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Chapter 0

Introduction

Let N = {1, 2, 3, ...} be the set of positive integers and Z = {0,±1,±2, ...} the
set of integers. The study of the problem to ask whether a sum of two powers
is a power or not is one of the main themes of number theory. In other words,
it is to search the solutions of equation

Xx + Y y = Zz

where X,Y, Z, x, y, z ∈ N. There are a very large number of works in cases
where some of X,Y, Z, x, y, z are variables. A good example is the (generalized)
Fermat equation

Xn + Y n = Zn

where X, Y, Z ∈ N and n is a fixed positive integer with n ≥ 2. In this thesis
we consider the problem in case where x, y, z are variables.

Let a, b, c be pair-wise relatively prime positive integers. Then we consider
the exponential Diophantine equation

ax + by = cz (1)

where x, y, z ∈ N. This field has a long history. Originally this problem was
considered for fixed triples (a, b, c). Using congruences, the quadratic reciprocity
law and factorizations in number fields, several authors determined complete
solutions of (1) (cf. [Ha], [Ma], [Na], [Uc]). We consider the case where a, b, c > 1.
By the theory of Diophantine approximations, we can examine the solutions of
(1). By Baker’s theory of linear forms in logarithms, we can obtain effectively
computable upper bounds for the size of solutions of (1), which may be generally
very large. According to [Hi], under certain assumptions on a, b, c, we have the
following upper estimate:

max(x, y, z) < 2288
√

abc log(abc)

for all solutions (x, y, z) of (1). On the other hand, equation (1) can be regarded
as a kind of unit equations. Let N = N(a, b, c) be the number of solutions of
(1). Mahler [Ma] first showed the finiteness of N . The theory of unit equations
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2 CHAPTER 0. INTRODUCTION

gives upper bounds for N . In particular, using a result in [BS], we obtain an
absolute upper bound:

N ≤ 236.

In case where divisibility properties of x, y, z are given, we may connect (1)
to other Diophantine equations, in particular, generalized Fermat equations
(cf. [Co, Ch.14]). We remark that these upper bounds above are generally not
useful to determine the solutions of (1).

We generally observe that N is very small. It seems no triple (a, b, c) for
which N > 3. The only known case for which N = 3 (at least as far as the
author knows) is

3 + 5 = 23, 33 + 5 = 25, 3 + 53 = 27.

One of the main themes on exponential Diophantine equations is to show that
N is very small, such as N ≤ 3, which is known to be true in case where c
is a prime ([Sc, Theorem 6]). For this purpose we should treat triples (a, b, c)
for which (1) has one solution (x, y, z) = (p, q, r). In this direction there is
a celebrated problem suggested by Terai [Te2]. In [Mi, Miy2] we proposed a
modified version of it as follows.

Conjecture 0.1.1 Let p, q, r be positive integers with p, q, r ≥ 2, and let a, b, c
be pair-wise relatively prime positive integers such that ap + bq = cr. Assume
that (a, b, c) is not any of the following cases (up to any change a into b):

(2, 7, 3), (2, 2p−2 − 1, 2p−2 + 1) ; p ≥ 3.

Then (1) has the unique solution (x, y, z) = (p, q, r).

In what follows, we call Conjecture 0.1.1 Terai’s conjecture. This is one
of the most famous unsolved problems in the field of exponential Diophantine
equations. Note that

25 + 72 = 34; 2 + 7 = 32,

2p + (2p−2 − 1)2 = (2p−2 + 1)2; 2 + (2p−2 − 1) = 2p−2 + 1 (p ≥ 3).

Terai’s conjecture is the main theme in this thesis.
In Chapter 1, we consider Terai’s conjecture in the case p = q = r = 2, which

is just the conjecture of Jeśmanowicz [Je]. Jeśmanowicz’ conjecture is a famous
unsolved problem on Pythagorean numbers, also in the field of exponential Dio-
phantine equations. We first introduce several known results on Jeśmanowicz’
conjecture, and prove the results obtained in [Miy6].

In Chapter 2, we consider Terai’s conjecture more generally. We first in-
troduce several known results on the conjecture, and prove some of the results
obtained in [Miy2, Miy3].

In Chapter 3, we consider an analogous problem of the conjecture of Jeśmanowicz.
We prove the result obtained in [Miy4].

In Chapter 5, we give several results concerning upper bounds for solutions
of (1) under certain assumptions. Furthermore, using them, we solve equations
(1) in case where a, b and c are Fibonacci numbers.



Chapter 1

Jeśmanowicz’ conjecture

1.1 Jeśmanowicz’ conjecture

For positive integers a, b, c, we call (a, b, c) a Pythagorean triple if a2 + b2 = c2,
and further primitive if a, b, c are relatively prime. We know that Pythagorean
triples appear in many mathematical subjects, especially, Diophantine equa-
tions. In 1956 Leon Jeśmanowicz [Je] proposed the following problem.

Conjecture 1.1.1 Let (a, b, c) be a primitive Pythagorean triple such that a2 +
b2 = c2. Then (1) has the unique solution (x, y, z) = (2, 2, 2).

This is one of the most famous unsolved problems on Pythagorean numbers,
also in the field of exponential Diophantine equations. For the most famous
Pythagorean triple (a, b, c) = (3, 4, 5), Sierpiński [Si] considered (1), that is,

3x + 4y = 5z.

He proved that the above equation has the unique solution (x, y, z) = (2, 2, 2)
in positive integers x, y and z. Later, Jeśmanowicz [Je] further showed similar
results for each of the following equations:

5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, 11x + 60y = 61z,

and he proposed his conjecture.
It is well-known that, for any primitive Pythagorean triple (a, b, c) satisfying

a2 + b2 = c2 (we may assume that b is even), we can write

a = m2 − n2, b = 2mn, c = m2 + n2,

where integers m,n satisfy the condition

m > n > 0, gcd(m,n) = 1, m 6≡ n (mod 2).

We will always consider the above expressions.

3



4 CHAPTER 1. JEŚMANOWICZ’ CONJECTURE

1.2 Results

In this section we introduce several known results on Conjecture 1.1.1.
After the work of Jeśmanowicz mentioned in the Section 1.1, Lu [Lu] showed

Proposition 1.2.1 If n = 1, then Conjecture 1.1.1 is true.

We remark that m may be any positive even integer if n = 1, and that n = 1
if and only if c = a+2. Proposition 1.2.1 is the only result in which Conjecture
1.1.1 is true for fixed n.

Later, extending earlier results in several papers [Ko, Ko2, Po], Dem’janenko
[De] proved

Proposition 1.2.2 If c = b + 1, then Conjecture 1.1.1 is true.

Propositions 1.2.1 and 1.2.2 include the results of Sierpiński and Jeśmanowicz.
Also they are crucially important since they are used in many earlier works. For
other known results, see for example [Ca, DC, HY, Le, Miy].

The purpose in this chapter is to generalize both Propositions 1.2.1 and 1.2.2
by proving the following results.

Theorem 1.2.1 If a ≡ ±1 (mod b), then Conjecture 1.1.1 is true.

Theorem 1.2.2 If c ≡ 1 (mod b), then Conjecture 1.1.1 is true.

Both Theorems 1.2.1 and 1.2.2 are generalizations of Proposition 1.2.1. In-
deed, if n = 1, then m is even and b = 2m, so a = m2 − 1 ≡ −1 (mod b) and
c = m2 + 1 ≡ 1 (mod b). Theorem 1.2.2 is also a generalization of Proposition
1.2.2.

From Theorem 1.2.1 we obtain the following corollary, which can be regarded
as an analogue of Proposition 1.2.2.

Corollary 1.2.1 If |b− a| = 1, then Conjecture 1.1.1 is true.

For the Pythagorean triples (a, b, c) satisfying a2 + b2 = c2 and |b − a| = 1,
we can find a topic on them in Section “RIGHT TRIANGLES WHOSE LEGS
DIFFER BY UNITY” in the famous book of Dickson “History of the Theory of
Numbers”: Vol. 2 (Chelsea) (see [Di, pp.181–183]). Some histories are written
in it. For example, Fermat gave an easy method to find such triples (see Remark
1.4.1 below).

In the next section we prepare some lemmas for proving Theorems 1.2.1
and 1.2.2. It is crucially important to examine parities of exponential variables
x, y, z for Conjecture 1.1.1. Using the parameters introduced by the author in
[Miy], we give useful lemmas to examine parities of x and z. Further, we quote
a well-known result on Diophantine equations due to Euler.

In the remaining sections we prove Theorems 1.2.1 and 1.2.2. An important
step in the proofs is to show that x, y, z are all even. We observe that this
yields sharp upper bounds for x, y, z. On the other hand, by congruence reduc-
tions, we can obtain congruence relations among the solutions, which yield sharp
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lower bounds for hypothetical solutions. Finally we observe that hypothetical
solutions lead to contradictions, and complete the proofs.

In what follows, we consider the equation

(m2 − n2)x + (2mn)y = (m2 + n2)z (1.2.1)

where x, y, z ∈ N.

1.3 Preliminaries

In this section we prepare some lemmas for proving Theorems 1.2.1 and 1.2.2.
First we give lemmas to examine parities of exponential variables x and z. It is
crucially important to know parities of x, y, z for Conjecture 1.1.1.

The following notation have already been defined by the author in [Miy].
By Proposition 1.2.1, we may assume that n > 1. We define integers α, β, e
(α ≥ 1, β ≥ 2, e = ±1), and odd positive integers i, j as follows:

m = 2αi, n = 2βj + e if m is even,

m = 2βj + e, n = 2αi if m is odd.
(1.3.1)

In what follows, we consider the case where 2α 6= β + 1. The following two
lemmas will be used to determine parities of exponential variables. In particular,
Lemma 1.3.1 will play an important role in the proofs. For a non-zero integer
k, we denote the 2-adic valuation by ord2.

Lemma 1.3.1 Let (x, y, z) be a solution of (1.2.1). If y > 1, then x ≡ z
(mod 2).

Proof. This is a direct consequence of [Miy, Lemma 3.1]. But, for the sake of
completeness, we prove this lemma here.

Assume that 2α 6= β + 1. We consider the case where m is even. As defined
in (1.3.1), we put m = 2αi and n = 2βj + e.

Let (x, y, z) be a solution of (1.2.1). It is easy to see that x is even by taking
(1.2.1) modulo 4. Suppose that x 6≡ z (mod 2), that is, z is odd. Taking (1.2.1)
modulo 22α+1, we have

(2mn)y = (m2 + n2
)z − (m2 − n2

)x

≡ m2n2z−2z + n2z + m2n2x−2x− n2x

≡ m2(n2z−2z + n2x−2x
)

+ n2z − n2x (mod 22α+1).

Put
A = m2(n2z−2z + n2x−2x), B = n2z − n2x.

Then
(2mn)y ≡ A + B (mod 22α+1).

Since n is odd and x 6≡ z (mod 2), we see that n2z−2z + n2x−2x is odd, hence

ord2(A) = ord2(m2) = ord2(22αi2) = 2α,
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ord2(B) = ord2(n2|x−z| − 1)

= ord2(n2 − 1)

= ord2

(
22βj2 + 2β+1ej

)

= ord2(2β+1j)
= β + 1.

Since ord2((2mn)y) = (α + 1)y and 2α 6= β + 1, it follows that

(α + 1)y =

{
2α if 2α < β + 1,

β + 1 if 2α > β + 1.

This implies that α = 1 and y = 1, or α = β and y = 1. Therefore, if y > 1,
then x ≡ z (mod 2). Similarly, we can prove the lemma for the case where m
is odd. ¤

Lemma 1.3.2 Let (x, y, z) be a solution of (1.2.1). If x and z are even, then
X ≡ Z (mod 2), where X = x/2 and Z = z/2.

Proof. We consider the case where 2α 6= β + 1. Let (x, y, z) be a solution of
(1.2.1). Assume that x and z are even. We can write x = 2X and z = 2Z,
where X,Z ∈ N. We define even positive integers D and E by

D = (m2 + n2)Z + (m2 − n2)X , E = (m2 + n2)Z − (m2 − n2)X .

Then (2mn)y = DE by (1.2.1). Since

(2mn)y ≥ D > m2 + n2 > 2mn,

it follows that y > 1. It is easy to see that gcd(D, E) = 2. Since DE is (exactly)
divisible by 2(α+1)y, we see that the congruence

(m2 + n2)X ± (m2 − n2)Z ≡ 0 (mod 2(α+1)y−1)

holds for the proper sign.
First, we consider the case where 2α > β+1. Then, since (α+1)y−1 > 2α ≥

β + 2, the above congruence can be reduced to (m2 + n2)X ± (m2 − n2)Z ≡ 0
(mod 2β+2). Substituting α, β expression in (1.3.1) into this congruence, we
have 2β+1ejX ≡ ±2β+1ejZ (mod 2β+2). This implies that X ≡ Z (mod 2)
since ej is odd.

Finally, we consider the case where 2α < β + 1. Then, since (α + 1)y −
1 ≥ 2α + 1 and β + 1 ≥ 2α + 1, it follows from the above congruence that
22αi2X ≡ ±22αi2Z (mod 22α+1). This implies that X ≡ Z (mod 2) since i is
odd. ¤

The following is a classical well-known result due to Euler [Eu]. It is an
analogue of the case n = 3 for Fermat’s last theorem, and will be used in the
proof of Theorem 1.2.1.
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Lemma 1.3.3 The equation

X3 + Y 3 = 2Z3

has no integral solutions with gcd(X, Y ) = 1 and XY Z 6∈ {0,±1}.

Proof. For example, see [Na, pp.244–246], [Wa]. ¤

1.4 Proof of Theorem 1.2.1

In this section we prove Theorem 1.2.1. We consider the cases a ≡ −1 (mod b)
and a ≡ 1 (mod b) separately.

1.4.1 The case a ≡ −1 (mod b)

In this section we prove that Conjecture 1.1.1 is true if a ≡ −1 (mod b).
Assume that a ≡ −1 (mod b), or

m2 − n2 = −1 + 2mnt, (1.4.1)

where t ∈ N. Then

m2 ≡ −1 (mod n), (1.4.2)

n2 ≡ 1 (mod m). (1.4.3)

By Proposition 1.2.1, we may assume that n > 1. First we prove an important
lemma.

Lemma 1.4.1 With the notation in (1.3.1), we have
(i) n ≥ 4t.
(ii) m is divisible by 2t. In particular, m is even and n is odd.
(iii) 2α 6= β + 1.

Proof. From (1.4.1) we see that (U, V ) = (m − nt, n) is a positive solution of
the Pellian equation

U2 − (t2 + 1)V 2 = −1.

Since the fundamental solution of the above Pellian equation is t +
√

t2 + 1, all
of the pairs (m,n) are given by m = Ul + tVl, n = Vl, where positive integers
Ul, Vl are defined by

Ul + Vl

√
t2 + 1 = (t +

√
t2 + 1 )l ; l ≥ 1 odd.

(i) Since Vl = n > 1, we see that l ≥ 3, hence n = Vl ≥ V3 = 4t2 + 1.
(ii) This follows from the facts that U1 + tV1 = 2t and

Ul+2 = (2t2 + 1)Ul + 2t(t2 + 1)Vl ≡ Ul (mod 2t),

Vl+2 = 2tUl + (2t2 + 1)Vl ≡ Vl (mod 2t).
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(iii) As defined in (1.3.1), we put m = 2αi and n = 2βj + e. We know from
(ii) that 2αi is divisible by 2t, in particular, ord2(2t) ≤ α since i is odd. It
follows from (1.4.1) that

β + 1 = ord2

(
(n− 1)(n + 1)

)

= ord2

(
m(m− 2nt)

)

= α + ord2(m− 2nt).

Hence it suffices to check that ord2(m − 2nt) 6= α. If ord2(2t) < α, then
ord2(2nt) < α, so ord2(m − 2nt) = ord2(2nt) < α. If ord2(2t) = α, then
ord2(m− 2nt) = α + ord2(i− n(2t/2α)) > α. Therefore, 2α 6= β + 1. ¤

By (i) in Lemma 1.4.1, we see that m > n ≥ 3.
Let (x, y, z) be a solution of (1.2.1). We prepare several lemmas.

Lemma 1.4.2 x and z are even.

Proof. Taking (1.2.1) modulo m, we have (−n2)x ≡ (n2)z (mod m). Then
(1.4.3) yields (−1)x ≡ 1 (mod m). Hence x is even since m ≥ 3.

Taking (1.2.1) modulo n, we have (m2)x ≡ (m2)z (mod n). Then (1.4.2)
yields (−1)z ≡ 1 (mod n), hence z is also even since n ≥ 3. ¤

By Lemma 1.4.2, we can write x = 2X and z = 2Z, where X, Z ∈ N. Note
that y > 1 as we observed in the proof of Lemma 1.3.2.

Lemma 1.4.3 4tX ≡ 4tZ (mod mn).

Proof. Taking (1.2.1) modulo m2, we have n4X ≡ n4Z (mod m2) since y > 1.
On the other hand, we know from (1.4.1) that n2 ≡ 1 − 2mnt (mod m2). It
follows that (1− 2mnt)2X ≡ (1− 2mnt)2Z (mod m2), hence

4mntX ≡ 4mntZ (mod m2).

Similarly, we can show that

4mntX ≡ 4mntZ (mod n2)

by taking (1.2.1) modulo n2. Since gcd(m, n) = 1, we find that

4mntX ≡ 4mntZ (mod m2n2),

hence 4tX ≡ 4tZ (mod mn). ¤

We define positive even integers D, E as follows:

(2mn)y = DE, (1.4.4)

where

D = (m2 + n2
)Z + (m2 − n2

)X
,

E = (m2 + n2
)Z − (m2 − n2

)X
.
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It is easy to see that gcd(D,E) = 2, and

D ≡ 1 + (−1)X , E ≡ 1− (−1)X (mod 4).

Also, we see from (1.4.2) and (1.4.3) that

D ≡ 1 + (−1)X , E ≡ 1− (−1)X (mod m)

and
D ≡ (−1)Z + (−1)X , E ≡ (−1)Z − (−1)X (mod n).

Lemma 1.4.4 X and Z are odd.

Proof. By Lemma 1.3.2 and (iii) in Lemma 1.4.1, we see that X ≡ Z (mod 2).
Suppose that X and Z are even. Then

D ≡ 2 (mod 4), D ≡ 2 (mod mn).

Hence (1.4.4) yields D = 2, which is clearly absurd. We conclude that X and
Z are odd. ¤

By Lemma 1.4.4, we see that

E ≡ 2 (mod 4), E ≡ 2 (mod m), D ≡ −2 (mod n).

It follows from (1.4.4) that

D = (m2 + n2)Z + (m2 − n2)X = 2y−1my,

E = (m2 + n2)Z − (m2 − n2)X = 2ny.

Lemma 1.4.5 y is even.

Proof. We see that (m2 + n2)Z = (D + E)/2 = 2y−2my + ny. Taking this
modulo m, we have

ny ≡ 1 (mod m)

by (1.4.3). If y is odd, then the above congruence yields n ≡ 1 (mod m) by
(1.4.3). This is absurd since m > n > 1. Hence y is even. ¤

By Lemma 1.4.5, we can write y = 2Y , where Y ∈ N. Since {aX , bY , cZ}
forms a primitive Pythagorean triple, we can write

aX = k2 − l2, bY = 2kl, cZ = k2 + l2,

where integers k, l satisfy the condition

k > l > 0, gcd(k, l) = 1, k 6≡ l (mod 2).

Since b < c < a2 and aX < cZ < b2Y , it follows that

|X − Z| < Z < 2Y.
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Since (k + l)(k − l) = aX and gcd(k + l, k − l) = 1, we can write

k + l = uX , k − l = vX ,

where integers u, v satisfy u > v > 0, gcd(u, v) = 1 and uv = a. Note that u, v
are odd.

We will obtain a sharp upper bound for Y .

Lemma 1.4.6 Y ≤ log(a + 1)
ord2(b) log 2

.

Proof. Since X is odd and 4kl = (k + l)2− (k− l)2 = u2X − v2X , it follows that

Y ord2(b) = ord2(2kl) = ord2

(
u2X − v2X

2

)
= ord2(u± v),

where we take the proper sign for which ord2(u± v) ≥ 2. Since u± v ≤ u + v ≤
uv + 1 = a + 1, we obtain

Y =
ord2(u± v)

ord2(b)
≤ log(a + 1)

ord2(b) log 2
. ¤

We are ready to complete the proof. If X 6= Z, then (i) in Lemma 1.4.1,
Lemma 1.4.3 and Lemma 1.4.6 yield

m ≤ m
( n

4t

)
=

mn

4t
≤ |X − Z| < Z < 2Y ≤ log(a + 1)

log 2
<

2 log m

log 2
,

which does not hold. Hence X = Z.
Since X is odd and b2Y = c2X − a2X , it follows that

ord2(b2Y ) = ord2(c2X − a2X) = ord2(c2 − a2) = ord2(b2),

which gives Y = 1, so X = Z = 1. We conclude that Conjecture 1.1.1 is true if
a ≡ −1 (mod b).

Example 1.4.1 As we observed in the proof of Lemma 1.4.1, we can obtain all
of the pairs (m,n) satisfying (1.4.1). For example, putting l = 1, we have pairs
(m,n) = (2t, 1) with t ≥ 1, which is just Proposition 1.2.1. Putting l = 3, we
have pairs (m,n) = (8t3 + 4t, 4t2 + 1) with t ≥ 1.

1.4.2 The case a ≡ 1 (mod b)

In this subsection we prove that Conjecture 1.1.1 is true if a ≡ 1 (mod b). The
proof will proceed as well as the preceding section.

Assume that a ≡ 1 (mod b), or

m2 − n2 = 1 + 2mnt, (1.4.5)

where t ∈ N. Then

m2 ≡ 1 (mod n), (1.4.6)

n2 ≡ −1 (mod m). (1.4.7)
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Lemma 1.4.7 With the notation in (1.3.1), we have
(i) n is divisible by 2t. In particular, m is odd and n is even.
(ii) 2α 6= β + 1.

Proof. From (1.4.5) we see that (U, V ) = (m − nt, n) is a positive solution of
the Pellian equation

U2 − (t2 + 1)V 2 = 1.

Since the fundamental solution of the above Pellian equation is 2t2 + 1 +
2t
√

t2 + 1, all of the pairs (m,n) are given by m = Ul + tVl, n = Vl, where
positive integers Ul, Vl are defined by

Ul + Vl

√
t2 + 1 = (2t2 + 1 + 2t

√
t2 + 1 )l ; l ≥ 1.

(i) This follows easily from the above.
(ii) Similar to Lemma 1.4.1. ¤

By (i) in Lemma 1.4.7, we see that m > n ≥ 2.
Let (x, y, z) be a solution of (1.2.1). We prepare several lemmas.

Lemma 1.4.8 z is even.

Proof. Taking (1.2.1) modulo m, we have (−n2)x ≡ (n2)z (mod m). Then
(1.4.7) yields (−1)z ≡ 1 (mod m). Hence z is even since m > n ≥ 2. ¤

By Lemma 1.4.8, we can write z = 2Z, where Z ∈ N. From Lemma 1.3.1
and (ii) in Lemma 1.4.7 we observe that x is even if y > 1.

Lemma 1.4.9 x is even and y > 1.

Proof. Suppose that y = 1. We will observe that this leads to a contradiction.
Note that x is odd. Taking (1.2.1) modulo n2, we see from (1.4.5) that

(1 + 2mnt)x + 2mn ≡ (1 + 2mnt)z (mod n2).

Hence
2tx + 2 ≡ 2tz (mod n).

Then (i) in Lemma 1.4.7 yields 2 ≡ 0 (mod 2t), hence t = 1. Then a = b + 1
by (1.4.5), so ax + a − 1 = (2a2 − 2a + 1)Z by (1.2.1). Taking this modulo a,
we have 2 ≡ 0 (mod a). This is clearly absurd. ¤

By Lemma 1.4.9, we can write x = 2X, where X ∈ N. We define D, E as
in the preceding section. Similarly to the proof of Lemma 1.4.4, we may show
that X,Z are odd and 4tX ≡ 4tZ (mod mn). From (i) in Lemma 1.4.7 we see
that 2X ≡ 2Z (mod m). Hence

X ≡ Z (mod 2m),

since m is odd and X − Z is even. Furthermore, since

D ≡ 2 (mod 4), D ≡ 2 (mod n), E ≡ −2 (mod m),
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it follows that

D = (m2 + n2)Z + (m2 − n2)X = 2my,

E = (m2 + n2)Z − (m2 − n2)X = 2y−1ny.
(1.4.8)

Then (m2 + n2)Z = (D + E)/2 = my + 2y−2ny. Taking this modulo n, we have

my ≡ 1 (mod n)

by (1.4.6).
Using a classical well-known result due to Euler (Lemma 1.3.3), we will show

that y is even. For this we need a little complicated arguments.

Lemma 1.4.10 y is even.

Proof. Suppose that y is odd. We will observe that this leads to a contradiction.
Then m ≡ 1 (mod n) by (1.4.6). We can write m = 1 + hn, where h ∈ N.
Substituting this into (1.4.5), we have

np = 2(h− t),

where p = −h2 + 2th + 1. Note that p 6= 0 and h 6= t. From (ii) in Lemma 1.4.7
we see that h ≡ 0 (mod t). In particular, h ≥ 2t. Then np = 2(h − t) > 0, so
0 < p = −h(h − 2t) + 1. This implies that h = 2t. Hence p = 1, n = 2t, m =
1 + n2.

We consider the cases n 6≡ 0 (mod 3) and n ≡ 0 (mod 3) separately.
First, we consider the case where n 6≡ 0 (mod 3). Since n2 ≡ 1 (mod 3), we

see that m ≡ 2 (mod 3) and m2−n2 ≡ 0 (mod 3). Taking the first equation in
(1.4.8) modulo 3, we have 2Z ≡ 2y+1 ≡ 1 (mod 3). This implies that Z is even,
which is absurd.

Finally, we consider the case where n ≡ 0 (mod 3). Since m = 1 + n2, it
follows from (1.4.8) that

(1 + n2)y + 2y−2ny = (1 + 3n2 + n4)Z ,

(1 + n2)y − 2y−2ny = (1 + n2 + n4)X .

Note that y > 2. Taking the above equations modulo 3n2, we have (1+n2)X ≡
(1 + n2)y ≡ 1 (mod 3n2). This implies that X ≡ y ≡ 0 (mod 3). But, the
second equation above can be rewritten as

(1 + n2)y + (−1− n2 − n4)X = 2(2y/3−1ny/3)3,

which contradicts Lemma 1.3.3. We conclude that y is even. ¤

By Lemma 1.4.10, we can write y = 2Y , where Y ∈ N. Similarly to the
proof of the preceding section, we may obtain the same upper bound for Y as
Lemma 1.4.6. As a result, we see that if X 6= Z, then

2m ≤ |X − Z| < 2Y ≤ log(a + 1)
log 2

<
2 log m

log 2
,

which does not hold. Hence X = Z. This leads to the desired conclusion as we
observed in the preceding section. We conclude that Conjecture 1.1.1 is true if
a ≡ 1 (mod b), and complete the proof of Theorem 1.2.1.
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Example 1.4.2 As we observed in the proof of Lemma 1.4.7, we can obtain all
of the pairs (m,n) satisfying (1.4.5). For example, putting l = 1, we have pairs
(m,n) = (4t2 + 1, 2t) with t ≥ 1, so m = n2 + 1 with even n.

Remark 1.4.1 We remark on the Pythagorean triples (a, b, c) satisfying a2 +
b2 = c2 and b = a + 1. According to [Di, pp.181–183] (also see [Si2]), Fermat
gave an easy method to find such triples. He found that, from one right triangle
(a, a + 1, c), one sees that (A,A + 1, C) is also one right triangle, where A =
2c + 3a + 1 and C = 3c + 4a + 2. Generally, for any Pythagorean triple (a, b, c)
satisfying b = a+1, since a2+(a+1)2 = c2 or equivalently, (2a+1)2−2c2 = −1,
we observe from the theory of the Pellian equations (as we have already observed
before) that a and c are given by

(2a + 1) + c
√

2 = (1 +
√

2 )2k+1 ; k ≥ 1.

The first ten examples are in Table 1. These have already been given by A.
Girard (c.f. [Di, pp.181]).

Table 1.1: Pythagorean triples (a, b, c) satisfying a2 + b2 = c2 and b = a + 1

a b c
3 4 5
20 21 29
119 120 169
696 697 985
4059 4060 5741
23660 23661 33461
137903 137904 195025
803760 803761 1136689
4684659 4684660 6625109
27304196 27304197 38613965

1.5 Proof of Theorem 1.2.2

In this section we prove that Conjecture 1.1.1 is true if c ≡ 1 (mod b). The
proof will proceed as well as that of Theorem 1.2.1.

Assume that c ≡ 1 (mod b), or

m2 + n2 = 1 + 2mnt, (1.5.1)

where t ∈ N. Then

m2 ≡ 1 (mod n),

n2 ≡ 1 (mod m).

By Propositions 1.2.1 and 1.2.2, we may assume that n > 1 and t > 1.
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From (1.5.1) we see that (U, V ) = (m − nt, n) is a positive solution of the
Pellian equation

U2 − (t2 − 1)V 2 = 1.

Since the fundamental solution of the above Pellian equation is t +
√

t2 − 1, all
of the pairs (m, n) satisfying (1.5.1) are given by m = Ul + tVl, n = Vl, where
positive integers Ul, Vl are defined by

Ul + Vl

√
t2 − 1 = (t +

√
t2 − 1 )l ; l ≥ 1.

From this we may show the following lemma.

Lemma 1.5.1 We have
(i) If l is odd, then the same conditions in Lemma 1.4.1 hold.
(ii) If l is even, then the same conditions in Lemma 1.4.7 hold.

Let (x, y, z) be a solution of (1.2.1). As we observed in the proof of Lemma
1.4.2, we may show that x is even. Similarly to the proof of Lemma 1.4.9, we
observe that if y = 1 then t = 1, which is absurd. Hence y > 1, so z is even by
Lemmas 1.3.1 and 1.5.1. In the case where l is even, we may show that y is also
even as we observed in Lemma 1.4.5.

Next, we will show that y is even in the case where l is even as follows.
Suppose that y is odd. As we observed in Lemma 1.4.10, this leads to the
existence of a positive integer h such that m = 1 + hn. Substituting this into
(1.5.1), we have

np = 2(t− h),

where p = h2 − 2th + 1. Then p 6= 0 (since t > 1) and h 6= t. From (ii)
in Lemma 1.5.1 we know that n is divisible by 2t, so h is divisible by t. In
particular, h ≥ 2t. Then p = h(h− 2t) + 1 > 0, so t− h = (np)/2 > 0, which is
clearly absurd. We conclude that y is even.

Therefore, x, y, z are all even. Similarly to the preceding sections, we can
complete the remaining parts of the proof of Theorem 1.2.2.

Example 1.5.1 Let t be a positive integer with t > 1. As we observed at
the beginning of this section, we can obtain all of the pairs (m,n) satisfying
(1.5.1). For example, putting l = 1, we have pairs (m,n) = (2t, 1), which is
just Proposition 1.2.1 (t = 1 corresponds to (a, b, c) = (3, 4, 5)). Putting l = 2,
we have pairs (m,n) = (4t2 − 1, 2t), so m = n2 − 1 with even n ≥ 2 (t = 1
corresponds to (a, b, c) = (5, 12, 13)).



Chapter 2

Terai’s conjecture

2.1 Results

Terai’s conjecture (Conjecture 0.1.1) concerns all positive integers p, q, r ≥ 2.
But we should treat exponents (p, q, r) which admit infinite number of triples
(a, b, c) satisfying ap + bq = cr (a, b, c are relatively prime positive integers). By
the works of Darmon-Granville [DG] and Beukers [Beu], we can observe that all
of such (p, q, r) are given by (we take p ≥ q)

(p, q, r) =





(2, 2, r); r ≥ 2,

(p, 2, 2); p ≥ 3,

(3, 2, 3), (3, 3, 2), (3, 2, 4), (4, 2, 3), (4, 3, 2), (3, 2, 5), (5, 2, 3), (5, 3, 2).

Further, for each (p, q, r) above, all of the relatively prime positive integers a, b, c
satisfying ap + bq = cr are given by several polynomials in two integral variables
with integral coefficients (see [Beu] and [Co, Ch.14]). Most known results on
Terai’s conjecture concern the first case above. For r ≥ 2, we can find that all
of the relatively prime positive integers a, b, c satisfying a2 + b2 = cr are given
by (cf. [Co, p.466])

a = |A|, b = |B|, c = m2 + n2, (i)

where integers m,n, A and B satisfy the condition

m > n > 0, gcd(m, n) = 1, m 6≡ n (mod 2)

and A + B
√−1 = (m + n

√−1 )r. There are a number of partial results in this
case. Many of them concern the case where m ≡ 2 (mod 4) or n = 1. Some
well-known results in the case n = 1 are as follows.

Proposition 2.1.1 Let r = 2, and let a, b, c be given by (i). Assume that n = 1.
Then Conjecture 0.1.1 is true.

This is just Proposition 1.2.1 and it can be proved only by elementary con-
siderations.

15
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All of other known results on Conjecture 0.1.1 concern the case where r ≥ 3
is odd (as far as the author knows). Historically, Terai first started to study such
case and gave some partial results (see [Te, Te2]). After several works on the
case r ∈ {3, 5}, Cao and Dong [CD2] succeeded in extending them as follows.

Proposition 2.1.2 Let r ∈ {3, 5}, and let a, b, c be given by (i). Assume that
n = 1. Then Conjecture 0.1.1 is true, that is, for each positive even integer m,
the equation

(m3 − 3m)x + (3m2 − 1)y = (m2 + 1)z

has the unique solution (x, y, z) = (2, 2, 3) in positive integers x, y and z, and
the equation

(m|m4 − 10m2 + 5|)x + (5m4 − 10m2 + 1)y = (m2 + 1)z

has the unique solution (x, y, z) = (2, 2, 5) in positive integers x, y and z.

In the proof of this result, Cao and Dong used results on lower bounds for
linear forms in the logarithms and on generalized Fermat equations. The former
are used to obtain sharp upper bounds for solutions and the latter are used to
reduce divisibility properties of solutions.

Later, some authors started to consider infinite pairs (r,m) and showed
similar results under certain assumptions. In particular, Le [Lem3] gave the
following which is one of the most progressive results in this direction (see also
[Lem2, Lem5]).

Proposition 2.1.3 Let r be a positive integer such that r ≡ 5 (mod 8), and let
a, b, c be given by (i). Assume that m > r2, r < 11500 or m > 2r/π, r > 11500,
and that n = 1. Then Conjecture 0.1.1 is true.

In the proof of this result, Le used similar tools as those of Proposition
2.1.2, in addition, he appealed to a celebrated result on the existence of primitive
divisors of Lucas and Lehmer sequences due to Bilu, Harnot and Voutier [BHV],
where the additional method is similar to that of [HY]. By Proposition 2.1.3,
we see, for each r with r ≡ 5 (mod 8), that Conjecture 0.1.1 is true if n = 1
except for finite number of m’s. Also see [CD, CM, Lem] and their references.

In this chapter we first give results concerning the case where a, b, c are given
by (i) as follows.

Theorem 2.1.1 Let r be a positive integer such that r ≡ 4 (mod 8), and let
a, b, c be given by (i). Assume that n = 1. Then Conjecture 0.1.1 is true.

Theorem 2.1.2 Let r be a positive integer such that r ≡ 6 (mod 8), and let
a, b, c be given by (i). Assume that m2/ log(m2 +1) ≥ r3/ log 2 and n = 1. Then
Conjecture 0.1.1 is true.

Note that exceptional cases of Terai’s conjecture are essentially given by a
family of triples (a, b, c) = (2, 2p−2 − 1, 2p−2 + 1); p ≥ 3. In fact, letting p = 5,
we have (a, b, c) = (2, 7, 32). So we may think that they essentially come from
the case where p ≥ 3 and q = r = 2. For p ≥ 3, we can find that all of
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the relatively prime positive integers a, b, c satisfying ap + b2 = c2 are given by
(cf. [Co, p.465])

a = m2 − n2, b =
(m + n)p − (m− n)p

2
, c =

(m + n)p + (m− n)p

2
, (ii)

where integers m,n satisfy the condition

m > n > 0, gcd(m,n) = 1, m 6≡ n (mod 2),

or
a = 2mn, b = |2p−2mp − np|, c = 2p−2mp + np, (iii)

where integers m,n satisfy the condition

m > 0, n > 0, gcd(m,n) = 1, n ≡ 1 (mod 2).

Finally we show results concerning the case where a, b, c are given by (ii) or
(iii) as follows.

Theorem 2.1.3 Let p be a positive integer such that p ≥ 3 and p ≡ 1 (mod 4),
and let a, b, c be given by (ii). Assume that n = 1. Then Conjecture 0.1.1 is
true.

Theorem 2.1.4 Let p be a positive integer with p ≥ 3, and let a, b, c be given
by (iii). Assume that n = 1. Then Conjecture 0.1.1 is true, that is, for each
positive integer m with m ≥ 2, the equation

(2m)x + (2p−2mp − 1)y = (2p−2mp + 1)z
(
x, y, z ∈ N)

has the unique solution (x, y, z) = (p, 2, 2). Furthermore, if m = 1, then all of
the solutions of the above equation are given by

(x, y, z) =

{
(3, t, 2), (1, t, 1); t ≥ 1 if p = 3,
(p, 2, 2), (1, 1, 1) if p ≥ 4.

2.2 generalized Fermat equations

Let P, Q,R be non-zero pair-wise relatively prime integers, and let p, q, r be
positive integer with p, q, r ≥ 2. Then the equation

PXp + QY q = RZr,

X, Y, Z ∈ Z, gcd(X, Y, Z) = 1, XY Z 6= 0

is called a generalized Fermat equation. As we know, the case where P = Q =
R = 1 and p = q = r = n ≥ 3 corresponds to Fermat’s last theorem. In
this case, Wiles proved that the equation has no solutions. After his work, the
interest shifted to the above general equation. In these 20 years many authors
have treated special cases of this equation. Most of their methods are based on
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Wiles’s method, or more sophisticated arguments in the theory of elliptic curves
and modular forms (see for example [Beu, DG]).

In this section we quote many results on generalized Fermat equations. They
play a prominent role in the proofs of Theorems 2.1.1 and 2.1.2. They will be
used to reduce divisibility properties of exponential variables. In the case P =
Q = R = 1, for a solution (X,Y, Z) of the above mentioned generalized Fermat
equation, we call it non-trivial if XY Z 6= 0 and primitive if gcd(X,Y, Z) = 1.

The following two lemmas are classical and well-known results due to Euler
and Fermat, respectively.

Lemma 2.2.1 The equation

X3 + Y 3 = 2Z3

has no integral solutions with gcd(X,Y ) = 1 and XY Z 6= 0,±1.

Lemma 2.2.2 The equation

X4 + Y 2 = Z4

has no non-trivial primitive integral solutions.

Lemma 2.2.3 ([Co] pp.484–485) The equation

X4 + Y 3 = Z4

has no non-trivial primitive integral solutions.

The following two lemmas are given by Cao and Dong in [CD, CD2]. These
are deeply based on the results due to Bruin [Br], Darmon and Merel [DM],
Poonen [Poo].

Lemma 2.2.4 ([CD] Theorem 3) Let N be a positive integer with N > 1.
Then the equation

X2N + Y 2 = Z4

has no non-trivial primitive integral solutions with X ≡ 0 (mod 2).

Lemma 2.2.5 ([CD2] Lemma 10) Let N be a positive integer with N > 1.
Then the equation

X2N + Y 4 = Z2

has no non-trivial primitive integral solutions.

By using Chabauty’s method, Bruin [Br, Br2, Br3] established the following
results.

Lemma 2.2.6 ([Br]) The equation

X6 + Y 2 = Z4

has no non-trivial primitive integral solutions.
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Lemma 2.2.7 ([Br2]) The equation

X3 + Y 3 = Z4

has no non-trivial primitive integral solutions.

Lemma 2.2.8 ([Br3]) The equation

X2 + Y 5 = Z4

has no non-trivial primitive integral solutions other than (X,Y, Z) = (±122,−3,
± 11), (±7, 2,±3).

The following was essentially given in [Beu]. Here we use the following
formulation.

Lemma 2.2.9 ([Co] pp.474–475) All the non-trivial primitive integral solu-
tions of

X4 + Y 3 = Z2

are given by the following parameterizations (s and t are non-zero relatively
prime integers):





X = ±(s2 − 2ts− t2)(7s4 + 20ts3 + 24t2s28t3s + 4t4),
Y = (s2 + 2t2)(s2 + 4ts− 2t2)(3s2 + 4ts + 2t2)(5s2 + 8ts + 2t2),
Z = 4s(s + 2t)(s2 + ts + t2)(s4 + 4ts3 + 16t2s2 + 24t3s + 12t4)

×(19s4 − 4ts3 + 8t3 + 4t2),

where s is odd and s 6≡ t (mod 3),




X = ±(3s2 − t2)(9s4 + 18s2t2 + t4),
Y = (9s4 + 2s2t2 + t4)(9s4 − 30s2t2 + t4),
Z = 4st(3s2 + t2)(3t4 − 2s2t2 + 3s4)(81s4 − 6s2t2 + t4),

where s 6≡ t (mod 2) and s 6≡ 0 (mod 3),




X = 6st(3s4 + 4t4),
Y = 9s8 − 168s4t4 + 16t8,

Z = ±(3s4 − 4t4)(9s8 + 408s4t4 + 16t8),

where s is odd and t 6≡ 0 (mod 3),




X = 6st(12s4 + t4),
Y = 144s8 − 168s4t4 + t8,

Z = ±(12s4 − t4)(144s8 + 408s4t4 + t8),

where t is odd and t 6≡ 0 (mod 3),
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



X = ±(s6 + 40s3t3 − 32t6),
Y = −8st(s3 − 16t3)(s3 + 2t3),
Z = ±(s6 − 176s3t3 − 32t6)(s6 + 32t6),

where s is odd and s 6≡ t (mod 3),





X = ±(9s6 + 18s5t + 45s4t2 + 60s3t3 + 15s2t4 − 6st5 − 5t6),
Y = −2(3s4 − 6s2t2 − 8st3 − t4)(3s4 + 12s3t + 6s2t2 + 4st3 + 3t4),
Z = ±(−27s12 + 324s11t + 1782s10t2 + 3564s9t3

+3267s8t4 + 2376s7t5 + 2772s6t6 + 3960s5t7

+4059s4t8 + 2420s3t9 + 726s2t10 + 156st11 + 29t12),

where s 6≡ t (mod 2) and t 6≡ 0 (mod 3),





X = ±(17s6 + 30s5t− 15s4t2 + 20s3t3 + 15s2t4 + 6st5 − t6),
Y = 2(3s4 − 8s3t− 6s2t2 − t4)(7s4 + 4s3t + 6s2t2 − 4st3 − t4),
Z = ±(397s12 − 156s11t + 2046s10t2 − 1188s9t3

−1485s8t4 + 2376s7t5 − 924s6t6 + 792s5t7

+99s4t8 − 44s3t9 − 66s2t10 + 12st11 − 3t12),

where s 6≡ t (mod 2) and s 6≡ t (mod 3).

The following lemma plays an prominent role in the proof of Theorem 2.1.1.

Lemma 2.2.10 ([Iv, Sik]) Let n be a prime number with n ≥ 7, and let α be
a positive integer with α ≥ 2. Then the equation

Xn + 2αY n = Z2

has no solutions in non-zero pair-wise relatively prime integers X, Y, Z with
XY 6= 1.

2.3 Preliminaries

Let r be a positive even integer, and let a, b, c be given by (i). Assume that
n = 1. Then

a = |A|, b = |B|, c = m2 + 1,

where m is a positive even integer, and integers A, B are defined by

A = mr −
(

r

2

)
mr−2 + · · ·+ (−1)r/2−1

(
r

r − 2

)
m2 + (−1)r/2,

B =
(

r

1

)
mr−1 −

(
r

3

)
mr−3 + · · ·+ (−1)r/2

(
r

r − 3

)
m3 + (−1)r/2+1

(
r

r − 1

)
m.

In this section we prepare some elementary but important lemmas for the
proofs of Theorems 2.1.1 and 2.1.2. In what follows, we denote the Jacobi
symbol by

(∗
∗
)
.
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Lemma 2.3.1 The following hold.
(i) If r ≡ 0 (mod 4), then B ≡ 0 (mod 2m(m2 − 1)).
(ii) If r ≡ 2 (mod 4), then A ≡ 0 (mod m2 − 1) and B ≡ 0 (mod 2m).

Proof. This follows from the definition of A and B. ¤

We consider the equation

|A|x + |B|y = (m2 + 1)z (2.3.1)

where x, y, z ∈ N.

Lemma 2.3.2 Assume that r ≡ 4 (mod 8). We write r = 4k, where k ∈ N is
odd. Let (x, y, z) be a solution of (2.3.1). Then the following hold.

(i) If A > 0 and m ≡ 2 (mod 4), then x ≡ z (mod 2).
(ii) If A > 0 and m ≡ 0 (mod 4), then x is even.
(iii) If A > 0 and m ≡ 4 (mod 8), then x and z are even.
(iv) If A < 0, then x is even.
(v) If A < 0 and m 6≡ 0 (mod 8), then x and z are even.

Proof. By (i) in Lemma 2.3.1, we know that b ≡ 0 (mod m2 − 1). Note that
A ≡ 1 (mod 4). We observe that

A = m4k −
(

4k

2

)
m4k−2 + · · · −

(
4k

4k − 2

)
m2 + 1

≡ 1−
(

4k

2

)
+ · · · −

(
4k

4k − 2

)
+ 1

≡ <((1 +
√−1)4k)

≡ 4k cos(kπ) (mod m2 − 1).

Hence a ≡ −sgn(A)4k (mod m2−1) since k is odd. Then, taking (2.3.1) modulo
m2 − 1 and m− 1, we have

(−sgn(A)
m2 − 1

)x

=
(

2
m2 − 1

)z

,

(−sgn(A)
m− 1

)x

=
(

2
m− 1

)z

,

respectively.
(i) Assume that A > 0 and m ≡ 2 (mod 4). Then the first equality above

shows that (−1)x = (−1)z since m2 − 1 ≡ 3 (mod 8). Hence x ≡ z (mod 2).
(ii) Assume that A > 0 and m ≡ 0 (mod 4). Then the first equality above

shows that (−1)x = 1 since m2 − 1 ≡ 7 (mod 8). Hence x is even.
(iii) Assume that A > 0 and m ≡ 4 (mod 8). Then the second equality

above shows that (−1)x = (−1)z since m− 1 ≡ 3 (mod 8). It follows from (ii)
that z is even.

(iv) Assume that A < 0. Then a = −A ≡ −1 (mod 4). Note that b ≡ 0
(mod 4) by (i) in Lemma 2.3.1. So, taking (1) modulo 4, we have (−1)x ≡ 1
(mod 4). Hence x is even.

(v) By (iv) and similar observations in (i) and (iii), we can prove the desired
conclusion. ¤
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Lemma 2.3.3 Assume that r ≡ 6 (mod 8). We write r = 2l, where l ∈ N and
l ≡ 3 (mod 4). Let (x, y, z) be a solution of (2.3.1). Then the following hold.

(i) If A > 0, then x is even.
(ii) B ≡ −2lm (mod m2 − 1).

Proof. (i) If A > 0, then

a = A = m2l −
(

2l

2

)
m2l−2 + · · ·+

(
r

r − 2

)
m2 − 1 ≡ −1 (mod 4).

Since B ≡ 0 (mod 4) by (i) in Lemma 2.3.1 and c ≡ 1 (mod 4), it follows from
(2.3.1) that (−1)x ≡ 1 (mod 4). Hence x is even.

(ii) From the definition of B, we have

B =
(

2l

1

)
m2l−1 −

(
2l

3

)
m2l−3 + · · · −

(
2l

2l − 3

)
m3 +

(
2l

2l − 1

)
m

≡
((

2l

1

)
−

(
2l

3

)
+ · · · −

(
2l

2l − 3

)
+

(
2l

2l − 1

))
m

≡ m=(
(1 +

√−1)2l
)

≡ 2lm sin(lπ/2) (mod m2 − 1).

Hence B ≡ −2lm (mod m2 − 1) since l ≡ 3 (mod 4). ¤

Lemma 2.3.4 Let (x, y, z) be a solution of (2.3.1). Then the following hold.
(i) If x and z are even, then x ≤ 4y − 2.
(ii) If x, y and z are even, then (r/4)max(x, y) < z < r min(x, y).

Proof. Since {a, b, cr/2} forms a primitive Pythagorean triple and b is even, there
exist positive integers i and j such that a = i2 − j2, b = 2ij and cr/2 = i2 + j2.
This implies that a2 > b and max(a, b) < cr/2 < min(a2, b2).

(i) If x and z are even, then

a2y > by = (cz/2 + ax/2)(cz/2 − ax/2) ≥ cz/2 + ax/2 > ax/2.

This gives the desired conclusion.
(ii) Since {ax/2, by/2, cz/2} forms a primitive Pythagorean triple and b is

even, there exist positive integers s and t such that

ax/2 = s2 − t2, by/2 = 2st, cz/2 = s2 + t2.

From this we see that cz/2 = s2 + t2 < min
(
(s2 − t2)2, (2st)2

)
= min(ax, by).

Hence we have cz/2 < min(crx/2, cry/2), which gives that z < r min(x, y). Fur-
ther, since cr/2 < min(a2, b2), we see that max(ax, by) < cz < min(a4z/r, b4z/r),
which gives that (r/4) max(x, y) < z. ¤
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2.4 Proof of Theorem 2.1.1

In this section we prove Theorem 2.1.1. Let r be a positive integer such that
r ≡ 4 (mod 8), and let a, b, c be given by (i). Assume that n = 1. In this case,
A and B are given by

A = mr −
(

r

2

)
mr−2 + · · · −

(
r

r − 2

)
m2 + 1,

B =
(

r

1

)
mr−1 −

(
r

3

)
mr−3 + · · ·+

(
r

r − 3

)
m3 −

(
r

r − 1

)
m.

We put a = |A|, b = |B| and c = m2 + 1.
Let (x, y, z) be a solution of (2.3.1). We prepare several lemmas. First we

dispose of the case y = 1.

Lemma 2.4.1 y > 1.

Proof. Taking (2.3.1) modulo m3, we have

−r

2
(r − 1)m2x + by ≡ m2z (mod m3).

Suppose that y = 1. Then

−r

2
(r − 1)m2x± rm ≡ m2z (mod m3).

It is clear from this congruence that r is divisible by m, and

−r

2
(r − 1)x± r

m
≡ z (mod m). (2.4.1)

Toward a contradiction, we will show that x and z must be even. Note that
m is not divisible by 8 since m divides r. Then, by Lemma 2.3.2, it suffices to
consider the case where m ≡ 2 (mod 4) and x ≡ z (mod 2). In this case, r/m
is even, so we can observe from (2.4.1) that z is even. Hence x and z must be
even. Then x = 2 by (i) in Lemma 2.3.4. Hence a2 + b2 = cr and a2 + b = cz.
This yields b(b − 1) = cz(cr−z − 1). So cz divides b − 1 since gcd(b, c) = 1. In
particular, cz ≤ b− 1 (< b). But this is a contradiction since a2 + b = cz. ¤

Lemma 2.4.2 x is even and z is divisible by 4.

Proof. From Lemma 2.4.1 we know that y > 1. Then by ≡ 0 (mod 4m2) by (i)
in Lemma 2.3.1. Taking (2.3.1) modulo 4m2, we have −r(r − 1)m2x/2 ≡ m2z
(mod 4m2), so

−r

2
(r − 1)x ≡ z (mod 4). (2.4.2)

Hence z is even since r/2 is even. Further, by (i), (ii) and (iv) in Lemma 2.3.2,
we see that x is also even. It follows from (2.4.2) that z is divisible by 4. ¤

By Lemma 2.4.2, we can write x = 2X and z = 4Z, where X, Z ∈ N.
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Next, we will prove that y ≤ 3 if y is odd. For this we will use many results
on generalized Fermat equations quoted in the previous section. This step is
crucial in the proof.

We define positive even integers D, E as follows:

by = DE, (2.4.3)

where
D = c2Z + aX , E = c2Z − aX . (2.4.4)

It is easy to observe that gcd(D,E) = 2. Then, by (2.4.3) and (2.4.4), we can
write

D = 2uy, E = 2αy−1vy or D = 2αy−1uy, E = 2vy, (2.4.5)

where u and v are relatively prime positive odd integers, and 2α is the exact
power of 2 in b. Note that α ≥ 2 by (i) in Lemma 2.3.1. By (2.4.4) and (2.4.5),
we have

uy + 2αy−2vy = c2Z or 2αy−2uy + vy = c2Z . (2.4.6)

We remark that
αy − 2 ≥ 2, uv 6= 1.

If uv = 1, then u = v = 1. This implies that 2αy−2 = (cZ + 1)(cZ − 1). Since
c ≡ 1 (mod 4), so we have cZ + 1 = 2, which is clearly absurd.

Lemma 2.4.3 If y is odd, then y = 3.

Proof. Suppose that y is odd. Then we see from Lemmas 2.2.8, 2.2.10, 2.4.1
and (2.4.6) that y must be a power of 3. Hence we can write y = 3Y , where
Y ∈ N, and

(cZ)4 + (−bY )3 = (aX)2.

By Lemma 2.2.9, we find that

cZ = ±(s6 + 40s3t3 − 32t6),

bY = 8st(s3 − 16t3)(s3 + 2t3),

aX = ±(s6 − 176s3t3 − 32t6)(s6 + 32t6),

(2.4.7)

where s and t are non-zero relatively prime integers satisfying s ≡ 1 (mod 2)
and s 6≡ t (mod 3).

Here we suppose that Y > 1. Then we can write Y = 3Y ′ where Y ′ ∈ N
(since y = 3Y is a power of 3). Rewriting the second equality in (2.4.7), we
have

(bY ′/2)3 = st(s3 − 16t3)(s3 + 2t3). (2.4.8)

Since the left-hand side of (2.4.8) is even and s is odd, we see that t is even. Let
g = gcd(s3 − 16t3, s3 + 2t3). It is easy to see that g = 1 or g ≡ 0 (mod 3), and
that four factors s, t, s3− 16t3 and s3 + 2t3 on the right-hand side of (2.4.8) are
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pair-wise relatively prime if and only if g = 1. We claim that g = 1; suppose
not. Then s3 + 2t3 is divisible by 3. But this leads to

s− t ≡ s + 2t ≡ s3 + 2t3 ≡ 0 (mod 3),

which is absurd. Hence the claim is proved, that is, g = 1. It follows from
(2.4.8) that s3 +2t3 (6= 0) is a perfect third power. But this contradicts Lemma
2.2.1. Therefore, y = 3. ¤

Lemma 2.4.4 y 6= 3.

Proof. Suppose that y = 3. We will observe that this leads to a contradiction.
By (i) in Lemma 2.3.4, we see that X ∈ {1, 2, 3, 4, 5}. By Lemmas 2.2.3 and
2.2.7, we find that X ∈ {1, 5}. We will dispose of the case X = 5.

Suppose that X = 5. Then, by the third equality in (2.4.7), we can write

(±a)5 = FG, (2.4.9)

where
F = s6 − 176s3t3 − 32t6, G = s6 + 32t6. (2.4.10)

It is easy to observe that F and G are relatively prime if and only if F or G
is not divisible by 3. We claim that F and G are relatively prime. For this, it
suffices to show that F is not divisible by 3 if G is divisible by 3. Suppose that
G is divisible by 3. Then, by (2.4.10) and gcd(s, t) = 1, we have s 6≡ 0 (mod 3)
and t 6≡ 0 (mod 3). So s2 ≡ t2 ≡ 1 (mod 3), and s3t3 ≡ st ≡ −1 since s 6≡ t
(mod 3). These imply that F ≡ 1 + 176 − 32 ≡ 145 ≡ 1 (mod 3). Hence the
claim is proved. It follows from (2.4.10) that G (6= 0) is a perfect fifth power.

To sum up, it suffices to show that the equation

S6 + 32T 6 = U5

has no integral solutions with gcd(S, T ) = 1, STU 6= 0 and S ≡ 1 (mod 2).
Suppose that there is such a solution (S, T, U). Then, by a factorization in
Z[
√−2 ], we have

(S3 + 4T 3
√−2 )(S3 − 4T 3

√−2 ) = U5.

Since S is odd (hence U is odd), we can easily observe that two factors on the
left-hand side of the above equality are relatively prime in Z[

√−2 ]. Then, since
the ring Z[

√−2 ] is a unique factorization domain, we can write

S3 + 4T 3
√−2 = (I + J

√−2 )5

for some non-zero relatively prime integers I and J . This gives that

S3 = I(I4 − 20I2J2 + 20J4), (2.4.11)

4T 3 = J(5I4 − 20I2J2 + 4J4). (2.4.12)

Since S is odd, we see from (2.4.11) that I is odd. So, by (2.4.12), J must be
divisible by 4. We will consider the cases T 6≡ 0 (mod 5) and T ≡ 0 (mod 5)
separately.
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First we consider the case where T 6≡ 0 (mod 5). Then we can observe from
(2.4.12) that

J = 4M3, 5I4 − 20I2J2 + 4J4 = N3,

where M and N are non-zero relatively prime integers. From this, we have

N3 + 16J4 = 5I4 − 20I2J2 + 20J4 = 5(I2 − 2J2)2,

so
N3 + (4M2)6 = 5W 2,

where W = I2 − 2J2. So it suffices to show that the equation

x3
1 + y6

1 = 5z2
1

has no integral solutions with x1y1z1 6= 0. If there is such a solution (x1, y1, z1),
then it induces a rational point (X1, Y1) = (x1/y2

1 , z1/25y3
1) on the elliptic curve

Y 2
1 = X3

1 + 125. (2.4.13)

Since this is 900B1 in Cremona’s tables [Cr], we find that elliptic curve (2.4.13)
has no rational points other than (X1, Y1) = (−5, 0) and the point at infinity.
This implies that z1 = 0, which is a contradiction.

Finally we consider the case where T ≡ 0 (mod 5). Then S 6≡ 0 (mod 5)
since gcd(S, T ) = 1. In this case, we can observe from (2.4.11) and (2.4.12) that

I = K3, I4 − 20I2J2 + 20J4 = L3,

J = 100M3, 5I4 − 20I2J2 + 4J4 = 5N3,

where K, L,M and N are non-zero integers with gcd(K,L) = 1, gcd(M,N) = 1
and L 6≡ 0 (mod 5). From this, we have

L3 + 80J4 = I4 − 20I2J2 + 100J4 = (I2 − 10J2)2,

so
L3 + 125(20M2)6 = W 2,

where W = I2 − 10J2. So it suffices to show that the equation

x3
2 + 125y6

2 = z2
2

has no integral solutions with x2y2z2 6= 0. But, if there is such a solution
(x2, y2, z2), then it induces a rational point (X1, Y1) = (x2/y2

2 , z2/y3
2) on the

elliptic curve (2.4.13) as seen before, and so we have the same contradiction.
Therefore, x = 2X = 2, so a2 + b2 = cr and a2 + b3 = cz. This implies that

b2(b−1) = cr(cz−r−1). Hence cr divides b−1 since gcd(b, c) = 1. In particular,
cr ≤ b− 1 (< b). But this is absurd since a2 + b2 = cr. ¤

We are ready to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. Assume the hypothesis of Theorem 2.1.1. Let (x, y, z)
be a solution of (i). By Lemmas 2.4.1-2.4.4, we see that x, y are even and z is
divisible by 4. Then y = 2 by Lemma 2.2.4. It follows from (i) in Lemma 2.3.4
that x ∈ {2, 4, 6}. Further, by Lemmas 2.2.2 and 2.2.6, we see that x 6∈ {4, 6}.
Therefore, x = 2, so z = r. This completes the proof of Theorem 2.1.1. ¤
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2.5 Proof of Theorem 2.1.2

In this section we prove Theorem 2.1.2. Let r be a positive integer such that
r ≡ 6 (mod 8), and let a, b, c be given by (i). Assume that n = 1. In this case,
A and B are given by

A = mr −
(

r

2

)
mr−2 + · · ·+

(
r

r − 2

)
m2 − 1,

B =
(

r

1

)
mr−1 −

(
r

3

)
mr−3 + · · · −

(
r

r − 3

)
m3 +

(
r

r − 1

)
m.

We put a = |A|, b = |B| and c = m2 + 1. In what follows, we consider the case
where

m2 log 2
log(m2 + 1)

≥ r3. (2.5.1)

Then

Lemma 2.5.1 We have m > r1.5. In particular, m > 2r/π.

Proof. This easily follows from (2.5.1). ¤

Lemma 2.5.2 Both A and B are positive, that is, a = A and b = B.

Proof. We define the real number θ (0 < θ < π/2) by

tan θ =
1
m

.

Since A = cr/2 cos(rθ) and B = cr/2 sin(rθ), it follows from Lemma 2.5.1 that

0 < rθ = r arctan
(

1
m

)
<

r

m
<

π

2
.

Hence A and B are positive. ¤

Let (x, y, z) be a solution of (2.3.1). We prepare several lemmas.

Lemma 2.5.3 x, y and z are all even.

Proof. Since A > 0 by Lemma 2.5.2, we see that x is even by (i) in Lemma
2.3.3. It is easy to see that m divides r if y = 1 (as seen in the proof of Lemma
2.4.1). Hence y > 1 by Lemma 2.5.1. Then z is even by (2.4.2). Finally we
show that y is even. In view of (2.3.1), (ii) in Lemma 2.3.1, (ii) in Lemma 2.3.3
and Lemma 2.5.2, we have

1 =
( −2m

m2 − 1

)y

= (−1)y.

Hence y is even. ¤
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Next we obtain sharp upper and lower bounds for y. By Lemma 2.5.3, we
can write x = 2X, y = 2Y and z = 2Z, where X, Y, Z ∈ N. Since {aX , bY , cZ}
forms a primitive Pythagorean triple, we can write

aX = s2 − t2, (2.5.2)

bY = 2st, (2.5.3)

cZ = s2 + t2, (2.5.4)

where integers s, t satisfy the condition s > t > 0, gcd(s, t) = 1 and s 6≡ t
(mod 2).

Lemma 2.5.4 X is odd.

Proof. Suppose that X is even. Then, by Lemma 2.2.5, we see that Y must be
1, that is, y = 2. This forces x = 4 by (i) in Lemma 2.3.4. Then, by (2.4.2), we
see that z must be divisible by 4, which contradicts Lemma 2.2.2. ¤

We denote the 2-adic valuation by ord2. Put α = ord2(m). Then ord2(b) =
2α+1 since r ≡ 2 (mod 4).

Lemma 2.5.5 We have

Y =
ord2(u + v)

α + 1
for some integers u and v satisfying u > v > 0, gcd(u, v) = 1 and uv = a. In
particular,

Y ≤ r log(m2 + 1)
4 log 2

.

Proof. Since gcd(s, t) = 1 and s 6≡ t (mod 2), we observe that gcd(s+ t, s− t) =
1. Then, by (2.5.2), we can write

s + t = uX , s− t = vX , (2.5.5)

where integers u, v satisfy the condition u > v > 0, gcd(u, v) = 1 and uv = a.
Note that u, v are odd since a = A ≡ −1 (mod 4). By (2.5.2) and Lemma 2.5.4,
we have s2 − t2 ≡ −1 (mod 4). This implies that s is even and t is odd. Since
ord2(b) = 2α+1, it follows from (2.5.3) and (2.5.5) that

(α + 1)Y = ord2(2s) = ord2((u + v)w),

where

w =
uX + vX

u + v
= uX−1 − uX−2v + · · · − uvX−2 + vX−1

is an integer. Since u, v and X are all odd, we see that w is odd, and so
(α + 1)Y = ord2(u + v), that is, Y = ord2(u + v)/(α + 1). The second assertion
follows from

ord2(u + v) ≤ log(u + v)
log 2

≤ log(uv + 1)
log 2

=
log(a + 1)

log 2
≤ log(cr/2)

log 2
. ¤

We obtain a lower bound for Y by a usual congruence reduction.



2.5. PROOF OF THEOREM 2.1.2 29

Lemma 2.5.6 If Y > 1, then

Y >
m2

2r(2r − 1)
.

Proof. Suppose that Y > 1. Then b2Y ≡ 0 (mod m4) by (ii) in Lemma 2.3.1.
Taking (2.3.1) modulo m4, we have −r(r − 1)m2X ≡ 2m2Z (mod m4), so

−r(r − 1)X ≡ 2Z (mod m2). (2.5.6)

In particular, m2 ≤ r(r − 1)X + 2Z. We know from (ii) in Lemma 2.3.4 that
rX < 4Z and Z < rY . Hence

m2 < 4Z(r − 1) + 2Z = 2Z(2r − 1) < 2r(2r − 1)Y,

so the desired conclusion holds. ¤

We are ready to prove Theorem 2.1.2.

Proof of Theorem 2.1.2. Assume the hypothesis of Theorem 2.1.2. Let (x, y, z)
be a solution of (2.3.1). By Lemma 2.5.3, we can write x = 2X, y = 2Y and
z = 2Z, where X, Y, Z ∈ N. Suppose that y > 1. Then, by Lemmas 2.5.5 and
2.5.6, we find that

2m2

r(2r − 1)
<

r log(m2 + 1)
log 2

,

or
m2 log 2

log(m2 + 1)
<

r2(2r − 1)
2

.

But this contradicts (2.5.1). Hence Y = 1. Then taking (2.3.1) modulo m4, we
have −r(r − 1)m2X + r2m2 ≡ 2m2Z (mod m4), so

r(r − 1)X − r2 + 2Z ≡ 0 (mod m2). (2.5.7)

On the other hand, we see from (i) in Lemma 2.3.4 and Lemma 2.5.4 that
X ∈ {1, 3}. Note that Z < r by (ii) in Lemma 2.3.4. If X = 3, then, by (2.5.7),
we must have 2r2 − 3r + 2Z ≡ 0 (mod m2) and 2r2 − 3r + 2Z > 0. Hence

r3 < m2 ≤ 2r2 − 3r + z < 2r2 − r

by Lemma 2.5.1. This is absurd. Therefore, x = 2X = 2, so z = r. This
completes the proof of Theorem 2.1.2. ¤

By Theorem 4.2.2, it suffices to consider finite number of m’s in order to
prove Conjecture 3.1.1 in the case n = 1 for a fixed r ≡ 6 (mod 8).

Assume that r ≡ 6 (mod 8) and n = 1. We know from Theorem 4.2.2
that Conjecture 3.1.1 is true for any m ≥ m0, where m0 is the minimal integer
satisfying (2.5.1). Hence we have to treat m’s with m < m0. In the range 2r/π <
m < m0, we may assume that solutions x, y and z are all even as seen in the proof
of Lemma 2.5.3. From Lemma 2.5.5 we know that y = 2ord2(u + v)/(α + 1) for
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some integers u, v satisfying u > v > 0, gcd(u, v) = 1 and uv = a. By Lemmas
2.3.4 and 2.5.6, if y > 2, then the following conditions:

m2

r(2r − 1)
< y =

2ord2(u + v)
α + 1

∈ N,

2 ≤ x ≤ 4y − 2,
r max(x, y)

4
< z < r min(x, y)

and (2.5.6) must hold. If, for any m with 2r/π < m < m0 and for any pair
(u, v), we verify that not all of the above conditions hold, then we can conclude
that y = 2. As the proof of Theorem 4.2.2, it suffices to show that the case
x = 6 does not hold. If we find a contradiction from x = 6, then Conjecture
3.1.1 is true for m’s with 2r/π < m.

At the end of this section we will demonstrate the above procedure in the
case r = 6.

Example 2.5.1 Assume that r = 6 and n = 1. In this case, m0 = 50 and
3 < 12/π < 4. It is not difficult to show that y = 2 in the case 2 < m < 50 by
the above observations. Further, as seen in the proof of Theorem 4.2.2, we see
that if x 6= 2, then x = 6, and so z = 10 since 9 < z < 12 (by (ii) in Lemma
2.3.4) and z ≡ 0 (mod 2). But these imply that 64 ≡ 0 (mod m2) by (2.5.7).
This forces m = 4 or 8, which is a contradiction since a6 + b2 6= c10 if m = 4 or
8. It remains to consider the case m = 2, so we consider the equation

117x + 44y = 5z
(
x, y, z ∈ N)

. (2.5.8)

Taking (2.5.8) modulo 3,5 and 8, we can observe that if y > 1, then x, y and z
are all even, and that if y = 1, then x is even and z is odd. We claim that y > 1;
suppose not. Then x is even and z is odd. We can write x = 2X, where X ∈ N.
Taking (2.5.8) modulo 9, we have 5z ≡ −1 (mod 9). This implies that z ≡ 0
(mod 3). We will observe that this leads to a contradiction. By a factorization
in the ring of integers Q(

√−11), we have

(117X + 2
√−11 )(117X − 2

√−11 ) = 5z.

Since two factors on the left-hand side of this equality are relatively prime, the
class number of Q(

√−11) equals to 1 and z is divisible by 3, we can write

117X + 2
√−11 = ±

(
a1 + b1

√−11
2

)3

for some integers a1 and b1. This leads to

±8 · 117X = a1(a2
1 − 33b2

1),

±16 = b1(3a2
1 − 11b2

1).

By the second equation above, we see that (a1, b1) = (±3,±1). Then, by the
first equation above, we see that ±8 · 117X = ±72, which is absurd.

Hence we may assume that x, y and z are all even. Then we can refer the
equations (2.5.2)-(2.5.4). As similar arguments in the proof of Lemma 2.5.5,
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we can show that y = ord2(u − v) for some integers u, v satisfying u > v >
0, gcd(u, v) = 1 and uv = 117. We observe that (u, v) = (13, 9) or (117, 1). In
both cases, we find that u− v is exactly divisible by 4. Hence y = 2. It follows
from (2.5.2)-(2.5.4) that s = 11 and t = 2, further, 117X = 117 and 5Z = 125.
Therefore, X = 1 and Z = 3.

2.6 Proof of Theorem 2.1.3

In this section we prove Theorem 2.1.3. Let p be a positive integer such that
p ≥ 3 and p ≡ 1 (mod 4), and let a, b, c be given by (ii). Since p is odd, we see
that

a = m2 − 1,

b =
(

p

1

)
mp−1 +

(
p

3

)
mp−3 + · · ·+

(
p

p− 2

)
m2 + 1,

c = mp +
(

p

2

)
mp−2 + · · ·+

(
p

p− 3

)
m3 +

(
p

p− 1

)
m,

(2.6.1)

where m is a positive even integer. Note that

(m + 1)p = c + b, (m− 1)p = c− b, c < b2.

We consider the equation

(m2 − 1)x +
(

(m + 1)p − (m− 1)p

2

)y

=
(

(m + 1)p + (m− 1)p

2

)z

(2.6.2)

where x, y, z ∈ N.
Let (x, y, z) be a solution of (2.6.2). We prepare some lemmas.

Lemma 2.6.1 z ≥ 2.

Proof. We know that gcd(m − 1,m + 1) = 1 since m is even. Suppose that
z = 1. We will observe that this leads to a contradiction. Since by < c < b2, we
see that y = 1. Hence (m2 − 1)x = c − b = (m − 1)p by (2.6.2). This implies
that (m − 1)p ≡ 0 (mod m + 1), which is absurd since gcd(m − 1,m + 1) = 1.
We conclude that z ≥ 2. ¤

Lemma 2.6.2 x is odd.

Proof. By Lemma 2.6.1, we know that z ≥ 2. Then taking (2.6.2) modulo m2,
we have (−1)x + 1 ≡ 0 (mod m2). Hence x is odd since m2 > 2. ¤

Lemma 2.6.3 z = 2.

Proof. Suppose that z ≥ 3. We will observe that this leads to a contradiction.
Then taking (2.6.2) modulo m3, we see from Lemma 2.6.2 that

m2x− 1 +
(

p

p− 2

)
m2y + 1 ≡ 0 (mod m3),
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so

x +
(

p− 1
2

)
py ≡ 0 (mod m).

Since m and (p − 1)/2 are even integers, it follows from the above congruence
that x is even. But this contradicts Lemma 2.6.2. Hence z < 3, so z = 2 by
Lemma 2.6.1. ¤

Since c < b2, we see from Lemma 2.6.3 that by < c2 < b4. Hence y ≤ 3.
Therefore, it suffices to observe that the case y ∈ {1, 3} does not hold.

Suppose that y = 1. Then ax + b = ap + b2, so b(b − 1) = ap(ax−p − 1).
Hence ap divides b − 1 since gcd(a, b) = 1. In particular, ap ≤ b − 1. On the
other hand, we see that ap = c2 − b2 ≥ c + b > b. This is absurd.

Suppose that y = 3. Then ax + b3 = ap + b2, so b2(b − 1) = ax(ap−x − 1).
Hence b2 divides ap−x − 1 since gcd(a, b) = 1. In particular, b2 ≤ ap−x − 1. On
the other hand, we see from (2.6.1) that

ap−x ≤ ap−1 < m2p−2 < p2m2p−2 < b2,

which is absurd. This completes the proof of Theorem 2.1.3.

2.7 Proof of Theorem 2.1.4

In this section we prove Theorem 2.1.2. Let p be a positive integer with p ≥ 3,
and let a, b, c be given by (iii). Assume that n = 1. In this case, we have

a = 2m, b = 2p−2mp − 1, c = 2p−2mp + 1.

Note that 2m always divides 2p−2mp.
We consider the equation

(2m)x + (2p−2mp − 1)y = (2p−2mp + 1)z (2.7.1)

where x, y, z ∈ N.
We will consider the cases m ≥ 2 and m = 1 separately.

2.7.1 The case m ≥ 2

In this subsection we consider the case where m ≥ 2. Let (x, y, z) be a solution
of (2.7.1). We prepare several lemmas.

Lemma 2.7.1 y is even.

Proof. Taking (2.7.1) modulo 2m, we have (−1)y ≡ 1 (mod 2m). Hence y is
even since 2m > 2. ¤

By Lemma 2.7.1, we can write y = 2Y , where Y ∈ N.

Lemma 2.7.2 x ≥ p.
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Proof. Taking (2.7.1) modulo 2p−2mp, we have (2m)x ≡ 0 (mod 2p−2mp).
Suppose that x ≤ p− 1. We will observe that this leads to a contradiction.

Since
2x−p+2 mx−p =

2
m(2m)p−1−x

and (2m)p−1−x are integers, we see that m(2m)p−1−x is a divisor of 2. Hence
m(2m)p−1−x = 2 since m ≥ 2. This implies that m = 2 and x = p − 1. In
particular, 2p−2mp = 22p−2 = 4p−1 = 4x. Then we can rewrite (2.7.1) as

4x + (4x − 1)2Y = (4x + 1)z.

Taking this modulo 3, we have (−1)z ≡ 1 (mod 3), so z is even. Then, since
{2x, (4x − 1)Y , (4x + 1)z/2} forms a primitive Pythagorean triple, we can write

(4x − 1)Y = s2 − t2, 2x = 2st,

where integers s, t satisfy the condition s > t > 0, gcd(s, t) = 1 and s 6≡ t
(mod 2). It is easy to see from the second equation above that t = 1, so
s = 2x−1. Then s2 − t2 < 4x − 1 ≤ (4x − 1)Y , which contradicts the first
equation above. We conclude that x ≥ p. ¤

Lemma 2.7.3 z is even.

Proof. We know from Lemma 2.7.2 that x ≥ p. Since (2m)x ≡ 0 (mod (2m)p)
and

(2p−2mp−1)2Y ≡ −2p−2mp(2Y )+1, (2p−2mp+1)z ≡ 2p−2mpz+1 (mod (2m)p),

it follows from (2.7.1) that

−2p−1mpY ≡ 2p−2mpz (mod (2m)p),

so z ≡ −2Y (mod 4). Hence z is even. ¤

By Lemma 2.7.3, we can write z = 2Z, where Z ∈ N. From (2.7.1) we can
define even positive integers D, E as follows:

(2m)x = DE, (2.7.2)

where

D = (2p−2mp + 1)Z + (2p−2mp − 1)Y ,

E = (2p−2mp + 1)Z − (2p−2mp − 1)Y .
(2.7.3)

Then gcd(D, E) = 2, and

D ≡ 1 + (−1)Y , E ≡ 1− (−1)Y (mod 2p−2mp).

Lemma 2.7.4 Y is odd.
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Proof. Suppose that Y is even. Then D ≡ 2 (mod 2m). This gives that D/2 is
prime to m, so mx divides E and D divides 2x. But this leads to

2x ≥ D > E ≥ mx,

which is absurd since m ≥ 2. We conclude that Y is odd. ¤

By Lemma 2.7.4, we see that E ≡ 2 (mod 2m). In particular, E/2 is prime
to m. By (2.7.3), we see that mx divides D, and E divides 2x. Further, D ≡ 0
(mod 2p−2mp).

Lemma 2.7.5 D = 2x−1mx and E = 2.

Proof. Suppose that E > 2. We will observe that this leads to a contradiction.
Since gcd(D, E) = 2 and E is divisible by 4, we see that D is exactly divisible
by 2, hence p = 3 and m is odd. Furthermore,

D = (2m3 + 1)Z + (2m3 − 1)Y = 2mx,

E = (2m3 + 1)Z − (2m3 − 1)Y = 2x−1.

Note that x ≥ 3. Then

0 ≡ E ≡ (−1)Z − 1 ≡ 0 (mod 4),

so Z is even. We can write Z = 2Z ′, where Z ′ ∈ N. Since (2m3 + 1)2Z′ =
(D + E)/2 = mx + 2x−2, and 2m3 + 1 is congruent to 3 modulo 4, we see that
x is odd. We can write x = 2X + 1, where X ∈ N. It follows that

(2m3 − 1)Y = (2m3 + 1)2Z′ − 22X

=
(
(2m3 + 1)Z′ + 2X

)(
(2m3 + 1)Z′ − 2X

)

It is clear that Y > 1. Since two factors on the right-hand side of the above
equation are relatively prime, we can write

(2m3 + 1)Z′ + 2X = uY , (2m3 + 1)Z′ − 2X = vY ,

where integers u, v satisfy u > v > 0 and uv = 2m3 − 1. Subtracting the first
equation from the second one, we have

(u− v)w = 2X+1,

where w = uY−1 + uY−2v + · · · + vY−1 is a positive integer. Since w is a sum
of Y odd integers, we see from Lemma 2.7.4 that w is odd. Hence w = 1, so
Y = 1. This is a contradiction. We conclude that E = 2. ¤

By (2.7.2), (2.7.3) and Lemma 2.7.5, we see that

2x−2mx − 1 = (2p−2mp − 1)Y . (2.7.4)

If x > p, then 2p−2mpY ≡ 0 (mod 2p−1mp) by Lemma 2.7.4 and (2.7.4), so Y
is even. This contradicts Lemma 2.7.4. It follows from Lemma 2.7.2 that x = p.
Then Y = 1 by (2.7.4), so z = 2. This completes the proof of Theorem 4.2.2 in
the case m ≥ 2.
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2.7.2 The case m = 1

In this subsection we consider the case where m = 1. Then we can rewrite
(2.7.1) as

2x + (2p−2 − 1)y = (2p−2 + 1)z (2.7.5)

where x, y, z ∈ N.
Let (x, y, z) be a solution of (2.7.5). First, we consider the case p = 3. Then

2x + 1y = 3z. As is well-known, this implies that (x, z) = (1, 1) or (3, 2), and
y ≥ 1 arbitrary.

In what follows, we consider the case p ≥ 4. It is easy to see that

y < 2z.

First, we want to obtain a sharp upper bound for z. We here use the following
result due to Scott and Styer ([SS]), which is based on technical elementary
arguments in quadratic fields (see [Sc]).

Proposition 2.7.1 ([SS] Theorem 5) Let C be any odd positive integer, let
A and B be relatively prime integers greater than 1, let PQ be the largest square-
free divisor of AB, with P and Q chosen so that (AB/P )1/2 is an integer. Then
if there exists a positive integer Z such that

A + B = CZ ,

we must have
Z <

1
2
QP 1/2 log P

for P ≥ 3 and

Z ≤
{

Q/2 when P = 1,
(Q + 1)/2 when P = 2.

Using this result, we show the following.

Lemma 2.7.6 The following hold.
(i) z ≤ 2p−2 − 1.
(ii) If x is odd and y is even, then z < 2p−2 − 1.

Proof. To apply Proposition 2.7.1 to (2.7.5), we put

A = 2x, B = (2p−2 − 1)y, C = 2p−2 + 1, Z = z.

Note that B > 1 since p ≥ 4.
(i) By Proposition 2.7.1, we have

z ≤ PQ

2
≤ 2(2p−2 − 1)

2
= 2p−2 − 1.

(ii) Assume that x is odd and y is even. With the notation in Proposition
2.7.1, we see that P = 2, and Q ≤ 2p−2 − 1. It follows from Proposition 2.7.1
that

z ≤ Q + 1
2

≤ 2p−3 < 2p−2 − 1. ¤

We consider the cases x > 1 and x = 1 separately.
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Lemma 2.7.7 If x > 1, then (x, y, z) = (p, 2, 2).

Proof. Assume that x > 1. It is easy to see that if z = 1, then x = y = 1
by (2.7.5). Hence z > 1. Then we see that y is even by taking (2.7.5) modulo
4. We can write y = 2Y , where Y ∈ N. Taking (2.7.5) modulo 2p−2, we have
2x ≡ 0 (mod 2p−2). This means that x ≥ p− 2.

To complete the proof, it suffices to show that x ≥ p−1. In fact, if x ≥ p−1,
then we see that z is even by taking (2.7.5) modulo 2p−1, further, by similar
observations in the case m ≥ 2, we can obtain (x, y, z) = (p, 2, 2).

Suppose that x = p− 2. We will observe that this leads to a contradiction.
Then, by the above remark, we may assume that z is odd. We can rewrite
(2.7.5) as

2p−2 + (2p−2 − 1)2Y = (2p−2 + 1)z. (2.7.6)

If p is even, then 2p−2 ≡ 1 (mod 3), so (−1)z ≡ 1 (mod 3). This means that z is
even. So we may assume that p is odd (hence x is odd). Then, by a factorization
in Z[

√−2 ], we see from (2.7.6) that
(
(2p−2 − 1)Y + 2

p−3
2
√−2

)(
(2p−2 − 1)Y − 2

p−3
2
√−2

)
= (2p−2 + 1)z.

It is easy to see that two factors on the left-hand side of the above equality are
relatively prime in a unique factorization domain Z[

√−2 ]. Hence we can write

(2p−2 − 1)Y + 2
p−3
2
√−2 = (u + v

√−2 )z, (2.7.7)

where integers u, v satisfy u2 +2v2 = 2p−2 +1. Note that u is odd and v is even
(since u2 + 2v2 ≡ 1 (mod 4)). Comparing the coefficients of

√−2 in (2.7.7), we
have

2
p−3
2 = zuz−1v − 2

(
z

3

)
uz−3v3 + · · ·+ (−1)

z−1
2 2

z−1
2 vz. (2.7.8)

Since u, z are odd, we see that the right-hand side of the above equality is
exactly divisible by the exact power of 2 in v. On the other hand, it is clear
from (2.7.8) that v divides 2

p−3
2 . Then v = ±2

p−3
2 , so u = ±1. Dividing (2.7.8)

by v, we have

±1 = z − 2
(

z

3

)
v2 + · · ·+ (−1)

z−1
2 2

z−1
2 vz−1.

This implies that z ≡ ±1 (mod 2p−2) since 2v2 = 2p−2. Hence z ≥ 2p−2 − 1.
But this contradicts (ii) in Lemma 2.7.6. ¤

Lemma 2.7.8 If x = 1, then (x, y, z) = (1, 1, 1).

Proof. Assume that x = 1. Then

2 + (2p−2 − 1)y = (2p−2 + 1)z. (2.7.9)

Taking (2.7.9) modulo 4, we see that y is odd. Since

(2p−2 − 1)y ≡ 2p−2y − 1, (2p−2 + 1)z ≡ 2p−2z + 1 (mod 22p−4),
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it follows from (2.7.9) that

2 + 2p−2y − 1 ≡ 2p−2z + 1 (mod 22p−4),

so
y ≡ z (mod 2p−2).

Suppose that y 6= z. Since |z − y| ≥ 2p−2 and y < 2z, it follows that

2p−2 ≤ |z − y| < z.

This contradicts (i) in Lemma 2.7.6. Hence y = z, so y = z = 1 by (2.7.9). ¤

Lemmas 2.7.7 and 2.7.8 complete the proof of Theorem 4.2.2 in the case
m = 1, and so Theorem 2.1.4.





Chapter 3

Analogous problem of
Jeśmanowicz’ conjecture

3.1 Analogous problem of Jeśmanowicz’ conjec-
ture

In this section we propose a similar problem to Conjecture 3.1.1. As mentioned
in Chapter 1, Sierpiński [Si] proved that the equation

3x + 4y = 5z

has the unique solution (x, y, z) = (2, 2, 2) in positive integers x, y and z. Later,
Jeśmanowicz [Je] further showed similar results for each of the following equa-
tions:

5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, 11x + 60y = 61z,

and he proposed his conjecture (Conjecture 3.1.1). It is well-known that, for
any primitive Pythagorean triple (a, b, c) satisfying a2+b2 = c2 (we may assume
that b is even), we can write

a = m2 − n2, b = 2mn, c = m2 + n2,

where integers m,n satisfy the condition

m > n > 0, gcd(m,n) = 1, m 6≡ n (mod 2).

We will always consider the above expressions.
A number of special cases of Conjecture 1.1.1 have since been settled. As

famous known results, Lu [Lu] proved that the conjecture is true if n = 1. This
is the first result on the conjecture for an infinite number of triples. Extending
some earlier works, Dem’janenko [De] proved that the conjecture is true if c =
b+1. These results include those of Sierpiński and Jeśmanowicz and are crucially
important since they are used in many earlier works. In Chapter 1 we generalized

39
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these results by proving that the conjecture is true if a ≡ ±1 (mod b) or c ≡ 1
(mod b) (Theorems 1.2.1 and 1.2.2). For other known results, see for example
[Ca, DC, Miy, Miy2].

On the other hand, for Pythagorean triples studied by Sierpiński and Jeśman-
owicz (also, Dem’janenko and others): (a, b, c) =

(3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61),

we observe that

5x + 12y = 13z, 7x + 24y = 25z, 9x + 40y = 41z, 11x + 60y = 61z,

that is, c + b = a2. Note that c = b + 1 for each of the above cases. So it is
worth studying a variant of (1):

cx + by = az (3)

where x, y, z ∈ N. We propose an analogue of Conjecture 1.1.1 which we call
the shuffle variant of Jeśmanowicz’ problem.

Conjecture 3.1.1 Let (a, b, c) be a primitive Pythagorean triple such that a2 +
b2 = c2 and b is even. Then (3) has the unique solution (x, y, z) = (1, 1, 2) if
c = b + 1, and no solutions if c > b + 1.

If c = b + 1, then, since a2 = c2 − b2 = (c + b)(c − b) = c + b, we find that
(3) always has the solution (x, y, z) = (1, 1, 2). We remark that c = b + 1 if and
only if m = n + 1.

We will prove that Conjecture 3.1.1 is true if c ≡ 1 (mod b).

Theorem 3.1.1 If c ≡ 1 (mod b), then Conjecture 3.1.1 is true.

Clearly, this is an analogue of Theorem 1.2.2. In the proof of Theorem 3.1.1,
we use similar techniques in the proof of Theorem 1.2.2, and further, a result
on lower bounds for linear forms in the logarithms of algebraic numbers based
on Baker’s theory.

In the next section we prove that Conjecture 3.1.1 is true if n = 1 (which
can be regarded as an analogue of the result in Proposition 1.2.1. This is an
important step in the proof. In fact, if n > 1, then we can use the parameters
α, β introduced in Section 1.3, which are useful to examine parities of expo-
nential variables x, y and z. It is crucially important to know parities of them
for Conjecture 3.1.1. Using them, we prove that (3) has no solutions if c ≡ 1
(mod b) and c > b + 1. In the final section we prove that (3) has the unique
solution (x, y, z) = (1, 1, 2) if c = b + 1 by using various elementary arguments
and the known result on lower bounds for linear forms in two logarithms due to
Mignotte [Mi].

In what follows, we consider the equation

(m2 + n2)x + (2mn)y = (m2 − n2)z (3.1.1)

where x, y, z ∈ N.
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3.2 Linear forms in two logarithms

In this section we quote a preliminary result on linear forms in two logarithms.
We are interested in only rational integral cases.

The following is an immediate consequence of the corollary ([Mi, pp.110–
111]).

Lemma 3.2.1 Let α1 and α2 be relatively prime positive integers greater than
1. We consider the linear form

Λ = b2 log α2 − b1 log α1,

where b1 and b2 are positive integers. Let ρ, λ, a1, a2 be real positive numbers
such that ρ ≥ 4, λ = log ρ,

ai ≥ (ρ + 1) log αi

for 1 ≤ i ≤ 2, and
a1a2 ≥ max{20, 4λ2}.

Further, let h be a real number such that

h ≥ max

{
3.5, 1.5λ, log

(
b1

a2
+

b2

a1

)
+ log λ + 1.4

}
.

We put χ = h/λ and v = 4χ + 4 + 1/χ. Then we have the lower bound

log |Λ| ≥ −(C0 + 0.06)(λ + h)2 a1 a2,

where

C0 =
1
λ3

{(
2 +

1
2χ(χ + 1)

)(
1
3

+

√
1
9

+
4λ

3v

(
1
a1

+
1
a2

)
+

32
√

2(1 + χ)3/2

3v2
√

a1a2

)}2

.

Using this lemma, we prove the following.

Lemma 3.2.2 Let (x, y, z) be a solution of (3.1.1). If y = 1, then x < 4020 log a.

Proof. Let (x, y, z) be a solution of (3.1.1). Assume that y = 1, namely,

cx + b = az

where a = m2−n2, b = 2mn and c = m2 + n2. Note that a ≥ 3 and c ≥ 5. Put

Λ = z log a− x log c.

Then Λ > 0. Since

z log a = log(cx + b) = x log c + log
(

1 +
b

cx

)
< x log c +

b

cx
,
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we have
log Λ < log b− x log c.

We will obtain a lower bound for log Λ by using Lemma 3.2.1. With the
notation in Lemma 3.2.1, we put (α1, α2, b1, b2) = (c, a, x, z). We may take
a1 = (ρ + 1) log c and a2 = (ρ + 1) log a. Let ρ = 4.69 and λ = log ρ. Then we
see that a1a2 ≥ max{20, 4λ2}. Since cx+1 − az = (c− 1)cx − b ≥ 4c− b > 0, we
have z/ log c < (x + 1)/ log a, so

x

log a
+

z

log c
< 2s +

1
log a

≤ 2s +
1

log 3
,

where s = x/ log a. Then we may take

h = max

{
3.5, log

(
2s +

1
log 3

)
+ log λ + 1.4

}
.

We will treat the two possible choices for h in turn. If h = 3.5, then log(2s+
1/ log 3) < 1.7, so s < e1.7/2 = 2.7. Hence the lemma holds.

Next we consider the case where

h = log
(

2s +
1

log 3

)
+ log λ + 1.4 ≥ 3.5.

We will find an upper bound for C0. Since χ ≥ (3.5)/λ and v/4 > χ + 1 in
Lemma 3.2.1, we see that

1
2χ(χ + 1)

≤ λ

(24.5)/λ + 7
,

4λ

3v

(
1
a1

+
1
a2

)
<

λ

3(χ + 1)(ρ + 1)

(
1

log 3
+

1
log 5

)

≤ λ

3((3.5)/λ + 1)(ρ + 1)

(
1

log 3
+

1
log 5

)
,

and

32
√

2(1 + χ)3/2

3v2
√

a1a2
<

32
√

2(v/4)3/2

3v2
√

a1a2

=
4
√

2
3
√

va1a2

<
2
√

2
3(ρ + 1)

√
(χ + 1) log 3 log 5

≤ 2
√

2
3(ρ + 1)

√
((3.5)/λ + 1) log 3 log 5

.

Hence C0 < 0.7508. By Lemma 3.2.1, we have

−26.25(h + λ)2 log a log c < log Λ < log b− x log c,
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so

s <
log b

log a log c
+ 26.25(h + λ)2

≤ 1
log 3

+ 26.25
(

log
(

2s +
1

log 3

)
+ λ + log λ + 1.4

)2

.

This implies that s < 4020. ¤

3.3 Proof of Theorem 3.1.1

In this section we prove Theorem 3.1.1.

3.3.1 The case n = 1

In this subsection we prove that Conjecture 3.1.1 is true if n = 1. When n = 1,
m may be any even positive integer.

The following can be regarded as an analogue of Proposition 1.2.1.

Proposition 3.3.1 If n = 1, then Conjecture 3.1.1 is true.

Proof. When n = 1, we rewrite (3.1.1) as

(m2 + 1)x + (2m)y = (m2 − 1)z (3.3.1)

where x, y, z ∈ N and m is an even positive integer.
Let (x, y, z) be a solution of (3.3.1). Taking (3.3.1) modulo 2m, we have

(−1)z ≡ 1 (mod 2m). Hence z is even since 2m ≥ 3. We can write z = 2Z,
where Z ∈ N.

Suppose that y > 1. We will observe that this leads to a contradiction.
Taking (3.3.1) modulo 2m2, we have m2x+1 ≡ 1 (mod 2m2), so x ≡ 0 (mod 2).
We can write x = 2X, where X ∈ N. From (3.3.1) we define even positive
integers A and B as follows:

(2m)y = AB, (3.3.2)

where

A = (m2 − 1)Z + (m2 + 1)X , B = (m2 − 1)Z − (m2 + 1)X .

It is easy to see that gcd(A, B) = 2 and

A ≡ (−1)Z + 1, B ≡ (−1)Z − 1 (mod 2m).

We claim that Z is odd. Indeed, if Z is even, then A ≡ 2 (mod 2m), that is,
A/2 ≡ 1 (mod m). This means that A/2 is odd and prime to m. It follows
from (3.3.2) that A = 2, which is clearly absurd. Hence Z is odd. Then B ≡ −2
(mod 2m), that is, B/2 ≡ −1 (mod m). This means that B/2 is odd and prime
to m. It follows from (3.3.2) that B = (m2 − 1)Z − (m2 + 1)X = 2. Taking
this modulo m2, we have 4 ≡ 0 (mod m2) since Z is odd. Hence m = 2,
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so A = 3Z + 5X = 22y−1 and B = 3Z − 5X = 2. But this implies that
3Z = (A + B)/2 = 4y−1 + 1 ≡ 2 (mod 3), which is absurd. Therefore, y = 1.

Taking (3.3.1) modulo m2, we have 1 + 2m ≡ 1 (mod m2), so 2 ≡ 0
(mod m). Hence m = 2 and 5x + 4 = 32Z . From this we have 5x = (3Z +
2)(3Z − 2). Since these two factors are relatively prime, we see that 3Z − 2 = 1,
so Z = 1, hence x = 1. This completes the proof of Proposition 3.3.1. ¤

3.3.2 Preliminaries

In this subsection we prepare some lemmas for the proof of Theorem 3.1.1.
First, we give lemmas to examine parities of exponential variables x, y and z.
It is crucially important to know parities of them for Conjecture 3.1.1.

We consider the case where 2α 6= β + 1. The following two lemmas will be
used to determine parities of exponential variables. In particular, Lemma 3.3.1
will play an important role in the proof of the theorem.

Lemma 3.3.1 Let (x, y, z) be a solution of (3.1.1). If y > 1, then x ≡ z
(mod 2).

Lemma 3.3.2 Let (x, y, z) be a solution of (3.1.1). If x and z are even, then
X ≡ Z (mod 2), where X = x/2 and Z = z/2.

We can prove these lemmas just like as the proofs of Lemmas 1.3.1 and 1.3.2.

3.3.3 The case c ≡ 1 (mod b) and c > b + 1

In this subsection we prove that (3.1.1) has no solutions if c ≡ 1 (mod b) and
c > b + 1.

Assume that c ≡ 1 (mod b), or equivalently,

m2 + n2 = 1 + 2mnt, (3.3.3)

where t ∈ N. Then

m2 ≡ 1 (mod n), (3.3.4)

n2 ≡ 1 (mod m). (3.3.5)

By Proposition 3.3.1, we may assume that n > 1. We first prove an important
lemma.

Lemma 3.3.3 With the notation in (1.3.1), we have
(i) m or n is divisible by 2t.
(ii) 2α 6= β + 1.

Proof. (i) Since m > n, we see from (3.3.3) that 2m2 > m2 + n2 > 2mnt,
so m > nt. By (3.3.3), we see that (U, V ) = (m − nt, n) is a positive integer
solution of the Pellian equation

U2 − (t2 − 1)V 2 = 1.
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Since t +
√

t2 − 1 is the fundamental solution of the above Pellian equation, all
of the pairs (m,n) satisfying (3.3.3) are given by

m = Ul + tVl, n = Vl,

where positive integers Ul and Vl are defined by

Ul + Vl

√
t2 − 1 = (t +

√
t2 − 1 )l ; l ≥ 1.

We will prove (i) by induction on l. It is clear for l = 1. Assume that (i) holds
for some positive integer l, namely,

Ul + tVl ≡ 0 (mod 2t) or Vl ≡ 0 (mod 2t).

Then Ul+1 = tUl + (t2 − 1)Vl and Vl+1 = Ul + tVl. If Ul + tVl ≡ 0 (mod 2t),
then Vl+1 ≡ 0 (mod 2t). If Vl ≡ 0 (mod 2t), then

Ul+1 + tVl+1 = 2tUl + (2t2 − 1)Vl ≡ 0 (mod 2t).

Hence (i) is proved.
(ii) We consider the case where m is even. As defined in (1.3.1), we put

m = 2αi and n = 2βj + e. By (i), we know that 2αi is divisible by 2t, in
particular, ord2(2t) ≤ α since i is odd. It follows from (3.3.3) that

β + 1 = ord2 ((n− 1)(n + 1)) = ord2 (m(m− 2nt)) = α + ord2(m− 2nt).

Hence it suffices to check that ord2(m − 2nt) 6= α. If ord2(2t) < α, then
ord2(2nt) < α, so ord2(m − 2nt) = ord2(2nt) < α. If ord2(2t) = α, then
ord2(m− 2nt) = α + ord2(i− n(2t/2α)) > α. Therefore, 2α 6= β + 1. Similarly,
we can prove (ii) for the case where m is odd. ¤

Lemma 3.3.4 Let (x, y, z) be a solution of (3.1.1). Then z is even.

Proof. Taking (3.1.1) modulo m, we have (n2)x ≡ (−n2)z (mod m). Then
(−1)z ≡ 1 (mod m) by (3.3.5). Hence z is even since m > n > 1. ¤

The first purpose of this section is to prove the following.

Proposition 3.3.2 If c ≡ 1 (mod b) with c > b + 1, then (3.1.1) has no solu-
tions with y > 1.

For the proof of Proposition 3.3.2, we further assume that c > b + 1, that
is, m > n + 1 or t > 1. Let (x, y, z) be a solution of (3.1.1). Then x < z since
c > a. By Lemma 3.3.4, we can write z = 2Z, where Z ∈ N.

Suppose that y > 1. We will observe that this leads to a contradiction. By
Lemma 3.3.1 and (ii) in Lemma 3.3.3, we see that x is even. We can write
x = 2X, where X ∈ N. From (3.1.1) we define even positive integers D and E
as follows:

(2mn)y = DE, (3.3.6)
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where

D = (m2 − n2)Z + (m2 + n2)X ,

E = (m2 − n2)Z − (m2 + n2)X .

It is easy to see that gcd(D, E) = 2. By (3.3.4) and (3.3.5), we have

D ≡ (−1)Z + 1, E ≡ (−1)Z − 1 (mod m)

and
D ≡ 2, E ≡ 0 (mod n).

We prepare some lemmas.

Lemma 3.3.5 X and Z are odd.

Proof. By Lemma 3.3.2 and (ii) in Lemma 3.3.3, we know that X ≡ Z (mod 2).
Suppose that X and Z are even. Then

D ≡ 2 (mod 4), D ≡ 2 (mod m), D ≡ 2 (mod n).

This implies that D/2 is odd and prime to mn. It follows from (3.3.6) that
D = 2, which is clearly absurd. Therefore, X and Z are odd. ¤

By Lemma 3.3.5, we have

D ≡ 0, E ≡ −2 (mod m).

It is easy to see that E ≡ 2 (mod 4) if m is even, and D ≡ 2 (mod 4) if m is
odd.

Lemma 3.3.6 y is even.

Proof. First, we consider the case where m is even. Then

E ≡ 2 (mod 4), E ≡ −2 (mod m), D ≡ 2 (mod n).

This implies that E/2 is odd and prime to m, and D is prime to n. It follows
from (3.3.6) that D = 2y−1my and E = 2ny. Hence (m2−n2)Z = (D +E)/2 =
2y−2my + ny. Since Z is odd, we see from (3.3.5) that

ny ≡ −1 (mod m).

By (3.3.5), we see that if y is even, then 2 ≡ 0 (mod m), so m = 2, hence n = 1,
which is an excluded case. Further, if y is odd, then n + 1 ≡ 0 (mod m), so
m = n + 1, which is an excluded case.

Next, we consider the case where m is odd. Then

D ≡ 2 (mod 4), E ≡ −2 (mod m), D ≡ 2 (mod n).
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This implies that D/2 is odd and prime to n, and E is prime to m. It follows
from (3.3.6) that D = 2my and E = 2y−1ny. Hence (m2−n2)Z = (D +E)/2 =
my + 2y−2ny. We see from (3.3.4) that

my ≡ 1 (mod n).

Suppose that y is odd. We will observe that this leads to a contradiction. Then
m ≡ 1 (mod n) by (3.3.4). We can write m = 1+hn, where h ∈ N. Substituting
this into (3.3.3), we have

np = 2(t− h),

where p = h(h − 2t) + 1. By (i) in Lemma 3.3.3, we know that n is divisible
by 2t, so h is divisible by t. In particular, h = t or h ≥ 2t. If h = t, then
p = 0, so t2 = 1, hence t = 1, which is an excluded case. If h ≥ 2t, then
p = h(h − 2t) + 1 > 0, so t − h = (np)/2 > 0, which is clearly absurd. We
conclude that y is even. ¤

By Lemma 3.3.6 and its proof, we may assume that m is odd and y is even.
We can write y = 2Y , where Y ∈ N. Furthermore, we have

D = 2m2Y , E = 22Y−1n2Y .

We will obtain sharp upper and lower bounds for solutions.

Lemma 3.3.7 2m ≤ Z −X.

Proof. Taking (3.1.1) modulo m2, we have (n2)2X ≡ (n2)2Z (mod m2). We
see from (3.3.3) that n2 ≡ 1 + 2mnt (mod m2). Hence (1 + 2mnt)2X ≡ (1 +
2mnt)2Z (mod m2), so 4mntX ≡ 4mntZ (mod m2). Similarly, we can prove
that 4mntX ≡ 4mntZ (mod n2) by taking (3.1.1) modulo n2. Hence 4mntX ≡
4mntZ (mod m2n2) as gcd(m,n) = 1, so 4tX ≡ 4tZ (mod mn). By (i) in
Lemma 3.3.3, we know that n is divisible by 2t. Therefore, 2X ≡ 2Z (mod m),
so X ≡ Z (mod m) since m is odd. Furthermore, X ≡ Z (mod 2m) by Lemma
3.3.5. Since Z > X, we conclude that 2m ≤ Z −X. ¤

Lemma 3.3.8 We have

Z < 4Y, Y ≤ log(c− 1)
8 log 2

.

Proof. Since {cX , bY , aZ} forms a primitive Pythagorean triple, we can write

cX = k2 − l2, bY = 2kl, aZ = k2 + l2,

where integers k, l satisfy the condition k > l > 0, gcd(k, l) = 1 and k 6≡ l
(mod 2). Since b < a2, we see that aZ < 4k2l2 = b2Y < a4Y , so

Z < 4Y.

Since E = aZ − cX = 2l2, we have

l = 2Y−1nY .
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Further, since (k + l)(k − l) = cX and gcd(k + l, k − l) = 1, we can write

k + l = uX , k − l = vX ,

where odd integers u, v satisfying u > v > 0 and uv = c. Hence

(2n)Y = 2l = uX − vX = (u− v)w,

where

w =
uX − vX

u− v
= uX−1 + uX−2v + · · ·+ vX−1

is an integer. Since w is a sum of X odd integers, we see from Lemma 3.3.5 that
w is odd. Therefore, we obtain

(α + 1)Y = ord2(u− v).

Since u− v ≤ u− 1 ≤ c− 1, it follows that

Y =
ord2(u− v)

α + 1
≤ log(u− v)

(α + 1) log 2
≤ log(c− 1)

2 log 2
. ¤

Since c = m2 +n2 ≤ m2 +(m−1)2 = 2m2−2m+1, it follows from Lemmas
3.3.7 and 3.3.8 that

2m + 2 ≤ 2 log(2m2 − 2m)
log 2

,

which is a contradiction. This completes the proof of Proposition 3.3.2.
At the end of this section, we prove the following.

Proposition 3.3.3 If c ≡ 1 (mod b) and c > b+1, then (3.1.1) has no solutions
with y = 1.

Proof. Assume that c ≡ 1 (mod b) with c > b + 1. By Proposition 3.3.1,
it suffices to consider the case where n > 1. Let (x, y, z) be a solution of
(3.1.1). By the same observations in the proof of Lemma 3.3.4, we see that z
is even. We can write z = 2Z, where Z ∈ N. Suppose that y = 1. We will
observe that this leads to a contradiction. By similar observations in the proof
of Lemma 3.3.7, we see that (1 + 2mnt)x + 2mn ≡ (1 + 2mnt)z (mod m2n2),
so 2tx + 2 ≡ 2tz (mod mn). It follows from (i) in Lemma 3.3.3 that 2 ≡ 0
(mod 2t), so t = 1, that is, c = b + 1. This is a contradiction. This completes
the proof of Proposition 3.3.3. ¤

3.3.4 The case c = b + 1

In this subsection we will complete the proof of Theorem 3.1.1. By Propositions
3.3.2 and 3.3.3, it suffices to prove that if c = b + 1, that is, m = n + 1, then
(3.1.1) has the unique solution (x, y, z) = (1, 1, 2).

When m = n + 1, we rewrite (3.1.1) as

(2m2 − 2m + 1)x +
(
2m(m− 1)

)y = (2m− 1)z (3.3.7)
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where x, y, z ∈ N, and m is a positive integer such that m ≥ 2. By Proposition
3.3.1, it suffices to consider the case where m ≥ 3.

Let (x, y, z) be a solution of (3.3.7). Then z is even by Lemma 3.3.4. We
can write z = 2Z, where Z ∈ N. First we will show that y = 1. For this we
consider the case where m is even and the case where m is odd separately.

Lemma 3.3.9 If m is even, then y = 1.

Proof. Assume that m is even. Suppose that y > 1. We will observe that this
leads to a contradiction. By Lemma 1.3.1 and (ii) in Lemma 3.3.3, we see that
x is even. We can write x = 2X, where X ∈ N. Similarly to the proof of Lemma
3.3.6, we observe that

D = (2m− 1)Z + (2m2 − 2m + 1)X = 2y−1my,

E = (2m− 1)Z − (2m2 − 2m + 1)X = 2(m− 1)y.

Then (2m2 − 2m + 1)X = (D − E)/2 = 2y−2my − (m − 1)y. Since 2y−2my is
divisible by 2m and (m − 1)y ≡ (−1)y−1my + (−1)y (mod 2m), we see that
1 ≡ (−1)ymy + (−1)y+1 (mod 2m), that is,

(−1)y + 1 ≡ my (mod 2m).

From this we have (−1)y ≡ −1 (mod m), so y is odd since m ≥ 3. Then, how-
ever, the above congruence implies that my ≡ 0 (mod 2m), so y ≡ 0 (mod 2),
which is a contradiction. We conclude that y = 1. ¤

Lemma 3.3.10 If m is odd, then y = 1.

Proof. Assume that m is odd. Suppose that y > 1. We will observe that this
leads to a contradiction. By Lemma 1.3.1 and (ii) in Lemma 3.3.3, we see that
x is even. We can write x = 2X, where X ∈ N. Similarly to the proof of Lemma
3.3.6, we observe that

D = (2m− 1)Z + (2m2 − 2m + 1)X = 2my,

E = (2m− 1)Z − (2m2 − 2m + 1)X = 2y−1(m− 1)y.

If m = 3, then 5Z = (D+E)/2 = 3y +4y−1, which contradicts the result in [Si].
If y = 2, then X = Z = 1 by the first equation above, which is absurd since
x < z. Hence m ≥ 5 and y ≥ 3. Since D > E, it follows that

1 <
D

E
= 4

(
m

2(m− 1)

)y

= 4
(

5
8

)y

≤ 4
(

5
8

)3

=
125
128

,

which is a contradiction. We conclude that y = 1. ¤

By Lemmas 3.3.9 and 3.3.10, we rewrite (3.3.7) as

(M + 1)x + M = (2M + 1)Z (3.3.8)
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for x,Z ∈ N where M = 2m(m − 1). Note that M is divisible by 4 (since the
product of two consecutive integers m(m− 1) is even). It suffices to prove that
(3.3.8) has the unique solution (x,Z) = (1, 1).

Let (x,Z) be a solution of (3.3.8). Taking (3.3.8) modulo M + 1, we have
(−1)Z ≡ −1 (mod M + 1). Hence Z is odd.

We claim that x = 1 if x ≤ Z or x + 1 ≥ 2Z. If x ≤ Z, then

M ≤ (2M + 1)x − (M + 1)x ≤ (2M + 1)Z − (M + 1)x = M.

This implies that x = Z = 1. If x + 1 ≥ 2Z, then

(M + 1)2Z < (M + 1)2Z + M(M + 1)

≤ (M + 1)x+1 + M(M + 1)

= (M + 1)(2M + 1)Z

< (M + 1)Z+1 2Z ,

so (
M + 1

2

)Z−1

< 2.

Since M ≥ 4, it follows that Z = 1, so x = 1.
To obtain a sharp lower bound for x and some necessary conditions on the

existence of solutions of (3.3.8), we prove the following lemma.

Lemma 3.3.11 If x > 1, then the following hold.
(i) 2Z ≡ 1 (mod M +1) and x+1 ≡ 2Z (mod 2M). In particular, x is odd.
(ii) x ≥ 2M + 5.

Proof. We know that Z is odd. Suppose that x > 1. Then Z < x and x+1 < 2Z.
(i) Taking (3.3.8) modulo (M + 1)2, we have M ≡ −M2Z (mod (M + 1)2),

so M2Z−1 + 1 ≡ 0 (mod (M + 1)2). Hence

1−M + M2 − · · ·+ M2Z−2 =
M2Z−1 + 1

M + 1
≡ 0 (mod M + 1),

so 2Z ≡ 1 (mod M + 1).
Since M is divisible by 4, we observe that

(M + 1)x ≡
(

x

2

)
M2 + Mx + 1, (2M + 1)Z ≡ 2MZ + 1 (mod 2M2).

By (3.3.8), we have
(

x

2

)
M2 + Mx + 1 + M ≡ 2MZ + 1 (mod 2M2),

so

x + 1 +
(

x

2

)
M ≡ 2Z (mod 2M).
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Reducing this modulo 4, we have x ≡ 1 (mod 4) since Z is odd. It follows from
the above congruence that x + 1 ≡ 2Z (mod 2M).

(ii) Since Z ≤ x− 2 and x + 1 < 2Z, it follows from (i) that

x + 1 + 2M ≤ 2Z ≤ 2x− 4,

so 2M + 5 ≤ x. ¤

Now we are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let (x, Z) be a solution of (3.3.8). By Lemma 3.2.2,
we see that x < 2010 log(2M + 1). Suppose that x > 1. We will observe that
this leads to a contradiction. By (ii) in Lemma 3.3.11, we have

2M + 5 ≤ x < 2010 log(2M + 1).

This implies that M ≤ 9940. It remains to consider M ’s such that M ≤ 9940
and M ≡ 0 (mod 4). Fix such a M . Then, for each x in the above range,
we can determine the corresponding Z by using the inequalities (2M + 1)Z <
(M + 1)x+1 < (2M + 1)Z+1 (which easily follows from (3.3.8)). Additionally,
we can check that such a pair (x,Z) does not satisfy all of the conditions of (i)
in Lemma 3.3.11. This is a contradiction. We conclude that x = 1, so Z = 1.
This completes the proof of Theorem 3.1.1. ¤





Chapter 4

Upper bounds for solutions

4.1 Results on upper bounds for solutions

In this section we give several sharp upper bounds for solutions x, y, z of (1) in
terms of a, b, c for the following cases:

(1) x, y and z are even.

(2) x, y are even and z is odd.

(3) x and z are divisible by 4.

(4) x, z are even and y is odd.

For Cases (1) and (2), we should consider the case where c is odd. Indeed,
if c is even and (1) has a solution with even x and y, then cz is a sum of two
squares of odd integers, so it is exactly divisible by 2, which implies that z = 1.

For a prime number p and a non-zero integer m, we denote ordp(m) by the
exact power of p in m.

For Cases (1) and (4), we will use the following elementary fact on 2-adic
calculations (cf. [Ri, p.11; P1.2]).

Lemma 4.1.1 Let U and V be odd positive integers with U > V , and e be a
positive integer. Then

ord2

(
U2e − V 2e

)
= ord2(U ± V ) + ord2(e) + 1

for the proper sign for which ord2(U ± V ) ≥ 2.

Theorem 4.1.1 We consider the case where b is even. Let (x, y, z) be a solution
of (1). Assume that x, y and z are even. We write x = 2X, y = 2Y and z = 2Z.
Then the following (i) and (ii) hold.

(i) If

(a, c, X, Y, Z) 6=
(

b2q

4
− 1,

b2q

4
+ 1, 1, q, 1

)
; q ≥ 1,

53



54 CHAPTER 4. UPPER BOUNDS FOR SOLUTIONS

then

X <
2Y log(b/2)

log a
, Z <

2Y log(b/2) + log 2
log c

.

(ii) Suppose that Y > 1. If

(Y, Z) 6=
(

log(c− 1)
log b

, 1
)

,

then

Y ≤ log min
(
a/p(a) + p(a), 2

√
c− 1

)

ord2(b) log 2
,

where p(a) is the least prime factor of a.

Proof. Assume that x, y and z are even. We can write x = 2X, y = 2Y and
z = 2Z, where X, Y, Z ∈ N. As is well-known (cf. [Ri, p.32; P3.1]), we can write

aX = k2 − l2, bY = 2kl, cZ = k2 + l2,

where integers k, l satisfy the condition k > l > 0, gcd(k, l) = 1 and k 6≡ l
(mod 2). Since (k + l)(k − l) = aX and gcd(k + l, k − l) = 1, we can write

k + l = uX , k − l = vX ,

where odd integers u, v satisfy the condition u > v > 0, gcd(u, v) = 1 and
uv = a.

We consider the cases l = 1 and l > 1 separately.
First, we consider the case l = 1. Then k2 − aX = 1 and cZ − k2 = 1. We

know that these are Catalan’s equations. Since a is odd, it follows from [Ko, Le]
that X = Z = 1. Hence k = bY/2, so a = b2Y/4− 1 and c = b2Y/4 + 1.

In what follows, we consider the case l > 1. We claim that l ≥ 2Y−1. If l
is even, then 2l is a Y -th power of an even positive integer since 2kl = bY and
gcd(k, 2l) = 1, in particular, l ≥ 2Y−1. If l is odd, then l is a Y -th power of an
odd positive integer since 2kl = bY and gcd(2k, l) = 1, in particular, l ≥ 3Y .

Since aX < k2 = b2Y /(4l2) and cZ < 2k2 = b2Y /(2l2), we can obtain the
desired upper bounds for X and Z.

From the results [CD, Theorem 5] and [CD2, Lemma 10], we see that Y = 1
or X, Z are odd. From now on, we assume that Y > 1. Then both X and Z
are odd.

We consider the cases v = 1 and v > 1 separately.
If v = 1, then k − l = 1, so cZ − bY = (k − l)2 = 1. Since Y > 1 and Z is

odd, it follows from [Mi] that Z = 1.
In what follows, we assume that v > 1. Since 4kl = (k + l)2 − (k − l)2 =

u2X − v2X , we see from Lemma 4.1.1 that

Y ord2(b) = ord2(bY )
= ord2(2kl)

= ord2

(
u2X − v2X

2

)

= ord2

(
u2X − v2X

)−1 = ord2(u± v)
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for the proper sign. Since v > 1, we see that u ± v ≤ u + v ≤ a/p(a) + p(a),
hence

Y =
ord2(u± v)

ord2(b)
≤ log

(
a/p(a) + p(a)

)

ord2(b) log 2
.

On the other hand, we rewrite k2 + l2 = cZ as

(k + l
√−1 )(k − l

√−1 ) = cZ .

Since c is odd, we see that two factors on the left-hand side in the above equality
are relatively prime in Z[

√−1 ]. Hence there exist integers a1, b1 with a 2
1 +b 2

1 = c
such that

k + l
√−1 = (a1 + b1

√−1 )Z .

Note that a1 6≡ b1 (mod 2). Since Z is odd, we have

k = a1

(
aZ−1
1 −

(
Z

Z − 2

)
aZ−3
1 b 2

1 + · · · ±
(

Z

3

)
a 2
1 bZ−3

1 ± ZbZ−1
1

)
,

l = b1

(
ZaZ−1

1 −
(

Z

Z − 3

)
aZ−3
1 b 2

1 + · · · ±
(

Z

2

)
a 2
1 bZ−3

1 ± bZ−1
1

)
.

It is easy to see that k/ a1 and l/ b1 are odd integers. Since

Y ord2(b) = ord2(bY ) = ord2(2kl) = ord2(2a1b1),

it follows that

Y =
ord2(2a1b1)

ord2(b)
.

Since a1 6≡ b1 (mod 2) and |a1|, |b1| ≤
√

c− 1, we obtain

Y ≤ log
(
2
√

c− 1
)

ord2(b) log 2
.

¤

Remark 4.1.1 Under the assumption of Theorem 4.1.1, we can not generally
deduce upper bounds for Y such as Y ≤ C log b, where C is an absolute constant.
Indeed, we know the following identity:

(22p−2 − 1)2 + 22p = (22p−2 + 1)2 (p ≥ 2).

Theorem 4.1.2 We consider the case where b is even. Put

C2 =
2 log max(a, b)

log 3
.

Let (x, y, z) be a solution of (1). Assume that x, y are even and z is odd. We
write x = 2X and y = 2Y . Then

Y ≤ log(c− 1)
2 ord2(b) log 2

.
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Further, we suppose that c− 1 is not a square, or

ord2(c− 1)
2 ord2(b)

<
log(c− 1)

2 log b
,

or

Y 6= ord2(c− 1)
2 ord2(b)

.

Then

(i) X ≤ log(c− 1)
log 3

, z < C2 +
log 2
log c

if z ≤ √
c− 1,

(ii) X ≤ 2 log z

log 3
,

z

log z
<

2 C2

log c
+

2 log 2
log2c

if
√

c− 1 < z.

If C2 ≤
√

c− (log 2)/ log c, then (i) holds.

Proof. Assume that x, y are even and z is odd. We can write x = 2X and
y = 2Y , where X,Y ∈ N. It suffices to consider the case where c = 5 or c ≥ 13.
Indeed, c is odd, and c can not have any prime factors congruent to 3 modulo
4 since cz is a sum of two squares of relatively prime integers.

We rewrite (1) as

(aX + bY
√−1 )(aX − bY

√−1 ) = cz.

Since c is odd, we see that two factors on the left-hand side in the above equality
are relatively prime in Z[

√−1 ]. Hence there exist integers a2, b2 with a 2
2 +b 2

2 = c
such that

aX + bY
√−1 = (a2 + b2

√−1 )z.

Note that a2 6≡ b2 (mod 2). Since z is odd, we have

aX = a2

(
a z−1
2 −

(
z

z − 2

)
a z−3
2 b 2

2 + · · · ±
(

z

3

)
a 2
2 b z−3

2 ± zb z−1
2

)
,

bY = b2

(
za z−1

2 −
(

z

z − 3

)
az−3
2 b 2

2 + · · · ±
(

z

2

)
a 2
2 b z−3

2 ± b z−1
2

)
.

It is clear that a2 divides aX and b2 divides bY . In particular, a2 and b2 are
relatively prime non-zero integers. Then a2 is odd since a is odd, so b2 is even.
Since a2, z are odd, we see that bY / b2 is an odd integer, in particular,

Y =
ord2(b2)
ord2(b)

.

Since |b2| ≤
√

c− 1, we have

Y ≤ log(c− 1)
2 ord2(b) log 2

≤ log
√

c− 1
log 2

.

We consider the cases |a2| = 1 and |a2| > 1 separately.



4.1. RESULTS ON UPPER BOUNDS FOR SOLUTIONS 57

First, we consider the case |a2| = 1. Then, since b 2
2 = c − 1, we see that

b2Y/(c− 1) =
(
bY / b2

)2 is an odd positive integer, in particular,

log(c− 1)
2 log b

≤ Y =
ord2(c− 1)
2 ord2(b)

.

Next, we consider the case |a2| > 1. Then a2 has an odd prime factor p.
Hence p divides a, and p does not divide b since gcd(a, b) = 1. It is easy to see
that c 6= 5, so c ≥ 13. The argument below is based on an observation in [HY].

We claim that
X ordp(a) = ordp(a2) + ordp(z).

For this, it suffices to show that if z is divisible by p, then

ordp

((
z

i

)
ai−1
2

)
> ordp(z)

for i = 3, 5, ..., z. Then, since p ≥ 3, i ≥ 3 and

ordp(i!) =
∞∑

j=1

⌊
i

p j

⌋
<

∞∑

j=1

i

p j
=

i

p− 1
,

where b · c is the floor function, we see that

ordp

((
z

i

)
a i−1
2

)
= ordp

(
z(z − 1) · · · (z − i + 1)

i!

)
+ ordp

(
a i−1
2

)

= ordp

(
z(z − 1) · · · (z − i + 1)

)− ordp(i!) + (i− 1) ordp(a2)

> ordp(z)− i

p− 1
+ i− 1

= ordp(z) +
(

p− 2
p− 1

)
i− 1

> ordp(z).

Hence the claim holds. Then, since |a2| ≤
√

c− 1, we have

X ≤ ordp(a2) + ordp(z) ≤ log |a2|+ log z

log p
≤ 2 log max

(√
c− 1, z

)

log 3
,

so

M := max(X, Y ) ≤ 2 log max
(√

c− 1, z
)

log 3
.

Since cz = a2X + b2Y ≤ a2M + b2M < 2max(a, b)2M , we have

z <
2M log max(a, b)

log c
+

log 2
log c

.

If z ≤ √
c− 1, then M ≤ (log c)/ log 3 and z < C2 +(log 2)/ log c, so Case (i)

holds.
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If
√

c− 1 < z, then
√

c ≤ z and M ≤ (2 log z)/ log 3, so

z

log z
<

2M log max (a, b)
(log c) log z

+
log 2

(log c) log z
<

2 C2

log c
+

2 log 2
log2c

,

hence Case (ii) holds. Further, since c ≥ 13 and

z log c

log z
< 2 C2 +

2 log 2
log c

,

we have

2
√

c =
√

c log c

log
√

c
< 2 C2 +

2 log 2
log c

,

so C2 >
√

c − (log 2)/ log c. From this we see that if C2 ≤
√

c − (log 2)/ log c,
then z ≤ √

c− 1, so Case (i) holds. ¤

Remark 4.1.2 In the statement of Theorem 4.1.2, the condition C2 ≤
√

c −
(log 2)/ log c holds if a2 + b2 = c. Indeed, if a2 + b2 = c, then

√
c− log 2

log c
>

√
a2 + b2 − 1 > max(a, b)− 1

and
max(a, b)− 1
log max(a, b)

≥ 2
log 3

.

This is valid since max(a, b) ≥ 3.

Theorem 4.1.3 We consider the case where b is even. Let (x, y, z) be a solution
of (1). Assume that x and z are divisible by 4. We write x = 4X and z = 4Z.
Then

y <
log b

ord2(b) log 2
, X <

log
(
b/2ord2(b)

)

2 log a
y, Z <

log
(
b/2ord2(b)−1

)

2 log c
y.

Proof. Assume that x and z are divisible by 4. We can write x = 4X and
z = 4Z, where X, Z ∈ N. As is well-known (cf. [Ri, p.34; P3.2]), there are
no positive integers A,B and C such that A4 + B2 = C4. Hence it suffices to
consider the case where y is odd.

From (1) we define positive integers D, E as follows:

by = DE,

where
D = c2Z + a2X , E = c2Z − a2X .

It is easy to see that gcd(D, E) = 2, and that D is exactly divisible by 2 since it
is a sum of two squares of odd integers. Hence there exist relatively prime odd
positive integers s, t with b = 2βst such that

D = 2sy, E = 2βy−1ty,
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where β = ord2(b) ≥ 1.
Since D ≤ by/2βy−1, a2X < D/2 and c2Z < D, we can obtain the desired

upper bounds for X and Z.
Then β ≥ 2 or t ≥ 3. Indeed, if β = 1 and t = 1, then 2y−1 = (cZ +aX)(cZ−

aX), so cZ + aX = 2y−2. This implies that 2sy = D < (cZ + aX)2 = 22y−4, so
s < 4. This is absurd since we see from the first equality above that s > 1 and
s can not be divisible by 3.

We rewrite c2Z + a2X = 2sy as

(cZ + aX
√−1 )(cZ − aX

√−1 ) = (1 +
√−1 )(1−√−1 )sy.

It is easy to see that two factors on the left-hand side in the above equality are
relatively prime in Z[

√−1 ]. Hence there exist integers d1, e1 with d 2
1 + e 2

1 = s
such that

cZ + aX
√−1 = (1 + ε

√−1 )(d1 + e1

√−1 )y,

where ε = ±1. Note that d1 6≡ e1 (mod 2). Let I and J be the real part and
the imaginary part of (d1 + e1

√−1 )y, respectively. Then

I = d1

(
d y−1
1 −

(
y

2

)
d y−3
1 e 2

1 + · · · ± ye y−1
1

)
,

J = e1

(
yd y−1

1 −
(

y

3

)
d y−3
1 e 2

1 + · · · ± e y−1
1

)
,

further, cZ + εaX = 2I and cZ − εaX = −2εJ . Hence

2βy−1ty = E = (cZ + εaX)(cZ − εaX) = −4εIJ.

Since y is odd and d1 6≡ e1 (mod 2), we see that I/d1 and J/e1 are odd integers,
so

βy − 1 = ord2(4εIJ) = ord2(4d1e1) = ord2(d1e1) + 2.

Since 2|d1e1| < d 2
1 + e 2

1 = s = b/(2βt), and β ≥ 2 or t ≥ 3, it follows that

βy = ord2(d1e1) + 3

≤ log |d1e1|
log 2

+ 3

<
log

(
b/( 2β+1 t)

)

log 2
+ 3

=
log b

log 2
−

(
β +

log t

log 2

)
+ 2 ≤ log b

log 2
,

so the conclusion holds. ¤

Remark 4.1.3 In Theorem 4.1.3, we can further conclude that y = 1 by the
result in [Da].
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Theorem 4.1.4 We consider the case where b is odd and b ≥ 5. Let (x, y, z)
be a solution of (1). Assume that x, z are even and y is odd. We write x = 2X
and z = 2Z.

If
(a, b, c, X, y, Z) 6= (2, 17, 3, 3, 1, 2),

or

(X,Z) 6=
(

1,
log(a + 1)

log c

)
,

(
log(c− 1)

log a
, 1

)
,

then

X <
y log (b/p(b))− log 2

log a
, Z <

log (b/p(b))
log c

y,

where p(b) is the least prime factor of b. Furthermore, the following (i) and (ii)
hold.

(i) If a is even, then
y ≤ C4 log a + 1,

where

C4 =
log

(
b/(2p(b)) + p(b)/2

)

ord2(a)(log 2) log
(√

b + 1− 1
) (< 3).

(ii) If c is even, then

Z ≤ log
(
b/(2p(b)) + p(b)/2

)

ord2(c) log 2
.

Proof. Assume that x, z are even and y is odd. We can write x = 2X and
z = 2Z, where X,Z ∈ N. From (1) we define positive integers D,E as follows:

by = DE,

where
D = cZ + aX , E = cZ − aX .

It is easy to see that gcd(D, E) = 1. Hence we can write

D = sy, E = ty,

where integers s, t satisfy the condition s > t > 0, gcd(s, t) = 1 and st = b.
Then

sy + ty = 2cZ , sy − ty = 2aX .

We consider the cases t = 1 and t > 1 separately.
If t = 1, then E = 1, so cZ − aX = 1. It follows from [Mi] that X = 1 or

Z = 1 or (a, b, c,X, y, Z) = (2, 17, 3, 3, 1, 2).
In what follows, we assume that t > 1. Then t ≥ p(b). Since D ≤ by/E, E ≥

p(b)y, aX < D/2 and cZ < D, we can obtain the desired upper bounds for X
and Z.
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Note that s ≥ √
b + 1 + 1. Indeed, since s ≥ t + 2 and st = b, we have

s2 ≥ b + 2s, so (s− 1)2 ≥ b + 1. Hence

2aX = sy − ty

= sy −
(

b

s

)y

≥ (√
b + 1 + 1

)y − (√
b + 1− 1

)y ≥ 2y
(√

b + 1− 1
)y−1

,

so
(√

b + 1− 1
)y−1 ≤ aX . Since b ≥ 5, we have

y − 1 ≤ log a

log
(√

b + 1− 1
) X.

Since 4aXcZ = s2y − t2y, we see from Lemma 4.1.1 that

ord2(aXcZ) = ord2(s2y − t2y)− 2 = ord2(s± t)− 1

for the proper sign. Since s± t ≤ s + t ≤ b/p(b) + p(b), we have

X ord2(a) + Z ord2(c) = ord2(aXcZ)

≤ log(s± t)
log 2

− 1

≤ log
(
b/p(b) + p(b)

)

log 2
− 1 =

log
(
b/(2p(b)) + p(b)/2

)

log 2
.

The desired conclusions follow from this. ¤

4.2 Applications

Let {Fn}n≥0 be Fibonacci numbers, the numbers {Fn}n≥0 defined by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn.

For instance, the first several Fibonacci numbers are given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
Fn 0 1 1 2 3 5 8 13 21 34 55 89 144

We can find many works related to Fibonacci numbers in various Diophantine
problems (cf. [BLMS], [BMS], [Coh], [Coh2], [Du], [Fi]). There are a number of
fascinating formulas on those numbers (cf. [Ko]). One of the most important
formulas on Fibonacci numbers is Cassini’s identity (cf. [Ko, p.74; Theorem
5.3]):

F 2
n = (−1)n+1 + Fn−1Fn+1 (n ≥ 1).

Cassini’s identity can be generalized for the generalized Fibonacci numbers
(cf. [Ko, Ch.7]). In the study of Fibonacci numbers, we often observe that
Lucas numbers {Ln}n≥0 work well. They are defined by

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln.
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For instance, the first several Lucas numbers are given in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
Ln 2 1 3 4 7 11 18 29 47 76 123 199 322

Fibonacci numbers and Lucas numbers are companionable in a number of ways.
There are many relations among those numbers (cf. [Ko]).

In 1876 Lucas proved the following elegant formulas (cf. [Ko, p.79; Corollary
5.4]):

F 2
n + F 2

n+1 = F2n+1,

F 2
n + F2n+2 = F 2

n+2

for n ≥ 0. It is worth stating that the formulas of these types do not seem to
be seen in other Lucas sequences (cf. [Ko]). From these formulas we consider
the exponential Diophantine equations:

F x
n + F y

n+1 = F z
2n+1

(
x, y, z ∈ N)

, (4.2.1)

F x
n + F y

2n+2 = F z
n+2

(
x, y, z ∈ N)

. (4.2.2)

It is clear that (4.2.1) has the solution (x, y, z) = (2, 2, 1), and (4.2.2) has the
solution (x, y, z) = (2, 1, 2). In 2002 at ICM, Terai [Te3] proposed to study
(4.2.1) and he proved, under strict assumptions on n ≥ 3, that (4.2.1) has the
unique solution (x, y, z) = (2, 2, 1) by using the theory of linear forms in two
logarithms.

Applying Theorems 4.1.1-4.1.4 to (4.2.1) and (4.2.2), we prove the following
results.

Theorem 4.2.1 For each n ≥ 3, (4.2.1) has the unique solution (x, y, z) =
(2, 2, 1).

Theorem 4.2.2 For each n ≥ 3, (4.2.2) has the unique solution (x, y, z) =
(2, 1, 2).

4.2.1 Proof of Theorem 4.2.1

In this subsection we prove Theorem 4.2.1. Let n ≥ 3. We first note that
Fn, Fn+1 and F2n+1 are pair-wise relatively prime positive integers greater than
1.

Let (x, y, z) be a solution of (4.2.1). We prepare some lemmas. First we
determine the parities of x, y by using congruence reductions. Further we obtain
congruence relations among x, y, z.

Lemma 4.2.1
(i) x and y are even.
(ii) X ≡ z (mod Fn+1) and Y ≡ z (mod Fn), where X = x/2 and Y = y/2.
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Proof. We first consider the case n = 3. In this case, we rewrite (4.2.1) as

2x + 3y = 13z. (4.2.3)

Taking (4.2.3) modulo 3, we have (−1)x ≡ 1 (mod 3), so x is even. Then taking
(4.2.3) modulo 4, we have (−1)y ≡ 1 (mod 4), so y is even. Hence we can write
x = 2X and y = 2Y , where X,Y ∈ N. Taking (4.2.3) modulo 5, we have
3z ≡ ±2 (mod 5), which implies that z is odd. By Theorem 4.1.2, we see that
z < 2 + (log 2)/ log 13 < 3, so z = 1. This yields X = Y = 1. Hence the
lemma holds for the case n = 3. Similarly, we can prove the lemma for the case
n = 4. Hence it suffices to consider the case n ≥ 5. Then Fn+1 > Fn + 1 and
Fn > Fn−1 + 1. Indeed, Fn+1 − Fn = Fn−1 > 1 and Fn − Fn−1 = Fn−2 > 1
since n ≥ 5. In particular,

Fn 6≡ ±1 (mod Fn+1), Fn+1 6≡ ±1 (mod Fn).

We write x = 2X + x1, where X is a non-negative integer and x1 ∈ {0, 1}.
Then taking (4.2.1) modulo F 2

n+1, we have

F 2X
n F x1

n + F y
n+1 ≡ F 2z

n (mod F 2
n+1).

By Cassini’s identity, we see that

F 2
n = δ + Fn−1Fn+1 ≡ δ − FnFn+1 (mod F 2

n+1),

where δ = (−1)n+1. Hence
(
δX − δX−1FnFn+1X

)
F x1

n + F y
n+1 ≡ δz − δz−1FnFn+1z (mod F 2

n+1).

Reducing this modulo Fn+1, we have

δXF x1
n ≡ δz (mod Fn+1).

If x1 = 1, then Fn ≡ ±1 (mod Fn+1), which is absurd. Hence x1 = 0, that is,
x = 2X. Then δX ≡ δz (mod Fn+1). This implies that δX = δz since δ = ±1
and Fn+1 ≥ 3. Hence

−δX−1FnX + F y−1
n+1 ≡ −δX−1Fnz (mod Fn+1).

Similarly, we can prove that y is even by taking (4.2.1) modulo F 2
n (for this,

we use the congruences F 2
n+1 ≡ −δ + FnFn+1 (mod F 2

n ) and Fn+1 6≡ ±1
(mod Fn)), and further,

F x−1
n + (−δ)Y−1Fn+1Y ≡ (−δ)Y−1Fn+1z (mod Fn),

where Y = y/2. Since x ≥ 2 and y ≥ 2, it follows from two congruences above
that X ≡ z (mod Fn+1) and Y ≡ z (mod Fn). ¤

By (i) in Lemma 4.2.1, we can write x = 2X and y = 2Y , where X,Y ∈ N.
It suffices to consider the case where F2n+1 is odd. Indeed, if F2n+1 is even,

then Fn and Fn+1 are odd, so F z
2n+1 = F 2X

n + F 2Y
n+1 ≡ 2 (mod 4). This gives

that z = 1, so X = Y = 1 since F2n+1 = F 2
n + F 2

n+1.
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In what follows, we consider the case where F2n+1 is odd. Then Fn or Fn+1

is even, and n ≥ 5.
We remark that if max(X,Y ) ≤ z, then X = Y = z = 1. Indeed, if

max(X,Y ) ≤ z, then

(F 2
n + F 2

n+1)
z = F z

2n+1 = F 2X
n + F 2Y

n+1 ≤ (F 2
n )z + (F 2

n+1)
z,

so z = 1, hence X = Y = 1.
We will obtain sharp upper bounds for X and Y by using Theorems 4.1.1

and 4.1.2. For this we consider the case where z is even and the case where z is
odd separately.

Lemma 4.2.2 Suppose that z is even. Then the following hold.
(i) If Fn is even, then we have the upper estimates

X ≤ log(Fn+1 + 1)
ord2(Fn) log 2

, Y ≤ 2X − 1.

(ii) If Fn+1 is even, then we have the upper estimates

Y ≤ log(Fn + 1)
ord2(Fn+1) log 2

, X ≤ 2Y − 1.

Proof. Suppose that z is even. We can write z = 2Z, where Z ∈ N. Note that
max(X,Y ) > z ≥ 2.

We use Theorem 4.1.1. First, we consider the case where Fn is even. We
apply Theorem 4.1.1 to the case where (a, b, c) = (Fn+1, Fn, F2n+1). Since
Fn+1 + 1 ≤ 2

√
F2n+1 − 1, it follows that

Y <
2 log(Fn/2)
log Fn+1

X < 2X, X ≤ log(Fn+1 + 1)
ord2(Fn) log 2

.

Next, we consider the case where Fn+1 is even. We apply Theorem 4.1.1 to
the case where (a, b, c) = (Fn, Fn+1, F2n+1). Since Fn + 1 ≤ 2

√
F2n+1 − 1, it

follows that

X <
2 log(Fn+1/2)

log Fn
Y < 2Y, Y ≤ log(Fn + 1)

ord2(Fn+1) log 2
.

¤
Next we consider the case where z is odd. To use Theorem 4.1.2 we give an

easy observation on values of ord2(Lm).
For all m ≥ 0, we see from two tables in Section 1 that Lm ≡ 2 (mod 4)

when Fm ≡ 0 (mod 4), and Lm ≡ 4 (mod 8) when Fm ≡ 2 (mod 4), further,
Lm is odd when Fm is odd. In particular, ord2(Lm) ≤ 2 for all m ≥ 0.

Lemma 4.2.3 Assume that z is odd. Then the following hold.
(i) If Fn is even, then we have the upper estimates

X ≤ log(F2n+1 − 1)
2 ord2(Fn) log 2

, Y ≤ log(F2n+1 − 1)
log 3

.
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(ii) If Fn+1 is even, then we have the upper estimates

X ≤ log(F2n+1 − 1)
log 3

, Y ≤ log(F2n+1 − 1)
2 ord2(Fn+1) log 2

.

Proof. Assume that z is odd. It suffices to show that Case (i) in Theorem 4.1.2
holds.

Since F2n+1 = F 2
n + F 2

n+1 and Lm = Fm+1 + Fm−1 for all m ≥ 1, we see
from Cassini’s identity that if n is even, then

F2n+1 − 1 = F 2
n + (F 2

n+1 − 1) = F 2
n + FnFn+2 = FnLn+1,

and that if n is odd, then

F2n+1 − 1 = (F 2
n − 1) + F 2

n+1 = Fn−1Fn+1 + F 2
n+1 = LnFn+1.

Hence

ord2(F2n+1 − 1) =

{
ord2(Fn) + ord2(Ln+1) if n is even,
ord2(Ln) + ord2(Fn+1) if n is odd.

We only consider the case where Fn is even (the case where Fn+1 is even is
similar). We apply Theorem 4.1.2 to the case where (a, b, c) = (Fn+1, Fn, F2n+1).
Since F2n+1 − 1 > F 2

n ,

ord2(F2n+1 − 1) =

{
ord2(Fn) if n is even,
ord2(Ln) if n is odd,

and ord2(Ln) ≤ 2, we see that

ord2(F2n+1 − 1)
2 ord2(Fn)

≤ ord2(Fn) + 1
2 ord2(Fn)

≤ 1 <
log(F2n+1 − 1)

2 log Fn
.

Therefore, Case (i) in Theorem 4.1.2 holds. ¤

Remark 4.2.1 Lemma 4.2.3 can be also shown by the result in [Fi], which
states that the only Fibonacci numbers being a square increased by 1 are F1 =
F2 = 1, F3 = 2 and F5 = 5. Another proof of this result is given in [BLMS].
Further, if the condition

Y =
ord2(c− 1)
2 ord2(b)

holds, then Y = 1 by an observation in the proof of Lemma 4.2.3. Then we may
apply results on lower bounds for liner forms in two logarithms (for example,
[La]) to the equation. As a result, we can estimate the value of X as follows:
X ¿ log F2n+1. But the implied constant is very larger than one obtained in
Lemma 4.2.3.

We are ready to prove Theorem 4.2.1.
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Proof of Theorem 4.2.1. We only consider the case where Fn+1 is even (the
case where Fn is even is similar). Let (x, y, z) be a solution of (4.2.1). By (i) in
Lemma 4.2.1, we can write x = 2X and y = 2Y , where X,Y ∈ N. It suffices to
show that M := max(X, Y ) ≤ z.

Suppose that M > z. We will observe that this leads to a contradiction.
Then z ≥ 2. We use (ii) in Lemma 4.2.1, (ii) in Lemma 4.2.2 and (ii) in Lemma
4.2.3. If M = X, then

Fn+1 + z ≤ X ≤ max
(

2 log(Fn + 1)
ord2(Fn+1) log 2

− 1,
log(F2n+1 − 1)

log 3

)
,

which does not hold. If M = Y , then

Fn+z ≤ Y ≤ max
(

log(Fn + 1)
ord2(Fn+1) log 2

,
log(F2n+1 − 1)

2 ord2(Fn+1) log 2

)
=

log(F2n+1 − 1)
2 ord2(Fn+1) log 2

,

which does not hold. Therefore, M ≤ z. This completes the proof of Theorem
4.2.1. ¤

4.2.2 Proof of Theorem 4.2.2

In this subsection we prove Theorem 4.2.2. Let n ≥ 3. We first note that
Fn, Fn+2 and F2n+2 are pair-wise relatively prime positive integers greater than
1.

Let (x, y, z) be a solution of (4.2.2). We prepare several lemmas. First we
determine the parities of x, z by using congruence reductions.

Lemma 4.2.4 x and z are even.

Proof. Similarly to the proof of Lemma 4.2.1, we can prove the lemma for the
case n ≤ 4. Hence it suffices to consider the case n ≥ 5. Then Fn 6≡ ±1
(mod Fn+2) and Fn+2 6≡ ±1 (mod Fn).

We write x = 2X + x2, where X is a non-negative integer and x2 ∈ {0, 1}.
Then taking (4.2.2) modulo Fn+2, we have

F 2X
n F x2

n ≡ (−1)y+1F 2y
n (mod Fn+2).

By Cassini’s identity, we see that

F 2
n ≡ F 2

n+1 = −δ + FnFn+2 ≡ −δ (mod Fn+2),

where δ = (−1)n+1. Hence

(−δ)XF x2
n ≡ (−1)y+1(−δ)y (mod Fn+2).

If x2 = 1, then Fn ≡ ±1 (mod Fn+2), which is absurd. Hence x2 = 0, that is,
x = 2X. Similarly, we can prove that z is even by taking (4.2.2) modulo Fn (for
this, we use the congruences F 2

n+2 ≡ −δ (mod Fn) and Fn+2 6≡ ±1 (mod Fn)).
¤

By Lemma 4.2.4, we can write x = 2X and z = 2Z, where X, Z ∈ N.
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Lemma 4.2.5 If y > 1, then X + Z ≡ 0 (mod Fn+1). In particular, Fn+1 ≤
X + Z.

Proof. Suppose that y > 1. Note that Fn+1 divides F2n+2. Taking (4.2.2)
modulo F 2

n+1, we have

F 2X
n ≡ F 2Z

n+2 (mod F 2
n+1).

By Cassini’s identity, we see that

F 2
n = δ + Fn−1Fn+1 ≡ δ − FnFn+1 (mod F 2

n+1),

F 2
n+2 = δ + Fn+1Fn+3 ≡ δ + FnFn+1 (mod F 2

n+1),

where δ = (−1)n+1. Hence

δX − δX−1FnFn+1X ≡ δZ + δZ−1FnFn+1Z (mod F 2
n+1).

Reducing this modulo Fn+1, we have δX ≡ δZ (mod Fn+1). This implies that
δX = δZ since δ = ±1 and Fn+1 ≥ 3. It follows from the above congruence that
X + Z ≡ 0 (mod Fn+1). ¤

From (4.2.2) we define positive integers D, E as follows:

F y
2n+2 = DE, (4.2.4)

where
D = F Z

n+2 + F X
n , E = F Z

n+2 − F X
n . (4.2.5)

If y = 1, then F Z
n+2 < F2n+2, which gives that Z < (log F2n+2)/ log Fn+2 <

2, so Z = 1, hence X = 1.

In what follows, we put

α = ord2(Fn+1), β = ord2(F2n+2).

Since F2n+2 = Fn+1Ln+1, we have β = α + ord2(Ln+1). It is easy to see from
two tables in Section 1 that β ≥ 3 when α ≥ 1, and β = 3 when α = 1, further,
β = 0 when α = 0.

It is easy to see from the first table in Section 1 that

Fm 6≡ 6 (mod 8)

for all m ≥ 0.

Lemma 4.2.6 y is odd.

Proof. Suppose that y is even. We will observe that this leads to a contradiction.
We can write y = 2Y , where Y ∈ N. By Lemma 4.2.5, we have

Fn+1 ≤ X + Z.
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We use Theorem 4.1.1. Similarly to the proof of Lemma 4.2.2, we can prove
that X + Z ¿ Fn. As a result, n,X, Y and Z are bounded above. It is easy
to see that any of them does not satisfy (4.2.2). This is a contradiction. We
conclude that y is odd. ¤

We consider the cases α = 0 and α ≥ 1 separately. It is easy to see that
gcd(D, E) = 2 when α ≥ 1.

Lemma 4.2.7 If Fn+1 is even, then X and Z are odd.

Proof. We consider the case where Fn+1 is even, that is, α ≥ 1. Then β ≥ 3.
Suppose that X or Z is even. We will observe that this leads to a contradiction.
Since y > 1, we see from Lemma 4.2.5 that both X and Z are even, and

Fn+1 ≤ X + Z.

We can write X = 2X ′ and Z = 2Z ′, where X ′, Z ′ ∈ N. Applying Theorem
4.1.3 to the case where (a, b, c) = (Fn, F2n+2, Fn+2), we have

y <
log F2n+2

3 log 2
,

X ′ <
log (F2n+2/8)

2 log Fn
y < y, Z ′ <

log (F2n+2/4)
2 log Fn+2

y < y.

Hence
Fn+1

2
≤ X ′ + Z ′ ≤ 2y − 2 <

2 log F2n+2

3 log 2
− 2,

which does not hold. This is absurd. We conclude that X and Z are odd. ¤

Lemma 4.2.8 If Fn+1 ≡ 2 (mod 4), then (X, y, Z) = (1, 1, 1).

Proof. We consider the case where Fn+1 ≡ 2 (mod 4), that is, α = 1. Then β =
3. It is easy to see that Fn ≡ 1 (mod 4) and Fn+2 ≡ −1 (mod 4). By Lemma
4.2.7, we know that X and Z are odd. Hence D = F Z

n+2 +F X
n ≡ (−1)Z +1 ≡ 0

(mod 4). Since gcd(D, E) = 2, we see from (4.2.4) and (4.2.5) that there exist
relatively prime odd positive integers S, T such that

D = F Z
n+2 + F X

n = 23y−1S,

E = F Z
n+2 − F X

n = 2T.

Then F Z
n+2 = (D + E)/2 = 23y−2S + T , so 23y−2S ≡ 3− T (mod 4). Note that

the square of an odd integer is congruent to 1 modulo 8. Since Fm 6≡ 6 (mod 8)
for all m ≥ 0, and

2T = F Z
n+2 − F X

n ≡ Fn+2 − Fn = Fn+1 (mod 8),

it follows that 2T ≡ 2 (mod 8), that is, T ≡ 1 (mod 4). Hence 23y−2S ≡ 2
(mod 4). This gives that y = 1, so X = Z = 1. ¤
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Lemma 4.2.9 If Fn+1 ≡ 0 (mod 4), then (X, y, Z) = (1, 1, 1).

Proof. We consider the case where Fn+1 ≡ 0 (mod 4), namely, α ≥ 2. Then
β ≥ 3, and Ln+1 is even. Note that n ≥ 5. It is easy to see that Fn ≡ Fn+2 ≡ 1
(mod 4), so D = F Z

n+2 + F X
n ≡ 2 (mod 4). Since gcd(D, E) = 2, we see from

(4.2.4) that E is divisible by 2βy−1. In particular, E is divisible by 4 since
βy − 1 ≥ 3y − 1 ≥ 2.

By Lemma 4.2.7, we can write X = 2X ′ + 1 and Z = 2Z ′ + 1, where X ′, Z ′

are non-negative integers. Then

E = F Z
n+2 − F X

n ≡ F Z
n − F X

n = Fn

(
F 2Z′

n − F 2X′
n

)
(mod Fn+1).

By Cassini’s identity, we see that

F 2
n = δ + Fn−1Fn+1 ≡ δ (mod Fn+1),

where δ = (−1)n+1. Hence

E ≡ Fn

(
δZ′ − δX′)

(mod Fn+1).

Reducing this modulo 4, we have δZ′ − δX′ ≡ 0 (mod 4). This implies that
δZ′ − δX′

= 0 since δ = ±1. Hence E ≡ 0 (mod Fn+1). It follows that D/2 is
odd and prime to Fn+1. Since F2n+2 = Fn+1Ln+1, we can rewrite (4.2.4) as

(
D

2

)
E = 2y−1F y

n+1

(
Ln+1

2

)y

.

This implies that D/2 divides (Ln+1/2)y and E is divisible by 2y−1F y
n+1.

Since Ln+1 = Fn+1 + 2Fn and Fn/Fn+1 ≤ 5/8, we see that

1 <
D

E
≤ 2

(
Ln+1/2

)y

2y−1F y
n+1

= 4
(

Ln+1

4Fn+1

)y

= 4
(

1
4

+
Fn

2Fn+1

)y

≤ 4
(

9
16

)y

.

This gives that y < 3. By Lemma 4.2.6, we conclude that y = 1, so X = Z = 1.
¤

We are ready to prove Theorem 4.2.2.

Proof of Theorem 4.2.2. By Lemmas 4.2.8 and 4.2.9, it suffices to consider the
case where Fn+1 is odd, that is, α = 0. Then β = 0. Let (x, y, z) be a solution
of (4.2.2). By Lemma 4.2.4, we can write x = 2X and z = 2Z, where X, Z ∈ N.
By Lemma 4.2.6, we know that y is odd.

If n = 3, then 4X + 21y = 25Z . Taking this modulo 8, we have 4X ≡ 4
(mod 8), hence X = 1.

We apply Theorem 4.1.4 to the case where (a, b, c) = (Fn, F2n+2, Fn+2).
Then

X <
y log

(
F2n+2/p(F2n+2)

)− log 2
log Fn

< 3y,

Z <
log

(
F2n+2/p(F2n+2)

)

log Fn+2
y < 2y.
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Suppose that y > 1. We will observe that this leads to a contradiction.
If Fn is even, then

y ≤ C4 log Fn+2 + 1,

where

C4 =
log

(
F2n+2/(2p(F2n+2)) + p(F2n+2)/2

)

ord2(Fn)(log 2) log
(√

F2n+2 + 1− 1
) .

Hence Lemma 4.2.5 yields

Fn+1 ≤ X + Z ≤ 5y − 2 ≤ 5 C4 log Fn+2 + 3,

which implies that n = 3 and y = 3. This is absurd since 4 + 213 6= 25Z .
If Fn+2 is even, then

Z ≤ log
(
F2n+2/(2p(F2n+2)) + p(F2n+2)/2

)

ord2(Fn+2) log 2
.

Hence Lemma 4.2.5 yields

Fn+1 ≤ X + Z <

(
log Fn+2

log Fn
+ 1

)
Z

≤
(

log Fn+2

log Fn
+ 1

)
log

(
F2n+2/(2p(F2n+2)) + p(F2n+2)/2

)

ord2(Fn+2) log 2
,

which does not hold. This is a contradiction. We conclude that y = 1, so
X = Z = 1. This completes the proof of Theorem 4.2.2. ¤
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cerning Pythagorean triples, J. Austral. Math. Soc. 90 (2011), 355–370.
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