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Abstract

In this thesis, we proposed a model for lipid bilayers, and discussed the mechanism of the

finite-sized domain formation together with the effects of coupling of the two monolayers.

A lipid monolayer consisting of saturated lipid, hybrid lipid and cholesterol was con-

sidered. We proposed a phenomenological Ginzburg-Landau model in which the coupling

of the lipid composition and chain orientational vector field is considered. This coupling

arises from the liquid crystalline nature of the hybrid lipid which adjusts its orientational

order in the tails to reduce the line tension. As a result, finite-sized domains can be

formed. The minimization of the free energy with respect to the vector field yields an

effective free energy which is analogous to that of 3D microemulsions (above the transition

temperature) and modulated structures (below the transition temperature).

Then we considered the model for lipid bilayers comprised of two modulated mono-

layers which are coupled via interleaflet interactions. The structure and the dynamics of

the coupled modulated bilayer are investigated theoretically.

We first studied concentration fluctuations in bilayers occurring above the transition

temperature. We have calculated the static structure factors, and obtained the bilayer

phase diagrams close to the critical temperature. In both monolayers, fluctuations are

induced due to the coupling, and the spectrum of the induced fluctuations is determined

by the cross correlation of the structure factor. When the two monolayers having differ-

ent preferred wavenumbers are coupled, the peak height at smaller wavenumber becomes

larger, whereas that at a larger wavenumber remains the same. We studied the dynam-



ics of concentration fluctuations by using the coupled time dependent Ginzburg-Landau

equations, and calculated the intermediate structure factors of the bilayer. In general,

concentration fluctuations exhibit a double-exponential decay. Due to the coupling, the

time for the cross over of the two concentration fluctuations appears when the character-

istic length scale of each monolayer is different.

Then we discussed the phase separation of the coupled modulated bilayers. Within

the mean field approximation, we constructed phase diagrams of the bilayer when the two

monolayers have the same wavenumber of the modulations. The phase behavior of the

bilayers is described by the combinations of the stripe and the hexagonal morphologies.

Due to the coupling effect, one of the monolayers induces micro-phase separation in the

other monolayer. As the coupling strength increases, the asymmetric phases tend to

disappear. By performing numerical simulations, we obtained various phase separated

patterns when the two monolayers have different modulations. The obtained patterns

are approximately classified into “independent”, “intermediate” and “coincident” cases.

The degree of the overlap between the two monolayers is characterized by the inter-leaflet

correlation of the local compositions. We showed that the initial growth rates of the most

unstable mode are essentially identical to the decay rates of the concentration fluctuations.

We showed that the formation of the intermediate structures is related to the stability of

the concentration fluctuations occurring above the transition temperature.

Using the mechanism of finite-sized domain formation proposed above, we shall also

discuss its relation to the biologically relevant context of lipid rafts.
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Chapter 1

Introduction

An amphiphilic molecule possesses both hydrophilic and hydrophobic moieties in a sin-

gle molecule. The typical examples are surfactants, lipids and block copolymers. Due

to hydrophobic interactions between the hydrocarbon chain and water molecules, these

molecules self-assemble to form supermolecular structures in aqueous solutions as shown

in Fig. 1.1. As the surfactant concentration is increased, micelles, bilayer vesicles, hexag-

onally packed cylinders, lamellae (which consist of stack of bilayers) and more complex

cubic structures emerge due to the competition between entropy and intermolecular in-

teractions [1].

The characteristic length scale of these mesoscopic structures is much larger than the

molecular size and is typically 10 ∼ 1000 nm. The mesoscopic structures that are formed

can be easily deformed upon the application of an external force. This is why amphiphilic

systems are considered to be good examples of soft matter. The entropic modulus of a

soft material is typically given by G ∼ kBT/d
3, where kB is the Boltzmann constant, T is

the temperature and d is the characteristic length scale of the internal structure. Living

matter is essentially soft matter in terms of its softness because the typical cell size is

on the order of micron. Many researchers have been trying to clarify the border between

living matter and soft matter. For example, the mechanics of the cell and its relations

with the biochemical properties has attracted attention [2].
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Figure 1.1: A schematic representation of an amphiphilic molecule and their organized
structures in water solvent.
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Biomembranes consist of thousands of lipid species forming bilayers and membrane

proteins. As presented in Fig. 1.2(a), they separate inner and outer environment of

the organelles in the cell. Membrane proteins are known to play essential roles for the

biological functions. For example, they transduce external stimulation into chemical sub-

stances which are transmitted to internal environment of the cell. Such a process is

called as signal transduction. Singer and Nicolson proposed the “fluid mosaic” model for

biomembranes [3]. In this picture, membrane proteins are floating on the sea of lipids

as schematically depicted in Fig. 1.2(b). Later, Simons and Ikonen proposed the “lipid

raft” hypothesis in which some of the lipid components and/or proteins are incorporated

into finite sized domains as shown in Fig. 1.2(c) [4]. Raft domains are expected to play

important roles for the signal transduction processes by providing a field for the specific

proteins to interact each other and increasing their efficiency.

Numerous studies have been conducted to identify the raft domains in biological mem-

branes. For instance, detergent extraction of the membrane components from the cells

was performed [5]. Although the detergent resistant membrane (DRM) fractions are con-

sidered as raft components, the extracts are not the representatives of the rafts because

of the perturbation by the detergents and the low temperature (4 ◦C) of the process.

Electron microscopic (EM) images of cell membranes were captured by labeling target

lipids with gold nano particles of 10 nm size. A typical lipid cluster size was found to be

about 10–100 nm [6, 7]. According to the fluorescence resonance energy transfer (FRET)

study, the cluster size of GPI-anchored proteins was reported to be 4–5 nm [8]. Although

the size and the existence of lipid rafts are still controversial, the former is expected to

be in the range of 10–200 nm [9]. The interactions between lipid molecules and proteins

are thought to be the driving force for the raft formation.

Among many studies, dynamics of a single lipid molecule in living cell membranes have

been tracked using fluorescent microscopy, and the effect of cytoskeleton on the diffusion
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(a)

(b)

(c)

Figure 1.2: (a) A schematic representation of a single cell. There are many biomembranes
inside the cell. Each internal organ has its own lipid membrane. (b) Fluid mosaic model of
a biomembrane taken form the original paper [3]. The membrane proteins are embedded in
the phospholipid bilayers. (c) A biomembrane with raft domains which are rich in certain
components of the lipids and proteins.
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of lipid molecules has been revealed [10]. Recently, high resolution observation of the

lipid dynamics in living cells is achieved using stimulated emission depletion (STED)

fluorescent microscopy [11]. They reported that sphingomyeline and membrane proteins

are transiently (10-20 ms) trapped in 20 nm diameter areas. These experimental results

suggest that lipid rafts are dynamical assemblies of molecules with finite decay time. In

the latter study, the entrapment was not observed when the cholesterol is depleted from

the membrane by the addition of cyclodextrin, suggesting the specific interactions with

proteins or lipids on biomembranes.

In the area of “lipidomics”, the main concern is to understand the functional speci-

ficity of lipids on various metabolic diseases such as obesity or diabetes [12]. The diversity

in the lipid species (about one thousand) is expected to have some biological significance.

However, domain formation in artificial membranes requires only three components; (i)

saturated lipid having two saturated acyl chains, (ii) unsaturated lipid having one or more

double bonds in one or both acyl chains, (iii) cholesterol having four cycloalkanes (see

also Fig. 1.3). For both saturated and unsaturated lipids, the acyl chains are frozen in

the low temperature (the gel phase denoted as So phase), and they are melted in the high

temperature (the fluid phase denoted as Ld phase). This phase transition is called as the

“main transition”. The transition temperature of unsaturated lipids is generally lower

than that of saturated lipids. This is because the double bonds introduce geometrical

frustrations and act against the crystallization of the chains. Cholesterol interacts more

favorably with saturated lipids than unsaturated lipids since the rigid structure of choles-

terol fits well with saturated chains. The phase behavior of the membranes composed of

these lipids is complex because of the interactions among them.

Many researches have been conducted to reveal the domain structures on artificial

lipid membrane vesicles consisting of saturated lipid, unsaturated lipid and cholesterol

(Fig. 1.3) [13, 14, 15, 16, 17]. When the membranes are below the transition temperature,
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micron sized domains can be observed using fluorescent microscopy. Domain formation

is a consequence of the phase separation between the liquid ordered (Lo) phase and the

liquid disordered (Ld) phase. The acyl chains are more ordered in the Lo-phase than in

the Ld-phase, while the lateral mobility is much higher in the both phases compared to

the So-phase. Such a demixing of lipids is caused by the difference in the packing nature

of hydrophobic chains of saturated and unsaturated lipids. Without cholesterol, the phase

separation between the So-phase and the Ld-phase is observed. The preferential affinity

of cholesterol to the saturated lipids introduces more fluidity in the Lo phase. The effects

of cholesterol on the phase behavior of lipid mixtures have been investigated theoretically

such as using a phenomenological model [18], a microscopic model [19], or coarse grained

simulations [20]. Typical size of the phase separated domains on artificial membranes

is micron, and the domain growth continues until it reaches the size of the vesicle. In

contrast to this, phase separated domains with distinct size (micron order) have been

observed in artificial membranes [21, 22, 23, 24]. Although the characteristic size of the

phase separated domains is different from that of the biomembranes, it is worthwhile to

consider the formation mechanism of the finite sized domains on biomembranes in relation

to the artificial membranes.

Another interesting research direction is to probe concentration fluctuations above the

transition temperature in ternary lipid mixtures, as shown in Fig. 1.4 [25]. Analyzing

fluorescent microscope images, the correlation length of critical concentration fluctuations

in model membranes was measured [26, 27]. The obtained critical exponent characterizing

the critical behavior of the correlation length suggests that these lipid mixtures belong

to the universality class of 2D Ising model. Critical concentration fluctuations were also

observed in membranes extracted from living cells [28]. It is rather surprising that plasma

membranes may be naturally at their critical compositions considering the fact that they

consist of thousands of different species of lipids and proteins.
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Figure 1.3: The phase diagram of the model membrane consisting of POPC (palmitoy-
loleoylphosphatidylcholine, unsaturated lipid), PSM (palmitoylsphingomyeline, saturated lipid)
and cholesterol. The chemical structures of these molecules are illustrated. Phase separa-
tions occur in the light gray regions of the phase diagram with a typical microscope im-
age of the phase separated structure. (The microscope picture is taken from the bilayer of
DOPC/PSM/cholesterol.) Dark and bright domains in the micrograph are the liquid ordered
(Lo) phase and the liquid disordered (Ld) phase, respectively. Cholesterol is preferentially
partitioned in the Lo-phase than the Ld-phase. Figures are taken from Refs. [14, 38, 56].
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Figure 1.4: Fluorescent microscope images of the surface of a single giant unilamellar vesicle
for different times [25]. The transition temperature is Tc = 31.9 ◦C. Concentration fluctuations
can be observed when the temperature is higher than Tc. The vesicle is composed of 25:20:55
mol% of diphytanoylphosphatidylcholine (DiPhyPC), dipalmitoylphosphatidylcholine (DPPC)
and cholesterol. The scale bar is 20 µm.
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The key issue related to lipid rafts is to understand the existence of finite sized do-

mains (clusters) rather than macroscopically phase separated domains. This question

is primarily concerned with the question whether biomembranes are above or below the

miscibility transition temperature. Suppose biomembranes are above the transition tem-

perature, the correlation length characterizing the concentration fluctuations is the only

length scale which diverges at the critical point. If biomembranes are below the transi-

tion temperature, there should be a mechanism to suppress the coarsening of domains. In

this case, lipid membranes may undergo micro-phase separation similar to block copoly-

mers. This naturally explains the typical length scale below the transition temperature

in equilibrium.

One possibility to account for the finite sized domains in lipid membranes both above

and below the transition temperature is the existence of “hybrid lipids” which have one

saturated chain and one unsaturated chain [29, 30, 31]. Hybrid lipids are one type of

unsaturated lipids, and are abundant in the biological membranes [32, 33]. Such lipids

tend to localize at the 2D domain boundaries in order to reduce the frustration of the chain

mismatch and act as line active molecules similar to the surfactant. As a result, hybrid

lipids can drive the line tension to become negative. Hence a ternary mixture of saturated

lipid (having two saturated chains), unsaturated lipid (having two unsaturated chains),

and hybrid lipid has a close resemblance to a microemulsion consisting of oil, water,

and surfactant [25, 29, 34]. It is known that three-dimensional (3D) microemulsions are

thermodynamically stable solutions in which oil and water are isotropically mixed on the

scale of 50–100 nm. Although the physical mechanisms for the stabilization of interfaces

are different between surfactants and hybrid lipids, the ternary lipid mixtures can be

regarded as 2D microemulsions. It was proposed that the hybrid lipid is a more efficient

linactant in the mixture of saturated lipid, hybrid lipid, and cholesterol [31]. When the

two chains of the hybrid lipid are oriented towards the domain interface, the line tension
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can become negative. The lipid domains generated in the membrane can then be termed

as “2D micelles”.

The important feature of biological membranes is that the lipid composition in each

monolayer is notably different. For example, it was reported that the distribution of

lipid species composing inner and outer leaflets in human red blood cells is asymmet-

ric [35]. More importantly, these asymmetric monolayers are coupled and do not behave

independently. The coupling of the domains in monolayers might be important because

interleaflet interactions between proteins of outer and inner leaflets may connect the outer

environments and inner signaling pathway of the cell. Such a coupling between the two

leaflets was experimentally verified by looking at the phase behavior of combined monolay-

ers which have different lipid compositions [36]. It was shown that one of the monolayers

either induce or suppress phase separation in the other monolayer. One of the possibilities

to account for this inter-monolayer coupling is the lipid chain interdigitation occurring

at the mid-plane of the bilayer [37]. The phase behavior of the coupled lipid bilayer

was theoretically studied using either the regular solution theory [38] or the Landau the-

ory [39]. These works have been successful in describing the experimentally observed

phase behaviors of coupled bilayers below the transition temperature. Later, concentra-

tion fluctuations of coupled bilayers above the transition temperature was investigated in

Ref. [40].

In this thesis, the statics and dynamics of inhomogeneous structures in lipid bilay-

ers are studied. We propose a model describing the formation of finite sized domains in

membranes containing hybrid lipids. Within the Ginzburg-Landau theory, we consider a

coupling between the chain orientation and the composition field in lipid monolayers. For

both above and below the transition temperature, the characteristic length of the com-

positional modulations emerges due to the coupling. Such a characteristic length scale

might possibly regulate the raft size in biomembranes. Especially, we discuss the concen-
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tration fluctuations above the transition temperature and their biological relevance. The

decay time of the concentration fluctuations can be interpreted as a life time of dynamical

domains. Then the effects of coupling of two modulated monolayers are considered by

introducing interleaflet interactions as argued before [36, 38, 39]. We discuss both static

and dynamic properties of concentration fluctuations in coupled modulated bilayers. We

obtain the static and dynamical structure factors of coupled bilayers above the transi-

tion temperature. We construct the phase diagrams of the coupled modulated bilayers,

and determine the regions of the ordered phase, the structured-disorder phase and the

disorder phase in each monolayer. Due to the coupling between the two leaflets, concen-

tration fluctuations are induced in both the monolayers. We especially focus on the case

when the fluctuations in the two monolayers have different characteristic wavelengths. We

also discuss the phase separation in the coupled modulated bilayers below the transition

temperature. Various kinds of intermediate phase separated structures arise due to the

two competing structures of different wavelengths. We show that the formation of the

intermediate structures can be explained by the stability of the concentration fluctuations

occurring above the transition temperature. Finally we discuss the biological relevance of

the suggested model.

This thesis is organized as follows. In Chap. II, the model for modulated monolayers

and coupled modulated bilayers are presented. The static and dynamical structure factors

of the bilayers are computed in Chap. III. In Chap. IV, the phase behavior of the bilayer

below the transition temperature is discussed. Some discussions are given in Chap. V.

Finally, we conclude in Chap.VI.
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Chapter 2

Model

In this chapter, we present models for a lipid monolayer and a bilayer. Firstly, a mecha-

nism for the finite sized domain formation in lipid monolayers is discussed. The coupling

between the concentration field of the lipids and the orientational vector field of lipid

chains generates finite sized domain (modulated) structures in monolayers. Then we show

a model for coupled bilayers which consist of two modulated monolayers. The physical

origin of the inter-leaflet coupling is also discussed.

2.1 Lipid monolayer

As a model for the lipid monolayer, we consider a 2D lattice composed of saturated and

hybrid lipids, and these lipids constitute the liquid ordered phase (Lo) and the liquid

disordered phase (Ld), respectively (Fig. 2.1). Hybrid lipids possess both saturated chain

lipid S lipid H

unsaturated
saturated

Figure 2.1: 2-dimensional lattice compose of saturated lipids and hybrid lipids. Hybrid lipids
possess both saturated acyl chain and unsaturated acyl chain in a single molecule.
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and unsaturated chain in a single molecule. We define the number of the lipid species as

NS and NH. The Flory-Huggins free energy of mixing for the binary lipids per unit area

is expressed as

f0

kBT
=

1

d2
[φS log φS + φH log φH + χφSφH], (2.1)

where φS = NS/(NS +NH) and φH = NH/(NS +NH) are the area fraction of each species,

χ is the Flory-Huggins parameter, and d is the typical size of the lipid, such as the size of

the head group. By defining φ = (φS − φH)/2 and using the incompressibility condition

φS + φH = 1, Eq. (2.1) is expanded to give

f0 − fc

kBT
=
τ̄

2
φ2 +

u

4
φ4, (2.2)

with

τ̄ =
2(2 − χ)

d2
, (2.3)

and

u =
16

3d2
. (2.4)

Then the free energy is given by

Fc[φ(r̃)] =

∫
dr̃

[
σ

2
(∇̃φ)2 +

τ̄

2
φ2 +

u

4
φ4 − µ̄φ

]
. (2.5)

Where ∇̃ = (∂/∂x̃, ∂/∂ỹ) and dr̃ = dx̃dỹ, characters with tildes have the dimension of

length. The term with σ(> 0) generates the energy penalty for spatially inhomogeneous

distribution of φ, and is related to the line tension between two adjacent domains. µ̄ is the

chemical potential which regulates the average composition in the membranes. This free

energy describe the phase separation. When τ̄ < 0, fc has two minima at φ1,2 = ±
√
−τ/u

(when spatially averaged composition φ0 is zero), corresponding to the composition of Lo

and Ld phases, respectively. The dynamics of the phase separation is described by the

time evolution equations of the compositions

∂φ

∂t
= Lφ∇̃2 δFc

δφ
, (2.6)
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where Lφ is the kinetic coefficient and δFc/δφ is the functional derivative. By solving

the above equation, one can show that phase separated domains merge to grow in time

driven by the penalty σ. The growth continues until the size of the domain reaches the

“macroscopic” size (i.e., comparable to the system size). Thus there is no characteristic

size of the domain for the phase separation phenomena.

We define the orientation of a hybrid lipid molecule as a vector from the unsatu-

rated tail towards the saturated tail by b = (bx , by) as shown in Fig. 2.2. The vector

m(r̃) = (mx (r̃),my(r̃)) is defined as the spatial average of the b vectors over areas large

as compared with molecular size but still small enough as compared with macroscopic

scales. The energy of these orientational vector is expressed by

Fo[m(r̃)] =

∫
dr̃

[
a

2
m2 +

K1

2
(∇̃ · m)2 +

K2

2
(∇̃ × m)2

]
. (2.7)

The term of a(> 0) is related to the orientational entropy, and K1, K2(> 0) are the elastic

constants for the orientation. Without the gradient terms, the above energy is minimized

when the orientational field is m = 0.

When the two lipid species are spatially inhomogeneous both above Tc (concentration

fluctuations) and below Tc (phase separations), the coupling of the concentration and the

orientational vector fields emerges. Here the coupling term is given by

Fcoup[φ(r̃),m(r̃)] = −g
∫

dr̃m · (∇̃φ), (2.8)

where g > 0 is the coupling constant. Notice that this term is negative when m and ∇̃φ

point to the same direction. Hybrid lipids are responsible for the emergence of the cou-

pling, because the saturated chain and the unsaturated chain of the lipid have preferences

to the Lo-phase and the Ld-phase, respectively. Especially at the boundary between the Lo

and the Ld-domains, the hybrid lipids are expected to reduce the chain mismatch by ori-

enting their saturated/unsaturated chains toward the Lo and Ld-phases. The mechanism

of chain direction alignment at the boundary was proposed by Yamamoto et.al. [31], and
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φ

m

lipid H

unsaturatedsaturated

b

L
o

L
d

lipid S

Figure 2.2: A lipid monolayer consisting of saturated lipids and hybrid lipids. The 2D vector
of a lipid molecule from the less packing chain toward the packed chain is defined as b.
Spatially averaged orientational vector is defined as m.

the mechanism we introduce here is a coarse grained and intuitive picture of this effect.

The Ginzburg-Landau free energy functional for the lipid monolayers based on two order

parameters φ(r̃) and m(r̃) is given by the sum of these contributions (Fc + Fo + Fcoup),

Fm[φ(r̃),m(r̃)] =

∫
dr̃

[
σ

2
(∇̃φ)2 +

τ̄

2
φ2 +

u

4
φ4 − µ̄φ

+
a

2
m2 +

K1

2
(∇̃ · m)2 +

K2

2
(∇̃ × m)2 − gm · (∇̃φ)

]
. (2.9)

In the Fourier space, Fm[φ,m] is expressed as

Fm[φ(q̃),m(q̃)] =

∫
dq̃

[
1

2

(
σq̃2 + τ̄

)
φ(q̃)φ(−q̃) (2.10)

+
1

2

(
a−K1q̃

2
x −K2q̃

2
y

)
mx (q̃)mx (−q̃)

+
1

2

(
a−K1q̃

2
y −K2q̃

2
x

)
my(q̃)my(−q̃)

−(K1 +K2)q̃x q̃ymx (q̃)my(−q̃)

+ig[q̃xmx (q̃)φ(−q̃) + q̃ymy(q̃)φ(−q̃)]

]
− µ̄φ(0)

+

∫
dq̃

∫
dq̃′
∫

dq̃′′
[
u

4
φ(q̃)φ(q̃′)φ(q̃′′)φ(−q̃ − q̃′ − q̃′′)

]
,

where i is the imaginary unit, q̃ = (q̃x , q̃y) is the wavevector in the monolayer, and

q̃ = |q̃| is the wavenumber. Minimizing Fm[φ(q̃),m(q̃)] with respect to m(q̃) yields the
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equilibrium orientational fields of the chains for each Fourier mode as,

m∗(q̃) =
igq̃

a+K1q̃2
φ(q̃). (2.11)

Note that the constant K2 vanishes in this minimization process. By putting Eq. (2.11),

the free energy depends only on the composition,

Fm[φ(q̃)] =

∫
dq̃

(
σ

2
q̃2 +

τ̄

2
− g2q̃2

2(a+K1q̃2)

)
φ(q̃)φ(−q̃) − µ̄φ(0)

+

∫
dq̃

∫
dq̃′
∫

dq̃′′
[
u

4
φ(q̃)φ(q̃′)φ(q̃′′)φ(−q̃ − q̃′ − q̃′′)

]
. (2.12)

Again, the constant K2 does not appear in the minimized energy. For small q, the

coefficients of the coupling term can be expanded, and the free energy is given by　

Fm[φ(q̃)] =

∫
dq̃

(
2Bq̃4 − 2Aq̃2 +

τ̄

2

)
φ(q̃)φ(−q̃) − µ̄φ(0)

+

∫
dq̃

∫
dq̃′
∫

dq̃′′
[
u

4
φ(q̃)φ(q̃′)φ(q̃′′)φ(−q̃ − q̃′ − q̃′′)

]
, (2.13)

with

B̃ =
K1g

2

4a2
, (2.14)

and

A =
1

4

(
g2

a
− σ

)
. (2.15)

Notice that A is dimensionless quantity. The wavenumber q̃-dependence of the free energy

Fm[φ(q̃)] is plotted in Fig. 2.3.　 When the coupling is weak (g2/a − σ < 0), the line

tension has a positive value (A < 0) and the minimum is at q̃∗ = 0, indicating the macro-

phase separation (below Tc). If the coupling is strong (g2/a−σ > 0), the line tension can

become negative (A > 0) and the energy has a minimum at q̃∗ 6= 0. The negative gradient

squared term favors spatial modulations, whereas the positive coefficients of the Laplacian

squared term (B̃ > 0) suppresses modulations. As a result of these contributions, a

stable modulation of finite wavenumber emerges. The characteristic wavenumber of this
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Figure 2.3: Wavenumber q dependence of the free energy.

modulated structure is obtained by minimizing Eq. (2.13) with respect to q̃

q̃∗ =

√
A

2B̃
=

√
a(1 − aσ/g2)

2K1

. (2.16)

Here the length scale of the modulation is determined by a, the line tension σ, the elastic

coefficient K1, and the coupling constant g. These coefficients are related to the properties

of the lipid mixture.

In real space, Eq. (2.13) is expressed as

Fm[φ(r)] =

∫
dr

[
2B(∇2φ)2 − 2A(∇φ)2 +

τ

2
φ2 +

1

4
φ4 − µφ

]
, (2.17)

Here r = ur̃ and ∇ = ∇̃/
√
u are the dimensionless area and Laplacian, respectively.

B = uB̃, τ = τ̄ /u, and µ = µ̄/u are the dimensionless quantities. Equation (2.17) has

been used successfully in the past to describe a variety of modulated systems: magnetic

garnet films [41], Langmuir films [42], lipid membranes [43] and diblock copolymers [44,

45]. This free energy functional also describes the structure of 3D microemulsions [46,

47]. It should be noted that the free energy functional of Eq. (2.9) was proposed in

order to explain the phase behavior of the 3D microemulsion systems [48]. In magnetic
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garnet films, modulated structures appear as a competition between the domain wall

energy (favoring large domain) and the demagnetizing energy (dipolar interactions which

favoring small domain) energy. In the case of Langumuir films, a balance between the

line tension (favoring large domain) and the dipolar electrostatic repulsion (favoring small

domain) generates modulations. In lipid membranes, the coupling of lipid composition

and curvature of the membranes generates the modulated structures [21, 22, 23, 24]. In

our model of lipid monolayers, a competition between the negative line tension (favoring

small domain) and the elastic energy (favoring large domain) generates modulations.

All of these modulated structures emerge as a balance between short and long range

interactions. In the next subsection, we present the model for lipid bilayers in which two

modulated monolayers are coupled each other.

2.2 Lipid bilayer

In order to illustrate the coupling effect between two modulated monolayers, we consider a

pair of lipid monolayers forming a coupled bilayer. Each of the monolayer have finite sized

modulations due to the above mentioned mechanism. As shown in Fig. 2.4, we assume

the other monolayer is also a mixture of lipid S and lipid H. Area fractions of lipids

in the other monolayer is defined by ψS(r) and ψH(r). Assuming that the monolayer

is incompressible ψS(r) + ψH(r) = 1, order parameter of the lower monolayer is defined

by ψ(r) = ψS(r) − ψH(r). The coarse-grained free-energy functional for the coupled

modulated bilayer is written as:

Fb[φ, ψ] =

∫
dr

[
2B(∇2φ)2 − 2A(∇φ)2 +

τφ
2
φ2 +

1

4
φ4 − µφφ

+2D(∇2ψ)2 − 2C(∇ψ)2 +
τψ
2
ψ2 +

1

4
ψ4 − µψψ − Λφψ

]
. (2.18)

This is a modified dimensionless Ginzburg-Landau free energy expanded in powers of

the order parameters φ and ψ and their derivatives. The first five terms depend only



20 Chapter 2. Model

φ

ψ

−Λφψ

high temperature

−Λφψ

φ

ψ

low temperature

Figure 2.4: Schematic illustration of two coupled modulated monolayers forming a bilayer
membrane. Each monolayer is composed of a binary S/H lipid mixture, which can have a
spatial modulation. The relative composition of lipids of S and H in the upper and the lower
leaflets are defined by φ and ψ, respectively. In general, the average composition in the
two monolayers can be different. The lipid tails interact across the bilayer mid-plane. The
phenomenological coupling term between these two variables are assumed to be bi-linear of
the form −Λφψ in the free energy of Eq. (2.18).

on φ and its derivatives and describe the upper monolayer and its possible modulations.

Similarly, the next five terms that are only functions of ψ and its derivatives describing

the lower monolayer. The last term represents the coupling between the two leaflets. The

coefficients of the gradient squared and the Laplacian squared terms (C,D) are related to

the properties of the lower monolayer. The φ2, φ4, ψ2 and ψ4 terms in Fb are the usual

Landau expansion terms with τφ and τψ being the scaled temperatures. Finally, the linear

term coefficients, µφ and µψ are the scaled chemical potentials.

Here we address the physical origin of the coupling term. We first note that this

quadratic term is invariant under the exchange of φ ↔ ψ. When Λ > 0, this term

can be obtained from a (φ − ψ)2 term [38, 39], which represents a local energy penalty

when the upper and lower monolayers have different compositions. In the case of mixed
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lipid bilayers, such a coupling may result from the conformational confinement of the

lipid chains, and hence would have entropic origin [38]. By estimating the degree of the

lipid chain interdigitation, the magnitude of the coupling parameter Λ was estimated

by May [37]. In general, the coupling constant Λ can also be negative depending on

the specific coupling mechanism [37]. However, it will be explained later that the phase

diagram for Λ < 0 can easily be obtained from the Λ > 0 one. Hence, it is sufficient to

consider only the Λ > 0 case without loss of generality. The case when the other coupling

terms including non-local coupling between the monolayers is discussed in Appendix A.
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Chapter 3

Concentration Fluctuations

In this chapter, we consider concentration fluctuations in modulated bilayers occurring

above the critical temperature. We obtain analytical expressions for the static struc-

ture factors, the phase diagrams, and the intermediate structure factors of the coupled

modulated bilayers.

3.1 Statics

We write the order parameters φ and ψ as

φ = φ0 + δφ, ψ = ψ0 + δψ, (3.1)

where φ0 = 〈φ〉 and ψ0 = 〈ψ〉 are the spatially averaged compositions in each monolayer,

and δφ and δψ describe the deviations of the composition from their average values. In

equilibrium, the average compositions satisfy the following conditions

τφφ0 + φ3
0 − µφ − Λψ0 = 0, (3.2)

τψψ0 + ψ3
0 − µψ − Λφ0 = 0. (3.3)
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Inserting Eq. (3.1) to Eq. (2.18) and leaving only up to quadratic terms in δφ and δψ, we

obtain the Gaussian free energy

FG[δφ, δψ] =

∫
dr

[
2B(∇2δφ)2 − 2A(∇δφ)2 +

τ̃φ
2

(δφ)2

+2D(∇2δψ)2 − 2C(∇δψ)2 +
τ̃ψ
2

(δψ)2 − Λ(δφ)(δψ)

]
, (3.4)

where we have used the notations τ̃φ = τφ + 3φ2
0 and τ̃ψ = τψ + 3ψ2

0.

The above free energy can be expressed in Fourier space. For this purpose, we first

define the Fourier coefficients of δφ and δψ by δφ(q) and δψ(q), respectively, i.e.,

δφ(q) =

∫
dr δφ(r ) exp(−iq · r ), (3.5)

δψ(q) =

∫
dr δψ(r ) exp(−iq · r ). (3.6)

Then Eq. (3.4) becomes

FG[δφ(q), δψ(q)] =
1

2

∫
dq
[
δφ(−q) δψ(−q)

]
S−1(q)

[
δφ(q)
δψ(q)

]
, (3.7)

where

S−1(q) =

[
2Γφ(q) −Λ
−Λ 2Γψ(q)

]
, (3.8)

with

Γφ(q) = 2Bq4 − 2Aq2 +
τ̃φ
2
,

Γψ(q) = 2Dq4 − 2Cq2 +
τ̃ψ
2
. (3.9)

Note that q = |q|.

The inverse matrix of Eq. (3.8) gives the structure factor matrix S(q)

S(q) =

[
Sφφ(q) Sφψ(q)
Sψφ(q) Sψψ(q)

]
, (3.10)

in which the partial structure factors Sφφ(q), Sφψ(q), Sψφ(q), Sψψ(q) are defined by

Sφφ(q) = 〈δφ(q)δφ(−q)〉, (3.11)
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Sψψ(q) = 〈δψ(q)δψ(−q)〉, (3.12)

Sφψ(q) = Sψφ(q) = 〈δφ(q)δψ(−q)〉 = 〈δψ(q)δφ(−q)〉. (3.13)

After some calculations, we obtain

Sφφ(q) =
2Γψ(q)

4Γφ(q)Γψ(q) − Λ2
, (3.14)

Sψψ(q) =
2Γφ(q)

4Γφ(q)Γψ(q) − Λ2
, (3.15)

Sφψ(q) =
Λ

4Γφ(q)Γψ(q) − Λ2
. (3.16)

We can see that the coupling parameter Λ effectively changes the critical temperature.

The total structure factor is given by

Stot(q) = Sφφ(q) + Sψψ(q) + 2Sφψ(q) =
2(Γφ(q) + Γψ(q) + Λ)

4Γφ(q)Γψ(q) − Λ2
. (3.17)

The thermodynamic compressibility is obtained by taking the limit of q → 0 for each

partial structure factor. Then we obtain

κφφ = Sφφ(q → 0) =
τ̃ψ

τ̃φτ̃ψ − Λ2
, (3.18)

κψψ = Sψψ(q → 0) =
τ̃φ

τ̃φτ̃ψ − Λ2
, (3.19)

κφψ = κφψ = Sφψ(q → 0) = Sφψ(q → 0) =
Λ

τ̃φτ̃ψ − Λ2
. (3.20)

For the total compressibility, we get

κtot = Stot(q → 0) =
τ̃φ + τ̃ψ + 2Λ

τ̃φτ̃ψ − Λ2
. (3.21)

3.1.1 Decoupled case (Λ = 0)

We first discuss the case when the two monolayers are decoupled, i.e, Λ = 0. Then the

structure factors are simply given by

Sφ(q) = 1/2Γφ(q), Sψ(q) = 1/2Γψ(q). (3.22)
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These functions exhibit peaks at q∗φ =
√
A/2B(A > 0) and q∗ψ =

√
C/2D(C > 0),

indicating that fluctuations characterized by the corresponding length scales dominantly

exist in each monolayer in thermal equilibrium. The peak intensities in the respective

monolayer is Sφ(q = q∗φ) = 1/(τ̃φ − A2/B) and Sψ(q = q∗ψ) = 1/(τ̃ψ − C2/D), hence the

critical temperatures are given as τ̃ ∗φ = A2/B and τ̃ ∗ψ = C2/D, respectively.

The 2D inverse Fourier transform of Eq. (3.22) yields the real space correlation func-

tions (see Appendix B for the derivation)

Gφ(r) =
ξφλφ
32πB

Re

[
H

(1)
0

(
2πr

λφ
+ i

r

ξφ

)]
, (3.23)

Gψ(r) =
ξψλψ
32πD

Re

[
H

(1)
0

(
2πr

λψ
+ i

r

ξψ

)]
, (3.24)

where H
(1)
0 is the Hankel function of first kind. Each correlation function contains two

length scales; the first one being the alternation period

λφ
2π

=

(
B

τ̃φ

)1/4
2√

1 − γφ
,

λψ
2π

=

(
D

τ̃ψ

)1/4
2√

1 − γψ
, (3.25)

and the other being the correlation length

ξφ =

(
B

τ̃φ

)1/4
2√

1 + γφ
, ξψ =

(
D

τ̃ψ

)1/4
2√

1 + γψ
. (3.26)

Here we have used the notations γφ = −A/
√
τ̃φB, γψ = −C/

√
τ̃ψD.

In Fig. 3.1(a), we plot the correlation function Eq. (3.23) for various parameters.

Similar to 3D microemulsions [46], the correlation of concentration fluctuation oscillates

and decays exponentially as a function of the distance r. When −1 ≤ γφ ≤ 1, both λφ

and ξφ are finite, and the corresponding phase is called the structured-disorder phase. In

this phase, the line of γφ = 0 is called the Lifshitz line. The peak position of the structure

factor is q∗φ 6= 0 for −1 ≤ γφ ≤ 0, whereas it is at q∗φ = 0 for 0 ≤ γφ ≤ 1.The periodicity λφ

diverges when γφ → 1, and the system is in the disorder phase when γφ ≥ 1. The line for

γφ = 1 is called the disorder line. The correlation length ξφ diverges when γφ → −1 (hence
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the critical point), and the ordered phase appears for γφ ≤ −1.Figure 3.1(b) summarizes

the phase behavior of a decoupled monolayer in terms of the parameter γφ.

The above arguments are equivalent to analyzing poles of Eq. (3.22) in a complex

plane (see Appendix B for details). All the poles are real numbers when γφ ≤ −1 so

that λφ is finite in the ordered phase. Since all the poles are complex number when

−1 ≤ γφ ≤ 1, both λφ and ξφ are finite in the structured-disorder phase. All the poles

are pure imaginary numbers when γφ ≥ 1, and only ξφ is finite in the disorder phase.

The phase diagram of the decoupled bilayer is easily obtained from Fig. 3.1(b) by

combining its two cross-sections (one for γφ and one for γψ), and shown in Fig. 3.2(a).

All the phases are expressed as combinations of the ordered phase (O), the structured-

disorder phase (S) and the disorder phase (D). Lifshitz lines are also shown using dotted

lines.
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Figure 3.1: (a) Real space correlation function of monolayers in the structured disorder phase
as a function of r with various parameters. (b) Phase diagram of the modulated monolayer,
where γφ = −A/

√
Bτ̃φ. Depending on the value of the γφ, the states of the monolayer is

categorized as the ordered phase, the structured disorder phase or the disorder phase. Lifshitz
line is located at γφ = 0.
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3.1.2 Coupled case (Λ 6= 0)

When the two monolayers are coupled (Λ 6= 0), the corresponding phase diagram can be

obtained by analyzing poles of the following quantity (the denominator of the structure

factors of the coupled bilayer)

Sd =
1

(q4 + 2γφ
√
τ̃φ/4Bq2 + τ̃φ/4B)(q4 + 2γψ

√
τ̃ψ/4Dq2 + τ̃ψ/4D) − Λ2/(16BD)

,

(3.27)

and one example is shown in Fig. 3.2(b).

The boundary between the OO and SS phases is determined by the condition that the

structure factor diverges. In the region assigned as the DD phase, all the poles of Eq. (3.27)

are pure imaginary numbers. There are complex poles in the SS phase, while there is at

least one real pole in the OO phase. We can see that the asymmetric phases like “SD” and

“DO” have disappeared. As it will be explained later in the part of the static structure

factors, one monolayer induces modulations to the other monolayer due to the coupling,

and the regions of the OO and SS phases are expanded, while the DD phase region becomes

smaller. Notice that increasing the coupling is equivalent to lowering the temperature,

since our coupling term is quadratic in terms of the compositions (−Λφψ). The Lifshitz

lines corresponding to each monolayer are numerically obtained by detecting the peak

positions of Eqs. (3.14) and (3.15). The dashed dot lines close to the phase boundaries

are the equimaxima lines [49]. On these lines, the peak heights in one monolayer at q = 0

and at q 6= 0 induced by the other monolayer are the same.
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Figure 3.2: Phase diagram of the bilayer around the critical temperature for τ̃φ/4B =
τ̃ψ/4D = 1. All the phases are expressed as the combination of two characters, each of them
represents phases in φ- and ψ-monolayer. “O”, “S” and “D” stand for the ordered phase,
structured disorder phase and disorder phase, respectively. Solid, broken and dotted lines are
the transition, disorder and Lifshitz lines respectively. (a) Phase diagram of decoupled bilayer
(Λ = 0) and (b) finite coupling (Λ/

√
BD = 2), γφ = −A/(

√
Bτ̃φ), γψ = −C/(

√
Dτ̃ψ).

The broken dotted lines are the equimaxima lines. Lifshitz and equimaxima lines in (b) are
drawn under the condition of B = D = 0.5.
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In Fig. 3.3(a) and (b), we plot the structure factors of the decoupled (Λ = 0) and

the coupled (Λ = 0.4) bilayers, respectively. Here we consider the case when the two

characteristic wavelengths are different, i.e., q∗φ 6= q∗ψ. In order to have the better com-

parison, the intensities of the two peaks are set to be equal, according to the condition

A2/B = C2/D = 1. For the coupled case, we can see that the fluctuations are induced

in both of the monolayers. The structure factor Sφψ expresses the cross correlation of the

two monolayers as shown in Eq. (3.16). This quantity is related to the induced fluctua-

tions due to the coupling. We see that the peak height reflecting that of Sφφ at q = 1/
√

2

is increased in Sφφ, whereas the peak height reflecting that of Sψψ at q = 3/
√

2 is nearly

unchanged compared with the decoupled case. The peak position of Sφψ is nearly located

at that of Sφφ. The position of the peak in Sφψ is determined by the product of the

Sφ and Sψ. Notice that the structure factor of the modulated monolayers decays as q−4

for q � q∗. Then Sψψ(q < q∗ψ) has relatively large value and Sφφ(q > q∗φ) is small (see

Fig. 3.3(a)), and the cross correlation of the two structure factors Sφψ is large for q ∼ q∗φ

and small for q ∼ q∗ψ. Notice that the such a tendency of the induced fluctuations due

to the coupling is strong when the wavenumber ratio q∗ψ/q
∗
φ is different from unity. This

is the direct consequence of the asymmetry of the two peak positions in the modulated

bilayers. Similar phenomena should occur not only for the coupled lipid membrane system

but also for other coupled modulated systems, e.g., coupled magnetic films with different

lengths of the modulation.

In Figs. 3.4, 3.5, 3.6, we plot the structure factors in the case when the temperatures of

the monolayers are different (τ̃φ 6= τ̃ψ). In Fig. 3.4, we show the case when the monolayer

which is characterized by a larger wavenumber has lower temperature (q∗ψ/q
∗
φ = 3, τ̃φ =

1.5, τ̃ψ = 1.2). In the decoupled case (a), we can see that the peak height Sψψ(q = q∗ψ) is

larger than that of the Fig. 3.3(a) because the temperature is close to the critical point.

The coupled case is shown in Fig. 3.4(b). The structure factors at the peak position q = q∗ψ
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do not change, whereas the peak at q = q∗φ is induced to the both of the monolayers.

In Fig. 3.5, we show the case when the monolayer which is characterized by a smaller

wavenumber has lower temperature (q∗ψ/q
∗
φ = 3, τ̃φ = 1.2, τ̃ψ = 1.5). The decoupled case

and the coupled case are shown in (a) and (b). The increase of the structure factor due

to the coupling at the peak position Sφφ(q = q∗φ) is larger than that of the Fig. 3.4(b).

In Fig. 3.6, we show the case when the monolayer which is characterized by a larger

wavenumber is close to the critical temperature (q∗ψ/q
∗
φ = 3, τ̃φ = 1.5, τ̃ψ = 1.01). The

cross correlation Sφψ exhibits a peak at q = q∗ψ, but its value is still smaller than that

of the peak at q = q∗φ. In the limit of τ̃ψ → 1, the peak value of q = q∗ψ becomes larger

than that of the q = q∗φ and the bilayer state changes to the ordered phase. These results

show that the induction of the fluctuations at smaller wavenumber occurs even when the

temperatures of each monolayer are different.

In Fig. 3.7, the numerically obtained peak positions of the cross of structure factor Sφψ

denoted as q∗φψ are shown. In all the temperature cases, we can see that peak positions do

not depend on the coupling constant Λ. For all the wavenumber ratios, the values of the

qφψ have almost same values with the peak wavenumber of the smaller ones (q = 1/
√

2).

In the case when one of the monolayers has lower temperature (b and c), the lines of

q∗φ = q∗ψ = 1/
√

2 have endpoints. The endpoints represent the transition point to the

ordered phase. As we will discuss later, the coupling change the transition lines.

The peak position of Sφψ denoted as q∗φψ is numerically obtained and plotted in

Fig. 3.8(a) as a function of q∗φ and q∗ψ. Here the two peak heights are same Sφ(q = q∗φ) =

Sψ(q = q∗ψ) under the condition A2/B = C2/D = 1. We see that when the fluctuations of

different characteristic wavenumbers are coupled, the value of q∗φψ is almost equal to that

of the smaller one. As the characteristic wavenumbers are increased (q∗φ ∼ q∗ψ ∼ 2), the

contour lines of q∗φψ are no longer parallel to the axes. This is because of the large overlap

of the structure factors of the two monolayers. Notice that the width of the peak in the
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Figure 3.3: Static structure factors of the bilayer Sφφ, Sψψ, Sφψ for τ̃φ = τ̃ψ = 1.5,
B = A = 1, D = 0.0123, C = 0.1111 (q∗φ = 1/
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Figure 3.5: Static structure factors of the bilayer Sφφ, Sψψ, Sφψ for τ̃φ = 1.2, τ̃ψ = 1.5,
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Figure 3.7: Effect of the coupling on the peak positions of the cross correlation of the
structure factors Sφψ. Solid lines represent the case of B = A = D = C = 1 (q∗φ = q∗ψ =

1/
√

2), broken lines are B = A = 1, D = 0.0625, C = 0.25 (q∗φ = 1/
√

2, q∗ψ =
√

2), and

dotted lines are B = A = 1, D = 0.0123, C = 0.1111 (q∗φ = 1/
√

2, q∗ψ = 3/
√

2). (a)
τ̃φ = 1.5, τ̃ψ = 1.5 (b) τ̃φ = 1.5, τ̃ψ = 1.2 (c) τ̃φ = 1.2, τ̃ψ = 1.5.
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modulated monolayers increases with increasing the peak wavenumber, see Fig. 3.3(a).

When the temperatures of each monolayer are different, the peak position of Sφψ is

shown in Fig. 3.8(b) and (c). We see that the distribution of the q∗φψ changes, especially

when the characteristic wavenumbers of the monolayers are large (qφ > 2 and qψ > 2).
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Figure 3.8: Contour plot of the peak positions of the structure factor Sφψ as functions of

q∗φ =
√
A/2B and q∗ψ =

√
C/2D. Coupling constant is Λ = 0.3. The condition A2/B =

C2/D is assumed. (a) τ̃φ = τ̃ψ = 1.5, (b) τ̃φ = 1.5, τ̃ψ = 1.2, (c) τ̃φ = 1.2, τ̃ψ = 1.5.
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The peak height of Sφψ is plotted in Fig. 3.9 as a function of the coupling parameter Λ

and the ratio of the characteristic wavenumbers q∗ψ/q
∗
φ while the parameters are fixed to

A = B = 1 and q∗φ = 1/
√

2. The peak height becomes larger as the coupling parameter Λ

is increased. This is because the critical temperature of the coupled bilayer is effectively

changed for a larger coupling parameter. We also plot the transition lines. The left

and right regions of the transition lines corresponds to the structured disorder phase and

the ordered phase, respectively. The peak height is also increased as q∗ψ/q
∗
φ approaches

unity, since the structure factors Sφφ and Sψψ overlap completely in this limit. When the

temperature of the monolayer with small characteristic wavenumber is low (c), the peak

height is large for smaller values of Λ.

The coupling parameter Λ changes the critical temperature. In Fig. 3.10, we plot

the critical temperature as a function of the coupling constant Λ. First, we consider the

case when both of the monolayers have the same temperature τ̃φ = τ̃ψ (a). Above the

critical temperature, the system is in the structured disorder phase, whereas it is in the

ordered phase below the critical temperature. When q∗φ = q∗ψ, the critical temperature

linearly increases with the coupling parameter Λ. When the ratio q∗φ/q
∗
ψ is larger than

unity, the critical temperature becomes smaller. This is attributed to the smaller overlap

of the peaks in the structure factors of the two monolayers. In Fig. 3.10(b) and (c), we fix

the temperature of the one of the monolayers, and looked at the critical temperature of

the bilayer. When the temperature of the monolayer with a small wavenumber is fixed at

τ̃ψ = 1.5, the critical temperature τ̃ ∗φ is smaller when τ̃ ∗φ < 1.5 and is larger when τ̃ ∗φ > 1.5,

compared with the case of the Fig. 3.10(a). When the temperature of the monolayer with

a larger wavenumber is fixed at τ̃φ = 1.5 and q∗φ/q
∗
ψ 6= 1, the critical temperature of the

ψ-monolayer is almost τ̃ ∗ψ ≈ 1 when Λ is smaller than the threshold value. Because the

peak height of the structure factor at q∗φ is small for τ̃φ = 1.5, the increase of the peak

height due to the coupling is less effective. To summarize, in the case of the finite coupling
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Figure 3.9: Contour plot of the intensity of the peak in the structure factor Sφψ(q = q∗φψ)
as a functions of characteristic wavenumber ratio q∗ψ/q

∗
φ and the coupling strength Λ for

B = A = 1 and C2/D = 1. Red lines represents the transition lines. (a) τ̃φ = τ̃ψ = 1.5, (b)
τ̃φ = 1.5, τ̃ψ = 1.2, (c) τ̃φ = 1.2, τ̃ψ = 1.5.



40 Chapter 3. Concentration Fluctuations

parameter, the temperature in the monolayer with the smaller wavenumber dominates the

behavior of the critical temperature of the bilayer.
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Figure 3.10: Transition temperatures as a function of the coupling constant. Solid line is
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∗
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∗
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∗
φ = 3. A = B = 1, C2/D = 1. (a)

τ̃φ = τ̃ψ, (b) τ̃ψ = 1.5, (c) τ̃φ = 1.5.
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Figure 3.11: Diagonalized structure factors S± as functions of q for τ̃φ = τ̃ψ = 1.5, Λ = 0.3
B = A = 1, D = 0.0123, C = 0.1111 (q∗φ = 1/

√
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√
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Finally, it should be noted that the structure factor matrix Eq. (3.10) can be diago-

nalized as

S(q) =

[
1/Γ− 0

0 1/Γ+

]
, (3.28)

where

Γ±(q) = Γφ(q) + Γψ(q) ∓
√

(Γφ(q) − Γψ(q))2 + Λ2. (3.29)

In the above, S+ = 1/Γ+ and S− = 1/Γ− express the in-plane and inter-membrane

contribution to the structure factors, respectively. In Fig. 3.11, S+ = 1/Γ+ and S− = 1/Γ−

are plotted using the same parameters as in Fig. 3.3(b). It should be noted that although

the peak position of 1/Γ+ is the same as that of Eqs. (3.14) and (3.15), the peak position

of 1/Γ− is larger than that of the cross correlation Eq. (3.16).
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3.2 Dynamics

In this section, we discuss the dynamics of the concentration fluctuations in the coupled

bilayers. In order to consider the time dependence, the fluctuation of the order parameters

are denoted as δφ(r, t) and δψ(r, t) where t is time. The time evolution of these variables

obey the following equations

∂δφ(r, t)

∂t
= Lφ∇2 δFG

δ(δφ(r))
+ νφ(r, t), (3.30)

∂δψ(r, t)

∂t
= Lψ∇2 δFG

δ(δψ(r))
+ νψ(r, t), (3.31)

where Lφ and Lψ are the scaled kinetic coefficients. Using the free energy functional

Eq. (3.4), we obtain

∂δφ(r, t)

∂t
= Lφ∇2[4B(∇4δφ) + 4A(∇2δφ) + τ̃φδφ− Λδψ] + νφ(r, t), (3.32)

∂δψ(r, t)

∂t
= Lψ∇2[4D(∇4δψ) + 4C(∇2δψ) + τ̃ψδψ − Λδφ] + νψ(r, t). (3.33)

In the above, νφ(r, t) and νψ(r, t) represent Gaussian noises which satisfy

〈νφ(r, t)〉 = 〈νψ(r, t)〉 = 0, (3.34)

〈νφ(r, t)νφ(r′, t′)〉 = −Lφ∇2δ(r − r′)δ(t− t′), (3.35)

〈νψ(r, t)νψ(r′, t′)〉 = −Lψ∇2δ(r − r′)δ(t− t′), (3.36)

〈νφ(r, t)νψ(r, t)〉 = 0, (3.37)

where 〈· · · 〉 indicates the space and time average.

We define the Fourier transform of the fluctuations both in space and time as

δφ(q, ω) =

∫
dr dt δφ(r, t) exp[−i(q · r − ωt)], (3.38)

and

δψ(q, ω) =

∫
dr dt δψ(r, t) exp[−i(q · r − ωt)]. (3.39)
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Inserting Eq. (3.4) into Eqs. (3.30) and (3.31), we obtain

iωδφ(q, ω) = −q2Lφ[2Γφ(q)δφ(q, ω) − Λδψ(q, ω)] + νφ(q, ω), (3.40)

iωδψ(q, ω) = −q2Lψ[2Γψ(q)δψ(q, ω) − Λδφ(q, ω)] + νψ(q, ω). (3.41)

Then δφ(q, ω) and δψ(q, ω) can be obtained as

δφ(q, ω) =
[2Lψq

2Γψ(q) + iω]νφ(q, ω) + Lφq
2Λνψ(q, ω)

[2Lφq2Γφ(q) + iω][2Lψq2Γψ(q) + iω] − LφLψq4Λ2
, (3.42)

δψ(q, ω) =
Lψq

2Λνφ(q, ω) + [2Lφq
2Γφ(q) + iω]νψ(q, ω)

[2Lφq2Γφ(q) + iω][2Lψq2Γψ(q) + iω] − LφLψq4Λ2
. (3.43)

Here the properties of noises are expressed in the Fourier space as

〈νφ(q, ω)〉 = 〈νψ(q, ω)〉 = 0, (3.44)

〈νφ(q, ω)νφ(−q,−ω)〉 = 2Lφq
2, (3.45)

〈νψ(q, ω)νψ(−q,−ω)〉 = 2Lψq
2, (3.46)

〈νφ(q, ω)νψ(−q,−ω)〉 = 0. (3.47)

Using the above expressions, the dynamical structure factors can be obtained to be

Sφφ(q, ω) = 〈δφ(q, ω)δφ(−q,−ω)〉 =
2Lφq

2(ω2 + ω2
ψ)

(ω2 + ω2
φ)(ω

2 + ω2
ψ) − LφLψq4Λ2ω2

φψ

, (3.48)

Sψψ(q, ω) = 〈δψ(q, ω)δψ(−q,−ω)〉 =
2Lψq

2(ω2 + ω2
φ)

(ω2 + ω2
φ)(ω

2 + ω2
ψ) − LφLψq4Λ2ω2

φψ

, (3.49)

Sφψ(q, ω) = 〈δφ(q, ω)δψ(−q,−ω)〉 =
2LφLψq

4Λωφψ
(ω2 + ω2

φ)(ω
2 + ω2

ψ) − LφLψq4Λ2ω2
φψ

, (3.50)

where

ω2
φ = 4L2

φq
4[Γφ(q)]

2 + LφLψq
4Λ2, (3.51)

ω2
ψ = 4L2

ψq
4[Γψ(q)]2 + LφLψq

4Λ2, (3.52)

ωφψ = 2q2[LφΓφ(q) + LψΓψ(q)]. (3.53)
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The above structure factors are decomposed into two terms

Sij(q, ω) =
αij

ω2 + ω2
+

+
βij

ω2 + ω2
−
, (3.54)

where i and j are either φ or ψ, and ω± are the characteristic frequencies given by

ω2
± =

1

2

[
ω2
φ + ω2

ψ ∓
√

(ω2
φ − ω2

ψ)2 + 4LφLψq4Λ2ω2
φψ

]
, (3.55)

and the coefficients are

αφφ =
2Lφq

2(ω2
ψ − ω2

+)

ω2
− − ω2

+

, βφφ =
2Lφq

2(ω2
− − ω2

ψ)

ω2
− − ω2

+

, (3.56)

αψψ =
2Lψq

2(ω2
φ − ω2

+)

ω2
− − ω2

+

, βψψ =
2Lψq

2(ω2
− − ω2

φ)

ω2
− − ω2

+

, (3.57)

αφψ =
2LφLψq

4Λωφψ
ω2
− − ω2

+

, βφψ = −2LφLψq
4Λωφψ

ω2
− − ω2

+

. (3.58)

The intermediate structure factors are obtained by

Sφφ(q, t) =

∫
dω

2π
Sφφ(q, ω) exp(−iωt), (3.59)

Sψψ(q, t) =

∫
dω

2π
Sψψ(q, ω) exp(−iωt), (3.60)

Sφψ(q, t) =

∫
dω

2π
Sφψ(q, ω) exp(−iωt). (3.61)

Using equation Eq. (3.54), we simply obtain

Sij(q, t) =
αij
2ω+

exp(−ω+t) +
βij
2ω−

exp(−ω−t). (3.62)

The concentration fluctuations decay as double exponentials with two decay times.

When Lφ = Lψ = L, the characteristic frequencies are simplified to

ω± = Lq2

[
Γφ(q) + Γψ(q) ∓

√
(Γφ(q) − Γψ(q))2 + Λ2

]
. (3.63)

The inverse of ω± gives the decay times of the concentration fluctuations. These decay

times are plotted in Fig. 3.12 as a function of wavenumber q. When the two monolayers

are decoupled (Λ = 0), the intermediate structure factor of each monolayer becomes

Sφ(q, t) =
1

2Γφ(q)
exp[−2Lq2Γφ(q)t], (3.64)
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Sψ(q, t) =
1

2Γψ(q)
exp[−2Lq2Γψ(q)t]. (3.65)

We plotted the decay times 1/ωφ = 1/(2Lq2Γφ), 1/ωψ = 1/(2Lq2Γψ) in Fig. 3.12(a). The

parameters used in Fig. 3.12 are the same as those in Fig. 3.3. There are shoulders and

peaks at the characteristic wavenumbers (q∗ = 1/
√

2, 3/
√

2). The decay time at the peak

position is longer for a larger structure. The coupled case is shown in Fig. 3.12(b). Due to

the coupling, the decay times are represented as the major and the minor parts. The major

and the minor decay times are the in-plane and inter-membrane fluctuations, respectively.

The minor decay time has a shoulder between the two characteristic wavenumbers. Similar

to the effect seen in Fig. 3.3, the coupling increases the decay time corresponding to the

smaller wavenumber structure.
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Figure 3.12: Decay time for the concentration fluctuations for τ̃φ = τ̃ψ = 1.5, B = A = 1,
D = 0.0123, C = 0.1111, (q∗φ = 1/
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In Fig. 3.13, we plot the the time courses of scaled structure factors Sφφ(q, t) in (a)

and (b), and Sψψ(q, t) in (c) and (d) for different wavenumbers. The decoupled cases in

Fig. 3.13(a) and (c) show that the concentration fluctuations decay exponentially with

time for any wavenumber. For the coupled cases shown in Fig. 3.13(b) and (d), the two

decay modes are seen for Sφφ(q, t) for q =
√

2 being the characteristic wavenumber of the

ψ-monolayer, and for Sψψ(q, t) for q = 1/
√

2 being the characteristic wavenumber of the

φ-monolayer. These second decay modes correspond to that of the Sφψ(q, t) as shown in

Fig. 3.14.

At the crossover point, the two contributions in Eq. (3.62) become equal so that

αφφ
ω+

exp(−ω+t
∗
φ) =

βφφ
ω−

exp(−ω−t
∗
φ), (3.66)

and

αψψ
ω+

exp(−ω+t
∗
ψ) =

βψψ
ω−

exp(−ω−t
∗
ψ). (3.67)

Then we get the expression for the crossover time as

t∗φ = log

(
ω2

+ − ω2
ψ

ω2
ψ − ω2

−

ω−

ω+

) 1
ω+−ω−

, (3.68)

t∗ψ = log

(
ω2

+ − ω2
φ

ω2
φ − ω2

−

ω−

ω+

) 1
ω+−ω−

. (3.69)

It should be noted that this expression is valid only t∗φ, t
∗
ψ > 0.
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Figure 3.13: Time evolution of the scaled intermediate structure factors in φ monolayer (a,b)
and ψ monolayer (c,d). Parameters are τ̃φ = τ̃ψ = 1.4, B = A = 1, D = 0.0625, C = 0.25,
(q∗φ = 1/

√
2, q∗ψ =

√
2). Λ = 0 for (a,c) and Λ = 0.4 for (b,d).
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Chapter 4

Phase Separations

In this chapter, we discuss the phase separation behavior of the bilayer below the critical

temperature. First, we demonstrate the phase behavior of the lipid monolayers. Then we

obtain the mean-field phase diagrams of coupled bilayers when the two monolayers have

the same preferred modulation wavelength. We have also performed numerical simulations

for the phase separation dynamics, especially when two monolayers have different preferred

modulation wavelengths.

4.1 Bilayers with the same q∗

4.1.1 Decoupled case (Λ = 0)

The phase behavior for the uncoupled case (Λ = 0), can be obtained by the analysis of

the free energy [43]

Fm[φ] =

∫
dr

[
2B(∇2φ)2 − 2A(∇φ)2 +

τ

2
φ2 +

1

4
φ4 − µφ

]
, (4.1)

and is only briefly reviewed here (see also Fig. 4.3(a)).

For a 2D system, the mean-field phase diagram can be constructed by comparing the

free energies of striped (S) and hexagonal (H) phases (see Figs. 4.1, 4.2). In terms of the

φ-order parameter, the stripe phase is described by

φS(r) = φ0 + 2φq cos(qx), (4.2)
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stripe

x

y

φ

Figure 4.1: Morphology of the stripe phase.
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Figure 4.2: Morphology of the hexagonal phase.
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where φ0 = 〈φ〉 is the spatially averaged composition (imposed by the chemical potential

µφ), and φq is the amplitude of the q-mode in the x-direction. Similarly, the composition

of the hexagonal phase is given by a superposition of three 2D modes of equal magnitude,

|qi| = q

φH(r) = φ0 +
2φq√

3

3∑
i=1

cos(qi · r), (4.3)

where

q1 = qx̂,

q2 =
q

2

(
−x̂+

√
3ŷ
)
,

q3 =
q

2

(
−x̂−

√
3ŷ
)
, (4.4)

and
∑3

i=1 qi = 0. In the above, we consider a single-mode modulation. This can be

justified for the weak segregation regime close to the critical point [41].

Averaging over one spatial period, we obtain the free energy densities of the striped,

hexagonal, and disordered phases, respectively

fS0(φ0, φq, q; τ) =
τ

2
φ2

0 +
1

4
φ4

0 + (τ + 3φ2
0)φ

2
q +

3

2
φ4
q + 4(Bq4 − Aq2)φ2

q, (4.5)

fH0(φ0, φq, q; τ) =
τ

2
φ2

0 +
1

4
φ4

0 + (τ + 3φ2
0)φ

2
q +

4√
3
φ0φ

3
q +

5

2
φ4
q + 4(Bq4 − Aq2)φ2

q, (4.6)

fD(φ0; τ) =
τ

2
φ2

0 +
1

4
φ4

0, (4.7)

By minimizing the free energy densities with respect to q, we obtain the most unstable

wavenumber as q∗ =
√
A/2B. By setting q = q∗ in Eqs. (4.5) and (4.6), we have

fS(φ0, φq; τ) =
τ

2
φ2

0 +
1

4
φ4

0 +

(
τ − A2

B
+ 3φ2

0

)
φ2
q +

3

2
φ4
q, (4.8)

fH(φ0, φq; τ) =
τ

2
φ2

0 +
1

4
φ4

0 +

(
τ − A2

B
+ 3φ2

0

)
φ2
q +

4√
3
φ0φ

3
q +

5

2
φ4
q. (4.9)

From the free energy densities Eqs. (4.8) and (4.9), we have the minimized amplitudes

are obtained by the condition ∂fi/∂φq = 0. For stripe phase, we have

φ∗2
q = −τ − A2/B + 3φ2

0

3
, (4.10)
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and for the hexagonal phase, we get

φ∗
q,± =

−
√

3φ0 ±
√

5A2/B − 5τ − 12φ2
0

5
, (4.11)

with φ∗
q,+ for φ0 < 0 and φ∗

q,− for φ0 > 0. For given φ0, τ, B and A, we calculate

the minimized free energies fS(φ0; τ), fH(φ0; τ) and fD(φ0; τ) numerically, and determine

phase which has the lowest energy.

In Fig. 4.3(a), we reproduce the original phase diagram of Ref. [42, 43] (B = A = 1).

The stripe, hexagonal, and disorder phases are separated by first-order phase-transition

lines. Regions of two-phase coexistence do exist but are omitted from the figure for

clarity sake [50]. Thus, the transition lines indicate the locus of points at which the free

energies of two different phases cross each other, and are not the proper phase boundaries

(binodals). The critical point (filled circle) is located at (φ0, τ) = (0, 1).
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Figure 4.3: (a) Mean-field phase diagram of a single monolayer with a modulated structure
in the vicinity of the critical temperature, computed using a model as in Eqs. (4.7)-(4.9). Here
B = A = 1. φ0 is the average composition and τ is the reduced temperature. The three phases
are: striped (S), hexagonal (H), and disordered (D). These phases are separated by first-order
transition lines, while for clarity we omit showing coexistence regions. The filled circle located
at (φ0, τ) = (0, 1) indicates the critical point. Note the shift of the critical temperature from
zero to unity when the modulated phases are considered. (b) Mean-field phase diagram of
decoupled (Λ = 0) modulated monolayers at τφ = τψ = 0.8, B = A = D = C = 1. φ0 and
ψ0 are the average compositions in the two leaflets. The notations of the different phases are
described in the text (see Sec. 4.1.2). All the phases are separated by first-order transition
lines.
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4.1.2 Coupled case (Λ 6= 0)

The phase diagrams of the coupled bilayers are obtained through the mean-field analysis

as before. We consider the case when B = A = D = C = 1 so that the preferred

wavenumbers are the same for both monolayers, q∗φ = q∗ψ = q∗ = 1/
√

2. The mean-field

phase diagram is calculated within the single-mode approximation. Various combinations

of 2D modulated structures appearing in the two monolayers are possible. The first

example is the striped-striped (SS) phase, in which both monolayers exhibit the striped

phase. This can be expressed as

φS(r) = φ0 + 2φq cos(qx), (4.12)

ψS(r) = ψ0 + 2ψq cos(qx), (4.13)

where φ0 = 〈φ〉 and ψ0 = 〈ψ〉 are the average compositions, φq and ψq are the respective

amplitudes. These composition profiles are substituted into the free energy of Eq. (2.18).

Averaging over one spatial period, we obtain the free energy density of the SS phase:

fSS = fS(φ0, φq; τφ) + fS(ψ0, ψq; τψ) − Λ(φ0ψ0 + 2φqψq), (4.14)

where fS is defined in Eq. (4.8). By minimizing fSS with respect to both φq and ψq, the

conditions for the minimized amplitudes are obtained as

(τφ − 1 + 3φ2
0)φq + 3φ3

q − Λψq = 0,

(τψ − 1 + 3ψ2
0)ψq + 3ψ3

q − Λφq = 0. (4.15)

For given φ0, ψ0, τφ, τψ and Λ, we numerically calculate the minimized amplitudes φ∗
q

and ψ∗
q , and the minimized free energy fSS(φ0, ψ0; τφ, τψ,Λ). (The source code for the

calculation is listed in Appendix D)

When either φq or ψq vanishes, the corresponding monolayer is in its disordered phase

and the mixed bilayer state will be called the striped-disordered (SD) or the disordered-

striped (DS) phase. Note that we use the convention that the first index is of the φ–leaflet
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and the second of the ψ–one. When both φq and ψq are zero, the free energy density of

the disordered-disordered (DD) phase is given by

fDD = fD(φ0; τφ) + fD(ψ0; τψ) − Λφ0ψ0, (4.16)

where fD is defined in Eq. (4.7). This free energy fDD was analyzed in Ref. [39] in order to

investigate the macro–phase separation of a bilayer membrane with coupled monolayers.

It was shown that the bilayer can exist in four different phases, and can also exhibit a

three-phase coexistence.

Similar to the stripe-stripe case, the order parameters of the hexagonal-hexagonal

(HH) phase can be represented as

φH(r) = φ0 +
2φq√

3

3∑
i=1

cos(qi · r), (4.17)

ψH(r) = ψ0 +
2ψq√

3

3∑
i=1

cos(qi · r). (4.18)

Where the basis of the three qi was defined in Eq. (4.4). By repeating the same procedure

as for the SS phase, the free energy density of the HH phase is obtained as

fHH = fH(φ0, φq; τφ) + fH(ψ0, ψq; τψ) − Λ(φ0ψ0 + 2φqψq), (4.19)

where fH is defined in Eq. (4.9). The conditions for the minimized amplitudes are

(τφ − 1 + 3φ2
0)φq + 2

√
3φ0φ

2
q + 5φ3

q − Λψq = 0,

(τψ − 1 + 3ψ2
0)ψq + 2

√
3ψ0ψ

2
q + 5ψ3

q − Λφq = 0. (4.20)

When either φq or ψq vanishes, one of the monolayers is in the disordered phase and the

bilayer will be called the hexagonal-disordered (HD) phase or the disordered-hexagonal

(DH) phase.

When the normal hexagonal phase in one leaflet is coupled to the inverted hexagonal

phase in the other leaflet, it is energetically favorable to have a particular phase shift of
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2π/3 between the two hexagonal structures. The order parameters which represent such

a different type of hexagonal-hexagonal (HH∗) phase can be written as

φH(r) = φ0 +
2φq√

3

3∑
i=1

cos(qi · r), (4.21)

ψH∗(r) = ψ0 +
2ψq√

3

3∑
i=1

cos(qi · r +
2π

3
). (4.22)

The free energy density of the HH∗ phase is then obtained as

fHH∗ = fH(φ0, φq; τφ) + fH(ψ0, ψq; τψ) − Λ(φ0ψ0 − φqψq). (4.23)

The conditions for the minimized amplitudes are

2(τφ − 1 + 3φ2
0)φq + 4

√
3φ0φ

2
q + 10φ3

q + Λψq = 0,

2(τψ − 1 + 3ψ2
0)ψq + 4

√
3ψ0ψ

2
q + 10ψ3

q + Λφq = 0. (4.24)

Another combination which should be considered in the present model is the asym-

metric case where one monolayer exhibits the striped phase and the other is the hexagonal

phase. This striped-hexagonal (SH) phase is expressed as

φS(r) = φ0 + 2φq cos(q∗x), (4.25)

ψH(r) = ψ0 +
2ψq√

3

3∑
i=1

cos(qi · r). (4.26)

The free energy density of this SH phase is calculated to be

fSH = fS(φ0, φq; τφ) + fH(ψ0, ψq; τψ) − Λ

(
φ0ψ0 +

2√
3
φqψq

)
. (4.27)

The conditions for the minimized amplitudes are

(τφ − 1 + 3φ2
0)φq + 3φ3

q −
Λψq√

3
= 0,

(τψ − 1 + 3ψ2
0)ψq + 2

√
3ψ0ψ

2
q + 5ψ3

q +
Λφq√

3
= 0. (4.28)
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The phase in which φS and ψH in Eqs. (4.25) and (4.26) are interchanged with φH and ψS

is called the hexagonal-striped (HS) phase, and its free energy is obtained from the SH

phase by noting the φ ↔ ψ symmetry. In addition to these phases, we have also taken

into account the square-square (QQ) phase expressed by

φQ(r) = φ0 +
2φq√

2
[cos(q∗x) + cos(q∗y)] , (4.29)

ψQ(r) = ψ0 +
2ψq√

2
[cos(q∗x) + cos(q∗y)] . (4.30)

Then its free energy density is given by

fQQ = fQ(φ0, φq; τφ) + fQ(ψ0, ψq; τψ) − Λ (φ0ψ0 + 2φqψq) , (4.31)

where

fQ(φ0, φq; τ) =
τ

2
φ2

0 +
1

4
φ4

0 + (τ − 1 + 3φ2
0)φ

2
q +

9

4
φ4
q. (4.32)

The conditions for the minimized amplitudes are

2(τφ − 1 + 3φ2
0)φq + 9φ3

q − 2Λψq = 0,

2(τψ − 1 + 3ψ2
0)ψq + 9ψ3

q − 2Λφq = 0. (4.33)

However, we will show below that this QQ phase cannot be more stable than the other

phases.

By numerically solving Eqs. (4.15), (4.20), (4.24), (4.28) and (4.33) for a given set of

φ0, ψ0, τφ, τψ,Λ, we obtained the minimized amplitudes φ∗
q and ψ∗

q for the different phases.

In Figs. 4.4 and 4.5, the minimized amplitudes for the decoupled bilayers are shown for

each phase. Notice that for the stripe-stripe phase, |φ∗
q| and |ψ∗

q | are presented since the

signs are arbitrary (see Eq. (4.10)). We see that the amplitudes of the hexagonal structure

have its preferred sign depending on the compositions.

In Figs. 4.6 and 4.7, the minimized amplitudes for the weakly coupled bilayers are

shown for each phase. In the SH and HS phases, the signs of the amplitude of the
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Figure 4.4: Minimized amplitudes (φ∗
q and ψ∗

q ) for SS, SH, HS phases. Parameters are
τφ = τψ = 0.8,Λ = 0. |φ∗

q| and |ψ∗
q | are shown for SS phase.
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q ) for HH, QQ phases. Parameters are τφ =
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hexagonal and the stripe phases are the same for any set of (φ0, ψ0). The signs of the

amplitudes of the two monolayers of the HH and the HH∗ phases are opposite in the

regions of φ0ψ0 < 0. The absolute values of φ∗
q and ψ∗

q in HH∗ phase in that region are

larger than that of the HH phase. This means that the concentration overlap between

the monolayers in HH∗ phase is larger than that of the HH phase.

In Figs. 4.8 and 4.9, the minimized amplitudes for the strongly coupled bilayers (Λ =

0.2) are shown for each phase. We see that the region of the non-zero amplitude is

expanded due to the large value of the coupling.

By substituting these amplitude values, the minimized free energies are calculated for

each phase, and we obtain the phase diagram for the coupled bilayer. As a reference, we

first show in Fig. 4.3(b) the phase diagram in the decoupled case Λ = 0 for τ = 0.8. This

can easily be obtained from Fig. 4.3(a) by combining its two cross-sections (one for φ0 and

one for ψ0) at τ = 0.8. Figure 4.10 gives the phase diagrams for a coupled bilayer when

(a) Λ = 0.02, (b) Λ = 0.05, (c) Λ = 0.15 and (d) Λ = 0.2, while the temperature is fixed to

τ = 0.8. On the (φ0, ψ0)-plane, we have identified the phase which has the lowest energy,

whereas possible phase coexistence regions between different phases have been ignored.

All the boundary lines indicate first-order transitions. Since the free energy Eq. (2.18)

is invariant under the exchange of φ ↔ ψ, the phase diagrams are symmetric about

the diagonal line φ0 = ψ0 as the upper and lower leaflets have been chosen arbitrarily.

These phase diagrams are also symmetric under the rotation of 180 degrees around the

origin because Eq. (2.18) is invariant (except the linear terms) under the simultaneous

transformations of φ → −φ and ψ → −ψ. This is reasonable as the labels of “S” or

“H” for the two lipids have been assigned arbitrarily in the free energy Eq. (2.18). As a

consequence, the phase diagrams are also symmetric about the diagonal line φ0 = −ψ0.

The symmetries with respect to both φ0 = 0 and ψ0 = 0 in Fig. 4.3(b) for Λ = 0 are now

broken because of the coupling between the two leaflets.
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Figure 4.6: Minimized amplitudes (φ∗
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q ) for SS, SH, HS phases. Parameters are
τφ = τψ = 0.8,Λ = 0.02. |φ∗
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q | are shown for SS phase.
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When the coupling parameter is small (a, Λ = 0.02), the global topology of the phase

diagram resembles that of the uncoupled case presented in Fig. 4.3(b). Close to the origin,

φ0 = ψ0 = 0, there is a region of SS phase surrounded by eight other phases: two SH, two

HS, two HH, and two HH∗ phases. The HH phase appearing in the region of φ0 < 0 and

ψ0 < 0 is the combination of the two inverted hexagonal structures on each monolayer.

One sees that the HH∗ phase appears in the regions of φ0ψ0 < 0, where the hexagonal

and the inverted hexagonal structures are coupled to each other.

A remarkable feature of this phase diagram is the existence of the SS and HH phases

in the regions where either |φ0| or |ψ0| are large. These outer SS and HH phases extend

up to the maximum or the minimum values of the compositions. These regions of the

SS and HH phases with Λ > 0 roughly correspond to those of the SD (DS) and HD

(DH) phases, respectively, in Fig. 4.3(b) with Λ = 0. Hence the modulated structure in

one of the monolayers induces the same modulated phase in the other monolayer due to

the coupling term. Notice that the SD (DS) phase and HD (DH) phase do not exist in

Fig. 4.10(a). We further remark that the extent of the four DD phase regions is almost

unaffected by the coupling. Even when the temperature is lowered by decreasing τ , only

the phases located close to the origin (φ0 = ψ0 = 0) would expand, and the global topology

does not change substantially.

When the coupling parameter is slightly increased (b, Λ = 0.05), the region of the SH

and HS phases are decreased, whereas that of the HH∗ phase is unchanged. On the other

hand, the area of the SS and HH phases are increased.

When the coupling becomes larger (c, Λ = 0.15), the five regions of the SS phase

merge together forming one single continuous SS region. The four HH regions are still

distinct and separate the SS region from four DD phase regions. Small fractions of the

HH∗ phase remain.

For the largest value of the coupling parameter (d, Λ = 0.2), all the phases have
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symmetric combinations such as SS or HH phases. The asymmetric combination such

as the SH phase does not appear, because the large coupling parameter strongly prefers

symmetric phases of equal modulations in the two monolayers, although the φq and ψq

amplitudes of the two modulated monolayers are not the same in the stripe SS phase (or

the hexagonal HH phase). As the value of Λ is increased from 0.02 to 0.2, firstly the SH

phase disappears, and then the HH∗ phase disappears.

When the value of Λ is further increased as shown in Fig. 4.11, the regions of the SS

and HH phases expand on the expense of the DD phase regions. Finally we remark that

the QQ phase was never found to be more stable than any of the other phases considered

above.

Although we have so far assumed that Λ is positive, the phase diagrams for Λ < 0

can be easily obtained from those for Λ > 0 by rotating them by 90 degrees around the

origin. This is because the free energy Eq. (2.18) is invariant under the simultaneous

transformations of either φ→ −φ and Λ → −Λ, or ψ → −ψ and Λ → −Λ.

When the temperatures in the two monolayers are different, the phase diagrams are

shown in Fig. 4.12. Due to the lower temperature in the φ-monolayer, the area of the

ordered phases is increased compared with that in Fig. 4.10. Similar to Fig. 4.10, the

asymmetric phases vanish when the value of the coupling is large. Although the phase

diagrams are symmetric about the rotation of 180 degrees around the origin, it is not

symmetric about the diagonal line φ0 = ψ0 because the free energy Eq. (2.18) is not

invariant under the exchange of φ↔ ψ when τφ 6= τψ. The symmetry about the diagonal

line φ0 = −ψ0 is also broken.



70 Chapter 4. Phase Separations

-1 -0.5 0 0.5 1
φ
0

-1

-0.5

0

0.5

1

ψ
0

SS

HH

HH

HH

DD

DD DD

DD

HH*
HH

HH*

-1 -0.5 0 0.5 1
φ
0

-1

-0.5

0

0.5

1

ψ
0

SS

HH

SS

SS

SS SS

HH

HH

HH

HH

DD

DD DD

DD

HH* HH

HH*

SH

SH

HSHS

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

SSHS HS

SH

SH

HH*

HH*

HH

HH

DD

DD

DD

DD

SS SS

SS

SS

(a)

HH

HH

HH

HH

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

SS

HH

HH

HH

HH

DD

DD

DD

DD

(d)

φ
0

ψ
0

φ
0

ψ
0

(c)

(b)

Figure 4.10: Mean-field phase diagram of coupled modulated bilayers for τφ = τψ = 0.8. φ0

and ψ0 are the average compositions in the two leaflets. The coupling parameter is chosen to
be (a) Λ = 0.02, (b) Λ = 0.05, (c) Λ = 0.15 and (d) Λ = 0.2. The notations of the different
phases are described in the text (see Sec. 4.1.2). All the phases are separated by first-order
transition lines. The phase diagram is symmetric with respect to the two principal diagonals
φ0 = ψ0 and φ0 = −ψ0, as described in the text.
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Figure 4.12: Mean-field phase diagram of coupled modulated bilayers for τφ = 0.4, τψ = 0.8.
φ0 and ψ0 are the average compositions in the two leaflets. The coupling parameter is chosen
to be (a) Λ = 0.02, (b) Λ = 0.05, (c) Λ = 0.15 and (d) Λ = 0.2.



4.1. Bilayers with the same q∗ 73

4.1.3 Dynamics

Here we discuss the dynamics of phase separation of coupled modulated bilayers. In order

to investigate the phase separation dynamics of the bilayers, we consider the following

time evolution equations

∂φ

∂t
= Lφ∇2 δFb

δφ
, (4.34)

∂ψ

∂t
= Lψ∇2 δFb

δψ
. (4.35)

Both φ and ψ are conserved order parameters in each of the monolayer (model B in

the Hohenberg-Halperin classification [51]). Using the free energy functional, the above

equations become

∂φ

∂t
= Lφ∇2[4B(∇4φ) + 4A(∇2φ) + τφφ+ φ3 − Λψ], (4.36)

∂ψ

∂t
= Lψ∇2[4D(∇4ψ) + 4C(∇2ψ) + τψψ + ψ3 − Λφ]. (4.37)

For simplicity, the kinetic coefficients Lφ and Lψ are taken to be unity, and both the

hydrodynamic effect and thermal fluctuations are neglected.

We solve the above equations numerically in 2D using the periodic boundary condition.

Each simulation starts from a disordered state with a small random noise around the

average compositions φ0 and ψ0. The source code for solving the kinetic equations is

shown in Appendix D. We will show the spatial patterns of φ, ψ, φ + ψ, φ − ψ and

the Fourier transformed pattern of ψ. The pattern of φ + ψ can be directly observed in

the experiment on Montal-Mueller bilayers using fluorescence microscopy [36]. Time is

measured in discrete time steps, and t = 5, 000 corresponds to a well equilibrated system.

In almost all the simulations below, the temperatures are fixed to be τφ = τψ = 0.8, and

the characteristic wavenumber in φ-monolayer (when Λ = 0) is fixed as q∗φ = 1/
√

2 with

B = A = 1. The periodicity in ψ-monolayer is given by q∗ψ =
√
C/2D. We assume that

the both monolayers have the same amplitudes of the modulation when Λ = 0, which

requires the condition C2/D = 1.
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Here we discuss the phase separation patterns of the bilayer with the same character-

istic wavenumber in each monolayer (D = C = 1, q∗φ = q∗ψ). As a demonstration, we show

the snapshots of the phase separation process of the bilayer which consists of two striped

monolayers when Λ = 0.02 in Fig. 4.13. Starting from the isotropic state (a), both of the

monolayers start to segregate (b), and form stripes (c). After a long time of annealing

and reconnection, well aligned stripes are obtained (d). As time evolves, the mismatch

between the two stripes φ− ψ decreases due to the coupling. Finally these morphologies

overlap completely and the φ− ψ field almost vanishes.

In Fig. 4.14, the phase separated patterns with various combinations of the compo-

sitions are shown. For the comparison, the pattern shown in Fig. 4.13(d) is reproduced

in Fig. 4.14(a). Similarly, the phase separated patterns of the HH phase is shown in

Fig. 4.14(b). The coupling between the hexagonal phase with φ0 = 0.2 and the stripe

phase with ψ0 = 0 is shown in Fig. 4.14(c). The hexagonal and the stripe morphologies

overlap in phase in order to reduce the concentration mismatch between the two struc-

tures. Figure 4.14(d) illustrates the coupling between the hexagonal phase with φ0 = 0.2

and the inverted hexagonal phase with ψ0 = −0.2. This combination yields the HH∗ phase

as seen from the pattern of φ+ ψ where the two hexagonal structures are superimposed.

These calculated morphologies are consistent with the phase diagram of Fig. 4.10(a) ob-

tained according to the mean-field analysis. In Fig. 4.14(e), the patterns of a coupled

bilayer with φ0 = 0.5 (no phase separation occurs in the decoupled case) and ψ0 = 0 are

shown. Here the finite coupling induces the modulation of the φ-monolayer, as expected

from the phase diagram of Fig. 4.10(d). In Fig. 4.14(f), the patterns with φ0 = −0.3 and

φ0 = 0.3 are shown. The phase shifted hexagonal phase is obtained, this result is not

consistent with the mean field phase diagram of the bilayer shown in Fig. 4.10(d) in which

the HH phase is expected to appear. In the φ − ψ pattern, we see that the hexagonal

pattern is more distorted than that of the Fig. 4.14(d). This implies that the frustration
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between the monolayers is larger. Further increase of the coupling parameter (Λ = 1)

in the region of the HH phase with φ0ψ0 < 0, the square morphology is obtained (not

shown). Notice that the patterns obtained via solving dynamical equations may not be

well equibrated. In order to clarify the discrepancy, other minimization method for the

patterns such as the conjugate gradient method should be tested in the future.
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Figure 4.13: Time evolution of the phase separation in the coupled bilayer, which consists
of striped monolayers with same periodicity. Patterns in φ, ψ monolayers, φ+ ψ, φ− ψ, and
Fourier space patterns of ψ-monolayers ψq are presented. (a) t = 0, (b) t = 60, (c) t = 250,
(d) t = 5000. The parameters are φ0 = ψ0 = 0, τφ = τψ = 0.8, B = A = D = C = 1 (q∗φ =

q∗ψ = 1/
√

2),Λ = 0.02.
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Figure 4.14: Phase separated patterns of coupled modulated bilayers for the same periodicity
in the monolayers B = A = D = C = 1(q∗φ = q∗ψ = 1/

√
2). The patterns of φ, ψ, φ+ψ, φ−ψ

and ψq obtained after long time simulation (t = 5000) are presented. The parameters chosen
here are τφ = τψ = 0.8, (a) φ0 = ψ0 = 0,Λ = 0.02, (b) φ0 = −0.2, ψ0 = −0.2,Λ = 0.02, (c)
φ0 = 0.2, ψ0 = 0,Λ = 0.02, (d) φ0 = −0.2, ψ0 = 0.2,Λ = 0.02, (e) φ0 = 0.5, ψ0 = 0,Λ =
0.2, (f) φ0 = −0.3, ψ0 = 0.3,Λ = 0.2.
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4.2 Bilayers with different q∗

4.2.1 Phase separated patterns

When the characteristic wavenumbers of the monolayers are different, the two phase

separated morphologies cannot overlap completely. Then the frustrations between the

monolayers arise due to the coupling, which affects the phase separated patterns.

In Fig. 4.15, we show the snapshots of the phase separation process of the bilayer

when the stripes of the monolayers have different periodicities, i.e, q∗ψ/q
∗
φ = 3 and Λ = 0.3.

Starting from the isotropic state (a), the ψ-monolayer first forms stripes (b), and then

the φ-monolayer segregates and chops the stripes in the ψ-monolayer (c). Chopped stripe

gradually transform to the finger like structure (d), and after a long time of annealing

and reconnection of the stripes in the φ-monolayer (e), the pattern of alternating fingers

in the ψ-monolayer is obtained (f). From the 2D Fourier patterns of the ψ-monolayer,

it is clear that the intermediate patterns have two different lengths of modulations. The

condition for the appearance of the intermediate structure is discusses below, and the

detailed analysis of the phase separation process will be argued at the end of this section.

In Fig. 4.16 (a), (b), (c), we show the phase separated patterns (t = 5000) of the two

stripes having different periodicities (q∗ψ/q
∗
φ = 3) for various values of Λ. In the case of

weak coupling (Fig. 4.16(a), Λ = 0.1), the two monolayers independently exhibit the stripe

morphology. When the coupling constant is increased moderately (Fig. 4.16(b), Λ = 0.3),

a stripe with finger-like structure appears in the ψ-monolayer, while the morphology in

the φ-monolayer is unchanged. The structure with a larger periodicity dominates over

that with a smaller periodicity. This tendency is in accordance with the properties of the

static structure factor of the coupled bilayers having two different characteristic length

of the fluctuations in each monolayer (Fig. 3.3). A stronger coupling leads to the similar

morphologies both in φ- and ψ-monolayers (Fig. 4.16(c), Λ = 0.5). We can see that the
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Figure 4.15: Time evolution of the phase separation in the coupled bilayer, which consists of
striped monolayers with two different periodicity. Patterns in φ, ψ monolayers, φ+ ψ, φ− ψ,
and Fourier space patterns of ψ-monolayers are presented. (a) t = 0, (b) t = 25, (c) t = 60,
(d) t = 250, (e) t = 1000, (f) t = 5000. The parameters are φ0 = ψ0 = 0, τφ = τψ =
0.8, B = A = 1, D = 0.0123, C = 0.1111(q∗ψ/q

∗
φ = 3),Λ = 0.3.
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inherent modulation in the ψ-monolayer is relatively weak (see the Fourier pattern ψq).

Figure 4.16 (a)-(c) provides a typical sequence of the morphological changes of frustrated

bilayers as Λ is increased. These three patterns are typically termed as “independent”,

“intermediate”, and “coincident”, respectively.

In order to quantify the morphologies of these frustrated bilayers, we calculate the

spatially averaged compositional correlation between the two monolayers defined by

∆ =

[
1

L2

∫
dr (φ− ψ)2

]1/2

, (4.38)

where L is the system size. In Fig. 4.16(d), we plot this quantity as a function of Λ

and q∗ψ/q
∗
φ. For each set of parameters, the value of ∆ at t = 1000 is obtained from the

simulation result. We consider that the simulation has almost reached the equilibrium

by this time step (see also Fig. 4.27). The morphologies of the bilayers are categorized

according to “independent”, “intermediate” and “coincident” patterns, as explained in

the last paragraph. The value of ∆ is large in the “independent” case, while it is small

in the “coincident” case.

The spatially averaged correlation of the bilayers is defined as

〈φψ〉 =
1

L2

∫
dr φψ. (4.39)

In Fig. 4.17, 〈φψ〉 is shown as a function of Λ and q∗ψ/q
∗
ψ. The behavior of 〈φψ〉 is similar

to that of the peak value of the cross correlation Sφψ(q = q∗φψ) shown in Fig. 3.9(a).

Hence we can anticipate that the phase separated patterns are primarily determined by

the cross correlation of the structure factor Sφψ between the two monolayers. It should

be noted that the ordered pattern as in Fig. 4.16(b) can only be obtained with a rather

specific choice of the parameters. In the “intermediate” region, the patterns with spots

also appear in addition to the finger-like structure (see Fig. 4.15(d)).
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Figure 4.16: Patterns of coupled bilayers consisting of striped monolayers with two different
periodicity (φ0 = ψ0 = 0, τφ = τψ = 0.8). The patterns of φ, ψ, φ + ψ, φ − ψ and ψq
obtained after long time simulation (t = 5000) are presented. The parameters chosen here are
B = A = 1, D = 0.0123, C = 0.1111 (q∗ψ/q

∗
φ = 3), (a) Λ = 0.1, (b) Λ = 0.3, (c) Λ = 0.5.

(d) Averaged degree of the overlap of the compositions between the monolayers ∆(t = 1000)
of the two stripe coupled bilayers. We categorize the morphologies of the patterns into three,
“independent”, “intermediate”, “coincident”.
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Figure 4.17: (a) Spatially averaged correlation of the compositions between the monolayers
〈φψ〉 at t = 1000 for the two stripe coupled bilayer (φ0 = ψ0 = 0, τφ = τψ = 0.8, B = A = 1,
C2/D = 1). (b) Contour plot of 〈φψ〉.
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In Fig. 4.18, we show the phase separated patterns of the bilayers when the stripe and

the hexagonal structures are coupled. The latter structure has a smaller periodicity than

the former one in the decoupled case. The patterns in Fig. 4.18(a) are the “independent”

case in which the two monolayers independently exhibit the hexagonal and the stripe

morphologies. In Fig. 4.18(b) and (d), the spots in the ψ-monolayer are aligned with the

stripes in the φ-monolayer, and we call these as “aligned” patterns. In Fig. 4.18(c) and (e),

the spots merged to produce the coinciding stripe structures. The pattern in Fig. 4.18(c)

has a finger-like pattern similar to Fig. 4.16(b). The corresponding quantity ∆ is plotted

in Fig. 4.19. As explained above, the phase separated patterns are classified into three

types; “independent”, “aligned”, “coincident”. The intermediate “aligned” structure is

obtained for the parameters between the “independent” and “coincident” regions.



84 Chapter 4. Phase Separations

0-1.0 1.0

φ ψ φ+ψ φ−ψ ψ
q

(e)

(a)

(b)

(c)

(d)

Figure 4.18: Patterns of the coupled bilayers consisting of stripe and hexagonal monolayers
with different periodicity (φ = 0, ψ = 0.2, τφ = τψ = 0.8, B = A = 1). (a) D = 0.0123, C =
0.1111 (q∗ψ/q

∗
φ = 3),Λ = 0.1, (b) D = 0.0123, C = 0.1111 (q∗ψ/q

∗
φ = 3),Λ = 0.3, (c)

D = 0.0123, C = 0.1111 (q∗ψ/q
∗
φ = 3),Λ = 0.5, (d) D = 0.1066, C = 0.3265 (q∗ψ/q

∗
φ =

1.75),Λ = 0.2, (e) D = 0.0256, C = 0.16 (q∗ψ/q
∗
φ = 2.5),Λ = 0.4.
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Figure 4.19: Averaged degree of the overlap of the compositions between the monolayers
∆(t = 1000) for stripe-hexagonal coupled bilayers (φ = 0, ψ = 0.2, τφ = τψ = 0.8, B = A =
1). The categories are “independent”, “intermediate”, “coincident”. Circle symbols in the
right figure represent the parameters of the results as shown in Fig. 4.18(a,b,c,d,e).
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When the periodicity of the stripe morphology is smaller than that of the hexagonal,

the resulting morphology of the bilayers changes as shown in Fig. 4.20. The pattern in

Fig. 4.20(a) is the “independent” case in which the two monolayers independently exhibit

the hexagonal and the stripe morphologies. In Fig. 4.20(b), the stripe morphology in the

ψ-monolayer is disturbed by the hexagonal spots in the φ-monolayer to yield the “chopped

stripe” pattern. The pattern in Fig. 4.20(c) is termed as “spikes”. In Fig. 4.20(d), the

two coinciding “hexagonal” structures are obtained. The patterns in Fig. 4.20(e) and (f)

are termed as “hexagonal-stripe” and “stripe”, respectively. The quantity ∆ is plotted in

Fig. 4.21. As explained above, the phase separated patterns are classified into six types;

“independent”, “chopped stripe”, “spikes”, “hexagonal”, “hexagonal-stripe” and “stripe”.

The last three patterns are the cases when the structures in the two monolayers coincide

with each other. The intermediate structures such as “chopped stripe” and “spikes” are

obtained for the parameters between the independent and the coincident regions.

For the “spike” case, an interesting sequence of the morphologies can be obtained

as shown in Fig. 4.22(a), (b), (c). As the coupling strength and the wavenumber ratio

increase, the number of spikes on the hexagonal spots also increase from three (a) to six (c).

Such different spike domains are indeed observed in lipid monolayers both experimentally

and theoretically [53], but the alignment of these spikes have not been observed. In the

Fourier pattern of Fig. 4.22(c), there are spots at the intermediate wavenumbers between

q∗φ and q∗ψ.
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Figure 4.20: Patterns of the coupled bilayers consisting of hexagonal and striped monolayers
with different periodicity (φ = 0.2, ψ = 0, τφ = τψ = 0.8, B = A = 1, t = 5000). (a) D =
0.0625, C = 0.25 (q∗ψ/q

∗
φ = 2),Λ = 0.1, (b) D = 0.0625, C = 0.25 (q∗ψ/q

∗
φ = 2),Λ = 0.25,

(c) D = 0.0256, C = 0.16 (q∗ψ/q
∗
φ = 2.5),Λ = 0.4, (d) D = 0.0625, C = 0.25 (q∗ψ/q

∗
φ =

2),Λ = 0.4, (e) D = 0.0625, C = 0.25 (q∗ψ/q
∗
φ = 2),Λ = 0.5, (f) D = 0.1975, C =

0.4444 (q∗ψ/q
∗
φ = 1.5),Λ = 0.5.
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Figure 4.21: Averaged degree of the overlap of the compositions between the monolayers
∆(t = 1000) for the hexagonal-stripe coupled bilayers (φ = 0.2, ψ = 0, τφ = τψ = 0.8,
B = A = 1). The categories are “independent”, “chopped stripe”, “spikes”, “hexagonal”,
“hexagonal-stripe”, “stripe”. Circle and square symbols in the right figure represent the
parameters of the results as shown in Fig. 4.20(a,b,c,d,e,f) and Fig. 4.22(a,b,c), respectively.
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Figure 4.22: Patterns of the coupled bilayers consisting of hexagonal and striped monolayers
(φ0 = 0.2, ψ0 = 0, τφ = τψ = 0.8, B = A = 1, t = 5000). (a) D = 0.1066, C =
0.3265 (q∗ψ/q

∗
φ = 1.75),Λ = 0.25, (b) D = 0.0625, C = 0.25 (q∗ψ/q

∗
φ = 2),Λ = 0.3, (c)

D = 0.0123, C = 0.1111 (q∗ψ/q
∗
φ = 3),Λ = 0.5.
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In Fig. 4.23, we show the phase separated patterns of the bilayers having two hexagonal

structures with different periodicities in the decoupled case. The pattern in Fig. 4.23(a)

is the “independent” case in which the two monolayers independently exhibit the two

hexagonal morphologies. In Fig. 4.23(b) and (e), the hexagonal spots in the ψ-monolayer

coalesce due to the hexagonal spots with larger periodicities in the φ-monolayer. This

pattern is called as the “merged” case. In Fig. 4.23(c), the two coincident hexagonal struc-

tures are obtained. In the pattern of Fig. 4.23(d), the two coincident “stripe-hexagonal”

structures are obtained. In Fig. 4.23(f), the “white eyes” structure emerges. In the study

of the coupled diffusion reaction systems, the authors found a similar pattern originating

from the “resonance” of the two interacting different wavelength modes [54].

The corresponding quantity ∆ is plotted in Fig. 4.24. As explained above, the phase

separated patterns are classified into five types; “independent”, “merged”, “coincident”,

“stripe-hexagonal” and “white eyes”. The intermediate structures such as “merged” and

“white eyes” are obtained between the “independent” and the “coincident” regions.
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Figure 4.23: Patterns of the coupled bilayers consisting of two hexagonal monolayers with
different periodicity (φ = 0.2, ψ = 0.2, τφ = τψ = 0.8, B = A = 1). (a) D = 0.0625, C =
0.25 (q∗ψ/q

∗
φ = 2),Λ = 0.1, (b) D = 0.1066, C = 0.3265 (q∗ψ/q

∗
φ = 1.75),Λ = 0.2, (c) D =

0.0625, C = 0.25 (q∗ψ/q
∗
φ = 2),Λ = 0.4, (d) D = 0.0625, C = 0.25 (q∗ψ/q

∗
φ = 2),Λ = 0.5,

(e) D = 0.039, C = 0.1975 (q∗ψ/q
∗
φ = 2.25),Λ = 0.3, (f) D = 0.0175, C = 0.1322 (q∗ψ/q

∗
φ =

2.75),Λ = 0.4.
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Figure 4.24: Averaged degree of the overlap of the compositions between the monolayers
∆(t = 1000) of the two hexagonal coupled bilayers (φ = 0.2, ψ = 0.2, τφ = τψ = 0.8,
B = A = 1). The categories are “independent”, “merged”, “white eyes”, “stripe-hexagonal”,
“coincident”. Circle symbols in the right figure represent the parameters of the results as
shown in Fig. 4.23(a,b,c,d,e,f).
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When the hexagonal and the inverted hexagonal are coupled, four different patterns

appear, i.e., “independent”, “tiled”, “hexagonal-stripe” and “stripe”. Figure 4.25(a) is

the “independent” case where the two hexagonal structures are independently superim-

posed. Figure 4.25(b) shows the “tiled” case in which the hexagonal spots with a smaller

periodicity fill the gaps between the other hexagonal spots with a larger periodicity. In

Fig. 4.25(c), a more complicated but ordered structure is obtained. In Fig. 4.25(d), we

see that the pattern of the φ-monolayer corresponds to the “hexagonal-stripe” case. In

Fig. 4.25(e), the two hexagonal structures merge to form the “stripe” morphology. The

calculated ∆ is presented in Fig. 4.26. The appearance of the “stripe” structure with

the same parameter of the composition can be also seen in the phase diagram of the

modulated bilayers (see Fig. 4.10).

It should be noted that although all of the above patterns are obtained after long time

of simulations, we do not know whether these structures are in equilibrium or metastable.

Many metastable states should exist because of the complexity of the frustrated bilayer

systems. More detailed study on the stability of the structures is required.



94 Chapter 4. Phase Separations

0-1.0 1.0

φ ψ φ+ψ φ−ψ ψ
q

(a)

(b)

(c)

(d)

(e)

Figure 4.25: Patterns of the coupled bilayers consisting of two phase shifted hexagonal
monolayers with different periodicity (φ = −0.2, ψ = 0.2, τφ = τψ = 0.8, B = A = 1,
t = 5000). (a) D = 0.0625, C = 0.25 (q∗ψ/q

∗
φ = 2),Λ = 0.1, (b) D = 0.0625, C =

0.25 (q∗ψ/q
∗
φ = 2),Λ = 0.2, (c) D = 0.0175, C = 0.1322 (q∗ψ/q

∗
φ = 2.75),Λ = 0.47, (d) D =

0.0625, C = 0.25 (q∗ψ/q
∗
φ = 2),Λ = 0.5, (e) D = 0.1975, C = 0.4444 (q∗ψ/q

∗
φ = 1.5),Λ = 0.5.
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Figure 4.26: Averaged degree of the overlap of the compositions between the monolayers
∆(t = 1000) for the phase shifted hexagonal coupled case (φ = −0.2, ψ = 0.2, τφ =
τψ = 0.8, B = A = 1). The categories are “independent”, “tiled”, “hexagonal-stripe”,
“stripe”. Circle symbols in the right figure represent the parameters of the results as shown
in Fig. 4.25(a,b,c,d,e).
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4.2.2 Dynamics

In Fig. 4.27, the time course of ∆ is plotted for the cases presented in Fig. 4.16 (a)-(c). As

a reference, ∆ for the symmetric bilayer is also plotted. The value increases around t = 50

and decreases to zero. Finally these two stripes coincide completely (see Fig. 4.13(d)).

In the case of the different wavenumber ratio, ∆ (t > 1000) of the equibrated bilayers

remains finite. As the coupling Λ increases, ∆ decreases. Up to t = 20, the three lines of

∆ increase similarly, but they evolve differently for t > 20.

Next we plot in Fig. 4.28(a) the time evolutions following quantities

〈φ2〉1/2 =

[
1

L2

∫
drφ2

]1/2

, 〈ψ2〉1/2 =

[
1

L2

∫
drψ2

]1/2

. (4.40)

The parameters are the same as used in Fig. 4.16 (a)-(c). We see that, in all the cases,

the modulation with larger wavenumber in the ψ-monolayer grows faster than that with

smaller wavenumber in the φ-monolayer. We also see that the structure formation occurs

in the φ-monolayers around t = 20. This corresponds to the time when the value of ∆

begins to exhibit the difference mentioned in Fig. 4.27. This result can be understood

within the linear stability analysis of the bilayer. By linearizing Eqs. (4.36) and (4.37)

of the concentration evolution, the initial growth of the concentration is expressed as

φq ∼ exp[κ±t], where κ± are the growth rates obtained analytically (see Appendix C for

details). The initial growth rates of the unstable modes are essentially given by ω± in

Eq. (3.63) which are the decay rates of the concentration fluctuations. We plot the growth

rates as a function of the wavenumber q in Fig. 4.28(b) in which there are two peaks. The

growth rate at the peak of larger q is larger than that of smaller q. A similar feature also

exists in Fig. 3.12 showing the decay rate of the concentration fluctuations (see Fig. 3.12).

We have mentioned that fluctuations of smaller wavenumber persist longer than those

of larger wavenumber. When Λ is increased, the growth rate at smaller q increases.

This is because the coupling effectively reduces the temperature so that the driving force
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for the phase separation becomes stronger. In accord with the linear stability analysis,

we see in Fig. 4.28(a) that the onset time for the phase separation becomes shorter in

the φ-monolayer as the coupling parameter is increased. In summary, the properties of

concentration fluctuations above the transition temperature reflect those of the phase

separation below the transition temperature.

Finally, the phase separated patterns when the two monolayers have different temper-

atures are shown in Fig. 4.29. In the ψ-monolayer, a spot like structure emerges along

the stripe of the upper monolayer. The appearance of the spot structure may reflect

the higher temperature in the ψ-monolayer. For a monolayer in the stripe phase with

φ0 6= 0, a phase transition to the hexagonal phase occurs by increasing the temperature

(see Fig. 4.3).
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Figure 4.27: Time evolution of the difference of the composition ∆ for Λ = 0.1 (green),
Λ = 0.3 (blue) and Λ = 0.5 (red). Other parameters are τφ = τψ = 0.8, φ0 = ψ0 = 0,
B = A = 1, D = 0.0123, C = 0.1111 (q∗ψ/q

∗
φ = 3). The parameter for the black line is

Λ = 0.02, B = A = D = C = 1 (q∗ψ/q
∗
φ = 1).
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Figure 4.28: (a) Time evolution of the modulation amplitudes in each monolayers, 〈φ2〉1/2
(solid line) and 〈ψ2〉1/2 (broken line) for Λ = 0.1 (green), Λ = 0.3 (blue), Λ = 0.5 (red). Other
parameters are τφ = τψ = 0.8, φ0 = ψ0 = 0, B = A = 1, D = 0.0123, C = 0.1111 (q∗ψ/q

∗
φ =

3). (b) Growth exponents of the concentration. κ+ and κ− are drawn with solid and dotted
lines respectively. For the derivation see Appendix C.
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φ ψ φ+ψ φ−ψ ψ
q

Figure 4.29: Patterns of coupled bilayers of with different temperatures and characteristic
wavenumbers. (φ0 = ψ0 = 0, τφ = 0.8, τψ = 0.9,Λ = 0.3). The patterns of φ, ψ, φ + ψ,
φ− ψ and ψq obtained after long time simulation (t = 5000) are presented. The parameters
chosen here are B = A = 1, D = 0.0123, C = 0.1111 (q∗ψ/q

∗
φ = 3).
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Chapter 5

Discussions

5.1 Emergence of the characteristic length scale

We shall call the structure of the bilayers as “2D micelles” because finite sized structures

emerge for binary lipid mixtures. Notice that the term “2D micelles” was introduced to

explain the submicron sized domain formations in Langmuir monolayers, similar to the

aggregates in the 3D surfactant solutions [55]. It should be pointed out that the structure

of the 2D micelles is different from that presented here, since their formulation is based on

the thermodynamics of aggregates of solute molecules in 2D. In our approach, the mecha-

nism for the finite sized domain formation originates from the coupling between the chain

orientational field and the composition field in a monolayer. Hence the characteristic size

of the domains is different. Yamamoto et.al. considered the phase behavior of the mem-

branes consisting of saturated lipid, hybrid lipid and cholesterol (SHC membrane) [31].

They showed that the line tension between domains becomes negative at temperatures

close to the critical point. This effect is more enhanced for higher cholesterol concentra-

tion although the presence of cholesterol is implicitly taken into account by the effective

membrane pressure.

When the two chains of the hybrid lipid are different and the saturated tail has a

similar chain packing property with that of the saturated lipid, we can expect that the

orientational coupling effect is large. In addition, when the saturated lipids are asymmetric
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in terms of the chain length, the degree of the orientational effects can be altered. We

believe that the 2D micelles emerge when both the immiscibility and the orientational

effect of these lipids are strong. The situation can be realized when one of the saturated

chains of the saturated lipid is long (ordered), while the length of the other saturated

chain in the saturated lipid is short. In short, whether 2D micelles are observed or not is

dependent on the choice of the lipids used for the investigation.

A self consistent mean-field theoretical model was proposed to study domain forma-

tions in membranes containing saturated lipid, hybrid lipid, and cholesterol [56]. Phase

separated patterns are calculated by taking into account the chain order and orientations

in the membranes. The feasibility of the orientational effect discussed here can be verified

with their model.

It is important to detect the existence of the orientational coupling effect experi-

mentally. By labeling only one of the chains with deuterium and with the use of NMR

spectroscopy, one can detect averaged orientation of the lipid. By comparing the degree of

the orientation in the membranes between the homogeneous state and the phase separated

state, one can check the existence of the orientational field.

It is suggested that the 2D micelles can be observed in the two-phase region with a

large amount of cholesterol. The domain size could be smaller than the resolution of the

fluorescent microscope. In order to detect the domains of submicron size, small angle

neutron scattering (SANS) and neutron spin echo (NSE) experiments are suitable for

studying the structure and dynamics of the lipid membrane systems.

Although we presented a phenomenological free energy of the lipid monolayers, it is

possible to obtain this free energy from a microscopic lattice model. For example, we

can regard the monolayer as a coupled spin system; Ising model and XY model. The

latter model describes the Kosterlitz-Thouless transition in which the binding and the

unbinding of pairs of vortices of the vector field is related to the superfluidity or super-
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conductivity. It may be possible to obtain the Ginzburg-Landau free energy functional

from the Hamiltonian within the mean field approximations.

5.2 Concentration fluctuations of 2D micelles

According to the experimental study of the single lipid molecule observation in biomem-

branes using STED, the lipid molecules repeatedly assemble and disassemble [11]. When

the temperature is below the transition temperature, phase separated domains appear

from the homogeneous state and coarsen irreversibly towards the macroscopically phase

separated state. Once the equilibrium state is reached, the structure of the domains does

not change. This picture contradicts with the dynamical assembly of lipid molecule shown

by the experiments.

Our “2D micelles” model with concentration fluctuations can be one of the possibil-

ities to explain the finite sized domain formation in biological membranes. Our model

describes dynamical assembly and disassembly of lipid molecules. The structure and the

lifetime of lipid domains can be determined by the physical chemistry properties of the

lipid molecules. For critical fluctuations in binary mixtures, the correlation length being

a function of the temperature gives the only length scale. For 2D micelles above the

transition temperature, there is a characteristic length for the modulation of the concen-

tration fluctuation (see Eq. (3.25)) in addition to the correlation length. These typical

length scales depend on the properties of the hybrid lipid, e.g., the chemical structure of

the lipid, the position of the double bond in the unsaturated tail or the asymmetry of

the chain lengths (through the parameters such as σ, a,K1, g). We note that the main

transition temperature of the unsaturated lecithins having one saturated tail and one

unsaturated tail is strongly dependent on the position of the double bond in the acyl

chain [57]. The decay time of concentration fluctuations at a particular length scale also

depends on the properties of the hybrid lipid. It should be mentioned that the critical
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point is also dependent on the parameters such as A and B. The 2D micelles model

uniquely describes the size and the lifetime of the finite sized domain in terms of the

physical chemistry properties of the lipid molecules.

It is worthwhile to imagine that the cells are utilizing the nature of the 2D micelles

which control the size and lifetime of fluctuations in the bilayers by synthesizing and

transporting the particular hybrid lipids. In addition, if such lipids were transported to

every organ in the cell, the properties of the raft domains in these membranes can be

synchronized in time. In other words, the coupling of the 2D micelles in the membranes

and the lipid transports can be the language of the intracellular recognition in cells. Such

a scenario might be important for various bio-functions acting harmonically in the cell.

We can also regard our model as “coupled 2D microemulsions” when the monolayers

are composed of saturated lipid, hybrid lipid, unsaturated lipid (both tails have a double

bond). For 3D microemulsions, we need a surface active agent which locates at the in-

terface of immiscible components. In monolayers, the line active molecules play the same

role as the surface active molecule. Recently, it is reported that a molecule consisting

of a hydrocarbon block and a fluorocarbon block acts as a linactant in 2D mixed Lang-

muir monolayers composed of pentadecanoic acid and perfluoroundecanoic acid [58]. The

molecule locates at the domain boundary reducing the line tension. As a result, bubble

like domains of submicron size were observed. This result implies that the amphiphilic

nature also exists in 2D monolayer systems.

The characteristic wavelength of modulation is dependent on the coefficients A, B, C,

D. Using the analogy with 3D microemulsions, these quantities are related to the con-

centration of the hybrid lipid. According to the lattice model of 3D microemulsions, the

structure factor such as Eq. (3.22) was analytically obtained by Gompper and Schick [47].

As a different approach for 3D microemulsions, a variational method based on the bend-

ing elasticity of membranes composed of surfactant molecules was reported before [59].
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Within this approach the same functional form of the structure factor was obtained, while

the prefactors are related to the bending rigidity and the concentration of the amphiphilic

molecule.

Brewster et al. considered four component systems composed of saturated lipid, hybrid

lipid, unsaturated lipid and cholesterol [29]. They investigated the decrease of the line

tension due to the presence of the hybrid lipid. For four component systems, however, the

hybrid lipids are localized at the interface only when the saturated and the unsaturated

lipids are strongly segregated in the low temperature because of the entropic reason.

The dynamics of 3D microemulsions are investigated based on Ginzburg-Landau the-

ory for both concentrations and velocity field [60]. The coupling effects between the bulk

(water, oil) and the surfactant film were considered [61]. In the latter study, double

exponential decay of the concentration fluctuations is predicted because of the coupling

between the concentration and velocity field. The relaxation of the membranes fluctua-

tion in 3D microemulsions or sponge phase in surfactant solutions is predicted to be a

stretched exponential of exp[−(Γt)β] with the exponent of β = 2/3 [62], while the experi-

mental value is obtained for the sponge phase [63]. It is interesting to consider whether the

stretched exponential decay can be obtained from the fluctuation of the domain boundary

within 2D plane of lipid membranes.

The non-equilibrium lipid transport between the cell interior and the membrane may

also influence the domain formation. Such an effect was taken into account in the kinetic

aggregation model of the lipid clusters [64], or in the phase separation of binary lipid

mixtures [65, 66]. These models explain the existence of the finite sized domains which do

not coarsen in time. Recently a general model which takes into account the lipid transport,

interface pinning by proteins, and critical fluctuations has been proposed [67]. The authors

suggested some criteria to elucidate the domain formation mechanism by comparing the

spatial and time correlations of the domains between the theory and experimental results.
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5.3 Coupling of different modulations

We showed that the large coupling parameter results in the lower transition temperature.

This is because the coupling effectively decreases the free energy through the term −Λφψ.

Similar results are obtained in the study of bilayers using Monte Carlo simulation [68].

If we rewrite the coupling term as Λ(φ − ψ)2, the terms Λφ2 and Λψ2 compensate the

energy decrease due to the −2Λφψ term. In this case, the transition temperature is not

altered.

When the bilayers have different characteristic length scales, another interesting fact

is that the temperature in the monolayer with a larger characteristic length dominates

the transition temperature of the coupled bilayer. Because biomembranes typically have

asymmetric compositions, such an effect may be important.

In order to have asymmetric bilayers with different characteristic wavenumbers, the

lipid species in each monolayer should be different. Otherwise the gradient terms would

be the same between the upper and the lower monolayers in Eq. 2.18. We note that the

characteristic wavenumber is given by q∗ =
√
a(1 − aσ/g2)/2K1 (see Eq. (2.16)). Hence

if K1 and g are different between the two monolayers, the two different characteristic

wavenumbers emerge.

We also point out that there are some similarities between the coupled modulated

structures and the problem of atoms adsorbed on a periodic solid substrate. The latter

problem has been extensively studied within the Frenkel-Kontorova (FK) model which

provides a simple description of the commensurate-incommensurate transition [69]. Our

model and the FK model are analogous in the sense that there are two natural length scales

whose ratio changes as a function of the model parameters. In the FK model, however,

these length scales are quenched, whereas in our result they are annealed. Modulated

structure discussed in this thesis is only weakly segregated since the temperature is close

to the critical point. The frustration generated by the coupling is compensated by the
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coexistence of two different characteristic wavenumbers in one of the monolayers. When

the contribution of the modulation is smaller than that of the phase separation, the natural

length scales may be disturbed by the coupling and the commensurate-incommensurate

transition can be observed. Then we can anticipate the existence of the transition in the

strong segregation regime.

5.4 Non-equilibrium nature of asymmetrical bilayers

Biomembranes of living cells are known to have asymmetric compositions between two

monolayers. In the case of flat model membranes, a compositionally asymmetric bilayers

will eventually become a symmetric one after a long time. This is because the asymmetric

membranes are not in equilibrium. In order to reduce the free energy, flipping of the

lipids takes place in bilayers although such process is not allowed in our model, i.e.,

the lipid composition is conserved in each monolayer. The energy barrier for flipping

from one monolayer to the other is relatively high because the hydrophilic part of the

lipid should contact with the hydrophobic chains during the flipping process. Since the

flipping rate is low, the metastable asymmetric states persist for a long time. Some years

ago, the dynamics of lipid exchange in a single component vesicle is performed using

time resolved small angle neutron scattering [70]. The half-life of the lipid composition

due to flip-flop motion was estimated to be several hours at physiological temperatures.

In the case of living cells, the asymmetry in the lipid composition is maintained by the

enzymes called “flippase” which actively transport the lipids [71]. More importantly,

the compositional asymmetry between the two leaflets is closely related to the biological

functions. For instance, the breakdown of the compositional asymmetry has to do with

the programed death (apoptosis) of the cell [72]. Hence it is important to consider the

effects of asymmetry on the properties of lipid domains.





109

Chapter 6

Conclusion

In this thesis, we proposed a model for lipid bilayers, and discussed the mechanism of the

finite-sized domain formation together with the effects of coupling of the two monolayers.

A lipid monolayer consisting of saturated lipid, hybrid lipid and cholesterol was con-

sidered. We proposed a phenomenological Ginzburg-Landau model in which the coupling

of the lipid composition and chain orientational vector field is considered.

This coupling arises from the liquid crystalline nature of the hybrid lipid which adjusts

its orientational order in the tails to reduce the line tension. As a result, finite-sized

domains can be formed. The minimization of the free energy with respect to the vector

field yields an effective free energy which is analogous to that of 3D microemulsions (above

the transition temperature) and modulated structures (below the transition temperature).

Then we considered the model for lipid bilayers comprised of two modulated monolayers

which are coupled via interleaflet interactions. The structure and the dynamics of the

coupled modulated bilayer are investigated theoretically.

We first studied concentration fluctuations in bilayers occurring above the transition

temperature. We have calculated the static structure factors, and obtained the bilayer

phase diagrams close to the critical temperature. The coupling effect expands the regions

of the ordered phase and the structured-disorder phase. In both monolayers, fluctuations

are induced due to the coupling, and the spectrum of the induced fluctuations is deter-
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mined by the cross correlation of the structure factor. When the two monolayers having

different preferred wavenumbers are coupled, the peak height at smaller wavenumber be-

comes larger, whereas that at a larger wavenumber remains the same. Similarly, the

temperature in the monolayer with a smaller wavenumber dominates the behavior of the

critical temperature of the bilayer. We studied the dynamics of concentration fluctuations

by using the coupled TDGL equations, and calculated the intermediate structure factors

of the bilayer. In general, concentration fluctuations exhibit a double-exponential decay.

Due to the coupling, the time for the cross over of the two concentration fluctuations

appears when the characteristic length scale of each monolayer is different.

Then we discussed the phase separation of the coupled modulated bilayers. We con-

structed various phase diagrams of the bilayer when the two monolayers have the same

wavenumber of the modulations. The phase behavior of the bilayers is described by the

combinations of the stripe and the hexagonal morphologies. Due to the coupling effect,

one of the monolayers induces micro-phase separation in the other monolayer. As the

coupling strength increases, the asymmetric phases tend to disappear. By performing

numerical simulations, we obtained various phase separated patterns when the two mono-

layers have different modulations. The obtained patterns are approximately classified into

“independent”, ‘intermediate” and “coincident” cases. The degree of the overlap between

the two monolayers is characterized by the quantity ∆ as defined in Eq. (4.38). We showed

that the initial growth rates of the most unstable mode are essentially identical to the

decay rates of the concentration fluctuations.

Although the signal transduction on membranes are important for various biological

functions, its dynamical properties such as the characteristic time scale are still under

investigation. Even the relations between biological functions and protein structures have

been investigated extensively, it is still difficult to observe the dynamical communication

processes between proteins. Since our theory explains the size and the dynamics of lipid
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domains, it could be a scaffold for understanding the functional processes in membranes.

We hope that this work has made a useful contribution to this direction of the research.
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Appendix A

Here we consider the other possibility of the coupling terms between the monolayers. The

free energy including the higher order coupling and non-local coupling terms is

Fb[φ, ψ] =

∫
dr

[
2B(∇2φ)2 − 2A(∇φ)2 +

τφ
2
φ2 +

1

4
φ4 − µφφ

+2D(∇2ψ)2 − 2C(∇ψ)2 +
τψ
2
ψ2 +

1

4
ψ4 − µψψ − Λφψ

−νφ2ψ2 − υ(φψ3 + φ3ψ)

−ζ(∇φ)(∇ψ) − ε(∇2φ)(∇2ψ) − η((∇2φ)ψ + φ(∇2ψ))

]
. (6.1)

Where Λ, ν, υ are the local and ζ, ε, η are the nonlocal coupling coefficients. If we write the

order parameters φ and ψ as φ = φ0+δφ, ψ = ψ0+δψ, and δφ(q) =
∫

dr δφ(r ) exp(−iq·r ),

δψ(q) =
∫

dr δψ(r ) exp(−iq · r ). The free energy in Fourier space is written as

Fb[φ, ψ] =

∫
dq

[(
2Bq4 − 2Aq2 +

τ ′φ
2

)
δφ(q)δφ(−q) (6.2)

+

(
2Dq4 − 2Cq2 +

τ ′ψ
2

)
δψ(q)δψ(−q)

−
(
Λl + ζq2 + εq4 − 2ηq2

)
δφ(q)δψ(−q)

]
,

Where

τ ′φ = τφ + 3φ2
0/2 − 3υφ0ψ0 − νψ2

0, (6.3)

τ ′ψ = τψ + 3ψ2
0/2 − 3υφ0ψ0 − νφ2

0, (6.4)

Λl = Λ + 3υ(φ2
0 + ψ2

0) + 2νφ0ψ0. (6.5)
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By defining

Γ′
φ(q) = 2Bq4 − 2Aq2 + τ ′φ/2, (6.6)

Γ′
ψ(q) = 2Dq4 − 2Cq2 + τ ′ψ/2, (6.7)

Λ′ = Λl + ζq2 + εq4 − 2ηq2, (6.8)

and repeating the same procedure to obtain the structure factors, we obtain the static

structure factors as

Sφφ(q) =
2Γ′

ψ(q)

4Γ′
φ(q)Γ

′
ψ(q) − Λ′2 , (6.9)

Sψψ(q) =
2Γ′

φ(q)

4Γ′
φ(q)Γ

′
ψ(q) − Λ′2 , (6.10)

Sφψ(q) =
Λ

4Γ′
φ(q)Γ

′
ψ(q) − Λ′2 . (6.11)

Notice that these equations can be obtained by changing Γφ → Γ′
φ, Γψ → Γ′

ψ and Λ → Λ′

in Eqs. (3.14), (3.15), (3.16).

Similarly, by defining

ω′2
φ = 4L2

φq
4[Γ′

φ(q)]
2 + LφLψq

4Λ′2, (6.12)

ω′2
ψ = 4L2

ψq
4[Γ′

ψ(q)]2 + LφLψq
4Λ′2, (6.13)

ω′
φψ = 2q2[LφΓ

′
φ(q) + LψΓ′

ψ(q)], (6.14)

we can obtain intermediate structure factors by exchanging ωφ → ω′
φ, ωψ → ω′

ψ and

ωφψ → ω′
φψ in Eqs. (3.51), (3.52), (3.53) and (3.62).
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We show the derivation of the real space correlation function of a 2D monolayer. The

scattering functions of the monolayer is given as

S(q) =
1

4Bq4 − 4Aq2 + τ̃φ
. (B.15)

The real space correlation function in the monolayer is given by the inverse Fourier trans-

form of the above scattering function in 2D.

Gφ(r) =
1

(2π)2

∫
drS(q) exp(iq · r) (B.16)

=
1

(2π)2

1

B

∫ ∞

0

dq qS(q)

∫ 2π

0

dθ exp(iqr cos θ)

=
1

4πB

∫ ∞

0

dq
qJ0(qr)

q4 − (A/B)q2 + τ̃φ/4B

=
1

4πB
I.

Here θ and r are the angle and the distance in the polar coordinate, Jn(qr) is the spherical

Bessel function of the first kind. Using the relation J0(qr) = (H
(1)
0 (qr)+H

(2)
0 (qr))/2, where

H
(1)
0 (qr) and H

(2)
0 (qr) are the Hankel functions of the first and second kind, we can write

I = (I1 + I2)/2 where

I1 =

∫ ∞

0

dq
qH

(1)
0 (qr)

q4 − (A/B)q2 + τ̃φ/4B
,

I2 =

∫ ∞

0

dq
qH

(2)
0 (qr)

q4 − (A/B)q2 + τ̃φ/4B
. (B.17)

Now we consider the integral in the complex plane by replacing q with the complex variable

z = x+ iy

Ii =

∫ ∞

0

dz
zH

(i)
0 (zr)

z4 − (A/B)z2 + τ̃φ/4B
. (B.18)
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Figure B.1: Complex plane with 4 poles of Eq. (B.19) and the paths of the integrals.

The integrand has poles at

z1 =
(τ̃φ/B)1/4

2

(√
1 − γφ + i

√
1 + γφ

)
,

z2 =
(τ̃φ/B)1/4

2

(
−
√

1 − γφ + i
√

1 + γφ
)
,

z3 =
(τ̃φ/B)1/4

2

(
−
√

1 − γφ − i
√

1 + γφ
)
,

z4 =
(τ̃φ/B)1/4

2

(√
1 − γφ − i

√
1 + γφ

)
. (B.19)

These poles are located in quadrants 1,2,3 and 4 off the x-axis. For the integral I1, we

integrate along the contour of the quarter-circle of infinite radius in the first quadrant in

anti-clock wise direction. Using Cauchy’s integral theorem, we obtain∫ ∞

0

dx
xH

(1)
0 (xr)

x4 − (A/B)x2 + τ̃φ/4B
+

∫ 0

∞
dy

iyH
(1)
0 (iyr)

y4 + (A/B)y2 + τ̃φ/4B
= 2πi res(z = z1),

(B.20)

where the residue is given by

res(z = z1) =
H

(1)
0 (z1r)

2i
√
τ̃φ/B

√
1 − γ2

φ

. (B.21)
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For the integral I2, we set the contour of the quarter-circle of infinite radius in the 4th

quadrant in clock wise direction. Then∫ ∞

0

dx
xH

(2)
0 (xr)

x4 − (A/B)x2 + τ̃φ/4B
+

∫ 0

−∞
dy

iyH
(2)
0 (iyr)

y4 + (A/B)y2 + τ̃φ/4B
= −2πi res(z = z4),

(B.22)

where the residue is given by

res(z = z4) = − H
(2)
0 (z4r)

2i
√
τ̃φ/B

√
1 − γ2

φ

. (B.23)

Combining Eqs. (B.20) and (B.22), and with the use of H
(1)
0 (−z) = −H(2)

0 (z), we obtain

I =
π

2
√
τ̃φ/B

√
1 − γ2

φ

[
H

(1)
0

((
τ̃φ
B

)1/4
√

1 − γφ + i
√

1 + γφ

2
r

)

+H
(2)
0

((
τ̃φ
B

)1/4
√

1 − γφ − i
√

1 + γφ

2
r

)]
. (B.24)

By defining

λφ
2π

=

(
B

τ̃φ

)1/4
2√

1 − γφ
, (B.25)

ξφ =

(
B

τ̃φ

)1/4
2√

1 + γφ
, (B.26)

we finally obtain

Gφ(r) =
ξφλφ
64πB

[
H

(1)
0

(
2πr

λφ
+ i

r

ξφ

)
+H

(2)
0

(
2πr

λφ
− i

r

ξφ

)]
=

ξφλφ
64πB

[
H

(1)
0

(
2πr

λφ
+ i

r

ξφ

)
+H

(1)
0

(
2πr

λφ
+ i

r

ξφ

)]

=
ξφλφ
32πB

Re

[
H

(1)
0

(
2πr

λφ
+ i

r

ξφ

)]
. (B.27)

In the above, the overline represents the complex conjugate. We have also used the

relation H
(2)
0 (z) = H

(1)
0 (z).
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Appendix C

We consider the phase separation dynamics in the early stage by linear stability analysis.

We assume that φ and ψ are small, and neglect the higher order term of φ and ψ, the time

evolution equations for the order parameters in Fourier space is obtained from Eq. (4.36,

4.37)

∂φ(q, t)

∂t
= −2q2LφΓφφ(q, t) + Λψ(q, t),

∂ψ(q, t)

∂t
= −2q2LψΓψψ(q, t) + Λφ(q, t). (C.28)

Here we can rewrite these equations as(
∂φ(q, t)/∂t
∂ψ(q, t)/∂t

)
=

(
−2q2LΓφ LΛq2

LΛq2 −2q2LΓψ

)(
φ(q, t)
ψ(q, t)

)
. (C.29)

By diagonalizing the matrix, the solution is written as x = c+ exp[κ+t]v++c− exp[κ−t]v−,

where x = (φ(q, t), ψ(q, t)), c± are coefficients, v± are the eigen vectors and the eigenval-

ues, and κ± are expressed as

κ± = Lq2

[
−(Γφ + Γψ) ±

√
(Γφ − Γψ)2 + Λ2

]
. (C.30)
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Appendix D

For obtaining the phase diagram, the energy of SS, SH, HS, HH, HH* and QQ phases

are calculated, via programs str-str.f, str-hex.f, hex-str.f, hex-hex.f, hex-hex-phase.f and

squ.squ.f respectively. It should be noted that distributions of amplitudes of the modula-

tion is also calculated via these programs. By comparing the lowest energy phase by the

program min-energy3.f, we get the phase diagram.
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program str-str.f
implicit none

c written on 2008/11/06

double precision fl,fh,fdis
double precision ta1,ta2,g1,g2,PH,PS,mh,ms,la
double precision tau1,tau2,gn1,gn2,phi,psi,lam
double precision ampl,mhh,fmin,mps1,mps2,inmps,inmph,mps,mph
integer i,ii,iii

fl(ta1,ta2,g1,g2,PH,PS,mh,ms,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +3.0/2.0*g1*(mh**(4.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +3.0/2.0*g2*(ms**(4.0))
& -la*(PH*PS+2.0*mh*ms)

ampl(ta1,ta2,g1,g2,PH,PS,ms,la)
&=(ta1-1.0+3.0*g1*(PH**(2.0)))
&*((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+3.0*g2*(ms**(3.0)))/la
&+3.0*g1*((
&((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+3.0*g2*(ms**(3.0)))/la)**(3.0))
&-la*ms

mhh(ta2,g2,PS,ms,la)
&=((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+3.0*g2*(ms**(3.0)))/la

open(1,file=’str_str_min_energy_tau08_g1_la02.dat’)
open(5,file=’str_str_mh_tau08_g1_la02.dat’)
open(6,file=’str_str_ms_tau08_g1_la02.dat’)

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
lam=0.2

do i=1,2000
phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
fmin=100001.0
do iii=1,1000000

mps1=-1.0+iii/500000.0
mps2=-1.0+(iii+1.0)/500000.0
if ((((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).lt.0.0)

& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).gt.0.0))
& .or.((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).gt.0.0)
& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).lt.0.0)))
& .or.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).eq.0.0))
& then
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inmps=mps1
inmph=mhh(tau2,gn2,psi,inmps,lam)
if (inmps.eq.0.0) then

goto 100
end if

if (fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam).lt.fmin) then
fmin=fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam)
mps=inmps
mph=inmph

end if
end if

100 end do
write(1,930) fmin
write(5,900) phi,psi,mph
write(6,900) phi,psi,mps

end do
end do

close(1)

900 format(f14.7,’ ’,f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7)
920 format(f14.7,’ ’,f14.7)
930 format(f14.7)

stop
end
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program str-hex.f
implicit none

c revised 2010/11/11

double precision fl,fh,fdis
double precision ta1,ta2,g1,g2,PH,PS,mh,ms,la
double precision tau1,tau2,gn1,gn2,phi,psi,lam
double precision ampl,mhh,fmin,mps1,mps2,inmps,inmph,mps,mph
integer i,ii,iii

fl(ta1,ta2,g1,g2,PH,PS,mh,ms,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +3.0/2.0*g1*(mh**(4.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +5.0/2.0*g2*(ms**(4.0))
& +4.0/(3.0**(1.0/2.0))*g2*PS*(ms**(3.0))
& -la*(PH*PS+2.0/(3.0**(1.0/2.0))*mh*ms)

ampl(ta1,ta2,g1,g2,PH,PS,ms,la)
&=(ta1-1.0+3.0*g1*(PH**(2.0)))
&*((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))*(3.0**(1.0/2.0))/la
&+3.0*g1*((((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))*(3.0**(1.0/2.0))/la)**3.0)
&-la*ms/(3.0**(1.0/2.0))

mhh(ta2,g2,PS,ms,la)
&=((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))*(3.0**(1.0/2.0))/la

open(1,file=’str_hex_min_energy_tau08_g1_la02.dat’)
open(6,file=’str_hex_mh_tau08_g1_la02.dat’)
open(7,file=’str_hex_ms_tau08_g1_la02.dat’)

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
lam=0.2

do i=1,2000
phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
fmin=100002.0
do iii=1,1000000

mps1=-1.0+iii/500000.0
mps2=-1.0+(iii+1.0)/500000.0
if ((((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).lt.0.0)

& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).gt.0.0))
& .or.((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).gt.0.0)
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& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).lt.0.0)))
& .or.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).eq.0.0))
& then

inmps=mps1
inmph=mhh(tau2,gn2,psi,inmps,lam)
if (inmps.eq.0.0) then

goto 100
end if

if (fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam).lt.fmin) then
fmin=fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam)
mps=inmps
mph=inmph

end if
end if

100 end do
write(1,930) fmin
write(6,900) phi,psi,mph
write(7,900) phi,psi,mps

end do
end do

close(1)

900 format(f14.7,’ ’,f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7)
920 format(f14.7,’ ’,f14.7)
930 format(f14.7)

stop
end
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program hex-hex.f
implicit none

c written on 2008/11/06

double precision fl,fh,fdis
double precision ta1,ta2,g1,g2,PH,PS,mh,ms,la
double precision tau1,tau2,gn1,gn2,phi,psi,lam,mss
double precision ampl,fmin,mph1,mph2,inmps,inmph,mps,mph
integer i,ii,iii

fl(ta1,ta2,g1,g2,PH,PS,mh,ms,la)
&=ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +3.0/2.0*g2*(ms**(4.0))
&+ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +5.0/2.0*g1*(mh**(4.0))
& +4.0/(3.0**(1.0/2.0))*g1*PH*(mh**(3.0))
& -la*(PS*PH+2.0/(3.0**(1.0/2.0))*ms*mh)

ampl(ta1,ta2,g1,g2,PH,PS,mh,la)
&=(ta2-1.0+3.0*g2*(PS**(2.0)))
&*((ta1-1.0+3.0*g1*(PH**(2.0)))*mh+5.0*g1*(mh**(3.0))
&+2.0*(3.0**(1.0/2.0))*g1*PH*(mh**2.0))*(3.0**(1.0/2.0))/la
&+3.0*g2*((((ta1-1.0+3.0*g1*(PH**(2.0)))*mh+5.0*g1*(mh**(3.0))
&+2.0*(3.0**(1.0/2.0))*g1*PH*(mh**2.0))*(3.0**(1.0/2.0))/la)**3.0)
&-la*mh/(3.0**(1.0/2.0))

mss(ta1,g1,PH,mh,la)
&=((ta1-1.0+3.0*g1*(PH**(2.0)))*mh+5.0*g1*(mh**(3.0))
&+2.0*(3.0**(1.0/2.0))*g1*PH*(mh**2.0))*(3.0**(1.0/2.0))/la

open(1,file=’hex_str_min_energy_tau08_g1_la02.dat’)
open(6,file=’hex_str_mh_tau08_g1_la02.dat’)
open(7,file=’hex_str_ms_tau08_g1_la02.dat’)

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
lam=0.2

do i=1,2000
phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
fmin=100002.0
do iii=1,1000000

mph1=-1.0+iii/500000.0
mph2=-1.0+(iii+1.0)/500000.0
if ((((ampl(tau1,tau2,gn1,gn2,phi,psi,mph1,lam).lt.0.0)

& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mph2,lam).gt.0.0))
& .or.((ampl(tau1,tau2,gn1,gn2,phi,psi,mph1,lam).gt.0.0)
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& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mph2,lam).lt.0.0)))
& .or.(ampl(tau1,tau2,gn1,gn2,phi,psi,mph1,lam).eq.0.0))
& then

inmph=mph1
inmps=mss(tau1,gn1,phi,inmph,lam)

if (inmph.eq.0.0) then
goto 100

end if
if (fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam).lt.fmin) then

fmin=fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam)
mps=inmps
mph=inmph

end if
end if

100 end do
write(1,930) fmin
write(6,900) phi,psi,mph
write(7,900) phi,psi,mps

end do
end do

close(1)

900 format(f14.7,’ ’,f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7)
920 format(f14.7,’ ’,f14.7)
930 format(f14.7)

stop
end
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program hex-hex.f
implicit none

c written on 2008/11/06
c rivised on 2008/11/10
c adding contour on 2008/11/12

double precision fl,fh,fdis
double precision ta1,ta2,g1,g2,PH,PS,mh,ms,la
double precision tau1,tau2,gn1,gn2,phi,psi,lam
double precision ampl,mhh,fmin,mps1,mps2,inmps,inmph,mps,mph
integer i,ii,iii

fl(ta1,ta2,g1,g2,PH,PS,mh,ms,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +5.0/2.0*g1*(mh**(4.0))
& +4.0/(3.0**(1.0/2.0))*g1*PH*(mh**(3.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +5.0/2.0*g2*(ms**(4.0))
& +4.0/(3.0**(1.0/2.0))*g2*PS*(ms**(3.0))
& -la*(PH*PS+2.0*mh*ms)

ampl(ta1,ta2,g1,g2,PH,PS,ms,la)
&=(ta1-1.0+3.0*g1*(PH**(2.0)))
&*((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la
&+5.0*g1*((((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la)**(3.0))
&+2.0*(3.0**(1.0/2.0))*g1*PH
&*((((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la)**(2.0))
&-la*ms

mhh(ta2,g2,PS,ms,la)
&=((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+5.0*g2*(ms**(3.0))
&+2.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la

open(1,file=’hex_hex_min_energy_tau08_g1_la02.dat’)
open(5,file=’hex_hex_mh_tau08_g1_la02.dat’)
open(6,file=’hex_hex_ms_tau08_g1_la02.dat’)

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
lam=0.2

do i=1,2000
phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
fmin=100000.0
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do iii=1,1000000
mps1=-1.0+iii/500000.0
mps2=-1.0+(iii+1.0)/500000.0
if ((((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).lt.0.0)

& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).gt.0.0))
& .or.((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).gt.0.0)
& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).lt.0.0)))
& .or.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).eq.0.0))
& then

inmps=mps1
inmph=mhh(tau2,gn2,psi,inmps,lam)
if (inmps.eq.0.0) then

goto 100
end if

if (fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam).lt.fmin) then
fmin=fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam)
mps=inmps
mph=inmph

end if
end if

100 end do
write(1,930) fmin
write(5,900) phi,psi,mph
write(6,900) phi,psi,mps

end do
end do

close(1)

900 format(f14.7,’ ’,f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7)
920 format(f14.7,’ ’,f14.7)
930 format(f14.7)

stop
end
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program hex-hex-phase.f
implicit none

c written on 2008/11/06
c rivised on 2008/11/10
c adding contour on 2008/11/12
c revised on 2008/11/21
c adding phase shift on 2008/11/27
c revised the energy 2008/11/29

double precision fl,fh,fdis
double precision ta1,ta2,g1,g2,PH,PS,mh,ms,la
double precision tau1,tau2,gn1,gn2,phi,psi,lam,pii,pi
double precision ampl,mhh,fmin,mps1,mps2,inmps,inmph,mps,mph
integer i,ii,iii

fl(ta1,ta2,g1,g2,PH,PS,mh,ms,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +5.0/2.0*g1*(mh**(4.0))
& +4.0/(3.0**(1.0/2.0))*g1*PH*(mh**(3.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +5.0/2.0*g2*(ms**(4.0))
& +4.0/(3.0**(1.0/2.0))*g2*PS*(ms**(3.0))
& -la*(PH*PS-mh*ms)

ampl(ta1,ta2,g1,g2,PH,PS,ms,la)
&=2.0*(ta1-1.0+3.0*g1*(PH**(2.0)))
&*(-(2.0*(ta2-1.0+3.0*g2*(PS**(2.0)))*ms+10.0*g2*(ms**(3.0))
&+4.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la)
&+10.0*g1
&*((-(2.0*(ta2-1.0+3.0*g2*(PS**(2.0)))*ms+10.0*g2*(ms**(3.0))
&+4.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la)**(3.0))
&+4.0*(3.0**(1.0/2.0))*g1*PH
&*((-(2.0*(ta2-1.0+3.0*g2*(PS**(2.0)))*ms+10.0*g2*(ms**(3.0))
&+4.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la)**(2.0))
&+la*ms

mhh(ta2,g2,PS,ms,la)
&=-(2.0*(ta2-1.0+3.0*g2*(PS**(2.0)))*ms+10.0*g2*(ms**(3.0))
&+4.0*(3.0**(1.0/2.0))*g2*PS*(ms**2.0))/la

open(1,file=’hex_hex_phase_min_energy_tau08_g1_la02.dat’)
open(2,file=’hex_hex_phase_msmh_tau08_g1_la02.dat’)
open(5,file=’hex_hex_phase_mh_tau08_g1_la02.dat’)
open(6,file=’hex_hex_phase_ms_tau08_g1_la02.dat’)

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
lam=0.2

do i=1,2000
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phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
fmin=100000.0
do iii=1,1000000

mps1=-1.0+iii/500000.0
mps2=-1.0+(iii+1.0)/500000.0

if ((((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).lt.0.0)
& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).gt.0.0))
& .or.((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).gt.0.0)
& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam).lt.0.0)))
& .or.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam).eq.0.0))
& then

inmps=mps1
inmph=mhh(tau2,gn2,psi,inmps,lam)
if (inmps.eq.0.0) then

goto 100
end if

if (fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam)
&.lt.fmin) then

fmin=fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam)
mps=inmps
mph=inmph

end if
end if

100 end do
write(1,930) fmin
if (fmin.eq.100000.0) then

mph=0.0
mps=0.0

end if
write(5,900) phi,psi,mph
write(6,900) phi,psi,mps
write(2,910) phi,psi,mps,mph,mps*mph
end do
end do

close(1)

900 format(f14.7,’ ’,f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7)
920 format(f14.7,’ ’,f14.7)
930 format(f14.7)

stop
end
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program squ-squ.f
implicit none

c written on 2008/11/25

double precision fl,fh,fdis
double precision ta1,ta2,g1,g2,PH,PS,mh,ms,la
double precision tau1,tau2,gn1,gn2,phi,psi,lam,css,cs,csr
double precision ampl,mhh,fmin,mps1,mps2,inmps,inmph,mps,mph
integer i,ii,iii,iiiii

fl(ta1,ta2,g1,g2,PH,PS,mh,ms,la,cs)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +9.0/4.0*g1*(mh**(4.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +9.0/4.0*g2*(ms**(4.0))
& -la*(PH*PS+2.0*mh*ms*cs)

ampl(ta1,ta2,g1,g2,PH,PS,ms,la,cs)
&=2.0*(ta1-1.0+3.0*g1*(PH**(2.0)))
&*((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+9.0/2.0*g2*(ms**(3.0)))/(la*cs)
&+9.0*g1*((
&((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+9.0/2.0*g2*(ms**(3.0)))/(la*cs)
&)**(3.0))
&-2.0*la*ms*cs

mhh(ta2,g2,PS,ms,la,cs)
&=((ta2-1.0+3.0*g2*(PS**(2.0)))*ms+9.0/2.0*g2*(ms**(3.0)))/(la*cs)

open(1,file=’squ_squ_min_energy_tau08_g1_la02.dat’)
open(2,file=’squ_squ_msmhal_tau08_g1_la02.dat’)
open(5,file=’squ_squ_mh_tau08_g1_la02.dat’)
open(6,file=’squ_squ_ms_tau08_g1_la02.dat’)
open(12,file=’test_cos_squ_squ_tau08_g1_la02.dat’)

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
lam=0.2

do i=1,2000
phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
fmin=100001.0
do iii=1,1000000

do iiiii=1,2
css=-1.0+2.0*(iiiii-1)
mps1=-1.0+iii/500000.0
mps2=-1.0+(iii+1.0)/500000.0

if ((((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam,css).lt.0.0)
& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam,css).gt.0.0))
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& .or.((ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam,css).gt.0.0)
& .and.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps2,lam,css).lt.0.0)))
& .or.(ampl(tau1,tau2,gn1,gn2,phi,psi,mps1,lam,css).eq.0.0))
& then

inmps=mps1
inmph=mhh(tau2,gn2,psi,inmps,lam,css)
write(12,*) phi,psi,inmps,inmph,css,inmps*inmph*css,

&fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam,css)
if (inmps.eq.0.0) then

goto 100
end if

if (fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam,css)
&.lt.fmin) then

fmin=fl(tau1,tau2,gn1,gn2,phi,psi,inmph,inmps,lam,css)
mps=inmps
mph=inmph
csr=css

end if
end if

end do
100 end do

write(1,930) fmin
if (fmin.eq.100001.0) then

mph=0.0
mps=0.0

end if
write(5,900) phi,psi,mph
write(6,900) phi,psi,mps
write(2,950) phi,psi,mps,mph,csr,mps*mph*csr

end do
end do

close(1)

900 format(f14.7,’ ’,f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7)
920 format(f14.7,’ ’,f14.7)
930 format(f14.7)
950 format(f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7,’ ’,f14.7

&,’ ’,f14.7)
stop
end
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program min-energy3.f
c written on 2008/11/06
c adding square-square, hexagonal-phaseshift on 2008/11/27
c adding hexagonal_phaseshift2 on 2008/12/17

implicit none

double precision ta1,ta2,g1,g2,la,PH,PS,mh,ms,Fsd,Fhd,Fdd
double precision tau1,tau2,gn1,gn2,lam,phi,psi,mhh,mss
double precision strstr,hexhex,strhex,strdis,hexdis,disdis
double precision squsqu,hexphase,hexphase2
double precision hexstr,disstr,dishex,Fds,Fdh,l10(0:2000,0:2000)
double precision l1,l2,l3,l4,l5,l6,l7,l8,l9,mss1,l11
integer i,ii,tal1,tal2,tal3,tal4,tal5,tal6,tal7,tal8,tal9,tal11
integer tal10(0:2000,0:2000),diff

Fsd(ta1,ta2,g1,g2,PH,PS,mh,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(1.0))
& +3.0/2.0*g1*(mh**(2.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& -la*PH*PS

Fds(ta1,ta2,g1,g2,PH,PS,ms,la)
&=ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(1.0))
& +3.0/2.0*g2*(ms**(2.0))
&+ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& -la*PH*PS

Fhd(ta1,ta2,g1,g2,PH,PS,mh,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& +(ta1-1.0+3.0*g1*(PH**(2.0)))*(mh**(2.0))
& +5.0/2.0*g1*(mh**(4.0))
& +4.0/(3.0**(1.0/2.0))*g1*PH*(mh**(3.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& -la*PH*PS

Fdh(ta1,ta2,g1,g2,PH,PS,ms,la)
&=ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
& +(ta2-1.0+3.0*g2*(PS**(2.0)))*(ms**(2.0))
& +5.0/2.0*g2*(ms**(4.0))
& +4.0/(3.0**(1.0/2.0))*g2*PS*(ms**(3.0))
&+ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
& -la*PH*PS

Fdd(ta1,ta2,g1,g2,PH,PS,la)
&=ta1/2.0*(PH**(2.0))+g1/4.0*(PH**(4.0))
&+ta2/2.0*(PS**(2.0))+g2/4.0*(PS**(4.0))
&-la*PH*PS

tau1=0.8
tau2=0.8
gn1=1.0
gn2=1.0
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lam=0.02

open(1,file=’str_str_min_energy_tau08_g1_la002.dat’
&,STATUS=’OLD’)
open(2,file=’hex_hex_min_energy_tau08_g1_la002.dat’
&,STATUS=’OLD’)
open(3,file=’str_hex_min_energy_tau08_g1_la002.dat’
&,STATUS=’OLD’)
open(7,file=’hex_str_min_energy_tau08_g1_la002.dat’
&,STATUS=’OLD’)
open(10,file=’squ_squ_min_energy_tau08_g1_la002.dat’
&,STATUS=’OLD’)
open(11,file=’hex_hex_phase_min_energy_tau08_g1_la002.dat
&’,STATUS=’OLD’)
open(12,file=’hex_hex_2phase_min_energy_tau08_g1_la002.dat
&’,STATUS=’OLD’)
open(4,file=’phase_sort_tau08_g1_la002.dat’)
open(5,file=’phase_diagram_tau08_g1_la002.dat’)
open(20,file=’phase_sort_strstr_tau08_g1_la002.dat’)

c open(6,file=’test.dat’)
c open(8,file=’energy_tau08_g1_la002.dat’)
c open(11,file=’hexdis.dat’)
c open(12,file=’dishex.dat’)
c open(13,file=’strdis.dat’)
c open(14,file=’disstr.dat’)

do i=1,2000
phi=-1.0+i/1000.0
do ii=1,2000

psi=-1.0+ii/1000.0
read(1,*) strstr
read(2,*) hexhex
read(3,*) strhex
read(7,*) hexstr
read(10,*) squsqu
read(11,*) hexphase
read(12,*) hexphase2

c hexstr=1000.0
c write(6,900) strstr, hexhex

if (12.0/5.0*gn1*(phi**(2.0)).lt.1.0-tau1) then
if (phi.lt.0.0) then

mss=(-(3.0**(1.0/2.0))*phi
& +(5.0-5.0*tau1-12.0*(phi**2.0))**(1.0/2.0))/5.0

hexdis=Fhd(tau1,tau2,gn1,gn2,phi,psi,mss,lam)
else

mss=(-(3.0**(1.0/2.0))*phi
& -(5.0-5.0*tau1-12.0*(phi**2.0))**(1.0/2.0))/5.0

hexdis=Fhd(tau1,tau2,gn1,gn2,phi,psi,mss,lam)
end if

else
hexdis=10000.0

end if
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if (12.0/5.0*gn2*(psi**(2.0)).lt.1.0-tau2) then
if (psi.lt.0.0) then

mss1=(-(3.0**(1.0/2.0))*psi
& +(5.0-5.0*tau2-12.0*(psi**2.0))**(1.0/2.0))/5.0

dishex=Fdh(tau1,tau2,gn1,gn2,phi,psi,mss1,lam)
else

mss1=(-(3.0**(1.0/2.0))*psi
& -(5.0-5.0*tau2-12.0*(psi**2.0))**(1.0/2.0))/5.0

dishex=Fdh(tau1,tau2,gn1,gn2,phi,psi,mss1,lam)
end if

else
dishex=10004.0
end if

if (3.0*gn1*(phi**(2.0)).lt.1.0-tau1) then
mhh=-(tau1-1.0+3.0*gn1*(phi**(2.0)))/(3.0*gn1)
strdis=Fsd(tau1,tau2,gn1,gn2,phi,psi,mhh,lam)

else
strdis=10002.0

end if

if (3.0*gn2*(psi**(2.0)).lt.1.0-tau2) then
mhh=-(tau2-1.0+3.0*gn2*(psi**(2.0)))/(3.0*gn2)
disstr=Fds(tau1,tau2,gn1,gn2,phi,psi,mhh,lam)

else
disstr=10003.0

end if

disdis=Fdd(tau1,tau2,gn1,gn2,phi,psi,lam)

c write(11,*) phi,psi, hexdis
c write(12,*) phi,psi, dishex
c write(13,*) phi,psi, strdis
c write(14,*) phi,psi, disstr

c sort!

if (strstr.lt.squsqu) then
l1=strstr
tal1=1

else
l1=squsqu
tal1=2

end if

if (hexhex.lt.hexphase) then
l2=hexhex
tal2=3

else if (hexhex.gt.hexphase) then
l2=hexphase
tal2=4

else if (hexhex.eq.hexphase) then
l2=hexphase
tal2=4
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end if

if (strhex.lt.hexstr) then
l3=strhex
tal3=5

else
cif (strhex.gt.hexstr) then

l3=hexstr
tal3=6

c else
c l2=hexstr
c tal2=10

end if

if (strdis.lt.disstr) then
l4=strdis
tal4=7

else
l4=disstr
tal4=8

end if

if (hexdis.lt.dishex) then
l5=hexdis
tal5=9

else
cif (hexdis.gt.dishex) then

l5=dishex
tal5=10

c else
c l4=dishex
c tal4=11

end if

if (hexphase2.lt.disdis) then
l11=hexphase2
tal11=12

else
l11=disdis
tal11=11

end if

if (l5.lt.l11) then
l6=l5
tal6=tal5

else
l6=l11
tal6=tal11

end if

c semifinal
if (l1.lt.l2) then

l7=l1
tal7=tal1
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else
l7=l2
tal7=tal2

end if

if (l4.lt.l6) then
l8=l4
tal8=tal4

else
l8=l6
tal8=tal6

end if

if (l3.lt.l8) then
l9=l3
tal9=tal3

else
l9=l8
tal9=tal8

end if

c final
if (l7.lt.l9) then

l10(i,ii)=l7
tal10(i,ii)=tal7

else
l10(i,ii)=l9
tal10(i,ii)=tal9

end if
end do

end do

do i=1,2000
do ii=2,2000

diff=tal10(i,ii-1)-tal10(i,ii)
if (diff.ne.0) then

write(5,900) -1.0+i/1000.0, -1.0+ii/1000.0
end if

end do
end do

do ii=1,2000
do i=2,2000

diff=tal10(i-1,ii)-tal10(i,ii)
if (diff.ne.0) then

write(5,900) -1.0+i/1000.0, -1.0+ii/1000.0
end if

end do
end do

do i=1,2000,15
do ii=2,2000,15

write(4,*) -1.0+i/1000.0, -1.0+ii/1000.0, tal10(i,ii)
write(8,*) -1.0+i/1000.0, -1.0+ii/1000.0, l10(i,ii)
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if (tal10(i,ii).eq.1) then
write(20,900) -1.0+i/1000.0, -1.0+ii/1000.0

end if
end do

end do

close(1)
900 format(f14.7,’ ’,f14.7)
910 format(f14.7,’ ’,f14.7,’ ’,f14.7)

stop
end
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The phase separation dynamics is simulated by solving Eqs. ((4.36, 4.37). Here the

program for solving these equations numerically (modulate-modulate.f) is shown.

program modulate_modulate.f
c written on 08/11/15
c revised on 08/11/16
c revised on 08/11/17
c modified on 09/3/11
c small changes 09/6/13 (C and D)

implicit none

double precision phi(0:260,0:260),psi(0:260,0:260)
double precision lapphi(0:260,0:260),lappsi(0:260,0:260)
double precision lap2phi(0:260,0:260),lap2psi(0:260,0:260)
double precision upot(0:260,0:260),ulappot(0:260,0:260)
double precision lpot(0:260,0:260),llappot(0:260,0:260),psis,L2
double precision sum(0:513,0:513),sumph,sumps,diffh,diffs,phih
double precision fl,ph,ps,a,b,e,dh,dt,L1,lam,ph0,ps0,seed1,seed2
double precision Dh1,Dh2,Ds1,Ds2,C,D,tau1,tau2,g1,g2,r1,r2,s1,s2
double precision dif(0:260,0:260),qsdivqh
integer nmax,xii,yii,x,y,t,lt,i,tt
character(4) fnam

fl(a,b,e)=a*e+b*(e**(3.0))

call srand(1)

nmax=128
lt=1000
lam=0.3
ph0=0.0
ps0=0.0
tau1=0.8
tau2=0.8
g1=1.0
g2=1.0
dh=0.5
dt=0.00001
L1=1.0
L2=1.0
Dh1=2.0
Dh2=2.0
qsdivqh=3.0
C=1.0/(qsdivqh**2.0)
D=1.0/(qsdivqh**4.0)
Ds1=2.0*D
Ds2=2.0*C

c output log
open(9,file=’calc.log’)
write(9,*) ’2dimension’
write(9,*) ’nmax=’,nmax
write(9,*) ’lt=’,lt
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write(9,*) ’lam=’,lam
write(9,*) ’ph0=’,ph0
write(9,*) ’ps0=’,ps0
write(9,*) ’tau1=’,tau1
write(9,*) ’tau2=’,tau2
write(9,*) ’g1=’,g1
write(9,*) ’g2=’,g2
write(9,*) ’dh=’,dh
write(9,*) ’dt=’,dt
write(9,*) ’L1=’,L1
write(9,*) ’L2=’,L2
write(9,*) ’alh=’,Dh1
write(9,*) ’beh=’,Dh2
write(9,*) ’qhc=’,(Dh2/(2.0*Dh1))**(1.0/2.0)
write(9,*) ’C=’,C
write(9,*) ’D=’,D
write(9,*) ’qsc=’,(Ds2/(2.0*Ds1))**(1.0/2.0)
write(9,*) ’1 output for 200000 steps ’

c initial condition

call RANDOM_SEED()

sumph=0.0
sumps=0.0
open(1,file=’1000_up.data’)
do x=2,nmax+1

do y=2,nmax+1
call RANDOM_NUMBER(seed1)
phi(x,y)=ph0+(seed1-0.5)*0.05
sumph=sumph+phi(x,y)

end do
end do
diffh=sumph/(nmax*nmax)-ph0
do x=2,nmax+1

do y=2,nmax+1
phih=phi(x,y)
phi(x,y)=phih-diffh
write(1,900) phi(x,y)

end do
end do

call RANDOM_SEED()

open(2,file=’1000_lw.data’)
open(3,file=’1000_sum.data’)
open(4,file=’1000_dif.data’)
do x=2,nmax+1

do y=2,nmax+1
call RANDOM_NUMBER(seed2)
psi(x,y)=ps0+(seed2-0.5)*0.05
sumps=sumps+psi(x,y)

end do
end do
diffs=sumps/(nmax*nmax)-ps0
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do x=2,nmax+1
do y=2,nmax+1

psis=psi(x,y)
psi(x,y)=psis-diffs
write(2,900) psi(x,y)
write(3,900) phi(x,y)+psi(x,y)
write(4,900) phi(x,y)-psi(x,y)

end do
end do

c time evolution

do t=1,lt
write(fnam,’(i4.4)’) 1000+t
open(1,file=fnam//’_up.data’)
open(2,file=fnam//’_lw.data’)
open(3,file=fnam//’_sum.data’)
open(4,file=fnam//’_dif.data’)
do tt=1,200000

c potential calculation
call bndry(phi,nmax)
call lap(phi,lapphi,nmax)
call bndry(lapphi,nmax)
call lap2(phi,lap2phi,nmax)
call bndry(lap2phi,nmax)
call bndry(psi,nmax)
call lap(psi,lappsi,nmax)
call bndry(lappsi,nmax)
call lap2(psi,lap2psi,nmax)
call bndry(lap2psi,nmax)
do x=2,nmax+1

do y=2,nmax+1
ph=phi(x,y)
ps=psi(x,y)

upot(x,y)=2.0*Dh1*lap2phi(x,y)/(dh*dh*dh*dh)
& +2.0*Dh2*lapphi(x,y)/(dh*dh)
& +fl(tau1,g1,ph)-lam*ps

lpot(x,y)=2.0*Ds1*lap2psi(x,y)/(dh*dh*dh*dh)
& +2.0*Ds2*lappsi(x,y)/(dh*dh)
& +fl(tau2,g2,ps)-lam*ph

end do
end do

c time evolution
call bndry(upot,nmax)
call lap(upot,ulappot,nmax)
call bndry(ulappot,nmax)
call bndry(lpot,nmax)
call lap(lpot,llappot,nmax)
call bndry(llappot,nmax)
do x=2,nmax+1

do y=2,nmax+1
ph=phi(x,y)



143

ps=psi(x,y)
phi(x,y)=ph+L1*dt/(dh*dh)*ulappot(x,y)
psi(x,y)=ps+L2*dt/(dh*dh)*llappot(x,y)
sum(x,y)=phi(x,y)+psi(x,y)
dif(x,y)=phi(x,y)-psi(x,y)

end do
end do

end do

c make data file
do xii=2,nmax+1

do yii=2,nmax+1
write(1,900) phi(xii,yii)
write(2,900) psi(xii,yii)
write(3,900) sum(xii,yii)
write(4,900) dif(xii,yii)

end do
end do

end do

close(1)
900 format(f14.10)

stop
end

c----------------------------------------------
c boundary condition

subroutine bndry(p,nmax)
double precision p(0:260,0:260)
integer ii

do ii=2,nmax+1
p( 1, ii)=p(nmax+1, ii)
p(nmax+2, ii)=p( 2, ii)
p( ii, 1)=p( ii,nmax+1)
p( ii, nmax+2)=p( ii, 2)
p( 0, ii)=p( nmax, ii)
p(nmax+3, ii)=p( 3, ii)
p( ii, 0)=p( ii, nmax)
p( ii, nmax+3)=p( ii, 3)

end do
p( 1, 1)=p(nmax+1,nmax+1)
p( 1,nmax+2)=p(nmax+1, 2)
p(nmax+2, 1)=p( 2,nmax+1)
p(nmax+2,nmax+2)=p( 2, 2)

return
end

c----------------------------------------------
c isotropized laplacian

subroutine lap(p,dd,nmax)
double precision p(0:260,0:260),dd(0:260,0:260)
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integer xi,yi

do xi=2,nmax+1
do yi=2,nmax+1

dd(xi,yi)=p(xi+1,yi)+p(xi-1,yi)+p(xi,yi+1)+p(xi,yi-1)
& -4.0*p(xi,yi)

c & +(p(xi+1,yi+1)+p(xi-1,yi-1)+p(xi-1,yi+1)+p(xi+1,yi-1))/4.0

end do
end do

return
end

c----------------------------------------------
c laplacian^2

subroutine lap2(p,dd,nmax)
double precision p(0:260,0:260),dd(0:260,0:260)
integer xi,yi

do xi=2,nmax+1
do yi=2,nmax+1

dd(xi,yi)=p(xi+2,yi)+p(xi-2,yi)+p(xi,yi+2)+p(xi,yi-2)
& -(p(xi+1,yi)+p(xi-1,yi)+p(xi,yi+1)+p(xi,yi-1))*8.0
& +((p(xi+1,yi+1)+p(xi-1,yi-1)+p(xi-1,yi+1)+p(xi+1,yi-1)))*2.0
& +20.0*p(xi,yi)

end do
end do

return
end
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