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Abstract 

Supercritical Water Reactor (SCWR) is one of the next generation (Generation-IV) 

reactor concept. Supercritical water is being considered as a coolant in SCWRs on 

account of its potential to offer high thermal efficiency, compact size, elimination of 

steam generator, separator, dryer and recirculation system making it economically 

competitive. Several SCWR designs with forced circulation of primary coolant have been 

proposed in the past, however most of Generation-IV designs are generally not expected 

to be available for commercial construction before 2030. Supercritical water natural 

circulation loops are capable of generating density gradients comparable to two-phase 

natural circulation loops. Hence, natural circulation is also considered as a viable option 

of heat removal in SCWRs. Safety is a key issue in the design of advanced reactors and 

considerable emphasis is given on passive safety. Cooling a reactor at full power with 

natural instead of forced circulation is generally considered as an enhancement of passive 

safety. Hence, the behavior of steady state natural circulation with supercritical fluids is of 

interest for a number of new reactor systems. Besides stable steady state, operation with 

unstable natural circulation is undesirable. Since supercritical water (SCW) experiences 

steep change in its thermodynamic and transport properties (particularly density) near the 

pseudo-critical temperature region, supercritical water reactors may be susceptible to 
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density wave instability. Due to drastic change in SCW properties, the heat transfer 

behavior is also quite different from sub-critical convective heat transfer. 

The experimental studies on natural circulation with supercritical fluids is very limitedly 

available in open literature and details of stability of supercritical water natural circulation 

have not been revealed yet. Elucidation of such phenomenon and development of 

numerical codes are required. Hence, to gain an insight in to the steady state, stability and 

heat transfer behavior of natural circulation systems operating with supercritical fluids a 

test facility named Supercritical Pressure Natural Circulation Loop (SPNCL) has been set 

up at Bhabha Atomic Research Centre (BARC), India.  In this research work, steady 

state and stability experiments were conducted with supercritical carbon dioxide as well 

as supercritical water in SPNCL. Two independent stability codes, one based on linear 

analysis (SUCLIN) and other based on non-linear analysis (NOLSTA) were developed 

and used to simulate the steady state and stability behavior of SPNCL and other test 

facilities available in literature for both open and closed loop boundary conditions. The 

studies revealed that instability was observed for a very narrow window of power near the 

pseudo-critical temperature range of operation. Experimental instability data could only 

be simulated with the developed codes by including pipe wall thermal capacitance models 

which is very important for stability analysis of natural circulation at supercritical 
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conditions (for both open and closed loop boundary conditions). 
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Chapter 1 
 

Introduction 
 
 
 

1.1 Background 

Nuclear energy is the only non-greenhouse-gas emitting power source known to mankind 

which is possible to be deployed in large-scale. It has the potential to replace fossil fuels 

which are depleting day by day to meet the world energy demand and to reduce global 

warming.  

 

To further enhance economic competitiveness and safety of existing nuclear reactors i.e. 

Boiling Water Reactors (BWRs), Pressurized water reactors (PWRs), Pressurized Heavy 

Water Reactors (PHWRs)/ Canadian Deuterium Uranium reactor (CANDU), Voda Voda 

Energo Reactors (VVERs), RBMK etc., several advanced designs of Nuclear Power 

Plants (NPPs) are being considered for future deployment.  A group of 10 countries 

established the Generation-IV International Forum (GIF) to examine new design concepts 

in year 2000. Generation IV reactors (Gen IV) are a set of theoretical nuclear reactor 

designs currently being researched. Most of these designs are generally not expected to 

be available for commercial construction before 2030. Current reactors in operation 

around the world are generally considered second- or third-generation systems, with most 

of the first-generation systems having been retired some time ago. Evolution of nuclear 

reactors over various generations is summarized in figure 1-1. Among the large number 

of potential designs considered by GIF, six prominent concepts were selected by 
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participating countries to collaborate in relevant R&D work towards the design. The 

same are as follows –  

 

Three of the design concepts are thermal neutron reactors  

(a) Very-high-temperature reactor (VHTR) 

(b) Molten-salt reactor (MSR) 

(c) Supercritical-water-cooled reactor (SCWR) 

Rest three of the design concepts are Fast neutron reactors  

(d) Gas-cooled fast reactor (GFR) 

(e) Sodium-cooled fast reactor (SFR) 

(f) Lead-cooled fast reactor (LFR) 

 

Among the six selected concept, Supercritical Water Reactor (SCWR) is one such 

concept which operates in the thermodynamic supercritical regime and can enhance the 

efficiency by as much as 50% compared to the current generation of NPPs. SCWR is the 

only concept that has directly evolved from the current generation of water-cooled NPPs. 

The term ‘supercritical fluid’ means any fluid at a temperature and pressure above its 

critical point (critical point for water indicated on T-S diagram in figure 1-2), where 

distinct liquid and gas phases don’t exist. Supercritical fluid can effuse through solids like 

gas and dissolve substances like a liquid. Carbon dioxide and water are most commonly 

used supercritical fluids in industry. 

The critical point for water is- 

Critical Temperature: 373.946 oC, Critical Pressure: 22.064 MPa 
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The critical point for carbon dioxide is- 

Critical Temperature: 31.04 oC, Critical Pressure: 7.38 MPa 

 

Research on supercritical water cooled reactors began in the late 1950s and continued till 

the early 1960’s in the U.S. With the development and large-scale deployment of Light 

Water Reactors (LWRs) i.e. Boiling Water Reactors (BWRs) and Pressurized Water 

Reactors (PWRs), these projects were terminated although it was recognized that the 

SCWR designs could be economically more competitive. However, the realization in the 

1990’s that the improvement of economic competitiveness of LWRs over fossil fuelled 

power plants (FPPs) has reached a state of saturation triggered the development of 

economically competitive new reactor designs. This has revived the interest in SCWRs 

since the late 1990’s. In general, the total thermal efficiency of a modern fossil fuelled 

thermal power plant with subcritical steam conditions is about 36–38%; with supercritical 

parameters about 45-50%. The highest total thermal efficiency achieved in today’s 

thermal power industry is about 56–58% with the combined cycle of gas turbine – steam 

turbine. To improve the cycle efficiency to 43-48%, SCW NPPs would operate at higher 

operating parameters (i.e., pressures about 25 MPa and outlet temperatures up to 500°C - 

625°C) than the current NPPs.  Figure 1-2 compares the operating temperature-pressure 

conditions of current water-cooled NPPs (i.e. BWRs & PWRs) with SCWR. The major 

advantages of SCWRs are – 

 High thermal efficiency of the order of 43 – 48 % as compared to 30 - 34% for 

LWR’s/ Pressurized Heavy Water Reactors (PHWR’s). 
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 Compact and simplified design. The supercritical steam can be directly sent to the 

turbine eliminating steam generator, separators, dryers and recirculation pumps. 

 For same amount of thermal power the mass flow rate requirement is 1/4th that of 

BWR’s due to zero recirculation flow, reducing the number, capacity and size of 

required Primary Heat Transport (PHT) pumps.  

 Elimination of Critical Heat Flux (CHF) phenomenon. CHF is a phenomenon 

where a heater/ fuel clad surface gets covered with a layer of vapors resulting in 

sudden and drastic deterioration of heat transfer resulting in excursion of heater 

wall temperature even beyond the melting point temperature of the heating 

element. Although, deterioration of heat transfer has been reported in literature for 

higher heat fluxes and lower mass fluxes of supercritical fluids, but it is very mild 

and gradual. 

 Smaller containment due to lesser inventory as compared to BWRs. 

 The balance of plant equipments are available from already operating 

Supercritical Fossil-fueled power plants and only inside core materials for 

SCWRs need to be developed. 

 

1.2 Classification of SCWRs 

Several new designs of SCWRs have already been proposed. SCWRs can be categorized 

according to the following bases: (a) neutron energy, (b) steam cycle, (c) construction 

type, (d) the circulation mode and (e) the coolant used. 

  

 



5 
 

 

1.2.1 Classification based on neutron energy 

Based on neutron energy, nuclear reactors are generally classified as thermal and fast 

reactors. Both thermal neutron reactors as well as fast reactors have been proposed with 

supercritical water (SCW) as the coolant. However, most SCWRs studied are thermal 

neutron reactors and the design parameters of various thermal neutron SCWRs i.e. High 

Performance Light Water Reactor (HPLWR), B-500SKDI, United States Supercritical 

Water Reactor (US SCWR), Japanese Supercritical Water Reactor (JSCWR), Canadian 

SCWR etc. are compared in Table 1-1.  

 

Table 1-1: A Comparison of thermal neutron SCWR design parameters 
 
Parameters 

 
Unit Canadian 

SCWR 
CANDUal-X21 

Canadian 
SCWR 

CANDU-X NC2

B-500SKDI3 HPLWR4 JSCWR5 US 
SCWR6 

Country – Canada Canada Russia EU Japan US 

Reactor type – PT PT Integral RPV RPV  RPV 

     spectrum – Thermal Thermal Thermal Thermal Thermal Thermal

Power 
thermal 

MW 2540 930 1350 2300 4039 3575 

linear 
max/ave 

kW/m   - 35/14, 8, 4.5
 

-/13.5 39/19.2

Thermal eff. % 48 40 38.1 43.5 42.7 45 

Pressure MPa 25 25 23.6 25 25 25 

Tin coolant ºC 350 350 365 280 290 280 

Tout coolant ºC 625 430 381.1 500 510 500 

Flow rate kg/s 1320 820 2470 1179 2105 1843 

Active core 
height 

m 5.0 - - 4.2 4.2 4.27 

Equiv. core 
diameter 

m ~5.5 - - 3.8 3.34 3.93 

Fuel – Pu-Th - UO2 UO2 UO2 UO2 

Cladding 
material 

– SS - SS/ Zr alloy 316SS 310SS SS 

Drod mm 12.4 
 

- 
 

9.1 8 7 10.2 

Pitch mm vary - - 9.44  11.2 

Tmax cladding ºC 850 - 425 620 700  

Moderator – D2O - - H2O H2O H2O 
1,2 Bushby et al. (2000); 3 Silin et al. (1993); 4 Heusener (2000); 5 Ishiwatari et al.(2009); 6 Zhao et al. (2005) 
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The Supercritical Fast Reactor (SCFR) system has been studied by the Babcock and 

Wilcox Company in the 1960’s. It may be noted that breeding is possible with SCW 

cooling in a tight-lattice core (Oka et al. (1994)). An example is the 1100 MWe SCFR-D 

studied by Oka et al. (1994) and Kitoh et al. (2000). They also showed that the efficiency 

of the SCFR with a core outlet temperature of 431 oC at 25 MPa matches that of a FPP 

operating at 24.2 MPa and 566 oC basically due to the low boiler efficiency in FPPs. 

Besides improving the thermal efficiency, the design also results in significant reduction 

in the size of the reactor pressure vessel and containment vessel compared to a BWR. 

Table 1-2 compares the design parameters of various supercritical fast reactors. 

 
Table 1-2: A Comparison of supercritical fast neutron reactors design parameters 
 

Parameter Unit SCFR1 B&W2 SCFR-D3,1 SCFR-H4,1 
Country - Japan Japan Japan Japan 
Power MWe 1245 980 1508 1728 

Th. Power MWth 3000 2326 3640 3893 
Power density MW/m3  447 199 144 

Efficiency % 41.5 42.2 41.5 44.4 
TCI  

oC 310 - 310 280 
TCO  oC 431 538 431 526 

Core flow kg/s 2048 3214 2485 1694 
Pressure MPa 25.0 25.3 25.0 25.0 

Fuel material MOX MOX MOX MOX MOX 
Fuel rod o.d. mm 8.8 5.84 8.8 8.8 
Linear Power  kW/m 40 54.8 41 38.5 

Fuel clad 
material 

SS SS 19-9DL SS SS Ni-
alloy/Inconel 

Burnup MWd/kg 77.7 48 77 45 
Clad surface 
temperature  

- - - 
 

448 - 

Breeding ratio - - 1.11 - - 
1 Kitoh, Koshizuka and Oka (2001); 2 Oka (2000); 3 Oka et al. (1994); 4 Oka and Koshizuka (2000) 

 

1.2.2 Classification based on steam cycle 

Based on the steam cycle employed, the SCWRs can be categorized into direct cycle and 

indirect cycle types. Besides these two, dual cycle SCWRs have also been studied. 
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Direct cycle SCWRs: These are also known as Once-Through SCWRs. Since the 

supercritical steam can be directly sent to the turbine therefore the steam generator, steam 

separator, dryer and recirculation system of a direct cycle BWR are not required (Figure 

1-3a). Hence the direct cycle SCWR is economically more competitive than the indirect 

cycle concept. This is also the most popular SCWR concept. To our knowledge, the water 

moderated and supercritical steam cooled SCWR proposed by the Westinghouse 

Corporation in the late 1950’s is the earliest concept in this category. Typical examples of 

direct cycle SCWRs are the high performance light water reactor (HPLWR) (being 

pursued by the European Union), Japanese Supercritical Water Reactor (JSCWR), United 

States Supercritical Water Reactor (US-SCWR). The reactor pressure vessel and control 

rods of a direct cycle SCWR resembles that of a PWR while the containment and 

emergency core cooling systems are similar to a BWR with the balance of plant similar to 

that of a Fossil fueled Power Plant (FPP).  

Indirect cycle SCWRs: The indirect cycle SCWR has a primary system with steam 

generators and a secondary coolant that passes through the turbine (Figure 1-3b). The 

primary system is similar to that in a PWR and the secondary and the balance of plant is 

similar to the FPP. Typical example is natural circulation based CANada Deuterium 

Uranium pressure tube type reactor called CANDU-X NC. 

 

Dual cycle SCWRs: Dual cycle SCWRs generate part of their power in the direct cycle 

mode and the rest in the indirect cycle mode. In this concept, the supercritical fluid from 

the core first goes through a Very High Pressure (VHP) turbine and the exhaust from the 
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turbine is the heat source for an indirect cycle plant similar to the conventional PWRs or 

PHWRs (Figure 1-3c). Typical example is CANDUal-X2. 

 

1.2.3 Classification based on the construction type 

Based on the construction type, SCWRs can be classified as  

a) Integral type 

b) Pressure vessel type (RPV) and  

c) Pressure tube type (PT) 

 

Integral type: In this type, the entire primary system is encased in a vessel. A typical 

example is the 500 MWe light water integral reactor B-500SKDI design (Figure 1-4a) 

with natural circulation of the coolant proposed by Silin et al. (1993). 

 

Pressure vessel type: Here the entire core is encased in a pressure vessel with the inlet 

and outlet piping connecting it with the rest of the system (Figure 1-4b). Reactor pressure 

vessel design is similar to that of a PWR with the subcritical water entering it and 

supercritical water leaving the vessel. Typical examples are HPLWR, JSCWR, US-

SCWR and the SCFR-D. 

 

Pressure tube type SCWRs: In this design, the core is made up of pressure tubes similar 

to a FPP (Figure 1-4c). The SC-CANDU designs being pursued by AECL conform to this 

type i.e.  CANDUal-X2, CANDU-X NC. 

 



9 
 

1.2.4: Classification based on the circulation mode 

Based on the coolant circulation mode, SCWRs can be classified as natural and forced 

circulation reactors. 

 

Natural circulation SCWRs: The density change in SCWRs is comparable to that in 

BWRs. Further, the thermal expansion coefficient of SCW is significantly large in the 

near critical region, natural circulation SCWRs operate best in this region. Typical 

examples of NC concepts are the CANDU-X NC and the Russian BF-500SKDI. 

 

Forced circulation SCWRs: In this concept, pumps are used to circulate the primary 

coolant. Typical examples of forced circulation SCWRs are HPLWR, JSCWR, US-

SCWR. 

 

To our knowledge, the only other fluid proposed to be used in Supercritical fluid reactor 

is carbon dioxide, Tom and Hauptmann, 1979 and Driscoll and Hejzlar, 2004. The main 

advantage of using supercritical CO2 is that the design pressure is significantly low. By 

locating the pumps in the single-phase subcritical region, significant saving in pumping 

cost is obtained compared to gas cooled reactors employing CO2. 

 

1.3 Thermal hydraulic design challenges 

Having reviewed the various proposed design concepts let us see some technological 

challenges in SCWR design. There are many challenges in design of SCWRs like 

materials to be used inside the core i.e. material of fuel clad and materials for  pressure 

tubes & insulating liners (in pressure tube type of designs). The pressure tube type of 
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design can be considered to be of direct relevance to Indian nuclear programme in view 

of the mastery achieved over this technology in several decades. However, here we will 

only restrict to thermal hydraulic challenges in design of SCWRs as given below. 

 

1.3.1 Flow stability 

Due to supercritical operating conditions in SCWR, thermodynamic and transport 

properties of water change significantly as its temperature approaches the pseudo-critical 

temperature, where distinction between liquid and vapor phases disappear. The heat 

capacity increase dramatically, however thermal conductivity, density, and viscosity 

reduce significantly near the pseudo-critical temperature at constant pressure as shown in 

figure 1-5a & 1-5b. Pseudo-critical temperature is the temperature corresponding to 

maximum specific heat of the supercritical fluid at a given pressure as shown in figure 1-

5a. However, the specific heat again reduces beyond pseudo-critical temperature. 

 

Some of these changes are similar in magnitude to those encountered during boiling with 

phase change. It may be noted that there is no phase transition i.e. two phases don’t co-

exist as fluid temperature crosses the pseudo-critical point. It means the ‘liquid’ like fluid 

gradually changes over a range of temperature near pseudo-critical temperature in to a 

‘gas’ like fluid. 

Single phase sub-critical natural circulation (where Boussinesq approximation is used for 

calculating buoyancy force term in momentum equation) had been the subject of several 

previous investigations. For example, Keller (1966) theoretically studied a rectangular 

natural circulation loop with point heat source and sink located at the center of the bottom 
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and top horizontal sections respectively. He predicted unidirectional periodic flow. 

Welander (1967) proposed a mechanism for the instability based on the growth of small 

amplitude oscillations. Chen (1985) showed that the aspect ratio (height/ width) plays an 

important role on the stability of a rectangular loop. In Chen’s work, the loop considered 

had the entire bottom horizontal pipe heated and the entire top horizontal pipe cooled. His 

predictions showed that the loop became unstable as the aspect ratio approached unity. 

Theoretical predictions using the linear analysis by Vijayan et al. (1992) showed that the 

unstable region shifted to higher Grashof numbers by increasing the length-to-diameter 

ratio (Lt/D) of rectangular loops. These predictions were made for a rectangular loop with 

heater and cooler centrally located at the bottom and top horizontal sections respectively. 

Experiments by Creveling et al. (1975) showed for the first time the occurrence of the 

instability for single phase subcritical ordinary fluids albeit in a toroidal loop. The 

mechanism for the instability was observed to be that proposed by Welander. Subsequent 

experimental work by Gorman et al. (1986) in the toroidal loop of Creveling observed 

three different chaotic flow regimes: a globally chaotic regime whose essential features 

can be described by a one-dimensional cusp-shaped map, a subcritical regime in which 

the flow can be either chaotic or steady, and a transient regime in which the flow remains 

chaotic for a time and then decays into a steady flow. The earliest experimental work in a 

rectangular loop with vertical heater and cooler by Holman and Boggs (1960) did not 

study the instability. Subsequent studies in rectangular loops by Huang–Zelaya (1988), 

Misale et al. (1991), Bernier– Baliga (1992) and Ho et al. (1997) also concentrated on the 

steady state behavior. Vijayan et al. (1992) observed instability for the first time in a 

rectangular loop while experimenting with uniform diameter loops. The observed 
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instability behavior involved repetitive flow reversals and the nature of the oscillatory 

behavior could be numerically simulated Vijayan et al. (1995) with a fine nodalization. 

With a low diffusion scheme Ambrosini and Ferreri (2003) could predict the instability 

with a much coarser nodalization. Vijayan et al. (1992) also observed a conditionally 

stable (hysteresis) regime in which the flow can be steady or oscillatory depending on the 

heat addition path followed in the experiment. However, instability studies on subcritical 

single phase flow is of little importance in a reactor scenario, because no instability is 

observed during single phase forced circulation of coolant at reactor full power operation 

or even during reactor shutdown when most water cooled reactors use single phase 

natural circulation for decay heat removal. This is due to larger frictional resistance 

owing to longer lengths of the reactor pipes. 

 

However similar to BWR’s, SCWR core will experience large density changes across the 

core i.e. 770 kg/m3 to 90 kg/m3 and therefore may be susceptible to flow instabilities 

similar those observed in BWRs (Boure et al., 1973 & Van Bragt & Van Der Hagen, 

1998) such as density wave instability and coupled neutronic-thermal hydraulic 

instability. State of art reviews on thermal-hydraulic instabilities that may occur in 

boiling two phase flow systems are provided in Bergles, 1976, Ishii 1976, Fukuda & 

Kobori, 1979 and Yadigaroglu, 1978. The reviews suggest following types of instabilities 

possible in boiling two phase systems- 

 

i) Instability arising from steady state characteristics of the system- 

a) Flow excursion or Ledinegg type instability 
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b) Flow pattern transition, Geysering, flashing etc. 

ii) Instability arising from dynamic nature of the system- 

a) Density wave instability 

b) Acoustic instability 

c) Thermal oscillations 

However, the most commonly encountered instability in BWR is coupled neutronic 

density wave instability which is also expected in SCWRs. Some authors have also 

predicted ledinegg type of instability in SCWRs but the same is obtained at very low core 

inlet temperatures which are very much lower and far from operating conditions 

envisaged in SCWR channel (Ambrosini (2007); Chatoorgoon (2013). 

As discussed earlier, supercritical water natural circulation loops are capable of 

generating density gradients comparable to two-phase natural circulation loops. Hence, 

natural circulation is also considered as a viable option of heat removal in supercritical 

water cooled reactors (Silin et al., 1993; Bushby et al., 2000). Safety is a key issue in the 

design of advanced reactors and considerable emphasis is given on passive safety. 

Cooling a reactor at full power with natural instead of forced circulation is generally 

considered as enhancement of passive safety. Natural circulation can also be used for 

passive decay heat removal after reactor shutdown. Hence, the behaviour of steady state 

natural circulation with supercritical fluids is of interest for a number of new reactor 

systems. Besides stable steady state, operation with unstable flow is undesirable as it can 

lead to power oscillations in natural circulation or forced circulation based SCWRs. 

However, natural circulation mode of cooling is more prone to instability as the energy 

equation and driving force term in momentum equation are strongly coupled. Moreover, 
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it can also cause mechanical vibration of components and failure of control systems. 

Since supercritical water or any other supercritical fluid experiences drastic change in its 

thermo-physical properties (e.g. density) in the pseudo-critical region, supercritical water 

reactors may be susceptible to density wave instability. Frequency domain linear stability 

analysis of supercritical water cooled reactors has been done by Yi et al. (2004) and Tian 

et al. (2012). Hou et al. (2011) did a linear and non-linear analysis of parallel channel 

within the Supercritical Water Reactor (SCWR) core and compared the results.  

The literature reveals only very few experimental studies on natural circulation with 

supercritical fluids. Harden and Boggs et al. (1964) conducted studies on Freon loop near 

critical region. High and low frequency oscillations were observed when bulk fluid 

temperature approached pseudo-critical temperature. Adelt and Mikielewicz (1981) 

performed studies on 4m high loop with carbon dioxide (CO2). As the fluid was heated 

through pseudo-critical point, pressure oscillations were observed for a particular test but 

the study mainly focused upon heat transfer rather than stability. Lomperski et al. (2004) 

have reported experiments in a two meter high natural circulation loop with carbon 

dioxide at supercritical pressure. The loop was operated in a base case configuration that 

maximized flow rates and in a second configuration having an orifice in the hot leg. No 

flow instabilities were observed in these tests as the fluid was heated through 

thermodynamic pseudo-critical point. Yoshikawa et al. (2005) have studied the 

performance of a closed natural circulation loop operating with supercritical CO2. The 

performance of the loop was determined by measuring flow velocities of CO2 which 

could be correlated to Grashof number, Prandtl number and dimensionless effective 

density difference. No flow instability has been reported during the experiments. In a 



15 
 

very recent study, T’Joen and Rhode (2012) conducted stability experiments with 

artificial neutronic feedback in scaled natural circulation driven HPLWR (High 

Performance Light Water Reactor) facility named Delight maintaining the inlet 

temperature constant (i.e. with open loop boundary conditions). They used Freon R23 at 

5.7 MPa as the scaling fluid. The decay ratios and frequencies of the riser inlet 

temperature oscillations were measured. They found that for a single inlet temperature 

the system undergoes two transitions as the power is increased. At low power the system 

is stable and becomes unstable as the power is increased, but on further increasing the 

power the system stabilizes. They also found a threshold inlet temperature above which 

no instability is observed. Xiong et al. (2012) have carried out experiments on flow 

instability in two parallel channels with supercritical water. They did a parametric study 

which shows that flow becomes more stable by increasing the pressure or decreasing the 

inlet temperature in the range of experiments conducted. 

Various researchers have investigated theoretically the stability in supercritical fluid 

natural circulation loops and heated channels. Zuber (1966) did an extensive review and 

the first in-depth analytical study of the various instability modes of supercritical fluid 

flow. He considered flow in a straight pipe in a once through system and concluded that 

supercritical flow instability would be similar to two-phase flow instability, possessing 

both the excursive and oscillatory types. Literature reveals linear approach which is 

mostly done in frequency domain and non-linear approach which is carried out in time 

domain for studying of stability of natural circulation systems/ heated channels operating 

with supercritical fluids. Chatoorgoon (2001) considered a constant area rectangular 

natural circulation open loop with horizontal heater & horizontal cooler and did the 
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steady state and non-linear stability predictions with supercritical water as the working 

fluid. The threshold of instability has been judged to be the peak of steady-state mass 

flow rate versus power curve. Jain and Corradini (2006) did the linear stability analysis of 

supercritical water natural circulation loop. Their results suggest that the instability 

behaviour of supercritical natural circulation loop is not strictly related to the peak of the 

steady-state flow rate versus power curve. Ambrosini and Sharabi (2008) has developed 

non-dimensional stability parameters for supercritical fluids which are independent of 

system pressure and operating fluid and are similar to that used for stability analysis of 

two phase systems. They also generated stability maps for heated channel in term of non-

dimensional parameters using linear analysis as well as nonlinear system code 

RELAP5/MOD3.3 (Scientech, 1999) which were found to be in good agreement. Ortega 

Gomez et al. (2008) studied a uniformly heated channel with supercritical water using 

linear as well as non-linear codes. They also developed a set of non-dimensional stability 

parameters similar to those of two phase systems but are not exactly same as those of 

Ambrosini’s.  A few investigations were also conducted with supercritical CO2 (which 

can be considered as good simulant fluid for water) using one dimensional non-linear 

stability codes (Chatoorgoon et al., 2005, Jain and Rizwan-uddin, 2008). Chen et al. 

(2010) numerically studied the effect of heat transfer on stability and transitions of 

supercritical CO2 in a rectangular natural circulation loop using a two-dimensional model. 

They identified a second “pseudo-critical temperature”, around 375 K for supercritical 

CO2. Fluid-to-fluid modelling aspects have also been studied by Marcel et al. (2009) and 

found that a 77.5%/22.5% mixture of refrigerants R-32 & R-125 simulates the 

supercritical water (SCW) conditions in HPLWR. They also found that supercritical CO2 
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cannot accurately simulate the HPLWR conditions with water. Sharabi et al. (2008) have 

used 3D-CFD code with different turbulence models for predicting unstable behaviour of 

heated channel with water at supercritical pressure which was also previously addressed 

by Ambrosini & Sharabi (2006) using both linear and non-linear codes. They found that 

details in the transient radial velocity distribution provided by CFD code does not 

significantly alter the prediction of the threshold of instability as compared to one-

dimensional codes, thereby asserting the adequacy of one dimensional codes in predicting 

instability threshold at supercritical operating conditions.  

 

1.3.2 Heat transfer  

Moreover heat transfer characteristics of supercritical fluids under natural circulation 

conditions is also important. Since supercritical water (SCW) or any other supercritical 

fluid experiences drastic change in its thermodynamic and transport properties near the 

pseudo-critical temperature, the heat transfer behaviour is quite different from sub-critical 

convective heat transfer. Dramatic reduction in density near the pseudo-critical 

temperature results in strong buoyancy and acceleration effects across the flow cross-

section causing unusual flow and heat transfer behaviour. Hence normal heat transfer 

correlations developed for turbulent flow of conventional fluids with small or moderate 

property variations like Dittus-Boelter (1930) correlation may not be applicable at 

supercritical conditions. 

Several researchers in the past have carried out experimental investigation on forced 

convective heat transfer for SCW (Yamagata et al., 1972; Swenson et al., 1965) as well 

as supercritical carbon dioxide (Jackson et al., 2003; Fewster and Jackson, 2004). 
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Exhaustive literature search carried out for supercritical water and supercritical carbon 

dioxide (Pioro and Duffey, 2005; Duffey and Pioro, 2005) confirmed three heat transfer 

modes in supercritical pressure fluids: (1) so-called normal heat transfer, (2) improved 

heat transfer, characterized by higher-than-expected heat transfer coefficient (HTC) 

values than in the normal heat transfer regime and (3) deteriorated heat transfer, 

characterized by lower-than-expected HTC values than in the normal heat transfer regime. 

The expected HTC in the normal heat transfer regime is that calculated by Dittus-Boelter 

(1930) correlation. Improved heat transfer is observed at low heat fluxes & higher mass 

fluxes and deteriorated heat transfer is observed at higher heat fluxes & lower mass 

fluxes. In literature, there is still no unique definition for the onset of heat transfer 

deterioration. However, reduction in heat transfer coefficient is mild and gradual as 

compared to sudden and drastic increase in wall temperature (or sharp reduction in heat 

transfer coefficient) associated with boiling crisis at sub-critical pressure conditions. The 

difference of heating and cooling heat transfer coefficient has been studied theoretically 

by Dang and Hihara (2010) for laminar flow of supercritical carbon dioxide in miniature 

tubes. 

 
1.4. Objectives of the study 
 
The experimental studies on natural circulation with supercritical fluids are very limitedly 

available in open literature and details of stability of supercritical water natural 

circulation loop have not been revealed yet. Elucidation of such phenomenon and 

development of numerical codes are required. Hence, a test facility called Supercritical 

Pressure Natural Circulation Loop (SPNCL) has been set up at Bhabha Atomic Research 

Centre (BARC), India with the following objectives- 
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i) To gain an insight in to steady state and stability behavior of natural circulation 

systems operating with supercritical fluids. 

ii) To develop in-house computer codes for investigating steady state and stability 

behavior of natural circulation systems operating with supercritical fluids. 

iii) To validate in-house developed computer codes with the experimental data 

generated in SPNCL and that available from open literature. 

iv) To generate experimental heat transfer data for natural circulation with 

supercritical fluids and comparing it with various heat transfer correlations 

available in literature (correlations are mostly available for forced circulation 

conditions).   

 

1.5. Organization of the thesis 

The thesis has been divided in to seven chapters– 

Chapter 1 describes the advantages of Supercritical Water Reactors (SCWRs), their 

classifications and various thermal hydraulic challenges in the design of SCWRs. 

Considering the challenges, the objectives of the current research work have been defined.  

 

Chapter 2 describes the formulations of the linear stability code (SUCLIN) developed for 

steady state and stability analysis of an open supercritical water natural circulation loop 

in frequency domain. The code has been qualitatively assessed against published results 

and has been extensively used for carrying out a detailed parametric study on steady state 

and stability behaviour of an open SPNCL. The peak of the steady state mass flow rate 

versus power curve for uniform diameter SPNCL is obtained at heater outlet temperature 

near the pseudo-critical value. The larger diameter loops are found to be more unstable in 
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terms of heater power compared to small diameter loops for supercritical water natural 

circulation. Beyond a specified value of heater inlet temperature no instability is observed 

and its value decreases with increase in loop diameter. These observations suggest that 

natural circulation systems operating with supercritical water can be designed for lower 

heater inlet temperatures and still not encounter instability whatever may be the power. 

Such systems can also take advantage of the large jump in enthalpy occurring across the 

pseudo-critical point.  

 

Chapter 3 describes the formulations of the non-linear stability code (NOLSTA) 

developed for steady state and stability analysis of an open supercritical water natural 

circulation loop in time domain. The stability results generated by NOLSTA code has 

been compared with stability results obtained using linear code (SUCLIN) for open 

SPNCL and two codes are found to agree qualitatively. BARC also participated in the 

blind benchmark exercise coordinated by the University of Pisa in the frame of the IAEA 

Coordinated Research Programme (CRP) on Heat Transfer Behaviour and Thermo-

hydraulics Codes Testing for SCWR. All the codes used by other participants including 

NOLSTA and SUCLIN qualitatively confirmed the following findings: Increase in outlet 

throttling results in increase in unstable zone of heated channels. Both oscillatory as well 

as excursive instabilities are possible in supercritical flows, the latter occurring at 

relatively low inlet temperature, in regions that would be hopefully of little interest to 

nuclear reactor operation. The general shape of the stability boundary in the NTPC (Trans-

Pseudo-Critical number) - NSPC (Sub- Pseudo-Critical number) plane is same as predicted 

by all the codes. 
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Chapter 4 describes steady state natural circulation experiments conducted with carbon 

dioxide in Supercritical Pressure Natural Circulation Loop (SPNCL). NOLSTA code 

predicts the steady state natural circulation mass flow rates of closed SPNCL appreciably 

well (+ 15%). For closed loop, the steady state flow behaviour of loop is found to be very 

sensitive to the empirical heat transfer correlation used for cooler primary side. The 

correlations evaluating thermal conductivity at wall temperatures/ pseudo-critical 

temperature for bulk fluid temperature exceeding the pseudo-critical temperature give a 

smoother reduction in flow as heater inlet temperature crosses the pseudo-critical 

temperature similar to that observed in the experiments. 

 

 

Chapter 5 describes instability experiments conducted in SPNCL with carbon dioxide as 

working fluid. During experimentation with carbon dioxide, instability has been observed 

for a very narrow window of power near the pseudo-critical temperature for Horizontal 

Heater Horizontal Cooler (HHHC) orientation only and that too at lower secondary side 

chilled water flow rate i.e. 10-15 lpm. The predictions of NOLSTA code were only 

qualitatively matching with experimental instability data. However, consideration of pipe 

wall thermal capacitance predicts SPNCL to be completely stable, but reducing the 

thermal capacitance by 18% and neglecting the local losses the code is able to simulate 

limit cycle oscillations without flow reversal as observed during experiments. Modelling 

of thermal capacitance of pipe walls is strongly recommended for stability analysis of 

natural circulation at supercritical conditions (both open and closed loop boundary 

conditions) unlike two phase natural circulation loops.   
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Chapter 6 covers the steady state flow experiments conducted with supercritical water in 

SPNCL and same were compared with NOLSTA code predictions which are found to be 

in good agreement. During experimentation with water, instability was again observed 

for a very narrow window of power for HHHC orientation for operating pressure range of 

22.1 to 22.9 MPa. However at, higher pressures no instability is observed. The reason for 

the same is higher thermal capacitance of fluid near pseudo-critical temperature at low 

pressures which cause enthalpy perturbations to generate very small fluid temperature 

perturbations only and hence fluid interaction with pipe wall or damping effect of wall 

becomes almost negligible. NOLSTA code along with pipe wall thermal capacitance 

model simulates the experimental instability data appreciably well. Scaling fluid for 

instability studies of supercritical fluids should take care of the ratio of thermal 

capacitance of the fluid and the wall near pseudo-critical temperature. 

 

Chapter 7 summarizes the major findings and conclusions of the research work. 
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   Figure 1-1: Evolution chart of nuclear reactors over various generations 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Comparison of the operating temperature-pressure conditions of currently 

operating BWRs / PWRs with SCWR 
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Figure1-3: Categorization of SCWRs based on the steam cycle employed 
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Figure 1-4a: The BF500 SKDI integral reactor 

 

 

 

 

 

 

 

 

Figure 1-4b: Pressure vessel type SCWR          Figure 1-4c: Pressure tube type SCWR 
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Figure 1-5: Thermodynamic and transport properties of supercritical water    
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Chapter 2 
 

Development of steady state and linear stability model for natural 
circulation with supercritical fluids  

 
 
 
2.1 Introduction 

Literature reveals linear and non-linear approaches for studying stability of natural circulation 

(NC) systems operating with supercritical fluids. In the linear approach the time-dependent 

conservation equations of mass, momentum and energy are solved mostly in frequency domain. 

The non-linear equations are perturbed over the steady state operating point and linearized 

assuming the perturbation to be infinitesimally small. The linear stability analysis only predicts 

the threshold of instability but cannot predict the limit cycle oscillations; however, the approach 

is preferred considering the valuable reduction in computational time for generating a stability 

map. The non-linear approach solves the transient conservation equations in time domain. 

Usually, this approach is very time consuming, since the allowable time step may be very small 

and large number of cases need to be run to generate a stability map. Several researchers have 

developed linear stability codes for stability analysis of natural circulation systems/ heated 

channels operating with supercritical fluids (see Jain and Corradini (2006); Ambrosini and 

Sharabi (2008); Ortega Gomez et al. (2008)), however the complete methodology is not 

described. Hence, a linear stability code (SUCLIN) was developed for studying steady state and 

stability characteristics of natural circulation loop operating with supercritical water. 
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2.2 Code development for linear stability analysis 

The geometry considered for the analysis is corresponding to a supercritical test facility set up in 

BARC (Bhabha Atomic Research Centre) to generate data for steady state, stability and heat 

transfer behavior of supercritical fluids under natural circulation conditions. The facility named 

Supercritical Pressure Natural Circulation Loop (SPNCL) is basically a uniform diameter 

rectangular loop which can operate with both supercritical water and supercritical carbon dioxide 

and the dimensions are shown in Figure 2-1. In one dimensional analysis the only co-ordinate x, 

runs around the loop with origin at the exit of the cooler. The open loop boundary conditions 

used by Chatoorgoon (2001) and Jain et al. (2006) have been considered where the inlet fluid 

temperature to cold leg/ heater is fixed irrespective of the heater power.  For analysis of an open 

loop, whatever heat is supplied to the heater is rejected in the cooler keeping the heater inlet 

temperature constant that is heat rejection in the cooler is not evaluated based on calculation of 

overall heat transfer coefficient for cooler and temperature difference between primary and 

secondary fluid. The use of imposed cooling heat flux, instead of third order boundary condition, 

is something that is not very much close to the physics of a real loop. However, imposed cooling 

heat flux is taken in present analysis since it is consistent with previous works of Chatoorgoon 

(2001) and Jain et al (2006) who used the same boundary conditions. The open loop boundary 

conditions can be summarized as follows – 

1) Inlet temperature to cold leg/ heater is constant. 

2) Inlet pressure and outlet pressure are constant. However they should also be equal for 

natural circulation conditions. 

Hence for open natural circulation loop analysis, inlet fluid temperature to the cold leg/ heater, 

loop operating pressure and the heater power are specified along with the entire geometry of the 
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loop (hydraulic diameter, flow area and length of each pipe). The governing continuity and 

momentum equations for one dimensional flow can be written as, 
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where K is the local loss coefficient due to the presence of elbows, tees etc. The energy equation 

can be expressed as, 














region.adiabatic                               0

region,cooleror heater for       -or   )(1)( ''''''
ch qq

x

wi

At

i
          (2.3)                         

In addition an equation of state is required for the density and is given by 

ρ = f(p,i)                                   (2.4) 

The code development required supercritical water properties for which International 

Association for the properties of steam (IAPS), 1984 formulation (Haar et. al., 1984) has been 

used. The SCW properties have been compared with the National Institute of Standards and 

Technology (NIST) data base (http://webbook.nist.gov/chemistry/fluid/). Some typical 

comparisons have been shown in figures 2-2a, 2-2b & 2-2c. 

 
The steady state solution, which is essential for performing the linear stability analysis, can be 

obtained by dropping the time derivatives from the above equations. These are 
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Equations (2.5) to (2.7) are solved together to obtain the steady state flow rate for a given power, 

pressure and inlet conditions as follows. 

(i)   Assume an initial steady state mass flow rate  

(ii)  With this mass flow rate, obtain the enthalpy in the heater region at any distance (x) as 

w

Ax'''
hq

inii(x)                       (2.8) 

Similarly, the enthalpy in the cooler region at any distance (x) can be calculated as 

w

Ax'''
cq

outii(x)                                     (2.9) 

The enthalpy is constant in the adiabatic regions so that i(x) = iin from the cooler outlet to the 

heater inlet and i(x) = iout from heater outlet to the cooler inlet. The heater outlet enthalpy iout can 

be calculated from equation (2.8) as 

w

hAL'''
hq

iniouti                   (2.10) 

where, Lh is the total length of the heated region.  

For steady state, the cooler inlet enthalpy will be iout and cooler outlet enthalpy will be iin since all 

heat added in heater will be removed in cooler. While the density at any axial distance is known 

from equation (2.4), the friction factor in the single-phase region (sub-critical or supercritical), is 

obtained from the local Reynolds number as follows. 

/Ref arla 64min            for laminar flow                             (2.11) 

2503160 .
turbulent /Re.f        for turbulent flow                           (2.12) 
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and friction factor used in the calculations is selected as the maximum value calculated by the 

above two equations, i.e. 

f = maximum of (flaminar, fturbulent)               (2.13) 

This has been done to avoid discontinuity in the friction factor value during transition from 

laminar to turbulent flow. 

 (iii) Equation (2.6) is then integrated over the whole length of the loop to evaluate the total 

pressure drop (∆p). For a natural circulation loop the total differential pressure (∆p) should be 

equal to zero. If not, an improved guess for steady state flow rate is made and the calculations are 

repeated from step (ii) till ∆p becomes equal to zero. 

 

2.2.1 Linear stability analysis 

The conservation equations (2.1) to (2.3) can be rewritten by replacing density (ρ) with specific 

volume (v) as given below. 
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The energy equation can be expressed as, 
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The conservation equations (2.14) to (2.16) are perturbed by introducing small perturbations over 

the steady state as follows 

 ';';';' vvvpppiiiwww ssssssss                          (2.17) 
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The perturbation in friction factor has been neglected in the present analysis, which is an 

acceptable approximation for rough pipes. In equation (2.18), vandpiw   ,, are the very small 

amplitudes of the perturbed flow rate, enthalpy, pressure and specific volume of coolant 

respectively and s is the stability parameter. With these substitutions, the perturbed conservation 

equations after linearization can be written as follows. 

Perturbed continuity equation  
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Perturbed momentum equation  
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The equation of state has been obtained as a polynomial by least square fit between specific 

volume (v) and enthalpy (i) for water at 25 MPa pressure for temperature range of 280 oC - 1000 

oC as given below.  

v = a0 + a1i + a2i
2 + a3i

3 + a4i
4 + a5i

5 + a6i
6                          (2.22) 

The polynomial has been compared with actual specific volume data in figure 2-3. The 

coefficients a0 to a6 are also shown in figure 2-3. The amplitude of perturbation in specific 

volume ( v ) is considered only as a function of amplitude of perturbation in enthalpy ( i ) and 
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contribution of amplitude of pressure perturbation ( p ) in v  has been neglected because 

significant contribution to v  comes from i . The same can be expressed as given below 
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2.2.2 Solution procedure 

The differential equations (2.19) to (2.21) have been solved analytically to obtain perturbed 

amplitude of pressure drop ip , where i stands for individual components e.g. heater, adiabatic 

hot leg, cooler and adiabatic cold leg in a supercritical pressure natural circulation loop (SPNCL).  

Adiabatic components: 

The perturbed energy equation (2.20) is integrated over length ∆x which can be expressed as   

s   eii in              (2.25) 

where, τ is the residence time of fluid in length ∆x, 
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For integrating perturbed continuity equation (2.19) over length ∆x the same can be expressed as   
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Using equations (2.25) and (2.28), the perturbed pressure drop over length ∆x can be calculated 

by integrating equation (2.21) as expressed below 
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Non-adiabatic components: 

The perturbed energy equation (2.20) is integrated which can be expressed as   
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The perturbed continuity equation (2.19) is integrated which can be expressed as  

(2.30)
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Using equations (2.30) and (2.37), the perturbed pressure drop over length ∆x can be calculated 

by integrating equation (2.21) as expressed below 

 

                       

(2.38)                

 

The boundary conditions used are  

ini  = 0 and ∑ ip = 0                       (2.39) 

The characteristic equation can be written as 

0    )(  ipsY ,                                                                 (2.40) 

where, s is the stability parameter which is a complex number.  

Regula-falsi method is employed to find out the roots of the complex characteristic equation. If 

the real part for any of the roots is > 0 then the loop is unstable and if real part of all of the roots 

is < 0 then loop is stable. If real part of the any of roots is ≈ 0 and real part of all the other roots 

are ≤ 0 then the loop is neutrally stable. 

Instead of looking for the roots of the characteristic equation the stability maps were obtained by 

using Nyquist plots. The Nyquist plot is obtained by substituting s=ib in ∑ ip  (LHS of equation 

2.39) where angular frequency (b) is increased in positive steps starting from zero value to get 

the values of perturbed pressure drop which are plotted on the real-imaginary plane. If the 
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trajectory encircles origin the loop operating condition is unstable, if the trajectory does not 

encircle origin the loop operating condition is stable. If the trajectory passes through origin the 

loop operating condition is neutrally stable. All neutrally stable points are joined to obtain the 

stability map. 

 

2.2.3 Qualitative assessment of the code 

2.2.3.1 Chatoorgoon’s loop geometry with SCW 

The steady state mass flow rate as a function of power at 25 MPa and heater inlet temperature of 

350oC, has been generated using SUCLIN code for the loop geometry available in Chatoorgoon 

(2001). The geometric details of the loop and the steady state results are shown in figure 2-4a and 

figure 2-4b respectively. The peak steady state flow rate is obtained at a power of 3.75 MW. 

Chatoorgoon proposed that the threshold of instability is the power corresponding to peak flow. 

He used a nonlinear code (SPORTS) which shows the threshold of instability as 4.5 MW for the 

same loop geometry at 25 MPa pressure and 350oC heater inlet temperature. The SUCLIN code 

has also been used to predict the threshold of instability which shows the threshold of instability 

as 4.2 MW. The Nyquist plots for the same are shown in figure 2-5. The difference can be 

attributed to the stability assessments made with different techniques and assumptions. 

The threshold of instability identified by Nyquist plot was also checked by identifying the 

complex dominant roots of the characteristic equation 2.39 for Chatoorgoon’s loop at 25 MPa 

and 350oC heater inlet temperature which are given in Table 2-1. It can be seen that at 4.2 MW 

power the dominant root has almost zero real part indicating a neutrally stable case. 
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Table 2-1: Dominant roots of characteristic equation for Chatoorgoon’s loop at 25 MPa and 

350oC heater inlet temperature 

Power 

(MW) 

Dominant Root’s 

Real part (a) 

Dominant Root’s Imaginary part / 

Angular Frequency (b) 

Remark 

4.0 -0.0147 0.8928 Stable 

4.2 -0.00051 0.9052 Neutrally stable 

4.5 0.0192 0.9193 Unstable 

 

The stability map of Chatoorgoon’s loop plotted in figure 2-6 indicates that lower threshold 

power of instability increase only mildly (3.9 to 4.9 MW), whereas upper threshold of instability 

reduces significantly (9.75 to 5.4 MW) with increase in heater inlet temperature from 300 oC to 

364oC . The ratio of lower threshold power of instability and power corresponding to peak steady 

state natural circulation flow rate at a specified heater inlet temperature for different heater inlet 

temperatures have been plotted in figure 2-7. The figure shows the lower threshold power of 

instability to be within -30% to +50% of the power corresponding to peak flow for heater inlet 

temperature varying from 300oC to 364oC. For heater inlet temperature above 365oC no 

instability is observed although peak steady state flows occur at 2.9 MW and 2.3 MW for heater 

inlet temperatures of 370oC and 380oC respectively. 

 

2.2.3.2 University of Wisconsin (UW)-Madison loop 

UW-Madison loop is a SCW rectangular natural circulation loop having inside diameter, height, 

width and total length of 42.9 mm, 3m, 2m and 10 m respectively as given in Jain et al. (2006). 

The steady state characteristics of the loop predicted by SUCLIN code has been compared with 
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predictions available from Jain et al. (2006) in figure 2-8. The difference can be due to some 

local losses considered in Jain et al. which were not reported in the paper. 

 

The linear stability analysis carried out by Jain et al. for UW-Madison loop was for heater inlet 

temperatures above 327oC & up to 3 MW of power and no instability was observed. The higher 

power levels were not investigated since respective exit temperatures became so high that the 

heater wall material tolerance limit was exceeded. The stability map generated for the same loop 

by SUCLIN code is given in figure 2-9, which indicates that no instability is present in the loop 

for heater inlet temperature above 220oC irrespective of the power. Thus the two results agree 

well.  For generating this map only a new polynomial for equation of state has been fit for 

temperature range of 100-1000oC at 25 MPa. 

 

2.2.4 Steady state and stability analysis using SUCLIN code  

After qualitative assessment, SUCLIN code has been extensively used for studying the effect of 

diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and 

stability behavior of Supercritical Pressure Natural Circulation Loop (SPNCL) operating with 

supercritical water shown in figure 2-1. The steady state characteristics have been predicted for 

various loop pipe diameters (i.e. 7 mm, 13.88 mm, 20.7 mm and 28 mm) with SCW (figure 2-

10a & 2-10b). The steady state characteristics indicate that with initial increase in power the loop 

mass flow rate increases due to increase in buoyancy force caused by the large increase in the 

thermal expansion coefficient. Subsequently, flow decreases with power due to increased 

frictional pressure drop caused by a sharp reduction in density after the pseudo-critical 

temperature. The peak mass flow rates for 7 mm, 13.88 mm, 20.7 mm and 28 mm diameter loops 

with SCW operation at 25 MPa pressure are observed at heater outlet temperature of 389oC, 
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390oC, 390oC and 390.6oC respectively (pseudo-critical temperature of water at 25 MPa is 

385oC). The mass flow rate increases with pressure at high powers in friction dominant regime 

just as in two-phase Natural Circulation systems (Nayak et al., 1998) as shown in figure 2-11. 

The steady state natural circulation mass flow rate reduces significantly when heater inlet 

temperature exceeds the pseudo-critical temperature as shown in figure 2-12. This is attributed to 

the reduction in the buoyancy force resulting from the reduction in the thermal expansion 

coefficient as shown in figure 2-13. Moreover, when both the legs become supercritical the 

frictional resistance also increases dramatically resulting in larger flow reduction.  Increasing the 

loop height increases the available buoyancy head and increases the natural circulation flow rate 

as shown in figure 2-14. 

 

The heater outlet temperatures at which peak steady state mass flow rates are achieved for 

various heater inlet temperatures have been predicted for various geometrical parameters as 

shown in figure 2-15. It shows that with increase in heater inlet temperature the heater outlet 

temperature at which peak steady state flow rate is achieved also increases, but remains near the 

pseudo-critical temperature. A change in loop pipe diameter or loop height does not significantly 

affect the heater outlet temperature at which peak steady state flow rate is achieved. The local 

loss coefficients significantly affect the heater outlet temperature at which peak steady state flow 

rate is achieved as shown in figure 2-16. Local loss coefficient in the cold leg shifts the heater 

outlet temperature corresponding to peak flow much beyond the pseudo-critical temperature, 

whereas local loss coefficient in hot leg shifts it closer to pseudo-critical temperature.   

 

The effect of loop pipe diameter on stability behavior of SPNCL is shown in figures 2-17a & 2-

17b. Figure 2-17a shows that the power envelope of the unstable zone increases significantly 

with increase in loop pipe diameter just like in single-phase loops reported in Vijayan et al. 
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(2008). If one considers the heater outlet temperature for a fixed heater inlet temperature then 

instability is observed over a wide range of heater outlet temperature for smaller diameter loops. 

It can be observed that as the heater inlet temperature is increased, the lower threshold of 

instability increases slightly, whereas upper threshold of instability decreases significantly and 

beyond a specified value of heater inlet temperature no instability is observed. This value of 

heater inlet temperature beyond which instability is not observed decreases with increase in loop 

pipe diameter. This observation may be very useful in design of natural circulation based SCW 

cooled reactors because changing the heater inlet temperature does not significantly affect the 

lower threshold power of instability, hence heater inlet temperatures should be kept at values 

where no unstable zone is observed. This is possible without sacrificing the large jump in 

enthalpy occurring across the pseudo-critical point. 

 

Increasing the loop height increases the SPNCL instability as shown in figure 2-18a & 2-18b.  

The effect of loop pressure on stability behavior of SPNCL is shown in figures 2-19a & 2-19b. 

Increasing the loop pressure shifts both power and heater outlet temperature maps slightly 

upwards, since the pseudo-critical temperature (at which maximum value of specific heat is 

observed) also increases with pressure. Whereas, pressure has a significant influence on stability 

of two phase natural circulation loops. Increasing the pressure stabilizes the two-phase loops 

(Nayak et al., 1998).  

 

The effect of local losses on the stability behavior of SPNCL is shown in figures 2-20a & 2-20b. 

The loop stabilizes with local losses considered in cold or sub-critical leg and destabilizes with 

local losses considered in hot or supercritical leg which is similar to the behavior of two – phase 

natural circulation loops (Kyung et al., 1994).    
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Chatoorgoon (2001) postulated that threshold power of instability should be same as power 

corresponding to peak steady state natural circulation flow rate for a given heater inlet 

temperature. Hence, the effect of loop geometry on the ratio of lower threshold power of 

instability and power corresponding to peak steady state natural circulation flow rate at different 

heater inlet temperatures have been plotted in figure 2-21. The effect of local loss coefficient on 

the ratio of lower threshold power of instability and power corresponding to peak steady state 

natural circulation flow rate at different heater inlet temperatures have been plotted in figure 2-22. 

The ratio was found to be varying from 0.6 to 1.8 for some of the cases shown in figures 2-21 & 

2-22 and as the ratio is not near unity, the postulation of Chatoorgoon (2001) is not correct as 

was also concluded by Jain and Corradini (2006). 

 

2.3. Conclusions 

The peak of the steady state mass flow rate versus power curve for uniform diameter 

supercritical water natural circulation is obtained at heater outlet temperature near the pseudo-

critical value. A change in loop pipe diameter or loop height does not significantly affect the 

heater outlet temperature at which peak steady state flow rate is achieved. Local loss coefficient 

in the cold leg shifts the heater outlet temperature corresponding to peak flow much beyond the 

pseudo-critical temperature, whereas local loss coefficient in hot leg shifts it closer to pseudo-

critical temperature. If the heater inlet temperature increases beyond the pseudo-critical 

temperature the steady state natural circulation mass flow rate reduces significantly. The steady 

state natural circulation flow rate increases with increase in pressure at higher powers in the 

friction dominant region just like two phase natural circulation loops.  
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In all the loops considered for stability analysis, it is observed that lower threshold power of 

instability increase only mildly whereas upper threshold of instability reduces significantly with 

increase in heater inlet temperature above 300oC. The larger diameter loops are more unstable in 

terms of heater power compared to small diameter loops for supercritical water natural circulation, 

however smaller diameter loops are unstable over a wide range of heater outlet temperature for a 

fixed heater inlet temperature. Beyond a specified value of heater inlet temperature no instability 

is observed and its value decreases with increase in loop pipe diameter. These observations 

suggest that natural circulation systems operating with supercritical water can be designed for 

lower heater inlet temperatures and still not encounter instability whatever may be the power. 

Such systems can also take advantage of the large jump in enthalpy occurring across the pseudo-

critical point. Increasing the loop height widens the SPNCL unstable zone. Increasing the loop 

pressure shifts the stability maps slightly upwards. Inducing local losses in cold leg improves the 

loop stability, whereas local losses in hot leg destabilize SPNCL.  Lower stability threshold 

deviates as much as -40% to +80% from the power corresponding to peak steady state flow in 

some of the cases analyzed in this chapter. Hence, it can be concluded that lower stability 

threshold power of SPNCL is not strictly related to the peak of the steady state mass flow rate 

versus power curve. Moreover, for a particular heater inlet temperature the steady state mass flow 

rate peak may exist but instability may be altogether absent for that heater inlet temperature as 

can be observed for larger diameter loops.  
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Figure 2-1: Simplified loop geometry considered for analysis 
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Figure 2-2: Comparison of supercritical water properties 
as predicted by IAPS formulations with NIST data base  
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Figure 2-4a: Loop geometry in Chatoorgoon (2001)  

Figure 2-3: Polynomial for specific volume of supercritical water at 25 MPa 
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Figure 2-5: Nyquist plots for the Chatoorgoon’s loop at 25 MPa 
and heater inlet temperature of 350oC 

Figure 2-4b: Steady state natural circulation flow rate for Chatoorgoon’s 
loop at 25 MPa and 350o C heater inlet temperature  
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Figure 2-6: Stability map for Chatoorgoon’s loop at 25 MPa predicted by SUCLIN code  

Figure 2-7: Comparison of lower threshold power of instability and power 
corresponding to peak flow for Chatoorgoon’s loop. 
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Figure 2-9: Stability map for UW- Madison loop predicted by SUCLIN code  

Figure 2-8: Steady state characteristics for UW- Madison 
loop predicted by SUCLIN code   

0 1 2 3 4
0

1

2

3

4

From Jain et al. (2006)
SUCLIN Code

         UW-Madison Loop, 42.9 mm ID, 25 MPa
 

 Heater Inlet Temp - 327oC 

 Heater Inlet Temp - 347oC 

 Heater Inlet Temp - 375oC 

 Heater Inlet Temp - 382oC 

M
a

ss
 fl

ow
 r

a
te

 -
 k

g/
s

Power - MW



49 
 

0 200 400 600 800
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SCW Loop, P = 25 Mpa

Heater Inlet Temp. = 370oC

 

M
as

s 
flo

w
 r

a
te

 -
 k

g
/s

Power - kW

 ID =   7 mm 
 ID =  13.88 mm
 ID =  20.7 mm 
 ID =  28 mm  

0 200 400 600 800
360

380

400

420

440

460

480

500

520

540

560

 

SCW Loop, P = 25 Mpa

Heater Inlet Temp. = 370oC

 

H
e

at
er

 O
ut

le
t T

em
p

e
ra

tu
re

 -
 o C

Power - kW

 ID =   7 mm 
 ID =  13.88 mm
 ID =  20.7 mm 
 ID =  28 mm  

0 50 100 150 200
0.00

0.05

0.10

0.15

Friction Dominant Regime
 

SCW Loop ID = 13.88 mm

 

M
as

s 
flo

w
 r

a
te

 -
 k

g
/s

Power - kW

   230 bar
   250 bar 
   300 bar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10: Steady state characteristics for different diameter loops at 25 MPa and heater inlet 
temperature of 370oC.  

(a) (b) 

Figure 2-11: Effect of loop pressure on steady state mass 
flow rate at heater inlet temperature of 370oC 
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Figure 2-12: Effect of heater inlet temperature on steady state mass flow rate at 25 MPa. 

Figure 2-13: Variation of volumetric expansion coefficient with temperature for water

Figure 2-14: Effect of loop height on steady state mass flow rate at 25 MPa. 
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Figure 2-15: Effect of geometrical parameters on heater outlet 
temperature corresponding to peak flow 

Figure 2-16: Effect of local loss coefficients on heater outlet 
temperature corresponding to peak flow 
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Figure 2-17: Effect of loop pipe diameter on stability behavior of SPNCL 
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Figure 2-18: Effect of loop height on stability behavior of SPNCL 
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       Figure 2-19: Effect of loop pressure on stability behavior of SPNCL 
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              Figure 2-20: Effect of local losses on stability behavior of SPNCL 
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Figure 2-21: Effect of geometrical parameters on the ratio of lower
threshold power of instability and power at peak flow for SPNCL.  

Figure 2-22: Effect of local losses on the ratio of lower threshold power
of instability and power at peak flow for SPNCL.  
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Chapter 3 
 

Non – linear thermal hydraulic stability code for natural circulation 
with supercritical fluids 

 
 
 

3.1 Introduction 

The equations for supercritical flow are highly non-linear and classical linear theroy can only be 

applied to linear system. A linear system can be constructed by linearizing the non-linear 

equations with the presumption that non-linear system will behave in a linear manner if the 

perturbation is small enough. The procedure can only tell if the initial small perturbation will 

grow or decay, but it cannot predict limit cycle oscillations as those will be governed by non-

linear effects. Hence non-linear thermal hydraulic stability code was developed to study the 

transient response of the system in time domain. Non-linear approach relies on finite difference 

to approximate the partial derivatives and solving the resultant algebraic equations is time 

consuming, since large number of cases need to be run to generate a stability map, however, with 

ever increasing computational resources the time domain stability analysis has also become very 

popular. Several researchers have reported non-linear stability models for stability analysis of 

natural circulation systems/ heated channels operating with supercritical fluids (see Chatoorgoon 

(2001); Jain and Rizwan-uddin (2008);Ambrosini and Sharabi (2008); Ortega Gomez et al. 

(2008); Chen at al. (2010)).  

 

3.2 Non-linear code development 

A NOn-Linear STability Analysis (NOLSTA) code has been developed for analyzing stability of 

natural circulation loops operating with supercritical fluids with open loop boundary conditions 
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as described in Chapter 2. In an open loop the inlet fluid temperature to heater is fixed 

irrespective of the heater power.  For analysis of an open loop, whatever heat is supplied to the 

heater is rejected in the cooler keeping the heater inlet temperature constant. In this case, the 

operating pressure of the loop, inlet fluid temperature to the heater and the heater power are 

specified along with the entire geometry of the loop (hydraulic diameter, flow area and length of 

each pipe).  

 

3.2.1 Governing equations 

In one dimensional analysis the only co-ordinate x, runs around the loop with origin at the outlet 

of cooler. The governing continuity, momentum and energy equations for one dimensional flow 

can be written as, 

Continuity:  
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In addition an equation of state is required for the density and is given by 

ρ = f(p,i)               (3.4)  
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The set of mass, momentum and energy conservation equations is closed by equation of state for 

the supercritical fluid. The steady state solution can be obtained by dropping the time derivatives 

from the above equations. These are 

0
)(





x

u
                (3.5)  

 

0cosg
2

2)2(







 







  u
K

D

f

x

p

x

u
           (3.6)                        





































region.adiabatic                               0

region,cooleror heater for       -or   
cosg

2

2

''''''
ch qq

u
x

u
iu





      (3.7)                         

 

Control volume discretization in space is employed to derive the difference equations for mass, 

momentum and energy conservation. In deriving the difference equations, the effect of 

integrating across a computational cell is analogous to averaging the field variables in that section 

and leads to better accuracy compared to first order difference schemes for the spatial derivatives 

(Dogan et al., 1983). 

 

3.2.2 Discretization of governing equations for steady state solution  

Integrating the steady state mass, momentum and energy equations (3.5, 3.6 and 3.7) across the 

control volume from j to j+1, where j & j+1 are grid points at inlet and outlet face of the control 

volume(as shown in figure 3-1), leads to following set of discretized equations: 

 
Continuity:  
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Momentum: 
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Equation of state: 
 
ρj+1 = f(pj+1 , ij+1)             (3.11) 
 

Boundary conditions for open loop: 

(i) The heat coming from heater is rejected in the cooler which is imposed directly and this 

condition maintains heater inlet temperature constant. 

(ii) The pressure at the inlet face of first control volume and that calculated by equation (3.9) for 

the outlet face of last control volume should be constant. However, for natural circulation 

conditions the two should be equal also (i.e. Σ∆p = 0).  

While the density at any axial distance is known from equation (3.11), the friction factor in the 

single-phase region (sub-critical or supercritical), is obtained from the local Reynolds number as 

follows. 

/Ref arla 64min          for laminar flow                       (3.12) 
2503160 .

turbulent /Re.f   for turbulent flow                                (3.13)           

    
and friction factor used in the calculations is selected as the maximum value calculated by the 

above two equations, i.e. 

 
f = maximum of (flaminar, fturbulent)                      (3.14) 
      

for heater or cooler 
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This has been done to avoid discontinuity in the friction factor value during transition from 

laminar to turbulent flow. 

 

3.2.3 Discretization for time dependent solution  

Integrating time dependent conservation equations (3.1), (3.2) & (3.3) across the control volume 

from j to j+1 leads to following set of discretized equations: 

Continuity:  

 
t

x
uu n

j
n
j

n
j

n
j

nn

jj 


 






 2

     - )(  )( 1
1

1
1

11

1
          (3.15) 

 
Momentum: 

   

 
t

x
uuuu

zuKx
D

f
uKx

D

f
pp

n
j

n
j

n
j

n
j

nn
nnnn jj

jjjj



















 















 














 







 



2
 )( )(  )( )(-             

 g 
2

 
4

1
  1 

4

1
  1 -  

1
1

1
1

2211 1

1 1






             (3.16) 

Energy: 

     

 n
j

n
j

n
j

n
j

n
j

n
j

n
j

n

jn
 

n
j

n
j

n

jn
 

pppp
t

x
xq''' 

 T
z

ρuρuρu
u

i
t

x
ρu

u
i

jj







































































1
11

1

11
1

1

12

11
1

1
1

12
11

 2
   

  
 2

g  )()(   )( 
2

  -  
 2

)(  
21



   (3.17) 

 

where 

 

     
 

22 2
 -   

2 2

2

1

2
1

1
1

12

1































































 







 n
j

n

jn
j 

n
j

n

jn
j 

n
j

n

jn
j ρ

u
iρ

u
i

t

x
ρ

u
i

t

x
T                                         (3.18)

 

 

3.3 Stability analysis using NOLSTA code 

To start with non-linear stability analysis a comparison of steady state results is mandatory. A 

comparison of steady state results for 13.88 mm ID loop (dimensions shown in Chapter 2, Figure 
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2-1) by NOLSTA and SUCLIN is given in Figure 3-2. The steady state results predicted by 

NOLSTA and SUCLIN are identical.  

 

The non-linear stability analysis involves solution of steady –state equations for a given operating 

condition. The steady state solution is used as an initial condition for transient predictions. Then, 

difference equations have been solved in time domain to predict the transient response of the loop 

from the steady state. If the amplitude of flow oscillation increases with time then loop is 

unstable, if the amplitude of flow oscillation dies out with time and returns to the original steady 

state then the loop is stable and if flow continues to oscillate with the same amplitude then the 

loop is neutrally stable.  

 

3.3.1 Sensitivity study 

The stability analysis of SPNCL was carried out for open loop boundary conditions and stability 

threshold has been found to be sensitive to convergence value of loop pressure closure condition, 

the time step and grid size considered for analysis. Hence convergence value of loop pressure 

closure, time step and grid size independence test was carried out for SPNCL. 

 

3.3.1.1 Effect of time step and grid size 

To start with 1422 nodes were considered in the whole loop and time steps were changed to 

carry out the stability analysis of SPNCL at 100kW/ 25 Mpa with cold leg/ heater inlet 

temperature of 360 oC. It was observed that larger time steps (0.02 s) stabilized the predictions as 

shown in figure 3-3. On reducing the time step from 0.005 s to 0.0025s the predictions hardly 

change. Now considering 0.0025 as the time step the number of nodes were reduced to 284 and 
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then to 142, however, no change was observed in the results as shown in figure 3-4. Hence to 

save computational time the 142 nodes were finalized. Henceforth, 142 nodes and time step of 

0.0025 s have been used for generating the stability results for SPNCL with open loop boundary 

conditions.    

 

3.3.1.2 Effect of convergence value of loop pressure closure condition 

For open loop natural circulation the pressure closure condition to be satisfied at any time step is 

Σ∆p = 0, where Σ∆p is sum of pressure drop for all the components of the loop. The solution is 

converged if valueeconvergencp   . The stability predictions are found to be dependent on 

this convergence value as shown in figure 3-5. Unrealistic oscillations are predicted for 

convergence value of 100 Pa, whereas similar oscillations are predicted for 10 Pa and 1 Pa. 

Convergence value of 10 Pa has been considered for further analysis.  

 

3.3.1.3 Prediction of stable, unstable and neutrally stable conditions 

Considering above mentioned values of number of nodes (142), time step (0.0025s) and loop 

pressure closure convergence criterion (10 Pa) a typical stable (85kW), unstable (100kW) and 

neutrally stable (92kW) case was obtained at 25 MPa and 360oC coldleg/heater inlet 

temperatureas shown in figure 3-6. 

 

3.3.2 Stability analysis of SPNCL using NOLSTA code 

The stability maps have been generated using NOLSTA code for 13.88 mm and 28 mm ID loops 

as shown in figures 3-7a &3-7b and figures 3-8a &3-8b respectively. 
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The NOLSTA code also predicts a lower as well as upper stability threshold for given heater inlet 

temperature but the upper threshold is predicted at high heater outlet temperatures and due to 

availability of Supercritical water (SCW) properties only up to 1000oC the complete stability map 

at low heater inlet temperatures could not be generated. The NOLSTA code predicts larger 

unstable zone as compared to SUCLIN. The heater inlet temperature at which no instability is 

observed also reduces with increase in loop diameter. The results of NOLSTA and SUCLIN are 

matching qualitatively, but quantitatively there is a difference. Figures 3-9a &3-9b show the 

lower threshold of instability predicted by NOLSTA and SUCLIN for 13.88 mm and 28 mm ID 

loops respectively in greater detail. Both the results show that with increase in heater inlet 

temperature, the threshold heater outlet temperature at which instability occurs also increases and 

it is not always near the pseudo-critical temperature. Hence, it can be concluded that stability 

threshold of SPNCL is not confined to the near peak region of the steady state mass flow rate 

versus power curve as concluded in Jain et al. 2006 (since peak of steady mass flow rate versus 

power curve for SPNCL is at heater outlet temperature near the pseudo-critical temperature for 

both the inside diameters, see figure 2-10a & 2-10b). 

 

3.4 Benchmarking of stability codes for supercritical fluids 

Bhabha Atomic Research Centre (BARC) participated in the blind benchmark exercise 

coordinated by the University of Pisa in the frame of the IAEA Coordinated Research 

Programme (CRP) on Heat Transfer Behavior and Thermo-hydraulics Codes Testing for SCWR. 

The benchmarking activity was decided during the 1st Research Coordination Meeting of CRP 

held at Vienna, 22-25 July, 2008. Main objective of the benchmarking activity was to compare 

the results of linear and non-linear codes and models in the application to flow stability behavior 
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in a simple reference geometrical condition. The addressed problem involves a circular pipe with 

uniform heating along the axis and geometrical configuration is shown in Figure 3-10. It consists 

of a circular rough pipe with uniform cross section assumed to join two plena, mainly included to 

assign inlet and outlet conditions. The length is assumed to be 4.2672 m (14 ft) and the ID is 8.36 

mm corresponding to a SCWR sub-channel. Uniform value of the roughness parameter, ɛ = 

2.5x10-5 m, is assigned for the pipe wall. The boundary conditions involves: 

1) Imposed inlet pressure(pin) and imposed outlet pressure(pout) such that pin - pout = 0.12 

MPa. This means that flow is forced circulation. 

2) Throttling at inlet i.e Kin = 20 

The benchmark exercise was to be carried out for different outlet throttling conditions (Kout = 2, 5, 

10, 20), different orientation i.e. vertical/ horizontal subchannel, different inlet pressures and 

different fluids i.e. water, carbon dioxide, ammonia and refrigerant R23. The exercise also 

addressed both dynamic (oscillatory) and static (excursive) instabilities. Eight institutes from 

different countries participated in the benchmark exercise as given in Table 3-1. 

 

The reference data (which was not disclosed to the participants) was generated by the University 

of Pisa. The participants were requested to express the threshold of instability in terms of 

dimensionless numbers as specified below-  
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Table 3-1: Participants in blind benchmark exercise conducted under IAEA Coordinated 

Research Programme (CRP). 

ORGANISATION SCIENTISTS 

VTT, Valtion Teknillinen, Tutkimuskeskus, Finland  Markku Hänninen, 

Jorma Kurki 

University of Manitoba and  

AECL, Canada 

V. Chatoorgoon, 

S. Yeylaghi and L. Leung  

BARC, Bhabha Atomic Research Centre, India  Manish Sharma,P.K. Vijayan, 

D.S. Pilkhwal and D. Saha, 

JRC-IE, Petten, Netherlands L. Ammirabile 

Gidropress, Russia Andrey N. Churkin 

Gruppo di Ricerca Nucleare di San Piero a Grado Pisa, Italy 

and McMaster University, Canada  

F. Fiori, D.R. Novog and A. 

Petruzzi 

 

The above sub-pseudo-critical number and trans-pseudo-critical number introduced in 

Ambrosini and Sharabi (2006, 2008), were used respectively to specify inlet fluid 

thermodynamic conditions (e.g., inlet specific enthalpy) and for representing threshold power of 

instability respectively. BARC submitted results for water at 25 MPa inlet pressure with different 

outlet throttling conditions, different orientations and oscillatory/ excursive instability using both 

Linear code (SUCLIN) and Non-linear code (NOLSTA). The results were generated in 
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dimensional form by both the codes and later converted to dimensionless form. After benchmark 

exercise was over, University of PISA compiled a quick look report by Ambrosini, (2010) 

comparing results of different participants with reference data.   

 

3.4.1 Benchmark results predicted by NOLSTA code 

3.4.1.1 Vertical channel 

The dimensional values of channel power, channel outlet temperature and steady state mass flow 

rate corresponding to threshold of instability are given in figure 3-11a, 3-11b& 3-11c 

respectively. The only data point corresponding to the threshold of excursive instability is 

observed at low value of channel inlet temperature and higher value of outlet throttling 

condition. The threshold power of instability reduces with increase of outlet loss coefficient thus 

making the channel more unstable as shown in figure 3-11a which is similar to observation for 

boiling natural circulation loop (Kyung et al., 1994). Higher outlet temperatures can be achieved 

in the channel for lower outlet loss coefficients without encountering instability as shown in 

figure 3-11b. The steady state mass flow rate corresponding to threshold of excursive instability 

shows a sudden increase as compared to mass flow rates corresponding to oscillatory instability 

as shown in figure 3-11c. 

 

The threshold of excursive instability has been obtained by steady state conservation equations, 

where channel pressure drop characteristics and driving pressure drop are plotted with channel 

mass flow rate. If there are more than one point where the two curves intersect (indicating 

multiple steady state operating points), the system is prone to excursive instability also called as 
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Ledinegg instability.The typical case of excursive instability for vertical/ horizontal channel is 

shown in figure 3-12a & 3-12b respectively. 

 

Figure 3-13, respresents the comparison of NOLSTA code results with reference stability 

boundaries in the NSPC- NTPC plane and same are found to closely matching. The lower lobe of 

the refernce data indicates threshold of oscillatoy instability and upper lobe indicates threshold of 

excursive instability. 

 
3.4.1.2 Horizontal channel 

The governing equations remain same for horizontal and vertical channel. Only the gravitational 

term (g) is made equal to zero in the momentum equation for horizontal channel. The threshold 

of oscillatory instability is same for vertical and horizontal channel, whereas, the horizontal 

channel is excursively more unstable as shown in figure 3-14 in the NSPC- NTPC plane.   

 

3.4.2 Benchmark results predicted by SUCLIN code 

The threshold of oscillatory instability has been judged by Nyquist criterion which states that if 

the Nyquist contour of transfer function Y(s) encircles the origin then the system is unstable, if it 

does not encircle origin then system is stable and if it passes through origin the system is 

neutrally stable or at the threshold of instability. The methodology of finding the threshold of 

excursive instability is same as described in section 3.4.1.1. SUCLIN code predictions have been 

compared with reference stability boundaries for vertical and horizontal channels in figures 3-

15& 3-16 respectively. As observed for natural circulation in section 3.3.2, the SUCLIN code is 



69 
 

predicting a smaller unstable zone as compared to NOLSTA code/ reference data.This can be 

attributed to differences in the linear and non-linear analysis specified below 

i) All the fluid properties are perturbed in non-linear analysis, whereas only enthalpy and 

specific volume perturbation is considered in linear stability analysis. 

ii) Friction factor perturbation is not considered in linear stability analysis whereas non-linear 

analysis accounts for it.  

iii) The perturbation induced in specific volume due to perturbation in enthalpy has been 

considered, whereas perturbation in specific volume due to perturbation in pressure has been 

neglected in linear analysis, whereas non-linear analysis accounts for both. 

 

The results reported by other participants also showed some deviations from the reference data, 

however all submissions confirmed the following findings 

• Increase in outlet throttling results in increase in unstable zone of heated channels (a 

well-known fact for two phase flow in heated channels); 

•  The presence of oscillating as well as excursive instabilities, the latter occurring at 

relatively low inlet temperature, in regions that would be hopefully of little interest to 

nuclear reactor operation; 

• The general shape of the stability boundary in the NTPC-NSPC plane. 

 
3.5 Conclusions 

The non-linear stability analysis code (NOLSTA) also confirms that larger diameter loops are 

more unstable in terms of heater power compared to small diameter loops and beyond a specified 

value of heater inlet temperature no instability is observed and its value decreases with increase in 

loop diameter. With increase in heater inlet temperature the threshold heater outlet temperature at 
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which lower threshold of instability is observed also increases and is not always near the pseudo-

critical temperature. Therefore, it can be concluded stability threshold of SPNCL is not confined 

to the near peak region of the steady state mass flow rate versus power curve.  

The results of NOLSTA and SUCLIN are matching qualitatively, but quantitatively there is a 

difference. Both the codes predict lower and upper threshold of instability, but unstable zone 

predicted by non-linear analysis is larger. This can be attributed to differences in the linear and 

non-linear analysis as specified below 

i) All the fluid properties are perturbed in non-linear analysis, whereas only enthalpy and 

specific volume perturbation is considered in linear stability analysis. 

ii) Friction factor perturbation is not considered in linear stability analysis whereas non-linear 

analysis accounts for it.  

iii) The perturbation induced in specific volume due to perturbation in enthalpy has been 

considered, whereas perturbation in specific volume due to perturbation in pressure has been 

neglected in linear analysis, whereas non-linear analysis accounts for both. 

 

BARC also participated in the blind benchmark exercise coordinated by the University of Pisa in 

the frame of the IAEA Coordinated Research Programme (CRP) on Heat Transfer Behavior and 

Thermo-hydraulics Codes Testing for SCWR. The addressed problem involved a circular pipe 

with uniform heating along the axis and geometrical configuration corresponding to a SCWR-

sub-channel. Eight institutes from different countries participated in the benchmark exercise. 

Like SUCLIN code predictions, codes used by other participants also showed some deviation 

from the reference data generated by University of PISA, however, all submissions confirmed 

the following findings 
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• Increase in outlet throttling results in increase in unstable zone of heated channels (a 

well-known fact for two phase flow in heated channels); 

•  The presence of oscillating as well as excursive instabilities, the latter occurring at 

relatively low inlet temperature, in regions that would be hopefully of little interest to 

nuclear reactor operation; 

• The general shape of the stability boundary in the NTPC-NSPC plane. 
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                  Figure 3-1: Spatial grids and control volumes along the loop flow direction   
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Figure 3-2: Steady state results comparison for 13.88 mm ID 
loop by SUCLIN and NOLSTA codes 
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                     Figure 3-3: Time step sensitivity study on stability behavior of open SPNCL 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Nodes number sensitivity study on stability behavior of open SPNCL 
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Figure 3-5: Effect of pressure closure convergence criterion  
on stability behavior of open SPNCL 

 

 

 

 

 

 

 

 

 

 

 

Figure3-6: Stable, unstable and neutrally stable operating conditions for open SPNCL  
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Figure 3-7: Stability maps comparison using SUCLIN and NOLSTA codes  
for open SPNCL (13.88mm ID loop). 
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                            Figure 3-8: Stability maps comparison using SUCLIN and NOLSTA  
codes for 28 mm ID loop. 
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Figure 3-9: Lower threshold of instability predicted by SUCLIN and NOLSTA 
codes for 13.88 mm and 28mm ID loops shown in detail 
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Figure 3-10: Reference geometrical configuration for flow stability benchmark under IAEA 
Coordinated Research Programme (CRP).  
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Figure 3-11: Dimensional parameters corresponding to threshold of oscillatory/ excursive 
instability for IAEA bench mark exercise.    
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Figure 3-12: Threshold of Ledinegg/ excursive instability for IAEA bench mark exercise.  
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Figure 3-13: Comparison of the stability boundaries identified by NOLSTA code for water and 
vertical channel with the reference stability boundaries 
 

 

 

 

 

 

 

 

 

 

 
Figure 3-14: Comparison of the stability boundaries identified by NOLSTA code for water and 
horizontal channel with the reference stability boundaries for Kout = 20 
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Figure 3-15: Comparison of the stability boundaries identified by the SUCLIN code for water 
and vertical channel with the reference stability boundaries 
 

 

 

 

 

 

 

 

 

 
Figure 3-16: Comparison of the stability boundaries identified by the SUCLIN code for water 
and horizontal channel with the reference stability boundaries 
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Chapter 4 
 

Steady state behavior of natural circulation loops operating with 
carbon dioxide at supercritical pressures for open and closed loop 

boundary conditions 
 
 

4.1 Introduction 

The literature reveals only very few experimental studies on natural circulation with supercritical 

carbon dioxide (SC-CO2). Adelt and Mikielewicz (1981) performed studies on 4m high loop 

with carbon dioxide (CO2). As the fluid was heated through pseudo-critical point pressure 

oscillations were observed for a particular test but the study mainly focused upon heat transfer 

rather than stability. Lomperski et al. (2004) have reported experiments in a two meter high 

natural circulation loop with carbon dioxide at supercritical pressure. The loop was operated in a 

base case configuration that maximized flow rates and in a second configuration having an 

orifice in the hot leg. No flow instabilities were observed in these tests as the fluid was heated 

through thermodynamic pseudo-critical point. Yoshikawa et al. (2005) have studied the 

performance of a closed natural circulation loop operating with supercritical CO2. The 

performance of the loop was determined by measuring flow velocities of CO2 which could be 

correlated to Grashof number, Prandtl number and dimensionless effective density difference. 

No flow instability has been reported during the experiments. To gain an insight in to steady 

state, flow stability and heat transfer behavior of natural circulation with supercritical fluids, a 

Supercritical Pressure Natural Circulation Loop (SPNCL) has been set up and operated in 

Bhabha Atomic Research Centre (BARC), India. The experiments were conducted with carbon 

dioxide at supercritical pressures. Carbon dioxide can be considered as a good simulant fluid for 
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water at supercritical conditions because of analogous change of properties particularly density 

and viscosity across the pseudocritical point as shown in Figure 4-1a & 4-1b. The computer code 

NOLSTA desribed in Chapter 3, for steady state and stability analysis of an open loop natural 

circulation with SCW as working fluid has been modified to carry out analysis of closed loop 

thermosyphon as well. Moreover, supercritical CO2 properties obtained from National Institute 

of Standards and Technology (NIST) database (http://webbook.nist.gov/chemistry/fluid/) were 

also incorporated in the code. 

 

4.2 The experimental loop 

The test facility is a uniform diameter (13.88 mm ID & 21.34 mm OD) rectangular loop named 

Supercritical Pressure Natural Circulation Loop (SPNCL) with different orientations of heater 

and cooler, which can operate with either of the two fluids (i.e. supercritical water or 

supercritical carbon dioxide). The design pressure and temperature of the Test facility is 30 MPa 

& 450 oC respectively. The loop material of construction is SS-347. The loop has been operated 

with carbon dioxide at supercritical pressure (7.7 – 9 MPa). A photograph and schematic of the 

loop showing the as fabricated length scales is given in Figure 4-2a and Figure 4-2b. The loop 

can operate with different orientations of heater and cooler (e.g. Horizontal Heater Horizontal 

Cooler (HHHC), Horizontal Heater Vertical Cooler (HHVC), Vertical Heater Horizontal Cooler 

(VHHC) and Vertical Heater Vertical Cooler (VHVC)), to study the effect of orientation on 

natural circulation behavior at supercritical conditions. Heating is achieved by uniformly 

winding nichrome wire over a layer of fiber glass insulation. The coolers are tube in tube type 

with carbon dioxide flowing in the inner tube and chilled water (at 9 – 12o C) flowing in the 

outer annular tube (77.9 mm ID).The loop had a pressurizer connected at the bottom horizontal 
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leg which takes care of the thermal expansion besides accommodating the cover gas helium 

above the carbon dioxide. The safety devices of the loop (i.e. two rupture discs, RD1 & RD2) 

were installed on top of the pressurizer. The entire loop was insulated with three inches of 

ceramic mat (k=0.06 W/(m K)). 

 

The loop is instrumented with K-type thermocouples to measure the primary fluid and secondary 

fluid temperatures. Primary fluid temperatures at each location is measured as the average value 

indicated by two thermocouples inserted diametrically opposite at r/2 from the inside wall 

whereas secondary fluid temperatures are measured by a single thermocouple located at the tube 

center. The system pressure is measured with the help of Kellar make pressure transducers. The 

pressure drop across the bottom horizontal tube and the level in the pressurizer were measured 

with the help of two differential pressure transmitters. The power of each heater was measured 

with a Wattmeter. The secondary coolant flow rate or chilled water flow rate is measured with 

the help of three parallel turbine flow meters each having a range of 0-100 lpm. The accuracy of 

the thermocouples were within ± 0.5 0C. The accuracy of the pressure and differential pressure 

measurements were respectively ± 0.03 MPa and ± 0.18 mm H2O column. The accuracy of the 

secondary flow as well as power measurement is ± 0.5 % of the reading.  

 

Before operation with supercritical CO2 the loop was flushed repeatedly with CO2 at low pressure 

including all impulse, drain and vent lines. Subsequently the loop was filled with CO2 in gaseous 

form at 5.5 MPa (saturation temp 18.2 oC) and then both horizontal and vertical coolers were 

supplied with chilled water (9-12 oC) flowing on secondary side which resulted in condensation 

of carbon dioxide. During condensation loop pressure may fall and more CO2 will be admitted 
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from the cylinder. This process of filling and condensation will continue till there is no fall in 

loop pressure. Now, helium was filled on top of pressurizer at desired operating pressure (e.g. 7.7 

– 9 MPa). Due to large density difference between CO2 and Helium i.e. 744.3 kg/m3 and 13.7 

kg/m3 respectively at 9 MPa/ 30oC, the two fluids are not expected to mix and a level will be 

formed in the pressurizer. Once the required supercritical pressure was achieved, the helium 

cylinder was isolated and heater power was switched on and adjusted to the required value. 

Sufficient time was allowed to achieve the steady state. 

 

4.3 Steady state natural circulation flow analysis with supercritical CO2 operation 

 

4.3.1 Natural circulation flow analysis of an open loop 

First of all code (NOLSTA) has been validated for open loop analysis with experimental data for 

Supercritical CO2 available in literature. Lomperski et al. (2004) have reported experimental 

natural circulation data for carbon dioxide at supercritical pressure for constant heater inlet 

temperature irrespective of power. The loop orientation is HHHC having ID of 14 mm and 

height of 2 m. The code predicts the steady state mass flow rate and heater outlet temperature 

appreciably well as shown in Figure 4-3. A grid size of 0.01 m was used to generate the steady 

state results. The predicted mass flow rates deviate within -13% to +10% of the experimental 

flow rates, whereas the predicted heater outlet temperatures differ from -2.5% to +8.5% of the 

experimental values.  

 

A parametric study has been carried out to study the effect of diameter, orientation, pressure and 

heater inlet temperature on steady state behaviour of SPNCL of BARC (considering it as an open 

loop) operating with carbon dioxide at supercritical pressures. A grid size of 0.01 m is used to 



87 
 

generate the steady state results. The steady state characteristics have been predicted for various 

loop diameters (i.e. 7 mm, 13.88 mm, 20.7 mm and 28 mm) for HHHC orientation with SC-CO2 

(Figure 4-4). The steady state characteristics indicate that with initial increase in power the loop 

mass flow rate increases due to increase in buoyancy force caused by the increase in density 

difference between cold leg (having sub-critical carbon dioxide) and hot leg (having supercritical 

carbon dioxide).   

 

Subsequently, flow decreases with power due to increased frictional pressure drop as can be 

explained by Figure 4-5. The frictional pressure drop in hot leg represented by inverse of density 

in hot leg shows an increasing slope whereas buoyancy represented by density difference 

between hot and cold leg shows a reducing slope with increase in power. This indicates that after 

certain power the frictional pressure drop will start over-riding the buoyancy head and 

supercritical natural circulation system will start exhibiting reduction in flow with increase in 

power. The mass flow rate increases with increase in loop diameter because of reduced frictional 

resistance. The peak mass flow rates for 7 mm, 13.88 mm, 20.7 mm and 28 mm diameter loops 

with supercritical carbon dioxide operation at 9 MPa pressure are observed at heater outlet 

temperature of 50.9oC, 51oC, 49.75oC and 49.47oC respectively (pseudo-critical temperature of 

CO2 at 9 MPa is 40oC).  

 

The effect of orientation on steady state mass flow rate for open loop is shown in Figure 4-6. The 

maximum mass flow rate is achieved for HHHC orientation and minimum for VHVC orientation, 

since the elevation difference between centre line of heater and cooler is 4.1 m (maximum) and 

1.45 m (minimum) for HHHC and VHVC orientation respectively. The elevation difference 

between centre line of heater and cooler for VHHC orientation (2.8 m) and HHVC orientation 
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(2.75m) is almost same, but the mass flow rates observed in friction dominant regime for VHHC 

orientation are much higher than HHVC orientation. This is due to smaller length of supercritical 

leg or hot leg (e.g. 3.1 m) for VHHC orientation as compared to length of supercritical leg for 

HHVC orientation (e.g. 8.755 m) for the direction of flow shown in Figure 4-2b, which leads to 

lower frictional resistance and higher mass flow rate in VHHC orientation. 

 

The mass flow rate increases with pressure at high powers in friction dominant regime just as in 

two-phase NC systems as shown in Figure 4-7. The steady state natural circulation mass flow 

rate reduces significantly when heater inlet temperature exceeds the pseudo-critical temperature 

(e.g. 37oC to 43oC) as shown in Figure 4-8. This is attributed to the reduction in the density 

difference between hot leg and cold-leg resulting in reduced buoyancy head (as can be observed 

from Figure 4-1a) and as both the legs become supercritical the frictional resistance increases 

substantially resulting in large reduction in flow on increasing heater inlet temperature from 37 

oC to 43oC.  

 

4.3.2 Steady state natural circulation flow analysis of closed loop SPNCL 

In a closed loop the coolant mass flow rate on secondary side of cooler (e.g. chilled water in 

SPNCL) is kept constant as heater power is increased. The heater inlet temperature is not fixed 

and increases with increase in heater power. For analysis of closed loop, the rate of heat rejection 

in the cooler is evaluated based on calculation of overall heat transfer coefficient for cooler and 

temperature difference between primary and secondary fluid. In this case, the operating pressure 

of the loop, coolant mass flow rate & inlet temperature for secondary side of cooler and the 
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heater power are specified along with the entire geometry of the loop (i.e. hydraulic diameter, 

flow area and length of each pipe).  

 

The SPNCL of BARC is actually a closed loop where heater inlet temperature is not controlled 

and only chilled water mass flow rate and inlet temperature on secondary side of cooler is 

maintained constant. During experiments chilled water temperature shows maximum temperature 

rise of 1oC.  

The governing equations for its analysis remain same as described in sections 3.2.1, 3.2.2 & 

3.2.3 of Chapter 3. The procedure to achieve steady state mass flow rate is explained below: 

(i) Assume an inlet temperature to heater and calculate the steady state mass flow rate of 

SPNCL for a given power by assuming total heat rejection in cooler or considering open loop 

configuration. 

(ii) Now taking this flow rate and temperature distribution on primary side of cooler evaluate 

UAhtr × LMTD for cooler. 

(iii)  If UAhtr × LMTD < Power given to heater then increase heater inlet temperature else reduce 

heater inlet temperature. The iterations converge if UAhtr × LMTD is within 99.9% of the power 

given to heater. 
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where, ΔTin is temperature difference between primary and secondary fluid at inlet of cooler and 

ΔTout is temperature difference between primary and secondary fluid at outlet of cooler. 

 

To calculate UAhtr, the evaluation of inside primary heat transfer coefficient (hi) and outside 

secondary heat transfer coefficient (ho) for cooler is required. The flow on secondary side of 

cooler is annular as well as thermally and hydro-dynamically developing. For secondary 

developing laminar flow (i.e. Re < 2000), the Nusselt number (Num = hD/k) was evaluated based 

on solution of Navier-Stokes equation for the specific geometry and boundary conditions of the 

cooler. The values of the same at various Reynolds number are given in Table 4-1. For secondary 

annular fully developed turbulent flow (i.e. Re> 5000) the values of Nusselt number (given in 

Table 4-1) were taken from Rohsenow & Hartnett (2000). A correction needs to be applied to 

these values for thermally and hydro dynamically developing turbulent flow as given below 

  

D
L
 C

   
Nu

Num 


1 , where C = 6.0 for contraction/ expansion at the entrance.     (4.3) 

 

Table 4-1: Nusselt number evaluation for secondary side flow 
 

 Nusselt number for thermally and 
hydrodynamically developing annular laminar 
flow (Num) 

Nusselt number for fully 
developed annular turbulent 
flow ( Nu )  

Prandtl 
Number 

Re = 1000 

(developing) 

Re = 1500 

(developing) 

Re = 2000 

(developing) 

Re = 5000 

(developed) 

Re = 10000 

(developed) 

3 - - - 46 (39.7)  77.4 (66.8) 

9.6 18.69* 22.33* 25.5* 65.8 (58.1) 117.6 (103..8)

10 - - - 67 (59.2) 120 (106) 

 

* Num values are for r = di/do = 0.274  

Nu values inside ( ) are for r = 0.5 and Nu  values outside ( ) are for r = 0.2 
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For the transition region (i.e. 2000 < Re < 5000) linear interpolation is used between Nu values 

computed for thermally and hydro dynamically developing flows at Re = 2000 and Re = 5000 

respectively.  

 

Considering various empirical correlations available in literature for heat transfer to supercritical 

fluids, inside heat transfer coefficient was calculated using different correlations proposed by 

Bringer and Smith (1957), Jackson (2002), Swenson et al. (1965) and Shitsman (1959). 

 

Experiments have been conducted in SPNCL with carbon dioxide for different orientations of 

heater and cooler and steady state data have been compared with predictions of NOLSTA code. 

All the experimental steady state data for supercritical carbon dioxide has been given in detail in 

Appendix-I for reference. The elbow loss coefficient has been taken to be 2.5 each (total 4 

elbows) for predictions. The higher value of elbow loss coefficient can be justified based on local 

losses of two blind crosses (one upstream and one downstream of each elbow for temperature and 

pressure measurement of primary fluid) which have been added to the local loss coefficient of 

each elbow. The steady state mass flow rate for experimental conditions has been obtained by 

energy balance as shown below 

 
wss = Q/ (iout -iin)                          (4.4) 
 
Enthalpy at heater outlet (iout) can be calculated from heater outlet temperature and operating 

pressure measured experimentally and enthalpy at heater inlet (iin) can be calculated from heater 

inlet temperature and operating pressure measured experimentally. The comparison of 

experimental data with code results for HHHC orientation is shown in figure 4-9a & 4-9b. 

 



92 
 

It can be observed from figure 4-9b that experimental heater inlet temperature is not constant and 

is increasing with power. The temperature difference between heater inlet and outlet is reducing 

as we are approaching the pseudo-critical temperature (37.9oC for 8.6 MPa) because as one 

approaches the pseudo-critical temperature the specific heat (cp) of fluid increases and is 

maximum at pseudo-critical temperature but as the fluid temperature is increased beyond pseudo-

critical point the cp value again starts reducing (see figure 4-10) resulting in increased temperature 

difference. The steady state mass flow rate increases till the heater inlet temperature reaches 

pseudo-critical temperature at 1400 W. As the power is increased beyond 1400 W, both hot and 

cold leg becomes supercritical and there is a sudden reduction in experimental flow due to 

increased frictional resistance which is similar to the observation of effect of heater inlet 

temperature on steady state behavior of open loop (figure 4-8). Moreover the volumetric 

expansion coefficient is also maximum near the pseudo-critical temperature which coincides with 

maximum flow rate near pseudo-critical temperature (see figure 4-10). The NOLSTA code 

predicts the experimental mass flow rates and heater inlet/ outlet temperatures very closely by 

using Bringer Smith correlation (1957) for calculating primary side heat transfer coefficient for 

cooler, whereas Jackson correlation (2002) shows much sharper reduction in flow rate beyond 

pseudo-critical temperature associated with a much steeper increase in heater inlet/ outlet 

temperature (see Appendix-III for the various heat transfer correlations referred in the thesis). 

Both the correlations are giving good match for experimental data below pseudo-critical 

temperature (i.e. below 1400 W), but beyond 1400 W Jackson correlation deviates largely from 

experimental data. Similarly, Shitsman correlation (1959) shows sharp reduction in flow 

associated with sharp increase in heater inlet/ outlet temperatures (see figures 4-11a & 4-11b) 

beyond the pseudo-critical temperature whereas Swenson correlation (1965) shows a smooth 
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reduction in flow rate. Hence, heat transfer characteristics of the cooler play an important role on 

steady state natural circulation characteristics of a closed loop thermo-syphon with supercritical 

fluids. Both Bringer Smith and Swenson correlation calculate thermal conductivity of fluid 

(required for calculating Prandtl number as well as Nusselt number) at wall temperatures/ pseudo-

critical temperature (for bulk fluid temperature exceeding pseudo-critical temperature) instead of 

bulk fluid temperature which prevents sharp reduction of heat transfer coefficient and steep rise 

of steady state bulk fluid heater inlet/ outlet temperature beyond pseudo-critical temperature. 

Hence sharp reduction of flow is not observed for these two correlations beyond the pseudo-

critical temperature similar to what has been observed in experiments.    

 
Bringer Smith correlation (1957) also gives good match for experimental data for HHVC 

orientation as shown in figure 4-12a & 4-12b, whereas Jackson correlation (2002) again shows a 

sharp reduction in flow beyond pseudo-critical temperature. The maximum error associated with 

experimental mass flow measurement (which is a derived quantity) is ± 30% for the loop 

operation near the pseudo-critical region, since the bulk fluid temperature difference across the 

heater section is much less near the pseudo-critical region, whereas the error is much less away 

from the pseudo-critical region. However, the mass flow rates predicted by NOLSTA code are 

within +15% of the experimental values. 

 

4.4    Experimental steady state heat transfer coefficient for carbon dioxide and comparison 

with various correlations 

 

4.4.1 Determination of heater heat transfer coefficient experimentally   

The SPNCL also has a provision for measurement of local heat transfer coefficient along the 

heater length, by thermocouples brazed on outside heater surface at six equidistant locations 
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along the heater length as shown in figure 4-13. The heat transfer coefficient along the heater 

length is estimated from the measured outside surface temperature (Two i.e. T3-T14) of heater 

pipe wall. At each location temperature is measured at two diametrically opposite positions (i.e. 

T3 & T4). Then, the steady state inside wall surface temperature of heater (Twi) is estimated by a 

conduction analysis. 
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h
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wowi kL
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   TT




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
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                                               (4.5) 

 
Inlet and outlet fluid temperatures (Tin and Tout respectively) of heater are measured by using two 

thermocouples (T1 & T2 and T15 & T16 respectively) as shown in figure 4-13. The bulk fluid 

enthalpy at the corresponding axial location along heater length were obtained by the linear 

interpolation of enthalpies at inlet and outlet of heater test section 
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From the local bulk fluid enthalpy, local fluid bulk temperature can be calculated. From local 

bulk temperature, inside heater wall temperature and heat input, the local inside heat transfer 

coefficient (hi) can be estimated as given below:- 

 
          

TTA

Q
  h

bwihtri
i 


                                                                                                               (4.7) 

 
Uniform heat flux is assumed through out the heated length and Ahtri is the inside heat transfer 

area of the heater tube. 

It may be noted that at a single power of operation in SPNCL, a complete temperature range of 

bulk fluid (i.e. from sub-critical to supercritical) is not covered from heater inlet to heater outlet.  

(4.6)
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Hence, the local heat transfer coefficient along horizontal heater length (HHHC orientation) has 

been determined for different operating powers corresponding to sub-critical, pseudo-critical and 

supercritical range of operation as shown in figures 4-14a, 4-14b& 4-14c respectively. For the 

horizontal heater, there are six thermocouples on the top and six at the bottom of the heater 

surface, hence two heat transfer coefficients are determined. At the entrance region the top heat 

transfer coefficient is higher but as the flow gets thermally developed the bottom heat transfer 

coefficient becomes larger since buoyancy forces may assist the heat transfer from bottom 

surface of the tube. This is in agreement with experiments conducted for horizontal flow of 

carbon dioxide at supercritical and sub-critical pressures, Adebiyi and Hall (1976). They also 

found non-uniform cross-section temperature profile for horizontal flow and confirmed the effect 

of buoyancy forces by comparison with buoyancy free data.  

 
Since the most correlations available in literature do not account for top and bottom heat transfer 

for horizontal flow, the average of top and bottom heat transfer coefficient has been taken. The 

average of top and bottom heat transfer coefficient is not varying significantly with the bulk 

carbon dioxide temperature along the length of horizontal heater test section for the sub-critical, 

pseudo-critical and supercritical range of operation. More over, no deterioration in heat transfer 

has been observed during current range of operation of SPNCL due to lower heat flux. Hence, it 

is worth while to plot average heat transfer coefficient versus average bulk fluid temperature 

across heater section corresponding to various operating powers. The maximum error associated 

with measurement of heat transfer coefficient is ± 15%. 
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4.4.2   Comparison of heat transfer data with various empirical correlations   

The experimentally determined heat transfer coefficients for horizontal heater were compared 

with predictions of various correlations available in literature as shown in figures 4-15a, 4-15b & 

4-15c. Jackson (2002), Shitsman (1954) and Bishop (1964) correlations are closer to 

experimental heat transfer results in the sub-critical, pseudo-critical and supercritical region of 

loop operation. 

 

However, Bringer Smith (1957) is found to deviate as much as 130% in the pseudo-critical region 

of loop operation. Hence, for loop specific condition it is quite apparent that for evaluating heater 

inside heat transfer coefficient the thermal conductivity of fluid (required for calculating Prandtl 

number as well as Nusselt number) should be evaluated at the bulk fluid temperature, whereas for 

cooler inside heat transfer coefficient the thermal conductivity should be evaluated at the wall 

temperature/ pseudo-critical temperature for bulk fluid temperature exceeding pseudo-critical 

temperature.  

 

4.5 Conclusions 

The peak of the steady state mass flow rate versus power curve for supercritical carbon dioxide 

natural circulation is obtained at heater outlet temperature near the pseudo-critical value for open 

as well as closed loop boundary conditions. A change in loop diameter does not significantly 

affect the heater outlet temperature at which peak steady state flow rate is achieved. If the heater 

inlet temperature increases beyond the pseudo-critical temperature the steady state natural 

circulation mass flow rate reduces significantly for closed as well as open loop. The steady state 

natural circulation mass flow rate increases with increase in pressure at higher powers in the 
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friction dominant region just like two phase natural circulation loops. The HHHC orientation 

gives maximum and VHVC orientation gives minimum flow. For the same elevation difference 

VHHC orientation gives higher flow as compared to HHVC orientation. The steady state mass 

flow rate versus heater power characteristics for open and closed loop are slightly different. In a 

closed loop a larger reduction in flow is observed after a particular power when both hot and 

cold legs become supercritical, where as gradual flow reduction is observed for open loop with 

constant heater inlet temperature.   

 

NOLSTA code predicts the steady state natural circulation mass flow rates of closed as well as 

open loop operating with supercritical carbon dioxide appreciably well (+ 15%). For closed loop, 

the steady state behavior of loop is found to be very sensitive to the empirical heat transfer 

correlation used for cooler primary side. The heat transfer correlations evaluating thermal 

conductivity at the bulk fluid temperature are showing very sharp reduction in flow after a 

particular power (when both cold leg and hot leg temperatures exceed the pseudo-critical 

temperature) which is accompanied with a steeper rise in heater inlet and outlet temperatures. 

However, the correlations evaluating thermal conductivity at wall temperatures/ pseudo-critical 

temperature for bulk fluid temperature exceeding pseudo-critical temperature (i.e. Bringer Smith, 

1957) give a smoother reduction in flow similar to that observed in the experiments. For loop 

specific operating conditions it can be indirectly concluded that for evaluating heater inside heat 

transfer coefficient the thermal conductivity of fluid (required for calculating Nusselt number and 

Prandtl number) should be evaluated at the bulk fluid temperature, whereas for cooler inside heat 

transfer coefficient the thermal conductivity should be evaluated at the wall temperature/ pseudo-

critical temperature for bulk fluid temperature exceeding pseudo-critical temperature.  
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Figure 4-1: Comparison of water and carbon dioxide properties at supercritical conditions 
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Figure 4-2a: Photograph of Supercritical Pressure Natural Circulation Loop (SPNCL).
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 Figure. 4-2b: Schematic of Supercritical Pressure Natural Circulation Loop (SPNCL) 
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Figure 4-3: Comparison of experimental data with theoretical predictions for Lomperski’s 
loop at 8 MPa and 24oC heater inlet temperature 
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Figure 4-4: Effect of diameter on steady state behaviour of open  
SPNCL operating with SC-CO2  at 9 MPa and 30oC heater inlet 
temperature (HHHC orientation). 
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Figure 4-5: Variation of buoyancy and frictional forces with power for open SPNCL 
operating with SC-CO2 at 9 MPa/ 30oC heater inlet temperature (HHHC orientation). 

Figure 4-6: Effect of orientation on steady state mass flow rate of open SPNCL operating 
with SC-CO2 
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Figure 4-7: Effect of pressure on steady state mass flow rate of 
open SPNCL operating with SC-CO2 (HHHC orientation) 

Figure 4-8: Effect of heater inlet temperature on steady state mass flow 
rate of open SPNCL operating with SC-CO2 (HHHC orientation). 
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Figure 4-9a: Comparison of experimental and predicted mass flow rate 
for SPNCL operating with SC-CO2 for HHHC orientation at 8.6 MPa. 
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Figure 4-9b: Comparison of experimental and predicted heater inlet and outlet 
temperature for SPNCL operating with SC-CO2 for HHHC orientation at 8.6 MPa. 
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Figure 4-10: Variation of specific heat/ volumetric expansion coefficient
of carbon dioxide with temperature at 8.6 MPa pressure 

Figure 4-11a: Comparison of experimental and predicted mass flow rate 
for SPNCL operating with SC-CO2 for HHHC orientation at 8.6 MPa. 
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Figure 4-12a: Comparison of experimental and predicted mass flow rate 
for SPNCL operating with SC-CO2 for HHVC orientation at 8.6 MPa. 
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Figure 4-11b: Comparison of experimental and predicted heater inlet and outlet 
temperature for SPNCL operating with SC-CO2 for HHHC orientation at 8.6 MPa. 
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Figure 4-12b: Comparison of experimental and predicted heater inlet and outlet 
temperature for SPNCL operating with SC-CO2 for HHVC orientation at 8.6 MPa.
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Figure 4-13:  Instrumentation for measuring heat transfer coefficient in heater 
test section of SPNCL operating with SC-CO2 
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 Figure 4-14: Variation of heat transfer coefficient along horizontal heater length during 
sub-critical, pseudo-critical and supercritical operating temperature range of SC-CO2 
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Figure 4-15:  Comparison of experimental heat transfer coefficient 

for horizontal heater measured in SPNCL with various correlations 

(a)

 (b) 

 (c) 
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Chapter 5 
 

Stability behavior of natural circulation loops operating with 
carbon dioxide at supercritical pressures for open and closed loop 

boundary conditions 
 
 

5.1 Introduction 

The literature reveals only very few experimental studies on natural circulation instability with 

supercritical fluids. Harden and Boggs (1964) conducted studies on Freon loop near critical 

region. High and low frequency oscillations were observed when bulk fluid temperature 

approached pseudo-critical temperature. Adelt and Mikielewicz (1981) performed studies on 4m 

high loop with carbon dioxide (CO2). As the fluid was heated through pseudo-critical point 

pressure oscillations were observed for a particular test but the study mainly focused upon heat 

transfer rather than stability. Lomperski et al. (2004) have reported experiments in a two meter 

high natural circulation loop with carbon dioxide at supercritical pressure. The loop was operated 

in a base case configuration that maximized flow rates and in a second configuration having an 

orifice in the hot leg. No flow instabilities were observed in these tests as the fluid was heated 

through thermodynamic pseudo-critical point. Yoshikawa et al. (2005) have studied the 

performance of a closed natural circulation loop operating with supercritical CO2. The 

performance of the loop was determined by measuring flow velocities of CO2 which could be 

correlated to Grashof number, Prandtl number and dimensionless effective density difference. 

No flow instability has been reported during the experiments.  In a very recent study, T’Joen and 

Rhode (2012) conducted stability experiments with artificial neutronic feedback in scaled natural 

circulation driven HPLWR (High Performance Light Water Reactor) facility named Delight 
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maintaining the inlet temperature constant (i.e. with open loop boundary conditions). They used 

Freon R23 at 5.7 MPa as the scaling fluid. The decay ratios and frequencies of the riser inlet 

temperature oscillations were measured. They found that for a single inlet temperature the 

system undergoes two transitions as the power is increased. At low power the system is stable 

and becomes unstable as the power is increased, but on further increasing the power the system 

stabilizes. They also found a threshold inlet temperature above which no instability is observed. 

Xiong et al. (2012) have carried out experiments on flow instability in two parallel channels with 

supercritical water. They did a parametric study which shows that flow becomes more stable by 

increasing the pressure or decreasing the inlet temperature in the range of experiments conducted. 

Clearly the literature as well as the understanding of instability phenomenon with supercritical 

fluids is very less. Hence, more experiments were conducted in SPNCL with supercritical carbon 

dioxide as operating fluid to gain an insight in to its stability behavior 

 

5.2 Stability experiments for natural circulation with supercritical carbon dioxide  

 

5.2.1 Stability experiments and analysis for an open loop 

First of all NOLSTA code has been validated for open loop analysis with experimental data for 

Supercritical CO2 available in literature. Lomperski et al. (2004) have reported experimental 

natural circulation data for carbon dioxide at supercritical pressure for constant heater inlet 

temperature irrespective of power. The loop orientation is HHHC having ID of 14 mm and 

height of 2 m. NOLSTA code predicted the steady state characteristics of the loop appreciably 

well as described in Chapter 4, section 4.3.1. The code predicts the threshold of instability as 7.5 

kW for Lomperski’s loop (see figure 5-1), whereas no instability has been observed during 
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experiments. This deviation from experimental values can be overcome by considering thermal 

capacitance of pipe wall which will be addressed later in the section 5.3.2. 

 

5.2.2 Stability experiments for closed loop SPNCL 

 

5.2.2.1 Time series of loop oscillatory behaviour 

No flow instability was observed during experiments conducted in SPNCL with higher 

secondary side flow rate i.e. 34 lpm (Chapter 4, section 4.3.2). Extensive natural circulation 

experiments were conducted in the test facility with supercritical carbon dioxide as working fluid 

to observe instability. The instability has been observed for HHHC orientation only (all other 

orientations were found to be stable) and with lower secondary side flow rate i.e. 10-15 lpm. 

Typical instability has been observed at an operating pressure of 9.1 MPa and 10.1 lpm 

secondary flow as shown in figure 5-2a, 5-2b & 5-2c. It shows the transient from 700 W to 500 

W to 300 W. Figure 5-2a shows the pressure drop across the horizontal heater section which 

shows development of instability during power reduction from 700 W to 500 W, whereas 

instability dies out on further reduction of power to 300 W. The instability is observed at 500 W 

with heater inlet temperature of ~27.1oC and heater outlet temperature varying from 37-44.6oC 

as can be seen from figure 5-2b. Figure 5-2c shows the heater outlet temperature oscillations of 

equal amplitude in more detail.  With 15 lpm secondary flow the instability is observed at 800 W 

for 9.1 MPa pressure as shown in figure 5-3a, 5-3b & 5-3c. It shows the transient from 600 W to 

800 W to 1000 W. Figure 5-3a shows the pressure drop across the horizontal heater section 

which shows development of instability during power rise from 600 W to 800 W, whereas 

instability dies out on further increase of power to 1000 W. The instability is observed at 800 W 
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with heater inlet temperature of ~31oC and heater outlet temperature varying from 35-43oC as 

can be seen from figure 5-3b. The heater outlet temperature oscillations are having consecutive 

larger and smaller peak (figure 5-3c) indicating near period doubling as compared to single peak 

oscillation observed at 500 W (figure 5-2c). A similar type of instability is observed during 

power transient from 925 W to 700 W to 500 W as shown in figure 5-4a, 5-4b & 5-4c. The 

instability is observed at 700 W with heater inlet temperature of ~31oC and heater outlet 

temperature varying from 34-45oC as can be seen from figure 5-4b. The loop is however stable at 

925 W and 500 W. Figure 5-4c also shows repetitive large and small peak in heater outlet 

temperature oscillations indicating near period doubling as compared to single peak oscillation 

observed at 500 W (figure 5-2c).   

 

The instability has also been obtained during power step down from 1900 W to 300 W at 7.7 

MPa and secondary flow rate of 10 lpm as shown in figure 5-5a, 5-5b & 5-5c. The instability has 

also been obtained during start-up at 700 W at 8.1 MPa and secondary side flow rate of 10 lpm 

as shown in figure 5-6a & 5-6b. The instability dies out on further increasing power to 1100 W. 

Figure 5-6b shows uniform amplitude oscillations at 700 W. The operating conditions, time 

period and amplitude of oscillations obtained during experimentation have been reported in 

Table 5-1. In all cases, the instability develops by the oscillation growth mechanism as proposed 

by Welander (1967). Instability development from steady state condition by the oscillation 

growth mechanism was also observed in single-phase loops, Vijayan et al. (2007).  

 

The amount of instability data generated in the present test facility is clearly inadequate 

compared to the extensive instability data that exists for single-phase and two-phase loops and 

sometimes the instability could not be repeated during the experimentation. Actually, the 
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instability is observed over a very narrow window of power and can be missed if the step change 

in power is high. However, in all the cases the instability is observed when heater inlet 

temperature is very near to the critical temperature (i.e. 31oC for CO2) and outlet temperature is 

oscillating even beyond the pseudo-critical temperature oscillating from 29-45 oC (considering 

complete range of instability data). Hence, instability is observed in the pseudo-critical 

temperature range of loop operation where the volumetric expansion coefficient of the 

supercritical CO2 is very high, see figure 5-7.   

 

Table 5-1: Observed oscillatory characteristics of natural circulation with supercritical cabon-
dioxide in SPNCL 

Power 
(W) 

Pressure 
(MPa) 

Secondary 
flow rate at 
9oC inlet 
temperature 

(lpm) 

Heater Inlet 
temperature

(oC) 

Range of 
heater 
outlet 
temperature 
oscillation 

(oC) 

Amplitude 
of 
pressure 
drop 
oscillation

(mm of 
WC) 

Time 
period of 
heater 
outlet 
temperature 
oscillation 
(s) 

Loop 
circulation 
time of 
steady state 
calculated 
by 
NOLSTA(s)

300  7.7 10.0 28.4 29.4 – 34.5 59.7 226.9 43.4 

500  9.1 10.1 27.1 37 - 44.6 27.74 36 33.4 

700  9.1 15.5 31 34 - 45 47.25 70.2 28.3 

700  8.1 10.0 29.4 30.3 – 33.4 38.0 30.6 22.7 

800  9.1 15.0 31 35 - 43 51.29 65 25.5 

 

5.2.2.2 Phase plots of observed oscillatory instability 

The methodology of getting the phase plots from the experimental transient using momentum 

equation is described as follows 

Momentum equation 
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Integrating the momentum equation over the horizontal heater section gives 
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where, w is considered as the average fluid mass flow rate assumed uniform along the length of 

the heater test section. The finite difference form of the equation (5.2) can be expressed as 
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The steady state form of equation (5.3) can be expressed as  
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For phase plot equation (5.3) is used, in which experimental transient data where steady state is 

achieved (i.e. at a stable power) is taken as the starting point. At the stable power the current 

mass flow rate (wn) is determined by equation (5.4) in which the current pressure drop ( n
hp ) 

measured across the bottom horizontal heater section as well as the specific volume at inlet and 

outlet of heater section (i.e. vin and vout calculated from the measured current inlet and outlet 

temperatures of the heater test section) are substituted.  The calculated current mass flow rate 

(wn) is substituted in to equation (5.3) to determine mass flow rate (wn+1) after time increment ∆t 

(typical value of 2 s in experiments). Finally, wn+1 and  1 n
hp  are plotted to get the phase plots, 

however, figures 5-8 – 5-12 show phase plots only for the duration of time where limit cycle 

oscillations for the unstable power have been achieved.  
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The phase plot corresponding to a typical one cycle oscillation observed at 500 W (figure 5-2) is 

a simple closed curve as shown in figure 5-8. From the time series at 800 W given in figure 5-3c, 

it is easily seen that a near period doubling occurs between 500 W and 800 W. In general, the 

period is expected to decrease with increase in power if the oscillatory mode remains the same. 

Switching of the oscillatory mode as shown by the phase plot of single cycle oscillation in figure 

5-9 results in sudden period change. The phase plot of the time series (at 700 W, figure 5-4) also 

shows a switching of oscillatoy mode resulting in near period doubling, as shown in figure 5-10. 

Both the oscillatory modes characterized by the phase plots in Figure 5-8 and 5-10 are only 

nearly periodic as shown by the long duration phase plots in Figure 5-11 and 5-12 respectively.  

 

5.3 Stability analysis by NOLSTA code 

 

5.3.1 Analysis of SPNCL for closed loop boundary conditions 

 

5.3.1.1 Sensitivity study 

The stability analysis was carried out for HHHC orientation of SPNCL considering closed loop 

behaviour in which heater inlet temperature was allowed to fluctuate with time. Considering the 

steady state behaviour of SPNCL, Bringer Smith (1957) correlation has been used on primary 

side of cooler for transient predictions. However, heating heat flux is directly imposed on heater 

control volumes. The stability threshold for closed loop boundary conditions has been found to 

be sensitive to the convergence value of loop pressure closure condition, the time step and grid 

size considered for analysis. Hence convergence value of loop pressure closure, time step and 

grid size independence test was carried out for SPNCL for operation with SC-CO2. 
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Effect of time step and grid size 

To start with grid size of 0.01 m was considered and time steps were changed to carry out the 

stability analysis of SPNCL at 500 W/ 9.1 MPa and 15 lpm secondary flow. It was observed that 

larger time steps stabilized the predictions as shown in figure 5-13. On reducing the time step 

from 0.06s to 0.03s the predictions hardly change. Now considering 0.03 as the time step the grid 

size was reduced to 0.005 m but no change was observed in the results as shown in figure 5-14. 

However, increasing the grid size to 0.025m and 0.05 m only resulted in shift of oscillations. To 

preserve accuracy and save computational time the grid size of 0.01m was finalized. Henceforth, 

grid size and time step of 0.01 m and 0.03s respectively have been used for generating the 

stability results for SPNCL with closed loop boundary conditions.    

 

Effect of convergence value of loop pressure closure condition  

For closed loop natural circulation the pressure boundary condition to be satisfied at any time 

step is Σ∆p = 0, where Σ∆p is sum of pressure drop of all the components of the loop. The 

solution is converged if valueeconvergencp   . The stability predictions are found to be 

dependent on this convergence value as shown in figure 5-15. Unrealistic oscillations are 

predicted for convergence value of 10 Pa, whereas similar oscillations are predicted for 1 Pa and 

0.1 Pa. To save computational time, pressure boundary condition convergence value of 1 Pa has 

been taken for further analysis.  

 

5.3.1.2 Stability analysis without pipe wall thermal capacitance effect 

Considering above mentioned values of grid size, time step and and loop pressure closure 

convergence criterion a typical stable (400 W), unstable (500 W) and neutrally stable (450 W) 

case was obtained at 9.1 MPa and 15 lpm secondary flow as shown in figure 5-16. The complete 
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stability results for secondary side flow i.e. 15 lpm are shown in figure 5-17a & 5-17b. The loop 

is found to be stable at 400 W, becomes unstable at 500 W and continues to be unstable till 1300 

W and again becomes stable at 1350 W as shown in figure 5-17a. The instability is predicted for 

heater inlet temperature varying from 27.8 oC to 74 oC (spread across pseudo-critical temperature 

of 40.5oC at 9.1 MPa) as shown in figure 5-17b.  

 

The typical unstable behaviour predicted by NOLSTA code at 800 W is shown in more detail in 

figure 5-18a & 5-18b. Figure 5-18a shows continuously increasing amplitude of flow oscillations 

up to flow reversal. Figure 5-18b shows increasing amplitude of both heater inlet and outlet 

temperature oscillations having time period of 18.4 s (steady state loop circulation time of 20.8 s) 

which indicates development of instability by Welander mechanism (Welander, 1967). The 

Welander mechanism of instability development by oscillation growth mechanism is observed 

for development of instability from steady state condition in SPNCL as shown in figures 5-2a, 5-

3a, 5-4a & 5-5a. This is typical phenomenon of development of instability during single phase 

natural circulation at sub-critical conditions which mostly (but not always) leads to flow reversal. 

However, no flow reversal occurred during the experiments.  

 

At 90 lpm of secondary side flow, the unstable zone increases (i.e. 1200 W to 3400 W) as shown 

in figure 5-19a. However, heater inlet temperature range over which instability is observed 

reduces substantially i.e. 27.3 oC to 47.3 oC also spread across the pseudo-critical temperature 

(figure 5-19b). At higher flow rate of 135 lpm even the power range of instability reduces i.e. 

2200 W to 3500 W as shown in figure 5-20. At 2200 W which is the lower threshold of 

instability at 135 lpm limit cycle oscillation without flow reversal having amplitude of 11.2% of 

average flow is also observed. At still higher secondary flow rate of 180 lpm no instability is 
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observed as shown in figure 5-21. The secondary flow at which no instability is observed 

theoretically i.e. 180 lpm differs substantially from experimental values i.e. 34 lpm, however 

there is some degree of qualitative agreement. 

 
The stability maps for closed loop SPNCL at 8.1 & 9.1 MPa for HHHC orientation are shown in 

figure 5-22. NOLSTA predicts a very large unstable zone but the predictions are in qualitative 

agreement with experimental findings i.e. instability is predicted over a range of power with 

lower & upper stable zones and at higher secondary flows no instability is predicted. Code 

predicts instability in the power range required for near pseudo-critical operation where the 

volumetric expansion coefficient of fluid is very high i.e. the power required making loop 

average temperature equal to pseudo-critical temperature has also been plotted for each pressure 

i.e. 8.1 MPa and 9.1 MPa in figure 5-22. One dimensional codes are known to produce larger 

unstable zone but thermal capacitance of pipe wall can have strong stabilizing effect on stability 

behavior of single phase natural circulation loops. Hence, the same has been considered in the 

next section. 

 
5.3.1.3 Stability analysis with pipe wall thermal capacitance effect 

One dimensional model for simulating thermal capacitance of pipe wall (value – 3.98 × 106 J/(m3 

K), for SS-347) was incorporated in NOLSTA code. For every single control volume of fluid 

(having faces j and j+1) there is corresponding single heat structure volume denoted by grid 

point k, at the center heat structure volume. 

 

Energy balance equation for pipe wall: 
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0''' q ,          for cooler/ adiabatic walls in eq. (5-5) 
 
The same has been dicretized in the following form as 
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Thermal capacitance of each node length of pipe wall, xcA C pwwww                     (5-8) 
 
 

As concluded in the previous chapter inside heat transfer coefficient (hi) of cooler is estimated by 

Bringer Smith (1957) correlation, whereas Jackson(2002) correlation has been used to calculate 

inside heat transfer coefficient in heater/adiabatic pipe walls. The large instability zone as 

observed in the previous section (figure 5-22) vanishes all of a sudden by including pipe wall 

capacitance effect as shown for a most unstable case (called most unstable while considering 

without pipe wall thermal capacitance effect) for loop diameter of 13.88 mm at 10 lpm secondary 

flow, see figure 5-23. Some arbitrary changes were made to gain some insight in to stability 

behavior of SPNCL. Considering tolerance on thickness of ½” Sch. 80 commercial pipes 

available in the market (used for fabrication of SPNCL), the maximum inside diameter possible 

for the pipe is 14.9 mm, however instability could be obtained by only considering ID - 15.5 mm. 

Increasing the ID to 15.5 mm results in reduction in thermal capacitance of the pipe wall by 18%. 

Local losses were also not considered for the calculations. All these modifications may not be 

appropriate but gives some relevant results. Consideration of ID – 15.5 mm gives limit cycle 

oscillations without flow reversal (amplitude of the oscillation is 11.9%) and on increasing the 
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ID to 16.5 mm makes the loop more unstable as shown in figure 5-23. Another important thing is 

that this limit cycle oscillation for ID 15.5 mm case is just a neutrally stable case because 

increasing the loop power by + 25 W makes the loop stable as shown in figure 5-24. However, 

the amplitude of limit cycle oscillations is very high (11.9%) as compared to amplitude of just 

1.5% neutrally stable case obtained without pipe wall effect, see figure 5-16.  

 

Instability was missed several times during experimentation also because it is just the neutrally 

stable case and requires very narrow adjustment of power to get instability. If ½” Sch. 40 pipe 

would have been used for fabrication of SPNCL flow reversal as well as larger unstable zone 

could have been achieved (see the flow reversal case for ID 15.8mm loop case) as shown in 

figure 5-25. The loop is predicted to be stable for higher secondary flows i.e. 34 lpm as shown in 

figure 5-26 which is in agreement with experimental data. 

Moreover interaction of the fluid with heat structures can also affect the stability behavior of the 

loop. The same can be studied in more detail by 3D-CFD code. 

  

5.3.2 Analysis for open loop with wall thermal capacitance effect  

The results for stability analysis of Lomperski’s loop without considering pipe wall were 

presented in section 5.2.1 which indicated threshold of instability as 7.5 kW, however no 

instability was observed in experiments. Considering strong damping effect of pipe wall thermal 

capacitance on stability behaviour for closed loop boundary conditions, effect of the same was 

also studied for open loop boundary condition in Lomperski’s loop. As expected the instability 

threshold was pushed from 7.5 kW to 14.7 kW as shown in figure 5-27. Since the experimental 

graphs available in (Lomperski et al., 2004) are only up to 13 kW power, it shows that stability 
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threshold is pushed beyond the range of experiments conducted on the loop and explains the 

reason for non-observance of instability in the loop. 

 

Hence, thermal capacitance of pipe walls should be definitely considered for stability analysis of 

natural circulation at supercritical conditions unlike two phase natural circulation case. In two 

phase natural circulation case there cannot be any energy interaction between two phase fluid 

and adiabatic heat structure as both will always be at same temperature during the transient. Any 

perturbation in two phase flow will give rise to a perturbation in two phase fluid enthalpy and 

void fraction/ density, but perturbation in enthalpy will not give rise to any perturbation in two 

phase fluid temperature and so there cannot be any thermal interaction with the wall. However, 

perturbation in supercritical fluid flow will give rise to perturbation in enthalpy/ density and 

perturbation in enthalpy will also give rise to perturbation in supercritical fluid temperature and 

hence thermal interaction with the wall becomes possible. 

 

5.4 Conclusions 

During experimentation with carbon dioxide, instability has been observed for a very narrow 

window of power for HHHC orientation only and that too at lower secondary side chilled water 

flow rate i.e. 10-15 lpm. The instability in the loop was observed in the pseudo-critical 

temperature range of operation where the volumetric expansion coefficient of the fluid is the 

highest. For closed loop boundary conditions, NOLSTA code (without considering pipe wall 

thermal capacitance effect) predicts instability over a large range of power bounded by lower & 

upper stable zones. Moreover, the instability is predicted even for very high secondary flows i.e. 

135 lpm unlike experimental data where no instability was observed at 34 lpm secondary flow. 

However no instability was predicted at 180 lpm secondary flow. The predictions are only 



124 
 

qualitatively matching with experimental data, hence pipe wall thermal capacitance model was 

incorporated in NOLSTA code. Consideration of pipe wall thermal capacitance predicts SPNCL 

to be completely stable, but reducing the thermal capacitance by 18% and neglecting the local 

losses the code is able to simulate limit cycle oscillations without flow reversal as observed 

during experiments. As interaction of heat structure and fluid should be modeled in greater detail, 

hence 3D-CFD codes may be a helpful tool in understanding the stability behavior of closed loop 

thermo syphon with supercritical fluids.  

 

The modified NOLSTA code with pipe wall effect was also used for studying stability behavior 

for an open loop i.e. Lomperski’s loop. The consideration of pipe wall thermal capacitance 

pushed stability threshold beyond the experimental power range and explains the reason of 

instability not observed during experiments. Modeling of thermal capacitance of pipe walls is 

strongly recommended for stability analysis of natural circulation at supercritical conditions 

(both open and closed loop boundary conditions) unlike two phase natural circulation flow case. 

In two phase natural circulation case there cannot be any energy interaction between two phase 

fluid and adiabatic heat structure as both will always be at same temperature during the transient. 

Any perturbation in two phase flow will give rise to a perturbation in two phase fluid enthalpy 

and void fraction/ density, but perturbation in enthalpy will not give rise to any perturbation in 

two phase fluid temperature and so there cannot be any thermal interaction of fluid with the wall. 

However, perturbation in supercritical fluid flow will give rise to perturbation in enthalpy/ 

density and perturbation in enthalpy will also give rise to perturbation in supercritical fluid 

temperature and hence thermal interaction with the wall becomes possible. 
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Figure 5-1: Prediction of instability for Lomperski’s loop at 8
MPa and 24oC heater inlet temperature 
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 Figure 5-2: Typical unstable behavior at 500 W for HHHC orientation 
with SC-CO2 operation. 
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Figure 5-3: Typical unstable behavior at 800 W for HHHC 
orientation with SC-CO2 operation. 
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Figure 5-4:  Typical unstable behavior at 700 W for HHHC orientation
with SC-CO2 operation. 
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Figure 5-5: Typical unstable behavior at 300 W for HHHC orientation 
during power step down with SC-CO2 operation. 
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Figure 5-6: Typical unstable behavior at 700 W for HHHC orientation during 
power step rise with SC-CO2 operation.
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Figure 5-7: Variation of volumetric thermal expansion coefficient of carbon  dioxide with
temperature at 9.1 MPa pressure 
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Figure 5-8: Phase plot of single cycle oscillation at 500 W  
corresponding to time series in figure 5-2 

Figure 5-9: Phase plot of single cycle oscillation at 800 W
corresponding to time series in figure 5-3 



132 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

25 50 75

0.12

0.16

0.20
M

as
s 

flo
w

 r
at

e 
(k

g/
s)

p (mm-WC)

700 W; 9.1 MPa;

15.5 lpm & 9.8 oC

30 40 50 60 70
0.12

0.14

0.16

0.18

0.20

M
a

ss
 fl

o
w

 r
a

te
 (

kg
/s

)

p (mm-WC)

500 W; 9.1 MPa; 10 lpm & 9.8 oC

Figure 5-10: Phase plot of single cycle oscillation at 700 W
corresponding to time series in figure 5-4 

Figure 5-11: Long duration phase plot at 500 W 
corresponding to time series in figure 5-2 
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Figure 5-12: Long duration phase plot at 700 W 
corresponding to time series in figure 5-4 

 Figure 5-13: Time step sensitivity study for stability behavior of closed 
loop SPNCL with SC-CO2 operation 
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 Figure 5-14: Grid size sensitivity study for stability behavior of 
closed loop SPNCL with SC-CO2 operation 

Figure 5-15: Effect of loop pressure closure convergence criterion on 
stability behavior of closed loop SPNCL with SC-CO2 operation  
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 Figure 5-16: Stable, unstable and neutrally stable operating 
conditions for SPNCL with SC-CO2 operation 
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Figure 5-17: Stability predictions for closed loop SPNCL for HHHC orientation at 15 lpm. 
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                   Figure 5-18: Prediction of instability at 800 W by NOLSTA code in more detail. 
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        Figure 5-19: Stability predictions for closed loop SPNCL with HHHC orientation at 90 lpm. 
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   Figure 5-20: Stability predictions for SPNCL at 135 lpm 

   Figure 5-21: Stability predictions for SPNCL at 180 lpm 
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 Figure 5-22: Stability maps for closed loop SPNCL with HHHC orientation at different pressures  
 

 Figure 5-23: Effect of loop inside diameter on stability behavior of SPNCL   
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                                  Figure 5-25: Flow reversal case obtained for ID -15.8 mm in SPNCL  
 

    Figure 5-24: Effect of power on the limit cycle oscillations observed in SPNCL   
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Figure 5-26: Completely stable behavior of SPNCL obtained by considering wall thermal 
capacitance at 34 lpm. 
 

 

 

 

 

 

 

 

 

 

 

Figure 5-27: Stability threshold of Lomperski’s loop after considering thermal capacitance of 
pipe wall. 
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Chapter 6 
 

Natural convective flow and heat transfer studies for supercritical 
water in SPNCL 

 
 

6.1 Introduction 

Supercritical Pressure Natural Circulation Loop (SPNCL) was set up at Bhabha Atomic Research 

Centre (BARC), India to gain an insight in to steady state, flow stability and heat transfer 

behavior of natural circulation with supercritical fluids i.e. supercritical water and supercritical 

carbon dioxide. The experimental results and analysis with carbon dioxide operation were 

presented in chapters 4 & 5. This chapter describes the experimental results and analysis of 

SPNCL operating with supercritical water (SCW) in detail. 

 

6.2 The experimental loop 

 

6.2.1 Loop augmentation and instrumentation 

After carbon dioxide experiments, SPNCL was augmented for supercritical water experiments. 

This involved installation of two Inconel–625 direct electrical resistance heated heater test 

sections (one vertical and one horizontal). The material for rest of the loop is SS-347. A new 

pressurizer for high pressure operation required for supercritical water conditions was designed 

and fabricated. The coolers are tube in tube type with SCW flowing in the inner tube and air 

flowing in the outer annular tube (77.9 mm ID). For this a large capacity air blower (i.e. 45,300 

lpm at 20 m WC head) was installed. The loop has a pressurizer connected by U-bend at the 
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bottom ‘ Tee joint’ of the loop as shown in figure 6-1, which takes care of the thermal expansion 

besides accommodating the cover gas nitrogen above the water level in pressurizer. 

An anubar was installed in the 6” blower outlet line for the air flow measurement. Besides 

Haskel pump was installed and connected to bottom of the pressurizer for loop pressurization to 

critical pressure during startup. The schematic and photographs of augmented SPNCL is shown 

in figure 6-1 and 6-2 respectively. A new 200 kW power supply (25 V/ 8000 A) as shown in 

figure 6-3 was connected to each heater test section by flexible silver coated copper busbar. 

 

For determination of heat transfer coefficient of heater test sections, thermocouples were brazed 

on the outer surface of each heater test section, at thirteen different axial locations. At each 

location, four thermocouples were provided at 90o angular interval (one each at top, bottom, 

side-ways) as shown in figure 6-4. The photograph of the horizontal heater test section along 

with brazed thermocouples is shown in figure 6-5. Increased instrumentation also necessitated 

the use of a new data logger. Figure 6-6 shows the photograph of control panel along with data 

logger. 

 

Rest of the loop and instrumentation remains same as described in Chapter 4, section 4.2. The 

accuracy of the thermocouples were within ± 0.5 0C. The accuracy of the pressure and 

differential pressure measurements were respectively ± 0.03 MPa and ± 0.18 mm H2O column. 

The accuracy of the secondary flow as well as power measurement is ± 0.5 % of the reading.  

 

6.2.2 Experimental procedure  

To achieve supercritical pressure the following operating procedure is followed 
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i) The loop is filled up with water to the required level in the pressurizer. 

ii) Nitrogen is filled at the top of the pressurizer and the loop pressure is increased to 11 MPa.  

iii) Further pressurization to 22 MPa is achieved by injecting more water at the bottom of the 

pressurizer with a Haskel pump which increases the water level in the pressurizer. Then the 

Haskel pump is isolated by closing the isolation valves V1 & V2 shown in figure 6-1. 

iv) Now power is switched on and due to thermal expansion of water, the loop gets pressurized 

above 22.1 MPa (i.e. above the supercritical pressure). 

v) To get the desired pressure, water inventory in the pressurizer is changed by either injecting 

water or draining water. The pressurizer leg remains cold as it is connected by a U-bend to the 

main loop, facilitating cold water injection in to the pressurizer without concerns of thermal 

stress. 

 

6.3 Steady state experiments with supercritical water 

The steady state experiments were carried out only for Horizontal Heater Horizontal Cooler 

(HHHC) orientation at different heater powers (1.0–8.5 kW) and loop pressures (22.1-24.1 MPa). 

All the experimental steady state data for supercritical water has been given in detail in 

Appendix-II for reference.  

 

6.3.1 Steady state NC flow Experiments 

The experimental steady state mass flow rate, heater inlet and outlet temperatures versus power 

for HHHC orientation with constant secondary side air flow rate are shown in Figures 6-7a & 6-

7b respectively. The steady state mass flow rate is estimated by energy balance across heater test 

section. The temperature difference between heater inlet and outlet is reducing as we are 
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approaching the pseudo-critical temperature because of the increase in the specific heat (cp) of 

the fluid but as the fluid temperature is increased beyond the pseudo-critical point, the cp value 

again starts reducing resulting in increased temperature difference. The steady state mass flow 

rate increases till the heater outlet temperature reaches pseudo-critical temperature at 7 kW. As 

the power is increased beyond 7 kW, both hot and cold leg becomes supercritical and there is a 

sharp reduction in experimental flow due to increased frictional resistance. For analysis of 

experimental results, NOLSTA code steady state solution procedure for closed loop boundary 

conditions as described in Chapter 4 section 4.3.2 has been used. For steady state calculations, 

Bringer-Smith correlation (1957) is used for calculating primary side heat transfer coefficient of 

cooler where as no heat transfer correlation is used in heater (i.e. the heat flux is directly imposed 

on flowing fluid). The predictions are in good agreement with experimental data.  

 

6.3.2 Steady state heat transfer experiments 

The heat transfer coefficient in the heater is estimated from the measured outside surface 

temperature (i.e. T3-T54) of heater pipe at thirteen equidistant locations along the length of each 

heater as shown in figure 6-4. At each axial location temperature is measured at four 90o angular 

locations (each at top, bottom, side-ways) and average of the four values is taken to calculate 

outside heater surface temperature (Two). Then, the steady state inside wall surface temperature of 

heater (Twi) is estimated by a conduction analysis using the following equation. 
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Inlet and outlet fluid temperatures of heater (Tin & Tout respectively) are measured by using 

average of two thermocouples each at heater inlet location (T1 & T2) and heater outlet location 

(T55 & T56) as shown in Figure 6-1. Corresponding to these inlet and outlet temperatures and 

pressure, the inlet and outlet enthalpy is obtained from steam tables. Then bulk fluid enthalpy at 

any location along the heater length was obtained by the linear interpolation of enthalpies at inlet 

and outlet locations of heater test section as given below. 
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From the local bulk fluid enthalpy, local bulk fluid temperature can be calculated from the steam 

table. From local bulk fluid temperature, inside heater wall temperature and heat input, the local 

inside heat transfer coefficient (hi) can be estimated as given below. 
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                                                               (6-3) 

 

Uniform volumetric heat generation (q’’’) is assumed in the heater pipe wall throughout the 

heated length which is calculated from the ratio of measured total heater power and the volume 

of the heater pipe wall. It may be noted that at a single power of operation in SPNCL, a complete 

temperature range of bulk fluid (i.e. sub-critical to supercritical) is not covered from heater inlet 

to heater outlet.  The heat transfer coefficient was found not to be varying significantly with the 

bulk water temperature along the length of heater for the sub-critical, pseudo-critical and 

supercritical range of operation due to moderate variation of thermodynamic and transport 

properties of water from inlet to outlet of heater. Moreover, no deterioration in heat transfer has 

been observed for the current range of operation of SPNCL as the heat flux encountered is very 

(6-2)
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low i.e. 38 – 72 kW/m2. Hence, it is worthwhile to plot average heat transfer coefficient versus 

average bulk fluid temperature across heater section corresponding to various operating powers. 

The measured average heat transfer coefficients were compared with various heat transfer 

correlations available in literature for supercritical fluids (Pl. see Figure 6-8). The peak heat 

transfer coefficient is observed near the pseudo-critical temperature. All correlations are 

predicting well in the range of experiments carried out except pseudo-critical region, where only 

Jackson (2002) and Bringer- Smith (1957) correlations are in good agreement. Even these do not 

predict the peak value of heat transfer coefficient well. 

 

6.4. Instability experiments with supercritical water 

Instability has been observed over very narrow range of power i.e. 7 kW to 8.3 kW in the 

pseudo-critical temperature region, as was observed for instability experiments with supercritical 

carbon dioxdie reported previously in chapter 5. Instability was observed for experimental 

pressure range of 22.1 to 22.9 MPa (the pressure considered is the average of the loop pressure 

oscillation observed during instability). The reason of finding instability in the pseudo-critical 

region can be attributed to high volumetric thermal expansion coefficient for SCW and high 

specific heat near the pseudo-critical temperature. Figures 6-9 to 6-15 show the time series plots 

for different parameters during the experimental observations of instability. In all cases, the 

instability develops by the oscillation growth mechanism as proposed by Welander (1967) which 

is typical phenomenon of development of instability during single phase natural circulation at 

sub-critical conditions. Welander mechanism of instability can be explained as follows: 

Pertubation in flow will cause pockets of fluid with pertubed temperature to emerge from the 

heater/ cooler due to change in fluid residence time in heater/ cooler and these pockets may get 
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damped or amplified as a consequence of susequent passages through heater and the cooler. 

Instability development from steady state condition by the oscillation growth mechanism leading 

to repititive or near periodic flow reversals was also observed in single-phase loops at sub-

critical conditions, Vijayan et al. (2007). Near periodic flow reversals are observed in all the 

instability experiments conducted in SPNCL with supercritical water, however, the amplitude of 

differential pressure (∆P) oscillations is asymmetric with larger amplitude in the positive side. 

No flow reversal was observed for instability experiments conducted with supercritical carbon 

dioxide (chapter 5). Figure 6-9 shows the instability observed at 7.5 kW (by step rise of power 

from stable flow power of 7 kW, not shown in figure for clarity) which starts developing at 1350 

s (see DPT1 in Figure 6-9) with corresponding heater inlet temperature and pressure of 378.6 oC 

& 22.45 MPa respectively (pseudo-critical temperature of water at 22.45 MPa is 375.55 oC). The 

oscillations in heater inlet/outlet temperature and pressure become visible a bit late i.e. at 2000 s 

& 1750 s respectively. The loop pressure is also found oscillating with amplitude of 3 bar approx. 

whereas no pessure oscillations were observed with supercritical carbon dioxide. This may be 

due to larger volume of pressurizer (30 liters) in case of experiments with carbon dioxide 

however lesser pressurizer volume of only 15 liters is available for experiments with 

supercritical water. 

 

 Similar instability is observed at 7.5 kW (Figure 6-10), which starts developing at heater inlet 

temperature and loop pressure of 379.6 oC & 22.5 MPa. Flow oscillations grow leading to near 

periodic flow reversals with almost similar peaks on the positive and negative side. When power 

is further increased to 8 kW the heater inlet and outlet temperatures increase much beyond the 

pseudo-critical region leading to stabilization of flow. Figure 6-11 shows similar instability at 7.5 
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kW which develops at loop pressure of 22.5 MPa and heater inlet temperature of 380 oC. The 

instability remains sustained during power step down to 7 kW shown in detail in figure 6-12.      

 

Figure 6-13 shows development of instability at 7.5 kW at loop pressure of 22.7 MPa in the 

pseudo-critical region. The oscillations are sustained on increasing power to 8 kW showing 

increase in amplitude of differential pressure, temperature and pressure oscillations. On further 

increasing power to 8.5 kW the heater inlet/outlet temperatures increase much beyond the 

pseudo-critical range leading to flow stabilization. Figure 6-14 shows development of instability 

at 8.0 kW at loop pressure and heater inlet temperature of 22.8 MPa/ 380.5 oC.  

 

Figure 6-15 shows effect of pressure on instability at 8.3 kW. Development of instability starts at 

subcritical loop pressure of 21.7 MPa and the instability is sustained at average loop pressure of 

22.25 MPa. The instability finally dies out at 23.5 MPa. This may be due to reduction in 

volumetric thermal expansion coefficient and specific heat with pressure for supercritical fluids, 

see figure 6-33. The average loop temperatures are increasing with increase of loop pressure (at 

constant heater power) due to rise of pseudo-critical temperature with pressure. 

 

The phase plot corresponding to a typical oscillation observed at 7.5 kW (Figure 6-10) is shown 

in Figure 6-16a, but a different signature is obtained for a similar pressure drop oscillation 

observed in the same experiment, see Figure 6-16b and the phase plot of two combined 

oscillations is shown in Figure 6-16c. The phase plot of a typical oscillation observed at 7 kW 

(Figure 6-12) is shown in Figure 6-17a. Figure 6-17b shows the phase plot of complete 

instability oscillations observed in the Figure 6-12. It shows a highly chaotic behavior of 
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oscillations. Similarly the phase plots of time series oscillations observed at 7.5 kW & 8 kW 

(Figure 6-13) are shown in Figures 6-18 & 6-19 respectively.  

 

6.5 Analysis of SPNCL considering pipe wall thermal capacitance effect 

In previous Chapter 5, it was found during stability analysis of SPNCL for CO2 experiments that 

pipe wall thermal capacitance has a significant damping effect on stability behavior of open & 

closed loop natural circulation with supercritical fluids. Hence NOLSTA code using 1-D model 

for pipe wall thermal capacitance has been used to carry out stability analysis of SPNCL 

operating with supercritical water. Bringer Smith correlation (1957) is used for calculating 

primary side heat transfer coefficient of cooler whereas Jackson correlation (2002) is used to 

calculate inside heat transfer coefficient for heater/ adiabatic pipes.   

 

6.5.1 Sensitivity study 

The stability analysis of SPNCL was carried out for HHHC orientation considering closed loop 

boundary conditions described in Chapter 4 and stability threshold has been found to be sensitive 

to convergence value of loop pressure closure condition, the time step and grid size considered 

for analysis. Hence convergence value of loop pressure closure, time step and grid size 

independence test was carried out for SPNCL. 

 

Effect of time step and grid size 

To start with grid size of 0.01 m was considered and time steps were changed to carry out the 

stability analysis of SPNCL at 7400 W/ 22.5 MPa. It was observed that larger time steps 

stabilized the predictions as shown in figure 6-20. On reducing the time step from 0.03s to 
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0.015s the predictions hardly change. Now considering 0.015 as the time step the grid size was 

reduced to 0.005 m but no change was observed in the results as shown in figure 6-21. Hence to 

save computational time the grid size of 0.01m was finalized. Henceforth, grid size and time step 

of 0.01 m and 0.015s respectively have been used for generating the stability results for SPNCL 

with closed loop boundary conditions.    

 

Effect of convergence value of loop pressure closure condition 

For natural circulation the pressure closure condition to be satisfied at any time step is Σ∆p = 0. 

The solution is converged if valueeconvergencp   . The stability predictions are found to be 

dependent on this convergence value as shown in figure 6-22. Unrealistic oscillations are 

predicted for convergence value of 100 Pa, whereas similar oscillations are predicted for 10 Pa 

and 1 Pa. Convergence value of 1 Pa has been considered for further analysis.  

 

Prediction of stable, unstable and neutrally stable conditions 

Considering above mentioned values of grid size, time step and loop pressure closure 

convergence criterion a typical stable (7300 W), unstable (7400 W) and neutrally stable (7340 

W) case was obtained at 22.5 MPa and 0.53 kg/s secondary air flow as shown in figure 6-23. 

 

6.5.2 Stability analysis of SPNCL with pipe wall effect 

As the experimental procedure for SPNCL involved only step power change, same is also 

considered for stability prediction using NOLSTA code using the time step, grid size and loop 

pressure closure convergence values as concluded in section 6.5.1. Figure 6-24a shows a stable 

flow behavior of the loop during power step rise from 7 kW to 7.3 kW at 22.5 MPa (pseudo-
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critical temperature 375.6 oC) and figure 6-24b shows the corresponding heater inlet/ outlet 

temperatures (373.81 oC/ 375.5 oC respectively). However step rise in power from 7 kW to 7.4 

kW makes the flow unstable as shown in figure 6-25a & 6-25b. The flow remains unstable up to 

7.7 kW as shown in figure 6-26a & 6-26b. The flow again becomes stable at 7.9 kW as shown in 

figure 6-27a & 6-27b. Although the flow tries to become unstable at 7.9 kW near pseudo-critical 

temperature but instability doesn’t get sufficient time to develop as fluid crosses the pseudo-

critical region fast due to higher power. At further higher power of 8.2 kW the flow rate 

reduction curve becomes even smoother as still lesser time is available for instability to develop 

near pseudo-critical temperature as shown in figure 6-28a & 6-28b. Hence instability can be 

avoided in SPNCL by giving large step rise in power when fluid is approaching the pseudo-

critical temperature.    

 

The unstable zone reduces as the pressure increases to 23 MPa (i.e. 7.3 kW to 7.8 kW) as shown 

in figure 6-29. At 23.5 MPa the unstable zone further reduces from 7.4 kW to 7.6 kW as shown 

in figure 6-30. No instability is observed at 24 MPa as shown in figure 6-31.  

 

The stability map of SPNCL for supercritical water operation is shown in figure 6-32. The 

stability map shows larger unstable zone at low pressures, smaller unstable zone at higher 

pressure and no instability beyond a particular pressure i.e. 23.7 MPa which is in qualitative 

agreement with experimental findings as all the unstable data near pseudo-critical region lies at 

lower pressures. The reason for this can be high volumetric expansion coefficient of water near 

pseudo-critical temperature at low pressure, however there is not very significant reduction in 

volumetric expansion coefficients with respect to enthalpy at higher pressures as shown in figure 

6-33.  
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Volumetric expansion coefficient with respect to enthalpy (not with respect to temperature) is 

considered because at same power and flow, the same amount of flow perturbation will give rise 

to same perturbation in enthalpy (not temperature) at different pressures. Hence other reason can 

be the significant reduction of volumetric thermal capacitance of water with pressure near 

pseudo-critical temperature as shown in figure 6-33. High thermal capacitance of water at low 

pressures near pseudo-critical temperature makes the temperature versus enthalpy curve almost 

flat near pseudo-critical temperature just like two phase flows as shown in figure 6-34. Hence 

perturbation in enthalpy will give rise to very small perturbation in supercritical fluid 

temperature at low pressures near pseudo-critical temperature and so interaction of fluid with 

pipe wall will become very less. Since damping effect of the wall becomes negligible at low 

pressures near pseudo-critical temperature, instability is observed for the same. However, at high 

pressures the perturbation in enthalpy will give rise to sufficient perturbation in fluid temperature 

and significant thermal interaction of fluid with the wall becomes possible which damps the 

oscillations. The quantitative difference between experiments and analysis can be attributed to 

the actual interaction of the wall with the fluid which depends on the heat transfer coefficient 

between fluid and wall which can be studied in more detail by 3-D CFD codes. 

 

Hence, scaling fluid (i.e. carbon dioxide/ Freon etc.) for instability studies of supercritical water 

should take care of the ratio of thermal capacitance of the wall and the fluid near pseudo-critical 

temperature. The comparison of volumetric thermal capacity of water and carbon dioxide near 

pseudo-critical temperature with pipe thermal capacity of SPNCL is shown in figure 6-35.   
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6.6 Conclusions 

The peak of the steady state mass flow rate versus power curve for SPNCL is obtained at heater 

outlet temperature near the pseudo-critical value. If the heater inlet temperature increases beyond 

the pseudo-critical temperature the steady state natural circulation mass flow rate reduces 

significantly. NOLSTA code simulates the steady state behaviour of SPNCL appreciably well.       

 

During experimentation with water, instability has been observed for a very narrow window of 

power for HHHC orientation i.e. 7.5 to 8.3 kW for operating pressure range of 22.1 to 22.9 MPa. 

The instability is observed near pseudo-critical temperature at low pressures however at high 

pressures no instability is observed. The mechanism of instability development is growth of 

small amplitude oscillations as proposed by Welander (1967). NOLSTA code also predicts 

instability over a very narrow range of power near pseudo-critical temperature and at pressures 

below 23.7 MPa which is in qualitative agreement with experimental data. The reason for the 

same is higher thermal capacitance of fluid near pseudo-critical temperature at low pressures 

which cause enthalpy perturbations to generate very small fluid temperature perturbations only 

and hence fluid interaction with pipe wall or damping effect of wall becomes almost negligible. 

Moreover, NOLSTA code also predicts that instability can be avoided even at low pressures in 

SPNCL by giving large step rise in power when fluid is approaching the pseudo-critical 

temperature. Scaling fluid for instability studies of supercritical water should take care of the 

ratio of thermal capacitance of the wall and the fluid near pseudo-critical temperature.   
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Figure 6-1:  Schematic of augmented SPNCL 
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Figure 6-2:  Photograph of augmented SPNCL 
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Figure 6-3:  Photograph of 200 kW Power supply unit 
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Figure 6-4:  New horizontal/ vertical heater test section 
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Figure 6-5:  Photograph of new horizontal heater test section of SPNCL 

 

Figure 6-6:  Photograph of control panel of SPNCL 
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Figure 6-7: Measured and predicted steady state performance of 
SPNCL with supercritical water for HHHC orientation. 

(a) Flow rate  

(b) Heater Inlet and outlet temperature   
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 Figure 6-8: Comparison of experimental heat transfer coefficient
data with various correlations for HHHC orientation of SPNCL 
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Figure 6-9: Instability observed at 7.5 kW  
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Figure 6-10: Instability observed at 7.5 kW  
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Figure 6-11: Instability during power reduction from 7.5 kW to 7.0 kW 
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Figure 6-12: Instability observed at 7.0 kW  
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Figure 6-13: Instability during power rise from 7.5 kW to 8.0 kW  
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Figure 6-14: Instability observed at 8.0 kW  
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Figure 6-15: Instability observed at 8.3 kW  
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Figure 6-16: Phase plot for instability observed at 7.5 kW (figure 6-10) 
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    Figure 6-17: Phase plot for instability observed at 7.0 kW (figure 6-12) 
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Figure 6-18: Phase plot for instability observed at 7.5 kW (figure 6-13) 
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Figure 6-19: Phase plot for instability observed at 8 kW (figure 6-13) 
 



172 
 

0 20 40 60 80 100 120
0.0550

0.0555

0.0560

0.0565

0.0570

 0.015 s
 0.03 s
 0.12 s
 0.24 s

     7400 W, 22.5 MPa, HHHC
Secondary Air flow rate - 0.53 kg/s 

 

 

M
as

s 
flo

w
 r

at
e 

- 
kg

/s

Time -s 

0 25 50 75 100 125 150 175 200
0.052

0.053

0.054

0.055

0.056

0.057

0.058

0.059

0.060

 node length = 0.005m
 node length = 0.01m

       7400 W, 22.5 MPa, HHHC
Secondary Air flow rate - 0.53 kg/s 

 

 

M
as

s 
flo

w
 r

a
te

 -
 k

g/
s

Time -s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6-20: Time step sensitivity study for stability behavior of SPNCL operating with SCW 
 

 Figure 6-21: Grid size sensitivity study for stability behavior of SPNCL operating with SCW 
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 Figure 6-22: Effect of loop pressure closure convergence criterion on 
stability behavior of SPNCL operating with SCW  

    Figure 6-23: Stable, unstable and neutrally stable operating conditions for SPNCL 
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Figure 6-24: Stable behavior of SPNCL during power step up from 
7 kW to 7.3 kW at 22.5 MPa 
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Figure 6-25: Unstable behavior of SPNCL during power step 
up from 7 kW to 7.4 kW at 22.5 MPa 
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Figure 6-26: Unstable behavior of SPNCL during power step up 
 from 7 kW to 7.7 kW at 22.5 MPa
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 Figure 6-27: Stable behavior of SPNCL during power step up from 7 kW 
to 7.9 kW at 22.5 MPa 
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Figure 6-28: Stable behavior of SPNCL during power step up from 7 kW 
to 8.2 kW at 22.5 MPa 
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Figure 6-29: Unstable zone of SPNCL at 23 MPa 
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Figure 6-30: Unstable zone of SPNCL at 23.5 MPa 
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Figure 6-32: Stability map of SPNCL for operation with SCW 
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Figure 6-31: No unstable zone of SPNCL at 24.0 MPa 
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Figure 6-33: Comparison of volumetric thermal expansion coefficient and volumetric 
thermal capacitance of water at various  pressures near pseudo-critical region 



182 
 

20 25 30 35 40
0

20

40

60

80

100

Temperature - oC (H
2
O)

  8.1 MPa CO
2

 

 

V
ol

um
et

ric
 t

he
rm

al
 c

ap
ac

ity
 -

 M
J/

(m
3  K

)

Temperature - oC (CO
2
)

370 375 380 385 390

Wall thermal capacitance

 23.0 MPa H
2
O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1800 2000 2200 2400 2600 2800
360

370

380

390

400

410

                  
(At high pressure, Near pseudo-critical 
temperature considerable change in 
temperature with enthalpy)  

22.25 MPa 

23.5 MPa 

23 MPa 

22.5 MPa 

25 MPa  

                  
(At low pressure, Near pseudo-critical temperature 
neglegible change in temperature with enthalpy, like 2-)   

T
e
m

p
e
ra

tu
re

 -
 o C

Enthalpy - kJ/kg
Figure 6-34: Temperature vs enthalpy curve for water at various pressures 
near pseudo-critical region 

Figure 6-35: Comparison of thermal capacity of water and carbon dioxide 
near pseudo-critical temperature with wall thermal capacity of SPNCL  
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Chapter 7 
 

Conclusions  
 

The peak of the steady state mass flow rate versus power curve for uniform diameter 

supercritical water natural circulation is obtained at heater outlet temperature near the 

pseudo-critical value for open as well closed loop boundary conditions. For open loop, a 

change in loop diameter or loop height does not significantly affect the heater outlet 

temperature at which peak steady state flow rate is achieved. Local loss coefficient in the 

cold leg shifts the heater outlet temperature corresponding to peak flow much beyond the 

pseudo-critical temperature, whereas local loss coefficient in hot leg shifts it closer to 

pseudo-critical temperature for open loop. If the heater inlet temperature increases 

beyond the pseudo-critical temperature the steady state natural circulation mass flow rate 

reduces significantly for open as well as closed loop. The steady state natural circulation 

flow rate increases with increase in pressure at higher powers in the friction dominant 

region just like two phase natural circulation loops.  

 

In all the open loops considered for linear stability analysis by SUCLIN code, it is 

observed that lower threshold power of instability increase only mildly whereas upper 

threshold of instability reduces significantly with increase in heater inlet temperature 

above 300oC. The larger diameter loops are more unstable in terms of heater power 

compared to small diameter loops for supercritical water natural circulation, however 

smaller diameter loops are unstable over a wide range of heater outlet temperature for a 

fixed heater inlet temperature. Beyond a specified value of heater inlet temperature no 

instability is observed and its value decreases with increase in loop diameter. These 
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observations suggest that natural circulation systems operating with supercritical water 

can be designed for lower heater inlet temperatures and still not encounter instability what 

ever may be the power. Such systems can also take advantage of the large jump in 

enthalpy occurring across the pseudo-critical point. Increasing the loop height increases 

the SPNCL (open loop) instability. Increasing the loop pressure shifts the stability maps 

slightly upwards. Inducing local losses in cold leg improves the loop stability, whereas 

local losses in hot leg destabilize SPNCL considered as open loop which is similar to 

phenomenon observed in two-phase loops.  For open loop, lower stability threshold 

deviates as much as -40% to +60% from the power corresponding to peak steady state 

flow in some of the cases analyzed in the thesis. Hence, it can be concluded that lower 

stability threshold power of SPNCL is not strictly related to the peak of the steady state 

mass flow rate versus power curve. Moreover, for a particular heater inlet temperature the 

steady state mass flow rate peak may exist but instability may be altogether absent for that 

heater inlet temperature as can be observed for larger diameter loops.  

 

The non-linear stability analysis code (NOLSTA) also confirms findings of linear stability 

code (SUCLIN) for open loop that larger diameter loops are more unstable in terms of 

heater power compared to small diameter loops and beyond a specified value of heater 

inlet temperature no instability is observed and its value decreases with increase in loop 

diameter. With increase in heater inlet temperature the threshold heater outlet temperature 

at which instability is observed also increases and is not always near the pseudo-critical 

temperature. Therefore, it can be concluded stability threshold of SPNCL (open loop) is 

not confined to the near peak region of the steady state mass flow rate versus power curve.  
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BARC also participated in the blind benchmark exercise coordinated by the University of 

Pisa in the frame of the IAEA Coordinated Research Programme (CRP) on Heat Transfer 

Behavior and Thermo-hydraulics Codes Testing for SCWR. The addressed problem 

involved a circular pipe with uniform heating along the axis and geometrical 

configuration corresponding to a SCWR-sub-channel. Eight institutes from different 

countries participated in the benchmark exercise. Like SUCLIN code predictions, codes 

used by other participants also showed some deviation from the reference data generated 

by University of PISA, however, all submissions confirmed the following findings 

• Increase in outlet throttling results in increase in unstable zone of heated channels 

(a well-known fact for two phase flow in heated channels);  

•  The presence of oscillating as well as excursive instabilities, the latter occurring 

at relatively low inlet temperature, in regions that would be hopefully of little 

interest to nuclear reactor operation;  

• The general shape of the stability boundary in the NTPC-NSPC plane. 

The results of NOLSTA and SUCLIN are matching qualitatively, but quantitatively there 

is a difference. Both the codes predict lower and upper threshold of instability, but 

unstable zone predicted by non-linear analysis is larger. This can be attributed to 

differences in the linear and non-linear analysis specified below 

i) All the fluid properties are perturbed in non-linear analysis, whereas only enthalpy 

and specific volume perturbation is considered in linear stability analysis. 

ii) Friction factor perturbation is not considered in linear stability analysis whereas non-

linear analysis accounts for it.  
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iii) The perturbation induced in specific volume due to perturbation in enthalpy has been 

considered, whereas perturbation in specific volume due to perturbation in pressure 

has been neglected in linear analysis, whereas non-linear analysis accounts for both. 

 

NOLSTA code predicts the steady state natural circulation mass flow rates of closed as 

well as open loop operating with supercritical carbon dioxide appreciably well (+ 15%). 

For closed loop, the steady behavior of loop is found to be very sensitive to the empirical 

heat transfer correlation used for cooler primary side. The heat transfer correlations 

evaluating thermal conductivity at the bulk fluid temperature are showing very sharp 

reduction in flow after a particular power (when both cold leg and hot leg temperatures 

exceed the pseudo-critical temperature) which is accompanied with a steeper rise in heater 

inlet and outlet temperatures. However, the correlations evaluating thermal conductivity at 

wall temperatures/ pseudo-critical temperature for bulk fluid temperature exceeding 

pseudo-critical temperature (i.e. Bringer Smith, 1957) give a smoother reduction in flow 

similar to that observed in the experiments. For loop specific operating conditions it can 

be indirectly concluded that for evaluating heater inside heat transfer coefficient the 

thermal conductivity of fluid (required for calculating Nusselt number & Prandtl number) 

should be evaluated at the bulk fluid temperature, whereas for cooler inside heat transfer 

coefficient the thermal conductivity should be evaluated at the wall temperature/ pseudo-

critical temperature for bulk fluid temperature exceeding pseudo-critical temperature. 

However, observed difference in heat transfer behavior of supercritical fluids under 

heating and cooling boundary conditions needs to be independently confirmed by other 

experiments as well.  
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During experimentation with carbon dioxide in SPNCL, instability has been observed for 

a very narrow window of power for HHHC orientation only and that too at lower 

secondary side chilled water flow rate of 10-15 lpm. The instability in the loop was 

observed in the pseudo-critical temperature range of operation where the volumetric 

expansion coefficient of the fluid is the highest. For closed loop boundary conditions, 

NOLSTA code (without considering pipe wall thermal capacitance effect) predicts 

instability over a large range of power bounded by lower & upper stable zones. Moreover, 

the instability is predicted even for very high secondary flows i.e. 135 lpm unlike 

experimental data where no instability was observed at 34 lpm secondary flow. However 

no instability was predicted at 180 lpm secondary flow. The predictions are only 

qualitatively matching with experimental data, hence pipe wall thermal capacitance 

model was incorporated in NOLSTA code. Consideration of pipe wall thermal 

capacitance predicts SPNCL to be completely stable, but reducing the thermal 

capacitance by 18% and neglecting the local losses the code is able to simulate limit 

cycle oscillations without flow reversal as observed during experiments. As interaction of 

heat structure and fluid should be modelled in greater detail, hence 3D-CFD codes may 

be a helpful tool in understanding the stability behavior of closed loop thermosyphon 

with supercritical fluids.  

 

The modified NOLSTA code with pipe wall effect was also used for studying stability 

behavior of an open loop i.e. Lomperski’s loop. The consideration of pipe wall pushed 

stability threshold beyond the experimental power range and explains the reason of 

instability not observed during experiments. Modelling of thermal capacitance of pipe 
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walls is strongly recommended for stability analysis of natural circulation at supercritical 

conditions (both open and closed loop boundary conditions) unlike two phase natural 

circulation flow case. In two phase natural circulation case there cannot be any energy 

interaction between two phase fluid and adiabatic heat structure as both will always be at 

same temperature during the transient. Any perturbation in two phase flow will give rise 

to a perturbation in two phase fluid enthalpy and void fraction/ density, but perturbation 

in enthalpy will not give rise to any perturbation in two phase fluid temperature and so 

there cannot be any thermal interaction of fluid with the wall. However, perturbation in 

supercritical fluid flow will give rise to perturbation in enthalpy/ density and perturbation 

in enthalpy will also give rise to perturbation in supercritical fluid temperature and hence 

thermal interaction with the wall becomes possible. 

 

The peak of the steady state mass flow rate versus power curve for closed loop SPNCL 

operating with supercritical water is also obtained at heater outlet temperature near the 

pseudo-critical value. If the heater inlet temperature increases beyond the pseudo-critical 

temperature the steady state natural circulation mass flow rate reduces significantly. 

NOLSTA code also simulates the steady state behaviour of SPNCL operating with 

supercritical water appreciably well.       

 

During experimentation with supercritical water, again instability has been observed for a 

very narrow window of power for HHHC orientation i.e. 7.5 to 8.3 kW for operating 

pressure range of 22.1 to 22.9 MPa. The instability is observed near pseudo-critical 

temperature at low pressures however at high pressures no instability is observed. The 
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mechanism of instability development is growth of small amplitude oscillations as 

proposed by Welander (1967). NOLSTA code also predicts instability over a very narrow 

range of power near pseudo-critical temperature and at pressures below 23.7 MPa which 

is in qualitative agreement with experimental data. The reason for the same is higher 

thermal capacitance of fluid near pseudo-critical temperature at low pressures which 

cause enthalpy perturbations to generate very small fluid temperature perturbations only 

and hence fluid interaction with pipe wall or damping effect of wall becomes almost 

negligible. Moreover, NOLSTA code also predicts that instability can be avoided even at 

low pressures in SPNCL by giving large step rise in power when fluid is approaching the 

pseudo-critical temperature. Scaling fluid for instability studies of supercritical water 

should take care of the ratio of thermal capacitance of the wall and the fluid near pseudo-

critical temperature.   

 

Although the amount of experimental instability data generated in the present test facility 

is clearly insufficient as compared to extensive instability data available for single phase 

and two-phase loops but has definitely helped to gain an insight in to instability 

phenomenon with supercritical fluids.  
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Appendix-1: Steady state natural circulation data with      
supercritical CO2  

Steady state natural circulation data generated with CO2 given in tables A1-1, A1-2, 
are generated respectively for the HHHC and HHVC orientations.  
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Appendix-2: Steady state natural circulation data with supercritical H2O 
 
Steady state natural circulation data generated with H2O for the HHHC orientation is given 
in Table A2-1. 
 

Table-A2-1: Steady state data for HHHC orientation with supercritical H2O 

Sl. 

No.

Logged 

Power 

(kW)

Flow 

(lpm)

DPT‐1 

(mmWC)

PT‐1 

(bar)

PTr‐2 

(bar)

TT‐1 

(OC)

TT‐2 

(OC)

TT‐3 

(OC)

TT‐4 

(OC)

TT‐5 

(OC)

TT‐6 

(OC)

TT‐7 

(OC)

TT‐8 

(OC)

TT‐9 

(OC)

TT‐10 

(OC)

TT‐11 

(OC)

TT‐12 

(OC)

TT‐13 

(OC)

TT‐14 

(OC)

1 7.0 9563.0 ‐3.5 224.4 223.2 363.2 359.8 388.6 388.2 388.3 385.6 389.4 387.4 387.9 388.9 394.5 388.2 384.5 386.0

2 8.0 13824.0 ‐133.7 233.9 232.4 402.7 401.1 499.6 472.9 460.7 472.7 489.8 467.8 455.5 470.4 488.1 464.8 447.5 461.3

3 7.5 12937.0 ‐135.1 230.0 229.2 396.4 395.1 488.6 461.3 449.5 461.5 479.3 467.8 444.9 459.1 478.1 455.2 438.2 451.2

4 5.0 11025.0 31.4 229.2 228.0 275.7 275.5 300.8 300.2 299.8 298.1 303.2 309.4 300.0 301.1 309.2 301.9 297.5 300.2

5 5.6 11025.0 30.7 228.1 227.1 290.1 289.5 316.0 315.1 314.7 313.5 318.7 324.8 315.6 316.5 324.6 316.6 312.2 314.9

6 6.1 10978.0 42.5 228.3 227.8 319.8 318.5 347.3 346.0 346.1 344.6 349.8 356.5 346.5 347.5 355.8 347.8 343.3 346.0

7 6.5 10932.0 48.8 229.7 228.4 332.8 331.8 361.2 357.9 360.6 358.3 363.3 370.3 360.4 361.7 369.1 361.7 356.7 359.1

8 7.0 10947.0 66.9 232.0 230.5 368.4 367.1 393.3 390.4 392.8 390.6 392.7 402.4 392.5 392.6 398.6 392.4 389.1 390.2

9 4.5 11056.0 28.6 230.0 228.8 264.9 264.0 288.6 287.6 287.4 286.1 291.0 297.3 288.2 289.3 296.7 289.7 285.3 287.6

10 7.9 10807.0 50.9 229.5 228.0 390.5 389.2 458.2 452.5 453.6 452.8 467.1 473.7 451.3 456.6 473.5 456.8 446.6 453.7

11 8.0 7682.0 28.7 231.1 230.5 377.4 377.3 398.9 395.6 398.2 395.2 399.9 394.7 397.3 397.6 405.7 395.7 394.1 395.2

12 8.0 7682.0 24.5 230.3 229.9 378.8 378.2 398.0 395.6 397.8 394.8 397.3 393.9 396.5 397.2 403.2 395.2 393.3 394.4

13 8.5 7673.0 27.6 231.1 230.5 397.7 397.5 490.8 484.3 482.6 482.7 502.5 483.8 480.1 488.8 509.7 486.3 475.2 485.2

14 8.5 7673.0 28.0 230.3 229.7 398.0 397.9 486.2 480.9 478.8 478.9 497.8 480.1 476.7 485.4 504.7 482.5 472.7 481.9

15 7.0 7620.0 23.5 229.7 228.8 353.9 353.4 380.3 378.1 379.2 377.3 382.2 377.2 379.2 380.5 387.4 377.6 375.6 377.6

16 7.0 7620.0 23.5 228.3 227.8 357.0 357.1 383.3 381.4 382.9 380.2 384.7 380.2 382.6 383.8 390.3 381.0 379.0 380.5

17 7.3 7635.0 21.6 230.0 229.7 328.0 327.7 359.7 357.3 358.9 356.2 363.7 356.8 358.5 360.4 369.5 357.9 355.0 357.8

18 7.3 7635.0 23.0 230.6 230.3 347.9 347.9 377.4 374.7 376.3 373.6 379.7 374.3 375.8 377.1 385.3 375.1 372.3 374.6

19 7.7 7635.0 25.8 230.3 229.4 361.3 361.3 389.6 387.2 388.7 385.2 390.2 386.0 387.6 388.9 395.7 386.9 384.5 386.0

20 7.7 7635.0 29.3 232.0 231.5 366.9 366.8 395.9 393.1 395.3 392.3 396.9 391.8 394.4 395.1 402.8 392.7 391.2 392.7

21 7.3 7620.0 ‐27.2 230.9 229.9 375.3 374.8 419.1 395.1 393.3 393.9 413.3 392.6 392.7 396.0 414.4 392.7 389.5 392.7

22 7.3 7620.0 ‐27.6 230.3 229.7 374.6 374.8 420.8 395.6 393.7 394.3 414.6 393.5 393.1 396.4 415.3 393.6 389.5 393.1

23 7.0 7899.0 92.7 228.6 227.1 379.3 375.2 398.3 395.0 397.0 394.3 397.8 400.3 396.8 396.8 403.6 396.6 392.9 394.0

24 7.0 7899.0 96.1 228.3 226.9 381.4 377.3 398.3 396.3 398.2 395.6 398.2 401.1 397.2 397.2 403.6 397.1 393.3 394.8

25 7.0 7712.0 66.2 228.1 227.1 399.2 394.1 472.6 465.8 462.7 464.8 481.0 474.9 463.1 470.0 491.4 472.0 460.9 469.2

26 8.0 6904.0 97.5 227.5 226.1 402.4 400.0 494.1 487.1 485.9 486.4 505.4 489.1 484.7 493.0 512.6 493.9 480.3 489.8

27 7.5 6858.0 92.7 229.5 228.2 398.9 396.2 474.3 467.9 467.3 467.7 484.0 469.1 465.6 472.9 491.0 473.3 461.3 470.1

28 1.0 25159.0 5.0 225.3 224.0 74.9 75.5 89.5 85.4 84.4 86.3 92.1 86.7 84.9 87.4 93.6 88.8 87.0 faulty

29 1.5 25035.0 5.4 225.8 224.2 102.2 102.8 121.1 116.7 115.0 117.8 123.2 117.2 115.8 118.3 126.1 119.6 117.7 faulty

30 2.0 24973.0 7.3 226.7 225.3 128.4 129.0 147.7 144.6 144.7 145.1 151.0 145.5 145.4 147.2 155.6 148.2 145.8 faulty

31 2.5 24693.0 8.1 226.9 226.3 157.8 158.0 176.0 173.8 174.9 174.2 178.7 174.7 175.8 177.3 183.5 176.4 174.8 faulty

32 3.0 24320.0 7.5 228.3 227.4 181.6 182.2 201.3 197.9 200.1 198.2 203.5 198.9 200.7 202.0 208.0 200.8 199.2 faulty

33 3.5 24413.0 10.9 229.5 228.6 207.1 207.7 230.0 227.1 229.1 227.2 232.9 228.5 229.9 231.2 238.0 230.3 227.7 faulty

34 4.0 24289.0 11.7 230.6 229.7 219.4 219.9 243.9 240.8 242.7 241.3 246.8 242.3 243.8 245.0 251.7 244.2 241.6 faulty

35 5.0 24351.0 14.6 234.8 233.8 271.2 271.7 297.9 294.6 297.3 295.2 301.1 296.9 298.3 299.8 307.1 298.1 295.8 faulty

36 6.0 24382.0 18.2 225.5 224.4 318.4 319.2 347.7 344.6 347.4 345.0 350.7 346.5 348.2 349.6 356.6 347.4 345.0 faulty

37 6.5 24320.0 20.5 231.1 230.3 339.4 340.2 368.4 365.8 368.9 366.1 371.7 367.3 369.7 370.9 377.4 368.0 366.0 faulty

38 7.5 24164.0 30.7 241.7 240.0 380.7 382.2 403.4 399.6 403.6 400.3 404.8 400.4 402.8 403.2 409.8 401.4 399.7 faulty

39 7.9 24326.0 34.7 229.7 228.0 393.6 392.0 465.4 458.8 459.8 459.0 474.7 480.3 458.5 463.7 481.0 463.6 453.4 461.3

40 8.0 24289.0 36.3 230.6 230.7 398.5 395.8 481.0 474.2 473.5 473.5 490.7 474.9 471.6 479.2 498.1 479.6 466.8 475.5

41 8.5 24235.0 40.9 235.3 233.9 405.2 402.8 508.0 500.4 498.7 499.2 520.1 502.4 497.8 506.3 528.4 507.4 492.9 503.3

42 7.5 24257.0 37.1 229.0 227.4 390.8 386.7 455.3 449.6 449.1 449.5 463.4 451.6 447.9 454.1 471.4 454.3 443.7 451.2

43 7.0 24195.0 30.2 225.3 224.9 389.2 385.4 444.3 438.8 436.7 437.9 450.3 446.6 436.1 441.5 459.0 443.0 433.2 439.8
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Table-A2-1: Steady state data for HHHC orientation with supercritical H2O (Contd.) 

 

Sl. 

No.

TT‐15 

(
O
C)

TT‐16 

(
O
C)

TT‐17 

(
O
C)

TT‐18 

(
O
C)

TT‐19 

(
O
C)

TT‐20 

(
O
C)

TT‐21 

(
O
C)

TT‐22 

(
O
C)

TT‐31 

(
O
C)

TT‐32 

(
O
C)

TT‐33 

(
O
C)

TT‐34 

(
O
C)

TT‐35 

(
O
C)

TT‐36 

(
O
C)

TT‐37 

(
O
C)

TT‐38 

(
O
C)

TT‐39 

(
O
C)

TT‐40 

(
O
C)

TT‐41 

(
O
C)

1 393.4 387.1 386.6 392.7 401.1 388.7 387.9 363.4 405.0 387.0 383.7 faulty 393.7 421.7 387.9 381.7 400.8 390.1 388.9

2 476.9 458.5 449.2 464.9 476.3 459.4 451.9 457.3 460.4 445.5 434.3 faulty 467.8 473.4 438.6 440.6 464.1 445.9 438.3

3 466.8 448.9 439.4 454.3 465.7 448.5 442.1 453.2 452.5 437.1 426.7 faulty 457.3 459.8 429.3 431.6 454.4 436.7 429.4

4 308.9 301.1 300.0 306.1 315.4 303.4 301.7 305.5 304.6 301.1 296.0 faulty 311.3 329.0 303.8 300.6 316.5 307.4 304.4

5 323.8 316.2 314.8 320.9 330.2 318.0 316.2 317.6 320.4 315.8 310.8 faulty 326.4 344.7 318.6 315.0 332.1 322.5 319.6

6 355.2 347.2 346.1 352.2 361.9 349.0 347.4 342.8 351.7 346.5 341.5 faulty 357.3 376.4 349.0 345.1 363.3 353.1 350.0

7 368.7 360.7 359.2 365.7 375.0 362.3 360.6 357.1 365.0 360.4 355.0 faulty 370.7 380.2 362.1 358.3 376.4 365.7 363.1

8 397.2 390.9 391.3 396.5 405.4 392.1 392.2 378.5 392.9 391.2 387.1 faulty 397.1 407.3 390.9 384.2 405.1 393.4 391.4

9 296.6 289.3 288.2 294.3 302.7 291.2 289.8 282.0 293.3 288.4 284.2 faulty 299.6 315.5 291.6 288.3 303.8 295.6 293.0

10 477.8 458.9 450.0 466.2 489.0 463.6 454.1 458.6 460.8 448.8 436.0 faulty 489.1 491.6 463.1 467.4 497.1 475.7 463.6

11 405.8 394.4 395.2 faulty 413.1 faulty 394.6 395.9 398.5 396.9 393.3 faulty 402.4 396.3 395.9 398.3 410.8 396.7 394.7

12 402.4 394.0 394.4 faulty 408.4 faulty 393.8 401.0 396.8 396.1 392.4 faulty 399.9 395.5 395.1 397.1 405.8 395.4 393.8

13 517.6 493.4 481.8 faulty 532.1 faulty 487.3 500.7 491.1 480.3 462.3 faulty 533.6 515.3 501.8 521.2 544.8 518.7 503.4

14 512.9 489.2 478.8 faulty 526.2 faulty 483.9 503.3 488.2 477.0 459.8 faulty 528.1 511.5 498.4 517.4 539.3 514.5 500.1

15 386.7 377.6 378.3 faulty 392.8 faulty 378.0 382.7 383.5 380.5 374.7 faulty 387.3 382.4 381.2 384.5 392.7 383.2 380.7

16 388.8 380.6 381.3 faulty 395.8 faulty 381.4 381.1 387.2 383.4 377.7 faulty 389.4 384.9 383.7 387.0 396.1 385.7 383.3

17 369.3 357.9 358.1 faulty 377.6 faulty 358.5 359.8 365.9 361.1 353.3 faulty 371.5 364.6 361.8 366.9 378.8 365.6 361.8

18 385.0 374.7 375.0 faulty 392.0 faulty 375.5 376.4 381.0 377.1 371.0 faulty 385.7 379.8 377.8 382.0 391.9 380.7 377.4

19 394.8 386.4 386.4 faulty 402.1 faulty 387.0 390.8 391.4 388.9 382.7 faulty 394.0 389.6 387.9 391.2 402.4 390.4 387.9

20 402.8 392.3 393.1 faulty 411.4 faulty 393.3 397.6 397.2 394.4 389.5 faulty 401.5 394.2 393.8 396.7 412.9 395.4 393.0

21 405.0 391.1 392.3 faulty 402.1 faulty 391.6 390.0 405.6 392.3 389.5 faulty 402.0 390.8 390.9 392.9 400.3 390.4 389.6

22 405.8 391.5 392.3 faulty 402.1 faulty 392.1 394.6 406.0 701.1 389.1 faulty 402.4 391.3 390.0 392.9 400.3 390.8 390.0

23 403.5 395.1 395.1 faulty 411.7 395.8 395.6 379.7 401.3 395.0 393.0 faulty 400.8 425.1 394.7 392.9 408.9 396.4 395.2

24 403.5 395.5 395.9 faulty 411.7 396.7 396.0 391.1 402.5 395.8 393.4 faulty 400.8 425.6 395.5 393.7 406.8 396.8 395.6

25 498.2 478.2 466.9 faulty 509.6 482.9 472.0 492.6 483.3 461.1 448.6 faulty 507.1 534.8 481.3 491.3 515.2 493.4 481.4

26 520.7 500.1 487.2 faulty 535.0 506.7 494.6 502.2 495.8 481.3 466.8 faulty 538.1 566.1 509.2 525.1 549.0 526.5 511.3

27 497.3 477.8 467.3 faulty 509.2 483.3 472.8 482.9 477.9 464.0 450.7 faulty 511.3 538.2 484.7 500.3 520.3 498.8 486.0

28 95.1 92.8 87.9 91.2 97.5 90.0 87.9 91.5 100.0 92.6 89.8 faulty 101.7 93.2 90.0 91.0 103.8 94.5 91.2

29 128.2 83.6 118.7 122.9 130.9 121.3 119.1 111.2 133.8 124.2 121.4 faulty 136.8 125.3 122.1 123.1 139.2 127.2 123.7

30 157.0 57.9 147.5 152.4 161.3 150.2 148.1 135.9 164.6 153.7 151.0 faulty 167.0 154.6 151.7 152.4 169.6 157.0 152.9

31 183.7 86.5 176.6 181.6 188.3 178.7 176.7 171.2 192.9 182.3 184.7 faulty 201.7 188.4 185.1 185.3 204.2 190.6 186.6

32 207.9 61.7 201.1 206.5 213.2 203.4 201.4 198.9 218.3 207.6 204.1 faulty 220.1 207.5 204.9 204.3 221.5 209.5 206.5

33 237.6 42.4 231.6 237.7 245.7 234.3 233.0 231.2 252.1 239.6 237.4 faulty 257.3 241.8 238.3 238.0 259.1 244.4 241.1

34 252.1 55.0 246.8 253.3 261.4 249.4 247.9 247.1 268.3 254.3 252.1 faulty 272.4 256.6 252.7 252.9 275.1 259.5 255.9

35 305.9 85.7 297.9 304.9 312.9 300.4 299.6 300.8 317.9 306.1 303.2 faulty 321.3 307.4 303.8 302.7 324.9 309.9 307.0

36 355.6 99.5 347.8 354.7 362.7 349.8 348.7 355.0 366.7 354.1 351.7 faulty 370.7 355.7 352.8 350.5 373.8 358.6 355.5

37 376.0 98.3 368.0 374.5 382.1 369.5 369.1 365.5 384.6 702.7 371.1 faulty 388.3 373.9 371.4 368.2 391.1 376.2 374.1

38 406.4 76.2 401.9 407.0 413.4 401.2 401.4 402.0 410.3 406.5 400.9 faulty 413.7 401.8 400.5 394.6 416.1 403.0 402.3

39 485.9 466.5 458.0 474.6 499.1 472.8 463.0 475.4 465.0 455.2 441.5 faulty 499.2 502.2 473.7 478.1 508.0 486.2 473.8

40 505.0 484.1 473.7 491.5 519.4 491.6 479.7 500.1 483.3 469.9 455.8 faulty 519.7 552.2 491.8 506.1 530.0 507.2 492.8

41 537.6 514.8 500.3 520.2 552.3 522.2 508.7 492.6 509.6 493.5 478.1 faulty 556.9 583.9 525.6 541.9 569.2 545.0 528.2

42 476.9 457.7 448.7 464.5 488.5 463.2 453.2 464.5 470.4 448.0 434.3 faulty 486.2 503.9 460.1 464.1 494.5 471.9 461.1

43 463.8 445.9 437.3 451.4 472.9 449.0 440.0 444.3 457.1 435.8 426.3 faulty 468.6 489.5 445.4 453.4 475.5 455.1 445.5
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Table-A2-1: Steady state data for HHHC orientation with supercritical H2O (Contd.) 

 
 

Sl. 

No.

TT‐42 

(OC)

TT‐43 

(OC)

TT‐44 

(OC)

TT‐45 

(OC)

TT‐46 

(OC)

TT‐47 

(OC)

TT‐48 

(OC)

TT‐49 

(OC)

TT‐50 

(OC)

TT‐51 

(OC)

TT‐52 

(OC)

TT‐53 

(OC)

TT‐54 

(OC)

TT‐55 

(OC)

TT‐56 

(OC)

TT‐57 

(OC)

TT‐58 

(OC)

TT‐111 

(OC)

1 390.6 404.2 390.2 389.1 391.5 faulty 392.0 387.2 390.2 404.8 390.3 388.9 380.3 370.6 faulty 372.3 372.4 364.3

2 446.3 454.9 440.9 436.1 441.9 faulty 441.3 437.4 441.8 451.7 440.8 440.9 429.0 392.1 faulty 390.2 389.8 387.4

3 437.4 446.1 432.5 428.1 433.2 faulty 433.3 429.8 433.0 442.4 433.7 433.2 421.2 387.8 faulty 387.4 387.4 383.4

4 308.7 319.5 308.2 305.2 309.6 faulty 311.2 306.7 311.3 322.4 312.4 309.8 304.3 292.2 faulty 292.3 291.9 286.7

5 323.4 335.4 323.7 320.3 324.6 faulty 325.9 321.5 326.0 337.6 327.6 324.3 319.2 306.3 faulty 305.9 306.0 300.2

6 353.8 366.9 354.2 350.1 355.3 faulty 356.2 351.4 356.2 368.5 357.5 354.0 348.1 334.7 faulty 335.0 334.4 328.9

7 366.9 380.3 366.8 363.5 368.2 faulty 369.3 364.5 368.8 381.6 370.1 366.8 360.5 347.4 faulty 347.2 346.7 341.8

8 393.5 408.8 393.2 391.2 394.0 faulty 394.5 391.9 394.4 410.3 394.5 393.6 384.5 377.6 faulty 376.1 376.6 371.6

9 296.4 306.9 296.9 293.5 297.5 faulty 299.0 294.9 299.2 309.3 300.6 297.5 292.4 281.3 faulty 280.0 280.8 275.5

10 477.6 502.3 478.2 465.0 479.3 faulty 483.8 469.4 485.0 508.3 491.0 477.0 479.0 411.7 faulty 411.5 410.9 403.7

11 398.5 409.9 396.7 394.7 397.9 faulty faulty 394.4 396.4 396.9 faulty 395.2 407.1 381.1 faulty 381.3 380.2 376.7

12 397.6 405.7 395.8 393.5 396.7 faulty faulty 393.1 395.1 395.6 faulty 394.4 406.7 381.5 faulty 381.7 380.2 377.8

13 522.4 548.8 521.3 505.5 523.2 faulty faulty 511.3 529.3 537.8 faulty 520.9 552.1 430.6 faulty 433.0 431.0 418.8

14 518.2 543.0 517.2 501.7 519.1 faulty faulty 507.5 524.3 533.2 faulty 516.6 545.5 429.9 faulty 430.6 432.3 419.4

15 384.5 394.5 383.3 380.9 384.2 faulty faulty 380.9 383.8 384.6 faulty 382.5 392.0 365.0 faulty 364.4 365.7 361.0

16 387.5 397.8 386.2 383.4 386.7 faulty faulty 383.5 386.3 387.6 faulty 385.1 394.4 367.8 faulty 366.9 368.5 363.2

17 367.7 382.0 366.5 362.1 367.6 faulty faulty 363.3 367.9 370.2 faulty 365.6 387.9 344.0 faulty 345.2 343.7 338.0

18 383.3 394.0 381.2 378.4 382.2 faulty 385.0 378.4 382.2 383.8 faulty 380.8 399.3 360.8 faulty 361.9 360.5 355.4

19 392.1 405.3 390.0 387.6 390.9 faulty 393.4 387.7 390.5 391.0 faulty 389.7 406.7 371.3 faulty 371.4 372.7 366.6

20 398.0 415.3 395.8 393.0 396.7 faulty 398.9 393.1 396.0 396.9 faulty 394.4 412.0 376.2 faulty 376.0 377.5 371.6

21 393.4 395.3 390.4 390.1 390.9 faulty faulty 389.8 389.7 390.1 faulty 391.0 405.1 370.3 faulty 370.2 369.3 367.2

22 393.0 395.3 390.0 389.7 390.5 faulty faulty 389.8 389.7 389.7 faulty 391.0 406.3 369.2 faulty 368.6 369.9 367.2

23 397.3 410.1 396.9 394.6 397.4 faulty 397.9 393.1 396.1 406.5 395.8 394.9 383.2 381.5 faulty 382.1 383.2 374.4

24 397.3 407.6 396.5 395.0 397.8 faulty 397.9 393.5 396.5 403.9 395.8 394.9 383.6 382.6 faulty 383.2 382.5 375.5

25 494.9 522.9 497.8 483.9 499.7 faulty 505.3 490.0 506.0 527.8 512.0 498.7 497.6 422.6 faulty 424.8 422.5 411.0

26 532.5 555.1 528.0 512.8 530.1 faulty 536.0 519.1 535.8 560.7 544.4 526.7 530.2 437.1 faulty 437.1 438.2 447.6

27 506.7 525.8 500.8 487.2 503.1 faulty 507.0 490.9 506.4 530.3 513.7 497.0 499.7 423.7 faulty 423.7 424.9 433.6

28 97.1 105.7 95.1 92.2 97.0 faulty 96.4 92.7 97.8 105.2 97.3 93.6 95.8 82.3 faulty 85.0 85.6 79.8

29 130.5 141.7 127.7 124.5 130.7 faulty 129.3 125.1 131.8 141.6 130.5 126.4 128.8 114.3 faulty 114.7 115.4 109.6

30 159.6 171.5 157.4 153.9 160.2 faulty 158.7 155.1 161.5 172.0 160.8 156.6 158.2 143.5 faulty 143.0 143.9 137.7

31 194.2 206.7 191.8 188.3 194.7 faulty 193.3 192.1 198.9 211.3 198.7 194.0 195.7 176.9 faulty 173.1 173.7 169.8

32 212.8 223.5 211.0 207.6 213.0 faulty 212.2 211.9 216.5 225.2 216.4 213.2 212.7 196.6 faulty 197.6 197.9 190.6

33 248.7 262.1 246.2 241.9 248.8 faulty 248.0 243.5 249.2 260.3 248.8 245.1 244.9 226.4 faulty 226.3 225.5 219.8

34 263.5 278.0 261.3 256.6 264.2 faulty 263.6 258.3 264.8 276.8 264.8 260.9 261.8 240.5 faulty 238.8 239.3 233.3

35 314.1 329.1 311.9 308.2 315.0 faulty 314.1 309.3 314.7 326.6 315.0 311.5 315.9 290.1 faulty 291.6 290.6 283.9

36 362.7 378.2 360.5 356.0 363.3 faulty 362.5 358.2 364.2 377.3 363.8 360.4 364.2 336.2 faulty 338.2 337.1 330.6

37 380.4 394.6 377.7 374.0 380.3 faulty 379.8 378.4 383.1 395.9 383.2 380.0 382.8 356.2 faulty 355.2 356.8 352.5

38 406.6 418.4 403.6 401.7 406.1 faulty 404.6 401.5 404.4 414.9 403.7 402.1 402.8 384.6 faulty 383.9 385.3 382.9

39 488.1 512.4 488.2 475.1 490.2 faulty 494.3 480.8 496.4 519.7 502.7 489.4 491.0 418.1 faulty 417.8 417.2 410.4

40 511.8 535.0 507.9 493.5 509.3 faulty 514.1 497.6 514.0 538.7 521.7 504.2 507.9 425.1 faulty 427.0 436.0 415.5

41 549.2 574.0 546.0 530.0 548.4 faulty 554.5 536.8 554.7 580.6 564.2 544.9 549.6 445.5 faulty 454.9 445.6 431.2

42 474.2 499.0 474.8 461.6 476.0 faulty 480.0 465.2 480.8 503.2 485.9 472.3 474.9 408.2 faulty 409.5 409.8 399.7

43 456.9 482.6 458.9 447.4 460.6 faulty 463.6 450.0 464.1 484.7 467.8 456.2 454.2 399.0 faulty 399.9 400.6 394.7
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Table-A2-1: Steady state data for HHHC orientation with supercritical H2O (Contd.) 

Sl. 

No.

TT‐112 

(
O
C)

TT‐113 

(
O
C)

TT‐114 

(
O
C)

TT‐115 

(
O
C)

TT‐116 

(
O
C)

TT‐117 

(
O
C)

TT‐118 

(
O
C)

TT‐119 

(
O
C)

TT‐120 

(
O
C)

TT‐121 

(
O
C)

TT‐122 

(
O
C)

TT‐123 

(
O
C)

Voltage 

(V)

Current 

(A)

1 366.8 363.6 367.2 360.4 faulty 360.5 362.2 360.7 359.4 45.5 42.0 85.1 4.3 1525.1

2 390.8 385.4 388.9 400.8 faulty 398.9 402.0 403.4 396.7 46.6 42.0 89.6 5.4 1580.8

3 386.3 382.1 385.5 394.1 faulty 392.7 395.2 396.6 391.2 48.3 43.1 92.5 5.1 1601.7

4 289.2 287.4 289.3 279.0 faulty 277.6 279.2 277.5 272.7 47.7 43.6 75.5 4.6 1239.6

5 303.1 300.8 302.6 293.1 faulty 290.6 292.1 291.6 286.4 48.3 44.8 78.9 4.7 1302.2

6 331.6 329.4 332.1 322.8 faulty 320.5 322.4 320.8 316.0 48.8 44.8 82.9 4.2 1420.6

7 345.0 342.3 344.9 336.3 faulty 333.4 335.2 334.3 329.8 48.3 44.2 83.4 5.2 1406.7

8 374.6 372.5 375.5 370.5 faulty 367.8 370.0 369.1 363.8 46.6 42.5 86.8 5.2 1539

9 278.0 275.6 278.2 267.8 faulty 266.3 267.4 266.3 261.7 47.2 42.5 72.7 4.4 1197.8

10 406.4 403.4 406.7 393.5 faulty 389.8 393.0 391.0 385.7 46.6 42.5 88.5 4.6 1594.7

11 380.2 377.8 380.2 379.7 faulty 377.1 380.1 378.6 377.3 50.2 50.5 92.7 4.6 1622.6

12 380.8 378.4 380.8 381.4 faulty 378.3 382.3 379.7 377.9 50.2 50.5 91.6 5.2 1615.6

13 422.0 418.2 420.9 405.6 faulty 400.3 404.2 400.0 398.0 50.2 50.5 95.5 4.9 1692.2

14 422.0 418.2 421.4 404.5 faulty 399.7 404.2 399.4 397.5 50.2 50.5 95.5 5.6 1622.6

15 362.9 361.0 363.0 358.3 faulty 354.6 358.2 355.6 354.4 50.2 50.5 89.9 4.8 1469.4

16 365.7 363.8 366.3 362.3 faulty 358.5 361.5 358.9 357.2 50.2 50.5 89.9 4.9 1497.2

17 340.6 338.5 340.2 333.5 faulty 329.7 332.9 330.2 328.1 51.5 51.8 86.5 5.1 1518.1

18 358.5 355.9 358.5 352.7 faulty 348.9 352.0 349.9 348.2 50.6 50.9 88.2 5.4 1559.9

19 369.6 367.2 369.7 366.2 faulty 362.5 365.5 362.9 361.1 51.1 51.3 90.5 4.8 1546

20 374.1 371.6 374.7 371.8 faulty 368.1 371.1 368.5 367.2 51.1 51.3 89.9 5.8 1706.1

21 370.2 366.0 368.0 376.9 faulty 374.3 377.8 376.9 375.1 51.1 51.3 92.7 5.1 1532

22 369.6 364.9 368.0 376.9 faulty 373.7 377.8 376.4 375.1 51.5 51.8 92.2 5.4 1552.9

23 377.4 374.8 378.3 375.0 faulty 374.6 376.2 375.8 375.9 44.9 42.0 86.3 5.4 1525.1

24 378.5 375.4 378.9 376.1 faulty 376.3 378.4 377.0 377.0 44.9 42.5 88.5 4.4 1539

25 414.2 407.8 411.7 398.6 faulty 396.6 398.6 396.1 395.6 38.7 36.5 113.9 4.3 1511.1

26 427.6 421.3 425.6 402.5 faulty 399.4 402.0 399.4 392.3 51.6 41.4 93.0 4.6 1643.5

27 417.6 411.8 416.1 396.9 faulty 394.9 396.9 395.5 388.5 52.2 42.5 95.3 4.4 1552.9

28 80.9 80.7 80.7 76.9 faulty 76.7 76.8 75.3 84.0 49.4 55.8 52.4 3.1 278.6

29 110.0 109.8 110.2 103.9 faulty 104.4 104.3 102.8 112.5 49.4 55.8 55.8 3.8 362.1

30 137.9 137.8 137.4 130.8 faulty 130.9 130.6 129.8 139.4 49.4 55.8 58.6 5.1 424.8

31 170.3 168.1 168.6 160.6 faulty 160.2 159.2 158.4 169.5 49.4 56.4 62.6 5.6 536.2

32 190.4 191.0 190.8 182.5 faulty 182.2 182.2 181.5 193.1 50.0 56.4 65.4 6.1 557.1

33 220.0 219.6 219.2 210.5 faulty 210.4 209.7 209.0 221.1 49.4 55.8 68.8 6.7 612.8

34 233.4 233.1 232.5 224.0 faulty 223.4 222.6 220.8 234.8 49.4 55.8 70.5 7 654.6

35 283.0 283.5 283.2 273.4 faulty 273.1 272.5 271.9 287.0 49.4 55.8 77.2 7.5 689.4

36 329.4 330.5 328.8 321.1 faulty 321.0 319.6 319.1 335.8 48.8 55.8 84.0 7.7 793.9

37 350.0 351.8 349.9 343.6 faulty 342.5 340.9 339.9 357.2 50.0 56.4 87.4 8.3 849.6

38 380.7 383.2 381.6 381.8 faulty 381.9 379.5 380.3 398.4 50.5 56.4 94.7 8.8 893.5

39 413.1 410.1 413.4 396.9 faulty 393.8 396.4 394.9 388.5 46.0 42.0 89.1 9 950.9

40 419.3 412.3 416.7 398.0 faulty 395.5 397.5 395.5 389.0 50.5 40.9 93.6 9 940.5

41 434.9 427.5 431.2 406.5 faulty 402.8 405.3 402.8 395.6 51.1 40.9 95.3 9.3 983.6

42 401.4 396.6 400.6 388.5 faulty 387.6 389.6 387.6 386.8 44.4 39.8 89.6 8.7 960.7

43 396.9 392.7 396.1 388.5 faulty 387.6 389.6 387.1 386.8 38.7 36.5 111.1 8.1 896.2
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Appendix-3: Heat transfer correlations for supercritical fluids 
  
 
(1) Bishop correlation (Bishop et al., 1964)  
 

    





 










x

D
PrReNu

xb

w
xxx 4.21  '   0069.0

43.0

0.660.9




                             (1) 

  
(2) Bringer Smith correlation (Bringer and Smith, 1957)  
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where C = 0.0266 for water, C = 0.0375 for carbon dioxide. Nux and Rex are evaluated at 

Tx and temperatures Tpc, Tb and Tw are in oC.  
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(3) Jackson correlation (Jackson, 2002) 
 

 

n

pbbw

bw

b

w
bbb cTT

ii
PrReNu 
























1
    0183.0

3.0

5.082.0




                                  (4) 

 
where exponent n is defined as 
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and temperatures Tpc, Tb and Tw are in Kelvin (K).  
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4) Jackson Fewster correlation (Jackson and Fewster, 1975) 
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5) Mc Adams correlation (Mc Adams, 1942) 
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6) Shitsman correlation (Shitsman, 1974) 
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where  Prmin = Minimum of (Prb, Prw)                        (9) 
 

(7) Swenson correlation (Swenson et al., 1965)  
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