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Abstract 

 

 

  This thesis provides new methods for visual resource assessment and modeling, an 

important research theme in micro-scale level tourist/recreational site planning and 

management. By acquiring and manipulating a combination of digital camera images 

and geospatial information tools such as geographic information systems, the proposed 

assessment method draws results from the analysis and modeling of visitors’ visual 

interest during their on-site experiences of geographic space. 

  To acquire spatial data on visitors’ visual interest, two surveys are conducted. First, 

participants are requested to photograph positive scenes while walking using digital 

cameras embedded with GPS and electronic compass. Next, the participants complete 

questionnaires that help them to evaluate their visual experiences and categorize visual 

objects. Second, the height or width of the visual objects projected in the photographs 

taken by the participants is measured using a laser distance meter. Based on the data 

acquired from these surveys, spatial point and line data of visitors’ visual interest, 

named points of visual interest (PVI) and lines of visual interest (LVI), are extracted. 

  Four types of applications for the analysis and modeling of visual interest are 

presented. Two applications attempt to analyze visual interest from location point data 

that visitors’ interest generate. The first application conducts an exploratory analysis of 

spot characteristics; several spatial clusters are extracted based on similarities in 

preference levels. The characteristics of the representative spots are statistically 

described using multiple indicators including the above clusters. The second 
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application involves modeling and visualizing the sightseeing potential of locations. 

Embedded into the algorithm of density computation are mechanisms for removing 

bias and weighting preference level scores.  

  The subsequent two applications focus mainly on spatial line data of visitors’ interest 

visual lines. The third application creates a visualization of the spatial intensity of 

visual lines. Three map representation techniques are presented: density estimation for 

line data, grid-based aggregation, and flow data representation. In addition, the 

advantages and disadvantages of each technique are described. The final application 

described is the construction of a prediction model for visual interest flows. Spatial 

interaction models are used to predict the level of total flow between locations through 

explanatory variables related to origin and destination potentials, landscape elements, 

and distance between locations.  

  These models allow one to assess the entire target area, rather than being limited 

strictly to the scenes that visitors perceive. They also overcome the notable limitations 

of typical photographic surveys, and they clearly show new and useful techniques in 

visual resource management and modeling for specific sites. The spatial intensity of 

PVI, LVI, and geovisualization provide location-specific potential and attractiveness of 

scores for scenes and spaces.  
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Chapter 1 

 

Introduction 

 

 

1.1. Visual Resource and Tourism/Recreation Management  

 Landscapes existing around us often influence our behavior in various situations; 

people perceive a great deal of information, and a variety of emotions may be evoked 

through observation, gleaning cultural and natural backgrounds, or recognition of 

invisible meanings. As a consequence of these acts, people can integrate their own 

values and views into landscape. Such human-landscape interaction particularly occurs 

in tourism and recreation settings; beautiful scenes of natural or man-made landscapes 

have great power that attract us through their visual qualities and values in several 

contexts including the natural, the cultural and the social. This power, in many cases, 

catalyzes the desire to go traveling and see those beautiful scenes.  

 One essential aspect of the modern tourism system consists of above interactive 

relationship between the human observer (tourist) and environment (landscape). 

Marketers provide tourism information with various expressive styles to potential 

tourists as promotional material for a given destination. Visual information, such as a 

photograph, is one most important and effective representation media, being able to 

provide direct images about tourist sites (Chiou et al., 2008). For example, in tourist 

guidebooks, the typology of photographic representation generally includes the types 

of both space and subject; the former is characterized by landscapes, situations and 
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products, and the latter is defined from tourists, hosts and non-human subjects (Hunter, 

2008). Such visual images inspire travel to distant places (Jenkins, 2003). People 

actually visit desired locations and observe the visual scenes they expect. However, in 

the on-site situation, those visitors encounter not only particular scenes they imagined 

but also other various scenes, and they evaluate both the expected and the unexpected 

visual experiences. After all trips and activities have ended, visitors modify their initial 

destination images in the mental processes (Li, 2000; Dorwart et al., 2009). If they are 

satisfied with the overall experience, they may return in the future to the destination or 

the attractions already visited, and may also recommend the destination to relatives and 

friends. Therefore, the attractiveness of the visual resource at a certain site constitutes a 

competitive advantage in contrast to other destinations (Schirpke et al., 2013). 

 From the perspective of the host region, if aiming to offer the appropriate service 

and experience to visitors, an assessment of visual resource is required as one 

component of planning and management of a given tourist or recreational site. The 

quality assessment of the visual resources may be conducted from either an objective 

or subjective view, or both; objective methods assess the physical components of 

landscape, subjective methods analyze persons’ environmental perceptions (Schirpke et 

al., 2013). These efforts contribute to the maintenance of visual quality of the 

landscape, the effective promotion of attractive scenes, and the planning touring routes.  

 Methods of visual quality assessment have varied in recent times. For management 

purposes, applicable to tourism and recreation sites, studies have mainly focused on 

visitors’ evaluations to destination landscapes in settings before, after, or during their 

on-site experiences. To record and collect visitors’ responses in such multiple situations, 
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the “photograph” has been traditionally a commonly used tool and various 

methodologies using photographs have been developed even recently. However, a 

robust technical definition is still developing. In spite of the recent remarkable 

evolution of photographic instruments such as digital cameras, their full potential has 

not been utilized effectively in visual resource assessment research. Moreover, as 

various information technologies continue to develop, digital data from photographs 

can be used for not only image analysis but also other unique purposes by integrating 

other types of information. This has great potential to assist research innovation. For 

example, combination with geo-spatial information technologies such as geographic 

information system (GIS) and global positioning system (GPS) information could 

enable us to extract various kinds of data and analyze them.  

 This thesis aims to provide new and innovative approaches regarding the analysis of 

visitors’ perceptions and assessment of tourist/ recreational spaces, especially focusing 

on visitor-oriented photographs and computer-aided techniques.  

 

1.2. Spatial Scale of Study  

  In the analysis and assessment of geographical features including human behavior, a 

scale is one important factor to consider when selecting a suitable method (Andrienko 

et al., 2010). For example, a set of tourist behaviors taking in multiple phases has been 

researched by a distinctive methodology in a different scale. An international, or 

internal, tourist flow which shows number of tourists visiting from a particular country 

or region to another, is the largest geographical scale for analysis. This type focuses on 

the interaction of the tourist trade between two countries or regions, which is 
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represented as supply and demand relation. In contrast, visitor movement in a specific 

tourist site is perceived in a smallest geographical scale, focusing on the interaction 

between visitor and site specific environment.  

 Similarly, the assessment of tourist/recreational space also needs to consider the 

scale of the targeted area. Most of visual resource assessments have been mainly 

targeted to model the visual quality of landscapes in large-scale areas. However, to 

reflect visitors’ direct evaluations to real scenes during on-site experiences in the 

assessment, a study in a small area only should be managed. However, the small area 

assessment based on visitor’s on-site scenic preferences is a hard task because of the 

difficulty in acquiring precise location data that associated with points of interest. The 

use of geospatial information tools can assist to overcome such limitations.  

 

1.3. Research Approach  

  Visual resource assessment research has been conducted through various approaches 

by different researchers in different situations (although the research trend and purpose 

tends to be characterized in academic disciplines). To argue research novelty, I describe 

the major characteristics of the research approach adopted in this thesis in advance; a 

more detailed explanation follows in the next chapter. Figure 1-1 highlights three 

significant aspects of this thesis. 

 First, this thesis can be regarded as an environment perception study specifically 

targeting visitors’ on-site scenic perception in tourism/recreational settings. This type 

of research is both fundamental and applied. The knowledge obtained is important to 
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understand people’s environmental preference to ensure the appropriate design, 

planning, and management of tourist/recreational sites.  

  Second, this thesis is conducted based on computer-aided techniques. Recent visual 

resource assessment has developed significantly because of geospatial information 

tools such as GIS. Various kinds of spatial data such as behavioral, social, artificial, 

and natural are combined and processed in a common digital geographical space, and 

the landscape potential is modeled mathematically and visualized through digital 

mapping. In a new approach, clearly distinct from previous studies, I analyze spatial 

data representing visitors’ on-site visual interest in visual objects to spatially clarify 

their environmental preference. 

  Third, this thesis employs micro-scale assessment methodologies—methodologies to 

conduct an assessment in human-scale—because the data to be used are 

high-resolution micro spatial data acquired from people’s behavioral histories. 

 

 

Figure 1-1. Research approach 
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Therefore, it is desirable that the targeted area is comparatively small and complex, 

such as an urban recreational space, or large and enclosed, such as a trail.  

 

1.4. Thesis Goals 

 The goal of this thesis is to develop a computer-aided method for analysis and 

modeling of visitors’ visual interest during their on-site experiences in geographic 

space. Combination of photographic methods, which have been mainly developed in 

landscape perception and assessment research, and geo-spatial information 

technologies are key factors. This hybrid method allows us to represent visitors’ visual 

experiences as geographically distributed data and analyze them based on their 

positional relations in geographic space. In addition, the integration with physical 

landscape data is available, enabling us to analyze the relationship between person’s 

visual perception and physical landscape quantitatively. 

 A series of data acquisitions, visualization, statistical analyses of spatial data of 

visitor-oriented photographs and modeling potential is at the core of this study. On-site 

field surveys are an essential part of data acquisition in this context. Acquired spatial 

data needs to be visualized using a map representation before or after analysis. 

Statistical analysis, especially statistics for spatial analysis, is used in this thesis to find 

significant data patterns that are buried in the complex datasets. Modeling potential is 

effective for the planning and management of tourism and recreation purposes, focused 

on modeling visual quality for sightseers. Based on this research, several approaches 

for analysis and modeling are presented in this work.  
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1.5. Structure of This Thesis 

  This thesis is organized into eight chapters. The research flow is described in 

Figure 1-2. While the primary area of focus is an analysis of spatial data representing 

visitors’ visual interest, in this study it is also important to analyze the physical 

landscapes of a targeted site to assess visual resources from physical and psychological 

aspects. 

  Chapter 2 reviews existing research on scenic/landscape perception and assessment, 

tourist/recreational behavior and applied studies for planning and management of 

tourist/recreational sites. Subsequently, the advancement of these techniques by 

application of geospatial information technologies is addressed, and primary work is 

also described.  

 Chapter 3 mainly explains the field surveys and data acquisition methods. The field 

surveys were conducted for collecting several kinds of photographic data taken by 

visitors, indicating their interest during their on-site experiences. Thereafter, two types 

of spatial data representing the visitors’ interest were generated; point data of 

photo-taking locations, and vector data of photo-shooting lines. In addition, the 

landscape structure of the study area is analyzed using 3-D digital landscape data to 

grasp the physical aspects of the targeted site.  

 Chapters 4 and 5 focus on the spatial data of photo-taking locations and their 

attributes. Chapter 4 explores the spot characteristics through analysis of the 

photo-taking locations, photo-taking directions, and preferences of visitor-experienced 

scenes. The similarity of spatial features, based on preference levels, is measured for 

evaluating “spot attractiveness” in terms of visitor consensus. Following this, the   
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Figure 1-2. Research flow of this thesis 

 

spatial ranges of these spots are determined, and each spot characteristic is statistically 

described through several indicators of photography-related data and the difference 

between actual observed field and potential viewshed.  

 Chapter 5 demonstrates GIS-based modeling and visualization of sightseeing 

potential. The density of photo-taking locations is computed, and treated as the 

potential degree of the spot. At the same time, the weighted scores are shown; these are 

processed using a density computation algorithm for reducing biases.  

Chapters 6 and 7 focus on the spatial line data of associated with the photo-shooting 

lines. Chapter 6 describes effective methods to analyze and visualize spatial intensity 

of visitors’ visual lines. Three types of map representation are demonstrated; line 



 

 

9 

density, grid-based aggregation, and flow data visualization. Advantages and 

disadvantages of each are compared. Thereafter, some are combined with the 3-D 

landscape models of the targeted site and its surrounding area to examine the 

effectiveness of geo-visualization.  

 Chapter 7 describes the creation of the mathematical models used for prediction of 

the flow patterns of visitors’ visual interest. Models include both perceptual and 

physical landscape data in explanatory variables. The accuracy of the predicted values 

is tested by comparing with the observed values using goodness-of-fit and actual 

distribution on the map.  

 Chapter 8 concludes this thesis with a summary of major results and a discussion of 

future research in this field.  
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Chapter 2 

 

Related Work 

 

 

2.1. Existing Research in Landscape Perception and Assessment 

 When designing and managing tourist destinations, understanding both the type of 

space, and the scenery that people prefer, is important. “Tourist experiences are 

generated via a process of perceiving and recognizing a variety of sensory information 

obtained within a landscape” (Chhetri et al., 2004). Visual experiences have 

particularly profound effect on people, emphasizing the characteristics of the 

environment (Sugimoto, 2012). Therefore, knowing which scenery people generally 

prefer can be useful in understanding their experiences. This type of study, known as 

human-landscape perception research, has been developed within various fields 

including geography, forestry, tourism and recreation, environmental psychology, and 

landscape studies (Zube et al., 1982).  

 Many previous studies of landscape perception and assessment in several disciplines 

have attempted to clarify the types of scenes that are preferred by humans, to provide 

fundamental knowledge for environment design and management (Zube et al., 1982; 

Jacobsen, 2007). While there have been investigations carried out by experts and 

non-experts (Daniel, 2001), and perception-based research has mainly been conducted 

from the latter perspective (Figure 2-1).  
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 Figure 2-1. Types of landscape perception research determined by Zube et al. (1982) 

and Daniel (2001) 

 

 Landscape perception research has been subdivided further. Zube et al. (1982) have 

identified the four paradigms of landscape perception research from review of over 160 

articles published during the period 1965-1980; expert, psychophysical, cognitive, and 

experiential (Figure 2-1). The expert paradigm involves evaluation of landscape quality 

by skilled and trained observers. The psychophysical paradigm involves assessment 

through testing general public or selected populations’ evaluation of landscape 

aesthetic qualities or of specific landscape properties. The cognitive paradigm involves 

a search for human meaning associated with landscape properties. Finally, the 

experiential paradigm considers landscape values to be based on the experience of 

human-landscape interaction.  

 In recent trends, tourism and recreation related studies have been conducted from all 

paradigms. The findings of landscape perception research focusing upon the recreation 

settings can be applied directly to tourism (Fridgen, 1984). Applied studies related to 

the recreation planning typically adhere to the expert and psychophysical paradigm, 
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have aimed to resolve whether landscapes are significant and/or beautiful as the visual 

resource (Jacobsen, 2007). Typical research of expert paradigm evaluates the quality of 

various landscapes in tourism region from mainly their geophysical values and 

conditions, depending on the knowledge and experience of specialists (Mizoo et al., 

1975; Mizoo & Osumi, 1983; Rangel-Buitrago et al., 2013). On the other hand, the 

cognitive and experiential paradigms have been concerned with theoretical issues, such 

as the character of landscape, the reason of public preference to specific landscapes and 

the meaning people attach to particular landscapes. The combined approaches of two 

or more paradigms, for example psychophysical and cognitive, will be further used to 

advance landscape perception and assessment research.  

 Strictly defining the paradigm of this thesis is involved is difficult. In simple terms, 

this study combines psychophysical and experiential approaches because of following 

reasons; firstly, this thesis uses quantitative measurement to assess the visual 

experiences of participants and the location potential of spaces, and secondly the 

acquired data are generated based on the participants’ perceptions within the 

interaction with real environment during their on-site experiences. 

   

2.2. Photographic Methods  

 Studies of landscape perception and assessment have usually relied on photographic 

data. Various types of perception-based research have been developed to evaluate 

visual elements. For example, photo-based questionnaire surveys as represented by 

Daniel and Boster’s (1976) scenic beauty estimation (SBE) have widely been 

employed. SBE requires participants to evaluate the visual quality of landscapes in 
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slide photographs that researchers have prepared on Likert scales, in a laboratory 

setting. This technique is recognized as a reliable approach to evaluate the aesthetic 

qualities of a landscape, and to compare various landscapes presented in forms such as 

digital media (Bishop & Hulse, 1994). However, visitors’ on-site perceptions of 

landscapes could be affected by contextual factors, such as their mood, interpreted 

meaning and novelty, and could thus be different from perceptions of photographed 

landscapes (Hull & Stewart, 1992). In addition, this kind of simulated landscape 

assessment causes problems arising from, for example, researcher bias in scene 

selection, photographs, panels, and respondents, as well as the inability of researchers 

to capture the qualities of a scene through their own photographs (Akbar et al., 2003). 

The prepared photographs may therefore not be representative of the target area (Chen 

et al., 2009). 

  Some techniques of photo-based research have recently been applied in field 

research (Jacobsen, 2007), requiring methods that take account of the contextual 

factors attributed to field settings that involve actual visitors. Fairwether and Swaffiled 

(2001, 2002) employed the Q-method with questionnaires that asked respondents to 

assess landscapes photographed in New Zealand so as to elicit favorable landscapes for 

visitors. Wong and Domroes (2005) assessed the visual quality of urban park scenes 

from the perspective of both tourists and residents via a questionnaire that asked 

visitors to sort and evaluate photographs. Naoi et al. (2006) interviewed students using 

photographs of various settings in a Japanese historical district as stimuli to evaluate 

their experiences. Fyhri et al. (2009) explored foreign tourists’ perceptions, preferences, 

and assessments of agriculturally-related coastal landscapes by asking them to sort 
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landscape photographs in several themes and evaluate in terms of preference. Múgica 

and Lucio (1996) investigated landscape preferences of national park visitors by asking 

them to answer photo-questionnaires. Chen et al. (2009) evaluated aesthetic quality 

(visual, auditory, tactile, and olfactory factors) of urban green space using photographic 

stimuli and questionnaires. However, these investigations have failed to fully capture 

visitors’ views about real landscapes of their own choice (Naoi et al., 2011).  

 In order to evaluate actual landscapes and elements that they encapsulate, some 

researchers have employed methods that analyze photographs taken by participants 

who actually visited the targeted sites. A concrete photographic technique called 

visitor-employed photography (VEP) has been used to analyze visitors’ scenic 

perceptions during their on-site experiences. This is a method based on participants’ 

own photography in the context of a real environment. Haywood (1990) describes VEP 

as a powerful tool that provides visual and evidentiary information to support reactions 

to, opinions about, and assessment of visitors’ experiences in specific places or 

destinations. Moreover, VEP allows us to record the memory of the visitor’s indistinct 

experience, which is difficult to capture using questionnaires (Chenoweth, 1984). 

Cherem and Driver (1983) used VEP to measure visitors’ common perceptions of 

natural environments. Following their research, VEP has been used for various types of 

studies. Taylor et al. (1995) used VEP as a technique to quantitatively and objectively 

evaluate the importance of water resources in the Rocky Mountains. Oku and 

Fukamachi (2006) collected photographs from visitors in a forest recreation trail and 

analyzed the kinds of objects that visitors photographed in relation to the visitors’ 

attributes and preferred activities. Haywood (1990) mentioned the possibility of using 
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VEP to assess an urban environment. MacKay and Couldwell (2004) used VEP to 

extract tourists’ images that reflected their preferred landscapes. Dorwart et al. (2009) 

used VEP to determine visitors’ perceptional affects with regard to their outdoor 

recreation experiences. Heyman (2012) assessed visitors’ recreational preference of 

landscapes with different management conditions by VEP. Nielsen et al. (2012) 

researched factors affecting visitors’ preferences in terms of the attributes of visual 

scenes, such as spatial configuration and content-based properties of landscape. Qiu et 

al. (2013) investigated the relation between preferences and biodiversity in the 

landscape using VEP in an urban green recreational space. 

 As befits the purposes or style of various researchers, this technique has been 

referred to by a number of names; it has instead been called volunteer-employed 

photography (Garrod, 2008), host-employed photography (Brickell, 2012), 

resident-employed photography (Stedman et al., 2004; Amsden et al., 2011), photo 

elicitation (Loeffler, 2004; Matteucci, 2013), caption evaluation (Naoi et al., 2011), and 

the photo projective method (Yamashita, 2002).  

 In most previous studies, the kind of scenery that people recognize as having formed 

part of their positive or negative experiences has been intensively studied. However, 

the spatial distribution of photo-taking locations has not yet been sufficiently analyzed, 

partly because many researchers have used disposable cameras for their investigations. 

If the photograph is merely used to extract humans’ visual perception based on the 

specific theme and region, using a disposable camera alone seems to be sufficient. 

However, when we consider the use of photographic techniques in managing the 

environment quality, we must conduct our analysis with a technique that is more 
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effective at identifying locations that allow visitors to see attractive views or objects. If 

such an analysis is possible, the spatial evaluation structure of the site’s specific area 

can be clarified from the perspectives of these visitors. Such analysis, which is based 

on the geo-spatial research approach, may be important to regional resource 

management.  

 

2.3. Geographic Information System and Other Relevant Geo-Spatial Tools 

2.3.1. GIS and tourism/recreation management 

  Geographic Information Systems (GIS) and other relevant geo-spatial technologies 

are regarded as effective tools for planning and management of recreational sites. A 

GIS is an information systems technology that can be used to store and retrieve 

geographical data, and it provides the tools for manipulating, analyzing, and presenting 

geographic information (Rigaux et al., 2001). Tourism and recreational features 

including both natural and cultural sites of interest, along with their attribute 

information, can be stored as spatial objects in a geographic database (Chhetri & 

Arrowsmith, 2008). Spatial information stored in a GIS provides the tools to gain an 

understanding of the geometrical and topological relationships of spatial objects in 

geographical space. A GIS also allows both spatial as well as attribute data stored in the 

database to be processed using geospatial statistical analysis techniques and 

mathematical operations. Numerous studies have adopted GIS to support decisions 

towards planning and managing tourist or recreational spaces. Chhetri and Arrowsmith 

(2008) identified four main themes of research that use GIS for different purposes 

(Figure 2-2), including the tourism carrying capacity modeling (Arrowsmith & 
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Inbakaran, 2002; Navarro Jurado et al., 2012), the recreational opportunity spectrum 

(Kliskey, 2000), visual resource assessment and modeling (Chhetri, 2006; Schirpke et 

al., 2013), and nature-based tourism modeling (Bishop & Gimblett, 2000; Gimblett et 

al., 2001). However, this theme classification tends toward researches in nature-based 

tourist destination. Other GIS-based studies for tourism/recreation planning and 

management have also developed in various settings, such as trail planning and 

evaluation (Chamberlain & Meitner, 2013; Tomczyk & Ewertowski, 2013), recreation 

value mapping (van Riper et al., 2012; Nahuelhual et al., 2013), site suitability 

modeling for recreation (Lwin & Murayama, 2011; Kienast et al., 2012), evaluation of 

spatial centrality of villages in rural area (Lee et al., 2013), analysis of beach 

availability using remote sensing technique (Yang et al., 2012), assessment of the 

geographical accessibility of recreational opportunities (Brabyn & Sutton, 2013), 

creating GIS database on cycle tourism infrastructure (Bíl et al., 2012), and simulating 

visitor behavior in urban recreational spaces (Moulin et al., 2004). My study is 

certainly involved in research of visual resource assessment and modeling, and this 

theme is significant in almost all settings involving tourism/recreation management. 

 

2.3.2. Visual resource assessment and modeling 

Visual resource assessment and modeling is used to evaluate the visual quality of 

landscapes from both objective and subjective elements of human-landscape 

interactions (Chhetri & Arrowsmith, 2008). Scenic or landscape perception research 

has contributed to the development of assessment indicators for visual resources. The 

outcomes have been used in the modeling scenic beauty, which is one typical research 
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Figure 2-2. Four significant subjects for the GIS-based recreation planning 

management of a space (Chhetri & Arrowsmith, 2008) 

 

theme of visual quality assessment. The majority of these studies have used a multiple 

linear regression to derive the predictive model of scenic beauty, attractiveness, or 

other types of visual quality (Bishop, 1996): in most cases such indicators have been 

set as dependent variables and estimated by independent variables composed of 

physical features of landscapes (e.g., Bishop & Hulse, 1994). The predicted results are 

often visualized on GIS, and the location of high or low visual quality areas may then 

be identified. Recent studies of model construction have tended to focus on the 

perception-based assessment or the integral assessment approaches, such as 

combination of perception-based and expert-based assessment. For instance, Chhetri 

and Arrowsmith (2008) modeled and predicted the recreation potential of landscape by 

combining scenic attractiveness modeling (constructed by multiple regression using 

indicators of landscape preference, collected interviewing predominant visitors) and a 

neighborhood operation that identified the potential distance from tourist facilities 

frequented by visitors. Schirpke et al. (2013) developed the scenic beauty model 
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combining objective methods, which assess spatial patterns of visible landscapes from 

viewpoints using GIS, with perception-based methods, which reflect the participants’ 

perceptions including tourists at study sites to scenic quality. These studies have mainly 

focused on natural landscapes such as national parks, protected areas, and forest 

recreational sites, and assessed the large-scale areas. However, these GIS-based 

techniques for visual resource assessment in small areas have not been sufficiently 

developed.  

 

2.3.3. Investigation of visitor behavior using geo-spatial tools 

 In recent tourism and recreation research, GIS-based micro scale investigations of 

visitor behavior such as movement and space use have been conducted using several 

approaches. Most of researchers have used Global Positioning Systems (GPS) for 

recording visitor behavior. Ostermann (2010) used a mobile GIS as a new tool to 

capture visitor activity patterns of an urban park, but this approach is not widely used. 

The Global Positioning System (GPS) is a space-based satellite navigation system that 

provides location and time information. By using GPS loggers, which are mobile 

devices capable of logging the location of moving objects such as people and vehicles, 

we can easily record the spatial and temporal data of movement trajectories of objects. 

For management purposes, GPS tracking has been widely accepted as a method for 

investigating visitors’ spatial and temporal movements in geographical space (Shoval 

& Isaacson, 2007a; Chhetri et al., 2010; Shoval et al., 2011; Hallo et al., 2012; Orellana 

et al., 2012). To implement this technique, a researcher issues GPS loggers to many 

visitors in a specific place and collects them after visitors’ recreational activities are 
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completed. GPS records high-resolution micro spatial data of visitors’ current locations 

and other attribute data including time, elevation, and speed. Such complex data can 

help us to clarify not only movement patterns but also the characteristics of visitor 

behavior from various perspectives; for example, spatial intensity of visitor use 

(Shoval & Isaacson, 2007b; Shoval, 2008; McKercher et al., 2012), travel mode (Gong 

et al., 2012; Bolbol et al., 2012), and the effect of environmental influences on visitor 

behavior (Meijles et al., 2013). Thus GPS-based visitor tracking has diversified in 

recent times, and its effectiveness has been championed in many previous studies. The 

spatial patterns of visitors’ logs may often reflect their environmental preferences. 

However, in a precise sense, visitors’ logs cannot completely explain what objects 

visitors prefer, but show only physical conditions at specific times and locations. 

Researchers need to estimate visitor behaviors and preferences from distributions of 

GPS logs. A combination of GPS tracking and other surveys that query visitors about 

their actual experiences may overcome this problem. However, questionnaires are 

generally constrained by researchers and conducted before or after the experience, and 

are not able to record preferences directly. To acquire such location-specific experience 

data, I suggest the use of the spatial information with visitors’ photography, which 

includes not only visitors’ perceptions to scenes they encounter but also location and 

time.  

 Digital cameras have become popular nowadays (Sugimoto, 2011a). An image taken 

by a digital camera contains Exchangeable image file format (Exif) data, which can 

record various types of information. Moreover, geographic coordinates can be recorded 

if GPS are used in combination with the camera. If photo-taking locations are managed 
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as point data on a GIS, they can have various usages. On the Internet, photo-based 

community sites such as Flickr have been created. Many people enjoy such sites by 

sharing their travel photographs (Lo et al., 2011; Stepchenkova & Zhan, 2013), often 

managing geo-tagged photographs on Web-GIS. Those user generated geo-tagged 

photographs have recently been targeted for academic researches such as analysis of 

regional images (Hollenstein & Purves, 2010; Stepchenkova & Zhan, 2013) and 

development of information services (Kurata, 2012). It is also possible to extract point 

data on desktop-based GISs, such as ArcGIS. This software is an effective tool for 

spatial analysis and the visualization of geographical and spatial events, and has been 

used for modeling the scenic potential of space in previous studies on tourism and 

recreation (Chhetri, 2006; Chhetri & Arrowsmith, 2008). However, previous research 

has not been conducted assessing and modeling the potential of recreational spaces at 

the scale of small areas. The use of spatial data from visitor-oriented photographs could 

be an effective method to address this problem. Therefore, this thesis focuses on a 

spatial analysis and visualization of spatial data from visitors’ photographs to assess the 

potential of recreational sites. 

 

2.4. Outline of the Current Work 

 I have previously discussed existing work pertinent to the application of 

photo-taking location data to scenic preference assessment research. Some important 

findings have been provided from the results; presented here is the representative study 

from my primary work (Sugimoto, 2013), with reference to the limitations and 

implications leading the present study in this thesis.  
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 The content of my primary study is related to the visualization of visitor reactions 

and their preferred stimuli using digital cameras, GPS loggers, and GIS instead of 

disposable cameras. This method enabled calculation of the spatial accumulation of 

photographs and, in so doing, helped to visualize such sites. With these tools, I 

examined the analysis of spatial and temporal patterns of photographing. Spatial 

analysis of photographs is useful for clarifying which locations visitors prefer, but it is 

insufficient for understanding visitors’ changing awareness of the sequence of 

attractions. Therefore, I could also shed light on the effects of the sequences in which 

those scenes first appear to visitors. Examinations of such comprehensive evaluations 

of spaces could influence planning and design of recreational spaces.  

 

2.4.1. O-site experiment using digital cameras and GPS loggers 

 I conducted the on-site experiment for capturing the spatial and time-related data of 

visitor-oriented photographs. The experiment was conducted at Inokashira Pond, which 

is a main part of Inokashira Park in Tokyo, Japan, as the case. The date was on Sunday, 

July 10, 2010, when the weather was fine. Participants were recruited from my 

university as part of the preparation for the experiment, and all were Japanese; there 

were 12 individuals total, including the students and social workers. Seven participants 

were males and five were females. Half of the participants were in their 20s, and the 

others were aged from 30 to 60. Two courses (see Figure 2-3) had been predetermined 

by the researcher for analysis of sequence patterns of reactions. The participants were 

divided into halves, each of which was instructed to walk each course. All participants 

received the camera at the same place, shown as “A” in Figure 2-3, and were asked to 
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Figure 2-3. The two courses for the experiment 

 

photograph what they viewed as positive scenes along the way using digital cameras 

and wearing GPS loggers. I did not limit the number of photographs taken by 

participants, because it is more natural for visitors not to restrict the number of their 

reactions to the stimulus—if the number of photographs is limited, some participants 

may not take very many. The operations of the data collection sets were followed by 

Sugimoto (2011b). 

 

2.4.2. Spatial accumulation of photographs 

 In total, I collected 448 photographs as data; each participant took 37 photos on 

average (14 to 76 photos per person), with a standard deviation of approximately 23. I 

applied kernel density estimation (KDE) with all the photo-taking locations in order to 

identify spaces where many participants took photographs—in other words, spaces that 
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were thought to have impressed many participants. When the kernel density of 

photographs was calculated, the reciprocal multiplied 100 of the number of 

photographs taken by each participant was used as the weighted value, because the 

difference in the number of photographs among participants who walked the same 

course could cause noticeable biases. The maps in Figure 2-4 illustrate the density 

distribution of photo-taking locations and the distribution of categorized ones. The 

place that has the highest accumulation is the central Nanai Bridge—here, the field of 

vision is open on all sides, and we can see the landscape, which has abundant water 

and green coppices. Moreover, photographs taken there covered various elements such 

as fish, architecture, boats, and people. 

 The results show that the accumulative number of photographs varied depending on 

the locations. Furthermore, some objects were photographed by many participants at 

locations that showed a high density of photographs. The findings of an experiment by 

Sugimoto (2011b) revealed that the locations where many objects were preferred and 

photographed by visitors were almost the same as the locations whose overall 

impressions were highly rated by the same group of visitors after the experiment. This 

tendency was the same with this study case. Figure 2-5 shows the spatial preferences of 

participants evaluated by recording the circle signs after the experiment; this indicates 

the participants’ overall evaluation to the park. In the places where many signs were 

recorded, the accumulation of the photo-taking locations was also very high. This 

indicates that we can extract the spatial potential of the place where participants’ 

demonstrated interest and concern by analyzing the density distribution of the 

photo-taking locations. 
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Figure 2-4. Distributions of photo-taking locations by: (a) kernel density estimation 

with 50-m bandwidth and (b) categorization in 50-m cells 
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Figure 2-5. The spatial preferences recorded by circle signs of participants 

 

2.4.3. Temporal accumulation of photographs 

 In order to analyze the accumulation of photographs according to the time, the 

photo-taking locations were smoothed by calculating the density of photographs. First, 

the duration of each participant’s walking was standardized from 0 to 1, and the point 

data for all the participants were then combined on the one common axis by each 

course. KDE on 1-dimensional space was adopted for calculating and visualizing the 

density of points. The reciprocal of the number of photographs each participant took 

was used as the weighted value in the calculation of the density in the same manner as 

in the spatial density computation. The bandwidth was set to 0.03, which is considered 

suitable for the analysis. When the density of photographs reached its peak in Figure 

2-6, almost all participants made their first move to the center of Inokashira Pond on 

one of the bridges. Therefore, the centers of the bridges could be considered to be “hot 

spots” in view not only of spatial density of photographs but also of the changes in the 



 

 

27 

density of photographs over time. Interestingly, though, when the center of the same 

bridge was passed by participants more than once, they rarely took photographs on the 

second occasion. This suggests that the participants did not remain interested in the 

same objects, possibly due to the effects of changing expectation, boredom, and fatigue 

(Oku & Fukamachi, 2003).  

 The density of photographs was found to change quite considerably over time; 

density peaked during the first half of the touring period and showed an overall decline 

after the peak. Most participants were moving on the center of a bridge when the 

density of photographs reached its peak; therefore, spaces around the center of a bridge 

can be argued to have high potential as sightseeing resources. Several landscape 

assessment studies have found that water is one of the most important attributes (Zube 

et al., 1982), demonstrating why spaces around the central bridge were preferred. 

Moreover, the reason many participants were found to take the largest number of 

photographs earlier in their tours may also be explained by the upsurge in feelings like 

the sense of freshness when visiting a new place (Markwell, 1997). After the peak, the 

density of the participants’ photographs decreased as their interest in the visited places 

fell over time. Oku and Fukamachi (2003) illustrated that the pace of visitors’ 

photographing gradually slowed, possibly owing to their increased fatigue and 

boredom and decreased expectation of attractions. In addition, Hull et al. (1992) have 

also considered the implications of the sequential characteristics of visitor boredom. 

They asked the hikers to a national forest to fill out a questionnaire to ascertain their 

current emotions about 12 landscape views during hiking. According to them, some 

hikers felt bored when they met the same landscape view (mountain and lake) to one 
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Figure 2-6. The change in the density of photographs for Course 1 and Course 2; the 

Epanechnikov kernel function and the 0.03 bandwidth 

 

observed previously. Finally, they concluded that visitor’s experience patterns seemed 

to be dependent on the relationship of a person’s current state of mind and site 

characteristics. Although this study found results similar to those from the earlier 

studies, this study suggests the effects of the sequence in which objects are encountered 

by visitors. Such an implication may benefit planners who wish to design touring 

routes that could enhance visitors’ satisfaction in light of the sequence of attractions. 

 Thus, I attempted to examine the spatial patterns and time-series of visitors’ interest 

in elements of an urban park by analyzing photographs taken by participants at 

Inokashira Pond. The method enabled spatial and time-series analysis of photographs, 

and, in so doing, could help to identify attractive scenic resources.  
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2.5. Limitations of the Primary Work 

 As can be seen from my primary works, the combination of digital camera data 

combined with geo-spatial tools has great potential to develop an analysis method for 

assessing on-site scenic preference. It is useful to know the precise location that stirs 

visitor interest during his or her experience. Large amount of spatial photographic data 

obtained from visitors were aggregated, which enabled us to evaluate the whole target 

area. Such analysis also provided insight into location-specific attractiveness by 

comparing several locations that visitors photographed. However, the primary work is 

still of fundamental importance. Various statistical and visualization techniques for 

spatial data have been developed today, and will assist in the advancement of the 

research. Other traditional statistical techniques, different from density estimation, will 

also be worthwhile to identify visitors’ reactions to scenic features in specific spaces 

from another perspective. This application of more advanced statistical methods is 

future work.   

 The development of research is also possible through the addition of different data 

types. The primary study used only the spatial data of photo-taking location (spatial 

object) and visual object category (attribute value) for representing the visitors’ 

reactions in geographic space (the photo-taking time was handled in separate with 

spatial analysis). Visitor’s visual interest occurs in the interaction between visitor and 

scene he or she encounters. This phenomenon is a complex system of human behavior, 

so it may be considered difficult to represent it only as spatial point data; the data 

should be composed of multiple elements such as the photo-taking location, direction, 

and distance to the scene. Recent rapid progress of spatial tools, including the 
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increased functionality in digital cameras, has the potentiality to enable us to acquire, 

analyze and visualize the spatial data of visitor’s interest in greater detail. The 

examination of new types of data is the second area recommended for further work. 

  This thesis presents several research advances in acquisition, analysis, and 

visualization of spatial data derived from visitor-oriented photographs. In particular, I 

examine the use of multiple data types and various spatial analysis and modeling 

techniques; I then refer to the potential contribution of my studies to the tourism or 

recreation planning and management sectors.  
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Chapter 3 

 

Field Survey and Data Acquisition 

 

 

 The process of data acquisition is one of the most essential parts of this thesis, 

because the data quality depends on the setting of the survey. Many considerations 

must be addressed in a field survey for collection of behavioral or social science data. 

Moreover, this study should utilize proper use of digital tools, which are very sensitive, 

to suppress any mistakes or error occurrences. Sections 3.1 and 3.2 describe the 

performance of digital cameras as used for measuring visitors’ reactions, and show the 

characteristics of data which need to be collected. Section 3.3 explains a study area as a 

tourism/recreation site and analysis its landscape structure with 3-D landscape data. 

The processes of field surveys and data clearance are then explained in the following 

two sections (Sections 3.4 and 3.5), and Section 3.6 describes estimation of 

photo-shooting distances. Finally, the spatial data representing visitors’ visual interest 

are generated.  

 

3.1. Understanding Digital Camera and Exif 

 A digital camera records images taken by an image sensor and stores them for later 

reproduction. A digital camera utilizes an optical system, using a lens with a variable 

diaphragm, to focus light onto an electronic image pickup device. Features integrated 
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into digital cameras enable the immediate display of images on a screen and provide 

the ability to store and delete images from memory after recording. 

  Exif is a standard image file format used to record digital images captured by digital 

cameras. It specifies the existing file format, such as JPEG or TIFF, with the addition 

of specific metadata tags. The metadata tags defined in the Exif standard can store a 

broad range of information, including date and time stamps and static information 

about the camera’s settings such as orientation, aperture, shutter speed, focal length, 

metering mode, and ISO speed. Exif data can also contain the geo-spatial information 

acquired by the GPS and the electronic compass. The geographic coordinates may be 

the most common additional spatial information for Exif data, which many users have 

used for displaying the location and image of photographs in a GIS environment. The 

process of adding geographic information to a photograph is known as geo-tagging. 

Another new wave is the addition of directional information to the photograph 

metadata. This brand-new development in digital camera technology enables us to 

know the exact value of photo-taking direction, which is included in the Exif-format 

data.  

 Combining physical information such as the photographed object (visual scene), the 

photo-taking location and the photo-taking direction has great potential to expand our 

ability to analyze the sightseeing behavior of tourist/recreationist in geospatial context. 

This evolution will impact on the behavioral science in the field of tourism, leisure and 

recreation and also the traditional scenic/landscape perception research. Moreover, the 

methods used to acquire such spatial data and the analytical techniques for 
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manipulating the data into useable metrics can contribute significantly to the research 

field of geographic information sciences. 

 

3.2. Data Elements 

 Visual interest occurs in the complex system of spatial interaction between a person 

and environment. The data used to quantify visual interest is acquired through a 

person’s photography behavior, as recorded by the digital camera and its embedded 

information technologies. In spatial data representation, person’s perceptual response 

to visual stimuli is composed of multiple elements, which are based on physical and 

psychological aspects.  

 The physical side, such as location and time of geographical space, determines the 

spatial characteristics of visual interest. The positional relation of the observer and 

visual object is especially important to represent the interaction. This relation can be 

simply represented by spatial information such as point or linear vector data; for 

example, the observer’s standing location and the object’s representative location 

correspond to point vector data, and their perceptual interaction is represented as line 

vector data. I use the photo-taking location, photo-taking direction, photo-shooting 

distance, photo-taking time, and photographic image to construct and provide detailed 

information about the experience of visual interest in a geo-spatial context.  

 The psychological side depends on an observer’s feeling and impression perceived 

from a scene. This type of data is collected through investigation of the person’s state 

of mind, such as via a questionnaire, interview, and other methods. Quantification is 

required to enable statistical analysis of the psychological data. The likeability index is 
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used for measuring the person’s evaluation of visual objects in this study. Likeability 

represents a psychological construct that provides favorable emotions and meanings 

experienced in relation to scenes, and this contains visual aspects of scenes and human 

evaluative responses (Wong & Domroes, 2005). Wong and Domroes (2005) 

investigated not only liked scenes but also disliked scenes to clarify the scenic 

preference of urban park visitors, but I do not employ the disliked or negative scenes 

because it is complex for participants to evaluate scenes by such multiple aspects 

during on-site experiences. 

 Table 3-1 shows the seven data elements for configuring the visual interest as spatial 

data. The photo taking location, photo-taking direction, photo-taking time, and visual 

scene can be captured by equipping visitors with digital cameras with the necessary 

with spatial information technologies. The photo-shooting distance needs to be  

 

Table 3-1. Data characteristics and method for data acquisition 

Data Unit Equipment Recording Data generation 

Photo-taking 

location 

Geographic 

coordinates 

Digital camera GPS Photography by 

persons 

Photo-taking 

direction 

Angle Digital camera Digital compass Photography by 

persons 

Photo-shooting 

distance 

Distance Laser distance meter 

Photographic image 

Calculation Estimation 

Photo-taking time Time Digital camera Digital Clock Photography by 

persons 

Visual scene Photographic image Digital camera CCD image sensor Photography by 

persons 

Object category Category symbol Questionnaire Evaluation by 

respondents 

Questionnaire 

method 

Likeability score Point scale value Questionnaire Evaluation by 

respondents 

Questionnaire 

method 
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computed by the specific estimation formula. The variables required for this estimation 

are collected through the several on-site investigations including a photography survey 

by visitors. The likeability score and the object category of each scene are evaluated by 

visitors through questionnaires. The object category reflects visitors’ intention with 

regard to the elements they targeted.  

 

3.3. Study Area 

3.3.1. An urban park as a tourism resource 

 In order to conduct the assessment method of my study, I selected Hibiya Park, an 

urban park in Tokyo, Japan, as the case. An urban park is a functional place for 

residents to escape from stress and for tourists to go sightseeing (Wong & Domroes, 

2005): The aesthetic, historical and recreational values of urban parks increase the 

attractiveness of the city and promote it as tourist destination (Chiesura, 2004). Of the  

 

 

Figure 3-1. Number of Japan’s representative tourism resources by category (Tourism 

resources were evaluated by the Japan Travel Bureau Foundation. The evaluation rank 

is higher in order of SA, A, and B. ) 
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four grades used to assess Japan’s tourism resources (Special A, A, B, and C), as 

evaluated by the Japan Travel Bureau Foundation (http://www.jtb.or.jp/en), Hibiya 

Park is rated as Grade B, deemed to be one of the representative tourism resources that 

can characterize the prefecture (the largest administrative divisions of Japan) in which 

it is located. 

 An urban park and similar sightseeing spots such as a garden are popular types of 

tourism/recreational resources worldwide; most cities have attractive urban parks and 

gardens, which are often promoted as tourist sites by city governments in their tourist 

information outputs. Japan boasts many parks and gardens that attract mostly foreign 

tourists. As represented by the term “Japanese Garden,” Japanese traditional 

landscapes in parks and gardens are regarded as important and effective resources to 

promote Japanese formal beauty and culture. In addition, compared to other types of 

tourism resources, the number of parks and gardens represents their significance and 

popularity in Japan’s tourism sectors. According to the database of Japan’s 

representative tourism resources, provided by the National Land Information Division, 

National Spatial Planning and Regional Policy Bureau, MILT of Japan 

(http://nlftp.mlit.go.jp/ksj-e/index.html), “parks and gardens” rank 7
th

 of 26 types of 

natural and cultural tourism resources in Japan in terms of number, and 4
th
 of 11 types 

of cultural resources (Figure 3-1). This figure is even greater when combined with the 

category “temples with garden.”  

 

3.3.2. Hibiya Park 

  Hibiya Park is a western-style urban park that opened in 1903. It is adjacent to 
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streets lined with office buildings in the central business and political districts of Tokyo, 

such as Kasumigaseki, Nagatacho, Yurakucho, Ginza, and Marunouchi (Figure 3-2). 

This park has various facilities, including the Hibiya Public Hall, the Music Bowl, the 

Tokyo Hibiya Public Library, tennis courts, and the Matsumotoro restaurant. In 

addition, it boasts of natural features such as pine trees, plum trees, azalea gardens, 

flowerbeds, and ponds, and cultural features such as sculptures, monuments, and 

bronze statues, which are located all over the park. On the weekend, various types of 

events are held at the Second Flower Garden and its surrounding environs. Hibiya Park 

is suitable for examining the new research approach provided in this thesis because the 

park covers a comparatively small area. 

 Hibiya Park is constructed with five large zones and over twenty spaces that have 

different unique characteristics such as gardens, ponds, forests, grasses, restaurants, 

music halls, libraries, etc. This spatial diversity is one of the reasons that I selected 

Hibiya Park as a study area, as it enabled the comparison of scenic perceptions in 

different space characteristics. 

 

3.3.3. Landscape structure 

  For the visual resource assessment, it might be desirable to grasp the physical and 

visual aspects of landscape from not only planar mapped information but also 

stereoscopic spatial data. To understand the physical landscape characteristics of 

Hibiya Park and its surround area, I used DSM (Digital Surface Model) and DTM 

(Digital Terrain Model), which are 3-D landscape models created from LiDAR (Light 

Detection and Ranging) data (Figure 3-3). These data have been provided as the name 
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(a) 

 

(b) 

Figure 3-2. Study area: (a) the location of Hibiya Park and (b) the map of Hibiya Park 
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(a) 

 

(b) 

Figure 3-3. 3-D landscape model of Hibiya Park and its surrounding area with the 2-m 

grid raster: (a) Digital Surface Model and (b) Digital Terrain Model 

 

“good-3D” by Aero Asahi Corporation. LiDAR is an optical remote-sensing technique 

that uses laser light to densely sample the surface of the earth, producing mass point 
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cloud data sets with highly accurate location measurements, including geographic 

coordinates and heights (ArcGIS Resource Center, n.d.a). The DSM stores the height 

of earth surface, including the objects existing on the earth ground such as architectures 

and trees, whereas the DTM stores the height of earth ground in the case with such 

objects reduced. If such points are transformed into raster data, it is possible to 

three-dimensionally visualize 3-D model in a good expression. When comparing 

Figure 3-3 (a) and (b), we can clearly understand the difference between DTM and 

DSM. The DSM of targeted area describes the location, figure, and volume of 

buildings and trees precisely, but such spatial information is not in the DTM. From 

these data, we can confirm that Hibiya Park is surrounded by a lot of skyscraper, and is 

located on the even ground.  

  By separating landscape elements in types, more detailed landscape analysis is 

available. Figure 3-4 shows the raster image of landscape combined with four types of 

landscape elements; the water surface of ponds and rivers, trees that are higher than 5 

meters, buildings, and terrain surface. This map was made through the several spatial 

operations on ArcGIS (ver.10) to kinds of spatial data including DSM, DTM, DHM 

(Digital Height Model), which is the data deducted DTM from DSM, and polygon 

vector data of spatial objects of buildings and water. The spatial distribution and 

volume of each element can be grasped easily with the representation with changing 

colors in the kind and height of each grid. As Figure 3-4 is showing, about a half and 

more area of Hibiya Park is covered with middle and tall trees, but at the same time, 

the open spaces with high opening degrees, ponds with unique shapes, and some 

low-height architectures exist.  



 

 

41 

 

Figure 3-4. Landscape elements constructed by DSM, DTM, and DHM 

 

3.4. On-Site Field Surveys 

 In order to acquire the attribute values of spatial data of photographs, two surveys 

are conducted; (1) the photography survey by visitors and (2) the object height 

measurement survey. The first was achieved through collection of photographs and 

other relevant data reflecting the persons’ visual interest on their scenic perception 

during sightseeing experiences. The photo-taking locations, the photo-taking directions, 

the categories of photographed objects and the likeability scores of visual stimuli are 

included in these. The second was achieved by measuring the height of real objects in 
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photographs taken by visitors; this information is required to calculate the height of 

filming coverage in each photograph, and hence the calculation of photo-shooting 

distance. 

 

3.4.1. Photography survey 

 The photography survey was conducted on Sunday at 16
th
 October in 2011. The 21 

recruited participants, whose ages ranged from their 20s to early 30s, were asked to 

photograph the positive scenes during walking around the park freely. The number of 

participants was relatively few, but specifically selected; I chose the 

younger-generation park users to ensure the reliability of acquired data. Naoi et al. 

(2011) mentioned that the small sample size utilized in their study necessitated the 

exclusion of subject attributes such as socio-demographic and psychological 

characteristics from the scope of investigation; because of this generalization, the 

results are somewhat compromised. Naoi et al. (2011) recruited a group of 30 

university students for the photography surveys in an on-site setting; Chhetri et al. 

(2004) also selected a group of university students in their research of on-site 

landscape perception during hiking experiences. In my study, it was difficult to gather 

large samples due to the length of time required for participants to complete both the 

photography exercise and the subsequent questionnaire (as per previous studies).  

 Each participant was handed one digital camera, and map of Hibiya Park; all 

participants started from Kamome Hiroba located at the southwest end of the park. I 

prepared Casio’s Exilim EX-H20G, a compact digital camera with embedded GPS and 

electronic compass, for recording the photo-taking location and direction automatically 
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(Figure 3-5 (a)). After the participants finished their tours and came back to Kamome 

Hiroba, they were asked to answer the questionnaires about their visual experiences 

immediately so as not to forget their impressions to each scene they encountered. 

Specifically, the following measures were taken; firstly, the visual object categories in 

each photograph were selected and described using at most three categories, from a list 

of nine. The object type names were also described as auxiliary information to support 

the accurate determination of photographed objects. The detail of this process is 

explained later. Secondly, the participants evaluated the preference degree of each 

scene using a five-point likeability score. The respondents answered these questions 

looking the photographs projected on the screen of digital camera. The equipment was 

retrieved after the questionnaires were complete. 

 

3.4.2. Object height measurement survey 

 The survey of object height measurement was done over two days, the 31
st
 July and 

7
th

 August, 2013. The heights of over two hundred objects noted in the photographs 

taken by participants were measured using the laser distance meter. However, the 116 

object heights of these are actually used for calculating the photo-shooting distances. 

The object height includes both the full length of an object, and the length of key 

object parts. I used Leica’s laser distance meter (model DISTO-D510) combined with a 

tripod and a support angle adjuster designed for this meter (Figure 3-5(b)). Observers 

can measure the distance between the bottom and top of object by targeting the laser at 

these two points. When aiming at the desired point on a distant object, the mounted 

camera zoom function was found to be useful for targeting a precise point. The  
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          (a)               (b) 

Figure 3-5. Equipment; (a) the digital camera, Casio EX-H20G and (b) the laser 

distance meter, Leica DISTO-D510 

 

measured height of each object was recorded on the paper sheet displaying the image 

of the object being measured. When it was difficult to measure the object height, the 

object width was used as the variable for estimation of photo-shooting distance in few 

cases. 

 

3.4.3. Categorization of photographs  

 The photographs were classified into nine categories (Table 3-2). Four of these, 

labeled “people”, “animals”, “vegetation”, “management features”, and “structure” are 

based on their subjects, and the remaining three, which are “streets”, “water”, and 

“open spaces”, are identified in light of the spatial extension of scenes. The remaining 

photographs did not share common elements, and were therefore labeled as “others”. 

This classification was identified in my primary works (Sugimoto, 2011b, 2012). 

 When conducting the questionnaire sessions after the photography survey was  



 

 

45 

Table 3-2. Categories of visual objects in the photographs 

No. Category Example 

1 People Walking, resting, chatting, taking a picture, festival 

2 Animals Bird, fish, cat, dog, turtle 

3 Vegetation Tree, flower 

4 Management Features Monument, bench, sign, bronze statue 

5 Structures Architecture, building, bridge, stone wall, fountain 

6 Streets Scenery centered on vista of street 

7 Water Scenery centered on water element 

8 Open Spaces Scenery centered on open space 

9 Others Non-categorized to Nos.1-8 

 

complete, I asked the participants to specify the category of photographs in the manner 

stated above, and also to describe the feature name, which they took as the main object 

in each photograph. In most studies, the author classified the photographs, but there is 

some risk of rift between the researcher and actual observer in classification. If 

photographs taken by participants include multiple elements, it is difficult to know 

which object was most important for the participant who took the photograph; if 

classification is conducted by the researcher, it is possible to select a different thing 

from the person who really photographed it. To obtain good data precision, it is 

desirable to know the observers’ intention whenever possible. This is important to 

evaluate the visitors’ experiences.  

 

3.5. Data Clearance 

 The original dataset obtained can include some data that is unsuitable for use in the 

analysis phase. There are two types of data requiring removal or modification; the first 
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is images generated by user mistakes during photographing, and the other is location 

information with large positioning errors caused by the condition of the GPS integrated 

into the digital camera. This thesis took following steps for inappropriate data. 

 If there were multiple photographs that targeted the same object, I removed the 

photos taken later from the analysis, and included only the one that had been taken first. 

This reason is to regard one specific scene projected in photograph as one visual 

experience. Moreover, I removed the photos that had a negative object or were the 

result of mistakes in the operation of the digital camera. Next, only the point data 

confirmed the large gap from an original position because of the error margin of GPS 

that was corrected to the proper position by corresponding to the photographic 

imagery.  

 

3.6. Estimation of Photo-Shooting Distance 

3.6.1. Lens, object, and real image 

  To derive an estimation formula of photo-shooting distances, the fundamental 

principles of thin lens and rays tracing method are introduced. Figure 3-6 (a) shows the 

relationship between a thin lens, an object, and a real image. This relation holds when 

using a camera.  

 When a lens and object are given, three principal rays can be traced from a point on 

the object through the lens and beyond. First, the “parallel ray” travels parallel to the 

axis after starting at the object point, and it passes through the image’s focal point after 

refraction by the lens. The second “focal ray” starts at the object point and passes 

through the object’s focal point, traveling parallel to the axis after refraction by the lens. 
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The third “central ray” starts at the object point and passes through the center of the 

lens, but it is not refracted and continues forward in the same direction. For identifying 

the place, size, and orientation of an image, it is necessary to trace rays from only two 

points on the object because the positions of all three corresponding image points cross 

at one point (Brandl & Effects, 2002). 

  For the case of a thin lens and paraxial rays, triangulation of the central ray produces 

the magnification that indicates the ratio of image size to object size. 

M =
di

do

=
hi

ho

  (1) 

This transverse magnification is most useful in photography (Ray, 2002).  

  “The thin lens equation,” a well-known equation in optics (Born & Wolf, 1999), is 

1

do

+
1

di

=
1

f
    (2) 

This equation represents the relation among the focal distance, the distance from a 

central point of lens to an object or a real image in the case of thin lens.  

 

3.6.2. Photo-shooting distance 

 The object distance do and the image distance di can be formed by combining the 

magnification and the thin lens equation. 

do= f (
ho

hi

+1)    (3) 

di = f (
hi

ho

+1)    (4) 

The shooting distance ds is the sum of do and di and its calculation formula is given as 

below. 
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ds= do+ di = f (
ho

hi

+
hi

ho

+2)   

             = f (
1

M
+M +2)  = f 

(M +1)2

M
   (5) 

We can estimate the shooting distance if three variables such as the focal distance, the 

object height and the image height are known. The image distance is actually much 

shorter than the object distance (Figure 3-6(b)) so it is possible to omit hi or replace hi 

with the focal distance f. However, I used the equation shown above to estimate more 

accurately the shooting distance. The necessary input variables were acquired in 

practice as explained in next section.  

 

3.6.3. Acquisition of variables of the estimation formula 

 The photo-shooting distances are estimated by substituting the data variables 

collected by the two surveys for the estimation formula (5). Here, the focal distance f is 

contained in the Exif data, and the image height hi is related to the height of the image 

sensor. In the case of this study, the 1/2.3 inch type CCD is mounted in the digital 

camera EX-H20G, and accordingly 4.6 mm is used as the image height if horizontal 

photography or 6.2 mm is used if vertical photography. Because the image height is set 

as same as the image sensor height, the object height ho needs to be calculated and set 

as same as the height of the filming range. The operation for calculation of the filming 

range height is as follows.  

  The photographic image data is adjusted to 150 mm on PC, and then the height of 

object aimed by the participant is measured using the ruler with 150 mm long. Here,  
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(a) 

 

(b) 

Figure 3-6. Relationship between the lens, object, and real image in an optical system; 

ray tracing (a) in the cross section and (b) in the structure of digital camera 

 

the objects that can be clearly recognized as containing a specific element such as 

“people”, “animals”, “vegetation”, “management features”, and “structures” are  

measured based on the full length or the length of a part of the element. On the other 

hand, in case of the scenes which sizes or amounts are difficult to be perceived clearly 

such as “streets”, “water”, and “open spaces”, the things that seem to locate at the end 

of the person’s visual line are used for the measuring objects instead, because of 

difficulty in measuring the scenes in those categories. As a exception, if there is a 

landmark object that is important in the composition at the center of the scene, for 
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instance the monument standing at the center of pond, this is used as the end point of 

visual line. When the filming range height is ho, the real object height measured in the 

survey is ho’, the vertical height of the photograph range is hp (=150mm) and the object 

height in the photograph image is hp’, ho is computed by the following formula. 

ho=ho
'

hp

hp
'
   (6) 

After this, I computed the photo-shooting distances by their estimation formula. The 

estimation is also available by using the width of image sensor wi and the real object 

width wo instead of the height in estimation formula (5). As stated above in Section 

3.4.2, this processing was applied to few visual objects in this study.  

 

3.6.4. Modification of photo-shooting distance 

 A correction operation was applied to some photo-shooting distances, as described 

below. First, shooting distances in scenes categorized in “streets”, “water”, and “open 

spaces” are decreased by multiplying the original value by 2/3. This is necessary 

because the distances of almost all such scenes are calculated based on the distance 

between the participant’s standing location and the end point of his or her visual line 

(Figure 3-7 (a)). For example, in the case of a scene of pond that is mainly categorized 

in “water”, the distance between the standpoint and the opposite bank is regarded as 

the first calculated distance. This distance is not appropriate to be used for the reason 

that the person who took the pond scene has no interest in the object at the opposite 

bank but is interested instead in the composition of the pond scene. Therefore, the end 

point of the shooting distance is managed to be included within the pond range so that 
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Figure 3-7. Modification of shooting distances; (a) shortening the over estimated 

distance and (b) transforming an oblique distance to horizontal distance 

 

the calculated distance become more appropriate.  

 Second, if there are the photographs tending towards oblique directions, the shooting 

distances of corresponded data are corrected to horizontal directions by multiplying by 

cos(45°) or cos(85°) (Figure 3-4 (b)). The cos(85°) is only applied for photographs  

directing at the near right, above such as the scene which looking up to the top of a tree 

or building from right under them, but the cos(45°) is used for any photographs clearly 

tending diagonally upwards or downwards. The authors judged which parameters for 

correction should be used while assessing a photographed scene. 

 

3.7. Generating Spatial Data of Visual Interest 

3.7.1. Points of visual interest 

 The point data of the photo-taking locations were extracted. I captured the Exif data 

of the digital photographs in ArcPhoto, an ArcGIS function, and extracted the point 
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vector data of the photo-taking locations. The point data that was farthest away from 

the original position was brought back to the original position by identifying it from 

the photographic imagery corresponding to each point (Sugimoto, 2012). This dataset 

of spatial point features is referred to as “points of visual interest”, or PVI 

 

3.7.2. Lines of visual interest 

 The line vector data of visitors’ visual lines are extracted by using the “Bearing 

Distance To Line” tool in the Data Management tools of ArcGIS10. This tool creates a 

new linear feature based on the values in a coordinate field of a line’s starting point, 

bearing field from the north zero degree indicating line’s direction, and the line’s 

distance field within a table. In this study, the coordinates of the photo-taking locations 

(modified in extraction of PVI), the photo-taking directions, and the photo-shooting 

distances are used as their field values. This dataset of spatial linear features is referred 

to as “lines of visual interest” or LVI. The starting point of each LVI is equal to the 

PVI.  

 

3.8. Summary 

 In the Chapter 3, the methodology of field surveys and data acquisition was 

explained. The field-based GIS tools described have developed rapidly, and have been 

applied in various spatial disciplines. The digital camera has become one important 

tool, allowing us to analyze the sightseeing behavior and scenic/landscape perception 

in geographical terms.  
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 To acquire the spatial data of visitor’s visual interest, two on-site surveys were 

conducted. First, through a photography survey in which participants used digital 

cameras with embedded GPS and digital compass functions, I collected digital 

information such as photo-taking location, photo-taking direction, photo-taking time, 

and photographic image of visual scene. The likeability score and the category of main 

targeted visual object in the photograph were captured from the questionnaire after the 

photography survey. Second, an object-height measurement survey was conducted 

using the laser distance meter to extract the data variables for use with an estimation 

formula, derived from the optics for thin lens, for the photo-shooting distance. I then 

computed the photo-shooting distance of each photograph and modified the distance 

measurement in some cases.  

 Finally, spatial data representing the visitors’ visual interest were derived from the 

collected data from the field surveys. Points of visual interest (PVI) were used to 

identify the visitors’ standing locations at the moment the photo was taken. Lines of 

visual interest (LVI) describe the perceptual interactions between visitors and visual 

objects in space. Analytical methods for assessing these spatial data are described in 

Chapters 4 to 7.  
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Chapter 4 

 

Exploratory Spot Analysis 

 

 

  Human-perceived landscapes have often been researched considering the 

multi-sensory nature of observer’s perception. The focus in this type of research is the 

difference in characteristics between various perceived landscapes. In ranking several 

types of scenes and/or scaling, some adjectives representing the person’s impression of 

the visual components have determined such a difference. Hull et al. (1992) and 

Chhetri et al. (2004) evaluated hikers’ experience patterns to natural landscapes by 

multiple emotional indicators in questionnaires. Fiarwhether and Swaffield (2001) 

investigated the different types of visitor experiences of landscape by scoring several 

photographs of regional tourist sites with interviews. Wong and Dormorse (2005) 

assessed the urban park scenes perceived by residents and tourists in terms of 

likeability, by asking the respondents to rank prepared photographic scenes. These 

could clarify not only the differences in scenic preference of each visitor type, but also 

the hierarchy of scenes, providing important suggestions for designing and managing 

recreational spaces. This approach can apply to my studies, enabling us to clarify the 

spatial characteristics of visitors’ visual interest by their emotional levels.  

 This chapter suggests an analysis method for assessing the emotional indicators 

within visitors’ scenic preferences and photo-taking directions, and then clarifies the 

spot characteristics based on visitors’ preference levels. First, the fundamental dataset 
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of collected photographs and its spatial distribution are explained in Section 4.1. I then 

explore the spatial distribution patterns of PVI based on visitors’ preference levels to 

visual stimuli, extracting PVI clusters that are of similar or dissimilar likeability based 

on statistical significance (Section 4.2 and 4.3). Next, the spatial ranges of “spots” are 

identified based on accumulation patterns of PVI in Section 4.4, and the characteristics 

of each spot are described using statistical indicators (derived from visitors’ 

evaluations) in Section 4.5. The photo-taking directions and the indicators of 

preference level at each PVI are used for analysis in detecting the spot characteristics. 

Finally, based on these results, this study discusses the interpretation of clusters and the 

hierarchy of spot attractiveness (Section 4.6).  

 

4.1. Distribution of PVI and Their Attributes  

 The 517 photographs/points utilized in this study is the total valid data for analysis, 

excluding photographs labeled “others” that were regarded as inappropriate in the 

previous chapter. Each participant took 25 photographs on average (11 to 54 

photographs per person), with a standard deviation of approximately 11.  

 The spatial distribution of PVI with likeability scores and the histogram count of 

each score are shown in Figure 4-1. The photographs of score 4 was in the largest 

number and seen in 143, and the number of score 1 was the smallest and in 68. It is 

difficult to understand the spatial patterns of PVI distribution with likeability scores 

from the map in Figure 4-1 (a). The exploratory analysis is required for specifying 

significant features.  

  Figure 4-2 shows the distribution of PVI according to eight categories and the count 
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          (a)                   (b) 

Figure 4-1. Distribution of all PVI according to likeability scores; (a) the map 

representation and (b) the histogram count 

 

in each category. The results revealed that “people” were seen in 111 photographs, 

“animals” in 34, “vegetation” in 60, “management features” in 76, “structures” in 105, 

“streets” in 50, “water” in 41, and “open spaces” in 40. This study found that it was 

easier to recognize objects of interest if they belonged to “people”, “structures”, or 

“management features”, while recognition of objects with a spatial extension, such as 

“streets”, “water”, and “open spaces” were difficult to recognize. This indicates the 

reaction of visitors to the complicated spatial characterization presented by the various 

elements in Hibiya Park. 

 

4.2. Spatial Feature Similarity Based on Preference Levels 

4.2.1. Spatial autocorrelation 

 This study applies the spatial autocorrelation analysis to the likeability scores of  
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         (a)                   (b) 

Figure 4-2. Distribution of all PVI according to categories; (a) the map representation 

and (b) the histogram count 

 

PVI, and extracts the point clusters and outliers based on the similarity of preference 

levels. Spatial autocorrelation statistics measure the spatial dependency among 

spatially distributed observations and indicate the degree of self-correlation of 

observed values in space. There are indicators for global and local spatial 

autocorrelations.  

 Global spatial autocorrelation, measured by Moran's I in this study, captures the 

extent of overall clustering that exists in a dataset. The formulation of global Moran’s I 

is given by 

Moran's I = 
N

∑ ∑ wij
N
j=1

N
i=1

∙
∑ ∑ wij(xi-x̅)(xj-x̅)

N
j=1

N
i=1

∑ (xi-x̅)2N
i=1

   (7) 

where N is the number of observations, xi is the attribute value of location (region) i, xj 

is the attribute value of neighbor location (region) j, x̅ is the mean of observed values 
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and wij is the spatial weight matrix. This formula is very similar to the coefficient 

correlation in standard statistics. The large difference with the correlation coefficient is 

the spatial weight matrix, which defines the spatial relationships among targeted 

locations (regions). Where spatial data are distributed so that high values are generally 

located near to high values and low are near to low, the data are regarded as exhibiting 

positive spatial autocorrelation (Anselin, 1995; Fotheringham & Brunsdon, 1999), 

operationalizing Tobler's First Law of Geography, whereby closer areas are more 

similar in value than distant ones (GeoDa Center, n.d.). However, where the data are 

distributed such that high and low values are generally located near each other, the data 

are said to exhibit negative spatial autocorrelation (Anselin, 1995; Fotheringham & 

Brunsdon, 1999), which exists when high values correlate with low neighboring values 

and vice versa (GeoDa Center, n.d.). Global Moran’s I generally takes a value from 

minus 1 to plus 1; a positive value indicates the spatial clustering of similar values, and 

a negative value the clustering of dissimilar values (Anselin, 1995). However, the 

range of global Moran’s I coefficients are not constrained by the range minus 1 to plus 

1, depending on the choice of the weights matrix (GeoDa Center, n.d.). 

 Local spatial autocorrelation indicates the location of local clusters and spatial 

outliers. Local Moran’s I statistics is used for local indicator for spatial autocorrelation 

(LISA) in this study. 

Ii= 
N∙(xi-x̅)∙∑ wij(xj-x̅)

N
j=1

∑ (xi-x̅)2∙∑ wij
N
i=1

N
i=1

   (8) 

Generally, the sum of LISAs for all observations is proportional to a global indicator of 

spatial association (Anselin, 1995). This study provides pseudo-significance levels for 
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local spatial autocorrelation by comparing the observed spatial distributions to spatially 

randomized reference distributions. 

 I apply these global and local Moran’s I statistics to the likeability scores of PVI, and 

thereby classify the spatial patterns of PVI distribution in terms of their preference 

levels. The statistical computation and visualization was achieved with the original 

programs, which were developed with R (ver. 3.0.1).  

 

4.2.2. Spatial weight matrix 

 Before the calculation of Moran’s I statistics, I need to formulate the spatial weight 

matrix wij. In this study, to avoid pointless clusters accidentally being created, I used 

the original method for making the weight matrix (Figure 4-3). A binary matrix was 

first created based on the relation between a base point i and neighbor point j on the 

geographical space. If a point j exists in the circle range taking a distance from point i 

as a radius, a point j is regarded as an adjacent point with point i and wij give a value 1, 

and if not, wij give a zero value. Thereafter, whether two adjacent points satisfied with 

three conditions are searched, and then the weighted values are changed according to 

these results.  

  The first condition is whether the categories of visual objects are the same between 

two points. If the category of point i matches that of point j, a one value is added to the 

weight for point i and j. If the condition is not satisfied, the weight value is not changed. 

Next, if the photo-taking direction of point i is within the range of plus-minus 22.5 

degree from point j, wij increases by one. Finally, if the participant who took point i is 
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Figure 4-3. Flow of making original spatial weight matrix 
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different with the one of point j, the weight take more one value. The purpose of setting 

the third condition is to reflect the view that the case in which different people show 

their interest at a specific spot is more important for evaluation than the case in which 

the same person shows ongoing interest. When all conditions are fulfilled, the 

weighting may be up to four. 

 The size of the value to be added is determined based on following conditional 

expression.       

max(wij+1) ∙ min(xj) ≤ min(wij+1) ∙ max(xj)    (9) 

xj is the likeability score of neighbour point j. This expression limits the excessive 

weight setting.  

 

4.2.3. Determining search bandwidth 

 I need to determine the search distance from points to make the spatial weight 

matrix. Here, I focus on the relationship between the Global Moran’s I and the Local 

Moran’s I.  

 I=∑
Ii

N
   (10)

N

i=1

 

Thus, the Global Moran’s I is given by the mean of Local Moran’s I (Anselin, 1995). 

This relation suggests that the absolute value of Local Moran’s I become higher overall, 

or locally as the Global Moran’s I is higher, increasing the possibility to extract more 

clusters (Anselin, 1995). Therefore, I examined several patterns of search distance and 

used the distance where the Global Moran’s I take the maximum value from several 

patterns. The search distance is increased by 1-m from 36-m to 136-m, which is the  
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Figure 4-4. The change of global Moran’s I value in threshold distances 

 

 
 

Figure 4-5. Neighborhood relation among PVI 
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shortest distance that permits each point to have a neighbor relationship with at least 

one other point. The result is shown in Figure 4-4. The Global Moran’s I statistic takes 

the maximum value 0.048 when the search distance is 38-m. This distance was chosen 

to compute the Local Moran’s I values. The original spatial weight matrix was made 

intending to be suitable for clustering points based on the short search distance, and we 

can consider this 38-m distance as suitable for analysis on such an intention. Figure 4-5 

shows the spatial neighborhood relationship among points in the case of 38-m distance, 

which are represented by black lines that connect points in neighborhood. 

 

4.3. Local Spatial Clusters of PVI 

4.3.1. Extraction of point clusters  

 This section shows the derivation of the Local Moran’s I value of each point using 

the original spatial weight matrix and the search distance 38-m, and describes the 

computation of the significant spatial cluster outliers for each point based on this Local 

Moran’s I value.  

 A randomization approach is used to generate a spatially random reference 

distribution in order to assess statistical significance. A numeric permutation test is 

conducted to describe the computation of pseudo significance levels for local spatial 

autocorrelation statistics. To determine how likely it would be to observe a specific 

spatial distribution, actual values are randomly reshuffled at a given number of 

permutations (GeoDa Center, n.d.).  

 The likeability scores in all points were reshuffled at 999 numbers, and the randomly 

simulated Local Moran’s I values were generated. The permutation tests in this study 
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follow those of Anselin et al. (2006), so the significant statistic is computed as (M + 1) 

/ (R + 1), where R is the number of replications and M is the number of instances where 

a statistic computed from the permutations is equal to or greater than the observed 

value (for positive local Moran) or less or equal to it (for negative local Moran). The 

tests are applied to all 517 observed Local Moran’s I values. The points with p-values 

that are lower than 0.05 (positive local Moran) or higher than 0.95 (negative local 

Moran) are regarded as the spatially significant clusters or outliers. Therefore, this 

study use two-sided significance tests.  

  A Moran scatter plot (Anselin, 1996) is used for clustering the extracted outliers. 

The Moran scatter plot visualizes the type and strength of spatial autocorrelation in a 

data distribution (GeoDa Center, n.d.). This provides the linear association between the  

 

  

Figure 4-6. Moran scatter plot 
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variables of observations (x-axis) and those in the spatially lagged transformations 

from observations (y-axis). The slope of the scatter plot corresponds to the value for 

Global Moran's I (Anselin, 1996). The four quadrants of the scatter plot describe an 

observation's value in relation to that of its neighbors and correspond to the clusters 

and spatial outliers in the LISA maps: Clusters of high-high or low-low values for 

positive local spatial autocorrelation and high-low or low-high values for negative 

local spatial autocorrelation. Figure 4-6 shows the Moran scatter plot of likeability 

scores (x-axis) and the spatially lagged scores (y-axis); these are variables used to 

average the neighboring point values. We can find that the outliers are distributed away 

from zero.  

 

4.3.2. Spatial distribution of PVI with local spatial autocorrelation statistics  

 Figure 4-7 (a), (b), and (c) show the spatial distributions of points with attribute 

values of the Local Moran’s I values, p-values and the cluster outliers based on the four 

quadrants of the Moran scatter plot. The points with high Local Moran’s I values are 

concentrated in specific locations, since this indicates the accumulation of points with 

similar high values on preference levels, while the points with low values are dispersed 

(Figure 4-7 (a)). According to the distribution of p-value (Figure 4-7 (b)), the points 

with low p-values for the positive spatial autocorrelation accumulates as the same 

tendency with the high Local Moran’s I values distribution. These results do not show 

the cluster distributions, but the degrees of Local Moran’s I values or significance are 

described in detail.  

 The distribution of cluster outliers is shown in Figure 4-7 (c). The locations of  
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(a)                 (b) 

 

          (c) 

Figure 4-7. The results of the local Moran’s I statistics: (a) I-value, (b) p-value, and (c) 

significant clusters 
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high-high (the high value in observed score and spatial lagged score) cluster, regarded 

as the high attractive spots, were found near the First and Second Flower Garden, 

which have different characteristics for sightseeing. The locations of low-low cluster 

existed around the common fountain. Moreover, the points of high-low clustering were 

randomly scattered, and the low-high points distributed surrounding the points of 

high-high clustering.   

 

4.4. Detecting Spatial Range of Spots 

 In this work, I applied density contours as the extraction method of spot ranges. First, 

the density of all the PVI is calculated and the raster data of density map is obtained. 

The kernel density estimation is used for density computation; the bandwidth is set as 

38-m and the raster cell size is set as 1m-square grids. Thereafter, the raster data is 

transformed into the polygon vector data of density contour using ArcGIS10 Spatial 

Analyst extension tool (Figure 4-8). The interval between the contour line was set to 

0.001. The spatial ranges of the density with high values are the places where the 

visitors’ interest is focused and can be regarded as the important spots. The spatial 

ranges surrounded by the contour lines having high values 0.01 are extracted as the 

polygon data of spots. Moreover, the spatial ranges over which the points accumulate 

locally, and separately from the high density values, are also extracted (the values of 

contour lines are 0.004).  

Using the density contour representation is useful to extract the location and range of 

spots in a flexible manner. We can determine the spatial range by looking the contour 

lines and confirming whether their spatial ranges are suitable as the spot candidates.  
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Figure 4-8. The kernel density of all points with a 38 m bandwidth and a 1 m×1 m 

raster cell size 

 

 

Figure 4-9. Seven spots determined by the density contour 
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 The spots extracted by the density contour are shown in Figure 4-9. There are total 

seven important spots in the park. The spatial range of each spot has not a simple shape 

but a unique shape. The reason for this result is that the spot range reflects the spatial 

pattern of point accumulation. The creation of flexible spot shapes is one of merits of 

spot extraction using density contours.  

 

4.5. Analysis of Spot Characteristics 

4.5.1. Spot profiles 

 In order to clarify the characteristics of each spot, I suggest making “a spot profile”. 

The spot profile expresses an evaluation of a certain spot from visitors’ views, 

according to a set structure. It can be considered that the value of a given spot (or view 

spot) is mainly formed by physical aspects such as location, visual objects observed in 

the landscape when viewed from that site, or social or behavioral aspects such as 

visitors’ evaluation. A spot profile, or representation, based on these aspects would be 

useful to understand spot characteristics in detail. I created spot profiles containing (1) 

geo-spatial related data, (2) quantitative data of visitor’s evaluation to visual objects at 

each spot, which are described as several kinds of graphs, and (3) mixed data of both 

types. The first data type includes a location and spatial range of each spot (Figure 4-9) 

and representational scenes at each spot (Figure 4-12). The second data type has the 

behavioral data of visitors’ photographing and preference levels to visual scenes at 

each spot (Figure 4-10 and 4-11), analyzed by the descriptive methods of circular 

statistics and basic statistics. The last data type is the spatial difference between 

participants’ observed fields and the viewshed from each spot (Figure 4-13).  
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  Circular statistics is the subfield of statistics that deals with cyclic or periodic data, 

such as direction or time, on a circular scale (Fisher, 1995; Mardia & Jupp, 2009). 

Circular scales do not have a true zero point. There are several disciplines of social and 

behavioural science that have applied circular statistics; for example, in the assessment 

of direction taken during journeys to work (Corcoran et al., 2009), directional 

distortions of cognitive maps (Cadwallader, 1977), temporal movements of park 

visitors (Chhetri et al., 2010), and crime incidents (Brunsdon & Corcoran, 2006). This 

study uses circular statistics to describe the frequency of visitor viewing orientations at 

a specific spot.  

 The circular plot is used to describe the photographer’s direction, intended subject 

and shooting distance (Figure 4-10). For a specific spot, the photo-taking direction of 

each PVI is plotted along the circumference of a unit circle, and the point’s color 

indicates the category of a visual object. In addition, the kernel density for circular data 

is used and visualized around a unit circle in order to represent the intensity of 

directions. The two summary quantities of circular statistics, the mean direction and the 

mean resultant length, are also calculated and visualized on the circular plot. The mean 

resultant length is a quantity of dispersion for circular data and lies in the range from 0 

to 1. In the circular plot of this study, the mean resultant length is represented as the 

length of the red arrow, from the center point of a unit circle (the direction of red arrow 

is defined by the mean direction). R=1 implies that all directions are coincident, but on 

the other hand, R=0 does not imply uniform dispersion around the circle and is not a 

useful indicator of dispersion or spread of the data. The difference in mean resultant 

length from 1 is called the sample circular variance, being similar to the variance of 
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linear data. As the last indicator in the circular plot, the photo-shooting distances are 

combined and visualized. The black lines, which extend from the center of a circle to 

the points in the circumference, are the photo-shooting distances for which length is 

normalized from 0 to 1.  

  The data are organized according to the eight visual object categories at each spot; 

this information may be visualized using the histogram (Figure 4-11). Total 

aggregation in each category is subdivided into the clusters of preference similarities 

extracted by the Local Moran’s I statistics. This graph helps us to know which type of 

visual object is more significant at each spot.   

  The viewshed analysis is a popular GIS-based technique that identifies the locations 

of visible objects from a particular point or line, outputting the raster image that 

contains visible cells. The tool is normally set in the extension of ArcGIS Spatial 

Analyst. The DSM points in each spot are used as the observation points, and the raster 

image that contains the height of DSM in the study area is used as the base for 

identifying the viewshed. Computed raster records the height of the top of objects 

above the ground surface, such as the architecture and vegetation at each location. The 

limitation of the region is possible by specifying various items in the feature attribute 

dataset (ArcGIS Resource Center, n.d.b). By applying this function, the observed fields 

of photographed scenes can be identified. I gave the specification to the following 

items; the elevation values of observation points, vertical offsets, horizontal and 

vertical scanning angles, and scanning distances. The elevation values of observation 

points are set as the heights of DSM at the same location. The vertical offsets are 

identified at a 1.5-m height, which indicates the Japanese’s average eye position, from 
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the ground surface height of the park, which equals the DTM height. The horizontal 

and vertical scanning angles are regarded as the same as the angles of view of 

photographs and can be computed by the following formula.  

θw, i, θh, i=
180

π
×2 tan-1 (

x

2f
i

)  (x=w, h )          (11) 

θw, i and θh, i are the horizontal and vertical angles of photograph i; fi is the focal 

distance of photograph i; w and h are the length of wide and height of CCD image 

sensor of a digital camera. The scanning distances are set as the photo-shooting 

distances. Here, the photographs of “people” and “animals” are given zero value in the 

scanning distances because the consideration of such moving objects is meaningless in 

this physical assessment. Therefore, the computed observed fields target the static 

objects such as “structures,” vistas of “streets,” or views of “water” and “open spaces.” 

In addition, the scanning distances of photographed scenes in “open spaces” were 

given an extremely large value because the buildings surrounding the park, which can 

be seen at a distance from the spots within the park, were perceived as the important 

landscape elements or backgrounds for the participants. The photo-shooting points in 

each spot are used as the observation points for calculating the observed fields. Then, 

both the viewshed and the observed field are displayed on the same map (Figure 4-13).  

 

4.5.2. Characteristics of each spot 

 I explain the characteristics of seven spots by Figure 4-9, 4-10, 4-11, 4-12, and 4-13. 

Spot 1 is located on the north trail of the First Flower Garden. The evaluation of this 

spot reveals that the visitors’ interest is mostly toward the visual objects of “structure”, 
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“management features”, and “open spaces”. The number of “structure” photographs 

taken is the largest in all categories. The participants took photographs of the 

architectural features in north direction and the sculptures of twin pelicans or the 

opposite open space at south direction. The mean direction tends toward the north 

direction but the mean resultant length shows the high variance because of the 

multimodal distribution of data. The photo-shooting distances are different at north and 

south directions; the distances at south are longer than the ones at north. Although the 

viewshed contains the area in the long distance at various directions, except north from 

the spot, the observed fields have spread to the southerly direction within a 

comparatively small angle, including the buildings behind the park as the borrowed 

scenery, not mainly focused on by the participants. In terms of preference level, as 

many high-high clusters were found in a number of photographs in almost all 

categories, it can be surmised that visual objects were evaluated highly from this spot.   

Spot 2 is the space on the southwest trail of the First Flower Garden. The “animals”, 

“vegetation”, and “open spaces” are the main visual objects evaluated by the 

participants. The clusters extracted by the Local Moran’s I statistics cannot be seen for 

Spot 2, except for a few low-high clusters. This indicates that the PVI do not exhibit 

similar preference levels in the neighborhood relations. In the circular plot, the 

variance of directional data is very high, but focusing on the category and distance of 

data, I can find there are roughly two patterns in distribution; the visual interest 

towards “open spaces” at the directions from southeast to northeast and those towards 

“vegetation” and “animals” at the directions from southwest to northwest. The former’s 

observed field is by far wider than the latter’s. This tendency is similar to  
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Figure 4-10. Spot profile–Circular statistic of photograph-related data: (a)–(g) 

corresponds to the results of Spot 1–7 

 

Spot 1, although the kind of objects evaluated in the opposite direction, toward the 

open space, is different.  

 Spot 3 is generated by the PVI at the north space of the Large Fountain. The  

photographs of “people” are taken mainly in this place, so the observed field is little or 

nothing. However, the low-low clusters occupy the high ratio of the number of  
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Figure 4-11. Spot profile–Number of photographs in each category and cluster: (a)–(g) 

corresponds to the results of Spot 1–7 

 

photographs so the likeability score is low in almost all PVI. The scenes are event 

photographs that are cheap-looking but nevertheless unique.  

 Spot 4 is constructed of regions ranging from the Second Flower Garden to the 

Nirenoki Hiroba. Many photographs of “people” are taken at this site, and almost are 

the scenes of the crowds and the performances during the event. In contrast to Spot 3, 

about half are belonging to the high-high clusters. In addition, the dispersion of the 

photo-taking directions is very high, having a nearly uniform distribution.  

 Spot 5 is located at the northwest end of the park, an area with high elevation. The  
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Figure 4-12. Spot profile–Representative scenes photographed by participants: (a-1) 

and (a-2) is the scenes viewed from Spot 1, and (b)–(g) corresponds to the scenes 

viewed from Spot 2–7 

 

number of photographs is comparatively small and the “structure” is the main 

component of object categories. According to the circular plot, the views of “structures” 

with a specific direction (northeast) and a long distance are seen. These indicate the 

interest directed towards the tower buildings, seen at the distant place outside the park.   

  Spot 6 is located on the east side of the Kumogata Pond. Here, various kinds of 

photographs were taken by the participants; the largest number is in “water”, the 

second is in “animals”, and the third is in “management features” and “streets”. The  
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Figure 4-13. Spot profile–Difference between the actually observed field and potential 

viewshed: (a)–(g) corresponds to the results of Spot 1–7 

 

photo-taking directions are biased towards the west and the mean direction is also in 

this direction. The water feature and the crane statue rising in the center of the pond are 

the main features that attracted the participants. However, the preference levels vary in 

spite of the similarity of photographic data. The observed field is small and distributes 
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at the center of the pond and the nearby house, since the spot is covered with and 

surrounded by tall trees.  

 Spot 7 is located in the Kamome Hiroba, which is at the southwest edge of the park. 

This place was used as the start and end point of the participants’ movements during 

the photography investigation. Many “management features” photographs were taken, 

but two of them are in the low-low cluster. The photo-taking directions clearly tend 

towards the east and west. The data seems to indicate contradicting directions of 

interest, however the PVI in Spot 7 is distributed around a fountain that has a gum 

sculpture inside, and photo-taking directions are generally toward this sculpture. The 

circular plot cannot represent the accurate result in this case.  

 Thus, each spot has unique characteristics in terms of the visitor evaluation.  

 

4.5.3. Examination of biases in each spot 

 To evaluate the importance of spots in terms of visitors’ emotional consensus, I need 

to examine how the bias related to the number of participants, or photographs of one 

participant at each spot. I show the indicators for searching such biases in Table 4-1.  

 First, the variety of participants is examined by using the number of participants 

who took the photographs in each spot. If many participants took photographs at the 

same spot, we can regard this as having a low bias but a high consensus level. Five of 

seven spots have a low bias, as evaluated by more than 40 percent of the total 21 

participants, but two remaining spots are in middle level bias. Those spots having a 

large number of photographs exhibit a low bias. 

 Next, the influence of one participant data is investigated. The max number of one  
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Table 4-1. The indicators for searching the bias in each spot 

 Spot1 Spot2 Spot3 Spot4 Spot5 Spot6 Spot7 

Number of 

participant 

Number (ratio to 

all) 

16 (76%) 11 (52%) 10 (48%) 17 (81%) 6 (29%) 9 (43%) 4 (19%) 

Bias※1 Low Low Low Low Middle Low Middle 

Number of 

photograph 

in each 

participant 

Total 38  27  12  50  8 18 7 

Max (ratio to total) 7 (18%) 6 (22%) 2 (17%) 13 (26%) 2 (25%) 3 (17%) 2 (29%) 

Mean 2.38 2.45 1.20 2.94 1.33 2.00 1.75 

SD 1.96 2.02 0.42 2.82 0.52 0.71 0.50 

Individual Bias※2 Low Low Low Low Low Low Low 

※1  Strength of the bias is determined by the variety of participants in each spot; Low: 40-100%, Middle: 10-30%, 

High: 0-10% 

※2  Individual bias is Low if the max number of one participant’s photographs is less than 30% of total number in 

each spot 

 

participant’s photographs in each spot is not high according to their percentage to the 

total number of photographs in each spot; every percentage is less than 30 percent. The 

average number of photographs of each participant is comparatively low, ranging from 

1.33 to 2.94. In addition to it, the standard deviation is not very great. I conclude that 

the bias level for one participant’s data is low in seven spots.  

 

4.6. Discussion about spot attractiveness 

 I explored the spatial characteristics of Hibiya Park in terms of visitors’ perceptual 

interest by analyzing the PVI with several techniques. The spatial significant clusters 

of PVI were extracted based on the similarity of participants’ preference levels. In the 

seven derived spots, some spots have many PVI that belong to one specific cluster, but 

some have a few PVI which belong to multiple clusters. Clarifying this difference is 

important to understand not only the spatial characteristics of tourist sites but also the 
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perceptual system of visitors’ evaluation to the visual stimuli. In this section, I discuss 

the interpretation of clusters on emotional consensus at spots, and clarify the 

“hierarchy" of spot attractiveness.   

 

4.6.1. Interpretation of clusters  

  The interpretations of four clusters of PVI are defined by their statistical 

characteristics and spatial distributions. The meanings of the four clusters might be 

interpreted from the list shown in Table 4-2.   

 In the cases of high-high and low-low clusters (for the positive autocorrelation), the 

PVI tended to concentrate at specific spaces such as Spot 1, 3, and 4. In other words, 

the PVI for which likeability scores were similar values are distributed locally. Spots 1 

and 4 were places where many high-high points were located. Spot 3 was characterized 

by the PVI in a low-low cluster. These specific cases show the “consensus of 

preference level”, meaning that many participants perceived and evaluated the scenes 

in almost the same emotional level on likeability. The accumulation of high-high 

cluster points can indicate the existence of the “best spot”. Conversely, the 

concentration of low-low cluster points can indicate the location of “ordinary spot” that 

may not provide an important experience to visitors overall.  

 On the other hand, the cases of high-low and low-high cluster (for the negative 

autocorrelation) indicate the reliable dissimilarity on preference level among the PVI 

that are adjacent one another. The results imply the possibility of interpretation that the 

high-low and low-high clusters show unique patterns of visual interest, which are 

different with the neighboring PVI. The high-low cluster points can be considered as 
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the strong “individual preference” that occurred at a certain moment, or at a location 

that is hard to find. The distribution of this type is scattered widely in the park, and this 

tendency supports the interpretation. The low-high cluster is the most difficult pattern 

to interpret. The locations of PVI in low-high clusters were mostly seen near the 

high-high cluster points. Here, I might assume that a site of “secondary interest” is 

associated with the deeper impression, using interpretation from previous research. 

Oku and Fukamachi (2003) investigated the temporal pattern of visitors’ photography 

during recreation in linear trail environment and have suggested the idea of human’s 

perceptual system adjusting awareness levels to landscapes from the results. They have 

argued that the high awareness level is derived from an encounter with an attractive 

spot. Thereafter, while the awareness level is maintained in high state, visitors tend to 

intensively photograph various kinds of scenes. According to the actual results of their 

study, when visitors reached the attractive spot, they photographed similar scenes from 

various angles and many kinds of scenes, including wide views such as vistas but also 

small objects such as animals and vegetation. Here, we can suppose different emotional 

levels in each visual experience. Some scenes had might have been photographed due 

to high preference but some had been taken from sudden impulses. The low-high 

cluster can be regarded as this latter case. However, the high-low and low-high cluster 

points are possibly mere outliers that were extracted accidently, influenced by a set of 

the statistic parameters during the Moran’s I calculation such as the searching distance 

and the spatial weight matrix.  

 Finally, consideration is given to the PVI that did not belong to any clusters. 

However, the notable point is not the characteristic of each PVI but the spots at which 
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the non-clustered points highly accumulate. Spots 2, 5, 6, and 7 have a lot of the 

non-clustered PVI. The likeability scores took a variety of values though these spots 

that attracted many participants. A reason can be proposed from the complex 

interaction of two aspects, both the visitor’s perception and the design issue of spot’s 

space. The visitors’ perceptual interest will be changed by the spatial characteristic of 

spot. Spots 1, 3, and 4, which were characterized by many PVI with positive 

autocorrelation, tend to depend on the large number of photographs in one specific 

category. On the other hand, the spots having many non-clustered PVI are derived from 

PVI in various categories. The former spots drew the participants to view similar 

scenes and be mostly interested in those views. Therefore, those spots depend on 

specific views and events that have the highest attractiveness. The latter spots directed 

the participants’ interest to the various scenes or a few scenes from various locations. It 

is proposed that there were several choices of locations and angles to photograph for 

the participants.  

 

Table 4-2. Interpretation examples of clusters  

 Likeability Score 

Low High 

Spatially Lagged Score 

High 

Secondary interest 

associated with big 

impression 

Consensus on preference 

levels with high evaluation 

→ Best Spot 

Low 

Consensus on preference 

levels with low evaluation 

→ Ordinary Spot 

Strong individual 

preference at the moment 

View spot that is hard to 

find 
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4.6.2. Hierarchy of spot attractiveness 

 The results of cluster distribution demonstrate the hierarchy of spot attractiveness. 

The previous studies have concluded that the spaces having high accumulation of PVI 

were the spots with high sightseeing potential (Sugimoto, 2011b, 2013) so the 

hierarchy was implied from only the spatial intensity of PVI, as evaluated by the 

density values. Therefore, the difference of attractiveness level among the high 

potential spots has not been considered. My study results suggest the importance of 

more sub-divisional classification of spot attractiveness in terms of different preference 

levels. For example, Spots 1 and 2, which are located around the First Flower Garden, 

have the same density values of PVI but they were clearly different in likeability scores. 

Most of the  PVI at Spot 1 had high values in likeability and also belong to the 

high-high cluster. In contrast, the PVI at Spot 2 were variable in terms of likeability 

scores and did not belong to any clusters. Identifying such differences permits more 

acute understanding of the spatial characteristics, and will be useful for the 

management of tourist/recreational spaces.  

 The hierarchical relationships of spot attractiveness derived from my research were 

summarized and shown in Table 4-3. First, the attractiveness level was roughly divided 

into two classes, based on whether or not there was an accumulation of PVI. The 

spaces with no PVI are regarded in the lowest class of spot attractiveness. Next, the 

spots with PVI accumulation can be further divided into three classes from the 

clustering results of PVI; best spots, spots with various preference levels and ordinary 

spots. The best spots, perceived by visitors in consensus of high preference levels, are 

the most attractive spots among the targeted sites. The ordinary spots show a consensus  
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Table 4-3. Hierarchy of spot attractiveness 

Hierarchy     Criteria    (Cluster) Attractiveness 

Accumulatio

n of interest 

Best spots 
 Consensus in high 

preference 
（High-High） High 

Spots in various 

preference levels 

 
Individual preference 

Spot that is difficult to find 

Secondary interest 

Others 

（High-Low） 

 

（Low –High） 

（Not 

Significant） 

↑ 

| 

Middle 

| 

↓ 

Ordinary spots 
 Consensus in low 

preference 
（Low –Low） 

No accumulation of interest   Low 

 

of low preference levels and are therefore not important for most visitors, but may 

interest few visitors. All other types of spots are evaluated by PVI accumulation with 

varying preference levels including high-low clustering, low-high clustering, and 

non-clustered PVI.  

 

4.7. Summary 

 This chapter provided an exploratory analysis method for detecting spot 

characteristics, focusing on the likeability score and the photo-taking directions of each 

PVI. Spatial autocorrelation analysis and circular statistics were mainly applied to 

explore the spot characteristics. Firstly, global and local Morans’ I techniques were 

used to measure overall spatial feature similarity and to search for the significant 

spatial clusters for each point. As a result, four clusters (high-high, low-low, high-low, 

and low-high) were extracted. Next, the seven spots were determined by the density 

contours of PVI. The characteristics of each spot were identified by making a spot 

profile, composed of a spot location and a range, a circular plot embedded with 
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photo-shooting distance, the histogram counting the number of photographs in each 

category and cluster, a representative photograph, and the difference of the viewshed 

and the observed field. Finally, on the basis of these statistical analysis results, I 

suggested the interpretation for examples of each of the four cluster types. The PVI of 

high-high and low-low clusters were generated by consensus of preference levels, and 

tended to concentrate at specific locations. The spots with accumulation of high-high 

clusters are regarded as the best spots in the park, and the low-low cluster define 

ordinary spots. The low-high points were found to be distributed around regions of 

high-high clustering. This fact possibly means that the low-high points are of 

secondary interest after encountering highly attractive visual scenes. The points of 

high-low clustering were randomly scattered, and this phenomenon seems to be driven 

by strong personal preferences or the existence of scenic spots that are hard to find. By 

combining these classified regions with the results of non-clustered point distribution 

and spaces that attracted no interest, the hierarchy of spot attractiveness was revealed.    
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Chapter 5 

 

Modeling Sightseeing Potential 

 

 

  The opportunity for sightseeing is provided by the environment of a destination. 

Identifying the potential for providing such opportunities in specific locations can 

contribute significantly to the planning and management of tourist/recreational spaces. 

The potential of a destination to attract visitors can be determined by location-specific 

characteristics of the environment (Chhetri & Arrowsmith, 2008). The previous chapter 

identified the hierarchy of spot preferences in detail, but focused on a small number of 

representative spots. The potential of these modeling techniques is to provide an 

insight into the potential of the whole area, so the overall trends in spatial 

characteristics can be discussed.  

 This chapter describes the modeling and visualization of the “sightseeing potential” 

of locations using PVI and GIS. Section 5.1 defines sightseeing potential and describes 

the modeling used; next, Sections 5.2 and 5.3 explain the implementation of the 

modeling techniques. Section 5.4 outlines the results of potential modeling, and 

presents the data on a map for visualization. Finally, Section 5.5 covers the 

methodological limitations of this study.  
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5.1. Definition of Sightseeing Potential  

  The general meaning of “potential” can be described as either (1) the possibility that 

development will occur in a particular way, or (2) in the case of people or things 

possessing potential, the tendency to develop and improve (Longman English 

Dictionary Online, n.d.). In addition, “sightseeing” is the act of visiting and seeing 

places or objects of interest. Based on these definitions, this study defines the 

“sightseeing potential” of locations as having qualities that could attract many visitors, 

and the possibility that visitors can see attractive scenes. Therefore, the sightseeing 

potential indicates the spot-based potential at a destination. To measure the location 

specific sightseeing potential, this study utilizes density estimation to obtain PVI. The 

estimated density provides the possibility of identifying how many PVI are found in a 

specific location; in other words, the identifying occurrences of visitor interest in a 

location.   

 In one of my primary works (Sugimoto, 2011b), I conducted experimental research 

of potential modeling of visitors’ interest using digital cameras, GPS loggers, and GIS. 

I clarified the relation between visitors’ visual preferences and its spatial tendencies by 

estimating the kernel density distributions of PVI and visualizing the types of 

photographs in nine categories. However, Sugimoto’s method is insufficient for 

visualizing the sightseeing potential of locations because various biases were not 

removed during the creation of the density map. In the case of Sugimoto (2012, 2013), 

the reciprocal number of each visitor’s photographs was used as the weighted score for 

removing the bias that occurred because of the varying numbers of photographs taken 

by each participant. Sugimoto (2012, 2013) previously set the two courses specifically 
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for evaluating the difference between visitors’ perceptions of each trail, with visitors 

keeping to these specific courses. Therefore, a method for removing biases in cases 

when visitors walk freely in a particular environment has not been examined. 

Moreover, any biases regarding the types of evaluated objects and the differing degree 

of emotions that each object elicits have not been considered. This study computes and 

visualizes the potential maps for sightseeing purposes while bearing in mind these 

multiple biases. 

 

5.2. Data Analysis for Estimating the Potential of Location 

 The analytical method of this study mainly focuses on analyzing the distribution of 

photo-taking locations. Kernel density estimation (KDE) was applied to all the 

photo-taking points to visualize their density. Spatial analysis of point events, known as 

point-pattern analysis (PPA), has been widely examined by researchers targeting spatial 

phenomena and the resolution of spatial problems. KDE is one of the most commonly 

used methods for analyzing the point-event distribution (Bailey & Gatrell, 1995; Xie & 

Yan, 2008). KDE aims to produce a smooth density surface of point events over space 

by computing event intensity as density estimation (Bailey & Gatrell, 1995). It is 

effective for finding the locations where a peculiar value is seen. The kernel estimator 

λ( ) at the point s is given by 

 λ(s)=
1

h
2
∑ k

n

i=1

(
s-si

h
)    (12) 

Here, s-si is the Euclidian distance between the zero point s and the ith event point si on 

2-D space. h is known as the smoothing parameter, also called the bandwidth. The 
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various accumulation patterns can be found by changing the search bandwidth. If the 

bandwidth is small, density shows a local accumulation pattern of point events. If the 

bandwidth is large, density shows a spatial tendency on a larger scale. k( ) represents 

the kernel function, and several kernel functions are implemented using different GIS 

algorithms. I used the quadratic function, which is useful for calculating density 

estimates on a 2-D space (Silverman, 1986), and set it in the extension of ESRI’s 

ArcGIS Spatial Analyst. 

 k(u)= {  
3

π
(1-u2)2 u2= (

s-si

h
)

2

<1

0   otherwise

   (13) 

In this study, I apply KDE tools in ArcGIS (Ver. 10) to visualize the potential of spaces 

that appeal to many participants.  

  KDE can be attached to the weighted values in its computation. If a weighted value 

of a point is n, this point is calculated as n points. The weighted values change the 

density values; therefore, it is possible to remove biases when the weights are properly 

set in each point. I design the weights according to the multiple indicators in the next 

section. 

 

5.3. Designing the Weights 

 The comprehensive weighted score (Wi) of photo-taking point i(i=1,2,…,517) is 

determined by the following formula (3). Wi is considered to be the product of the five 

factors. 

Wi = Li Ci Ri Di Ti   (14) 
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First, Li is the likability score. This index is the most important weighted value for 

considering the potential of locations and denotes the differing degrees of emotions 

that the photographs elicit in each participant. Likeability score is the only indicator 

through which the participants can evaluate themselves. The product method is chosen 

for designing the overall weighted score because Li is regarded as the basic weight, 

while the other four indicators are solely treated as parameters to eliminate inequalities 

in conditions among participants. With Li, the range of values extends from one to five. 

Five is the highest on likeability and one is the lowest, although it does not indicate 

active dislike. 

 Second, Ci refers to the weighted value for removing the bias regarding the types of 

objects the participants took photographs of. If the category of the photograph is 

“people” or “animals,” the weighted score is less than 1, and in the range of 0 to 1. In 

addition, other types of photographs are assigned a score of one. The reason why the 

score of the photographs in the “people” and “animals” categories is reduced is that 

these types of objects move around the study area. As a result, the number of these 

types of photographs and its spatial distribution across the park are predicted to be 

move varied than with other categories.  

Ci= {
[0,1)    ("people" or "animals")

1   otherwise     
   (15) 

 Third, Ri indicates the reciprocal number of photographs taken by each participant. 

This weight removes the bias caused by the difference in the number of photographs 

taken by each participant. When the number of photographs taken by participant 

k(k=1,2,…,21) is Nik, Ri is defined as below. 

Ri= 1 Nik   (16)⁄   
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 Fourth, the distance between photo-taking point i and starting point is calculated as 

one of the weighted values. The Euclidian distance after logarithmic conversion is used 

for computing the distance weight Di. The Euclidian distance before logarithmic 

conversion is represented in meters. This weight is used to remove biases regarding the 

selection of a starting point. A photo-taking point farther away from the starting point 

is assigned a higher value. Because the farther points from the starting point are in 

lower probabilities of participants’ visits. When the geographic coordinates of point i 

and the starting point are represented to (Xi, Yi) and (Xstart, Ystart), Di is defined in the 

following formula (17). 

Di = log (√(Xi − 𝑋start)2 + (Yi − 𝑌start)2)    (17) 

 Finally, the fifth weighted value is the reciprocal of the photo-taking time. This value 

has two functions; the first suppresses the excessive effect of Di on the overall 

weighted score, and the second adds the effect of a person’s sequential emotional 

change to the overall weighted score. Some researchers have revealed that the pace of 

photography has declined over time, indicating that a person’s interest in photography 

has gradually decreased (Markwell, 1997; Oku & Fukamachi, 2003; Sugimoto, 2013). 

Higher values are assigned to the photo-taking points taken in the early segment 

because the persons tend to be fresh during that time. On the contrary, lower values are 

given to the points in the late segment. The starting time of each participant is set as 

zero, and each photo-taking time is shown in seconds. When ti is the photo-taking time 

of point i, Ti is computed as follows. 

Ti = log(10
4
/ti)   (18) 
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5.4. Results 

5.4.1. Weighted scores 

 In total, the number of points is 517, not including the photographs labeled “others”. 

As the result of the computation of the comprehensive weighted value Wi, the 

distribution of Wi is shown in Figure 5-1. I assign weighted scores of 0.5 and 0.3 to Ci 

(“people” or “animals”). In both cases, the distributions of these weighted scores are 

skewed toward a low value, but several points have relatively high values that score 

more than 3. However, these high weighted points would not possibly become a bias in 

the computation of a density distribution. 

 

 

 

Figure 5-1. The distribution of weighted scores in two different cases 
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5.4.2. Visualizing the potential of locations 

 I calculate the three types of scores in density distribution of photo-taking locations; 

the non-weighted score, the weighted score in the case of Ci = 0.5 (“people” or 

“animals”), and the weighted score in the case of Ci = 0.3(“people” or “animals”). All 

density maps are drawn on the basis of an equidistant classification. Two density maps 

with a 30-m bandwidth and a 70-m bandwidth are shown in Figures 5-2 and 5-3. 

 In the case of the 30-m bandwidth shown in Figure 5-2 (b), it is found that the points 

accumulate around the attractions and on the park roads. For example, the density is 

high at the park trails near Shinji Pond, Park Museum, and the First Flower Garden, 

and also surrounding the Kumogata Pond, the Second Flower Garden, and the Large 

Fountain. The density maps with the weighted scores shown in Figures 5-2 (c) and (d) 

do not show any significant differences. However, the density at the area surrounding 

the Second Flower Garden and the starting point is lower than that of the density maps 

with the non-weighted scores. There is very high accumulation of points in “people” at 

the Second Flower Garden and its nearby surroundings. The extent of this 

accumulation can be reduced by attaching the weighted scores Ci based on the 

categories of objects. 

 For the 70-m bandwidth and the non-weighted scores in Figure 5-3 (b), I found that 

the density is especially high within the Second Flower Garden. I also found a high 

accumulation of photo-taking locations at Kumogata Pond. However, there are too 

many photographs in the “people” category taken during the festival event at the 

Second Flower Garden. I do not consider this event as a potential location because its 

characteristics will change according to the date. Moreover, the density at the north 
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trail of the First Flower Garden is too low despite the location having high likeability 

scores. After performing an operation to reduce these biases, a large difference 

occurred between the density map with the non-weighted scores and the one with the 

weighted scores shown in Figures 5-3 (c) and (d). The density values of the latter cases 

were high at the north trail of the First Flower Garden and the Kumogata Pond 

compared to those of the former case. This indicates that the potential of the locations  

 

 

Figure 5-2. The kernel density distribution of photo-taking locations with 30-m 

bandwidth and 1m×1m cell size;(a) the map of Hibiya Park, (b) the density map with 

non-weighted score, (c) the weighted score in the case of Ci = 0.5(“people” or 

“animals”), and (d) the weighted score in the case of Ci = 0.3(“people” or “animals”) 
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represented in the former case is underestimated. The densities at the First Flower 

Garden are as high as those in (Figure 5-3 (c)) or higher than those in (Figure 5-3 (d)), 

which represents the Second Flower Garden. These density values seem to indicate the 

proper potential of locations, as both gardens present with high density values. Because 

many photographs located at both of the gardens have high likeability scores. We can 

say that the density map with the weighted scores is a good result from those 

 

 

Figure 5-3. The kernel density distribution of photo-taking locations with 70-m 

bandwidth and 1m×1m cell size;(a) the map of Hibiya Park, (b) the density map with 

non-weighted score, (c) the weighted score in the case of Ci = 0.5(“people” or “animals”), 

and (d) the weighted score in the case of Ci = 0.3(“people” or “animals”) 
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perspectives. The difference between the density at the Second Flower Garden in 

Figures 5-3 (c) and (d) occurs as a result of the weighted value Ci (“people” or 

“animals”). Changing this value largely influences the density value at the Second 

Flower Garden, and this is due to the accumulation of “people” photographs, which 

have a low weighted value at this location. Of these two results, I cannot 

unconditionally judge which result is better, but if I emphasize on removing the 

unstable factors, Figure 5-3 (d) is the more appropriate result.  

 Thus, by considering the weights theoretically regarded as the biases, the spatial 

patterns of density distributions could be different in the case with non-weighted scores 

and that with the weighted scores, thereby providing more accurate results in the 

sightseeing potential of spaces. 

 

5.5. Methodological Limitation 

 The result of this study, limited in the density map with non-weights, is little 

different from Sugimoto’s (2011b) research, which was conducted in the same study 

area. Most pertinently, the location with the highest density value of photo-taking 

locations was not the same in both studies. This seems to be caused by the difference in 

the sample size, the variance in participants’ social background and the irregular 

movement of people and animals through the photographed locations. This study’s 

participants are all from a younger generation, but the previous study’s participants 

were of various generations and were fewer in number. The photo-taking locations in 

“animals” tended to accumulate around the First Flower Garden in the previous study. 

Moreover, the space with the highest density value was constructed using many animal 
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photographs. Potential changes in conditions are the methodological limitation of the 

on-site experiment. However, such a limitation is not a serious problem because, when 

viewed overall, the density maps in both studies demonstrate very similar results.  

 

5.6. Summary 

 This chapter addressed the construction of a density map showing preferred 

photo-taking locations, for the purpose of evaluating the sightseeing potential of spaces 

based on people’s visual preferences. In particular, this study focused on using the 

KDE method to reduce some of the biases that typically occur when the potential maps 

are studied. The weighted scores, which were multiplied by the five indicators, created 

more suitable maps of potential sightseeing preferences than the non-weighted density 

maps.  
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Chapter 6 

 

Visualization of Spatial Intensity of Visual Lines 

 

 

  The PVI-based analysis and visualization were presented in the previous chapters 4 

and 5, showing great results and potential for clarifying the spot characteristics and 

modeling the sightseeing potential of a given location. However, these assessments 

were mainly based on spatial information of photo-taking locations. Visitor’s visual 

interest during his or her on-site experience occurs in the spatial interaction with the 

visual object, and this phenomenon involves aspects of the spatial context such as a 

position of the observer, and the visual object. Such spatial relationships can be 

represented in spatial data as a distance between the observer and the visual object, 

described as the LVI in the Chapter 3. The LVI is also regarded as the spatial indicator 

of visual distance on scenic/landscape perception (but in some cases, the estimated 

visual distances were modified). There is a small amount of existing research regarding 

the quantification and analysis of visual distance; however, the required data 

generation, spatial analysis and visualization of the spatial data related to visual lines 

has not yet been performed. Therefore, this study will contribute to the advancement of 

research in the field of landscape perception and assessment.   

 This chapter demonstrates effective methods for the analysis and visualization of the 

spatial intensity of LVI, which are the spatial line data representing visitors’ visual lines. 

The studies are conducted as follows; the spatial distribution of LVI is visualized on 
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GIS environment, with some limitations as explained in Section 6.1. Next, three 

approaches to the analysis and visualization of LVI intensity are suggested and 

examined (Sections 6.2, 6.3, and 6.4). Map representation is an important consideration 

in the analysis of spatial data, and displaying results effectively. Therefore, the 

characteristics of the three types of analysis and visualization are described, with 

thorough discussion of the advantages and disadvantages of each approach. Moreover, 

visualization in a 3-D landscape model is suggested, and its effectiveness is argued in 

Section 6.5. 

 

6.1. Lines of Visual Interest 

6.1.1. Spatial distribution of LVI 

 The spatial distribution of LVI of all participants is shown on the map (Figure 6-1 

(a)). Maps of the start and end points of the LVI are also plotted in order to compare 

with LVI’s map (Figure 6-1 (b) and (c)). The former is equivalent to the location maps 

of points of visual interest (PVI), which indicates the spatial data of photo-taking 

locations, and the latter indicates the locations of visual objects that the participants 

photographed. Comparing with three maps, the map of LVI distribution is clearly more 

informative than the other two maps. Though the point-based maps have only location 

information about the standing point or visual objects and describe no other 

information, the LVI clarifies not only those but also the visual lines and directions at 

the same time. From this, we are possible to know where the participants viewed the 

scene, from and which place they targeted. The distances of visual lines are completely 

different according to the place where the participants’ interest occurred. At the  
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Figure 6-1. Distribution of (a) LVI, (b) the starting points of LVI, and (c) the end points 

of LVI 

 

northwest of the park, there are some LVI of great length; these LVI show interest 

directed towards buildings exterior to the park. Spatial information of the PVI only, or 

the estimated location of visual objects, cannot describe such interaction between the 

visitor and the visual object.  

  Thus, LVI represents the interaction of visitor and visual object more precisely than 

using point features. However, because many lines of different length are distributed in 

the same area, the map of LVI is a little complicated to understand; an effective way to 

solve this visualization problem is shown in next section. 

 

6.1.2. Spatial intensity of LVI  

 As a technique for effective visualization and pattern finding within discrete spatial 

features, the intensity of certain features’ accumulation is often computed. If point data 
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is targeted for analysis, the Exploratory Point Pattern Analysis (EPPA; Bailey & Gatrell, 

1995) is one well-known approach, and various spatial intensity computation methods 

have been developed on EPPA. However, few exploratory analysis methods applicable 

to discrete line data such as LVI have been developed. Network analysis is based on 

linear features, but focuses on the connectivity among lines and processes them like 

continuous data. To describe the spatial intensity of the LVI, I suggest three approaches 

of geo-visualization; density estimation, grid-based aggregation, and flow data 

representation.  

 

6.2. Density Estimation  

6.2.1. Kernel density estimation for linear features 

 To visualize the intensity of spatial features, I initially used the kernel density 

estimation (KDE). KDE is a technique used to generate a smooth density surface by 

estimating the probability density function of a data variable. In spatial analysis using 

GIS, KDE calculates the density of spatial features around each output raster cell. 

Many previous studies have applied 2-dimensional KDE to point features for 

identifying hot spots, where data points are concentrated. I can also apply KDE to 

linear features using ArcGIS10 Spatial Analyst tools. The density surface value is 

largest on the line and diminishes as this move away from the line. When the distance 

from the line reaches the search bandwidth, the surface value becomes zero. This 

procedure is adapted from the quadratic kernel function (Silverman, 1986) as the 

kernel function for lines. The density at each output raster cell is calculated by adding 

the values of all the kernel surfaces. It is defined so that the volume under the surface 
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equals the product of the line lengths where they overlay the raster cell center (ArcGIS 

Resource Center, n.d.c).  

 

6.2.2. Density distribution of LVI 

 The density maps of LVI are shown in Figure 6-2 (a). The quadratic kernel is used as 

a kernel function and the 30-m bandwidth is set. In addition, I show the density maps 

of the starting and end points of LVI with the same parameter in the case of LVI 

density formula in Figure 6-2 (b) and (c). The density of starting points equals that of 

PVI, representing the potential of view spots (but actually requires the addition of the 

weighted value on the density computation for visualizing the perfect potential map). 

The density of end points of LVI shows the accumulation of estimated locations of 

visual objects that attracted participants’ interest upon viewing. These two point 

densities simply show the accumulation of a single kind of feature. On the other hand,  

 

Figure 6-2. Density distribution of (a) LVI, (b) the initial points of LVI, and (c) the end 

points of LVI 
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the LVI is constructed with the complex elements including not only start and end 

points, but also a line linking both points. This indicates that the density of LVI 

represents the mixed accumulation of such plural spatial features.  

 Comparing the three density maps, I observe that the distribution patterns are clearly 

different. For example, the high values of the LVI density (Figure 6-2 (a)) are 

distributed “on” the two ponds of Hibiya Park but the ones of the starting points (PVI, 

Figure 6-2 (b)) locate “around” the ponds. The density distribution of the end points 

(Figure 6-2 (c)) has the similar tendency to the LVI density. The density value of LVI 

and end points of LVI may be regarded as the potential level of space as same as the 

case of starting point (PVI) intensity. However, each has the different meaning upon 

interpretation. The density of LVI indicates “the spatial intensity of psychological  

interactions” that occurred between persons and visual objects on the geographical 

environment. In contrast, the density of starting and end points of LVI indicate only 

location information of either subjects or objects of interactions.  

 The problem of visualizing LVI accumulation using density estimation is that the 

directional information of LVI is entirely abstracted. By overlaying the LVI distribution 

on a density map, it is possible to address such problems; however, the map retains a 

high degree of complexity.  

 

6.3. Grid-Based Aggregation 

6.3.1. Count and mean direction of LVI based on grids 

 To represent plural variables such as the spatial intensity and direction of LVI on one 

map, a grid-based aggregation method is used. First, the square grid polygons are 
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generated and overlaid in the range of the study area and LVI distribution using 

ArcGIS10 Cartographic tools. I show the cases of 20m×20m and 30m×30m grids. 

These grid sizes were selected such that the mean value of shooting distances, 

corrected on horizontal axis, was 22.3; therefore, the integral round value of 20 m was 

selected. Moreover, to study the effect of grid size on the analysis results, 30 m square 

grids were also made. The number of grids is 574 for 20 m and 294 for 30 m. As the 

size was increased by 10 m, the number of grid squares essentially halved. 

  Each grid joins the number of LVI existing inside the spatial range of them. The 

mean direction of LVI in each grid is also calculated using circular statistics 

programming by Python. The mean direction of grid i is computed as following 

formula (Arai, 2011): 

θ̅i

{
 
 

 
 

tan-1(Si/Ci)      if Ci>0, Si≥0     
π/ 2        if Ci=0, Si>0     

  tan-1(Si/Ci)+π       if Ci<0        (19)

3π/ 2            if Ci=0, Si<0     

tan-1(Si/Ci)+2π         if Ci>0, Si<0        

 

Here, Ci and Si are the sum of directions transformed by the trigonometric function in 

each grid. When the LVI’s direction k in grid i is represented as θik, Ci and Si can be 

calculated as shown:  

Ci=∑ cos θik 

n

k=1

   (20) 

Si=∑ sin θik

n

k=1

   (21) 

Point data showing the locations of grid centers were made, and the values of mean 

directions are attached to them as attribute values.  
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6.3.2. Map representation of LVI intensity based on grids 

 After these operations, the calculated results are visualized spatially using statistical 

map representation techniques, combining the choropleth mapping method and a point 

symbol plot (Figure 6-3 (a) and (c)). The count number of LVI is represented by the 

color intervals and the arrow symbol is used for showing the mean direction. I can well 

understand where the count value is high or low, and in which direction the LVI tend to 

point, on average. However, though the color interval is effective for visualization, the 

spatial features of park infrastructure are hidden within the grids and the relation to 

LVI distribution is difficult to understand. Therefore, I show another type of map 

representation using only the arrow symbol. The size of symbols was changed to fit the 

number of LVI in each grid, and the polygon of grid range was removed on the map 

(Figure 6-3 (b) and (d)). This type is simpler than the first type of map, but it cannot 

emphasize the cumulative value as in the earlier map.  

 Comparing the 20 m and 30 m size square-grids, the mean directions between these 

two types are similar in many places, but differ in some locations. For example, the 

arrows around the Second Flower Garden completely differ in size type, though the 

ones at other places are generally the same. This is due to the different variance levels 

of LVI directions in grids. The LVI around the Second Flower Garden have a large 

variance on their directions. Therefore, the grid size affects the outcome at specific 

spaces that exhibit large dispersion in the LVI directions.   

 Grid-based aggregation enables representation of the degree of accumulation and 

mean direction of LVI in each grid. However, the limitation of this approach is that 

there is a problem in that the spatial relationship between two important locations of an 
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Figure 6-3. Visualization of aggregated LVI based on (a)-(b) 20m×20m grids and 

(c)-(d) 30m×30m grids 
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observer and visual object cannot be represented.  

  

6.4. Visual Interest Flows  

6.4.1. Representation as flow data  

 The LVI can be changed to flow data if the person’s response to visual stimuli is 

regarded as a spatial phenomenon consistent with an object moving from one grid to 

another. This data transformation enables us to extend the analysis of LVI. In this 

section, I determine the data characteristics of visual interest flows, and suggest 

fundamental geo-visualization methods applicable in this case.   

 

6.4.2. O-D matrix 

 Generally, the number of flows between two points of the considered network is 

quantified by using one square matrix table referred to as the “Origin - Destination 

(O-D) matrix” (Figure 6-4). O-D matrix is composed of rows and columns which are 

the same length, indicating origin i and destination j. Tij is a component of the matrix 

that is equivalent to the number of flows from origin i to destination j. The sum of rows 

Oi means the total number of generation flows exiting zone i, and sum of columns Dj 

indicates the total number of arrival flows entering zone j. In this study, zones are 

defined as grid polygons overlaid on the map and LVI distribution.  

 This O-D matrix is decomposed into intra-grid flows and extra-grid flows. The flow 

on the diagonal of matrix, for example, from grid 1 to grid 1, is intra-grid flow. All 

others, which are out the diagonal, are extra-grid flows.   
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Figure 6-4. Origin / Destination matrix and flow representation 

 

 The process of making the O-D matrix of visual interest flows is as follows; first, the 

ID numbers of the grid polygons were added to the attribute table of the start and end 

points of LVI corresponding to the inside of each grid, using the ArcGIS 10 spatial join 

function. The start and end point of each LVI has the own ID that is the same in each, 

and the grid ID that may be either the same or different according to flow type,  

intra-grid or extra-grid. Based on these two types of IDs, I computed the O-D matrix 

using my original program.  

 

6.4.3. Visualization of visual interest flows 

 To visualize the visual interest flows, I need to use different symbols for the 

intra-grid and extra-grid flows because of possible confusion if using the same symbol 
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for each. A circle symbol is used for intra-grid flow, and an arrow symbol is used for 

extra-grid flow. The symbol sizes are changed by the quantity of flow.  

 I made the shape files of flow data, separated into intra-grid and extra-grid flows 

using my original program. The point data, located on the grid center, is made for the 

intra-grid flows. The line data that links the two grid centers is made for the extra-grid 

flows.  

 Figure 6-5 show the observed visual interest flows with 20m×20m and 30m×30m 

grids. It may be the most easily understandable of all the maps shown in this chapter, 

capturing the occurrence patterns of visual interest. However, the grid size affected the 

results strongly. Comparing to the grid sizes, patterns of spatial distribution are 

remarkably different. This reason might be that the flow data were made depending on 

only the starting and end points of LVI, not considering the directional data of LVI.  

  

   (a)     (b) 

Figure 6-5. Visualization of visual interest flows based on (a) 20m×20m grids and (b) 

30m×30m grids 
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Moreover, because these points are aggregated and the flows are summarized, the 

accuracy of flow locations is reduced. Although there is such a problem, the method 

displays some merit in data representation and analysis compared with former two 

approaches. The flow data can represent the spatial relationship between grids, and 

permit effective application of statistical techniques for traditional flow data, such as 

spatial interaction models.   

    

6.5. Visualization on 3-D Landscape Models 

  While the vectors of some LVI move from the interior of Hibiya Park to the exterior, 

most LVI do not. All such irregular LVI show the participants’ visual lines to the 

skyscrapers surrounding the park. Therefore, it is desirable that the landscapes of both 

the interior and exterior of the park are visualized considering the height and volume of 

objects such as buildings, with LVI or other representations of spatial intensity of 

visual lines. To achieve this, I recommend 3-D visualization using 3-D landscape 

models. This approach will be more effective than a 2-D map in terms of evaluation, as 

it considers the relationship between both perceptual and physical landscapes. Figure 

6-6 shows the LVI and visual interest flows in the 3-D landscape models created by 

layering raster images and polygon vector data on ArcScene. In Figures 6-7 and 6-8, 

these are shown in more realistic 3-D models from Google Earth. The former is simple 

and composed of only four types of landscape elements, which might be suitable to 

more easily understand the overall trend of the relation between distributions of visual 

interest and landscape objects. However, developing this model takes time and money. 

The latter models are visualized as more realistic 3-D models. The outlines of 3-D  
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(a) 

 

(b) 

Figure 6-6. Visualization of visual interest in 3-D landscape model created using 

ArcScene: (a) LVI and (b) visual interest flows with 30m×30m grids 
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(a) 

 

(b) 

Figure 6-7. LVI visualized on Google Earth in: (a) a bird’s eye view and (b) Street 

View 
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(a) 

  

(b)                (c) 

Figure 6-8. Visual interest flows with 30m×30m grids visualized on Google Earth in a 

bird’s-eye view from: (a) southeast, (b) north, and (c) southwest 

 

objects such as trees and buildings are obtained from satellite and other types of 

photographic images, and the shapes of buildings are more precise than those on 

ArcScene depicted in Figure 6-6. Google Earth is free software and covers most places 

in the world. Originally created spatial statistical data can be easily displayed by using 

ones with kml format and operated interactively. In addition, it is possible to see 

photographs in human-scale view at a particular local point on a street by using the 
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Street View function (Figure 6-7(b)). Line vector data such as LVI can be visualized on 

Street View, which is useful for determining the movement of visitors’ visual 

interest—from where to what visual objects—based on their visual lines.  

 

6.6. Summary 

 This chapter provided methods to acquire the spatial data related to the distance 

between an observer and visual object, and analyze and visualize it spatially using GIS 

and other relevant techniques. Firstly, the photo-shooting distances are estimated based 

on the fundamental equation of optics; thin lens formula and magnification of an object 

and image height. The required input variables were acquired by two on-site surveys; 

the photography survey by visitors, and the survey of object height measurements. 

Secondly, the spatial linear features of visual lines, called Lines of Visual Interest (LVI), 

were extracted, and the analysis and visualization techniques used with these features 

were suggested. For map representation of the spatial intensity of LVI accumulation, 

the kernel density estimation and the grid-based aggregation were conducted. In 

addition, the LVI were transformed to flow data between grids. Two types of flow, the 

extra-grid flow and the intra-grid flow, were identified and displayed as different 

representation symbols. Finally, the 3-D landscape models were used as base maps for 

more effective visualization that enables us to understand the relationship between 

participants’ visual interest and physical landscape in the study area. 
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Chapter 7 

 

Prediction of Visual Interest Flows 

 

 

  Previous research into GIS-based visual resource assessment and modeling has 

generated visualizations of visual quality or attractiveness of landscape based on the 

location specific environment, using biophysical and geomorphological spatial data. 

For example, Chhetri and Arrowsmith (2008) predict the attractiveness of certain 

nature-based landscapes by using a multiple regression model that contains indicators 

of landscape elements. Their model is created based on surveying visitors’ landscape 

perceptions by using a simple questionnaire. In addition, combining objective and 

perception-based assessment is a recent, advanced technique. The study of modeling 

sightseeing potential presented in Chapter 5 may also correspond to this type.  

As an alternative approach, this chapter presents a modeling technique for scenic 

resource attractiveness considering the positional relation of the interaction between 

visitor and visual object during on-site experience; this model predicts where or which 

object visitors’ interest go toward from which place.  

Scenic attractiveness modeling can contribute to the effective planning and 

management of tourist/recreational spaces by clarifying management priorities and the 

importance of certain locations. This study uses a multi-method approach in order to 

evaluate spots and scenes as well as their spatial relationships, thereby allowing us to 

evaluate the targeted area comprehensively. In addition, examining the spatial 
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interaction between spots and scenes contributes to recognizing the importance of 

understanding a person’s environmental preferences in a geo-spatial context. 

 This chapter predicts the spatial pattern of visual interest flows using a prediction 

model constructed based on the spatial interaction model. Section 7.1 explains the 

fundamental structure of spatial interaction model. Section 7.2 describes the 

application of prediction models of visual interest flows. Finally, in the Section 7.3, the 

predicted results are visualized on maps, and compared with observed flows.  

 

7.1. Applying Spatial Interaction Models  

 As it is an important methodology in the analysis of flow data, spatial interaction 

modeling is widely available. Spatial interactions cover a wide variety of movements, 

so many spatial scientists have applied this to analyze movements or evaluate a 

location’s potential. The visual interest flows in this study are also targeted at this 

application.  

  The spatial interaction model includes several model types, including a gravity 

model, an entropy model, and a Huff model, among others. Considering the data 

characteristics, I chose the gravity model as being suitable for analysis of visual 

interest flows.  

 

7.1.1. Classical gravity model 

  The general form of classical gravity model is expressed as  

Tij=k
Ui

β
1Vj

β
2

dij

β
3

   (22) 
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where Tij is the interaction intensity or the volume of flows between zone i and j, k is 

the proportionality constant, Ui is the mass of the zone of origin, Dj is the mass of the 

zone of destination, dij is the distance between two zones. β
1
 is the potential parameter 

to generate flows, β
2
 is the potential parameter to attract flows, and β

3
 is a parameter 

reflecting the distance decay.  

  Taking logarithmic formation of both sides of the equation, the non-linear form can 

be converted into a linear form. 

 lnTij=lnk+β
1

ln Ui+β
2

ln Vj -β
3

ln dij   (23) 

This log-normal model is better known as the empirical gravity model. However, 

several problems have been noted when using the log-normal model (Flowerdew & 

Aitkin, 1982). Firstly, the logarithm transformation affects the nature of the estimated 

values. The estimated flows produced by the regression are the logarithms of Tij, not Tij 

themselves. The total flows may therefore be underestimated when these estimates are 

converted into the antilogarithms. Secondly, the log-normal model assumes the random 

variables are log-normally distributed. However, there is little reason to suppose that 

these values are log-normal. Thirdly, the log-normal model assumes that the variances 

of random variables are identical, and that the expected difference between the 

estimates and observations is the same for all pairs of origins and destinations. This 

causes a problem when there are many cases where the estimate and observed flows 

are very low: the small absolute differences may result in a large difference between 

the two when compared in logarithmic form. Finally, when some of the flows are zero, 

the use of the logarithm transformation is difficult because the logarithms of zero 

cannot be computed. A small positive number is usually added to observations but the 
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choice of this number can have a considerable impact on the coefficients of the model 

and the output results. 

 

7.1.2. Poisson / Negative Binomial gravity model 

 In order to overcome the problems of the log-normal gravity model, fitting the 

gravity model to the Poisson distribution is one of the suitable solutions (Flowerdew & 

Aitkin, 1982). The Poisson distribution is a discrete probability distribution that 

expresses the probability of a given number of events, also called count data, occurring 

in a fixed interval of time or space. This distribution is based on the premise that the 

dependent variable is a nonnegative integer, where the mean is small and a zero value 

is likely to occur. The data of visual interest flows in this study displays these 

characteristics. Therefore, we can consider that the probability of visual interest flows 

follow the Poisson distribution given by following formula   

PP(tij)=
e-λijλij

tij

tij!
   (24) 

where λij is the parameter that contributes to determining the shape of the distribution 

and is a positive real number, and λij is equal to the expected value of tij and also to its 

variance. This characteristic is the constraint on the Poisson distribution. In real world, 

there are actually many datasets not satisfying this constraint: the conditional variance 

is often higher than the conditional mean (Burger et al., 2009). Therefore, I suggest 

also using the Negative Binomial distribution to fit the model given as below. 

PNB(tij)=
Γ(tij+r-1)

tij!Γ(r-1)
(

r-1

r-1+λij

)

r-1

(
λij

r-1+λij

)

tij

   (25) 
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where r is the dispersion parameter that defines the skewedness of the distribution. As r 

decreases towards 0, the Negative Binomial distribution is closer to the Poisson 

distribution. The Negative Binomial distribution is therefore similar to the Poisson 

distribution; however, this assumes that the variance of observed data is larger than the 

mean value. Researchers may generally employ the Negative Binomial model as the 

standard choice for a basic count data model (Greene, 2008).  

 By using these two probability distributions, the parameter λij  can be 

logarithmically linked to a linear combination of the logged independent variables.  

λij=exp(β
0
+β

1
ln Ui+β

2
ln Vj +β

3
ln dij )   (26) 

This procedure is known as the Poisson regression or Negative Binomial regression, 

carried out within the generalized linear modeling (Nelder & Wedderburn, 1972) 

framework in analysis. In these cases, no adjustment methods to handle zero flows are 

required. Moreover, the sums of observed and predicted flows are approximately equal 

and the sizes of the distributions of the observed and predicted flows are similar. 

 

7.2. Construction of Prediction Model  

7.2.1. Defined models for prediction  

 I define the prediction model of visual interest flows in this study by using the vec 

operator as follows: 

𝜆=exp(α1n+αintra1intra+Xoβ
o
+Xdβ

d
+Xintraβ

intra
+γd)   (27) 

where the dependent variable 𝜆 is the number of visual interest flows between two 

grids. The model is divided into extra-grid and intra-grid flows. Extra-grid flows are 

predicted by using the variables 1n, Xo, Xd, and d as well as the parameters that function 
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to these, namely α, β
o
, and β

d
. Moreover, 1n functions as the intercept term with α 

and this takes one value when the origin and destination grids are the same. Further, Xo 

is the matrix that contains more than one kind of origin-grid variable, Xd is the matrix 

for destination-grid variables, and d is the geographical distance between the centers of 

these two grids. By contrast, intra-grid flows are explained by using the variables of 

1intra and Xintra and their parameters αintra and β
intra

; in this case, 1intra is composed of 

the intercept term together with αintra and it takes one value when the two grids have 

different IDs, while Xintra is the set of explanatory variables for intra-grid flows. The 

explanatory variables in both extra-grid and intra-grid flows do not affect each other 

because one variable becomes zero when another takes a value. 

The model separating approach is conducted in several studies targeting analysis of 

flow data, such as population flows (LeSage & Pace, 2008; Tamesue & Tsutsumi, 

2012) and tourist flows (Marrocu & Paci, 2013). They have been successful in 

predicting the flows, with good accuracy. The intra-grid flow model and the extra-grid 

flow model can be integrated into a simpler form like the traditional gravity model. At 

this time, the determination of distance for the intra-grid flow is required. Some 

researchers have defined it by the original computational method, however, it is hard to 

find a clear rationale for this. Moreover, in the case of this study, the number of 

modified shooting distances are very large, totaling more than half the observations 

under 20 m (Figure 7-1). If the simpler model is used, the parameters of total 

generation and arrivals would be significantly influenced by the intra-grid flows. As a 

result, the extra-grid flows will be considerably underestimated. In making the 
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Figure 7-1. Histogram count of the modified shooting distances 

 

prediction model, increasing the goodness-of-fit is a high priority. With the aim of 

achieving high estimation accuracy using the model, I do not assume a distance for 

intra-grid flow but use a separate model.  

 

7.2.2. The first prediction model 

I construct two types of prediction models by combining the explanatory variables. 

The first prediction model explains the intensity of visual interest flows based on their 

origin and destination potentials (Figure 7-2 (a)). Flow quantity can be assumed to 

increase as one or both potentials grow, but this change is limited by the distance decay 

effect. The concrete explanatory variables are shown in Table 7-1. To measure the 

origin-grid potential in the extra-grid flow model, the count of photo-taking locations, 

which equals the starting points of LVI, in the origin grid, is used. This measure can be 
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regarded as the total flow generation of the origin grid in the description of the spatial 

interaction. The destination-grid potential is represented by the count of the end points 

of LVI, indicating the total flow arrivals of the destination grid. The distance between 

the origin and destination pairs is the Euclidian distance between the centers of the two 

grids. The intra-grid flow model also takes the same types of variables as the extra-grid 

flow model but it does not contain the distance variable; rather, it is determined by 

using the grid potential in order to generate or attract flows. Here, a small positive 

number, log(0.01), is added to each grid point except for the distance variable (which 

has no count number), because to assume the origin and destination grids have no 

 

 

Figure 7-2. Conceptual diagrams of the prediction of visual interest flows based on the 

indicators of origin and destination grids: (a) using the degree of potential in each grid 

and (b) using the landscape element variables instead of the destination potential 
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Table 7-1. Explanatory variables related to the data on visual interest flows 

Symbol Variable Data  

lnOriginPi, intra Potential of the origin grid Logarithm of the number of starting points of LVI 

lnDestinationPj, intra 
Potential of the destination 

grid 
Logarithm of the number of end points of LVI 

lnDistance 
Distance between the origin 

and destination grids 
Logarithm of the Euclidian distance 

 

potentials is unnatural. Such an assumption would indicate that the grid has no 

potential to generate flows. Therefore, I added the very small number that will not 

significantly influence the observed data of the explanatory variable. This processing 

does not affect the total amount of flows, even if the individual estimates will be 

somewhat influenced. 

This first model will provide results that fit the predictors to the observers well 

because it uses explanatory variables that directly relate to the attractiveness of both 

the origin and the destination. However, acquiring the number of end points of LVI is 

time consuming because we need to measure the object height and estimate the 

photo-shooting distances. If these tasks could be reduced, the evaluation system in this 

study would become more practical for planning and management. Therefore, I suggest 

another prediction model that does not contain the number of end points of LVI.  

 

7.2.3. The second prediction model 

Previous research on the relationship between a person’s scenic perception and 

landscape elements has clarified those factors that affect individual scenic preferences. 

For example, water is known to be one of the most important elements for attracting 
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visitors to nature landscapes (Zube et al., 1982). Wong and Domroes (2005) also 

showed that visitors tend to prefer a scene that contains water and greenery in an urban 

park setting. These findings indicate that a person’s scenic preferences can be predicted 

based on the condition of the visual objects in this location. Indeed, some studies have 

tried to construct prediction models of scenic preferences from landscape factors 

(Bishop & Hulse, 1994; Bishop, 1996), with some authors having recently identified 

the potential of a specific location by using spatial data on landscape elements and 

visualizing the result in a GIS environment (Bishop, 1996; Chhetri & Arowsmith, 

2008). In the same way, it is possible to predict a person’s interest in a visual object by 

using spatial information on landscape elements as the explanatory variables. The 

combination and condition of these variables thus describe the spatial intensity of 

visual interest flows. 

The second prediction model is composed of the variables for origin potential and 

the landscape elements of the targeted area as an alternative to destination potential 

(Figure 7-2 (b)). Table 7-2 shows the explanatory variables related to the landscape 

elements and their creation method by using the LiDAR and spatial vector data. These 

variables are developed based on the eight visual object categories of frequent 

photographs. Which variables are selected to appear in the intra-grid or extra-grid 

model and which ones affect the model positively or negatively can be confirmed by 

classifying the photo-shooting distances (Figure 7-3). For instance, because the 

photo-shooting distances of photographs of “structures”, “streets”, “water”, and “open 

spaces” are comparatively long on average, the variables related to these categories 

tend to positively affect the extra-grid flow model. 
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In the extra-grid flow model, the variable that indicates the existence of a hill (Hilli) 

is set as the origin variable because it strongly relates to the participant’s own condition 

rather than to the visual object. In other words, a high place often provides a better 

opportunity of a panoramic view. The opening degree of a destination grid 

(lnOpeningj) measures the spatial and compositional effect of open space, which is 

assumed to positively affect the prediction because the majority of photographs of 

“open spaces” have a long photo-shooting distance. Moreover, architecture was noted 

as attractive by participants in the photography survey and thus the existence of houses 

or buildings (Housej) increases visual interest. Ponds also attracted participants’ 

attention. Because participants tended to view the center of the pond, the pond area in 

each grid (lnPondj) is better suited to the model explanation compared with a dummy 

variable that only indicates pond existence. 

The number of trees (lnTreeNj), average height of trees (TreeHj), and existence of a 

festival (Festivalj) in the grids all negatively affect the extra-grid flow model because 

of the numerous short photo-shooting distances in the “people” and “vegetation” 

categories. The variable “Landmarkj” indicates the existence of noteworthy small 

landmarks such as monuments, sculptures, and large trees. Most of these landmarks are 

located at conspicuous places designed to induce a visitor’s gaze such as the center of a 

pond or in an open space. Therefore, this variable may increase extra-grid flows. 

In the intra-grid flow model, the hypotheses about the effects of the studied variables 

are opposite to the case of the extra-grid flow model. Thus, positive effects are induced 

by the number of trees (lnTreeNintra), average height of trees (TreeHintra), and existence 

of a festival (Festivalintra). 
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Table 7-2. Explanatory variables related to landscape elements 

Symbol Variable Data  

Hilli, intra 
Existence of a hill in an  

origin grid 

Whether the > 6 m average height of elevation is 

in a grid or not (dummy) 

lnOpeningj, intra 
Opening degree of a 

destination grid 

Logarithm of the number of DHM points of 

0±0.5m in a grid 

Housej, intra 
Existence of an architectural 

building in a destination grid 

Whether the polygon of this building is in a grid or 

not (dummy) 

lnPondj, intra 
Pond area in a destination 

grid 
Logarithm of the pond area (km

2
) in a grid 

lnTreeNj, intra 
Number of trees in a 

destination grid 

Logarithm of the number of DHM points in the 

range 5–40 m in a grid 

TreeHj, intra 
Average height of trees in a 

destination grid 

Average height of DHM points in the range 5–40 

m in a grid 

Landmarkj, intra 
Existence of a landmark in a 

destination grid 

Whether a small landmark such as a monument or 

large tree is in a grid or not (dummy) 

Festivalj, intra 
Existence of a festival in a 

destination grid 

Whether the festival is held in a grid or not 

(dummy) 

 

 

Figure 7-3. The boxplot of modified shooting distances in each category 
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7.2.4. Estimation of model parameters 

 The parameters of variables are estimated by maximum likelihood estimation (MLE). 

The MLE is a method used to seek the probability distribution that makes the observed 

data most likely, and the estimate is obtained by maximizing the likelihood function. 

The likelihood function is defined by reversing the roles of the data vector and the 

parameter vector in the probability density function that specifies the probability of 

observing data. The likelihood function represents the likelihood of the parameter 

given the observed data. In most actual cases, the logarithm of the likelihood function, 

called the log-likelihood function, is used for MLE. For the Poisson distribution in 

Equation (24), the log-likelihood function is given as  

ln LP =∑(Tk lnT̃k -T̃k+ ln(Tk!))

N

k=1

    (28) 

where N is the total number of flows, Tk is the observed flows and T̃k is the predicting 

flows. As the same, the log-likelihood function for the Negative Binomial distribution 

is as follows. 

ln LNB =∑{∑(ln l+r-1)

Tk-1

l=1

- ln Tk!-(Tk-r
-1) ln(1+T̃k)-Tk ln r-1+Tk ln T̃k}     (29)

n

k=1

 

The optimization method for maximizing these log-likelihood functions is conducted 

based on the quasi-Newton method (also known as a variable metric algorithm).  

 

7.2.5. Accuracy  

 To indicate goodness-of-fit, I use the root mean square error (RMSE). The RMSE is 

a frequently used measure of the differences between values predicted by a model and  
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values actually observed.  

RMSE =√
1

N
∑ (Tk-T̃k)2

N

k=1

    (30) 

Thus, the formula of RMSE is simple, and it can be flexibly divided into groups. I 

show the RMSE of three types; all flows, the extra-grid flows and the intra-grid flows. 

However, the comparison among groups has no meaning because the variance of each 

is different. We should normalize the RMSE by dividing by the standard deviation of 

the observed data 𝜎𝑇. The normalized RMSE is defined as 

NRMSE = RMSE/σT    (31) 

The NRMSE attains a value 1 if the method of prediction is no more accurate than 

forecasting the unconditional mean of the prediction set (Ted, 1997). This 

normalization is useful practice for interpreting and comparing the results. I also show 

the NRMSE of three types as the same with the results of RMSE.  

 

7.3. Predicted Visual Interest Flows  

7.3.1. Estimates of the first prediction model 

The results of the estimated parameters, accuracy in RMSE and NRMSE values, and 

scatterplot of the observed and predicted flow values for the first model are shown in 

Table 7-3, Table 7-4, and Figure 7-4, respectively. Only the Poisson models are shown 

because the goodness-of-fit of the negative binomial models is worse than that of the 

Poisson models. All parameters of all models exhibit p-values less than 0.01, indicating 

they have the significance for the model. On the extra-grid flow models, the parameter 

values for lnOriginPj and lnDestinationPj are positive but the distance parameter is 
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negative. Therefore, the results show that the potentials of origin and destination grids 

provide the flow generation, but that the distance causes the predicting values to decay. 

This fact demonstrates that the spatial interaction model can be applied to explain the 

spatial occurrence patterns of visitors’ visual interest in on-site environments. On the 

intra-grid flow models, the parameters for the origin- and destination-grid potentials 

are both positive but under 1. This is due to the large number of intra-grid flows and no 

decay effects.  

The RMSE value of the extra-grid flows is largest in any models. According to the 

results, the NRMSE of extra-grid flows are larger than those of intra-grid flows. It 

means that the predictions of intra-grid flows are relatively accurate, but those of 

extra-grid flows cannot be estimated with enough precision. Comparing the cases of 

20m×20m grids and 30m×30m grids, the values of NRMSE decrease as the grid 

 

Table 7-3. Estimated parameters of the first prediction model 

Coefficient 
20m×20m grids   30m×30m grids 

Estimate   Std. Error Z value   Estimate   Std. Error Z value 

Intercept 6.229  
***

 0.389  16.000  
 

8.822  
***

 0.591  14.938  

Interceptintra -0.909  
***

 0.117  -7.751  
 

-0.885  
***

 0.146  -6.063  

lnOriginPi 0.790  
***

 0.064  12.422  
 

0.732  
***

 0.072  10.160  

lnDestinationPj 0.783  
***

 0.062  12.703  
 

0.723  
***

 0.065  11.161  

lnDistance -2.983  
***

 0.107  -27.921  
 

-3.452  
***

 0.152  -22.777  

lnOriginPintra 0.628  
***

 0.081  7.717  
 

0.628  
***

 0.095  6.598  

lnDestinationPintra 0.553  
***

 0.079  6.972  
 

0.546  
***

 0.091  5.980  

Null Deviance 7108.2    6199.1  

Residual Deviance 1410.3  
 

977.6  

Adj. Pesudo-R
2
 0.715  

 
0.758  

AIC 2262.9    1658.3  

Pseudo-significant level ***: p<0.001, **: p<0.01, *: p<0.05 
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Table 7-4. Accuracy of the first prediction model 

  
20m×20m grids   30m×30m grids 

RMSE NRMSE   RMSE NRMSE 

All 0.035 0.639 
 

0.069 0.478 

Extra-grid 0.031 0.853 
 

0.060 0.817 

Intra-grid 0.389 0.423 
 

0.571 0.294 

 

  

(a)          (b) 

Figure 7-4. Relationship between the observed and predicted values of visual interest 

flows based on the first prediction model in (a) 20m×20m grids and (b) 30m×30m 

grids 

 

polygon size increases from 20 m to 30 m. While the NRMSE of intra-grid flows 

largely decreases (the model become more precise), there is not the big change in the 

NRMSE of extra-grid flow models. This tendency can be seen on the scatterplots of the 

observed and predicted flow values for each grid size. If the accuracy of each model is 

good, a scatterplot of actual and predicted values on respective axes should indicate a 

data spread close to a 45-degree line from the origin (the line itself represents perfect 

positive correlation of the two variables). The plots of the intra-grid flows in the case 
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of 30m×30m grids are therefore found to be in better condition as a whole. On the 

other hand, there are many under-predicted values in the extra-grid flows in both cases.   

 

7.3.2. Predicted spatial flows of the first prediction model 

The predicted flows are shown on the maps (Figure 7-5 (c) and (d)) and compared 

with the observed flows (Figure 7-5 (a) and (b)). I do not show the predictions with 

less than 0.7 values because such low values deviate greatly from the range of 

observations. As a whole, the flows by the intra-grid flow model were predicted well. 

However, the extra-grid flows seem to have some problems.   

 While the observed flows are widely distributed around the park, the predicted flows 

are comparatively concentrated in specific spaces. This tendency is especially strong 

with the extra-grid flows. The reasons would be the effect of the distance-decay 

parameter, and concentration in the grids having the large number of total flow 

generations or arrivals at particular spaces. The extra-grid flow models depend on the 

potential of each grid and the closeness between grids. Because the absolute values of 

their parameters are very similar, even if one of their variables is low, the model would 

not predict the flow occurrence.  

 The characteristics of the extra-grid flow model also make it difficult to predict the 

occurrence of irregular flows that have a very long length. For example, though several 

observed flows that have long length generated from the specific location in the 

northern west of the park to the building out of the park, the models did not predict 

them. This spot is located on the top of hill, so the topographic condition of place 

influences the spatial pattern of visual interest flows. Adding new explanatory 
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variables, such as the elevation of locations, might be effective to improve the 

flexibility of the models for the prediction of the extra-grid flows. 

 I used the total number of flow generation and arrivals for the model variables. It is 

possible to use other indicators related to the attractiveness of space. For example, 

 

Figure 7-5. Observed and predicted visual interest flows of the first model based on (a) 

and (c) 20m×20m grids, and (b) and (d) 30m×30m grids 
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instead of the total number of flow arrivals, the score of attractiveness of each grid 

evaluated by some kind of method beforehand could be adopted for the explanatory 

variable. Such an approach might make prediction process easier and more precise. 

Similarly, the idea of using the landscape elements as destination variables is presented 

in the next session.  

 

7.3.3. Estimates of the second prediction model 

  All 18 explanatory variables of both the intra-grid and the extra-grid flow models are 

set in the second model, while their optimum combination is examined and estimated 

in a step-wise manner (Table 7-5). The results for only the Poisson models are shown 

as with the first model. RMSE and NRMSE accuracy and the scatterplots of the 

observers and predictors are shown in Table 7-6 and Figure 7-6, respectively. 

  The selected coefficients show few differences in the 20m×20m and 30m×30m grid 

models. Notably, the model for the 30 m grid size takes fewer coefficients and its 

goodness-of-fit is better than that for the 20 m grid size. Further, the origin potential 

(lnOriginPj,intra) and distance between grids (lnDistance) are determined as important 

variables, as they were in the first model. 

  In the extra-grid model, the existence of houses (Housej) and landmarks (Landmarkj) 

as well as having a pond area (lnPondj) in the grids are shown to be those variables that 

have positive effects, whereas the opening degree of space (lnOpeningj), number of 

trees (lnTreeNj), and existence of a festival (Festivalintra) are found to decrease the 

predicted values. Therefore, the hypotheses are supported for most variables except the 

opening degree of space, which by itself does not have sufficient power to attract 
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visitors in the study area. A specific condition, such as combination with the other 

visual objects (e.g., water, landmarks, and events), may be needed to entice people 

toward an attractive visual scene. Indeed, most photographs taken in a space with a 

high opening degree include other unique visual objects, meaning that these were not 

recognized as “open spaces” as such. The photographs taken in “open spaces” were 

rather limited to a particular area such as the First Flower Garden. In the intra-grid flow 

model, only one or two variables besides the intercept and origin potential were 

selected, and their significances were not high. These findings suggest that many of the 

intra-grid flow values can be predicted by the origin potential: the low values of 

NRMSE for the intra-grid flow models, shown in Table 7-6, confirm this fact. 

  According to the RMSE and NRMSE results (Table 7-6), although the accuracy of 

both the intra-grid and the extra-grid flow models in the second prediction is lower 

than that in the first, there is not a large difference between them. In addition, the 

distribution of the observed and predicted values in the scatterplots is also similar in 

the first and second models (see Figures 7-4 and 7-6). Therefore, the second prediction 

model is valid as well as the first, suggesting that landscape element data are a useful 

and effective resource for constructing a prediction model of visual interest flows as 

the explanatory variables.  

 

7.3.4. Predicted spatial flows of the second prediction model 

  The predicted visual interest flows of the second model are spatially visualized in 

Figure 7-7 (c) and (d). The overall tendency is similar to that for the first prediction 

model, with these flows focused on specific places. However, the predicted flows for 
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Table 7-5. Estimated parameters of the second prediction model 

Coefficient 
20m×20m grids   30m×30m grids 

Estimate   Std. Error Z value   Estimate   Std. Error Z value 

Intercept 8.698  ***
 0.470  18.495  

 
11.674  ***

 0.684  17.060  

Interceptintra -0.744  ***
 0.212  -3.507  

 
-0.345  

 

0.304  -1.135  

lnOriginPi 1.007  ***
 0.065  15.475  

 
0.878  ***

 0.070  12.514  

lnOpeningj -0.151  **
 0.054  -2.821  

 
-0.131  *

 0.059  -2.235  

Housej 0.432  **
 0.138  3.138  

 
0.359  *

 0.140  2.561  

lnPondj 0.161  ***
 0.029  5.607  

 
0.176  ***

 0.028  6.209  

lnTreeNj -0.347  ***
 0.046  -7.627  

 
-0.304  ***

 0.042  -7.149  

Landmarkj 0.528  **
 0.187  2.829  

 
0.485  **

 0.181  2.681  

Festivalj -0.367  *
 0.158  -2.315  

     

lnDistance -3.328  ***
 0.107  -31.012  

 
-3.733  ***

 0.151  -24.773  

lnOriginPintra 0.995  ***
 0.079  12.605  

 
1.069  ***

 0.078  13.631  

lnTreeNintra -0.087  

 

0.049  -1.770  
     

TreeHintra 
 

 
   

-0.216  *
 0.104  -2.063  

Festivalintra 0.256  

 

0.159  1.609  
     

Null Deviance 7180.2    6199.1  

Residual 

Deviance 
1706.4  

 
1129.5  

Adj. Pesudo-R
2
 0.676  

 
0.735  

AIC 2571.0    1818.1  

Pseudo-significant level ***: p<0.001, **: p<0.01, *: p<0.05 

 

Table 7-6. Accuracy of the second prediction model 

 

20m×20m grids 
 

30m×30m grids 

RMSE NRMSE 
 

RMSE NRMSE 

All 0.039 0.714 
 

0.078 0.545 

Extra-grid 0.033 0.904 
 

0.065 0.880 

Intra-grid 0.510 0.555 
 

0.754 0.389 
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(a)                 (b) 

Figure 7-6. Relationship between the observed and predicted values of visual interest 

flows based on the second prediction model in (a) 20m×20m grids and (b) 30m×30m 

grids 

 

the second model are stronger than those for the first in their tendency for the 

extra-grid flows to move toward specific spatial objects such as architectural buildings 

and water. For example, in the predictors with 30m×30m grids shown in Figure 7-7 (d), 

the extra-grid flows existing at the south of the park turn on to the architecture in their 

surrounding spots. Similarly, at the Shinji Pond that is located at the northeast of the 

park, many predicted extra-grid flows turn on to the pond from the grids that have 

banks. These trends are not seen in the first prediction model (Figure 7-5). This effect 

can be considered to be due to the use of landscape elements as explanatory variables 

in the second model. 

  The first models predict that the flows generated from an origin grid that has high 

potential only move toward destination grids that have high potential, whereas the 

second models show that the distribution of predicted flows is influenced by the 

combination of the landscape elements in the grids. Indeed, although the assumptions 
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Figure 7-7. Observed and predicted visual interest flows of the second model based on 

(a) and (c) 20m×20m grids, and (b) and (d) 30m×30m grids 

 

in each model do differ, the results of the predicted flows are similar. This finding is 

very important in visual resource assessment and modeling because it means that 

persons’ on-site visual interest can be predicted from environmental data to a precise 
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level. However, one limitation remains. Irregular flows that take a very long distance 

cannot be predicted in either model. In order to overcome this problem, constructing a 

new model or variable for predicting only flows that have long distances and 

integrating this into the basic model might be effective. 

 

7.4. Summary 

 The prediction models of visual interest flows were constructed based on the spatial 

Interaction model, and two types of prediction models were suggested. The first 

prediction model was explained by the origin and destination potentials and 

geographical distance between them, represented by the total number of flow 

generations (the number of starting points of LVI), total number of flow arrivals (the 

number of end points of LVI), and Euclidian distances between grids. The second 

model took account of the variables related to landscape elements as an alternative to 

destination potential, as explained by the optimum combination of explanatory 

variables. As a result of the estimation of the model parameters, the spatial patterns of 

visual interest flows were found to hold well in both models in the context of a spatial 

interaction model. 

 Thus, the spatial data of visual lines, such as LVI, has various possibilities for the 

analysis and modeling of persons’ awareness and evaluations of spaces. In technical 

terms, we can apply other statistical methods to search for patterns of data, and also 

develop prediction models by examining further new explanatory variables or applying 

in other environments. For the experimental studies, these theoretical and applied 

research methods, focusing on the distance between the observer and visual object, will 
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certainly contribute to the research fields of scenic/landscape perception and 

sightseeing behavior. 
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Chapter 8 

 

Conclusion 

 

 

 Landscapes or visual resources are among the most important kinds of locations in 

contemporary tourism (Jacobsen, 2007). Their visual quality is directly linked to the 

recreation quality for visitors (Schirpke et al., 2013), and have the great power to affect 

visitors’ evaluations to the destinations. Therefore, as the fundamental studies for 

design, planning, and management of tourist/recreational spaces, previous studies have 

clarified humans’ scenic/landscape perceptions in various settings and approaches. At 

the same time, various kinds of visual resource assessment methods have been 

developed. Geo-spatial information technologies such as GIS are effective tools for 

advancing such efforts. This thesis presented an innovative approach using 

visitor-oriented and computer-aided techniques for analyzing and assessing 

tourist/recreational spaces. This final chapter concludes the contents of thesis by 

summarizing the results and findings, and discussing possible future work. 

 

8.1. Summary of This Thesis  

 This thesis developed methods for the analysis and modeling of visitors’ visual 

interest during their on-site experiences in geographic space. Most of the previous 

studies on visitors’ on-site perceptions to visual stimuli have engaged in analysis of 

scene specific evaluation of visual resources by visitors, using only photographic 



 

 

141 

image data. To overcome such limitations, a combination of digital cameras and 

geo-spatial information tools such as GIS were suggested. A series of data acquisitions, 

visualization, statistical analysis, and modeling potential provides as core components 

of this thesis. 

 In order to acquire the spatial data related to visitors’ visual interest, two surveys 

were conducted at Hibiya Park in Tokyo, Japan as the case study area. In the first 

survey, 21 recruited participants were asked to photograph positive scenes during 

walking around the park freely, and thereafter they answered questionnaires for 

evaluation of preference level of each visual experience and categorization of each 

visual object. In the second survey, the heights of over two hundred objects projected 

in the photographs taken by participants were measured using the laser distance meter. 

Based on acquired data in these field surveys, spatial point and line data of visitors’ 

visual interest were extracted.  

 Four types of studies for analysis and modeling of visitors’ visual interest were 

presented. Two studies attempted to analyze based on the point data of locations that 

visitors’ interest generated. The first application was the exploratory analysis of spot 

characteristics; several spatial clusters were extracted by spatial autocorrelation 

analysis, based on similarity of likeability scores. The characteristics of seven 

representative spots were statistically described in multiple indicators including the 

above clusters. The second application was modeling and visualizing the sightseeing 

potential of locations. Weighted scores accounting for the preference level and 

removing certain biases were attached into the algorithm of density computation. This 
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operation created more suitable maps of potential sightseeing preferences than the 

non-weighted density maps.  

 The subsequent two studies mainly focused on the spatial line data of visitors’ visual 

lines on their interest. The third application was the visualization of the spatial intensity 

of visual lines, represented as spatial linear features. Three map representation 

techniques were demonstrated; density estimation for line data, grid-based aggregation 

and flow data representation. In addition, the advantages and disadvantages of each 

were described. The final application described was the construction of a prediction 

model for visual interest flows. Spatial interaction models were used for predicting the 

amount of total flows between locations by the variables of origin potential, destination 

potential or landscape elements, and distance between locations The model parameters 

were estimated to have high significance levels in all cases, and the predicted values 

exhibited good agreement with the observed data.  

 

8.2. Results and Findings 

8.2.1. Field survey and data acquisition 

  Hybrid methods combining on-site photographic methods and geo-spatial tools were 

used to conduct the study. The results of (1) the photography survey by visitors and (2) 

the survey of object height measurements, provided seven main data types in total; 

photo-taking locations, photo-taking directions, photo-shooting distances, photo-taking 

time, photographic images, visual object categories, and likeability scores. These data 

were transformed into the spatial point and line data of visitors’ visual interest, named 

points of visual interest (PVI) and lines of visual interest (LVI); PVI are constructed 
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with the photo-taking locations (spatial object) and attribute values, and LVI is 

composed of line vector data of the visual line from observers’ standing location to the 

position of the visual object.  

 

8.2.2. Exploratory spot analysis 

 Exploratory analysis methods were used for searching emotional similarity of PVI in 

their neighborhood relations, determining spot ranges and describing spot 

characteristics. The results of the global and local Moran’s I statistics and the spot 

profiles of seven representative ones derived four significant spatial clusters and the 

hierarchy of spot preferences. The spots including many high-high or low-low clusters, 

evaluated in consensus of preference levels; the former are regarded as the best spots, 

placed at the top of the hierarchy of spots, and the latter may be ordinary spots. The 

other spots were composed of the non-clustered PVI and a few low-high or high-low 

clusters, constituting the middle level of hierarchy. Finally, the spaces accumulating no 

interest did not receive any evaluations; these were ranked lowest in the overall 

hierarchy.  

 

8.2.3. Modeling sightseeing potential  

 The density map of PVI was created for evaluation of the space potential, based on 

their visual preferences. To reduce certain modeling biases in the maps made using the 

kernel density estimation (KDE) method, two types of weighted scores were used in 

the density computation and five indicators were set as the components of the weighted 

scores. These were the scores of likeability, which indicates the emotional distance 
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with each photograph, the scores based on the object types of photos, the reciprocal 

number of photographs created by each participant, the distance between the 

photo-taking locations and the participants’ starting points, and the reciprocal of the 

photo-taking time. The weighted scores enabled more accurate density maps of the 

photo-taking locations, better indicating the potential of locations when compared to 

the result with non-weighted scores. 

 

8.2.4. Visualization of spatial intensity of visual lines 

  Visualization techniques applicable to the spatial intensity of LVI were suggested 

using three different approaches. The kernel density estimation (KDE) of LVI was the 

easiest tool to find the degree of LVI accumulation, but the directional information of 

LVI was entirely abstracted. Grid-based aggregation can represent the degree of 

accumulation and mean direction of LVI, but the spatial relationship between an 

observer and visual object cannot be described as well as KDE. Flow data 

representation overcame such problems, and permits interpretation of spatial intensity, 

spatial relationships, and directional information, regardless of summarization of the 

accurate LVI locations.  

 

8.2.5. Prediction of visual interest flows 

 The prediction models of visual interest flows were constructed based on the 

Poisson/Negative Binomial Gravity model, with separate models for the intra-grid 

flows and the extra-grid flows. Two types of prediction models were constructed based 

on the difference in the explanatory variables for destinations; the total flow arrivals 
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(the number of end points of LVI) or the physical landscape elements. As a result of 

estimation of model parameters, the first model showed a high probability in terms of 

significance level, indicating a positive effect from the origin and destination potential 

whereas distance showed a negative effect. Moreover, the predicted flows were 

excellent in terms of the goodness-of-fit parameter. The second model also determined 

the origin potential and distance as important variables, and consisted of five to six 

types of landscape elements as variables for extra-grid flow model and one or two 

types for intra-grid flow model. The accuracy of the second model prediction was good 

as same as the first, indicating persons’ on-site visual interest can be predicted from 

environmental data to a precise level. 

 

8.3. Research Novelty and Contribution 

  In this work, a unique and innovative contribution has been made to the field of 

visual resource assessment and modeling research. The novelty and contribution of my 

studies are summarized in the following section.  

  Firstly, I succeeded in quantifying and analyzing the spatial patterns of a subject’s 

visual interest, occurring in a recreational setting, by using geo-spatial information 

technologies. The spatial data constructed from the photography-related data recorded 

by visitors represented the location and spatial relationship of the observers and/or 

visual objects geographically; this information included not only location and 

orientation data, but also psychological aspects such as likeability and the type of 

visual object preferred. Moreover, such data was extremely effective when used in 

spatial analysis and modeling of visitors’ visual interest in geographical terms. These 
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processes are linked to the idea of “spatial thinking” in geospatial sciences, defined as 

the extraction of meaning from the shape, size, orientation, location, direction or 

trajectory, of certain objects, processes or phenomena, or the relative positions in space 

of multiple objects, processes or phenomena (National Research Council, 2006). GIS 

techniques have assisted in various situations requiring such a way of thinking, such as 

spatial representation, analysis, and prediction of visual interest. 

  Secondly, the study details designs for assessment procedure, constructs and 

presents a methodological standard for visual resource assessment and modeling using 

a combination of visitor-oriented photography and geospatial tools. Each of the data 

acquisition, visualization, statistical analysis, and modeling potential techniques are 

important parts of research process that provide the ability to explore visitors’ interest, 

and evaluate scenic and spot attractiveness in specific tourist/recreational sites. The 

micro-scale assessment I demonstrated requires understanding of the sensitivity of the 

digital tools to acquire reliable, high-quality data because the characteristics of the data 

have an influence on the quality of analysis and assessment results. In my study, I was 

able to manage the data acquisition seamlessly and obtain all the various data I 

required with good quality, through careful design of the studies; as the result, could 

show that the various analysis and modeling techniques were applicable to collected 

data.  

  Thirdly, the methods provided in this thesis enabled us to assess the entire area of the 

targeted site, not only scenes visitors perceived (Figure 8-1). The importance of this 

outcome should be emphasized mostly because I was able to overcome the notable 

limitations of typical photographic surveys, and clearly showed new and useful 
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Figure 8-1. Novelty of this thesis compared with the previous studies 

 

techniques for visual resource management of specific sites. The spatial intensity of 

PVI and LVI and the subsequent geo-visualization provided location specific potential 

and attractiveness of scores for scenes and spaces. The results will contribute to 

management of tourist/recreational spaces, or to policies relating to the conservation 

and maintenance of visual resources. For example, ranking such scenes and spaces 

could prove useful in prioritizing their management. Highly-preferred spaces can be 

conserved on a priority basis, whereas less preferred spaces could be improved so that 

they attract more visitors. It could also be used in tourism promotion, as a means of 

promoting a targeted site’s most likeable scenes and spaces. 

 

8.4. Future Works 

  This section refers to possible future works in this field of study using the 

approaches described, focusing on survey design and technical issues.   
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8.4.1. Survey design 

  The work presented in this thesis has some limitations, which are attributed mainly 

to the sample size. The small sample of 21 young participants may arguably reduce the 

general applicability of the results. The methods showed in this thesis are suitable for 

further investigations employing additional and various types of participants, clarifying 

visitors’ preferences for scenery and spots within each group. The findings of such a 

study would be more useful for the planning and management of recreational spaces, 

accounting for the recreational preferences of different visitor classes. 

  The participants evaluated the scenes based on preference level only, as specified by 

a five-point likeability index. A greater variety of appraisal indices could be used to 

determine the quality of a visitor’s experience of scenes or landscapes, and to assess 

the spot quality in more detail. Traditional perception-based landscape assessments 

have classified the aesthetic quality of visual resources in multiple dimensions by using 

such indices; such existing studies provide a valuable resource for future work.  

 It is also necessary to consider the validity of the scale of my studies. This thesis 

aimed to assess small tourism/recreational areas, which are often composed of complex 

natural and cultural elements; the results demonstrated the effectiveness of methods, 

and the techniques may be applied in other settings. Linear environments may be one 

of the most relevant examples, because photographic surveys by actual visitors were 

originally developed to assess visual resources existing along touring routes such as 

hiking trails (Cherem & Driver, 1983). If we conduct the surveys in larger scale areas, 

which do not correspond to linear settings, more data is required, and thus more 

participants should be recruited. On-site evaluation generally entails a high cost, and it 
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is difficult to obtain many respondents. Recruiting a sufficient number of participants is 

a problem that needs to be considered in the future. 

  

8.4.2. Technical issues 

  Point data of photo-taking location, and line data of photo-shooting distance from an 

observer’s standing location to a visual object’s location, were extracted as spatial logs 

of participants’ visual interest: the former represents the observer’s standing location 

where his or her visual interest generates and the latter indicates the observer’s sight 

line to the visual object. These techniques are certainly innovative in scenic preference 

assessment studies and spatial information studies. However, it is still insufficient to 

represent perceptual scenes as spatial features, because visitors often recognize a 

spatial extension of landscape during their personal evaluation. The collection and 

visualization of visitor’s fields of vision is a further challenge: a polygon feature may 

be suitable to represent visual field as spatial data. If possible, the comparison and 

evaluation of three basic spatial representations of visual interestuch as PVI, LVI and 

polygon data of visual fields would be a significant step towards clarifying the 

advantages and disadvantages of each in technique of spatial analysis and visualization. 

3D geo-visualization of these data would also be a valuable area for advancing these 

techniques. Some photo-shooting distances oriented toward an oblique direction were 

necessarily transformed into the horizontal direction. Visualizing and analyzing the 

LVI and visual field polygons as 3D spatial objects in a 3D environment would enable 

more detail evaluation considering actual visitor behavior.  
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  Finally, this thesis did not cover some fundamental aspects of scenic/landscape 

perception of visitors, in order to remain focused on the development of GIS-based 

analysis and modeling of visitors’ on-site visual experiences. The quantification of 

visual distance in perceived scenes is an unprecedented area of study, and clarifying the 

relationship between visual distance and other indicators, such as aesthetic quality of 

the landscape, will contribute to a deeper understanding of visitors’ on-site experiences. 

Image analysis of photographs may be also effective in quantifying the visual 

components of the photographed scenes, and analyzing the relationship between 

various perceived and physical aspects of the landscape. 

 Thus, despite presenting various new methods for perception-based visual resource 

assessment and modeling, and proving the effectiveness of these methods, some 

problems have been left unresolved. Future work is required to improve aspects of the 

research, and to advance and extend the research approach by applying it to various 

settings and different purposes. It is believed that these efforts will accomplish 

widespread knowledge and acceptance of these techniques, and permit more sensible 

recreation planning and management that reflects visitors’ preference for visual 

resources. 
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