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Chapter 1

Introduction

The relations between torus actions on manifolds and combinatorics has been
studied by many mathematicians. Among those, hamiltonian torus actions on
symplectic manifolds provides us a powerful tool to study their geometry and
topology from combinatorics. On one hand, we can consider symplectic toric
manifolds. The moment polytopes, the images of moment maps, are the best in-
variants for them in the sense that two symplectic toric manifolds are isomorphic
if and only if their moment polytopes are the same ([12]). On the other hand,
we can consider non-singular projective varieties with an algebraic torus action.
In some nice situations, the GKM theory ([20]) describes the torus equivariant
cohomology combinatorially in terms of the data of 0 and 1 dimensional orbits.
In this thesis, we will study torus actions on symplectic manifolds (or orbifolds)
in these two extremal situations.

In chapter 1, we will generalize the convexity theorem of moment polytopes
mentioned above. Let (M,ω) be a compact symplectic manifold. Suppose that
a torus T acts on M in a hamiltonian fashion with a moment map µ. Then the
image µ(M) of the moment map is a convex polytope whose vertices are the
image of the fixed points of the T -action. This theorem is proved by Atiyah
[7] and Guillemin-Sternberg [23]. Our generalization is motivated by integrable
systems; the integrable structure of the Toda lattice has a distinguished property
that it admits two integrable structures in which their intersection gives the
hamiltonian function of the Toda lattice [6] and that these functions together
provides a super-integrable system. Namely, there are 2N − 1 independent
functions

fN , · · · , f2, H, g2, · · · , gN

where both of {fN , · · · , f2,H} and {H, g2, · · · , gN} are pairwise Poisson com-
mutative and 2N is the dimension of the Toda lattice. We will formulate this
situation in terms of tangled hamiltonian torus actions on symplectic manifolds.
We will include many explicit examples. We will also discuss a relation between
our convexity theorem and super-integrable systems. This chapter is based on
[1] which is the detailed version of an announcement [2].
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6 CHAPTER 1. INTRODUCTION

In chapter 2, we will introduce and study the basic theory of equivariant
cohomology. For a topoplogical group G and a topological space X with a
G-action, the G-equivariant cohomolgy is H∗G(X) is defined by

H∗G(X) = H∗(EG×G X)

where EG→ BG is a contractible universal principal G-bundle, and the G ac-
tion on EG×GX is given by g(α, x) = (αg−1, gx) for g ∈ G, α ∈ EG and x ∈ X.
In particular, torus equivariant cohomology H∗T (X) is interesting since, under
some topological condition ofX, the equivariant cohomologyH∗T (X) can be pre-
sented combinatorially and we can also study the non-equivariant cohomology
H∗(X) from the equivariant cohomology. This chapter includes approximations
of equivariant cohomology, constructions of equivariant fundamental classes of
subvarieties, and the GKM theory ([20]). We will use all of these techniques in
the next chapter.

In chapter 3, we will study Schubert calculus on weighted Grassmannians
wGr(d, n). Let d < n be positive integers and aPl(d, n) ⊂ ∧dCn the non-singular
variety defined by the Plücker relations. We consider a linear C×-action on Cn
with weights w1, · · · , wn ∈ Z≥0, and we then we get the induced linear C×-
action on ∧dCn which preserves aPl(d, n). Although we will not give the precise
description of these actions here, but it will follow that these actions have at
most finite stabilizers, and the weighted Grassmannian wGr(d, n) is defined by

wGr(d, n) = (aPl(d, n)\{0})/C×.

This is a projective variety, with at worst orbifold singularities which was in-
troduced by Corti and Reid [11]. Since there is a natural C×-invariant sym-
plectic form on aPl(d, n), we can also think of wGr(d, n) as a symplectic orb-
ifold. Although Schubert calculus has been studied only on partial flag vari-
eties which are smooth, recently some progress has been made for Schubert
calculus on singular spaces ([25], [8], [13] etc). The weighted Grassmannian
wGr(d, n) is particularly nice, because wGr(d, n) is presented by the quotient
of a non-singular quasi-projective variety by a C×-action with finite isotropies
as mentioned above. This picture enables us to introduce the weighted Schubert
classes. In fact, we consider a natural torus action on wGr(d, n) and introduced
equivariant weighted Schubert class, and we compute the equivariant structure
constants with respect to this basis. We will derive our structure constants by
twisting the structure constants with respect to equivariant Schubert classes in
H∗T (Gr(d, n)) studied by Knutson-Tao ([35]). An interesting corollary of this
computation is that the non-equivariant structure constants are non-negative
rational numbers when the weights of wGr(d, n) are increasing. This chapter is
based on [3] in collaboration with Tomoo Matsumura.

In chapter 4, we will introduce polynomials which represent weighted Schu-
bert classes in the cohomology ring of the weighted Grassmannian, and will
study the cohomology ring of infinite dimensional weighted Grassmannians in
terms of these polynomials. These polynomials are generalizations of Schur
polynomials and factorial Schur polynomials representing the cohomology and
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equivariant cohomology of Grassmannians. This chapter is based on [4] in col-
laboration with Tomoo Matsumura.
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Chapter 2

A Convexity Theorem for
Three Tangled Hamiltonian
Torus actions, and
super-integrable systems

2.1 Background and Results

In this chapter, we give a generalization of the convexity theorem in symplectic
geometry as an approach to a special class of integrable systems, called super-
integrable systems. We explain some background and our results in this section,
and prove them in later sections. We also present some examples which illustrate
our main theorem.

A symplectic manifold (M,ω) is a pair consisting of a smooth manifold M
and a non-degenerate closed two-form ω on M . Let G be a Lie group and g
its Lie algebra. A G-action on M is hamiltonian if the action preserves the
symplectic form ω and has a G-equivariant map µ :M → g∗ such that

ω(X], ·) = dµX (X ∈ g),

where X] is the vector field onM induced by the infinitesimal action X, and µX

is the function on M defined by µX = 〈µ,X〉. The map µ is called a moment
map.

Atiyah and Guillemin-Sternberg proved that the image of a moment map
of a hamiltonian torus action on a compact connected symplectic manifold is a
convex polytope ([7], [23]).

Theorem 2.1.1 (Atiyah [7], Guillemin-Sternberg [23]). Let (M,ω) be a compact
connected symplectic manifold. Let T be a torus and t its Lie algebra. Suppose
that M has a hamiltonian T -action with a moment map µ :M → t∗. Then the
image of µ is the convex hull of the image of the fixed point set of the action.

9



10 CHAPTER 2. A CONVEXITY THEOREM

Kirwan gave a generalization of Theorem 2.1.1 for hamiltonian group actions
of compact connected Lie groups ([33]).

Theorem 2.1.2 (Kirwan [33]). Let (M,ω) be a compact connected symplectic
manifold. Let G be a compact connected Lie group and g its Lie algebra. Suppose
that M has a hamiltonian G-action with a moment map µ : M → g∗. Then
the intersection of the image of µ with the positive Weyl chamber is a convex
polytope.

Recently, other various generalizations of Theorem 2.1.1 have been studied
(see [22]).

Before stating our main theorem, we explain some physical background. Let
(M,ω) be a symplectic manifold. By Darboux’s theorem, ω looks locally like the
standard linear symplectic form on an even dimensional Euclidean space. On
this Euclidean space, the integral curves of the Hamiltonian flow of a function are
the solutions of the Hamiltonian equation for this function, and this gives us the
relations with classical mechanics. To analyze a physical system, it is important
to find its symmetries since they give integrals of motion of the Hamiltonian
equation. We can regard a moment map of a hamiltonian action on a symplectic
manifold as a vector-valued map whose components are integrals of motion.
If the manifold is compact and the group is a torus of dimension 1

2 dimM
which acts effectively, we have a completely integrable system. In terms of
integrals of motion, a super-integrable system is a completely integrable system
with 1

2 dimM pairwise Poisson commutative integrals of motion (including the
hamiltonian function) which also has k (1 ≤ k ≤ 1

2 dimM − 1) extra integrals
of motion where the total 1

2 dimM + k functions are independent. Roughly
speaking, a super-integrable system is a completely integrable system in which
each trajectory is contained in a smaller torus than the Liouville tori. For an
analogue of Arnold-Liouville theorem for super-integrable systems, see [16] and
[44].

Several important completely integrable systems are super-integrable: the
harmonic oscillators, the Kepler sysetem, the Euler top, the non-periodic Toda
lattice, etc. In the case k = 1

2 dimM − 1 (which is called maximally super-
integrable), there are dimM − 1 independent integrals of motion which implies
that the generic trajectory has to be periodic if M is compact.

Let H be the hamiltonian function of the non-periodic Toda lattice of dimen-
sion 2N . It is well known that this system is a completely integrable system (i.e.
there exists N pairwise Poisson commutative independent functions including
H). In [6], Agrotis-Damianou-Sophocleous showed that the non-periodic Toda
lattice is maximally super-integrable. As they show, this system has an addi-
tional property: it has 2N − 1 independent functions

fN , · · · , f2,H, g2, · · · , gN

where both of {fN , · · · , f2,H} and {H, g2, · · · , gN} are pairwise Poisson com-
mutative. In this paper, we give a generalization of Theorem 2.1.1 motivated
by this additional property. It takes a somewhat different form compared to
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Theorem 2.1.2. In particular, we compose the moment map M → g∗ with the
restriction map to the dual of a sum of two commutative Lie subalgebra, and
study its convexity. We will see that the convex property also holds for these
maps.

Now, let us give the explicit statement of our main theorem.

Theorem 2.1.3. Let (M,ω) be a compact connected symplectic manifold. Let G
be a compact Lie group and g its Lie algebra. Suppose that M has a hamiltonian
G-action with a moment map µ :M → g∗. Assume that the Lie algebras t1, t2, t3
of maximal tori T1, T2, T3 of G satisfy the condition

ti = t1 ∩ t2 ∩ t3 + [tj , tk] for {i, j, k} = {1, 2, 3}. (2.1.1)

Let Rij : g∗ → (ti + tj)
∗ be the restriction map. Then for any i, j, k satisfying

{i, j, k} = {1, 2, 3}, the image of Rij ◦ µ : M → (ti + tj)
∗ is the convex hull of

the Ad∗(Tk)-orbit of the image of the fixed point set of the Ti-action.

Remark 1. This is an extension of Theorem 2.1.1, which is the case T1 = T2 =
T3.

Remark 2. We need the third Tk to study the convexity of Rij ◦ µ. It will be
shown that Tk acts on (ti + tj)

∗ through the adjoint action of G.

Remark 3. The fibers of Rij ◦ µ may not be connected, though the fibers of
µ in Theorem 2.1.1 are connected. Also, the image Rij ◦ µ(M) may not be a
polytope.

Remark 4. The main technique we use in this paper is Lie theoretic, and we
will use Theorem 2.1.1 itself to prove Theorem 2.1.3.

We also characterize the Lie subalgebras generated by t1, t2 and t3 that
satisfy equation (2.1.1) :

Proposition 2.1.4. Let G be a compact Lie group and T1, T2, T3 maximal tori
of G. Then the Lie subalgebras t1, t2, t3 of T1, T2, T3 satisfy the condition (2.1.1)
if and only if the linear subspace h = t1 + t2 + t3 is a Lie subalgebra of g, and

h ∼= Rm ⊕ su(2)⊕n (as Lie algebras)

where t1∩ t2∩ t3 corresponds to Rm and m+n = rankG, and for each summand
in su(2)⊕n, there exists a basis {e1, e2, e3} of su(2) such that ei ∈ su(2)∩ ti (i =
1, 2, 3) which satisfy [e1, e2] = e3, [e2, e3] = e1 and [e3, e1] = e2.

Finally, we obtain a super-integrable system by the following proposition.
We denote by (T1 ∩ T2 ∩ T3)0 the identity component of T1 ∩ T2 ∩ T3.

Proposition 2.1.5. Under the assumptions of Theorem 2.1.3, if T1 of dimen-
sion 1

2 dimM acts on M effectively and T3 = (R/Z)× (T1 ∩ T2 ∩ T3)0, then for
any X ∈ t1 ∩ t2, the triple (M,ω, µX) is a super-integrable system which has
1
2 dimM + 1 independent integrals of motion.
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This chapter is based on [1] which is the detailed version of an announcement
[2].
Organization: We will give a proof of Theorem 2.1.3 in section 2, and will study
the equation (2.1.1) in section 3. In section 4, we will explain some examples
illustrating Theorem 2.1.3. We will discuss a relation between Theorem 2.1.3
and super-integrable systems in section 5.
Acknowledgment. The author is grateful to Martin Guest and Takashi Otofuji
for their useful advice. This research is supported by JSPS Research Fellowships
for Young Scientists.

2.2 A proof of the main theorem (Theorem 2.1.3)

In this section, we prove Theorem 2.1.3. Let us rewrite the theorem in a con-
venient fashion to give a proof. Let i, j, k satisfy {i, j, k} = {1, 2, 3} below.
Because G is a compact Lie group, we can take a G-invariant inner product
φ : g×g→ R. Let us define identifications φ̃ : g→ g∗ and φ̃′ : ti+ tj → (ti+ tj)

∗

by φ̃(X) = φ(X, · )(X ∈ g) and φ̃′(Y ) = φ(Y, · |ti+tj )(Y ∈ ti + tj). The orthog-
onal decompositions g = (ti + tj) ⊕ (ti + tj)

⊥ with respect to φ induce the
projections

πij : g = (ti + tj)⊕ (ti + tj)
⊥ → ti + tj .

In fact, we have Ad∗(θk)(ti + tj) ⊂ ti + tj (see Lemma 2.2.2(a) below) and the
following commutative diagrams for any θk ∈ Tk:

g
πij−−−−→ ti + tj

φ̃

y yφ̃′

g∗
Rij−−−−→ (ti + tj)

∗

ti + tj
Ad(θk)−−−−→ ti + tj

φ̃′

y yφ̃′

(ti + tj)
∗ Ad∗(θk)−−−−−→ (ti + tj)

∗.

Let us define µ̃ = φ̃−1 ◦ µ : M → g. Although the target space of µ̃ is g rather
than g∗, we regard both of µ and µ̃ moment maps. For any subset A of g, let
us denote by

cvx(A)

the convex hull of A in g. In this settings, we can rewrite theorem 2.1.3 as
follows.

Theorem 2.2.1. Let (M,ω) be a compact connected symplectic manifold. Let G
be a compact Lie group and g its Lie algebra. Suppose that M has a hamiltonian
G-action with a moment a map µ : M → g∗. Assume that the Lie algebras
t1, t2, t3 of maximal tori T1, T2, T3 of G satisfy the condition (2.1.1). Then the
following holds for any {i, j, k} = {1, 2, 3}:

πij ◦ µ̃(M) = cvx
(
Ad(Tk) · πij ◦ µ̃

(
MTi

))
= cvx

(
Ad(Tk) · πij ◦ µ̃

(
MTj

))
.
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Without loss of generality we may assume i = 1, j = 2. We first prepare a
few lemmas.

Lemma 2.2.2. The following hold for any {i, j, k} = {1, 2, 3}:

(a) Tk acts on ti + tj via the adjoint action of G;

(b) ti + tj = Ad(Tk)ti.

Proof. First, let us prove (a). It is sufficient to show that T3 acts on t1 + t2 via
the adjoint action of G because of the symmetry of the assumption (2.1.1) with
respect to the symbols i, j, k. By the two conditions [t3, t1] ⊂ t2 and [t3, t2] ⊂ t1
implied by the assumption (2.1.1), we have

[t3, t1 + t2] ⊂ t1 + t2.

Hence, for every element X3 of t3, we have

Ad(expX3)(t1 + t2) = exp(ad(X3))(t1 + t2) ⊂ t1 + t2.

Now we obtain (a) from the fact T3 = exp t3. Next, let us prove (b). It suffices
to prove t1 + t2 = Ad(T3)t1. We have t1 + t2 ⊃ Ad(T3)t1 by (a). Let us show
the converse. That is, we show that for any element X of t1 + t2, there exists
an element θ3 of T3 which satisfy

Ad(θ3)X ∈ t1. (2.2.1)

To begin with, recall that there exists an element X ′ of t1 which satisfies
Zg(X

′) = Zg(t1) because t1 is a Lie algebra of T1 which is a maximal torus
of the compact Lie group G. Here, for any subset S ⊂ g, Zg(S) is defined to be
the centralizer of S, i.e.

Zg(S) = {W ∈ g | [W,A] = 0, A ∈ S}.

Now, we have Zg(t1) = t1 because t1 is a maximal abelian subalgebra of g.
Hence X ′ satisfies

Zg(X
′) = t1.

Let us define a function F : T3 → R by

F (θ) = φ(Ad(θ)X,X ′) for θ ∈ T3.

Since T3 is compact, there exists an element θ3 of T3 for which F (θ3) is a
maximum value of F . Then, for any element Y3 of t3, we have

d

dt
φ(Ad(etY3θ3)X,X

′)

∣∣∣∣
t=0

= 0,

and the left hand side can be calculated as

φ(ad(Y3)(Ad(θ3)X), X ′) = φ([Y3,Ad(θ3)X], X ′) = φ(Y3, [Ad(θ3)X,X
′]).
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Thus we obtain

φ(Y3, [Ad(θ3)X,X
′]) = 0 for Y3 ∈ t3. (2.2.2)

Since (a) implies that Ad(θ3)X is an element of t1 + t2, we have

[Ad(θ3)X,X
′] ∈ [t1 + t2, t1] = [t2, t1] ⊂ t3

by the assumption (2.1.1). This and (2.2.2) show that [Ad(θ3)X,X
′] = 0 by the

non-degeneracy of the inner product φ on t3. Hence, we obtain

Ad(θ3)X ∈ Zg(X
′) = t1

by the choice of X ′. This shows (2.2.1). �

We denote πij ◦ µ̃ by πijµ̃ for brevity.

Lemma 2.2.3. πij µ̃ :M → ti+ tj is Tk-equivariant for any {i, j, k} = {1, 2, 3}.

Proof. First, the statement makes sense by lemma 2.2.2. Since the moment map
µ̃ is G-equivariant, it is enough to notice the T3-equivariance of the projection
π12 : g → t1 + t2. This equivariance follows because the inner product φ is G-
invariant and hence T3 preserves the orthogonal decomposition g = (t1 + t2)⊕
(t1 + t2)

⊥. �

Let us define

t′i = {X ∈ ti | φ(X,Z) = 0, Z ∈ t1 ∩ t2 ∩ t3} (i = 1, 2, 3). (2.2.3)

Then the following holds.

Lemma 2.2.4. t′i ⊥ t′j (i 6= j)

Proof. It is sufficient to prove that t′1 ⊥ t′2. Take an element X ′1 of t′1. By the
assumption (2.1.1), we have

t′2 ⊂ t2 = t1 ∩ t2 ∩ t3 + [t3, t1]. (2.2.4)

Recall that [t3, t1] is the linear subspace of g generated by the subset {[Y3, Y1] ∈
g | Y3 ∈ t3, Y1 ∈ t1}. For any element Z of t1 ∩ t2 ∩ t3, we have

φ(X ′1, Z) = 0,

by the definition of t′1. For any element Y3 of t3 and any element Y1 of t1, we
have

φ(X ′1, [Y3, Y1]) = φ([Y1, X
′
1], Y3) = φ(0, Y3) = 0,

because t1 is abelian. Now (2.2.4) shows φ(X ′1, t2) = {0}. �
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The orthogonal decomposition g = t1 ⊕ t⊥1 with respect to φ induces the
projection

π1 : g = t1 ⊕ t⊥1 → t1.

Then we can identify π1µ̃(M) with the moment polytope of the T1-action as
usual.

Lemma 2.2.5. For any T1-invariant subset M ′ of M , we have π1µ̃(M
′) ⊂

π12µ̃(M
′).

Proof. Take any point p of M ′. Then π23µ̃(p) is an element of t2 + t3. Lemma
2.2.2 (b) and Lemma 2.2.3 shows that there exists an element θ1 of T1 where
π23µ̃(θ1·p) is an element of t3. The definition of t′2 and Lemma 2.2.4 shows that
we have an orthogonal direct sum decomposition

t2 + t3 = t′2 ⊕ t3.

Since π23µ̃(θ1·p) is in t3, the element µ̃(θ1·p) is orthogonal to t′2. By the similar
orthogonal direct sum decomposition

t1 + t2 = t1 ⊕ t′2,

we can deduce that π12µ̃(θ1 ·p) is an element of t1. Hence we we have

π12µ̃(θ1 ·p) = π1µ̃(θ1 ·p).

Thus, the T1-invariance of M ′ shows that

π1µ̃(p) = π1µ̃(θ1 ·p) = π12µ̃(θ1 ·p) ∈ π12µ̃(M ′). �

Let us prove the convexity of π12µ̃(M) with the aid of the above lemmas.
Take two points p and p′ of M and a point t of [0, 1]. Then (1 − t)π12µ̃(p) +
tπ12µ̃(p

′) is an element of t1+ t2, and so Lemma 2.2.2 (b) and lemma 2.2.3 show
that there exists an element θ3 of T3 where (1 − t)π12µ̃(θ3 ·p) + tπ12µ̃(θ3 ·p′) is
an element of t1. Let us define q and q′ by

q = θ3 ·p and q′ = θ3 ·p′.

Let π̃ : t1 + t2 → t1 be the orthogonal projection with respect to φ, then we
have

π̃(Y1) = Y1 for Y1 ∈ t1. (2.2.5)

We also have π̃π12 = π1. Since (1 − t)π12µ̃(q) + tπ12µ̃(q
′) is an element of t1,

we have

(1− t)π12µ̃(q) + tπ12µ̃(q
′) = π̃((1− t)π12µ̃(q) + tπ12µ̃(q

′))

= (1− t)π̃π12µ̃(q) + tπ̃π12µ̃(q
′)

= (1− t)π1µ̃(q) + tπ1µ̃(q
′),
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and this is an element of π1µ̃(M) by theorem 2.1.1. By lemma 2.2.5, we obtain

(1− t)π12µ̃(q) + tπ12µ̃(q
′) ∈ π12µ̃(M).

Thus π12µ̃(M) is convex.

Next, let us prove that π12µ̃(M) is equal to the convex hull of Ad(Tk)π12µ̃(M
Ti)

by using the convexity of π12µ̃(M). By an argument similar to that of (2.2.5),
we have

π12µ̃(M) ∩ t1 = π̃ (π12µ̃(M) ∩ t1) ⊂ π1µ̃(M).

Hence we obtain

π12µ̃(M) ∩ t1 = π1µ̃(M) (2.2.6)

by lemma 2.2.5. By applying Ad(T3) to the this equality, we have

Ad(T3)π1µ̃(M) = Ad(T3)(π12µ̃(M) ∩ t1)

=
∪

θ3∈T3

(Ad(θ3)π12µ̃(M) ∩Ad(θ3)t1)

=
∪

θ3∈T3

(π12µ̃(M) ∩Ad(θ3)t1)

= π12µ̃(M) ∩ (Ad(T3)t1)

= π12µ̃(M) ∩ (t1 + t2)

= π12µ̃(M) (2.2.7)

by lemma 2.2.2 (b) and lemma 2.2.3. Since T1 acts on MT1 trivially, we obtain

π1µ̃(M
T1) ⊂ π12µ̃(MT1)

by Lemma 2.2.5. Thus we have

π12µ̃(M) = Ad(T3)π1µ̃(M)

= Ad(T3)cvx(π1µ̃(M
T1))

⊂ cvx
(
Ad(T3)π1µ̃(M

T1)
)

⊂ cvx(Ad(T3)π12µ̃(M
T1))

= cvx(π12µ̃(T3 ·MT1))

⊂ cvx(π12µ̃(M))

= π12µ̃(M).

Here, we used the convexity of π12µ̃(M) at the last equality. This shows
π12µ̃(M) = cvx(Ad(T3)π12µ̃(M

T1)). This completes the proof of Theorem 2.2.1
(and hence Theorem 2.1.3).
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2.3 The characterization of the Lie subalgebras
generated by t1, t2 and t3

In this section, we characterize the Lie algebras t1, t2 and t3 satisfying the con-
dition (1.1). We use the classification of the compact simple Lie algebras for
this purpose.

In the following, we give a proof of Proposition 2.1.4. First of all, let us prove
that h is a Lie subalgebra of g. Take any two elements X = X1+X2+X3 (Xi ∈
ti), Y = Y1 + Y2 + Y3 (Yi ∈ ti) of h. Then we have

[X,Y ] =
3∑

i,j=1

[Xi, Yj ]. (2.3.1)

Since the condition (2.1.1) implies that

[ti, tj ] ⊂ tk (2.3.2)

for any i, j, k satisfying {i, j, k} = {1, 2, 3}, the right hand side of (2.3.1) is an
element of h. Thus h is a Lie subalgebra of g. Define

h′ := t′1 + t′2 + t′3. (2.3.3)

where t′i (i = 1, 2, 3) are the ones defined in (2.2.3). Let us show that h′ is a Lie
subalgebra of h. For this, it is suffices to show

[t′i, t
′
j ] ⊂ t′k (2.3.4)

for any i, j, k satisfying {i, j, k} = {1, 2, 3}. So let us show this property. Note
that [t′i, t

′
j ] is the linear subspace of g generated by the subset {[Xi, Xj ] ∈ g |

Xi ∈ t′i, Xj ∈ t′j}. For any elements X ′i and X
′
j of t

′
i and t′j respectively, we have

[X ′i, X
′
j ] ∈ [t′i, t

′
j ] ⊂ [ti, tj ] ⊂ tk, (2.3.5)

and for any element Z of t1 ∩ t2 ∩ t3, we have

φ([X ′i, X
′
j ], Z) = φ(X ′i, [X

′
j , Z]) = φ(X ′i, 0) = 0.

Since this shows (2.3.4), we proved that h′ is a Lie subalgebra of h.
Next, let us show that we have an orthogonal decomposition

h = (t1 ∩ t2 ∩ t3)⊕ h′ (2.3.6)

which is also a decomposition as Lie algebra. By the definition of t′i, we have
an orthogonal decomposition

ti = (t1 ∩ t2 ∩ t3)⊕ t′i (i = 1, 2, 3). (2.3.7)

So we obtain h ⊂ t1 ∩ t2 ∩ t3 + h′. Since h′ and t1 ∩ t2 ∩ t3 is orthogonal with
respect to φ by the definitions of h′, their intersection is {0}. Thus we obtain
the orthogonal decomposition h = t1∩t2∩t3⊕h′. This is in fact a decomposition
of h as a Lie algebra because each ti is abelian.
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Lemma 2.3.1. t′i(i = 1, 2, 3) is a maximal abelian subalgebra of h′.

Proof. We prove this only for t1. Suppose that an element X ′ of h′ satisfies

[X ′, t′1] = {0}.

Then, since t1∩t2∩t3 commutes with h′, we obtain [X ′, t1] = {0}. Hence, by the
maximality of t1, X

′ is an element of h′ ∩ t1. Since (t′1 + t′2 + t′3) ⊥ (t1 ∩ t2 ∩ t3),
we obtain

h′ ∩ t1 = (t′1 + t′2 + t′3) ∩ t1 ⊂ t′1.

So X ′ is an element of t′1. �

Lemma 2.3.2. h′ is a compact semi-simple Lie algebra.

Proof. The reason for h′ being compact semi-simple is that h′ is a Lie subalgebra
of the compact Lie algebra g and that h′ has trivial center. Here, we give a proof
for the reader. Let X ′ be an element of h′ which satisfies

Tr(adh′(X ′) ◦ adh′(Y ′)) = 0 (Y ′ ∈ h′). (2.3.8)

We show that X ′ = 0. Since g has the G-invariant inner product φ, the adjoint
action can be written by Ad : G→ O(g) with respect to φ. Differentiating this,
we obtain

ad : g→ o(g).

Let us write the adjoint action of h′ by adh′ : h′ → gl(h′). The inner product φ
on g induces an inner product φ′ on h′, and this map can be written by

adh′ : h′ → o(h′) (2.3.9)

with respect to this inner product φ′. Now, by choosing a basis of h′, adh′(X ′)
is represented by a skew-symmetric matrix. Let us denote this matrix by (aij).
Choosing X ′ as Y in (2.3.8), we obtain

Tr(adh′(X ′) ◦ adh′(X ′)) = 0.

Since the left hand side of this equation can be written by

n∑
i,j=1

aijaji = −
n∑

i,j=1

aij
2 (2.3.10)

with respect to the above representation, we obtain aij = 0(i, j = 1, · · · , n).
This means

adh′(X ′) = 0. (2.3.11)
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Now let us show that (2.3.9) is an injection to prove X ′ = 0. Here, since the
injectivity of (2.3.9) and the triviality of the center of h′ are equivalent, we show
the latter. Let W be an element of the center of h′. That is, we have

[W,Y ′] = 0 for Y ′ ∈ h′.

Since t′1 ⊂ h′, we have [W, t′1] = {0}. Then Lemma 2.3.1 shows that W is an
element of t′1. Similarly, we can show W ∈ t′2. Since we have t′1 ∩ t′2 = 0 by
Lemma 2.2.4, we obtain W = 0. This shows that the center of h is 0 as desired,
and (2.3.9) is injective. Thus we obtain X ′ = 0 by (2.3.11). This shows that h′

is semi-simple. Now by (2.3.10), h′ is a compact Lie algebra. �

Since h′ is a compact semi-simple Lie algebra, there exists ideals h′1, · · · , h′n
of h′ which satisfy

1) h′1, · · · , h′n are compact simple Lie algebras,

2) h′ = h′1 ⊕ · · · ⊕ h′n,

Then Lemma 2.2.4 and Lemma 2.3.1 shows that

dim h′ = dim t′1 + dim t′2 + dim t′3 = 3dim t′1 = 3 rank h′. (2.3.12)

Also, the decomposition h′ = h′1 ⊕ · · · ⊕ h′n, means

dim h′ = dim h′1 + · · ·+ dim h′n

rank h′ = rank h′1 + · · ·+ rank h′n.

Combining these equalities, we obtain

(dim h′1 − 3 rank h′1) + · · ·+ (dim h′n − 3 rank h′n) = 0. (2.3.13)

The classification of compact simple Lie algebras shows that, for any compact
semi-simple Lie algebra a, we have

dim a− 3 rank a ≥ 0,

and we have equality if and only if a ∼= su(2) (i.e. dim a = 3 and rank a = 1).
Thus (2.3.13) shows that

h′l
∼= su(2) for l = 1, · · · , n.

Now the decomposition h = t1 ∩ t2 ∩ t3 ⊕ h′ (as Lie algebras) shows that h ∼=
Rm ⊕ su(2)⊕n where t1 ∩ t2 ∩ t3 corresponds to Rm.

In the following, we regard su(2)⊕n = h′ = t′1+ t′2+ t′3 ⊂ t1+ t2+ t3. Lemma
2.2.4 shows that

3 dim t′i = dim(t′1 + t′2 + t′3) = dim(su(2)⊕n) = 3n.
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So t′i is an n-dimensional abelian Lie subalgebra of su(2)⊕n (i = 1, 2, 3), and
this shows that m+ n = dim ti = rankG. Let us define

X1 =
1

2

(
i 0
0 −i

)
, X2 =

1

2

(
0 1
−1 0

)
, X3 =

1

2

(
0 i
i 0

)
.

Then each (span{Xi})⊕n ⊂ su(2)⊕n is a maximal abelian Lie subalgebra of
dimension n for i = 1, 2, 3. This shows that t′1 is also a maximal abelian Lie
subalgebra of su(2)⊕n because of its dimension. Now Cartan’s theorem shows
that there exists elements gi1, · · · , gin of SU(2) such that

Ad(gi1, · · · , gin)((span{Xi})⊕n) = t′i

So we obtain

Ad(gi1)(span{Xi})⊕ · · · ⊕Ad(gin)(span{Xi}) = t′i,

and this shows

dim(t′i ∩ su(2)) = 1 (2.3.14)

for each summand in su(2)⊕n. That is, we obtain

t′i = (t′i ∩ su(2))⊕ · · · ⊕ (t′i ∩ su(2)) (2.3.15)

because of its dimension.
Fix a summand su(2) of su(2)⊕n, and choose a basis ei of t

′
i∩su(2) (i = 1, 2, 3)

where each ei is a unit vector with respect to the inner product −2Tr(·, ·) on
su(2). Then (2.3.14), (2.3.15) and the condition (2.1.1) now state that [e1, e2] 6=
0, [e2, e3] 6= 0, [e3, e1] 6= 0 and

[ei, ej ] ∈ tk ∩ su(2) for {i, j, k} = {1, 2, 3}.

So there exists a, b, c ∈ R− {0} such that

[e1, e2] = ae3, [e2, e3] = be1, [e3, e1] = ce2.

Since [ei, ej ] has to be orthogonal to ei and ej , this condition shows that
{e1, e2, e3} forms an orthonormal basis of su(2) (with respect to the above inner
product on su(2)). Recalling that the adjoint action Ad : SU(2)→ O(su(2)) ∼=
SO(3) is a surjection, there exists en element g ∈ SU(2) such that

Ad(g)X1 = e1, Ad(g)X2 = e2, Ad(g)X3 = e3,

or

Ad(g)X1 = e1, Ad(g)X3 = e3, Ad(g)X2 = e2,

depending on their orientations. Since we have

[X1, X2] = X3, [X2, X3] = X1, [X3, X1] = X2
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by direct calculations, we obtain

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2,

or

[e1, e2] = −e3, [e2, e3] = −e1, [e3, e1] = −e2.

Retaking e3 by −e3 in the latter case, we obtain

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2

as claimed in Proposition 2.1.4.
Let us prove the converse. Assume that t1, t2 and t3 satisfy the conditions

in Proposition 2.1.4. The standard basis of Rm = t1 ∩ t2 ∩ t3 and the collection
of ei in each summand in su(2)⊕n form a basis of ti (i = 1, 2, 3) since m+ n =
rankG = dim ti. Let i, j, k be integers such that {i, j, k} = {1, 2, 3}. Then
the conditions [ej , ek] = ei on each summand in su(2)⊕n insist that [tj , tk] is
contained in ti and we have dim[tj , tk] = n. Take a G-invariant inner product
φ on g. Then t1 ∩ t2 ∩ t3 is orthogonal to [tj , tk] because of G-invariance of φ.
Hence we obtain

(t1 ∩ t2 ∩ t3) + [tj , tk] = (t1 ∩ t2 ∩ t3)⊕ [tj , tk] ⊂ ti.

Since we have m+ n = rankG = dim ti, we obtain

(t1 ∩ t2 ∩ t3) + [tj , tk] = ti.

This completes our proof of Proposition 2.1.4.

2.4 Examples

In this section, we give some examples which illustrate Theorem 2.1.3. It is
convenient to use Theorem 2.2.1 rather than Theorem 2.1.3 for those examples.
Observe that (2.2.6) and (2.2.7) show the following corollaries, and those will
be useful to understand examples in this section.

Corollary 2.4.1. Under the assumptions of Theorem 2.2.1, the following holds.

(π12 ◦ µ̃(M)) ∩ t1 = π1 ◦ µ̃(M)

Corollary 2.4.2. Under the assumptions of Theorem 2.2.1, the following holds.

π12 ◦ µ̃(M) = Ad(T3)(π1 ◦ µ̃(M))

That is, the image π12 ◦ µ̃(M) is the Ad(T3)-orbit of the moment polytope for
the T1 action.

Remark 2.4.3. By the symmetry of the indexes in the assumption 2.1.1, the
same statements hold after replacing π1◦µ̃(M) to π2◦µ̃(M) where πi : t1+t2 → ti
is the orthogonal projections.
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2.4.1 Example 1: the 2-dimensional sphere

The 2dimensional sphere S2 is a symplectic manifold whose symplectic form is
the pull-back of the standard orientation form on R3. The standard SO(3)-
action on S2 is a hamiltonian action. Let us define a SO(3)-invariant inner
product φ : so(3)× so(3)→ R by

φ(X,Y ) = Tr(tXY ) (X,Y ∈ so(3)).

Then the map µ̃ : S2 −→ so(3) defined by

µ̃(x) =
1

2

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (x ∈ S2)

is a moment map of the SO(3)-action on S2. Now, define

t1 =


 0 −θ 0
θ 0 0
0 0 0

 ∈ so(3)

∣∣∣∣∣∣ θ ∈ R

 ,

t2 =


 0 0 η

0 0 0
−η 0 0

 ∈ so(3)

∣∣∣∣∣∣ η ∈ R

 ,

t3 =


 0 0 0

0 0 −ξ
0 ξ 0

 ∈ so(3)

∣∣∣∣∣∣ ξ ∈ R

 ,

and define

T1 = exp t1, T2 = exp t2, T3 = exp t3,

then T1, T2, and T3 are maximal tori of SO(3). Now, the map π12 ◦ µ̃ : S2 −→
t1 + t2 is written by

π12 ◦ µ̃(x) =
1

2

 0 −x3 x2
x3 0 0
−x2 0 0

 (x ∈ S2).

From this explicit form, it is clear that the image π12 ◦ µ̃(S2) is a closed disc.
Let us calculate the image π12 ◦ µ̃(S2) by Theorem 2.2.1. First, we have

(S2)T1 = {(0, 0, 1), (0, 0,−1)}.

So we obtain

π12 ◦ µ̃((S2)T1) =

1

2

 0 −1 0
1 0 0
0 0 0

 ,
1

2

 0 1 0
−1 0 0
0 0 0

 . (2.4.1)
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We also have

T3 = exp t3 =


 1 0 0

0 cos ξ − sin ξ
0 sin ξ cos ξ

 ∈ SO(3)

∣∣∣∣∣∣ ξ ∈ R

 . (2.4.2)

Now a direct calculation shows

Ad(T3)(π12 ◦ µ̃((S2)T1)) =

 1

2

 0 − cos ξ − sin ξ
cos ξ 0 0
sin ξ 0 0

 ∈ so(3)

∣∣∣∣∣∣ ξ ∈ R

 .

Since this is a circle in the plane t1+ t2, by Theorem 2.2.1, the image π12 ◦ µ̃(S2)
is a closed disk which is given by the convex hull of this circle (Figure2.4.1).
Note that, from Figure 2.4.1, it is obvious that generic level sets of π12 ◦ µ̃ :
S2 −→ t1 + t2 are not connected.

Remark 2.4.4. In general, we always have (π12◦µ̃)−1(0) = (π1◦ µ̃)−1(0)∩(π2◦
µ̃)−1(0) under the assumption of Theorem 2.2.1 where πi ◦ µ̃→ ti is a moment
map of the Ti-action for i = 1, 2.

•

••

•

•

•

Figure 2.4.1: S2, π12 ◦ µ̃(S2) and the moment polytope for T1 action

2.4.2 Example 2: the complex projective spaces

The complex projective space CPn is a symplectic manifold whose symplectic
form is the Fubini-Study form. The standard SU(n + 1)-action on CPn is a
hamiltonian action with a moment map µ : CPn → su(n + 1)∗. We identify
su(n+1) and su(n+1)∗ by the SU(n+1)-invariant inner product −Tr(· ×· ) on
su(n+1). First, we construct t1, t2 and t3 in su(n+1). For simplicity, let us as-
sume n = 2k(k ≥ 1). We note a similar construction for the case n = 2k+1(k ≥
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0) in the appendix. Define X1, · · · , Xn, Y1, · · · , Yn, Z1, · · · , Zn,W1, · · · ,Wk ∈
su(2k + 1) by

X1 =



0
−i 0
0 i

0 0
0 0

. . .

0 0
0 0


, · · · , Xk =



0
0 0
0 0

0 0
0 0

. . .

−i 0
0 i


,

Y1 =



0
0 −1
1 0

0 0
0 0

. . .

0 0
0 0


, · · · , Yk =



0
0 0
0 0

0 0
0 0

. . .

0 −1
1 0


,

Z1 =



0
0 i
i 0

0 0
0 0

. . .

0 0
0 0


, · · · , Zk =



0
0 0
0 0

0 0
0 0

. . .

0 i
i 0


,

W1 =



−2i
i 0
0 i

0 0
0 0

. . .

0 0
0 0


, · · · , Wk =



−2i
0 0
0 0

0 0
0 0

. . .

i 0
0 i


.

We define the Lie subalgebras t1, t2 and t3 of su(2k + 1) by

t1 = span{W1, · · · ,Wk, X1, · · · , Xk},
t2 = span{W1, · · · ,Wk, Y1, · · · , Yk},
t3 = span{W1, · · · ,Wk, Z1, · · · , Zk}.
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Then these satisfy the condition (2.1.1), and

T1 = exp t1, T2 = exp t2, T3 = exp t3

are maximal tori of SU(2k + 1). Now we consider the map

π12 ◦ µ̃ : CP 2k −→ t1 + t2.

Theorem 2.2.1 states that the image of this map is the convex hull of the Ad(T3)-
orbit of the image of the fixed point set MT1 of the T1-action. Here, the fixed
point set (CP 2k)T1 is

(CP 2k)T1 = {[1, 0, · · · , 0], [0, 1, · · · , 0], · · · , [0, · · · , 0, 1]}.

In the following, we study the case k = 1 in detail.

The case k = 1 (the complex projective plane CP 2):

Let us give the explicit description of the image of π12 ◦ µ for the case of
the complex projective plane CP 2 with the standard hamiltonian SU(3)-action.
We can take

µ̃([z]) = − i

2|z|2

 |z0|2 − |z|2/3 z0z1 z0z2
z1z0 |z1|2 − |z|2/3 z1z2
z2z0 z2z1 |z2|2 − |z|2/3

 (z ∈ C3 − {0})

as a moment map of this action. The above construction gives us

t1 =


−2iζ 0 0

0 iζ 0
0 0 iζ

+

 0 0 0
0 iθ 0
0 0 −iθ

 ∈ su(3)

∣∣∣∣∣∣ ζ, θ ∈ R

 ,

t2 =


−2iζ 0 0

0 iζ 0
0 0 iζ

+

 0 0 0
0 0 −η
0 η 0

 ∈ su(3)

∣∣∣∣∣∣ ζ, η ∈ R

 ,

t3 =


−2iζ 0 0

0 iζ 0
0 0 iζ

+

 0 0 0
0 0 iξ
0 iξ 0

 ∈ su(3)

∣∣∣∣∣∣ ζ, ξ ∈ R

 ,

Now, the map π12 ◦ µ̃ : CP 2 −→ t1 + t2 is given by

π12 ◦ µ̃([z]) = −
i

2|z|2

 |z0|2 − |z|2/3 0 0
0 |z1|2 − |z|2/3 iIm(z1z̄2)
0 −iIm(z1z̄2) |z2|2 − |z|2/3

 (z ∈ C3 − {0}).

Let us calculate the image π12 ◦ µ̃(CP 2). At first, we have

(CP 2)T1 = {[1, 0, 0], [0, 1, 0], [0, 0, 1]},
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π12 ◦ µ̃((CP 2)T1) =

1

6

−2i 0 0
0 i 0
0 0 i

 ,
1

6

 i 0 0
0 −2i 0
0 0 i

 ,
1

6

 i 0 0
0 i 0
0 0 −2i

 .

(2.4.3)

We also have

T3 = exp t3 =


 e−2iζ 0 0

0 eiζ 0
0 0 eiζ

 0 0 0
0 cos ξ i sin ξ
0 i sin ξ cos ξ

 ∈ su(3)

∣∣∣∣∣∣ ζ, ξ ∈ R

 .

So we obtain

Ad(T3)(π12 ◦ µ̃((CP 2)T1))

=

1

6

−2i 0 0
0 i 0
0 0 i


∪

− 1

12

−2i 0 0
0 i 0
0 0 i

− 1

4

 0 0 0
0 i cos 2ξ sin 2ξ
0 − sin 2ξ −i cos 2ξ

 ∈ su(3)

∣∣∣∣∣∣ ξ ∈ R

 .

Defining

a1 =

 0 0 0
0 i 0
0 0 −i

 , a2 =

−2i 0 0
0 i 0
0 0 i

 , a3 =

 0 0 0
0 0 1
0 −1 0

 ,

we have t1 = span{a1, a2}, t1 + t2 = span{a1, a2, a3}. Now we can write

Ad(T3)(π12 ◦ µ̃((CP 2)T1))

=

{
1

6
a2

}
∪
{
− 1

12
a2 −

1

4
(cos 2ξ)a1 −

1

4
(sin 2ξ)a3 ∈ su(3)

∣∣∣∣ ξ ∈ R
}
.

This is a union of a point and a circle in t1 + t2 + t3, and Theorem 2.2.1 states
that the image π12 ◦ µ̃(CP 2) is the closed cone with its interior which is given
by the convex hull of the point and the circle (Figure2.4.2).

• •

••••

•

•
•

Figure 2.4.2: π12 ◦ µ̃(CP 2) and the moment polytopes for T1 and T2 actions
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2.4.3 Example 3: the flag manifolds

The flag manifold Fln(C) is a symplectic manifold as a coadjoint orbit of SU(n).
The SU(n)-action on Fln(C) is a hamiltonian action and the inclusion of the
orbit into su(n+ 1)∗ is a moment map. Denote this inclusion by µ : Fln(C)→
su(n)∗ Taking the same Lie subalgebras t1, t2 and t3 of su(n) as in previous
example, we can consider the map

π12 ◦ µ : Fln(C) −→ t1 + t2.

Theorem 2.2.1 states that the image of this map is the convex hull of the
Ad(T3)-orbit of the image of the fixed point set MT1 . Here, the fixed point set
MT1 is the coordinate flags. In the following, we study the case n = 3 in detail.

The case n = 3 (the flag manifold Fl3(C)):
Let X be an element of su(3) of the form

X =

 i 0 0
0 0 0
0 0 −i

 .

We identify the flag manifold Fl3(C) with the SU(3)-adjoint orbit of X via
the SU(3)-invariant inner product −Tr(·, ·). Then we can take the inclusion
ι : Fl3(C) ↪→ su(3) as a moment map µ̃ of the SU(3)-action on Fl3(C).

Composing ι : Fl3(C) ↪→ su(3) with the orthogonal projection π12 : su(3)→
t1 + t2, we obtain a map

π12 ◦ ι : Fl3(C)→ t1 + t2.

Let us calculate the image π12 ◦ ι(Fl3(C)). At first, we have

Fl3(C)T1 =


 i 0 0

0 0 0
0 0 −i

 ,

−i 0 0
0 0 0
0 0 i

 ,

 0 0 0
0 i 0
0 0 −i

 ,

 0 0 0
0 −i 0
0 0 i

 ,

−i 0 0
0 i 0
0 0 0

 ,

 i 0 0
0 −i 0
0 0 0

 .

Let us define

a1 =

 0 0 0
0 i 0
0 0 −i

 , a2 =
1√
3

−2i 0 0
0 i 0
0 0 i

 , a3 =

 0 0 0
0 0 1
0 −1 0

 .

Then we have

t1 = span{a1, a2}, t1 + t2 = span{a1, a2, a3},
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and

Fl3(C)T1 =

{
1

2
a1 −

√
3

2
a2, −

1

2
a1 +

√
3

2
a2, a1,

−a1,
1

2
a1 +

√
3

2
a2, −

1

2
a1 −

√
3

2
a2

}
.

Now π12 ◦ ι : Fl3(C)→ t1+ t2 maps each of elements in MT1 to itself since they
are elements of t1. That is to say, we obtain

π12 ◦ ι(Fl3(C)T1) =

{
1

2
a1 −

√
3

2
a2, −

1

2
a1 +

√
3

2
a2, a1,

−a1,
1

2
a1 +

√
3

2
a2, −

1

2
a1 −

√
3

2
a2

}
.

So the image π12 ◦ ι(Fl3(C)T1) is the vertices of a hexagon in t1 ⊂ t1 + t2. Now
by an argument similar to that in previous example, Theorem 2.2.1 states that
the image of the map π12 ◦ ι : Fl3(C)→ t1 + t2 is the convex set which is given
by the trajectory of rotation of the hexagon along a2-axis (Figure2.4.3).

•

• •

•

••

•

• •

•

••

•
•

•

•
•

•

Figure 2.4.3: π12 ◦ ι(Fl3(C)) and the moment polytopes for T1 and T2 actions

2.5 A relation between Theorem 2.1.3 and super-
integrable systems

In this section, we discuss a relation between Theorem 2.1.3 and super-integrable
systems.

To begin, we first quote some definitions. In the following, we let (M,ω) be
a symplectic manifold.
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Definition 2.5.1. Smooth functions f1, · · · , fn on M are independent if

{p ∈M | (df1)p, · · · , (dfn)p are linearly independent.}

is an open dense subset of M .

Equivalently, we can also say that f1, · · · , fn on M are independent if and
only if the vector-valued map (f1, · · · , fn) :M → Rn is a submersion on a open
dense subset of M . Now let H be a smooth function on M and n = 1

2 dimM
in the following.

Definition 2.5.2. A triple (M,ω,H) is an integrable system if there exists
independent smooth functions f1(= H), · · · , fn such that these are pairwise
Poisson commutative.

For a triple (M,ω,H), the function H is called the hamiltonian function,
and a smooth function f on M which Poisson commutes with H is called an
integral of motion.

Definition 2.5.3. A triple (M,ω,H) is a super-integrable system if there
exists pairwise Poisson commutative smooth functions f1(= H), · · · , fn, and
there exists smooth functions g2, · · · , gk (2 ≤ k ≤ n) where each of them is Pois-
son commutative with H, and the total functions f1(= H), · · · , fn, g2, · · · , gk
are independent.

Remark 2.5.4. We do not require the connectivity of the fibers of the map
(f1, · · · , fn, g2, · · · , gk) :M → Rn+k−1, though some other authors([16], [44]) re-
quire this connectivity and some other propoerties to make this map into a torus
bundle. Also, since n is the maximal number of pairwise Poisson commutative
independent smooth functions, the total functions f1(= H), · · · , fn, g2, · · · , gk
can not be pairwise Poisson commutative.

We now study the critical point set of the map π12µ :M → t1 + t2.

Proposition 2.5.5. Under the assumption of Theorem 2.2.1, we obtain

Cr(π12µ) = T3 · Cr(π1µ).

Proof. By the definition of critical points, we have Cr(π12µ) ⊃ Cr(π1µ). Recall
that the map π12µ : M → t1 + t2 is T3-equivariant. Thus, for any θ3 ∈ T3, we
have the following commutative diagram.

M
π12µ−−−−→ t1 + t2

θ3

y yAd(θ3)

M
π12µ−−−−→ t1 + t2
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For any point p ∈M , this induces

TpM
(π12µ)∗p−−−−−−→ t1 + t2

(θ3)∗p

y yAd(θ3)

Tθ3pM
(π12µ)∗θ3p−−−−−−−→ t1 + t2.

Hence T3-action restricts to Cr(π12µ). That is, we obtain

Cr(π12µ) ⊃ T3 · Cr(π1µ).

On the other hand, if the top map (π12µ)∗p on the above diagram is not sur-
jective, there exists a line l in t1 + t2 whose intersection with (π12µ)∗p(TpM)
is the origin. By the lemma 2.2.2, there exists an element θ′3 of T3 such that
Ad(θ′3)l ⊂ t1 (because l is 1-dimensional, l can be written as l = Ra for some
a ∈ t1 + t2). Now we have (π12µ)∗θ′3p(Tθ′3pM) = Ad(θ′3)((π12µ)∗p(TpM)) and

Ad(θ′3)((π12µ)∗p(TpM)) ∩Ad(θ′3)l = Ad(θ′3)((π12µ)∗p(TpM) ∩ l)
= Ad(θ′3)({0})
= {0}.

This shows that (π1µ)∗θ′3p : M → t1 + t2 → t1 can not be surjective because
the second map of this composed map is identity map on t1. Hence we obtain
p = θ′−13 θ′3p ∈ T3 · Cr(π1µ) which justifies our claim. �

Now let us suppose

(i) T1 acts on M effectively,

(ii) T3 ∼= (R/Z)× (T1 ∩ T2 ∩ T3)0 (as Lie groups)

where (T1 ∩ T2 ∩ T3)0 is the identity component of T1 ∩ T2 ∩ T3. By (ii), we
identify T3 and (R/Z)× (T1 ∩T2 ∩T3)0 in the following. Since π1µ is a moment
map of T1 action, it is T1-equivariant, and the intersection T1 ∩ T2 ∩ T3 (⊂ T1)
preserves Cr(π1µ). So we have

T3 · Cr(π1µ) = ((R/Z)× (T1 ∩ T2 ∩ T3)0) · Cr(π1µ)
= (R/Z) · (T1 ∩ T2 ∩ T3)0 · Cr(π1µ)
= (R/Z) · Cr(π1µ).

By the first assumption, we can write

Cr(π1µ) =

∞∪
i=1

Zi

where each Zi is a proper closed symplectic submanifold of M . Especially, we
have dimZi ≤ dimM − 2. Hence we obtain

T3 · Cr(π1µ) =
∞∪
i=1

((R/Z) · Zi).
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Consider a map f : R/Z× Zi →M via the G-action on M :

([a], p) 7→ [a] · p for [a] ∈ R/Z, p ∈ Zi.

Since this map f is a restriction of the group action G × M → M , f is a
smooth map. Note that f(R/Z× Zi) is closed in M because its compact. Here
we have dim(R/Z × Zi) ≤ dimM − 1. Now Theorem 10.5 in [39] states that
M − (R/Z) · Zi(= M − f(R/Z × Zi)) is open dense in M . Hence, by Baire’s
theorem, the subset

M − Cr(π12µ) =M − T3 · Cr(π1µ) =
∞∩
i=1

(M − f(R/Z× Zi))

is dense in M , and is also open since Cr(π12µ) is closed in M . Now we obtain
the following.

Proposition 2.5.6. Under the assumptions of Theorem 2.2.1, if T1 acts on M
effectively and T3 ∼= (R/Z)× (T1 ∩ T2 ∩ T3)0, then π12µ is a submersion on an
open dense subset of M .

Corollary 2.5.7. Under the assumptions of Theorem 2.1.3, if T1 acts on M
effectively and T3 ∼= (R/Z) × (T1 ∩ T2 ∩ T3)0, then for any X ∈ t1 ∩ t2, the
triple (M,ω, µX) is a super-integrable system which has 1

2 dimM+1 independent
integrals of motion.

Proof. We have 〈R12 ◦ µ,X〉 = 〈µ,X〉 = µX . Since X ∈ t1 ∩ t2 commutes with
t1+ t2, µ

X Poisson commutes with 〈R12 ◦µ, Y 〉(= µY ) for all Y ∈ t1+ t2. Let n
be dim t1. Then there exists a linear isomorphism t1 + t2 ∼= R2n+1 where t1 ∩ t2
corresponds to a coordinate linear subspace of R2n+1. Let Y1, · · · , Y2n+1 be the
elements corresponding to the standard basis of R2n+1. Then we have

R12 ◦ µ = (〈R12 ◦ µ, Y1〉, · · · , 〈R12 ◦ µ, Y2n+1〉) :M → R2n+1.

Recall that we have a commutative diagram given above Theorem 2.2.1. Since
one of Y1, · · · , Y2n+1 is X, Proposition 2.5.6 provides our claim. �

Example 2.4.1 is trivially a super-integrable system, because every two di-
mensional completely integrable system is always a super-integrable system in
a trivial sense.

In Example 2.4.2, it is well known that a moment map π1µ of the hamiltonian
T1-action on CPn provides a completely integrable system with the hamiltonian
function µW where W is

W =W1 + · · ·+Wk.

We can understand this system as a compactification of the system of harmonic
oscillators on Cn. Now Corollary 2.5.7 provides a super-integrable system on
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CP 2k with k + 1 integrals of motion whose hamiltonian function is µW . This
argument also works for the case n = 2k+1 (k ≥ 0) in a similar way. In fact, it is
known that these completely integrable systems are maximally super-integrable.

Appendix

In this appendix, we construct a triple t1, t2 and t3 in su(2k) (k ≥ 1). Let us
define X1, · · · , Xk, Y1, · · · , Yk, Z1, · · · , Zk,W1, · · · ,Wk−1 ∈ su(2k) by

X1 =



−i 0
0 i

0 0
0 0

. . .

0 0
0 0


, · · · , Xk =



0 0
0 0

0 0
0 0

. . .

−i 0
0 i


,

Y1 =



0 −1
1 0

0 0
0 0

. . .

0 0
0 0


, · · · , Yk =



0 0
0 0

0 0
0 0

. . .

0 −1
1 0


,

Z1 =



0 i
i 0

0 0
0 0

. . .

0 0
0 0


, · · · , Zk =



0 0
0 0

0 0
0 0

. . .

0 i
i 0


,

W1 =



−i 0
0 −i

i 0
0 i

. . .

0 0
0 0


, · · · ,Wk−1 =



−i 0
0 −i

0 0
0 0

. . .

i 0
0 i


.
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Now define Lie subalgebra t1, t2 and t3 by

t1 = span{W1, · · · ,Wk−1, X1, · · · , Xk},
t2 = span{W1, · · · ,Wk−1, Y1, · · · , Yk},
t3 = span{W1, · · · ,Wk−1, Z1, · · · , Zk}.

Then the condition (2.1.1) is clearly satisfied.





Chapter 3

Equivariant cohomology

3.1 Universal principal bundles

In this section, we study universla principal bundles. They will be used in the
construction of equivariant cohomology in the next section.

Definition 3.1.1. An covering {Uλ}λ∈Λ of a topological space B is numerable
if it admits a refinement by a locally finite partition of unity, i.e., if there exists
a locally finite partition of unity {uγ : B → [0, 1]}γ∈Γ such that every set

u−1λ ((0, 1]) is contained in some Uλ. A topological fiber bundle E → B is
numerable if B admits a numerable open covering {Uλ}λ such that E|Uλ

is
trivial bundle for each λ ∈ Λ.

Proposition 3.1.2. A topological fiber bundle E → B is numerable if B is
paracompact.

Proof. See 2.1 of [14].

Let G be a topological group. In this note, a principal G-bundle is defined
with its right G-action.

Definition 3.1.3. A universal principal G-bundle EG → BG is a numerable
topological principal G-bundle which satisfies the following:

1. For any numerable topological principal G-bundle E → B, there exists a
continuous map f : B → BG such that E is isomorphic to the pull back
bundle f∗EG.

2. Two continuous maps f, g : B → BG induces an isomorphism f∗EG ∼=
g∗EG if and only if they are homotopic.

The base space BG of a universal principal G-bundle is called classifying space
for G.

For the proof of next proposition, see 7.5 in [14].

35
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Theorem 3.1.4. A numerable topological principal G-bundle is a universal
principal G-bundle if and only if the total space is contractible.

3.1.1 Uniqueness of universal principal G-bundles

In this section, we use the following property which we refer [14] for a proof. Re-
call that a vertical homotopy of a topological fiber bundle E → B is a continuous
map H : I ×B → E such that p ◦H = idB.

Proposition 3.1.5. Let E → B be a topological fiber bundle. If the fiber is
contractible, then a continuous section s : B → E exists unique up to vertical
homotopy. As a corollary, the projection map E → B is a homotopy equivalence.

Proof. Since the fiber is contractible, 3.2 in [14] shows that the map E → B is
shrinkable. Now our claims follows from 1.5 (c) in [14].

Lemma 3.1.6. Let E → B be a numerable topological principal G-bundle, Y be
a topological G-space. If Y is contractible (not necessarily G-equivariantly), any
two G-equivariant continuous maps f, g : E → Y are G-equivariantly homotopic.

Proof. There is a natural one to one correspondence between G-equivariant
continuous maps E → Y and continuous sections B → (E × Y )/G of the
associated Y -bundle (see the appendix for this section). So f and g induce
continuous sections sf and sg of the associated Y -bundle. Since the fiber of this
associated Y -bundle is contractible, sections of this associated Y -bundle are
unique up to vertical homotopy (Proposition3.1.5). Thus there exists vertical
homotopy between sf and sg. Since the correspondence written above also
holds for G-equivariant homotopy I × E → Y and vertical homotopy I × B →
(E×Y )/G (again, see the appendix for this chapter), we obtain a G-equivariant
homotopy between f and g.

Let EG → BG and EH → BH be universal bundles of topological groups
G and H. Let ρ : G→ H be a homomorphism of topological groups.

Corollary 3.1.7. A ρ-equivariant continuous map EG→ EH exists unique up
to ρ-equivariant homotopy.

Proof. Consider the associated principal H-bundle EG ×G H → BG. By the
universality of EH, there exists a pull back diagram

EG×G H

��

// EH

��
BG // BH

where the left vertical map is the associated principal H-bundle defined by the
condition [α, h] = [αg−1, gh] for any α ∈ EG, h ∈ H and g ∈ G, and the top
map is H-equivariant. Combining the top map and EG → EG ×G H given
by α 7→ [α, 1], we obtain a ρ-equivariant continuous map EG → EH. The
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uniqueness of such maps is a direct consequence of the previous Lemma as
follows. Think of EH as topological G-space via ρ. Then ρ-equivariance is
equivalent to G-equivariance. Let f, g : EG→ EH be ρ-equivariant continuous
maps. Then f and g are G-equivariant continuous maps. By the previous
lemma, there exists a G-equivariant continuous map F : EG × I → EH such
that F (α, 0) = f(x) and F (α, 1) = g(x). Now, of course, F is ρ-equivariant
because of the definition of the G-action on EH.

Uniqueness of universal bundle:

Proposition 3.1.8. The G-equivariant homotopy type of contractible universal
principal G-bundles is uniquely determined. As a result, the homotopy type of
the classifying spaces is uniquely determined.

Proof. Let EG → BG and E′G → B′G be universal principal G-bundles.
By the property 1 in Definition 3.1.3, there exists a G-equivariant continuous
map f̃ : E′G → EG. Similarly, there exists a G-equivariant continuous map
g̃ : EG → E′G. Now the composition f̃ ◦ g̃ : EG → EG have to be G-
equivariantly homotopic to the identity map because of the previous Lemma,
and the same holds for g̃ ◦ f̃ . Thus EG and E′G are G-equivariantly homotopic.
As a result, BG and B′G are homotopic.

We list some useful properties (up to homotopy) of universal bundles. Let
EG→ BG and EH → BH be universal principal bundles for G and H, respec-
tively.

— EG× EH → BG×BH is a universal principal bundle of G×H.

— If H is a subgroup of G, the quotient map EG → EG/H is a universal
principal H-bundle.

— A homomorphism ρ : G → H induces a ρ-equivariant continuous map
EG→ EH unique up to ρ-equivariant homotpy.

The first claim is follows because of the uniqueness of universal principal G×H
bundles. For the second claim, we can use the locally trivializations of EG →
EG/G = BG and its G-equivariance and the contractibility of the total space
EG. The third one is Corollary 3.1.7.

Existence of universal bundles:

Theorem 3.1.9. Let G be a topological group. Then there exists a universal
principal G-bundle EG→ BG.

In fact, there is an explicit construction of a universal principal G-bundle
(sometimes called the Milnor join of G) for any topological group G due to
Milnor ([42]). Note that Theorem 3.1.4 ensures that the total space of universal
bundle is contractible.
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Appendix for section 3.1

Let G be a topological group, and π : E → B a topological principal G-bundle.
Let X be a topological G-space, then we obtain the associated topological X-
bundle p : E ×G X → B.

Proposition 3.1.10. For any topological space W (without G-action), we have
the following.

1. A continuous G-map F :W × E → X induces the continuous map

F̃ :W ×B → E ×G X ; (w, [α]) 7→ [α, F (w,α)]

such that p ◦ F̃ =W ×B proj→ B.

2. A continuous map H :W ×B → E×GX satisfying p ◦H =W ×B proj→ B
induces the continuous G-map

H̃ :W × E → X

defined by the condition H(w, [α]) = [α, H̃(w,α)].

3. By 1. and 2., we obtain a natural correspondence:

{continuous G-map F :W × E → X}
l 1 : 1

{continuous map H :W ×B → E ×G X s.t. p ◦H =W ×B proj→ B}

Corollary 3.1.11. For any topological principal G-bundle π : E′ → B′, we
have natural correspondences:

{continuous bundle map F : E → E′}
l 1 : 1

{continuous section H : B → E ×G E′}

{G-equivariant homotopy H : I × E → E′ between F1 and F2}
l 1 : 1

{vertical homotopy H̃ : I ×B → E ×G E′ between F̃1 and F̃2}

(Note: A vertical homotopy is a homotopy H̃ : I × B → E ×G E′ such that
p ◦ H̃ = idB.)
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3.2 Equivariant cohomology

In this section, all cohomologies are treated over a principal ideal domain with
the unit, otherwise specified.

Let G be a topological group acting continuously on a topological space X
from the left. Recall that, in this note, the G-action on a topological principal
G-bundle is the one from the right.

Definition 3.2.1. Let EG be a universal principal G-bundle. The Borel con-
struction of X for with respect to EG is the defined by

EG×G X := (EG×X)/G

where the G-action on EG×X is given by

g · (p, x) := (pg−1, gx)

for all g ∈ G, p ∈ EG and x ∈ X.

Observe that the Borel construction EG ×G X is the total space of the
associated X-bundle over BG ;

EG×G X = (EG×X)/G→ EG/G = BG. (3.2.1)

Let H∗ be the singular cohomology over a principal ideal domain.

Definition 3.2.2. The G-equivariant cohomology of X is defined by

H∗G(X) := H∗(EG×G X) (3.2.2)

where EG is a universal principal G-bundle. The map induced by (3.2.1) makes
H∗G(X) into an H∗(BG)-algebra with the cup product.

This is well-defined up to isomorphism since the homotopy type of the Borel
construction EG×GX is uniquely determined up to homotopy (See Proposition
3.1.8).

LetK be a topological group, and ρ : G→ K a homomorphism of topological
groups. Then a ρ-equivariant continuous map (which exists uniquely up to ρ-
equivariant homotopy) EG→ EK induces a ring homomorphism

H∗G(X)→ H∗K(X)

As a special case, let K = {e} the identity group. Then the induced map is

H∗G(X)→ H∗(X). (3.2.3)

This map coincides with the pull back homomorphism by an inclusion X ↪→
EG ×G X (which does not depend on the choice of an inclusion). This map is
called forgetful map or non-equivariant limit. Under some assumptions, (3.2.3)
will be surjective and H∗G(X) can recover the ordinary cohomology H∗(X) as
H∗G(X)/(H>0(BG)) ∼= H∗(X).
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3.2.1 Relations with the cohomology of the quotient space

In some nice situations (as the following), H∗G(X) and H∗(X/G) are the same
as rings. A similar statement in a more subtle situations will be explained in
detail in section 3.4.

Suppose that a topological group G acts on a topological space X in a way
that the quotient map X → X/G is a topological principal G-bundle. Under
this assumption, the natural projection map

EG×G X → X/G

is the associated EG-bundle where EG is a universal principal G-bundle. Since
the fiber EG is contractible, the induced map

H∗G(X) = H∗(EG×G X)← H∗(X/G)

is an isomorphism by Proposition 3.1.5. This means that, if the quotient
X → X/G is “good”, then the H∗G(X) coincides with H∗(X/G) as rings. How-
ever, the equivariant cohomology H∗G(X) is better than H∗(X/G) in the sense
that H∗G(X) can recover the ordinary cohomology in many situation in which
H∗(X/G) does not.

3.2.2 Finite dimensional approximations

The explanation in this section is essentially due to Fulton’s lecture note [19].
Let π : E → B be a topological principal G-bundle such that

• H∗(E) is a finitely generated free graded module (i.e. each Hj(E) is a
finitely generated free module and only finitely many Hj(E)’s are non-
zero), and

• there exists an integer k ≥ 0 such that H̃i(E) = 0 for all i < k.

Then there is a canonical isomorphism

Hi(EG×G X) ∼= Hi(E ×G X) for all i < k (3.2.4)

in the following sense. The trivial G-equivariant EG-bundle EG × X → X
induces the associated EG-bundle

(EG× E)×G X −→ E ×G X

where G acts on EG × E diagonally. Similarly, the trivial G-equivariant E-
bundle E ×X → X induces the associated E-bundle

(EG× E)×G X −→ EG×G X.

Combining them, we obtain an E-bundle (on the left) and an EG-bundle (on
the right)

EG×G X ←− (EG× E)G ×X −→ E ×G X. (3.2.5)
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Here, E and EG are path-connected, and H∗(EG) and H∗(E) are finitely gener-
ated graded modules by the assumptions. Hence we can use the precise version
of the Leray-Hirsh theorem in the appendix, and we obtain

Hi(EG×G X)
∼=−→ Hi((EG× E)G ×X)

∼=←− Hi(E ×G X) (3.2.6)

for all i < k, which gives the desired isomorphism (3.2.4).

Remark 3.2.3. If we have a G-equivariant continuous map E → EG, the
canonical isomorphism (3.2.4) is equal to the pull back

Hi(EG×G X)
∼=−→ Hi(E ×G X) (for all i < k).

This can be explained as follows. In this case, the right map in (3.2.5) (which
is an EG-bundle) has an obvious section s : (EG × E)G × X ← E ×G X,
and the composition of s and the left map in (3.2.5) gives the induced map
E ×G X → EG ×G X. It is easy to show that the inverse of the right map in
(3.2.6) has to be the induced map s∗ by using a property of a section (i.e. the
composition of the projection and a section is the identity).

Example 3.2.4. Let S2m+1(⊂ Cm+1) be the 2m+1-dimensional sphere. Con-
sider a sequence of inclusions of spheres S1 ⊂ S3 ⊂ · · · ⊂ S2m+1 ⊂ · · · given
by

S2m+1 ↪→ S2m+3 ; (x1, · · · , xm) 7→ (x1, · · · , xm, 0),

and let S∞ := ∪m∈NS2m+1. This sequence induces a sequence of the inclusions
of complex projective spaces P1 ⊂ P2 ⊂ · · · ⊂ Pm ⊂ · · · given by

Pm ↪→ Pm+1 ; [x1, · · · , xm] 7→ [x1, · · · , xm, 0], (3.2.7)

We endow S∞ a topology as follows; a subset of S∞ is an open set if and only if
the intersection with S2m+1 is an open set of S2m+1 for each m ∈ N. A topology
on P∞ := ∪m∈NPm is defined similarly.

The 1-dimensional torus S1(⊂ C) acts on S2m+1 from the right by

z · (x1, · · · , xm) = (x1z, · · · , xmz).

for all z ∈ S1 and (x1, · · · , xm) ∈ S2m+1. We think of this as a right action,
and the natural projection map S2m+1 → Pm is a principal S1-bundle. This S1-
action extends to a continuous S1-action on S∞. Since each Sn is a Hausdorff
space, we have

lim
→
i2m+1∗ : lim→

Hi(S
2m+1 : Z)

∼=→ Hi(S
∞ : Z)

for each i ∈ Z, where each i2m+1 : S2m+1 → S∞ is the inclusion. Also, the
inclusion S2m+1 ↪→ S2m+3 induces Hi(S

2m+1) → Hi(S
2m+3), and this is an

isomorphism for i < 2m+ 1. Hence, we see that the induced map

in∗ : Hi(S
n : Z)→ Hi(S

∞ : Z)
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is an isomorphism for i < 2m+ 1. From this, we obtain

Hi(S
∞ : Z) =

{
Z (i = 0)

0 (i 6= 0)
and Hi(S∞ : Z) =

{
Z (i = 0)

0 (i 6= 0).

Hence, we have the canonical isomorphism

H∗S1(X : Z) ∼= H∗(S∞ ×S1 X : Z). (3.2.8)

Remark 3.2.5. In fact, it is know that S∞ with the above topology is con-
tractible. Hence S∞ is a universal principal S1-bundle, and P∞ is a classifying
space for S1.

Example 3.2.6. Let Vk(Ck+n) be the Stiefel manifold of unitary k-frames in
Ck+n. Then the unitary group U(k) naturally acts on Vk(Ck+n) from the right.
There is a standard way to see Vk(Ck+n) as a finite CW-complex such that
the boundary map of the chain complex of the CW complex Vk(Ck+n) are zero
maps. Hence the homomology H∗(Vk(Ck+n)) is a finitely generated free graded
module. Since this CW complex has no cells of dimension between 1 and n, we
see that

H̃i(Vk(Ck+n)) = 0 for all i ≤ n.

Hence we obtain the canonical isomorphism

Hi
U(k)(X) ∼= Hi(Vk(Ck+n)×U(k) X) for all i ≤ n.

Example 3.2.7. LetG be a compact Lie group. Recall thatG can be embedded
into the unitary group U(k) for a sufficiently large k as a closed subgroup. Then,
G acts on Vk,n(C) freely, via this embedding G ↪→ U(k). Hence the quotient
map Vk,n(C)→ Vk,n(C)/G is a principalG-bundle. Now we obtain the canonical
isomorphism

Hi
G(X) ∼= Hi(Vk,n(C)×G X) for all i ≤ n.

Appendix for section 3.2

A graded module {Ck}k∈Z (over a commutative ring with the unit) is said to be
finitely generated if ⊕kCk is finitely generated module (equivalently, each Ck is
finitely generated module and only finite Ck’s can be nonzero).

Let (E,E0) and (F, F 0) be pair of topological spaces, B a topological space,
p : E → B a continuous map. The tuple ξ = ((E,E0), p, B, (F, F 0)) is said to
be a fiber bundle pair if, for any b ∈ B, there exist an open neighborhood V of b

in B and a homeomorphism ϕ : V × (F, F 0)
∼=→ (p−1(V ), p−1(V )∩E0) satisfying

p ◦ ϕ(b′, y) = b′ (b′ ∈ V, y ∈ F ).

In the following Leray-Hirsch theorem, we use the singular cohomology over a
principal ideal domain.
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Theorem 3.2.8. (Leray-Hirsch) Let ξ = ((E,E0), p, B, (F, F 0)) be a fiber bun-
dle pair. Suppose that H∗(F, F

0) is a finitely generated free graded module,
and there exist an integer n ∈ Z and a module homomorphism (of degree 0) θ :
H∗(F, F 0)→ H∗(E,E0) such that, for any b ∈ B, the map j∗b ◦θ : Hk(F, F 0)→
Hk(Eb, E

0
b ) is an isomorphism for any k < n where jb : (Eb, E

0
b ) ↪→ (E,E0) is

the inclusion. Then, we have the following homomorphisms (as graded modules)

Φ : H∗(E,E
0) −→ H∗(B)⊗H∗(F, F 0),

Φ∗ : H∗(B)⊗H∗(F, F 0) −→ H∗(E,E0)

defined by

Φ(e) =

k∑
i=1

p∗(θ(αi) ∩ e))⊗ ai (e ∈ H∗(E,E0)),

Φ∗(β ⊗ α) = p∗(β) ∪ θ(α) (β ∈ H∗(B), α ∈ H∗(F, F 0)),

and both of Φ and Φ∗ are isomorphism for any component of degree k < n. Here
{a1, · · · , ak} is a basis of H∗(F, F

0) and {α1, · · · , αk} is a basis of H∗(F, F 0)
satisfying 〈αi, aj〉 = δij, and the map Φ does not depend on the choice of these
basis.

Corollary 3.2.9. Let ξ = (E, p,B, F ) be a fiber bundle. Suppose that H∗(F ) is
a finitely generated free graded module, and there exists an integer n ∈ Z such
that H̃k(F ) = 0 (k < n). Then, p∗ : Hk(B) −→ Hk(E) is isomorphism for any
k < n.

3.3 Induced homomorphisms

Let G be a topological group acting on a topological space X, and K a topo-
logical group acting on a topological space Y . Let ρ : G → K be a homomor-
phism of topological groups, and f : X → Y a ρ-equivariant continuous map.
For a universal principal bundles EG → BG and EK → BK, there exists a
ρ-equivariant continuous map Eρ : EG → EK unique up to ρ-equivariant ho-
motopy (Corollary 3.1.7). So we obtain a commutative diagram of continuous
map

EG×G X

��

// EK ×K Y

��
BG // BK

which induces a commutative diagram

H∗K(Y )
f∗

// H∗G(X)

H∗(BK)

OO

// H∗(BG).

OO
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In this sense, the induced map f∗ : H∗K(Y ) → H∗G(X) is an algebra homomor-
phism with respect to the ring homomorphism H∗(BK) → H∗(BG). By the
uniqueness (up to ρ-equivariant homotopy) of the map Eρ, this diagram does
not depend on the choice of Eρ. Moreover, this diagram does not depend on
the choice of universal principal bundles EG→ BG and EK → BK in the fol-
lowing sense. For a universal principal bundles E′G → B′G and E′K → B′K,
there exists a ρ-equivariant continuous map E′ρ : E′G→ E′K (unique up to ρ-
equivariant homotopy), and we obtain a continuous map E′G×GX → E′K×KY
which induces H∗(E′K×K Y )→ H∗(E′G×GX). Now we have a commutative
diagram

H∗(EK ×K Y )

∼=
��

f∗
// H∗(EG×G X)

∼=
��

H∗(E′K ×K Y )

OO

f∗
// H∗(E′G×G X).

OO

where the vertical isomorphisms are the canonical isomorphisms given in (3.2.4)
in section 3.2.2. The commutativity follows from the definition of the canonical
isomorphism (3.2.4).

Furthermore, suppose that a topological principal G-bundle E1 → B1 and
a topological principal K-bundle E2 → B2 satisfy the assumptions in section
3.2.2 and there is a ρ-equivariant continuous map E1 → E2. Then we have a
commutative diagram

H∗(EK ×K Y )

∼=
��

f∗
// H∗(EG×G X)

∼=
��

H∗(E2 ×K Y )

OO

f∗
// H∗(E1 ×G X).

OO
(3.3.1)

3.3.1 Equivariant cohomology of a point

In this section, we study the equivariant cohomology of a point. Let G be a
topological group, acting trivially on a point. Then we have

H∗G(pt) = H∗(EG×G pt) = H∗(BG)

where EG→ BG is a universal principal G-bundle. That is, the G-equivariant
cohomology of a point is the cohomology of a classifying space for G.

Example 3.3.1. Let S1 be the 1-dimensional torus and ES1 → BS1 a universal
principal S1-bundle. Recall the principal S1-bundle S∞ → P∞. Then there
exists a pull back diagram of principal S1-bundles

S∞

��

φ // ES1

��
P∞

φ // BS1
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For a positive integer, let Ca = C be an S1-representation given by

g · z := gaz for all g ∈ S1(⊂ C) and z ∈ Ca.

One can see that we obtain a pull back diagram of associated complex line
bundles

S∞ ×S1 C1

��

φ // ES1 ×S1 C1

��
P∞

φ // BS1.

Here, the induced map H∗(P∞) ← H∗(BS1) is an isomorphism (see (3.2.8)
in Example 3.2.4). It is easy to show that the vector bundle S∞ ×S1 C1 is
isomorphic to the tautological vector bundle over P∞. Since the first Chern
class of tautological line bundle generates the ring H∗(P∞), we conclude that

H∗(BS1 : Z) = Z[t] (as rings)

where t := c1(ES
1 ×S1 C1).

Let T be an n-dimensional torus, and t∗Z the dual Z-module of the integral
lattice tZ (which is the kernel of the exponential map t→ T ) of T . An element
λ ∈ t∗Z induces a homomorphism λ∗ : T → S1 and hence an S1-representation
Cλ = C by

t · z := λ∗(t)z for all t ∈ S1 and z ∈ Cλ.

So we get the associated complex line bundle

ET ×T Cλ → BT ; [α, z] 7→ [α]. (3.3.2)

Taking its first Chern class, we obtain a map

t∗Z → H∗(BT : Z). (3.3.3)

This is a homomorphism as additive groups because

c1(ET ×T Cλ+λ′) = c1((ET ×T Cλ)⊗ (ET ×T Cλ′))

= c1(ET ×T Cλ) + c1(ET ×T Cλ′)

for any λ, λ′ ∈ t∗Z. Since H
∗(BT : Z) is a commutative ring as explained above,

this naturally induces a ring homomorphism

S(t∗Z)→ H∗(BT : Z) (3.3.4)

where S(t∗Z) is the symmetric algebra over Z of t∗Z.

Proposition 3.3.2. The homomorphism (3.3.4) is an isomorphism.
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Proof. Without loss of generality, we can assume that T = (S1)n. Let Lie(S1)Z(∼=
Z) be the integral lattice of (S1)n. Then we have tZ = ⊕ni=1 Lie(S

1)Z where we
identify Let λi ∈ t∗Z be the element given by λi(X1, · · · , Xn) = Xi. Then
t∗Z = ⊕ni=1Zλi, and we have

S(t∗Z) = Z[λ1, · · · , λ].

Recall that there exists a T -equivariant homotopy equivalence (ES1)n → ET .
The homomorphism λi gives us the vector bundle (3.3.2), and we have the
following pull-back diagrams

ES1 ×S1 Cλi

��

(ES1 ×S1 Cλi)× (BS1)n−1oo //

��

ET ×T Cλi

��
BS1 (BS1)noo ' // BT.

Since H∗(BS1 : Z) is a free Z-module of finite type, Künneth theorem ensures
that the map

H∗(BS1 : Z)⊗ · · · ⊗H∗(BS1 : Z) −→ H∗((BS1)n : Z)

given by (α1, · · · , αn) 7→ p∗1α1 ∪ · · · ∪ p∗nαn is a ring isomorphism where pi :
(BS1)n → BS1 is the projection to the i-th BS1. With Example 3.3.1, we see
that H∗((BS1)n) ∼= ⊗ni=1H

∗(BS1) is the polynomial ring generated by the first
Chern classes of the middle vector bundle for λ1, · · · , λn. Hence, we see

H∗(BT : Z) = Z[y1, · · · , yn] where yi = c1(ET ×T Cλi).

Since (3.3.4) maps λi to yi, we conclude that (3.3.4) is an isomorphism.

Suppose that we have a homomorphism ρ : T → T ′ between tori. Then we
have the obvious induced map

ρ∗ : S(t∗Z)← S(t′
∗
Z).

Observe that T acts on T ′ (from the left) via ρ : T → T ′. So we have the
associated T ′-bundle

ET ×T T ′ → BT : [α, t′] 7→ [α]. (3.3.5)

T ′ naturally acts on ET ×T T ′ on the T ′-component from the right, and this
T ′-action makes (3.3.5) into a topological principal T ′-bundle. Hence, there
exists a continuous map

Bρ : BT → BT ′ (3.3.6)

such that the pull back of ET ′ → BT ′ gives (3.3.5) because BT ′ is a classifying
space for T ′ (see the property 1 in Definition 3.1.3). Since such a continuous
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map BT → BT ′ is unique up to homotopy (the property 2 in Definition 3.1.3),
we obtain a canonical homomorphism

ρ∗ : H∗(BT : Z)← H∗(BT ′ : Z) (3.3.7)

which does not depend on the choice of the continuous map (3.3.6). The naming
ρ∗ makes sense because of the next proposition.

Proposition 3.3.3. The following diagram commutes.

S(t∗Z)
∼= // H∗(BT : Z)

S(t′
∗
Z)

∼= //

ρ∗

OO

H∗(BT ′ : Z)

ρ∗

OO

Proof. It suffices to check the commutativity of the diagram

t∗Z // H∗(BT : Z)

t′
∗
Z

//

ρ∗

OO

H∗(BT ′ : Z).

ψρ

OO

Let λ′ : t′Z → Z, then we have the associated vector bundle

ET ′ ×T ′ Cλ′ → BT ′. (3.3.8)

By taking the pull back ρ∗(λ′) : tZ → Z, we also have the associated vector
bundle

ET ×T Cρ∗(λ′) → BT. (3.3.9)

Recall that Bρ pulls back the principal T ′-bundle ET ′ → BT ′ to the principal
T ′-bundle (3.3.5), i.e., we have a pull back diagram of principal T ′-bundles

ET ×T T ′

��

// ET ′

��
BT

Bρ // BT ′.

So the following diagram of associated complex vector bundles is a pull back
diagram:

(ET ×T T ′)×T ′ Cλ′

��

// ET ′ ×T ′ Cλ′

��
BT

Bρ // BT ′.

Now, the map

(ET ×T T ′)×T ′ Cλ′ → ET ×T Cρ∗(λ′) ; [α, t′, v] 7→ [α, t′v]
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is well-defined since

[αg−1, ρ(g)t′h′−1, h′v] 7→ [αg−1, ρ(g)t′h′−1h′v] = [αg−1, ρ(g)t′v],

and is an isomorphism as complex vector bundles because each fiber is mapped
isomorphically. Now, we see that the complex line bundle (3.3.9) is isomorphic
to the pull back of (3.3.8) by Bρ which completes the proof.

Remark 3.3.4. As in the proof of Proposition 3.3.2, H∗(BT ) ∼= Z[y1, · · · , yn]
is a polynomial ring where yi = c1(ET ×T Cλi). In this sense, any T equivariant
cohomology H∗T (X) is an algebra over the polynomial ring Z[y1, · · · , yn]. Here,
each yi acts on H∗T (X) as the multiplication of the first Chern class of the
complex vector bundle

(ET ×M × Cλi)/T → (ET ×M)/T.

3.4 Vietoris-Begle mapping theorem

In some nice situations, H∗G(X) and H∗(X/G) describe the same ring as ex-
plained in section 3.2.1. In this section, we treat a more subtle situation, and
we will obtain the similar statements in Q-coefficient.

Let H∗AS be the Alexander-Spanier cohomology. We refer [46] for the defini-
tion of H∗AS and the proof of the following theorem.

Theorem 3.4.1. (Vietoris-Begle mapping theorem) Let f : X ′ → X be a closed
continuous surjective map between paracompact Hausdorff spaces. Assume that
there exists an integer n ≥ 0 such that H̃q

AS(f
−1(x)) = 0 for all x ∈ X and

q < n. Then the induced map

f∗ : Hq
AS(X)→ Hq

AS(X
′)

is an isomorphism for q < n and a monomorphism for q = n.

Since the Alexander-Spanier cohomology and the singular cohomology are
naturally isomorphic for locally contractible paracompact Hausdorff spaces ([46],
Cor.5, Sec.9, Chp.6), we obtain the similar claim (with an assumption about
locally contractibility for then fibers f−1(x)) for singular cohomology.

Corollary 3.4.2. (Vietoris-Begle mapping theorem) Let f : X ′ → X be a closed
continuous surjective map between locally contractible paracompact Hausdorff
spaces. Assume that f−1(x) is locally contractible and there exists an integer
n ≥ 0 such that H̃q(f−1(x)) = 0 for all x ∈ X and q < n. Then the induced
map

f∗ : Hq(X)→ Hq(X ′)

is an isomorphism for q < n and a monomorphism for q = n.

We apply this corollary to equivariant cohomolgy.
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Proposition 3.4.3. Let G be a compact Lie group acting on a compact manifold
M with discrete stabilizers. Then the projection θ : EG×GM →M/G induces
a ring isomorphism

θ∗ : H∗(M/G;Q)→ H∗G(M ;Q).

We can prove this by using Vietoris-Begle mapping theorem (Corollary 3.4.2)
directly, but this Proposition follows from the following more general statement.

Proposition 3.4.4. Let M be a compact manifold with a smooth action of a
compact Lie group K. Let G ⊂ K be a closed normal subgroup that acts on
M with discrete stabilizers. Then the projection θ : M → M/G induces an
isomorphism as H∗(B(K/G);Q)-algebras

θ∗ : H∗K/G(M/G;Q)→ H∗K(M ;Q)

where the ring H∗K(M ;Q) is an H∗(B(K/G);Q)-algebra via the induced map
H∗(B(K/G);Q)→ H∗(BK;Q).

Proof. Let R := K/G. We will show that θ∗ : Hi
R(M/G;Q) −→ Hi

K(M ;Q) is
a ring isomorphism for each i > 0. Let EK → BK and ER→ BR be universal
principal bundles for K and R, respectively. Since K is a compact Lie group, K
can be embedded into U(k) for a sufficiently large k as a closed subgroup. Let
Vk,n := Vk,n(C) be the Stiefel manifold of univtary k-frames in Ck+n. Then,
K acts on Vk,n(C) freely, via this embedding G ↪→ U(k). Hence the quotient
map Vk,n → Vk,n/K is a principal K-bundle. Now we obtain the canonical
isomorphism

φ : Hi
K(X;Q) ∼= Hi(Vk,n ×K X;Q) for all i ≤ n.

as in Example 3.2.7. In the following, we fix i ∈ Z arbitrary, and take a suffi-
ciently large n(≥ i).

There exists an equivariant continuous map EK → ER with respect to the
quotient homomorphism K → R. Since Vk,n → Vk,n/K is a principal K-bundle,
there is a K-equivariant continuous map Vk,n → EK by the universality of
EK → BK. So the composition map ϕ : Vk,n → EK → ER is also equivariant
with respect to the quotient K → R. Denoting the natural maps as

θ : EK ×K M → ER×R (M/G)

θn : Vk,n ×K M → ER×R (M/G),

the diagram of pull backs

Hi
R(M/G;Q)

θ∗n ((RRRRRRRRRRRRR
θ∗ // Hi

K(M ;Q)

φ∼=
��

Hi(Vk,n ×K M ;Q)
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is commutative (see (3.3.1) in section 3.2.2). Since φ is an isomorphism, it
suffices to show that θ∗n is an isomorphism. Observe that we can write θn = f ◦s
where

s : Vk,n ×K M → ER×R (Vk,n ×GM) ; [α, x]K 7→ [ϕ(α), [α, x]G]R,

f : ER×R (Vk,n ×GM)→ ER×R (M/G) ; [β, [α, x]G]R 7→ [β, [x]G]R.

It is easy to see that s is a section of the ER-bundle g : ER×R (Vk,n×GM)→
Vk,n ×K M sending [β, [α, x]G]R 7→ [α, x]K whose fiber is the contractible space
ER. Therefore s∗ is an isomorphism ([14], 1.5 (c) and 3.2). On the other hand,
the preimage of f at [β, [x]G]R is homeomorphic to Vk,n/Gx where Gx is the
isotropy of the G-action at x ∈M . Then we have

H̃p(Vk,n/Gx;Q) = 0 for 0 < p ≤ n (3.4.1)

(we can use Theorem 5.30 in [30] with Theorem 5.8 and the comment in Example
1 in p. 250 to prove this claim). The projection f ′ : Vk,n ×G M → M/G is a
closed map since it is a map from a compact space to a Hausdorff space (here,
Vk,n is the set of unitary k-frames in Ck+n). This implies that f is a closed
surjection, by chasing the following commutative diagram of projections

ER× (Vk,n ×GM)

��

(id,f ′) // ER× (M/G)

��
ER×R (Vk,n ×GM)

f // ER×R (M/G)

where the vertical maps are closed since R is compact (c.f. Proposition 1.58
in [30]). Observe that M/G is locally contractible because of the equivariant
tubular neighborhood theorem. Hence, ER×R (Vk,n×GM) and ER×R (M/G)
are locally contractible, paracompact Hausdorff spaces. Also, Vk,n/Gx is locally
contractible again by the equivariant tublar neighborhood theorem. Together
with (3.4.1), Vietoris-Begle mapping theorem (Corollary 3.4.2) shows that

f∗ : Hi(ER×R (Vk,n ×GM);Q)→ Hi(ER×R (M/G);Q)

is an isomorphism since n ≥ i. Finally we conclude that

θ∗n : Hi
R(M/G;Q)→ Hi(Vk,n ×K M ;Q)

is also an isomorphism because θn = f ◦ s.

3.5 Equivariant classes of invariant subvarieties

In this section, we will construct equivariant cohomology classes associated to
irreducible invariant subvarieties of non-singular quasi-projective varieties. Each
of those classes is supported on the corresponding subvariety. Throughout this
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section, we assume that G is a compact connected Lie group, and H∗ always
denotes the singular cohomology over Z. We emphasize that ambient varieties
need not to be projective.

Here, we summarize the results. Let G be a compact connected Lie group
acting on a non-singular quasi-projective variety X in which each element of
G acts on X as an automorphism of a quasi-projective variety. Let V be a
G-stable irreducible subvariety of X. We will construct the G-equivariant class
[V ]G ∈ H∗G(X) which is supported on V (strictly, the Borel construction of V ).
This satisfies the following property; for any G-invariant non-singular Zariski-
open set U ⊂ V , the restriction map

H∗G(X)→ H∗G(U)

sends [V ]G to the G-equivariant Euler class of the normal bundle of U in X.

3.5.1 Equivariant Thom isomorphism

Let G be a compact connected Lie group, N a complex G-manifold and M
a complex G-submanifold of N of codimension c which is a closed subset of
N . Then the normal bundle F of M in N is a G-equivariant complex vector
bundle. Since G is a compact Lie group, there exists a G-equivariant tubular
neighborhood U of M with an identification (equivariantly) with F . That is,
we have an equivariant open embedding F → M whose image is U . Note
that this induces an open embedding FG → MG whose image is UG where
MG = EG×GM is the Borel construction of M and similar for others. We call
UG a tubular neighborhood of MG in NG, though MG and NG are not finite
dimensional manifolds. Since FG is a complex vector bundle of rank 2c over
MG, we have the Thom isomorphism

Hi
G(M) = Hi(MG) −→ Hi+2c(FG, FG\MG) = Hi+2c

G (F, F\M).

Now we have a sequence of isomorphisms:

Hi
G(M)

Thom−→ Hi+2c
G (F, F\M) −→ Hi+2c

G (U,U\M)
excision←− Hi+2c

G (N,N\M).
(3.5.1)

Lemma 3.5.1. The isomorphism (3.5.1) does not depend on choice of equiv-
ariant tubular neighborhood U .

Proof. Suppose that we have G-equivariant tubular neighborhoods of M in N

φ : E → N, and φ′ : E → N.

Here is a diagram which we want to show its commutativity:

Hi
G(M)

id

��

Thom // Hi+2c
G (E,E\M) Hi+2c

G (N,N\M)

id

��

φ∗
oo

Hi
G(M)

OO

Thom // Hi+2c
G (E,E\M) Hi+2c

G (N,N\M)
φ′∗

oo

OO
(3.5.2)
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Since G is a compact Lie group, there exists a positive integer p such that G
can be embedded as a closed subgroup of the unitary group U(p). Let Vp,m :=
Vp,m(C) be the Stiefel manifold of unitary p-frames in Cp+m. Then G acts
freely on Vp,m via the inclusion G ↪→ U(p) Consider Mm := Vp,m ×G M for a
sufficiently large m, and similar for Nm, Um and Fm. Observe thatMm and Nm
are finite dimensional smooth manifolds (they may not be complex manifolds).
Also, Fm is a complex vector bundle over Mm of rank 2c which coincides with
the codimension of Mm in Nm as real manifolds. The maps φ and φ′ obviously
induce tubular neighborhoods

φm : Em → Nm and φ′m : Em → Nm

of Mm in Nm. By the uniqueness theorem of tubular neighborhoods, there
exists an isotopy (of embeddings) Ψ : R × Em → Nm and an isomorphism
λ : Em → Em of complex vector bundles such that Ψ0 = φ and Ψ1 = φ′ ◦ λ
(See Lang, Differential Manifolds, IV-6, and the construction of λ). Hence we
obtain a commutative diagram

Hi(Mm)

id

��

Thom// Hi+2c(Em, Em\Mm) Hi+2c(Nm, Nm\Mm)

id

��

φ∗
moo

Hi(Mm)

OO

Thom// Hi+2c(Em, Em\Mm)

λ ∼=

OO

Hi+2c(Nm, Nm\Mm).
φ′∗
moo

OO
(3.5.3)

Between the diagram (3.5.2) and (3.5.3), we have the isomorphismsHi+2c
G (M) ∼=

Hi+2c(Mm) etc for a sufficiently large m, constructed in Example 3.2.7. It is
easy to see that these isomorphisms commute with φ∗m and φ′∗m (see section
3.3). They also commute with the Thom isomorphisms in (3.5.2) and (3.5.3) by
considering the Thom isomorphism of the complex vector bundle

(EG× Vp(Cm))×GM ← (EG× Vp(Cm))×G E

since this vector bundle is given by both of the pull backs of the vector bundles

EG×GM ← EG×G E and Vp(Cm)×GM ← Vp(Cm)×G E.

by the maps induced by projections EG×Vp(Cm)→ EG and EG×Vp(Cm)→
Vp(Cm), respectively. Combining all the commutativity, we obtain the commu-
tativity of the diagram (3.5.2).

By this lemma, we obtain a canonical isomorphism (constructed as above)

ϕNM : Hi
G(M) −→ Hi+2c

G (N,N\M). (3.5.4)

which is determined only by the equivariant closed embedding M ↪→ N .

If M is connected, then we obtain Z ∼= H0
G(M)

∼=→ H2c
G (N,N\M). So

H2c
G (N,N\M) has a canonical generator called orientation class which corre-

sponds to the unit 1 ∈ H0
G(M). Considering the special case that N is a G-

equivariant complex vector bundle overM , we see that this naming is reasonable
because ϕNM is nothing but the equivariant Thom isomorphism.
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Backing to the original situation, let N be a complex G-manifold and M a
complex G-submanifold of N which is a closed subset of N .

Proposition 3.5.2. Consider

Hi
G(M)

ϕN
M−→ Hi+2c

G (N,N\M) −→ Hi+2c
G (M)

where the right-map is the restriction map. This map is given by the cup product
with the equivariant Euler class χG(E) of the normal bundle of M in N .

Proof. Take an equivariant tubular neighborhood U of M in N . We have the
following commutative diagram

Hi
G(M)

Thom // Hi+2c
G (E,E\M) //

s∗0 ((RRRRRRRRRRRRR
Hi+2c
G (U,U\M)

��

Hi+2c
G (N,N\M)oo

vvlllllllllllll

Hi+2c
G (M)

where s0 : M → (E,E\M) is the zero section of the normal bundle. The
composition of the horizontal maps is the canonical isomorphism ϕNM . Now the
claim follows because the pull-back of the equivariant Thom class by the zero
section s0 is the equivariant Euler class.

Let W be a G-invariant open subset of M , and set P :=M\W . Then N\P
is a complex G-manifold, and W is a complex G-submanifold of N\P which is
a closed subset of N\P . So we have the canonical isomorphism

ϕ
N\P
W : Hi

G(W ) −→ Hi+2c
G (N\P, (N\P )\W ).

Lemma 3.5.3. The following diagram is commutative:

Hi
G(M)

��

ϕN
M // Hi+2c

G (N,N\M)

��
Hi
G(W )

ϕ
N\P
W // Hi+2c

G (N\P, (N\P )\W )

where the vertical maps are restriction maps.

Proof. Let φ : F → N be a G-equivariant tubular neighborhood of M in
N where F is the normal bundle of M in N . Since φ is inejctive and sends
P (⊂ M ⊂ F ) bijectively onto P (⊂ N), the image of F |W = F |M\P = F\F |P
has no intersection with P (⊂ N). So, we obtain a map

F |W ↪→ F
φ→ N\P, (3.5.5)
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and this is a G-equivariant tubular neighborhood of W in N\P . Let U be the
image of φ and U |W the image of (3.5.5). Now, consider the following diagram:

Hi
G(M)

��

Thom // Hi+2c
G (U,U\M)

��

// Hi+2c
G (N,N\M)

��
Hi
G(W )

Thom // Hi+2c
G (U |W , U |W \W ) // Hi+2c

G (N\P, (N\P )\W )

where the vertical maps are restriction maps. It suffices to show that this
diagram commutes.

The right box is commutative since the maps are all induced by inclusions.
For the left box, the middle vertical map sends the equivariant Thom class of
F to the equivariant Thom class of F |W because F |W is the pull back of F by
the inclusion W ↪→M . Hence it also commutes.

3.5.2 Equivariant class of invariant subvarieties

Let G be a compact connected Lie group, X a quasi-projective variety with
G-action where each element of G serves as an automorphism of the algebraic
variety X, and V a G-subvariety of X. We consider singular equivariant coho-
mology of these varieties with respect to the Euclidean topologies. Note that a
subvariety may not be irreducible in our convention.

Proposition 3.5.4. If X is non-singular, then we have

Hi
G(X,X\V ) ∼=

{
Z⊕r (if i = 2c)

0 (if i < 2c)

where r is the number of d-dimensional irreducible components of V (d =
dimV ).

Proof. We first show the claim for the case V is non-singular and pure-dimensional
(for arbitrary non-singular ambient space X). In this case, V is a complex G-
submanifold of X with r connected components. So we have the canonical
isomorphism ϕXV (see (3.5.4)) :

Hi
G(X,X\V )

ϕX
V←− Hi−2c

G (V ).

Since EG is connected, we have

Hi−2c
G (V ) ∼=

{
Z⊕r (if i− 2c = 0)

0 (if i− 2c < 0).

This shows the claim for the case V is non-singular.
Next, we prove the claim for general V by induction on the dimension of V .

We first consider the case dimV = 0 (i.e. c = dimX). Since V has r irreducible
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components, we can write V = {x1, · · · , xr}. Here, each xi is a G-fixed point
since G is path-connected. In this case, V is non-singular, and we obtain

Hi
G(X,X\V ) ∼= ⊕ri=1H

i−2c
G (xi) ∼=

{
Z⊕r (if i− 2c = 0)

0 (if i− 2c < 0)

where the middle map is the canonical isomorphism (see (3.5.4)). Now we
consider the case dimV ≥ 0. Let Z(⊂ V ) be the union of the singular locus of
V and all irreducible components of V of dimension smaller than d = dimV .
Then obviously Z is a G-invariant subvariety of X satisfying dimZ < dimV .
By induction hypothesis, we have

Hi
G(X,X\Z) =

{
Z (if i = 2cZ)

0 (if i < 2cZ)

where cZ := dimX − dimZ. Observing 2c < 2cZ , the long exact sequence

· · · −→ Hi
G(X,X\Z) −→ Hi

G(X,X\V ) −→ Hi
G(X\Z,X\V ) −→ · · ·

for a triple (X,X\Z,X\V ) gives the following isomorphism

Hi
G(X,X\V ) −→ Hi

G(X\Z,X\V ) (i ≤ 2c). (3.5.6)

Since V \Z 6= ∅, it is not hard to check

X\Z is a non-singular quasi-projective variety, and

V \Z is non-singular irreducible pure dimensional subvariety of X\Z, and
X\V = (X\Z)\(V \Z) (since Z ⊂ V ⊂ X).

Moreover, the irreducible components of V \Z are exactly given by the restric-
tions of the d-dimensional irreducible components of V (d = dimV ), that is,
V \Z has r irreducible components. Also, we have

dim(X\Z) = dimX and dim(V \Z) = dimV .

Hence, by the claim for non-singular irreducible pure-dimensional subvarieties
(which we have already proved), we obtain

Hi
G(X\Z,X\V ) = Hi

G(X\Z, (X\Z)\(V \Z)) ∼=

{
Z⊕r (if i− 2c = 0)

0 (if i− 2c < 0)

Combining with the isomorphism (3.5.6), the claim is proved.

In the rest of this section, we assume that

• X is non-singular in which G acts smoothly, and

• V is irreducible ( dimV = d and codimV = c ).
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Let S be the set of singular points of V , and put V ◦ := V \S and X◦ := X\S.
In the proof of the previous lemma, we proved that the restriction map

H2c
G (X,X\V ) −→ H2c

G (X◦, X◦\V ◦) (3.5.7)

is an isomorphism. Composing with the canonical isomorphism ϕX
◦

V ◦ , we obtain
an isomorphism

H2c
G (X,X\V ) −→ H2c

G (X◦, X◦\V ◦)
ϕX◦

V ◦←− H0
G(V

◦). (3.5.8)

Definition 3.5.5. The G-equivariant refined class ηV ∈ H2c
G (X,X\V ) is de-

fined to be the element which is mapped to 1 ∈ H0
G(V

◦) under the isomorphism
(3.5.8).

Note that, if V is non-singular, the refined class ηV is nothing but the G-
equivariant orientation class discussed in section 3.5.1.

Definition 3.5.6. The G-equivariant class of V in X, denoted by [V ]G, is the
image of ηV under the restriction map H2c

G (X,X\V )→ H2c
G (X).

Let U be a G-invariant Zariski-open subset of X. Then U is a non-singular
quasi-projective variety. Also, VU := V ∩ U is irreducible G-subvariety of U of
codimension c.

Proposition 3.5.7. Under the restriction map H2c
G (X,X\V ) −→ H2c

G (U,U\VU ),
the equivariant refined class ηV is mapped to the equivariant refined class ηVU

.

Proof. For brevity, we write W := V ∩ U(= VU ). Let S′ ⊂ W be the set of
singular points of W , and put U◦ := U\S′ and W ◦ :=W\S′. We have

S′ = S ∩W = S ∩ U

where the right equality holds because S ⊂ V . Hence, we obtainW ◦ ⊂ V ◦ since

W ◦ =W\S′ = (V ∩ U)\(S ∩ U) = (V \S) ∩ U = V ◦ ∩ U ⊂ V ◦. (3.5.9)

Now, consider the following diagram:

H2c
G (X,X\V )

��

// H2c
G (X◦, X◦\V ◦) H0

G(V
◦)

��

ϕX◦
V ◦oo

H2c
G (U,U\W ) // H2c

G (U◦, U◦\W ◦) H0
G(W

◦)
ϕU◦

W◦oo

where the vertical maps are the restriction maps. Since W ◦ ⊂ V ◦, we define
D◦(⊂ V ◦) by the condition

V ◦ =W ◦
∐
D◦ (as sets).
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Then we have U◦ ∩D◦ = ∅ because

U◦ ∩ V ◦ = (U\S′) ∩ (V \S) ⊂ (U\S′) ∩ V = (V ∩ U)\S′ =W\S′ =W ◦.

Noticing that

(X◦\D◦)\W ◦ = X◦\V ◦,
U◦ ⊂ X◦\D◦

(where the second assertion follows since U◦ = U\S′ = U\(S ∩ U) = U\S ⊂
X\S = X◦ and U◦ ∩D◦ = ∅), consider the following diagram:

H2c
G (X,X\V )

��

// H2c
G (X◦, X◦\V ◦)

��

H0
G(V

◦)

��

ϕX◦
V ◦oo

H2c
G (X◦\D◦, (X◦\D◦)\W ◦)

��

H0
G(W

◦)

id

��

ϕ
X◦\D◦

W◦oo

H2c
G (U,U\W ) // H2c

G (U◦, U◦\W ◦) H0
G(W

◦)
ϕU◦

W◦oo

where the right-top diagram is exactly the one in Lemma 3.5.3 (and hence it is
commutative) since

V ◦ is a closed set of X◦,

W ◦ is an open set of V ◦ (see (3.5.9)),

W ◦ is the complement of D◦ in V ◦.

Our goal is to show that this diagram is commutative. The left box is obviously
commutative since all the maps are induced from inclusions, and so is the right-
top diagram because of Lemma 3.5.3.

We show the commutativity of the right-bottom box. Recall that we have
U◦ ⊂ X◦\D◦ ⊂ X◦. Since U◦ and X◦\D◦ are open subsets of X◦, we obtain
that U◦ is open in X◦\D◦. So we see that

U◦ is an open set of X◦\D◦.

Hence, by of the construction of the canonical map in (3.5.4), the composition

H0
G(W

◦)
ϕU◦

W◦−→ H2c
G (U◦, U◦\W ◦) excision←− H2c

G (X◦\D◦, (X◦\D◦)\W ◦)

is exactly the canonical map ϕ
X◦\D◦

W◦ : H0
G(W

◦) −→ H2c
G (X◦\D◦, (X◦\D◦)\W ◦).

This completes our proof.

Corollary 3.5.8. If VU is non-singular (i.e. VU ⊂ V \S), then the restriction
H∗G(X) → H∗G(VU ) maps [V ]G to the equivariant Euler class χG(EVU

), where
EVU is the normal bundle of VU in X.
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Proof. We have the following commutative diagram:

H2c
G (X,X\V )

��

// H2c
G (X)

�� %%LLLLLLLLLL

H0
G(VU )

// H2c
G (U,U\VU ) // H2c

G (U) // H2c
G (VU ).

Proposition 3.5.7 shows that [V ]G is mapped to [VU ]G by the right vertical
map. Since VU is non-singular by the assumption, the restriction H∗G(U) →
H∗G(VU ) maps [VU ]G to the equivariant Euler class χG(EVU ) by Proposition
3.5.2. Observe that the normal bundle of VU in U is the normal bundle of VU
in X since U is an open set in X.

3.5.3 Behavior under group homomorphisms

Let X and G as above. Let K be a compact connected Lie group. Suppose that
we have a homomorphism φ : K → G as Lie groups. Then K acts on X via φ.
We obtain the pull back homomorphism φ∗ : H∗G(X)→ H∗K(X) as constructed
in section 3.3.

TheG-invariant irreducible subvariety V ⊂ X defines theG-equivariant class
[V ]G ∈ H∗G(X) as above. Since K acts on X via φ, K acts on X smoothly and
each element ofK preserves the structure of algebraic varietyX. The subvariety
V is also K-invariant, and there is the K-equivariant class [V ]K ∈ H∗K(X).

Proposition 3.5.9. φ∗([V ]G) = [V ]K .

Proof. By the definition of equivariant classes of subvarieties, it suffices to show
that the G-equivariant refined class ηTV is sent to the K-equivariant refined class
ηKV under the map

H2c
G (X,X\V )→ H2c

K (X,X\V ).

With the notation in the previous section, this suffices to check that the map

H2c
G (X◦, X◦\V ◦)→ H2c

K (X◦, X◦\V ◦)

sends the G-equivariant orientation class of V ◦ to the K-equivariant orientation
class of V ◦. This suffices to show that the following diagram is commutative

H0
G(V

◦)

��

ϕX◦
V ◦ // H2c

G (X◦, X◦\V ◦)

��
H0
K(V ◦)

ϕX◦
V ◦ // H2c

K (X◦, X◦\V ◦)

because the G-equivariant orientation class is the image of 1 ∈ H2c
G (V ◦) and

similar for K-equivariant orientation class. By the definition of the canonical
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isomorphisms ϕX
◦

V ◦ , it suffices to show that the following diagram commutes

H0
G(V

◦)

��

Thom // H2c
G (N◦, N◦\V ◦)

��
H0
K(V ◦)

Thom // H2c
K (N◦, N◦\V ◦)

where N◦ is the normal bundle of V ◦ in X◦. This is equivalent to show that
the map

H2c
G (N◦, N◦\V ◦)→ H2c

K (N◦, N◦\V ◦) (3.5.10)

sends the G-equivariant Thom class to the K-equivariant Thom class. Consider
the following commutative diagram.

EK ×K N◦

��

// EG×G N◦

��
EK ×K V ◦ // EG×G V ◦

This is obviously a pull back diagram of complex vector bundles. Hence (3.5.10)
sends the G-equivariant Thom class to theK-equivariant Thom class, as desired.

3.5.4 Behavior under equivariant morphisms

Let G be a compact connected Lie group. Let X and Y be non-singular quasi-
projective varieties in which each element of G acts as automorphism of the
variety. Let F be an irreducible quasi-projective variety in which each element
of G acts as automorphism of the variety. A G-invariant irreducible subvariety
V ⊂ X defines the G-equivariant class [V ]G ∈ H∗G(X) as above. Let f : Y →
X be a G-equivariant fiber bundle. Then it follows that f−1(V ) ⊂ Y is an
irreducible G-subvariety since the fiber F is irreducible. So we have the G-
equivariant class [f−1(V )]G ∈ H∗G(Y ).

We assume that f is equivariantly locally trivialized. That is, for each point
x ∈ X, there exists a G-invariant open neighborhood of x in X and a G-
equivariant isomorphism ϕ : f−1(U)→ U ×F where G acts on the target in an
obvious way. Under these assumptions, we have the following.

Proposition 3.5.10. [f−1(V )]G = f∗([V ]G).

Proof. By the assumptions, Proposition 3.5.7 ensures that it suffices to assume
that the bundle f is a trivial bundle. That is, denoting the fiber by F , we can
write f as the projection

f : Y = X × F → X (x, q) 7→ x
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where G acts on Y = X×F in an obvious way. Also, by the isomorphism (3.5.7)
and the construction of the equivariant classes of subvarieties, Proposition 3.5.7
ensures that V ⊂ X is non-singular. Hence, again by Proposition 3.5.7, we can
assume that X is the normal bundle of V in X and Y = X × F is the pullback
bundle of X by by the projection V × F → V . Now our claim follows from the
naturality of the equivariant Thom classes with respect to pullbacks.

3.6 GKM theory for torus actions

In this section, we study a combinatorial presentation of a torus equivariant
cohomology developed by Goresky-Kottwitz-MacPherson ([20]). This presenta-
tion will allow us to do elementary computations on the equivariant cohomology.
In this section, the cohomology H∗ = H∗( ;Q) is of rational coefficient unless
otherwise specified.

3.6.1 GKM theory for a general setting

Let T = (S1)n be the n-dimensional torus acting on a locally contractible,
Hausdorff space X. We also assume that

(i) X is compact, and

(ii) H∗T (X) is a free module over H∗(BT )

where H∗T is the singular T -equivariant cohomology. Denote

X0 := {[x] ∈ X | corankT[x] = 0} = XT ,

X1 := {[x] ∈ X | corankT[x] ≤ 1}

where XT is the fixed point set of the T -action. There exists a natural iso-
morphism between the Čech cohomology theory and the singular cohomology
theory for any closed pair of locally contractible, paracompact, Hausdorff spaces.
Thus, the results in [10] applies for the singular T -equivariant cohomology: the
restriction map H∗T (X) → H∗T (X0) is injective, and so is the connecting ho-
momorphism H∗T (X,X0) → H∗T (X1, X0) of the exact sequence for the triple
(X,X1, X0) because of the second assumption above. Combining the exact se-
quences for the pair (X,X0) and the one for triple (X,X1, X0), we obtain the
following exact sequence.

Proposition 3.6.1. Under the above assumptions, the following sequence (of
coefficient in Q) is exact:

0→ H∗T (X)
i∗→ H∗T (X0)

δ→ H∗+1
T (X1, X0)

where the middle map is the restriction, and the right map is the connecting
homomorphism of the exact sequence for the pair (X1, X0).
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We now make some additional assumptions on the T -action on X:

(iii) #X0 and #{connected components of X1 −X0} are finite, and

(iv) for each connected component E of X1 − X0, its closure E is given by
E ∪ {x, y} where x, y ∈ X − E, and is homeomorphic to the complex
projective line P1, and

(v) the T -action on restricts on P1 − {∞} ∼= C (by [z, 1] 7→ z) through the
above homeomorphism, and is identified with the (complex) representation
of T .

By Proposition 3.6.1, we have

Imι∗ = Kerδ. (3.6.1)

Consider the inclusions ik : {xk, yk} ↪→ X0 and jk : (Ek, {xk, yk}) ↪→ (X1, X0).
Then we obtain a commutative diagram

H∗T (X0)

⊕ki
∗
k

��

δ // H∗+1
T (X1, X0)

⊕kj
∗
k

��
⊕kH∗T ({xk, yk})

⊕kδk // ⊕kH∗+1
T

(
Ek, {xk, yk}

)
.

(3.6.2)

Combining the assumptions (iii)-(v) with (3.6.1), we obtain the following.

Proposition 3.6.2.

Kerδ = Ker(⊕kδk ◦ ⊕ki∗k) = (⊕ki∗k)−1 (⊕kKerδk) =
∩
k

(i∗k)
−1Kerδk

Proof. We prove the left equality. Other equalities can be checked by direct
calculation. It suffices to show that, in the diagram (3.6.2), the right vertical
map ⊕kj∗k is an isomorphism. Let E1, · · · , El be the connected components of
X1\X0. We first fix 1 ≤ k ≤ l. Let us write Ek = Ek ∪ {xk, yk}. We have a
homeomorphism ϕk : Ek → P1. For each i such that xk ∈ Ei, we define

Di(xk) =

{
ϕ−1i {[1 : w] ∈ P1 | |w| ≤ c} if ϕi(xk) = [1 : 0],

ϕ−1i {[z : 1] ∈ P1 | |w| ≤ c} if ϕi(xk) = [0 : 1]

where c > 1 is a real number, and define Di(yk) similarly. Define, for each j,

Ak := ϕ−1k {[1 : w] ∈ P1 | 1/M ≤ |w| ≤M},

Bj :=



∅ if i = k,

Dj(xk) ∪Dj(yk) if i 6= k and xk, yk ∈ Ej ,
Dj(xk) if xk ∈ Ej and yk /∈ Ej ,
Dj(yk) if xk /∈ Ej and yk ∈ Ej ,
Ej if xk, yk /∈ Ej .
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Let us denote

Y1 := X1 −
∪
j

Bj , Y2 := X1 −Ak

(here, Y1 and Y2 depend on k).

E2
Y1 =

Y2 = E2

Figure 3.6.1: The case k = 2

Since Ak and the finite union
∪
k Bk are compact, Y1 and Y2 are open in X1

(recall that X is assumed to be a Hausdorff space). The condition (v) shows
that T -action on X restricts on Ak and Bk. Also define

F1 := {xk, yk}, F2 := X0.

Observing that X0 is a finite set,

Y1 ∪ Y2 = X1, F1 ∪ F2 = X0

are T -invariant open coverings of X1 and X0. So we have the Mayer-Vietoris
exact sequence :

· · · → H∗T (X1, X0)→ H∗T (Y1, F1)⊕H∗T (Y1, F1)→ H∗T (Y1 ∩ Y2, F1 ∩ F2)→ · · · .

By assumption (v), we identify the corresponding T -action on P1 − {∞} with
the the representation given by a weight in Hom(T, S1). This is possible since
irreducible (complex) representations of S1 are all one dimensional given by a
weight function. So, by shrinking T -equivariantly, we have

H∗T (Y1 ∩ Y2, F1 ∩ F2) ∼= H∗T (F1, F1) = 0,

H∗T (Y1, F1) ∼= H∗T
(
Ek, {xk, yk}

)
,

H∗T (Y2, F2) ∼= H∗T (X1 − Ek, X0) .
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Hence, the exact sequence splits into

H∗T (X1, X0)
∼=→ H∗T

(
Ek, {xk, yk}

)
⊕H∗T (X1 − Ek, X0) .

Continuing this process, we obtain

H∗T (X1, X0) ∼= ⊕kH∗T
(
Ek, {xk, yk}

)
⊕H∗T (X1 − ∪kEk, X0) .

Since we have X1 − ∪kEk = X0 by definition, we get

H∗T (X1, X0) ∼= ⊕kH∗T
(
Ek, {xk, yk}

)
⊕H∗T (X0, X0)

= ⊕kH∗T
(
Ek, {xk, yk}

)
.

Recalling that this isomorphism is just a direct product of the homomorphism
induced by inclusions, we complete the proof.

For an one-dimensional orbit Ek, we have a homeomorphism ϕk : Ek
∼=→ P1

by the assumption (iv). Let Tk be the isotropy subgroup of a point in Ek
(which dose not depend on this point), and let tk be its Lie algebra. Also, let
t∗Q := Q⊗ t∗Z(⊂ t∗).

Proposition 3.6.3. Under the identification H∗T (pt) = H∗(BT ) = Sym(t∗Q),
we have

Kerδk =
{
(f, g) ∈ Sym(t∗Q)⊕ Sym(t∗Q) | f |tk = g|tk

}
. (3.6.3)

Proof. Consider the long exact sequence of the pair (Ek, {xk, yk});

· · · → Hq
T (Ek)→ Hq

T (xk)⊕H
q
T (yk)

δk→ Hq+1
T (Ek, {xk, yk})→ · · · .

Recall that {xk, yk} is the T -fixed point of the T -action on P1 by assumption
(v). Since Hodd(P1) = 0, the equivariant cohomology Hq

T (Ek) is a free module
over H∗(BT ). This shows that the left map is injective by Proposition 3.6.1.
Also, by the Serre spectral sequence, we haveHodd

T (Ek) ∼= Hodd
T (P1) = 0. Hence,

the above sequence splits into the following short exact sequence

0→ Hq
T (Ek)→ Hq

T (xk)⊕H
q
T (yk)

δk→ Hq+1
T (Ek, {xk, yk})→ 0.

Next, consider the Mayer-Vietoris exact sequence;

· · · → Hq
T (Ek)→ Hq

T (U)⊕Hq
T (V )→ Hq

T (U ∩ V )→ · · ·

where U := Ek − {xk} and V := Ek − {yk} are T -invariant open subsets of
Ek = P1. By the same reason, this sequence also splits into the following short
exact sequence

0→ Hq
T (Ek)→ Hq

T (U)⊕Hq
T (V )→ Hq

T (U ∩ V )→ 0.
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Now, considering the homomorphisms induced by the inclusions, we obtain

0 // Hq
T (Ek)

// Hq
T (xk)⊕H

q
T (yk)

δk // Hq+1
T (Ek, {xk, yk}) // 0

0 // Hq
T (Ek)

//

OO

Hq
T (U)⊕Hq

T (V ) //

OO

Hq
T (U ∩ V ) // 0

Since the two horizontal sequences are exact, we obtain a homomorphismHq
T (U∩

V ) → Hq+1
T (Ek, {xk, yk}). This map is in fact an isomorphism since the the

other vertical maps are isomorphism (since {0} ↪→ U is a T -homotopy equiva-
lence). Now, by chasing the diagram, we obtain

Ker
[
Hq
T (xk)⊕H

q
T (yk)

δk→ Hq+1
T (Ek, {xk, yk})

]
= Ker

[
Hq
T (xk)⊕H

q
T (yk)

δk→ Hq+1
T (Ek, {xk, yk})

∼=← Hq
T (U ∩ V )

]
= Ker

[
Hq
T (xk)⊕H

q
T (yk)

∼=← Hq
T (U)⊕Hq

T (V )→ Hq
T (U ∩ V )

]
= Ker [Hq

T (xk)⊕H
q
T (yk)→ Hq

T (U ∩ V )] .

Here, the last map is ψ− φ where ψ and φ are the homomorphisms induced by
the one-point maps U ∩ V → {xk} and U ∩ V → {yk}.

By the assumption (v), there exists a T -homotopy equivalence S1 ↪→ U ∩ V
where T acts on this S1 transitively. So we have a homeomorphism S1 ∼=
T/K where K is the isotropy subgroup of a point of S1. We have an obvious
continuous map ET ×K {pt} → ET ×T (T/K) sending [v, pt] 7→ [v, [1]] where
1 is the identity element of T . This is a homeomorphism. In fact, the inverse
continuous map is constructed as follows. Consider a continuous map ET×T →
ET × {pt} by (v, t) 7→ (vt, ∗). This induces ET × (T/K) → ET ×K {pt}
by (v, [t]) 7→ [vt, ∗]. We finally obtain a continuous map ET ×T (T/K) →
ET ×K {pt} by [v, [t]] 7→ [vt, ∗], and this gives the inverse map. Recalling that

we can take ET as EK, we obtain H∗T (T/K)
∼=→ H∗K(pt). Now the map

H2q
T (xk)

ψ→ H2q
T (U ∩ V )

∼=→ H2q
T (S1)

∼=→ H2q
T (T/K)

∼=→ H2q
K (pt)

Since ψ is identified with the structure map of an H2q
T (xk)-algebra (i.e. the

multiplication map of equivariant parameters), we see that this composition is
the group-restriction map induced by K ↪→ T . Considering similarly for φ, we
obtain that

Ker
[
Hq
T (xk)⊕H

q
T (yk)

δk→ Hq+1
T (Ek, {xk, yk})

]
= Ker [Hq

T (xk)⊕H
q
T (yk)→ Hq

T (U ∩ V )]

= Ker [Hq
T (xk)⊕H

q
T (yk)→ Hq

K(pt)]

= Ker
[
(f, g) 7→ (f − g)|k

]
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by Proposition 3.3.3.

Now, with (3.6.1), we obtain the main theorem. Recall that we let T = (S1)n

be a torus acting on a locally contractible, Hausdorff space X.

Theorem 3.6.4. (Goresky-Kottwitz-MacPherson)
If the conditions (i)-(v) are satisfied, then the image of the restriction map
H∗T (X;Q) ↪→ H∗T (X

T ;Q) = ⊕XT Sym(t∗Q) is given by{
p ∈ ⊕XT Sym(t∗Q) | p(xk)|tk = p(yk)|tk for all k

}
where tk is the Lie algebra of the isotropy subgroup of a point in a connected
component Ek of the 1-dimensional orbits of T .

Remark 3.6.5. In [24], they provide a similar theorem for generalized equiv-
ariant cohomology,

3.6.2 GKM theory for algebraic torus actions

There is a natural situation for Theorem 3.6.4. Let X be a (possibly singular)
complex projective variety equipped with an algebraic action of a complex torus
TC = (C×)n. Let T = (S1)n ⊂ TC be the real torus. We consider the singu-
lar equivariant cohomology H∗T (X;Q) with respect to the Euclidean topology.
The condition (i) is obviously satisfied. By Bialynicki-Birula’s TC-invariant cell
decomposition of X, we have Hodd(X;Q) = 0. Hence, the equivariant coho-
mology H∗T (X;Q) is a free H∗(BK;Q)-module, that is, the condition (ii) also
holds. Recall that we denote

XT = X0 = {[x] ∈ X | corankT[x] = 0}, X1 = {[x] ∈ X | corankT[x] ≤ 1}.

We now assume that

(a) #X0 and #{connected components of X1 −X0} are finite, and

(b) for each connected component E of X1 − X0, its Zariski closure E is
isomorphic to the complex projective line P1 (as algebraic varieties).

Let E1, · · · , El be the connected component of 1-dimensional orbit X1 − X0.
Recall that the automorphism group (as an algebraic variety) of P1 is PSL2(C).
So the assumption (b) implies that there are exactly two TC-fixed points xk and
yk in Ek, and the condition (iv) and (v) is automatically satisfied. Let Tk be
the isotropy subgroup of a point in Ek (which dose not depend on this point),
and let tk be its Lie algebra. Then Theorem 3.6.4 shows the following which is
in fact the original statement provided in [20].

Theorem 3.6.6. (Goresky-Kottwitz-MacPherson [20])
If the conditions (a) and (b) are satisfied, then the image of the restriction map
H∗T (X;Q) ↪→ H∗T (X

T ;Q) = ⊕XT Sym(t∗Q) is given by{
p ∈ ⊕XT Sym(t∗Q) | p(xk)|tk = p(yk)|tk for all k

}
.
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As the closing of this section, we explain a back ground of this theorem in
equivariant symplectic geometry as follows. Let X be a TC-invariant subvariety
of a projective space PN equipped with an Hamiltonian TC-action. Then the
T -action on X is also a Hamiltonian action with a moment map µ : X → t∗. Let
λ ∈ t∗Z be the weight of the TC-representation on C = Ek\{xk} (equivalently, −λ
is the weight of the TC-representation on Ek\{yk}). Then λk ∈ t∗Z ⊂ t∗ describe
the direction (in t∗) of the edge µ(Ek) of the moment polytope µ(X). Also, tk
can be written by

tk = {X ∈ t | λk(X) = 0} .

This shows that

H∗T (X;Q) =
{
p ∈ ⊕XT Sym(t∗Q) | p(xk)− p(yk) is divisible by λk for all k

}
.

Because of this equality, in many situation, it is easy to see the equivariant coho-
mology H∗T (X;Q) in terms of the moment graph; the vertex set of the moment
graph is XT , and the edges are the image µ(Ek) of the invariant projective lines
equipped with the label ±λk ∈ t∗Z which is the weight of the T -representation on
Ek (this has an ambiguity of signs, but this will not matter when we compute
the equivariant cohomology). Then we can say that the combinatorial data of
the moment graph determines the equivariant cohomology H∗T (X;Q).



Chapter 4

Schubert Calculus of
Weighted Grassmannians

The cohomology ring of the complex Grassmannian manifold Gr(d, n) has been
attracting mathematicians for several decades. This ring can be calculated very
explicitly, and the Schubert classes play the important roles connecting geome-
try, algebraic topology, combinatorics and representation theory. The Schubert
variety Ωλ for each Young diagram λ (contained in the d×n rectangular box) is
an irreducible subvariety of the Grassmannian Gr(d, n), and their fundamental
classes, the Schubert classes, provides us a Z-module basis of H∗(Gr(d, n);Z).
There is a natural question to ask; the number cνλµ in the product expansion

SλSµ =
∑
ν

cνλµSν (4.0.1)

where the sum runs over all the Young diagram contained in the d× n rectan-
gular box. Mathematics around these types of coefficients for other spaces (e.g.,
partial flag varieties, Hessenberg vaeities, etc), or other rings (e.g., K-theory,
quantum cohomology, symmetric polynomial ring, etc) is called Schubert calcu-
lus. The most striking phenomenon of this problem which attract mathemati-
cians is the fact that there is a surjective ring homomorphism

R+(GL(d,C))→ H∗(Gr(d, n);Z)

where R+(GL(d,C)) is the subring of the representation ring of GL(d,C) gen-
erated by the polynomial representations. In fact, for each Young diagram λ,
there is the irreducible representation Vλ of GL(d,C) whose highest weight is
λ = (λ1, · · · , λd) where each λi is the number of boxes in the i-th row. As a
matter of fact, they form a Z-module basis of the polynomial representation
ring of GL(d,C), and the tensor product can be decomposed into irreducible
representations

Vλ ⊗ Vµ =
⊕
ν

CνλµVν .

67
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Here, if λ, µ and ν are contained in the d× n rectangular box, then

cνλµ = Cνλµ.

In this sense, the Schubert classes are in an intersection of geometry, algebraic
topology and representation theory.

As a generalization of this problem, Knutson-Tao studied the torus equivari-
ant cohomology H∗T (Gr(d, n),Z) of Grassmannians, and gave a beautiful combi-
natorial rule which describes the equivariant Schubert calculus where T = (S1)n

is the n-dimensional torus acting on Gr(d, n) as the induced action from the stan-
dard T -action on Cn. Since each Schubert variety is a T -invariant irreducible
suvariety of Gr(d, n), there is the T -equivariant fundamental class S̃λ, called the
T -equivariant Schubert calss, associated to this Schubert variety. They used so-
called equivariant puzzle rule to calculate the equivariant structure constants
c̃νλµ with respect to the classes S̃λ. See [35] for detail.

Recently, Tymoczko ([47]) studied a torus equivariant cohomology of weighted
projective spaces in Z-coefficient. The weighted projective space wPn is a very
important example of orbifolds which admit mild singularities. Since they are
singular as varieties in general, there are no nice notion of fundamental classes
(in cohomology) for subvarieties of wPn. In fact, she used a combinatorial
Schubert-type module basis of H∗T (wPn;Z). On the other hand, Corti-Reid
([11]) defined weighted partial flag varieties which can be thought as an orbifold
version of the partial flag varieties for general Lie type. They provides a class of
orbifolds which can be calculated explicitly. In this chapter, we will study the
equivariant Schubert calculus of the weighted Grassmannian wGr(d, n), where
our definition of Schubert classes is geometric in a sense of orbifolds (or stacks).
This chapter is based on the paper [3] collaborated with Tomoo Matsumura.

4.1 Weighted Grassmannians and weighted Schu-
bert varieties

In this section, we recall the definition of the weighted Grassmannian wGr(d, n),
following [11]. We study the coordinate charts and obtain a quasi-cell decompo-
sition which generalizes the usual Schubert cell decomposition of the ordinary
Grassmannian Gr(d, n). This allows us to define the weighted Schubert varieties
by taking the closure of each cell and also as a consequence, we show that the
odd degree classes of the rational cohomology of wGr(d, n) vanish.

For positive integers d and n such that d < n, let [n] := {1, · · · , n}, and

{nd} := {λ ⊂ [n] | |λ| = d}.

We denote the elements of λ by λ1, · · · , λd where λ1 < · · · < λd. For λ, µ ∈ {nd},
we define the Bruhat order by: λ ≤ µ if

λi ≥ µi for all i = 1, · · · , d. (4.1.1)
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We define the lexicographic order by: λ <lex µ if there exists an integer 1 ≤ j ≤ d
such that

λi = µi for al i < j, and λj < µj . (4.1.2)

An inversion (k, l) of λ is a pair of k ∈ λ and l 6∈ λ such that k < l. Let
inv(λ) be the set of all inversions of λ. The length l(λ) of λ is defined to be the
cardinarity of inv(λ). For each (k, l) ∈ inv(λ), let (k, l)λ be the element of {nd}
obtained by replacing k in λ by l. Let

[λ] := {µ ∈ {nd} | |λ ∩ µ| = d− 1} .

Then [λ] = [λ]+
∐
[λ]− where [λ]− := {µ ∈ [λ] | µ ≤ λ} and [λ]+ := {µ ∈ [λ] |

µ ≥ λ}. Note that there is a bijection inv(λ) ∼= [λ]−, sending (k, l) to (k, l)λ.
We say that λ covers µ if µ ∈ [λ]− and l(λ) = l(µ) + 1, and denote λ→ µ.

4.1.1 The weighted Grassmannian

Let Cn be the complex n-plane with the standard basis {ei, i ∈ [n]} and
∧dCn

its d-th exterior product with the induced basis

{eλ := eλ1 ∧ · · · ∧ eλd
, λ ∈ {nd}}.

We identify
∧d Cn with the coordinate space C{

n
d} where each x ∈

∧dCn
corresponds to the coordinate vector (xλ)λ∈{nd} with respect to eλ’s. We also

denote each coordinate xλ by x(λ1 · · ·λn). Let TC := (C×)n and (C×){
n
d} be

the complex tori acting canonically on Cn and C{
n
d} respectively. Consider the

following TC-equivariant map

∧d :
d times︷ ︸︸ ︷

Cn × · · · × Cn →
∧dCn ; (z1, · · · , zd) 7→ z1 ∧ · · · ∧ zd

where TC acts on the domain diagonally and, to the target through the map

ρ : TC → (C×){
n
d} ; t = (t1, · · · , tn) 7→

(
tλ :=

∏
l∈λtl

)
λ∈{nd}

. (4.1.3)

Let aPl(d, n) be the image of ∧d which is TC-invariant.
Let w := (w1, · · · , wn) ∈ (Z≥0)n and a ∈ Z≥1. We introduce

wDC := {(tdw1+a, · · · , tdwn+a) ∈ TC | t ∈ C×} and wRC := TC/wDC.

Note that

ρ(wDC) =
{
(twλ)λ ∈ (C×){

n
d}
∣∣∣ t ∈ C×

}
, where wλ := a+

∑
l∈λ

wl.

In the case when w = (0, · · · , 0) and a = 1, we write DC for the diagonal in

C{
n
d} and RC = TC/DC. We denote the corresponding compact real tori in the

complex tori by T,wR,wD,R and D respectively.



70 CHAPTER 4. WEIGHTED GRASSMANNIANS

Definition 4.1.1 (Corti-Reid [11]). Let aPl(d, n)× := aPl(d, n) − {0}. The
weighted Grassmannian wGr(d, n) is the projective variety with at worst orbifold
singularities, given by

wGr(d, n) := aPl(d, n)×/wDC.

The quotient torus wRC acts on wGr(d, n). The ordinary Grassmannian Gr(d, n)
is the special case when w1 = · · · = wn = 0 and a = 1, i.e. Gr(d, n) =
aPl(d, n)×/DC.

Remark 4.1.2. In [11], the C×-action which defines wGr(d, n) as a quotient
of aPl(d, n)× is actually given by the map C× → ρ(wDC), t 7→ (twλ)λ, but
obviously it defines the same algebraic variety.

4.1.2 The Charts for aPl(d, n)× and wGr(d, n)

Extend the notation x(l1, · · · , ld) to any (not necessarily increasing) sequence
(l1, · · · , ld) of integers in [n] by the rule

x(l1, · · · , lp, lp+1, · · · , ld) = −x(l1, · · · , lp+1, lp, · · · , ld)

for any integer 1 ≤ p ≤ d − 1. It is known that aPl(d, n)× is a non-singular

quasi-projective variety in C{
n
d} − {0} defined by of the Plücker relations (c.f.

[34]): for any sequence of integers 1 ≤ j1, · · · , jd−1, l1, · · · , ld+1 ≤ n,

d+1∑
i=1

(−1)i−1x(j1, · · · , jd−1, li)x(l1, · · · , ľi, · · · , ld+1) = 0. (4.1.4)

Consider the following TC-stable open neighborhood of eλ in aPl(d, n)×:

aUλ :=
{
x ∈ aPl(d, n)× | xλ 6= 0

}
.

It is clear that aPl(d, n)× is covered by aUλ’s, and moreover we have the natural

TC-equivariant coordinates on each aUλ. Let C[λ] be the subspace of C{
n
d}

corresponding to the subspace generated by {eµ, µ ∈ [λ]} and consider the
natural projection

ψλ : aUλ → C× × C[λ] ; x 7→
(
xλ, (xµ)µ∈[λ]

)
. (4.1.5)

This is a TC-equivariant homeomorphism where TC acts on the target through
the map

ρλ : TC → (C×){
n
d} → C× × (C×)[λ] ; t 7→ (tλ, (tµ)µ∈[λ]).

Indeed, the inverse of ψλ is constructed as follows (c.f. [34, p.1065]). For each
i = 1, · · · , d and l ∈ [n], let

pi(l) =
x(λ1 · · ·λi−1lλi+1 · · ·λd)

xλ
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and consider the vectors pi :=
∑n
l=1 pi(l)el ∈ Cn. The numerator of each

coefficient is ±xµ with µ ∈ [λ] if l ∈ {λ1, · · · , λd}\{λi}, xλ if l = λi, and zero
otherwise. Thus we can define ψλ by assigning y := xλp1 ∧ · · · ∧ pd to each
x̃ :=

(
xλ, (xµ)µ∈[λ]

)
∈ C× × C[λ]. It is straightforward to check that yµ = xµ

for all µ ∈ [λ] and yλ = xλ, i.e. ψλ(y) = x̃.
Passing to the quotient, we obtain the natural wRC-equivariant affine charts

of wGr(d, n). Let

wUλ := aUλ/wDC.

Then ψλ induces a homeomorphism

ψλ : wUλ
∼=−→ (C× × C[λ])/ρλ(wDC) ∼= C[λ]/Gλ

where Gλ is a finite cyclic subgroup of (C×)[λ] given by

Gλ =
{
(twµ)µ∈[λ] ∈ (C×)[λ]

∣∣∣ t ∈ C× and twλ = 1
}
.

4.1.3 The Schubert cell decompositions and Schubert va-
rieties

Consider the (C×){
n
d}-invariant decomposition of C{

n
d} − {0}

C{
n
d} − {0} :=

∐
λ∈{nd}

Cλ

where

Cλ :=
{
x ∈ C{

n
d} − {0}

∣∣∣xλ 6= 0 and xµ = 0 for all µ >lex λ
}
.

By restricting the above decomposition to aPl(d, n)×, there is the TC-invariant
decomposition

aPl(d, n)× =
∐

λ∈{nd}
aΩ◦λ where aΩ◦λ := aPl(d, n)× ∩ Cλ. (4.1.6)

Since aPl(d, n)× ∩ Cλ ⊂ aUλ, we have aΩ◦λ = aUλ ∩ Cλ. The following lemma
helps us to describe the image of aΩ◦λ under the chart ψλ (Cor 4.1.4).

Lemma 4.1.3. Let x ∈ aUλ. The following are equivalent:

(i) xµ = 0 for all µ ∈ [λ]−.

(ii) xµ = 0 for all µ >lex λ (i.e. x ∈ aΩ◦λ).

(iii) xµ = 0 for all µ 6≥ λ.
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Proof. Since we have the implications ν ∈ [λ]− ⇒ ν >lex λ ⇒ ν 6≥ λ, it is
clear that (iii) ⇒ (ii) ⇒ (i). We prove that (i) implies (iii). Assume (i) and
let ν 6≥ λ. We use induction on the number k := d − |ν ∩ λ|. If k = 1, ν 6≥ λ
implies ν ∈ [λ]−. Thus xν = 0. In general, choose an integer 1 ≤ s ≤ d such
that νs /∈ λ. For 1 ≤ i ≤ d such that λi 6∈ ν, let ν(i) := (ν\{νs}) ∪ {λi} and
λ(i) := (λ\{λi}) ∪ {νs} in {nd}. Then we claim that

λ � λ(i) or λ � ν(i). (4.1.7)

Indeed, λ ≤ λ(i) implies νs < λi, i.e. ν(i) ≤ ν. Therefore, together with
λ ≤ ν(i), it implies ν ≥ λ. Thus the negation of (4.1.7) leads to a contradic-
tion. Now, consider the Plücker relation for the sequences ν1, · · · , ν̌s, · · · , νd
and λ1, · · · , λd, νs

xνxλ =
∑

1≤i≤d
λi 6∈ν

±xν(i)xλ(i) (4.1.8)

where the signs are chosen appropriately according to (4.1.4). Since we have
d−|ν(i)∩λ| < d−|ν∩λ| and d−|λ(i)∩λ| = 1, the induction hypothesis implies
that xν(i) = 0 or xλ(i) = 0 by (4.1.7). Therefore (4.1.8) becomes xνxλ = 0.
Since xλ 6= 0 by x ∈ aUλ, we have xν = 0.

Corollary 4.1.4. Under the chart ψλ, we have aΩ◦λ
∼= C× × C[λ]+ × {0}[λ]− .

Since the decomposition (4.1.6) is TC-invariants, it descends to the quotient
wGr(d, n) and gives the wRC-invariant decomposition. We call this decomposi-
tion a quasi-cell decomposition because each “cell” is actually homeomorphic to
a Euclidean space modulo a finite group.

Proposition 4.1.5.

wGr(d, n) =
∐
λ∈{nd}wΩ

◦
λ where wΩ◦λ := aΩ◦λ/wDC.

Under the chart ψλ, wΩ
◦
λ
∼= C[λ]+/Gλ.

Definition 4.1.6. For each λ ∈ {nd}, we define the Schubert varieties in aPl(d, n)×

and wGr(d, n) as Euclidean closures of aΩ◦λ and wΩ◦λ respectively, i.e.

aΩλ := aΩ◦λ and wΩλ := wΩ◦λ.

We will call wΩλ the weighted Schubert variety corresponding to λ.

The next proposition seems well-known but for the sake of completeness we
will give a proof.

Proposition 4.1.7.

aΩλ =
∐
µ≥λ

aΩ◦µ.
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Proof. First, we show aΩλ ⊂
∐
µ≥λ aΩ

◦
µ. Let x ∈ aΩλ. Then there exists a

sequence {xN}∞N=0 ⊂ aΩ◦λ such that xN converges to x as N goes to ∞. By
Lemma 4.1.3, (xN )η = 0 for all η � λ. Therefore xη = 0 for all η � λ, i.e.
x /∈ aΩ◦η for all µ 6≥ λ. By the decomposition (4.1.6) of aPl(d, n)×, we obtain
x ∈

∐
λ≤µ aΩ

◦
µ. Next, we show aΩλ ⊃

∐
µ≥λ aΩ

◦
µ. If µ 	 λ, then there is a

covering sequence µ = µs → µs−1 → · · · → µ1 → λ where s = l(µ)− l(λ). Thus
it suffices to show that aΩλ ⊃ aΩ◦µ for any µ such that µ → λ, i.e. for some
1 ≤ p ≤ d,

µp = λp − 1 and µq = λq for all q 6= p.

Let y ∈ aΩ◦µ. We construct a sequence {xN}N∈N ⊂ aΩ◦λ which converges to y
as N goes to ∞. For brevity, we omit the index N and write xN = x. Since
any point in aUλ is determined by its coordinates of the indexes in {λ}

∐
[λ],

we define x to be the element of aUλ uniquely given by

xλ := N−1,

xν := yν for all ν ∈ [λ] ∩ ({µ}
∐
[µ]),

xρq,α :=
{
y(µ1, · · · , µ̌q, · · · , µd, α)x(µ1, · · · , µ̌p, · · · , µd, λp)

− y(µ1, · · · , µ̌p, · · · , µd, α)y(µ1, · · · , µ̌q, · · · , µd, λp)
} (−1)δ+r

yµ

where δ = 0 if p < q and δ = 1 if q < p, and

xρq,α = (−1)rx(µ1, · · · , µ̌q, · · · , µ̌p, · · · , µd, α, λp)

for some integer r in the extended notation given at Section 4.1.2. Here we have
used the decomposition of [λ] into [λ] ∩ ({µ}

∐
[µ]) and

[λ]\({µ}
∐
[µ]) =

{
ρq,α := {λ1, · · · , λd, α}\{λq}

∣∣ q 6= p and α 6∈ λ ∪ {µp}
}
.

This x is an element of aΩ◦λ since xη = 0 for all η ∈ [λ]− by Lemma 4.1.3. Indeed,
if η ∈ [λ]∩({µ}

∐
[µ]), then η ∈ [µ]− so that xη = yη = 0 by y ∈ aΩ◦µ. If η = ρq,α,

then µq = λq < α, i.e. {µ1, · · · , µ̌q, · · · , µd, α} ∈ [µ]−. Hence, the first term
of xρq,α vanishes. Moreover, if µp < α, we have {µ1, · · · , µ̌p, · · · , µd, α} ∈ [µ]−,
and if not, µq < α < µp < λp, we have {µ1, · · · , µ̌q, · · · , µd, λp} ∈ [µ]−. In both
cases, the second term of xρq,α vanishes.

Since x ∈ aUµ by xµ = yµ 6= 0, we can compare x and y under the chart ψµ.
In fact, ψµ(x) and ψµ(y) coincide except for the λ-component, therefore x goes
to y when N goes to ∞, as desired. By the definition of x, it suffices to check
that xξ = yξ for any ξ ∈ ({µ}

∐
[µ])\({λ}

∐
[λ]). Observe that ξ can be written as

{µ1, · · · , µ̌q, · · · , µd, α} where q 6= p and α /∈ λ ∪ {µp}. By the Plücker relation
for the sequences µ1, · · · , µ̌q, · · · , µ̌p, · · · , µd, α and µ1, · · · , µ̌p, · · · , µd, λp, µp,
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we have

x(µ1, · · · , µ̌q, · · · , µd, α)x(µ1, · · · , µ̌p, · · · , µd, λp)
= (−1)d−p+δx(µ1, · · · , µ̌q, · · · , µ̌p, · · · , µd, α, µp)x(µ1, · · · , µ̌p, · · · , µd, λp)
= x(µ1, · · · , µ̌p, · · · , µd, α)x(µ1, · · · , µ̌q, · · · , µd, λp)

+ (−1)δx(µ1, · · · , µ̌q, · · · , µ̌p, · · · , µd, α, λp)x(µ1, · · · , µd)
= y(µ1, · · · , µ̌p, · · · , µd, α)y(µ1, · · · , µ̌q, · · · , µd, λp) + (−1)δ+rxρq,αyµ
= y(µ1, · · · , µ̌q, · · · , µd, α)x(µ1, · · · , µ̌p, · · · , µd, λp)

where we used the definition of xρq,α at the last equality. So we obtain

x(µ1, · · · , µ̌q, · · · , µd, α) = y(µ1, · · · , µ̌q, · · · , µd, α)

since x(µ1, · · · , µ̌p, · · · , µd, λp) = ±xλ 6= 0.

The following proposition is a corollary.

Proposition 4.1.8.

wΩλ =
∐
µ≥λ

wΩ◦µ

Proof. It is clear from Proposition 4.1.7 that wΩλ ⊃
∐
λ≤µwΩ

◦
µ. Let [x] ∈ wΩλ.

There exists a sequence {[xi]}∞i=0 ⊂ wΩ◦λ such that [xi]→ [x] as i→∞. Lemma
4.1.3 shows xiη = 0 for all η � λ. This implies that xη = 0 for all η � λ. Thus
x must lies in wΩ◦µ for some µ ≥ λ.

As corollaries, we can also write aΩλ and wΩλ explicitly as subvarieties of
aPl(d, n)× and wGr(d, n) respectively.

Corollary 4.1.9. aΩλ = {x ∈ aPl(d, n)× | xν = 0 for all ν � λ}. In particular,
the complex codimension of aΩλ in aPl(d, n)× is the length l(λ) of λ.

Proof. Let x ∈ aΩλ. By Proposition 4.1.7, x is contained in aΩ◦µ for some
µ ≥ λ. If ν � λ, then ν � µ so that xν = 0 by Lemma 4.1.3. On the other
hand, suppose that x is in the RHS. Then x 6∈ aΩν for all ν � λ. Therefore
x ∈

∐
µ≥λ aΩ

◦
µ = aΩλ. Finally dimaΩλ = dimaΩ◦λ = d(n − d) − l(λ) by

Corollary 4.1.4.

The previous corollary immediately implies the following.

Corollary 4.1.10. wΩλ = {[x] ∈ wGr(d, n) | xν = 0 for all ν � λ}. In partic-
ular, the codimension of wΩ◦λ in wGr(d, n) is the length l(λ) of λ.

Remark 4.1.11. The varieties aΩλ is irreducible in aPl(d, n)× since it is a
closure of Ω◦λ. From this, it also follows that wΩλ is an irreducible variety.
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4.1.4 Vanishing of the odd degree

The quasi-cell decomposition in Proposition 4.1.5 allows us to show that the
odd degree of the rational singular cohomology H∗(wGr(d, n)) vanishes. As a
consequence, the Serre spectral sequence for the fibration EwR×wRwGr(d, n)→
BwR degenerates at E2-stage and the wR-equivariant cohomology is free over
H∗(BwR). In this paper, all cohomologies are assumed to be over Q-coefficients
unless otherwise specified.

Let us denote H∗ the Borel-Moore homology over Q. We first quote a lemma
which will be used in the proof of the next proposition.

Lemma 4.1.12. Let Dm be the closed unit disc in Rm. Let ι : {0} ↪→ Dm be
the inclusion. Then ι∗ : H∗({0})→ H∗(D

m) is an isomorphism.

Let a1, · · · , am, b be positive integers. Then C× acts on Cm by

g ·(z1, · · · , zm) = (ga1z1, · · · , gamzm)

for any g ∈ C× and (z1, · · · , zm) ∈ Cm. Let G := {g ∈ C× | gb = e}. Observe
that the Borel-Moore homology Hi(Cm/G) is defined (Cm/G can be realized
by an open subset of wP(a1, · · · , am, b) which can also be realized as a closed
subset of a projective space PN for some integer N).

Proposition 4.1.13.

Hi(Cm/G) ∼=

{
Q (i = 2m)

0 (otherwise)

Proof. Let D2m = {z ∈ Cm | |z| ≤ 1}. Then the G-action on Cm restricts on
intD2m since G ⊂ S1 ⊂ C×, and the G-equivariant homeomorphism intD2m ∼=
Cm defined by

z 7→
(
z1/
√

1− |z|2, · · · , zm/
√
1− |z|2

)
induces an homeomorphism intD2m/G ∼= Cm/G. We calculate Hi(intD

2m/G)
in the following.

The Borel-Moore homology H∗(D
2m/G) is also defined because D2m/G is

a closed subset of Cm/G. Then, we have an exact sequence associated to the
open embedding intD2m/G ↪→ D2m/G

· · · → Hi(D
2m/G)→ Hi(intD

2m/G)→ Hi−1(S
2m−1/G)

ι∗→ Hi−1(D
2m/G)→ · · ·

where ι : S2m−1 ↪→ D2m is the inclusion. Since the spacesD2m/G and S2m−1/G
are compact, locally contractible spaces, we have

Hi(D
2m/G) ∼= Hi(D

2m/G) ∼=

{
Q (i = 0)

0 (otherwise),

Hi(S
2m−1/G) ∼= Hi(S

2m−1/G) ∼=

{
Q (i = 0, 2m− 1)

0 (otherwise).
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(see [46, Lem.14, sec.10, chap.6]). Hence, the above exact sequence shows

Hi(intD
2m/G) ∼=

{
Q (i = 2m)

0 (i 6= 0, 1, 2m).

We prove H0(intD
2m/G) = H1(intD

2m/G) = 0. Since we have

0→ H1(intD
2m/G)→ H0(S

2m−1/G)
ι∗→ H0(D

2m/G)→ H0(intD
2m/G)→ 0,

it suffices to show that H0(S
2m−1/G)

ι∗→ H0(D
2m/G) is an isomorphism. Recall

that D2m/G is compact and can be embedded into RM for some M . Without
loss of generality, we can assume that there is a sequence of closed embeddings

{0} → S2m−1/G ↪→ D2m/G→ D(↪→ RM )

such that the compositions of embeddings coincides with the natural inclusion
j : {0} ↪→ D, where D is the closed unit disk in RM and 0 is the origin of RM .
Out of this sequence of closed embeddings, we obtain

H0({0})→ H0(S
2m−1/G)→ H0(D

2m/G)→ H0(D)

which coincides with j∗ : H0({0}) → H0(D). Since all the entries in this
sequence are isomorphic to Q, it is enough to show that j∗ is an isomorphism
which is proved by Lemma 4.1.12.

Proposition 4.1.14.

Hi(wGr(d, n)) ∼=

{⊕
2l(λ)=iQ if i is even,

0 if i is odd.

Proof. The argument of Appendix B in [18] can be applied to the quasi-cell
decomposition, and we obtain

Hi(wGr(d, n)) ∼=
⊕

dimwGr(d,n)−2l(λ)=i

Hi(wΩ
◦
λ) (4.1.9)

where H∗ is the rational Borel-Moore homology. By Proposition 4.1.13, we
obtain

Hi(wΩ
◦
λ)
∼= Hi(C[λ]−/Gλ) ∼=

{
Q if i = 2l(λ),

0 if otherwise.
(4.1.10)

Hence, we obtain

Hi(wGr(d, n)) ∼=

{⊕
dimwGr(d,n)−2l(λ)=iQ if i is even,

0 if i is odd.
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Since wGr(d, n) is covered by the locally contractible charts {wUλ}, we see that
wGr(d, n) is a compact locally contractible space. Hence, the singular homology
and the Borel-Moore homology agree ([46, Lem.14, sec.10, chap.6]):

Hi(wGr(d, n)) ∼= Hi(wGr(d, n)).

By applying the rational Poincaré duality (c.f. [5, Proposition 1.28]), we obtain
the claim.

Recall that the rational equivariant cohomology for the wR-action on wGr(d, n)
is defined as the cohomology of the Borel construction, i.e. the total space of
the fibration

wGr(d, n)
ζ
↪→ EwR×wR wGr(d, n)→ BwR,

where EwR→ BwR is a universal principal wR-bundle with the contractible to-
tal space and EwR×wRwGr(d, n) := (EwR×wGr(d, n))/wR. The pullback of the
projection to BwR defines the H∗(BwR)-module structure of H∗wR(wGr(d, n)).
Since the fiber wGr(d, n) is path-connected, the vanishing of odd degree classes
implies that the Serre spectral sequence of this fibration collapses at E2-stage.
This implies the freeness of H∗wR(wGr(d, n)) as a H∗(BwR)-module:

Proposition 4.1.15. As H∗(BwR)-modules,

H∗wR(wGr(d, n)) ∼= H∗(BwR)⊗Q H
∗(wGr(d, n)).

In particular, H∗wR(wGr(d, n)) is a free module over H∗(BwR).

4.2 Equivariant weighted Schubert classes

Recall that T,wR and R be the real tori in TC,wRC, RC respectively. In this
section, we discuss the relations among the rational equivariant cohomologies
H∗T (aPl(d, n)

×), H∗wR(wGr(d, n)), and H∗R(Gr(d, n)). In fact, they are iso-
morphic as rings, while they are modules over different polynomial rings. In
H∗T (aPl(d, n)

×), there are geometrically defined cohomology classes aS̃λ associ-
ated to the varieties aΩλ. We define our equivariant weighted Schubert classes
wS̃λ in H∗wR(wGr(d, n)) as the classes corresponding to aS̃λ under the isomor-
phism.

The quotient maps from aPl(d, n)× to wGr(d, n) and Gr(d, n), and from T to
wR and R, induce the following commutative diagram of the Borel constructions:

ER×R Gr(d, n)

��

ET ×T aPl(d, n)×
hoo wh //

��

EwR×wR wGr(d, n)

��
BR BT //oo BwR

By the functoriality, the pullback maps

h∗ : H∗R(Gr(d, n))→ H∗T (aPl(d, n)
×) and wh∗ : H∗wR(wGr(d, n))→ H∗T (aPl(d, n)

×)



78 CHAPTER 4. WEIGHTED GRASSMANNIANS

are homomorphism of rings over the polynomial rings H∗(BR) and H∗(BwR).
The proof of the following proposition is postponed until after we define the
weighted Schubert classes.

Proposition 4.2.1. The maps h∗ and wh∗ are isomorphisms as rings over the
poylnomial rings H∗(BR) and H∗(BwR) respectively.

Proof. The claim follows essentially from the Vietoris-Begle mapping theorem,
but we need to prepare the description of wGr(d, n) as the quotient of a compact
space by a real torus.

Since the wD-action on C{
n
d} factors through the canonical (S1){

n
d}-action,

it is hamiltonian with the standard moment map. Since aPl(d, n)× is a wD-

invariant symplectic submanifold of C{
n
d}, there is the induced moment map

1

Ψ : aPl(d, n)× → R ; x 7→ −1

2

∑
λ∈{nd}

dwλ|xλ|2.

For a regular value ξ, the preimage M := Ψ−1(ξ) is a compact T -invariant
submanifold of aPl(d, n)×. Moreover there is a T -equivariant deformation re-
traction from aPl(d, n)× to M given by the homotopy

F : aPl(d, n)× × I → aPl(d, n)× ; (x, s) 7→
(
(s
√
ξ/Ψ(x) + (1− s))xλ

)
λ∈{nd}

.

Thus, the inclusion ι :M ↪→ aPl(d, n)× induces the isomorphism:

ι∗ : H∗T (M) −→ H∗T (aPl(d, n)
×). (4.2.1)

Passing to the quotients, we obtain the wR-equivariant map ι : M/wD →
wGr(d, n). This map can be shown to be a homeomorphism by a direct com-
putation (See also [32, Theorem 7.4]). Hence, we obtain the isomorphism:

ι∗ : H∗wR(M/wD) −→ H∗wR(wGr(d, n)). (4.2.2)

Let θ : ET ×T M → EwR ×wRM/wD be a map induced by the quotient maps
M →M/wD and T → wR. Then we have the following commutative diagram.

H∗wR(wGr(d, n))
wh∗

//

∼= ι∗

��

H∗T (aPl(d, n)
×)

∼= ι∗

��
H∗wR(M/wD)

θ∗
// H∗T (M)

(4.2.3)

Thus wh∗ is an isomorphism if θ∗ is an isomorphism, which we proved in Propo-
sition 3.4.4.

1Here we identify Lie(wD) ∼= Lie(S1) = R by the map S1 → wD(t 7→
(tdw1+a, · · · , tdwn+a)).
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Definition 4.2.2. Let λ ∈ {nd}. Since variety aΩλ is a closed T -invariant irre-
ducible subvariety in a non-singular quasi-projective T -variety aPl(d, n)×, there
is the T -equivariant fundamental class [aΩλ]T associated to aΩλ inH

∗
T (aPl(d, n)

×)
(see section 3.5):

aS̃λ := [aΩλ]T ∈ H2l(λ)
T (aPl(d, n)×).

We define the wR-equivariant weighted Schubert class by

wS̃λ := (wh∗)−1(aS̃λ) ∈ H2l(λ)
wR (wGr(d, n)).

The equivariant Schubert class S̃λ for the ordinary Grassmannian Gr(d, n) is
defined as the R-equivariant class associated to the ordinary Schubert variety
Ωλ as usual. We will see that S̃λ maps to aS̃λ by h∗ in Section 4.3.6.

Remark 4.2.3. As a natural generalization of [15] and [40], H∗T (aPl(d, n)
×)

can be identified with the wR-equivariant cohomology of the quotient stack
[aPl(d, n)×/wDC] and the isomorphism wh∗ is nothing but the identification
of the (equivariant) rational cohomology rings of the weighted Grassmannian
orbifold stack [aPl(d, n)×/wDC] and its coarse moduli space wGr(d, n). In these
identifications, aS̃λ and wS̃λ should be regarded as the class associated to the
wR-invariant substack [aΩλ/wDC]. It should then coincide with the Poincaré
dual of the cycle [wΩλ] up to the multiplicity of the substack [aΩλ/wDC] in
[aPl(d, n)×/wDC]. We leave this aspect of the theory to elsewhere.

4.3 GKM descriptions and Schubert classes

In this section, we study the combinatorial presentations of H∗wR(wGr(d, n))
and H∗T (aPl(d, n)

×), now known as the GKM theory developed in [20]. This
allows us, in particular, to show that the equivariant weighted Schubert classes
wS̃λ, λ ∈ {nd} form an H∗(BwR)-module basis of H∗wR(wGr(d, n)).

Recall that H∗(BT ) can be canonically identified with the symmetric alge-
bra Sym(Lie(T )∗Z ⊗ Q) where Lie(T )∗Z is the space of Z-linear functions on the
integral lattice Lie(T )Z ⊂ Lie(T ). Since T = (S1)n, we identify its Lie algebra
Lie(T ) with Rn, so that we have the Z-basis {y1, · · · , yn} of Lie(T )∗Z dual to the
standard basis of Lie(T )Z. Let

Q[T ∗] := H∗(BT ) = Sym(Lie(T )∗Z ⊗Q) = Q[y1, . . . , yn].

We adapt the same notation for all other tori except that T is the only standard
torus such that the canonical generators yi’s of H

∗(BT ) are given. The quotient
map T → wR induces the injection Lie(wR)∗Z ↪→ Lie(T )∗Z and hence we will
identify Q[wR∗] with the image of the induced embedding Q[wR∗] ↪→ Q[T ∗].
Similarly we will identify Q[R∗] with the image of Q[R∗] ↪→ Q[T ∗].

We shall start with the GKM theory for R-action on Gr(d, n) studied in [35].
The R-fixed points in Gr(d, n) are the points [eµ] corresponding to the vector
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eµ in aPl(d, n)×. We identify H∗R([eµ]) with Q[R∗]. The restriction map to the
fixed points

H∗R(Gr(d, n))→
⊕
µ∈{nd}

Q[R∗]; γ 7→ (γ|µ)µ∈{nd} (4.3.1)

is injective and the image is given byα = (α(µ))µ ∈
⊕
µ∈{nd}

Q[R∗]

∣∣∣∣∣∣∣ α(λ)− α(µ) is divisible by yλ − yµ
for any λ and µ such that |λ ∩ µ| = d− 1

 .

(4.3.2)

where yµ :=
∑
i∈µ yi for all µ ∈ {nd}. Note that yλ − yµ ∈ Lie(R)∗Z since the

linear function yλ − yµ restricted to Lie(D)Z is 0.

Remark 4.3.1. In [35], the authors consider the action of T ′ = (S1)n on
Gr(d, n) though a map T ′ → R. Their presentation is valid in our set-up since
H∗R(Gr(d, n)) injects to H∗T ′(Gr(d, n)) as rings over Q[R∗].

Now we turn to wGr(d, n) and then aPl(d, n)×. The fixed points of the wR-
action on wGr(d, n) are also the points [eµ] ∈ wGr(d, n) corresponding to the
vectors eµ. We can naturally identify H∗wR([eµ])

∼= Q[wR∗] and so we have the
restriction map

H∗wR(wGr(d, n)) −→
⊕
µ∈{nd}

Q[wR∗], γ 7→ (γ|µ)µ∈{nd} (4.3.3)

For aPl(d, n)×, we restrict HT (aPl(d, n)
×) to complex 1-dimensional orbits of

TC instead of restricting to the fixed points. The complex 1-dimensional orbits
of TC are given by C×eµ. For each µ ∈ {nd}, let Tµ be the isotropy subgroup at
eµ for the T -action on aPl(d, n)×. It is the kernel of the map T → S1 sending
(t1, · · · , tn) to tµ := tµ1 · · · tµd

so that it is not hard to see that Tµ is connected.
Thus, with the natural isomorphisms HT (C×eµ) ∼= HTµ(eµ)

∼= Q[T ∗µ ], we obtain

H∗T (aPl(d, n)
×) −→

⊕
µ∈{nd}

Q[T ∗µ ], P 7→ (P |µ)µ∈{nd} (4.3.4)

Putting (4.3.1), (4.3.3) and (4.3.4) together with h∗ and wh∗, we have the
commutative diagram

H∗R(Gr(d, n)) //

h∗ ∼=
��

⊕
µQ[R∗]

∼=κ∗

��
H∗T (aPl(d, n)

×) //
⊕

µQ[T ∗µ ]

H∗wR(wGr(d, n)) //

wh∗ ∼=

OO

⊕
µQ[wR∗]

∼=wκ∗

OO

(4.3.5)
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where the right vertical maps are induced from κµ : Tµ → T → R and wκµ :
Tµ → T → wR and they are isomorphisms because κµ and wκµ have finite (or
trivial) kernels. Also note that the inclusion Tµ → T induces the surjection
Lie(T )∗Z → Lie(Tµ)

∗
Z and Lie(Tµ)

∗
Z
∼= Lie(T )∗Z/(yµ). Thus we identify

Q[T ∗µ ]
∼= Q[T ∗]/(yµ).

The following are obtained by translating (4.3.2) toH∗T (aPl(d, n)
×) andH∗wR(wGr(d, n))

via the diagram (4.3.5).

Proposition 4.3.2 (GKM for wGr(d, n)). The restriction map (4.3.3) is in-
jective and the image is given byα ∈

⊕
µ∈{nd}

Q[wR∗]

∣∣∣∣∣∣∣ α(λ)− α(µ) is divisible by wµyλ − wλyµ
for any λ and µ such that |λ ∩ µ| = d− 1

 .

Here note that wµyλ − wλyµ ∈ Q[wR∗].

Proposition 4.3.3 (GKM for aPl(d, n)×). The restriction map (4.3.4) is in-
jective and the image is given byP ∈

⊕
µ∈{nd}

Q[T ∗µ ]

∣∣∣∣∣∣∣ P (λ) = P (µ) in Q[T ∗]/(yλ, yµ)
for any λ and µ such that |λ ∩ µ| = d− 1

 .

Proof of Proposition 4.3.3 and Proposition 4.3.2
The injectivity of the maps (4.3.3) and (4.3.4) follows from the injectivity of
the map (4.3.1) by the commutativity of the diagram (4.3.5). What is left is
to check that the GKM conditions are equivalent under the isomorphisms κ∗

and wκ∗. We prove it for wκ because κ is a special case of wκ. First note
that, in Proposition 4.3.2, α(λ)− α(µ) is divisible by wµyλ − wλyµ if and only
if α(λ) − α(µ) = 0 in Q[wR∗]/(wµyλ − wλyµ). Therefore the GKM conditions
are equivalent under wκ∗ if wκ∗λ and wκ∗µ induce the isomorphism

Q[wR∗]

(wµyλ − wλyµ)
→ Q[T ∗]

(yλ, yµ)
, f 7→ wκ∗λ(f) = wκ∗µ(f).

This map is obviously well-defined. It is also easy to check that this is an
isomorphism.

Remark 4.3.4. Proposition 4.3.2 can be proved directly as a consequence of
[20, Theorem 7.2] by studying the data of 0 and 1-dimensional wR-orbits and Lie
algebras of isotropic subgroups of wR-action on wGr(d, n). For this alternative
proof, see section 4.3.1. Proposition 4.3.3 can be also shown directly from
Theorem 5.5 in [26] by using the description of wGr(d, n) as the symplectic
quotient of aPl(d, n)× by the real torus wD explained in Section 4.2.
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In the rest of the section, we compute the certain values of the Schubert
classes aS̃λ and wS̃λ under the restriction maps. As a corollary, we show
that the Schubert classes S̃λ in H∗R(Gr(d, n)) correspond to the classes aS̃λ in
H∗T (aPl(d, n)

×) under h∗ as expected. Also we show that the weighted Schubert
classes wS̃λ will form an H∗(BwR)-module basis of H∗wR(wGr(d, n)).

Proposition 4.3.5.

aS̃λ|µ =

{
0 if µ � λ,∏

(k,l)∈inv(λ) y(k,l)λ if µ = λ.
in Q[T ∗]/(yµ)

Proof. Let Y := aPl(d, n)× for brevity. By the construction (c.f. [18, Appedix
B.3]), the class aS̃λ maps to the equivariant Euler class χT (N

◦) by the pullback
along the inclusion aΩ◦λ ↪→ Y where N◦ is the normal bundle of aΩ◦λ in Y . This
maps further to χTλ

(N◦eλ) via the pullback map H∗T (aΩ
◦
λ) → H∗Tµ

(eµ) where
N◦eµ is the fiber of N◦ at eµ. Since the normal bundle N◦ is T -equivariantly

identified with aUλ, the equivariant chart ψλ given at (4.1.5) allows us to find
the weight of the representation Tλ y Neλ to be∏

(k,l)∈inv(λ)

y(k,l)λ as an element of Lie(T )∗Z/(yλ) = Lie(Tλ)
∗
Z. (4.3.6)

This proves the case when µ = λ. The case µ � λ follows from eµ 6∈ aΩλ
(Proposition 4.1.7).

It is a well-known fact that S̃λ|λ =
∏

(k,l)∈inv(λ)(y(k,l)λ − yλ) and S̃λ|λ = 0

for all µ � λ (c.f. [35]). Also a class having such values at fixed points is unique
[35, LEMMA 1]. Therefore Proposition 4.3.5, together with the diagram 4.3.5,
has the following immediate corollary.

Corollary 4.3.6. For each λ ∈ {nd}, h∗(S̃λ) = aS̃λ.

The next proposition is also immediate from Proposition 4.3.5.

Proposition 4.3.7.

wS̃λ|µ =

0 if µ � λ,∏
(k,l)∈inv(λ)

(
y(k,l)λ −

w(k,l)λ

wλ
yλ

)
if µ = λ.

Proof. Since wS̃λ := (wh∗)−1(aS̃λ) and y(k,l)λ−
w(k,l)λ

wλ
yλ = y(k,l)λ inQ[T ∗]/〈yλ〉,

we only need to check that

y(k,l)λ −
w(k,l)λ

wλ
yλ ∈ Lie(wR)∗Z ⊗Q. (4.3.7)

This can be checked by a straightforward calculation.
Having the upper-triangularity of the weighted Schubert classes as above,

the proof of [35, Proposition 1] can be applied words by words to obtain
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Proposition 4.3.8. {wS̃λ}λ is an H∗(BwR)-module basis of H∗wR(wGr(d, n)).

Example 4.3.9. The followings is wS̃14 in H∗wR(wGr(2, 4)):

{1,2}

{1,4}{2,3}

{2,4}

{1,3}

{3,4}

(y23 − w23

w12
y12)(y24 − w24

w12
y12)

(y24 − w24

w14
y14)(y34 − w34

w14
y14)0

0

(y23 − w23

w13
y13)(y34 − w34

w13
y13)

0

where the vertices are the elements of {42} and there is an edge for each pair of
λ and µ satisfying |λ ∩ µ| = 1.

4.3.1 An alternative proof of Proposition 4.3.2

We give an alternative proof of Proposition 4.3.2 as a direct consequence of
[20, Theorem 7.2], by studying 0 and 1 dimensional orbits and Lie algebras of
isotropy subgroups of wR.

We start with notations. For λ ∈ {nd} and γ ∈ Lie(T ), we denote γλ :=∑
i∈λ γi. Since Lie(wR) = Lie(T )/Lie(wD), we write an element of Lie(wR) as

[γ] where γ ∈ Lie(wR). Define

Oλµ := {[x] ∈ wP(∧dCn) | x(λ) 6= 0, x(µ) 6= 0, x(η) = 0 (η 6= λ, µ)}.

Let P1(wλ, wµ) be the weighted projective line with weight wλ and wµ. Consider
a continuous map f : C2\{0} → aPl(d, n)× defined by

f(x, y)(η) =


x (if η = λ)

y (if η = µ)

0 (otherwise).

Then the map f induces a continuous map f : P1(wλ, wµ) → wGr(d, n) which
is a homeomorphism onto Oλµ = Oλµ ∪ {[eλ], [eµ]}.

For brevity, let X := wGr(d, n), and denote

X0 := {[x] ∈ wGr(d, n) | corankwR[x] = 0},
X1 := {[x] ∈ wGr(d, n) | corankwR[x] ≤ 1}.

where wR[x] is the isotropy subgroup of wR at [x] and corankwR[x] := (n− 1)−
rankwR[x]. In other words, X0 is the set of wR-fixed points, and X1 is the set of
0 and 1 dimensional orbits of wR. The data in the next proposition will provide
us the GKM description of H∗wR(wGr(d, n)) (Proposition 4.3.2).
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Proposition 4.3.10. For the wR-action on wGr(d, n), the followings hold:

(1) X0 consists of the points eλ for all λ ∈ {nd}.
(2) X1 is the union of Oλµ for all λ and µ such that |λ ∩ µ| = d− 1.

(3) For any [x] ∈ Oλµ where |λ ∩ µ| = d− 1,

Lie(wR[x]) = {[γ] ∈ Lie(wR) | wµγλ − wλγµ = 0}.

Proof. Let [x] ∈ wGr(d, n), and write {λ ∈ {nd} | xλ 6= 0} = {λ(1), · · · , λ(p)}.
We show

Lie(wR[x]) = {[γ] ∈ Lie(wR) | ( ˇwλ(1) · · ·wλ(p))γλ(1) = · · · = (wλ(1) · · · ˇwλ(p))γλ(p)}.
(4.3.8)

By the definition of the isotropy subgroup, we have

wR[x] = {[t] ∈ wR | for some ε ∈ C×, tλ(i) = εwλ(i) (1 ≤ i ≤ p)}. (4.3.9)

Denoting

H := {[t] ∈ wR | (tλ(1)) ˇw
λ(1)wλ(2) ···wλ(p) = · · · = (tλ(p))

w
λ(1) ···wλp−1

ˇw
λ(p)},

we have wR[x] ⊂ H which implies Lie(wR[x]) ⊂ Lie(H). Observe that Lie(H)
is equal to the right hand side of (4.3.8). For any γ ∈ Lie(H), putting E :=
tλ(1)/wλ(1) , we have tλ(i) = wλ(i)E (1 ≤ i ≤ p). So, for any s ∈ C, we have

(exp(sγ))λ(i) = exp(sγλ(i)) = exp(swλ(i)E) = (exp(sE))wλ(i)

for all 1 ≤ i ≤ p. This shows exp(sγ) ∈ wR[x] for any s ∈ C which implies
γ ∈ Lie(wR[x]). Hence, we obtain Lie(wR[x]) = LieH, i.e. the equality (4.3.8).
Now we see

corankwR[x] = 0 if and only if |{λ ∈ {nd} | xλ 6= 0}| = 1,

corankwR[x] = 1 if and only if |{λ ∈ {nd} | xλ 6= 0}| = 2.

Hence, we obtain the claims (1) and (3). For (2), let λ, µ ∈ {nd}, and consider
Oλµ. Suppose that we have |λ∩µ| = d− 1. Let us write λ = {λ1, · · · , λd} ⊂ [n]
and µ = {λ1, · · · , λ̌s, · · · , λd, α} ⊂ [n] for some α /∈ λ. Then any [x] ∈ Oλµ can
be written as

[x] = [aeλ1 ∧ · · · ∧ eλd
+ beλ1 ∧ · · · ∧ ˇeλs ∧ · · · ∧ eλd

∧ eα]
= [eλ1 ∧ · · · ∧ eλs−1 ∧ (aeλs + (−1)d−ibeα) ∧ eλs+1 ∧ · · · ∧ eλd

]

for some a, b ∈ C×. Hence, we obtain Oλµ ⊂ wGr(d, n) since aPl(d, n)× =
Im ∧d −{0}. On the other hand, suppose |λ ∩ µ| < d − 1. For any element
[x] ∈ Oλη ∩wGr(d, n), we have xξ = 0 for any ξ 6= λ, η because of the definition
of Oλη. The condition |λ ∩ η| < d − 1 means that all the coordinates of the
orbifold chart ψλ of [x] are zero. This means that [x] = [eλ] which contradicts
to [x] ∈ Oλη, and we obtain Oλη ∩ wGr(d, n) = ∅.
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There exists a natural isomorphism between the Čech cohomology theory
and the singular cohomology theory for any closed pair of locally contractible,
paracompact, Hausdorff spaces. Thus, the results in [10] applies for the sin-
gular wR-equivariant cohomology: the restriction map H∗wR(X) → H∗wR(X0) is
injective, and so is the connecting homomorphism H∗wR(X,X0)→ H∗wR(X1, X0)
of the exact sequence for the triple (X,X1, X0) since H

∗
wR(X) is a free module

over H∗(BwR) (Proposition 4.1.15). Combining the exact sequences for the
pair (X,X0) and the one for triple (X,X1, X0), we obtain the following exact
sequence.

Proposition 4.3.11. The following sequence is exact:

0→ H∗wR(X)→ H∗wR(X0)→ H∗+1
wR (X1, X0)

where the middle map is the restriction, and the right map is the connecting
homomorphism of the exact sequence for the pair (X1, X0).

Now, observing that P1(wλ, wµ) ∼= CP1 as algebraic varieties, the argu-
ment in the proof of Theorem 7.2 in [20] directly applies for the wRC-action on
wGr(d, n), and we obtain Proposition 4.3.2.

4.4 Structure constants and positivity

Since {wS̃λ}λ is an H∗(BwR)-module basis of H∗wR(wGr(d, n)), we can expand
their pairwise cup product uniquely over H∗(BwR):

wS̃λwS̃µ =
∑
ν

wc̃νλµwS̃ν where wc̃νλµ ∈ H∗(BwR). (4.4.1)

Knutson-Tao [35] gave an explicit combinatorial formula for the equivariant
structure constants c̃νλµ of the R-equivariant cohomology of Gr(d, n) in terms of
the equivariant puzzles. Their formula of c̃νλµ is manifestly positive in a sense
that c̃νλµ is a polynomial in ui’s with non-negative coefficients where {ui :=
yi+1 − yi} is a basis of Lie(R)∗Z. In this section, we derive the formula for wc̃νλµ
from their formula by passing it through HT (aPl(d, n)

×) via h∗ and wh∗. Also
we find a Q-basis {wui} of Lie(wR)∗Z ⊗ Q such that our formula of wc̃νλµ is
manifestly positive with respect to the basis {wui} when w1 ≤ · · · ≤ wn. The
manifestly positive formula for the structure constants {wcνλµ} of the ordinary
cohomology H∗(wGr(d, n)) is also obtained by specializing the one for wc̃νλµ at
wu1 = · · · = wun−1 = 0.

We start with introducing new terminologies which extend the ones provided
in [35, p.227]. For every puzzle, we choose a total order on the set of equivariant
pieces once and for all. Let P be a puzzle satisfying ∂P = ∆ν

λµ. Let p be an
equivariant piece in P , whose weight is wt(p) = yj − yi where j > i, i.e. p pokes
out the i-th and j-th place on the south side of P . For each ξ ∈ {nd}, we define
the w-weight of p with respect to ξ by

wtξ(p) := (yj − yi)−
w(p)

wξ
yξ ∈ Q[wR∗] where w(p) := wj − wi. (4.4.2)
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Let (p1, · · · , pr) be the ordered set of equivariant pieces in P . For each covering
sequence ξk → · · · → ξ0 in {nd} with k ≤ r, we define the w-weight of P to be
an element of Q[wR∗]

wtξ
0,...,ξk(P ) :=

∑
1≤i1<···<ik≤r

w(pi1)

wξ0
· · · w(pik)

wξk−1

∏r
i=1 wt

ξs(i)(pi)

wtξ
1
(pi1) · · ·wtξ

k
(pik)

. (4.4.3)

where s is a function on {1, · · · , r} defined by

s(i) :=


0 if i < i1

l if il ≤ i < il+1, l = 1, · · · , k − 1

k if ik ≤ i

As a special case when k = 0, we have

wtξ(P ) = wtξ(p1) · · ·wtξ(pr). (4.4.4)

Remark that this expression (4.4.3) depends on the order of the equivariant
pieces in P in general.

Lemma 4.4.1. Let id be the unique minimum in {nd} with respect to the Bruhat
order and div the unique element with l(id) = 1. Let ν ∈ {nd}. Then

aS̃div = yid ; (4.4.5)

0 = −yνaS̃ν +
∑
ν′→ν

aS̃ν . (4.4.6)

Proof. Since S̃div|µ = yid − yµ ([35, Lemma 3]) for each µ ∈ {nd}, we have

aS̃div|µ = yid − yµ = yid, in Q[T ∗]/(yµ).

Therefore (4.4.5) holds: aS̃div = yidaS̃id = yid · 1. On the other hand, the
equivariant Pieri-rule given in [35, Proposition 2] holds also in H∗T (aPl(d, n)

×)
by the isomorphism h∗, and hence we have

aS̃divaS̃ν = (yid − yν)aS̃ν +
∑
ν′→ν

aS̃ν (4.4.7)

which, together with (4.4.5), implies (4.4.6).
The following is the essential equation, immediate from (4.4.6), to relate the

Q[R∗]-action to the Q[wR∗]-action in H∗T (aPl(d, n)
×).

Proposition 4.4.2. Let p be an equivariant piece of a puzzle. Then

wt(p)aS̃ν = wtν(p)aS̃ν +
∑
ν′→ν

w(p)

wν
aS̃ν′ , in H∗T (aPl(d, n)

×).
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Proof. Let wt(p) = yj − yi be the weight of p. The formula is obtained by

multiplying (wj −wi)/wν and then adding (yj − yi)aS̃ν to the equation (4.4.6).

Now we are ready to prove the main theorem of this section.

Theorem 4.4.3. For each λ, µ, ν ∈ {nd}, the equivariant structure constant
wc̃νλµ is given by

wc̃νλµ =

 ∑
puzzleP
∂P=∆ν

λµ

wtν(P )

 +
∑

ν→ν1→
···→νk≥λ,µ

∑
puzzleQ

∂Q=∆νk

λµ

wtν
k,··· ,ν1,ν(Q). (4.4.8)

Remark that the w-weights in this expression depend on the orders of the
equivariant pieces in P and Q, but wc̃νλµ doesn’t depend on the order.

Proof. By the isomorphism h∗, Theorem 2 in [35] translates to

aS̃λaS̃µ =
∑
η≥λ,µ

c̃ηλµ︷ ︸︸ ︷∑
puzzle P
∂P=∆η

λµ

wt(pr) · · ·wt(p1) aS̃η in H∗T (aPl(d, n)
×),

where (p1, · · · , pr) denotes an ordered set of all equivariant pieces in P . Remark
that the number of equivariant pieces in P must be l(λ) + l(µ)− l(η). For each
l ≤ r, by applying Proposition 4.4.2 repeatedly, we obtain

wt(pl) · · ·wt(p1)aS̃η = wtη(p1) · · ·wtη(pl)aS̃η +
l∑

k=1

∑
ηk→···
→η1→η

 ∑
1≤i1<···<ik≤l

wtη(p1) · · ·wtη(pi1−1) ·
w(pi1)

wη
· wtη

1

(pi1+1) · · ·wtη
1

(pi2−1) ·
w(pi2)

wη1
· wtη

2

(pi2+1)

· · ·wtη
k−1

(pik−1) ·
w(pik)

wηk−1

· wtη
k

(pik+1) · · ·wtη
k

(pl)

)
aS̃ηk .

It is straightforward to prove this formula by an induction on l ≤ r. When
l = r,

wt(pr) · · ·wt(p1)aS̃η = wtη(P )aS̃η +

l(λ)+l(µ)−l(η)∑
k=1

∑
ηk→···
→η1→η

wtη,η
1,··· ,ηk(P ) · aS̃ηk .
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Therefore

aS̃λaS̃µ =
∑
η≥λ,µ

∑
puzzle P
∂P=∆η

λµ

wtη(P ) · aS̃η +

l(λ)+l(µ)−l(η)∑
k=1

∑
ηk→···
→η1→η

wtη,η
1,··· ,ηk(P ) · aS̃ηk


=
∑
η≥λ,µ

∑
puzzle P
∂P=∆η

λµ

wtη(P ) · aS̃η +
∑

ν→ηk−1→···
→η1→η≥λ,µ

∑
puzzle P
∂P=∆η

λµ

wtη,η
1,··· ,ηk−1,ν(P ) · aS̃ν

=
∑
ν≥λ,µ


 ∑

puzzle P
∂P=∆ν

λµ

wtν(P )

+
∑

ν→ν1→
···→νk≥λ,µ

∑
puzzle Q

∂Q=∆νk

λµ

wtν
k,··· ,ν1,ν(Q)

 · aS̃ν .
Since wtν(P ) and wtν

k,··· ,ν1,ν(Q) are in Q[wR∗], wh∗ maps this equation to the
desired equation in H∗wR(wGr(d, n)).

Let

wui := (yi+1 − yi)−
wi+1 − wi

wid
yid ∈ Q[wR∗]. (4.4.9)

We can easily check that {wu1, · · · ,wun−1} is a Q-basis of Lie(wR)∗Z⊗Q. Then
the next positivity theorem is a direct consequence of Theorem 4.4.3 and Propo-
sition 4.4.5 which is proved right after.

Theorem 4.4.4. If w1 ≤ w2 ≤ · · · ≤ wn, then wc̃νλµ is a polynomial in
wu1, · · · ,wun−1 with non-negative coefficients.

Proposition 4.4.5. Let P be a puzzle whose south string is ν. Suppose that P
involves an equivariant piece p. If w1 ≤ w2 ≤ · · · ≤ wn, then wtν(p) is a linear
combination of wu1, · · · ,wun−1 with non-negative coefficients.

Proof. We prove, by induction on the length l(ν), that the linear polynomial
(yj−yi)− wj−wi

wν
yν is a linear combination of wu1, · · · ,wun−1 with non-negative

coefficients for each 1 ≤ i < j ≤ n and each ν ∈ {nd}.
If l(ν) = 0, the statement is obvious since ν = id. We assume that the claim

holds for all ν′ with l(ν′) ≤ m− 1 for some integer m. Let l(ν) = m. Observe

(yj − yi)− (wj − wi)
yν
wν

=

j−1∑
k=i

[(
(yk+1 − yk)− (wk+1 − wk)

yid
wid

)
+ (wk+1 − wk)

( yid
wid
− yν
wν

)]
.

We show that yid
wid
− yν

wν
is written non-negatively. Let ν1, · · · , νm ∈ {nd} such

that ν = νm → · · · → ν1 → id, and write

yid
wid
− yν
wν

=

m−1∑
s=0

(
yνs

wνs

− yνs+1

wνs+1

)
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where ν0 := id. Since νs+1 → νs, there exists an integer 1 ≤ a ≤ n such that
νs+1 = (a, a+ 1)νs, and therefore

yνs

wνs

− yνs+1

wνs+1

=
1

wνs+1

(
(ya+1 − ya)− (wa+1 − wa)

yνs

wνs

)
.

By the induction hypothesis, the RHS is a linear combination of wui’s with
non-negative coefficients, and so is yid

wid
− yν

wν
and (yj − yi)− (wj − wi) yνwν

.
As a corollary of Theorem 4.4.3, we give an explicit formula of the structure

constants in H∗(wGr(d, n)). For each λ ∈ {nd}, define

wSλ := ζ∗(wS̃λ) ∈ H∗(wGr(d, n))

where ζ∗ : H∗wR(wGr(d, n))→ H∗(wGr(d, n)) is the surjection mentioned in Sec-
tion 4.1.4. Under the natural isomorphism H∗(wGr(d, n)) ∼= H∗wD(aPl(d, n)

×)
that also follows from Proposition 3.4.4, this wSλ corresponds to the wD-
equivariant cohomology class associated to aΩλ. By Proposition 4.1.15, those
classes form a Q-basis of H∗(wGr(d, n)). The structure constants wcνλµ of
H∗(wGr(d, n)) are defined with respect to this basis {wSλ}λ. Since ζ∗ is the
ring homomorphism given by

H∗wR(wGr(d, n))→ H∗wR(wGr(d, n))⊗Q[wR∗] Q ∼= H∗(wGr(d, n)),

these non-equivariant structure constants are obtained by evaluating wc̃νλµ at
wu1 = · · · = wun−1 = 0, i.e.

wcνλµ = wc̃νλµ(wu1 = · · · = wun−1 = 0).

In particular, the structure constants cνλµ of H∗(Gr(d, n)) with respect to the
ordinary Schubert classes Sλ, that are computed in [36, Theorem 1] also in terms
of puzzles, can be obtained from c̃νλµ evaluating at u1 = · · · = un−1 = 0. Here
we recall that c̃νλµ is a polynomial in ui’s where {ui = yi+1−yi, i = 1, · · · , n−1}
is a basis of Lie(R)∗Q.

Corollary 4.4.6. Let λ, µ, ν ∈ {nd}. The structure constant wcνλµ is given by

wcνλµ = cνλµ +
∑

ν→ν1→
···→νk≥λ,µ

c̃ν
k

λµ(ui = wi+1 − wi, i = 1, · · · , n− 1)

wν1 · · ·wνk

,

if l(λ) + l(µ) = l(ν) and is 0 otherwise. If w1 ≤ w2 ≤ · · · ≤ wn, wcνλµ is
non-negative for all λ, µ, ν ∈ {nd}.

Proof. After the evaluation, the first summation of 4.4.8 vanishes unless l(λ) +
l(µ)− l(ν) = 0 since only the puzzles P without equivariant pieces can survive.
Therefore, if l(λ) + l(µ) = l(ν), by [36, Theorem 1] the first sum in the RHS of
(4.4.8) becomes ∑

puzzleP
∂P=∆ν

λµ

no equivariant pieces

1 = cνλµ.
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In the second sum, only the puzzles Q with exactly k equivariant pieces survive
after the evaluation, and so the summation vanishes unless l(λ)+l(µ)−l(ν) = 0.
Therefore the second term becomes, if l(λ) + l(µ) = l(ν),∑

ν→ν1→
···→νk≥λ,µ

∑
puzzleQ

∂Q=∆νk

λµ

wtν
k,··· ,ν1,ν(Q)

∣∣∣
wu1=···=wun−1=0

=
∑

ν→ν1→
···→νk≥λ,µ

∑
puzzleQ

∂Q=∆νk

λµ

w(p1)

wν1

· · · w(pk)
wνk

=
∑

ν→ν1→
···→νk≥λ,µ

c̃ν
k

λµ(ui = wi+1 − wi, i = 1, · · · , n− 1)

wν1 · · ·wνk

.

Combining these terms, we obtain the desired formula. The positivity is a direct
consequence of the equivaraiant positivity (Theorem 4.4.4).

Remark 4.4.7. We can say that our positivity theorem holds for all weighted
Grassmannians in a sense as follows: for a given wGr(d, n) with the weight w =
(w1, · · · , wn), we can always perform a permutation on the basis {e1, · · · , en}
of Cn so that the new order on the weight is non-decreasing. Then we can re-
define the Schubert classes {wS̃λ}λ to make sure that the structure constants
are positive.

We conclude this section by listing the equivariant weighted Pieri rule and
working out a few examples. First, by Equation (4.4.5) interpreted through wh∗

and wκ∗, we obtain the restriction of wS̃div to the fixed points:

wS̃div|λ = yid −
wid

wλ
yλ.

Then we apply the translation formula in Proposition 4.4.2 to the usual equa-
variant Pieri rule (4.4.7) and obtain the equivariant weighted Pieri rule:

Lemma 4.4.8.

wS̃divwS̃λ = (wS̃div|λ)wS̃λ +
∑
λ′→λ

wid

wλ
wS̃λ′ .

Remark 4.4.9. From the equivariant weighted Pieri rule, it is easy to show
a recursive formula for the structure constants wc̃νλµ, in the exactly same way
shown in [35, Theorem 3]:(

wS̃div|ν − wS̃div|λ
)
wc̃νλµ =

(∑
λ′→λ

wid

wλ
wc̃νλ′µ −

∑
ν→ν′

wid

wν′
wc̃ν

′

λµ

)
. (4.4.10)

However this equation (4.4.10) plays no role in the derivation of our main for-
mula, while the recursive formula in [35] plays a crucial role in their process of
obtaining the original puzzle formula for c̃νλµ.
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Example 4.4.10 (wGr(2, 4)). Here we demonstrate the computation of the
product wS̃23wS̃23. By the upper triangularity of the GKM description of wS̃23,
the product must be written by

wS̃23wS̃23 = wc̃2323,23wS̃23 +wc̃1323,23wS̃13 +wc̃1223,23wS̃12,

where

wc̃2323,23 =
∑

puzzleP
∂P=∆23

23,23

wt23(P )

wc̃1323,23 =
∑

puzzleP
∂P=∆13

23,23

wt13(P ) +
∑

puzzleQ
∂Q=∆23

23,23

wt23,13(Q)

wc̃1223,23 =
∑

puzzleP
∂P=∆12

23,23

wt12(P ) +
∑

puzzleQ
∂Q=∆13

23,23

wt13,12(Q) +
∑

puzzleQ
∂Q=∆23

23,23

wt23,13,12(Q).

We can compute the above from the product for ordinary Grassmannian

S̃23S̃23 = (y4 − y2)(y4 − y3)S̃23 + (y4 − y3)S̃13 + S̃12;

or equivalently by the fact that:

• there is exactly one puzzle P such that ∂P = ∆23
23,23 with two equivariant

pieces p1 and p2 with the weights wt(p1) = y4 − y3 and wt(p2) = y4 − y2;

• there is exactly one puzzle P such that ∂P = ∆13
23,23 with a equivariant

piece with the weight y4 − y3;

• there is exactly one puzzle P such that ∂P = ∆12
23,23 without equivariant

pieces.

Here are the computation:

wc̃2323,23 =

(
y4 − y2 − (w4 − w2)

y23
w23

)(
(y4 − y3)− (w4 − w3)

y23
w23

)
wc̃1323,23 = (y4 − y3)− (w4 − w3)

y13
w13

+
w4 − w2

w23

(
(y4 − y3)− (w4 − w3)

y13
w13

)
+

(
(y4 − y2)− (w4 − w2)

y23
w23

)
w4 − w3

w23

wc̃1223,23 = 1 +
w4 − w3

w13
+
w4 − w2

w23

w4 − w3

w13

Similarly we can also work out

wS̃23wS̃14 = wc̃1323,14wS̃13 +wc̃1223,14wS̃12
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from S̃23S̃14 = (y4 − y1)S̃13:

wc̃1323,14 =
∑

puzzleP
∂P=∆13

23,14

wt13(P ) = (y4 − y1)− (w4 − w1)
y13
w13

wc̃1223,14 =
∑

puzzleQ
∂Q=∆13

23,14

wt13,12(Q) =
w4 − w1

w13
.

4.5 Factorial Schur functions

We discuss the relation between equivariant weighted Schubert classes and the
factorial Schur functions. More precisely, we show that the restriction wS̃λ|µ
of the weighted Schubert classes can be obtained by specializing the factorial
Schur functions.

Let x = (x1, · · · , xd) and a = (ai)i∈Z be sequences of variables. Let

(xj |a)k := (xj − a1) · · · (xj − ak) (1 ≤ j ≤ d).

The Young diagram λ corresponds to each λ ∈ {nd} by setting the number of
boxes in the i-th row to be λi := n−d+ i−λi where i = 1, · · · , d. The factorial
Schur function corresponding to λ (c.f. [43]) is defined by

sλ(x|a) :=
det
[
(xj |a)λ

i+d−i
]
1≤i,j≤d∏

i<j(xi − xj)
. (4.5.1)

For any sequence b = (bi)i∈Z, let b = (bi)i∈Z be defined by bi := bn+1−i. For
each µ ∈ {nd}, let

b(µ) = (bµ1 , · · · , bµd
). (4.5.2)

The vanishing theorem ([45], [43, Theorem 2.1], [35, Section 6]) shows that the
restriction of the equivariant Schubert class S̃λ to [eµ] is given by

S̃λ|µ = sλ(−y(µ)| − y). (4.5.3)

To generalize this equation to the weighted Schubert classes, we introduce the
µ-shifted sequence associated to each sequence b = (bi)i∈Z by

bµ :=
(
bi − wi

bµ
wµ

)
i∈Z

where bµ =
∑
k∈µ

bk.

Theorem 4.5.1. For all λ, µ ∈ {nd}, we have

wS̃λ|µ = sλ(−yµ(µ)| − yµ).
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Proof. We rewrite (4.5.3) as

S̃λ|µ ×
∏
i<j(−yµi + yµj ) = det

[
(−yµj | − y)λ

i+d−i
]
1≤i,j≤d

.

Now recall the diagram (4.3.5). By the isomorphism κ∗µ, we can regard this
equality as in Q[T ∗]/(yµ) so that we can shift it by multiples of yµ to obtain

aS̃λ|µ ×
∏
i<j(−(yµ)µi

+ (yµ)µj
) = det

[∏λi+d−i
p=1 (−(yµ)µj

+ (yµ)n+1−p)
]
1≤i,j≤d

.

Since −(yµ)µi + (yµ)µj and −(yµ)µj + (yµ)n+1−p are elements of Q[wR∗], this
becomes, under the isomorphism wκ∗µ,

wS̃λ|µ ×
∏
i<j(−(yµ)µi + (yµ)µj ) = det[(−(yµ)µj | − yµ)λ

i+d−i]1≤i,j≤d.

which is the desired equation.

Remark 4.5.2. In fact, wS̃λ|µ can also be obtained by specializing the weighted
factorial Schur functions that will be introduced and studied in the next chapter.





Chapter 5

Weighted Schur functions

5.1 Introduction

Let P(d) be the set of partitions with at most d rows. For every λ ∈ P(d), the
Schur function is a polynomial in the variables (x1, · · · , xd) defined by

sλ(x) :=
det[x

bλi +d−i
j ]1≤i,j≤d∏
i<j(xi − xj)

.

They form a Z-module basis of Z[x]Sd which is the ring of symmetric polyno-
mials in x-variables. One of the important aspects of Schur functions is that
they are the characters of irreducible polynomial representations of GL(d,C).
Let R+(GL(d,C)) be the polynomial representation ring. Then there is a ring
isomorphism

R+(GL(d,C)) char−→ Z[x]Sd (5.1.1)

by taking the character. Let λ = (λ1, · · · , λd) be a partition with at most d
rows. Then there is the irreducible polynomial representation Vλ of GL(d,C)
corresponding to λ (see [18] for an explicit construction). Now, the character of
V λ is given by the Schur function sλ(x), i.e., the isomorphism sends V λ to sλ(x).
Let n(> d) be an integer. Since Z[x]Sd is generated by the Schur polynomials
s(k)(x) (where (k) ∈ P(d) is the partition given by (k)1 = k, (k)2 = 0, · · · , (k)d =
0), the coincidence of Pieri-rules in Z[x]Sd and H∗(Gr(d, n)(d, n);Z) ensures
that, there is a surjective ring homomorphism

Z[x]Sd → H∗(Gr(d, n)(d, n);Z) (5.1.2)

which sends sλ(x) to the Schubert class Sλ if λ ∈ P(d, n), or 0 otherwise. In
this sense, the Schubert classes in the cohomology are incarnations of Schur
functions as Ikeda mentioned.

In fact, the surjective ring homomorphism generalizes to an equivariant set-
ting. For every λ ∈ P(d), the factorial Schur function sλ(x|a) ([9]) is defined

95



96 CHAPTER 4. WEIGHTED GRASSMANNIANS

as a polynomial in the variables (x1, · · · , xd) and (al)l∈N (see (5.2.1) for the
defining formula). They form a Z[a]-module basis of Z[a][x]Sd which is the
ring of symmetric polynomials in x-variables with the coefficients in the poly-
nomial ring of a-variables. The standard n-torus Tn action on Cn induces the
Tn-action on the Grassmannian Gr(d, n)(d, n) and we have the equivariant co-
homology H∗Tn(Gr(d, n)(d, n);Z) which is an algebra over the polynomial ring
H∗(BT∗;Z) = Z[y1, · · · , yn]. The Schubert varieties in Gr(d, n)(d, n) are Tn-
invariant subvarieties indexed by the partitions λ ∈ P(d, n) where P(d, n) is
the set of the partitions contained in the d × (n − d) rectangle. The corre-

sponding equivariant Schubert classes S̃λ form a Z[y1, · · · , yn]-module basis of
the equivariant cohomology. The factorial Schur functions represent the equiv-
ariant cohomology rings of Grassmannians in a sense that there is a surjective
Z[a]-algebra homomorphism

Z[a][x]Sd → H∗Tn(Gr(d, n)(d, n);Z) (5.1.3)

that sends sλ(x|a) to S̃λ if λ ∈ P(d, n), or 0 otherwise ([35]). Here the Z[a]-
action on the RHS is given by the projection Z[a] → Z[y1, · · · , yn] sending
ai 7→ −yn+1−i if 1 ≤ i ≤ n, or 0 otherwise. This picture specializes to the
Schur functions and the ordinary cohomology of Grassmannians by setting a-
variables and y-variables to zero, i.e. the map (5.1.3) induces a ring surjec-
tion (5.1.2). One of the advantages of these correspondences is that we can
study the structure constants by multiplying actual polynomials. Similar ex-
amples include the (double/quantum) Schubert polynomials ([17, 38, 41]) for
(equivariant/quantum) cohomolgoy of full flag varieties and (factorial) Schur
Q-polynomials ([27, 28, 29]) for (equivariant) cohomology of Lagrangian Grass-
mannians, e.t.c.

In this chapter, we introduce the weighted (factorial) Schur functions that
are obtained as a variant of the factorial Schur functions sλ(x|a). In the sense
mentioned above, these functions will present the equivariant cohomology of the
weighted Grassmannians introduced by Corti-Reid [11]. The contents are based
on the paper [4] collaborated with Tomoo Matsumura.

5.2 Weighted (Factorial) Schur Functions

5.2.1 Preliminaries

Fix a positive integer d. Let P(d) be the set of partitions with at most d rows.
For each λ ∈ P(d), the number of boxes at the i-th row is denoted by bλi where
i = 1, · · · , d. Let x = (x1, · · · , xd) and a = (al)l∈N be sequences of variables.
Let Z[a] be the polynomial ring in al’s, by which we mean the ring of finite
linear combinations of monomials in al’s with finite degrees. Let Z[x]Sd be
the symmetric polynomial ring where Sd denotes the permutation group on d
letters. Recall that the factorial Schur function sλ(x|a) is defined as follows
(c.f. [43]). For each k > 0, let

(y|a)k := (y − a1) · · · (y − ak).
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Define, for each partition λ ∈ P(d),

sλ(x|a) :=
det[(xj |a)b

λ
i +d−i]1≤i,j≤d∏

i<j(xi − xj)
. (5.2.1)

Although sλ(x|a) is a rational function a priori, it is actually a positive degree
polynomial function that involves finitely many variables. In fact, we have the
following combinatorial formula

sλ(x|a) =
∑
T

∏
α∈λ

(xT (α) − aT (α)+c(α))

where T runs over all semi-standard tableaux of the shape λ with entries in
{1, · · · , d}, T (α) is the entry of the box α in λ, and c(α) := j − i if α is in
the i-th row and the j-th column. The ordinary Schur functions sλ(x) can
be obtained by specializing sλ(x|a) at al = 0 for all l ∈ N. The factorial
Schur functions form a Z[a]-module basis of Z[a]⊗Z Z[x]Sd and the Littlewood-
Richardson type formula for the structure constants cνλµ(a) ∈ Z[a] is obtained
by Molev-Sagan [43]. They actually computed more general structure constants
cνλµ(a, b) ∈ Z[a, b] defined by

sλ(x|b) · sµ(x|a) =
∑

ν∈P(d)

cνλµ(a, b)sν(x|a), (5.2.2)

where b = (bl)l∈N is another infinite sequence of variables.

Definition 5.2.1. For each λ ∈ P(d), let λ̄ = (λ̄1 > · · · > λ̄d) be the strictly
decreasing sequence of integers defined by

λ̄i := bλi + (d− i+ 1) for all i = 1, · · · , d. (5.2.3)

For each µ ∈ P(d), we introduce a Z[a]-algebra homomorphism

ψµ : Z[a]⊗Z Z[x]Sd → Z[a] by xi 7→ aµ̄i for all i = 1, · · · , d. (5.2.4)

Lemma 5.2.2 (Vanishing Lemma, [45], c.f. [43]). Let aλ :=
∑d
i=1 aλ̄i

for each
λ ∈ P(d). For each λ, µ ∈ P(d), we have

ψµ(sλ(x|a)) = sλ(aµ̄d
, · · · , aµ̄d

|a) =

{
0 if µ 6⊇ λ∏
ρ∈[λ]−(aλ − aρ) if µ = λ,

(5.2.5)

where [λ]− is the set of partitions ρ such that ρ ⊂ λ and |{ρ̄1, · · · , ρ̄d} ∩
{λ̄1, · · · , λ̄d}| = d− 1.

5.2.2 Definition of Weighted (Factorial) Schur Functions

In order to define the weighted Schur functions, we introduce new sets of vari-
ables w := (wl)l∈N and v = (v1, · · · , vd). Let Z[w] and Z[v] be the corresponding
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polynomial rings. Let Z[w]loc be the localization of the ring Z[w] at the multi-
plicative subset

{wλ(1) · · ·wλ(k) | λ(1), · · · , λ(k) ∈ P(d), k ∈ Z≥0}

where wλ :=
∑d
i=1 wλ̄i

for each λ ∈ P(d). Similarly let Z[v]loc be the localization
of Z[v] at the multiplicative subset {vlch | l ∈ Z≥0} where vch := v1 + · · · vd. We
denote Z[w]loc[a] := Z[w]loc ⊗Z Z[a]. Let (Z[v]loc[x])Sd be the invariant ring of
Z[v]loc[x] := Z[v]loc⊗ZZ[x] under the simultaneous permutations on the variable
sets x and v. We denote Z[w]loc[a]([v]loc[x])Sd for Z[w]loc[a] ⊗Z (Z[v]loc[x])Sd .
We adapt the same notational convention for Z[w]loc([v]loc[x])Sd and so on.

We introduce the shifted sequences xv = (xv1, · · · , xvd) and avw = (avwi )i∈N by

xvi := xi −
vi
vch

xch for all i = 1, · · · , d and avwl := al −
wl
vch

xch for all l ∈ N

where xch := x1 + · · · + xd. We denote 0vwl := avwl |al=0, l ∈ N, and the corre-
sponding sequence by 0vw.

Definition 5.2.3. For each λ ∈ P(d), the weighted factorial Schur function
swλ(v;x|a) ∈ Z[w]loc[a][v]loc[x] is defined by

swλ(v;x|a) := sλ(x
v|avw)

Similarly for each λ ∈ P(d), the weighted Schur function swλ(v;x) ∈ Z[w]loc[v]loc[x]
is defined by

swλ(v;x) := sλ(x
v|0vw).

Since sλ(x|a) is invariant under the permutations on x-varianbles, it is not hard
to see from this definition that swλ(v;x|a) is invariant under the simultaneous
permutations on x and v variables, i.e.

swλ(v;x|a) ∈ Z[w]loc[a]([v]loc[x])Sd and swλ(v;x) ∈ Z[w]loc([v]loc[x])Sd .

Example 5.2.4. We list a few examples of swλ(v;x|a) and swλ(v;x). Let wch :=∑d
i=1 wi and ach :=

∑d
i=1 ai. Let � ∈ P(d) be the partition given by b�1 = 1

and b�2 = · · · = b�d = 0.

sw�(v;x|a) =
wch

vch
xch − ach (5.2.6)

sw�(v;x) =
wch

vch
xch (5.2.7)

Let λ ∈ P(d) be a partition with one box only at the first and second row, i.e.
bλ1 = bλ2 = 1 and bλ3 = · · · = bλd = 0. Then

swλ(v;x|a) =
∑

1≤i<j≤d

(
xi − ai −

vi − wi
vch

xch
)(
xj − aj−1 −

vj − wj−1
vch

xch
)
.

(5.2.8)
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Definition 5.2.5. We extend the homomorphism ψµ to a Z[w]loc[a]-algebra
homomorphism ψvw

µ

ψvw
µ : Z[w]loc[a]([v]loc[x])Sd → Z[w]loc[a];

by sending xi to aµ̄i
and vi to wµ̄i

for all i = 1, · · · , d. Observe that this is
well-defined since vch maps to wµ 6= 0. We denote ψvw

µ by ψµ when there is no
confusion.

Lemma 5.2.6 (Vanishing Lemma). For each λ, µ ∈ P(d), we have

ψµ(s
w
λ(v;x|a)) =

{
0 if µ 6⊃ λ∏
ρ∈[λ]−

(
wρ

wλ
aλ − aρ

)
if µ = λ.

Proof. Let aµ = ((aµ)l)l∈N be the µ-shifted sequence of a defined by

(aµ)l := al −
wl
wµ

aµ.

Since ψµ(x
v
i ) = (aµ)µ̄i for i = 1, · · · , d and ψµ(a

vw
l ) = (aµ)l for l ∈ N, we find

from (5.2.5) that

ψµ(sλ(x
v|avw)) = sλ((a

µ)µ̄1 , . . . , (a
µ)µ̄d
|aµ)

=

{
0 if µ 6⊇ λ∏
ρ∈[λ]−((a

λ)λ − (aλ)ρ) if µ = λ.

We finish the proof by computing

(aλ)λ − (aλ)ρ =
(
aλ −

wλ
wλ

aλ

)
−
(
aρ −

wρ
wλ

aλ

)
=

wρ
wλ

aλ − aρ.

5.2.3 Algebras of weighted (factorial) Schur functions

Let wS̃ch be the Z[w]loc[a]-submodule of Z[w]loc[a]([v]loc[x])Sd generated by
swλ(v;x|a)’s:

wS̃ch :=
∑

λ∈P(d)

Z[w]loc[a] · swλ(v;x|a).

Similarly let wSch be the Z[w]loc-submodule of Z[w]loc([v]loc[x])Sd generated by
swλ(v;x)’s:

wSch :=
∑

λ∈P(d)

Z[w]loc · swλ(v;x).

Our goal in this section is to show that these submodules wS̃ch and wSch are acu-
tually subalgebras and also to prove that the weighted factorial Schur functions

form a Z[w]loc[a]-module basis of wS̃ch. The linear independency of weighted
Schur fucntions will be postponed until Section 5.4.
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To begin with, observe that we have

sw
′

λ (v;x|a′) · swµ(v;x|a) =
∑

ν∈P(d)

cνλµ(a
vw, a′vw

′
)swν (v;x|a) (5.2.9)

by substituting a 7→ avw, a′ 7→ a′vw
′
and x 7→ xv in (5.2.2). This is not an

expansion formula of a product of two weighted factorial Schur functions over a-
and a′-variables: one should notice that each cνλµ(a

′vw′
, avw) contains x-variables.

Here, the product is taken in the ring Z[w]loc[a]⊗ Z[w′]loc[a′]⊗ (Z[v]loc[x])Sd .

Lemma 5.2.7 (Weighted Pieri Rule).

sw
′

� (v;x|a′) · swλ(v;x|a) =
(
w′ch
wλ

aλ − a′ch
)
swλ(v;x|a) +

∑
λ′→λ

w′ch
wλ

swλ′(v;x|a)

(5.2.10)

sw
′

� (v;x) · swλ(v;x) =
∑
λ′→λ

w′ch
wλ

swλ′(v;x) (5.2.11)

Proof. From Theorem 3.1. in [43], we find that

s�(x|a′) · sλ(x|a) = (aλ − a′ch)sλ(x|a) +
∑
λ′→λ

sλ′(x|a).

By substituting a 7→ avw, a′ 7→ a′vw
′
and x 7→ xv as in (5.2.9), we obtain

s�(x
v|a′vw

′
) · sλ(xv|avw) = (avwλ − a′vw

′

ch )sλ(x
v|avw) +

∑
λ′→λ

sλ′(xv|avw)

By the definition of avw and (5.2.6), we have

avwλ − a′vw
′

ch = (aλ − a′ch)−
wλ − w′ch

vch
xch = (aλ −

wλ
w′ch

a′ch)−
wλ − w′ch

w′ch
sw

′

� (v;x|a′)

After substituting this to the previous equation, it is straightforward to obtain
the desired formula.

Lemma 5.2.8. As submodules of Z[w]loc[a]([v]loc[x])Sd , we have

wS̃ch = Z[a]⊗ wSch .

Proof. First we prove that wS̃ch ⊂ Z[a] ⊗ wSch, i.e. for each λ, swλ(v;x|a) ∈
Z[a]⊗ wSch. Setting µ = ∅, ai = 0 and w′i = wi for all i ∈ N, and substituting
a′i 7→ ai for all i ∈ N in (5.2.9), we obtain

swλ(v;x|a) =
∑

ν∈P(d)

cνλ∅(0
vw, avw)swν (v;x).

Since avwl = al−wl xch

vch
and 0vwl = −wl xch

vch
, cνλ∅(a

vw, 0vw) is a polynomial in xch/vch
with coefficients in Z[w]loc[a]. Since we have (5.2.7), the weighted Pieri rule
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(5.2.11) implies that swλ(v;x|a) is a linear combination of swν (v;x) over Z[w]loc[a].
Thus we conclude that swλ(v;x|a) ∈ Z[a]⊗ wSch.

To prove that wS̃ch ⊃ Z[a]⊗ wSch, it suffices to show that swλ(v;x) ∈ wS̃ch
for each λ. We use the similar argument as above. After setting µ = ∅ and
a′l = 0 for all l ∈ N in (5.2.9), the equation (5.2.6) and the weighted Pieri rule

(5.2.10) imply that swλ(v;x) ∈ wS̃ch.

Proposition 5.2.9. wSch is a Z[w]loc-subalgebra of Z[w]loc([v]loc[x])Sd . In par-

ticular, wS̃ch is a Z[w]loc[a]-subalgebra of Z[w]loc[a]([v]loc[x])Sd .

Proof. By evaluating al = a′l = 0 and w′l = wl for all l ∈ N in (5.2.9), we have

swλ(v;x) · swµ(v;x) =
∑

ν∈P(d)

cνλµ(0
vw, 0vw)swν (v;x).

Since cνλµ(a, a) is a polynomial in {ak−al, k, l ∈ N}, cνλµ(0vw, 0vw) is a polynomial
in

−wk
xch
vch
−
(
−wl

xch
vch

)
= −(wk − wl)

xch
vch

= −(wk − wl)
sw�(v;x)
wch

.

Therefore by the weighted Pieri rule (5.2.11), the product swλ(v;x) · swµ(v;x) is a
linear combination of {swν (v;x)}ν∈P(d) over Z[w]loc. Now the latter claim follows
from Lemma 5.2.8.

Proposition 5.2.10. {swλ(v;x|a)}λ∈P(d) is a Z[w]loc[a]-basis of wS̃ch.

Proof. By the definition of wS̃ch, it is sufficient to show the linear independency.
Suppose ∑

λ∈P(d)

fλ(w, a) · swλ(v;x|a) = 0

for some fλ’s in Z[w]loc[a]. Let µ be a minimal (with respect to the inclusion)
partition among those λ such that fλ is not identically zero, i.e. there is no λ
such µ ⊂ λ and fλ 6= 0 except µ itself. Thus by the Vanishing Lemma 5.2.6, we
have

0 = ψµ

 ∑
λ∈P(d)

fλ · swλ(v;x|a)

 = fµψµ(s
w
µ(v;x|a)) = fµ

∏
ρ∈[µ]−

(
wρ
wµ

aµ − aρ
)
.

Since Z[w]loc[a] has no zero divisor, we have fλ = 0. This is a contradiction.

5.3 (Equivariant) Cohomology of Weighted Grass-
mannians

In the rest of the paper, all cohomologies are over Q-coefficients unless otherwise
specified.
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5.3.1 Review of Weighted Grassmannians and Weighted
Schubert Classes

Let us fix an infinite sequence {wi}i∈N of non-negative integers and a positive
integer u. In this section, we recollect from the previous chapter a few facts
about the cohomology of the weighted Grassmannians wGr(d, n) with the weight
(w̄1, · · · , w̄n) = (wn, · · · ,w1).

For a natural number n > d, let P(d, n) be the set of partitions that are
contained in the d × (n − d) rectangle. Upon a choice of n, we identify P(d, n)
with the set {nd} of subsets of {1, · · · , n} with cardinality d by

λ 7→ {λ1 < · · · < λd} where λi := n+ 1− λ̄i, i = 1, · · · , d (5.3.1)

where λ̄i is defined at (5.2.3).
Let {e1, · · · , en} be the standard basis of Cn for each n > d. We define

aPl(d, n) to be the image of

Cn × · · · × Cn︸ ︷︷ ︸
d

→ ∧dCn, (α1, · · · , αd) 7→ α1 ∧ · · · ∧ αd

and let aPl(d, n)× := aPl(d, n)\{0}. The standard action of the n-dimensional
complex torus Tn

C on Cn induces an action of Tn
C on aPl(d, n)×. The twisted

diagonal subgroup wDC of Tn
C is defined by

wDC := {(tdw̄1+u , · · · , tdw̄n+u) | t ∈ C×}.

The weighted Grassmannian wGr(d, n) for the weights (w̄1, · · · , w̄n) is defined
by

wGr(d, n) := aPl(d, n)×/wDn
C .

The real subtorus Tn in Tn
C acts on wGr(d, n) through the quotient map Tn →

wRn−1 := Tn/Tn ∩ wDn
C . There is the bijection between P(d, n) and the fixed

point set Fn for the Tn-action on wGr(d, n) sending λ ∈ {nd} = P(d, n) to the
equivalent class of eλ1 ∧ · · · ∧ eλd

which we denote by [eλ].
The linear inclusion ∧dCn 7→ ∧dCn+1 sending eλ1∧· · ·∧eλd

7→ eλ1+1∧· · · eλd+1

for each {λ1 < · · · < λd} ∈ {nd} induces a map ιn : aPl(d, n)× → aPl(d, n+ 1)×.
This is equivariant under the homomorphism ρn : Tn

C → Tn+1
C which sends

(t1, · · · , tn) to (1, t1, · · · , tn), and hence induces the ρn-equivariant map

wιn : wGr(d, n)→ wGr(d, n+ 1).

This restricts to the inclusion Fn ↪→ Fn+1 which corresponds to the natural
inclusion P(d, n) ⊂ P(d, n + 1) and the inclusion {nd} ↪→

{
n+1
d

}
given by {λ1 <

· · · < λd} 7→ {λ1 + 1 < · · · < λd + 1}. Let y1, · · · , yn be the standard basis of
the weight lattice Lie(Tn)∗Z for every n. We identify H∗(BTn) = Q[y1, · · · , yn]
and ρn induces the projection

ρ∗n : Q[y1, · · · , yn+1]→ Q[y1, · · · , yn]
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which maps xi to aµ̄i and vi to wµ̄i for all i = 1, · · · , d. Recall that for each

λ ∈ P(d, n), the equivariant weighted Schubert class wS̃n
λ is defined as a class

in H∗
wRn−1(wGr(d, n)) and that they form a H∗(B wRn−1)-basis. We use the

same symbol wS̃n
λ for the image of wS̃n

λ under the map H∗
wRn−1(wGr(d, n)) ↪→

H∗Tn(wGr(d, n)) induced by the quotient map Tn → wRn−1. The following are
easy to check and will be used in the rest of the paper.

(i) The equivariant weighted Schubert classes wS̃λ, λ ∈ P(d, n) form a basis
of H∗Tn(wGr(d, n)) as Q[y1, · · · , yn]-module.

(ii) The restriction map

H∗Tn(wGr(d, n))→ H∗Tn(Fn) =
⊕

[eµ]∈Fn

H∗Tn([eµ]) =
⊕

µ∈P(d,n)

Q[y1, · · · , yn]

is a Q[y1, · · · , yn]-algebra homomorphism, and it is in fact injective. The

image wS̃n
λ|µ of wS̃n

λ at the fixed point [eµ] ∈ Fn is computed in Theorem
4.5.1 in the previous chapter ;

wS̃n
λ|µ = sλ(−(yµ)µ1 , · · · ,−(yµ)µd

| − (yµ)n, · · · ,−(yµ)1)

where yµ :=
∑d
i=1 yµi and w̄µ :=

∑d
i=1 w̄µi and (yµ)i = yi − w̄i

w̄µ
yµ.

(iii) The pullback map w̃ι
∗
n : H∗Tn+1(wGr(d, n + 1)) → H∗Tn(wGr(d, n)) is a

Q[y1, · · · , yn+1]-algebra homomorphism with respect to ρ∗n and for each
µ ∈ P(d, n), we have

w̃ι
∗
n(wS̃

n+1
λ ) =

{
wS̃n

λ if λ ∈ P(d, n),
0 if λ 6∈ P(d, n).

In particular, w̃ι
∗
n is surjective.

(iv) For each λ ∈ P(d, n), the weighted Schubert class wSλ is the image of wS̃λ
under the natural map H∗Tn(wGr(d, n))→ H∗(wGr(d, n)) and they form a
Q-basis of H∗(wGr(d, n)). The pullback map wι∗n : H∗(wGr(d, n + 1)) →
H∗(wGr(d, n)) satisfies

wι∗n(wS
n+1
λ ) =

{
wSn

λ if λ ∈ P(d, n),
0 if λ 6∈ P(d, n).

In particular, wι∗n is surjective.

5.3.2 Cohomology of wGr(d,∞)

By using the inclusions {wιn, n ∈ N}, we define

wGr(d,∞) := lim
−→

wGr(d, n) =
∪
n∈N

wGr(d, n).
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Since wι∗n is surjective for each n, we have lim
←−

1Hk(wGr(d, n)) = 0 for each k.

Therefore there is the Q-linear isomorphism

Hk(wGr(d,∞))→ lim
←
Hk(wGr(d, n)) for each k ≥ 0.

The cup products on H∗(wGr(d, n)) for all n ∈ N canonically define a structure
of Q-algebra on the direct sum of lim

←
Hk(wGr(d, n)) over all k ≥ 0 and we have

Proposition 5.3.1. The inclusions induces a canonical Q-algebra isomorphism

H∗(wGr(d,∞))→
⊕
k≥0

lim
←
Hk(wGr(d, n)).

The property (iv), together with this proposition, defines the classes wS∞λ in
H∗(wGr(d,∞)) such that the pullback Hk(wGr(d,∞))→ Hk(wGr(d, n)) sends
wS∞λ to wSn

λ if λ ∈ P(d, n) and 0 otherwise.

Proposition 5.3.2. {wS∞λ }λ∈P(d) forms a Q-basis of H∗(wGr(d,∞)).

Proof. For each k ≥ 0, the pull back gives us an isomorphism

Hk(wGr(d,∞)) ∼= Hk(wGr(d, n)) =
⊕

λ∈P(d,n)
l(λ)=k

Q · wSn
λ

for a sufficiently large n > k where l(λ) =
∑d
i=1 b

λ
i is the number of boxes in λ.

By the definition of the elements {wS∞λ }, they correspond to {wSn
λ} which is a

Q-basis of the image, the claim follows.

5.3.3 Cohomology of equivariant analogue of wGr(d,∞)

Let ETn → BTn is a universal principal Tn-bundle in which ETn is contractible.
We choose a ρn-equivariant continuous map ETn → ETn+1 for each n. Hence
we have the induced maps ρ′n : BTn → BTn+1 whose cohomology pullbacks are
exactly the surjection ρ∗n. Let BT∞ := lim

→
BTn be the corresponding inductive

limit. As in the last section, there is no lim1 and hence we have a Q-algebra
isomorphism

H∗(BT∞) ∼=
⊕
k≥0

lim
←

Q[y1, · · · , yn](k) (5.3.2)

where Q[y1, · · · , yn](k) is the component of the cohomological degree 2k. Let

(y l)l∈N be an infinite sequence of variables and let Q̃[y ] be the ring of polynomials
in y l’s which are possibly infinite linear combinations of finite degree monomials.

Then the RHS of (5.3.2) can be identified with Q̃[y ] through the homomorphisms

θn : Q̃[y ]→ Q[y1, · · · , yn]; y l 7→

{
yn+1−l if 1 ≤ l ≤ n

0 if l > n.
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By using the ρn-equivariant map wιn, define

wGr(d,∞)T := lim
→

(ETn ×Tn wGr(d, n)),

then we have the commutative diagrams for all n:

wGr(d,∞)T

��

ETn ×Tn wGr(d, n)

��

oo

BT∞ BTnoo

(5.3.3)

Note that the cohomology H∗(wGr(d,∞)T) and the pullback w̃ι
∗
n do not depend

on the choices of ETn’s and the maps ETn → ETn+1 up to isomorphisms.
As in the last section, we have no lim1 term for the propjective system

{Hk
Tn(wGr(d, n)), w̃ι∗n} for each k, therefore the top map in the above diagram

induces the Q-algebra isomorphism

H∗(wGr(d,∞)T)→
⊕
k≥0

lim
←
Hk

Tn(wGr(d, n)). (5.3.4)

Since the right vertical maps of (5.3.3) commute with ρ′n and w̃ιn : ETn ×Tn

wGr(d, n) → ETn+1 ×Tn+1 wGr(d, n + 1), the ring Q̃[y ] acts on the RHS of

(5.3.4). Thus, by the commutativity of (5.3.3), the map (5.3.4) is actually a Q̃[y ]-
algebra isomorphism. With the property (iii), the isomorphism (5.3.4) defines

the classes wS̃∞λ in H∗(wGr(d,∞)T) such that the pullback H∗(wGr(d,∞)T)→
H∗Tn(wGr(d, n)) sends wS̃∞λ to wS̃n

λ if λ ∈ P(d, n) and 0 otherwise. Finally it is

not difficult to see from the RHS of (5.3.4) that wS̃∞λ , λ ∈ P(d) form a Q̃[y ]-
module basis of H∗(wGr(d,∞)T). We conclude this section by summarizing
above as follows.

Proposition 5.3.3. H∗(wGr(d,∞)T) is a Q̃[y ]-algebra and there is a Q̃[y ]-

module basis {wS̃∞λ , λ ∈ P(d)} such that wS̃∞λ maps to wS̃n
λ under the pullback

H∗(wGr(d,∞)T)→ H∗Tn(wGr(d, n)) for each n.

5.4 Correspondences of functions and cohomol-
ogy

Recall from Proposition 5.2.9, wS̃ch is a Z[w]loc[a]-subalgebra of Z[w]loc[a]([v]loc[x])Sd .
Let {wl}l∈N ⊂ Z≥0 and u ∈ Z>0. For each n ∈ N, define a ring homomorphism

ϕw
n : Z[w]loc[a]→ Q[y1, · · · , yn]; wl 7→ wl+u/d and al 7→

{
−yn+1−l if 1 ≤ l ≤ n

0 if l > n

where l runs all the natural numbers N. It is well-defined since

wµ =
d∑
i=1

wµ̄i 7→ wµ =
d∑
i=1

wµi + u 6= 0.
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These ϕw
n ’s induce the algebra homomorphism

ϕw
∞ : Z[w]loc[a]→ Q̃[y ]; al 7→ −y l and wl 7→ wl + u/d for all l ∈ N.

Theorem 5.4.1. There is a Z[w]loc[a]-algebra homomorphism

Φ̃n : wS̃ch→ H∗Tn(wGr(d, n)); swλ(v;x|a) 7→

{
wS̃n

λ if λ ∈ P(d, n),
0 otherwise,

where the action of Z[w]loc[a] on the RHS is given by ϕw
n . In particular, this

defines a Z[w]loc[a]-algebra homomorphism

Φ̃∞ : wS̃ch→ H∗(wGr(d,∞)T); swλ(v;x|a) 7→ wS̃∞λ

where the action Z[w]loc[a] on the RHS is given by ϕw
∞.

Proof. Consider the Z[w]loc[a]-algebra homomorphism

wS̃ch (ψvw
µ )µ∈P(d)

//
∏

µ∈P(d)

Z[w]loc[a] //
∏

µ∈P(d,n)

Q[y1, · · · , yn]

(5.4.1)
where the second map is given by ϕw

n if µ ∈ P(d, n) and a trivial map if otherwise.
If λ 6∈ P(d, n), then for all µ ∈ P(d, n), we have µ 6⊇ λ and therefore the image
of swλ(v;x|a) under (5.4.1) is 0. If λ ∈ P(d, n), then for all µ ∈ P(d, n), under
the map (5.4.1) we have

swλ(v;x|a)
ψµ7→ sλ((a

µ̄)µ̄1
, · · · , (aµ̄)µ̄d

|aµ̄), (aµ̄)l = al −
wl
wµ̄

aµ̄

ϕw
n7→ sλ(−(yµ)µ1 , · · · ,−(yµ)µd

| − (yµ)n, · · · ,−(yµ)1, 0, 0, · · · )

where (yµ)i = yi − w̄i

w̄µ
yµ. Here for the second map, we have used the fact that

sλ(x|a) does not involve ai for all i > n if λ ∈ P(d, n) by definition. The property
(ii) in Section 5.3.1 implies that the image of swλ(v;x|a) is exactly the restriction

of wS̃n
λ to the fixed points if λ ∈ P(d, n) and 0 otherwise. Moreover it follows

from the injectivity in (ii) that the map (5.4.1) factors through the desired map

Φ̃n : wS̃ch→ H∗Tn(wGr(d, n)). By introducing deg xi = deg al = 2 (and deg vi =

degwl = 0) for all i = 1, · · · , d and l ∈ N, the map Φ̃n is a homomorphism as

graded Q-algebras. The obvious commutativity w̃ι
∗
n ◦ Φ̃n+1 = Φ̃n allow us to

take the projective limit of the maps Φ̃n on each degree, and taking their direct
sum, we obtain the desired map Φ̃∞.

By tensoring Z over Z[a] with respect to the homomorphism Z[a]→ Z, (ai 7→
0), we obtain the Z[w]loc-algebra homomorphism Φn := Z⊗Z[a] Φ̃n

Φn : Z⊗Z[a] wS̃ch→ Z⊗Z[a] H
∗
Tn(wGr(d, n)).

The LHS is exactly wSch by Lemma 5.2.8. The action of Z[a] on H∗Tn(wGr(d, n)
is through Z[a] → Q[y1, · · · , yn] that sends ai to yn+1−i if 1 ≤ i ≤ n and
0 otherwise. Therefore the RHS is H∗(wGr(d, n)). Thus the following is an
immediate consequence.
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Theorem 5.4.2. For each n ∈ N, the map Φ̃n induces the Z[w]loc-algebra ho-
momorphism

Φn : wSch→ H∗(wGr(d, n)); swλ(v;x) 7→

{
wS∞λ if λ ∈ P(d, n),
0 otherwise.

In particular, this defines a Z[w]loc-algebra homomorphism

Φ∞ : wSch→ H∗(wGr(d,∞)); swλ(v;x) 7→ wS∞λ .

Proposition 5.4.3. The weighted Schur functions swλ(v;x), λ ∈ P(d), form a
Z[w]loc-module basis of wSch.

Proof. It is enough to check the linear independency. Suppose that∑
λ∈P(d)

fλ(w)s
w
λ(v;x) = 0

for some fλ(w) ∈ Z[w]loc. There exists n such that, for all λ appearing in the
sum, fλ(w) involves only w1, · · · ,wn. Then Φn send the equality to∑

λ∈P(d)

fλ(w1 + u/d, · · · ,wn + u/d)wSn
λ = 0.

This holds for arbitrary w1, · · · ,wn ∈ Z≥0 and u ∈ Z>0 and since {wSn
λ}λ∈P(d,n)

is a linearly independent set, we conclude that fλ(w) is identically 0 for all λ
appearing in the sum.

Remark 5.4.4. The homomorphisms Φ̃∞ in Theorem 5.4.1 and Φ∞ in Theorem
5.4.2 can be made into isomorphisms by evaluating the w-variables. Namely, let

wSch := Q⊗Z[w]loc wSch ⊂ (Q[v]loc[x])
Sd

w S̃ch := Q̃[a]⊗Z[w]loc[a] wS̃ch ⊂ Q̃[a]([v]loc[x])
Sd .

where the tensor products are given by Z[w]loc → Q (wi 7→ wi + u/d). Then

clearly Φ∞ and Φ̃∞ induce the isomorphisms

Φw
∞ : wSch

∼=→ H∗(wGr(d,∞)) and Φ̃w
∞ : w S̃ch

∼=→ H∗(wGr(d,∞)T).

Here Φ̃w
∞ is an algebra isomorphism with respect to Q̃[a] ∼= Q̃[y ] defined by

al 7→ −y l for all l ∈ N. Then these isomorphisms send the evaluated weighted
(factorial) Schur functions

swλ (v;x) := swλ(v;x)|wl=wl+u/d,l∈N and swλ (v;x|a) := swλ(v;x|a)|wl=wl+u/d,l∈N.

to wS∞λ and wS̃∞λ respectively.
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