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Chapter 1

Introduction

In the following, we work over C . Let (X, x) be a normal Q-Gorenstein

singularity and f : Y → X be a resolution of a singularity with excep-

tional divisors Ei (i = 1, 2, . . . , r). Then the adjunction formula KY =

f ∗KX+
∑r

i=1 discr(Ei) holds for rational numbers discr(Ei), which are called

discrepancies. If discr(Ei) = 0 for all i, f is called a crepant resolution. (X, x)

is called canonical (resp. terminal) if the inequality discr(Ei) ≥ 0 (resp.> 0)

holds for all i.

Varieties with nonsmooth terminal singularities do not admit any crepant

resolutions by definition. Although, canonical Gorenstein quotients of those

varieties, if they exist, may admit a crepant resolution. In this thesis, we

give a series of toric canonical Gorenstein quotients of the toric conifold by

toric group actions which admit crepant resolution. Moreover, we consider a

McKay correspondence for those quotients. For three dimensional canonical

Gorenstein quotient singularities, the existence of crepant resolution and the

McKay correspondence are well known (see Theorem 1.0.1 and Theorem

1.0.2), but for three dimensional canonical Gorenstein quotients of singular

varieties, these problems have been left untouched.

The crepant resolution plays an important role in the study of the McKay

correspondence. The McKay correspondence is often expressed as “a bridge”

connecting the representation theory and the geometry. In [21], J. McKay

found out a strange coincidence of two graphs for two-dimensional quotient
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singularities C2/G where G is a finite subgroup of GL(2,C). One of the

graphs is given by the nontrivial irreducible representations of G and the

other is the dual graph of exceptional set, where the vertices are the ex-

ceptional divisors of the minimal resolution of C2/G and the edges are the

intersections. The coincidence of graphs was interpreted as an isomorphism

between the G-equivariant K-theory of C2 and the K-theory of the minimal

resolution C̃2/G of C2/G in [11]. A finer interpretation is given by [18] as an

equivalence between the derived category of G-equivariant coherent sheaves

on C2 and the derived category of coherent sheaves on C̃2/G. The McKay

correspondence was generalized to three-dimensional Gorenstein quotient sin-

gularities by using crepant resolutions. The three-dimensional set-theoretical

McKay correspondence was given by Y. Ito and M. Reid as follows.

Theorem 1.0.1 ([14]). Let Y be a crepant resolution of three-dimensional

Gorenstein quotient singularity C3/G. Then there exists a correspondence

between the set of canonical bases of H2i(Y,Q) and the set of conjugacy

classes of G with weight i where i is in Z ∩ [0, 3].

On the other hand, the existence problem of crepant resolution for three-

dimensional Calabi-Yau varieties raised by physicists on 1980’s. Y. Ito, D.

G. Markushevich and S. S. Roan answered to the problem in the case of

quotient singularities.

Theorem 1.0.2 ([12][19][25]). Any three-dimensional Gorenstein quotient

singularity C3/G admits a crepant resolution.

For three-dimensional Gorenstein quotient singularities, T. Bridgeland,

A. King and M. Reid gave a construction of crepant resolution and the McKay

correspondence by using Hilbert scheme of G-orbits and Serre functor of

derived category in [1]. In the case that the dimension is higher than three,

crepant resolutions of Gorenstein quotient singularities do not always exist.

Nevertheless, for some special cases, sufficient conditions for the existence of

a crepant resolution was found out by [7][26] and other papers.

In the studies of the McKay correspondence and the existence problem

of crepant resolutions, quotient singularities have been main objects. By the
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way, if the dimension is greater than two, a minimal model has terminal

singularities in general. So, it will be natural to consider a generalization to

quotient spaces of terminal 3-folds.

We consider the existence of toric crepant resolutions for Gorenstein sin-

gularities which are given as quotients of the toric conifold X by finite groups

G acting toroidally (see Definition 2.2.1) and compute the Euler number of

the crepant resolutions. Moreover, we consider an analogy to Theorem 1.0.1

for X/G. Throughout the thesis, we always take a toric model of the singu-

larity, and we sometimes denote a singularity (X, x) by X for simplicity. It

is known that any affine toric terminal 3-fold X is smooth or isomorphic to

either of the following two:

(i) the quotient singularity of type 1
r
(a,−a, 1) where a and r are coprime,

(ii) the hypersurface singularity Spec(C [x, y, z, w]/(xz − yw)).

See Theorem 2.2.2 and Theorem 2.2.3. If X is smooth and X/G is a Goren-

stein singularity, then there exists a crepant resolution for X/G by Theorem

1.0.2. In the case that X is a quotient singularity of type 1
r
(a,−a, 1), then

there exists a crepant resolution for X/G. This is because the existence prob-

lem for X/G can be reduced to the existence problem for C3/G′ where G′ is

a small finite subgroup of SL(3,C). For details, see Section 2.3. In the case

of the hypersurface Spec(C [x, y, z, w]/(xz − yw)), which we call the conifold

in the following, we assume that the quotient X/G has a Gorenstein singu-

larity. In Section 2.4, we give a classification of the toroidal group actions

on the conifold. In Section 2.5, we show that X/G admits a toric crepant

resolutions and compute the Euler number. The main result of this thesis is

as follows.

Theorem 1.0.3. Let X be the conifold and G be a finite group acting on X

toroidally. Assume X/G is a Gorenstein singularity. Then X/G admits a

toric crepant resolution X̃/G. The Euler number of X̃/G is 2|G| where |G|
is the order of G.
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Corollary 1.0.1. Let X be an affine toric terminal 3-fold and G be a finite

group acting on X toroidally. Assume X/G is a Gorenstein singularity. Then

X/G admits a toric crepant resolution X̃/G.

We remark that, in the case that X is the conifold, the Euler number

of a crepant resolution X̃/G is 2|G|. This implies that the usual McKay

correspondence on X̃/G does not hold. Indeed, every conjugacy class of G

corresponds to two toric prime divisors on X̃/G. However this complexity can

be interpreted by the string theoretic Hodge theory and the strong McKay cor-

respondence advocated by V. V. Batyrev and D. I. Dais in [3]. Roughly, the

strong McKay correspondence is the McKay correspondence limited on the

exceptional divisors, and that is hold for GV-varieties: varieties which have

a stratification by affine charts with at most Gorenstein toric or Gorenstein

quotient singularities. Therefore, in the case of GV-varieties, we can con-

struct the McKay correspondence on every affine chart. In our case, a small

resolution X̂/G is covered by two Gorenstein quotient singularities which are

isomorphic to each other. There exists a crepant resolution X̃/G which is

covered by two crepant resolutions of the Gorenstein quotient singularities

and go through the small resolution. Therefore, for X̃/G, the strong McKay

correspondence holds on every affine chart. For the detail, see Section 3.
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1.1 Basic knowledge on toric varieties

In this section, we shall recall basic knowledge of affine toric varieties which

is the main object of our study. Toric varieties are suitable for constructing
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examples of the McKay correspondence because it is easy to observe the

cohomologies on a toric crepant resolution.

Definition 1.1.1. We define T n as follows and call it an n-dimensional torus.

T n := C∗ ×C∗ × · · · ×C∗︸ ︷︷ ︸
n−times

Sometimes, T n is denoted by T for simplicity when the dimension of the

torus is clear.

Definition 1.1.2. A normal irreducible variety X is said to be toric if T is

contained in X as a Zariski open dense subset and the group action of T on

itself extends to an algebraic group action of T on X, which we denote by

πT .

In this thesis, we call πT a torus action on X. For a = (a1, a2, . . . , an) ∈
Zn, a group homomorphism e(a) : T → C∗ which is called a character is

given as follows.

e(a)(t1, t2, . . . , tn) = ta11 t
a2
2 · · · tann

It is known that all characters of T is given by this way. Characters of

T form a free abelian Z -module M which is called the character lattice.

We may identify M with Zn. Let N be the dual Z -module of M , i.e.,

N = HomZ (M,Z). We note that N is naturally isomorphic to Zn. In

the case that X is of finite type, the orbit space of X by πT corresponds

to a finite set (N,∆) of the faces of a rational strongly convex polyhedral

cone σ in NR := N ⊗R, which is called a finite fan. When N is clear, we

sometime denote a finite fan (N,∆) by ∆ for simplicity. The intersection of

the dual cone of σ and M is a semi-group in M , which we denote by SX .

Let {ě1, ě2, . . . , ěn} be the canonical Z -basis of M . By using the canonical

pairing ⟨ , ⟩, we have the dual Z -basis of N denoted by {e1, e2, . . . , en}. For
(b1, b2, . . . , bn) ∈ N , a group homomorphism γn : C∗ → T which is called a

one parameter subgroup of T is defined as follows.

γn(t) = (tb1 , tb2 , . . . , tbn)
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By the above discussion, an affine toric variety X has coordinates induced

by the coordinates {e(e1), e(e2), . . . , e(en)} of T .

Let {mi ∈ M | 1 ≤ i ≤ s} be a system of minimal generators of SX ,

hence SX =
∑s

i=1Z≥0mi. We have local coordinates (e(m1), · · · , e(ms)) on

X, and the action πT can be written as follows:

πT (t, (e(m1), · · · , e(ms))) = (t(m1)e(m1), · · · , t(ms)e(ms))

where t is an element in T and e(mi) is the character of T for mi ∈M .

1.2 Toric quotient singularities

In this section, we shall recall a relation between age and discrepancy in case

of toric quotient singularities. The main references are [10] and [22].

For a finite fan (N,∆), we denote the corresponding toric variety by

X(N,∆), which is written as X(N, σ) if ∆ consists of the faces of a cone σ.

Proposition 1.2.1. A toric variety X(N,∆) is nonsingular if and only if

each σ ∈ ∆ is generated by a part of a basis of N . (See p.15 of [22].)

We shall use the following.

Corollary 1.2.1. Let σ be an n-dimensional simplicial convex cone generated

by n primitive elements x1, . . ., xn in N . Then X(N, σ) is nonsingular, if

and only if {x1, . . . , xn} is a basis of N .

Let g be an element of finite order in GL(n,C). Then g is diagonalizable

and there exists h ∈ GL(n,C) such that

hgh−1 =

 e2πiθ1 0
. . .

0 e2πiθn


where θ1, θ2, · · · , θn are rational numbers in [0, 1). We define the age of g as

age(g) := θ1 + θ2 + · · · + θn.
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The age is independent of the choice of h. The age of g is an integer if g

is in SL(n,C).

We shall use the following vector notation:

1

s
(t1, t2, · · · , tn) :=

 e2πiθ1 0
. . .

0 e2πiθn


where θi equals to ti

s
and t1, t2, · · · , tn are nonnegative integers which are

less than s. The age of g equals to 1
s
(t1 + · · · + tn). We denote the vector

1
s
(t1, t2, . . . , tn) by v(g).

Let g1, g2, · · · , gm be elements in SL(n,C). If g1, g2, · · · , gm are commu-

tative each other, then the elements g1, g2, · · · , gm are simultaneously diago-

nalizable.

Let G ⊂ SL(n,C) be an abelian finite subgroup. We may assume that G

is diagonalized. We consider the natural action of G on Cn. In this case, the

action of groups is represented as the following theorem by toric technique.

Theorem 1.2.1. Let {e1, e2, · · · , en} be the canonical basis of N . Let N ′ =

N +
∑

g∈G v(g)Z . Then N is a submodule of N ′ with finite index.

Let ∆ be the finite fan which is generated by σ := ⟨e1, e2, · · · , en⟩R≥0

and ψ : (N,∆) → (N ′,∆) be the natural morphism of finite fans. Then ψ

corresponds to the morphism of toric varieties denoted by X(ψ) : X(N,∆) →
X(N ′,∆) and X(ψ) is the quotient map by N ′/N ≃ G.

It is known that any toric variety admits an equivariant resolution of

singularities.

Theorem 1.2.2. Let ∆′ be a locally finite nonsingular subdivision of a fan

∆ in N . Then the equivariant holomorphic map id∗ : X(N,∆′) → X(N,∆)

corresponding to the natural map (N,∆′) → (N,∆) is proper birational and

is an equivariant resolution of singularities for X(N,∆).

Moreover, for a primitive vector v ∈ N ′ such that vR≥0 is in ∆′, there

exists an element g in G such that v(g) = v by the quotient map in Theorem

1.2.1. For an exceptional divisor Eg, the following formula holds:

discr(Eg) = age(g)− 1,
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where Eg = orb(R≥0v(g)).

For the details of the above proposition, theorems or corollary, see [22]

(especially Section 1.4 and 1.5) and see [24] for the assertions with respect

to age and discrepancy.

Next, we shall review a projectivity condition for toric morphisms.

Definition 1.2.1. An R-valued function h on the support |∆| is called a

∆-linear support function if h is Z -valued on N ∩ |∆| and linear on each

σ ∈ ∆ where |∆| means ∪σ∈∆σ.

The set consisting of all ∆-linear support functions becomes an additive

group. The group is denoted by SF(N,∆). In Definition 1.2.1, if ∆ is a finite

fan and h is Q-valued on N ∩ |∆|, h is also ∆-linear support function by

taking some multiple. Let ∆(1) be the set of all 1-dimensional cones in ∆.

For ρ ∈ ∆(1), we denote the primitive element in N ∩ ρ by n(ρ).

Proposition 1.2.2. There exists an injective homomorphism

SF(N,∆) ↪→ Z∆(1)

h 7→ (h(n(ρ)))ρ∈∆(1).

A support function h is determined by integers h(n(ρ)).

If X is nonsingular, there exists an isomorphism such that

SF(N,∆)
∼→ Z∆(1).

Proposition 1.2.3. A toric resolution ϕ : X(N, ∆̃) → X(N,∆) is complete

if and only if |∆̃| equals to |∆|.

Definition 1.2.2. Suppose |∆̃| equals to |∆|. A ∆̃-linear support function h

is said to be strictly upper convex on ∆̃ if h satisfies the following conditions.

(a) ⟨lσ, x⟩ ≥ h(x) for all σ ∈ ∆̃ and for all x ∈ NR ,

(b) ⟨lσ, x⟩ = h(x) if and only if x ∈ σ,

where lσ is an element in M such that ⟨lσ, x⟩ equals to h(x) if x is in σ and

⟨lσ, x⟩ equals to ⟨lτ , x⟩ for x ∈ τ if τ is a face of σ.
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Let (N,∆) be a finite fan and ∆(n) be the set of the n-dimensional cones

in ∆. A set {lσ; σ ∈ ∆(n)} ⊂M is determined uniquely by h ∈ SF(N,∆).

Proposition 1.2.4. For a complete toric resolution ϕ : X(N, ∆̃) → X(N,∆),

the following conditions are equivalent.

(a) ϕ is projective.

(b) There exists h ∈ SF(N, ∆̃) such that h is strictly upper convex on ∆̃.

1.3 Complete intersection quotient singular-

ities

In this section, we shall describe a part of the results of [29] and [28]; which

give the criterion for some quotient singularities to be complete intersection.

Notations used here is similar to the previous sections.

Definition 1.3.1. Let R be the ring C [X1, X2, · · · , Xn] and I be the index

set {1, 2, 3, · · · , n} of the variables, D be a set consisting of subsets of I and

ω be a map from D to the set of the positive integers Z>0. The pair (D,ω)

is said to be a special datum, if D and I satisfy the following conditions.

(a) the subset {i} is an element in D for any i ∈ I,

(b) if J and J ′ are elements in D, then J and J ′ satisfy the condition J ⊂ J ′,

J ′ ⊂ J or J ∩ J ′ = ∅,

(c) if J is a maximal set in D, then ω(J) equals to 1,

(d) if J and J ′ are elements in D and if J ′ contains J properly, then ω(J ′)

divides ω(J) and ω(J) is bigger than ω(J ′),

(e) if J1, J2 and J are elements in D and if Ji ≺ J (i = 1, 2), then ω(J1)

equals to ω(J2), where the notation ≺ means that Ji is a subset of J and

there exist no element in D between Ji and J .

Definition 1.3.2. Let D = (D,ω) be a special datum, we put RD to be the

subring C [XJ | J ∈ D] of R where XJ = (
∏

i∈J Xi)
ω(J).

We denote the diagonal matrix whose (i, i) component is a (resp. (i, i)

component is a and (j, j) component is b ) and the other diagonal components

are 1 by (a; i) (resp. (a, b; i, j)) here.
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Definition 1.3.3. Let D = (D,ω) be a special datum. A group GD is the

one generated by the following elements: {(eω, e−1
ω ; i, j) | J1, J2, J ∈ D, i ∈

J1, j ∈ J2, J1 ≺ J, J2 ≺ J and ω = ω(J1) = ω(J2)}.

Proposition 1.3.1. If D = (D,ω) is a special datum, then

(1) the ring RD is a complete intersection,

(2) RD is the invariant subring under the action of the group GD.

Theorem 1.3.1. If G is a finite abelian subgroup of SL(n,C) and if the

invariant ring RG is a complete intersection, then there is a special datum

D such that RG = RD and G = GD.
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Chapter 2

Existence problem of crepant

resolution

It is known that a crepant resolution always exists for a quotient singularity

by a finite subgroup of SL(n,C) if n is equal to three or less [25][12][13][19][20],

but not in the case in general when n is greater than three. Since around

1990, arithmetic conditions for the existence of a crepant resolution have

been shown for some series of cyclic quotient singularities [8][6][5]. It is also

shown that a crepant resolution exists for c.i. singularities [7][4].

2.1 Crepant resolutions of quotient singular-

ities

For Gorenstein quotient singularities with dimension smaller than four, ex-

istence problem solved affirmatively.

Theorem 2.1.1 ([25][12][13][19][20]). Any n-dimensional Gorenstein quo-

tient singularity Cn/G admits a crepant resolution when n is smaller than

four.

In special cases, sufficient conditions for the existence of a crepant reso-

lution are known.
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Theorem 2.1.2 ([7]). All Gorenstein cyclic quotient singularities Cn/G of

type
1(

kn−1
k−1

)(1, k, k2, k3, . . . , kn−2, kn−1)

admit toric projective crepant resolutions for all n ≥ 3 and all k ≥ 2.

Theorem 2.1.3 ([7]). All abelian quotient c.i.-singularities admit projective

crepant resolutions in all dimensions.

We note that the quotient singularities in Theorem 2.1.2 are non-c.i.-

singularities.

In the remaining part of this section, we introduce the result in [26]. We

have found some infinite series of noncyclic and non-c.i. finite subgroups G

of SL(4,C) such that C4/G admits a toric projective crepant resolution.

Through this section, the coordinate ring of C4 and the invariant ring

under the action of the group G are denoted by R and RG respectively.

R := C [X1, X2, X3, X4]

Proposition 2.1.1. Let p be a prime number and G be an abelian finite

subgroup of SL(4,C) generated by order p elements. Then G is a vector

space over the prime field of order p. The dimension of G as a vector space

is at most three and G is conjugate in SL(4,C) to one of the followings:

(1) (dimG = 1) A cyclic group

⟨1
p
(a, b, c, d)⟩ ∼= Z/pZ

(2) (dimG = 2) Noncyclic groups with two generators

⟨1
p
(1, 0, a, p− a− 1), 1

p
(0, 1, b, p− b− 1)⟩ ∼= (Z/pZ)2 (212)

⟨1
p
(1, a, 0, p− a− 1), 1

p
(0, 0, 1, p− 1)⟩ ∼= (Z/pZ)2, (a ̸= 0) (213)

⟨1
p
(0, 1, 0, p− 1), 1

p
(0, 0, 1, p− 1)⟩ ∼= (Z/pZ)2 (223)

(3) (dimG = 3) Noncyclic groups with three generators

⟨1
p
(1, 0, 0, p− 1), 1

p
(0, 1, 0, p− 1), 1

p
(0, 0, 1, p− 1)⟩ ∼= (Z/pZ)3
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where p is a prime number and a, b, c, d are integers in [0, p).

Proof. Let G be an abelian finite subgroup of SL(4,C) generated by diagonal

matrices. We define an injective homomorphism of groups φ : (R/Z)⊕4 ↪→
GL(4,C) as

(x, y, z, w) 7→


e2πix 0

e2πiy

e2πiz

0 e2πiw


and ψ : (R/Z)⊕3 ↪→ SL(4,C) as

(x, y, z) 7→


e2πix 0

e2πiy

e2πiz

0 e2πi(1−x−y−z)

 .

Then we have the following diagram.

(R/Z)⊕3 ↪→ SL(4,C)

↪→ ↪→

(R/Z)⊕4 ↪→ GL(4,C)

And we also have the following diagram where the vertical arrows are canon-

ical quotient maps.

G+Z⊕3 ↪→ R⊕3

↓ ↓
G ↪→ (R/Z)⊕3

We denote G+Z⊕3 by G̃. G̃ is a free abelian group of rank at most three. We

choose an isomorphism ρ : G̃
∼→ Z⊕3. Then the composition of the inclusion

map Z⊕r → G̃(∼= Z⊕r) and ρ is Z -linear. We write the composition: Z⊕3 ↪→
G̃

∼→ Z⊕3 as ν.

We may assume the image of ν equals to d1Z ⊕ d2Z ⊕ d3Z where d1, d2
and d3 are integers with d1|d2|d3. Clearly, G is isomorphic to G̃/Z⊕3. Hence,

G is isomorphic to Coker ν = (Z/d1Z)⊕ (Z/d2Z)⊕ (Z/d3Z).
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By assumption, di equals to p or 1 where i is a positive integer smaller

than four. Hence an abelian finite subgroup of SL(4,C) generated by order

p elements becomes the type (1), (212), (213), (223) or (3) using a change of

bases.

Theorem 2.1.4. There exists a projective toric crepant resolution for the

following types:

(a) Type (212) with a = b = 1,

(b) Type (213) with a = 1, p−1
2
, p− 2 or p− 1,

(c) Type (223),

(d) Type (3).

Proof. The case (a).

We will prove this case at the latter part of the proof of the case (b),

a = p− 2.

The case (b).

We define the plane section of the cone spanned by the elements (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0) and (0, 0, 0, 1) as H. Let G be a group of the type (213).

If a equals to 1 and p ̸= 2, the quotient space C4/G corresponds to the

toric variety X(N ′,∆) where the lattice set N ′ is Z4 + 1
p
(1, 1, 0, p − 2)Z +

1
p
(0, 0, 1, p−1)Z and ∆ is the finite fan which consists of the faces of the cone

generated by the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1). We

define the subset {1
p
(i, i, j, p−2i−j) | i ∈ [0, p−1

2
]∩Z , j ∈ [0, p−2i]∩Z} ⊂ N ′

as P . The age of all the points in P equals to 1.

We give a resolution for the singularity X(N ′,∆) by subdividing ∆ ∩H
as the figure [Fig 1].
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(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

[Fig 1]

On the edge connecting (k
p
, k
p
, p−2k

p
, 0) and (k

p
, k
p
, 0, p−2k

p
), there appear (p −

2k + 1) points where the integer k satisfies the condition 0 ≤ k ≤ p+1
2

− 1.

See [Fig 2].

-2times

p+1times

-2times

-2times
-2times

[Fig 2]

The figure [Fig 1] includes p2 triangular pyramids of the following types: [Fig

3], [Fig 4], [Fig 5], [Fig 6], [Fig 7], [Fig 8] and [Fig 9].
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(1, 0, 0, 0)

1
p
(p−1

2
, p−1

2
, 0, 1)

1
p
(p−1

2
, p−1

2
, 1, )

(0, 1, 0, 0)
[Fig 3]

(1, 0, 0, 0)

1
p
(x1, x1, x2, p− 2x1 − x2)

1
p
(x1 − 1, x1 − 1, x2 + 2, p− 2x1 − x2)

1
p
(x1, x1, x2 + 1, p− 2x1 − x2 − 1)

[Fig 4]

(0, 1, 0, 0)

1
p
(x1 − 1, x1 − 1, x2 + 2, p− 2x1 − x2)

1
p
(x1, x1, x2, p− 2x1 − x2)

1
p
(x1, x1, x2 + 1, p− 2x1 − x2 − 1)

[Fig 5]

(1, 0, 0, 0)

1
p
(y1, y1, y2 + 1, p− 2y1 − y2 − 1)

1
p
(y1 − 1, y1 − 1, y2 + 2, p− 2y1 − y2)

1
p
(y1 − 1, y1 − 1, y2 + 1, p− 2y1 − y2 + 1)

[Fig 6]

(0, 1, 0, 0)

1
p
(y1, y1, y2 + 1, p− 2y1 − y2 − 1)

1
p
(y1, y1, y2 + 1, p− 2y1 − y2 − 1)

1
p
(y1 − 1, y1 − 1, y2 + 1, p− 2y1 − y2 + 1)

[Fig 7]
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(1, 0, 0, 0)

1
p
(z1, z1, 0, p− 2z1)

1
p
(z1 + 1, z1 + 1, 0, p− 2z1 − 2)

1
p
(z1, z1, 1, p− 2z1 − 1)

[Fig 8]
1
p
(z1, z1, 0, p− 2z1)

1
p
(z1 + 1, z1 + 1, 0, p− 2z1 − 2)

1
p
(z1, z1, 1, p− 2z1 − 1)

(0, 1, 0, 0)

[Fig 9]

The variables satisfy the conditions x1, y1, z1 ∈ [1, p−1
2
] ∩ Z , x2, y2 ∈

[0, p−1
2
] ∩Z , p− 2x1 − x2 ≥ 1 and p− 2y1 − y2 ≥ 0.

All the determinants of the matrices made by the generators of the tri-

angular pyramids equal to 1
p2

for the [Fig 3], [Fig 4], · · · , [Fig 9]. Therefore,

the cones generated by the four vertices of each triangular pyramid are non-

singular and the variety corresponding to the fan (N ′, ∆̃) is a resolution for

X(N ′,∆) where ∆̃ is the finite fan decomposed as the figure.

The age of every lattice point corresponding to the exceptional divisors

for this resolution equals to 1. Hence, the resolution is crepant.

Next, we prove that this resolution is projective.

We shall define ∆̃-linear support function h which is strictly upper convex

on ∆̃ by giving a Q-value for each lattice point in ∆ ∩ H. If h is strictly

upper convex on ∆̃ ∩ H, h is strictly upper convex on ∆̃. Let h have the

following Q-value βi at each lattice point in ∆ ∩H, then h is strictly upper

convex on ∆̃,

18



0

0

0

0

β1

β1

β2

β0

β0

β1

β1

β2

β0

β1

β2

β2

β0
β1

β2

β2

β2β3

β3

β3

β3

β4
β4β2

β2

β3

β3

[Fig 10]

where βi := 1 +
∑i

k=0
1
2i
, (i ∈ [0, p−3

2
] ∩Z).

From here, we shall construct a projective crepant resolution for the case

a equals to p − 1. We also treat the case p = 2. The lattice set N ′ is

Z4 + 1
p
(1, p − 1, 0, 0)Z + 1

p
(0, 0, 1, p − 1)Z . We define a subset {1

p
(i, p −

i, 0, 0), 1
p
(0, 0, j, p− j) | i, j ∈ [0, p]∩Z} ⊂ N ′ as P . The age of the elements

in P is always 1. We shall give a resolution for X(N ′,∆) by subdividing

∆ ∩H as the figure [Fig 11].

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

[Fig 11]
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The figure [Fig 11] only contains the triangular pyramids as shown in [Fig

12].

1
p
(x1 + 1, p− x1 − 1, 0, 0)

1
p
(x1, p− x,0, 0)

1
p
(0, 0, y1 − 1, p− y1 + 1)

1
p
(0, 0, y1, p− y1)

[Fig 12]

By the similar way as the case that a equals to 1, the cone as shown in

[Fig 12] is nonsingular and the variety X(N ′, ∆̃) is a crepant resolution for

X(N ′,∆) where the finite fan ∆̃ is decomposed as the figure [Fig 11].

Next, we prove that this resolution is projective. If h is determined by

the value at each point as follows, then the ∆̃-linear support function h is

strictly upper convex on ∆̃ where γi := 2 +
∑i

k=0
1
2i
, (i ∈ [0, p−3

2
] ∩Z).

0

γ0

γ1

γ1

γ0

0

0

0
γ0 γ1 γ1 γ0

[Fig 13]

In the remaining case a = 1 and p = 2, the condition that G is the type

(213) and a = 1, p = 2 is a equivalent one that G is the type (213) and

a = p− 1, p = 2. So, we have proved the case a = 1, p− 1 of the type (213).

In the following, we shall prove the case a = p−1
2
, p − 2. First, we

consider the case a = p − 2 where p ̸= 2. The lattice set N ′ is Z4 +
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1
p
(1, p− 2, 0, 1)Z + 1

p
(0, 0, 1, p− 1)Z and ∆ is as above. We define the subset

{(1, 0, 0, 0), 1
p
(0, 0, i, p− i), 1

p
(j, k, l, j − l) | i ∈ [0, p]∩Z , j ∈ [0, p−1

2
]∩Z , k =

p− 2j, l ∈ [0, j] ∩Z} ⊂ N ′ as P .

The age of all the points in P equals to 1. We will give a resolution for

the singularity X(N ′,∆) by subdividing ∆ ∩H as the figure [Fig 14].

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

[Fig 14]

On the edge connecting ( j
p
, p−2j

p
, j
p
, 0) and ( j

p
, p−2j

p
, 0, j

p
), there appear j+1

points where the integer j satisfies the condition 0 ≤ j ≤ p−1
2
. See [Fig 15].

p+ 1times

−1times

−1times

−1times

[Fig 15]

21



The figure [Fig 14] includes p2 triangular pyramids of the following types:

[Fig 16], [Fig 17], [Fig 18], [Fig 19], [Fig 20], [Fig 21] and [Fig 22].

1
p
(j, k, 0, p− j − k)

1
p
(j − 1, k + 2, 0, p− j − k − 1)

1
p
(0, 0, i, p− i)

1
p
(0, 0, i+ 1, p− i− 1)

[Fig 16]

1
p
(j − 1, k, l, p− j − k − l + 1)

1
p
(j − 1, k, l + 1, p− j − k − l)

1
p
(j, k − 2, l + 1, p− j − k − l + 1)

(0, 0, 1, 0)

[Fig 17]

1
p
(j − 1, k, l, p− j − k − l + 1)

1
p
(j, k − 2, l, p− j − k − l + 2)

1
p
(j, k − 2, l + 1, p− j − k − l + 1)

(0, 0, 1, 0)

[Fig 18]

22



(1, 0, 0, 0) 1
p
(j − 1, k, l, p− j − k − l + 1)

1
p
(j, k − 2, l − 1, p− j − k + 2)

1
p
(j, k − 2, l + 1, p− j − k − l + 1)

[Fig 19]

1
p
(j − 1, k, l, p− j − k − l + 1)

(1, 0, 0, 0)

1
p
(j − 1, k, l + 1, p− j − k − l)

1
p
(j, k − 2, l + 1, p− j − k − l + 1)

[Fig 20]

(1, 0, 0, 0)

1
p
(p−1

2
, 1, 0, p− p−1

2
− 1)

1
p
(0, 0, i, p− i)

1
p
(0, 0, i+ 1, p− i− 1)

[Fig 21]

(1, 0, 0, 0)
1
p
(p−1

2
, 1, j, p− p−1

2
− j − 1)

1
p
(p−1

2
, 1, j − 1, p− p−1

2
− j)

(0, 0, 1, 0)

[Fig 22]

The variables satisfy the conditions j ∈ [1, p−1
2
] ∩ Z , k = p − 2j, l ∈

[0, p− j − k] ∩Z and i ∈ [0, p− 1] ∩Z .
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All the determinants of the matrices made by the generators of the trian-

gular pyramids equal to 1
p2

for the [Fig 16], [Fig 17], · · · , [Fig 22]. Therefore,

the cone generated by the four vertices of each triangular pyramid is non-

singular and the variety corresponding to the fan (N ′, ∆̃) is a resolution for

X(N ′,∆), where ∆̃ is the finite fan decomposed as the figure.

The age of every lattice point corresponding to the exceptional divisors

for this resolution equals to 1. Hence, the resolution is crepant.

We define h as the similar way for the case a = 1. Then it is confirmed

that the crepant resolution is projective.

Here, we consider the case p = 2. The invariant ring is as follows.

RG = C [X2
1 , X2, X

2
3 , X

2
4 , X1X2X4]

This case is clearly complete intersection type (see Section 3) and there exist

projective crepant resolutions.

Finally, We get the case a = p−1
2

from the case a = p− 2 by interchang-

ing bases (1, 0, 0, 0) and (0, 1, 0, 0) and also the type (a) from this case by

changing bases and by changing generators of the group. So we have proved

the case (a) and (b).

The case (c) and (d).

The quotient singularities of this type are c.i. singularity. In the case (c)

(resp. (d)), the invariant ring is

RG = C [X1, X
p
2 , X

p
3 , X

p
4 , X2X3X4]

(resp. RG = C [Xp
1 , X

p
2 , X

p
3 , X

p
4 , X1X2X3X4]).

We can define a special datum D as D := {{1}, {2}, {3}, {4}, {2, 3, 4}} (resp.

{{1}, {2}, {3}, {4}, {1, 2, 3, 4}}) and a map ω as {1} → 1, {i} → p (i =

2, 3, 4) and {2, 3, 4} → 1 (resp. {i} → p (i = 1, 2, 3, 4) and {1, 2, 3, 4} → 1).

So there exist projective crepant resolutions.

Comment
For the group G of the type (213), if a equals to p − 1 then C4/G is c.i.

singularity. We shall show C4/G is non-c.i. if a equals to 1, p−1
2
, p − 2 by
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showing that there are no special datum D for the group. Let I be the set

{1, 2, 3, 4}. Assume that group G is the type (213) and a equals to 1. Then

the invariant ring is as follows:

RG = C [X1
p, X2

p, X3
p, X4

p, X1
iX2

p−i, X1
2X3X4, X2

2X3X4, X1X2X3X4]

where 1 ≤ i ≤ p− 1. We define a set D as follows.

D := {{1}, {2}, {3}, {4}, {1, 2}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

Let ω be a map from D to Z>0. Then the pair (D,ω) never becomes a

special datum, since the images of ω for the elements {1, 2}, {1, 3, 4} and

{2, 3, 4} do not satisfy the condition that ω(E) equals to 1 or p where E is

{1, 2}, {1, 3, 4} or {2, 3, 4}. Hence, in this case, we have the fact that G is

non-c.i. type.

We conjecture that there exists a projective crepant resolution for type

(213) for any p and a.

2.2 Quotients of affine toric terminal 3-folds

Let V be a toric variety. The notations follows Chapter 1. If V is an affine

toric variety, then there exists a semi-group SV =
∑s

i=1Z≥0mi in M , and

we have local coordinates (e(m1), · · · , e(ms)) on V , and the action πT can

be written as follows:

πT (t, (e(m1), · · · , e(ms))) = (t(m1)e(m1), · · · , t(ms)e(ms))

where t is an element in T and e(mi) is the character of T for mi ∈M .

On the other hand, let H be a finite abelian group acting on V and πH be

the action. If (V/H, v̄) is an s-dimensional quotient singularity, then we may

assume that V is a vector space over C and G is a subgroup of GL(s,C) by

the following theorem. See Theorem 6.4.5 in [15].

Lemma 2.2.1. Let (W,w) be an n-dimensional quotient singularity. Then

there exists a finite subgroup H of GL(n,C) such that (W,w) ∼= (Cn/H, 0)

as germs. In particular, quotient singularities are algebraic.
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We introduce one more theorem on isomorphisms of quotient singularities

(see also [23]).

Theorem 2.2.1 (Prill’s isomorphism criterion). Let H1, H2 ⊂ GL(s,C) be

two small finite subgroups where s is equal to or greater than 2. Then there

exists an analytic isomorphism (Cs/H1, 0) ∼= (Cs/H2, 0) if and only if H1

and H2 are conjugate to each other within GL(s,C).

By using the simultaneous diagonalization of all elements in H and Prill’s

isomorphism criterion, we may assume that the action πH of H is given as

follows:

πH(h, c) := diag(α1, · · · , αs)
t(c1, · · · , cs)

where diag(α1, · · · , αs) is a diagonalization of the matrix h ∈ H, αi (i =

1, . . . , s) are the eigenvalues of h and (c1, · · · , cs) are local coordinates on

Cs. We note that Cs contains the algebraic torus (C∗)s and the semigroup

SCs can be written as SCs =
∑s

i=1Z≥0ěi where {ěi | i = 1, . . . , s} is a Z -

basis of M . Therefore we can recognize H as a finite subgroup of T , and we

have the formula:

πT (t, πH(h, c)) = πH(h, πT (t, c)), ∀t ∈ T ,∀h ∈ H, ∀c ∈ V.

This formula says that πH is equivariant with respect to πT . In this paper,

we consider group actions on affine toric varieties having such equivariance.

Definition 2.2.1. Let X be an affine toric variety and G be an abelian finite

group acting on X. The action πG is said to be toroidal if the action πG is

equivariant with respect to πT , i.e., πG satisfies the following formula:

πT (t, πG(g, x)) = πG(g, πT (t, x)), ∀t ∈ T ,∀g ∈ G, ∀x ∈ X.

In addition, we say that G acts on X toroidally.

In the following, we assume that all group actions on X are toroidal. The

usefulness of toroidal actions is that X/G is also a toric variety. Hence we

can describe, explicitly, the toric equivariant geometry of (X/G, x̄) with the

language of fans.
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Let us introduce a classification of affine toric terminal 3-folds. Theorem

2.2.2 was proved by G.K.White, D.Morrison, G. Stevens, V.Danilov and

M.Frumkin and Theorem 2.3 was in [9]. The definition of type 1
r
(a,−a, 1)

follows [24].

Theorem 2.2.2. Let X be an affine toric Q-factorial 3-fold. Then X is

terminal if and only if X is of type 1
r
(a,−a, 1) where a is an integer coprime

to r. In particular, if X is Gorenstein, then X is smooth.

Theorem 2.2.3. Let X be an affine toric non-Q-factorial 3-fold. Then X

has a terminal singularity if and only if X ∼= Spec(C [x, y, z, w]/(xz − yw)).

2.3 Gorenstein quotients of the singularity of

type 1
r(a,−a, 1)

Let X be an affine toric terminal 3-fold of type 1
r
(a,−a, 1) and G be a group

acting on X toroidally. Then X/G has a toric quotient singularity. We

assume that the singularity is Gorenstein. For three-dimensional Gorenstein

quotient singularities, the following theorems are known.

Theorem 2.3.1 ([12][19][25]). All three-dimensional Gorenstein quotient

singularities admit a crepant resolution.

By Theorem 2.3.1, the quotient singularity (X/G, x̄) admits a crepant

resolution. The remaining problem is whether there really exist quotient

morphisms from X to X/G which has a Gorenstein singularity. In the fol-

lowing, we shall give a way to construct an isolated Gorenstein quotient

singularity (X/G, x̄).

Theorem 2.3.2 ([17]). Let n be an odd prime number. Let H be a finite

subgroup of GL(n,C) which is small. Assume that the Cn/H is Gorenstein

with an isolated singularity. Then Cn/H has a cyclic quotient singularity.

This theorem is a generalization of Theorem 23 in [27]. By Theorem 2.2.1

and Theorem 2.3.2, the singularity (X/G, x̄) ∼= (C3/G̃, 0) is a cyclic quotient
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singularity where G̃ is a small finite subgroup of GL(3,C). So it is enough to

prove that, for any cyclic quotient C3/G̃, there exists a quotient morphism

from X to C3/G̃ by a group acting on X toroidally. Let G′ be the finite

subgroup of GL(3,C) generated byεar 0 0

0 ε−a
r 0

0 0 εr


where εr is a primitive r-th root of unity and a, r are positive integers which

are coprime. Let ϕ1 be the quotient morphism from C3 to C3/G′, and let

ϕ2 be the quotient morphism from C3 to a cyclic quotient C3/G̃. See [Fig

23]. In the following, we shall construct a quotient morphism ϕ such that

ϕ ◦ ϕ1 = ϕ2.

C3

X

C3/G̃

ϕ1

ϕ

ϕ2

[Fig 23]

We fix the coordinate ring R := C [x, y, z] of C3 on the top of [Fig 23]. The

torus action πT on C3 defining the coordinate ring C [x, y, z] is as follows:

πT ((t1, t2, t3), (x, y, z)) = (t1x, t2y, t3z)

where (t1, t2, t3) is an element in (C∗)3. So it is clear that the action of G′ is

toroidal for πT . The following example gives a construction of the quotient

morphism ϕ.

Example 2.3.1. Let G′′ ⊂ GL(3,C) be the subgroup generated by the

matrices εr 0 0

0 1 0

0 0 1

 ,

1 0 0

0 εr 0

0 0 1

 ,

1 0 0

0 1 0

0 0 εr

 .
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In [Fig 24], let ϕ1 and ϕ2 be the quotient morphisms of C3 by G′ and G′′ re-

spectively. Since G′ is a normal subgroup of G′′, there is a quotient morphism

from X to Spec(C [xr, yr, zr]).

We define a small finite subgroup G′′′ ⊂ GL(3,C) as

G′′′ := ⟨

εa
′

r′ 0 0

0 εb
′

r′ 0

0 0 εc
′

r′

⟩

where εr′ is a primitive r′-th root of unity, a′, b′, c′ are elements in Z ∩ [0, r′)

and satisfy GCD(a′, b′, c′, r′) = 1. G′′′ clearly acts on Spec(C [x̌, y̌, ž]), and we

denote the quotient morphism form Spec(C [x̌, y̌, ž]) to Spec(C [x̌, y̌, ž])/G′′′

by ϕ3. The image of ϕ3 is of type 1
r′
(a′, b′, c′).

C3 ∼= Spec(C [x, y, z])

X

C3 ∼= Spec(C [xr, yr, zr])

ϕ1

ϕ2

C3 ∼= Spec(C [x̌, y̌, ž])

C3/G′′′

ϕ3

[Fig 24] [Fig 25]

We shall consider the composition of [Fig 24] and [Fig 25] by the changing

of variables

xr 7→ x̌, yr 7→ y̌, zr 7→ ž.

See [Fig 26]. Let ϕ4 be the composition of ϕ2 and ϕ3. In the following, we

ascertain that there really exists ϕ5 which is the quotient morphism by a

group acting on X toroidally.
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C3

X

C3

ϕ1

ϕ2

C3/G′′′

ϕ3

ϕ4

ϕ5

[Fig 26]

We define a subgroup G̃ of GL(3,C) as the direct sum of G′′ and G′′′, i.e.,

G̃ is as follows:

G̃ = ⟨

εr
′

rr′ 0 0

0 1 0

0 0 1

 ,

1 0 0

0 εr
′

rr′ 0

0 0 1

 ,

1 0 0

0 1 0

0 0 εr
′

rr′

 ,

εra
′

rr′ 0 0

0 εrb
′

rr′ 0

0 0 εrc
′

rr′

⟩

where εrr′ is a primitive rr′-th root of unity. Clearly, G̃ acts on Spec(R),

and RG̃ coincides with C [x̌, y̌, ž]G
′′′

via the changing of variables. This is

why ϕ4 is the quotient morphism from Spec(R) by G̃. Since G′ is a nor-

mal subgroup of G̃, there exist a quotient map ϕ5 and a group G act-

ing on X such that (C3/G̃, 0) ∼= (X/G, x̄). Moreover (X/G, x̄) is a quo-

tient singularity of type 1
r′
(a′, b′, c′), and G is isomorphic to G̃/G′. Let

{u1(x, y, z), · · · , us(x, y, z)} be a system of minimal generators of RG′
, i.e.,

RG′
= C [u1(x, y, z), · · · , us(x, y, z)]. The torus action on X is as follows:

πT /G′((t1, t2, t3), (u1, · · · , us))
= (u1(t1, t2, t3)u1(x, y, z), · · · , us(t1, t2, t3)us(x, y, z))

where (t1, t2, t3) is an element in T . Similarly, the action of G on X is as
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follows:

πG((ε
a1
rr′ , ε

a2
rr′ , ε

a3
rr′), (u1, · · · , us))

= (u1(ε
a1
rr′ , ε

a2
rr′ , ε

a3
rr′)u1(x, y, z), · · · , us(ε

a1
rr′ , ε

a2
rr′ , ε

a3
rr′)us(x, y, z))

where εairr′ (i = 1, 2, 3) are diagonal components of an element in G̃. Therefore

πG is toroidal for πT /G′ .

In summary, we have the following.

Proposition 2.3.1. Let X be a quotient singularity of type 1
r
(a,−a, 1) where

r and a are coprime. Then there exists a finite group G acting on X toroidally

such that X/G has an cyclic quotient singularity of type 1
r′
(a′, b′, c′) where

GCD(a′, b′, c′, r′) = 1.

Additionally, we can prove that X/G has an isolated Gorenstein singu-

larity if and only if a′+ b′+ c′ ≡ 0 (mod r′) and GCD(a′, r′) = GCD(b′, r′) =

GCD(c′, r′) = 1. See Chapter 3 of [27].

2.4 Toroidal group actions on the conifold

Let X be the conifold Spec(C [x, y, z, w]/(xz−yw)). In this section, we shall

classify groups G acting on X toroidally such that X/G has a Gorenstein

singularity via a finite fan corresponding to X. The conifold X is a toric

variety, and there is a torus action πT onX by the algebraic torus T = (C∗)3.

The character lattice M is Z3 and SX is a semi-group
∑4

i=1Z≥0mi ⊂ M

where mi (i = 1, 2, 3, 4) are elements in M satisfying m1 +m3 = m2 +m4.

In this paper, we choose the canonical Z -basis ě1, ě2, ě3 of M as m1,m2,m3.

Then the semigroup ring C [SX ] is C [x̌, y̌, ž, x̌ž
y̌
] ∼= C [x, y, z, w]/(xz − yw).

LetN be the dualZ -module ofM and {e1, e2, e3} be the canonical basis ofN .

Let ∆ be the finite fan which consists of all the faces of the rational strongly

convex polyhedral cone σ := R≥0e1+R≥0e3+R≥0(e1+e2)+R≥0(e2+e3) in

NR := N⊗Z R. In this case, the finite fan corresponding to X is (N,∆). We

first introduce a lemma on group actions on hypersurfaces (see also Lemma

7.3.8 in [15]).
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Lemma 2.4.1. Let (V, 0) ⊂ (Cn+1, 0) be an n-dimensional hypersurface

singularity, H be a finite group acting on V and (W,w) be the quotient of

(V, 0) by H. Then there exists a small finite subgroup H ′ of GL(n + 1,C)

such that H ′ acts on V and (V, 0)/H ′ ∼= (W,w).

By Lemma 2.4.1, since the quotientX/Gmatters, we may assume that the

groupG is a small finite subgroups ofGL(4,C). We denote the action ofG on

X by πG. The torus action on X is given as (x, y, z, w) 7→ (t1x, t2y, t3z,
t1t3
t2
w)

where (x, y, z, w) is a point in X ⊂ C4 and t1, t2, t3 ∈ C∗. Therefore, if the

action of G is toroidal, then all the elements in G are diagonal 4×4-matrices.

Proposition 2.4.1. Let G ⊂ GL(4,C) be a group acting on the conifold X

toroidally and g be a generator of G. If the quotient X/G is Gorenstein, then

g can be written as 
εar 0 0 0

0 εbr 0 0

0 0 ε−a
r 0

0 0 0 ε−b
r

 (2.1)

where εr is a primitive r-th root of unity, a, b ∈ [0, r)∩Z and GCD(a, b, r) =

1.

Proof. All elements in G are diagonal matrices in GL(4,C), and g ∈ G can

be written diag(εar , ε
b
r, ε

c
r, ε

d
r) where r is a positive integer, a, b, c, d ∈ [0, r)∩Z

and GCD(a, b, c, d, r) = 1.

Since G acts on X, the defining function xz− yw is semi-invariant under

πG. Moreover, since X/G is Gorenstein, the top form 1
xz−yw

dx∧dy∧dz∧dw is

invariant under πG. By the action of g, xz−yw and 1
xz−yw

dx∧dy∧dz∧dw are

transformed to εa+cxz−εb+dyw and εa+b+c+d

εa+cxz−εb+dyw
dx∧dy∧dz∧dw respectively.

Therefore, we have the equations

a+ c ≡ b+ d and a+ b+ c+ d ≡ a+ c (mod r).

In short, the formula

a+ c ≡ 0 and b+ d ≡ 0 (mod r)
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holds. Therefore, g can be written as (2.1), and, clearly, the action πG is

toroidal.

If G is generated by the matrices
εa1r1 0 0 0

0 εb1r1 0 0

0 0 ε−a1
r1

0

0 0 0 ε−b1
r1

 , · · · ,


εakrk 0 0 0

0 εbkrk 0 0

0 0 ε−ak
rk

0

0 0 0 ε−bk
rk


where ri is a positive integer, εri is a primitive ri-th root of unity and ai, bi ∈
[0, ri) ∩ Z for i = 1, . . . , k, then, by changing ri into r := LCM(r1, · · · , rk)
for all i, these generators of G can be written as follows:

εl1a1r 0 0 0

0 εl1b1r 0 0

0 0 ε−l1a1
r 0

0 0 0 ε−l1b1
r

 , · · · ,


εlkakr 0 0 0

0 εlkbkr 0 0

0 0 ε−lkak
r 0

0 0 0 ε−lkbk
r


where li is

r
ri

for all i. In the following, we assume that all elements in G

are the ones after the above commonization with respect to ri. Hence it is

enough to classify G for an fixed integer r.

Let us fix an integer r. Let Gr be the subset of GL(4,C) which consists of

all diagonal matrices in the form of (2.1) where r is fixed and a, b ∈ [0, r)∩Z .

In this section, we denote the matrix (2.1) by the vector notation 1
r
(a, b). By

the isomorphism φ : Gr → (Z/rZ)2 defined by 1
r
(a, b) 7→ (a, b), a finite

subgroup G of Gr corresponds to a finite (Z/rZ)-submodule. We denote the

submodule of (Z/rZ)2 corresponding to G by Ḡ. We shall classify subgroups

G ⊂ Gr into two families: (i) {G ⊂ Gr : X/G is an isolated Gorenstein

singularity}, (ii) {G ⊂ Gr : X/G is not so } via submodules of (Z/rZ)2.

Let ψ be the natural surjection Z2 → (Z/rZ)2. The inverse image

ψ−1(Ḡ) is a discrete submodule inR2. Hence, the rank of ψ−1(Ḡ) as a module

is at most two, also the cardinality of a system of minimal generators of Ḡ

is at most two. We denote the cardinality of a system of minimal generators

of Ḡ by #SMG(Ḡ). For instance, if G is a cyclic group, then #SMG(Ḡ) is
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one. Assume systems of minimal generators {(a, b)} (resp. {(a, b), (c, d)}) of
Ḡ satisfy GCD(a, b, r) = 1 (resp. GCD(a, b, c, d, r) = 1).

Proposition 2.4.2. For all submodules Ḡ of (Z/rZ)2 which satisfy

#SMG(Ḡ) = 2,

there exists a system of minimal generators which is in the form of either of

the following two:

{(a′, b′), (0, d′)}, (2.2)

{(a′, b′), (c′, 0)} (2.3)

where a′, b′, c′, d′ are integers in [0, r) ∩Z and GCD(a′, b′, c′, d′, r) = 1.

Proof. Assume that the set

{(a, b), (c, d)} ⊂ (Z/rZ)2

is a system of minimal generators of Ḡ where the integers a, b, c, d ∈ [0, r)∩Z

and GCD(a, b, c, d, r) = 1. Because #SMG(Ḡ) is two, there do not exist non-

zero elements k1, k2 ∈ Z/rZ such that k1·(a, b) = (c, d) and k2·(c, d) = (a, b).

Let α be GCD(a, c). Then there exist integers s1, s2 ∈ Z ∩ [0, r) such that

a = s1α and c = s2α. The integers s1 and s2 are coprime. Therefore, there

exist integers c1 and c2 such that c1s1 + c2s2 = 1, and we have the equation

c1a+ c2c = α .

By the above discussion, the formula(
a c

b d

)(
−s2 c1
s1 c2

)(
1 0

−k 1

)(
0 −1

1 0

)
≡

(
α 0

d′ β

)
(mod r) (2.4)

holds where k ≡ s1−s2, d′ ≡ bc1+dc2, β ≡ kd′−b′ and b′ ≡ bs2−ds1 modulo r.

In the formula (2.4), the second matrix, the third one and the fourth one are

elementary transformations because those matrices are regular. The integers

α, d′ and β are elements in [0, r) ∩ Z . Since GCD is not changed under the

elementary transformations of matrices, so we have the equation

GCD(a, b, c, d, r) = GCD(α, d′, β, r) = 1.

Clearly, (α, d′) and (0, β) generate Ḡ.
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We note that if a set {(a, 0), (0, d) ∈ Ḡ : ad ≡ 0 (mod r)} generates Ḡ,

then #SMG(Ḡ) is one and {(a, d) | ad ≡ 0 (mod r)} is a system of minimal

generators of Ḡ. Moreover, the converse is also true. We admit interchanging

variables x and y while classifying the group actions, and, hence we do not

have to distinguish between (2.2) and (2.3). For all submodules Ḡ, there,

uniquely, exists a system of minimal generators

C(Ḡ) := {(a, b), (0, d)} (or {(a, b)}) ⊂ Ḡ (2.5)

where the integers a, b, d are integers in [0, r) which satisfy GCD(a, b, d, r) =

1 (or GCD(a, b, r) = 1) and the conditions: (i) GCD(a, r) = a, (ii) b =

min{b′ ∈ [0, r − 1] | (a, b′) ∈ Ḡ}, (iii) GCD(d, r) = d. We call the set C(Ḡ)
the canonical form of Ḡ in this paper. In fact, the order of the element

(a′, b′) in (2.2) is r
GCD(a′,r)

, and, hence, GCD(a′, r) is the minimum of the set

{a′′ ∈ [1, r − 1] : (a′′, ∗) ∈ Ḡ}. Similarly, GCD(d′, r) is the minimum of

the set {d′′ ∈ [1, r − 1] | (0, d′′) ∈ Ḡ}. Therefore, by the minimality of the

integers a, b, d, the uniqueness of the canonical form of Ḡ follows.

We define submodules C1 and C2 of Ḡ as follows:

C1 := {(a′, 0) ∈ Ḡ}, C2 := {(0, d′) ∈ Ḡ}.

We shall explain a relation between the orders of C1, C2 and the isolatedness

of a singularity X/G by using a finite fan (N ′,∆) corresponding to X/G. If

the canonical form of Ḡ is C(Ḡ) = {(a, b), (0, d)} (resp. {(a, b)}), then the

formula

N ′ =
1

r
(a, b,−a)Z +

1

r
(0, d, 0)Z +N (resp.

1

r
(a, b,−a)Z +N) (2.6)

holds. It is known that there is an isomorphism G ∼= N ′/N as groups (see

[22]). We define S ⊂ NR as the quadrangle {l1e1 + l2(e1 + e2) + l3(e2 +

e3) + l4e3 | l1, l2, l3, l4 ∈ R,
∑4

i=1 li = 1}. Since Ḡ is isomorphic to G, there

is a surjection ν from N ′ to Ḡ. We have the restriction of ν on N ′ ∩ S as

ν|N ′∩S(
1
r
(s, t, r − s)) 7→ (s, t). We denote the points in N ′ which are in the

inverse image ν|−1
N ′∩S(ḡ) by V (ḡ). See [Fig 27] where the largest square is S.
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r-sections

r-sections

V ((a, b))

a-sections

b-sections

V ((2a, 2b))

V ((3a, 3b))

V ((3a, 3b))

V ((4a, 4b))

Identify

e1 e3

e1 + e2 e2 + e3

[Fig 27]

Each cone τ in ∆ corresponds to a toric subvariety W of X, and the

dimension of τ is equal to the codimension ofW . Therefore X has an isolated

singularity if and only if the maximal cone σ in ∆ is singular and the other

cones are not singular. We have the following.

Proposition 2.4.3. X/G has an isolated singularity if and only if the canon-

ical form of Ḡ is as follows:

C(Ḡ) = {(a, b)} (2.7)

where the integers a, b, r are pairwise coprime.

Proof. Assume that G is given by (2.7). Let σi be an i-dimensional cone

in ∆ where i = 0, 1, 2, 3. Clearly, σi is generated by part of a basis of

N ′ for i = 0, 1, but the maximal cone σ3 = σ is not. There are four two-

dimensional cones σ2
1, σ

2
2, σ

2
3, σ

2
4 in ∆ which are generated by {e2+e3, e3}, {e1+

e2, e2 + e3}, {e1, e1 + e2}, {e3, e1} respectively. We denote generators of σ2
j

(j = 1, 2, 3, 4) by {g1j, g2j}. Since GCD(a, r) = GCD(b, r) = 1, there is an
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element 1
r
(α1, α2, α3) ∈ N ′ of which a component αk is one where k = 1, 2, 3.

Let g3k be an element of which k-th component αk is one. By the formula

(2.6), we may assume that the components α1, α3 of g3k satisfy the equation

α1 = −α3. By computations, we have the following equations:

| det(g1kg2kg3k)| =
1

r
, | det(g14g24g32)| =

1

r

where k = 1, 2, 3. Hence {g1k, g2k, g3k} and {g14, g24, g32} are bases of N ′

where k = 1, 2, 3, and all two-dimensional cones in ∆ are smooth. Therefore

X/G has an isolated singularity.

Conversely, we assume that G is given by another canonical form. Let g1
and g2 be generators of σ2. To show that X/G has no isolated singularities,

it is enough to prove that there exist a two-dimensional cone σ2 ∈ ∆ which

has an element h ∈ N ′∩σ2 which can not be written as a linear combination

of g1 and g2 over Z . In fact, assume that there is an element g3 ∈ N ′ such

that {g1, g2, g3} is a basis of N ′. Then h can be written a linear combination

of g1, g2 and g3 over Z . Since h, g1 and g2 are elements in σ2, the element g3
belongs to σ2. This is a contradiction. Therefore there do not exist elements

g3 ∈ N ′ such that {g1, g2, g3} is a basis of N ′.

If #SMG(Ḡ) is two, then N ′ is given by the equation of the left side

of (2.6). The element 1
r
(r, d, 0) (resp. 1

r
(0, d, r)) belongs to σ2

3 (resp. σ2
1),

and this element can not be written as a linear combination of g13 and g23
(resp. g11 and g21) over Z . Hence the cones σ2

3 and σ2
1 are singular. Hence

there are toric subvarieties of X/G which are singular, and the singular locus

Sing(X/G) is not isolated.

Assume that #SMG(Ḡ) is one. In this case, by the definition of the

canonical form of Ḡ (see (2.5)), the formula GCD(a, b) = 1 holds. So the

remaining are two cases: (i) GCD(a, r) ̸= 1, (ii) GCD(b, r) ̸= 1. First

of all, we consider the case of (i). We denote the integer r
a
by l. Since

GCD(a, b) = 1, we have an element l(a, b) = (0, b′) in Ḡ, and b′ is not

zero. The lattice point 1
r
(0, b′, r) (resp. 1

r
(r, b′, 0)) in the two-dimensional

cone σ2
1 (resp. σ2

3) can not be written as a linear combination of g11 and g21
(resp. g13 and g23) over Z . So the singular locus Sing(X/G) is not isolated.

Finally we treat the case of (ii). Let l′ be the integer r
b
. There is an element
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l′(a, b) = (a′, 0) in Ḡ, and a′ is not zero. The lattice point 1
r
(a′, 0, r − a′)

(resp. 1
r
(a′, r, r − a′)) in the two-dimensional cone σ2

2 (resp. σ2
4) can not be

written as a linear combination of g12 and g22 (resp. g14 and g24) over Z .

In other words, X/G has an isolated singularity if and only if both of the

orders of the submodules C1 and C2 are one. The following is an example

that X/G has an isolated singularity Sing(X/G).

Example 2.4.1. Let X be the conifold and G ⊂ GL(4,C) be a group acting

on X toroidally. We assume that r = 5 and C(Ḡ) = {(1, 2)}. Let (N ′,∆)

be the finite fan corresponding to X/G. Then Sing(X/G) is an isolated

singularity. The quadrangle S is as follows.

e1 e3

e1 + e2 e2 + e3

V ((1, 2))

V ((2, 4))

V ((3, 1))

V ((4, 3))

[Fig 28]

Excepting for the generators of the maximal cone, there are no lattice points

on the edge of S. By Proposition 2.4.3, X/G has an isolated singularity at

the origin.

2.5 The proof of Theorem 1.0.3

Let X be the conifold and G be a finite group acting on X toroidally. For

Note 2.5.1, see [22] and [24].
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Note 2.5.1. Let f : (∆̃, N ′) → (∆, N ′) be a resolution corresponding to a

triangulation of S and φ be a support function on |(∆, N ′)|. Then we have

the formula

KY = KX +
∑
ḡ∈Ḡ

(1− φ(V (ḡ)))Eḡ

where X and Y are the toric varieties corresponding to (∆, N ′) and (∆̃, N ′)

respectively and Eḡ is the exceptional divisor orb(V (ḡ)). Moreover, the value

of φ is given by 1
r
(a+ c) for 1

r
(a, b, c) ∈ N ′, and discr(Eḡ) = 0 for all ḡ ∈ Ḡ.

Note 2.5.2. Let i be an even number, and let Pi be an two-dimensional lattice

polygon with i lattice points on its boundary. For any maximal triangulation

P ′
i of Pi by all lattice points in Pi, the equation

2E = 3F + i

holds where E (resp.F ) is the number of edges (resp. faces) of P ′
i .

Theorem 2.5.1. Let X be the conifold Spec(C [x, y, z, w]/(xz − yw)), and

let G be a finite group acting on X toroidally. Assume that the quotient

X/G has a Gorenstein singularity. Then the quotient admits a toric crepant

resolution. Moreover, the Euler number of the crepant resolution is equal to

2|G|.

Proof. Isolated case.

Assume that X/G has an isolated singularity. By Proposition 2.4.3 and

[Fig 27], there are no lattice points on ∂S except for e1, e3, e1+e2, e2+e3 where

∂S is the boundary of S. By the relation between ḡ ∈ Ḡ and V (ḡ) ∈ N ′ ∩ S
in the discussion of [Fig 27], the number of the elements in N ′ ∩S is |G|+3.

Let S ′ be a maximal triangulation of S ⊂ NR by using all lattice points in

N ′ ∩ S. By Note 2.5.2, we have the equation

E =
2

3
F + 2

where E (resp.F ) is the number of edges (resp. faces) in S ′. By combining

with the Euler’s polyhedral theorem, the formula

|G|+ 3− 2

3
F − 2 + F = 1
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holds. Therefore, the number of the triangles in S ′ is 2|G|.
Let T be a minimal triangle in S ′ and t1, t2, t3 be the vertices of T . Then

the formulas

Vol(T ) = | det(t1, t2, t3)| ≥
1

r
,

Vol(S) = | det(e1, e2 + e1, e2 + e3)|+ | det(e2 + e3, e3, e1)| = 2

hold. Therefore, for all minimal triangles T in S ′, we have the equation

Vol(T ) =
1

r
.

This says that every maximal cone in ∆ which is generated by the vertices

of T is smooth. By Note 2.5.1 and the above discussion, the triangulation S ′

determines a toric crepant resolution, and the Euler number of the crepant

resolution is equal to 2|G|.
Non-isolated case.

Suppose that X/G has no isolated singularities. Then the order of C1 or

C2 is not one, and there are lattice points V (Ci) on ∂S where i = 1, 2. The

number of lattice points in N ′ ∩ S is |G| + |C1| + |C2| + 1. Since there are

2(|C1| + |C2|) edges on ∂S, S can be seen as a lattice polygon P2(|C1|+|C2|)

(see Note 2.5.2). By Note 2.5.2, we have the formula

E =
3

2
F + |C1|+ |C2|.

By the Euler’s polyhedral theorem, the equation

|G|+ |C1|+ |C2|+ 1− (
3

2
F + |C1|+ |C2|) + F = 1

holds. Therefore, there are 2|G| minimal triangles in S ′. By the same reason

as the isolated case, this triangulation determines a toric crepant resolution,

and its Euler number is 2|G|.
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Chapter 3

McKay correspondence for

Gorenstein toric quotients of

the conifold

Let X and G be as in Theorem 2.5.1. In this section, we shall consider the

strong McKay correspondence for X/G. We note that X/G is a GV-variety

in Remark 6.4 in [3].

3.1 Small resolutions of Gorenstein toric quo-

tients of the conifold

For X, there are two small resolutions πi : X̂
i → X (i = 1, 2). Since G acts

on X toroidally and the small resolutions are toric, the group action lifts

on X̂ i. Moreover, πi is compatible with the quotient map by G. The small

partial resolution of X/G denoted by π′ : X̂/G → X/G (i = 1, 2) is covered

by two affine charts X i
j/G

i
j, (j = 1, 2) on the exceptional set isomorphic to

P 1 where X i
j is isomorphic to C3 and Gi

j is isomorphic to a finite subgroup
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of SL(3,C). i.e., X i
j/G

i
j is a Gorenstein quotient singularity.

X̂ i/G =
2∪

j=1

X i
j/G

i
j

Therefore, for every affine chart X i
j/G

i
j, there is a crepant resolution fij :

X̃ i
j/G

i
j → X i

j/G
i
j. These two morphisms patch together to give a crepant

resolution of the hole X/G.

Proposition 3.1.1. Let X, G and X i
j/G

i
j (i = 1, 2, j = 1, 2) be as above.

Then X i
1/G

i
1 is isomorphic to X i

2/G
i
2.

Proof. By computing Laurent polynomial rings of affine charts of small reso-

lutions of X, we have the fact that a small resolution of X is covered by two

affine charts Spec(C [y
z
, z, xz

y
]) and Spec(C [x, y, z

y
]) or Spec(C [x

y
, y, z]) and

Spec(C [x, y
x
, xz

y
]). We set the notations as follows:

X1
1 = Spec

(
C

[
y

z
, z,

xz

y

])
, X1

2 = Spec

(
C

[
x, y,

z

y

])
,

X2
1 = Spec

(
C

[
x

y
, y, z

])
, X2

2 = Spec

(
C

[
x,
y

x
,
xz

y

])
.

We assume that the order of G is r and the canoniccal form of G is C(Ḡ) =
{(a, b)}. It is easy to check that X1

j (j = 1, 2) is the Gorenstein quotient

singularities of type 1
r
(a, b,−a − b) and X2

j (j = 1, 2) is the one of type
1
r
(a,−b, b− a).

We note that, in general, X1
j /G

1
j is not isomophic to X2

j /G
2
j . If (i) X/G

is a non-isolated singularity or (ii) G is cyclic and |G| is even number, then

X i
j/G

i
j is non-isolated singularity. X i

j/G
i
j is not necessary isolated singularity

even if (iii) X/G is an isolated singularity and |G| is odd number, however

either X1
j /G

1
j or X

2
j /G

2
j is always an isolated singularity. Fig 7 (resp. Fig 8)

is the quadrangle S := {l1e1 + l2(e1 + e2) + l3(e2 + e3) + l4e3 | l1, l2, l3, l4 ∈
R,
∑4

i=1 li = 1} ⊂ N ′
R of X̂1/G (resp. X̂2/G) and explains the relation

between the way of small resolutions and the isolatedness of X i
j/G

i
j in the
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case of (iii).

e1 e3

e1 + e2 e2 + e3

e1 e3

e1 + e2 e2 + e3

The S of X̂2/G.The S of X̂1/G.

[Fig 29] [Fig 30]

Two triangles in [Fig 29] (resp. [Fig 30]) are corresponding to the quotient

singularities of type 1
r
(a, b,−a − b) (resp. 1

r
(a,−b, b − a)). In the following,

we assume that, if G satisfies the condition (iii), then X̂/G is covered by

affine charts with an isolated singularity.

In general, crepant resolution of X/G is not unique. However, by us-

ing toric flops, arbitrary crepant resolution of X/G can be reduced to the

special ones which are coverd by X̃ i
j/G

i
j. For every j, the McKay correspon-

dence on X̃ i
j/G

i
j holds. It is proved that, if two smooth irreducible projective

Calabi-Yau algebraic varieties are birational, then the i-th cohomologies with

coefficient C of these varieties are isomorphic. See [2], [16]. Therefore, when

we consider the strong McKay correspondence for X̃/G, it is natural to take

the above reduction by toric flops.

3.2 Example of Mckay correspondence

Finally, we give an example of the strong McKay correspondence in the case

(iii).

Example 3.2.1. Let X and G be as in Example 2.4.1. Then the quadrangle

S of a small resolution of X/G is as follows.
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e1 e3

e1 + e2 e2 + e3

V ((1, 2))

V ((2, 4))

V ((3, 1))

V ((4, 3))

e1 e3

e1 + e2 e2 + e3

V ((1, 2))

V ((2, 4))

V ((3, 1))

V ((4, 3))

The S of X̂1/G. The S of X̂2/G.

[Fig 31] [Fig 32]

In this case, X̂1/G (resp. X̂2/G) has two isolated singularities of type
1
5
(1, 2, 2) (resp. 1

5
(1, 3, 1)).

Let H be an abelian subgroup of SL(3,C) generated by the diagonal ma-

trix diag(ε3, ε
2
3, ε

2
3). The McKay correspondence for the quotient singularity

of type 1
5
(1, 2, 2) is as follows:

Γ1 =

{
1

5
(1, 2, 2),

1

5
(3, 1, 1)

}
↔ H2(Y,Q)

Γ
(0)
1 =

{
1

5
(1, 2, 2),

1

5
(3, 1, 1)

}
↔ Γ2 =

{
1

5
(2, 4, 4),

1

5
(4, 3, 3)

}
↔ H4(Y,Q) ↔ H2

c (Y,Q)

where Y is a crepant resolution of the singularity. We follow notation in [14].

The Euler number e(Y ) is as follows:

e(Y ) = h0(Y,Q) + h2(Y,Q) + h4(Y,Q) = 1 + 2 + 2 = 5.

On the other hand, there is a correspondence between H and G.

H ⊃ Γ1 =

{
1

5
(1, 2, 2),

1

5
(3, 1, 1)

}
↔
{
1

5
(1, 2, 4, 3),

1

5
(3, 1, 2, 4)

}
⊂ G

H ⊃ Γ2 =

{
1

5
(2, 4, 4),

1

5
(4, 3, 3)

}
↔
{
1

5
(2, 4, 3, 1),

1

5
(4, 3, 1, 2)

}
⊂ G
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The figure [Fig 33] is a crepant resolution X̃/G of X/G which is covered

by crepant resolutions of C3/H.

e1 e3

e1 + e2 e2 + e3
The S of X̃/G.

[Fig 33]
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