as

follows: [
ymm

u

]
= MFIR

+

[
yR
mm

uR

]
,

[
hR

mm

kR

]
= MFIR∼

+

[
hmm

k

]
, (5.29)

hR
mm :=

[
hR T

mm 0 hR T
mm l

]T
.

Moreover, let ΩR
+ be the input-output system from ((hR

mm 0, y
R
mm l), k

R) to ((yR
mm 0, −hR

mm l), u
R),

and define the input-out system ΦR (−1)
+ : (hR

mm, k
R) → (yR

mm, u
R) by changing the input-

output signals of ΩR
+. Then, we obtain Eq. (5.4) by Eq. (5.29).

5.6.2 Proof of Theorem 10

First, we show the necessity of the condition (Y). Note that the original problem in
Section 5.2 is solvable only if the H∞ control problem for the following generalized plant
Ṕ+ FC in full control form is solvable.

ẋ(t) = Ax(t) +B1/0w0(t) +B1/lwl(t− l) + uFC x(t),

z(t) = C1x(t) + uFC z(t),[
y0(t)
yl(t)

]
=
[
C2/0x(t) +D21/00w0(t) +D21/0lwl(t− l)

wl(t)

]
.

The problem here is to determine (uFC x, uFC z) based on y to render the L2 gain from w to z
less than γ. Since the previewed disturbance wl is available, we cancel its effect on x and y0

in the above realization, and get to the H∞ control problem for ṔR
+ FC defined in Eq. (5.12).

Therefore, the condition (Y) is necessary.
Next, recall that we have reduced the H∞ control problem for P+ tmp to that for PR

+ tmp.
The latter problem is solved via the dual J-spectral factorization of

Φ́R
+ τ := ṔR

+ τ

[−γ2R−1
2 O

O I

]
ṔR∼

+ τ , Ṕ
R
+ τ :=

[
ÁR

+ τ B́R
+ τ

ĆR
+ τ D́R

+ τ

]
,

ÁR
+ τ := ÃR

c x, B́
R
+ τ :=

[
−B2

[
B1/0 BR

1/l

]]
,

ĆR
+ τ :=

⎡⎢⎣ −F̃R
2x[

C2/0 +D21/00F̃
R
1/0x

F̃R
1/lx

]⎤⎥⎦ , D́R
+ τ :=

⎡⎣ I
[
O O

][
O
O

] [
D21/00 O

O I

]⎤⎦ .
The factorizability condition is the following condition (T).
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(T) The following KYP equation has the positive semidefinite stabilizing solution Y R
tmp such

that ÁR
+ τ c := ÁR

+ τ + LR
+tmpĆ

R
+ τ is stable.

LR
+tmpŔ

R
+ τL

R ∗
+tmp = Q́R

+ τ + ÁR
+ τY

R
tmp + Y R

tmpÁ
R ∗
+ τ ,

−ŔR
+ τL

R ∗
+tmp = ŚR

+ τ + ĆR
+ τY

R
tmp,[

Q́R
+ τ ŚR ∗

+ τ

ŚR
+ τ ŔR

+ τ

]
:=

[
B́R

+ τ

D́R
+ τ

] [−γ2R−1
2 O

O I

] [
B́R

+ τ

D́R
+ τ

]∗
.

To show that (T) is equivalent to (Y) and (Z), we apply the idea in [20] of relating the
pencils associated with the KYP equations. First, the KYP equation in (T) is rewritten as
the generalized eigenvalue problem:

Φ́Rext
+ τ σ Bτ = Φ́Rext

+ τ δ Bτ Á
R ∗
+ τ c,

where Bτ :=
[
Y R T

tmp IT LR∗T
tmp1 LR∗T

tmp2 OT
]T,

Φ́Rext
+ τ σ :=

[
Φ́R

+ τ σ O

O −γ2I

]
, Φ́Rext

+ τ δ :=
[

Φ́R
+ τ δ O

O O

]
,

Φ́R
+ τ σ :=

⎡⎣ ÁR
+ τ Q́R

+ τ ŚR ∗
+ τ

O −ÁR ∗
+ τ −ĆR ∗

+ τ

ĆR
+ τ ŚR

+ τ ŔR
+ τ

⎤⎦ , Φ́R
+ τ δ :=

⎡⎣ I O O
O I O

O O O

⎤⎦ .
Similarly, the KYP equation in (Y) is rewritten as follows:

Φ́Rext
+µ σ Bµ = Φ́Rext

+µ δ Bµ Á
R ∗
c ,

where Bµ :=
[
Y RT IT LR∗T

1

[
LR∗T

2/0 OT
]

OT
]T

,

Φ́R ext
+ µ σ :=

[
Φ́R

+µ σ O

O −γ2R−1
2

]
, Φ́Rext

+µ δ :=

[
Φ́R

+ µ δ O

O O

]
,

Φ́R
+µ σ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A Q́0 O
[
Ś2/0 O

]
O −A∗ −C∗

1

[
−C∗

2/0 O
]

C1 O −γ2I
[
O O

][
C2/0

O

] [
Ś∗

2/0

O

] [
O
O

] [
Ŕ2/0

I

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Φ́R

+ µ δ :=

⎡⎢⎢⎢⎢⎣
I O O

[
O O

]
O I O

[
O O

]
O O O

[
O O

][
O
O

] [
O
O

] [
O
O

] [
O

O

]
⎤⎥⎥⎥⎥⎦ .

Using the Riccati equation associated with the Hamiltonian matrix e−H0lHle
H0l, it is

verified that the pencils Φ́Rext
+ τ σ − s Φ́Rext

+ τ δ and Φ́Rext
+µ σ − s Φ́Rext

+µ δ are related as follows:

Tl

(
Φ́Rext

+ τ σ − s Φ́Rext
+ τ δ

)
Tr = Φ́Rext

+µ σ − s Φ́Rext
+µ δ , (5.30)
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where

Tl :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I O B2

[
O −BR

1/l

]
O

1
γ2X

R I − 1
γ2S2

[
O 1

γ2S
R
1/l

]
1
γ2C

∗
1

O O O
[
O O

]
I[

O
O

] [
O
O

] [
O
O

] [
I

I

] [
O
O

]
O O I

[
O O

]
O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Tr :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I O O
[
O O

]
O

− 1
γ2X

R I O
[
O O

]
O

1
γ2S

∗
2 B∗

2 O
[
O O

]
I[

O
− 1

γ2S
R ∗
1/l

] [
O

−BR ∗
1/l

] [
O
O

] [
I

I

] [
O
O

]
− 1

γ2C1 O I
[
O O

]
O

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Eq. (5.30) implies that the bases of the generalized eigenvalue problems derived from (T) and
(Y) are related as follows:

BτZ
R ∗ = TrBµ.

5.6.3 Proof of Theorem 11

Partition X̃ in Lemma 18 conformably with
[
xT ωT

]T: X̃ =:

[
X̃xx X̃xω

X̃ωx X̃ωω

]
. By the

representations of U , V and Ξ in Eqs. (5.3), (5.15) and (5.16), X̃ij (i, j = x, ω) are given by

X̃xxx = X̃K
xxx,

X̃xωω =
∫ l

θ=0
XK

xω(θ)ω(θ) dθ, X̃ωxx(φ) = X̃K
ωx(φ)x,

X̃ωωω(φ) =
∫ l

θ=0
XK

ωω(φ, θ)ω(θ) dθ (0 < φ < l) ,

where X̃K
ij (i, j = x, ω) are defined as follows:

X̃K
xx := XR, X̃K

xω(θ) :=
[
XR I

]
e−H0θ

[
B1/l

O

]
, X̃K

ωx(φ) := X̃K
xω(φ)∗,

X̃K
ωω(φ, θ) :=

[
B∗

1/l O
]
e−H∗

0 φ

[
XR H(θ − φ)I

H(φ− θ)I O

]
e−H0θ

[
B1/l

O

]
(0 < θ, φ < l) .

Since the above defined X̃K
ij (i, j = x, ω) satisfy the following system of PDEs, X̃ is a solution
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of the operator Riccati equation (5.17).

Qν +A∗
νX̃

K
xx + X̃K

xxAν − X̃K
xxP1/0X̃

K
xx +

1
γ2
X̃K

xω(l)X̃K
lx(l) − X̃K

xxP2X̃
K
xx = O,

− ∂

∂φ
X̃K

ωx(φ) + X̃K
ωx(φ)Aν − X̃K

ωx(φ)P1/0X̃
K
xx +

1
γ2
X̃K

xx(φ, l)X̃K
ωx(l) − X̃K

ωx(φ)P2X̃
K
xx = O,

− ∂

∂θ
X̃K

xω(θ) +A∗
νX̃

K
xω(θ) − X̃K

xxP1/0X̃
K
xω(θ) +

1
γ2
X̃K

xω(l)X̃K
ωω(l, θ) − X̃K

xxP2X̃
K
xω(θ) = O,

− ∂

∂φ
X̃K

ωω(φ, θ) − ∂

∂θ
X̃K

ωω(φ, θ)

− X̃K
ωx(φ)P1/0X̃

K
xω(θ) +

1
γ2
X̃K

ωω(φ, l)X̃K
ωω(l, θ) − X̃K

ωx(φ)P2X̃
K
xω(θ) = O,

X̃K
xω(0) = X̃K

xxB1/l, X̃
K
ωω(φ, 0) = X̃K

ωx(φ)B1/l,

X̃K
ωx(0) = B∗

1/lX̃
K
xx, X̃

K
ωω(0, θ) = B∗

1/lX̃
K
xω(θ)

(0 < θ, φ < l).

We can verify the above system of PDEs using Eq. (5.7) and the identities such that

∂

∂φ
eH0φ = eH0φH0, e

−H0θ = J−1
s

(
eH0θ

)∗
Js.

To show the stability of Ãc and Ã + B̃2F̃2, we transform their domain and range spaces
by Eq. (5.2). Then, Ãc and Ã+ B̃2F̃2 are transformed to the infinitesimal generators of N+

in Theorem 9 and N−1
+11 in the proof of Theorem 9, respectively. Those transformed Ãc and

Ã+ B̃2F̃2 are stable by the stability of ÃR
c x and A+B2F̃

R
2/x, respectively.

To show the positive semidefiniteness of X̃, we rewrite the Riccati equation (5.17) as the
following Lyapunov equation:(

Q̃− S̃∗
2R

−1
2 S̃2 + X̃B̃2R

−1
2 B̃∗

2X̃ + γ2F̃ ∗
1 F̃1

)
+
(
Ã+ B̃2F̃2

)∗
X̃ + X̃

(
Ã+ B̃2F̃2

)
= O.

Since Ã + B̃2F̃2 is stable, the operator X̃ is positive semidefinite by the results on operator
Lyapunov equations [24].

5.7 Conclusion

The H∞ preview control design method is derived in parallel with the H 2 control case
in Chapter 4. The state decomposition can be seen as the state transformation, however
is different from those employed in [26], [28] in that it gives a one-to-one correspondence
between the original and tranformed state variables. Furthermore, it is verified that the
operator X̃ defining the state variable of the adjoint spectral factor satisfies the control-type
operator Riccati equation. Therefore, the J-spectral factorization techniques in [31], [38] can
be alternative ways to [26], [28] for studying the structure of the operator Riccati equation.
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Chapter 6 Conclusion

6.1 Summary of the thesis

We proposed the state decomposition approach for the input-delayed and preview H 2/H∞

control problems. It has the strength in treating the output estimation problems, and yields
the optimal output feedback controllers in a consistent manner. The reduced-order con-
struction methods of the discrete-time input-delayed H∞ and continuous-time preview H 2

controllers were newly derived in the output feedback settings.
In Chapter 2, we solved the H 2 control problem for the discrete-time input-delay system

by focusing on the internal state dynamics. The fundamental idea of the state decomposition
was described by deriving a Smith predictor for a simple input-delay system. Motivated by it,
the optimal controller in the Smith predictor form was obtained from the Riccati equations
for the delay-free system.

In Chapter 3, we considered the input-delayed H∞ control problem in the discrete-time
setting. The J-spectral factorization technique is introduced into the discrete-time setting.
It yielded the solvability condition involves only solving the KYP equations for the delay-free
system and checking the matrix eigenvalues. The optimal controller was implemented in the
Smith predictor form. The solvability condition and control law were further investigated via
the min-max optimization approach. An alternative solvability condition was provided from
the perspective of the finite horizon optimization. As a supplementary result, the min-max
optimization approach was adopted to derive another solvability condition. The equivalence
between the J-spectral factorization and min-max optimization approaches was provided.

In Chapter 4, we applied the state decomposition approach to the continuous-time H 2

preview control problem. A clear structure of the optimal controller was identified as the
combination of the finite-dimensional observer and preview-feedforward compensation. The
optimality of the output feedback controller was guaranteed by exploiting available preview
information at both of the full information and output estimation problems.

In Chapter 5, we further extended the design method to the continuous-time preview H∞

control problem. The H∞ output feedback controller was realized in the form parallel to the
H 2 control case. Moreover, the relationship between the J-spectral factorization technique
and the stabilizing solution of the operator Riccati equation was clarified by considering the
state-space representation of the J-spectral density.

We established the unified reduced-order construction methods of H 2/H∞ control laws
for the input-delay and preview systems. The above-mentioned controllers share a common
interpretation that the observer-based controllers for the delay-free systems are compensated
by the past history of the control input or the preview information. Moreover, they are
implemented by solving the reduced-order or finite-dimensional Riccati/KYP equations for
the delay-free systems.
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6.2 Subjects of future research

We extended the classes of the input-delay and preview systems for which the reduced-
order construction of the optimal H 2/H∞ laws are tractable. However, the design methods
need further extentions for practical applications in mechatronic systems.

Recall that we employed the so-called internal model control technique [46] for solving
the output estimation problems. In the proposed approach, the exact models of th delayed
dynamics are included in the controllers to cancel the delay elements out of the closed-loop
interconnection. The crucial assumption for the internal model control technique is that the
controllers can access the perfect information on the delay elements holding the past history
of control input or disturbance. The assumption is not realistic in teleoperation operation or
active suspension systems. In the former system, there often exist input and output delays
between the interaction of a master and slave [3], and the past history of the output signal
is not directly available for the controller. In the latter system, the preview information of
road profiles is usually corrupted by measurement noise or is given as the outputs of the
disturbance models [58]. We will enhance the proposed design methods based on the optimal
estimation of the delay elements, and investigate their features through experimental studies.
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