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Chapter 1

Introduction

This thesis contains two topics. First, we shall investigate the Radon-Nikodym theorem
for general measure spaces by the method of Daniell scheme and we shall discuss its
applications. Second, we consider the Kakeya problem, especially we plan to prove
some weighted estimates for the Kakeya maximal operator. Before stating our results
we shall explain some background of the problems.

The Radon-Nikodym theorem dates back to the papers [53, 55]. Roughly speaking,
the Radon-Nikodym theorem answers the following question: Is there a density function
whenever ν is absolutely continuous with respect to µ (we denote ν ≪ µ)? The answer is
NO. There is a counter-example which fails to have a density function. We will describe
it in Section 3.4. In view of this, some additional assumptions for two measures are
required in order to obtain a density function. We will describe this situation more
precisely. Let (Ω,Σ, µ) be a measure space and ν a measure satisfying ν ≪ µ. In
the standard textbooks, one discusses as follows. If µ is σ-finite, then we can find an
increasing sequence of µ-finite sets {Ωn} such that Ω = ∪nΩn. We can construct a non-
negative density function hn on each Ωn which has the uniqueness condition hn+1 = hn
on Ωn, and obtain the desired one as h := supn hn. A tacit understanding is that hn
vanishes a.e. outside Ωn. However, what do we do if the underlying space Ω is not
σ-finite ? The family of density functions hΩλ

on each Ωλ having finite measure with
Ω = ∪λΩλ does not ensure us the measurability of h = supλ hλ. If Ω is measurable, it
is natural to compel µ to ensure the measurability of supλ hλ which is known as the
localizable measure, but if Ω is not measurable, we must come up with other ideas.
In this thesis, we will control the family of density functions {hΩλ

} appropriately, and
obtain the Radon-Nikodym type equality:

ν(E) =

∫
E
⟨h⟩ dµ, (1.1)

where the symbol ⟨h⟩ is an appropriate family of functions, which is called folder, (see
Section 3.1). Our scheme covers the situation where Ω is not necessarily measurable.
When the measure µ is not necessarily localizable, the Radon-Nikodym derivative fails
to be a function, but forms a folder, as a consequence, we shall newly formulate the
Radon-Nikodym density folder, which allows us to obtain the Radon-Nikodym theorem
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on non-σ-finite and/or σ-ring measure spaces, in other words, we do not have to work
on the σ-finite measure spaces by our framework. Moreover, in [59] the author has
established that the localizability is equivalent that all folders are represented by “one”
measurable function.

As its applications, we shall characterize the dual space of integrable functions and
the Lebesgue decomposition theorem. For a normed space (E, ∥ · ∥), the dual space E∗

is the set of all bounded linear functionals F . Let 1 < p, q < ∞ and 1/p + 1/q = 1.
For general measure space (Ω,Σ, µ), the dual space of Lp is identified with Lq, more
precisely, each F ∈ (Lp)∗ is determined by

F (f) =

∫
Ω
fg dµ, for g ∈ Lq,

and ∥F∥ = ∥g∥Lq . However, when p = 1, the above relation does not hold for arbitrary
measure spaces. The essential reason why the dual of Lp with 1 < p < ∞ can be
identified without any condition on (Ω,Σ, µ) is that each function f in Lp has σ-finite
carrier, but L∞ functions does not necessarily have σ-finite one. That is because, if µ
is σ-finite, we obtain the identification (L1)∗ ∼= L∞. However, Segal [63] also proved
that one can identify the dual of L1 in the above manner if and only if the measure
µ is localizable. This argument also can be seen in the textbooks, Rao [56] discussed
this result from the view point of measure theory while Zaanen [78] discuss this result
from the view point of Daniell integral. The Lebesgue decomposition thoerem asserts
that given two measures µ and ν on Σ, we can decompose ν to its absoutely continuous
part with respect to µ and its singular part with respect to µ. In the classical theory,
the σ-finiteness plays a key role and there is a counter-example of a measure space
which does not admit usual decomposition. We will reconsider carefully this theorem
by using folders and reformulate a new version of the decomposition theorem. All of
results require the general notion of density of measures. As a consequence, the folder
works appropriately for characterization of the dual space and for decomposition of
measures.

From Chapter 2 to Chapter 6, we discuss mainly the Daniell method as basic
argument of integration. From the Daniell standpoint, not only measure theory appears
as an almost self-evident consequence of the theory of the integral, but also non-σ-
finite measure space appears naturally and this gives us an opportunity to study σ-ring
measure spaces.

The second topic is the Kakeya problem. In 1917 Soichi Kakeya posed the Kakeya
needle problem: what is the smallest area which is required to rotate a unit line seg-
ment (a “needle”) by 180 degrees in the plane? A construction due to A. S. Besicovitch
shows that such sets may have arbitrary small measure. At first glance, Kakeya needle
problem and Bescovitch’s solution appear to be little more than mathematical curiosi-
ties. However, in the last three decades it has gradually been realized that this type
of problem is connected to many other seemingly unrelated problems in number the-
ory, geometric combinatorics, arithmetic combinatorics, oscillatory integrals, and even
the analysis of dispersive and wave equations. For a more quantitative approach the
problem will be translated into bounds for Kakeya maximal functions.
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Fix a sufficiently large natural number N . For a real number a > 0 let Ba,N be
the family of all cylinders in the n-dimensional Euclidean space Rn, n ≥ 2, which are
congruent to the cylinders with height Na and width a, but with arbitrary directions
and centers. For a locally integrable function f on Rn the “small” Kakeya maximal
operator Ka,N is defined by

Ka,Nf(x) := sup
x∈R∈Ba,N

1

|R|

∫
R
|f(y)| dy

and the Kakeya maximal operator KN is defined by

KNf(x) := sup
a>0

Ka,Nf(x),

where |R| denotes the Lebesgue measure of R. It is conjectured that KN is bounded
on Ln(Rn) with the norm which grows no faster than O((logN)αn) for some αn > 0 as
N → ∞. In the case n = 2, this conjecture was solved affirmatively by Córdoba [14]
with the exponent α2 = 2 and improved by Strömberg [68] with α2 = 1. About the
Lp(R2) estimates, we have the following result:

Theorem 1. If n = 2,
∥KNf∥Lp(R2) ≤ CN,p∥f∥Lp(R2)

holds with

CN,p :=

{
O(N2/p−1(logN)2/p

′
) 1 < p < 2

O((logN)2/p) 2 ≤ p <∞,

where p′ is the conjugate exponent of p (see also [33]).

In the higher dimensional case, n > 2, these estimates were proved so far only
for some restricted class of functions. For the functions of product type f(x) =
f1(x1)f2(x2) · · · fn(xn), Igari [36] proved the estimate for Ka,N with the exponent
αn = 3/2 and Tanaka [70] reproved with the exponent αn = (n − 1)/n. When the
functions are of radial type f(x) = f0(∥x∥l2), Carbery, Hernández and Soria [11] proved
the estimate for KN with the exponent αn = 1. In [71], for the functions of radial type
f(x) = f0(∥x∥l1), Tanaka proved the estimate for Ka,N with the exponent αn = 1. In
[27], for the functions of radial type f(x) = f0(∥x∥lq), 1 ≤ q ≤ n, Duoandikoetxea and
Naibo proved the estimate for KN with the exponent αn = 1. We will describe its
background in detail in Chapter 7.

Instead of the difficult operator KN , a more powerful but slightly complicated
maximal operator has been studied on the plane. Let Ω be a set of unit vectors in R2

with cardinality N . For a locally integrable function f on R2, the directional maximal
operator MΩ is defined by

MΩf(x) := sup
r>0,ω∈Ω

1

2r

∫ r

−r
|f(x+ tω)| dt.

In [39] and [40], Katz established

∥MΩf∥L2(R2) ≤ C logN∥f∥L2(R2).
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holds for arbitrary Ω with |Ω| = N . Since if Ω is an equidistributed set of directions then
KNf(x) ≤ CMΩf(x) holds, we obtain the bounds of the Kakeya maximal operator.
We will investigate the weighted version of this operator,

MΩ,wf(x) := sup
x∈R∈BΩ

1

w(R)

∫
R
|f(y)|w(y) dy,

and establish
∥MΩ,wf∥L2(w) ≤ C logN∥f∥L2(w).

for a certain weight w. The precise definitions will be described in the next chapter.

In the past fifteen years, the variable exponent Lebesgue spaces have been studied
intensively and many people tried to extend the classical theory of function spaces. One
of the most interesting problems on spaces with variable exponent is the boundedness of
the Hardy-Littlewood maximal operator. The last study of this thesis is the bounds for
the Kakeya maximal operator on the variable Lebesgue space. The important sufficient
conditions, called log-Hölder continuity, have been obtained by [17] and [22]. Under
the conditions, we shall establish the following estimate:

∥KNf∥Lp(·) ≤ CN
1− p−

p+ (logN)2/p−∥f∥Lp(·) .

Since we can find easily the pointwise estimate

KNf(x) ≤ CN ·Mf(x),

where Mf(x) is the Hardy-Littlewood maximal operator, then we see immediately that
∥KNf∥Lp(·) ≤ CN∥f∥Lp(·) , but we can obtain a sharper estimate as above. Moreover,
we discuss the lower bounds of the exponent of N , and show that we can not eliminate
the power of N .

Below we describe the organization of this thesis.

In Chapter 2, we shall summarize the Daniell scheme and describe some essential
properties of the Daniell integral. It should be noted repeatedly that there do exist
some versions of Daniell’s integration theories, so for the sake of the completeness, we
give the proofs for some essential propositions.

One of the main themes of this thesis is the Radon-Nikodym theorem in Chapter
3. The folder is the most important concept to discuss on general measure spaces.
This allows us to obtain the Radon-Nikdoym density (derivative) ⟨h⟩ for two measures
satisfying ν ≪ µ and to formulate indefinite integral (1.1). We also characterize the
localizable measure by using the completeness of the folder.

As its application, in Chapters 4, 5 and 6, we discuss the dual space of the integrable
functions space L1 and the Lebesgue decomposition theorem in general measure spaces.

We begin to consider the Kakeya problems in Chapter 7. In Chapter 7, we describe
the background of the Kakeya problems and the relationship from the viewpoint of real
analysis. In Chapter 8, we shall follow the paper [61], which concerns the boundedness
of the weighted directional maximal operator and extend the Katz result.
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In Chapter 9, we prove the boundedness of the Kakeya maximal operator on the
variable Lebesgue spaces on the plane.

NOTATION

We shall use the following terminology and notational conventions:

• We write N ≫ 1, when we are given a non-negative integer N which is large
enough.

• The symbol R denotes the extended reals, with the usual conventions concerning
the arithmetic and order structure.

• If a sequence of functions {fn} converges to f increasingly or decreasingly, we
write fn ↗ f or fn ↘ f , respectively.

• Let χA be the characteristic or indicator function of a set A, alternatively, if a
set A is more complicative, we prefer to denote χ(A). In Section 3.2, we will use
this notation enthusiastically.

• Given a sequence of measurable subsets {En}∞n=1, we write En ↗
∪∞

n=1En to
express that En ⊂ En+1 for all n ∈ N.
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Chapter 2

Daniell Integral

One of the basic concepts of analysis is that of the integral. It is well known that
Lebesgue’s integration theory is an essential tool for wide applications in which count-
ability plays a key role. These include functional analysis, probability and statistics,
harmonic analysis, many aspects of differential equations, and others. For some of
the latter applications one can start with the concept of linear functionals, without
mention of measure, and proceed to the theory of integration so-called Daniell integral.
In this thesis, we discuss mainly the Daniell method as basic argument of integration.
From the Daniell standpoint, not only measure theory appears as an almost self-evident
consequence of the theory of the integral, but also non-σ-finite measure space arises
naturally and this gives us an opportunity to study σ-ring measure spaces.

This chapter is devoted to a description of the Daniell scheme of extending cer-
tain linear functionals on a vector space and of the Stone condition. The extended
function class L of integrable functions is defined via difference of monotone limits of
elementary functions. The Stone condition (2.1) below ensures the measurability of
the pointwise product fg for any measurable functions f, g. It should be noted that
there are various schemes called Daniell integral [3, 8, 13, 18, 46, 48, 56, 66, 74, 78]
and these schemes are not equivalent each other. Except for the extension procedure,
one of the most essential differences between these schemes is that of measurability.
For instance, Shilov and Gurevich [66] proposed the measurable functions are defined
to be pointwise limit of elementary function functions, and it means the whole space
is not necessarily measurable. However, they postulated on the set of all elementary
function spaces Stone’s condition, which serves as the condition of its measurability.
Meanwhile, Weir [74] proposed another notion of measurablitiy, some authors called
Stone’s measurability, which ensures that of the whole space. In particular, we adopt
the scheme that the whole space is not necessarily measurable throughout of this thesis.
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2.1 Summary of Daniell scheme

This section gives a brief discussion of the Daniell extension procedure. We establish
the Monotone Convergence Theorem and the Dominated Convergence Theorem.

A vector space H consisting of all R-valued functions on a set Ω( ̸= ∅) is said to be
an elementary function space if H is closed under taking absolute value. The functions
in H are called elementary. The set H is also called a vector lattice or a Riesz space, if
it is a partially ordered vector space closed under taking pointwise maxima, minima of
functions h, k, denoted by h ∨ k, h ∧ k, respectively.

A R-valued linear functional
∫

on H satisfying
(1) non-negativity: H ∋ h ≥ 0 ⇒

∫
h ≥ 0,

(2) continuity: hn ↘ 0 ⇒
∫
hn → 0

is said to be an elementary integral or a Daniell integral [18, 66, 69, 74]. The triplet
(Ω,H,

∫
) is called a Daniell system.

We denote by H+ the class of all pointwise limit functions f which can be expressed
as the limit of a sequence of the monotone increasing elementary functions [66, 69, 74].
Here, we understand that any function in H+ assumes its value in R. We define the
integral of f ∈ H+ by

∫
f = lim

∫
hn, where {hn}∞n=1 is a sequence of the monotone

increasing elementary functions. This definition is independent of the choice of an
approximating functions hn. The integral on H+, for which we still write

∫
, is an

R-valued functional.

Remark 2.1.1. Obviously, H ⊂ H+ and
∫

on H+ extends the elementary integral.
The extended integral

∫
is closed under addition, and it has non-negative homogeneity,

and continuity of increasing sequence of H+.

A function f ∈ H+ is said to be integrable if
∫
f < ∞ and we denote the set of all

such f by H+
int. A subset Z ⊂ Ω is said to be a null set, if it is realized as a subset of

{f = +∞} for some f ∈ H+
int (see [66, 74]). A subset of a null set, and a countable

union of null sets are still null sets. When a given property holds on Ω except on a null
set, we say that the property holds almost everywhere on Ω, or “a.e.” for short. For
example, it is immediate that f ∈ H+

int takes in R almost everywhere.

Proposition 2.1.2. If f, g ∈ H+ and f = g a.e., then
∫
f =

∫
g.

Proof. There exist null set Z ⊂ Ω and h ∈ H+
int such that Z ⊂ {h = +∞} and

f(x) = g(x) holds for x /∈ Z. We see that f(x) + h(x) = g(x) + h(x) for all x ∈ Ω.
Then it follows

∫
f +

∫
h =

∫
g +

∫
h. Since h ∈ H+

int, we can subtract
∫
h from both

side.

Proposition 2.1.3. Let φ ∈ L+. For any ε > 0, there exist f ∈ H+ and g ∈ H+
int such

that φ = f − g a.e., where
∫
g < ε and g ≥ 0.

Proof. We can write that φ = f ′−g′, for some f ′ ∈ H+ and g′ ∈ H+
int. By the definition

of H+
int, there exists {hn} ⊂ H such that hn ↗ g′. We have φ = (f ′−hn)−(g′−hn) and
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g′−hn ≥ 0 for all n ∈ N. Since
∫

(g′−hn) ↘ 0, we have
∫

(g′−hn0) < ε for sufficiently
large n0 ∈ N. Then f := f ′ − hn0 and g := g′ − hn0 are desired functions.

An R-valued φ, defined a.e. on Ω, is said to be measurable if it is an a.e. limit of a
sequence of elementary functions [66]. The set of all measurable functions is denoted
by M. (Here, f ∈ M takes values in R, and H+ ⊂ M.) We note that this definition
is essentially different from any other definition in [66, 74] and so on.

Remark 2.1.4. We should point out the following example: Let Ω = [0, 1]. An H is
the set of all R-valued functions whose carrier is a finite subset of Ω, i.e., h ∈ H can be
written as

h(x) =
∑
k∈A

akχ{k}(x), ak ∈ R, A ⊂ Ω : finite.

We define
∫

: H → R as
∫
h :=

∑
k∈A ak so that all Daniell measurable functions M

is the set of all R-valued functions whose carriers are countable in Ω. This implies the
constant function c is not measurable.

The following proposition is obvious:

Proposition 2.1.5. We have the following assertions:

(1) If φ,ψ ∈ M then φ ∨ ψ,φ ∧ ψ ∈ M.

(2) Let φ,ψ ∈ M. If φ(x) + ψ(x) can be defined for a.e. x, i.e., φ(x) = +∞ and
ψ(x) = +∞ (or φ(x) = −∞ and ψ(x) = −∞) occur only on a null set, then
φ+ ψ is Daniell measurable.

(3) If fn ∈ M, then infn fn and supn fn are in M.

(4) Let ψ be a function satisfying ψ = φ a.e. for some φ ∈ M. Then ψ ∈ M.

A subset D ⊂ Ω is said to be measurable, or more precisely Daniell measurable if
χD ∈ M and we denote the set of all such D by D.

Proposition 2.1.6. (1) The family of Daniell measurable sets D forms a σ-ring, i.e.,

(i) ∅ ∈ D. (ii) If A,B ∈ D, then A \ B ∈ D. (iii) If An ∈ D, then

∞∪
n=1

An ∈ D (in

general it is not necessarily Ω is in D by Remark 2.1.4).

(2) Let D be a Daniell null set. If Z ⊂ D, then Z is a Daniell measurable set
(completeness). In particular, χD = 0 a.e.

Proof. (1): (i) It is immediate from 0 = χ∅ ∈ M. (ii) Let A,B ∈ D. Then χA\B =
(χA − χB) ∨ 0 ∈ M. (iii) Let An ∈ D. Then χ∪nAn = supn χAn ∈ M.

(2) There exists f ∈ H+
int such that D ⊂ {f = +∞}. Then χZ(x) ≤ 1

nf(x) ∈ H+
int,

and this implies χZ = 0 a.e. because f is finite a.e. By Proposition 2.1.5 (4), χZ ∈ M.
Taking Z = D, we see that χD = 0 a.e.
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A function φ ∈ M is said to be in L+ if it can be represented as φ = f − g a.e. for
some f ∈ H+ and g ∈ H+

int, and we define
∫
φ :=

∫
f −

∫
g ∈ (−∞,∞]. We can verify

that the definition is independent of the choice of functions f and g.

Remark 2.1.7. Obviously, H+ ⊂ L+ ⊂ M. The integral
∫

on L+ is an extension of∫
on H+. The space L+ is not a vector space and the extended integral

∫
on L+ is not

linear. But as far as we ignore the difference on a null set, L+ is closed under addition,
multiplication by non-negative constants. The extended integral

∫
is closed under

addition, and it has non-negative homogeneity, and continuity of increasing sequence
of L+. If the integral of φ ∈ L+ is finite, φ is said to be an integrable function [66, 74],
and the set of all such functions is denoted by L. We deduce H ⊂ H+

int ⊂ L ⊂ L+. As
far as we ignore the difference on a null set, L has a linear structure and the integral∫

on L is a real-valued linear functional. We will use the fact that any φ ∈ L is finite
almost everywhere.

Remark 2.1.8. The above procedure is called a Daniell scheme. Several types of
the Daniell scheme are described in [8, 48, 66, 69, 74], with different contents and
constructions, and are not equivalent to one another. Our scheme is almost the same
as that adopted in [66].

In what follows, we will prove the Dominated Convergence Theorem and the Mono-
tone Convergence Theorem. We need study the properties of L,L+ and M.

Proposition 2.1.9. For any φ ∈ L+, there exists φn ∈ H+ such that φn ↘ φ a.e.

Proof. For φ ∈ L+, there exist f ∈ H+ and g ∈ H+
int such that φ = f − g a.e. Since we

find gn ∈ H with gn ↗ g, it follows that φn := f − gn ∈ H+ and that φn ↘ φ a.e.

Corollary 2.1.10. For any φ ∈ L, there exists φn ∈ H+
int such that φn ↘ φ a.e.

Lemma 2.1.11. (1) If φ ∈ L+ then φ± ∈ L+. In particular, If φ ∈ L then φ± ∈ L.

(2) If φ,ψ ∈ L+ satisfy φ ≤ ψ then
∫
φ ≤

∫
ψ. In particular, If φ = ψ then∫

φ =
∫
ψ.

Proof. (1) For φ,ψ ∈ L+,

φ ∨ ψ = (f + g2) ∨ (f2 + g) − (g + g2)

with (f + g2) ∨ (f2 + g) ∈ H+ and g + g2 ∈ H+
int. Put ψ = 0. Then we see φ+ ∈ L+.

similarly, φ− ∈ L+, |φ| = φ+ + φ− ∈ L+.

(2) Let f1, f2 ∈ H+, and g1, g2 ∈ H+
int with φ = f1 − g1 a.e. and ψ = f2 − g2 a.e.

Since g1, g2 is finite almost everywhere, we can write f1+g2 ≤ f2+g1 a.e. and functions
in both sides are in H+. By Proposition 2.1.2, we have

∫
f1+

∫
g2 ≤

∫
f2+

∫
g2. Hence,

it follows from g1, g2 ∈ H+
int that∫

φ =

∫
f1 −

∫
g1 ≤

∫
f2 −

∫
g2 =

∫
ψ.
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Proposition 2.1.12. (1) If L ∋ φn ↗ φ a.e., then φ ∈ L+, and
∫
φn ↗

∫
φ.

(2) For any φ ∈ L+, there exists φn ∈ L such that φn ↗ φ a.e.

(3) If L+ ∋ φn ↗ φ a.e., then φ ∈ L+, and
∫
φn ↗

∫
φ.

Proof. (1) Taking ψ2 := φ2 − φ1 a.e., ψ3 := φ3 − φ2 a.e.,. . . , we have ψn ∈ L+,

0 ≤ ψn a.e., and φn = φ1 + ψ2 + · · · + ψn a.e. for n ≥ 2.

We write ψn = fn − gn a.e. for some fn ∈ H+, gn ∈ H+
int. By Proposition 2.1.3, we

can assume gn ≥ 0 and 0 ≤
∫
gn ≤ 2−n, and this implies fn = ψn + gn ≥ 0 almost

everywhere. Since f+n ∈ H+, we may assume fn ≥ 0 “everywhere”. We also write
φ1 = f1 − g1 a.e. for some f1 ∈ H+ and g1 ∈ H+

int, so that

φn = (f1 + · · · + fn) − (g1 + · · · + gn) a.e.

Since H+ ∋ f1 + · · · + fn ↗ f ∈ H+, H+
int ∋ g1 + · · · + gn ↗ g ∈ H+

int, and φ = f − g
a.e., we obtain φ ∈ L+ and∫

φn =

∫
(f1 + · · · + fn) −

∫
(g1 + · · · + gn) →

∫
f −

∫
g =

∫
φ.

(2) It is immediate from definition.

(3) By (2), there exists hm,n ∈ L such that hm,n ↗ φn a.e. as m→ ∞. Then

φ = sup
n
φn = sup

n
sup
m
hm,n = sup

N
sup
n≤N

sup
m≤N

hm,n a.e.

By Lemma 2.1.11 (1),
L ∋ sup

n≤N
sup
m≤N

hm,n ↗n→∞ φ a.e.

Then, by (1), we have φ ∈ L+ and∫
sup
n≤N

sup
m≤N

hm,n ↗n→∞

∫
φ.

Since supn≤N supm≤N hm,n ≤ φN ≤ φ a.e., it follows that
∫
φN ↗N→∞

∫
φ.

Proposition 2.1.13. If φ ∈ M, then φ±, |φ| ∈ L+. In particular, every non-negative
Daniell measurable function belongs to L+.

Proof. We prove only φ ∈ M implies |φ| ∈ L+. The rest of proof is identical. By
Proposition 2.1.5 (1), there exists hn ∈ H such that 0 ≤ hn → |φ|. Then

H ∋ inf
N≤n≤M

hn ↘M→∞ inf
N≤n

hn ∈ L.

Indeed,
H ∋ − inf

N≤n≤M
hn ↗M→∞ inf

N≤n
hn ≤ 0,
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then ∞ < −
∫

infN≤n≤M hn ≤ −
∫

infN≤n hn ≤ 0 so that − infN≤n hn ∈ H+
int. We find

infN≤n hn ∈ L.

Now,
inf
N≤n

hn ↗ lim inf
n→∞

hn = |φ| a.e.

By Proposition 2.1.12, |φ| ∈ L+, the proof is compete.

Proposition 2.1.14. φ ∈ L if and only if φ ∈ M and
∫
|φ| <∞.

Proof. If φ ∈ L, then φ ∈ M and |φ| = φ+ + φ− ∈ L by Lemma 2.1.11 (1).

Conversely, if φ ∈ M, then φ±, |φ| ∈ L+ by Proposition 2.1.13 to follow, and∫
|φ| <∞ implies

∫
|φ±| <∞. Therefore, φ = φ+ − φ− ∈ L.

Finally, we can prove the following convergence theorems:

Theorem 2.1.15 (Monotone Convergence Theorem). Let {φn}n be an increasing se-
quence of non-negative Daniell measurable functions such that φ := limn→∞ φn exists.
Then φ ∈ L+ and ∫

φ = lim
n→∞

∫
φn.

Proof. The result follows from Propositions 2.1.13 and 2.1.12(3).

Theorem 2.1.16 (Dominated Convergence Theorem). Let {φn}n be a sequence of
Daniell measurable functions. Suppose that φ := limn→∞ φn exists almost everywhere.
If there exists an integrable function g such that |φn| ≤ g a.e. then φ is in L and∫

φ = lim
n→∞

∫
φn.

Proof. By Lemma 2.1.11 and Propositions 2.1.13 and 2.1.14, we see that |φn|, | inf
N≤n

φn|,

and |φ| are in L. By Proposition 2.1.12(1), we see

inf
N≤n

φn ↗N→∞ φ and lim
N→∞

∫
inf
N≤n

φn =

∫
φ.

We apply the same argument to −φn;

sup
N≤n

φn ↘N→∞ φ and lim
N→∞

∫
sup
N≤n

φn =

∫
φ.

Combining these results and infN≤n φn ≤ φN ≤ supN≤n φn, we have
∫
φn →

∫
φ.
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2.2 Stone condition

In general, Ω has no topological structure and continuity of functions defined on Ω is
not even defined. We cannot even be sure that the constant functions are measurable.
It was Stone who saw clearly how important it is to satisfy the condition:

Definition 2.2.1 (Stone condition). We say that H satisfies the Stone condition if

h ∈ H ⇒ h ∧ 1 ∈ H. (2.1)

Remark 2.2.2. This condition guarantees the measurability of the pointwise product
of measurable functions. It should be noted that the Stone condition in [66] includes
the assumption of σ-finiteness of the whole space Ω.

Let D0 be the set of all measurable sets with finite integral, i.e.,
∫
χA < ∞ for

A ∈ D and we call them integrable sets. The space H(D0) denotes the set of all D0-
simple functions. We see that H(D0) is an elementary function space satisfying the
Stone condition. Moreover, we define µ(A) :=

∫
χA for any A ∈ D, and we define

∫
h dµ :=

N∑
k=1

akµ(Ak), for h(x) =

N∑
k=1

akχAk
(x), ak ∈ R, Ak ∈ D0.

Then (Ω,H(D0),
∫
dµ) is a Daniell system satisfying the Stone condition. Invoking

the Daniell scheme, we obtain the Daniell integrable function space and the Daniell
measurable functions from this simple function space. We write these extended spaces
by L(D0),L+(D0), and M(D0). It is easy to see H(D0) ⊂ L, H+(D0) ⊂ L+, and
H+

int(D0) ⊂ L by the Dominated Convergence Theorem.

Proposition 2.2.3. The null set induced by H(D0) is the same as the null set induced
by the original elemetary space H.

Proof. Suppose that Z ⊂ {f = +∞} for some f ∈ H+
int(D0). Since we have f ∈ L and

f is finite almost everywhere in the sense
∫

, we see that Z is a null set in the sense H.

Conversely, let Z is a null set induced by H. Then by Proposition 2.1.6(2), we have
χZ = 0 a.e. and this implies χZ ∈ L, that is Z is an integrable set. Since Z ∈ D0, we see
χZ ∈ H(D0). By the Monotone Convergence Theorem, we have ∞χZ ∈ H+

int(D0). We
observe that Z = {∞χZ = +∞} and this implies Z is a null set induced by H(D0).

Theorem 2.2.4. If H satisfies the Stone condition, then the following assertions hold:

(1) For each φ ∈ L and α > 0, {φ > α} ∈ D0 holds,

(2) L(D0) = L,

(3) L+(D0) = L+,

(4) M(D0) = M.
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Proof. (1) It is clear that f ∈ M ⇒ f ∧ 1 ∈ M by the Stone condition, and hence we
see φ ∧ 1 ∈ L for all φ ∈ L. Defining ψ := φ − φ ∧ 1 a.e., we have L ∋ ψ ≥ 0 a.e.
Let A := {φ > 1} = {ψ > 0}. Then 0 ≤ (nψ) ∧ 1 ↗n→∞ χA a.e. and this implies
χA ∈ M. Since

∫
χA ≤

∫
φ <∞, it follows A ∈ D0. Applying the same argument, we

have {φ > α} ∈ D0.

(2) We have only to prove L(D0) ⊃ L. Let φ ∈ L. By (1), we have An,k := {k/2n <
φ} ∈ D0 for n, k = 0, 1, . . . . Since k

2nχAn,k
≤ φ+, we verify fn := 2−n

∑
k χAn,k

∈ L+.
Since 0 ≤ fn ≤ φ+ and fn ↗ φ+ a.e., it follows φ+ ∈ L(D0). By the same way, we see
φ− ∈ L(D0), and hence φ ∈ L(D0).

(3) and (4) follow from an easy limiting argument.

Suppose that H satisfies the Stone condition. For any φ,ψ ∈ M, by Theorem 2.2.4,
there exist hn, kn ∈ H(D0) such that hn → φ a.e. and that kn → ψ a.e. It is clear that
hn · kn ∈ H(D0), and this implies hn · kn → φ · ψ ∈ M.

Theorem 2.2.5 (Riesz-Fisher [66]). The Daniell integrable function space L is a com-
plete normed space over R with the norm,

∥f∥ :=

∫
|f |.

That is to say, if {fn} ⊂ L is a Cauchy sequence ∥fn − fm∥ → 0, then ∥fn − f∥ → 0
for some f ∈ L. Suppose in addition that H satisfies the Stone condition. Then the
square integrable function space can be defined

L2 := {f ∈ M :

∫
|f |2 <∞},

and L2 is a complete inner-product space over R with the inner-product,

(f, g) :=

∫
fg.

The proof can be found in [66, 74].
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Chapter 3

Radon-Nikodym Theorem

In one of the most excellent textbooks, Halmos [34] considered mainly the σ-ring mea-
sure spaces, but when one considers the Radon-Nikodym theorem he assumes the σ-
finiteness for underlying spaces and this automatically implies its measurability. Many
authors believe that the measurability of the whole space is natural when we consider
the Radon-Nikodym theorem and related results. Many people have already studied
what guarantees the existence of density and extended the results to the framework of
Daniell scheme to some extent; see [8, 56, 66, 74, 78] among others. In this chapter,
we give a more comprehensive discussion on the Radon-Nikodym theorem based on a
type of Daniell scheme slightly different from the above literatures. In [8, 66, 74, 78],
they studied different types of Daniell schemes assuming the underlying space Ω is
measurable. In most textbooks of analysis, it was essential to assume that Ω is σ-finite.
Further, in [56, 63, 78], the authors considered non-σ-finite cases and found necessary
and sufficient conditions, which is so-called localizability of measure µ, under which
the Radon-Nikodym theorem holds, where they assumed that the whole space Ω is
measurable. However, if Ω is not measurable, it does not seems to be essential to
compel to ensure the localizability of µ. We shall investigate that when the measure
µ is not necessarily localizable, the Radon-Nikodym derivative fails to be a function,
but forms a particular family of functions, which is called a folder, as a consequence,
we shall newly formulate the Radon-Nikodym density folder, which allows us to obtain
the Radon-Nikodym theorem on non-σ-finite and/or σ-ring measure spaces, in other
words, we do not have to work on the σ-finite measure spaces by the framework of the
Daniell integral.

3.1 Folders

In this section, we introduce the notion of folders so that we can describe the density
of the Radon-Nikodym theorem.

Definition 3.1.1. (1) A subset E ⊂ Ω is said to be an elementary measurable set if
χE ∈ H+ and the totality of all elementary measurable sets is denoted by E . (2) A
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subset E is said to be an elementary integrable set if there exists φ ∈ H such that
E = {x ∈ Ω : φ(x) > 1}, and the totality of all elementary integrable sets is denoted
by E0.

Remark 3.1.2. Since H and H+ are closed under ∨, ∧, we deduce E0 and E are
closed under ∪, ∩. Further, all elementary measurable(integrable) sets are measur-
able(integrable) with respect to all integral on H.

Proposition 3.1.3. Let {En}∞n=1 be a sequence of measurable subsets.

(1) If E ∋ En ↗ E then E ∈ E.

(2) The following assertions are equivalent:
(a) E ∈ E,
(b) there exists φ ∈ H+ such that E = {φ > 1},
(c) there exists φ ∈ H+ such that E = {φ > 0}.

(3) E0 ⊂ E.

(4) For any E ∈ E, there exists En ∈ E0 (n = 1, 2, · · · ) such that En ↗ E.

Proof. (1) It follows easily from H+ ∋ χEn ↗ χE ∈ H+.

(2) We may assume φ ∈ H+ to be non-negative in (b) and (c), since φ+ = φ ∨ 0
is in H+ for all φ ∈ H+. (a) ⇒ (b): If E ∈ E , then χE ∈ H+, and hence it suffices
to set φ = 2χE . (b) ⇒ (c): For φ ∈ H+ of (b), there exists hn ∈ H;hn ↗ φ. Then
hn − hn ∧ 1 is in H and converges to φ − φ ∧ 1. Since hn − hn ∧ 1 = (hn − 1) ∨ 0, we
deduce that hn − hn ∧ 1 converges increasingly to (φ − 1) ∧ 0 = φ − φ ∧ 1, and this
implies φ − φ ∧ 1 ∈ H+. Then we obtain E = {φ − φ ∧ 1 > 0}. (c) ⇒ (a): Since
(nφ) ∧ 1 ∈ H+, it follows that (nφ) ∧ 1 ↗ χE and that χE ∈ H+.

(3) It follows from (2) and H+ ⊃ H.

(4) For any E ∈ E , there exists φ ∈ H+ such that E = {φ > 1} by (2). Choose
φn ∈ H so that φn ↗ φ and put En := {φn > 1}, then En ∈ E0 and En ↗ E.

Proposition 3.1.4. (1) If φ ∈ M, then {φ ̸= 0} ∈ D.

(2) For any D ∈ D, there exists E ∈ E such that D ⊂ E.

Remark 3.1.5. Recall that M is the set of all R-valued functions φ, defined a.e. on
Ω such that φ is an a.e. limit of a sequence of elementary functions [66]. Since φ ∈ M
is defined almost everywhere, we have

{φ ̸= 0} = {|φ| > 0} ∪ {x ∈ Ω ;φ(x) is undefined},

{φ ̸= 0} = {|φ| > 0} is not the case.

Proof of Proposition 3.1.4. (1) If φ ∈ M, then ∞χ{φ̸=0} = ∞|φ| a.e. and ∞|φ| =
lim
n→∞

nχ{φ ̸=0} ∈ L+. Noting χ{φ ̸=0} = (∞χ{φ ̸=0}) ∧ 1, we deduce (∞χ{φ ̸=0}) ∧ 1 ∈ L+
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by the Stone condition. This implies χ{φ ̸=0} ∈ L+, and hence {φ ̸= 0} is a measurable
set.

(2) Since D is measurable, χD is in L+ by Proposition 2.1.13, and hence there
exists fn ∈ H+ such that 0 ≤ fn ↘ χD holds outside some null set Z. There exists
0 ≤ f0 ∈ H+

int such that Z ⊂ {f0 = +∞}, and hence χD ≤ f1 + f0 holds everywhere,
because if x ∈ Z then χD(x) ≤ f1(x) + f0(x) = f1(x) + ∞. Since f1 + f0 ∈ H+,
E := {f1 + f0 > 0} is a desired elementary measurable set.

Definition 3.1.6. (1) Let (fE)E∈E be a family of functions defined a.e. We call it a
folder, if

fFχE = fE∩F a.e. (3.1)

for any E,F ∈ E , and write ⟨f⟩ := (fE)E∈E . Each fE is called a file.

(2) If (fE)E∈E0 satisfies the condition (3.1), for any E,F ∈ E0, then we also denote this
system by ⟨f⟩ and call it a prefolder. Each fE is called a file, too.

(3) Let ⟨f⟩, ⟨g⟩ be folders. Then, we say that ⟨f⟩ = (or ≤)⟨g⟩ a.e. if fE = (or ≤)gE
a.e. for all E ∈ E . Similarly, for prefolders ⟨f⟩ and ⟨g⟩, we define ⟨f⟩ = (or ≤)⟨g⟩ a.e.
analogously.

Let (fE)E∈E be a folder. Obviously, for E ∈ E , by putting E = F in (3.1), we have
fEχE = fE a.e. and for E,F ∈ E ,

fEχF = fFχE = fE∩F (3.2)

a.e. holds. In addition, for a folder (fE)E∈E , the restriction ⟨f⟩|E0 = (fE)E∈E0 is a
prefolder.

Example 1. A mapping from E ∈ E to the indicator function χE ∈ M is a folder.
We denote this folder by ⟨I⟩ and call it the indicator folder.

Given any prefolder ⟨h⟩, it can be extended uniquely to the folder ⟨f⟩ as in the
following sense:

Proposition 3.1.7. For any prefolder ⟨h⟩, there exists a folder ⟨f⟩ such that:

(1) ⟨f⟩|E0 = ⟨h⟩ a.e.

(2) and if there exists a folder ⟨g⟩ such that ⟨h⟩ = ⟨g⟩|E0 a.e., then ⟨f⟩ = ⟨g⟩ a.e.

Proof. (1) For any E ∈ E , there exists En ∈ E0 such that En ↗ E by Proposition 3.1.3
(4). Let E0 := ∅, and we set a function defined a.e. by:

fE :=

∞∑
n=1

hEnχ(En\En−1). (3.3)
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For any sequence E0 ∋ Fm ↗ E, we have

fEχFm =
∑
n

hEnχFmχ(En\En−1)

=
∑
n

hFmχEnχ(En\En−1)

= hFmχE = hFmχFmχE = hFmχFm = hFm ,

where the above equalities hold a.e., and we obtain fE = limm hFm a.e. This implies
fE = limn hEn a.e. holds independently of the choice of a sequence En.

Now, we shall prove that (fE)E∈E forms a folder. Let E,F ∈ E , and let En, Fm ∈ E0
be approximating sequences of E,F , respectively. Then En∩Fm ↗ E∩F as m,n→ ∞.
Since hFmχEn = hEn∩Fm a.e., we have fFχE = fE∩F a.e. as m,n → ∞, this implies
E 7→ hE is a folder, which we denote it by ⟨f⟩. Obviously ⟨f⟩|E0 = ⟨h⟩ a.e. follows from
(3.3).

(2) For any E ∈ E , choose En ∈ E0 so that En ↗ E. Then hEn = gEn a.e., and
hence fE = gE a.e. as n→ ∞.

Remark 3.1.8. Let φ be a function defined a.e. and ⟨h⟩ be a folder. Then E ∋
E 7→ φhE is also a folder. We denote this folder by φ⟨h⟩. In particular, if we put
φ = χF (F ∈ E), then we have χF ⟨h⟩ = hF ⟨I⟩ a.e.

Definition 3.1.9. We say ⟨f⟩ is a complete folder if there exists E0 ∈ E such that
fF = fE0∩F a.e. holds for any F ∈ E . The file fE0 is called a complete file of the folder
⟨f⟩.

Remark 3.1.10. (1) We say that H is σ-finite if 1 ∈ H+ (cf. [74]). This condition is
equivalent to Ω ∈ E so that if H is σ-finite then all folders are complete because we
can choose the complete file as hΩ whenever we are given a folder ⟨h⟩.

(2) By definition, fE0∩F = fE0χF a.e. holds, and this implies the complete folder
satisfies ⟨f⟩ = fE0⟨I⟩ = χE0⟨f⟩ a.e. The set E0 ∈ E , corresponding to the complete file
fE0 , is not unique but the complete file is unique as a function as follows:

Proposition 3.1.11. Let ⟨f⟩, ⟨g⟩ be folders. Suppose that ⟨f⟩ = ⟨g⟩ a.e., and that ⟨f⟩
is complete. Then

(1) ⟨g⟩ is also complete.

(2) Let fE0 , gE1 be complete files of ⟨f⟩, ⟨g⟩, respectively. Then it follows fE0 = gE1

a.e.

Proof. (1) We can choose fE0 as a complete file of ⟨g⟩.

(2) Since fE0χF = gE1χF a.e. for any F ∈ E , taking F = E0 ∪ E1, we obtain
fE0 = gE1 a.e.

Proposition 3.1.11 says a complete folder ⟨f⟩ can be naturally identified with its
complete file fE0 . Hereafter, unless stated otherwise, ⟨f⟩ is abbreviated to fE0 . For
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example, ⟨f⟩ ∈ L means fE0 ∈ L. In general, the indicator folder ⟨I⟩ is not necessarily
complete.

We say a folder(or prefolder) ⟨h⟩ is measurable if all its files are measurable. Note
that if ⟨f⟩ and ⟨g⟩ are folders (or prefolders) with ⟨f⟩ = ⟨g⟩ a.e. and ⟨f⟩ is measurable,
then ⟨g⟩ is also measurable.

Proposition 3.1.12. (1) A folder ⟨h⟩ is measurable if and only if the prefolder ⟨h⟩|E0
is measurable.

(2) Let ⟨h⟩ be a measurable folder and φ ∈ M. Then φ⟨h⟩ is measurable and complete.

Proof. (1) If ⟨h⟩ is measurable, then ⟨h⟩|E0 is obviously measurable. Conversely, sup-
pose that ⟨h⟩|E0 is measurable. Since M is closed under taking the a.e. limit, the
measurability of ⟨h⟩ follows from the proof of Proposition 3.1.7.

(2) By the Stone condition, M is closed under multiplication, and this implies each
file φhE of φ⟨h⟩ is measurable. We choose E0 ∈ E ; {φ ̸= 0} ⊂ E0 by Proposition 3.1.4,
then, φhF = φχE0hF = φhE0∩F a.e. for any F ∈ E .

3.2 Density

Now we describe how to define the linear functional when we are given a folder ⟨f⟩. In
this section, we denote the characteristic function of the set A by χ(A) instead of χA,
when confusion occurs.

Definition 3.2.1. We say the measurable folder ⟨h⟩ is a density folder, if for every
f ∈ H, f⟨h⟩ is integrable.

Given a density folder ⟨h⟩ and f ∈ H, the folder f⟨h⟩ is complete by Proposition
3.1.12, where its complete file is fhE0 ; there exists E0 ∈ E such that {f ̸= 0} ⊂ E0.
Note that E0 depends on f . Now we define the integral

∫
f⟨h⟩ :=

∫
fhE0 . We can

show that it does not depend the choice of E0 ∈ E containing the carrier of f .

Proposition 3.2.2. Let ⟨h⟩ be a folder. The mapping P : H → R with P (f) =
∫
f⟨h⟩

is linear.

Proof. Let φ,ψ ∈ H. For any E ∈ E , both φhE and ψhE are finite almost everywhere.
It follows that (φ + ψ)hE = φhE + ψhE a.e., and hence this implies (φ + ψ)⟨h⟩ =
φ⟨h⟩+ψ⟨h⟩ a.e. The additivity of P follows from that of

∫
. Homogeneity is obvious.

Proposition 3.2.3. Let ⟨h⟩ be a density folder. Then every file of the prefolder ⟨h⟩E0
is integrable, that is, function hE is integrable for any E ∈ E0.

Proof. For E ∈ E0, there exists φ ∈ H such that E = {φ > 1}, where φ may be
assumed non-negative. By the Stone condition, we have φ∧1 ∈ H and hence, from the
definition of E, (φ ∧ 1)χE = χE . Then, (φ ∧ 1)hE = hE a.e. Since the left-hand-side
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is integrable, hE is integrable. Indeed, the Stone condition implies (φ ∧ 1) ∈ H. Since
⟨h⟩ is a density folder, it follows that (φ ∧ 1)hE is integrable. Thus, by Lemma 2.1.11
(2) hE is integrable.

Corollary 3.2.4. (1) Every file of a density folder ⟨h⟩ is finite almost everywhere.

(2) If φn ∈ H; φn ↘ 0 then P (φn) → 0, where P is a linear mapping from Proposition
3.2.2.

Proof. (1) Let E ∈ E . We aim to prove that hE is finite a.e. By Proposition 3.1.3(4),
we can choose E0 ∋ En ↗ E. Since hEn = hEχEn a.e., we have χ{|hEn | = +∞} =
χ{|hE | = +∞)}χEn a.e. and the left-hand-side = 0 a.e. by Proposition 3.2.3. Letting
n→ ∞, we obtain χ{|hE | = +∞}χE = χ{|hE | = +∞} = 0 a.e.

(2) Let φn ∈ H;φn ↘ 0 and E ∈ E . By (1), it follows that |φnhE | → 0 (n → ∞)
a.e. Since we have |φnhE | ≤ |φ1hE | a.e. and φ1hE ∈ L, the Dominated Convergence
Theorem gives P (φn) =

∫
φn⟨h⟩ → 0.

Theorem 3.2.5. (1) Let ⟨h⟩ be a non-negative density folder. If another folder ⟨g⟩
satisfies ⟨h⟩ = ⟨g⟩ a.e., then ⟨g⟩ is a density folder. Furthermore, for any f ∈ H it
follows that

∫
f⟨h⟩ =

∫
f⟨g⟩.

(2) Conversely, if non-negative density folders ⟨h⟩, ⟨g⟩ satisfy
∫
f⟨h⟩ =

∫
f⟨g⟩ for

any f ∈ H, then it follows ⟨h⟩ = ⟨g⟩ a.e.

Proof. (1) is clear. We will prove (2). Note that∫
f⟨h⟩ =

∫
f⟨g⟩ (3.4)

remains valid for f ∈ H+. By Proposition 3.2.3, for any E ∈ E0, hE and gE are
integrable. Also hE and gE vanish almost everywhere outside E, and this implies
{hE − gE > 0} ⊂ E a.e. Hence, χ{hE − gE > 0} ∈ L. By Corollary 2.1.10, there exists
0 ≤ fn ∈ H+

int such that fn ↘ χ{hE − gE > 0} a.e. and hence,

fn ∧ χE ↘ χ{hE − gE > 0}χE = χ{hE − gE > 0} (a.e.).

We write |⟨h⟩| = (|hE |)E∈E . Since

|(fn ∧ χE)⟨h⟩| = (fn ∧ χE)|⟨h⟩| ≤ χE |⟨h⟩| = |hE⟨I⟩|(∈ L)

almost everywhere, we see (fn∧χE)⟨h⟩ is integrable for all n ∈ N. Since fn∧χE ∈ H+
int,∫

fn ∧ χE⟨h⟩ =

∫
fn ∧ χE⟨g⟩

holds by (3.4). Thus, the Dominated Convergence Theorem gives∫
χ{hE − gE > 0}hE =

∫
χ{hE − gE > 0}gE <∞.
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This implies
∫
χ{hE − gE > 0}(hE − gE) = 0, and hence we obtain hE ≤ gE a.e. By

a similar argument, we have the opposite inequality. Hence it follows hE = gE a.e. for
any E ∈ E0. Therefore, we obtain ⟨h⟩ = ⟨g⟩ a.e. by Proposition 3.1.7.

Combining Proposition 3.2.3 and Corollary 3.2.4, we can easily see the following
lemma:

Lemma 3.2.6. If the density ⟨h⟩ is non-negative, that is, for all E ∈ E, hE ≥ 0 (a.e.),
then P : H → R is a Daniell integral on H.

In the following we shall assume that the density folder ⟨h⟩ is non-negative. In
particular, the indicator folder ⟨I⟩ is a non-negative density, and the Daniell integral P
induced by ⟨I⟩ is nothing else but

∫
. We shall say that ⟨h⟩ is a non-negative density of

P , if the non-negative density ⟨h⟩ defines a Daniell integral in the sense just described
in Lemma 3.2.6.

Hereafter, we consider several integrals at the same time. The null sets and the
integrabilities depend on each integral, and thereby we will use H+

int(P ), P -null set,
and P -a.e. and so on. For simplicity, we may use “a.e.” for “

∫
-a.e.”.

Proposition 3.2.7. Let ⟨h⟩ be a non-negative density folder. We set P (f) =
∫
f⟨h⟩

for f ∈ H.

(1) Let f ∈ H+. Then f⟨h⟩ belongs to L+, and P (f) =
∫
f⟨h⟩ remains valid for

f ∈ H+.

(2) If f ∈ H+
int(P ) if and only if f⟨h⟩ ∈ L.

(3) If Z ⊂ Ω is an
∫
-null set, then Z is P -null.

Proof. (1) and (2) follow from definition and convergence theorems.

(3) Let Z be a null set. There exists f ∈ H+
int such that Z ⊂ {f = +∞}.

We claim {f = +∞} is P -null. To do this, fix E ∈ E arbitrarily and choose
E0 ∋ En ↗ E. We observe that E ∋ {f > m} ↘ {f = +∞} ∈ D. Then we have

E ∋ En ∩ {f > m} ↘ En ∩ {f = +∞} ↗ E ∩ {f = +∞},

and χ(En ∩ {f > m}) is integrable. We apply the Dominated Convergence Theorem
to P (χ(En ∩ {f > m})) =

∫
χ(En ∩ {f > m})⟨h⟩, and we obtain

P (χ(E ∩ {f > m})) =

∫
χ(E ∩ {f > m})⟨h⟩.

We choose E containing {f = +∞}. Then the Monotone Convergence Theorem gives

P (χ{f=+∞}) =

∫
χ{f=+∞}⟨h⟩ = 0.

It follows that {f = +∞} is P -null.
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3.3 Radon-Nikodym Theorem

Now we formulate the Radon-Nikodym theorem. Let (Ω,H,
∫

) be a Daniell system
satisfying the Stone condition. We consider another Daniell integral Q on H.

Definition 3.3.1. A Daniell integral Q on H is said to be absolutely continuous (with
respect to

∫
) if any null set is a Q-null set, and we denote Q≪

∫
.

Proposition 3.2.7(3) implies that the Daniell integral having non-negative density
⟨h⟩ is absolutely continuous. The Radon-Nikodym theorem asserts its converse as
follows:

Theorem 3.3.2. Suppose that H satisfies the Stone condition and that Q is a Daniell
integral on H.

(1) If Q is absolutely continuous, then Q has a non-negative density ⟨h⟩.

(2) This density is unique in the a.e. sense.

To prove this, we need some lemmas. We will first show the following proposition:

Proposition 3.3.3. Let Q be a Daniell integral on H and suppose that Q≪
∫
.

(1) If we define
(∫

+Q
)

(f) :=
∫
f + Q(f) for f ∈ H, then (

∫
+Q) is a Daniell

integral on H.

(2) (
∫

+Q)(f) =
∫
f +Q(f) holds for f ∈ H+.

(3) Z is (
∫

+Q)-null set if and only if Z is null.

(4) M(
∫

+Q) = M.

(5) If φ ∈ L+(
∫

+Q), then φ ∈ L+ ∩ L+(Q) and (
∫

+Q)(φ) =
∫
φ+Q(φ).

Proof. (1) and (2) are evident from the definition of (
∫

+Q).

(3) (⇒) is clear. (⇐): if Z is null, then Z is Q-null, and hence there exist f ∈ H+
int

and g ∈ H+
int(Q) such that Z ⊂ {f, g = +∞} = {f ∧ g = +∞}. Since f ∧ g ∈ H+ and(∫

+Q

)
f ∧ g ≤

∫
f +Q(g) <∞,

which proves Z is (
∫

+Q)-null.

(4) is clear by (3).

(5) If φ ∈ L+(
∫

+Q), then φ = f − g ((
∫

+Q)-a.e.) for some f ∈ H+, g ∈
H+

int(
∫

+Q). By (2), g is in H+
int ∩H+

int(Q). This implies φ = f − g a.e. (g ∈ H+
int) and

φ = f − g (Q-a.e.) (g ∈ H+
int(Q)) by (3). Thus, we see φ ∈ L+ and φ ∈ L+(Q). The

last equation easily follows from the definition of (
∫

+Q).
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We recall that L2 is the set of all measurable functions φ for which |φ|2 ∈ L, see
Section 2.2. The set L2 is a Hilbert space with respect to (f, g) =

∫
fg.

Lemma 3.3.4. Suppose that H satisfies the Stone condition and Q is an absolutely
continuous Daniell integral on H. Let E ∈ E0.

(1) There exists a non-negative measurable function hE such that hE = hEχE a.e.

(2) For any f ∈ L+(
∫

+Q), it follows that fhE ∈ L+ and that Q(fχE) =
∫
fhE.

Furthermore, this hE is unique in the a.e. sense.

Proof. Let us fix E ∈ E0. For any f ∈ L2(
∫

+Q), fχE is measurable and f2χE ≤ f2,
and hence fχE ∈ L2(

∫
+Q). By Proposition 3.3.3 (5), we see fχE ∈ L2(Q). In general,

we can show that f ∈ L2(Q) if and only if f ∈ M(Q) and Q(|f |2) < ∞. From this, f
is Q-measurable, and hence by Schwarz’s inequality,

|Q(|f |χE)|2 ≤ Q(f2) ·Q(χ2
E)

≤ M ·
(∫

+Q

)
f2 (M := Q(χE))

= M · ∥f∥2L2(
∫
+Q) <∞.

This implies that F (f) := Q(fχE) is a bounded linear functional on L2(Q), and on
L2(
∫

+Q).

By Riesz’s Representation Theorem there exists a unique gE ∈ L2(
∫

+Q) for which
fgE ∈ L(

∫
+Q) and

Q(fχE) =

(∫
+Q

)
fgE (3.5)

for all f in L2(
∫

+Q). Replacing f with fχE ∈ L2(
∫

+Q), we have(∫
+Q

)
fgE =

(∫
+Q

)
fgEχE ,

and hence we obtain gE = gEχE a.e. by uniqueness.

We shall prove 0 ≤ gE < 1 a.e. Since {gE < 0} ⊂ E a.e., χ{gE<0} ∈ L2(
∫

+Q).
Replacing f with χ{gE<0} in (3.5), we have Q(χ{gE<0}) =

(∫
+Q
)
χ{gE<0}gE ≤ 0, and

hence χ{gE<0} = 0 Q-a.e. Substituting it for (3.5), we obtain
∫
χ{gE<0}gE = 0. This

implies χ{gE<0}gE = 0 a.e., and hence it follows χ{gE<0} = 0 a.e., that is, gE ≥ 0 a.e.
Similarly, we obtain χ{gE≥1} = 0 a.e.

Thus, it follows |fgE | ≤ |f | a.e. for any f ∈ L2(
∫

+Q), and this implies fgE is in
L2(
∫

+Q). By equation (3.5),

Q(fχE) =

(∫
+Q

)
fgE =

∫
fgE +Q(fgE)

=

∫
fgE +

(∫
+Q

)
fg2E =

∫
f(gE + g2E) +Q(fg2E).
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Repeating this procedure, we obtain

Q(fχE) =

∫
f(gE + g2E + · · · + gnE) +Q(fgnE). (3.6)

Since 0 ≤ gE < 1 a.e.,
lim
n→∞

Q(fgnE) = 0

and 0 ≤ gE + g2E + · · ·+ gnE a.e. converges increasingly to a function assuming its value
in R almost everywhere as n→ ∞, let hE denote the limit function. Observe that hE
is measurable and that 0 ≤ hE <∞ a.e. By definition, hE = hEχE a.e.

To prove (2), we use the truncation argument. We first assume f ∈ L(
∫

+Q) is
non-negative. Then (f ∧m)χE is in L2(

∫
+Q) for any m ∈ N. Noting

0 ≤ (f ∧m)(gE + g2E + · · · + gnE) ↗n→∞ (f ∧m)hE (a.e.) ∈ L+

(f ∧m)gnE ↘n→∞ 0 (Q-a.e.), (absolute continuity)

we replace f with (f ∧m)χE in (3.6) and applying the convergence theorems, it follows
Q((f ∧m)χE) =

∫
(f ∧m)hE . The Monotone Convergence Theorem gives, fhE ∈ L+

and

Q(fχE) =

∫
fhE . (3.7)

This implies fhE is integrable. For general f ∈ L(
∫

+Q), we apply the same argument
to f+, f− separately. Since f±hE ∈ L and Q(f±χE) =

∫
f±hE , it follows Q(fχE) =∫

fhE . If f ∈ L+(
∫

+Q), there exists fn ∈ L(
∫

+Q) such that fn ↗ f a.e., and hence
we obtain the desired equation as n→ ∞.

The uniqueness is proved by the same way as the proof of Theorem 3.2.5 (2).

Lemma 3.3.5. The set (hE)E∈E0 is a prefolder, where hE is defined in Lemma 3.3.4.

Proof. Let E,F ∈ E0. Replacing χE with χE∩F in (3.7), it follows Q(fχE∩F ) =∫
fhE∩F . On the other hand, replacing f with fχF in (3.7) we have Q(fχE∩F ) =∫
fχFhE . By the uniqueness of Lemma 3.3.4 (2), we obtain hE∩F = hEχF a.e.

By Proposition 3.1.7, we immediately obtain the following lemma:

Lemma 3.3.6. Suppose that H satisfies the Stone condition and that Q is an absolutely
continuous Daniell integral on H.

(1) There exists a non-negative density ⟨h⟩ such that for any f ∈ L+(
∫

+Q), it follows
f⟨h⟩ ∈ L+ and

Q(f) =

∫
f⟨h⟩. (3.8)

(2) This ⟨h⟩ is unique in the a.e. sense.

Finally, we may take f ∈ H in Lemma 3.3.6 (1) and obtain Theorem 3.3.2.
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3.4 Localizable measures

We will apply Theorem 3.3.2 to the classical measure theory. We fix a complete measure
space (Ω,Σ, µ). Put Σ0 := {A ∈ Σ : µ(A) <∞}, and let H(Σ0) be the set of all finite
linear combinations of indicator functions of the sets of Σ0. We define the functional∫

on H(Σ0) by ∫
h :=

n∑
k=1

akµ(Ak),

(
h =

n∑
k=1

akχAk

)
.

Then (Ω,H(Σ0),
∫

) is a Daniell system satisfying the Stone condition. Since the mea-
sure space is complete, each null set obtained by the Daniell scheme is also a µ-null
set and the converse is true. We see that E0 = Σ0, and E = {all countable unions of
elements of Σ0}, i.e., E is the set of all σ-finite sets in Σ. Further, all Daniell measurable
functions are Σ-measurable, and all Σ-measurable functions having σ-finite carrier are
Daniell measurable. The set D of all the Daniell measurable sets is a σ-ring generated
by the union of the elements of E and the null sets.

Let ν be a finite measure on Σ and absolutely continuous with respect to µ. If we
put Q(h) :=

∑n
k=1 akν(Ak) for h =

∑n
k=1 akχAk

∈ H(Σ0), then Q is a Daniell integral
on H(Σ0) and Q≪

∫
. By Theorem 3.3.2, there exists a density folder ⟨h⟩ such that

Q(f) =

∫
f⟨h⟩, (f ∈ H(Σ0)).

Let f = χF ∈ H+(Σ0), we obtain

ν(F ) =

∫
F
hEdµ, (F ∈ E : F ⊂ E)

for E ∈ E . This means that for any E ∈ E , hE plays the role of a density function
with respect to ν on E. This is nothing but for the measure-theoretic Radon-Nikodym
theorem. Conversely, for the measure-theoretic Radon-Nikodym density on each σ-
finite set, we can verify that these functions form a folder by the uniqueness.

But in general, there is no single Daniell measurable function (namely, complete
file of folder) which connects all these hE , that is to say, it is impossible to construct
a Daniell measurable function h0 defined on a certain subset of Ω agreeing with hE on
each E ∈ E . We will consider the condition under which such function h0 exists. To
do this, we introduce a more comprehensive notion:

Definition 3.4.1. Let (Ω,H,
∫

) be a Daniell system with the Stone condition.

(1) A function f : Ω → R is said to be locally (Daniell ) measurable if fh is Daniell
measurable for all h ∈ H.

(2) A folder ⟨h⟩ is said to be weakly complete if there exists a locally measurable function
f0 such that

⟨h⟩ = f0⟨I⟩ a.e.
By definition, all complete folders are weakly complete. We call f0 a weakly complete
file.
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3.4.1 σ-finite measure space

As we mention in Remark 3.1.10, if the complete measure space (Ω,Σ, µ) is σ-finite,
then Ω belongs to E , and hence all the folders are complete. This implies the classical
Radon-Nikodym theorem remains valid for the σ-finite measure space.

3.4.2 Characterization of the Localizability

We will characterize the localizable measure by means of the folders. Let (Ω,Σ, µ) is a
complete localizable measure space (see Chapter 1 and also [31, 63, 56, 78]). We induce
the Daniell system (Ω,H(Σ0),

∫
) in the same way of the above. For any non-negative

folder ⟨h⟩ = (hE)E∈E , let F := {hE : E ∈ E} ⊂ M. Since F is the subset of Σ-
measurable functions, there exists an essential supremum f0 for F by the localizability
of µ (cf. [56, 78]). It is not difficult to verify that

hE = f0χE a.e. for all E ∈ E .

The essential supremum f0 is Σ-measurable but not Daniell measurable. However, we
can obtain the following characterization:

Theorem 3.4.2. Let (Ω,Σ, µ) be a complete measure space. Then the measure µ is
localizable if and only if any non-negative folder ⟨h⟩ is weakly complete, and its weakly
complete file f0 is Σ-measurable

The “if” part is shown as above. We will prove the “only if” part.

Lemma 3.4.3. For any Σ-measurable non-negative subcollection {fλ : λ ∈ Λ}, there
exists a folder ⟨h⟩ such that

fλ⟨I⟩ ≤ ⟨h⟩ a.e. for all λ ∈ Λ. (3.9)

Moreover, we can choose ⟨h⟩ is minimal, i.e., if there exists another folder ⟨g⟩ satisfying
(3.9), then ⟨h⟩ ≤ ⟨g⟩ holds a.e.

Proof. Fix E ∈ E . Then E is a σ-finite measure, so that the family {fλχE : λ ∈ Λ}
has an essential supremum hE satisfying fλχE ≤ hE a.e., and hE is Σ-measurable.
Obviously, the carrier of hE is contained in E of σ-finite measure, and this implies hE
is a Daniell measurable function.

We prove (hE)E∈E satisfies the folder condition. Indeed, let hE and hE∩F be supre-
mums of {fλχE : λ ∈ Λ} and {fλχE∩F : λ ∈ Λ}, respectively. Since hEχF ≥ fλχE∩F ,
hEχF is an upper bound of {fλχE∩F : λ ∈ Λ}. This implies hEχF ≥ hE∩F . We define

h′E := hE∩F + hEχ(E\F ),

then h′E is Daniell measurable and

fλχE = fλχE∩F + fλχ(E\F )

≤ hE∩F + hEχ(E\F ) = h′E .
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This implies h′E is an upper bound of {fλχE : λ ∈ Λ}. Hence hE ≤ h′E and hEχF ≤
h′EχF = hE∩F . This implies hEχF = hE∩F a.e.

The minimality of ⟨h⟩ is immediately obtained by the minimality of each hE .

Proof of Theorem 3.4.2. We suffices to consider A ⊂ L1(µ) (cf. [56, 78]). By
Lemma 3.4.3, there exists a folder ⟨h⟩ such that

fλ⟨I⟩ ≤ ⟨h⟩ a.e. for all λ ∈ Λ,

and we choose a minimal ⟨h⟩. By assumption, there exists an F-measurable non-
negative complete file f0 of the folder ⟨h⟩ such that

fλ⟨I⟩ ≤ ⟨h⟩ = f0⟨I⟩ a.e. for all λ ∈ Λ.

Let λ ∈ Λ. The carrier of fλ ∈ L1(µ) is σ-finite, so that we can have

fλ ≤ f0χE ≤ f0 a.e. for all λ ∈ Λ,

where E is containing the carrier of fλ. This implies that f0 is an upper bound of A

We will show the minimality of f0. If there exists an F-measurable g such that
fλ ≤ g, then it follows that fλ⟨I⟩ ≤ g⟨I⟩ = ⟨g⟩, where ⟨g⟩ = (gχE)E∈E . By the
minimality of ⟨h⟩, we obtain ⟨h⟩ ≤ ⟨g⟩. This implies f0 ≤ g.

Corollary 3.4.4. Let (Ω,Σ, µ) be a localizable measure space, and ν : Σ → R be a
finite measure with ν ≪ µ. Then there is an a.e.-unique Σ-measurable function f0 such
that

ν(E) =

∫
E
f0 dµ for all E ∈ Σ0.

Remark 3.4.5. At last, we are in the position of describing the classical counter-
example which fails to hold the Radon-Nikodym theorem. Let ([0, 1],Σ, µ) be a measure
space with countable-cocountable σ-algebra Σ on an interval [0, 1] ⊂ R, that is,

Σ := {A ⊂ [0, 1] : A is countable or Ac is countable},

and µ the counting measure on Σ. We observe that µ is not σ-finite, say, [0, 1] cannot
be covered with countably many subsets An ⊂ [0, 1], n = 1, 2, . . . of finite µ-measure.
Taking ν to be the Lebesgue measure on [0, 1], we have ν ≪ µ but we cannot find a
density function. We suppose that there exists a non-negative density function h such
that

ν(E) =

∫
E
h dµ,

for all E ∈ Σ. Since ν({h ̸= 0}) = 0, we see ν({h > 0}) = 1. This implies {h > 0} is
an uncountable set. Observing {h > 0} =

∪∞
n=1{h > 1/n}, we can find n0 such that

{h > 1/n0} is a countable set and is not finite. Therefore,

1 ≥ ν({h > 1/n0}) =

∫
{h>1/n0}

h dµ ≥ 1

n0
µ(h > 1/n0) = ∞,

and it is contradiction, see also [31, 34].

Moreover, we will reconsider this situation by using folders and show that the
Radon-Nikodym type equality holds on the above measure space in Chapter 6.
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Chapter 4

Dual Space

The first discussion of the dual space is in 1930s. Nikodym, in [54], considered the
duality L1-L∞ based upon the result of the Radon and Lebesgue. The key to the
discussion is the density of measure. The density of measure is already obtained in the
paper due to Lebesgue and Radon, which is described in page 131 in [54]. In the paper,
in Theorem II (Théoréme II) Nikodym stated the result as follows:

Theorem 2. For any linear functional U(f) defined on the set of all µ-integrable
functions, which assumes its value in R to be absolutely continuous with respect to µ,
it is necessary and sufficient for µ to enjoy the following properties: If µ(E) > 0, there
exists a µ-measurable partition E1 + E2 = E such that µ(E1)µ(E2) > 0,

Spaces Lp on a σ-finite measure space appeared in 1939 in [26] by Dunford-Pettis.
They proved that if measure µ is σ-finite and 1 ≤ p < ∞, then (Lp)∗ = Lq for
the conjugate exponent q (Theorem 2.1.6 p.345 in [26]). We should point out that
they considered the space (Lp)∗ as the set of all mappings the space Lp into a Banach
space. Moreover, they discussed that the reperesentations are given in terms of abstract
integrals and kernel integrals. Now we shall summarize the recent study of this fact. In
[5, 29, 37, 38, 47, 62], they studied the scalar-valued function spaces. It should be noted
that Fedorova [29] considered this theorem by using Daniell-type integration. Kakutani
[37] considered the dual space of L∞ and characterized the condition for (L∞)∗ = L1

when we do not admit the choice of axiom. In [6, 35, 46], they studied the dual space
of the set of Banach space-valued functions. At last, the author [60], showed that (L1)∗

can be identified with the space of essentially bounded folders when the measure space
is not necessarily localizable. We will restate this result and describe the relationship
with the measure theory in Chapter 6.

4.1 Preliminaries

We first recall the Lp-norm and the semi-finiteness of
∫

. A semi-finite measure µ can
be found in [31, 56, 78], and some of the authors refer to it as “finite subset property”.
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For any measurable function φ,

ess sup
x∈Ω

|φ(x)| or ∥φ∥∞

denotes the greatest lower bound of all numbers C such that |φ| ≤ C almost everywhere.
A function φ ∈ M is essentially bounded if ∥φ∥∞ <∞ and all such functions is denoted
by L∞. And for φ ∈ L we write

∥φ∥1 :=

∫
|φ|

as usual.

The next proposition is often referred to as the semi-finiteness of
∫

; see [31, 56, 78].

Proposition 4.1.1 (semi-finiteness). For any 0 ≤ φ ∈ L+ satisfying
∫
φ > 0, there

exists ψ ∈ L such that 0 ≤ ψ ≤ φ and that
∫
ψ > 0.

Here for the sake of convenience for readers we recall the proof.

Proof. By the definition of φ ∈ L+, there exist f ∈ H+, g ∈ H+
int such that φ = f − g

a.e. Since f ∈ H+, we may find a sequence hn ∈ H, n ∈ N such that hn ↗ f . Now,
defining ψn := hn − g, we learn this is integrable and hence so is positive part ψ+

n .
Since φ is assumed non-negative, 0 ≤ ψ+

n ↗ φ almost everywhere. The Monotone
Convergence Theorem gives

∫
ψ+
n ↗

∫
φ > 0 and we can find a sufficient large integer

n0 such that
∫
ψ+
n0
> 0. This ψ+

n0
is the desired function.

Furthermore, we will consider the sum and product of folders in this chapter. Let
⟨h⟩, ⟨k⟩ be two folders. Then the mappings E ∋ E 7→ hE ± kE and E 7→ hEkE satisfy
the axiom of folder. Therefore, we denote these folders as:

⟨h± k⟩ or ⟨h⟩ ± ⟨k⟩,
⟨hk⟩ or ⟨h⟩⟨k⟩.

The following is obvious:

f⟨h+ k⟩ = f⟨h⟩ + f⟨k⟩ a.e. (4.1)

for any f ∈ H.

Theorem 3.2.5(2) can be extended for general folders:

Theorem 4.1.2. If two arbitary density folders ⟨h⟩, ⟨g⟩ satisfy
∫
f⟨h⟩ =

∫
f⟨g⟩ for

any f ∈ H, then it follows that ⟨h⟩ = ⟨g⟩ a.e.

Proof. By (4.1), we have∫
f⟨h⟩ =

∫
f⟨h+⟩ −

∫
f⟨h−⟩ <∞, and

∫
f⟨g⟩ =

∫
f⟨g+⟩ −

∫
f⟨g−⟩ <∞,
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for any f ∈ H. Since all terms are finite, we observe∫
f⟨h+ + g−⟩ =

∫
f⟨g+ + h−⟩ <∞.

This implies that ⟨h+ + g−⟩ and ⟨g+ + h−⟩ are non-negative density folder. Theorem
3.2.5(2) gives ⟨h+ + g−⟩ = ⟨g+ + h−⟩ a.e. i.e.,

h+E + g−E = g+E + h−E a.e. for all E ∈ E .

Hence, we obtain hE = h+E − h−E = g+E − g−E = gE a.e. for any E ∈ E . This completes
the proof.

4.2 Signed integral

In this section, we describe the property of the signed Daniell integral, which is a
functional having linearity and continuity. The proofs can be found in [66].

Let Φ : H → R be a linear mapping. For positive elementary functions, we define
the total variation |Φ|, positive variation Φ+, negative variation Φ− as follows:

|Φ|(h) := sup{Φ(k) ; |k| ≤ h, k ∈ H}
Φ+(h) := sup{Φ(k) ; 0 ≤ k ≤ h, k ∈ H}
Φ−(h) := sup{−Φ(k) ; 0 ≤ k ≤ h, k ∈ H}.

We say Φ has finite variation if |Φ|(h) is finite for any positive elementary functions h.

Theorem 4.2.1. If Φ has finite variation then |Φ|,Φ+ and Φ− can be extended uniquely
to the non-negative linear mapping on H and

Φ = Φ+ − Φ− (4.2)

holds. This decomposition is essentially minimum, in the sense that if there exists any
other decomposition Φ = Ψ1 − Ψ2, then Φ+ ≤ Ψ1,Φ

− ≤ Ψ2 hold for any non-negative
elementary functions. We call this decomposition (Φ+,Φ−) Jordan Decomposition.

Proof. Suppose that Φ has finite variation. We decompose H ∋ h = h+ − h−, and
define |Φ|h := |Φ|h+ − |Φ|h−. Then the linearity and non-negativity are obviously
valid for all h ∈ H. Moreover,

Φ+ :=
|Φ| + Φ

2
, and Φ− :=

|Φ| − Φ

2
(4.3)

have the desired properties.

We prove the minimality of the decomposition. Let Φ = Ψ1 − Ψ2 be a general
decomposition of non-negative linear functionals. For any h ∈ H and any k ∈ H with
|k| ≤ h, we have

−Ψ2k
+ ≤ Φk+ ≤ Ψ1k

+, −Ψ2k
− ≤ Φk− ≤ Ψ1k

−,
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and hence
Φk ≤ Ψ1k

+ + Ψ2k
− ≤ (Ψ1 + Ψ2)h, for |k| ≤ h.

Taking supremum over all such k, we obtain |Φ|h ≤ (Ψ1 + Ψ2)h for 0 ≤ h ∈ H.
Combining the definition Φh = (Ψ1 − Ψ2)h and (4.3), we have Φ+ ≤ h ≤ Ψ1h and
Φ−h ≤ Ψ2h.

Definition 4.2.2. We say a linear map Φ : H → R is a signed Daniell integral if
Φ(hn) → 0 for any sequence of elementary functions with hn ↘ 0.

Theorem 4.2.3. If Φ is a signed Daniell integral on H, then Φ has finite variation
and the Jordan decomposition (Φ+,Φ−) is non-negative and continuous, i.e., Φ+,Φ−

are Daniell integrals.

The proof can be found in [66] of Theorem 2.11.6.

Definition 4.2.4. Let (Ω,H,
∫

) be a Daniell system with the Stone condition and Q
be a signed Daniell integral. We say Q is absolutely continuous with respect to

∫
if any∫

-null set is a |Q|-null set. This is written by Q ≪
∫

analogously to the non-negative
integral.

We extend the domain of signed integral Q. If f ∈ H+
int(|Q|), then Q+(f) and

Q−(f) are finite and hence we can define

Q(f) := Q+(f) −Q−(f).

For f ∈ L(|Q|), since f = f1 − f2 with f1, f2 ∈ H+
int(|Q|), we define

Q(f) := Q(f1) −Q(f2).

The Radon-Nikodym theorem still holds for the signed Daniell integrals.

Theorem 4.2.5. Let (Ω,H,
∫

) be a Daniell system with the Stone condition, and Q
be a signed Daniell integral on H such that Q≪

∫
. Then there exists a density folder

⟨h⟩, such that for any f ∈ L(
∫

+|Q|),

Q(f) =

∫
f⟨h⟩. (4.4)

This ⟨h⟩ is determined a.e.-uniquely.

Proof. Since Q is a signed Daniell integral on H, Q has finite variation and Q± is a
Daniell integral by Theorem 4.2.3. Moreover, by Theorem 4.2.1 Q = Q+ − Q− holds
on H.

We will show Q± ≪
∫

. If Z is an
∫

-null set, then it is a |Q|-null set by the
assumption. There exists f ∈ H+

int(|Q|) such that Z ⊂ {f = +∞}. Since f ∈ H+,
|Q|(f) = Q+(f) + Q−(f) holds. But the left-hand is finite, so f ∈ H+

int(Q
±). This

means Z is a Q±-null set.
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By Lemma 3.3.6, there exist unique non-negative density folders ⟨h±⟩ such that

Q±(f) =

∫
f⟨h±⟩, for all f ∈ L(

∫
+Q±).

We observe L(
∫

+Q+) ∩ L(
∫

+Q−) = L(
∫

+|Q|). By Corollary 3.2.4 (1), each file hE
of ⟨h⟩ is finite

∫
-a.e., so that we can take difference of each side and obtain

Q+(f) −Q−(f) =

∫
f⟨h+⟩ −

∫
f⟨h−⟩

=

∫
f(⟨h+⟩ − ⟨h−⟩).

Therefore, ⟨h⟩ := ⟨h+⟩ − ⟨h−⟩ is obviously a density folder, and Q(f) =
∫
f⟨h⟩ holds

for any f ∈ L(
∫

+|Q|). The uniqueness of ⟨h⟩ follows from Theorem 4.1.2.

4.3 The dual space of L

In this section, we shall prove that the dual space of L is identified with the set of all
essentially bounded folders.

Definition 4.3.1. We say that ⟨h⟩ is an essentially bounded folder if

sup
E∈E

∥hE∥∞ = sup
E∈E

(ess. sup
x∈E

|hE(x)|) <∞.

We denote this by ∥⟨h⟩∥∞, and the set of all such folders is denoted by L∞.

We first consider the elementary estimation of norm inequalities.

Lemma 4.3.2. Let ⟨h⟩ ∈ L∞. It follows

∥⟨h⟩∥∞ = sup

{∣∣∣∣∫ f⟨h⟩
∣∣∣∣ ; f ∈ L, ∥f∥1 = 1

}
.

Proof. Let f ∈ L. We choose E0 ∈ E such that {f ̸= 0} ⊂ E0, then∣∣∣∣∫ f⟨h⟩
∣∣∣∣ =

∣∣∣∣∫ fhE0

∣∣∣∣
≤
∫

|f ||hE0 | ≤ ∥⟨h⟩∥∞
∫

|f | = ∥⟨h⟩∥∞∥f∥1.

Now, taking supremum over all f ∈ L with ∥f∥1 = 1, we have sup
∥f∥1=1

∣∣∣∣∫ f⟨h⟩
∣∣∣∣ ≤

∥⟨h⟩∥∞.

To show the converse, let α := ∥⟨h⟩∥∞ > 0. Since ∥⟨h⟩∥∞ = supE∈E ∥hE∥∞, for
any a with 0 < a < α, there exists Ea ∈ E such that a < ∥hEa∥∞. We deduce
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χ{hEa>a} ∈ L+ and
∫
χ{hEa>a} > 0. By Proposition 4.1.1 there exists gEa ∈ L such

that

0 ≤ gEa ≤ χ{hEa>a} and 0 <

∫
gEa . (4.5)

We define fEa := (
∫
gEa)−1gEa · sgnhEa , then fEa ∈ L and ∥fEa∥1 = 1. By (4.5), we

deduce
{gEa ̸= 0} ⊂ {hEa > a} ⊂ {hEa > 0} ⊂ Ea.

Hence ∣∣∣∣∫ fEahEa

∣∣∣∣ =
1∫
gEa

∫
gEa |hEa |

=
1∫
gEa

∫
gEaχ{gEa ̸=0}χ{hEa>a}|hEa | > a.

Now, since {fEa ̸= 0} = {gEa ̸= 0} ⊂ Ea, we see
∫
fEahEa =

∫
fEa⟨h⟩. Moreover,

taking supremum over all elements such that ∥f∥1 = 1, we see that for any a with
0 < a < α, there exists Ea ∈ E such that

sup
∥f∥1=1

∣∣∣∣∫ f⟨h⟩
∣∣∣∣ ≥ ∣∣∣∣∫ fEahEa

∣∣∣∣ > a,

which yields the inverse inequality.

Lemma 4.3.3. Let ⟨h⟩ be a density folder. If there exists 0 < C < ∞ such that for
any f ∈ L ∣∣∣∣∫ f⟨h⟩

∣∣∣∣ ≤ C∥f∥1,

then it follows that ⟨h⟩ ∈ L∞.

Proof. Let us fix E ∈ E and its corresponding file hE . We shall prove hE(x) ≤ C a.e.
x ∈ Ω by the use of the reduction to absurdity. For any ε > 0, putting FE,ε := {|hE | >
C+ε}, then we have 0 ≤ χFE,ε

∈ L+. Now we assume that
∫
χFE,ε

> 0 (if not, we have
nothing to prove). By Proposition 4.1.1, there exists gE ∈ L such that 0 ≤ gE ≤ χFE

and
∫
gE > 0. Defining φE := gE · (sgnhE), we see φE ∈ L. Since

{φE ̸= 0} ⊂ {gE ̸= 0} ⊂ FE,ε ⊂ {hE > 0} ⊂ E

as observed in the proof of Lemma 4.3.2, we deduce that

(C + ε)∥gE∥1 ≤
∣∣∣∣∫ gE |hE |

∣∣∣∣ =

∣∣∣∣∫ φEhE

∣∣∣∣
=

∣∣∣∣∫ φE⟨h⟩
∣∣∣∣ ≤ C∥φE∥1 = C∥gE∥1.

It follows that ∥gE∥1 = 0 and it contradicts
∫
gE > 0. This means that ∥hE∥ ≤ C for

any E ∈ E . The proof is complete.
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Theorem 4.3.4. Let (Ω,H,
∫

) be a Daniell system satisfying the Stone condition.
Then there exists a one-to-one linear and norm preserving mapping τ between essen-
tially bounded folders space L∞ and the dual space L∗; the correspondence is given
by

τ(⟨h⟩)f =

∫
f⟨h⟩ (f ∈ L).

Proof. Let ⟨h⟩ ∈ L∞. Defining

T⟨h⟩f :=

∫
f⟨h⟩ (f ∈ L), (4.6)

then T⟨h⟩ is linear and |T⟨h⟩f | = |
∫
f⟨h⟩| ≤ ∥⟨h⟩∥∞∥f∥1, hence ∥T⟨h⟩∥ ≤ ∥⟨h⟩∥ <∞, so

T⟨h⟩ ∈ L∗. Moreover, from equation (4.6) and Lemma 4.3.2 we have ∥T⟨h⟩∥ = ∥⟨h⟩∥∞.
It is shown that τ is the isometry from L∞ to L∗, This immediately implies that τ is
injective.

Therefore, it suffices to prove that this mapping is surjective. Let T ∈ L∗. Defining

Q(g) := Tg for g ∈ L,

we see that Q is a signed Daniell integral on L. Indeed, the linearity is obvious. If
L ∋ gn ↘ 0, then |Q(gn)| = |Tgn| ≤ ∥T∥∥gn∥1 → 0 by the Dominated Convergence
Theorem, so that Q is a signed Daniell integral on L. We next prove Q ≪

∫
. Let

Z be an
∫

-null set. Then there exists f ∈ H+
int such that Z ⊂ {f = +∞}. Since

f ∈ H+
int ⊂ L, we have Q(f) <∞ and |Q|(f) <∞ because Q(f) = Q+(f)−Q−(f) <∞

and |Q|(f) = Q+(f) +Q−(f) <∞ hold for f ∈ L by the Jordan Decomposition. This
means f ∈ H+

int(|Q|), and hence Z is Q-null.

Using Theorem 4.2.5, we can uniquely construct a density folder ⟨h⟩ such that
Q(f) =

∫
f⟨h⟩ holds for f ∈ L(

∫
+|Q|). However, since L ⊂ L(

∫
+|Q|) by the definition

of Q, we have

Tf = Q(f) =

∫
f⟨h⟩, for all f ∈ L.

Since |
∫
f⟨h⟩| ≤ ∥T∥∥f∥1, by Lemma 4.3.3 it follows ⟨h⟩ ∈ L∞. It means that τ is

surjective.
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Chapter 5

Lebesgue Decomposition

The general Lebesgue decomposition theorem has been studied various context. In
[7, 19, 57, 73], the authors considered the decomposition of additive set functions defined
on a certain group, or measures take valued in a certain group, but all measures are
assumed bounded. On the other hand, we are interested in general σ-additive measures
on an arbitrary set taking their values in positive real number but unbounded. In
classical measure theory, the Lebesgue decomposition theorem asserts that for two σ-
finite measures µ, ν on a measurable space (Ω,Σ), there exist two σ-finite measures νa
and νs such that ν = νa + νs with νa ≪ µ and that νs⊥µ, where νs⊥µ means that
νs and µ are mutually singular, that is, there exists an F ∈ Σ such that νs(F ) = 0
and µ(F c) = 0. In this chapter, we reconsider the σ-finiteness of µ, ν. It is not easy
to consider the non-σ-finite case [56]: Let Ω = R and Σ be the Borel sets. Let µ be a
Lebesgue measure and

ν(E) :=

{
#(E) E : finite set
∞ E : infinite set.

We observe that ν is not σ-finite. We suppose there exists a decomposition;

ν = ν1 + ν2, ν1 ≪ µ, ν2⊥µ.

Since one point set {x} is a µ-null set, then a ν1-null set and ν2({x}) = 1. Hence, we
find ν2(E) = 0 if and only if E = ∅. Since ν2⊥µ, there exists a measurable F such that

ν2(F ) = 0, and µ(F c) = 0.

Then ν2(F ) = 0 implies F = ∅ and F c = R. This contradicts µ(F c) = µ(R) = +∞.

5.1 Lebesgue decomposition

In this section, we will consider the general measure µ and ν by Daniell integral. To
do this, we first reformulate the singularity of measure by means of folders. Finally, we
prove general Lebesgue decomposition theorem.
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Definition 5.1.1. Let
∫
, Q be Daniell integrals on H. We say that

∫
and Q are

mutually singular if there exists a collection (ZE)E∈E of elements of (
∫

+Q)-measurable
sets such that: (1)

∫
χZE∩E = Q(χZc

E∩E) = 0 for any E ∈ E , (2) the family of the
indicator functions (χZE

)E∈E forms a folder. We denote the two mutually singular
Daniell integrals

∫
and Q by Q⊥

∫
.

Theorem 5.1.2. (1) The integral
∫

: H → R is zero if and only if
∫
χE = 0 for any

E ∈ E.

(2) If Q⊥
∫

and Q≪
∫

then Q = 0.

Proof. We first note that, in general, an elementary integral
∫

on H is zero if and only
if
∫
f = 0 for any f ∈ H+. Indeed, the sufficiency is clear. To prove the necessity,

choosing hn ∈ H, so that hn ↗ f , we obtain
∫
f = limn→∞

∫
hn = 0.

(1) The necessity is clear. To prove the sufficiency, let f be a positive function in
H+. Defining

sn :=
1

2n

∞∑
k=1

χ

{
f >

k

2n

}
,

we find sn ∈ H+ and 0 ≤ sn ↗ f . Since χ{f > k/2n} ∈ H+ for each n, k ∈ N, we
see Q(χ{f > k/2n}) = 0 by assumption. The Monotone Convergence Theorem gives
us Q(sn) = 0 and also gives 0 = Q(sn) ↗ Q(f) = 0. For general f ∈ H, we apply the
same argument to f+, f− separately.

(2) Suppose that there exists an (
∫

+Q)-measurable folder ⟨Z⟩ such that

Q(χZc
E∩E) =

∫
χZE∩E = 0 for any E ∈ E .

By absolute continuity, we see Q(χZE∩E) = 0. Therefore,

Q(χZc
E∩E) +Q(χZE∩E) = 0

and hence Q(χE) = 0 for any E. By (1), we obtain Q = 0.

Keeping in mind that the folder plays a key role in our result, we formulate and
prove the Lebesgue decomposition theorem in our setting.

Theorem 5.1.3. Let (Ω,H) be an elementary space satisfying the Stone condition,
and let

∫
, Q be Daniell integrals. Then Q can be uniquely expressed as Q = Qa + Qs

where Qa ≪
∫

and Qs⊥
∫
.

Proof. Since we see Q ≪ (
∫

+Q), it follows from Lemma 3.3.6 that there exists a
non-negative (

∫
+Q)-density ⟨g⟩ such that

Q(f) =

(∫
+Q

)
f⟨g⟩ (5.1)

for any f ∈ L+(
∫

+Q).
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We first prove ⟨g⟩ ≤ ⟨I⟩ ((
∫

+Q)-a.e.) and ⟨g⟩ < ⟨I⟩
∫

-a.e. For every E ∈ E , we
can choose En ∈ E0 so that En ↗ E. Noting that {gE > 1} ⊂ E ((

∫
+Q)-a.e.), we

substitute f := χEnχ{gE>1} ∈ L(
∫

+Q) for the equation (5.1). Then we have

Q(χEnχ{gE>1}) =

∫
χEnχ{gE>1}gE +Q(χEnχ{gE>1}gE)

≥
∫
χEnχ{gE>1} +Q(χEnχ{gE>1}).

Since Q(χEnχ{gE>1}) < ∞, we obtain
∫
χEnχ{gE>1} = 0, and hence χEnχ{gE>1} = 0

a.e. Letting n → ∞, we find χ{gE>1} = 0 a.e. Again, substituting it for the equation
(5.1), we obtain Q((1 − gE)χ{gE>1}) = 0, and hence χ{gE>1} = 0 (Q-a.e.). To show
that ⟨g⟩ < ⟨I⟩ a.e., substituting f = χ{gE=1} in (5.1) and applying the same argument,
we can deduce that {gE = 1} is null.

Next, the family (χ{gE=1})E∈E is obviously an (
∫

+Q)-density folder, so that we
denote it by ⟨G⟩. Now, Since f⟨g⟩ ∈ L(

∫
+Q) for any f ∈ L(

∫
+Q), we have

Q(f) =

(∫
+Q

)
f⟨g⟩ =

∫
f⟨g⟩ +Q(f⟨g⟩)

=

∫
f⟨g⟩ +

(∫
+Q

)
f⟨g2⟩

=

∫
f(⟨g⟩ + ⟨g2⟩) +Q(f⟨g2⟩)

=

∫
f(⟨g⟩ + ⟨g2⟩ + · · · + ⟨gn⟩) +Q(f⟨gn⟩).

Since ⟨gn⟩ ↘ ⟨G⟩ ((
∫

+Q)-a.e.) and

⟨0⟩ ≤ ⟨g⟩ + ⟨g2⟩ + · · · + ⟨gn⟩ ↗ ((
∫

+Q)-a.e.),

we can denote this limit folder by ⟨h⟩. It follows that ⟨h⟩ is (
∫

+Q)-measurable and
takes value in [0,∞]. In fact, ⟨h⟩ takes real values almost everywhere. For any non-
negative function f ∈ L(

∫
+Q), note that f⟨gn⟩ ↘ f⟨G⟩ ((

∫
+Q)-a.e.) and

⟨0⟩ ≤ f(⟨g⟩ + ⟨g2⟩ + · · · + ⟨gn⟩) ↗ f⟨h⟩ ((
∫

+Q)-a.e.),

applying the Monotone Convergence Theorem and the Dominated Convergence Theo-
rem to Q and

∫
, we obtain

Q(f) =

∫
f⟨h⟩ +Q(f⟨G⟩). (5.2)

For general f ∈ L(
∫

+Q), we apply the same argument to f+, f− separately. This
equation is valid for f ∈ L+(

∫
+Q) because f− ∈ L(

∫
+Q). If we take f ∈ H in (5.2),

we deduce ⟨h⟩ is an
∫

-density.

We define Qa(f) :=
∫
f⟨h⟩, Qs(f) := Q(f⟨G⟩) for any f ∈ H. Since ⟨h⟩ is an∫

-density and Qa, Qs are non-negative, we see Qa ≪
∫

and Qs ≪ Q by Proposition
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3.2.7 (3). To prove Qs⊥
∫

, noting that ⟨G⟩ is an (
∫

+Qs)-measurable folder because
Qs ≪ Q, we can easily see that ⟨G⟩ is a (

∫
+Qs)-measurable folder satisfying the

definition of Qs⊥
∫

.

Finally, we will show the uniqueness of the decomposition. Suppose that Q =
Q1 +Q2 for some Q1 and Q2 with Q1 ≪

∫
, Q2⊥

∫
. Then we have Q1 +Q2 = Qa +Qs.

We define a signed Daniell integral λ : H → R to be

λ(f) := Q1(f) −Qa(f) = Qs(f) −Q2(f), for f ∈ H.

By Theorem 4.2.3, we obtain the Jordan Decomposition λ = λ+−λ−. For non-negative
h ∈ H,

λ+(h) = sup{λ(k) : 0 ≤ k ≤ h, k ∈ H}
= sup{Q1(k) −Qa(k) : 0 ≤ k ≤ h, k ∈ H} ≤ Q1(h),

by the non-negativity of Qa. similarly, we have λ−(h) ≤ Qa(h). Therefore, we obtain

|λ|(h) = λ+(h) + λ−(h) ≤ Q1(h) +Qa(h) = (Q1 +Qa)(h), (5.3)

for all non-negative h ∈ H. (5.3) remains valid for non-negative f ∈ H+, and similarly
we have |λ| ≤ Q2 +Qs for non-negative f ∈ H+. Hence, we have

|λ| ≪ Qa +Q1, |λ| ≪ Q2 +Qs. (5.4)

By (5.4) and Qa +Q1 ≪
∫

, we obtain |λ| ≪
∫

.

We shall next show |λ|⊥
∫

. By the assumption of Qs⊥
∫

and Q2⊥
∫

, there exist a
(Qs +

∫
)-measurable folder ⟨Zs⟩ and a (Q2 +

∫
)-measurable folder ⟨Z2⟩ such that∫

χZs,E∩E = Qs(χZc
s,E∩E) = 0, and

∫
χZ2,E∩E = Q2(χZc

2,E∩E) = 0,

respectively. We note that Zs,E and Z2,E are both
∫

-measurable and
∫

-null sets.
Defining ZE := Zs,E ∪ Z2,E , we see that ⟨Z⟩ := (χZE

)E∈E is obviously a
∫

-measurable
and

∫
-null folder. Moreover, we recall |λ| ≪

∫
, so that ⟨Z⟩ is (|λ|+

∫
)-measurable and

(|λ| +
∫

)-null folder. Since

Zc
E ∩ E ⊂ Zc

s,E ∩ E, Zc
E ∩ E ⊂ Zc

2,E ∩ E,

and the right-hand-sides are Qs-null and Q2-null, respectively. It follows that Zc
E ∩ E

is a (Qs + Q2)-null set. By the fact that λ ≪ Qs + Q2, we verify that Zc
E ∩ E is a

|λ|-null set. It means that |λ|⊥
∫

, and hence by Theorem 5.1.2 (2), we have λ = 0.
This completes the proof of Q1 = Qa, Q2 = Qs.
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Chapter 6

Applications

In this chapter, we apply our results of Sections 3.3, 4.3 and 5.1 to general measure
spaces and localizable measure spaces. Classically, the following results are decisive,
which was proved by Segal in the middle of 20th century:

Theorem 3 (Segal [63]). Let (Ω,Σ, µ) be a measure space. The following assertions
are equivalent (the definition will be given in Definition 1 below):

(1) µ is localizable.

(2) For any absolutely continuous measure ν, there exists a density function h such
that

ν(E) =

∫
E
h dµ for all E ∈ Σ.

For the proof we refer to the textbooks [31, 56, 78]. The localizable measure space
was also introduced by Segal:

Definition 1 (Segal [63]). (1) A measure space (Ω,Σ, µ) is said to be semi-finite if
whenever A ∈ Σ with µ(A) = +∞, there exists a subset B ⊂ A such that B ∈ Σ and
0 < µ(B) <∞.

(2) A semi-finite measure space (Ω,Σ, µ) is said to be localizable if for every A ⊂ Σ,
there exists H ∈ Σ such that (i) µ(A \H) = 0 for every A ∈ A, (ii) if another G ∈ Σ
satisfies the condition (i) then µ(H \G) = 0.

In this chapter, we will prove the new characterization of the localizability, and
we will also describe the example of the measure which is not localizable but has the
property of the Radon-Nikodym type equation.
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6.1 Reconsideration of measure theory by Daniell scheme

We recall first some notions. Fix a complete measure space (Ω,Σ, µ) and let (Ω,H(Σ0),∫
dµ) be the Daniell system induced by (Ω,Σ, µ), where H(Σ0) is the set of all Σ0-

simple functions and Σ0 is the set of all µ-finite sets in Σ. A functional
∫
dµ is an

elementary integral defined by
∫
h dµ :=

∑n
k=1 akχAk

for h ∈ H(Σ0), ak ∈ R, Ak ∈ Σ0.
Since the measure space is complete, each null set obtained by Daniell scheme is also
a µ-null set and the converse is true. We see that E0 = Σ0, and E = {all countable
unions of elements of Σ0}, i.e., E is the set of all σ-finite sets in Σ. Further, all Daniell
measurable functions are Σ-measurable, and all Σ-measurable functions having σ-finite
carrier are Daniell measurable. The set D of all the Daniell measurable sets is a σ-ring
generated by the union of the elements of E and the null sets.

By Theorem 3.4.2, a Radon-Nikodym density folder can be determined by a Σ-
measurable function if and only if µ is localizable. However, we can find that Theorem
3.3.2 covers more general situations.

(1) We first consider the counter-example which is described at the end of Section 3.4.
Let Ω = [0, 1] ⊂ R, Σ = {A ⊂ Ω : A is countable or Ac is countable }. Let µ be
a counting measure on Σ. Then Σ0 consists of all finite subsets in [0, 1], and the set
of all Daniell measurable functions M, induced by the Daniell system (Ω,H(Σ0),

∫
),

is the set of all extended real-valued functions whose carriers are countable subsets of
Ω. Therefore, an arbitrary function on Ω is locally Daniell measurable, and hence an
arbitrary folder ⟨h⟩ can be determined by some f0 with ⟨h⟩ = f0⟨I⟩. To the contrary,
the measure space (Ω,Σ, µ) is known to be non-localizable [31]. This means that there
exists a non-localizable measure space but the induced folder becomes weakly complete.
Forever, let ν be a Lebesgue measure. Then ν ≪ µ holds and ν(E) =

∫
E h dµ does

not hold for any non-negative Σ-measurable function. However, the general Radon-
Nikodym theorem

ν(E) =

∫
E
⟨h⟩ dµ

holds for all E ∈ E and the weakly complete file f0 is zero function.

(2) In view of this, we consider the following two measures:

µ0(E) :=
∑
a∈R

δa(E), µ∗(E) :=
∑
a∈R

φ(a)δa(E)

for arbitrary function φ : R → (0,∞), where δa is a Dirac measure and E is an element
of the countable-cocountable σ-algebra Σ on Ω. Note that the only µ0-null set is an
empty set, then (Ω,Σ, µ0) is a complete measure space. Moreover, it is non-localizable
measure space and µ∗ ≪ µ0.

We observe that

Σ0 := {B ∈ Σ : µ0(B), µ∗(B) <∞} = {A ⊂ Ω : finite set},

and that E consists of all countable subset of Ω. Then, the set of all Daniell measurable
functions M(Σ0) consists of all extended-real-valued functions having countable carrier.
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By Theorem 3.3.2, we can find unique density folder ⟨h⟩ such that

µ∗(E) =

∫
E
⟨h⟩ dµ0 for all E ∈ E .

Furthermore, a simple observation shows

φχE = hE for all E ∈ E ,

where φ is not Σ-measurable but locally Daniell measurable, so that we can obtain

µ∗(E) =

∫
E
φdµ0 for all E ∈ E .

This is an example showing that the Radon-Nikodym theorem remains valid for non-
localizable measure and weakly complete file is a non-zero function.

(3) Let (Ω,Σ, µ) be a complete localizable measure space. We induce the Daniell system
(Ω,H(Σ0),

∫
) in the same way as above. For any non-negative folder ⟨h⟩ = (hE)E∈E ,

let A := {hE : E ∈ E} ⊂ M. Since A is the subset of Σ-measurable functions, by the
localizability of µ there exists an essential supremum f0 for A such that

hE = f0χE a.e. for all E ∈ E .

The essential supremum f0 is A-measurable but not Daniell measurable. The non-
negativity can be eliminated, because the usual argument is available to ⟨h⟩ = ⟨h+⟩ −
⟨h−⟩, where ⟨h±⟩ = (h±E)E∈E .

Now, we obtain the following results:

Corollary 6.1.1. Let (Ω,Σ, µ) be a localizable measure space. Then there exists a one-
to-one linear and norm preserving mapping τ between essentially bounded “function”
space L∞ and the dual space (L1)∗; the correspondence is given by

τ(g)f =

∫
fg, for f ∈ L1.

Corollary 6.1.2. Let (Ω,Σ, µ) be a localizable measurable space, and let ν be a signed
measure on Σ. Then ν can be uniquely expressed as ν = νa+νs where νa ≪ µ and νs⊥µ.
Moreover, each measure can be expressed as follows: there exists a unique Σ-measurable
function h such that

νa(E) =

∫
E
h dµ, for any E ∈ Σ0,

and there exists Z ∈ Σ such that

νs(Z) = µ(Zc) = 0.
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Chapter 7

Introduction to the Kakeya
Problem

From this chapter, we shall consider the Kakeya problem and related topics. The
Kakeya problem is a representative member of a much larger family of problems of
a similar one. As we mentioned in Chapter 1, the Kakeya needle problem is very
geometrical, and it is natural to apply elementary incidence geometry facts to this
problem. Although this approach has had some success, it does not seem sufficient to
solve the problem. However, in the last three decades it has been realized that the
problem is connected to many other mathematical fields.

As we described in Chapter 1, Besicovitch gave the answer; we can rotate a needle
using arbitrary small area. The fact relied on two observations. The first observation
is that one can translate a needle to any location using arbitrary small are. The second
one is that one can construct open subset of R2 of arbitrary small area which contain a
unit line segment in every direction. For n ≥ 2, we define a Kakeya set to be a subset
in R2 which contains a unit line segment in every direction. In applications we wish
to have more quantitative understanding of the Kakeya set. For example, we could
replace unit line segment by 1 × δ tubes for some 0 < δ ≪ 1 and consider the optimal
compression of these tubes. That is to say, we can ask for bounds of the area of the
δ-neighborhood of a Kakeya set. The answer is that these bounds are logarithmic in
two dimensions, and it is known that the δ-neighborhood of a Kakeya set in R2 must
have area at least ∼ 1/ log(1/δ). The Kakeya conjecture is stated as follows: let Nδ(E)
is a neighborhood of the Kakeya set in n-dimensional Euclidean space Rn. Then does
it hold

|Nδ(E)|
δa

̸→ 0 (δ → 0),

for all a > 0? It is true for the case n = 2. The first applications of the Kakeya
conjecture to analysis arose in the study of Fourier summation in the 1970s. For a
function f on the n-dimensional Euclidean space Rn the partial sum operator TS is
defined by

T̂Sf(ξ) = χS(ξ)f̂(ξ).
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One asks ourselves whether for f ∈ Lp, TSf converges to f in Lp, which is equivalent
to asking whether T̂Sf is bounded on Lp. If S is rectangle, then we would have
boundedness for all p, 1 < p < ∞, since this operator may be built out of Hilbert
transforms as described in [64]. If we regard the characteristic function of a ball as an
infinite product of the characteristic functions of rotated cubes, then an infinite product
of Cp > 1 would make Tball unbounded on Lp, p ̸= 2. As a matter of fact, if S is a ball
and p ̸= 2, C. Fefferman [30] gave a counter example showing that Tball is unbounded
on Lp. The counter example, which he constructed, involved the construction of a
Kakeya-type set; the proof shows that if T̂Sf is bounded for ball S, then Kakeya sets
could never have measure 0.

Instead of the operator TS , S is ball, Fefferman and Stein proposed to deal with
the slightly less singular Riesz-Bochner operator Sδ, δ > 0, defined by

Ŝδf(ξ) = (1 − |ξ|2)δ+f̂(ξ), tδ+ = max(0, tδ).

A fundamental problem for Sδ is that for which range of δ > 0 the Lp-bound

∥Sδf∥Lp(Rn) ≤ Cp∥f∥Lp(Rn)

is true. There also have been affirmative answers for n = 2. But this conjecture for
n ≥ 3 is still open [14, 65, 76]. Many of the problems related to the Kakeya conjecture
are still unsolved. However, these works reveal that estimates for the Riesz-Bochner
operators are closely related to estimates for the Kakeya maximal operator. And the
difficulty of problems for n ≥ 3 lies in the lack of an appropriate estimate for the
Kakeya maximal operator and the lack of an appropriate covering theory. Thus, the
study of the Kakeya maximal operator would be meaningful. Moreover, there are
many problems which are related to the above problems, for instance, a geometrical
dimension of the Kakeya set, and the Restriction problem. These details are can be
found in many surveys, [41, 72, 76, 77].

In Chapter 8, we investigate the weighted version of Alfonseca, Soria and Vargas’s
method [1, 2] and we obtain a weighted version of the Katz result [39, 40].

In Chapter 9, we consider the Kakeya maximal operator on the variable Lebesgue
spaces and prove its boundedness.
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Chapter 8

Directional Maximal Operator
and Radial Weights

Instead of the difficult operator KN , a more powerful but slightly complicated maximal
operator has been studied on the plane. Let Ω be a set of unit vectors in R2 with
cardinality N . For a locally integrable function f on R2, the directional maximal
operator MΩ is defined by

MΩf(x) := sup
r>0,ω∈Ω

1

2r

∫ r

−r
|f(x+ tω)| dt.

Strömberg showed in [68] that if Ω is an equidistributed set of directions with cardinality
N then

∥MΩf∥L2(R2) ≤ C logN∥f∥L2(R2). (8.1)

Notice that (8.1) yields the sharp L2(R2) estimate of the Kakeya maximal operator
KN , since we have

KNf(x) ≤ CMΩf(x).

In [39] and [40], Katz established that (8.1) holds without the condition that Ω is
an equidistributed set of directions. In [11] and [27], for the functions of radial type
f(x) = f0(∥x∥lq), 1 ≤ q ≤ n, it is essentially proved that

∥MΩf∥Ln(Rn) ≤ C logN∥f∥Ln(Rn).

In [1] and [2], Alfonseca, Soria and Vargas proposed a new method to study this
operator and they got a simple proof of the Katz result. In this chapter we investigate
the weighted version of their method and we obtain a weighted version of the Katz
result.

8.1 Preliminaries and main theorems

In order to state our theorem, we first introduce some notations due to [1] and [2].
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Let Ω be a subset of [0, π/4) and w be a weight on R2. We define the weighted
directional maximal operator MΩ,w, acting on locally integrable functions f on R2, by

MΩ,wf(x) := sup
x∈R∈BΩ

1

w(R)

∫
R
|f(y)|w(y) dy,

where BΩ denotes the basis of all rectangles with longest side forming an angle θ with
the x-axis for some θ ∈ Ω, and w(R) denotes

∫
R w(x) dx. Let Ω0 = {θ1 > θ2 > · · · >

θj > · · · } be an ordered subset of Ω. We take θ0 = π/4 and consider, for each j ≥ 1,
sets Ωj = [θj , θj−1) ∩ Ω, such that θj ∈ Ω0 for all j. Assume also that Ω =

∪
Ωj . To

each set Ωj , j = 0, 1, 2, . . ., we associated the corresponding basis Bj . We define the
weighted maximal operators associated to each basis for Ωj by

MΩj ,wf(x) := sup
x∈R∈Bj

1

w(R)

∫
R
|f(y)|w(y) dy, j = 0, 1, 2, . . . .

Throughout this thesis we always assume that the weight w is a radial weight:
w(x) = w0(∥x∥l2) = w0(|x|) for some non-negative function w0 on R+. We assume
further that w0 satisfies the following two conditions:

Doubling condition: For all 0 ≤ r1 ≤ r′1 ≤ r′2 ≤ r2 <∞ with r2 − r1 = 2(r′2 − r′1),∫ r2

r1

w0(r) dr ≤ C

∫ r′2

r′1

w0(r) dr; (8.2)

Supremum condition: For all 0 < r1 < r2 <∞,

sup
r1<r<r2

w0(r) ≤
C

r2 − r1

∫ r2

r1

w0(r) dr. (8.3)

Notice that ra with a > 0 satisfies these conditions. Indeed, the doubling condition is
clear and, for all 0 < r1 < r2 <∞,

(r2)
a =

a+ 1

r2

∫ r2

0
ra dr ≤ a+ 1

r2 − r1

∫ r2

r1

ra dr.

The main result of this chapter is the following:

Theorem 8.1.1. Let w be a radial weight satisfying (8.2) and (8.3). Then there exists
a constant C independent of Ω such that

∥MΩ,w∥L2(w)→L2(w) ≤ sup
j≥1

∥MΩj ,w∥L2(w)→L2(w) + C∥MΩ0,w∥L2(w)→L2(w),

where ∥T∥L2(w)→L2(w) denotes the operator norm T : L2(w) → L2(w).

It is known that the weight |x|a, a > 0, is in A∗
∞(R2) (cf. [45, p236]), where A∗

∞(R2)
is the Muckenhoupt weight classes replacing the cubes Q by the rectangles R with sides
parallel to the coordinate axes. From this fact and rotation invariance of the radial
weights we can apply the proof of Corollary 4 in [2], and it allows us to give a weighted
estimate of the Katz result (cf. [32, Theorems 6.7 and 6.13]).
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Corollary 8.1.2. Let Ω be a set of unit vectors on R2 with cardinality N ≫ 1 and
w(x) = |x|a, a > 0. Then there exists a constant C depending on only a such that

∥MΩ,w∥L2(w)→L2(w) ≤ C logN.

To prove Theorem 8.1.1, we essentially adapted the arguments in [1, 2]. In par-
ticular, to prove the theorem, we observe some geometry for R2. The following is a
weighted version of the key geometric observation used in [1].

Proposition 8.1.3. Let 0 < θ1, θ2 < π/4. Let

ω0 = (1, 0), ω1 = (cos θ1, sin θ1) and ω2 = (cos(−θ2), sin(−θ2)).

Let B be a rectangle whose longest side is parallel to ω1 and let R be a rectangle whose
longest side is parallel to ω2. Suppose that B ∩ R ̸= ∅ and that the long side length of
B be bigger than that of R. Then there exists a rectangle R̃ ⊃ R whose longest side is
parallel to ω0 such that

w(R ∩B)

w(R)
≤ C

w(R̃ ∩B)

w(R̃)
,

where the constant C is independent of θ1, θ2, B and R.

To prove the proposition we need several technical lemmas.

8.2 Geometry on the plane

The aim of this section is to prove Proposition 8.1.3. To do so we first introduce our
notation. We write X ≲ Y or Y ≳ X if there is a constant C such that X ≤ CY . The
constant C may vary from line to line but the constants with subscripts, such as C1,
C2, do not change in different occurrences. We write further X ≈ Y if X ≲ Y and
X ≳ Y .

Given rectangle R ⊂ R2, let cR be the rectangle with the same center as R, but
with the c times sidelengths oriented to the same direction of R. Given measurable set
E ⊂ R2, let |E| denote the Lebesgue measure of E and w(E) denote

∫
E w.

Our first goal is to show two key lemmas.

8.2.1 First key lemma

Recall that we always suppose that the weight w fulfill w(x) = w0(|x|) and that w0

satisfy the doubling condition (8.2) and the supremum condition (8.3). For an A ⊂ R2

we set r1(A) := infx∈A |x|, r2(A) := supx∈A |x| and rad (A) := r2(A) − r1(A). By
definition we can easily see that, if A ⊂ B ⊂ R2, then rad (A) ≤ rad (B). We also
see that rad (2R) ≲ rad (R) for any rectangle R ⊂ R2. The following is our first key
lemma.
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Lemma 8.2.1. Let R ⊂ R2 be a rectangle. Then

w(R)

|R|
≈ 1

rad (R)

∫ r2(R)

r1(R)
w0(r) dr.

Proof. Notice that

w(R) =

∫ r2(R)

r1(R)
arc (R ∩ Cr)w0(r) dr, (8.4)

where Cr is the circle of radius r and centered at the origin and arc (R ∩ Cr) is the arc
length of the arc R ∩ Cr. It follows from (8.4) and the supremum condition (8.3) that

w(R)

|R|
=

1

|R|

∫ r2(R)

r1(R)
arc (R ∩ Cr)w0(r) dr

≤ sup
r1(R)<r<r2(R)

w0(r) ·
1

|R|

∫ r2(R)

r1(R)
arc (R ∩ Cr) dr

= sup
r1(R)<r<r2(R)

w0(r) ≲
1

rad (R)

∫ r2(R)

r1(R)
w0(r) dr.

Thus, we shall prove the converse:

w(R)

|R|
≳ 1

rad (R)

∫ r2(R)

r1(R)
w0(r) dr.

Since w0 satisfies the doubling condition (8.2), we need only verify the following claim:

There exists a set A ⊂ R such that

rad (R) ≤ C1 rad (A), (8.5)

and that
rad (A) inf

r1(A)<r<r2(A)
arc (A ∩ Cr) ≥ C2|R|, (8.6)

where the constants C1 and C2 are independent of R and A.

If this claim is true, then it follows from (8.4) and the doubling condition (8.2) that

w(R) ≥
∫ r2(A)

r1(A)
w0(r) dr · inf

r1(A)<r<r2(A)
arc (A ∩ Cr)

≳ 1

rad (R)

∫ r2(R)

r1(R)
w0(r) dr · rad (A) inf

r1(A)<r<r2(A)
arc (A ∩ Cr)

≳ 1

rad (R)

∫ r2(R)

r1(R)
w0(r) dr · |R|.

We now prove the claim.
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Because of the rotation invariance and the symmetry of the problem, we may assume
that the rectangle R forms

R = (a1, a2) × (b1, b2), 0 < a1 < a2 <∞, 0 < b1 < b2 < a2.

Let

r1 =
√
a21 + b21, r2 =

√
a22 + b21, r3 =

√
a21 + b22 and r4 =

√
a22 + b22.

Then r1 = r1(R) and r4 = r2(R) and a simple calculation shows that

r3 − r1 ≥ r4 − r2 and r2 − r1 ≥ r4 − r3. (8.7)

We now consider two cases.

The case r2 ≤ r3. For t ≥ −1, we set

u(t) :=
√
a22 + t(a22 − a21).

Let

t1 =
b21

a22 − a21
and t2 =

b22
a22 − a21

− 1.

Then we observe that

r1 = u(t1 − 1), r2 = u(t1), r3 = u(t2), r4 = u(t2 + 1) and, hence, t1 ≤ t2.

We choose an A ⊂ R to be a set lying between the circles Cu(t1−1/2) and Cr3 .

We first show (8.5). It follows that

r2 − r1
r2 − u(t1 − 1/2)

=
u(t1) − u(t1 − 1)

u(t1) − u(t1 − 1/2)
= 2

u(t1) + u(t1 − 1/2)

u(t1) + u(t1 − 1)

≤ 2
2u(t1)

u(t1)
= 4.

This and (8.7) imply

r4 − r1 = (r4 − r3) + (r3 − r2) + (r2 − r1)

≤ (r3 − r2) + 2(r2 − r1)

≤ 8(r3 − r2) + 8(r2 − u(t1 − 1/2))

= 8(r3 − u(t1 − 1/2)),

which means rad (R) ≤ 8 rad (A) and proves (8.5).

We next show (8.6). Observe that if t ∈ [t1, t2] then the circle Cu(t) intersects with
the both vertical sides of R. Furthermore, we observe that the circle Cu(t) intersects

with the vertical line x = a2 at the height
√
t
√
a22 − a21 and intersects with the vertical

line x = a1 at the height
√
t+ 1

√
a22 − a21 (see Figure 1). Hence, for all t1 ≤ t ≤ t2, we

have

arc (R ∩ Cu(t)) ≥
(√

t+ 1 −
√
t
)√

a22 − a21 ≥
√
a22 − a21

2
√
t+ 1

.
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Figure 8.1: The circle Cu(t) intersects with the both vertical sides of R.

This gives that

inf
r2<r<r3

arc (A ∩ Cr) ≥
√
a22 − a21

2
√
t2 + 1

≥
√
a22 − a21

4
√
t2 + 1

. (8.8)

We also observe that the circle Cu(t1−1/2) intersects with the vertical line x = a1 at the
height √

t1 + 1/2
√
a22 − a21.

This gives that

inf
u(t1−1/2)<r<r2

arc (A ∩ Cr) = arc (R ∩ Cu(t1−1/2)) ≥
(√

t1 + 1/2 −
√
t1

)√
a22 − a21

≥
√
a22 − a21

4
√
t1 + 1/2

.

Thus, by (8.8) and t1 ≤ t2, we obtain

(r3 − u(t1 − 1/2)) inf
u(t1−1/2)<r<r3

arc (R ∩ Cr) ≥ (r3 − u(t1 − 1/2))

√
a22 − a21

4
√
t2 + 1

=
1

r3 + u(t1 − 1/2)

1/2 + t2 − t1
4
√
t2 + 1

√
a22 − a21(a2 − a1)(a2 + a1)

≥ a2 + a1
8(r3 + u(t1 − 1/2))

(√
t2 + 1 −

√
t1
)√

a22 − a21(a2 − a1)

≥ a2
32a2

|R| =
|R|
32
,

where we have used

1/2 + t2 − t1
4
√
t2 + 1

=
1 + 2(t2 − t1)

8
√
t2 + 1

≥ t2 + 1 − t1
8
√
t2 + 1

=
1

8

(√
t2 + 1 − t1√

t2 + 1

)
≥ 1

8

(√
t2 + 1 −

√
t1
)
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and (√
t2 + 1 −

√
t1
)√

a22 − a21(a2 − a1) = (b2 − b1)(a2 − a1) = |R|.

These prove (8.6) in this case.

The case r2 > r3. For t ≥ −1, we set

v(t) :=
√
b22 + t(b22 − b21).

Let

t3 =
a21

b22 − b21
and t4 =

a22
b22 − b21

− 1.

Then we see that

r1 = v(t3 − 1), r3 = v(t3), r2 = v(t4), r4 = v(t4 + 1) and, hence, t3 ≤ t4.

We choose an A ⊂ R to be a set lying between the circles Cv(t3−1/2) and Cr2 .

As in the previous case, we start with showing (8.5). It follows that

r3 − r1
r3 − v(t3 − 1/2)

=
v(t3) − v(t3 − 1)

v(t3) − v(t3 − 1/2)
≤ 4.

This and (8.7) imply

r4 − r1 = (r4 − r2) + (r2 − r3) + (r3 − r1)

≤ (r2 − r3) + 2(r3 − r1)

≤ 8(r2 − r3) + 8(r3 − v(t3 − 1/2))

= 8(r2 − v(t3 − 1/2)),

which means rad (R) ≤ 8 rad (A) and proves (8.5).

We next show (8.6). Observe that

inf
r3<r<r2

arc (A ∩ Cr) ≥ b2 − b1.

We also observe that the circle Cv(t3−1/2) intersects with the vertical line x = a1 at the
height √

(b21 + b22)/2,

which gives that

inf
v(t3−1/2)<r<r3

arc (A ∩ Cr) ≥
√

(b21 + b22)/2 − b1 ≥
(b22 − b21)/2√

(b21 + b22)/2 + b1

≥ b2 + b1
4b2

(b2 − b1) ≥
b2 − b1

4
,
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where we have used b2 > b1. Notice that

r4 − r1 =
√
a22 + b22 −

√
a21 + b21 =

a22 + b2 − a21 − b21√
a22 + b22 +

√
a21 + b21

≥ (a2 − a1)(a2 + a1)

2
√

2a2
≥ a2 − a1

2
√

2
,

where we have used a2 > b2 > b1 > 0 and a2 > a1. Thus, we obtain

(r3 − v(t3 − 1/2)) inf
v(t3−1/2)<r<r3

arc (R ∩ Cr)

≥ 1

32
(r4 − r1)(b2 − b1) ≥

√
2

128
(a2 − a1)(b2 − b1) =

√
2

128
|R|,

which proves (8.6) in this case, and, the proof of Lemma 8.2.1 is now complete.

8.2.2 Second key lemma

We next show the second key lemma.

Lemma 8.2.2. Let R be a rectangle which lies on the upper half plane and whose
sides are parallel to the x and y axes with height 2n and width 2m, m > n > 0. Let
C0 = (a, b) be the center of R. Set

A0 = (a, b) + (−m,n), A1 = (a, b) + (m,n),

B0 = (a, b) + (−m,−n), B1 = (a, b) + (m,−n).

Then there exists a constant C > 0 such that the following statements hold:

(a) When a ≤ m and b > n,
rad (R)

rad (A0B1)
≤ C;

(b) When a > m and b > n,

min

{
rad (R)

rad (A0B1)
,

rad (R)

rad (B0B1)

}
≤ C and min

{
rad (R)

rad (A0B1)
,

rad (R)

rad (A0B0)

}
≤ C.

Proof. Let D be the point on the line joining A0 and B1 which is closest to the origin.
Then D lies on the line l : −mx + ny = 0. We let D0 ∈ A0B1 be the closest point
from the origin to the line segment A0B1 and let D1 ∈ R be the closest point from the
origin to the rectangle R. By the definition we have r1(A0B1) = ∥D0∥, r1(R) = ∥D1∥
and ∥D∥ ≤ ∥D0∥.

Proof of (a). We start with showing part (a). It is clear that if R lies on the second
quadrant, then rad (R) = rad (A0B1). So, we prove the statement in three cases,
namely,
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Figure 8.2: Proof of (a) case (ii)

Case (i): −m ≤ a ≤ 0 and b > n;
Case (ii): m ≥ a > 0, b > n and C0 lies above the line l;
Case (iii): m ≥ a > 0, b > n and C0 lies below the line l.

Case (i). If −m ≤ a ≤ 0 and b > n, then r2(R) = r2(A0B1) = ∥A0∥, D1 = (0, b− n)
and C0 lies above the line l. Thus, −ma+ nb > 0 and

rad (A0B1) = ∥A0∥ − ∥D0∥ ≥ ∥A0∥ − ∥C0∥. (8.9)

Hence,

rad (R)

rad (A0B1)
≤ ∥A0∥ − ∥D1∥

∥A0∥ − ∥C0∥
=

∥A0∥2 − ∥D1∥2

∥A0∥2 − ∥C0∥2
· ∥A0∥ + ∥C0∥
∥A0∥ + ∥D1∥

≤ 2
∥A0∥2 − ∥D1∥2

∥A0∥2 − ∥C0∥2

≲ a2 +m2 − 2ma+ 4nb

m2 + n2 + 2(−ma+ nb)
≲ 2m2 + 4(−ma+ nb)

m2 + n2 + 2(−ma+ nb)
≲ 1,

where we have used −ma > 0 and a2 ≤ m2.

Case (ii). If m ≥ a > 0, b > n and if C0 lies above the line l, then r2(R) = ∥A1∥,
D1 = (0, b− n) and we have −ma+ nb > 0 and (8.9). Therefore,

rad (R)

rad (A0B1)
≲ a2 +m2 + 2ma+ 4nb

m2 + n2 + 2(−ma+ nb)
≲ 1 +

nb

m2 + n2 −ma+ nb
,

where we have used a ≤ m. Since a ≤ m, we have m2 + n2 −ma+ nb ≥ n2 + nb ≥ nb
and, hence,

nb

m2 + n2 −ma+ nb
≤ 1.

Case (iii). If m ≥ a > 0, b > n and if C0 lies below the line l, then r2(R) = ∥A1∥,
D1 = (0, b− n) and we have −ma+ nb ≤ 0 and

rad (A0B1) = ∥B1∥ − ∥D0∥ ≥ ∥B1∥ − ∥C0∥. (8.10)
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Hence,
rad (R)

rad (A0B1)
≲ a2 +m2 + 2ma+ 4nb

m2 + n2 + 2(ma− nb)
≲ 1,

where we have used m2 ≥ ma ≥ nb.

Proof of (b). Next,http://wmad.blog27.fc2.com/blog-entry-3026.html we show part
(b). As for part (a), we consider the following two cases:

Case (i): a > m, b > n and C0 lies above the line l;
Case (ii): a > m, b > n and C0 lies below the line l.

Case (i). If a > m, b > n and if C0 lies above the line l, then −ma+ nb > 0 and

rad (R) = ∥A1∥ − ∥B0∥. (8.11)

It then follows that
rad (R)

rad (A0B0)
≲ 4(ma+ nb)

4nb
≲ 1,

where we have used nb > ma. This implies the second inequality of (b) holds.

We show the first inequality of (b). We recall that −ma + nb > 0 and that (8.9)
and (8.11) hold. Thus,

rad (R)

rad (A0B1)
≲ 4(ma+ nb)

m2 + n2 + 2(−ma+ nb)
≲ ma+ nb

−ma+ nb

and
rad (R)

rad (B0B1)
≲ ma+ nb

ma
.

Now, under the condition −ma+ nb > 0, we shall estimate sup min{X,Y }, where

X :=
ma+ nb

−ma+ nb
and Y :=

ma+ nb

ma
.

Set {
C0 = (a, b), C1 = (m, 0), C2 = (m,n),
C3 = (n,m), C4 = (−m,n), O = (0, 0).

Since

ma+ nb = ∥C0∥ ∥C2∥ cos∠C0OC2,

−ma+ nb = ∥C0∥ ∥C4∥ cos∠C0OC4,

ma = ∥C0∥ ∥C1∥ cos∠C0OC1,

we have

X =
ma+ nb

−ma+ nb
=

cos∠C0OC2

cos∠C0OC4
, Y =

ma+ nb

ma
≤

√
2

cos∠C0OC2

cos∠C0OC1
,

where the inequality
√

2m =
√

2m2 ≥
√
m2 + n2 is used. Moreover, as C0 is assumed

to lie above the line l, we have

cos∠C0OC2 ≤ cos∠C3OC2 =
2mn

m2 + n2
.
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As

min

{
1

cos∠C0OC4
,

1

cos∠C0OC1

}
is attained its maximum at ∠C0OC4 = ∠C0OC1, it follows that

cos∠C0OC1 = cos

(
π

2
− ∠C1OC2

2

)
= sin

∠C1OC2

2
.

Thus,

sup min

{
1

cos∠C0OC4
,

1

cos∠C0OC1

}
=

1

sin ∠C1OC2
2

≈
√
m2 + n2

n
.

In conclusion, we obtain

min{X,Y } ≲ mn/(m2 + n2)

n/
√
m2 + n2

≈ m√
m2 + n2

≲ 1.

Case (ii). If a > m, b > n and if C0 lies below the line l, then −ma + nb ≤ 0 and
(8.11) holds. Thus, as ma ≥ nb, we have

rad (R)

rad (B0B1)
≲ 4(ma+ nb)

4ma
≲ 1.

The first inequality of (b) follows.

As in the previous case, we now show the second inequality of (b). The arguments
are essentially the same as one for Case (i). First observe that since −ma + nb ≤ 0,
and since (8.10) and (8.11) hold, we have

rad (R)

rad (A0B1)
≲ 4(ma+ nb)

m2 + n2 + 2(ma− nb)
≲ ma+ nb

ma− nb

and
rad (R)

rad (A0B0)
≲ ma+ nb

nb
.

Now, under the condition −ma+ nb ≤ 0, we shall estimate sup min{X ′, Y ′}, where

X ′ :=
ma+ nb

ma− nb
and Y ′ :=

ma+ nb

nb
.

As observed before, we have

min{X ′, Y ′} = min

{
cos∠C0OC2

cos∠C0OC′
4

,

√
m2 + n2√
n2

· cos∠C0OC2

cos∠C0OC′
1

}
,

where C′
4 = (m,−n) and C′

1 = (0, n). Hence, sup min{X ′, Y ′} is attained when

cos∠C0OC′
4 = cos∠C0OC′

1 = cos

(
π

2
+
θ

2

)
,
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Figure 8.3: The star shape is the common center of R′ and B′. The rectangle R̃′ is the
shadowed one.

where θ is the angle that the vector (m,n) forms with the x-axis. Since θ/2 ≤ π/8,
cos
(
π
2 + θ

2

)
is bounded from below and hence we obtain

min

{
cos∠C0OC2

cos∠C0OC′
4

,

√
m2 + n2√
n2

· cos∠C0OC2

cos∠C0OC′
1

}
≤ min

{
C ,

√
m2 + n2√
n2

· C

}
≲ 1.

The proof of Lemma 8.2.2 is now complete.

8.2.3 Proof of the proposition

Now we are going to show Proposition 8.1.3.

Proof. We use the formula proved in Lemma 8.2.1. Notice that

w(R) ≤ w(R̂) ≲ w(R) for any rectangle R, (8.12)

where R̂ is a rectangle with the same center and the same short side length but twice
bigger long side length of R, or a rectangle with the same center and the same long
side length but twice bigger short side length of R.

Now we take rectangles R′ and B′ that satisfy the following conditions:

• R′ and B′ have the common center;

• R′ (resp. B′) is expanded from R (resp. B) toward the long sides;

• The long side of R′ (reps. B′) is three times bigger than that of R (reps. B);

• R ∩B ⊂ R′ ∩B′.
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Let R̃′ be a smallest rectangle in the direction ω0 containing R′ (see Figure 3). Observe
that if R′ can be covered by N sets that are congruent to R′∩B′ and that have disjoint
interiors, then R̃′ is covered by the corresponding sets that are congruent to R̃′ ∩ B′.
(This can be proved by the fact that the long side length of B is bigger than that of
R.) Taking the smallest N , we obtain

|R′ ∩B′|
|R̃′ ∩B′|

=
N |R′ ∩B′|
N |R̃′ ∩B′|

≲ |R′|
|R̃′|

. (8.13)

We now verify
w(R′ ∩B′)

w(R̃′ ∩B′)
≲ w(R′)

w(R̃′)
. (8.14)

Let P be a parallelogram and P ′ be a smallest rectangle containing P . Then there
exists a rectangle P ′′ ⊂ P such that P ′ is the dilation of P ′′ by a factor of eight. From
this observation, the doubling property (8.12) and Lemma 8.2.1, we see that

w(R′ ∩B′) ≈ |E|
rad (E)

∫ r2(E)

r1(E)
w0(r) dr,

w(R̃′ ∩B′) ≈ |F |
rad (F )

∫ r2(F )

r1(F )
w0(r) dr,

where E and F are the smallest rectangles containing R′∩B′ and R̃′∩B′, respectively.
By Lemma 8.2.1 and (8.13), to prove (8.14) we need only verify that

1
rad (E)

∫ r2(E)

r1(E)
w0(r) dr

1
rad (R′)

∫ r2(R′)

r1(R′)
w0(r) dr

≲

1
rad (F )

∫ r2(F )

r1(F )
w0(r) dr

1

rad (R̃′)

∫ r2(R̃′)

r1(R̃′)
w0(r) dr

. (8.15)

To verify (8.15), we show the following claim.

There exists a geometric constant C0 > 0 such that

min

{
rad (R̃′)

rad (R′)
,

rad (R̃′)

rad (F )

}
≤ C0.

This claim can be proved by use of Lemma 8.2.2. If R̃′ contains the origin, then we

can easily verify that
rad (R̃′)

rad (R′)
≤ C0. By symmetry we have only to consider the cases

for which R̃′ lies on the upper half plane and B′ crosses R̃′ from left-side to right-side
or from bottom to top. For each case we may regard R̃′ ∩B′ as the segments B0B1 or
A0B0 in Lemma 8.7. Thus, the claim holds.

We return to the proof of Proposition 8.1.3.
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If rad (R̃′)
rad (R′) ≤

rad (R̃′)
rad (F ) holds, then

r2(R̃′) − r1(R̃′) ≤ C0(r2(R
′) − r1(R

′)).

Hence, using the doubling property of w0, we obtain∫ r2(R̃′)

r1(R̃′)
w0(r) dr ≲

∫ r2(R′)

r1(R′)
w0(r) dr.

By the supremum condition (8.3) and E ⊂ F , we have

1

rad (E)

∫ r2(E)

r1(E)
w0(r) dr ≤ sup

r1(E)<r<r2(E)
w0(r) ≤ sup

r1(F )<r<r2(F )
w0(r)

≲ 1

rad (F )

∫ r2(F )

r1(F )
w0(r) dr.

Since rad (R′) ≤ rad (R̃′), combining the above estimation, we obtain (8.15).

Similarly, if rad (R̃′)
rad (R′) ≥

rad (R̃′)
rad (F ) , then

rad (F ) ≤ rad (2R̃′) ≲ rad (R̃′)

and so, by the similar arguments as above, (8.14) holds.

Lastly, let R̃ be the rectangle with the same center and whose short side length is
three times bigger than that of R̃′. Observe that there exists a rectangle U ⊂ R2 such
that U ⊂ R̃ ∩ B and R̃ ∩ B′ ⊂ Û , where Û is the rectangle expanded from U toward
the long sides with 5th bigger lengths, and, hence,

w(R̃ ∩B′) ≤ w(Û) ≲ w(U) ≤ w(R̃ ∩B).

Therefore, from R′ ⊂ 6R, R̃ ⊂ 3R̃′ and the doubling property of w, we obtain

w(R ∩B)

w(R)
≲ w(R′ ∩B′)

w(R′)
≲ w(R̃′ ∩B′)

w(R̃′)
≲ w(R̃ ∩B′)

w(R̃)
≲ w(R̃ ∩B)

w(R̃)
,

where we have used (8.14) in the second inequality. The proof of Proposition 8.1.3 is
now complete.

8.3 The proof of Theorem 8.1.1

The following argument is due to [2]. We first linearize the operators MΩ,w and MΩj ,w.
Given a set Λ ⊂ [0, π/4), we observe that there exists a countable subset Λ0 ⊂ Λ such
that Λ0 ⊃ Λ. Let

B̃Λ0 := {R ∈ BΛ0 : both length of short-side and long-side of R are in Q}.
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Then, we can immediately verify

MΛ,wf(x) = sup
x∈R∈B̃Λ0

1

w(R)

∫
R
|f(y)|w(y) dy.

Since B̃Λ0 is countable, we write B̃Λ0 = {R1, . . . , Rα, . . . }. For any x ∈ R2, there exists
α(x) such that

MΛ,wf(x) <
2

w(Rα(x))

∫
Rα(x)

|f(y)|w(y) dy, x ∈ Rα(x), (8.16)

and that each α, 1 ≤ α ≤ α(x), fails to hold (8.16). Putting Qα := {x ∈ Rα : α(x) =
α}, we obtain a pair (Rα, Qα) satisfying

∞∑
α=1

χQα(x) = 1 for all x ∈ R2 and Qα ⊂ Rα. (8.17)

For any x ∈ R2, choosing the pair (Rα, Qα) satisfying (8.17), we define the operator
TΛ,w by

TΛ,wf(x) :=
∑
α

1

w(Rα)

(∫
Rα

fw

)
χQα(x).

It follows from the definition of TΛ,w that

TΛ,wf(x) ≤MΛ,wf(x). (8.18)

By (8.16), we need only prove Theorem 8.1.1 with MΩ,w replaced by TΛ,w.

The following lemma is originally due to Carbery in [10].

Lemma 8.3.1. Let TΛ,w be as above. Then TΛ,w is of strong type (p, p) with respect to
the measure w(x) dx if and only if there exists a constant Cq, such that for any sequence
{λα} ⊂ R+, we have∫ (∑

α

λα
w(Qα)

w(Rα)
χRα(x)

)q

w(x) dx ≤ Cq

∑
α

|λα|qw(Qα), (8.19)

where q is the conjugate of p. Moreover, the infimum of the constants (Cq)
1/q satisfying

(8.19) is ∥TΛ∥Lp(w)→Lp(w).

Proof. The proof is due to Carbery in [10]. If TΛ,w is of strong type (p, p) with respect
to the measure w(x)dx, then it is easy to see that the adjoint T ∗

Λ,w is defined as

T ∗
Λ,wg(x) =

∑
α

(∫
Qα

gw

)
1

w(Rα)
χRα(x),

and is of strong type (q, q) with respect to the same measure, i.e.,∫
|T ∗

Λg(x)|qw(x)dx ≤ ∥T ∗
Λ∥

q
Lq(w)→Lq(w)

∫
|g|qw.
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Taking g =
∑

α λαχQα , then
∫
Qα

gw = λαw(Qα). At the same time∫
|g|qw =

∫ ∣∣∣∣∣∑
α

λαχQα

∣∣∣∣∣
q

w =

∫ ∑
α

|λα|qχQαw =
∑
α

|λα|qw(Qα)

we obtain (8.19) with Cq = ∥T ∗
Λ∥

q
Lq(w)→Lq(w).

On the other hand, if we have (8.19), then, for all non-negative h ∈ Lq, taking
λα = 1

w(Qα)

∫
Qα

hw, we have

|λα|q =

∣∣∣∣ 1

w(Qα)

∫
Qα

hw

∣∣∣∣q ≤ 1

w(Qα)

∫
Qα

|h|qw.

Then, ∫
|T ∗

Λh(x)|qw(x)dx =

∫ (∑
α

∫
Qα

hw
1

w(Rα)
χRα(x)

)q

w(x)dx

=

∫ (∑
α

λα
w(Qα)

w(Rα)
χRα(x)

)q

w(x)dx

≤ Cq

∑
α

λqαw(Qα) ≤ Cq

∑
α

∫
Qα

|h|qw

= Cq

∫
|h|qw.

Here for the last equality, we used the fact that {Qα}α is disjoint. Hence, ∥T ∗
Λh∥Lq(w) ≤

C
1/q
q ∥h∥Lq(w) holds, i.e., TΛ is of strong type (p, p) with respect to the measure w(x)dx

and its norm is bounded by (Cq)
1/q.

By Lemma 8.3.1 with p = q = 2 it is sufficient to show that the inequality (8.19)

holds with C
1/2
2 = supj≥1 ∥MΩj ,w∥L2(w)→L2(w) + C∥MΩ0,w∥L2(w)→L2(w).

We denote

I2 =

∫ (∑
α

λα
w(Qα)

w(Rα)
χRα(x)

)2

w(x) dx

=

∫ ∑
l

∑
α:Rα∈Ωl

λα
w(Qα)

w(Rα)
χRα

2

w(x) dx

=

∫ ∑
l

 ∑
α:Rα∈Ωl

λα
w(Qα)

w(Rα)
χRα

2

w(x) dx

+ 2
∑
l

∑
j<l

∫ ∑
Rα∈Ωl

∑
Rβ∈Ωj

λαλβ
w(Qα)w(Qβ)

w(Rα)w(Rβ)
χRα(x)χRβ

(x)w(x) dx

=: A+B.
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For the first term we use (8.18) and Lemma 8.3.1 with Λ = Ωl. We obtain

A ≤
∑
l

∥MΩl,w∥
2
L2(w)→L2(w)

 ∑
α:Rα∈Ωl

|λα|2w(Qα)


≤
(

sup
l

∥MΩl,w∥
2
L2(w)→L2(w)

)∑
l

∑
α:Rα∈Ωl

|λα|2w(Qα)


≤
(

sup
l

∥MΩl,w∥
2
L2(w)→L2(w)

)(∑
α

|λα|2w(Qα)

)
. (8.20)

By Proposition 8.1.3 there exists a constant C such that if Rα ∈ Ωl and Rβ ∈ Ωj

with j < l, then we can find certain rectangles R̃−
α and R̃+

β , containing Rα and Rβ,
respectively, pointing in the direction of θj and so that

w(Rα ∩Rβ)

w(Rα)w(Rβ)
≲ w(R̃−

α ∩Rβ)

w(R̃−
α )w(Rβ)

+
w(Rα ∩ R̃+

β )

w(Rα)w(R̃+
β )
.

Observe that both R̃−
α and R̃+

β are rectangles of the basis B0. Then

B ≤ 2C
∑
l

∑
j<l

∫ ∑
Rα∈Ωl

∑
Rβ∈Ωj

λαλβ
w(Qα)w(Qβ)

w(R̃−
α )w(Rβ)

χ
R̃−

α
(x)χRβ

(x)w(x) dx

+ 2C
∑
l

∑
j<l

∫ ∑
Rα∈Ωl

∑
Rβ∈Ωj

λαλβ
w(Qα)w(Qβ)

w(Rα)w(R̃+
β )
χRα(x)χ

R̃+
β

(x)w(x) dx

= B− +B+.

We shall only work with the B− (the other term is analogous). So,

B− = 2C
∑
l

∑
j<l

∫ ∑
Rα∈Ωl

∑
Rβ∈Ωj

λαλβ
w(Qα)w(Qβ)

w(R̃−
α )w(Rβ)

χ
R̃−

α
(x)χRβ

(x)w(x) dx

≤ 2C

∫ ∑
l

∑
Rα∈Ωl

λα
w(Qα)

w(R̃−
α )
χ
R̃−

α
(x)w(x)1/2


×

∑
j

∑
Rβ∈Ωj

λβ
w(Qβ)

w(Rβ)
χRβ

(x)w(x)1/2

 dx.

By the Cauchy-Schwarz inequality

B− ≤ 2C

∫ ∑
l

∑
Rα∈Ωl

λα
w(Qα)

w(R̃−
α )
χ
R̃−

α

2

w(x) dx

1/2

×

∫ ∑
j

∑
Rβ∈Ωj

λβ
w(Qβ)

w(Rβ)
χRβ

2

w(x) dx

1/2

.
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Now, notice that R̃−
α ∈ Ω0 for all α. Then by Lemma 8.3.1 and (8.18)

B− ≤ 2C∥MΩ0,w∥L2(w)→L2(w)

(∑
α

|λα|2w(Qα)

)1/2

I. (8.21)

Similarly, we can obtain the same bound for B+. Combining the bounds (8.20) for A
and (8.21) for B±, we obtain

I2 ≤
(

sup
l

∥MΩl,w∥
2
L2(w)→L2(w)

)(∑
α

|λα|2w(Qα)

)
(8.22)

+ C∥MΩ0,w∥L2(w)→L2(w)

(∑
α

|λα|2w(Qα)

)1/2

I.

This implies

I ≤
(

sup
l

∥MΩl,w∥
2
L2(w)→L2(w) + C∥MΩ0,w∥L2(w)→L2(w)

)(∑
α

|λα|2w(Qα)

)1/2

.

By Lemma 8.3.1 this finishes the proof of Theorem 8.1.1.
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Chapter 9

The Kakeya Maximal Operator
on the Variable Lebesgue Spaces

In what follows, we also deal with variable Lp spaces on Rn The celebrated paper
[44] by Kovácik and Rákosíık has greatly developed the theory of variable Lp spaces
Lp(·)(Ω) and established fundamental properties. After that conditions for the bound-
edness of the Hardy-Littlewood maximal operator M on variable Lp spaces Lp(·)(Ω)
Cruz-Uribe, Fiorenza and Neugebauer [17] and Nekvinda [52] gave the sufficient condi-
tions on the exponent function p(·) independently. Diening [23] studied the necessary
and sufficient conditions in terms of the conjugate exponent function p′(·). In the
case of Ω = Rn, he has proved that the boundedness of M on Lp(·)(Rn) is equivalent
to that on Lp′(·)(Rn). Recently Cruz-Uribe, Fiorenza, Martell and Pérez [16] have
showed that many important operators are bounded on Lp(·)(Ω) when M is bounded
on Lp(·)(Ω). For example, their result ensures the boundedness of singular integral op-
erators, commutators and fractional integral operators on Lp(·)(Ω) have been studied
in [17, 22, 23, 24, 52]. E. Nakai and Y. Sawano [49] also investigated the variable Hardy
spaces and generalized Campanato spaces by the grand maximal function, and then
developed their several properties. In the following, we discuss the Kakeya maximal
operator on the variable Lebesgue spaces.

9.1 Preliminaries and main result

Given a measurable function p(·) : Rn → [1,∞), we define the variable Lebesgue space
Lp(·)(Rn) to be the set of measurable functions such that for some λ > 0,

ρp(·)(f/λ) =

∫
Rn

(
|f(x)|
λ

)p(x)

dx <∞.

Lp(·)(Rn) is a Banach space when equipped with the norm

∥f∥p(·) = inf{λ > 0 : ρp(·)(f/λ) ≤ 1}.
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The variable Lebesgue space Lp(·)(Rn) generalizes the classical Lebesgue space Lp(Rn):
if p(x) ≡ p0, then Lp(·)(Rn) = Lp0(Rn). We say that p(·) is locally log-Hölder continu-
ous, and write p(·) ∈ LH0, if there exists a constant C0 such that

|p(x) − p(y)| ≤ C0

− log |x− y|
, x, y ∈ Rn, |x− y| < 1/2.

Also, we say that p(·) is log-Hölder continuous at infinity, and write p(·) ∈ LH∞, if
there exist constants C∞ and p(∞) such that

|p(x) − p(∞)| ≤ C∞
log(e+ |x|)

, x ∈ Rn.

We say p(·) is (globally) log-Hölder continuous if p(·) ∈ LH0 ∩ LH∞ and we write
p(·) ∈ LH. Finally, given a measurable set E ⊂ Rn, let

p−(E) := ess inf
x∈E

p(x) and p+(E) := ess sup
x∈E

p(x).

If E = Rn, then we simply write p− and p+.

The main result of this paper is the following (see also [15]):

Theorem 9.1.1. Let N ≫ 1. Suppose that p(·) : R2 → [2,∞) belongs to LH and
p+ <∞. Let

c(p(·), N) := p− · sup
R

(
1

p−(R)
− 1

p+(R)

)
,

where the supremum is taken over all rectangles R ∈ BN with |R| ≤ 1. Then there
exists C independent of N such that

∥KNf∥Lp(·)(R2) ≤ CN c(p(·),N)(logN)2/p−∥f∥Lp(·)(R2). (9.1)

Remark. (1) We remark that

c(p(·), N) ≤ p−

(
1

p−
− 1

p+

)
= 1 − p−

p+
≤ 1.

Also we see immediately that c(p(·), N) = 0 if p(·) is constant.
(2) The technique of the proof is due to [15], which is used the machinery of Calderón-
Zygmund cubes, and we apply this technique to the rectangles in BN . They also
pointed out in [15], these theories will be applicable to other problems in variable
Lebesgue spaces and the Calderón-Zygmund theory.
(3) One might naturally expect that

∥KNf∥Lp(·)(R2) ≤ C(logN)2/p− when 2 ≤ p− ≤ p+ <∞.

However, we will show the following in the next section: Let N ≫ 1 and 1 < p− <
p+ < ∞. Suppose that KN is bounded from Lp(·)(R2) to Lp(·)(R2) and that p(·) is
continuous. Then there exist a positive constant C, independent of N , and a small
constant ε > 0 such that

∥KN∥Lp(·)(R2)→Lp(·)(R2) ≥ CN ε.
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9.2 Lower estimate of the boundedness constant

We first consider the lower estimate for c(p(·), N) in Theorem 9.1.1. If the exponent
function p(·) is constant, then c(p(·), N) = 0. However, we can show that if p(·) is
not constant, then c(p(·), N) cannot be vanished. The following argument is due to
T. Kopaliani [43] (see also [42]).

Recall that the conjugate function p′(x) is defined by 1
p′(x) + 1

p(x) = 1. The following

generalized Hölder inequality and a duality relation can be found in [44]:∫
R2

|f(x)g(x)| dx ≤ 2∥f∥Lp(·)∥g∥Lp′(·) ,

∥f∥Lp(·) ≤ sup
∥g∥

Lp′(·)≤1

∫
R2

|f(x)g(x)| dx.

Suppose that KN is bounded from Lp(·)(R2) to Lp(·)(R2) and that p(·) belongs to LH.
Then for every rectangle R ∈ BN , we have

∥KN∥Lp(·)→Lp(·) ≥ ∥KNf∥Lp(·) ≥
∥∥∥∥ 1

|R|

∫
R
f(y) dy · χR

∥∥∥∥
Lp(·)

=
1

|R|

∫
R
f(y) dy · ∥χR∥Lp(·)

for all nonnegative f with ∥f∥p(·) ≤ 1. Taking supremum all such f , we have

∥KN∥Lp(·)→Lp(·) ≥
1

|R|
∥χR∥Lp′(·)∥χR∥Lp(·) (9.2)

for all R ∈ BN . Since p(·) ∈ LH implies p(·) is continuous, we can find two closed
squares B1 and B2 in R2 with |B1|, |B2| < 1, such that

p+(B1) = sup
x∈B1

p(x) < inf
x∈B2

p(x) = p−(B2). (9.3)

Without loss of generality, rotating B1 and B2 if necessary, we can assume

B1 = [s− ε, s+ ε] × [t− ε, t+ ε], B2 = [s− ε, s+ ε] × [t′ − ε, t′ + ε],

for some ε > 0, 0 < ε < 1/2 and s, t, t′. Let R̃ be the smallest rectangle containing B1

and B2 and a := |t− t′|+ 2ε. We take N with a/N < 2ε, and choose R ⊂ R̃ with sides
parallel to R̃ and its size is a× a/N . We have

|R ∩B1| =
2aε

N
= |R ∩B2|.

Observe now that the following embeddings hold:

Lp(·)(B2) ↪→ Lp−(B2)(B2)

Lp′(·)(B1) ↪→ L(p+(B1))′(B1),
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where (p+(B1))
′ := p+(B1)

p+(B1)−1 . We have that

(9.2)
1

|R|
∥χR∥Lp(·)∥χR∥Lp′(·) ≥ |R|−1∥χR∩B2∥Lp(·)∥χR∩B1∥Lp′(·)

≥ |R|−1∥χR∩B2∥Lp−(B2)(B2)
∥χR∩B1∥L(p+(B1))

′
(B1)

= |R|−1 · |R ∩B2|
1

p−(B2) · |R ∩B1|
1

(p+(B1))
′

= a−2 · (2aε)
1

p−(B2)
+ 1

(p+(B1))
′
N

1− 1
p−(B2)

−1+ 1
p+(B1) ,

where 1
p+(B1)

− 1
p−(B2)

> 0 by (9.3), and we have used the fact that |B1|, |B2| < 1 in

the second inequality. This implies ∥KN∥Lp(·)→Lp(·) has a lower bound N
1

p+(B1)
− 1

p−(B2) .

9.3 Proof of Theorem 9.1.1

In what follows we shall prove Theorem 9.1.1. Recall that we set

c(p(·), N) := p− · sup
R

(
1

p−(R)
− 1

p+(R)

)
,

where the supremum is taken over all rectangles R ∈ BN with |R| ≤ 1. We need two
lemmas.

Lemma 9.3.1. Let N ≫ 1. Suppose that p(·) : R2 → [1,∞) belongs to LH and
p+ <∞. Then, for any rectangle R ∈ BN and any x ∈ R,

|R|p(x)−p+(R) ≤ CpN
p+(R)−p(x), |R|p−(R)−p(x) ≤ CpN

p(x)−p−(R),

where Cp is independent of N .

Proof. We prove the first inequality; the proof of the second is identical. When |R| ≥ 1,
there is nothing to prove. Suppose that |R| < 1 with the size a/N × a. We observe
|R| = a2/N and a <

√
N . In particular, since p(·) is continuous, there exists y ∈ R

such that p(y) = p+(R). If 1/4 ≤ a, then

|R|p(x)−p(y) = (a2N−1)p(x)−p(y)

=

(
1

a2

)p(y)−p(x)

·Np(y)−p(x)

≤ 16p+−p−Np+(R)−p(x).

If 0 < a < 1/4, then

Np(y)−p(x) exp{2(p(x) − p(y)) log a} ≤ Np+(R)−p(x) exp{2|p(x) − p(y)| log(1/a)}
≤ Np+(R)−p(x) exp{2|p(x) − p(y)| log(2/|x− y|)}

≤ Np+(R)−p(x) exp{2
log 2 − log |x− y|

− log |x− y|
}

≤ e4Np+(R)−p(x),
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where we used |x−y| < 2a and the local log-Hölder continuity of p(·), because |x−y| <
1/2 holds for all x, y ∈ R from a < 1/4.

The following lemma is due to [15]:

Lemma 9.3.2. Let p(·) : R2 → [1,∞) be such that p(·) ∈ LH∞, and let P (x) :=
(e + |x|)−M , M ≥ 2. Then there exists a constant C depending on M and the LH∞
constant of p(·) such that given any set E and any function F such that 0 ≤ F (y) ≤ 1,
y ∈ E, ∫

E
F (y)p(y) dy ≤ C

∫
E
F (y)p(∞) dy + C

∫
E
P (y)p(∞) dy, (9.4)∫

E
F (y)p(∞) dy ≤ C

∫
E
F (y)p(y) dy + C

∫
E
P (y)p(∞) dy. (9.5)

Proof. We will prove (9.4); the proof of the second inequality is essentially the same.
By the LH∞ condition,

P (y)−|p(y)−p(∞)| = exp(N log(e+ |y|)|p(y) − p(∞)|) ≤ exp(NC∞).

Write the set E as E1∪E2, where E1{x ∈ E : F (y) ≤ P (y)} and E2 = {x ∈ E : P (y) <
F (y)}. Then∫

E1

F (y)p(y) dy ≤
∫
E1

P (y)p(y) dy

≤
∫
E1

P (y)p(∞)P (y)−|p(y)−p(∞)| dy ≤ exp(NC∞)

∫
E1

P (y)p(∞) dy.

Similarly, since F (y) ≤ 1,∫
E2

F (y)p(y) dy ≤
∫
E2

F (y)p(∞)F (y)−|p(y)−p(∞)| dy

≤
∫
E2

F (y)p(∞)P (y)−|p(y)−p(∞)| dy ≤ exp(NC∞)

∫
E2

F (y)p(∞) dy.

Proof of Theorem 9.1.1 We may assume that f is nonnegative. We first linearize
the operator KN . For k ∈ N, we denote by Dk the family of all dyadic cubes Q =
2−k(m + [0, 1)2), m ∈ Z2. For each Q ∈ Dk we choose a rectangle R(Q) ∈ BN , such
that R(Q) ⊃ Q. We denote the operator Tk as

Tkf(x) :=
∑
Q∈Dk

1

|R(Q)|

∫
R(Q)

f(y) dyχQ(x).

By definition it is easy to see that

Tkf(x) ≤ KNf(x) (9.6)
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for any choice of rectangles {R(Q)}. On the other hand, there is a sequence of linearized
operators {Tkf} which converge pointwise to KNf as k tends to infinity. Thus, we need
only prove Theorem 9.1.1 with KN replaced by Tk with a constant C not depending
on k.

By homogeneity we may assume that ∥f∥p(·) = 1. Then

ρp(·)(f) =

∫
R2

f(x)p(x) dx ≤ 1.

Decompose f as f1 + f2, where f1 := fχ{x: f(x)>1} and f2 := fχ{x: f(x)≤1}. Then

ρp(·)(fi) ≤ ∥fi∥p(·) ≤ 1.

It will suffice to show that, for i = 1, 2, if λ ≥ CN c(p(·),N)(logN)2/p− , then

ρp(·)

(
Tkfi
λ

)
=

∫
R2

(
Tkfi(x)

λ

)p(x)

dx ≤ 1

The estimate for f1. It follows from Hölder’s inequality that

ρp(·)

(
Tkf1
λ

)
=
∑
Q∈Dk

∫
Q

(
1

λ

1

|R(Q)|

∫
R(Q)

f1(y) dy

)p(x)

dx

≤
∑
Q∈Dk

∫
Q

N−c(p(·),N)p(x)

Cp−(logN)2

(
1

|R(Q)|

∫
R(Q)

f1(y)
p−(R(Q))

p− dy

) p−p(x)

p−(R(Q))

dx.

(9.7)

There holds by Lemma 9.3.1

|R(Q)|−p(x) ≤
{
CpN

p(x)−p−(R(Q))|R(Q)|−p−(R(Q)) if |R(Q)| ≤ 1

|R(Q)|−p−(R(Q)) if |R(Q)| > 1

which yields

(9.7) ≤ Cp

Cp−(logN)2

∑
Q∈Dk

∫
Q
NAp |R(Q)|−p−

(∫
R(Q)

f1(y)
p−(R(Q))

p− dy

) p−p(x)

p−(R(Q))

dx,

where we have used p−/p−(R(Q)) ≤ 1 and

Ap :=

{
(p(x) − p−(R(Q))) p−

p−(R(Q)) − c(p(·), N)p(x), if |R(Q)| ≤ 1

−c(p(·), N)p(x), if |R(Q)| > 1.

Then we find Ap ≤ 0. Indeed, if |R(Q)| ≤ 1, then

Ap ≤ p−

(
p(x)

p−(R(Q))
− 1

)
−p−

(
p(x)

p−(R(Q))
− p(x)

p+(R(Q))

)
≤ −p− +p−

p+(R(Q))

p+(R(Q))
≤ 0.

68



If |R(Q)| > 1, there is nothing to prove:

ρp(·)

(
Tkf1
λ

)
≤ Cp

Cp−(logN)2

∑
Q∈Dk

|R(Q)|−p−

∫
Q

(∫
R(Q)

f1(y)
p−(R(Q))

p− dy

) p−p(x)

p−(R(Q))

dx

≤ Cp

Cp−(logN)2

∑
Q∈Dk

|R(Q)|−p−×

∫
Q

(∫
R(Q)

f1(y)
p(y)
p− dy

)p− (∫
R(Q)

f1(y)p(y) dy

)p−{ p(x)
p−(R(Q))

−1}

dx

≤ Cp

Cp−(logN)2

∑
Q∈Dk

∫
Q

(
1

|R(Q)|

∫
R(Q)

f1(y)
p(y)
p− dy

)p−

dx,

where we have used(∫
R(Q)

f1(y)p(y) dy

)p−{ p(x)
p−(R(Q))

−1}

≤
(∫

R2

f(y)p(y) dy

)p−{ p(x)
p−(R(Q))

−1}
≤ 1.

Therefore, since for Q ⊂ R(Q),

ρp(·)

(
Tkf1
λ

)
≤ Cp

Cp−(logN)2

∫
R2

KN [f
p(·)/p−
1 ](x)p− dx

≤ Cp

Cp−(logN)2
CK(logN)2

∫
R2

f1(x)p(x) dx ≤ CpCK

Cp−
.

Therefore, choosing C with (CpCK)1/p− ≤ C, we have ρp(·)(Tkf1/λ) ≤ 1.

The estimate for f2. Since f2 ≤ 1, we immediately see that

F :=
1

|R(Q)|

∫
R(Q)

f2(y) dy ≤ 1.

Therefore, by Lemma 9.3.2, with R(x) = (e+ |x|)−2,

ρp(·)

(
Tkf2
λ

)
=
∑
Q∈Dk

∫
Q

(
1

λ

1

|R(Q)|

∫
R(Q)

f2(y) dy

)p(x)

dx

≤ C(1)
∑
Q∈Dk

∫
Q

(
1

λ

1

|R(Q)|

∫
R(Q)

f2(y) dy

)p(∞)

dx

+ C(2)
∑
Q∈Dk

∫
Q
R(x)p(∞) dx.

We can immediately estimate the second term: since p(∞)ge2 and the sets Q ∈ Dk are
disjoint for each k,

C(2)
∑
Q∈Dk

∫
Q
R(x)p(∞) dx = C(2)

∫
R2

R(x)p(∞) dx ≤ C ′.
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We estimate the first term. Since p(∞) ≥ 2, KN is bounded on Lp(∞). Therefore,

C(1)
∑
Q∈Dk

∫
Q

(
1

λ

1

|R(Q)|

∫
R(Q)

f2(y) dy

)p(∞)

dx

≤ C(1)

Cp(∞)(logN)2

∑
Q∈Dk

∫
Q
KNf2(x)p(∞) dx

=
C(1)

Cp(∞)(logN)2

∫
R2

KNf2(x)p(∞) dx

≤ C(1)CK(logN)2

Cp(∞)(logN)2

∫
R2

f2(x)p(∞) dx,

since f2 ≤ 1 we can apply Lemma 9.3.2 again,

C(1)CK

Cp(∞)

∫
R2

f2(x)p(∞) dx ≤ C(1)CK

Cp(∞)

(
C(3)

∫
R2

f2(x)p(x) dx+ C(4)

∫
R2

R(x)p(∞) dx

)
≤ C(1)CK

Cp(∞)
(C(3) + C ′′).

Combining the above constants, we can find sufficiently large constant C such that
ρp(·)(Tkf2/λ) ≤ 1.
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