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Historical development of classical fluid dynamics

Shigeru MASUDA
(Doctoral Course in Mathematics, Graduate School of Tokyo Metropolitan University)

Abstract

Aims.

In our thesis, we discuss the classical theory of mathematical fluid dynamics, with interest in the
theoretical formulation of the microscopically-descriptive [ MD | hydrodynamical [ HD | equations, above
all, the Navier-Stokes [ NS| equations, up to the fixed formulation, from the viewpoint of the mathematical
history. We want to study the fluid dynamics in particular, not from all-inclusive history of topics, but
from the mathematical deductions of the classical theories. Our initial motivation of study had been to
seek from the classical theories for something new of deductive method of the MDNS equations.

Main results.

We treat the following kernel problems of theories, discussed in order from the viewpoint of theoretical
and mathematical history, viz. :

(1) exact differential / complete differential
(2) the “two-constant” theory

(3) tensor function

(4) rapidly decreasing function | RDF']

(5) collision in gas theory

(6) solutions of the NS equations

We believe, in particular, the following discovering approaches :

e comparative and detailed descriptions of the various deductions of the MDNS equations by Navier,
Cauchy, Poisson, Saint-Venant and Stokes, above all, the contribution of Saint-Venant to the
universal form of tensor for the linear NS equations and our mention of the “two-constant”
theory by Laplace as a progenitor of it

e theoretical deduction of the MDNS equations, including the “two-constant” theory, tensor func-
tion and rapidly decreasing function

e as a contemporary of an epoch of the formulation of NS equations, we pay attention to Gauss’
contributions to the fluid mechanics including some mathematical achievements,

e the consistent follow-up of the MDHD equations after the formulation of the NS equations,
including the gas theory, up to fixed formulation of our equations,
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and these results from it, may be original. These total problems are the main themes we would like to
present now.

The authorities for our originalities of results.

We have the following authorities for our originalities of our results.

o We refer O.Darrigol [1, 2] and C.Truesdell [3, 4, 5] as the introductions to start our study. They
doesn’t refer many of our results, in particular, HD equations by Euler, Lagrange, Laplace, Gauss,
Maxwell, Kirchhoff, Boltzmann, and so on, while we mentioned them.

e Darrigol [1, 2] doesn’t show his definition of the two-constant theory, but discusses from the point
of view of exact science, and citing only one paragraph in his book. We owe our motivation to
enhance this theme to Darrigol, however, we could adopt our own study, above all, from the
mathematical viewpoint in Part 2, Part 3 and Part 4 .

e We couldn’t cite some important persons including Newton, D.Bernoulli, and so on for fluid
dynamics, however, we have intention to cover the important problems for the NS equations and
the clasical theories of the HD equations in the 18-19 and the first half of 20 centuries. !

e We have scarecely heard about the history of mathematics onthe NS equations up to Ladyzhen-
skaya.

Contents.

The contents of our thesis consist of the following three parts entitled with :

Part 1. Exact differential as the criteria of equilibrium/motion and irrotational motion/rotary motion
Part 2. The “two-constant” theory and tensor function underlying the NS equations

Part 3. The MDHD equations in the gas theory

Part 4. The early studies of solutions of Navier-Stokes equations

Part 1. ( pp. 1-26 ) contains the problem (1) :

In the classical fluid mechanics, it had been an important principle to see whether equilibrium or
motion, that in three variables, for udx 4 vdy + wdz to be satisfied with an exact differentiability or
a complete differentiability. By Maupertuis, Clairaut, d’Alembert, Euler, Lagrange, Laplace, Cauchy,
Poisson and Stokes succeeded its theoretical side. From the geometrical point of view, Gauss and Riemann
applied it. Gauss proposed a general principle between equilibrium and motion. Moreover Helmholtz and
W.Thomson applied it to the theory of vorticity. To Helmholtz’s vorticity equation, Bertrand criticized
but Saint-Venant sided with Helmholtz. We would like to report on their studies of exact differential
from the historical view of fluid dynamics.

In §2, we show the proofs of the eternal existence of once-occurred exact differential by Lagrange,
Cauchy and Stokes.

On the other hand, the formulations of two-constant theory in equilibrium/motion was deduced by
Poisson, Navier, Cauchy, Saint-Venant and Stokes, and today’s NS equations were formulated and used
in practice. The studies of it up to the present are shown in the following papers.

Part 2. ( pp. 27-164 ) consists two parts of :

e The main or general remarks titled the “two-constant” theory and tensor function underlying the
NS equations. ( pp. 27-52 )
e The particulars appending detailed contents to the main ( pp. 53-164 ) :
A : Detailed commentary of deduction of the NS equations, the “two-constant” theory and
tensor function
B : The “two-constant” theory in the capillary action
C : Laplace and Gauss

1(J) To establish a time line of these contributor, we list for easy reference the year of their birth and
death: Sir I.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d’Alembert(1717-1783), Lagrange(1736-1813),
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857),
Saint-Venant(1797-1886), Stokes(1819-1903).
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D : Abstract of Gauss’ papers on Disquisitiones generales circa superficies curvas. ( General
survey on the curved surface )

E : Gauss’ papers on Principia generalia theoriae figurae fluidrum in statu aequilibrii ( General
principles of theory on fluid figure in equilibrium state )

F : Poisson’s “two-constant” theory in the capillary action

G : Figures.

The contents of Part 2 are of the fundamental problems (2), (3), and (4) of our main results , in which
we treat the process of the formulation of the NS equations and the contained-in-itself, fundamentally
mathematical theories such as the “two-constant” theory, tensor and RDF.

The “two-constant” theory introduced for the first time by Laplace in 1805 still forms the basis of
current theory describing isotropic, linear elasticity. The NS equations in incompressible case :

gu—pAu+u-Vu+Vp=f, divu=0.

as presented in final form by Stokes in 1845, were derived in the course of the development of the
“two-constant” theory.

Following in historical order the various contributions of Navier, Cauchy, Poisson, Saint-Venant and
Stokes over the intervening period, we trace the evolution of the equations, and note concordances and
differences between each contributor. In particular, from the historical perspective of these equations we
look for evidence for the notion of tensor.

Also in the formulation of equilibrium equations, we obtain the competing theories of the “two-
constant” theory in capillary action of Laplace and Gauss.

Finally, we uncover reasons for the practice in naming these fundamental equations of motion as the
NS equations.

In the appendices, we show the process of formulation citing their main papers of Navier, Cauchy,
Poisson, Laplace and Gauss with our commentary.

Part 3. ( pp. 165-192 ) discuss the problem (5) :

The MDHD equations are followed by the description of equations of gas theory by Maxwell, Kirch-
hoff and Boltzmann. Above all, in 1872, Boltzmann formulated the Boltzmann equations, expressed by
the follwing today’s formulation :

Of +v-Vef =Q(f19), t>0, xveR'(n23), x=@u2), v=End, ()
QT a)(t, 5,0) = / f B(v — va, 0)/{g(@,) [(') — 9(v2) f(v)}dodva, g(sl) = g(t,z,00), etc.  (2)
B3 Jg2

These equations are able to be reduced for the general form of the HD equations, after the formulations
by Maxwell and Kirchhoff, and from which the Euler equations and the NS equations are reduced as the
special case.

After Stokes’ linear equations, the equations of gas theories were deduced by Maxwell in 1865, Kirchhoff
in 1868 and Boltzmann in 1872. They contributed to formulate the fluid equations and to fix the NS
equations, when Prandtl stated the today’s formulation in using the nomenclature as the “so-called NS
equations” in 1934, in which Prandtl included the three terms of nonlinear and two linear terms with
the ratio of two coefficients as 3 : 1, which arose Poisson in 1831, Saint-Venant in 1843, and Stokes in
1845. Prandtl says, “The following differential equation, known as the equation of Navier-Stokes, is the
fundamental equation of hydrodynamics,”

Dw 1 1 \
el ;gra.d P+ 3 grad div Aw + vAw,
Dw _ 0w M _ _
where, T_W+W-Vw, u—;, w=(u,v,w), g=(X,Y,2)

Part 4. ( pp. 193-235 ) sketches the early studies of solutions of the V.S equations.

In this part, we discuss the weak solutions by Leray and Hopf, the generalized solutions,/ the strong
solutions by Kieselev, Ladyzhenskaya in the course of history of the studies of solutions of the NS
equations.

Conclusions.

e We had owed the development of classical fluid dynamics including NS equations, to the various
results for centuries past, based on such the fundamental and mathematical theories as of the
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kinetic equation by Newton, of the exact differential, of the molecular activities in motion and
equilibrium including the capillary action, of “two-constant” and of the RDF, by many progenitors
of the theories? who studied the the formulation of HD equations and the mathematical theories.
And even now, the studies for the open problems are in progress. We believe that the studies from
the viewpoint of mathematical history are also able to play a part in contributing to verify these
past facts and past development, and to make out the future development of the fluid dynamics.

e The “two-constant” defined at first in the kinetic equations of elasticity was applied to that of
fluid by the MD method by Navier, Cauchy and Poisson, but later it was fixed as “two-coefficient”
in the HD equations since Poisson’s fluid equations. The former’s ratio of coefficient attached to
the tensor function with the main axis ( the normal stress ) of Laplacian to that of grad div :
&‘E‘z—“—ﬁfiimm-——% = 1, and the latter’s is 3.

e The original RDF was deduced in the course of formulation of the equation of fluid dynamics,
including the equations of capillary action by Laplace and Gauss, in particular, Gaussian function
in the equations of capillary action was deduced over a hundred years ago before Schwartz’
distribution and hyperfunction.

Remarks. Throughout our thesis, in citation of bibliographical sources, our are delimited by ({}) and
( if necessary ) (f1). And by =*, we detail the statement by original authors, because we would like to
discriminate and to avoid confusion from the deseriptions by the original authors. The mark : = means
transformation of the statements in brevity by author. And all the frames surrounding the statements
are inserted for important remark by author. Of course, when the descriptions are explicitly distinct
without these marks, these are not the descriptions in citation of bibliographical sources.

TABLE 1. Comment descriptions by marks in our thesis

[ case of comment mark in paragraph mark in equation or statement|
ljcomments by an original author ( usual description ) ==k

2lcomments by another person to the original author|( usual description )

3lcomments by author ({4) - our comment-- - ({)[=", ="

4jadditional comments to our comments ({}) - our comment: - (f)|=", ="

The abridgements mean :

NS : Navier-Stokes, ( ex. the NS equations. )

MD : microscopically-descriptive, ( ex. the MD equations. )

HD : hydrodynamical, ( ex. the HD equations. )

RDF : rapidly decreasing function, ( ex. the RDF5. )

The introductions refered for beginning our study.

Except for over a hundred primary sources which we show in the references of each part, we show only
the following introductions :

REFERENCES

[1] O.Darrigol, Between hydrodynamics and elasticity theory : the first five births of the Navier-Stokes equation, Arch.
Hist. Exact Sci., 56(2002), 95-150.

[2] O.Darrigol, Worlds of flow: a history of hydrodynamics from the Bernoullis to Prandtl, Oxford Univ. Press, 2005.

[3] C.Truesdell, Notes on the History of the general equations of hydrodynamics, Amer. Math. Monthly 60(1953), 445-458.

[4] C.Truesdell, The rational fluid mechanics. 1687-1765. Introduction to Leonhard Euleri Opera Omnia. Vol XII seriei
secundae, Auctoritate et impensis societatis scientiarum naturalium helveticae, 2-12 1954, 10-125.

[5] C.Truesdell, Editor’s introduction to Leonhard Euleri Opera Omnia Vol. XIII seriei secundae, ibid., 2-13 1955, 9-105.

2(JJ.) We mean at least, progenitors such as Newton, D.Bernoulli, Maupertuis, Clairaut, Euler, d'Alembert, Lagrange,
Laplace, Navier, Cauchy, Gauss, Poisson, Saint-Venant, Stokes, Helmholtz, W. Thomson, Maxwell, Kirchhoff, Boltzmann,
Prandtl et al., who we mention in our papers.
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Exact differentials as criteria for
equilibrium,/motion and irrotational motion/rotary motion

ABSTRACT. Exact differentials in fluid dynamics are important quantities in any mathematical analysis
of continuous systems; for example, we may need to know if udx + vdy + wdz satisfies ezact, or equiv-
alently complete, differentiability in three dimensions. In the hands of d’Alembert, Euler, Lagrange,
Laplace, Cauchy, Poisson and Stokes, these practitioners have succeeded in developing its theoretical
consequences. From the geometric point of view, Gauss and Riemann had applied such constructs,
while Helmholtz and W. Thomson applied these to the theory of vortices. Although Helmholtz's vor-
ticity equation was strongly criticized by Bertrand, Saint-Venant sided with Helmholtz. Here, we would
like to review from the historical viewpoint the study of exact differential in Auid mechanics.

In §2, we present proofs of the eternal existence of unique exact differentials by Lagrange, Cauchy and
Stokes.

From a separate development, the formulation of the two-constant theory in equilibrium/motion had
been deduced by Navier, Poisson, Cauchy, Saint-Venant and Stokes. Today’s Navier-Stokes equations
were formulated and used in practice. An up-to-the present study is given in papers to follow.

Mathematics Subject Classification 2010 : 01Axx, 76A02, 7T6Mxx, 76-02, 76-03, 33A15, 35Qxx 35-xx.
Key words. Exact differential, complete differential, fluid dynamics, fluid mechanics, microscopically-
descriptive equations, hydrostatics, hydrodynamics, hydromechanics, mathematical history.
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1. Introduction - the mathematical historic view of exact differentials

! In the early development of fluid mechanics, exact differentials of the form ude + vdy + wdz had
been used in theories of equiliblium, in various applications and appeared in numerious discussions. We
present a summary of this development from a historical viewpoint in Table 1, under the following topic
headings: condition of equilibrium of fluid, proof of the eternal continuity in time and space of exact
differentials, curvature, electromagnetism, topology, vorticity , discussion of Helmholtz’s papers, other
applications.

Our motivation to study these topics arises from the last pages of Poisson’s article 73 [37, pp.173-4],
in which he remarked that although the exact differential may hold at some initial time in the motion, it
doesn’t follow that it always holds at later times.? We would like to reveal the mistake behind “Poisson’s
conjecture” and the fact that the Navier-Stokes equations can be formulated following this train of ideas.

2. Observations from the exact differential to the vortex

2.1. Maupertuis’ principle of minimum action.

P.L.Maupertuis’ paper is famous for its stating of the Principle of least action, notwithstanding its
application to geometrical optics. The paper on the law of equilibrium was read to members of [’Académie
Royale des Sciences de Paris in 1740:

Ce n'est que dans ces derniers temps qu’on a découvert une loi dont on ne sauroit trop vanter
la beauté & I'utilité, c’est que dans tout systéme de corps élastiques en mouvement, qui aggisent
les uns sur les autres, la somme des produits de chaque masse par le quarré de sa vitesse, ce
qu’on appelle la force vive, demuere inaltérablement la méme.

Soit un systéme de corps qui pesent, ou qui sont titrés vers des centres par des forces qui
agissent chacune sur chacun, comme une puissance N de leurs distances aux centres: pour que
tous ces corps demeurent en repos, il faut que la somme des produits de chaque masse, par
I'intensité de sa force, & par la puissance N + 1 de sa distance au centre de sa force ( qu'on
peut appeller la somme des forces du repos ) fasse un maximum ou un minimum. (31, pp.47-48]

In the proof of the above propositions, he concluded that: for a system in equilibrium, it is necessary
that the following holds:

mfz"dz +m' f'2"dZ +m" {2 d2" =0, (1)

where m,m’,m” are masses and f, f', f" are forces. Hence, the value of mfz"*1dz +
m! f'2""Hdz! + m” f"2"+H1dz" is then either a maximum or minimum. [31, p.52]

As an aside, if homogeneous, we can substitute z, z’, 2" with x,y, z and wnf,m/f',m" f" with P,Q, R
then (1) becomes Euler’s form of an equation for which he had cited Maupertuis: dS = Pdz+Qdy+ Rdz =
0.

1(}) To establish a time line of these contributor, we list for easy reference the year of their birth and
death: Sir L.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d’Alembert(1717-1783), Lagrange(1736-1813),
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857),
Saint-Venant(1797-1886), Stokes(1819-1903).

2(4}) Poisson stated: Mais la démonstration qu’on donne de cette proposition suppose que les valeurs de u, v, w, doivent
satisfaire non seulment aux équations différentielles du mouvement, mais encore a toutes celles qui s’en déduisent en les
différentiant par rapport a {; ce qui n’a pas toujours lieu 4 I'egard des expressions de u, v, w, en séries d'exponentielles et
de sinus ou cosinus dont les posans et les arcs sont proportionnels au temps; et la demonstration étant alors en défaut, il
peut arriver que la formule udr 4 vdy 4+ wdz soit une différentielle exacte a 'origine du mouvement, et qu'elle ne soit plus
a toute autre époque. [37, p.174]
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TABLE 1. Theories, applications and discussions about the exact differentiability of

udz + vdy + wdz in fluid mechanics

lequilibrium proof curvature e]ectromagneticsltopology vorticity ]discussion application
Maupertuis
1740,68 [31, 32|
Clairaut Clairaut
1741-43,1808(2ed.) [6] 1741-43,1808(2ed.) [6]
d’Alembert
1749-52 [8]
Euler Euler[E226]
1752-55 [13] 1755-57 [13]
d’Alembert d’Alembert
1761 (9] 1761 [9]
Lagrange Lagrange Lagrange
1781-1869 [26] 1781-1869 [26] 1781-1869 [26]
Laplace
1806/07-29 [29]
Cauchy Cauchy
1815-27 [5] 1815-27 [5]
Navier
1822-27 [34]
Snniag Gauss
1813 [15], 1827 [17], 1828 [16]
1830 [18]
Poisson
1829-31 [37]
Power
1842-42 [39]
Stokes Stokes Stokes
1845-49 [43] 1845-49 [43] 1845-49 [43]
1850 [20]
Riemann
1857 [40)
Helmholtz Helmholtz
1858 [21] 1868 (22, 23, 24]
Clebsch
1858-1859 [7]
Thomson Thomson Thomson
1867-69 [47] 1867-69 [47] 1867-69 [47]
Bertrand
1868 [1, 2, 3, 4]
Saint-Venant
1868 [42]
Lamb
1879 [28]
Leray
1934 [30]

Gauss proposed the general principle of both static state and motion in a note

I cite below

Maupertuis’ principle of minimum action, which we mention below in §3.

2.2. Clairaut’s effort and ezact differential.

in 1827 generalized

Writing on hydrostatics in 1740, Clairaut had already usedeffort ( response ) and ezxact differential. In
his thesis, Théorie de la figure de la terre, tirée des principes de Uhydrostatique ( Theory of the shape
of the Earth, derived from the principle of hydrostatics ), he proposed the term ezact differential earlier

than Euler.

Si on voulait présentement faire usage de cette quantité, pour trouver en termes finis la valeur
du poids du canal ON, en supposant que la courbure de ce canal fiit donnée par une équation
entre z et ¥, on commencerait par faire évanouir y et dy de Pdy + Qdz ; cette différentielle
n'ayant plus que des x et dz, on intégrait en observant de compléter 'intégrale, c'est-a-dire
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d’ajouter la constante nécessaire, afin que le poids fiit nul, lorsque  serait égal & CG ; on ferait
ensuite X = C1, et l'on aurait le poids total de ON. [6, §16, p.35-37)

Mais comme I'equilibre du fluide demande que le poids de ON ne dépende pas de la courbure de
OSN, c’est-a-dire de la valeur particuliére de y en =, il faut donc que Pdy + Qdz puisse s’intégrer
sans connaitre la valeur de z, ¢'est-a-dire qu’il faut que Pdy + Qdx soit une différentielle compléte,
afin qu’il puisse y avoir équilibre dans le fluide. [6, §16, p.35-37).

In a footnote, Clairaut commented on exact differentials * as follows:
J'entends par différentielle compléte, une quantité qui a pour intégrale une function de = et

dr4zd fpre . - 1 . +
de y. ydz + zdy, m sont des différentielle complétes, parce qu'elles ont pour intégrales

Yy, /a2 + oy, EEE-HE est aussi une différentielle compléte, parce que son intégrale est représentée
par l'arc dont la tangente est £, le rayon étant 1. Mais y*dz + z%dy, y*dx + z°dy, ne sont pas
des différentielles complétes, parce qu’aucunes fonctions de « et de y n’en sauraient étre les
intégrales. [6, p.37, footnote].

2.3. D’Alembert’s exact differential.
D’Alembert[8] teaches us various types of the exact differential of the complex value. ( Now we show
here e.d. in brief. )
If Mdx+ Ndz and Ndx — Mdz are the exact differentials, we propose to find the quantity of
M and N.
o Mdr+ Ndzis ed. = Mdz + NV‘_IV%T‘
* Ndz - Mdzis ed. = Nv=Idx — Mdzy/~T or Ny/=Tdz + M is ed.
= (M + NvV=T) (do + ) and (M — NV=T) (do 1) are ed.s
. d:c+3‘f:’-r=du = (afunctionofF]+:c+7’_—f=u,
e de— & =dt = (afunctionof G)+a— Fr=t
e M+ Ny=I=a & M-NJ/=1=5,
=
— @ is a function of u, i.e. M + Nv/—1 = a function of F' + = + e d)
— [ is a function of ¢, i.e. M — Nv/—1 = a function of G + & — 75-
D’Alembert proposes the following simple format.

3({1.) It is called the condition for exact differentibility as follows. Now, for brevity, we treat only a two variable case.
In the domain K of the zy-plane, where the two functions ¢(x,y) € C! and 4(z,y) € C! are given, and we suppose
(e, y)de + (z, y)dy (2)
is the total differential of an arbitrary function F(x,y), namely dF = @dx + dy. Hence, Fi = ¢, Fy =1
Then by the assumption, we obtain Fy, =y, and Fy. = 1., namely,
Py = . (3)
(3) is the necessary condition that (2) becomes an ezact differential, and if the domain K is simply-connected, (3) imme-
diately becomes also a sufficient condition. We treat belowezact differential and complete differential as being equivalent.
4Two examples of exact differentials given by Clairaut are simple: if we consider ’—:ﬂ%ﬁ‘—’- and set P = — ?2'.%;‘1 and

_— T ra.
Q= 27,7, then we obtain:

P y-s*  0Q

y (@ +y?)? oz

s . dx4xd i = T F 1
Considering also #;:ﬁa.nd put P = W:%';TJ and Q = R then we obtain:
AP 2y/a® +xy — y(a® +zy)_’21: _0Q

Ay (2+/a2 + zy)2 dx
In contrast, as two examples of inexact differentials, we find for 2dy + y2dz
aprP a0

3 — = 2=,
dy Ey?éa:z =

and for z%dy + y3dx, we get

oP ., 0Q
5—3“9' 95'5;

= 322,
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d d dp _ d
o« =4 =2 = qdr+pdz, pdr—qdz aree.ds
=

—g+p/"I=F+z+ A & ¢-p/~1=CG+z— S
R {q:%{(F+:c+73fl-)+(G+:r.—7z_—l-)},

p=s=m{(F+s+ ) - (G+2- )}
— p and ¢ are the real numbers
= we must suppose G = F,

=

where £ (F +2 % - ) and ¢(F + o % &) denote the differential functions.

2.4, Euler’s study on the exact differential.
Euler investigated the nature of exact differentials in the following papers:

e (E258) Principia motus fluidorurn ( Principles of the motion of fluids ) [1752], (1756/57), 1761.
o (E225) Principes générauz de létat d’équilibre des fluides [1753], (1755), 1757.
e (E226) Principes générauz du mouvement des fluides [1755], (1755), 1757.
e (E227) Continuation des recherches sur théorie du mouvement des fluides [1755], (1755), 1757.
e (E375) Sectio prima de statu aequiliblii fluidorum ( Section 1. On the state of equilibrium of
fluids ) (1768), 1769. '
o (E396) Sectio secunda de principiis motus fluidorum ( Section 2. On the principles of motion of
fluids ) (1769), 1770.
where (E...) denotes the Enestrom Indez, while the years appearing at the end of the item are
respectively:
— in square brackets, the year commented on by C.Truesdell [48],
— in parenthesis, the year commented on by Enestrom in Euleri Opera Omnia [13], and
— unbracketed, the published year commented on by Enestrom in Euleri Opera Omnia [13],

2.4.1. Development of the exact differential by Euler.

Of the many papers in which Euler discussed exact differentials, we shall take a closer look atone of
these. In (E396), Euler posed Problem 34:

§88. Si cuiusque fluidi elementi ternae celeritates u,v,w ita sint comparatae, ut formula

uwdz + vdy + wdz integrationem admittat, aequationem, qua pressio fluidi exprimitur, evolvere.
(E396) [13, p.127].

(Translation) =+  If the three elements of the velocity of an arbitrary fluid element: u,v and w are

proportional to each other and the expression: wudx + vdy + wdz is integrable, derive the equation by
which the fluid pressure can be expressed.

Euler solved his problem as follows:®

dl = udzx + vdy + wdz + Pdt.

v=u(z) +o(5) +o(E) + (F)

where, it holds the exact differential, then d_u = & dy_dw du dd

dy  dz’ dz T4z A&t dx
By substituting these terms for U, we get the following expression of U :
du dv dw de
U=u(g) +o(z) +o(Z) *+ (Z) @
Similarly we get the followings :
%=%; %:%‘ %Zd‘b = V=‘I'.& %)+U(Q)+W(§E)+(L)l
d_t:' = T w D

Yy Y dy (5)
dw __ du d d d d d
=% S ";)+w(—z)+(—z)-

5(4}) The term @dt is the originality by Euler.

a={e(Fto+ ) +e(F+z- 7)) 4 va{c(Frat o2g) —¢(Fre- o)
p=71:l={£(F+x+75_=1-)—E(F+:c—v,z_—1)}+{§(F+z+ 7‘5)+§(F+z—7‘:-1

ih
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Now we postulate that the outer forces P, @, R act such that:
f (Pdz + Qdy + Rdz) = S.

Staying with Euler’s notation, we consider pressure = p and density = ¢ in the fluid element, so that
then

2gd
% = 2¢dS — Udz — Vdy — Wiz, (6)

in which we assume the time ¢ is constant, for the hypothesis is as follow :
d:c(d—”) + dy(@) 4 dz(d—w) = dz(@) + dy(@) + dz(@) — 49,

dt dt dt dx dy dz
Here, from (4) and (5), the reduction on the other elements of (6) are observed
Ude + Vdy + Wdz = udu + vdv + wdw + dP. (7)

When we integrate the above pressure formula (6), then we get from (7) the following :
ng%pz 295 — %(u2+v2+wz) —®+f:t,

where f : ¢ is Euler's notation for f(t). Here, the density ¢ is assumed to be a function of p only; for
other reasons, if this equation also satisfies positivity requirements, and g is a function depending on p,%
then this quantity becomes
d 1
29/?;1 =2¢8 — E(ue + 02 +w?) - .
Euler proposes the Euler’s equations in (E226) 921 7:
921. Nous n’avons donc qu'a égaler ces forces accélératrices avec les accélérations actuelles

que nous venons de trouver, et nous obtiendrons les trois équations suivantes :
_ldp _ du du du du
P q e~ di +ud:ﬂ+vdy+wdzl
_1dp _ dv dv dv dy
Q T =T tug tog +ug,

—ldp _ dw dw dw duw
R gdz = di +udr+vdy+wdz

Si nous ajoutons a ces trois équations premierment celle, que nous a fournie la considération
de la continuité du fluide :
dg dgu dqv dqw
— =+ =+ =0
di + dz + dy dz
2.5. Lagrange’s velocity potential .
Citing Euler’s method, Lagrange however was the first to use ¢ for the velocity potential, the symbol
widely reserved for this in modern conventions.

§14. nous supposerons de plus que les forces accélératrices P, (), R du fluide soient telles, que
Pdz 4 Qdy + Rdz

soit une différentielle compléte ; ce qui a lieu, en général, lorsque ces forces viennent d'une ou
de plusieurs attractions propotionelles a des fonctions quelconques des distances.
De cette maniére, si l'on fait
dV = Pdx + Qdy + Rdz,
la équation proposée étant divisée par A se réduira a cette forme
dp dp dp dp dq dq dq dyg dr dr dr dr dll
2 o g eV e+ (4 p2L 402 472 N dy+ (5 495 + o =L Ydz=dV — .
(% +72 +ag, +rgt)ds+ (G +og tagy tra)dut (G +og +9% trop)de=av -3
Ainsi le premier membre de cette équation devra étre en particulier une différentielle compléte
relativement & x,y, z, puisque le second en est une.
Qu’on retranche de part et d’autre la différentielle de
P44
2

ﬁ(J,L) This is called a barotropic fluid, for which ¢ = f(p).
112, p.65]
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prise relativement a x,y, z, laquelle est

(pdp +qu +ri‘3)dx+ (pdq L +r£‘1)dy+ (pd e +rj )z

dx dz dz dy dz dx dy
on aura, en ordonnant les termes, cette transformée
dp dg
dtu!a:+ dtdy+ dtdz

dp p dq dI1 p2 s q2 + Tz
2 dz — A (%- -—) ey s S
® (= ) (qde — pdy) + (22 ~ 90 (rde — pdz) + (2 (rdy - qdz) = aV = % L
Donc le primier membre de cette équation devra étre pareillement une différentielle exacte.
§15. i est visible que, si I'on suppose que la quantité

pdz + qdy + rdz
soit elle-méme la différentielle exacte d’une fonction quelconque ¢ composé de z,y,z et ¢, on
aura
_ dyp _dy _dy
p =" d.’l: ] f} e dy 1 T= dz .
Donc

dp _d’¢ dq  d*o dr  d*p
dt — dtdz’  dt  dtdy’ dt didz’
dp d*p dg d*p
dy = dady’  dw = dydz’ L
Ainsi I’"équation précédente deviendra par ces substitutions

d? d? dil p*+¢*+1°
d:dﬁ“‘ﬁdw“dccﬁd“w_ S
laquelle est évidement intégrable par raport & x,y, z ; de sorte qu’en intégrant, on aura
_df — ﬂ ;02 + q2 + 2
dt A 2

(26, pp.710-711]

2.6. Laplace’s necessary and sufficient conditions of fluid equilibrium.
Laplace stated the exact differential as the necessary and sufficient condition for fluid equilibrium:

Therefore, to support the equilibrium of a homogeneous mass of fluid, for which exterior

surface is free and contains within it a fixed solid nucleus, of any figure whatever, it is requisite,

and it is sufficient ;
e First, that Pz + Qdy + Rdz should be an ezact differential ;
e Second, that the resultant forces acting on the exterior surface should be perpendicular to

the surface and should be directed toward the inner part of the fuid.
[29, Chap. IV p.95].

2.7. Navier’s equation of fluid equilibrium.
Navier deduced an expression for the forces of molecular interaction between fluid elements under a
state of motion as follows: ®

Paraphrasing from Navier’s work, we consider two molecules M and M’. Let x,y,z be the
rectangular coordinates of M and x + o,y + 3,z + 7 be the rectangular coordinates of M’.
The length of a rayon emitted from M : p = \/a? + 3?2 + v2. The velocity components of the
molecule M are u,v,w and that of the molecule M’ are

déz déz déx ddy déy déy déz déz ddz
6x+dmu+ dyﬁ+dz7' 6y+dma+ — B+ == 6z+dm +dy‘6+ S
_ dix dbx dbx _ddy dby 5y _ diz dbz déz
JG—E&—FTyﬁ-FE‘Y, 0B =——c +-~"-i3+ g 57—504-'@-.8-!—5-7-
Gp= adex + B85 + 16')-‘
P
_lydéx o  diz déx: ddy déy o  dby dbz déz o
59—;(-&;0 +"Eaﬁ+jgﬂ'¥+ ﬁ+-—ﬁ + o Pt oay ﬁ7+-—’?)

8(1}) Navier ([34, pp.391-398]), §11. Equations de l%quilibre des fluides.
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where
dd dé ddx dd
@am ap=0, For+ Fpy=0, Fay+ Far=o.

We introduce, as does Navier, a function f(p) depending on the distance p between M and M.
We denote by 10 the angle between Navier’s “rayon” p and its projection onto the af-plane,
and ¢ the angle which this projection forms with the a-axis, and then we can evaluate only the
terms as follows:

3f(93(@02+£g

dbz 2
p \dz dy U )

2
Bk dz
Here, we assume that the components of the rayon in the above polar coordinate system are:
@ = pcos cos i,
B = pcossin g,
¥ = psiny,

and then evaluate finally the following (8)

Sf dpp f{p]f dwf dqa(‘w—xcos Peos @+ f—y-ms 1 sin t,o-i—iism wcosu'))

We use the following formulae:

Jeos™ zdr = Lcos" ' zsina + =L [ cos™? wda,
mt
.l — sin
[sin™ zcoszda = )

fsm rdr = ET_ L sin 2,

Jeos® zdx = La + Lsin2z.

from which we obtain:

£ 3 2 2
f dycos™ ¢ = =, ‘/ dipsin® ¥ cos 1 = f drpcos p= f dypsin®p = —
0 3 0 4

Equation (8) simplifies to:

S22 [ (2 + B )

Here for brevity we write
dr [
= [ antr=p
0
where p ? depends not on the distance p but only on the coordinates of «,y, z which determine

the position of the molecule M. Hence we have

(s )

The equation describing the equilibrium condition of the system is:

dda: déy  ddz
0= ff/dxdydz —+?y—+d—)+PJI+Q6y+R§z]

By partial integration we obtain

/f dadydz| P—%)a +(Q— )6y+(R—%)6z]

f dydz (p’ﬁm' - p”éz” f f d:ndz p oy’ — ”Jy" f f ri:cdy o p"b’z”).

®)

9(1) In Part 2 of our following papers, we would like to introduce a universal method for the two-constant theory

including Navier’s p, showed in Table 2, 3 and 4.
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2.7.1. Two conditions deduced from the indeterminate equations.
Navier reduced the indeterminate equations for fluid equilibrium into two parts.

o Exact differential for the equilibrium conditions of an arbitrary interior point of the fluid,

dp dp dp
— =P —_— = —_— =
dw 7 dy Q! R‘

dz
dp = Pdz + Qdy + Rdz

p= ](Pda: + Qdy + Rdz) + const.

As a result, Navier explained exact differentials for the conditions of fluid equilibrium as follows:

formule o1 la fonction sous le signe [ doit étre nécessairement susceptible d’une intégration
ezacte, pour que le fluide soumis & I'action des forces représentées par P, (), R, puisse
demeurer en équilibre. [34, p.396)].

e The boundary condition at the surface,

Citing Lagrange [27, pp.221-223,§29-30], Navier explained the mathematical method as follows:

if we substitute

— dydz — ds?cosl, [: the angles by which the tangent plane makes on the surface frame

with the plane yz,
— dzdz — ds?cosm, i : similarly, the angles with the plane zz,
— dzdy — ds?cosm, n : similarly, the angles with the plane zy,
— [[ dydz, [[ dzdz, [[ dedy — Sds?

where [, m,n are the angles the tangent plane on the surface makes with the planes yz, yz, and
ay respectively. Hence, noting the conditions manifesting at the points on the surface of the fluid

element, we get the indeterminate equations as follows:

0 = Sds?[(p' cosl'dz’ — p"” cosl"dz") + (p' cosm/Sy’ — p” cosm” §y") + (p' cosn'62' — p” cosn”52")],

0= /(Pdm + Qdy + Rdz) + const.
Therefore, we get the differential equation:
0 = Pdz + Qdy + Rdz
and among the variations §uz, §y, 6z, we derive the following relation:

0 = dxzcosl + dycosm + dz cosn.

Navier cited Laplace for the molecule idea and chose consistently a repulsive force in his own papers

[33, 34] for the function depending on the distance between molecules:

Les lois de 'équilibre des fluides, énoncées ci-dessus, sont conformes i celles que les géométres
ont établies d’apres le principe de 1'équilibre des canaux, ou en supposant le fluide décomposé
en élements rectangulaires infiniment petits, et exprimant que chacun de ces éléments, soumis a
I’action des pressions exercées sur ses faces, et des forces accélératrices appliquées aux molécules,
doit étre en équilibre. La considération des forces répulsives que la pression développe entre les
molécules, dont M.Laplace avait déja déduit les équations générales du mouvement des fluides,
dans le XII¢ livre de la Mécanique céleste, parait dépendre plus immédiatement des notions
physiques que l'on peut se former sur la nature de ces corps. [34, p.398]

However, N.Bowditch'® pointed out that Laplace had rethought the repulsion theory and changed it, in
1819: @(f) = A(f) — R(f), where ¢(f) : a function depending on the distance f between the molecules,

A(f) : attractive force, R(f) : repulsive force.

10(4)) N.Bowditch[29, p.685] commented as follows:
This theory of capillary attraction was first published by La Place in 1806 ; and in 1807 he gave a
supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration,
because he supposed it to be unnecessary. But in 1819 he observed, that this action could be taken
into account, by supposing the force ¢(f) to represent the difference between the attractive force of the
particles of the fluid A(f), and the repulsive force of the heat R(f) so that the combined action would
be expressed by, ¢(f) = A(f) = R(f) ; -+
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2.8. Poisson’s deduction of the equilibrium and an exact differential.
We cited Poisson’s deduction [37, pp.90-124].1!

2.8.1. Poisson’s condition for fluid equiliblium.
Poisson proposed his tensor:

- dP; d P d.
Xp=4f of 4 4,

o) vom i "
dR. dR.

Poisson explained his function R of the molecular action shown in Tables 2, 3 and 4 as follows: '?

R étant une fonction convenable de r, x,y, z, insensible pour toute valeur sensible de r, nous
exprimerons généralement 'action mutuelle de p et p' par la formule:

1dR ’ 1dR ; 1dR ( '
(§43.1p) R+§E(u+u)+§d_y(v+”)+§dz w-l—w).
Nous supposerons toujours cette force dirigée suivant la droite qui joint les deux points p et p'

; et nous la regarderons comme positive ou comme négative, selon qu’elle tendra & les écarter
ou & les rapprocher 1'un de l'autre. [37, p.97]

1 1 r22'R
(§46.4p) p= @ZT‘R, q= —EZ — (10)
1 1
N=p+a(5+y3)
dp dp dp
(§51.107) pX — 3L =0, p¥ - =0, pz-22=0,
(851.11p) dp = p(Xdz + Ydy + Zdz). (11)

Pour que I'équilibre du fluide soit possible, il faudra donc que les forces données soient telles
que la formule Xdz + Ydy + Zdz, multipliée par la densité p, soit la différentielle exacte d’une
fonction de trois variables indépendantes z, y, 2. Quand cette condition sera remplie, I'équation
(11) fera connaitre la pression p en chaque point intérieur du fluide ; et la grandeur de l'intervalle
moyen &, qui est la seule inconnue du probléme, se trouvera implicitement déterminée en founc-
tion de x,y, z, au moyen de la primiére équation (10).

Xdx +Ydy + Zdz = dp.

dp = pdyp,
where N is the vertical force, and A, A’ are the radii of the principal curvature. In equation (9),
P3=0Q2=Ry =p,

while the other 6 forces in the tensor are zeros.

2.9. Helmholtz’s vorticity equations.

11(.1}) §V. Calcul des pressions dans les Fluides en équilibre ; Equations differentielles de cet équilibre.
12(1}.} We would like to introduce a universal method for the two-constant theory including €, C2, (3, C4, showed in
Table 2, 3 and 4, in the following papaer of Part 2.
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2.9.1. Helmholtz’s definition of irrotational motion.
Helmbholtz used Euler’s equations (1), because he had not known at that time of Navier’s equations.

1dp _ du du du du
X—Kﬁ—a:+“dz+”dy+wa21 Vst
1dp _ F—EVP—E'E‘FU‘VU,
Y - hdg +udx+v +wdz,
(1a) 7 _ ldp =d‘”+u +U-d—‘”-+wd—‘” ={(V-u=0, (12)
i ”"“z ‘"‘ dz? where F = (X,Y,Z), u=(u,v,w).

E+RE+E=0
We consider the forces X,Y and Z of the potential V' :

dVv dV dV
(lag) X_'d?' Y_d_y’ Z—E'

and moreover, the Geschwindigkitespotential @ ( velocity potential ), so that:

(1byg) u= g 'U'—d(’a =2

dﬁ —'(E, w——-d;, (13)

From the conservative law of (12) (= 1g), we also get the divergence of the null value as follows:
Ap =0,

Helmholtz did not mention explicitly vollstindigen Differentialien (ezact differential or complete differ-
ential ), however from (13) we can deduce the condition for the ezact differential as follows:

du  dv dv  dw dw du
le ———=0, ———=0, ———=0, =V =0
\lew) =~ dz  dy dz  dz xu
To study these three conditions (le¢y), Helmholtz, by considering an infinitely small volume of water in
a time period dt, made a comprehensive investigation into the variation from the following three various
motions:

(1) einer Fortfiifrung des Wassertheilchens durch den Raum hin,

( = a carrying away of the small particle of water through the volume, )

(2) einer Ausdehnung oder Zusammenziehung des Teilchen nach drei Hauptdilationsrichtungen, wobei
ein jedes aus Wasser gebildete rechtwinklige Parallelepipedon, dessen Seiten den Hauptdilation-
srichtungen parallel sind, rechtwinkelig bleibt, wihrend seine Seiten zwar ihre Linge fndern, aber
ihren friitheren Richtungen parallel bleiben,

( = a stretching or contraction of the particle in the three main axis directions, where, each from
water of the rectangle parallelepiped, whose sides are parallel to the direction of main axis, while
the length of their side is changed, however the side remains in the parallel direction,)

(3) einer Drehung um eine beliebig gerichtete temporére Rotationsaxe, welche Drehung nach einem
bekannten Satze immer alsResultante dreier Drehungen um die Coordinataxen angesehen werden
kann,

(= when a rotary motion around an arbitrary oriented, temporary axis of rotary motion exists,
whatever the rotary motion is able to be considered according to a famous theorem as a resultant
force of three rotary motions around the coordinate axis.) [21, p.29]

. di @ s _

u= A, iz = & dy T dz <= o

v=B, % =, du —dw =p ... exact differential conditions
- dw — . dv _ du —

w=0, F=c dz — dy =V

When we now consider a molecule with coordinates x, y and z, is at an infinitely small distance from
coordinate point Z, ¢ and Z, then

v=A+a(z-&)+v9(y — ) + Bz — 2), U A a v B T —
v=B+y(z—-F)+bg-y)+talz—-2), =|wv|=|B|+]|v-b « y—7 (14)
w=C+fz — &) +aly — §) + ez — 2), v g ¢ a bl w-e
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When we put
p= Alcr—z)+Bly—9)+C(z—2)
l — )2 l~_ 2 1 2
+ 2a(z z) +2b(y y) +2c(z )
+ oy —9)(z—2)+ Bz —)(z — 2) +v(x - T)(y — 9),
then
_dy _dyp _dy
H—EE, ’U—d—y, w—dz.

Moreover, if we choose suitable coordinates 1, 1, and z; centered on point (%, 7, Z) :

1 1 1
= Aiz1+ By +Crz1 + Efﬂlzln gz 551?,'12 + 5612’-12

1 1 1
= (A + Ealml)xl + (B1 + Eblyl) y1+ (Cr + 50121}21

v " '

uy v wy

The velocity components u;, vy, and wy, resolved in this new coordinate system are:
uy = Ay +ayxry, vy =DBy+biy, w =C+cz.

Here, Helmholtz observed two points of view as follows:

e The velocity wuy, parallel with the z;-axis, is the same for all water particles of the same x; value,
or the water particles that lie in the y;z-plane at the beginining of the time period dt , are also
in the same plane at the end of the time period dt. This also holds for the xyy;- and z; z;-planes.

e If we therefore consider a parallelepiped bounded by the three parallel planes and their infinites-
imal neighboring planes, therein are the enclosed water particles formed, even after the passage
of time period dt, from the same parallel coordinate planes by the surfaces of a right-angled
parallelepiped.

Given the above, Helmholtz finally summarized as follows: Of all motions satisfying condition (1.,),
there can only be

e translations, and
e extensions or contractions along an edge,

and does not have any “Drehung” ( rotary motion / rotation ).

2.9.2. Helmholtz’s deduction of rotary motion in vorticity equations. - Helmholtz’s decom-
position.
Next, Helmholtz assumed conditions for rotational motion as follows:

e We consider the rotational motion of an infinitely small mass of water located at the point (Z, 7, 2).
e The rotary motion is around the axis on a parallel with the z,y and z.
e The mass goes through the point (Z,#, ), directed at angles &, 7 and (.

We derive the resultant velocity components parallel with coordinate axes (x,y, z) as follows:

0 (-3¢ —(W—9)¥ 0 (W-9¢ —(z—2m
—(z—2z)y 0 (z— &)y =" —(z —%)¢ 0 (z—2)¢
(y=9)¢ —(z-2)¢ 0 (z—am —(y—9)% 0

0 ¢ -0
=* - 0 ¢ -
n —£ 0

Combining (14) with (15) we the obtain the response tensor:

a v B 0 ¢ -7 a (y+¢) (B-n)
Y =ba|+| ¢ 0 &|=]| (v-¢ -b (a+§
B a c n =& 0 B+n) (a—§) ¢
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=B+ (7= 0)(x— &) +b(F—y) + (a+E)(z — 2),

{ =A+a(lz-2)+(r+ Q-9+ (B—n)(z-2),
w= C+(ﬁ+n)(w—$)+(u—£)(y g) + ¢(z — 2),

u a (v+¢) B-mn) T —%
>| v |= B F| tr=4) =& (G+e y—79
w c B+n) (@=§) c z—Z

By differentiating u, v and w with respect to z,y and z respectively, then the following vorticity equations
result:

e (+¢) (B-m) & —dy =% . ¢
(=0 =b (a+8) | = @u) {EB-F=2 = (Vxw=|n|=W (6
B+m) (@=¢§) ¢ du ﬂ_zc ¢

2.10. Thomson’s circulation theorem and the criterion of the irrotational motion on the
complete differential.

Thomson defined the Helmholtz-like velocity potential as follows:

§31. Let now the “velocity potential” ( as we shall call it, in conformity with a German
usage which has been adopted by Helmholtz ), be denoted by ¢ ; that is ( §16 ) , let ¢ be such
a function of ( z, y, x, ¢ ) that

WL . P
(3T) u_dw' U_dy’ w—dz’

and let ¢ (or %‘f ) denote its rate of variation per unit of time at any instant ¢, for the point
(z, y, z)regarded as fixed.
Also, let ¢ denote the resultant fluid velocity, so that

SR .. 2 _ (dN? dg\?
(4r) ¢ =u"+v" +w _(da:) +(dy)
The ordinary hydrodynamical formula gives
. 1
6r) p=T-¢-3d",

where II denotes the constant pressure in all sensibly quiescent parts of the fluid. [47, p.26)
Thomson’s propositions, now called collectively Thomson’s circulation theorems, are as follows:

+(E)"

Prop 2.1. The line-integral of the tangential component velocily round any closed curve of a moving
fluid remains constant through all time. [A7, p.50]

Prop 2.2. The rate of augmentation, per unit of time, of the space integral of the velocity along any
terminated arc of the fluid is equal to the excess of the value of %qg —p, at the end towards which tangential
velocity is reckoned as positive, above its value at the other end. [47, p.50]

He explained the condition “complete differential” as a criterion for irrotational motion'? as follows:

§59(e). The condition that udz 4+ vdy + wdz is a complete differential [ proved above (§13) to
be the criterion of irrotational motion ] means simply

o That the flow [ defined §60 (a) | is the same in all different mutually reconcilable lines from
one to another of any two points in the fluid ; or which is the same thing,
o That the circulation [ §60 (a) | is zero round every closed curve capable of being contracted

to a poini without passing out of a portion of the fluid through which the criterion holds.
(47, p-50]

His definitions are as follows:

860. Definitions and elementary propositions.

e (a) The line-integral of the tangential component velocity along any finite line, straight or
curved, in a moving fluid, is called the flow in that line. If the line is endless ( that is, if
it forms a closed curve or polygon ), the flow is called circulation.  [47, p.51]

13(.1,£) Irrotational motion means laminar flow, having no rotary motion.
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2.11. Disputes over Helmholtz’s paper.

2.11.1. Bertrand’s criticism of Helmholtz’s definition of rotary motion.

In various articles Bertrand [1, 2, 3, 4] and Saint-Venant [42] discussed Helmholtz’s theorem. In
particular, Bertrand had always criticized Helmholtz on this point. As the decisive example of the
motion along only the z-axis Bertrand stated: £ =0, n=0and ( = %

La possibilité de cette décomposition n'est nullement justifiée. M.Helmholtz I'adopte comme
évidente en s’assurant sur le nombre de constants introduites dans I’expression générale du de-
placement des points infiniment voisins. Acceptons ces assertions, et suivons-en les conséquences:
en désignant par £, 7, ¢ les composantes de la rotation, il en calcule I'expression par les formules
(2) de la page 31 de son Mémoire,'* et - .-

Supposons, par exemple, en adoptant la notation de M. Helmholtz, --- Les formules de
M.Helmholtz nous donnent cependant, dans ce cas, £ =0, n=0and { = %, et feraient croire
que chaque molécule tourne uniformément autour d'un parall¢le & 'axe des z.

Un tel exemple n’est-il pas déeisif ? [2, p.268].

2.11.2. Helmholtz’s responses to Bertrand.
Helmholtz responsed to Bertrand as follows:

Par la méthode de décomposition choisie par moi, j'ai aussi fixé, comme on voit, le sens dans
lequel il faut prendre le terme rotation dans mon Mémoire.

Nommons u, v, w les composantes de la vitesse paralléles aux axes des coordonnées x,y, z.
Alors le résultat de mon analyse préliminaire, qui semble étre I'object de la critique de M.Bertrand,
est celui-ci.

Si Pexpression (udz + vdy + wdz) est une différentielle exacte, il n’y a pas de rotation dans la
partie du fluid correspondant. Si cette expression n'est pas une différentielle exacte, il y a rotary
motion.

M.Bertrand, au contraire, a démontré que, dans un nombre trés-considérable de cas, on peut
construire des parallélipipédes obliques ayant une direction déterminée pour leur arétes, qui se
transforment en d’autres parallélipipédes dont les arétes restent paralléles a celles des premiers
; et l'illustre géomeétre suppose que j'ai omis ce cas dans mon analyse, parce que je n'ai parlé
que des parallélipipédes rectangles. [22, pp.136-137|

3. Gauss’ note on the general principle of both static state and motion

In 1827, Gauss [17] porposed “ein neues allgemeines Grundgesetz der Mechanik” ( a new general
principle of machanics ) referring the equation on minimum action (1) by Maupertuis [31], to which
Bertrand refers in his note edited in the Lagrange’s works [27, Vol.12, pp.365-368, Note 8]. '* Gauss
asserted that we can’t distinguish the static state from the moving state according to the principle of
d’Alembert'®, and proposed his general principle. ~ We cite here the introduction and the translation of
top paragraph from German to French by Bertrand as follows :

M. Gauss a fait connaitre, dans le Tome IV du Journal de M.Crelle, un beau théoréme
qui comprend & las fois les lois générales de I'équilibre et du mouvement, et samble
I'expression la plus générale et la plus élégante qu'on soit parvenu a leur donner ; les
lecteurs frangais nous sauront gré de reproduire ici la traduction des quelques pages
consacrées par illustre géometre & 'exposition du nouveau principe.

< Le principe des vitesses virtuelles transforme, comm on sait, tout probléme de
Statique en une question de Mathématiques pures, et, par le principe d’Alembert, la
Dynamique est, & son tour, ramenée a la Statique. Il résulte de 14 qu’aucun principe
fondamental de I'equilibre et du mouvement ne peut étre essentielment distinct de ceux
que nous venons de citer, et que 'on pourra toujours, quel qu'il soit, le regarder comme
leur conséquence plus ou moins immédiate.  [27, p.365]

Gauss proposed his principle as follows :

M) (2n) (= (16)).

15(11) Lagrange had already passed away in 1813. This note was written not by Lagrange but by Bertrand.

16(11) In 1758, from the Newton’s kinetic equation ( the second law of motion ) : F = mr, d’Alembert proposed
F — mr = 0, where, F : the force, m : the gravity, r : the acceleration. According to his assertion, the problem of kinetic
dynamics turns into that of the static dynamics.
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Das neue Princip ist nun folgendes. Die Bewegung eines Systems materieller, auf
was immer fiir eine Art unter sich verkniipfter Punkte, deren Bewegungen zugleich an
was immer fiir dusfere Beschrinkungen gebunden sind, geschieht in jedem Augeblick
in méglich griifter Ubereinstimmung mit der freien Bewegung, order unter méglich kle-
insten Zwange, in dem man als Mafie des Zwanges, den das ganze System in jedem
zeittheilchen erleidet, die Summe der Produkte aus dem Quadrate der Ablenkung jedes
Punkts von seiner freien Bewegung in seiner Mafie betracht. [17, p.233]

Bertrand translated Gauss’ note from German to French as follows :

< Le nouveau principe est suivant :

Le mouvement d’un systéme de points materiels liés entre euz d’'une maniére quelconque
et soumis & des influences quelconques se fait, & chaque instant, dans le plus parfait
accord possible avec le mouvement qu’ils auraient s’ils devenaient tous libres, c¢’est-a-dire
avec la plus petite contrainte possible, en prennant pour mesure de la conlrainte subie
pendant un instant infiniment petit la somme des produits de la masse de chaque point
par le carré de la quantité dont il sécarte de la position qu’il aurait pris s’il eiit été libre.
[27, p.366]

The sum of the product of mass at the every point by the square of the distance between two molecules.
We assume that m, m', m” : mass of point, a, o', a” : position, b, b/, b" : position after infinitesimal
small interval of dt, by the force which the points are activated and the initial velocity of the time interval.
Hence, we assume that it allows b, b', " to conbine with ¢, ¢/, ¢"”. Then

m(be)? +m' (') +m" (B"")? -
will be minimum. The equilibrium is a particular case of the general law.
m(ab)? +m'(a't")? +m/ (a”b")? - -

is a minimum, namely, the conservation of system at rest, which lies nearer to free motion with each point
than the possible deplacements which we consider. Here may be the important part for Gauss to assert
eagarly, so we cite Gauss’ original to which Bertrand refers as follows :

selbst ein Minimum sei, oder dafl das Beharren des Systems im Zustande der Rubhe,
der freien Bewegung der einzelnen Punkt ndher liege, als jedes mogliche Heraustreten
aus demselben. [17, p.234]

< sera un minimum, ou, en d’autre termes, lorsque la conservation du systém dans
1'état de repos sera plus prés du mouvement libre que chacun tend & prendre que tout
déplacement possible qu’on imaginerait. [27, p.367]

We assume that the force which operate on the point n in the time interval dt is clearly composed :

(1) a force, which recieves in addition to the effect of the velocity, moves the point @ at ¢,
(2) a force, which operates on the point at rest at ¢, moves instantly from ¢ to b.

These assumptions are applied to another point in the same manner.

Gauss proved his assertion as follow : we assume that v ', 4", --- are the positions which m, m', m
can take without any obstacles to combine with, and 8, @', 6" are the angles which ¢y, ¢/, ¢’v" makes
with ¢b, ¢V, "b".

"

7b?% = eb® + ey® — 2ch.crycos

Z myb® — Z meb?® = Z mey? —2 Z meb.eycosd > 0,

then 3> myb? > 3 meb? = 3 myb? must be the maximum, or 3 mcb? must be the minimum. O
Gauss concludes as follows :

Es ist sehr merkwiirdig, dafi die frien Bewegungen, wenn sie mit notwendigen Bedin-
gung nicht besteben kénnen, von der Natur gerade auf disselbe Art modificirt werden,
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wie der rechnende Mathematiker,'” nach der Methode der kleinsten Quadrate, Erfahrun-
gen ausgleicht, die sich auf unter einander durch notwendige Abhéingigkeit verkniipfte
Groflen bezieben. Diese Analogie liefisich noch weiter verfolgen, was jedoch genwirtig
nicht zu meiner Absicht gehort. [17, p.234] (do.)

Bertrand translates Gauss’ conclusion as follows :

< 1l est bien remarquable que les mouvement libres, lorsqu’ils sont imcompatibles avec
la nature du systéme, sont précissément modifiés de la méme maniére que les géometres,
dans leurs calculs, modifient les résultants obtenus directement en leur appliquant la
méthode des moindres carrés pour les rendre compatibles avec les conditions nécessaires
qui leur sont imposées par la nature de la question.

On pourrait poursuivre cette analogie, mais cela n’entre pas dans le but que je me
propose en ce moment. [27, p.368] (do.)

It is very remarkable to be able to explain the free movement, which was incompatible with the static
state, by the same method as the mathematicians had already calculated the problem, we can do it in

applying the least square method to show to be compatible with the necessary conditions imposed on the
characteristic of the question.

4. Proofs of the eternal continuity in time and space of an exact differential

4.1. Lagrange’s first proof.

Historically, Lagrange proved, for the first time, the exernity of time for exact differentials in 1781 and
in the process used ¢ to denote the velocity potential.

p=p +pt+p"t2 -, a=o +ot+ /M4
g=q +q"t+q"t* 4+, B=p+p"t+p"t2+ -,
r=r '+ y=5"+yt+y"2+--,
where

d d dl d,_ ' dn‘f d”_ ",‘
£-fi=a (F-%=a, (E-L=o,
d dr dp'  dr' _ o] dr' _ an
Eg—'ﬁ_::ﬁ) '&%_T‘—;=ﬁ| }E-_ r: =ﬁ!

— dr! _ 1 AN |
EE_'E_;’:‘Y) ﬂq:{_d_,;.‘=’)(! ﬁ;_'a‘,‘g':'}'\

d
d—fd:r: + %dy + E(g-dz + a(qdx — pdy) + B(rdz — pdz) + y(rdy — qdz).

17()) Maupertuis et al. Gauss says above :
Der grofie Geometer, der das Gebdude der Mechanik auf dem Grunde des Princips der virtuellen
Geschwindigkeiten, auf eine so glinzende Art aufgefiirt hat, hat es nicht verschméht, Maupertuis Princip
der kleinsten Wirkung zu gréflerer Bestimmtheit und Allgemeinheit zu erheben, ein Princip, dessen man
sich zuweilen mit vielem Vortheil bedinnen kann.  [17, p.232)
Bertrand translates above as follow :
< Le grand géometre qui a si brillamment fait reposer la science du mouvement sur la principe des
vitesses virtuelles n’a pas dédaigné de perfectionner et de généraliser le principe de Maupertuis relatif a
la moindre action, et I'on sait que ce principe est employé souvant par les géometres d’'une maniére trés
avantageuse. [27, p.365]
Here, we can summarize this paragraph by Gauss as follows : if the great mathematicians had regard the science of movement
on the principle virtual velocity, without paying no attention to perfect or to generalize the principle on the minimum action
by Maupertuis, then we observe that this princeple is used often by the mathematicians with a very useful manner, which
is Gauss’ selling point mentioning in this note.
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Substituting the time-series expansions and rearranging with respect to powers of ¢, the differential
becomes:

[ (p"dx + ¢"dy + 1" dz)

+ o d(qda—pdy) + B0 de — p'dz) + (Fdy — ¢'d) |

+ ¢t [ 2(p"dx + ¢"dy + r""dz)

+ o (¢"de — p"dy) + B (r'dz — p"dz) + ' (r"dy — ¢"dz)

+ o (¢'de — p'dy) + B (r'dz — p'dz) ++" (r'dy — ¢'dz) ]

i+ £ [ 3(pWdz + ¢Wdy + r¥dz)

+ o (¢"dx — p"'dy) + B (7" do — p"dz) + ' (7" dy — ¢ dz)

b - pdy) + B e —p'd) + (" dy — o)

+  "(dds —pdy)+ B (' de — pldz) + " (r'dy — ¢'dz) |

-+ (17)
= {('p”dx +"dy +1"dz) + 2t(p"dx + ¢"dy + r"dz) + 32 (pWdzx + ¢WDdy 4+ rWdz) 4 - },

+ (o +a"t+o" + ){(Q'drc —pdy) + (¢"de — p"dy)t + (¢"dz — p"dy)t* + - -- }

+ (B +p"t+6"2+ - ){(de —p'dz) + (r"dz — p"d2)t + (" dz — p"d2)t? + - - }

+ (Y +9"t+y"2+ - ){(r"dy —q¢'dz) + (r"dz — ¢"d2)t + (r"'dz — " d2)t? + - - } (18)

For this expression to become an exact differential that is independent of ¢, the coefficient of ¢ must become
an exact differential. If we suppose that p'dz + ¢'dy +r'dz is an exact differential, then o/ = ' =+ = 0.

Hence,

the first term in (17), p"dz + ¢"dy + r"dz, must be the exact differential. If we suppose that
pda+ ¢"dy + 1" dz is the exact differential, then the conditions o = 3" = 4" = 0 are necessary.
the coefficient of ¢ in the second term of (17) must be an exact differential and must reduce to

2(p"da + ¢"'dy + r'"dz), requiring that o/ = " = 4" = 0.

the coefficient of ¢2 in the third term of (17) must be an exact differential and will reduce to

3(p(4)d:£ + q(q)dy + r(‘l)dz), a_nd thus 0(4) — f}(4) —— '\((4) = 0
by successive iterations higher-order exact differentials are generated to any order.

Hence, if we suppose that p'de + ¢'dy + v'dz be an exact differential,

plde+¢"dy +1"dz, p"do+¢"dy+1"dz, pWdz+¢Vdy+rVdz

must be exact differentials, when time ¢ is assumed infinitesimally small. We cite Lagrange [26, §19,
pp.716-717] as follows:

Il s’ensuit de la que, si la quantité
pdx + qdy + rdz

est une différentielle exacte lorsque £t = 0, elle devra 'étre aussi lorsque t aura une value
quelconque trés-petit ; d’ou I'on peut conclure, en général, que cette quantité devra étre toujours
une différentielle exacte, quelle que soit la valeur de t. Car puisqu’elle doit I’étre depuis t = 0
jusqu’a L = @ ( 6 étant une quantité quelconque donnée trés-petit ) , si 'on y substitue partout
@ +t' A la place de L, on prouvera de méme qu’'elle devra étre une différentielle exacte depuis
t' = 0 jusqu'a t' = # par conséquent elle le sera depuis t = 0 jusqu’a ¢ = 28 ; et ainsi de suite.

Done, en général, comme l'origine des ¢ est arbitraire, et qu'on peut prendre également ¢
positif ou négatif, il s'ensuit que si la quantité

pdz + qdy + rdz

est une différentielle ezacte dans un instant quelconque, elle devra I'étre pour tous les autres
instants. Par conséquent, s’il y a un seul instant dans lequel elle ne soit pas une différentielle
exacte, elle ne pourra jamais 1'étre pendant tout le mouvement ; car si elle I'étant dans un autre
instant quelconque, elle devrait I’étre aussi dans le premier. [26, §19, pp.716-717].
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Lagrange’s claim is as follows: initially, we suppose @ is a small value and that ¢ is in the interval
0 <t < 0. Next, we substitute ¢ with # + ¢, and setting ¢ in the interval 0 < t' < 6, we then get
0 <t < 20. We substitute ¢ similarly and reiterate. Finally, we find that if pdz + qdy + rdz is an exact
differential at ¢ = 0, then this conjecture holds also for all ¢ such that 0 < ¢ < co.

4.2. Cauchy’s proof.

(1) u06+%=0, v05+%=0, w36+2q—0=0. (19)

da b
From (19), we get (3¢) :

Buu 6‘”(] BU[] 37.\‘.1‘[) 8‘!}0 0'&){]
(3¢) Do

BB BB oo B 2

du v _ 1 dug _ duy YOz dwg _ dug |\ 8z Bug _ Bwg Oz
gy Fr T G(xb=ly %ﬁ)[(?_bn E})&:"’( a 7}7_?')?}_b+(8c ab ) Ba |?
Ow _ du _ 1 dug _ Oug |8y  (dwy  Oug Oy 4 (Jug  Jwo )y (21)
dx dz W b da ) de da de b de b ) da |?
dw _ du _ 1 dug  Dug \Bz , (Dwa  Bug \dz , (Dug  Buwg )9z
9r — 9z T S(£E=ZTEy |\ % da ) dc Da T de b ) Ba |’
d du
ou _ ou 9: 9z 0z B~ Ba
Jy ~ = 1 QT: g a
i.e =* dw _ du e oy dy dy dy dwg _ Ou
o Q; z dz dy 9= 3:: gb da da -
w _ du S (:l’:—a b —(.) £ iz dx ;
Jr z : e Db Da Qug _
D ab
where § is the relative sign of the permutation of a, b, e. Stokes explained Cauchy’s S as follows:
S is a function of the differential coefficients of x,y and z with respect to a,b and ¢, which
by the condition of continuity is shown to be equal to %, py being the initial density about the
particle whose density at the time considered is p.
1 =1
9z By dzy ~
S(+3z 9 a¢)
then (21) becomes (22) as follows:
du _ v __ (dug Oy | dz Dwy  dug \ Oz Oupy _ duyg | Oz
By ?E"(“ETL-R a:.)?)‘é"‘('&'&n Bc)f)b+(6¢ o ) da
dw _ Ju _ (dug  dug )2 dwg _ Bug |\ Dy dug _ Dwg \dy
Dz ¥z \ ob da TJE + 15 — e ja t '3"? ab ) Da? (22)
Ow _ Ou _ (Bug vy |\ dz duwg _ dug \ dz vy _ duy | Oz
B~ 3=\ —Ba )T\ e — )BT\ 5% — "B )5
¢ a
ou _ o 9: 0: 0 . 1
ay ~ Oz ac g_b o
e =% dw _ou | — | 2y dy Bwg _ dug
.z =z gc E’% 3“ da de
_ﬂ i3 T 4 £ 3
Jr ~ Oz dc Db Da dug _ Juyg
de ab
Stokes [43] evaluated Cauchy’s proof and developed his own proof with Lemma 4.1 as follows:

§11 ... Since %, & are linite, ( for to suppose them infinite would be equivalent to supposing
a discontinuity to exist in the field, ) it follows at once from the preceding equations that if
wh =0, wi =0, w’ =0, that is if uoda + vodb + wode be the exact differential, either for the
whole fluid or for any portion of it, then shall ' = 0, w” =0, w" =0, i.e. ude + vdy + wdz

will be the exact differential, at any subsequent time, either for the whole mass or for the above
portion of it.

§12 It is not from seeing the smallest flaw in M.Cauchy’s proof that I propose a new one,
but because it is well to view the subject in different lights, and because the proof which I am
about to give does not require such long equations. .- [43, p.108]
4.3. Stokes’ proof.
Stokes[43] stated in his abstract of Section 2,

e Objections to Lagrange’s proof of the theorem that if udz + vdy + wdz is the exact differential

at any one instant it is always so, the pressure being supposed equal in all directions.
e Principles of M.Cauchy's proof.

e A new proof of the theorem.
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e A physical interpretation of the circumstance of the above expression being the exact differential.
Stokes proposed his new proof, comprising Power’s method [39] showed in (18) of Lagrange and criticizing
Newton(35], Lagrange[26], Cauchy[5] and Poisson[37, pp.173-4].1® As an aside, Stokes cited Newton’s
proposition XL, Theorem XIIL[35].

Si corpus cogente vi quacunque centripeta, moveatur utcunque, & corpus aliud recta ascendat
vel desendat, sintque eorum velocitates in aliquo aequlium altitudinum casu aequales, veloci-
tates eorum in omnibus aequalibus altitudinibus erunt aequales.
= If the body moving with an arbitrary centripetal force, or another bodies ascending straight-
forword or decending straightforword, it takes the equal velocities at any same altitude in
everywhere.

Stokes stated:

I confess I cannot see that Newton in his Principia Lib.I, Prop. 40, has proved more than that
if the velocities of the two bodies are equal increments of the distances are ultimately equal: at
least something additional seems required to put the proof quite out of the reach of objection.

He claimed a lemma to prove that udxz + vdy +wdz will always remain an ezact differential over intervals
of finite time. Stokes posed the lemma as follows:

Lemma 4.1. (Stokes) If wy,ws, -+ ,wy are n functions of t, which satisfy the n differential equations

s = Piwy + Quwa -+ + Viw,

(25s)
%m :inl+an2"'+Vnwn:
where Py, Q1,- -V, may be functions of t,wy,---wy,, and if when wy = 0,ws =0,--+ ,w, = 0, none of
the quantities Py,--- ,V, is infinite for any value of t from 0 to T, and if wy, - w, are each zero when

t =0, then shall each of these quantities remain zero for all values of t from 0 to T'.

Proof. First step : we evaluate the behavior of wy,ws, - ,w, in the interval of 0 < ¢ < 7 < 1 such
that: at the time of 7,

it may be taken so small that the values of wi,ws, - ,w, are sufficiently small to exclude all
the values which might render any one of the quantities P, Qu,--+,Vi,*++,Pn, Qn, -+, Va
infinite.

Defining L such that:
L = max (Pl': Ql:"' !Vlt"' :Pnl an"' !Vn)!
then (255) becomes:
%‘- = L(wy +ws + -+ +wy),

(26s) §-- DR S %
Lo = L(wy +wa+ -+ wy),

Setting £ :
Q=w; +wz--+ why,

we obtain
dQ
dt

...but no value of C different from zero will allow £} to vanish when t = 0.

=nLQ), N=Ce*t, 0<¥t<rT,

Hence, we arrive at C = 0, and then
Wl =w2="'=w‘n=0'

Since then wi,ws, - ,wn would have to be equal to zero for all values of ¢ from 0 to 7 even if
they satisfied equation (26s), they must a fortiori be equal to zero in the actual case, since they
satisfy equation (25g).

Second step : we evaluate w, in the interval of 0 <t < T.

IB(U.) We introduced “Poisson’s conjecture” in the introduction §1.
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This lemma might be extended to the case in which n = oo, with certain restrictions as to the
convergence of the series. We may also, instead of the integers 1,2,... ,n have a continuous
variable o which varies from 0 to a, so that w is a function of the independent variables a and
t, satisfying the differential equation:

dL}J a
& —/; ¥(e,w,t) w de,

where we suppose ¥(x,0,t) <00, 0<"a<a, 0<t<T.
When t = 0, we obtain w = 0, 0 <Yt < T. Finally, we consider this integral equation in putting
=00

d‘.{) o0
= V(e w,t) w da, 0<"a<oo, 0<Y1<T.
0

The proposition might be further extended to cases for which o = oo, with the equations (255)
are already more general than 1'® shall have occasion to employ. [

We suppose p to be a function of p and ﬁﬁ, namely, here we suppose the barotropic fluid, then

d) _, Du dlp) _, Dv dp) _, Dv
dx Dt’  dy Dt'  dz Dt’

(275)
The force X, Y, Z will here be supposed to be such that Xdxz+ Ydy+ Zdz is an exact differential,
this being the case for any forces emanating from centers, and varying as any functions of
the distances. Differentiating the first equation (27s) with respect to y, and the second with
respect to x, subtracting, putting for Du/Dt and Dv/Dt their values, adding and subtracting,
du/dz.dv/dz*® and employing the notation of Art. 2, we obtain

Dw' _ _  dv dy ' du M du
Dr = (m+.ﬁ)“+nw + &Y
Dw' _ du, ¢ du dw " dw
(283) ot = g;w = + el L o d—yw 3
Dw' _ du, dv, M du dv "
Tr =W tgW |\t )

By treating the first and third, and then the second and third of equation (27s) in the same
manner, we should obtain two more equations, --- [43, p.111]

According to Stokes’ explanation, from (27g), we get:
Dw' D{l(dw dv)}
Dt~ Dtl2\dy dz

= Gralbls - EEE -BheiE-2)

1 dv  dwy rdw dv dvdue dvdw dwdv  dudw
= f-Gte G e e e e R
1 dv  dwy rdw  dv du (dv  dw
= s~ g2l G " *Ez-3]
lrdu dv dwydw dv
= Slpteteliaa
= —w' divu.

19(4) Stokes.
20())) sic.
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DDL:” :d%{%d(z_: _d%)} d d d d d d
1 1/d 1
B 2)- (2 ) b -2
1rdudw dudv dwdv dwdu du dwy du  dw
e s a aal a e]
dv sd d d d

- -G )

l7du dv  dwy/du dw
(&5 %) & F)

= —w" divu.

Duw'" D (1 dv du
il

dul d d d
- A - RGP - (DB
lrdudw dudv dvdu dvdw du dvyrdv  du
5[5@‘@*&?*&@‘(5*@)(@‘@)]

~ 3 “Fle-a e w5

~ %
= —w" divu.

We can then arrange (28g) by the array:

; _(dv 4 dw) dv dw
D_-E;‘;; (dy G dz dz dx w'
(28s5) = | L& |=| & -(sed) W
D’ du dy du | dy w"
2l &= & (z + a_y)
du du dw
— (“; + oy + —z) 0 0 o
= |0 —(&+2+4) 0 W
du duv dw w
00 —(&+&+d2)
DW
= Dr = —W div u, (23)
where
l/dw dv 1/du dw 1l/dv  du
PN H ool (G o , w.ﬂ:_(___)‘ wm:_(____), W = !,wﬁ" ny.
- 2(@ dz) o\dz ~ dz 2\dz ~ dy W'l
Now for points in the interior of the mass the differential coefficients %‘f, .-+ will not be infinite,

on acount of the continuity of the motion, and therefore the three equations just obtained are
a particular case of equations (25s).
Stokes concluded this problem with the following:

If then udz + vdy + wdz is an ezact differential for any portion of the fluid when ¢t = 0, that
is, if w’,w"” and w" are each zero when { = 0, it follows from the lemma of the last article that
w',w" and w"’ will be zero for any value of ¢, and therefore udz + vdy + wdz will always remain
an ezact differential. [43, p.111].

Thus the proof of this problem, demonstrating the eternal continuity in time and the space of an exact
differential, had been solved by Stokes or Cauchy.
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TABLE 2. Cy,Cy,C5,Cy : the constant of definitions and computing of total moment of
molecular actions by Poisson, Navier, Cauchy, Saint-Venant & Stokes
nojname |elastic solid moment of elastic fluid lequiliblium of fluid
o= 2= g0 ddr Cr= —k=—zly 342l .
Cl—k_lzzggs_f;—' ' 2 :a:?gc?_{r 5 Clz—qzﬁxzr2iR
Co=K=%Y fr S—B Lt & =p=gz LR
E=3 3 .  dmg Cr=p=gzdr
Cs= dy [,? cos Bsin Fdf3 g3 Co=—-K=—gx3 1fT M= 1, 1
) #{31 2«} 2x =2y _rofp =p+als+w
1 |Poisson v155 = 15 ) 3G g ke
¥ = {7 kil i 2 = = —
Ca= J‘:J d’?fo cos fsin fdf g4 = 5 Cs: W Z: dra ;,1;, where N : the vertical force,
E=F=z5) m—F A, A" ¢ the radii of
Rmfla'rl}:: ey h ¢ = {15 ﬁ} = 31—0 the principal curvature
C3 is choiced as the common factor of {-, -} Ci: (3—2)pr N= ﬁ—:sETfT;‘-' 1
] Cr=c= IZE N0
i —521—2 oCdp-pfp C2=E =3 [ dp-p*F(p) Cr=p=4 [ dpp*[(p)
2 |Navier |C5 = f dwfc cospdyp g3 = {12, £ 2} |Cs = f? dy [ coswdw g3 Cy= IE'% dif f} dpgs
!r .8 T _ Aw
S iiE=2 ﬁ{lgrm}? iy =>{55n3t=>%=%
= [ do [;? costpdip g = 2F
Ci=R=Z2 Q‘” P Frdr
=28 [ ['r (r) — 736()]dr
C = G :|:2"A fam sf(r)dr
3 Cauchy =3 f cos® qdq [ cos cecos® Bdp
= 3 fo cos qdqfu cos” psin? psin pdp
=3 fﬁw f’rcos aesin pdgdp
= :rrfn cos” psin pdp = 2T,
Saint- _ T
4 Venant Ci=w, Cy=g
5 |Stokes |Ci=A, C2=B Cr = iy o = 5—'

5. Conclusions
‘We state our conclusions:

(1) The study of exact differentials began with a discussion of the equilibrium condition given by
Maupertuis [31] in 1740 and Clairaut [6] in 1743 and developed by Euler [14] in 1769-70 in ex-
tending the now-called Euler equations. Following that, various points of view were discussed (cf.
Table 1). We saw that one of the ideas had come largely from fluid mechanics, for which Navier,
Canchy, Poisson, and others, had proposed equations of equilibrium and motion of fluids. When
considering the classical topics of mathematical physics as applied to fluids, exact differentials
are necessary in these endeavors.

(2) Gauss [17] propose the general principle on both static and motional state, to which Lagrange
[27] refered as the most general and elegent principle in the ever heard. According to Gauss’
principle, we can’t distinguish the static state from the motinal state, and the former is one of
the latter. Gauss applied this principle to his later studies, such as the capillary action, which
we discuss in Part 2 of our following papar.

(3) The proof of the conservation in time and space of an exact differential was discussed by La-
grange, Cauchy, Stokes, and others. The herein-called “Poisson conjecture” in 1831, cited in
the Introduction (§1) as one of our main motivations for this study, had its beginnings with the
incomplete proof by Lagrange [27]. However, thereafter, Cauchy [5] had presented a proof as
early as 1815, while Power [39] and Stokes [43] had tried by other methods. To date Cauchy’s
proof is still considered to be the best.

(4) In another approach to exact differentials, Helmholtz [21] and Thomson [45, 46, 47] proposed
vortices and related concepts, and Bertrand [1, 2, 3, 4] and Saint-Venant [41], and other, discussed
the relationship or distinction between rotational motion and irrotational motion with the exact
differential with Helmholtz [21] proposing a criterion for it.




Ezact differential as the criteria of equilibrium/motion and irrotational motion/rotary motion

23

TABLE 3. The expression of the total moment of molecular actions by Poisson, Navier,
Cauchy, Saint-Venant & Stokes

nojname ]_problem C1|Ca|Cs|CylL frifr2]on |gz remark
Poisso [ . N Lfr
1 [361] " elastic solid I Y o ] L
K| Fgk| I
2 E,";‘]SS‘)“ motion of fluid [k | |&| S | %3] |G=iZ=4%
| SIS S I PR S
3 E‘;l]sson equiliblium of fluidlg | |3 | |© % [2| [22R  |n= V2% +y7
1 1 i
pl G| | R
4 Eg}fler elastic solid 3 i—g fom dplp*| |fp p : radius
Navier
5 i[lui]d motion of fluid  |e Z0[5 dele| [ f(p) p : radius
34
E| &l de| o F(p)
3 Jo
Navier
6 Fui]d equiliblium of fluid|p =T dple®| | (e) p : radius
34
Saint-Venant|, . %
7 [41] fluid £ |5
Stokes ; ©
8 (43] fluid L5
Stokes . .
9 [43] elastic solid A |B

TABLE 4. Cy,C> and equation of equilibrium of fluid containing exact differential by
Poisson & Navier

nolname |Cj, C2 of equilibrium equation of equilibrium with exact differential term
' = L 1
Poisson |, = —g = A5 13:'R N p+q(x+p)
1 [37) Co=p= 14‘2 R where N : the vertical force,
Ty A, A" the radii of the principal curvature
o= [ff dxdydzl_p(‘f—: + %ﬁ + %) + Péz + Qdy + RJ:{J.
By integration by parts
= _dp _dp _dp ]
Navier |1 =p = 2 [= dogs(p) [0= T d:cdydz[(P 42 Voz+ (Q— 42)dy+ (R— %)z
2 |fluid Cs= j:g% d )f;% dipys _JrJr dydz(p’ém' —p"oz") — ffdmdz(p’éy’ —pﬂay”) sk ff dﬁd.y(p’éz" —p”(sz”),
(34] {5 én I= %" = i-j-'- = . condition of inner point and exact differential

£=P £=Q, $£=R = dp=Pdz+Qdy+ Rdz
= . boundary condition and relation of variation dx, dy,dz

0=Pdz+ Qdy+ Rdz = 0=dxcosl+ dycosm+ dzcosn

These have had a major effect on the development of the equations of fluid mechanics, including the
Navier-Stokes equations.
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The “two-constant” theory and tensor function underlying
the Navier-Stokes equations

ABsTRACT. The “two-constant” theory introduced first by Laplace in 1805 still forms the basis of
current theory describing isotropic, linear elasticity. The Navier-Stokes equations in incompressible case

du— pAu+u-Vu+Vp=1f, divu=0.

as presented in final form by Stokes in 1845, were derived in the course of the development of the “two-
constant” theory.

Following in historical order the various contributions of Navier, Cauchy, Poisson, Saint-Venant and
Stokes over the intervening period, we trace the evolution of the equations, and note concordances and
differences between each contributor. In particular, from the historical perspective of these equations
we look for evidence for the notion of tensor.

Also in the formulation of equilibrium equations, we obtain the competing theories of the “two-
constant” theory in capillary action of Laplace and Gauss.

After Stokes' linear equations, the equations of gas theories were deduced by Maxwell in 1865,
Kirchhoff in 1868 and Boltzmann in 1872. They contributed to formulate the fluid equations and to fix
the NS equations, when Prandtl stated the today’s formulation in using the nomenclature as the “so-
called NS equations” in 1934, in which Prandtl included the three terms of nonlinear and two linear terms
with the ratio of two coefficients as 3 : 1, which arose Poisson in 1831, Saint-Venant in 1843, and Stokes
in 1845. Prandtl says, “The following differential equation, known as the equation of Navier-Stokes, is
the fundamental equation of hydrodynamics,”

L =g— -l-grad p+ }‘U grad div Aw + vAw,
dt I 3
d
where, @E—w+w-Vw,u=£,w_—.(u,v,w),g=(X,Y,Z]
dt at P

In the appendices, we show the process of formulation citing their main papers of Navier, Cauchy,
Poisson, Laplace and Gauss with our commentary.

In addition to, from the viewpoint of mathematics, several important topics such as integral theory in
§E.17 and §E.23 which is Gauss’ selling point. We show his unique RDF' and reduction of integral from
sextuple to quadruple, in the sections §E.2, §E.16 and §E.17. In and after §E.18, we show his calculus
of variations in the capillarity against the RDF' and calculation of the capillarity by Laplace.

Finally, for the question to be solved by variational equation introduced in §E.18 and §E.19, we
sketch his method deduced from the previous work of theory in curved surface [15], to the capillary
problems including the height of fluid and the tangent angle made between the fluid surface and the
wall in §E.28 and §E.29.

Mathematics Subject Classification 2010 : 01Axx, 76A02, 76Mxx, 76-02, 76-03, 33A15, 35Qxx 35-xx.

Key words. The Navier-Stokes equations, two-constant theory, tensor function, fluid dynamics, fluid
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1. Introduction

! In the early 19th century, many investigators contributed to the development of the Navier-Stokes

(N S) equations, the basis for the description of viscous incompressible fluid flow. From their inception
with work of Laplace, the main contributors were Navier, Cauchy, Poisson, Saint-Venant and Stokes. 2
We study the original contributions of each of these investigators and the form of the NS equations as
formulated by their authors, and endeavor to ascertain their aims and conceptual thoughts in developing
the then new equations. Historical order is followed as determined by date of proposal or publication.

In 1805, Laplace introduced the “two-constant theory”, so-called because of the prominence of
two constants in his theory, in regard to capillary action with constants denoted by H and K. ® (cf.
Table 2, 3). Thereafter, contributing investigators in formulating NS equations, i.e. equations describing
equilibrium or capillary situations, have presented various pairs of constants. The original two-constant
theory is commonly accepted as describing isotropic, linear elasticity. [11, p. 121]. However, the persistence
of just two constants in later developments is to be particularly noted. We believe that Poisson was one
of few who were aware of this aspect when he introduced Laplace’s deductions when, in 1831, he states,

“elles renferment les deux constantes spéciales donc j'ai parlé tout & 'heure” [62, p.4].

(Engl. Transl.)“they incorporate the two special constants of which I mentioned just
a while ago.”

With this viewpoint in mind, we retrace the evolution of the two-constant theory over the subsequent
four decades culminating in 1845 with the presentation of the NS equations in the work of Stokes.
We especially pay attention to how contributors to this development introduce their two constants.
To facilitate comparisons of each contributor, we develop a universal notation that helps in expressing
the kinematic equations that are contained in the NS equations. The need for this is highlighted by
two separate developments represented by Navier and Poisson. Indeed, at the time, there were heated
arguments over Navier's use of integration and Poisson’s use of summation.

Moreover, we trace the evolution of the stress tensor term that conventionally describes viscous
forces. In so doing, we endeavor to ascertain if the notion of tensor, which is usually thought of as a
later mathematic development stemming from the work on differential geometry, is present in any of the
earlier formative works on elasticity and fluid dynamics.

Another topic discussed in the final section is the rapidly decreasing functions [RDF s] which were
included in the “two-constant“ and which provided the common, mathematical interpretation of fluid
properties among the then progenitors, in particular by Gauss, a contemporary of the progenitors of the
NS equations, who contributed to the formulation of fluid mechanics in the development of Laplace’s
capillarity.

Finally, we uncover reasons for the practice in naming these fundamental equations of fluid motion
"NS equations”. In Table 6, we present a chronology outlining this practice. The last entry from 1934
by Prandtl [64, p.259] grouped the equations containing three terms:

1) the nonlinear term
2) the tensor function with the main axis ( the normal stress ) of Laplacian multiplied by v

ll[l,l,} Throughout this paper, in citation of bibliographical sources, we show our own paragraph or sentences of commen-
taries by surrounding between ({) and (ff).  ((ft) is used only when not following to next section, ). And by =*, we detail
the statement by original authors, because we would like to discriminate and to avoid confusion from the descriptions by
original authors. The mark : = means transformation of the statements in brevity by ours. And all the frames surrounding
the statements are inserted for important remark of ours. Of course, when the descriptions are explicitly distinct without
these marks, these are not the descriptions in citation of bibliographical sources.

2(J) To establish a time line of these contributor, we list for easy reference the year of their birth and
death: Sir I.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d’Alembert(1717-1783), Lagrange(1736-1813),
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857),
Saint-Venant(1797-1886), Stokes(1819-1903).

3(14) Of capillary action, Laplace [34, V.4, Supplément p.2] acknowledges Clailaut (8, p.22], and Clailaut cites Maupertuis
[42].
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3) the gradient term of divergence multiplied by % and used the term ”the Navier-Stokes equations”
for this set of equations.

These equations with the two coefficients in the ratio of 1 : 3 originated from Poisson [16] in 1831.
Moreover, these equations contained both a linear and a nonlinear term developed earlier in Navier’s
equations [20] in 1827. Still earlier, the nonlinear term was introduced by Euler [12] in 1752-5.

Cauchy [7] in 1828, with (46)¢, expressed the linear term as two terms, one the tensor function with
the main axis ( the normal stress ) of Laplacian and the other a gradient of divergence term, with two
coefficients or constants, which are our main theme in our paper.

2. Preliminary Remarks

In this paper, we use the following definition according to Cauchy of the second-rank tensor in
Euclidean three-space, following closely the presentation of I, Imai [22, p.178]: we call a 3 x 3 array
denoted here by P = (P;;) a second-rank tensor if it returns a new vector P,, when contracted from
the right by the unit vector n represented by the column matrix of directional cosines. Thus the vector
P, =P - n has column matrix

Fis Pzz Pyr DPzz {
Pry | = | Poy Pyy Pay m
Fix Pzz Pyz Pzz n

In what follows, “tensor” means the “stress tensor” as introduced above.

Throughout this paper, we display for brevity a tensor by specifying only its components, Pj;. If the
tensor satisfies P;; = Pj; for all 4,5 = x,y, z then this tensor is said to be symmetric. An example of a
symmetric tensor is the well-known Kronecker-delta 6;;. Alternatively, if P;; = —P;; then the tensor is
said to be anti-symmetric or skew-symmetric.

In addition, we have employed the Einstein summation convention where summation is implied over

twice repeated indices. For example, we can write 3 7, 9ut = du | % + 22 simplified as V -7 = vy, =
— E
Uk k-

In labeling some equations we provide two numbering schemes. Numbers on the right-hand-side
correspond to our normal indexing while numbers on the left-hand-side of equations refer to those given
by the author in his original paper. The subscript to the original indexing, is in the format for example
N¢/NY, where the capital letter is an author designation and the lower case superscript gives the type
of theory; the above example then signifies “elasticity/fluid by Navier. For equations indexed by section
in the original papers, the citation is then in the format “section no.-no. by author”. When referring to
a “fluid”, an “elastic fluid” is implied.

3. A universal method for the two-constant theory

In this section, we propose a universal method to describe the kinetic equations that arise in
isotropic, linear elasticity. This method is outlined as follows:
e The partial differential equations describing waves in elastic solids or flows in elastic fluids are
expressed by using one constant or a pair of constants C; and Cs such that:

2
for elastic solids: %_t; —(CiTh + CoT3) =1,
for elastic fluids: %% — (C\Th + CoTo) +-- - =T,

where T3, T, - are the terms depending on tensor quantities constituting our equations. For
example, the NS equations corresponding to incompressible fluids consist of the kinetic equation
along with the continuity equation and are conventionally written, in modern vector notation, as
follows:

du

-a—t—,u.Au—l—u-Vu+Vp=f, divu = 0. (1)
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Here u is the velocity, f accounts for the body forces present, p the pressure and A = V-V
the Laplacian or Laplace operator.
The two coefficients 7 and Cy associated with the tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, € and E were
introduced by Navier, R and & by Cauchy, k and K in elastic and (K + k)a and 5K—§“E in
fluid by Poisson, € and § by Saint-Venant, and x and 4§ by Stokes. Since Poisson, the ratio of
coefficient attached to the term of the tensor function with the main axis ( the normal stress )
of Laplacian to that of grad div : -ceefficient of tensor | _ 3 wqg fived. Moreover, C; and Cp can be

coefficient of grad div
expressed in the following form:

C1 = Lr1g151, Sy = [[ g3 — Cs, Cy = C3Lryg1 = 3£ Lr1g1,
C2 = L12g253, Sy = [[ g1 — Cy, Cy = CiaLrags = % Lrags.

Here £ corresponds to either )" as argued for by Poisson or fuoo as argued for by Navier. A
heated debate had developed between the two over this point. It is a matter of personal preference
as to how the two constants should be expressed.

The two constants depend on two radial functions ry and 7, related to the radius of the active
sphere of the molecules, raised to some power of n for Poisson’s and Navier’s cases; the relationship
between these functions can be expressed by a logarithm with base r such that: log, I = 2.

g1 and g are the kernel functions having both

— the physical caracteristics come from the fluid dynamics described by the microscopically

basic relations of the attraction and/or repulsion and

— the mathematical requirements for the rapidly decreasing function.

S) and Sy are two expressions which determine the angular dependence on the surface of the

active unit-sphere centered on a molecule through application of the double integral (or single

sum in the case of Poisson’s fluid).

g3 and g4 are certain compound spherical harmonic functions determining the momentum over

the unit sphere.

C3 and Cy are indirectly determined as the common coefficients derived from the invariant
tensor. With the exception of Poisson’s fluid case, C5 of C} is 2%, and Cy of (s is %‘g, which are

evaluated over the unit spheres for each molecule, and which are independent of the preference

in using integrals or summations. In Poisson’s case, we obtain the same values as the above after

multiplying by -511—; The integrals are calculated from the total momentum of the active sphere

surrounding the molecule.

The ratio of C5 to Cy : %:- = & including Poisson’s case.

4. Genealogy and settlement of the stress tensor

In Figure 1, we have traced the genealogy of the tensor terms, in particular noting the form of each

tensor £;; appearing in the NS equations. These tensors are listed in Table 5, where we have differentiated
those tensors associated with elastic solids or elastic fluids. From this genealogy, it could be asserted that
Cauchy [6, 7] was the first user of “tensors” and arguably its inventor. This view is supported by the
admission of Poisson [60] that he received the idea of a “symmetric tensor” from Cauchy. Moreover, the
idea of tensor by Saint-Venant concurs with the work of Stokes. Here, we denote the two routes as NCP
and PSS, both of which are portrayed in our figure, and by which we can explain the genealogy of tensor
as it applies to the N.S equations. cf. Table 5.
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Fig.1: A genealogy of the stress tensors in the prototypical Navier-Stokes equations

Navier[46, 47]®

VO N
(Euler)=> || Poisson[59, 60]* = Saint-Venant[67)' = Stokes[74]*= Maxwell[43]" =Kirchhoff=>Boltzmann"
@ /::,,

Cauchy][6, 7%

+—MD deduction— || «— Non-MD deduction — = Gas theory by MD deduction

+ NCP pattern — || — PSS pattern e

Legend for superscripted marks:
@ Navier: ifj = —E(ﬁ"—juk,k + ui ;i + uj i), t{j = (p — sug 1 )0i; — e(ui j + 1)
2

* Poisson: tfj- = —25-(5,-5-1.'.;“;5 + w5 + ujr,-), t{j = —pdij + Avg 1 0ij + ,u(v‘-_j + vj_,-)
§ Cauchy: .'.:’,"r = Auk,k&j +;_|'.(1J,'_IJ' + t.lj“-)
t Saint-Venant: t?— = (%(sz + Pyy + P:z) — %Ukrk)éﬁ +e(vi; +vj,i), %(Pz:: + Pyy+ P:z)=—p
! Stokes: tl; = (=0 = Fpvk,k)8i5 + plvij +vi0),
@ Poisson: stated his reduction of the number of independent t;; from 9 to 6 is due to Cauchy. (cf.§5.2)
" Maxwell: by =(-p— %;wk.k)a"j + plvi; +vjq)

UKirchhoff(23]:  tf. = (—p — 2kvy1)8i7 + k(vi j +v5,1)
“Boltzmann[2]:  t]; = (—p — § Rk k)i + R(vi,j + v,:)

We cannot ascribe to Euler a definite form for the stress tensor; however, Voigt[77] has presented a
version in 1905. 4 He begins by introducing an exterior subscript index of the vector as also interior
indices to the product of elements.

[B.T), = By.Ty, - --

Then he defines the derivative of the synthetic function as follows: ®

%[wrr] =D = (37)y [T‘;—ﬂ 2 [w.[w.T]] =D;
Here, he defines two vectors as follows:
Ty w1 Ty
[T] = Tg 5 [wT] = woTs
T; w3Ty

4As an aside, W.Voigt [77] states Euler equations with his invented tensor in 1905 as follows : ( we show his sketched
contents )

Auch hier sind die Ausdriicke fiir die Componenten nach den Richtungen der Tensoren T7, T3, T3 -
auf denen eine Seite hervorzuheben ist - von Interesse ; es gilt nimlich, wenn diese Richtungen wieder
durch die Indices 1, 2, 3 characterisirt werden, hochst einfach

(19)v  [BTh =By.Ty,- -

Bei Benutzung dieses Resultates und bei Beriicksichtigung der Constanz der Componenten von T'
nach den mit dem Korper bewegten Axen nimmt die Gleichung (32)y ( -:‘—‘E[w.T] = D) die Form an

d
37y [T’TT ¥ [w,lw.af']] #D;
es ist dabei zu beachten, dall dieselbe iiber die Richtungen, nach denen die Componenten der in ihnen
auftretenden Vectoren zu nehmen sind, noch weite Freiheit 1idfit.

Der wichtigste Fall ist der, dafi jene Richtungen in die eine Seite der Tensoren Tj, T:, T3 - die
Haupttragheitsaxen des Kérpers - fallen. Hier reducieren sich nach (19)y die Componenten von [w.T]
auf wy Ty, waTh, wsTs, und es folgt, da die T), von der Zeit unabhingig sind, aus (37)v,

T d—,ﬁl + wawz{Ts —Ta} = D,

T2'%"'ﬁ +wzwi1{Th — T3} = D3,

Tad—:g"';a +wiwa{Te —T1} =D3
Das sind die Eulerschen Gleichungen. [77, §11, pp.14-15.]

5(4) By #, Voigt means =, i.e. equality by definition.
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then if 7}, are independent of time, we can deduce the vectorial form of (37)y:

T4 + wyws{T5 — To} = Dy,
Tsz +wawy {T1 — T3} = Dy,
T3 +wywe{Ts —T1} =Dy

He states that these are the Euler equations as expressed in tensor form.

5. Derivations of the two constants and tensor

' Recently, Darrigol [11, p.121] has concluded®
“it is called that the two-constant theory is the one now accepted for isotropic, linear
elasticity,”

but Poisson [62, p.4] had stated already in 1831:

L’equation qui résulte de cette considération et celle qui appartient a la surface entiére
sont le deux équations du probléme ; elles renferment les deux constantes spéciales donc
j'ai parlé tout a I'heure. [62, p.4].

[(Engl.transl.) The equation that results from this consideration and that which
belongs to the whole surface are the two equations of problem; they incorporate the two
special constants of which I have just spoken];
and from these two equations Laplace had provided explanations of various phenomena observed by
physicists. Therefore, we believe that Laplace was the first to establish a “two-constant” theory [37] in
Table 3.

5.1. Navier’s two constants and tensor. In his theory of elasticity in (2), Navier deduced the single

constant e.
The corresponding NS equations derived for incompressible fluids by Navier himself (1) are in their

original form as follows:
X+E(3 +§-—§+d“+2“"'+2 )—%‘f—%-u—%-w—%‘;‘-m;
d dv _ d d d "
Y +e +3W+m+2d;;y+2dydz)~d—‘:—ﬁ-u—d—;-v—-d—§-w, )

1dp
P
152
P
1dp _ Fw | dw d?u —dw  dw . dw . dw .
ods =2 e\ G+ G¥ +3dz7+2axdz+2am1z) ds e gyt =gy T

along with the equation of continuity: % + 4% ¥ dw = 0.

Navier provided an evaluation of the two constants as follows:

8 T 4 - 4 oo 2 o
(F10)ns =55 fo dor'f(0) = T2 f doo'fp), E=T [o P F(p) = 5 ]D dopF(p). (3)

In the case of fluids, Navier was well aware of the necessity for the equation of continuity, because

from
(2) he obtained A by differentiating the equation of continuity with (dx, ‘;L, 4). For example, the

e-terms in (2), as well as (4), are reduced to eAu as for example in (5).
This is solely due to the mass conservation law, according to the explanation given by Navier.

6(1) Darrigol [11, p.121] uses such terminology, however, not explaining his definition or concreate meaning of the the
two-constant theory. Here, we introduce his sentence cited from Darrigol, to whome our motivation owe largely, as follows

In the final version of his theory, Cauchy proposed the more general, two-constant relation
Tij = K"(r'}g-u,- + djuq) + K"’J.-,-&kuk
between stress and deformation. This allowed him to retrieve Navier's equation of equilibrium as the

particular case for which K’ = K". The two-constant theory is the one now accepted for isotropic
elasticity. [11, p.121]
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As an aside, Navier always used his often-used method involving a four-step procedure to solve
three of the equations, such as the equilibrium equation for the fluid [47], the kinetic equation for the
elastic solid [46], and the kinetic equation for the fluid [47] with the following general method:

(1) initially, deduce either one constant or two constants, including the incomputable function such
as fp, f(p) or F(p) in Table 3,

(2) then construct the indeterminate equation,

(3) next expand it in a Taylor series and integrate it by parts, exchanging d and §, and then pair up
with the same integral operator, and finally

(4) solve the indeterminate equation from the two conditions of the interior and the boundary.

We present more details of this procedure by outlining Navier’s analysis of fluid flow [47].

5.1.1. Indeterminate equation. As called then by Navier, the indeterminate equation is given as
follows: '

[P—42—p %+u%+u%§+w%{-)]6u
(324)yr 0 = f[ dedydz{ [Q— £ —p %+u-ﬁ:§+v-ﬁ§+w%)]%
[R— 42— p( 4 +ude +vi2 +wit)]bu

Bfedfe v+ fudla  dadge) y (dadie ) dasn) ) (dusde ) dusin)

e [[[ dutyiz{ (deste + duste) 4 (sete 4 atite o dosin | (dmste 4 duse
Slergle) (Sl i)+ (e datie ) gia i)

+  8ds’E(udu + vév + wow), (4)

where (P, Q, R) are the components of the applied force, S shows an integration to be performed in the
total area of the surface and ds? is its area, and with the quantity E, varying it according the the nature
of the material with which the surface contacts.

5.1.2. Determinate equation from a Taylor series expansion and integration by parts. Putting
Sds® E(uéu+vév+wdw) = 0 in the indeterminate equation (4) and performing a Taylor series expansion
to first-order and neglecting higher-order terms, we have the determinate equation as follows:

[P—2—p(%+ult+og +w%) +s(§;‘§+ dy %%)]61::
(329)ys 0 = f] dadydz { [Q — & — (% +ugt +vie +wit) +e(£3+ 3+ £3)]ov  (5)
From (5) we obtain (2), i.e. the kinetic equation, which is equivalent to the first equation of (1).

5.1.3. Determinate equation deduced from boundary condition. As a boundary condition, Navier
used two constants in one equation. In this respect, his method is unique within developments of the
period. Navier had explained his method as follows:
regarding the conditions which apply at points on the surface of the fluid element, if we substitute
e dydz —  ds®cosl, where | is the angle by which the tangent plane makes with the yz-plane
of the surface frame,
e dzdz —  ds®cosm, where similarly mn is the angle with the zz-plane,
e dvdy —  ds® cosn, where similarly n is the angle with the zy-plane,
o [[dydz, [[dzdz, [[dedy — Sds? , where S is the sign of integral in respect to ds? on the
surface,
then, because the factors multiplying du, dv and dw respectively reduce to zero, the following determinate
equations should hold for any point on the surface of the fluid element:

Eu+€[c03!2% +cosm(f{—;+%) + cosn %+-‘5«‘:ﬂ ] =0,
(3-32) s Ev +s[cosl(%+%)+cosm2§§+c03n @ du) =, (6)

Ew +£[cos£(%‘f + %) + cos:rra(% - %) + cosn 24¥] = 0.
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Here the value of the constant E must vary in accordance with the nature of solid with which the
fluid is in contact. The equations of (6) are an expression of conditions prevailing on the boundary of the
surface and constitute the so-called boundary conditions. The first terms on the

left-hand-side of (6) are defined in (3) for the expression that we seek for the sum of the momentum of
all interactions arising between molecules on the boundary and the fluid, while the second terms are the
normal derivatives. Here, derivative terms on the left-hand-side of (6) are expressible as v; j +v;:. If we

introduce the basis of the tensor as [ cos! cosm cosn ]T, then the tensor part of (6) is expressible
as:

ti; = e[{2vi; — (vij +v5,:)}045 + (vij +v50)] = €{08;; + (vi; +v50)} = (vi; +v5,0).

5.2. Cauchy’s two constants and tensor. In this section we adopt the following definitions:

e a, b, ¢: the coordinate values of a molecule m in the rectangular axes of z, y, z ;
e a+ Aa, b+ Ab, ¢+ Ac: the coordinates of another molecule m;
e £, 7, (: three functions of a, b, ¢ representing infinitesimal displacements parallel to the axes of
molecule m;
(z, 3, 2), (z+ Az, y+ Ay, z+ Az): the coordinates of molecules m and m in the new state of
the system;
(1 +¢): the distance between molecules m and m;”
e: the dilatation of the length r in the path from the first state to the second, and then we have
c=a+& y=b+n z=c+(
e X, Y, Z: the quantities of the algebraic projections such that :
— of which a resultant are consisted ;
— from this resultant divided by m, or, which return to itself, by the accelerated force which
acts on the molecule m and which will be due to the actions of molecules m,m',m”,---

Cauchy deduced the following three elements of material points of elasticity after calculating the
interactions of molecules, the details of which are omitted for the sake of brevity. However, to begin
we start with the following equation of elasticity

X =(L+G)5s + (R+ H) +(Q+ D53 +2REZH + 20475,
2 2 2 13
(40)c Y =(R+GC)5H+(M+H)5# + (P +1)5H + 2P3s- + 2R3

Hadh?
‘ 7 . g
Z=(Q+G) L% +(P+H)ES + (N + D&% +205% +2P5 L

which displays all nine components of the tensor. (The invariants of the tensor are represented
by the two constants G and R.) Cauchy said of the elements of the tensor, i.e. the fixed values:
G,H,I,L,M,N,P,Q,R:

If we suppose that the molecules m,m’,mn”, ... are originally allocated by the same
way in relation to the three planes made by the molecule m in parallel with the plane
coordinates, then the values of these quantities become remain invariable, even though
a series of changes are made among the three angles: «, 3, 7.

Cauchy then resulted in the case of symmetric tensors such that:
(41)¢ G=H=1, L=M=N, P=Q=R, (45)¢ L=3R.

which reduces the form of the equations (40)¢ to the equations consisted of the tensor function with the
main axis ( the normal stress ) of Laplacian with R+ G and the term of gredient of the divergence with
2R :

X=(R+G) (L5 + 25 + £8) +onre,

o, O
46)c Y = (R+G) (%3 + L3+ 22) + 2R, where, (47)c u=-;£+%+-(a%
Z=(R+G)( 55+ 5 + 5% ) + 2R3,

7(!}) This bold type m is different from m, the latter is top one of m,m’,m",---.
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() Cauchy may have been the inventor of the term ® “tensor”, and Poisson supported Cauchy’s priority
in the symmetry properties of the tensor when he reduced the number of independent components from
nine to six elements, by the following quote:

D’un autre cdté, il faut, pour 'equilibre d’un parallélépipéde rectangle d’'une étendue
insensible, que les neuf composantes des pressions appliquées & ses trois faces non-
parallélles, se réduisent & six forces qui peuvent &tre inégales. Cette proposition est
due & M.Cauchy, et se déduit de la considération des momens.® [60, §38, p.83]

[(Engl. transl.) On the other hand, one needs for equilibrium of the rectangular
parallelepiped of infinitesimal volume, that the nine components of the pressure applied
to its three non-paralleled faces, reduce to six forces which may be unequal. This propo-
sition is due to Mr. Cauchy, and deduced from the consideration of momentum. |

()
Continuing, we def:me the density of molecules as:

(48)c A= v , where M is the sum of the masses of molecules contained in the sphere and V is the
volume of the sphere. We then find expressions for the two constants, G and R:

G= i%’ fo fﬂ 3f 0032a81npdrdqdp :|:27r£. fm 3f (r)dr,
50)c SR=%J5 fo 73 f(r) cos? o cos? Bsin p drdgdp @
o ey [r4tr) — r26(r)]

where we have used:

(51)¢ cosa=cosp, cosf =sinpcosg, cosy=sinpsing.

When we calculate these values in the general case '° then (7) yields the following expressions:

A= [(L+O)%E +(R-6)2+(Q-6)3 ]A D=|(P+Dgt+(P+HE|A
(56)c {B=|R-H)3E+M+HF+P-ME|A, (e {E=[Q+O)FE+@Q+DE]A
C=|(Q-DE+(P-1D%+ (N +1¥% ]A F= (R+HJ%+(R+G)%;‘]A‘

By (41)¢ and (45)¢, we obtain the following reduced form:

i_z(R+G) + (R - G, §=2(R+G)%§+(R—G)v,% (R+G) +(R G)v,
= (R+ G)(-a—’l+%€) E=r+G)($+%) 5 (R+G)(%+?)

For the sake of convenience, in the particular case when both (41)c and (45)¢ hold, it is
sufficient to have :

k42K k—2K

1

8(]})) The editors of Hamilton’s papers [20, p.237, footnote] say, “The writer believes that what originally led him to use
the terms 'modulus’ and 'amplitude,’ was a recollection of M. Cauchy’s nomenclature respecting the usual imaginaries of
algebra.”

9(1}) Poisson always writes “moments” as “momens”.

10(}}) We obtained the following intermediate results, which were needed:

3_qm
02" _lfo"' cos? asin pdgdp = 2ﬂf0" cosgpsin pdp = 27r[ %]U B 4;',

Ozwfo“oos’acos2ﬁsin pdp = [ cos? qdg [ cos? p(1 — cos? p) sin pdp = [-‘1 +—sm2q] [ —E] =(Z-0i-3)=%

v ldm _ 2w ld':r__gl
Cs=3F =1 Ci=335 =%
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Equations (56)¢ and (57)¢ can be displayed in a more convenient manner

i & d ik 2l
G 5 B K+ Kv k(% + %) k(-5
(60)c g g g = | k(S +82) KGE+Kv 3k(52+5) | - (8)
g >
k(% + % %k(%’}-;—%ﬁ-) ks + Kv

Here, we must remark that the layout of the symmetric tensor of (58)¢ or (60)¢ is Cauchy’s
invention. If, moreover, the condition (54)¢: : R = —G holds, then k = 0 holds, thus yielding the
following identities: (61)¢ A=B=C=Kv, D=E=F=0.

5.2.1. Equilibrium and kinetic equation of fluid by Cauchy.

In what follows, equations referring to Cauchy’s work on fluids will be designated in the form (-)¢-
instead of by (-)¢ to distinguish these from equations appearing in his work on elasticity above.

(Verification of equations for fluids.)
By replacing (a, b, ¢) of (56)¢ and (57)¢ with (z, y, z), we derive an equivalent set of equations for

fluids as for elasticity. We omit for the sake of brevity the precise process in leading to the two constants
or equations and present the final form

%+?£+%+X&=U, A F E % X
(76)c- S E+HR+P+YA=0, = F B D 9 +A|Y | =0
8E 1 8D 1 9C 1 ZA =0, G % 7

We follow the layout of Cauchy’s symmetric tensor as presented originally in (76)¢-. By replacing
R+G and 2R with Cauchy’s usage C; = R+G = o, C3 =2R= 2K we can reduce these equations
for fluids both in motion and in equilibrium to the same form (46)¢ found for elasticity. However, here,
we would like to adopt not Cauchy’s €'} and C3 but C; = R and C = G, because it is more rational to

do so, as can be seen by checking the reciprocal coincidence in Table 3. '*

() Here, C is the constant to the tensor function with the main axis of Laplacian. C3 corresponds to
the grad.div term. In today’s NS equations, the ratio of coefficients : -Ei: = ?m——;ﬂ%’%‘%‘% = ﬁ
By Prandtl [64, p.259] in 1934, the ratio was fixed at 3. We had have to wait the formulation by Poisson
in fluid equation. In this Cauchy’s paper, we can not confirm explicitly the deduction of the value, except

for the elasticity. cf. Poisson’s equations (7-9) ps or Table 7. (f)
(Comparison with and comments on Navier’s equation in elasticity.)

Cauchy states: for the reduction of equations (79)¢- and (80)¢- to Navier's equations( [46] ) to
determine the law of equilibrium and elasticity, it is necessary to assume such as the condition which
we have mentioned above: £ = 2K. If G = 0 then we get the equations of equilibrium and the kinetic
equations in elastic equilibrium, then Cauchy’s tensor is equivalent not only to the tensor in elasticity
but also to the tensor of £’s term in Navier’s fluid equation (2) ( c.f. Table 5 ).

5.3. Poisson’s two constants and tensor.

5.3.1. Principles and equations in elastic solids.
Below, we deduce K and k according to Poisson [59, pp.368-405, §1-§16]. For simplicity, we introduce
the following definitions:

ary + by + c(z1 — G1) = ¢, ¢)ﬁ—: +“¢f1§' +6?‘_: =¢,
d'zy + by + (2 — G) = 0, qﬁj—z +q{;%+6’% =4/, (9)
a’zy + 'y + N - G) =0, PP+ =0

We assume that « is the average molecular distance, w represents a finite surface

11(J.l.) Here, (', and Cy are not the two-constant defined earlier by us but introduced temporarily by Cauchy himself.



The “two-constant” theory and tensor function underlying the Navier-Stokes equations 39

area, and Z7 is the average number of molecules on w. We then get the pressure terms.

s

By using Poisson’s so-called effective transfomatwn, we obtain from (10) the following;:

P=[F [ [0+ 9) Sosr+ (g +hi + )y T 5450 A,

Q=[Z [ [(h+ W)X S fr+ (g9 + bW + IR Y ST |A, Ai=cosB-sinfdB dy, (11)
R=[F] 2e Q+V) S Do fr+ (99 +hb + WY ““f‘r]A

Later, Poisson solved again this problem in another book [60], * in which he deduces the general

principles behind elasticity and fluids, and hence derives the representative two-constant theory with K
and k for both elasticity and fluids as follows:

P=|K(1+4%)+k 3%+~‘f}‘~y+“—‘” c+ | K4 +k(‘§,‘;+ )]c’+ K% +k ‘ﬁ;‘z+ e,
Q=|K(+4)+k(% +3°f};+ ¢+ K“"+k( «%‘f;)c+ K (e (1)

R=(K(1+%2)+ k(4 4+ 42 4352 )]+ K“‘”+L(£+ )c’+[K“‘“+k( +‘f§i ]c,

where, for simplicity, he uses similarly K and k.

({}) By the way, from (12) we can express the pressure : [P, ), R|T by the two tensor on the basis of
4

[¢, ¢, ¢"]T corresponding to two constants : K and k are given as follows :
P + = (5!.; % 3&!‘( + + (S.(z + _ du + d‘!l
Q| =K ;f;; i+ = ﬁ‘; + k }';+d +3d‘;”y+;— g d“”+
R do dw 74 dw P+ 4 g e du oy do oy 3du

Moreover, instead of « in (10), he introduces ¢ as the average distance between molecules, and from
the following considerations:

° “on voit que la pression N restera la méme en tous sens autour de ce point: elle
sera normale & ce plan et dirigée de dehors en dedans de A, ou de dedans en
dehors, selon que sa value sera positive ou negative,

[ (Engl.transl.) we see that the pressure N remains the same in all directions
around this point: A, and directed for outward to inward or from inward to
outward, according to that the value will be positive or negative,)

(1)) ( then we ought to consider as 3 )(1}) ;
e from the assumption of isotropy and homogeneity of space, 12 = =2 + 2 + 22
implying E”;f'r = E%'rf'r, (cf. Poisson [60], pp. 32-34):

1 rfr 1 3d.lfr 2 1 3d.lfr
e = m— Le = — e R 1
(3-8)p =L Z e st T & 1

“... et étendant les sommes % a tous les points matériels du corps qui sont

compris dans la sphére d’activité de M. (cf. Poisson [60], p. 46):

[(Engl.transl.) “... and extending the summation ¥ to all the material points
of the bodies contained in the active sphere of M.]

120) 3 o' = Lfr 4+ (g6’ + v +00) 22T (60, p.a2).
13({1) In Poisson [60] Chapter 3 is titled “Calcul des Pressions dans les Corps élastiques ; équations différentielles de
léquilibre et du mouvement de ces Corps.”
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5.3.2. Fluid pressure in motion. Poisson’s tensor of the pressures in a fluid,* which he assumes
compressible, reads as follows:

Uy, Us Us ﬁ il = ﬁ(% + %) P — afi— {‘:—:_‘% + 2]@&
Fider || 13 a0 e =1 # 1”‘*—“’ p-allt - Zddopd pduidy) |
W, W, W i
1 Wa W3 p— ot p‘;‘«ﬁ'+2‘65 ﬁ( it c:‘y) ﬁ(% "'E)

(k+Ka=8, (k—Ka=p§, p=yt=K, = [+F =2ka,

where yt is the density of the fluid around the point M, and 1t is the pressure. Here K and k are the
same constants as in (3-8) pe(=(13)) for an elastic body. Velocity and pressure are defined as follows:

de dy de, o= p_ TPt _ B+ dxt
a'ada” TP g Xt dt’

11

u=(u,v,w) = (

(w

p, if incompressible.)

from which follows:

d*z _ du du
diF T dt +”’ +U +wdz’

d°y __ dv dv d_v
d—:{?— +ugt +vdy+wdz,
diz dw dur
9= ru o twg

p(X ﬁ)z‘,‘,‘f+{:’m+w§‘;+g;},
79)p P ‘fe—ﬁ) +ﬁ{m+g+%§g), -
pZ-GF) =L+ B+ 5+
where @ p+ K+k(du %"'%‘f):
p(B — X)+-£+0(K+k)(dar+%§+ﬂ—y)+ a(K+k)di(§—+j_+d_W)=g,
= p(——Y)+£+a(K+k)(-‘%‘;+%Zg+%§,) SQ(K+k)dy(ju+j_u+EH) 0,

P2~ Z) + & + oK +K) (58 + 58+ 58) + Ja(K +R) & (4 + 42 + 42) =0,

({}) Here, a(K + k) is the constant to the tensor function with the main axis ( the normal stress ) of
Laplacian. cx(K + k) corresponds to the coefficient of grad.div term. In today’s NS equations, the
ratio of coeﬁmcnt attached to the term of the tensor function with the main axis ( the normal stress ) of
Laplacian to that of grad div : ﬁ%‘%“%}; = 3, like Poisson deduced in (7-9) ps and Stokes’ (12)g
through the tensor (15) by Saint-Venant. By Prandtl [64, p.259] in 1934, we had have to wait by the
time, when including this ratio of two coefficients, as what is called the NS equations were expressed in
fluid equation. cf. Table 7. (1})

5.4. Saint-Venant’s tensor.

Saint-Venant ' explained that the object of his paper [67] was to simplify the description and calcula-
tion of the molecular interactions without specifying the molecular function. We present Saint-Venant’s
tensor, which from the extract seems to anticipate that of Stokes [67].'® For this section, we introduce
the following parameters: &,1, ¢ are the velocity components at the arbitrary point m of a fluid in motion
in the coordinate directions x,y, z respectively,

Pyy, Pyy, P-. are the normal pressures and Py, P.y, Pr, are the tangential pressures with sub-index
pair indicating the perpendicular plane and direction of decomposition.

14(41) In Poisson [60], Chapter 7 is tilted “Calcul des Pressions dans les Fluides en mouvement ; équations différentielles
de ce mouvemnent.”

15(1)) Adhémar Jean-Claude Barré de Saint-Venant (1797-1856).

16(1) This is an extract from his main paper, however we can’t get this main paper until now. Even in all the list of
Saint-Venant’s works by Boussinesq and A.Flamant [5] : Notice sur la vie et les travauz de Barré de Saint-Venant, it does
not appear.
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where %(P:z"‘Pyy"'Pzz) —2—35(%4' jﬁy +%§) =.
From the last equation, we solve the normal pressure as follows:

_ dé _ dn _ d¢
(2)sv  Prc —?r+2sd$, Py —1r+25dy, P.. —1r+25dz.
From (1)sv, obtaining the tangential pressures: P,., P.., P.,, the tensor reduces to symmetric form
as follows :

dg dg | dn d¢  dg
P T T 7w+ 25, e(dy+d’x) s(dx+d3)
LR T | = | e($+8) m+2eg (8+%) | (15)
T, T P d d d
e(£+E s(ﬁ-}-%) T+ 25

Saint-Venant stated that by using his theory, we can obtain concordance with Navier, Cauchy and
Poisson:

Si 'on remplace 7 par @ — (4% + j—; +42) et si I'on substitue les équations (2)sy et
(3)sv dans les relations connues entre les pressions et les forces accélératrices, on obtient,
en supposant € le méme en tous les points du fluide, les équations différentielles données
le 18 mars 1822 par M.Navier ( Mémoires de I’Institut, t.V1 ), en 1828 par M.Cauchy
( Ezercices de Mathématiques, p.187 ) 17, et le 12 octobre 1829 par M.Poisson ( méme
Mémoire, p.152 ) 18 La quantité variable w ou 7 n’est autre chose, dans les liquides,
que la pression normale moyenne en chaque point. [67, p.1243]

[ (Engl.transl.) If we replace m with w — e(4% + % + 92), and substitute the quations
(2)sv and (3)sy in the known relation between the pressures and accelerated forces, by
supposing ¢ is the same at all points of fluid, then we get the differential equations given
by Navier [47] on 18 March, 1822, by Cauchy [7, p.187] in 1828, and by Poisson [60,
p-152] on 12 October in 1829. The variable quantity w or « is nothing but the normal
average pressure at every point in liquids. ]

Saint-Venant’s paper [67] seems to provide Stokes with a clue to the notion of tensor (19) and his
principle, because we can see the close correspondence by comparing ¥ Saint-Venant’s i

b= (ﬂ' + 2ev;,5 — 7)5;,- +, (where ~=e(vi;+v;:)),

1 2e d
= (E(Pm¢+Pyy+Pzz)_"§"(%+Eg'+j<—z)+2€?)t_3'—"}f)5‘3+7

1 2e
= (g(Px_-,; + Pyy + Pzz) - ?vk‘k)égj + S('Ug,j + i.l'j_,;) = QEU."PJ‘é‘ij = E('U,"j -+ ‘Uj‘,')égj = ’]16,;;; (16)

with Stokes’ t;; (20). Here, using (16), we put P,y = Py, = P.. = —p by assuming isotropy and
homogeneity, 2° which Stokes similarly considers his principle as follows:

If the molecules of F were in a state of relative equilibrium, the pressure would be
equal in all directions about P, as in the case of fluids at rest. Hence I shall assume the
following principle:

e that the difference between the pressure on a plane in a given direction passing
through any point P of a fluid in motion and the pressure that would exist in
all directions about P if the fluid in its neighborhood were in a state of relative
equilibrium depends only on the relative motion of the fluid immediately about P,
and

o that the relative motion due to any rotary motion may be eliminated without af-
fecting the differences of the pressures above mentioned.

17(4) Cauchy [6, p.226]

18(1)) Poisson [60, p.152] (7-9) ps.

lg(J.l.) Here, for the sources of the tensorial descriptions of t;; of Poisson and Cauchy we cite C.Truesdell [75], of Navier
in G.Darrigol [11], otherwise in Schlichting [69].

20(y) cf. LImai [22, p.185).
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[74, p.80].
As a consequence, we think that (16) is equivalent to Stokes’ t;; as follows. For example, if we put
¢ = p, and choose the t,, component of Saint-Venant’s tensor from (15):

e = (o3-S e 8]
= —P+2€{ii—%(%+j—;+%)}=—p+2e(%-é) (19),

which recovers the P; component derived by Stokes. The other tensor components are likewise demon-
strated but we omit the proof here for brevity. Moreover, Saint-Venant proposed that if put the following

_ d§¢  dn  d¢
R E(n!:;-.:-'-@ dz

) ="w— EVg Kk
then
f,‘j = (‘D — EVk k + 26‘1‘.?“‘_-'.' — 7)5(;‘ +9= (w —_ EUk‘k)fjgj + E(‘U,;,j mp= Uj‘i).
This form of his tensor plays a key role in common with Navier’s, Cauchy’s and Poisson’s constants.

5.5. Stokes’ equations and tensor.

By expressing the fluid equations in the following form
B —X)+ &+ Ly + 58) -4k (% +
12)s {pB-V)+Z—u(Es+o5+58) -4 (+d+d2) =0 (17)
(B -2+ & - p( Gy + Gy + 58) - bk (+ B+ 49) =0,
Stokes pointed out the coincidence with Poisson using the correspondence:
w=p+ (K +k) (ﬁ-ﬁ- - % s %) which then gives Vw = Vp + gV(V -u). Stokes also commented:

The same equations have also been obtained by Navier in the case of an incompressible
fluid (Mém. de I'Académie, t. VL. p.389 ) %!,
but his principles differ from mine still more than do Poisson’s. [74, p.77, footnote]

He further stated:

Observing that a(K + k) = 3, this value of = reduces Poisson’s equation (7-9) ps (=(14)
in our renumbering ) to the equation (12)g of this paper.

Stokes proposed his approximate equations in (74, p.93] :

21’1 2“ 2
p(BY — X)+ 2 — u(G4+ SH+5%) =0,

g & du dv  dw
(13)s (A -V)+E-ugE+EF+5H=0, S+ +-=0, (18)
Dw LIT;_ dgw d*w ;:w de  dy  dz
ot —2)+ & —nlGF + Gy + ) =0,
which are identical to (7-9) ps(=(14)), adding that:
“These equations are applicable to the determination of the motion of water in pipes
and canals, to the calculation of the effect of friction on the motions of tides and waves,
and such questions. ([74, p.93]).
Here we shall trace his deduction with the Stokes tensor in the form:
_opfdu _ o f(du v _(dw  du
P, T T p 2’”‘(d:r 5) »“(dy"‘dz) f-‘(ax + z)
P du dv dv duv dw
TRl “u(fy k) po2u(-9) —u(+) (19)

He then remarked about 4 :

21(y) f. Navier [47).
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“T't may also be very easily provided directly that the value of 34, the rate of cubical
dilatation, satisfies the equation
du dv dw
d=—+—4 —
et~ i
(74, p.90)

We find that Stokes’ tensor can be described compactly in component form as follows:

—ti; = {p — 2#(1),5,_.; - 5) +’)!}('j,;j — < where, = ,u.('u,-,_,- +‘UJ:5)
= {p—2pw;;}0i; +(—0i; + 0;; —1) < where, 2pw; ;6;; = p(vij + vj:)8;5 = ¥0ij,

2
= (p+2my)oyi—v=(p+ g”’”k,k)aij — p(vi; +v54) (20)

Therefore, the sign of —t;; depends on the location of the tensor in the equation.

22 Now, in considering the coincidence of (15) with (17), we see that Stokes’ tensor may have originated
in Saint-Venant’s. The article [52] by J.J. O’Connor and E.F. Robertson pointed out this resemblance.
Moreover, Stokes reported on the then academic activities within hydromechanics [73], in which he cites
Saint-Venant [67] saying:

“I shall therefore suppose that for water, and by analogy for other incompressible fluids.”
(74, p.93)).

At any rate, we obtain (13)3 (=(18)) with (19) and the following (21):

p(B2~X) +48 4 4B 4 & = p( By X) + P =0,
p%—Y+ﬂ+ﬁ+ﬂ—4&—ﬂ+Qo
A\ Bp—-Z)+5+h e p(—D—t-—- )+R=0,
P P T3 Ty %
where Q = T3 P Tl T (21)
R R |2

6. The rapidly decreasing functions including in the “two-constant”

In Table 3, we show the form of ¢g; and g, which are kernel functions and with which the progenitors
of the fluid equation developed their formulae. Here we refer to these functions as rapidly decreasing
functions (RDF's). While formulating the equilibrium equations, we obtain the competing theories of
“two-constant” in capillary action between Laplace and Gauss.

In 1830, after Laplace’s death, Gauss [17] started publishing his studies on capillarity following his
famous paper on curved surfaces [15]. In the paper, Gauss criticized Laplace’s calculations of 1805-7
in which the “two-constant” in his calculation of capillary action were introduced. At about this time,
Gauss had studied what became to be called Gaussian function or Gaussian curve and using this as his
RDF Gauss criticised Laplace’s example function ¢~/ as the equivalent function to ¢(f). Here, (f) is
the RDF, which depends on distance f. In that paper, Gauss [17] pointed out various deficiencies:

1. Laplace had mentioned only attractive action and without considering the repulsive action;

2. Laplace could not identify the correct example function as the equivalent function of the RDF
and

3. Laplace lacked any proof from say a geometrical point of view.

The following are Gauss’ criticisms to Laplace in the preface of [17].

o Judging from the second dissertation : < Supplément & la théorie de l’action capillaire

( [35] ), Mr. Laplace had scarcely investigated of ¢ f, not only the complete attraction,
but also a part, and tacitly understood incompletely the general attraction ; by the way,
if we would refer the latter in comparison with our sensible modification, on the contrary,
we can assert it to be more inferior to the bad experiments and be clearly visible.

22(1}) Schlichting reverses the sign of Stokes’ tensor as follows: a; 5 = —pdij +-“(% + g—:f -5 ,3%& [69, p.58, in the

footnote].
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But it is not at all necessary to limit the generality by such a large quantity, this
point is more clear than words, we would see easiest, only by investigating if these
integrations would be able to be extended, not only at infinity but also at an arbitrary
sensible distance, or if the occurring in experiment could be wider extended up to the
finitely measurable distance.  [17, p.33]
Here, we can consider these arguments on the RDF's as simple examples of today’s distribution
and hyperfunction of Schwartz in 1954/55, but which were popular in the 1830s, during the time the N.S
equations were being discussed in their microscopically-desecriptive formulation.

However, Gauss’ criticisms in 1830 naturally drew no rebuttal. We present a sketch of these assertions
on the RDF's in Tables 8 and 9 in their original, cross-indexed narratives, where, we show the then family
of RDF by using our notation f € RDF, and f is a function included in the two-constant belonging to
the then rapidly decreasing function.

7. Conclusions

The “two-constant” theory is the currently-accepted theory for isotropic, homogeneous, linear elas-
ticity. (Darrigol[11, p.121]); the terminology : “two-constant” theory is due to Prof. Darrigol. In our
report, we provided a universal expression of this theory within a historical context and identified the
following features:

(1) the “two-constant” were defined in terms of kernel functions of RDF's, describing the charac-
teristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary
for the interpretation of the nature of fluid or the formulation of the equations of the fluid me-
chaniecs including kinetics, equilibrium and capillarity. With their origin perhaps arising in the
work of Laplace in 1805, these sorts of functions are simple examples of today’s distribution and
hyperfunction of Schwartz proposed in 1954 /55.

(2) the genealogy of tensor as it pertains to the development of the NS equations in the original
mathematical formulations;

(3) the tensors and the corresponding equations as developed historically by Navier (1822), Cauchy
(1828), Poisson (1829), Saint-Venant (1843) and Stokes (1845) ( sic. in order ); and finally

(4) the appearance of the notion of tensors especially in the work of Saint-Venant.

(5) Gauss [17] also contributed to develop fundamental conception of RDF or M DN S equations for
fluid mechanics including capillary action, because he formulated the equations with two-function
instead of two-constant and these were the superior method than other contemporaries with the
progenitors of NS equations.

(6) According to Bolza [3], Gauss [17] had broken one of the neck of fundamental problems, such as
multiple integral and calculus of variations, however, we must recognize that even he owed the
latter to its progenitor Lagrange, and calculation of capillarity to its progenitor Laplace.

It is our contention that Saint-Venant’s was an epoch-making contribution, by simplifying and identifying
the concordance between the earlier pioneers of the MDNS equations, in using only tensors without
recourse to the microscopical descriptions, and providing context for the contribution of Stokes.
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TABLE 1. C;,C5,C3,Cy: definitions of constants and computation of total momentum
of molecular actions by Navier, Cauchy, Poisson, Saint-Venant & Stokes

no[name/problem|elastic solid elastic fluid }remark
( Navier[47] only: )
_ ( Navier[46] only: ) Ci=¢= -% 5 dp- ptf(p)

X I";ﬂ"t‘?r - Cl =e=3%Z [Pdp-pifp Cr=E=2 f dp - p*F(p) g= pcoszc_osao,
elastic: = pcosiysing,
ﬂuid:[zi?] Jr_,.i, dy Jro cos wdip g3 = {_g iﬁ %} Cs = fu ‘-"i‘PJrg2 Cﬁﬁﬁ’d@b 93 = ::simp #

:%-}—f@:%rmxerlﬁ ”{1% 30}2’ 15
Cy= d«pfo cos dip gq = 22
( Cauchy|7] )
= R2 befé fom 3 f(r)dr COS & = COS P,
= 228 [R[A(r) — p35(r)dr o6 f = sinpeosy,
Cauchy wA 00 Be(r)d = B
; Cy = G +2a [ f(r) r ( Cauchy[7] ) cosy = sinpsin ¢
2 |elastic and ; . M
fluid(7] Cy=3 fu cos qdg J" cos? e cos? fdp, same as elastic solid A = 4 mass of
.; ™ cos qdqf cos? psin® psinpdp = %—- molecules per
Ci=3 fz’r f cos? a sin pdqdp volume.
——’.ﬂ.’Jr cos psm pdp = =5 2—
( Poisson[60] both elastic and fluid )
.‘L ™
( Poisson[59] only: ) Ci= —k =—zky Zr“—% In Poisson[60],
— 2 5dljr A3 difr
Poisson S k= 1_; 153 ax - E " g :lea:tl::':a;snguggid
. oz—ff—“z—gfr Ca= f(w—‘—gz-rfr
3 elastic: 2 —— G __2= 5 Se Ir the same.
59, 60] Cs = [2™ dy fu cos f3sin Bdf gs => {? T} = 3 -hlnsa idje
HAuid:[60] Cy = fe”dqfu cos fsin Bdf g5 = % Cs G=+5 33—, 1 = rcos [ cos,
E=F=Ayr3%elr y1 =rsinfsiny,
Remark: C3 is chosen as the common factor of {-,-} = {%, % } =>3;1_ = (= —rcosf
Ca:(3-2)pr N=gmzirfr= é
Saint-Venant e o
4 [67] Ci=g, Ca= 5
5 [Stokes[74] Ci1=A, Ca=B Ci=p, Co=£&

TABLE 2. C;,C5 and equation of equilibrium of fluid containing exact differential by
Poisson & Navier

[nafname  |C1, Cs of equilibrium equation of equilibrium with exact differential term
= T4 T
POiSSOl’lC =‘—(_.'-._—'—3‘ETI2ZIR N—'p+G'(A+?)
where : the vertical force,
1 60] |Co=p= “Zm here N : th ical fi
= A, A" ¢ the radii of the principal curvature
0= fffda:dydz[p(d;;:- o+ ‘%‘1 4 %) + Péz + Qby + Réz].
By integration by parts
sy _dp —d —dp
Navier Cl :P: aw [;C’dpp:jf(p) 0 Jrffdxdydz[(P d% oz + (Q dy)6y+ (R dz)(sZ]
2 |fluid '[9 dp J‘ dipgs — [[ dydz (p’J:r’ —p"62" ) — [[ dudz (p*éy' - p”ﬁy”) - [f d:f:dy(p’(fz" - p"Jz”),
[47] -—.‘- s 3, Ir= %" = 4—31 = . condition of inner point and exact differential
g-gzp} :Q’ %:R_ =% dp:PdE+Qdy+Rdz
= . boundary condition and relation of variation dz, dy,dz
0= Pdz+ Qdy+ Rdz = 0= dzxcosl+ dycosm+ dzcosn




46 The “two-constant” theory and tensor function underlying the Navier-Stokes equation
TABLE 3. The expression of the total momentum of molecular actions by Laplace,
Navier, Cauchy, Poisson, Saint-Venant & Stokes. (Remark. 6-8 : capillarity, 9-10 :
equilibrium, else : kinetic equation)

no [name problem Ci|Co]Cs [Cy ]C [rilrefgr  |g2  [remark

Navier . ; 2 oo 4 .=
1 | 897 146) elastic solid 3 = Iy dple®| |fp p : radius
Navier
2 |fluid motion of fluid e 2z Js" dpl?| | f(p) p : radius
1827 [47]
El |= |4 F(p)
tem
Cauch s
3 [1hog [_f] of R| |& [ drfr®| |F(r) f(r) = £[rf'(r) — £(r)]
particles
G T o f(r) [f(r) #f(r)
Poisson ! x 2 1 |s| |atsr
4 1829 [59) elastic solid k % SaE|r =
K| & o Ir
Poisson ; . d.dfr ,,
5 |1831 160] motion of fluid k - > & | = Cs=gZ=4
K| Iz ¥ fr ICi=£% =1
Laplace . . o0 .
6 18[!})6,7 [37] capillary action  [H| |27 Jo dzlz | [¥(z2) z : distance
K 21 |fy dz ¥(z)
pupjEoRTtien by H| |3 [ drlrt [62, pp.14-15]
Poisson 1831 [62] g o LT 1 PP
K| |5y dr pr
Cianss attraction :
7 icapillary action — fr.dz = dpz,
1830 [17]
[ fedz = oz,
repulsion :
—Fr.dr = d®x,
[ Fz.de = —®z
Poisson . ] s
B |igsi [62] capillary action  |H | |5p Jo© drjrt| er [62, p.14]
K 22 02| [ dr or ([62, p.12]
Navier
9 |fluid equilibrium of fluid|p = 157 dplp®| | f(p) p : radius
1827 [47)
Poisson ixase . 1
11U} pess 160] equilibrium of fluid|g h & 2| 2R Cy=4n=1
pl s X R (Ci=gF =3
Saint-Venant ; "
11 1843 [67] fluid E: 1=
Stokes
: £
12 1849 [74] fluid |5
Stokes . .
13 1849 [74] elastic solid A \B A=5B
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TABLE 4. S1,S52,93,94 : the trianglar functions for calculation of total momentum of
molecular actions in unit sphere by Poisson, Navier, Cauchy & Stokes
[no[name S1,52,93, 94
g3 and gq are in the following tensor :
g =asinfcosy+ bsinFGsiny —ceosf, ¢ = g— + h%! +£7j——,
h=a'sinfcosy+ b sinfsiny—c'cosf, ' —g +h “h"
l=a"sinBcosy+ b"sinfBsiny —c’cos B8, _-9':1: +h—{;— —Hd‘"
P=JE 2 [0+ ) S S fr+(od +hH +W)g T 5 E lJrr]ﬂ‘
Q=[7 [? [(h +R) Y Zp fr+ (99 + i + W)RY —,—d,L’"]A‘
1 |Poisson R= fu [(I‘H)E “5’)'7'+(§Q +hh’+ff')fz—58ddrfr]ﬁ‘
ie.
P ' (gg’ +hh! U B
-[ 3] —mma( [RiE AR ] [ 2 )
R L+ (gg' +hh + W) e o
”Ioidﬁd'r([ 91 g3 ] [ f: ).
where A :=cos-sinf df dy, K':=3 %{5, =% i;d—iﬁ
-S1 and Sz are given above.
g3
Navier g3 = 26f?
2 |elastic solid| ¢ — p[»—— cos? 1 cos? p + (—"‘—”‘ ﬂ)coszwsingooostp+ (42 + 42) cosypsinypcos
(18a7){d0} "*'EE cos? i sin? o + (%H 42 sinp cos Y sin g + 4 sin 11:]
p—
a=pcosypcosy, [=pcosyhsing, = psinw
9 =VoV = [a( 2o+ 220+ G2q) + 6(La+ 2o+ 829) +1($a+ 2o+ 421) 1%
[a(%a+ sdu g édu,r) +3 6duu+ 6dUﬁ+ aau )+,T(g:r1,g 5dwﬁ+ 6dw ) I,
g4t
(o2 { (usin?r — vsinrcosr)du,
Na:vier (—usinrcos T + veos? r)dv },
3 ?]‘.:;27)[47] B2 { (moos2 rsin? s + vsinrcosrsin? s + wcosrsins cos 8)du,
S| (usinrcosrsin? s 4+ wsin? rsin? s + wsin r sin s cos s)dv,
(ncosrsin.ucoss+vsinrsinscoss+wcoszs Jow },
~'2 { (w cos? rcos? s + vsinr cos T cos? s — w cos T sin s cos s)du,
(usinr cosrcos? s 4 vsin? rcos? s — wsin 7 sin s cos s)dv,
(—ucosrsinscoss — vsinrsinscoss + wsin® s Jow }
where o = pcoszbcosw, B = peosysing, ' = psini.
‘B=4= f
(G = G(cclsgul + cos? f; + 005211) = GA;,
L= L(ccns“ ay + cos? B + cos? 'n)
+6R( cos? B cos? 41 + cos? 41 cos? ap + cos? oy cos? B1) = LB + 6RC,
at)e 4 R = R(cos? B cos? yp + cos? Bz cos? 71 + cos? y; cos? az
+ cos? g cos? ay + cos? ey cos? Pz cos? ap cos? By
+4R( cos f1 cos By cos 1 €OS Y2 + COS 1 COS Y2 COS (7 COS (xg
Cauchy + cos ) cos az cos 31 cos fz2)
3 (1828)[7] \ +L(cos® o cos?® az + cos? By cos® Bz + cos® vy cos? y2) = RD +4RE + LF
ke cos? a + cos? By +cos?q; =1, cos®ag + cos? f2 + cos? 12 = 1,
cos o) €os g + cos By cos P2 + cosyy cosya = 0
- From (49)c G = £8[+r cos? ;zf(r}v]' R = £8[rcos? awcos? B (r)v]
o0 m m .
and  (50)c G= :I;%oj;o 2’? :% .r?’f(r} 60:2 ceSlr; pd‘.-tdqdp,
R=2 [° [57 J5 r*f(r) cos® acos? G sinpdrdqdp
S = é- 2 f[;' cos? aecos? @sin pdp = %fug" cos? qdq [ cos®p(1 — cos? p) sin pdp
= “‘(3 ) = i‘; =Cs,
Sa = — fu cos? e sin pdgdp = —27rf0 cos? psin pdp = &= = Cy.
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TABLE 5. Concurrences and variations of tensors

1 ::::)Tém tensor ( 3x3 ) |coefficient matrix ( 3 x 5) in equations
tij = —&(8iuk k + i +uji) We define the coefficient matrix in elasticity : C% as follows:
(5-4) e Cs : th flicient of
gdu du dur du dv dw du TH " ezcoe EC‘I(.H.?. 03 2 2
=tyte) \ate) (et Zy 23 oy o P
—£ du + du de 4 gdv ) dw dy y du ?Jgu gﬁu g;v 8§wy Dz:'uz
Navier du"TeR, NEwT g TTREg Nex oA of of of ops vaw |0
1- o dw 4 du dv+d_w) (d_u+ﬂ+3é£ Pw dlw 2w Pu D
elasticity ds d=) Nd= e/ \ds T &y T “ds 5% oyt 81 Dzbz Byds
cd+ 23‘3‘ d—: + 5—: 3% + E-;! then
=—€ F!;'f'j'—: €d+2§ d_£+‘d_‘ H 1 g z &
w w ] 1 {1 e Be= -
duw g du L . S0 €+ 24% (6-1) = T £l 1 3 1 = (23)
—du , dv , duw 13 2 2
where e= G+ &+ G5
tiz = (p — eug i )di5 — (ui; + ujq) I
(23) Similarly, we define the coefficient matrix in fluid : C,
) 1w du i i i - i =4
Navier &= 25% = E(%E' s %; = s(‘;—: + du) , which contains p in (1,1)-, (2,2)- and (3,3)-element.
1-2ﬂuid _s(d_u_l_d_u) & — gedy _E(g_g+¢_t_‘g p—3 - —g =2 -2
_ gﬁ‘ i,f N d_,,d”d_w f=_2€ﬂyw (23) = C.{wt —& p—3 —g —2 —2¢
(& + & (E+q) @) i e w0 Dk
] du du dw ?
where € =p—e(g + g+ 5F)
Cauchy |tij = Mk kdij + pt(vi; + v56) L R Q 2R 2Q
system (50)",, b ol (46)c=Cs= | R M P 2P 2R
: k k(@ o
I E'mitmns kS + kv E(55+%2) §E3§+§§; ;g et P2 N 2Q 2P
ot k(@ @ a kfén . 8¢
elastic 2 é+ gi'l k?}g;_Kz “ %4_ L] ’ = R[13 12 2],
body E(B+2) 5(+%) k+kKy 11322
and fluid)| where u=? + 8 _|_%§ where P=Q=R, L=M=N, L=3R
(G)Pe 2 2 2 2 2 2
d?u d 2 d 2 d 1d 1d
X-Srva?(G8+ 340+ LR +150 +35)
2
Lij = — 5 (Bijtth, i + wij + uj,4) =0,
= d?v | a2 d? 2 d? 2 d? 1 d? 1 4%
_ ©)r T T —— Y-L3+ad(Sy+3EL +3ER + 18 +153)
paftee | ol 553 98 2.5 =0,
elasticity | —2- | %+ <% e+25% L4+ s 2 2 2 2 2 2
3 dy dx d z d 1 Z—d"‘+ﬂ2 dw+34u+gdv+1dw+;‘dw
%‘ft%d %:.i’_: E+2-;";: _Dmr (m‘ Sdrds T Fiyaz T 3 &7 a?r;:)
= gu gy suw =y,
where E_dx+dy+dz ) 3112 2
=Cr= 5|13 122
1 1.3 @ 2
P w+p 4 B 00
(7-9pr = Ci= # w+pf B 00
f:;: —plij + Avk g8 + plvi 5 +v5,4) 2 ® B B w+B 0 0
(T-Tps 3 j 7 3 u According to Stokes: if we put
du o dw du 4 dv 94 du T 4 i
3_2P0i&ion A j“+::*"' ﬁ(dytdz) :+ ﬂd: W=P+%(K+k)(§;+:_y+i_z)
fuid plas+dy) n+oods p(f+3) vt ¥ 04
m+20%2 p(d+4e ﬁ(%;wr%“) = Cf= B p+i3.‘32§ % 7
whezre1!'.'=|,—.>—ﬂ=£ﬁ‘~—%%ﬁi BB Ptz 3 3
= (12)s (= (120)).
Remark: «(K + k) = .
ti; = (3 (Prx + Pyy + Pzz) — o585 + €015 + V3,6
4 _{?Ep_ Eviyk)ff" +)E(_”.3_ _:'::)_ '}J + &g +54) No description in [67], however, we can see easily that,
- BN i iy for example, in case of Py
2 .45. ﬁ d_"..' d d, ) il :
s, | | T ErR) dBE P2 = (4 0 ) w2
s 27
Venant e a§+3’£ ﬁ+25“ﬂ' £(£+dy) ! =_ptiedf 2e(dy  df others are in the same way.
fuid d dE (d ¢ 2E§—‘; P 3 dz 3 \ dy dz J!
e(F+H) e(F+n) v+ p+E & ¢ £ £
where =1 PH+P“+PH)—%(§§+§¥+§§) = (,‘.{,: e —p+%¥ £ £ 5
€ = 4 £ E
E—P—%(%'l'%g +§§) (117) P+ 3 3
tiy =(—p— é#"k,k)ﬁij + p(vi,; + v5,4),
tensor = —1 x s 4p g B
Pt » H 3 3
du du | d d d J _ 4
Swokes | [ Po2(8-0) ~u(f+i) —u(@e®) ] 025 = Op= | ok —pt¥ p kY
. _pfdu poduY o, o, fdv g _,(dv y dw g g —-p¥E £ £
fluid K dy + dz ) P 2’"’ dy B\ gz + dy 124 3 3 3
— dw_l_t,lu _ dv_l_dw —9 d—w‘—é' = ( ) 4 i
M\ T &z M@z Tay )P~ B &z Remark: 3p=2u(1 - 3)
where 36 = ﬁ-‘ri + -31‘- + ‘;—‘;‘ (124)
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TABLE 6. Concurrences and variations of tensors (continued from Table 5)

name
prcblém tensor ( 3x3 )
tij = (—p — Fpvkk)8i5 + p(vij + v56),
M ds.__d M (oy ., & M (dw  d
! 1(\:;}6?-‘;];) P-ame,P 28—y %) ~wmeesPlEmt o_:) - ekpazp(z'f + d_:)
[43]fluid ﬁkpﬂzp(df +ay Lo kpé?i”(rr_%‘ £) -wss QP( d
_kpﬁzp(m + 5t ﬁkpeg i"(u: i+ Oy) p- Qkpegp( - E‘;} -2%
'*-_'J = (—p — 2kvr,1)di; + k(vi,j +v5,8),
Kirchhoff ~2ede -~ k(”"‘ + d“) - k(f’w + ﬂu)
T e ag )
du
2w — k(g +22) p-2kde
v
tij = (—p — 3Rk k)8i; + R(vij +vj4);
_'L 8u du dw . @ o S du
Boltzmann £~ 2R{—5_ y: oy T o )} R( ) T‘"(E +_ 1)
8| (1895)[2] -R "—+— p—2R{gs - 1(§2+82+9 )} -R(%+42)
Auid v & 1 au Hw
| R(B+8) -R(E+5) »- m{ﬁ— t+5e+5e)}
where, R= sk‘re-;p'

49
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TABLE 7. The kinetic equations of the hydrodynamics until the “Navier-Stokes equa-
tions” were fixed. (Rem. HD : hydrodynamics, N under entry-no : non-linear, gr.dv :
grad.div, E : Eﬁ; in elastic, F': ﬁ in fluid. The group of entry 6-14 show F' = 3 in
fluid.)
no[name/prob  [the kinetic equations A JgrdvE |F
Euler X_l_z_du u+vdu wdn
1 |(1752-55) 18 Lo du o dv o dw o
N[12 p.127] Y—Kg T+“d:+" +?.-‘J a;-f—d—y-l-‘-a-z-w i
! 1
fluid Z-fE=F+uE +oi 'r'
nd’ =
- gn‘.t £3W+W+“7+2dbdu+2_cr
avier a2
2 |(senae |G g = ?3“'3_5 _¥+236d +2d=db ' e [2e |3
elastic solid %%} € ~1+—y+3m+2dadc+‘2dm
where Il is density of the sul;d, g is acceleration of gra\nty
1dp _ x4 3" + + 9 yodu Lodw) _du_du ,du,, du .
3 Navier Pz E\va=7 d_yﬂ' Eﬂ' dzdy a_;:dz dl d: U= Uy i T
1dp _ d2y d?u | od dy d ' 1
Nj{;gﬁ'r)m] EHE—Y#—E?-I- d—y,+m 248 +2 Lu)_dp . doy—dtw; e e i
1L 1 dj d? d v dw d d dw .
loe—zte(Gr+ o¥ oty roly +zd,;z) - —d_‘:- —f -,
Cauchy a?
(1828)[7] “—*+Gl—*§+(R+H)—§+(Q+f)ai+23aw, +205; +X = ﬁr? it [if
" -*;:;S;::::icl (R+0)—J+(M+H)—§+(P+f)5-24+2.f",dz+2nm€;+y ?1 R+l p GUG
= o . —ol|=
in elastic solid (Q+G)#+(P+H}*§+(N+f)7?§ +2Qﬂ=9= +2P898z +Z =Gt 1 |1
and fluid G=H=1I, L=M=N, P=Q=R, L=3R Zi |2
Poisson ) 5 :
2 2 24d 1du 1 w) _ IId%u
(1831001 X'“_'f'"“ (H';'-"+3dd +3dzd::+§d_7+3dz)_;m’
5 [clastic solid y — +2du+gdu+2dw+ld= 4 1) _nd’s a? |22 |1
defined E!f @ 3 dzdy 3dzgy 3 dz? EE: _p:i;";’ 3 |3 |2
in general - m+2dw+§d“+2—d—d +%'—'§+%i—y¥)=%%|
equations
¥4
P(Be —X)+ 3L+afx+k)(—,+—f+%§) +5K+R)L(Le+ 2+ de) =0,
Dy o d (d dwy _
I pBY—Y)+ B ok +k) (L + L5+ ")+§(K+k)d—v(ﬁ+d—;+ﬁ)-o.
D d dz 2w @ 4 d [ du dy dw \ _
(1831)[60) PT—ZH‘B"'“(K'H) ¥+ 48+ 98)+ §KHRE(R+ R+ 22) =0,
6 |fuid defined | (p(X — 92F) = dm+3(_,+~,+_5), s |4 3
in general
itk pY - #J = p(Ly+ Ly 4+ Ly),
2
P(Z—WJ +ﬁ(:,‘;u’+—r+d—r
where w = p — fx—“"’— %{3—7};, B=a(K +k)
Saint-Venant
7 [(1843)[67) He didn't describe the equations in [67], however his tensor is in Table 5 (4). e |5 3
Auid
D dp d d [ du d d _
Stokes Pipt —X)+ 2 #(a‘;ﬁ‘ a;“)‘%&:(—z’rﬁﬁJfﬁ)—“:
0 dp d  du d d i
8|usioyra]  \12)s g p(BE V) + G d—§,+d—%,+5§ — b (e de g de) <o, po|8 3
u w w
AP -2)+E-n f;—zf+%;f+'i—zf)—%% de g duyde) =0
] 1d (du , dv_ @
Moy || 5 E-Ow[EE G g Rl e )] - Lo
5 1d (du o dv  dw\] _ , e
9 |143] p;,—+32 Cwm —-;+—,+ +55(g§+a§+g‘-}) =pY,  where, Oy = g0 |Cm | 3
1d(d du duw — =
HD +aE—CM E'f+ + 53’5(2%4-4—”4-5] pZ
To [Bs . Bu om)|
Kirchhoff “dt"‘F“(' Aut 35: a:’LEE*T‘T‘xH) =X N §
d v 18 a = d az u ‘b_ = v |A
. 5'11376“231 na + 35 —Cle |Au 33y ﬂ‘ + 3y & v T o: )| =H¥ {:'hr:re Ck = 3‘ill & Cxls 3
nde + G — Ok A2+ 5 £ 8“+""+£‘§! = pZ, ki
Rayleigh 14d d 2 du d
11} (1553)/65) {Eﬁs T POV UE Vi ey de v
3] {1 B =~
N HD EE‘E A% ‘u-u:E—udv ¥
1.8 (du du Hu _
Boltzmann p8‘+—E Rl|Aut35: (5= + 5y + 32 )| =X
a
12 Sgss}[z] @20)p {pR+E-RlAv+IE(S+T+52)| = R |2 3
Bw | 8 8 (Bu_ v B
phe + 5 —R[Aw+ L (B + 5+ 5¢)| =2
13 Prandtl
\ | (1905)(63] p(%‘f +v V) + V(V+p) =kV?, divv=0 k
HD
Prandtl B oy 1 8 a2
4] osaiey |3 T B HoBy T udE = X8y ub(guyguygu) (L 204 0y, e L 5
Nlup for incompreasxble, it is simplified as follows : div w = 0, d—‘;" =g- igrad p+ r.rAw %
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TABLE 8. Assertions on the RDF's by Laplace, Fourier, Poisson, Navier, Cauchy and Gauss

no

Name/Problem/Bibl./
Corresp.
(with/against disputer)

Assertions

Laplace (1749-1827)
capillary action : [37]

o(L1) We shall put, as in [1(f) = ¢' — fﬂf df.o(f), the integral [ df.(f) being taken from f =0,
and ¢ being its value when f is infinite. II(f) will be a positive quantity, decreasing with
extreme rapidity; and we shall have, by taking the integrals from f = 0 to infinity ;

J Fdfp(f) = —FALII(F) + 4 [ fRdf.II(f). — fLII(f) = 0 when f = oo; for although f*
then becomes infinite, the extreme rapidity with which TI(f) is supposed to decrease, renders
SLII(f) nothing. (cf, Navier (Na)).
o(L2) The functions o(f) and II(f) may be very well compared with exponentials like ¢~%/;
¢ being the number whose hyperbolic logarithm is unity, and ¢ being a very great positive and
integral number, where, f is used for the distance between two molecules by Laplace.
(37, pp.812-813)

Fourier (1768-1830)
heat : [13, 14]

o(F1) On désigne par ¢(p) une certain fonction de la distance p a une grandeur solides et dans
les liquides, devient nulle lorsque p a une grandeur sensible. [13, §59]

o(F3) On voit par ce résultat que la température des différents points de I’axe décroit rapidement
a mesure qu’' on s’éloigne de lorigin. [13, §332]

Poisson (1781-1840)
elastic:[56, 59, 60]
fluid:[60]

The origin disputed :[56]
(with Navier[57, 58])

¢(P1) The function as an example of fr by Poisson : ub‘("r]-:?r)m, which can not express both
the modes of attraction and rejection and is not coincident with his ¥ 73 fr accrding to Navier.
o(P2) Poisson must use summation instead of integral.

On this point, Navier points out Poisson’s logic for the necessity of summation. (cf. Navier (Nz))
o(P3) Mais si 'on exprime avec lui les forces moléculaires par des intégrales, on peu voir par

une simple intégration par partie, que le coéfficient k ou £ s'evanouit en méme temps que K ;

en sort que les équations d’équilibre ne renferment plus rien qui dépende de 1'action des
molécules ; résultat absurde que 1'on ne peut éviter qu’en exprimant les résultantes de cette
action, par des sommes non réductibles a des intégrales, ce qui empéche qu’on n’ait
nécessairement € = 0 par suite de K = 0. : Poisson [58, p.207, §2].

Where, € cited by Poisson is Navier[46]’s one, which is equal to Poisson’s k according to Poisson.

Navier (1785-1836)
elastic : [46]

fluid : [47]

(with Poisson

(48, 49, 50, 51],
with Arago[51])

o(N1) Si par exemple on prend pour cette fonction ¢ ~%P, ¢ étant le nombre dont le logarithme
népérien est 'unité, et k un coefficient constant, on aura
[ dp-pteo =, [dp- pPeke = & et
Or pour que la quantité e~ *# décroisse avec une trés-grand rapidité, quand p augmente,
il faut supposer que le coefficient k est un trés-grand nombre.

(46, p.383] (cf. Laplace (L1), (L2), Gauss (Gz) ).
o(N2) Navier explains the use of integral against Poisson’s necessity of summation :

Donc la difficulté d’accorder ’état naturel du corps avec 'état varié, c'est-a~dire,
de faire en sorte que k conserve une valeur, tandis que K est nul, n’existe véritablement pas ;
ou du moins il n’est pas nécessaire, pour résoudre, de supposer que les quantités k, K
sont de sommes plutot que des intégrales : ils suffit de supposer que v fr n’est pas nul
quand v = 0. [50, p.103, §7].
o(N3) Navier points out the following operation : [r* f(r)]5° = 0, for f(r) — 0 in r — 0.
“J'ai remarqué d’abord qu'’il fallait lire : < si 'on fait attention que r* fr est nulle aux deux
limites, etc.>> J’ai remarqué ensuite que rien n’obligeait 4 admettre que 4 fr est nulle & la
limite corresponante a4 r = 0;
o(Ny4) It must read “ If one observes that r* fr is null at both limits etc....”
Moreover, the writer | Poisson | does not show the necessity that +4 fr be null at the limit
corresponding to r = 0.

Cauchy (1789-1857)
elastic and fluid : [7]

#(C1) D’ailleurs, si, pour des valeurs croissantes de la distance r, la fonction f(r) décroit plus
rapidment que la fonction que ;14-, si de plus le produit +*f(r) s’évanouit pour r = 0, on trouvera,
en supposant la fonction f/(r) continue, et en intégrant par parties,

Jo© v (r)dr = —4 [7° r31(r)dr. [T, p.242)

Gauss (1777-1855)
capillary action : [17]
(to Laplace [17],

to Bessel[18])

o((;) Judging from the second dissertation : < Supplément & la théorie de laction capillaire >,
Mr. Laplace had scarcely investigated of ¢f, not only the complete attraction, but also a part,
and tacitly understood incompletely the general attraction ; by the way, if we would refer

the latter in comparison with our sensible modification, on the contrary, we can assert it to be
more inferior to the bad experiments and be clearly visible.

¢(G2) Laplace considers exponential e*/ as an example of equivalent function to ¢,

denoting the large quantity by i, or % becomes infinitesimal. (cf. Laplace (Lz2).)

But it is not at all necessary to limit the generality by such a large quantity, this point is
more clear than words, we would see easiest, only by investigating if these integrations would be
able to be extended, not only at infinity but also at an arbitrary sensible distance, or if the
occurring in experiment could be wider extended up to the finitely measurable distance.

[17, p.33]
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TABLE 9. Cross-indexed differences on the RDF's f € RDF ( Remark. entry 1,5,6 : on
capillarity, Py, Ny, Cn, Ly, Gy, : in Table 8. )
1 2 3 4 5
Name/Problem/ fr) [ f(r)
no| Bibl. (Year read) Laplace Poisson Navier at |at
- Year published/ r=0|r=o00
Laplace Ly K;H
1 |capillary action : [37) Ly :force attractive only and 0 0
1806-07 f=c ¥, feRDF
P, 1 —* N; 1+
Poisson foeab™(wa)™
elastic : [56],(1828)-28; Py — N2 : not by
[59],1829;(60],(1829)-31 integral but by
2 g;‘;su'ﬁfg("(rli:?i) e Refer to Laplace’s f € RDF k, K z“;“ Ej?*‘:sg 0 0
[56],1828 at once.
(with Navier : P34+ N3z:k=¢
[57],1828;[58],1828) of Navier
Py — Ny: [ ERDF
Ny — Py fee ke
Navier Ng —+ Pa : not by sum but
elastic:[46],(1821)-27 by integral as Laplace does
fluid:[47],(1822)-27 N3 — P3: [P f(r)]g° #0, < T elaatic
3 | (with Poisson : Refer to Laplace’s integral e#£k e E in fluid #0 0
[48],1828; [49],1829; Ny — Py :rif(r) for r =0, ;
[50],1829; [51],1829 f e RDF
with Arago[51],1829) but only in r = oo,
fr) A 0asr—0
4 Cauchy elastic & fluid 0 0
| 7]
[ [Gauss (i1 — Ly :Laplace’s deduction is
5 |capillary action : [17] |conspicuous. B
(to Laplace [17],1830 |Gz — Lo:no necessary to limit ¢ of
to Bessel[18],1830) ¢~ to be very large.
Poisson
6 ngl‘lllg?lf‘actlon ' Same K and H with Laplace 0 0
(to Gauss[62])
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APPENDIX A. Detailed commentary of principles and deduction of equations or tensor

A.l. From Lagrange to Laplace.

Lagrange had completed “Mécanique analytique”, and told it to Lalplace in the letter in 1782. 23
Lagrange discusses the dynamics of the planetary corps with the attractions and applies it to the general
dynamics. However, his dates are a few earlier for him to apply the existence of the atom or molecule to
his equations of fluid dynamics. He passed away in 1813. In the early of the 19th century, Gay-Lussac,
Dalton and Avogadro had proposed the atomic-molecular theories.

Lagrange had proposed three classes, by which all the system of corps action each other.

On peut range en trois classes tous les systémes de corps qui agissent les uns sur les
autres, et dont on peut déterminer le mouvement par les lois de la Mécanique ; car
leur action mutuelle ne peut s’exercer que de trois manieres différentes qui nous soient
connues :
e ou par des forces d’attraction, lorsque les corps sont isolés,
e ou par des liens qui les unissent, 2°
e ou enfin par la collision immédiate.
Notre systéme planétaire appartient & la premiére classe, et par cette raison les problémes
qui s’y rapportient doivent tenir le premiére rang parmi tous les problémes de la Dy-
namique. Nous allons en faire I'objet de cette Section. [31, Vol. 12, Part 2 ( La
Dynamigue ), §7, p.1].
Our planerary system belongs to the first calss ( caused by the force of attraction ), then he seeks the
mechanics in it.
Lagrange described the hydrodynamic equations :
2 i 2 P 2y - .
Al(LE+X)%E+ (F+Y)8E+ (L3+2)8| -2 =0,
3 i 2 -
Al(L+X)%+ (SH+Y) 8+ (S5+2)E| -2 =0, (22)
2 - 2 & 2 - -
Al(Ee+Xx)+ (s +Y)8+ (L2 +2)%| -2 =0

%6 where where, a = (a,b,c¢) : position on t = 0, X = (z, y, z) : positionont =t, X = (X, Y, 2):
outer force, A : density, A : pressure.
The Lagrange’s hydrodynamic equations of today’s vectorial descripsion coppreponding to (22) are :

3

8.’1}3‘ 32:5;_; _ ap -
P‘;é)—a‘(w = K:) = e (i=1,2,3)
where, a = (a1, az,a3) : position on ¢t =0, X = (x1, w2, x3) : position on t =1, K = (K, K5, K3) : outer
force, p : pressure, p : density.
Lagrange communicated his “Méchanique analitique” to Laplace, however, from the hydrodynamic equa-
tion by Lagrange, we can scarecely find the M DF D equations, for lack of the epochal background on
atomic-molecular theories.

Laplace studied the capillary action ( cf. [34, 35, 36, 37] ), in which he treated the attractive forces.
In the introduction of [35] following with [34], Laplace says, “So as to make clear more and more about
the identity of attractive forces, upon which this actions depends, which produce the affinities of the
bodies” (Supplément [35]). We would like to discuss Laplace with Gauss later.

A.2. Naviers’ principle and equations.

23(3}) Lagrange corresponds with Laplace saying, “J’ai presque achevé un Traité de Mécanique analytique, fondé unique-
ment sur le principe ou formule que j'expose dans la premiére Section du Mémoire ci-joint; mais, comme j'ignore encore
quand et ol pourrai la faire imprimer, je ne m’empresse pas d’y mettre la dernigre main. [32, Vol. 14, §16, No. 20 Lagrange
4 Laplace. Berlin, 15 septembre 1782. p.116]

24(]}) This paragraph doesn’t exist in the first edition. The following content we refer is in the 4th edition was published
after the 3rd edition published by Bertrand. The first edition uses the title page in 1788 as the published year, instead of
the 4the edition in 1789. It reads that Quatridéme Edition. D’apres la troisieme édition de 1853 publiée par Bertrand.

25({]-) Combination in chemistry, etc.

25(.1}) Lagrange [31, Vol. 12, §11, p.280] De mo t des fluides i p ibles, or [31, Vol. 12, §12, p.325] De
mouvement des fluides compressibles et élastiques.
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A.2.1. From Euler to Navier.
The corresponding Navier-Stokes equations on the incompressible fluid (1) by Navier are as follow :

ldp _ d?u | d’u | d%u d*y dw ) _du _du . du . du ..

e =X+e(35+ 57 + T+ 250 25 dt " dz YT @y VT d@ W

ldp _ d*v v, d%v d*u dPw\ _ dv _dv . dv o dv ..

pdy — Y+e dz? +3dy’ e dz2 +2d=dy +2dydz dt dz "YU dy L z Wi (23)
ldp _ dw | dPw | qdw 4 o du d’v \ _dw _dw . dw . dw ..

L =Z+e\ G+ 57 HIGF 25 Y250 ar — gz et g

and the equation of continuity :
du  dv dw
dz ' dy ' dz
He explains ¢ from various concepts in [45, p.251] :

0. (24)

¢ is the constant which we mentioned above. Many experiments teach that this con-
stant takes the various values for each fluids, and varies with the temperature for each
fluid. It is considerd also as variant with the pression ; but we have observed as the
known facts, on the contrary, that ¢ is almostly independ of the force which tends to
compress the partial differences of the fluid.

Navier cites the Euler’s equations of the ideal fluid ([47, p.399]) :
P—gg»zp %‘i—‘+u:‘—;+uj—;+w%),
Q-E=p ﬂ—f+u-ﬁ—;’+v-ﬁ—;+w%)‘ (25)
R—go‘zi =p ‘i—‘f+u%+vﬁ—‘;+w%¥),
with (24). Referring to (25) by Euler who passed away in 1783, Navier observed in 1822 that he hadn’t
sought for nouvelles forces moléculaires anywhere in the Euler’s descriptions and that had motivated to
formulate self-made M D fluid dynamics equations :
Mais, d’aprés les notations exposées ci-dessus?’, il est nécessaire d’admettre l'existence
de nouvelles forces moléculaires, qui sont développées par I'etat de mouvement du fluid.

La recherche des expressions analytiques de ce forces est le principal object que I'on s’est
proposé dans la composition de ce mémoire.  [47, p.399]

A.2.2. Principles and means of constant ¢ in elastic solid.

From Navier [46, p.386], we cite his context about the computation of momentum of total forces by
integral :
e 4 4.

(3-5)ne Va2 + G2+ 42

1 dz o . o . dy de  dz dy » ,dy dz dz
o — -—~—1——+—i—-~i~—-2].
Va2 + A2 (@ + (G @ Gt @D+ 5+ G P
Le premier terme est la valeur primitive de la distance MM’ des deux points que I'on
considére, qui a été représentée ci-dessuus pa p. Le second terme représente donc la
variation que cette distance a subie par suite du changement de figure du corps, et a
laquelle la force qui agit de M’ sur M est proportionnelle. Si on remplace «, 3, par les
valeurs
= pcosicosy,
[ = pcosipsin g,
¥ = psiny,
cette variation deviendra
da d d de d
f= p[d—i cos? 1 cos? @ + (d—i + d_i] cos? 1 sin ¢ cos ¢ + (I + d—Z) cos 1 sin 1 cos @
d d d d
+ a%cofwsinztp—k (d—?:+d—z) sin#;cos;bsintp%-gzsinzw]. (26)

27(4) (25)
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({}) Here, Navier immediately introduces harmonic function, although which may simplify
elastic structure and we can consider the elastic structure as simple, however by this,
we can not get generality. By the way, Cauchy begins with the general case, and finally
apply polar system by harmonic function. Cauchy criticizes Navier’ special case. cf.
Cauchy (51)c. (1)

Représentons pour abréger, cette quantité par f. La force avec laquelle le point
M’ attire M sera donc proportionnelle & f. Le moment de cette force, cette expres-
sion étant prise dans le méme sens que dans la Mécanique analytique,?® sera évidement
proportionnel & f6f, ou & £5f2. Parconséquent
e si I'on multiplie %6 1?2 par dpdydpp® cos i fp ;
e si l'on transporte le signe § en avant des signes d’intégration relatifs & p, and i,
ce qui est permis ;
e et si 'on intégre entre les mémes limites qu'on I’a fait dans le no 3 :
on aura une quantité proportionnelle & la somme des moments de toutes les forces
intérieures par lesquelles le point M est sollicité. Cette quantité est donc ( continue
below ) [46, p.386]

f dp f o " dgpt coswp( 512)

= 36 f dp f ldw " dodoonthin

dx dx z ;
X [-dzcos 1) cos? ap+(db cos 1) sin 1 cos @

da)
dy dy dz, . . dz
+ 0 —= cos? 1 sin® go+(d + db)smd)cosxbsmtp+zsm 't,l")] :

+ jy) cos? 3 sin g cos p + (—

dx do:z dy.2 :
B S | 4 4 2 2
F2 = (==)"cos" 1 cos go-l-{ +(da) +2db!}c03 1 sin @ cos®
d:.cdz

d : d :
+ { 2 z 2— — Y cos? 4 sin® 4 cos? ¢ + (;%] 2 cos? sint

dy dz dydz dz\2 ,
oy {(I) +(E) +2— db}sm 1 cos? 1) sin? t,o+(dc) sin* 9

({}) Here, we would like to show Navier’s mistake. At first we integrate above with respect to ¢. By using
the formulae below including (89) :

Jcos™® zdx = £ cos™ ! wsinz + 222 [ cos™ 2 wde,
[sin® wde = —Lsin® ! acosx + %=L [ sin 2 wda,

then :

2m 2m 3 27 P 27 2w
/ cos® pdp = / sin? pdp = =, / sin® ¢ cos? pdyp = —, cos? pdyp = f sin® pdp =7 (27)
0 0 4 Jo 4" Jo 0

28(1)) Lagrange [31].
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Hence, it follows that : 29

I
5 / dP/'dﬁ’ dop* cosfpf?

dxdy

X 4[3 cos ‘qb+{( ] 42 Ed_ cos® ¥
dx dz d?y 5
+ 4{ 23";0!_ cos® 1) sin? #J+3Ecos L)
dy d., dy dz
4 {(dr_ + db) +2d( db}sm 1 cos® 1,£J+8 sm wcosw] (28)

(1}) Here, we would like to notice our correction of the last term of [ --8...] in (28) from 3 to 8, however

this correction will not give any effect to Navier’s description below. Next we integrate above with respect
to 1. Then

3 5 1
/ cos® pdip = %, [ cos® P sin® yhdy) = -1‘55, / sin® 9 cos Ppday = (29)
-5 - ~%

After representing the coefficient which is on the front of the integral with respect to p with &, we get
from (28) the following :

56[ {3(1%: {(d_a:+ Y\ 2 d,cdy} {dt dz\2 2d:;:d_z}

da? db db da de da
d21 dy dz,2 _dy dz d*z
wPpH{G+ g g | (30)

Here, choosing as a common factor, § by integral with respact to ¢ from (27) and by integral with
respect to 1) from (29) respectively, we get

1716 [ 2r [
(3-9)ne €= §ZE.£ dpp”fp=ﬁj; dpp* fp (31)

This ¢ of (31) should be multiplied by %, when the momentum of the total forces in the solid are computed,
namely it becomes the same as (52).

e 5.
dr Sdx di ddx dedix dzx dd. ddx
3?.:4“ + % a +dzddy | quice | Uiy g2 ﬁ"‘&%dgd
Gove 0= ¢ fff dudbac] fie gttt g diite g Ll Gt 4 the 1 5o
dd ddz dz dd, dz §d dz dd ddz dz dd
Qo uis +dthg+H§df+df_£+—%dc +3% %
f/f da db de (Xéz + Yy + Zdz) —f ds (X'6x' +Y'Sy' + Z'62"). (32)

When the first term of ¢ in the right-hand side of (32) is arranged in respect to dx, dy and §z then :

Eéd;+ﬂidd£+dzéd.r +2_Et§d1.’ 2(126!11

b i 1 Sd d‘c'g:c%' 2 dfa

. ody I dz

e f[[dabae] iy sgshy sy ad s 1 od S (33)
dzods 4 dzdds 4 g3dsdds g a,: adz 5dz
da da * b db +3 du “de +2?I-ET

29(-“-) Rzma.rk fp does not mean f x p but f(p). We compute (e + )2 in (28) as usual, for example : (“: dx )'2 =
4 9deds
EF de da E‘;'."
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ry X N Is ! ls ! ls ’ 5 ’ d 4 6 ! 6 ' a' ’ a' ¢ ;
Moreover, we rearrange (33) for differential : £5, 5%, 55, 9%, 96, 95, 2% 9% o as follows :

dxéa'x+_géd:-:+dz5d1+jiﬁg:+__gédz+%gd_df_+g£§gg

Sy, Sy  E e by Sy %
) dmddy | dyddy dyddy | dzddy | dyddy  dz ddy
Ef/ da db de dda+dada+dudb+3dbdb+dcdb+dcdc+dbdc (34)

dx ddz dz ddz _Eﬁdz dz Sd= dzx ddz= dz ddz dy Sdz
i ek o T e e e e it

Using (33) and integration by parts of dz, dy and dz, we make the top term of (35), in which —¢ is leading.
And using (34), we show only the first differential order : dz’, 8y, d2’ in the middle term of (35) as follows

(52)ne 0
3%!""‘::*!""%"'2&@"'2&«&0)53

; _E/f da db dc Ly 43 %H%#Jrzi:bwm 8y
d + 2z o

3ﬁ+2“+2—9— bz

+ ¢ f/ av' e dw ‘;b,+‘%)+/ da'de (% du’ /[d’db’ “Ez s =)
da’ | dy dy’

n" f I !_ ! -'__ iy, !

+ f/db db, ffd dc dm+3cﬂ)r ff iy (4 & )]5y
d:c’ dz y' dz da’ dy

.f J I ! ! r

3 f/db =+ ffd ac ( —+d—b, f/ o (S5 + +3—)]5

- /f da db de(Xéx + Y Sy + Z8z) — /ds(X'c?:r:' +Y'0y' + 2'62"). (35)

We solve the indetermate equations (35) 3° of equilibrium in an elastic solid as follows. At first, we get
the following two equations from (35) :
e The force inside the solid corps :

d,

— [[[ da db de(X oz + Yoy + Zéz) =€ [[[ da db dc g;g
dz
a?

4024288 4 23‘%’;)§z
+ 3% i dIg + Q.fac:fb + dedc dy (36)
+ ﬁ_!' + 33_!' + 2<fmfc oo 2dbdc dz.

e The force on the boundary :

/ ds(X'62 + Y'oy' + 7'67)

J' ' !
= rae (3% L W ff_z 'd xif dL / ;d:ﬂ + &g
= U av' de 3da,+ - /da @—+ /fdadb = )]sz
d.x dx’ dy' d.y z'
db.r ,,F L0 0 N sl !t !
¥ [/ de da’ [ da'de ( d.a.’+3db' dc" /fd a ( db’)}é
d.z dz' y d:c" dy' | d7
by hr il ’ ; !t kil ’
¥ Ef/dbdc e f dd'de /fd ' (o + 2 +355) |82 (37)
X' gdz’ 4 +dz do’ | dy’ dg’  dz’ ff db' dd
da,’ a'.ﬁ’ de’ db’ dp s det da’ o
:-/@l}ﬁ]:s ey 4 3% + 42 §C,+db,, l I da'de ] (38)
0 ’ ! o/
de 4 dz dy 4 de de 4 dy 4 3de JJ da'dv

here this tensor is symmetric. From (36), we get the inside forces of the elastic solid as follows :

30(yy) Navier says that (35) is usually called “equations indéfinies”. [46, p.384,389)
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. d? d’x d*z d? d2
~X=e(3GF+ W+ TF + 250 +2*¢a—&)=
2 2 2 2. ‘Zz
(5-3)ve Y =e(GH +35F + T +2055 + 285 ), (39)
2 2 2 2 2
~Z =e( Gz + GF +35F + 2k + 205k ),

where X, Y and Z are positive values.

Next, we get also X', Y’ and Z’ from the (37) : we suppose that :3!

e dib'dd — dscosl, [: the angles by which the tangent plane makes on the surface frame

with the plane be,
o da'dd’ — dscosm, m : similarly, the angles with the plane ac,

e da'dl’ — dscosm, n: similarly, the angles with the plane ab,
o [[ab'dd, [[da'dd, [[da'db) — [ds,

then from (37), we get the forces operation on the surface of the elastic solid as follows :

1 d ! s ' - ! ¢ '
X'=¢|cos 332! + ab + _jzi’-) -+ cos T.ft.(‘—‘*-ﬂz; + lda’) +cos n Td:, =+ ﬁz,) 4
o dr’ | dy’ dz’ dy' , dz' dy' | d='
(5-4) ye Y =¢|cos I(45 + 95 ) +cos m( 9% + 35 + 55 ) +cos n| 5+ 5 (40)
r_ dz’ | dz. dy’ | dz’ de’ o dy’ dz’
Z'=¢|cos l| G5 + G5 ) +cos m| g5 + G5 ) +cos n| g5 + G + 35
’ d ! ’ ot d: ! e ’
X 3 L b 4 4z do o de 4 dz cosl
| = de! o dy’ da’ | gdy’ | di dy’ | dz' ;
=% Yl € a + o da,d—i:3db, + o e ;l-, v COs TN (41)
d
“ &+ el @t Lo

(I}) By the way, when we rearrange (32) to compare with equations of equilibrium in fluid, then (32)
becomes (42) as follows :

(5-1)y- 0
S + 4 + o) + (o + ) + (B0 + %)
= o [ duanc (de3de + 55 + (S0 + spSan + o) + (00 4 25)
el | gt 4 (dpds  ade) o (S0 4 g0k 13t
- / f f dadbde(X 6z + Y 6y + Z62) — f ds(X'82' + Yy’ + Z'67). (42)

Navier deduces the equations of equilibrium in fluid as follows :

31(1)) On this method Navier cites Lagrange ([31, pp.113-188,1 partie ,§ 5]), Solution de différents problémes de statique.
In fluid case, Navier rethinks this method afterward. c.f. (69).
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(3-24) s O
[2~ % P\ G +us +‘Uczy +w-‘53‘-)
f/ dzdydz [Q & p(L 4yl +vd"+wdz)]
R-% _ p(dw +u§§-+ﬂdy+w )]c‘Iw
du ddu du ddu du ddu dy & du dd dw §du dw ddu
SEar THay T & dz)"‘(a_;ﬁu""‘émy‘“;‘)"“(ﬁﬁ"'ﬁww)
du ddv du ddv dv ddv du ddy dv §d dw ddv dw ddu
E/f dedydz \ \@'ay + @ dz)+(a‘;m—+3ﬁa—y+a—§a—;) (Tyv’fzﬂg
du ddw | du d dv §dw | dv ddw dw §dw | dwddw | odw dd
qubde | duifn) ) (qeldn | doddn) y (duide | duidy  gduide)
+  Sds?E(udu + vév + wow). (43)

When we compare only the terms of ¢ between (42) in elastic solid and (43) in fluid, the defference is
none, and the both tensor are symmetric respectively.

e § 6. Navier computes the acceleration around the point M. II is density of the solid per volume, g
is acceleration of gravity, then

O d?z _ d*z &z d*x d*z
gdiz =€\ + g+ +2 dbdu+2dcdu
nd*y _ _[d*% d’ d?y d?z
(6-1) e gat =€\t +35H + F +2 dcodb +25c ) (44)
'[I_dgz o d2z d z d2z d2z d
gar =€\ g + 37 T35 + 20 + 20

Poisson comments that ¢ in (39) and (44) equals Poisson’s corresponding parameter in (6) pe ( = (94) ),
namely Navier’s € is equivalent to Poison’s ’-"3, however Navier denies it.

A.2.3. Deduction of the expressions of forces of the molecular action which is under the
state of motion.

Navier deduces the expressions of forces of the molecular action which is under the state of motion as
follows : 32
We consider the two molecules M and M’. z,y, z are the values of the rectangular coordinates of M and
z + a,y + f3, z + -y are the values of the rectangular coordinates of M’. The length of a rayon emitting

from M : p = +/a? + 2 ++2. The velocities of the molecule M are u,v, w and that of the molecules M’
are
du du du dv dv dw
B-3)wsr ut ot d—yﬁ +o1 vtoa + ,6+ 5 wtget —ﬁ+ —'7 (45)
V is the quantity on which the proportional action depends as follows :
du B rdv dv dv v ¢dw dw dw
B4)ys V= p(d + ﬁ+— ) +;(Ea+@,@+a—;7) +;(Ea+@ﬁ+57). (46)

V represents the force which exists between two certain molecules of fluid. The increment of V is as

follows :
B Jdv 5dv v ¢ Sdw
)+p(d o )+p(dma 7)- (47
f(p) is a function depends on the distance p between M and M'. We define that 1 is the angle of the

rayon p with its projection on the «f-plane and ¢ is the angle which this projection forms with the «
axis, and then

ddu

@S 0V =5 (Gra+ B+ Ty ﬁ+@

(3-9)ys w=pcostpcosy, [ =pcosysing, = psiny (48)

32(})) Navier ([46, pp.399-405])
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TABLE 10. Combination between V and 6V

T T e e Ll e e e |
a1 5 7
af| |2 4

Ba] |9 10

By 12| |13
Yo 16 19
3 18 20

We calculate dpdidpp? cos ¢ of the element of the volume in the new system of coordinates : («, 3,7),
and integrate with respect to ¢, 1 from 0 to  and with respect to p from 0 to oo.

(3-6) s %f(p)VfW =

flp) du dv d’u dv dw
B (d:r““ ﬁ+ o) +A(ge+ v =) +1(ze + ﬁ ) I x
ddu 5du. §du 6dv 5dv Mu de 5dw ddw
| e( o+ gt T+ Ger Gor ) (Gt o+ 5 |
(49)
here, by the symmetry we supposed, we get the relations as follows :
du
g =lezel. gl =hgel |zl =hge
ddu 6dv ddv de 50,‘u ddw
4=l Vﬁ =l | [ Hv—“
Because we integrate only é volume of the total sphere, total of the sphere is multiplied by 8.
(3-T)ns
Lp) du ddu 4 d_u&i_u 2 .2 duddu 022 dv ddu  dv dduy 5 o dw ddu ilyf@ 2 2
Sp“ {(d:.-:a‘,:n‘gr dy dyaﬁ dz dz ) (d..": dy —’_ﬂ!::,,-c:l:x:)m16 (dz dz = dz d:c)a
duddy  duddvy o o dv §dv 3 dv ddv 4 @@ dw ddv  dw ddvy 5 2
(d:rdy+dyd.r,) EE sk ( B+ dydyﬁ dzdzﬁ ) (dydz+d’z dy)ﬁ
du ddw  duddwy - 2 dv édw dv ddw dwddw o o dwddw o 2, dw de 4
(?i-:c__dz_'+dz d:r)x +(dy dz +dz dy )'3 (EEQ’Y +d_yTyﬁ dz )}(50)

We get 21 terms in (50) from (49). We show the combination between V' and §V in Table 10, in which
the row is V and the column is 6V and the numbers are the order of the description of the 21 terms in
(50). By the formulae of the original function of infinite integral :

f&;in:a xdr = —;—:L‘ - %sin 2z, fcos.2 g = %x + %sin 2z,

Jsin® zdz = —1 cos J:(sin2 T +2), fcos3 adz = § sinz(cos® z + 2)
Jsin" zde = —Lsin" ' wcosx + 2L [sin™ *wdr, [ cos™ zdr = Lcos" ! xsing + 2L [ cos™ 2 adu,
- 1 m+1
[ sinzcos™ zdr = —<E £, fsm zecosxdy = SB___=
m+1 m
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We get the result of the integration except for fom dp as follows :,
1 f% /% 4 1 f% /‘% . i T
— dipdpa” costh = — d cos’ P cos” = —,
o Jo ¥ Pt Jo Jo PP TOE-JEE 9= 15

_1_/% /%dwdwﬁ4c032p—i/§ f%dwd cos® Psin® g = —

o Jo Mt Jo e LA
1 % [% 1 (% r3%

—4f / d¢dm4cosqa’;=—/ /Edipdwcoswsin‘l(p:i,
et Jo Jo o Jo 10

ol
1 ]% /\‘f 2 52 1 /§ /.J’r 5.1 i 2 w
— dipdpa” 3 cost) = — dipdp cos® 1 sin® p cos® p = —,
) I o o) A thdip cos” Ysin” pcos” = =4
1 (% r3 1 r% [% -
ot dpdipa®~* costh = — / / dipdy cos® i sin? p cos® p = —,
. fo /ﬁ oy %) Ydp cos” Psin” peos” ¢ = o5
1 (% r% 1 (% 5% T
ot dubd 2 2 o _/ f 3 2 s 2 =
,04/0 /0 B y* cos ik [ dipdip cos” 1 sin® @ sin® ¢ 30
Total of the sphere is multiplied by 8 taking £ as the common factor :
_8m [ 4 dr [ 4
(3-10)ns =5 4 dpp”f(p) = 7= . dpp” f(p) (51)

We get now e of (23), and using the law of conservation of mass : (24), it turns out the term of £Au of
the today’s formulation : (1) from next :

du | d®u | d%u dudy dwdu
3%’ + dy? + dz:z! + 2dzdy + 2{!2{1: !
d*u d*u d=u dudv dudw
€q @ H35F +F + 20, 250 = eAu

d? dPw d*w dvdw dwdu
dz? + dy? +3 dz? +2 dydz +2 dzdx

Exactly speaking, Navier ([46, p.405]) says this ¢ must be mupltiply by %, for double count, when we
get the total momentum of the forces caused by the reciprocal actions of the molecules of a fluid in the
following section, as follows :

(O =2 fo " dpp*£(p), (52)

For this reason, Darrigol cites Navier’s tensor from this by using tensor notation.3?

A.2.4. Deduction of the expressions of the total momentum of the forces caused by the
reciprocal actions of the molecules of a fluid.

Navier uses the above results to seek the expression of the total momentum of the forces caused by the
reciprocal actions of the molecules of a fluid as follows : ** Here, we rotate the rectangular coordinates for
+' to coincide with the direction of a rayon M N of which M is the common origin of the both rectangular
coodinates of a, 8,y and ¢, §',v' satisfying ¢ = r and 1 = s and then we get the new relation of o', 3’
and + from (48) as follows :

o = pcosihcosyp = pcosrcoss, [ =pcosysing =pcosrsins, 7 = psint = psinr (53)
33(1) O.Darrigol [10, p.112] interprets that this is Navier’s tensor as follows :
2 [0 4
- dpp*f(p) =k, M= [ oi;0;w;dr,
15 Jg
aij = —kN2(8;; 0 up + diuj + Oju;) = kN2 (85upn + ujs + uiz),

where N = 1.

In analogy with Lagrange’s reasoning, Navier integrated it by parts to get

M= fg,-ja,-w,-ds.- = f(aiﬂ'ij)wjdr'

34()}) Navier ([46, pp.405-416])
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In fig.1, we suppose that : the point P is the projected point on a3-plane from N. The angle of PM N
equals s. N, R and @ are on the common line on the #'4/-plane. Plane M N R and plane M RQ are on

the common ['+/-plane. MN _LMQ, and M R1LM P. Therefore, the angle made by M@ and M R equals
s.

My, alpha

fig.1 Rotation of coordinates
From the above, we get the following :

a=—a'sinr + 3 cosrsins + ' cosTcos s,
(3-17) s A= ocosr+ [Fsinrsins + 4 sinrcoss,
= 3 cos s —+'sins
« —sinr  cosTsins COSTCOSS o o
or | B | = cosT sinrsins sinrcoss g l=Alp7 1,
v 0 coss —sins ¥ v

where last terms of the right hand-side of «, 3,7 ( or the values in the 3rd column of the 3 x 3 matrix
for the transformation ) are the original values of (48) except for the term of 4/, and the rest terms are
added by the rotation. (l) By the way, if we call this rotation matrix A, we get det(A) = 1, so that
A= A= AT je.

!

o « —sinr cosT 0 «@
g | =A1| B | =| cosrcoss sinrsins coss Ié]
oyl v cosrcoss sinrcoss —sins ¥

Using (45),(46) and (47), like (49), the expression : (54) is considered as the expression which must be
integrated for all the value in respect to o’ and 3" and for the only positive value in respect to 4'. Then
we get following :

(3-18) s

1 F(p)
S F(p)VoV = —£)
I I
[ & (—usinr+vcosr)+ ' (ucosrsins +vsinrsins + wcoss) + ' (ucosrcoss + vsinreoss — wsins) | x
[ o (—dusint + dvcosr) + 3 (ducosrsin s + dvsinrsin s + dw cos s) + ' (ducosrcos s+ Svsinrcos s — dwsin s) |
(54)
We get the right-hand side of (54), except for ﬂp{r'l as follows :

[o'a+ 3'b+~'d][¢f (dbu + edv) + B'(fou + gdv + hdw) + +'(idu + jov + kéw))

or
' d o
([abe] P! J([ @8 ]( fZ‘i v ),
¥ i j k duw

then we get
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o' p fa+db ga+eb ha du
By | =| fe+tib ge+ijb hc+ kb v
~¥'o ia+cd ja+ce ka Sw

We get effectively the following :
F i

odf = { — 2usinr cosrsin s + vsin s(cos? r — sin r) — wsinrcoss}éu +

2

{ 2vsinr costsin s + usin s(cos r—sin2r)+wcosrcoss}61}+

{ cos s(vcosT — usinr)}éw
By = cosr{2ucosrsin 08§ + 2vusinsin s cos s + w(cos? s — sin? s)}éu +
sin r{2u cossin scos s + 2vsinrsin s cos s + w(cos? s — sin® s}}é‘u +

{ucosr +wsinr — Qwsinscoss}dw

Yo = { — 2usinT cosTcos s + v cos s(cos® 7 — sin’ 1) +wsinssinr}6u+
{ 2usin 7 cos T cos s + u cos(cos? r — sin’ r) —wsinscosr}éﬂ+

{ sin s(usinr — vcosr) }5w

On this point, Navier explains as follows :

On the above expression, we must integrate for all the value with respect to o’ and ',

but with respect to +', only positive value. This operation becomes symple by remarking

o that if we consider four points placed symmetrically, this sign for + is positive, but
the other coordinates o' and @’ differ from each other by sign of point two by two,
and

o that if we add the values which the above expression (54) takes in these four points,

it rests, as the result of the addition, only the terms which are relative to the terms

of o’ and the terms of 4’2, the terms gained are to be multiplied with 4.

Hence performing the multi indexes, all is reduced to integrate the quality in the volume

of £ of a sphere where o/, 3 and +' take the positive values as follows :

o/? { (usin®r — vsinrcosr)du
(~usinr cosr + v cos? r)dv }
B2 { (t.',coszar‘sin2 s+ vsinr cosrsin? s + w cos T sin s cos 8)du
(3-19) s 4@ < (wsinr cosrsin® s + vsin? rsin? s + wsin 7 sin s cos 5)dv
p? (ucosTsinscos s+ vsinrsinscos s +wcos® s Yow }
52 { (ucos? rcos? s + vsinr cosr cos? s — w cos T sin s cos s)du

(usinr cosrcos® s + vsin® r cos? s — wsin7sin s cos s)dv

(—ucosrsinscoss — vsinrsin scoss + wsin® s )ow }

o =pcostpcosy, [ =pcosysing, ' =psiny

63

(55)
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Making the calculation of the element of volume dpdidpp? costy with respect to 1 and ¢ from 0 to Z,
we get the following three results of the finite integrations :

3 % =
%fzf d’tbdgaa'zcosw=l2f2/ dipdep cos® 4 cos? =
P Jo Jo P Jo Jo
/

1 (% r3% 2 1 % [% 8.
v / / dipdp'” cosip = — / dipdip cos” P sin® p =
7~ Jo Jo P* Jo

oy o3

1 % r% 2 1 /% /% s T
- d cosY = — dipdp sin® 1 costp = —
= [ ey eosw = [ [ avapsint -

F(p) is the same function as f(p) in (49), which is a function which depends on the distance p between
M and M’. Taking % as the common factor, we put

ar [ u [% )
G2y T [ drFe) =3 [ P =E. (56)
0 * [t}

and define :
(3-23) s E(udu+ vév + wéw)

for the expression which we seek for the sum of the momentum of the total actions caused between the
molecules of the wall and the fluid, following the direction which passes the point M of the surface of
the boundary of the fluid and the wall. FE represents a constant of which the value are given by the
experiment, according to the characteristic of the wall and the fluid, and which are able to be regarded
as the measure of its reciprocal action. We get the following equilibrium of a fluid using £ of (51) and
the above E(udu + vév + wéw) :

[P— 48— p( %% + uls +'u‘j—;+w;‘i§)]5u
(3-24)ns 0 = ff drdydz{ [Q—E —p %+u%+vj—:+w%)]ﬁu

_dp _ ,fduw dw dw dw

[R— 2 - o3 +uif +v5 +wdz)]5w
du Sddu du ddu du ddu du Sdu dv ddu dw ddu duw Sddu
S e v E Y et P ey T e %
duddy | dufdv | dvddy | qdv8dv | dvddy | dwddy  dwddv

- 5[[ drdydz \ EH t G T B E T3 d Tha T o de I dy
du ddw du ddw dv ddw du ddw dw ddw dw ddw dw ddw
i ally o g b ol e gl o gl i g

+  Sds? E(udu + vév + wéw). (57)

Here, Here, S means the integration in the total surface of the fluid, ¥ of (56) must vary in accordance
with the nature of solid with which the fluid contacts. Shifting d to the front of § of the middle term of
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the right hand-side of (57) and by Taylor expansion using the integration by parts
3W+d_§+w+2d dg+232‘35 ou
(3-25)ns € f / dadydz{ (282 + L3 + 3:;—,,: +d 3, + 282 )60 (58)
2ddz:z +2ddy;z +-JF+ +BW)6w
du' du'  dv' du'  duw'
r ety il e o f e bt '
¥ S//dyd (3 + o+ G )5 +(d' )% + (G + 3 )3 (59)
du’ du’ dv'  dw' dv'  dw'
! ! skt aseoty = !
+ /f o/ d? | (dy, )5 +(d$,+3d, d,)a (d, d,)(sm] (60)
du’  dw' dv'  dw' du'  dv'  _dw'y .,
¥ f da’dy’ (E )6 Jr(der - )6 +(ar +dy?+3E?)6w] (61)
H dw." duﬂ' dvﬂ duﬂ dwﬂ
= [ dy"dz" [(3 e dyﬁ e )Ju” + (@ ¥ @)M 45 (@ g F)Jw”] (62)
" d,uﬂ' duﬂ d,uﬂ dmﬂ dﬂ” dw”
- E[/da’:"d ” (d 7 d:r"")d x (@ +3w + 7)51!” + (@ F)aw”] (63)
dw dv”  dw" du'  dv" du”
— e [[ ey (G + G )ou + (G + G ) + (G + G+ 357 )] (64
({}) By the way, we show again (3-25) ys keeping the tensorial structure :
3—5+ _r+“*':+2dmy +2dza‘.:: ou
(3-25) s E// daxdydz 2‘;‘;&; + 4% +3—; + a"z'f + Qdydz v
2 2
:E%E*F?di&; +&y L +3z=')5'w
dy'dz'| 33; +d g d )éu + ( s+ 4 ) 6y + dz, TR & )ow ]
+ 5]/4 da’dz'[ | 4% 7 +jz, Ju’ +( +3 ‘f:‘:' o' + dz, 4 dy - )ow'] .- first order
da'dy[(%5 + 42 )ou' + (45 + 4% )61} + (4 + 45 + 342 )6w]
(dydz[ (34 + j;,, + 4V gu + (% SRPAY WS VA P
- s/f< dadz" [ (47 + ji,, ou" + (47 + 342 + 47 V50" + (L7 + 427 )ow”]  ---second order
d.L‘”d‘I dl ﬂ‘z‘,, e )61,5” (dz,, + f;;',, )Jv” + ( o+ ﬁ:",, + 3dz,, )&u”]

({}) By the way, if we check the & terms of du’, v’ dw’, after replacing u = {u,v,w} of fluid <
{z,y, z} of elastic solid, and the coordinate system : {z,y,z} of fluid < {a,b,c} of elastic solid, then
we can see the coincidence with the tensor between the equation (38) or (65) in elastic solid and (59)-(61)
in the first order terms of fluid as follows 3°

’ .

dz’ dz’ dx
X: Sdﬁ: + db" + dc d w +ddﬂr o Wd'i: da’ , ff dbi d(:!
dc"+du’ dc’+Eb— IE+E%'+3352-7 ff “
here this tensor is symmetric.
Using the following equations deduced from the conservation law :
du dv dw
3 —26 — 4+ —+—=0,
B=Rjus LF g
and
d(du_y dv  dw) _ d2u+d’u+d2w_0
de \ dx dy dz-) —  dx? T dedy | dxdz )
2 2
B2ns | H(B+E+R)= Brip+EE=0
d (du | d dwl _ d? e
e tag Pkl = _T+d;fz+dydz 0,

35(14) Navier [46] neglected the terms below the second Taylor expansion in elastic case.
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we get the short expression as follows :

2
(3-28) yr E/f/dxdydz[(% fu e f‘:){s + (jx + j:t.! N ﬁz)%

v (g

du'  dv' du'  dw'y

+ f/dy'dzpdxrﬁu+(d,+E)6v'+(d +E)5‘H}]
’

+ /\/d,r’dz"[ o —) 2%6 - (j”! o %)&U"]

du dw’ dv'  dw' dw'
+ fd:cd = dx,)5u+(5+ﬁ)a +25-6u]

- " du” 1" du" dv" " diﬂ dw” 1"

/fdy dz [ T HJu + (w+ d;c”)éﬂ + (u!z"' +—d:1;"’)6w ]
du”  dv" dv” dv”  dw”

. " n " At " thi "

E]fdl‘ dz [(d ”+d$”)5u +2dy”§v +(d ”+dy )Jw]
du' dv”  dw” dw"

" " H' M "

i /f“ dy [(F"'F)é (E,-?“Ld”)ﬁ +2d”5 ] (66)

‘We show again (3-28) 5 keeping the tensorial structure :

(3-28) v

d®u  d*u d?v  d*v dzv d?w  dPw  dPw
Qb Gt G0 Lo G 5
/_[ dedy d + dy? N dz 2)5u+ (d:z:z i dyg )5T (d:r:2 + dy? + dzg) w]

dy’db [2 ou’ + (3?+ j“' )61: + —‘1-‘-‘: +%§6w]

+ Ef/<d:c’dz[3—:‘,+i)§u +2“"5v+ dz’+T
du’ dw'’ d
| do'dy'[ (4 + 425 )ow’ +(dz, + ) ! 4 24 5u)

dw ] ---first order

"
dy"dz" (245 50" + (45 + 47 )ov" + (47 + 27 )’

- Ef]ﬂ da:”dz”[ ‘I“,, + :f;,,)é "4+ 2%50” - (—‘:‘-;—g - W dw' ] -+ »second order (67)
Ld‘r”dy”[ d..u + Z_.:_) 6“” + (3‘;" + dy” 6 d T 6 ]
Considering

e that Sds®E(udu + vév + wéw) of (57) is zero,
e that all the remaining terms of the (66) are zero,

then, combining the first term of right-hand side of (57) with the first term of (66), we get the last
expression as follows :

du du du du d*u d*u d*u
E'i"h‘.a'l"ﬂa 'i"lU'E) +E(E+E{+a§ ]éu

(3-20)ns 0 = [f drdydz o pudt o2 4 wﬁ‘—') te (a‘;.; +4£5 4 gg)]an (68)
dw 20

SRS
|

R &8 e
[

T v 0w

2 2 2
B +uge o rug )+s(j—w,-+‘;—‘¥+%-z-‘§)]éw

At last, solving what Navier called the indeterminate equations, we get (23) from (68), combining the
terms under the symbol of integral of the right-hand side of (68) with zero of the left-hand side of (68).
On the other hand, to deduce (69) from (66), we transpose (59)-(61) as follows :

Bubu +e[2 [ dy'd' 8 + [[ do'd (%5 + 42 ) + [ da'dy’ (4 ,+*hu J6u 4+ B0 e =
(3-30)ns { Evév+e[ [[ dyfds’ (4 + 45) +2 [ do'd=' 3% + [[ da'dy’ (45 + 45 ) |60/ 460" + - =

Euwbw +e [f dy/ds' (4 + 42) + [ do'dz’ (45 + 42 ) +2 [[ do'dy 46w’ + - 60" + - -
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A.2.5. Boundary condition.

About the handling of Sds?E(uéu + vév +wdw) of (57) and all the remaining terms of the (66), Navier
explains as follows : regarding the conditions which react at the points of the surface of the fluid, if we
substitute

e dydz — ds®>cosl, [: the angles by which the tangent plane makes on the surface frame
with the plane yz,
o dzdz — ds?’cosm, m : similarly, the angles with the plane zz,
o dedy — ds®cosmn, n: similarly, the angles with the plane wzy,
o [[dydz, [[dadz, [[dzdy — Sds®, where S is the sign of integral in respect to ds? on the
surface,
then because the affected terms by the quantities du,dv and dw respectively are reduced to zero, the
following determinate equations should hold for any points of the surface of the fluid :

Eu+ E[COS!Z% —t—COSm(% - 5—3) + cosn % + -‘ﬁ-‘;‘i ]=0,
(3-32) nr Ev + s[cosi(% B »‘—‘dla';-) + cost% +cosn( 4+ -‘él;"- ] =0, (69)

Ew +s[cos£(% oo j—f) +cosm(% + j—‘;‘) + cosn24¥] =0,

here the value of the constant E which is varied according to the nature of the solid with which the
fluid is in contact. (69) express the boundary condition. The first terms of the left-hand side of (69) are
defined by (56) for the expression which we seek for the momentum of the total actions which caused
between the molecules of the boundary and the fluid, and the second terms are the normal derivatives
gained from (66). Here, (69) is put by :

du  du  dv du | dw
u . 2dzd dy 1‘ &= dz +&lx cosl
du | dv dv  dv  dw _
E|l v |+e ﬁy+ﬁ“’ deyd dz-{;!dy costn | =0 (70)
U W v aw w
L Gt &ty 2 cos 1

({) If putting the basis of the tensor as [ cosl cosm cosn ]T, then the tensor part of (70) is expressed
as follows :

tiy = e[{2vi5 — (viy +v50)}05 + (viyj +0;.0)] = €{08;; + (vi; + ;) } = €(vij +v5.)-
Moreover, by using Darrigol’s simple notation®®, we can express this condition as
Ev+ed v =0,
where d, is the normal derivative, and v is the component of the fluid velocity parallel to the surface.

() We have one question. Why Navier’s F implies in the today’s NS equations, in which E is not
used 7

36(})) Darrigol [10, p.115]
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3. Cauchy’s deduction of tensor.

3.1. Deduction of the equations of accelerated force.

37 We show the summary of Cauchy’s twelve assumptions in Table 11 framed below, which are numbered
#1 to #12 in the following.

TABLE 11. Assumptions of the system of particles by Cauchy

no litem ref. equations

1 |[mouvement par des forces d'attraction ou de repulsion mutuelle
La lettre S indiquant une somme de termes semblables, mais relatifs aux diverses molécules

9 m,m’, -, et la signe + devant étre réduit au signe + ou au signe — suivant que la masse m sera 3)e
attirée ou i
repoussée par molécule m.

3-1|L’etat du systéme de points matériels soit changé ) —(6)c
Les molécules m, m, m',--- se déplacent dans Iespace, mais de maniére que la distance de deux

3-2 ; 3 S R (e
molécules m et m varie dans un rapport peu différent de I'unité
&, 7, € : des fonctions de a, b, ¢, qui représentent las déplacements trés petits et paralleles

4 s ; 8)e —(11)e
aux axes d'une molécule quelconque m
Les déplacements £, 7,  sont trés petits, alors, en considérant ces déplacements comme infiniment

5 : : e S : (12)e — (31)c
petits du premier ordre, et négligeant les infiniment petits du second ordre.
Les équations qui expriment I'equilibre ou le mouvement du systéme des masses m, m, m',---

6 |soumises, non seulement a leurs attractions ou répulsions mutuelles, mais 4 de nouvelles forces  |(32)¢ — (34)c
accélératrice.
Les sommes comprises dans les formules (26)¢ et (30)¢ s’evanouissent.

7 |Les masses m, m', m”,--- étant deux a deux égales entre elles, sont distribuées, symétriquement |(35)c — (36)¢
de part et d’autre de la molécule m

8 Parmi les sommes comprises dans les formules (26)¢:, (30)c et (31)¢, 37V er — (40) e
toutes celles qui renferment des puissances impaires de cos«, de cos 3, ou de cos~ s’evanouissent. 37)c — (40)c

81 Les molécules mm, m’, m”,--- sont distribuées symétriquement par rapport & chacun
des trois plans

8.9 Deux molécules symétriquement placées a legard d’un des trois premiers plans offrent toujours
des masses égales

9 Les molécules m,m’,m", -+ primitivement distribuées de la méme maniére par rapport A1) — (49
aux trois plans menés par la molécule m parallélement aux plans coordonnés (4l)e — (42)c
Les molécules rn,m’, m”, -+ primitivement distribuées autour de la molécule m, de maniere

10 [que les sommes comprises dans les équations (37), (38), (39) deviennent indépendantes (43)c — (52)¢
des directions assignées aux axes des z,y, z
e 1. At first, we consider that the great number of molecules or material points are arbitrarily

distributed in a certain potion of the space and its motion are brought about by the forces of mutual
attraction or repulsion. Strictly speaking, we must cite Cauchy’s assumptions as follows :

#1. Considérons un trés grand nombre de molécules ou points matériels
distribués arbitrairement dans une portion de I'espace, et solicités au mouvement
par des forces d’attraction ou de repulsion mutuelle. [7, p.227]

The definition of the various terms are :

we

e m ( in roman style ) :
L]

mass of this molecule ;

a certain time ;
L]
e a+ Aa, b+ Ab, ¢+ Ac : the coordinate values of the molecule m ;
e 7 : the distance between m and m ( with scalar value ) ;

count the number and show it, and moreover, we suppose the sections.

m, m’, m" (in italic style ) : masses of another molecules, of which the existing are assumed at

a, b, ¢: the coordinate values of the molecule m on the rectangular coordinates : z, y, z ;

37(0-} For convenience’ sake, we put “e § (number)” as the paragraph number which is not in the text by Cauchy, but




The “two-constant” theory and tensor function underlying the Navier-Stokes equations 69

e «, 3, v : the angles formed by the vector of ray : r with each half axis of the positive coordinates.
e 2. Cauchy’s hypothesis of molecular activities are as follows :

#2. la lettre S indiquant une somme de termes semblables, mais relatifs aux
diverses molécules m,m’,---, et la signe + devant &tre réduit au signe + ou
au signe — suivant que la masse m sera attirée ou repoussée par molécule m.
Ajoutons que les quantités Aa, Ab, Ac pourront étre exprimées en fonction de r
et des angles &, 3, v par les formules : [7, p.228]

(3)¢ Aa=rcosa, Ab=rcosfl, Ac=rcosqy.

#3. Supposons maintenant
e que l'etat du systéme de points matériels soit changé, et
e que les molécules m, m, m’, - se déplacent dans l'espace, mais de maniére
que la distance de deux molécules m et m varie dans un rapport peu différent
de "unité.
#4. Soient £, 1, ¢ : des fonctions de a, b, ¢, qui représentent les déplacements
trés petits et paralléles aux axes d’une molécule quelconque m ; [7, p.228§]

ez, vy z; x+Az, y+ Ay, z+ Az : les coordonnées des molécules m, m dans le
nouvel état du systéme ;

e r(1+¢): la distance des molécules m, m dans ce nouvel état ;

e ¢ : la dilatation trés petite de la longueur 7 dans le passage du premier état au
second ; et l'on aura évidement

4)ec z=a+€ y=b+mn, z=c+(.

Az = Aa+ A€ =rcosa + A,
5)e Ay = Ab+ An =rcosf + An,
Az = Ac+ A =rcosy+ AC.
38

O)c r(1+6) = (M) + (Ay)? + (Ae)?
= r%(cos® &+ cos® B + cos® ) + 2r(cos @A + cos BAT + cos YAL) + (AE)? + (An)? + (AL)?
= 1%+ 2r(cos @A + cos BAN + cosYAL) + (AE)? + (An)? + (AC)?.
Here we used the following by (8)¢ :

(AaP (A0, (AP _,

cos® a+ cos® B+ cos® y = ~— 5 5
T ' T

(Mo 1+e=/1+ Lcosane + cosfn+ cos7AC) + S(AG? + (An)? + (ALY,

We can put the following with the equivalent expressions ;37

Aa Az Ab Ay Aa Az
(8)(;,(9)(; COSQ-———m, COSﬁ—T—m, cosy = = _m
e § 4. After all, the algebraic projections of resultant forces of attractions and repulsions performed by
the molecules m,m’,m"”,--- on the molecule m come to be equal three products :

38(Jj.) For misprints in Cauchy (7, p.228], we substituted ““+” by the second “=" in each line of (5)¢, for example, from
+rcose into = rcosa in sic. : Az = Aa+ A + reosa + AL,
39{1}) In Cauchy, it reads :

les cosinus seront représentés, non plus par (8)¢ cosa = %, -+ main par (9)¢ ﬁ, eeL (sie).

Then we can state the expression combining each term of (8)¢ with the coressponding term of (9)¢.
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mS{ = m s flr(l +¢)]
(10)¢ mSy + m;‘%-'j’af[r(l +)] ¢,
mS{ +m s flr(l +¢)) ;-
Here we put the accelerated force as follows :
X =8{ +miILlA,

r(1+4€) 1

(11)e Y=8 ﬂ:m%&y ;

o flr(1+«
Z =8{ £+ mItalA,

les trois products : mX, mY, mZ, et les trois quantités : X, Y, Z représenteront les
projections algébriques :
e de la résultante dont il s’agit ;
e de cette résultante divisée par m, ou, qui revient au méme, de la force accélératrice
qui sollicitera la molécule m et qui sera due aux actions des molécules m, m’, m”, ..

e § 5. The deplacements : £, 7, ¢ are infinitesimal, then we can neglect these values of second order.

#5. Dans I'hypothése que nous avons admise, c'est-a-dire lorsque les
déplacements &, 7, ¢ sont trés petits, alors, en considérant ces déplacements comme
infiniment petits du premier ordre, et négligeant les infiniment petits du second
ordre, on tire de I'equation (7)c : [T, p.230]

(Me = (12)¢ €=;(coscrAﬁ+cosﬁAn+c057A().

(13)c “((11 :j))l (Bt ete) S P —RE) - () 1) o S 1)

(}) Here, we introduce the method of simplified calculation by Cauchy : (11)¢ turns into from (5)¢ and
(13)¢ as follows :

fr+e) , _ fir(L+¢)] ;
(1+s) T(L+e) (reosa+ AE)  (: from (5)¢ )
rf'(r) — £(r)\ /£(r) Aércosa )
= (1 -i-ET) (T) (T CcoS (¥ + m) ( : from (13)(} )

= (1 + Erf’(rf)( _) fr) ) (1 o cosa) (f(r) )rcosrx
{1 +e rf'(r) — f(r) 4 Ag + (Srf’(r) n f(T))(rcosu)}f{r ) cos

f(r) T Cos @ f(r)
" rf'(r) —f(r) AL
~ (1 +€ ) + rcosa)f(r) cos o,

Similarly, we can get the following :

f[r(1+E)IA‘y _ {1+€Tf’(?‘)"f[7')+ An +(Erff )—f(r))( An )}f{r)cos,@

r(l+¢) f(r) T cos [3 f(r) rcos 3
N () —f(r)  Ag
~ (1+e M) rcosﬁ)f(r)mﬁ
fr(1+¢)] B rf'(r) — f(r) Al ri'(r) — £(r) AC
r(1+4¢) o 1= {1 e f(r) L TCOSY T (E f(r) ) (rcos'y)}f(r) R
- rf'(r) — £(r) A¢
. (1 e f(r) 'rcos"()f(r) o
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()

According to Cauchy’s assumption, we get the following (14)¢ from (11)¢ by combining (5)¢ with (13)c.

X =84 +m|[l+ el (’f'()r_)fms + I,mmr] cos af('r)}
(14)c (Y =8{+m[1+LOMD, An) cosﬁf(r)}

Z=8)+tm[1+2 (;():)f(r)s + 1,m,',] cos y(r)

e § 6. From the initial condition, by considering the equilibrium of X, ¥, Z, we get some results.

lorsque le premier état du systéme des points matériels est état d’équibre, il suffit de
remplacer &, 1, ¢ par zéro dans les formules (14)¢, pour faire évanouir X, Y, Z.
Then we get (15)¢ as follows :

(15)¢  S[tmcosaf(r)] =0, S[tmcosfi(r)] =0, S[tmcosvyi(r)] =0.
X =8{ £m[{rf'(r) — f(r)}ecosa + L2 AL] 1,
(16)c Y =8{ £m[{rf'(r) - f(r)}ecos f + 2 An] },
Z =89 £m[{rf/(r) — f(r) }e cosy + L2A]
X ecosa  Af
= Y = S{ +m | gcosf8 Ay
VA ecosy Al

[ (Tf’{r)ﬂ;lf('r))e ] }

From (12)¢

X L(cos aAE + cos BAT + cosYAL) cosa A 1o

= Y = S{ +m l(cms aA€ + cos A7 + cosyA()cos . Apg [ bt (T)fﬁlf(r))g } },
Z +(cosaAg + cos BA1 + cosyAL) cosy AL T

(16)c =

X=8{+m| —(—1+Mcos a)A£+M(cosacosﬁ&n+cosacosw&§ f
17)e Y=8 :I:m[ —(;,1+’f r;“’ cos? 3 An+ﬂ3:ﬂﬁ(msﬁcos'y&§+cosﬁcosaﬂ§

Z =84 +m| ﬁ_,L)-!-Mc%zq%AC+M(cos*ycosuA&%—cosqcosﬁAn }
e § 7. The formulation of accelerated force.

'&5 = r(%cosa%— ggcos,ﬁ+ %cos'y)
+{—;(—$§ cos? a + g—bécoszﬁ+ g—gcosgfy-!-Zi;d—;% cos,@cos7+2m% cos'ycosa+2—a%cosacusﬁ)

+eee
An—r(%gcosrx+ cosﬁ+ cos'y)

(18)c 1 lz(a;?cos a+ &4 cos? B+ &3 cos? 'y+28,,8,_cosﬁcos'y+2&&‘cos'rcoscx—i-%umcosacosﬂ)
e 4

A= (ggcosa+' cosﬁ+;d$c05ﬂ()
%(—Eco&a—i—m&cosgﬁ—f—ﬁcosz7+2—bc§;cosﬁcos'y+2&?§—cos'ycosa+2533';5c05rxcos,6)

L+

(19) ¢ 0¢ ¢ on Oy Oy OC 8¢ &
¢ Ba’ 9 ¢’ Ba' ' dc' da’ b’ e’

i a° a° a° a? g°

o B B B

7]

(20)c 5a P o7 dbdc’  Dcda’  Dadb’

a° a° 8* g° 8¢ &%

da*? ab= dc? ? bdc? doda? dadb?
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: COS ¥
cos 3
= cosy

&y = —§0052u+ ﬁjcoszﬁ—k 3—5(:0327—%233-55 cosﬂcos-y+2a—;-§acos'ycosu+2m%cosucosﬁ,

(22)¢ 2 = "—?cos a+ —bE‘cos2,8+ 52(:05 7+2dgac oosﬁcos'y%-%mu cos'ycoscx+2gaab cos ax cos 4,
(o = b‘a cos tx+%§cosgﬂ+ 5;;?(:03 7+23E$Ecosﬁm37+2a;§goosqcosa+2ﬁcosacos,ﬁ’,

‘We show &1, 11, ¢ with Jacobian :

(21)e #cosa+gﬂcosﬁ+i’1cos'y,

g = 8 cosa+ %5 cos B+ % cosy, &
#-
Cl = —{cos-:x-i- z cos 3+ fcos*y,

Il

lesi
ERSEE
SREE

da

cos? a
P P P P Pe cos? 3
§2 2_5'5 f’_!{é ?é Blpe 3"4’“ dapb cos? {f
- = : sl 9
i ? ﬁ"i g_é"z 3;;1 e %’u 9Dl 2 cos 3 cosy
4 Ja?  THE T2 Thoe acda Tadb 2 cos 7y coS

2cosacos 3

From (18)¢, we get the following :
r T r
(23)c AL= T(‘fl & ‘2"62); An= "('-'?1 + 5??2): AC= 1"(Cl + 5(2).
and from (12)¢ and (23)¢, we get the following :
1
(24)e e= ;(cosu:AE + cos BAn + cos yA() = £ cosa + 1y cos 3 + y cosy + g (52 cos ax + 19 cos 3+ (o COS'y)

The equation (14)¢ turns into the following :

(4)e = (25)¢ X=Xo+Xi+Xo, Y=YWy+V1i+ Yo, Z=Zy+2Z1+ 2,

() Cauchy will calculate the following matrix :
X Xo X 1 X 2
Y| = | Y|+ | h| + | ¥
Z Zy 7 Zy

(26)c  Xo =S[tmecosaf(r)], Yo=S[tmcospi(r)], Zs=S[tmcosvi(r)|

(M

Xy =S[Em&if(r)] + 8| £ m(& cosa + ny cosf + ¢ cosy) cosalrf! (r) — (7))
(27)e Y1 = S[tmpf(r)] + S| £ m(& cosa +ny cos B+ ( cosy) cos B[rf (r) — £(r)] |,
Zy = 8[+mGif(r)] + S| £ m(& cosa + ny cos B+ ¢ cosy) cosy[rf! (r) — f(r)] |,

= S[+BL6M(r)] + S| £ B (&2 cosa+ mp cos B+ (z cos y) cos afrf! (1) — (7))
(28)c{ Yo =S[+%nef(r)] + S| + B (& cosa + 1 cos B+ (o cosy) cos Blrf! (1) — £(r)] |,
Zy = S[+5FCf(r)] + 8| & B (§2cosa+ 1 co8 B + (2 cos ) cos y[rf! (r) — £(r)]
We put f(r) in brief as follows :
(29)c  f(r) =£[rf'(r) - £(r)] (71)
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D. €1

(80)c 411 =

(21 = X% + Yo 55 + 2055 +

ng& +YE|£ +ZD;)C
2S[mf(r)cos® o] + S[mf(r ) cos? cwcos ] + ZES[m f(r) cos® crcos ]
S[mf('r] cos acosﬁ] + Z2S[mf(r) cos acos? f] + %lS[mf('r) cos a cos 3 cos ]
+ —QS[mf{r cos2acos'yl+ &S[mf(r) cos cecos A cos ] + ZeS[mf(r) cos acos® 4],
XogL + Yo5i +%&
+ 258[mf(r) cos® acos B] + 2ES[m f(r) cosacoszﬁ]+ =S[m f(r) cos acos f cos 7]
+ 828[mf(r) cos o cos? B + mS[mf(r ) cos® 8] + 91 {mf(:r) cos? cosq]
+ %KS[mf(r) cosacosﬁcosw]—l— S[mf(r)cosgﬁcos'y]+ 2S[mf(r) cos B cos? I

() The equations in (30)¢ have the 36(= 3 x 12) terms at maximum. ({})

.

ga(m%u&:?& + S cos? ) %EScosza %Scosga cosa
X1 =mf(r) da(mﬁ-Scosacosﬁ) %—L‘Scosacosﬁ %’CIScosacosﬁ cos 3
aa(m!(r)mm + Scosacos"y) %S COS (¢ COS 7Y %&S COS (¥ COS Y cosy
i a“;Scosacos,B %(Wﬂm+5cmacosﬂ] %Scosacosf ] [ cosa ]
= Yi=mf(r) %ESCOSE,G %ﬁ(m{fm-%Scoszﬁ) %Scoszﬁ cos 3
5 %SCOSJBCOS'Y %ﬁ(m,z-)‘;m-}-Scosﬁcos'y) %%Scosﬁcos'y 1 cos 7y |
gﬁs COS (X COS Y %Scosaco&’y %f(mﬁﬂm +Scosacos'y) COS (¥
Zy=mf(r) | $2Scosfcosy 2Scosfcosy %-E(-";ﬂ—}'fa;s—?—FScosﬁcos'y} cos 3
{ %Scos?y Scos?y %E(;FT(‘%“;S—; + Scos?y) | | cosy |
We see X, Y and Z are computed according to (25)¢ by only Xs, Y3, Z5, because in (26)¢, (27)¢ and

(30)¢, all the

terms contain the terms of cosa or cos 3 or cosvy in odd power, which become zero by

summation under the symbol of $.

(3)e

+

+++”—++++++”4~++++++

Xy = mﬁ S[+ 2" cos? af(r)] + Wf‘ S[:l: mr cos? Bi(r)] + g—zé S[2r cc»s2 vE(r)]

agoc S[ﬂ:m’rcosﬂcos-rf{'r)] acaa $[:|:mrcos'rcosaf(r:)!] + 25 auua BlLmr cosacos,ﬁ'f(r)]
——i S[%= f(r) cos® o] + &5 S['“’"f(r}cas acos® f] + 55 S[""f{r)cos acos” 7
S5 $[mr f(r) cos® ucosﬁcas?]—l— of_x‘)u $[mr f(r) cos® acus-y]—l— b‘nab $[mr f(r) cos® e cos ]
%EQ B[4 f(r) cos® acos f] + & S['“‘"f(r)cosrxcos B+ 52 g5 f(r)coscroos,ﬁ'oos ]
d:;c B[mr f(r) cos ccos? B cos ] + é’;j‘s @[mr f(r) cos® acos feos ] + L ﬂudb S[mer f(r) cos® acos® ]
“; $[137 f(r) cos® arcos ] + Zf B £(r) coscacos? foos] + 3—‘;& $(5°/(r) cos arcos® 4]
g S5 B[mr f(r )cosacos,@cos2'7]+ o S[mr_f(r)cos acos? 4] + 5 $lmr f(r) cos® acos Bcos],
93 S[+2" cos® af(r)] + 55# S[+2" cos® Bi(r)] + 5# S+ cos® yf(r)]

2 2

%;ﬂ%ﬁﬂméam§m+§g&gﬁﬂmém+%;m$ﬁﬂmﬁﬁméﬂ

% S{mr f(r) cos? o cos® A]

%: S[mr f(r) cos? f cos? 7],

%s&mm“ﬁn+ﬁs&mmsmm+%sw§m%mn

g: S[" f(r) cos® arcos® B + %-§ S[%Z= f(r) cos® Beos® ] + 55 5% S[% f(r) cos* 7]

ZL S[mrf(r) cos® vy cos® o

+ e
L +d—w‘; S[mrf(r) cos? § cos® 7]

(72)
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(4) The equations in (31)¢ have the 72 (= 3 x 24) terms at maximum. By (25)¢, we have to calculate
totally 117 (= 9436+ 72) terms at maximum, however, according to the following articles, we can reduce
these difficulties of calculation.

e By (35)¢, all terms in (26)¢ are zero.
e The terms led by the symbol of $ terms in (31)¢ are deleted.
e Finally, in #8, by introducing original idea of Cauchy on the symmetric tensor, we can reduce it.

X Xo X, X2 X X X
¥ = Yo + Y + Y = Y = Y + Y
Z Zy Zi Za zZ A Za

By the way, Poisson calculates 63 terms at maximum, which we will mention below. (f})
e 8. Remark : in the right-hand sides of (25)¢, X2, Y2, Z» are not only the largest valued terms in
(25)c, but in (25)¢ even non-zero terms too, owing to the same sign. Cauchy says :

e To gain the sum which is relative to the coefficients of (20)¢ in the second terms ( which are only
under the symbol of $ ) in (31),%°
— it is sufficient to multiply succeedingly the quantities of
* the term under the symbol S in the right-hand side of (26)¢ !
* the second terms under the symbol S in (30)¢
by the three factors r cosc, rcosf, rcosv, or % of these, viz. frcosa etc. ( as the basis
like (72), where, (30)c are multiplied by only cos as the basis, ) and
— if each of these value differs infinitesimally to zero, even if it is due to a infinitesimal value
of vector r, we can neglect X,, Y, and Z, in (25)¢, in comparison with the quantities X,
YU:' ZD: Xl) 1/1 and Zl-

e However, we must consider that each of sum contained in (31)¢ is composed of the terms to which
the sum has an effect with the same sign, while each sum is composed of the terms to which the
sum has an effect with the contrary sign, when they correspond to the molecules situated in the
part, and the other point with (a, b, ¢) on the direction orienting to the same point.

e It turns out that the latter sums are to disapper in the most cases, however, they are not one
with the same as the former.

¢ Hence, we can conclude that the terms X5, Y5 and Z5 in the second term of (25)¢ are not only
of having numerical large value, but also of just nonzero terms.

By the way, to be exact, we cite Cauchy’s original as follows :

Comme, pour obtenir les sommes qui servent de coefficients aux expressions (20)¢
dans les seconds membres des formules (31)¢, il suffit de multiplier successivement les
quantités renfermées sous le signe S dans les seconds membres des formules (26) et
(30)c par les trois facteurs rcos e, 7cosf, rcosy ou par les moitiés de ces facteurs, et
que chacun de ceux-ci différe trés peu de zéro quand on attribue au rayon vecteur r une
valeur trés petite, il semble, au premier abord, qu'on pourrait, dans les équations (25),
négliger Xy, Ys, Z5 vis-a-vis des quantités Xo, Yy, Zo, X1, Y1, Z1.

Mais on doit observer que chacun des sommes comprises dans les formules (31) ¢
se compose de fermes qui sont tous affectés du méme signe, tandis que chacune des
sommes compose de termes qui sont affectés de signes contraires quand ils correspondent
a des molécules situées du part et d’autre du point (a, b, ¢) sur une droite quelconque
menée par ce méme point. Il en résulte que les dernieres sommes peuvent s’évanouir
dans beaucoup de cas, mais qu'il n’en est pas de méme des autres. Donc il peut ar-
river que, dans les seconnnds membres des équations (25)¢, les termes X, Yo, Zo
soient, non seulement ceux qui offrent les plus grandes valeurs numériques, mais encore
les seuls qui différent de zéro. [7, p.236]

e 99. Remark : the equations of accelerated forces follow not only in the forces come from its mutnal
attraction or repulsion but also in the new accelerated forces. 12

40({}) Reamrk. Cauchy uses the symbol only by S, however, we use S in (30)¢:, while in (31)¢:, we invent $ of ours to
discriminate between both, where § means the S to be deleted defined like #2 in q 2.

41(}4) According to his original below, there is the second term in (26)¢ as well, however, there is actually not.

42(J.|,) These analyses don’t appear in Navier’s papers.
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Les valeurs de X, Y, Z étant déterminées par les formules (25)¢, (26)¢, (30)¢ et (31)¢
en fonction des quantités (19)¢ et (20)¢;, on établira sans peine les équations qui expri-

ment 1'equilibre ou le mouvement du systéme des masses m, m, m’,-- soumises, non
seulement & leurs attractions ou répulsions mutuelles, mais & de nouvelles forces accélératrice.
[7, p.236]

#6 En effet, supposont que, au bout du temps ¢, I’état d’équilibre ou de mou-
vement du systéme coincide avec 1'état dans lequel les coordonnées de la molécule
m se trouvent représentées par x, y, z ; et soient & cette époque X, V, Z le pro-
jections algébriques de la nouvelle force accélératrice ¢ appliquée & la molécule m
sur les axes coordonnées. On aura évidemment, si le systéme est en équilibre, [7,
p.236]

(32)c X+X=0, Y+Y=0, Z+Z=0.

Au contraire, si le systéme se meut, en désignant par 1 la force accélératrice qui
serait capable de produire 4 elle seule le mouvement effectif de la molécule m, et
par X, Y, Z les projections algébriques de cette force sur les axes coordonnées, on
devra, dans les équations (32) ¢, remlacer les quantités X, ), Z par les différences
X ~X,Y-Y, £—-Z. Comme on trouvera, d’ailleurs, en prenant a, b, ¢ pour
variables indépendantes, et ayant égard aux formules (4)¢, [7, pp.236-7]

e z=a+§ y=b+n, z=c+(

. 0% 9 . By I &z 0%
X = —_— = —— = — —_— —_— =
(33)c o2 o Y- oe o oz~ o2
il est clair que le mouvement d'un molécule quelconque m sera déterminé par les

équations.

Replacing X, ), Z of (32)¢ with X — X, Y-V, Z—Z, and considering (4)¢, we get the new accelerated
forces as follows :

XX —X=0, X+x=X=25
(32)¢c = {Y+Y-v=0, = (3¢ {Y+y=Y=921

A.3.2. Reduction of tensor.

e §10. The values of X, Y and Z , determined by the statements (25)¢, (26)c, (30)c, (31)c, are
simplified with several hypotheses as follows :

e 9 11. (26)¢ and (30)c disappear and X, Y, Z are reduced to only X5, Y2, Z; for the symmetric
distribution of the molecules.

#7. D’abord on peut supposer que les sommes comprises dans les formules
(26)¢ et (30)¢ s’evanouissent. C’est ce qui arrivera en particulier si, dans Ietat
primitif du systéme, les masses m, m', m”,-.. étant deux & deux égales en-
tre elles, sont distribuées, symétriquement de part et d’autre de la molécule m,
sur des droites menées par le point (a, b, ¢) avec lequel cette molécule coin-
cide. En effet, comme chacun des termes renfermés sous le signe S dans les
formules (26)¢ et (30)¢, offrant un nombre impaire de facteurs égaux aux cosi-
nus cosa, cosf, cos?y, change nécessairement de signe avec ces mémes facteurs,
ces termes, comparés deux a deux, seront évidemment, dans le cas dont il s’agit,
équivalents au signe prés, mais affectés de signes contraires. [7, p.237]
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Alors les formules (15)¢: seront vérifiées, ¢’est-a-dire que 1'etat primitif du systéme sera

un état d’equilibre ; et, comm on aura d’ailleurs
(35)(; Xl = 0, Yl = 0, Z1 = 0,

les valeurs de X, Y, Z se réduiront a celles de Xo, Yo, Zs. [7, pp.237-§]

At last, we get X,Y and Z from (26)¢, (30)¢, (31)c after deleting the terms containing
the terms of cosa or cosf3 or cosy in odd power, which becomes zero in summation, (ex.
cosa, cos®a, cosf3, cos® 3, ---. )

including

#8. On peut supposer encore que, parmi les sommes comprises dans les formules
(26)c. (30)c et (31)¢, toutes celles qui renferment des puissances impaires de
cos cv, de cos 3, ou de cosy s’evanouissent. C’est ce qui arriva en particulier

e si, dans l'etat primitif du systéme, les molécules m, m', m” ... sont

distribuées symétriquement par rapport & chacun des trois plans qui, ren-
fermant le point (a, b, ¢), sont paralléles aux plans coordonnés des y, z, des
z, x et des x, v, et
e si deux molécules symétriquement placées & 'egard d’un des trois premiers
plans offrent toujours des masses égales.
Dans la supposition dont il s’agit, non seulement les formes (15)¢: et (35)¢: seront
vérifiées, mais de plus les valeurs de X, Y, Z, équivalentes & celles de Xo, Ya, Zs,
se réduiront & (7, p.238]

(36)c

aﬁS BT cos® af(r)] + BE&S[:E I cos® Bf(r)] + —éS[:t 2 cos? yi(r))]
+ a&S[ cos? af(r)] + -ed—§S mr cos? avcos? Bf(r)] + —éS{"" cos® acos? v f(r))
+ o.adbS[mrcos crcos ﬁf{r)] + &M{S[mfrcos {xcos 2 f(r)],

m?S[:t— cos? af(r)] - S[:I: e cos? Bf(r)] + & S[:I: mr cos? yf(r))
4 +27 G S[5" cos® acos? Bf (r)] + G S[5 cos ﬁf(r)] G2 g S[";“ cos? A cos? v f(r)]
+ c,a S{mrcosgucos Bf( r}] + %S[mrcos B cos? y f(r)],

ngs[d:ﬂ cos? O:f(‘l")] + a&S[:I: T cos? Bf(r)] + E&S[:I: T cos? yi(r))]
+ 5{{55["“’ cos? avcos?® Bf(r)] + ?Eés[ cos? Beos? v f(r)] + ESS[ ~ cos® v f(r)]
. B—é—S [mr cos? y cos? af(r)] + dbd( £ S[mr cos? B cos? y f(r)]

(X = 2: {S[:I: = cos® af(r)] + S[%~ f(r) cos a]}
+ g: S[+2" cos? Bf(r)] + S[%E f(r) cos? acos? ]
+ g: S[£5" cos® vi(r)] + S[EL f(r) cos® acos? 7]]]
“+ da—;;LS[mrf(r) cos? cecos® A] + iﬂ&S{wwf(:r) cos? a cos? 1],
Y= 3: S[+5" cos? af(r)] + S[%~ f(r) cos? a cos? ﬁ]}
< + —?%;1 S[+%" cos? Bf(r)] + S[%E f(r) cos? ﬁ]}
+ 53 { Sl cos? v(r)] + S £(r) cos? fos? 1]}
- m‘- [mrf(r) cos? B cos? 4] + dudbS[mrf r) cos? ax cos? ],
Z= 3: S[£2" cos® af(r)] + S[%~ f(r) cos? arcos? 3]
+ 3: S[+4E cos? Bi(r)] + S[%= f(r) cos? B cos? 4]
- % S[+2" cos? yf(r)] + S[%E f(r) cos* ')r]}
.+ &:—é;S[mrf(r] cos?ycos?al + %&S[mrf(r) cos? f3 cos? 7]

(73)
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= [X Y Z]

g%  2%c 8% 8%n 0%
de b e deda  dbde
S{ =+ cos® af(r) + f(r)cos a} S{ + cos? of(r) + f(r) cos® acos® B¢ S{ £ cos? af(r) + f(r) cos® cxcos® B
mr | S{ECos 2 Bf(r) + f(r) cos® acos® B} S{ +cos® Bi(r) + f(r)cos* Bt 89 £cos? BE(r) + f(r) cos® Beos®
g S{ £ cos® yf(r) + f(r)cos® acos® v} S{ =+ cos® vi(r) + f(r) cos? Bcos® v S{ + cos® vf(r) + f(r) cos® ¥
28 f(r) cos® acos? 3 28 f(r) cos® B cos® 2Sf(r) cos® ycos® a
2S f(r) cos® cxcos® 2S5 f(r) cos® ccos® 8 2Sf(r) cos® B cos? ¥
0% ofc 9 o 2 G+L G+R G+Q
9 o 9P dah oge H+P H+M H+P
= | &3 93 & 2 2 I+Q I+P I+N |,
& b de dbde  dadb
¢ o J F 2R 2P 20Q
de b e deda  dbide

20 2R 2P
where, we define 9 parameters in (73) by G, H,I,L, M, N, P,@Q and R as follows :

(37)¢ G=S[+%cos’a f(r)], H=S[+%cos?ff(r)], I=S[+%"cos®y f(r)],

(38)c L= S[“‘* cos4 a f(r)], M=S[% cos“ﬁ f('r)] N = S[ZE cost y f(r)],

(39)c P =8[%Ccos?Beos?y f(r)], Q=S[Zcos®ycos’a f(r)], R=S = cos acos? 8 f(r)],
Then from (73) it turns into the following :

=(G+L)Z5+(H+R)Z5 + I+Q);—c§ +2R% +2Qé:am

0)c {Y=(G+RZ1+(H+M)Z% (1+P)‘“+2Pm§+2ﬂg"—§5,

p 2
= (C+ Q)%+ (H+P)%s + (I + N)&$ + 2028 +2Pon.
e 9 13. Invariable values : G,H,I,L,M,N, P,Q, R.
If we suppose that the molecules m, ', m”, ... are originally distributed by the same way in relation
to the three planes made by the molecule m in parallel with the plane coordinates, then the values of

quantities: G, H,I,L, M, N, P,@, R should remain invariable, even though a series of changes are made
among the three angles : «, 3,

#9. Si l'on supposait les molécules m,m',m”,--- primitivement
distribuées de la méme maniére par rapport aux trois plans menés par la
molécule m parallélement aux plans coordonnés, les valeurs des quantités
G,H,I,L,M,N,P,Q,R devraient rester les mémes aprés un ou plusieurs
échanges opérés entre les trois angles «, 4,7; et 'on aurait par suite (7, p.239]

(41)¢ G=H=I, L=M=N, P=Q=R.

= (L+G) 5% + (R+6) (5 + 58 ) +2R( £k + &%),
@) {Y=(L+6) @ +R+6)(2+Zy +2REM+H§3 , (74)
= (L+Q)%% + (R+G) (%5 + 58 ) +2R( 25 + 42 )-
X g;i Zi_g 3—25 ﬁé?&"‘e%% L+G
= [Y]= S (F+5) (F+2% [R+G]
? & (HF+8) (Z+&& .

e 9 14. For the angles : ay, B1,m, @2, B2, 2, @3, B3, 73 are perpendicular among each planes, the values
of sums: G,H,I,L,M, N, P,Q, R do not alter even by replacing cos «, cos 3, cosy with the trinomial :
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#10. Supposons enfin les molécules m, ', m”, - .- primitivement distribuées
autour de la molécule m, de maniére que les valeurs des sommes comprises dans les
équations (37),(38),(39) deviennent indépendantes des directions assignées aux
axes des x,y, z. Alors, non seulement les conditions (41) devront étre satisfaites,
mais de plus, si I'on nomme ay, 81,71, a2, B2, 2, 3, G, ¥3 les angles formés par
trois demi-axes perpendiculaires entre eux avec les demi-axes des x,y et z pos-
itives, on n’altérera pas valeurs des sommes G, H,I,L,M,N.P,Q, R en y rem-
plagant les trois quantités cos v, cos 4, cosy par les trinémes [7, p.239)

cosax = coscosay + cos 3 cos 4 + cosyecos,
cosfJ = cosacosas + cos 3 cos Gz + cosycosya,
COS7Y => COSCOoS g + cos [Fcos I3 + cosy cos s,

G =8|+ % (cosacos o + cos fFcos +cos~ycos'yl)2f(r)],
(43)c: L = S| (cos crcos ey + cos Fcos +cos7cos~r;)4f(r)], (75)

R =8| %= (cos acos oy + cos [ cos fi +cos'ycosm)z(cosacosag+coaﬁcosﬁg+cos-7cos~m)2f(r)]

(44)c
G = G(cos® ay + cos® By + cos® 1) = GAy,
L = L(cos* a1 + cos* 1 + cos* v1) + 6R( cos® f1 cos® y1 + cos® v cos® ay + cos® ay cos® 1) = LB + 6RC,
R = R(cos® B cos® vz + cos® Bz cos® 11 + cos® 41 cos® axz + cos® 72 cos® ay + cos® o cos® 2 + cos® az cos® A1),
+4R(cos 31 cos [F2 cos 1 cos Y2 + COS Y1 COS Y2 COS (¥ COS (x2 + COS (¥1 COS (xa COS (1 cosﬁg)
+L( cos® ay cos® ag + cos® By cos® Bz + cos® vy cos® 12) = RD + 4RE + LF,
(76)

where

cos? @y + cos? ) +cos?yy = 1,
cos? vy + cos? Iy + cos®yy = 1,
COS (x] COS (xg + €08 [31 €08 B2 + cos vy cosye =0

(4) and

(A; = cos? oy + cos? By + cos® 71,

Ay = cos? g + cos? By + cos? 7z,

B = cos* g + cos? B + cos? 71,

< C = cos? (3 cos? 4y + cos? y; cos? ey + cos? y cos? Ay,
D = cos? B cos? v5 + cos® B cos? 1 + cos® 1 cos? ag + cos? g cos? oy + cos? oy cos? By cos? ag cos? 3y,
E = cos 31 cos [ coS 7y COS Yo + COS 7y COS Y COS (xq COS (kg + COS (¥y COS (xg €OS 31 cos 2,

| F' = cos? a; cos? g + cos? By cos? By + cos? vy cos?

then

—_ — 2 _ s
{1 B=A?-B=2C, )

1-D=A1Ay—~D=F=-2E,
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(1) namely :

1.5 (cos® ay + cos? By + cos® v1) = (cos® a; + cos® By + cos? 71)2 — (cos® ay + cos By + cost )

= 2( cos® B cos® 11 + cos® 71 cos® a; + cos? a; cos? B;),
1 — (cos? By cos? vz + cos® B cos® 11 + cos? 1 cos? ar + cos? 3 cos? ay + cos? ap cos? Bz cos? o cos? )
{ = (cos® a; + cos® By + cos® 1) (cos? arg + cos® Bz + cos® 72)

—(cos® By cos? vz + cos? Bz cos® 1 + cos? 1 cos? ag + cos? v, cos? a; + cos? @y cos? B cos? ay cos? By )
= (cos? ey cos?® oy + cos® B cos? Bz + cos® 11 cos? ;)
= (cos B cos B COS Y1 COS Y2 + COS Y1 COS Y2 COS ¥y COS (g + COS (u COS (kg €OS 31 €08 f2)

From the second equation of (76) (: (44)¢ ) by (77)
L(1 - B)=2LC =6RC

(45)¢ L = 3R,
or, from the third equation by (77)
R(1-D)=-2RE=4RE+LF = 2LE=6RE

45)¢ L=3R

From (74)(= (42)¢) we get (78)(= (46)¢c) by (45)c as follows :

2 32 v o
X=(R+G)(5%5+ 55 +5%5) +2RY,
6)c {Y=R+GC)(L3+2%3+22)+2RY, (78)
Z=(R+0) (LS + L5+ %) + 2R,
0 an &
where (4N v -8_£+%+E'

(c.f. (78)(= (46)¢) = (115)(= (7-9) ps) = (120)(= (12)g) ). Moreover, from (41)¢ :
G=H=1, L=M=N, P=Q=R

() By the way, Cauchy says, when we put G = H = I = 0 in (40)¢, we can see the coincidence of
Cauchy’s R with Navier’s ¢, as follows :

L R @Q 2R 2Q 311 2 2
R M P 2P 2R = R|1 3 1 2 2 (79)
Q P N 2Q 2P 113 2 2

These coefficients of (79) equal (39) of Navier.
e §15. Density : A defined by mass of a sphere : M and the volume of a sphere : V as follows :

Concevons maintenant que, dans 'etat primitif du systéme des molécules m, m’,m”, .- -,
et, du point (e, b, ¢) comme centre avec un rayon [ convenablement choisi, on décrive une
sphére qui renferme toutes les molécules dont I’action sur la masse m & une valeur sen-
sible. Divisions le volume V de cette sphére en éléments trés petits v,2',v",--- , mais
dont chacun renferme encore un trés grand nombre de molécules. Soient M la somme
des masses des molécules comprises dans la sphere, et [7, p.241]

M

A e ——
V  volume of system of particles

mass of system of particles

(48)¢ = density




80 The “two-constant” theory and tensor function underlying the Navier-Stokes equation

#11. Enfin supposons que les sommes des masses comprises sous les vol-
umes élémentaires v, v', v”,--. soient proportionelles & ces méme volumes, et
représentées en conséquence par les produits Av, Av', Av”,---. Alors, si la fone-
tion f(r) est telle que, sans altérer sensiblement les sommes désignées par G et
par R, on puisse faire abstraction de celles des molécules m, m’, m”,--- qui sont
les plus voisines de la molécule m, les valeurs de GG, R fournies par les équations
(37)c et (39)¢ différeront trés peu de celles que déterminent les formules

G = 48[+r cos? af(r)v],
(49)c: {R — %S[r cos? cecos? Bf(r)v]

quand on étend le signe S, non plus & tous les points matériels m, ', m”,---
mais & tous les éléments v, v', v”,--- du volume V.

Or, dans cette derniére hypothése, le second membre de chacune des ex-
pression (49)¢ pourra étre remplacé par une intégrale triple relative a trois
coordonées polaires dont 1'une serait le rayon vecteur r, tandis que les deux autres
représenteraient les angles formés :

e par le rayon vecteur r avec l'axe des x ;

e par le plan qui renferme le méme rayon et I'axe des = avec le plan des x, .

[7, p.241-2]

1

#12. Soient p, ¢ les deux angles dont il s’agit. Chaque intégrale triple devra
étre prise entre les limites p = 0, g =m, ¢ =0, ¢ =27, r =0, r =; et l'on
pourra méme, sans erreur sensible, remplacer la seconde limite de 7 ou le rayon [
par U'infini positif. [7, p.242]

— 4 A (@ 2w pw g 2 .
(50)c {G‘—:I:2 fo 4 Jo r3f(r) cos® asin pdrdgdp, (80)

R=% [~ 02 " [y 3 f(r) cos® a cos® Bsin pdrdgdp
We compute in general case such that :

COS (¥ = COS P,
(51)¢ cos f§ = sinpcosq,
cosy = sinpsing

(1)) At this step after various considerations and calculations, Cauchy introduces his polar system (51) ¢ for
the first time in his paper. This means “Cauchy’s rigorous calculus” based on his rigidity in mathematics.
By the way, Navier uses it at first step of his calculation in (26). cf. Grabiner [19] (f})

™
02" Jo cos® a sinp dg dp = 2m [ cos’p sin p dp = 2%[—— %B]a =4,
n% o cos® o cos® Bsin p dp = fnzﬂ cos? q dq [, cos® p(1 — cos® p) sinp dp (81)

2w 5 17
oo 1 a3 — 2% 2 2y _ 4w
—[§+zsm2q]0 [—c'—""“s ]g—(T—D)(E"E)_Tﬁ"

147r_21r l4r 2w
215 15’ 23 3

Then (80) turns out by (71) the following :



The “two-constant” theory and tensor function underlying the Navier-Stokes equations 81

= 4208 [ T)dr
— {G—i 28 [° r3f(r)dr, 62)

R= 222 [203 f(r)dr = £ 22 [ [r(r) - r°%(r) | dr

D’ailleurs, si, pour des valeurs croissantes de la distance r, la fonction f(r) décroit plus rapi-
dement que la fraction %, si de plus le produit r%f’(r) s’évanouit pour r = 0, on trouvera, en
supposant la fonction f'(r) continue, et en intégrant par parties,

o0 o0
(53)¢ / 4 (r)dr = —4/ r3f(r)dr
0 0
On aura donc alors

(54)0 R= ‘_“G:

et, par conséquent, on tirera des formules (46)¢

(55)c X =2R—, Y =2R-—, Z=2R—

% dv v
a ab’ e

({) This interpretation is very important in the sense of RDF by Cauchy.
e 9 16.

Lorsque les quantités, désinées dans les formules (40) ¢ et (48)¢ parleslettres G, H,I, L, M, N, P,Q, R
et A, deviennent constantes, c'est-a-dire, indépendantes des coordonées a, b, ¢, ou, ce
qui revient au méme, de la place qu'occupe la molécule m, alors, en faisant, pour plus
de commodité,

A=|L+0)gE+(R-0O%+@Q-0)F|a,
(56)c ¢ B=|(R—H)$E+(M+H)S+(P-H)S|A,
C=|@-DE+(P-DH+W+DE|a,

[A} L+G R-G Q—G] [%]
= B =A
c

R-H M+H P-H an
o (P+I)%§+(P+H)%§}]&,

[I—

3]

Q|

de

Q—I P—-1 N+I
(67 E=|Q+G)% +Q+DN%E|A,
F= (R+H)5;%+(R+G)g—2]A‘

N 0 P+I P+H 0 % &
= !E :A[Q—l-f 0 Q+G !%05‘}]
F R+H R+G 0 L %K
Then (40)¢ is reduced to the following :
X=5(G o+ %), X A F E 2
G8)e (Y=3xlmt+Z+%) = {Y =A|F B D‘ [%]
x4+ + ) 7 pool |1

By (41)¢ and (45)c,

G=H=1, L=M=N, P=Q=R, L=3R
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A o ¢
&= (L+G] +(R (5 +3)
1 OC
- (L+G)6b +(R- G)(v >
= (BR+G - R+G) +(R G
- 2(R+GJ +(R G
B on o€ Og
== L+07 +(R G}(a a()
— v@ B
= (L+G)8b+(R G)(v - c,)b)
= (BR+G- R+G)0”+(R—G)v
= 2(R+G)m-+(R—G)u
where,
9 | on ¢
e v=g+ 3+ 5
By the same way,
£ =2(R+G) % +(R-C),
PD_(r+0) (B +%),
E-R+0)(&+%)
E_

=(R+G)(% + 5

For convenience’s sake, in the particular case, for (41)¢ and (45)¢ to hold, it is sufficient to be as follows

(59)c (R+G)A= %k, (R-G)A=K
For the equations (56)¢ and (57)¢,
P k2 4+ Kv ék(-ﬁ ﬁi) %LE-‘%%&%
(60)¢ [F B D] = | (% + 1) kQ+Kv e(PE+5
E B @ ikEiiQ#i“-.g 1L(;,{+—4) k% + Kv
If, moreover, the condition (54)¢ : = —( holds, then k = 0 holds , and the following hold :

(61)c A:B:C:Ku, D=E=F=0.

A.3.3. Consideration of Elastic Fluid by Cauchy.
We show the equation number of fluid by Cauchy in below, with (-)¢- instead by ()¢ for discrimination
with the elastic equations as above.
e 9 17. Assumption of elastic fluid.
As the equations in equilibrium :
(L+G)E§ (R+H)55§ +(Q+ I)z,—;i Ay AT +2Qu=ax +X =0,
(67)c- R+G)ﬁ+ (M + H)5H + (P + 1) 34 +2PHZ+2Rm“;+Y 0,

(Q+C) 5k +(P+H) #+(N + D5 +2Q55% + 2P + 2 =0,

and as the equations in motion :
(L+G)a§+(R+H)E,~y§ +(Q+DNE5 +2RZL +2de(}z+x=%,
(68)c- (R+G}dz + (M + H) 5 +(P+I)2r§+2P—§§-+2 M,y+Y 2,
(Q+G’)E,—§+(P+H)—§+(N+I)Z,—§+2Qazdz+2Pa%‘;jl-+z o%
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Si de plus les valeurs de G, H, I, L, M, N, P, @Q, R deviennent indépendantes en
chaque point des directions assignées aux des z, y et z, les conditions (41)¢ et (45)¢
seront vérifiées, et, en supposant la quantité v déterminée par l’equation (47)¢, ou, ce
qui revient au méme, par la suivante

_ 0  On  O¢ s _
(69)c- ””a:c+ay+azhv u=divu, u=(& n, ().
As the equilibrium of fluid :
(R+G)(55 + 58+ &5) +2R%Z + X =0,
(70)c-  { (R+G) (52 + 53+ 53) +2RE +Y =0,
ax dy dz
R+G) (L6 + L5+ Z8) +2R%E + 2 =0,
i dy dz dz
and as the equations in motion :
(R+G) (&5 + 25+ Z5) +2R% + X = %,
(e (R+G)(52+52+22) +2RZ +Y =31,
(R+G) (&S5 + ;§+d2 +2R‘3:+Z_3§§,
By (54)¢:: R = -G, we get A =0 of (71)¢-, then
v dv v
)¢+ 2R—+ X = 2R— 1LY = petichl -
(72)c- 2R—+ 0, R6y+ 0, 2Rz-+2Z=0
(73)¢ 2}295+X—9Eé 21!10—”+Y—gsaﬂ 2R@ Z—@
& Dz - e oy T o 9z 7T o

On doit observer

e que la quantité v, déterminée par formule (69) ¢, représente la dilatation qu’éprouve
un volume trés petit, mais choisi de maniére 4 renfermer avec la molécule m un grand
nombre de molécules voisines, tandis que ces molécules changent de position dans
I’espace.

e Ajoutons que les formules (72)¢- et (73) -, étant semblables aux formules (63)¢, (72)c-
et (77)¢- des pages 173, 175 and 176, paraissent convenir & un systéme de molécules
qui seraient disposées de maniére & constituer un fluide élastique.

(7, p.24§]

e 9 18. Verification of equations in elastic fluid.

By replacing (e, b, ¢) of (56)¢ and (57)¢ with (z, y, z), we get (74)¢-, (75)¢- of the equivalence of
(56)(} and (57)(;.

e 919,

%+%§+ +XA=0 A F E A
(67)c = (76)c- g—’:+§’£+%—f+YA=0, = F B D z,i
$2 490 4 §C 4 ZA =0, E DC 5

X
+A | Y
Z

=]

z

43(11) Equations (63)¢, (72)¢ and (77)¢ of p.173, 175, 176 are included in [6], which are as follows :

e G2 —kx -3, G _wr-Th, ED _wz- )

aUP) _,\ OUP) . OUP)

(e dx dy dz

=kZ;

du  doo v doo Hw doo
Me k—=—, k—=—, k—=——;
(Mo kg =5, ot oy ot oz
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e 9 20. Two-constant by Cauchy.
({}) In this article, Cauchy states two-constant in his fluid equations, in which the two-constant corre-
sponds to the tensor function with the main axis ( the normal stress ) of Laplacian and grad.div term.

(1)
We get the tensor from (76)¢- as follows :

A F FE
(77 c- F B D
E D C
Then (74)¢ and (75)¢ are reduced to the following :
o | B ac |, @
A F E kg +Kv gk 'Ji T,1 k(3 + 28
®)o = (8 |E B D| = | ’r§+2)"1 koi+Kv gh(52+ 5
a
1(% 4+ Lk 8ﬂ ) k% + Kv
44

By replacing R+ G and 2R in the equation (70)¢c- and (71)(,-- with the following :
k k+2K
=R =—, C3=2R=——
. rEss A 24
(1) Here, C7 is the constant to the tensor function with the main axis ( the normal stress ) of Laplacian.
C'3 corresponds to therms of the gradient of divergence of u. In today’s NS equations, the value of ratio
of coefficients : % = c:;’;fffﬂf:‘f};’;::d“‘ﬁ: = = +2 - By Prandtl [64, p.259] in 1934, the ratio was fixed at
3. We had have to wait by the time, when including this ratio of two coefficients, what is called the N.S
equations were expressed by Prandtl in fluid equation. cf. Table 7. (1})
As the equations in equilibrium of fluid :
2 2 52
Ct ~§,’;§+§—y§+3—§ +C3% + X =0,

(19)c- < Ci(53+ 53 +d~3 +C3%4+Y =0,
i (5 + 55+ 95 + cate + 70,
and as the equations in motion of fluid :
Cr(Es+ 85+ 58)+Cde+ X =44,
@) 01 (3+L3+ %)+ +y =37,
Cr(Ls+ 26+ 28)+ o3 +2 =55
e 9 21. Comparison with Navier’s equation in elasticity.
Cauchy says : for the reduction of the equations (79)c- and (80)¢- to Navier’s equations( [46] ) to

determine the law of equilibrium and elasticity, it is necessary to assume such as the condition which we
have mentioned above :

(81)c- k=2K

e §22. Comments on Navier’s equations in elasticity.

On voir au rest que, si 'on considére un corps élastique comme un systéme de points
matériels qui agissent les uns sur les autres a de treés petites distances, les lois de 1'équilibre
ou du mouvement intérieur de ce corps seront exprimées dans beaucoup de cas par des
équations différentes de celles qu'a données M.Navier.

e Les formules (67)¢- et (68)c- paraissent spécialement applicables au cas oti, I'élasticité
n’étant pas la méme dans les diverses directions, le corps offre trois axes d’élasticité
rectangulaires entre eux, et paralléles aux axes des x, des y et des z.

e Les formules (70)¢- et (71)c-, au contraire, semblent devoire s’appliquer au cas
ol le corps est également élastique dans tous les sens ; et alors on retrouvera les
formules de M.Navier, si l'on attribue a la quantité G une valeur nulle.

‘“(J}) The following notation : C] and C3 are not our two-constant but the two symbols by Cauchy. To avoiding
confusion, we don’t use Cy and Cy by Cauchy but C} and C3.
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e Ajoutons que, si, dans les formules (67)¢:+ et (68)¢-, on réduit & zéro, non seulement
la quantité G, mais encore les quantités de méme espéce H et I, ces formules
deviendront respectivement (83)¢- et (84)¢- [7, pp.251-252]

If G = 0, then we get the equations of equiblium in equal elasticity :
L{,—I%+R5§§ +Q$5 +2RZL +2Q~"j%; +X=0,
(67)c- = (83)c- REE + M+ PYE + 2Pﬁ€; & 2Razay +Y =0,
Qv—§+P—§ + NS 428 +2P—"-+z 0,
and as the equations of motion in equal elasticity:
L—§ +RES +Qa§+2R"’—2”L+2Qdm +X= a3
(®)c- = (4o~ | REI+Myh+ Pl +2Pag + 2Rk +Y = 52,
Qz,;g'+P—§+N#+2dedx +2PZL +Z= o
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A.4. Poisson’s equations deduced from his principle.

A.4.1. Principle for the equations in elastic solid.
We deduce K and k in accordance with Poisson [59, p.368-405, §1-§16] as follows.

e § 2. For abbreviation, we put the following :

axry + byl + C(Zl _ Cl) = d’, ¢du qr)du gdu = ¢.r‘
a'my + by + (2 — Q) =, Pl +3§2 =4/, (83)
a’zy + bﬂyl =+ C”{ZI — {1) =4, ¢,dﬂ _1_,#,!, + Hdw =g
Namely,
f,f) (13 b [ T ¢'f %E ﬁ_‘; ﬁ_:_ t’fj ¢)
| =|a Ve m | |¥| = |2 & & ¢ | =vu- | v
o] e o] (W0 Lv] T | E & & | :

rz =¢2+¢2+921
()2 =(+¢)V +@+¢)+(0+6),
rf=af i+ (2 - Q)

()2 = 12 + 20¢' + 20’ + 206’ + (/)% + ()% + (¢)?

e §3. We assume that « : the average molecular interval, w : surface, 25 : the number of molecules

on w.
P+ ') Y 9+Wc
z ( asr! Z ( Ju3'r’ Z ( ) (84)
e £ 4.

!

v =r+ %(«w’ + 9y’ +66')

At the same degree of approximation, we get : °

d.pfr

l!fw'* = —fr+ (¢ + ' + 00")———
¥ rdr

We get the three elements of force P, Q, R from (83) and (84) :*6

P =Y @y SN (o6 + i + 00') B L2 IT

ovTr

(Dpe Q=3 Wt o S™(d! + 91’ + 66’ g,g“;;“, (85)
R=Y C00 fr 4 (¢! +yf +00) o 42l

P (+¢) (¢ +9y' +60')¢ r
sl@| =2 (| @+v) @+ +00)y [ Culyr ] )
R 0+9) (9¢'+ 9y +60)0 i

45(1}) We correct this equation. Poisson [60], the corresponding equation (100), there is —1-
46(11) We use pe in the left-side equation number as Poisson’s equation number in [59]. And py means Poisson's equation

number in Poisson [60]
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We donate :
3 : the angle between the vectorial rayon of one of molecules : 7 and the axis of ¢, and
7 : the angle which the projection of the rayon on the z—y plane makes with the axis of 2. We have :

1 = 1 cos ff cosy,
y1 = rsin @ sinqy,
¢ =rcosf,
The quantities which majored under the > take the form : pF'r, which is expressed by
p : an entire function with sines and cosines of # and ~,
Fr : a same function as fr, of which value are insensible for total sensible value of the variable, and

moreover, which equals 0 for the particular value of r = 0.
We consider that the summation in question is composed by the parties of the form :

2[(§JZP)F="J=

here, the outer Y corresponds to v and can extend to r = oo, and the inner double } s correspond to
and 7.

e § 5. The value : 5 p related to sr? is assumed the product of p and the number of molecules

which contain in the surface of sr2, and which is expressed by %; ‘We consider a hemisphere
with the radius : » =1 on the z; —; plane as follows :

7‘2
u_ﬂzzps’
B v

This new summation extends to the all parties in the hemisphere of the unit for the radius.
Because p doesn’t decrease very rapidly, we can change s with the diffrential element of the above
surface, and the sign : 3~ with the signs of integration, we can take the following :

F pr2r
s=sinfdfdy, Y > ps= f / psin Bdfdy,
8 0«0

7‘2 x 2w )
Zﬁ:;p = ?fo fo psin fdBdy,
o r2
Z[(%:;P)F’] —fﬂ /0 psmﬁdﬁ‘hz@ﬂ"-

° §6.
d=gr, Yv=hr, 0=Ir, ¢ =gr, Y =hr, O=Ir,
g = asin fcosy + bsin Asiny — ccos §, g’=g§-§+h§‘j+£%,
h = a’sin fcosy + b’ sin Bsiny — ¢ cos f, h’=g§§+h-ﬁ—;+lj—:,
l=a"sinfcosy+b"sinfsiny — " cosf, U= g4 +hge +14¢
({}) In brief :
g a b ¢ sin  cosy g 5 ﬁ‘;‘ o g g
lh] = [a’ v c"‘ sinﬁsin'y], {h’] = % %4;—' ﬁ—;’ h|=Vu:-| h
! o Y —cos 3 v b du dw | | !

By using Poisson’s so-called effective transformation, 47 we obtain from (84) the following :(f})
P=[E [T [0+ )T S fr+(of + ' + )9 T 245 | A,
z T O 0
Q=J& i7" [(h+ )X e fr+(g¢ + ki + WA T 25 |4, (86)
R=[F [ Q4+ 1) fr+ (99 + b/ +UWNY gﬁ;ﬁ]a,

) L fr = L fr o (b + 9 +00') 22T (60, p.4z]).

rdr
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27 -g- 27 Ji" 2n z
f chrf —B cos fsin ﬁdﬁ:c/ d'yf — cos? Bsin Bdf = —cf d’y[— ﬂ} ..
0 0 0 0 0 3
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({}) (86) implies the following :
h+Hh (99" + hb' +UA

P 2 z
g| = [ L2
R o Jo L+ (g9 + hh + 1)

2r 1% 9+y P
//A( h+ i Q [‘H)
0 0 t_l_t" R’

where

£]-

[ (6°Vau+ g*hVyu + g2lgVau) + (®hVzv + gh?Vyv + ghlVov) + (¢ IVew + ghlVyw + gl* Vow)

Il

1] ' bR 1 e
g+g (99+H'+ }y] [ L ])

(92hVzu + gh?Vyu + ghlV zu) + (gh?Vev + h3Vyv + h2V:v) + (ghiVzw + h2IVyw + hi?V.w)
(¢21V zu + ghlVyu + gl2gV ) + (ghiV v + A2V v + hi?Vev) + (912 Vew + hi?Vyw + 3V .w)

A :=cosf-sinf df dv, V;;u:=%, ete | K::Zr—i{ﬁ. k—Z—:d:rfr.

Below, we use the following integral formulae :

'fsinzzdz: =Z- %smlc,

[ cos? zdx = F+ ést:c,

[ sinzcoszdr = Lsin’z,
< [ sin® z cos? xdx = —é(éﬂsjndm —z),

[sinz cos™ zdx = — L=,

J sin™ zcos xdr = 5";:: =

[ cos™ zsin™ xdx = % + :+: fcos"‘_zrbin" xdr, (m>2&n>1),
| J cos™ zsin™ zdx = —”i—““_lnf_f_—‘:f;ﬂ- + 22 [cos™ zsin"™~ 2gde, (m>1&n>2)

(1)

At first, we get the following :

g+ ¢ = (asinfcosy + bsin Bsiny — ccos B)(1 + 42) +hd“ +14%,
h+h —Jd” + (a’sin Beosy + b sin Fsiny — ¢ coaﬁ)(l - d") +fdz7
L+1 = g% + pov 2 + (a” sin B cos y + b sin Bsiny — " cos f)(1 + &

For the integral of g + ¢', we put : A = asinfFcosvy + bsin #sin-y and B = ccos 3.

2 z 2w x
/ d'yfg gA = f dqu (asin f cosy + bsin Asiny — ccos 3) cos Bsin fd3
0 0 0 ]

1]

2 =
/ dry /Y (A — B)cos Fsin 3df.
0 0

2w T 2 =
/ d'yf Acosfsinfdf = f d’y./f dﬁ(asinﬁﬁcosﬁcos'y-ir bsi.uzﬁsin’ycosﬁ)
0 0 0 0

. 2m 3 2%
- sin 16 27 sin ﬁ 2m i B
- a[ 3 ]u ,/; 3 ]0 /0. dysiny =0

0 3
We get the following summary of the first half of (87) by the same way as above :
I, .f”(g+g')A——- c+eR+IR IR, .
J-o% Ozw(h+h’)A— T (¢ + gL +c’jff+c”°“‘) #—?ﬂ(c+Vu-c),

JERa+v A——ﬂ"(c”+f"”’+{f +r‘"i';’),

(87)

(88)

(89)
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where ¢ = ( c ¢ )T_ Below, we use the relations as follows :

A+ +E=1, ad +bb' +ed =0, da"+VV" +¢"=0, da+b'b+cc=0.

A.4.2. Summation of last half term.
We show only the value of [[ ¢3A in (88) in detail.

f[gaA=/02“d7[0§ g° cos Bsin Bdf

2w 5
/ d'y/ (asinﬁcos7+bsinﬂsin'y—ccosﬁ)scosﬁsinﬁd,@
0 0

89

27 3
/ d'y/ dﬁ{(asinﬁcos’y + bsin Asiny — ccos ) (a2 sin? B cos® v + b*sin® Bsin’? v + ¢ cos?
0 0

2absin®  cosysin~y — 2besin B cos Bsiny — 2cas'm,6cosﬁcos'y) cosﬁsinﬁ]

When we arrange [[ ¢®A with respect to ¢’s terms, then we may compute only 5 terms :

c¢Ay, ¢As, e¢By, ¢Bs and ¢C) relative to ¢ as follows :

ff ¢$A = [(asi.nﬁcosry)*(—2casi.nﬂcos,b'cos'y)
+ (bsinfsin~y) * (—2bcsin B cos Bsiny)

— ccosf3# (az sin? B cos? v + bsin? Bsin? ¥+ ¢ cos® ,8)] cosf3sin 3

—c( — 2a”sin® Bcos? Beos y

b% sin” y sin® #sin® B

a’ sin® 3 cos? 3 cos?  + b% sin® B cos? Bsin®
¢ cost Bsin ,6)

—¢(A1 + By + As + By + C)

+ o+

We compute the first term : —ca? with the integral in the right-hand side above as follows :

o —cA;:a*(—2ca):
2w 5 4 1 2 4
o2 ;3 2 L P = ——7ca?
2a c/o d’Y/n; dBsin” 3 cos® (3 cos” ~y 50 0[2 + 431112’)']0 15 Ted

Similarly,
o —cAy:—cxa?:

2 %
—ca® f cos?® ydry f sin® B cos® Bdf
0 0
B oo /211- cind ([ sin? B cos® ﬁ] 5 3 2 [‘5 cos? Bsin ﬁdﬁ)
- 0 Eatd 5 1] 5 ]

~ ot (2 -2

0
27 2
o —cBy:bx(—2bc) :
o rF 4 1 @ 4
_bRB ;3 2962, _ a0 [V 1. = ——mch?
2b (,fo d'y/.n df3 sin® B cos® Bsin* v 15!) c[2 4sln2’]r]0 15’:'?65

e —cBy:—cxb?:

2w
21y 1 2]=2ﬂcb2

2m 5
—cbZ/ sin? 'yd’yf sin® Asin® fdB = —cb®>— |+ — = sin A I
0 0
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o —cC:—ecc?

—c /hchf cos ﬁsmﬁdﬁ——c:’/ dvy [

The integral of the terms of 2ab, —2bc and —2ca are a.lI Zero respectwe[y. Therefore we get the

cos ,8 2

= ——(.C

following equation :
[ 2 4 2
A = (—=—-— = — Vreb? -
fu fﬂ g ( )” R T L
20 where a? + b2 + 2 =1

—-%(az +bz+c2) ===

15

I rem
f / ghA = - (3::'2.':r + 2aa’c + 2bb'c 4 a®c’ + bic ')
= ——{2c(rd’+aa + bb') + ¢ (¢* + a® +62)} ~15¢"

2%
f / ghlA

_E (dcc’ Y+ ad' " +aad"’ +d'a’ e+ bV Db + b'b”r:)

2

l—g{c"(cc’ +aa’ +bb') + (@’ a+b"b+c"¢) + c(a”"a + bV + c"(f)} =0.

Therefore, in brief :
2 ‘.-"
ffgaA— ciuid ff zm_-%‘, //.gh!A:U‘

We get the same as above.
v
f Y _2?rc / BA — 27rc

I
ffova-25, [fuenn 35, [frnn
2nd!

ffh""m: 2“”, /f WA = -

We show in brief :

2 re 2T > dLlfr
= —fr=K, — ——= :
3 Z ab I 154~ dr & (40)

These coefficients were replaced later with (96), in Poisson[60], p.46, p.140.)
By using (90), we get the following from (86) :

1l

P (+dx('+ du{.! %dr)_ (3 ('+dy _l_ducﬂ_i_duc! rtvc+dw(.f cltiwc)
Q=-K c’+§£c+“” ’+"”rﬂ)— ( Set 392 + g‘z’<-”+—c’+g«c+“‘”d'+“—‘“d’)

R=-K c"+§',fc+f1—';’c!+%c”) - (ﬂ_‘;’wr“‘” I+ 398+ R+ Pret P+ B )

(91)

({}) By the way, we can state the linear relation of P, @, R, which made of two tensors on the basis of

[e, ¢, ¢"]T are as follows :
d
P 1+<,£ dd‘!.; _dt:lz_ 3du+du+dw du+ - %+d_w
- v dﬂ dw _ du dw dv duy du du
g i &= }:+ & & ddz+ A +3d +d i dx+ ¥
gw.  duw Hqw ali) du w vl u w
dir dy 1 + dz dx Tdz + “dx + + 3 dz
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e §8.
_ dP d d
@ | Yy = 9+ e 1
— dR dR. dR
Zo="G+H+ &
e §10.

X1+ P + Pocd + P3c =0,
(4)pe § Y1 + Q1¢” + Qo + Qzc =10,
Zy+ R + Ro! + Rze = 0.
where ¢, ¢’ and ¢” are cosines of the angles formed between the original coordinates z;y, z and

the normal line to the surface of separation.
e §14.

({4) This article is very important for discussion of disputes between Poisson and Navier or between
Arago and Navier. Why Poisson uses Y instead of [. According to Poisson, if we would compute
K and k under the symbol [ like in (93), then we end up the result : k = —K = 0 at the same
time, so that Poisson uses the symbol 3. (cf. Table 9.) ¢ (1)

%(1}) cf. There are many referrnces on these topics : Navier with Poisson : [48] in 1828; [49] in 1829; [50]in 1829;
[51] in 1829 and Navier with Arago [51] in 1829. Above all, in [51], Navier’s everlasting assertions are repeated.

Les équations (3) et (4) conviennent aussi & I'état primitif du corps ; et pour les
appliquer a ce cas particulier, il suffit d'y faire u = 0, v = 0, w = 0, et d’y supprimer
toutes les forces données, extérieures ou intérieures. On a alors

Ry =Qy=P3=-K;

les six autres quantités Py, @, etc., sont nulles, et les six équations (3) et (4) se réduisent
a quatre, savoir :

dK dK dK

— =0, — =0, —=0, K=0.
dx dy dz 9
D’apres les trois premiéres, la quantité K est une constante qui est nulle en vertu de
la dernitre. En remettant donc pour K ce que cette lettre représente ( no.6 )&, et
supprimant le facteur constant 2%, on aura

Z 3 fr=0
Ainsi, dans I’état du corps qu'on peut regarder comme son état naturel, ot il n’est soumis
qu’a I'action mutuelle de ses molécules, due a leur attraction et & la chaleur, les intervalles
qui les séparent doivent étre tels que cette équation ait lieu pour tous les points du corps.
Si 'on y introduit une nouvelle quantité de chaleur, ce qui augumentera, pour la méme
distance, I'intensité de la force répulsive, sans changer celle de la force attractive, il faudra
que les intervalles moléculaires augmentent de maniére que cette équation continue de
subsister; et de 1a vient la dilatation calorifique, différente dans les différentes matiéres,
a cause que la fonction fr n’y est pas la méme.

Cette équation donne lieu de faire une remarque importante ; c’est que les sommes 3
du no.6, que représentent les lettres K et k, ne peuvent étre changées en des intégrales,
quoique la variable r croisse dans chacune d’elles par de trés-petites différences égales a
« ; car si cette transformation était possible, k serait zéro en méme temps que K ; d’ot il
résulterait qu’aprés le changement de forme du corps, les forces P, @, R, seraient nulles
comme auparavant, et que des forces données qui agiraient sur le corps ne pourraient

18(y) § 6.
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se faire équilibre, ce qui est inadmissible. Pour faire voir que k s'évanouirait au méme
temps que K, observons qu’on aurait
2n o % g
K=— — frdr, k= — —d.— fr, 92
3 'f 15 af r"r (42)
en multipliant sous les signes E pa.r ,et rempla.ga.nt ces signes par ceux de l'intégration.
Or, si 'on intégre par partie, et si l on fait attention que fr est nulle aux deux limites,
il en résultera

oo .3
k=22 " frdr=—K (93)
3 0 0,’6
ce qui montre que la quantité K étant nulle, on aurait aussi k = 0. [59, p.398-399, § 14]

e & 16.
Je substitute, en outre, dans les équations (3)p- 4 la place de P, (), etc., leurs
valeurs, et je suppose le corps homogene; en observant que K = 0, il vient

2

d? 2 2 1d? 1d%u) _
X- ﬁ+ (a‘i‘w - +3EE tInt H3nE) =0,
d*v ;| 2 ’ 2 d*w 1d%y 1d%v ) _
(6)P° 5w + (dy!+§ :l:y+§ dzdy 3dz? T 342 =0, (94)
d* 2d’ 2 d? 142 1d? _
Z - dw! +a ( zw+§ i +§ yuz+§dzw! +§‘dyw! _[]’

a* étant un coefficient, égal a %{—“ Ces équations ont la méme forme que celles qui

ont été données par M.Navier’®, et qu'il a obtenues en partant de 'hypothése que les
molécules du corps, aprés son changement de forme, s’attirent proportionnellement aux
accroissements de leurs distances mutuelles; et en admettant, de plus, que les résultantes
de ces forces peuvent s’exprimer par des intégrales, ce qui rendrait nul le coefficient a?,
ainsi qu’on I'a vu plus haut. Les équations relatives a la surface, formées de la méme
maniére, se trouvent aussi dans le Mémoire de M.Navier. [60, p.403-4,516]

We can see that (6)pe (= (94) ) is able to be modified to (44) as follows :

X-4¢+9 (38 +2djjz+2jz;+j—q+ £3) =o,
2 2
Y- +% (3557 £ +ofr + %;r +43) =0, (95)

_ dw a” d*u d*u ) d*w ) _
Z — g (3 T+ 2k TN ayﬂ) =0,

A.4.3. General principle and equations in elastic solid and fluid.
Poisson proposed two constants k& and K in his compressible fluid equations in 1829, and issued in
1831( [60, p.46, p.140] )

difr 2n 1 gdifr - 27 rfr
(&-8)er kﬁmz a dr 15 4r£3r3 dr ' K:@Zrﬁ:?z&%‘ (26)
e : la grandeur moyenne des intervalles moléculaires autour du point M. ( the mean value of the molecular
intervals around the point M. )([60], p.141).
We sgcll:fmlarize Poisson’s deduction of k and K in [60], which is a little different from [59, p.368-405, §
1-§ 16].
e § 15. Here, at first, we introduce the setting of situation by Poisson for strict description.
Soit w de sa section horisontale; sur cette section élevons dans A une cylindre
vertical, dont la hauteur soit au moins égale au rayon d’activité des molécules;
appelons B ce cylindre : 'action des molécules de A’ sur celles de B, divisée par

49By Poisson’s footnote : Tome VII de ces Mémoires, which is Navier[46].
59(J.I,) In Poisson [60], the title of the chapter 3 is “Clalcul des Pressions dans les Corps élastiques ; équations défférentielles
de Uéquiblibre et du mouvement de ces Corps.”
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w, sera la pression exercée par A sur A’, rapportée & I'unité de surface et relative
au point M.  [60, p.29
= Namely,

— We put w : the area of the holizontal section ; on this section in A, in which a vertical
cylinder stands, at the height of which equals at least the radius of sphere of the molecular
activity.

— We call B : the cylinder : the molecular action of A’ on it of B, divided with w, is the
pressure activated by A’ on A, related to the unit of the surface and relative to the point
M.

Poisson continues :
Nous la représenterons par Nw, en sort que N soit la pression rapportée &
I'unité de surface; et & cause que la composante verticale de la force fr aggisante
au point m et dirigée de bas en haut, est Z fr, nous aurons '

Nwzzgfr

la somme ¥ s’etandant & tous les points m de B et m/ de A'. [60, p.30]
= We put Nw such that N : the pressure
— related to the unit of the surface ;
— and caused the vertical component of the force : fr acting at the point m and passing from
below to above,
is £ fr, then we get :

r

Nw=z-§f'r,

where the sum Y covers all points m of B and m' of A’.
e § 16. We put N : the pressure, € : the mean value of the molecular intervals around the point
M as above. We put v : a proportional number to the volume : wz.

vz
Nw= E —fr
T
wz
where v=—
g3

then

1 22
(3-1)pr N= = > =g

If we call i the mass of a molecule, or its mean value, the mass of the cylinder : wz turns equal to vu,
and the ratio : Z£ expresses the density. Hence, we put it with p, and put its value for v, we have :

e § 17. We see also that the quantity : % Jr obeys under the sign 3 being null for all the points
of the plane moved by M, the sum which it makes, become 3 of the same sum extended to all
the points of A and of A’. Moreover, 2, which is the square of the distance from M’ to the three
planes of the rectangle passing through M, and the sum ) é Jfr having the same sum which we
replace successively z? with the two another squares : z2 and 2, then it turns that it equals
% > ’;—2 fr. After these considerations, we have the following :

1 2y  E T e 1 )
(3-2) pr N—gz?fr—§x§xe—32~;frué?3-2rfr, (97)
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e § 20. ( This section corresponds to the sections from § 2 to § 4 in [59] describing the elastic solid.

)
z' = axy + by — ez,
(3-6) pr y =dz+ by -z,
2 =d"zy + by — 'z

(§}) Namely,
! a b -—c¢ T T3 a a' a” z'
v =]a v ¢ | |u|l = |u|=|b v ||« 0
Py a’ ¥ = %1 2 —e —d =" 2!

(1r) where, 9 coefficients a, b, --- are the cosines of the angles which z;, y; and the extension of

the axis z;, with the axis of x, y, z, and these cosines are given.
=+ +@+¥)+(0+0)

Here, for abbreviation :

axy + by — ez = ¢, tpj—; + v’)%-;- +8% =y,
azy + by —dz =1, paL + ﬁf’ﬁ—; + 0% =9, (99)
a'vy + W'y — "z =6, cp‘:t—_‘_g B ﬂ)%‘ -+ Sf.,—‘: =6
(4) Namely,
du du du
7, a b —¢ 1 74 dr dy dz P @
| =|a ¥ -2 mos | W= E oW ® Y | =Vu-| 9
) a” ¥ = 21 ] 2 TE H 7} ]
(")
+ ¢ b+ 0+¢
wP=-Y 2 wg=- Y5 wr=-Y% fri.

T 71 L |

for the components of the total action of A’ on B, in covering the summation ), to the all points
m' of A" and to the all points m of B. Because the function fry is regarded as positive or
negative, in accordance with the distance : 7y, the force which it represents, becomes repulsive
or attractive, the components act in the direction of z,y and z, positive or negative, with their
values above turn into positive or negative.

_ 1 (p+ ¢ ) _ 1 (Y+¢)a _ 1 (0+6z .
P——ESZ > Ir, Q__E:'.Z ~ Jn R= 532 - Jri.
By observing that
r?=¢? + ¢ + 6%,
and by neglecting the quantities of the second order with respect to ¢’ ¢’, ¢, we get the following
1
r=r+ ;(W’r +yy’ +08")

At the same degree of approximation, we get the following :!

1 d.Lifr
—1-_,\"1'1 = —f?‘+(!,0(p'+i,b'!,."}"+99");f’~ (100)
T T rdr

51(11) Because this equation (100) must equal (85) in [59] of elastic solid, we corrected here Poisson’s misprint.
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TABLE 12. The 63 coefficients of the components of —H

[ z7z{ of E |yizi of F |zi2i(= 2i) of Glnumber of term
% alca + 2ca) = ca® + 2caa = 3ca’|b(ch + 2¢b) = eb® + 2ebb = 3cb2 e = ¢ 7

%—;'_ a'(ca” +2ca) = ca”” +2daa” V(b +2¢'D) = b + 280 e 7

4 a"(ca” +2¢7a) = ca™ + 2" ad" o7 (eb” 4 2¢7b) = b + 270" |ec™ 7

e a(c’a+ 2ca’) = ¢'a® + 2cad’ b(c'b+ 2cb’) = ¢'b* + 2cbb’ ede=c'cd 7Tx2=14

—?;',‘ + —E‘: a(c’a+2ca”) = ¢"a® + 2caa”  |b(c"b+ 2cb”) = &b + 2ebb”  |ced” = Tx2=14

i’- + %“- ca'a” + daa” + " ad’ cb'b" + ebb” + by e ' Tx2=14
number of term|27 27 9 63

P=—% Y eedn fr LSy 4 gt + 08 )pm ST

rci-: 1
BTNpr 4Q=- 1 zﬂ“’—**iﬁfr —sZ(smP + P + 00 ) S m ; (101)
R=—4 Y ltelin fr 1S3y + g + 60 )wm S2LT,
P 1 (p+¢)z1 (o9’ + i +600")pz Ir
> |Q| =—-3 ( ($+¢)z (oo + 99 +06") gz [ alsr ] )
R 5 (w+w)z (o' + P’ + 00wz vdr

A.4.4. The first coefficient : K in summation of P, ¢, R in elastic solid.

e § 21. ( This section corresponds to the sections from § 5 to § 7 in [59] describing the elastic solid.

)
2
S5,
E—w'"f)z‘f:r— -3 c+c—+c’d“+c"'d“) Yorfr= _fl's( (1+ ‘I")+c’d" +c” Sorfr,
sz?':_é ¢ +(,E-;+C"d” "r(ﬂdv)z?'f‘-":_é(cﬂ'i-t (1+ du)+(;f Eff'-"g
Y letedan pr — _L(¢ 4 cde 4 g2 +c”§j)2rfr_——(cﬁ +¢’4‘“+¢"(1+“‘"))er1~,

A.4.5. The second coefficient : k in summation of P,Q, R in elastic solid.
We denote the second summation in P of (101)(= (3-7) ps) by H such as :

; d.%f’r

1
fozf Zylzl fr_,F Z ads f‘.l"_ G,

We get the 63 coefficients of components of —H as in Table 12.52 The sums of E, F' and G are
equal for A and for A’, because the terms related to the plane made of z; and y;, become equal
to zero by taking the differential : we can take the volume of the total body, and take successively

the value as é of it. When we regard the body as homogeneous in the sphere of the molecular
activity, we get the following :

44.—1-‘,'1" qd.fr 1fr 4d +fr
{zzl rdr Eyl rdr _le rdr ?

2 2d.1fr 22¢¢=fr__ 2, 2d.2fr
YR = ey 2 Ty

52(1)) Tables 12, 13 and 14 are made by us.
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TABLE 13. The coefficients by the combination of the terms of 2 x 27 in G

x|y iel= [2¢c’z"y 2dcMy' 2 2cd’x’ 7
L P b 222322 A By A2 Ty ST R
crgyrz C}Zgﬁ!_ QCJBL;;?yrerz 4cc’3;c'y"’ 4(;3(’;;:“:.1 o 4(1:’2(_‘”@'9"*2 Py
({:2 zrz P zﬂ ded o yr 224 (‘J.'S yr 213 ded By 219
2cc’ 'y’ 42 y? Bed? "2y 2 Bt My Y
20"y 2 A2y 2" (Bed Tty 24
2cc ' 2! 4z 2

TABLE 14. The 21 coefficients by the combination of the terms of 2} x 2z} in G

[ o o i e 2ccz’y’  IyYE Ped’dd
Ee? [ A REPTYRAET

cfzy.r‘z Cﬂyrd 22 C.u?,y."z 72

(.‘”2 z:z (,ﬂd' zh‘.

2{:c!xlyn‘ 402{3‘2 :Erz y:2

2f:fcﬂ,y!zi' 4472 yrzzfz

2cc’'x' 2’ 4?2 72

rdr rdr rdr

1 1 1
Ey;zz!'zd;l,:d‘{f = Zwrzz.fzd-.:f’" _ Z;Cmy&d;}[}{f —9F =9F

md-2fr _ dtfr _ x;4d,1!r Ve
{z:z Sar =Tyl =Tt =26, 08

rdr

From (98) we get the following :

o1 =az’ +a'y + a7
yp = ba' + 0y + b2
n=—cx' -y -2

In Table 13,

4((:3(:":!‘:"3‘_1;’ + czc"c”x"zy'z' + Czcumrszf _i_a:rszfy::i + (:136_J'J’yi'3zi' + L‘C"Q(i":l:'ymZ’

—I—cr:’c"%:"y’ zm £ crcrrsy;z.-s 4 cr:”s;r'zm + 2{:(::2{:;;$1yr22r + 2(:2(.‘rt:""$?2y’z" S 2(,'{:"(:”2x’y’ zm)

- 4[((:2:5’2 + %Y 4 222 (el Y + Y Y+ ed'd ) + 2(PE Ty 2+ el 7y + r:c’r:”a:"y’z'?')}

Hence, we can consider only the elements of Table 14. From (103) and the 21 elements in the
upper-trianglar matrix including the diagonal of Table 14 , we get G as follows :

G- szd.%fr

rdr

1
_ %Z d:ﬂ{?‘ [(c‘iwm 4 Cr4y!4 4 (:f!dz!4) + 6((__2(:r2w12yr2 3 czcmyfzzrz 2 zﬂw!z)]
= % [2G(c4 + ™) +6-2F (P + 2" + (:'26”2)]

= G(c"+ "+ ") +6F(c® + 2™ + ). (104)
Here, we put the following for convenience’ sake :

a=ct+ M+ M, B=c2? + 2"+ 2,
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Because of®?

A 4e?=1
cd+cf4 +Cﬂ4+2czc,'2+2c2clf2 +2L.fzcn2 =1,

{(c2 + 24?2 =1,
A +H232+22? + 2% =1 a=1 - 26,
then, from (104), we get G = aG + 68F and then :

G=(1-20G+66F = 286G =64F,

it becomes at last :

G =3F.
Moreover, because of r? = z? + y? + 22, we get the following :
1
Z 1-4 d. ;f‘."
rdr
d.tfr d.ifr difr difr
P i 4 T 2 2y (
Zzl rdr + Zyl rdr A rdr 223}121 rdr 105)
From (103), (105) we get :
1 sdpfr _ et g
50 T —5— =3G+6F =5G = 15E = 15F.
d.x fr d.+ fr
_ 3 _ gd-zJ7
G 10 Z e 30 Z ’
As the common factor, we take 35, then finally H of (102) turns into :
d.~ f“r du dv dw du  dv du dw
— - B L et L) rfuittic g SN 1
= OZ |:( dx+ dy+ dz)+ (dy+ d:c)+c(dz+ dz)] (106)

The second summation contained in @ of (101) (= (3-7) ps) is deduced from H with the cyclical
permutation of u and v, z and y, ¢ and ¢, and similarly in R with the cyclical permutation of u
and w, z and z, ¢ and ¢”. In this manner, the equations (101) (= (3-7) ps) turn out as follows :

P=|K(1+4%)+k(3% +%+¢a o+ KL+ k(4 + g2 )|+ K+ k(4 + 42 )],
= [K(1+9) + k(4 3o | du )y K-¢&+k(-‘fﬁ+— c+ |[K k(L + 22|, (107)
R=|K(Q1+4)+k ‘f;;+ 'f;;+3‘f,}‘; '+ K“‘”+k(‘i‘,;+ c+[lf%+k(%+% ]c,

where, for abbreviation, Poisson uses :

(3-8)ps

lJI

d f‘?" 2 1 dlf 'r'fr
3 3 T =
30532 15 2<4xed  dr ' = e 32 rfr= 3 4 53( 08}

53(J.l,) We corrected Poisson’s mistake :
A4 " 2% 422 2P =0 = =1
Because if
e+ =1
then we get clealy
At ™ 126 F 202" + 2% =1

Inversely, if the equation equals 0, then

60

G=-26G+60F = (1+20)G=68F = G==5F

Then we can’t get G = 3F.
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(4}) By the way, we can state the linear relation of P, @), R, which made of two tensors on the basis of
[e, ¢, ¢]T of L, M, N and H, I, J respectively, are as follows :

P L H z e B A
Q| =|M| + | 1], M| =K% 1+
R N J N du  dw 74 du

dy dx d
du du dw du dw ddu ity
5 ke, ECE B
= dv  dw du 4 gdv 4 dw dv  du
I =k ‘dz o+ ily dx + 3ddy + ddz F Idz + ddy
aw oy 175 uw (1573 “au 17l
J “d T ds wtiE e tig

e § 22. We get the general equations as follows :

P =P+ Py + Pse,
(39)ps {Q=Q1" + Q2 + Qsc, =
R=Ryc" + Ry + Rac

P P P P !
Q| = | &1 Q2 Q3 -
R Ry Ry R3 ¢

then we get the tensor on the basis of [¢”, ¢, ¢|T from (107) as follows :

o K—";“;+ké%+i’a‘§g K ph(d+4)  KO+4)+h(3%+ 4+ 4
l?; gz fg] = | K n(dede K(l+%)+k(%+3%";+%‘%% K%+k%“—d‘;+%
L = Ko+ +h(+ 4 +04)  Kgre(er®) meos(e s
e §23.

When we suppose that the initial state of the elastic solid is natural, it turns K = 0, so we get
the following :

du w u dv du dv dw
P, P, P k W"-i_.{: k dTy+E) k(ﬂ“f'—d;'i'z
(B-1)pr | @1 Q2 Q3 | = | k %‘;--%-% k %+3%+% k %—I—i‘j‘;
oy B (e + g +3de)  k(+4) k(4+g
e §24.

Xp="P+ 0+, X [P P P -

(3-12)pr (Yp=S 4G s o Y| =2 |@ @ & % (109)
Zp= s 1 1 i 7 mom R ] [

e §27.

In homogeneous case, § means the difference of the contraction or dilatation :

!
T T
i 5

¥
P = —5kéc, Q= —5kéc’, R=—5kéc";

K = —5ké.
Replacing & and r of K in (108) (= (3-8) ps) with £’ and 1/,

1
K: @' E '.""'_,'('.‘.""r
and ' and & with

¥ =r—rf, & =z-—¢é.
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54 For § is very small value, we can develope K into the convergent series, with the order followed
the power of §, and neglecting the bigger power than the first, then it turns out as follows :

1+(EZ f‘.“‘ 632 3d f‘]’"

then, because > rfr = 0, by the condition of natural state,

d.l fr
! Dl AT
653 E = —bkd.

e §31. Finally, Poisson assumes isotropic elasticity in natural state and the perpendicular pressure

on the surface of corps.

Je substitute, en outre, dans les équations (12)%%, & la place de Py, Qq,---,

leurs

valeurs. Je supose le corps homogeéne, et je prends alors pour son état naturel auquel
répondent les coordonées x, y, z, du point quelconque M, un état dans lequel la surface
du corps est soumise & une pression normale et la méme en tous ses points. En la
représentant par II, on aura K = II (§ 27). La quantite k étant négative ( méme § 27 )

et indépendante de x, y, z, je fais, pour abréger
He puts II the normal pressure on the corps, and for abbreviation, he uses :

Ik
4
then the motional equations of elastic corps are as follows :
XG4 (e 1 + 2 + 60+ 153) - 1y,
d*v d?u d? 2y d*v) _ I d*
¥= ET""“ (a_r+§ m*‘%a;&‘;"'%%ﬁ'%m)—;m’ (110)
Z-9¢+a (dz +H3Es 3 +%%”%+%‘fs—;‘¥) =na¢,
A.4.6. Fluid pressure in motion, the differential equation of motion.
e §60.56
Ft = P{¢" + Pyc’ + Pjec— K, Ft P, P, P} P
Ft=Qi +Qd +Qe—Kd, = | Ft | = | @ @& @ | -K|¢ (111)
F"t = R{¢" + Ryd' + Rhye — K¢ F't R, R, Ry ¢
P, P, P (K+k)(%2+2) (K+k)(2+ “") K +2(K + k)% — (K + k)div u
P | = | (k) j:+;,~ K +2(K + k)% — (K +k)diva (K+k)(%2+ %)
! f /
1 e T K +2(K + k)% — (K + k)div u (K+k)(§ d) (K+k)(““ + dW)

where, div u = dm + dy +4 .
e § 63. Deduction of compressible, fluid equations.

54(])) Then we get :

1
K:mz r(1—8)f(r —rd)

35(y) §24, (3-12) ps (= (109)).

56())) Below, we use (s)ps, for example, (7-9) p; means the equation numbered for the equation (9) in the chapter 7
described by Poisson [60], in which p; means the equation in the fluid problem by Poisson, because he numbered them by

the same number between chapters.
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57 Poisson’s tensor of the pressures in fluid reads as follows :

(7-7)ps
Uy Uz Us Ble+% ﬁ(ﬁ—;-i-d—”) a_‘n"_ B dxt 1 opds
iowve |- | lkek) poott -Gy (geg) |
oo e () (e e#)
(k+K)a=p8, (k—K)a=p, p=yt=K, then B+ =2ka, (112)

where yt is the density of the fluid around the point M, and vt is the pressure, and both depend on £,
so we mean yt and ¢ as x(t) and 1(t).

({}) By the way, here, we can show the conversion of tensor (7-7) ps, replacing the first column with
the third one, then we see easily the conventional style of array as follows :

ool - QU r2sl A(h+d) Al

Us Uy Uy
e e | © B +&) ot -GW vy BB+ |
& Wa W Bl +de) pde+de) p-otgt - Lbt 4 opde
(1)
Poisson deduces his fluid equation by the following steps :
p(X — T;T) S, U, U U; %
(7-8)pr oY — ) = B+ %‘-ﬁ +495, = pf-uw)= | I o V5 iy
(Z dt % + + .‘-1.\’!.'1 Wy We Wi i
where, u = (u,v,w), f=(X,Y, Z) a.nd the elements of velocity u = (u,v, w) are :
dx dy dz
Lo By Ey (113)
From (113),
g;? =% +uft +” 'H”d ] d d d, d
S - L= uP +vE+u
_g_ o {IJ + ’Ll. + w4y (1] Yy i
d& (‘y dz’ _‘EL: = (_l,E + u_‘!ﬂ + .vd_ﬁ +u££
d*z di — di dz T Vay dz
o =G Hu oy +wEv
JHt _B+ B dxt
T axt 114
2P E T T a & i)
Finally, we get the fluid equations in compressible condition :
P(X—:IT:'J}E)_ +ﬁ(‘—1+?+—!,
Yy - 43) = v
nZ - I!') = +ﬁ{m 1,, w4 4w,
where m_p—a—'L f—xf——z—
({4) If we put u = (u,v,w) and f = (X,Y, Z), then (115) becomes as follows :
du ,(J' d'q"Jt B+ B dxty
ot A * v( 7 Xt E) B
57(4) In Poisson [60], the title of the chapter 7 is “Caleul des Pressions dans les Fluides en m t ; équations

défférentielles de ce mouvement.”
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A.4.7. Stokes’ comment on Poisson’s fluid equations.
({) Stokes comments on Poisson’s (7-9) ps as follows :
On this supposition we shall get the value of ‘N“ from that of R} — K in the equations

of page 140 by putting
du _dv _dw 1 dxit

de  dy dz  3xt dt
‘We have therefore
dxt ( dxt
&8 xtd.’t
Putting now for 3+ (' its value 2ak, and for Xt jts value given by equation (116)%,

the expression for w, page 152,% becomes

K — 5k)—%

du dw
o (e
3 ( o )( + dy dz
Observing that a(K +k) = 3, this value of w reduces Poisson’s equation (7-9) ps [=(115)]
to the equation (12)g[=(120)] of this paper. ([74, p.119])

Namely, by using a(K + k) = £ in (112) and the following :
d"’~££+ (K+k)d¢i(du j;+dW)

w=p+ =

dx
dw _ d d
] ;£-§+"'(K+k)d d‘;+ + 22,

L:t_‘:_ dz %(K+k)dz dx+dﬂ+dw

then (115)( = (7-9) ps ) turns out :

p(X Ey)— +,8(d2“ 93—'&-!—93-‘!'-
(T—Q)P; ‘&?g‘) —|—_ﬁ(‘m + _"‘Q' + "‘ET 1
(Z' ‘(E;r +ﬁ(F+F+W)
where w = p+°(K+k)( +ﬁ;+ ),
(B —X)+ L +alk +h) (52 + S8+ £2) + 3a(K+k);f—( +d oy de) =,
= p(By —Y)+ 4 +a(K+k)(d+‘§+“—s+§2—z‘é) 3a(K + k)£ (a +%+%‘;"1)=07
o2 -2)+ 2 +a(K+k}( + Ly +‘jf—;;)+§a(K+k)d—‘;(%+j—;+“—‘:)=0,
P2 —X)+ #(22;’%+%}3+£%)—%%(%+%+%)=0’
2
> (125 {p(Br-Y)+2 (“E‘g+$+%‘;)—§%(j—:+ﬁ—;+%‘f =0,
2 2
o -2+ -G+ Gr ) -5k (R+d o) =0

Therefore, Poisson treats the matters on conditions of both compressible and incompressible fluid.

Here, «(K + k) is the constant to the tensor function with the main axis ( the normal stress ) of
Laplacian. %a(K + k) corresponds to the coefficient of grad.div term. In today’s NS equations, the ratio
of coefficients : —%{%‘ﬁ% = 3 as well as Poisson deduced in (7-9) ps and Stokes’ (12)s through

the tensor by Saint-Venant. By Prandtl [64, p.259] in 1934, the ratio was fixed at 3. By then, we had
have to wait the time of formulation by Prandtl in fluid equation. cf. Table 7. (f})

58(1)) Poisson [60, p.141],
du dv dw 1 dxt
(7‘2)}’! d +E+'—'—=—;"E£-. (115)

9O(y) of. (114)
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A.5. Saint-Venant’s tensor.
Saint-Venant® explains the object of his paper [67] to simplify the description and calculation of
molecular relation without setting the molecular function. His method is an epoc-making method of

tensor :

Cette Note a pour objet de faciliter I'examen du Mémoire de 1834 et de ce qui y a
été ajouté en 1837, en simplifiant, comme on va le dire, I'exposition du point principal,
qui est la recherche des formules des pressions dans l'intérieur des fluides en mouvement,
sans faire de supposition sur la grandeur des attractions et répulsions des molécules en
founction, soit de leurs distances, soit de leurs vitesses relatives. [67, p.1240]

We show Saint-Venant’s tensor, which seems to hint Stokes, from the extract [67]. £,7,( : velocities on
the arbitrary point m of a fluid in motion of paralleled direction of the coordinate x,y, z respectively.
P2, Pyy, P, : normal pressure and P,., P,,, P, : tangential pressure with double sub-indices showing
perpendicular plane and direction of decomposxtmn, if strictly speaking, such as the following :

Pye, Pyy, P les pressions normales supportées au méme point par I'unité superficielle
de petites faces perpendiculaires aux x, aux y, aux z, ¢'est-a-dire les composantes, dans
un sens normale & ces faces fictives, des pressions qui s’exercent a travers ;

Py, P.., Py, les pressions tangentielles sur les mémes faces et dans les trios sens, c’est-
a-dire les composantes, paralléelement aux faces, des pressions dont nous venons de parler

e la premiere sous-lettre désignant toujours la face, par la coordonnée qui lui est

perpendiculaire, et

¢ la deuxieme spécifiant le sens de la décomposition. [67, p.1240]

P_;_:_Pyy_Pzz_R;: _Pyy Pzz _ Pyz Pzz sz

(1)sv = : = =€,
-2 A8 AE-%) B+ E+E E+E

where, we put

l(Pn+PW+Pu) - 2‘5(“[6 49, dc) .

3 3 \dz dy dz
We put normal pressure respectively as follows :
dg dn d¢
(2)5\" Pz:r=7r+2€&;, .Pyy=7r+25a'§‘ Pzz—‘n'+25d—

From (1)sy, we get tangential pressure respectively as follows :

O Pome(8r L), pom e %), (1),

From (2)gy, we get m as follows :

Pz,+Pyy+Pzz:3w+2s(% & jg) = nzé(P,I+Pyy+Pu)_%E(ﬁJ,j:Jrjg)
ot 5+8) {4
P Ty Ty ﬁ+d_’1 ﬂ+25ﬁ 5(%4‘%) :
Boron| T | E8) (k) ok )
where m= §(PH+ Py, + P, __(K L‘.‘i_,._ﬁ)

Saint-Venant proposes the univarsal method that we can deduce the concurrence with Navier, Cauchy
and Poisson as follows :

60(1}) Adhémar Jean Claude Barré de Saint-Venant (1797-1886).
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Si 'on remplace 7 par w — &(j; + ﬁ; + =), et si I'on substitue les équations (2)sv et
(3)sv dans les relations connues entre les pressmns et les forces accélératrices, on obtient,
en supposant € le méme en tous les points du fluide, les équations différentielles données
le 18 mars 1822 par M.Navier ( Mémoires de I’Institut, t.VI ), en 1828 par M.Cauchy
( Emercices de Mathématiques, p.187 )61 et le 12 octobre 1829 par M.Poisson ( méme
Mémoire, p.152 )52,
La quantité variable zo ou 7 n’est autre chose, dans les liquides, que la pression normale
moyenne en chaque point. [67, p.1243]
This paper [67] seems to give Stokes a hint of tensor (124), partly because Stokes reports on the
Saint-Venant’s paper [67] in the report [73] by Stokes before Stokes issues his paper [74]. And partly
because we can see by comparing®® ¢;; with Stokes’ £;; (125) :

Lij = ('.rr + 2ev; ; — )6ij -+
o (;(Pﬂ + Py + P..) — "(‘qé“ +S04 dc) + 26034 ‘"’)6"" o

de  dy dz
= (%(Px:: + Pyy + P:2) - %Uk,k)aﬁ +e(viy +v54) & 2evi;6i; = e(vi; +v5,0)0i5 =70 (118)
where e(vi,j + vj Z u e + i Einstein’s convention
v =iy +vis) dz T dy dz

Here, using (118), if we put®® P,, = P,, = P,, = —p by Stokes principle in § A.6, then (118) is equivalent
to Stokes’ t;; as follows :

1 2e 2e
= {(g(P_” + Py + P..) — ?Uk,k}éij +e(vi; +v4) =(—p— ?Uk,k)ﬁ,&j + e(vi; +vj,4)
2
= Stokes’ : —t;; = (p+ gﬂvk‘k)(sij — i j +v;:) = (125).
Moreover Saint-Venant assumes that : if we put 7 = w — E(% + % + %) = w — £V, then

ti; = (‘CU — EVg k + 251),;,_-'-' - ’Y)(ng +9= (w - Evk'k)(&j + E('U,;,j -+ ﬂj,i) (119)

() By the way, we check the coincidence of Saint-Venant’s tensor with Stokes’(124) concerning only
(1,1) element or P;.

P of (117) = vr-HZE%
L 2, d¢  2edn -dE_
= Sp¥PRegzkEp 3 (dy+dz)

= wrilsp-ilE+e)]

= —p+2 -2-1&:—-1-(@ o dC)}

3dz 3 dz
- or{g -3+ 5+ 2)}
- ~p+25(%—5) = p—zp(d—;—a) — P, of Stokes (124).
where,
vo (PPt n) - S (R G E) =2 i=3(EF T

61Cauchy [6, p.226]

62poisson (60, p.152] (7-9) pr=(115).

63(1}) In our paper, we cite the description of ¢;; of the tensor : of Poisson and Cauchy, from C.Truesdell [75], of Navier,
from G.Darrigol [11]. in other case computed by ourselves or referred from Schlichting [69].

6411y cf I.Imai [22, p.185).
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Other elements are coincident with (124) in the same way.
From here, we get the t;; of Poisson, Navier and Cauchy as follows :
o t;j = whi; —evplij +€(vij +vj:),w=—p, —€=A e=p
= Poisson’s t;; = —pdij + )\'Uk‘kts,;j +,u(‘u,-‘_,- +’U'_-':.,'),

e L= wd,:j —E‘l.?k‘k(s"j +E(‘Ui‘j + vj‘,-),w =0, —e=\ E=p
= Cauchy’s ti; = ;\‘b‘k_ktsij + LL(U,'_P_-; + ‘Uj,,;),

o t;; = wdi; — e(vkkbij + vij + v;.i), w=0,
= Navier’s lij = —E(éijﬂ.k,k +ui; + u,—,,—),
Moreover, we can add Stokes’
o tij = whi; — v li; +e(vij +v5:),w=—p, —e=—3%p, e=p
= Stokes't;; = (—p— g!ivk,k)éij + plvi; +vji)-
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A.6. Stokes’ principle, equations and tensor.
Stokes says in [74, p.80] :%°

If the molecules of E were in a state of relative equilibrium, the pressure would be
equal in all directions about P, as in the case of fluids at rest. Hence I shall assume the
following principle :

e That the difference between the pressure on a plane in a given direction passing
through any point P of a fluid in motion and the pressure which would exist in
all directions about P if the fluid in its neighborhood were in a state of relative
equilibrium depends only on the relative motion of the fluid immediately about P
; and

e that the relative motion due to any rotary motion may be eliminated without af-
fecting the differences of the pressures above mentioned.

Stokes comments on Navier’s equation :
The same equations have also been obtained by Navier in the case of an incompressible
fluid (Mém. de I’Académie, t. VI. p.389 )%, but his principles differ from mine still more
than do Poisson’s. [74, p.77, footnote]
Du d 2 2y 2 « v w
P —X)+ 88— (i + £+ 53) - 44 (42 + &+ 22) =0,
2 2 zl.f L U !
(12)s p(B-Y)+ L2 -p(43+55+53) -4+ ij;+§§+j—z) =0,

y
d; 24 2w d*w
(B8 —2)+ & - u( 5y + 53+ 5¥%)

S

d
_pdfdu 4 dv y dw) _
3dz(d:+dy+dz =0.

where Stokes says the coincidence with Poisson :

o due dv dw
w=p+ §(K+k)(£+d—y+a)
Observing that «(K + k) = f, this value of @ reduces Poisson’s equation (9) pr (=(115)
in our renumbering ) to the equation (12)g of this paper.

(1) By the way, (12)g turns to :

o
(B -2)+E -

or

Du dp d2v d*w
p(5t — X))+ & dady T dzdz )
Dy dp du dw
P\ ot Y) + dy dedy + dydz |7

2

B

3
Dw _ dp _ pfqdiuw dw d*w | du d?w
ot —2)+ ¢ —5(35F +357 H4E + i + & )

R
+ 4+

+3%5% +
% 3d=v +4d2‘u +3dzv

moreover, when we use vectorial notation after replacing with f = (X,Y, Z), we get :
Du 1 Du p 1 1
— —f —ulA =V(V - = — —ZAu-— — . ~-Vp=f
P57 — )+ Vp u( u+zV( ) =0 or Bt~ 5Au-3V(V )+ 2Vp
Stokes proposes the Stokes’ approximate equations in [74, p.93] :
p%’f—X)+§§~u(%‘%+%i‘é+%%)=U, du dv dw
2 2
(1B)s (PBE-V)+H -GG+ G+ =0  THra+=
2 2
PPt —2)+E —wlH+GF+ T =0,

Stokes proposes that :

0.

105

(120)

(121)

(122)

(123)

55(1].) Stokes [74, pp.78-105] Section 1. Explanation of the Theory of Fluid Motion proposed. Formulation of the

Differential Equations. Application of these Equations to a few simple cases.
66()) Navier [47].
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These equations are applicable to the determination of the motion of water in pipes and
canals, to the calculation of the effect of friction on the motions of tides and waves, and
such questions.

Here we shall trace his deduction on Stokes’ tensor :

pu(t-0) -u(gre) -w(E+s)

P T Ty IR T . Wy SRS gl
T BT | = “(;HJ’:x P 2‘;(vd5) ”(dz; y) T (124)
T, T\ P n(de ) —p(f+de) p-2u(le o)

where 36:d—;+4§+“—‘:

Here, he writes, “it may also be very easily provided directly that the value of 34, the rate of cubical
dilatation®.
() By the way, Stokes’ tensor is described compactly as follows :
—ti; = {p— 2p(vi; — 8) +7}di; — 7
= {p—2ui;}0i; + Y(—0ij +8i; — 1) <« 2udbi; = p(vij + ;)05 = v0i;
(p+2p7)di; —
2
(p+ 5 H0kk)045 — 1(vi + i), (125)

Here, the sign of —t;; depends on the location of the tensor in the equation, and we consider the coincident
with (120). 57 We see Stokes’ tensor comes from Saint-Venant’s tensor. From here, the article by
J.J.0’Connor and E.F.Robertson points out this resemblance as well.®®

By d’Alembert’s principle %,

p(Be—X) + 4R 4D 4 4l — p(Bx - X) + P =0,

Il

p(Be—Y)+ 4l dh = p(B-v)+Q=0, (126)
(B2 —7)+ 4+ 4B 4= p(Be - Z) + R=0
By (124) and (126), we get (123). We seek the tensor for ¢;; such that :
P P Ty T ! P Ty T %
Q = T3 Pz Tl m = T3 .P2 Tl o
R T T P n T, Ty P =

Using (124) and (126),

wip-2m(@) ras(B+ G+ @) +@ -G+ @)+ @+ a) )
fip—2m(f) +2m( e+ R+) i+t —n(B+R)p+E B+
-2l (8 42) )+ ] -l £)) 5 -0(2+ )}
do—n{(fr+Gr+50) +id(+2+9)} ir-n(fe+Sx+4y),
=S pf (S Ly L)+ ih (e d)) = (S Sy 5,
fo-u{(E+5p+52) +1E(8+2+2)) Er-n(fr+5e+50)

67(1}) Schlichting writes Stokes’ tensor with the minus sign as follows :
31},' Ehmj 2 ('}'Uk
ai; = —po; —_—t ) = =l —
- pé ’ + #( a-'f:j d:cg ) 3 B ('};rk
[69, p.58, in footnote]
S8(1)  cf. J.J.0'Connor, E.F.Robertson,—  http://www-groups.dcs.st-and.ac.uk/ history/Printonly/Saint-
Venant.html.[52]
69(11) In 1758, from the Newton’s kinetic equation ( the second law of motion ) : F = mr, d’Alembert proposed
F — mr = 0, where, F : the force, m : the gravity, r : the acceleration. According to his assertion, the problem of kinetic
dynamics turns into that of the static dynamics.
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Therefore we get (123).
By the modern vectorial expression, if we take f = (X,Y,Z2), v = %, and if, as Stokes says, we put
Du/Dt = du/dt, then (123) turns out as follows :

du

Bt —vAu+ — Vp f, divu=0.

(U) By the way, here we shall get the tensor of Stokes equations from Navier’s (23). We put as the
same as Stokes equations :

p(f-X)+E-c(358+

2 2
o £ 02+ 28) T w0 dw=0,
| B~-¥ +%§—€—.: 33—5 d_E

+2d°;(}‘y+2dydz)+d: u+@ v+d, w:0;
dw

(G -2)+Z—e(G¥+GF+3gp+2LL + d"ydz)+ vt w=0;

Using d’Alembert principle (126), we transform the terms of the coefficient of 3 with 3 = 2+ 1 and the
last two terms of the coefficient of 2 with 2 = 1 + 1, respectively. We show here the viscosity term as
follows :

—e((25 + £5) + £ + v + 2L 282 );
E W+(2"7+“7)+_’+2ddz;y+2:y$)‘
—e(L + 48 + 0¥ + £ +2£L +28y);
el rh(Ee B} a(led) va(en))
= {-eim(E+& +{2 +a( B+ e+ }+ *”
e{a (e a) £ (ke 2)+ [+ £(2 242}
We get the tensor ¢;; :

p-c(22+6) —e(Bid) —e(ds

r

L

—e(&+4) p-c(2f+6) —e(L+22) |, where 5=d—dz+j—;+%, (127)
(k) -e(grs) ooty
or
p-2e(%+6) —e(fo+d) -+
—e(de+42) p-2e(f+8) —e(+42) |, where 25=;—“+3—:+%. (128)

—e(de+42) -e(L+9) p-2e(L2+9)

Therefore we see (124), (127) and (128) are the invariant-tensors equivalent each other except for the
sign of 4.

A.7. The authorized expressions of two-constant and the NS equations by Prandtl.

By Prandtl [64, p.259] in 1934, the ratio was fixed at 3. We had have to wait by the time, when
including this ratio of two coefficients, what is called the NS equations were expressed by Prandtl in
fluid equations :

D
Bis=Ble o

=g- ;gradp-i— 3u grad div Aw + vAw (129)

where,WE'—t+w Vw, u=l§, w = (u,v,w), g=(X,Y,Z). Namely :

%5":(22+ +%‘:)+u(§%+%+%-‘é),
+

+v(E3+ 3+ 93), (130)
i 2
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For incompressible, it is simplified as follows :

Bl  Dmgecdaal piul, divws
P

dt
Prandtl shows N S equations deducing from the Newton’s fundamental law of mechanics, Mass x acceleration=force.
(15—1) p; plfj—‘: —F+G (131)

Prandtl says :
where the total force has been decomposed in body forces F and surface forces G. Leaving
out of the discussion systems in which centrifugal forces, Coriolis forces, etc., occur, the
only body force is the force of gravity per unit volume : F = pg. [64, p.251]
Now we have to come to the point where the total surface force G can be expressed
as a function of the rate of change of deformation. [64, p.258]

do, (?'rzy_i_arm)’ y=(@+é)_ﬁ7£§+ﬂfy3), _(87;+8ny+%)

=

oz "oy | 0z By T oy T 02 =\& Ty "o
Or Toy Trz %Q‘E% %&%ﬁ‘gﬁ p 0 0 divw 0
Tyzr Oy Tyz = pg-;g—;g—y +“é’_{-g_v§5 —| 0 p O —Zu wav?r
Tex Tzy Oz . = 5 D7 ’ ﬁ o o 0 0 P 0 0 div
o div w(=p grad div w with V) ,‘VW(:;.“JW with V)
2
l'l=,u(Vw+wV)—p—§,ud1vw (132)
G EicrI %L;l c'J_Tz 2p%—- —%p:divw u(%+%) p%ﬁ+%‘f
* Ty e Oy & v é . 3 é
= gy = Lg—,:r— aﬁl = = ,u(%—kg-; ng—:— ~§ud1vw p%ﬁ-+g§
z [k Ty dog - ‘ F : :
o %y B ;z(%+%§ ;.a(g—';+d—";) 2,&%— —%;Ldlvw
Then
v _ 8 8u u u 8 [ du du i
Cu:——yf'i',uW+w+w>+%3.—j(m+?§+'§;)v "
5 2 2 *
Gy=-8+u %ﬁ+§2§;+§;§)+§%(%+3—;+-@%), = G = —grad p+ 34 grad div Aw + pAw
=t a(Er e Cr e 82) + 45 (R+ 24 5)
(133)
Since, from (132)
G= V-1
2
= pV{Vw+wV)—gradp—g,ugraddivw

= #V-Vw+p.graddivw—gradp—%,ugraddivw

1
= —grad p+ Fh grad div w + pAw
Substituting (133) into (131), we find (129) or (130).
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APPENDIX B. The “two-constant” theory in capillarity

Gauss didn’t mention the following fact, and Bowditch 7 also didn’t comment on Gauss’ work in
Laplace’s total works [37] except for only one comment of the name “Gauss” [37, p.686]. ™
N.Bowditch comments as follows :
This theory of capillary attraction was first published by La Place in 1806 ; and in
1807 he gave a supplement. In neither of these works is the repulsive force of the heat
of fluid taken into consideration, because he supposed it to be unnecessary. But in 1819
he observed, that this action could be taken into account, by supposing the force o(f)
to represent the difference between the attractive force of the particles of the fluid A(f),
and the repulsive force of the heat R(f) so that the combined action would be expressed
by, o(f) = A(f) — R(f) ; --- [37, p.685].
We would like to pay attention to Bowditch’s remark about the works of Gauss and Poisson as follows :

In 1830, Gauss published a work on capillary attraction entitled “Principia generalia
theorice figurce fluidorum in statu equilibrii, ete.,” (“General principle of theory of the
figure of fluid in state equilibrium” ), where, by means of the principle of virtual velocities,
he obtains the figure of the capillary surface, and other theorems as they are given by La
Place in this volume, and he also gives a more complete demonstration of the constancy
of the angle of contact of the fluid with the sides of the tube.  Finally, M.Poisson, in
1831, published his “Nouvelle théorie de l'action capillaire, ete.,”( “New theory of the
capillary action” ), where he expressly introduces into the formulas the consideration
of the change of density of the fluid at its surface and near the sides of the tube in
consequence of the corpuscular attraction. [37, p.686]

In his historical descriptions about the study of capillary action, we would like to recognize that there is
no counterattack to Gauss, but the correct valuation. Gauss [18] stated his conclusions about the papers
by Laplace as follows :

At hancce propositionnem cardinalem totius theoriae per calculum demonstrare ne
suscepit quidem ill. Laplace ; quae enim in dissertatione priori p.5 huc spectantia af-
feruntur, argumentationem vagam tantummode exhibent ef quad demonstrandum erat
iam supponunt : calculi autem p.44 sq. suscepti effectu carent.

(Engl.transl.) To this cardinal proposition of the total theory with calculation for
demonstration, we can not accept the papers by Mr. Laplace ; in p.5, since not only he
developed clearly incorrect argument but also showed even the false proofs : we consider
that his calculations in the pages and the following after p.44 are the vain effects.”> [18,
pp.33-34]

70(1}) The present work is a reprint, in four volumes, of Nathaniel Bowditch's English translation of volumes I, I1, III and
IV of the French-language treatise Traité de Mécanique Céleste by P.S.Laplace. The translation was originally published
in Boston in 1829, 1832, 1834, and 1839, under the French title, “Mécanique Céleste”, which has now been changed to its
English-language form, “Celestial Mechanics.”

71(1}) Bowditch’s comment number [9173g].

72(4}) There are 35 pages of calculation between p.44 and p.78 in his Supplément.
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AprpenDIX C. Laplace and Gauss

C.1. Laplace’s theory of the capillary action.

We show below the four available originals of the capillary action by Laplace, which we mention, in
which the top halves are the original by Laplace, to which Gauss and Bowditch et al., referred, and last
two are the translations by Bowditch, in the commentary of which he cited Gauss [17].

1 . [34] P.S.Laplace, Trait¢ de méchanique céleste. Supplément au dizieme livre du traité de
Mécanique céleste. Sur laction capillaire, Ruprat, Paris, 1798-1805, pp.1-66. ( We use this
original printed by Culture et Civilisation, 1967. )

2 . [35] P.S.Laplace, Supplément a la théorie de l'action capillaire, Tome Quatriéme, Paris, 1805,
pp.1-78. ( op. cit. )

3 . [36] P.S.Laplace, Supplément a la théorie de 'action capillaire, translated by N. Bowditch, Vol.
I §4 90-95, 1966. ( This is the complete works of Laplace. )

4 . [37] P.S.Laplace, On capillary altraction, Supplement to the tenth book of the Méchanique
Céleste, translated by N. Bowditch, same as above Vol. IV 685-1018, 1806,1807. 1966. ( op. cit.

)

C.1.1. Laplace’s conclusions of theory of the capillary action.
Laplace stated his “complete theory” of attraction which have an effct on the capillary action in the
introduction [34], as follows :

J'ai cherché, il y a longtemps, & determiner les lois d’attraction qui représentent ces
phénomenes : de nouvelles recherches m’ont enfin conduit a faire voir qu'ils sont tous
représentés par les mémes lois qui satisfont aux phénomes de la réfraction, ¢'est-a-dire
par les lois dans lequelles I'attraction n’est sensible qu'a des distances insensibles; et il
en résulte une théorie compléte de I'action capillaire.[34, p.2]

De ces résultats relatifs aux terminés par des segmens sensibles des surface sphérique,
je conclus ce théoreme général : < Dans toutes les loi qui rendent I'attraction insensible
4 des distances sensibles, I'action d'un corps terminé par une surface courbe, sur un canal
intérieur infiniment étroit, perpendicularire a cette surface dans un point quelconque, est
égale a la demi-somme des actions sur le méme canal, de deux sphéres qui auraient pour
rayons le plus grand et le plus petit des rayons osculateurs de la surface, a ce point >.
[34, p.4]

From the translation by Bowditch [37], for brevity, we show the corresponding part with above as follows

A long while ago, I endevored in vain to determine the laws of attraction which would
represent these phenomena ; but same late researches have rendered it evident that the
whole may be represented by the same laws, which satisfy the phenomena of refraction ;
that is, by laws in which the attraction is sensible only at insensible distances ; and from
this principle we can deduce a complete theory of capillary attraction. [37, p.688]

From these results, relative to bodies terminated by sensible segments of a spherical
surface, I have deduced this general theorem. “In all the laws which render the attraction
wmsensible al sensible distance, the action of body terminated by a curve surface, upon
an infinitely narrow interior canal, which is perpendicular to that surface, at any point
whatever, is equal to the half sum of the actions upon the same canal, of two spheres
which have the same radii as the greatest and the least radii of curvature of the surface
at that point.” By means of this theorem, and of the laws of the equilibrium of fluids, we
can determine the figure which a fluid must have, when it is included whithin a vessel of
a given figure, and acted upon by gravity. [37, p.689]

The target of Supplément, Laplace says, is “so as to render more evident the identity of the attractive
forces, upon which this action depends, with those which produce the affinities of bodies” (Supplément
135))

L’objet de ce Supplément est de perfectionner la théorie que j’ai donnée, des phénomeénes
capillaires ; d’en étendre les applications ; de la confirme par de nouvelles comparisons
de ses résultats avec 'expérience ; ce en présentant sous un nouveau point-de-vue les
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effets de I'action capillaire, de mettre de plus en plus en évidence I'identité des forces
attractives dont cette action dépend, avec celles qui produisent les affinités. [35, p.1]

( Engl. transl. by Bowditch ) : = The object of this supplement are, to complete
the theory which I have given of the capillary phenomina; to extend its application; to
confirm its results by a comparison with experiment ; and to present, in a new point of
view, the effects of the capillary action, so as to render more evident the identity of the
attractive forces, upon which this action depends, with those which produce the affinities
of bodies. [37, p.806]

C.1.2. Laplace’s theory of the capillary action.

Laplace’s theories of the capillary action are described in the 14 articles. We cite only the contents of
no 1 ([35, pp.10-14]) of theory of [35] pointed out by Gauss:
9 no 1 of the theory of capillary action :

Considérons vase ABCD ( fig. 1), ™ plein d’eau jusqu’en AB, et concevons un
tube capillaire de verre, NMEF, ouvert par ses deux extrémités, et plongeant dans
son extrémité inférieure; 'eau s’élevera dans le tube jusqu’en O, et sa surface prendra
la figure concave MON, O étant le point le plus bas de cette surface. Imaginons par
ce point et par l'axe du tube, un filet d’eau renfermé dans un canal infiniment étroit
OZRYV; il est clair, d’aprés le principe que nous venons d’exposer sur le peu d’étendue
des attractions capillaires, que 'action de 1’eau inférieure 4 ’horizontale IOK, sera la
méme sur la colonne OZ, que I'action du vase la colonne V' R. Mais le ménisque MIOK N
agira sur la colonne OZ de bas en haut, et tendra parconséquent & soulever le fluide.
Ainsi, dans 1’état d’équilibre, I'eau du canal OZ RV devra étre plus élevée dans le tube
que dans le vase, pour compenser par son poids, cette action du ménisque.

Soit r la distance du point attiré, au centre d’une couche sphérique dont u est le rayon
et du 1'épaisseur. Soir encore # I'angle que le rayon u fait avec la droit r,  ’angle que
la plan qui passe par les deux droites r et u fait avec un plan fixe passant par la droite
7 : I’élément de la couche sphérique sera u?du.dw.df.sin .6. Si ’'on nomme ensuite f la
distance de ce élément, au point attiré que nous supposerons extérieur & la couche; nous
aurons

f?=1? - 2ru.cos .0 +u’.

Représentons par ¢(f) la loi de P’attraction 4 la distance f, attraction qui, dans le cas
présent, est insensible lorsque f a une valeur sensible; 'action de ’élément de la couche
sur le point attiré, décomposée parallélement & r, et dirigée vers le centre de la couche,
sera

u’du.dew.db. sin .S.LJW.QOU)
On a
r—u.cos.f df
f T dr
ce qui donne & la quantité précédente, cette forme

u?du.dw.df. sin .0. % o(f)

Désignons par ¢—II(f), I'intégrale fdf.o(f), prise depuis f = 0; ¢ étant la valeur de cette
intégrale, lorsque f est infini; II(f) sera une quantité positive décroit avec une extréme
rapidité; de maniére & devenir insensible, lorsque f a une valeur sensible. [35, pp.10-11]

9 no 4 ([35, p.18-23]) of the theory of capillary action :
Soit donc O( fig. 8 ) ™ le point le plus bas de la surface AOB de I’eau renfermée
dans un tube. Nommonz z la coordonnée verticale OM; = et y, les deux coordonnées
horizontales d’un point quelconque N de la surface. Soient R et R’ le plus grand et le

73(44) The original fig. 1 by Laplace [35] is shown in the last page in the appendix § F.3 of our paper.
74(1].) The original fig. 3 by Laplace [35] is shown in the last page in the appendix § F.3 of our paper.
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plus petit des rayons osculateurs de la surface & ce point.
R et R’ seront les deux racines de 'équation ™

R2.(rt —s%) = R/(1 +p2 + ) {(1 +¢%)r —2pgs + (1 +p?).t} + (1 +p* + ¢*)* =0, (134)
équation dans laquelle
g, o B Fx R L Wy, e (135)
dz dy dx? dedy dy  dx dy?

On aura donc

d d; d d
1,1 (1+4¢%).2 —p@(zﬁ + E;") + (4P (14 ) —2pgs+ (1 +p2) (136)
R R (1+p2+¢2)% (1+p% +¢?)%
Cela posé, si 'on congoit un canal quelconque infiniment étroit NSO ; on doit avoir par
la loi de I'équilibre du fluide renfermé dans ce canal,

i 1 i
k=5l g+g)rr=k=p{3+5): RYE) - E Y V=0
b et b’ étant le plus grand et le plus petit des rayons osculateurs de la surface au point
0O, et g étant la pesanteur. En effet, I'action du fluide sur le canal, au point N, est par

ce qui précede, K — % (Tlt Es #), et de plus, la hauteur du point N audessus du point

]

(1 1)“2£_1 1

O est z. L'équation précedente donne, en y substituant pour —}? + -;%,-, sa valeur, 7

(@) (14 g®)r — 2pgs + (1 +p?).t 29z _ 1 i L
(149 +¢?)3 -

(138)
[35, p.19]

C.1.3. Laplace’s supplément for theory of the capillary action.

Laplace stated the supplément under the title of Nouvelle maniére de considérer Uaction capillaire in
[35, p.14]. We show the original contents of p.5 and p.18 of [35] pointed out by Gauss. These translations
are available by Bowditch [37] 77.

9 pages 5—6 of Supplément [35, pp. 5-6] : ™

(1) L’intégrale relative & f peut étre prise depuis f = 0 jusqu’a f infini; ensorte qu’elle
est indépendente des dimensions de la masse attirante. C'est la ce qui caractérise
ce genre d’attractions qui n’étant sensibles qu'a des distances imperceptibles, per-
mettent d’ajouter ou de négliger a volonté, les attractions des corps, a des distances
plus grandes que le rayon de leur sphére d’activité sensible.

(2) Désignons comme dans le n° 1 de ma Théorie de 1'action capillaire, par ¢ — II(f),
Vintégrale fdf.o(f), prise depuis f = 0; ¢ étant la valeur de cette intégrale, lorsque f
est infini.  II(f) sera une quantité positive décroissante avec une extréme rapidité;
et 'on aura, en prenant les intégrales depuis f = 0,

/ Fdfp(f) = —FUIICF) + 4 ] FodrI().

— fLII(f) est nul, lorsque f est infini; car, quoique f* devienne alors infini, 'extréme
rapidité avec laquelle TI(f) est supposé décroitre, rend f4.I1(f) nul.

(3) Les functions o(f) et II(f) ne peuvent étre mieux comparées qu'a des exponentielles
telles que ¢~/ ¢ étant le nombre dont le logarithme hyperbolique est 'unité, et i
étant un trés-grand nombre.

75(14) (134) is a quadratic equation with respect to R.

76(1}) From (136) and (137) we get it.

77(4) In this translation by Bowditch[37], the relation with the original pages is not shown.
?S(J}) Remark. Here, the itemized style is not of Laplace but of ours, for convenience’ sake.
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(4)

()

(6)

En effet, c=*/ est fini lorsque f est nul, et devient nul lorsque f est infini; de plus, il
décroit avec une extréme rapidité, et le produit f™.c=% est toujours nul, quel que
soit ’exposant n, lorsque f est infini.

Soit encore, comme dans le n” 1 de la Théorie citée,

f FAFTIS) = ¢ — W(f);

¢ étant la valeur de cette intégrale, lorsque f est infini. U(f) sera encore une
quantité positive décroissante avec une extréme rapidité; et l'on aura

& [ o) = -ar () +s. [ 1ar).

dans le cas de f infini, f2¥(f) devient nul; on a donc en prenant I'intégrale depuis
f =0, jusqu’a f infini,

4 [ panw =s [ rau).

Einfin, si I'on désigne, comme dans le n° cité, par % intégrale [ fdf.W(f) prise

depuis f nul, jusqu’a f infini; on aura

[ raren =s [ raruin) -

Les deux forces tangentielles précédentes paralléles aux axes des z et y deviendront
ainsi :

4H

™

(SC+ E).H, (3F+D).H.
[35, (Supplément) p.5]

(We show the translation by Bowditch as follows : )

1)

3)

(4)

()

The integral relative to f may be taken from f = 0 to f = oo, so that it is
independent of the dimensions of the attracting mass. This is what characterizes
this kind of attractions, which, being sensible only at insensible distance, allows us
to notice or neglect, at pleasure, the attractions of the bodies situated beyond their
sphere of sensible activity.

We shall put, as in

J
() = ¢ - /ﬁ dfo(f),

the integral [ df.p(f) being taken from f = 0, and c being its value when f is
infinite. TI(f) will be a positive quantity, decreasing with extreme rapidity; and we
shall have, by taking the integrals from f = 0;

/ Fdfp(f) = —FLII(f) + 4 / FRdFI).

—fAI0(f) is nothing when f = co; for although f* then becomes infinite, the
extreme rapidity with which TI( f) is supposed to decrease, renders f4.II(f) nothing.
The functions ¢(f) and II(f) may be very well compared with exponentials like
¢~#; ¢ being the number whose hyperbolic logarithm is unity, and i being a very
big positive number.

For ¢~*/ is finite when f = 0, and becomes nothing when f is finite; moreover it
decreases with extreme rapidity, and in such a manner that the product fre
always vanishes when f is infinite, whatever be the value of exponent n.

We shall now put, as in,

i
fn FafTI(f) = ¢ — W(f);

113

(139)

(140)
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¢’ being the value of that integral when f is infinite. W(f) will also be a positive
quantity decreasing with extreme rapidity; and we shall have

4 f PAfII() = —4f2.0(f) +8 / Faf().

When f is infinite, f2.9(f) becomes nothing; therefore we shall have, by taking the
integral fron f=0to f =00

o0 3 B 00
4 fo FoFI() =8 fu Fdru(f). (141)

(6) Lastly if we put as in,

H o0
o= /D FaF(),

we shall have,

rael) =8 | Jdru() == (142)
0
Thus the two preceding tangential force, parallel to the axes of = and y, will become
(SC+E).H, (F+D).H.

[37, pp.812-813]
Remark by us: above (142) tells us simply that we get its equation from (140) and (141),

= 4 4 - 3 ® 3 2 i
| et ==rtfup +a [ pan)aao), 4 [T g =s [ -

9 p.18 of Supplément :
Fixons 4 cette extrémité, l'origine des coordinées =, y, z d'un point quelconque du
plan solide; 'axe des = étant sur la ligne a de la plus courte distance de I'extrémité de
la droite au plan, et Paxe des y étant horizontal comme 'axe des x.
En désignant par 2’ 1'abaissement au-dessous de l'origine des coordonées, d’un point
quelconque de la ligne attirée; I'attraction vertical du plan solide sur ce point sera a la

distance s, et s
. !
f/ de.dy.dz. (2% ).np(s);

s
@(s) étant la loi de I'attraction a la distance d'un point attirant du plan, au point attiré
de la ligne ; ensorte que 'on a
=224yt 4+ (z+2)2

Pour avoir I'attraction verticale du plan solide, sur la ligne entiére; il faut multiplier la
triple intégrale précédente par dz’, et I'intégrer par rapport & 2’ depuis z’ = 0 jusqu'a 2’
infini.

En désignant donc comme dans le n? 1 de ma Théorie de I’action capillaire, par e—II(s),
I'intégrale [ ds.p(s) prise depuis s = 0, la constante ¢ étant I'intégrale entiére depuis s
nul jusqu’a s infini; on aure

fdz’.(z-'.-—szr).tp(s) = II(s);

s étant dans la second membre de cette équation, ce que devient s, & l'origine des
coordonnées, ou lorsque z’ est nul.
L’attraction du plan solide sur la ligne entiére sera donc

/ / iy BT

(35, (Supplément) pp.18-19].

C.2. Gauss’ paper.
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C.2.1. Gauss’ papers of the capillary action.

Gauss states common motivations with Laplace about M D equations. For example, in §10,§11, §12,
which we mention below, he states the difficulties of integral [ r%¢r.dr, in which he confesses that he also
is included in the person who feels difficulties to calculate the M D integral.

C.2.2. Gauss’ letters corresponded with Bessel about Laplace’s theory of the capillary ac-
tion.
Gauss corresponded with Bessel about Laplace’s two papers [35].

Allein in der ganzen ersten Abhandlung selbst finde ich kein Wort, was dienen kann
diess zu beweisen. Es kann also wohl nichts gemeint sein als die Stelle in der Einleitung
pag. 5, wo ich aber den Schluf, dafi die > plans ( en question ) sont également inclinés
a leurs parois< keineswegs auf eine befriedigende Art begriindet finde. Ich gestehe, daf§
mir dieser Hauptheil von Laplace’s Theorie der praecisen mathematischen Begriindung
des librigen keineswegs wiirdig zur Seite zu stehen, sondern mehr den Character der
vaguen Apercus, die man friiher von dem granzen Phaenomene hatte, to tragen scheint.

Freilich kénnte man sagen, dafl Laplace these Liicke einigermassen in der zeiten Ab-
handlung ausgefiillt hat. Das Rapprochement in der ersten Methode die Haarréhrchen
zu behandeln mit der andern in der zweiten Abhandlung ( die doch wohl im Grunde
nichts weiter ist als die Ladande’sche ) fiihrt zu einer Bestimmung des Winkels quaes-
tionis, pag. 18. ( 27. Januar 1829. )  [18, pp.487-490].

(Engl. transl.) Only in all the first paper, I can find no word to be useful for me. It is
sufficient to be no meaning as the part of the introduction ™ in page 5, where I conclude
that his phrase “the plane ( in question ) inclines equally to its wall” is not based on
the admitted method. I can not help confessing that these main theory by Laplace’s
Theory is for me to be convinced which is never worth consulting it as the ( concise ) *
mathematical ground.

Although we can say, of course, that Laplace complemented these defects in the second
paper, however, his approximation in the first method, dealt the capillar action with
another one, in the second paper ( which is fundamentally inferior to the writing by
Ladande®' ), he deduces the doubtful formulae of angle. page 18.

C.2.3. Bessel’s reply to Gauss.

Gegen die Gleichung der Oberfliche habe ich nie ein Misstrauen empfinden, allein
den Winkel habe auch ich nicht fiir erwiesenermafien unabhéngig von dem Durchmesser
der Réhre u.s.w. gehalten, sondern diese vielmehr als der Erfahrung, welche mit dem
Raisonnement Seite 5 zusammentrifft, entsprechend; denn das Aufsteigen der Fliissigkeit
in eigen Réhren konnte nicht dem Durchmesser derselben umgekehrt proportional sein,
wenn dieser Winkel nicht stets gleich bleibe. ( 10. Februar 1829 ) [18, pp.491-493].

(Engl. transl.) To the equation of surface, I did not have any doubts, however, about
that the angle is independent of the diameter of the tube, etc., I have not accepted as
being beyond doubt, but also these, strictly speaking, in the experience, which consider-
ing with the assumption of the page 5, phenomena of fluid in the tube, it is impossible
to be in inverse proportion to the diameter of the tube, because this angle is not always
equal.

(1)) The introduction takes 1-9 pages in [35] and 685-694 pages in [37].

80(1}) We do not know about the meaning “praecisen”. We can consult the word “praecise” whose meaning is “in short,
in few words, briefly, concisely ” of only as adverb with the following dictionaries edited by C.T.Lewis, “Elementary Latin
Dictionary Lexicon” [41], or “Lexicon Latino-Japonicum” by Kenkyusha. In this sentence by Gauss, it must be used as
adjective, so that we use as “concise”.

81()}) Ladande, Joseph Jéréme Lafrancois de, (1732-1807), i.e. an astronomer who then was criticized for his astronomical
writings by Gauss. cf. Shogakukan Robert Dictionnaire Frangais-Japonais by Shougakkan, 1988. p.1390
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C.3. Laplace’s two-constant in the Suppléments.
We show Laplace’s usage of two-constants in calculating of the capillary action in Supplément [35,
pp.9-14] as follows :

2r. {1+ (A+ B).r}.¥(r).

Maintenant, si 'on nomme R le rayon osculateur de la section de la surface, par un plan passant par les
axes des x et des z, et si 'on nomme pareillement R’ le rayon osculateur de la section de la surface, par
un plan passant par les axes des y et des z ;

1 1

2«.{1 4 %(}1% + %) (r).

L,

Laplace stated that :

Pour avoir 'action entieére du corps, sur un fluide renfermé dans un canal infiniment
étroit per pendiculaire i la surface, et dont la base est prise pour unité; il faut multiplier
I’expression précédente par dr, et I'intégrer depius r = 0 jusqu’a r infini. Soit alors 2

o / Ufdf =K, 2r / Uf.fdf = H, (143)

I'action du corps sur le canal, sera

H /1 1
K+5(7+7)
(I)Here, (143) means that these K and H are the two-constant, which, we think, had appeard for the
first time. These mean

2«/@(;);1;:1{, 27r/fllf(f)df= H,
()

When we denote h + z the height of the point on the sea level, g : mass gravity and D : density, then

H /1 1
However, if we denote by (135)

and by the theory of curved surface :
L, 4 (1+r12)-%5—m-(%§+%§)+(1+p2)-§§
RTH T+ + )]

= (144)
P (1+¢2).22 —pq-(;‘fﬁ + %5) +(1+p?). &
2 (1+p2+ ¢k

équation qui est visiblement la mémé que 'équation (a) # du n® 4 de la Théorie citée.

| =9p.(h+2)

Maintenant, il est facile de s’assurer par la théorir des surfaces courbes, que si 'on
nomme w ’angle que la plan tangent a la surface du fluide intérieur au tube, forme avec
les parois du tube toujours supposé vertical, & I'extrémité de sa sphere d’activité sensible
;ona

pdy — qdx

ds.\/1+p? + ¢*

cos w==

82(|}) of. Gauss cites this Laplace’s (143) in (176).
83(1) of. (138).



The “two-constant” theory and tensor function underlying the Navier-Stokes equations 117

ds étant 1'élément de la section ; on a donc en observant que l'angle @ est constant,
comme je I’ai fait voir dans la théorie citée,

pdy — qdz

V1+p2+¢2

¢ étant le contour entier de la section; partant

%.H. f / d:cdy.{(d. \/1+1:9+q2 ) 3 (d. 1+32+q2)} - %.H.c. cosw
dz

dy

=C.COs W

ce qui donne
gDV = %.H.c. COS ™

ainsi le volume du fluide, élevé au-dessus du niveau par ’action capillaire, est propor-
tionnel au contour de la section de la surface intérieure du tube. On peut parvenir &
cette équation remarquable, en considérant sous le point de vue suivant, les effets de
I’action capillaire.



118 The “two-constant” theory and tensor function underlying the Navier-Stokes equation

APPENDIX D. Disquisitiones generales circa superficies curvas.
(General survey on the curved surface)

We show the only relative and available articles : §8, §10, §11, §12, §21 and §22 of the deduction of
theorem of curvature and the first and second fundamental forms to the next appendix E.
Remarks.

e The contents are not literal or word-for-word translation from Gauss, but our free translation
commenting our interpretations.

e Throughout this paper, in citation of bibliographical sources, we show our own paragraph or
sentences of commentaries by surrounding between (|}) and (f).  ((f}) is used only when not
following to next article/section ). And by =*, we detail the statement by original authors,
because we would like to discriminate and to avoid confusion from the descriptions by original
authors. The mark : = mean transformation of the statements in brevity of ours. And all the
frames surrounding the statements are inserted for important remark of ours. Of course, when
explicitly without these marks, it is not the description in citation of bibliographical sources.

e Throughout both papers of appendix D and E, Gauss didn’t use today’s expression of array or
determinant at all, so all the expressions of the sort of that are of ours.

D.8. Theorem of curvature.

Theorem D.B.1. The curvature in surface point of fluid is expressed by the fraction, of which the
numerator is a value and the denominator is, on the contrary, the product by the two radii of limit
curvature in a sectioned normal plane.

D.10. Deduction of the formula of curvature.

%%Ea, %Eu’, if—f-zu""
d*y _ _ _
d—§¥=ﬁ, d—gd"';:ﬁ’, d—§,¥=ﬁ”‘
.l diz — ./ dtz — M
d_p!'=7: dpdq_'y’ d_q'!—’)’
The letters a, b, ¢ are permuted cyclically.
A=bd — eV, , .
. ¢ ¢ oa a
B=cd —ad, = A= ‘ yoo | B= s | C o | (145)
C =ab' — ba'
Adz + Bdy + Cdz = 0, namely dz = —?;dﬂc - gw.dy. We denote “a“' =t= —-3 and 5-3 =u= —{3
dp = b'dz — d'dy, f—a :
Cdp z—ddy, . C[dp] _ W o—a [dm] (146)
Cdq = —bdz + ady dq -b a dy
We take the complete differential of (146) in respect to ¢ and u.
3 s _  4dC dA = dA dC
C3dt = (A ic Cd—P)({,fd_L — (Ca - Ai-q-)(bdz — ady), -

Codu = (BC - C4B)(Vdo — a'dy) + (C4E — B ) (bdz — ady)

A C C A Voo
dA  dC dC  dA dir d
dt dp dp dg dyg Y £
= & du ] -
‘ B C ‘ | C B ‘ l b a ‘
dB  dC dC  dB
% B & @ dy dx
We substitute (147) to the followings :
%:c’ﬁ+b7’-cﬁ’—b"'y, %’5-:(:’{)”+b'y”~cﬁ”—b"y',
%gza"y—l-ca’ —ay' - Ca, % =a'y +ca —ay" -,

dC __ / ! ' dac __ et
—E—ba+a,8 —ba' —a'f3, -d?—b’a’+a,{3”—brx”—aﬁ
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C3T = (V)* (@A + BB 4+ vC) — 2bb'(«/ A + ' B 4+ vC) + b*(o" A+ "B + 4" C),
C3U = —a't'(aA + BB +vC) + (ab’ + ba') (/A + /B ++C) — ab(e”’ A+ "B +~"C), (148)
C3V = (a')*(aA + BB ++C) — 2aad’ (¢’ A+ /B ++C) + a*(¢" A+ "B ++"C)

(1)¢ Aa+BE+Cy=D,

(2)¢ Ad' + B +Cy' =D, (149)
(3)0 Ao’ +Bﬁ” +C,Yﬂ = D"
2 d2 2,
D a B A dﬁ & 5—33 A
= D' =| o f + B = | 4= &y d=z B
Dn an E.w :);n & dﬁ‘i‘; dj’zﬂq (f{;dq C
dg?  dg®  dq?

Substituting (149) for (148), we get the following :
C3T = (V)2D — 2bV' D’ + ?D", T () —2bb ? D
C3U = —a't'D + (ab/ + ba')D' —abD", = C3| U = | —ad't! (ab\ +ba’) —ab, D'
CSV Ty (a!)2D —%aa’' D’ + a2DH Vv (af)2 —%aa  a? D"

C8(TV - U?) = (DD" — (D')?)(ab’ — ba')*> = (DD" — (D')?)C*?

Therefore, the formula for the curvature is as follows :

DD" — (D')?

k= @i oy (150)

D.11. Evolving the equation of curvature.
Suppose that =, y and z are functions of two independent variables u and v, with all partial derivatives
up to those of the third order. The letters a, b, ¢ are permuted cyclically.

dx = adu + a'dv, de ad d
dy=bdu+bdv, =* |dy| = | bV [ “}

dv
dz = cdu + ¢/ dv dz ec
aa’ + bl + ¢ = F, ="

E abe aa d
F = abe bbb
(a:)z + (bf]Z + (d]z =G, G a b cd

Let us treat v as the independent variable, u as a function of it. For the square of the distance of arc we
shall have

a2+ + 2 =E,
(151)

ds? = Edu® + 2Fdudv + Gdv?

4)e aa+bB+cy=m,
(5)e ad +bf + ey =m!,

152
(G)G aaﬂ + b'( " + C’}‘H - mﬂ‘ ( )

d’z  d%y 4Pz
m a B v a ‘2'1'55 dp Eg a
=* m' =| o g + b = | 4=z dy d%z b
" N ﬁﬂ' ’Y ! dpdq dpqu dqu
m o B A c Pz dPy  dz ¢
dq= g dqz

(MNe da+bB+dy=n,
8)e a'o/ +VF +y =7, (153)
(g}a an’(xﬂ + bn"ﬁ” + c’,TH - n.”
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! rodlz dy  dz ,
n a B a dp? dp dp? a
¥ n' = o [6.* ,Yf B = d*x d*y d?z Y
" " i £ dpdq dpqu g dq J
n o " oy d &z d 2 c
L dq? dyg dq?

From (145) and (151), we get the following expression :
=A

2 2 2 _ 2_. | E F
A*+B*+C*=EG—- F*= F G

The first expression A% + B? + C? = EG — F? is verified easily by extending the following :
A2 4 B4 C? = (b —eb')? 4 (cad’ — ad)? + (ab’ — ba')?
N G Pk el

Az B2 c?
= (@+b¥+F) ({a’)2 +(b")? + (c’)z) —(ad’ +bb' +¢c)? = EG — F*?
| I — A SR SR i
E p F2

We deduce the relative formulae to curvature.
Step 1. At first, we should solve the following system of linear equations from the equations (1)¢ of

(149), (4)(,' of (152] and (7)(} of (153) H
()¢ Aa+ B+ Cy=D,
(4)¢ aa+bf+ecy=m,
(Mg da+¥f+dy=n,

D A B C ! A B C
=5* m = a b ¢ I} e a b ¢
n a v o v a V¥

At the first step : 1-1, eliminating 3 and -, and multiplying these by b’ — cb’, ¥'C — /B, ¢B — be,
and adding these expressions, we get the following expression :

(A6 — ) +a(t'C ~ ¢ B) +a/(cB ~ bC) )a = D(be’ ~ cb') + m(V'C ~ ¢'B) +n(cB ~bC)  (154)

B s
A

A B C D B C a m n
=" afl a b ¢ =|m bec|=> AD=|a E F (155)
a b n b o F G

({}) We see the expression (155) of AD, by extending the following determinant, which we substitute the
defined values above mentioned for m, n, E, F and G of (155) :

o acy + b + ey ada+bp+cdy
=" AD = A(Aa+ BB+ Cvy) = a a?+b 4+ aa' + bb' + e

a  ad +bY +od (@) + V)24 ()

In fact, from (155), we can verify AD as follows :

AD = «(EG - F?)+a(nF —mG)+ d'(mF —nE)
R
A
o m n
E F ‘ T ;| moon ’
=* a +a : +a = a EFE F
F G G F E F J F G

Gauss deduces this relation without using the expression of array in this paper [15]] at all. (1})
At the second step : 1-2, eliminating similarly « and v using the same equations (1)¢, (4)¢, (7)q, and
multiplying these by ca’ — ac’, ¢/ A —a'C, aC — ¢A, and adding these expressions, we get the following :

(B(ca' —ad)+b(dA—a'C)+ b (aC — CA)),B = D(ca' — ac’) + m(c'A — d'C) + n(aC — cA)

A B C A D C g m n
=" B a b ¢ =|a me¢| = BD=|b E F
a b a n ¥ F G
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At the final step : 1-3, eliminating similarly o and 3, and multiplying these by ab’ — bo/, b'A —
a'B, bA — aB, and adding these expressions, we get the following expression :

@Hw“—mﬁ+dHA—dB)+€&A—aBD7:lef—hﬂ%wMUA—&B)+n@A—aB)

A B C A B D ¥ om n
=* =~ a b c = a b m =* (CD= ¢ E F
a ¥ o bV on d F G

Here, we get the three expressions :
AD = al + a(nF — mG) + ' (mF — nE),
BD = A + b(nF — mG) + b (mF — nE), (156)
CD = vA + ¢(nF —mG) + ¢/(mF — nE)

E F
Fr G

o o
e

e —
(R
oy 3

= >R

m mn

E F

Multiplying (156) by «”, 8" and 4" respectively, and adding the gained expressions in the each hand
side, then we get the following expression :

DD" = (e + 66" +97")A +m" (nF — mG) +n"(mF — nE) (157)
ad! + 068" +vy"  m n
=? m" E F
n' F G

Step 2 . Similarly, from the equations (2)¢, (5)a, (8)¢ :

()¢ Ad'+Bp +Cy =D, D' A B C o
(5)eg add +b8' +cy' =m/, =" m’' = a b ¢ cd
(8)(:‘ ao + b}ﬁr + (_J'}(" = ﬂ;, n' a b 7;

We get the three expressions corresponding to (156) :
AD' = o'A+a(n'F —m'G) + o/ (m'F —n'E),
BD' = A+ b(n'F —m'G) + b (m'F — n'E), (158)
CD' =4'A+¢(n'F —m'G)+ ¢ (m'F —n'E)
F G

E P

Multiplying (158) by «', " and «' respectively, and adding the gained expressions in the each hand side,
then we get the following expression corresponding to (157) :

(D2 = ((@P+B)?+0))A+m/(n'F—m'G)+n'(m'F —n'E) (159)
@F+@P+@P w o
=" m’ E F

n' F G
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Step 3. From (157) and (159), we get the following expression :

DD" — (D!)2 = ((xan i ﬁrg” +‘_}(,er _ ((QJ)E L (18!]2 A2 {7!)2)) (EG o F2)
A
+ E((n')? —nn") + F(nm” — 2m'n’ + mn") + G((m’)? — mm")) (160)

Here using the following relations :

% = 2m, % = 2m/’, —d-g =m' +n, % =m" +7, % =27/, %(qj = 2n”
m—lﬁ m"—lg m”—i{?——iég- n—g—l@ n'—lﬁ n.”—-l-E
- 2dp’ T 2dq’ T dg 2dp’ T dp 2dq’ 2dp’ 2dq’

then the first term in the right hand side of (160) except for A turns into :

a8+ 4y — (@) + (B + () = dn dn' _dm” dw! _ 1ddE _ddF 1ddG

i dp " dp  dg | 2dg dpdg 2 dp?

From the equation of curvature (150) in the end of last article § D.10, we get the following expression :

DD" — (D')?
(4% + B2 + C?)?

Substituting (160) for the right hand side of (161), we get finally the following expression :

(A% + B*+C?*)%k = (EG — F*)*k = (BEG - F?)? = DD" - (D')? (161)

dE dG dF dG  dG 2
_ 22 — A? _ Dh‘ - Di’ 2 ) i
HEG - F?%k = 4A% ADD" (D) =B(g g~ 2 g+ ()
Nean a——
nn'’ (l’l')’
(ﬁﬁ_@ﬁ_ﬁ @£+4dFdF dFdG)
dp dq  dq dp dq dgq dp dg  dp dp
NN
4mn'! d.(nm”—Qm n'})
dE dG dE dF  dE 2
* e a e
—— N
mn' (m’)?

~ 2(EG-F?) (
——

A

ddE; _, ddF ddG)
dg>  “dpdg  dp?

2 (mx”+ﬁﬁ"+w"- (a2 +(8)2+(y J’))

(1}) This equation is a quadratic equation in respect to EG — F? :

ddE _, ddF  ddG
_ 2 MR ey T 1
4k(EG — F?)? +2(d2 It )(EG F?)
_ p(lEdG dFdG | dG .

‘Eﬁ‘@%”@”
(dE dG dE dG dE dF dF dF dFE dG)

I
!

dq dq  dp dp dq dq ® dp dq dp dp
(dE dG dE dF

- xS -ipg )

84

84This equation means that the curvature depends only on the first fundamental form : (174). cf. Kobayashi [28, p.200]
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D.12. Deduction of formulae of a line-segment on the curved surface.
From the following expression :

de? + dy? + dz% = Edp® + 2Fdpdq + Gdg®?,
the general line-segment on the curved surface is expressed as \/Edp? + 2Fdpdq + Gdg?. And we con-

sider the following expression v/ E'dp? + 2F"dpdq + G'dq?, as the line-segment /(dz")2 + (dy’)? + (dz')?,
denoting the functions : E', F', G’ of p and q.

E=F, F=F, G=C

From the formula in the article § D.11 we get the following theorem :

Theorem D.12.1. ( Invariability of curvature. )  Ewven if the curved surface turns into another shape
of surface, the curvature of surface stays invariable in each point.

The following are clear : after the curved surface turns into another shape of surface, the shape of the
surface again returns to the first shape. O

D.15. Deduction of theorem of the shape.

Theorem D.15.1.  The shape of the curved surface will reach the shortest length in the same oriented
point of fluid length, taking the normal line at the limit. d

D.21. Deduction of formulae.

We would like to restore the general meanings to the < characters p,q, E, F,G,w = , which were
accepted, additionally speaking, which are determined by dual alias variables p’,¢’, where, a infinite
line-segment is expressed by :

VE'dp'? 4+ 2F'dyp .dg’ + G'dg"
dp’ = adp + Bdg, o [ dp’ ] ” [ af ] [ dp ]
dy' = ~vdp + ddg dg' v o dg

Now we would like to investigate the geometric meaning of these coefficients «, 3,7, 6.

Quatuor® is here the linear system considered in the curved surface, for these, they were constants
such as q,p,q’,p’. If we determine these by points, these respond to the variable values of ¢, p, ¢, p’, the
positive variations dg, dp, dq’, dp’ are responded

VEdp, VG.dq, VE.dp', VG.d¢
We denote the angles by M, N, M', N’
p+dp, q+dg, p'+dp, ¢ +dp
are independent of the values of variations dg, dp, d¢’, dp’
VE.dp.sin M + vG.dg.sin N = VE'.dp'.sin M' + /G .dg' .sin N’

‘We, however, introduce these by notating

e N—-M=w
e N —M =u'
e N — M =1

These equations of the invented methods are seen in the following formats
VE.dp.sin (M' —w + 1) +VG.dg.sin (M’ + ) = VE .dp'.sin M’ + VG'.dg'.sin (M’ +'),  (162)
|- — S — e —

M N N
or
VE.dp.sin(N' —w—w' + ) + VG.dg.sin (N —w' + ) = VE'.dp'.sin (N’ — ') +VG' .dq'.sin N’ (163)
N, et e, e
M! M'+N—-M'=N M
VE'.sin w'.dp' = VE.sin(w + ' —¥).dp + VG.sin(w' — ).dg (164)

85(11) Here, we mean temporarily Quatuor as the quaternion named it. Hamilton [20]’s Quatuor is another one, in which
Hamilton used his defined word “tensor”. cf. the footnote ( 8 ) in Cauchy, § 8.
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V@' .sin w'.dg = VEsin(y —w').dp+VG.sin 1.dg (165)

We can construct the equations in combining the left hand-side of (164) with that made by substituting
N’ =0 in the left hand-side of (163). And also the left hand-side of (165) with that made by substituting
M' = 0 in the left hand-side of (162) then

VE.sin w'.dp’ = VE.dp.sin(~w — ' + ) + VG.dg.sin(—w' + ),
V@ .sin w'.dq’ = VE.dp.sin(—w + ) + VG.dg.sin(1))

({}) That is
VE .sin w'dp | [ VEsin(w+w' — 1) VGsin(w' — ) ] [ dp } » dp" = adp + fBdg,
VG.sin w'dg | — | VEsin(3— ') VG.sin 9 dg dq' = ~vdp + ddgq
()
(o= (£ dalotw)
[G sin(w'—y¢
|9 =VEHGT (166)
7=/ &2
= /G sin 1
G sin W’
(cos w= 7%-5,
cos W = \/%:—:—o'"
| sin w = \f—“—F(EEfE,
(sin W' = s ot
a/(E'G" — F'F') = VEG' .sin(w + w' — 1),
B\/(E'G' — F'F") = VGG'.sin(w’ — 1), (167)
(E'G' — F'F') = VEE' . sin(¢ — w),
(E'C" — F'F') = /GE'.sin
Substituting
dy’ = adp + Py, . dp’ [ a f ] [ dp ] 4 a O ! [ dp' dp
= 168
{dq’=74p+5dq 7 g v 8 dg |~ ['7 5} dq' dq (168)
for

Edp’® + 2F'dp'dq’ + Gdq'* (169)
and combining the value gained from (169) with the following value :
Edp® + 2Fdpdq + Gdg*

then the following corresponding relation holds :

E' (adp & ﬁdq)z +2F (adp + ﬁdq) (’ydp + qu) e (’ydp + qu) ‘
Edp? + 2Fdpdq + Gdg?

Substituting the right hand side of each expression for zero, from these relation, we get the following
expression using the relation between the coefficients and their roots of the quadratic equation :

EG — F? = (E'G' — F'F')(a6 — B7)?
From (168)

N vty = o[ ] = [5,0] [ %]
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E6? — 2Fv6 + Gy? = 5E5=E E,
EB6 — F(aé + By) + Gay = —5ES=E"
EB® - 2Faf + Ga® = zE8=5 G’
D.22. First Fundamental Form and Second Fundamental Form. _
From the general survey in the previous article, we shift to the latest application, where p, q are put
with the most general meaning, for p’,¢’, adopted in the article 15, in which these < characters > were
denoted by r,. We assume E' =1, F' = 0,0’ = %, V/G" = m, then from (166) we get the following :

a=VE.cos(w — ),

8= +G.cos P,
m.y = VE.sin(¢ — w),
m.d = +v/G.sin 1

Here we show the guaternion equations (167) in the above article give the following, in replacing them
with above values of @, 3, 7, 4,

VE. cos(w — ) = ar (170)
dp
Ir
VG.cos ) = — 171
T (171)
3 dr
VE.sin(y — w) = m.— (172)
dp
. dr
VG.sin ¢ = m.a (173)
Moreover, the last two equations turn out as follows :
dr.2 dr dr dr.2
—F:=FE() —2F—.— — 174
EG E(dq) 2de % +G(dp) (174)
dr dr, do dr dr, dyp
E——-F—)—=(F—-G.—).— 175
Ea o u=Fu %5 (175)

Here, the quantities 7, ¢, 9 ( and if one is necessary to get m, then even m ) are determined from the
gained equations above with respect to p and ¢ : clearly, the integral of (174) gives r, and the integral of
(175) gives ¢, and another equations (170) and (171) give ¥ itself, in addition to, (172) and (173) give
m.

General integral equations (174) and (175) are necessary for two functions arbitrarily introduced,
because it is very easily recognized that if it is perpendicular, then these equations are considered as
unrestricted to this case.
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APPENDIX E. Principia generalia theoriae figurae fluidrum in statu aequilibrii.
(General principles of theory on fluid figure in equilibrium state)

In this dissertation, Gauss treats many important topics to the modern mathematics such as the
following :

e (E.0) Preface

¢ (E.1-E.5) Introduction

¢ (E.6-E.9) Reduction from the sextuple integral to the quadruple integral
e (E.10-E.12) Criticism of Laplace’s molecular calculation of capillarity equations
o (E.13-E.17) Ideas by Gauss

(E.18-E.19) Variation problem

(E.20-E.24) Deduction of Gauss’ integral formula

(E.25-E.26) Geometric meaning of curvature ( 45 + 1 in V')
(E.27-E.30) Application of geometrical method to meniscus

e (E.31-E.33) Attraction in condition by A, «,

e (E.34) Summary

In particular, in these contents, included with many important topics from the viewpoint of mathe-
matics, such as

86

e Integral theory in §E.17 and §E.23 which he aims to be one of his proud points to publish this
paper

e The unique “two-function”, corresponding to “two-constant”, which we show in Table 3 and in
§E.2

e Idea of RDF, which we show in Table 8, 9, and in Preface 4

e Reduction of integral from sextuple to quadruple, in the articles §E.2, §E.16 and §E.17

e In and after §E.18, we show his calculus of variations in the capillarity against the RDF and
calculation of it by Laplace.

e Finally, for the question to be solved by variational equation introduced in §E.18 and §E.19, we
sketch his answers deduced from the previous work of theory in curved surface [15], to the height
and angle in question in §E.28 and §E.29.

Throughout our paper, we show the process of formulation of calculus of variations®” using the

two functions characterized from the attraction and repulsion, and his criticism to Laplace imaging the
Gaussian function as the rapidly decreasing function by Gauss in 1830. And we introduce a contribution
to the hydromechanics, because he was a contemporary of the epoch of formulation of the N5 equations,
which are our main theme in our paper.

E.0. Preface.
T2

e Since Mr. Laplace, from here, presented conveniently the unique supposition about the inner, molec-
ular activity, moreover, giving up diminution of law for the increasing distance, we have got the first
result in the surface of the fluid figure based on the accurate calculation, and have established the general
equation for the figure of equilibrium, not only the precise capillary phenomenon as described, but also
try to explain the related problems.

e This investigation is discussed getting the consented with and confirmed in everywhere, by the exact
experiment, among the first class of increasing natural philosophers, geometricians, and referred and
criticized by some authorities from all the directions to the maximum part such as a minor or nonsense.
9 3. (Two RDF functions and two-constant defined by Laplace.)

e In the calculation by Mr. Laplace, we have at least a thing, which we can give evidence about it,
and for which we would not absolutely consent with him.

e In the previous commentary : < Théorie de 'action capillaire >, denoting by ¢ f intensity of the

BG(J,L) We entitled for explanation of contents in each article below, where, there was not at all name of title but only
the number in Gauss’ paper. The article number is the same as Gauss’ numbering of article.

87(11) Lagrange [31, p.201]. Today's mathematical nomenclature is calculus of variations or calcul des variations by The
mathematical dictionary ( 4th edition in 2007 ) edited by MSJ, 1954, p.432, (Japanese).
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attraction in the distance f, the integrals read : %8
o (=]
[etar=nz,  [Tnpsg=vs,

Extending the integral interval by z to 0, Laplace defined the two constants : 3°

o / Cwfdf =K, o / Cwffdf = H, (176)
0 0

where denoting by m the  of the circumference of the circle with radius = 1.

In a word, the < indoles > ( characteristics ) of the function ¢f reserves ineffective, as long as
this f were insensible for all sensible value.  Hence,

e from only this supposition, it is not deduced absolutely,

e moreover, IIf and ¥ f are for the finite values, this function f needs to be infinitesimal, can
not absolutely be true, 27 fﬂh"“e U f.df and 27 fnﬁmte U f. f.df turn into another infinitesimal
value of K and H as we read in the dissertation ;

e of course, the form of function ¢f may be considered to be infinite, although the funda-
mental supposition satisfies these would be erroneous conclusions for this.

o If it is supposed that ¢f is complete attraction, in fact, it will moreover conserve the
fractional form -}%, which depends on the general attraction ;

e but as long as we can not measure the attractive particle, even we know the occurrence
in experiment, it is too infinitesimal in comparison with all the earth, then although, if
we extend infinitely the second integral of (176), we should infer that the function ¥ f is

restricted to infinity.

9 4. (Criticism to Laplace by Gauss.)

38(1}) cf. Laplace states the two-constant (176) in his original paper. Poisson cites these equations in (238).
89(1)) Poisson rewrites these equivalent equations by using (176) by Laplace. cf. (239), (240).
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e However, something similar to simple carelessness form the basis, such that Laplace discusses
about the form than about the relating action with it.

e Judging from the second dissertation : < Supplément & la théorie de laction capillaire > (
[35] ), Mr. Laplace had scarcely investigated of ¢ f, not only the complete attraction, but also a
part, and tacitly understood incompletely the general attraction ; by the way, if we would refer
the latter in comparison with our sensible modification, on the contrary, we can assert it to be
more inferior to the bad experiments and be clearly visible.

e He considers exponential ¢ */ as an example of equivalent function to yf, denoting the large
quantity by i, namely + becomes infinitesimal.

But it is not at all necessary to limit the generality by such a large quantity, this point
is more clear than words, we would see easiest, only by investigating if these integrations
would be able to be extended, not only at infinity but also at an arbitrary sensible distance,
or if the occurring in experiment could be wider extended up to the finitely measurable
distance.

%(}}) We show the paragraph of his Latin original as follows :

Sed ne opus quidem est, generalitatem tantopere limitare, quum is, qui rem potius
quam verba intuetur, facillime videat, sufficere, si intergrationes illae non in infinitum,
sed tantummode usque ad distantiam sensibilem arbitrariam, aut si mavis ad distantiam
finitam dimensionibus in experimentis occurrentibus maiorem extendantur. [17, p.33]

q5.

e On the other hand, a person studied this theory with more decisive mistakes, and to this theory,
nobody criticize this sophist. Both are clearly to be criticized as a part owner of it.

e Here we established the general equation for fluid of liberal surface with differential by the partial
coordinates : this equation depends on the force by molecular attraction, which the particles of the fluid
are in motion, and additionally, this theory is absolute and is never rested essentially deficient in it.

e In addition to this equation between partial differential, ( its integration, if it were postulated in
analysis, an arbitrary function is induced ) it is not sufficient for the figure of surface, determined from
all aspects, unless the new conditions of the nature of the fluid in the defined boundary were accepted.

e Total condition is set up by another theory, which is, the angle of the plane to the surface of the liberal
fluid in tangently contact with the vase ( exactly speaking, in the boundary of the sensibly attractive
force to the wall of vase ) with the plane of the wall of vase, it is a tangential constant, we put with the
relation with intensity of the molecular force determined between vase and fluid, so that, the continuity
of figure at the neighborhood of the contacted with the liberal surface of the fluid is not interrupted.

e Hence, to the cardinal proposition of the total theory with calculation for demonstration, we
can not accept the papers by Mr. Laplace ; in p.5, since not only he developed clearly incorrect
argument but also showed the false proofs : we consider that calculations in the pages and the
following after p.44 are the vain effects.

(18, p.33-34]%°

E.l. Introduction.
On the formulation of the equilibrium equation in the system of particles of a material, we would like
to solve how much the motion confine the condition, provided that the principle of motion of force adapts

g(:'(JJ.) There are 35 pages of calculation between p.44 and p.78 in his Supplément.
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at maximum.
We would like to construct the system as follows :

e from the physical point m, m’, m”,---, in which we denote the mass of the concentrate ! by
this letter, we think, which is accepted,
e we figure that
— P is an accelerated force which is active in point m, and these systems of motion, made
by an arbitrary material, infinitesimally small, and accepts the condition of the affinity of
system ( motion of force ),
— dp is the motion of the point m in direction of the projection of force P, i.e. made by the
angle of cosine, which face with the direction of the force P, multiplicated ;
e next, > Pdp is the production of the sum of all similar one with respect to all force of the sole
point m.
e As the same way, P’ represents the indefinite force of the sole point m’,
e in addition to, dp’ is the motion of the point ' made with the projection of singular direction,
similary with the other points.

From these idea, the condition of equilibrium of the system is consisted of that and the sum are

mZPdp+m"ZPdp’ +m"ZPdp” (rifpem

Provided that the force of motion becomes = 0, we can explain precisely the principle of motion of the
general force, and even in this case, for the sum of null motion, we can get the positive value. 92

E.2. Three basic forces and two kernel functions : f derived from ¢ and F derived from &.
We consider the force reduced to three main forces.

o 1. Gravity.

e II. The attractive force, which itself corresponds to the points m,m/,m",-.-. The intensity of
attraction of function is proportional with the distance if this function, the < characteristic »
denoted by f in mass and supposed that the attraction is uniformly concentrated in the point.

e III. The forces, m,m’,m",--- are attractive to the infinitesimal fixed points. For these forces,
in the similar way, we will designate the < characteristic F > such that the inverse-directional
distance is used, and with M, M’, M",- .-, which are treated as a fixed point in one case, or a
mass in the other case, which are supposed in these concentrate.

We get ) Pdp of the previous article as follows :
—gdz
—  m f(m,m")d(m,m") —m" f(m,m"Yd(m,m") — " f(m,m")d(m,m") — -
— MF(m,M)d(m,M)— M'F(m,M")d(m,M"') — M"F(m, M")d(m,M") — - - (177)

where, the difference d(m,m'), d(m,m") etc. are partial, relative to the only motion of the force of m.
We denote :

w such that : — fz.dz = deu, /_f:.c.da: = —q, (178)

® such that : — Fz.de = d®x, sz‘d:s =—dx (179)

where, poo =0, and in case of ¢t = [ fr.dz = —pt.

({}) On the other hand, Gauss didn’t describe explicitly 0. By the way, this method without taking of
“two-constant” by Gauss corresponds to the expressions by Laplace, Poisson, Navier et al. Poisson [62,
p.8] considers this method as one of Gauss’ characteristic, however Poisson chose his own method like
Laplace. cf. the entry no.8 in Table 3.(1})

91({1) In this paper, Gauss cites the concentrate in § E.2, E.18.
92(})) Gauss didn’t say “nonnegative” but “positive” value.
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At any rate, we get the integral of it from (177) as follows :
—gdz
+ m'dp(m,m") +m"dp(m,m") +m" dp(m,m") + .
+  Md®(m, M)+ M'd®(m, M) + M"d®(m, M") + - -

Q=—gmz—gm'z — gm"z" — gm"2" — ...

m

m{m'g;v(m, m') +m"p(m,m") +m"" p(m,m") + - -

m

m’{ m"(m,m") +m" p(m,m") +---

m”{ m" o(m,m" )+

—_— e i

TIL{MCI)(m, M)+ M'®(m, M"Y + M"®(m,M") + - -

+
+
+
+
+
+ m!{M'D(Tflr,M) +Mn‘¢(rnf‘M!) +M”¢(fﬂ’,M”) + ___}
+ m"{ MO, M) + M'®(m", M) + M"®(m", M") + - }
+ P

The function 2 is expressed by the following sequence :

= Z m{—gz+ %m"tp(m, m') + %m”tp(m, m") + %m"’(p(m, m") 4+ -
+M®(rn, M) + M'®(rn, M"Y + M"®(m, M") + - - -

where, < characteristic ¥ = represents the expression of sum, in which m',m” m", --- follow by per-
muting cyclically after m’s term.

E.3. The sum of force : ().
If we locate the discrete points M, M', M" ..., and assume the continuous corpus extending in the
space S, and C is the uniformalized density, then the sum

M‘I’(i’ﬂ, M) + M!(I)(ml'MJ) _+_ M”'I)(Tn,MH)+ e

is transformed into the integral
c / dS.®(m, dS)

in the total space S, in which we denote the second analogy with (m,dS), which means the distance from
the point m to the arbitrary points in the space S, and we call its element dS.

In addition, if we locate the discrete points m,m’, m",-- -, and assume the continuous corpus extending
in the space s, and the density is uniformly ¢, then we get the sum :

—gz + %{:[ds.&p(p., ds) + C/dS.CD[,u, ds)

where, z is the altitude of the point y in the hyperplane H, in addition, we integralate the first integral,
over the total space s and the second integral, over the space S. By the following expression :

Q= cfds.[ds],

we integrate over the total space s. For brevity, we express :

0= —gc/zds + %cz f/ ds.ds'.p(ds, ds') + «C f/ ds.dS.®(ds,dS) (180)
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where, s, s’ are specially denoted spaces ( satisfied with the mobile material ), however with the duplex
integration®®, integrate twice with the element to resolve it.
({}) Here the integral (180) contains sextuple integral when using both (178) and (179). (f})

Poisson cites Gauss’ minimum denoted by 2 in (180) in his preface of [62] and states :

Depuis que cet ouvrage est écrit, j'ai connaissance d'un Memoire de M.Gauss, qui
parait en ce moment sous le titre de Principia generalia theoriee figure fluidorum in stotu
oequilibri®* . Pour former les équations de cet équilibre, auteur a recours au principe
des vitesses virtuelles, qu'il applique & la masse entiére du liquide, et non pas, comme
dans la Mécanique analytique®®, a une élement differentiel de cette masse. Il trouve, de
cette maniére, qu'une certaine intégrale sextuple, étendue & toute cette masse, doit étre
un minimum. Dans le cas d'un liquide homogéne et incompressible, il réduit d’abord
cette quantité & une intégrale quadruple ; et en considérant spécialment le cas ol les
forces appliquées au liquide sont la pesanteur et I'attraction mutual de ses molécules,
dont la sphére d’activité est insensible, il réduit de nouveau la quantité dont il s’agit, qui
est ensuit composée de trois termes, savoir,

(1) le produit du poids du liquide et de ’ordonnée verticale de son centre du gravité,

(2) laire de sa surface libre multipliée par une constante® qui ne dépend que de la
matiére du liquide,

(3) et 'aire des parois fixes contre lesquelles il s’appuie, multipliée par une seconde
constante®” de la matiere du liquide et de celle de la partie solide du systéme.

(62, pp.7-§]

E.4. The characteristics, indoles of fluid.

The < characteristics = ( < indoles > ) of fluid consists of the perfect mobility, for example, in the
minimum particles, however the figure were big, it can be induced to any size, or minimum potential,
the mutual figure depends on each changing. In unexpansible fluid ( the liquid ), which we called in our
discussion, the volume of this particle keep to be constant due to the all movable figure. Consider that
the following motion of this fluid

e which is limited by the solid corpus ( the vase ),

and which are obeyed by the attraction between the mutual particles,

the attraction between the particles of fluid,

and the attraction between the particle of fluid and that of the vase,

the status of equilibrium,

and value of this £, when 2 is maximum, etc.

and without infinite transportation between the particle of fluid, this {2 can induce positive
increment.

Why this €2 can get the value, as long as such as :

e how long the period the figure,

e what sort of fluid satisfy it,

e moved ( only by the interior fluid ),

e accepting the equilibrium,

e how many times () for zero bring up the infinitesimal motion with the figure of vase.

Therefore, here, we consider that, if we can assume the figure does not move at all, ( the vase which
the fluid is contained, is along and tangential in everywhere ), the force can not move in the fluid the
interior of the fluid, if the equilibrium is holds by itself.

E.5. The expression of ) : the fundamental theory of fluid equilibrium.

93({1} In below, Gauss uses “duplex” not only as both P and U, but also as two triangles.
94Gottingue, 1830. This is commented by Poisson [62].

95(1)) cf. Lagrange [31].

96(1)) It means ¢ in the second term of(180).

97(1}) It means C in the third term of (180).
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We would like to proceed to precisely investigate the expression of 2, which we must consider as
if the fundamental of the theory of fluid equilibrium.
(Latin) = Progredimur ad accuratiorem investigationem expressionis {2, quae
tamquam fundamentum theoriae aequilibrii floidorum considerari debet.

We would like to take up, at first,

e the term [ zds : the production made by the volume of the space s at the altitude of the central
gravity of the surface plane H.
o In addition, ge [ zds : the production of mass at the altitude of the fluid.

Hence, thus fluid particles does not obey the other force except for the gravity, in the state of equilib-
rium, the center altitude of the gravity becomes minimum as possible as, and therefore, we get easy the
liberal part or liberal parts of surface, the part of the horizontal plane in the one same place, it becomes
the surface and boundary of fluid.

E.6. Transformation of the expression and the definition of s, 5, ¢, ®.
We take the transformation as follows :

e of the second and third terms to two cases of the particular problem, where, proposition of the
dual spaces whatever, single element of the first space with second element, we combine and
product from the third factor, put from the element volume of the first space and the volume
element of the second space, and the function data of the mutual distance, and then we can sum
up to the last,

e the second term to the same way, where the both space is the same,

e the third to it, where all of a side of space is from the other side of space,

then, the problem is completed. The two different cases are completed, namely

e when one side of space is part of the other side of space,
e or when each side has the common part with the other part.

Although, moreover, the first case is sufficient to institute us, or we can easy return the rest to the other
side, when the work evaluate, the problem in itself complete by accepting the general sign.

In this problem, we denote the spaces by s and S, the function on distance denoted with the <
characteristic ¢ > , as the same as in the application to the second located term S and s of (180), and
to the third located term, we may replace ® with ¢. The integral is given as follows :

/f ds.dS.p(ds, dS) (181)

We would like to show that the spatial elements, depending on the three variables, which imply
that the sextuple integral are to be reduced to the quadruple integral.

({}) Here the integral (181) contains triple integral when using either (178) or (179), then (180) contains
sextuple integral. %

E.7. Preparation for evolving the equation.
f ds.p(p, ds)

where p is the fixed point in the exterior or interior of the space s. We consider the surface of sphere
with radius = 1 of which the center is p.

dt’.cosq’ _ di”.cosq” _  dt".cosq”

ot ot == Pttt
2 -
répr.dr = —pr

98{{1) Poisson recognized this Gauss’ achievement in [62], however he investigated this problem by his own method.

dll = +

ete.
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We integrate :

/ ds.o(p, ds)
where p is the fixed point in the exterior or interior of the space s
dt'.cosq' pr'  dt".cosq’pr"”  dt"™.cosq" apr'"
/ds.{p(,u., ds) = dIL(pr’" —pr” +r"” + etec ) = e + i + 5y + -
at the time when g exists in the exterior of the space s :
/ ds.p(p, ds)

= dIL(p0 — o’ +or” —or’” + etc)
dt]" cos qf.wTJ + dt”. cos qff‘wr.ﬂ dt.ﬂf cos qh” wﬂf’

.j...i'.r.! 1"'”?"” T!'HTH!

= dIl.y0+

at the time when p exists in the interior of the space s.
When we take the sum by the arbitrary surface of the spherical part, we get the integral [ ds.o(u,ds)

is completed, then
/ds (. ds) = docosn in the first case
i T ) w0 + dt‘—°‘:§3"‘a—r in the second case

where

e (t : the infinite arbitrary elements on the surface of space s,

e ¢, v : these are the values underlined in the previous pages about the determinate expressions,
with respect to the element of r,

e 7 : 3 of the circumference of circle with its radius = 1.

We see easy the rest, if the point u is neither interior, nor exterior of the space s, or in the surface of
these, to satisfy the secondary formula, the factor will move 47 in 2m, even if the surface in the point p
were given neither as the cusp nor as the aciform %° type ; however, by our proposition, it is not at all
necessary to satisfy this case.

E.8. Evolution of equation [[ ds.dS.¢(ds,dS).
By the discussion in the previous article, the evolution of equation [[ ds.dS.¢(ds, dS) reduced to

cos q.i(dt,dS)
4 dt.d
Toy +f/ S @, d5)2
where o denotes volumes of these spaces, is common in both space s, S, if s, S alternate mutually, the

first term 4moig vanishes. New integral seems duplex in appearance, however, it turns to quintuplex.
‘When we reduce to the quadruple, we must consider the integral

cos g-1p(u,dS)
[

by the arbitrary elements of the space S are extended, denoting again  fixed point, and g : angle between
two straights ( 0 < ¢ < 7 ) emitting from this point. Others are easily perspective, if the point g is only
exterior or interior of the space s, evaluate the secondary formula, move the factor 4 to 2, and then if
our propositions are not useful for you, please read the following cases.

dll = —dT".cosx' = dT"".cos " = —dT"" . cos " etc.

dr.apr
] = = —fr

here, accepting arbitrary the integral constant, our integral of the interior space S of prism,
= dIL(OR' —OR" + OR" — etc)
= —dT’.cosx’'0R' —dT".cosx"0R" —dT".cosx""0R" — etc

cosq.h(p,dS) _
[

/dT cos x.0R

99(1}) E.g. A needle, a pin, a sting, etc.
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dmaify —f dt.dT'. cos x.0(dt,dT")

where y indicating the mutual inclination of the element dt, d7', by the normal-direction, which is
measured by the outer direction to the space s, S, which the integral by the complete surface, of which
the space can be extended.

E.9. The three cases of integral.

As the same as the previous method, the division of space S in the element of prism depending is, thus
the second method is necessary for the same division of space S in the element of prism. We consider
that :

e at first, the surface of the sphere of the radius = 1, and around the center p, are described with
the infinitesimally small elements divided ;

e next, toward points, these element dIl draw the straight line to the point p, and this surface of
the space S are cut at the points P/, P" P" ... ;

e then, we denote the distances between these points P/, P”, P ... and p by R/, R" R" - - ;

e finally, the straight line at p toward all points on the peripheral elements dII in the form of
pyramidal shape, and among P’, P’ P ... cut the elements from the surface space S, and we
designate these elements with dT",dT",dT", - -.

Moreover, we assume Q' inner straight line P’y then normal in the elements d7” extend exterior and
Q",Q",--- have the inclination of similar normal in the same way, drawn from the straight line toward
1t. Therefore we put

dT".cos Q' dI".cos Q" _ :I:dT’”. cos Q"

(R")z = (R”)Z B (Rn.r)'-’ ==
where the sign changes superior or inferior, according to that the line 1P’ take interior or exterior of the
space S. 100

Then, it seems clear that for all partial spaces of S, inside of its pyramidal space, the angle g is constant,
we deduce as if it were the same as in article 7, if we would set indefinitely,

/ pr.dr = —fr

if we assume the integral constant as arbitrary, the integral
dS.cos q.ip(p, dS)
(1,dS)?
(I) In the case of the point y existing in the exterior of space S :
dT'.cos q.cosQ.0R

R2
(II) In the case of the point x existing in the interior of space S :
g. / dIl. cos q
(ITI) In the case of the point p existing on the surface of space § :
tp. / dIl. cosq

cos ¢ = cos k. cosv + sin k. sinwv. cos w

Integral [ dIL. cosq becomes

w 2

f d‘u[ dw(cosk.cosv+sink.sinv.cosw) sinv
z 0
2

™ 1 o
= f 2w cos k. cosv. sinv.dv = —21rcosk{§ sin? ] = —mwcosk
3 £

Applied to our first integral [[ ds.dS.¢(ds,dS) of (181), then

10001y ef. (211).
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e (I) If the surface space s, S do not have common part, then
dt.dT. cos q.cosQ.0(dt,dT)
troto + (dt, aTy?
o (II) If the surface space s, S have common part, which is T, then
dt.dT.cos q.cos@Q.6(dt,dT)
411'0"!)5'(] :FTBQ -+ f/ (d,t,dT)z
e (III) If the surface space s, S have plural, finite and discrete common parts, then

- dt.dT. cos g.cosQ.0(dt,dT’)
dmothg + (T — T )b + f/ (dt, dT )2

E.10. Criticism of Laplace’s molecular calculation of capillarity equations.

e We are almost ready to introduce two transformations of the integral [[ ds.dS.¢(ds,dS) in the articles
8 and 9, by praising ourselves, even the equations were evolved, we may apply each time our proposition
to it.

e Here, the function ¢ is used originally as the function f, for the further study built on the hypothesis,
on which Mr. Laplace studies, says that the force of molecular activity are more finite in the infinitesimal
distance. This phrase when the liquid move adhering, how long keeps the uniformity, under everybody
can observe it, the attractive activity fr, expressed by the function of distance r, and since he treats the
gravity g as homogeneous, which is due to liquid mass ; this is a defect of his supposition. and denoting
the liquid mass by M, whatever we can try in the experiment, and he says almost the same as nothing
with respect to every part of media.

e M fr in the infinitesimal distance is not only finite, but also even r can be decreased over an arbitrary
boundaries.

e Without theory and the policy to investigate that the gravity comes from the hypothesis, in the
other point, the law of the function fr, as the same as the unknown in general, which we can not
help making a mistake about the mathematical < character > , look like peculiar : namely, as
long as even the fact, standing on the most precise mathematics, can not punish himself, if so, so
much as the mathematical precision, more, even without the experiments, we can get the absolute
level of value ; without an experiment ( or proof ), none is free from the amusement by oneself in
seeking after absolute truth ; if you would success, withdraw your supposition itself.

101

E.11. Function ¢r as the constant of integral [ fr.dr.

({}) Remark. below, ¢r = ¢(r), ¢0 = ¢(0), fr = f(r) like the function in (178) and (179).(1})

e Even if we suppose the function denoting by fr ( or the function by F'r ) of attraction, that the fact that
the relation is proportional reciprocally with inverted r2, had been proved in the astronomy, if the figure
between the fluid and a vessel, in any infinitesimal particle, the gravity can also affect to the modification.
r increasing in even infinitesimal, fr turns into, by itself, infinitesimal, but also more rapidly decreased
rather than ;"1!;

e Hence, we can make a deduction from here as follows : even the integral [ fr.dr in everywhere, it
is finite, turns into infinitesimal, then that the constant of integral [ fr.dr = —or, is supposed to be
acceptable and have @oo = 0, if @r this value of integral | ;x’ fz.dz is extended.

e In any way, ¢r the distance denoting positive quality by r, not only infinitesimal, but also finite r ;
continues to decrease with respect to the distance r, it can go beyond the arbitrary boundary, generally
speaking, if there is non-obstacle, then 0 = co.

101 ({) Navier cites the molecular theory by Laplace and chooses consistently repulsive force in Navier’s papers [46, 47|
as the function depending on the distance between molecules, however, N.Bowditch %% points out that Laplace rethinks
the repulsion theory and changes it, in 1819 : ©(f) = A(f) — R(f), where ¢(f) : a function depending on the distance f
between the molecules, A(f) : attractive force, R(f) : repulsive force.
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E.12. The difficulty of calculating [ r2¢r.dr.

(1) Remark. below, pr = ¢(r) like the function in (178) and (179).(f})
e Hence, since the function ¢r, in everywhere, instead of the finite value of r it turns into infinitesimal,
and increasing r continues to decrease, [r?gr.dr always allows to extend finitely to an arbitrary big
value, and moreover keep infinite, then as long as the latter, whatever we are ambitious, even if any
experiments can teach us, it is just that : about how to make the infinitesimal integral, even by the big
interval, in the case which we were unsuccessful in integral.

¢ The very calculations by Mr. Laplace show us all these situations, in which my supposition is
included ; since nature of the unknown function ¢r is suggestive, and using it, we can supersede
it or abstain from it to many suppositional hypotheses.

e This constants of integral [r?@r.dr = —ir are able to be determined as we choose it, to make
ir = 0, for the value of fluid with the finite distance of r, moreover, by its experiment, we can afford to
get the length of circumference of the body.

e Hence, 17 for all this sort of value will be always finite ( positive for minimum, negative for maximum
), speaking in general, if there is non-obstacle, then for the infinitesimal value of r, we can convert to
the finite value : although ought to add, we give an explanation to the phenomenon, as the decreasing
distance r in infinitesimal, the value 1 itself means always as finite, as long as 10 depends on the finite
quantity.

e Besides these, 5']{2 is the quantity when the gravity is homogeneous, C—";-r- is linear, especially, ‘"—"g
is already-known-linear (for natural body, in this case, the function fr is useful for the force of the
attractive activity ), of which the magnitude may be very suspect, however, in the known case, it is an
almost-approximate value, except for suppositional hypothesis.

E.13. Proof of that {¢ is linear in insensible magnitude and its avoidance.
(1)) Remark. below, ¥r = 4(r), 40 = 1(0), 0r = 6(r) like the function in (178) and (179).(f})
We consider the completely equivalent integral :

f pr=—pp =5t / ) =0 (182)

Here, we suppose that :

e by choosing the constants, Or = 0 for an arbitrary value r, for an arbitrary sensible between its
interval, on which the experiment tells us of the fact,'®® for this, we can set how we get the way
insensible fr is for any sensible value 7 in everywhere, even if it evaluate sensible for the insensible
value.

e We assume br

% explains the area of two-dimensional figure, in particular, 7~ is linear.
e Naturally, another %; is linear in insensible magnitude, which we prove as follows.

When 17 continues decreasing from r = 0, and certainly, such as, insensible have gone, as soon as r get
sensible value, for ¢r = 1, '™ must be insensible : denote this value of r by p. We would consider the
integral [(1)o — tr)dr, which we integrate it from r = 0 to r = R, it becomes from (182),

R R
f (o — yr)dr = [%r 4 Br]ﬂ = Ry — 0o + OR. (183)
0

Cleary, this integral more greater, when it is integrated from r = p to r = R, the extension becomes at
any times greater than the integral [(1o — p)dr between the same limits. The last integral becomes

R
1
[ o= )i = (o = w)(R =) = 560~ p) (184)
P
which is generalized for this value R(> p) from (183) and (184),
Rijo — o+ 0R > Z0.(R ~ p)

103(4}) Gauss cites frequently the word “experiment”, for example, such as 94 in Preface, or §E.15, §E.18.
104(1)) Which we say a half-life of the radiation.
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IfR= %%, and moreover, if R is a sensible quantity, then
o 1
—g — 0y +8R=60R > =y.(R— p)
Yo 2

This expression becomes absurd and invites contradiction. (§}) limpr_ 8(R)=0.(1) O

Solving method :  If we can not avoid this tremendous magnitude of 1)y, by cutting only zero,
g is possible to be the usually sufficient quantity and to be comparable with the dimension of
body in carrying out an experiment. ( If so, we get the same situation as a usual condition of
experiment )

E.14. Integral (I) and (II).
Moreover, that comes from this < “indole” ( characteristic ) function : # > with respect to the integral

@
integral (I) : f j’ dt.dT cos((ztch(;a.ﬁ{dt,dT)‘

({)where, (e,)? means the square of distance between them. (ff) We would like to investigate this
integral (I), starting with the simplification of it, to be able to alternate the surface points u, considering
specially the integral (II)

integral (II) : / dt. cos q(':ozgf(#,dt)

by all the surface : ¢, we consider to extend it. We denote the following :

e () the angle between two straight lines emitting from the point p,
e the second toward the element dt,
e the second toward the fixed point;

similarly,

e ¢ the angle between two straights emitting from the point dt
o the second toward the element p,
e the second normal element toward the exterior direction

Then

e at first, we observe, if point p is sensible in the distance on the surface : ¢, all value 6(p, dt) is
insensible : in this case, total integral (II) are insensible. Here we can get sensible value in this
integral, how long we can extend the surface ¢ in insensible distance at point p, clearly enough
the integral (II) by this part, all neglected, that is sensible in distance.

e Next, instead of di;;": of (II), we replace by +dlII, and denoting dII on the surface of the sphere
with the radius = 1, with the center : p, the description of element id, in which the element dt
of the exterior or interior plane, direct the point p.

Hence, we get the integral (II) as follows

dt.cosq.cos Q.0(p,dt) dt.cosq
(e, dt)? B (, dt)?
here it is clear that this integral refers to the value as long as it is sensible, in respect to all the elements

dIl, at the insensible distance (u,dt), then the sensible magnitude of space on the surface covers the
sphere. We consider the following three cases.

f:l:dH. cos Q.0(p,dt), where, +dIll=

(1) In which, the radius of curvature of the surface ¢ is infinitesimal at the point .

(2) In which, the continuous curvature at the point p which the inner distance is infinitesimal. (cf.
[15, art.3]).

(3) In which, the radius : of curvature of the surface ¢ is open at the point of p.

We would like to treat other reserving problems in the following article.
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E.15. Integral (II).
(I}) Remark. below, 0r = 6(r), @'r = ¢'(r) like the function in (178) and (179).(f})
It is the most clearest case that every point p is not in the surface ¢, however, in the sensible distance from
here : in this case of our integral, it is possible to have sensible value, which we would like to investigate
precisely.
e At first, splitting a surface on the sphere, to a point x4 made normal in surface ¢, moreover, we
draw the fixed straights emitting from both the points G and H respectively;
e next, we assume the arc GH = k,
e then, as another arc made of G and an arbitrary point, assuming Ge = v on the surface of the
sphere ;
e finally, we assume the surface angle w made of arcs k and v.
Here, the method for the element dII is possible to admit the product sin v.dv.dw, and we call the distance
(p,dt) r briefly. Then the integral (II) turns into :

/d’tf f dw[ =+ (cos k. cos v + sin k. sin v. cos w)fr. sin 'u] (185)
We denote this minimum distance with p ( at this point G, it correspond to v = 0 ), r = =£—, when

v = 0, then r = p, if w is independent of it. When we integrate (185) with respect to w, from w = 0 to
w = 27, then

2m
f dv / dw [ + (cos k. cos v + sin k. sin v. cos w)fr. sin 'u]
0

=* :I:[?ﬂﬂr.cosk.cosv‘sinﬂ.dv

== if27rcosk.n9r.dr(£) (7%) dr

= & / 27 cos k.apgﬂr.d'r
¥

() where, we used

Pl = cosv=2 = sinv.dv:r%.dr (m

COsv T
Here, we consider this integral as the interval from r = p to an arbitrary sensible, however, small value,

then
20 d
i/211'(:-351‘:.3;9 Or.dr - :trcosk(?rzfgrér)
r T

We consider generally :

Or.dr Or.dr
21-2/ - s —0'r, / 3 =0, (186)

for an arbitrary sensible as its interval, on which the experiment tells us of the fact, we neglect the
insensible terms then the integral (II) :

+ cos:fc(Qir"2 / 9:;11-) = +mcosk.0'p (187)
If it seem to be doubtful, or to be right, we have the partial surface ¢ inter insensible distance, to the
point p position for the plane, and consider this location of the sphere, and R the distance from the
center of the sphere to the point p taking as positive or negative, according to whether the center is in
the direction toward G or in opposite direction.

Hence, we get the followings :

L]
cosv = £(1— )+ 35
sinv.dv = [&(1 — &) + 55]dr

where, if the mode R is a sensible quantity, we can see easily that the integral for this case, is
not different with the above-mentioned in (187), sensible quantity about the value, +7cosk.0'p .
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e Another is the curvature of the surface ¢ in its part, come from this, as long as the radius of
curvature is insensitive, always we can assign the dual surface of a sphere, surface ¢ in this point
14, the nearest point by tangential angle, inter this ¢ set,

e and these radii are sensible magnitudes, clearly, then our integral inter integral fall into the related
surface,

e and therefore, we could explain without sensible error, by the same formula,

e which, not only above things, but also we would suffer from the exceptions, when the surface ¢
in the insensible distance to the point g, would offer even the curvature of insensible radius, or
aciform type, or the cusp %%,

E.16. Reduced integral from sextuple to quadruple.

Therefore it is clear that the transform come out from the integral (II) to integral (I), here insensible
occure not only in this case, but also when the sensible value is produced for null point of the surface T',
but also when the complex element of the surface T, for which points the integral (II) becomes sensible,
the area consists of also insensible magnitude. Which are considered rightly, the integral (I) will appear,
how much is able to acquire the sensible value, how long be able to keep the partial surface T' or partial
sensible magnitude in the insensible distance to the positive surface .

Our integral (I) neglecting the insensible factors :

= —/ﬁ?’p.df+/?r3’p.d1"

Clearly this is not important, either the parts 7 and 7' or to the surface T to ¢ is rather important. The
value of (181) becomes

/ ds.dS.p(ds,dS) = dwap0 — T 00 + w760 — TF/ dr.0'p+ r/d-r".ﬁ‘"p (188)

~

triple integral
(1) Just this transformation is boastful reducible method of integral from the sextuple to quadruple,
what is called by Gauss in (181).

E.17. Method of reduction of [[ ds.dS.¢(ds,dS) from sextuple to quadruple.
e Therefore, we can assume the primitive function 6’ of (186), i.e.

Or.dr &'r 20x.dx
2 = *
2r 5 —r = P f . (189)

o We consider the integral from z = r to an arbitrary, sensible and constant value, denoted by R. Namely
we integrate the following : 106
el o LY s i 190
R =z 2 R? (100)
Clearly this integral is smaller than this [ 2%%9% with the interval, this is = % — %§. Moreover, it is
smaller than %. Otherwise, by infinite integral, it become as follows :

/QGw.d:c bz fdt?u: Ox pa.dr

/ "20x.dx Or OR

T2 T2 z?

(191)

z® x?
Moreover, from (189), (190) and (191),

i;;‘ _ / 20x.dx . [_ br ﬂ:a:.d:r]m=r _ (9?‘ _ @) _/wz.;ix _» (S'r 3 @) B % (192)

x3 2 x? 2 R? 2 R?
o Integrating with the smaller interval than the integral [ 3&1;{}5 Moreover, from (192), this is smaller
than £ ; therefore, the value of -“{,‘5 is greater than the right-side expression of (193) 7
0'r (B'r GR) hr r2.0R

=z = @r=0r—

T T R?

—rpr (193)

105(31) ¢f. the footnote above in the last line of § E.7.

106(y)) This function is rapidly decreasing function. Here, 6, 6R mean #(r), 6(R) and are assumed as 6(r) > 6(R).
2

107(3}] Multiplying by r2, which is infinitesimal value. Today’s description of (193) is 8'(r) = 8(r) — "_géﬂl — rip(r).
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From (193), the interval of 8'r :

R
2‘372 —rpr =*O'r
o If we differentiate this expression, by r decreasing infinitely, then we see clearly that we can evaluate
this quantity to be infinitesimal, for example, when 1) in (188) is the finite quantity. Thus we have
concluded that it is due to 6, = 6. We see clearly that the formula (188) of previous art.16 ( §E.16 )

turns into

fr and Or—r

e —7THy and for instance, under the interval —m [ d7.6'p
e 77"y and for instance, under the interval 7 [ dr’.6/p,

if the difference or the distance is insensible or considerable as null, to count respectively the part of
N o) o o

By using this method of solution, we can cultivate the elegant mathematical sense, however we
must surpass to conserve the distinction of our proposition.

E.18. Variation problem to be solved.

In the application of previous survey to the evolution the second term of the expression () in §E.3 and
§E.6 denote by S in § E.20 0,7, 7" will be use as s,t,0, if ¢ is the total surface of the space s, in which the
fluid is filled. Therefore whenever this space extensional sensible part however insensible concentration
is kept, this sort of gap ( crevice ), the second part of the expression §2 of (180) in the art. § E.3 becomes

= %m:z(sqbl] — 100)

We assume the exceptions as follows :
(1) the space s contains the insensible part of the thickness, and this surface offers the dual sensible -
part of the liquid,
e in which we denote the alternative t',
e thick space in the neighborhood of the infinite elements : dt’ by p,
e by accepting the expression above terminology,

7e? f 0 p.dt’

(2) We put the < characteristic f > for the force of molecular attraction and < characteristic - F.
The relation with the vase ought to yield oneself to the attractive force, we denote the functions
by the < characteristic = with ¢, 1,6, 6’ and similarly with ®, ¥, ©, ©" applying the same relation
between F' and f. The third part of the expression {2 becomes generally speaking :

TeCTO0

(3) If in the neighborhood of the sensible part T of the surface 7" have the thick of fluid, we denote
the next term, in which infinite thick of fluid by p, as we accept from the experiments

—meCTO p.dT”’

(4) If the surface of the vase is contiguous except for the part T, we offer T” in the distance we
denote the next term, in which by p indefinite distance for points in anywhere,

+rcCTO p.dT”

In static equilibrium it is due to the maximum value, this turns into

—gr:/ zds + %cz.'swg - %w(:ztﬂg + meCTOq

In an arbitrary fluid, of which the figure is yield oneself to the space s meaning invariant, of which the

expression becomes as follows :
fzds i weby . 7CTOy T
29 g
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and in an equilibrium state which is due to minimum. Here, we denote
T b, TN LB e Tl (194)
29 29

and denoting by W, then

W= f zds + (2 — 20°)T + *U (195)

E.19. Decomposition of variation of W.
The first term of the variation of W by (195) is as follows :

ahdh+ a'h di/,
and T of the second term :
bdh + b'dh'.
The last term of the variation of W by (195)
dU =0

Then from (195) and above three conditions, we get dW as follows :

dW = ahdh + a'W'dh — (26% — o?)(bdh + b'dR’)

Moreover, for the volume of the integral of fluid is invariant, then
adh+a'dh' =0

dW = dh [a(h —h)— (267 - a®)(b - ﬂ)]

@
b
h—h = (282 -a®)(- — —
= (267 - )2 ~ o)
We can assume % >> g—: in comparison with 3, then
b
h—h’:(?ﬁz—a"’)a

We get the maximum height & :

h=(20%— QZ)E

Then
2 b! a 2 bﬁ'
h = (26% - (x?)_a” W' = (20% -« 51

E.20. Geometric structure for analysis.

Moreover, now, with theorem in §E.18, we would like to determine the < “indoles” = ( characteristics
) of the figure in equilibrium, these problems are changed in evolution of the general variation, expressed
with W, if the motion of the figure of the space filled with a fluid occured in only infinitesimal. If when
we variation calculation of the duplicated integral for case, then even the boundary as if the variable
insufficiently investigated, we could approach this precise survey to a little profound.

We consider the following :

e the surface, denoted by s

e a part U, on which all the points is determined by the coordinate z,y, z, these three values are
the distances to an arbitrary horizontal plane.
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It is capable to recognize z is, for example, as the indetermate function by x,y, for these secondary partial
differential with a conventional method, by omitting a bracket, we show it by

({}) These descriptions by Gauss mean as follows :

dz
dx

dy?’ dr

i (EEE)J d’z  dz i (dz)y d?z dz.d’zz (dZ)z’ d?z

dz)z_ dz?’ @‘y'—d—y dz)e  dzz
(M

The structure we are considering is the following :

(1) We define the points consisted of an arbitrary and every points on the surface, denoting s with
respect to the rectangular surface, normal to the exterior direction of s, and in addition, we set
an angle by cosine between this normal direction to the axis of rectangular coordinate x,y and z
with parallel, which we denote by £, and (. Thereby it will be :

Qo N dz € dz 7 S i S dz\2 dz\2 | 1
Erbrerel, oo ¢ dy ¢ = I - 1+(da:) +(dy) T2 (196)
(2) The boundary of surface U become linear in itself, as the same as denoted by P, and while the
motion is supposed necessarily, this element dP ( as the same way of dU as the surface ) is treated
as positive only.

(3) The angle by cosine, that directions of the element dP are expressed with the axis of coordinate of
x, ¥, z, denoted by X, Y, Z : since we would avoid giving ambiguous sense about the direction,
we define these angles as follows :

at first,
e we assume that the normal straight in the element dP to the surface I/, and draw a tangent
e looking this line innerward, we draw the second side,
e at last, in the normal straight with respect to the surface, we put the third side in the space
s to the exterior,
and constituting similarly the next system of three straights and the coordinate axis z, y, 2.
Secondly, thus, we see easily the following expressions (cf. Disquisitiones generales circa super-
ficies curvas ), using the angle by cosine with the straights to the axis of the coordinates x, y, z
are respectively

a B 9
2%, Ox-£2 &r-Px = x ¥z |, (197)
& 7 (°

here, we suppose that £, 1n°, ¢° are the values of £, 7, ¢ for the points of the element dP.
(1) where, o, 3,7 are temporarily used values of ours to correspond to (218). By the way, we see
(197) is the same with the determinant to be mentioned again below (218).

E.21. Variation of a triangle dU of the surface U.

Here we would like to supplement the preliminary. We assume the surface U is the part by an arbitrary
infinitesimal perturbation.

o If we consider sufficiently all the perturbation, for this boundary P always invariant, at any
rate, it maintains, in this vertical surface, we can induce clearly the variation of only the third
coordinate z, this problem is far easy to evaluate it ;

e moreover, the maximum problem in general, in the following investigating method, considering
the variable boundary, in which ambiguity and difficulty combine elegantly, bring up perturbation
; how we can show, always from the start of all, three coordinates handle the variation.

We the force as we image it, and anywhere on the surface, in which the coordinates, which are z, y, z,
had substituted in another, these coordinates are x + dz, y + dy, z + dz, where dz, dy, dz are able to
regard as if these were the indeterminate functions of «,y, if these values stay infinitesimal. Now we
would like to inquire into the variation of singular (individual) element, expressed with W and surely the
initial are made of variation of these elements dU.
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Now, we assume a triangle consisted of three points : Pj, P, P5.'%® We put the element of U by a
triangle dU consisted of these points, of which the coordinates are :

P T i z
Py z+dr y4dy z+dzdz+gzdy
P;: c+dze y+dy z2+F d" d":l:-l—d‘ dy

If we assume dx.d'y — dy.d’z > 0, then the twice area of this triangle is gained by our principle as
follows :

dy

(dz.d'y dyd’x]¢1+ ) +(dz)] (198)

1(198) becomes “=Lv=td') from (196). (1)
e location value by perturbation of Py : =+ dz, y+dy, z-+dz.
e Location value by perturbation of Ps:

T+ dz o[ o+ G dx+ GEdy (z+6z) + (1 + 2).dz + G2 .dy
y+dy : 6;!;4—:‘:—‘3";3d.t:+-‘1:2‘}E i (y+6y)+@iadx+(l+d@)(:iy
z+d_1_d:c+ 6z + L= .dx + L= (z+52)+(dx+d:)d:z:+(d;+d;)dy
e Location value by perturbation of P :
z+da bz + %= d'z + 4= d'y ($+6£)+(1+‘w‘)d’ + 4= dy,
y+dy ; 5y+d—aﬂd’m+ﬂﬂd' . (y + oy) + %u "d’.z+{1+5§’i)d’y,

2+ fz_i'd’l'*‘ %.dfy b2 4 4 daz dz 4+ Lz ddz d'y (z+682) + (dz I déz) d'z + dz i déz) d'y
({}) Totally, we can see that the values of coordinate of each point are as follows :

(P):a+ds, y+dy, z+dz
(P2) : &+ 0z + (1 + 9=).de + 9= .dy, y+6y+ﬂ¥dx+(1+ﬂ=‘i)dy, 2+0z+ (£ +92)du+ (£ + %2)dy
(

dy

P3):z+do+(1+L2)da+ L2dy, y+0y+ 92 d‘x+(1+%ﬁ)d'y. z+6z+(;‘;+”“’)d’m+ &+ Lxydy

We can also show the matrix with variation only as follows :

ox oy oz
(l+d6:)d1+dﬁ:c dy @dx+(1+@g dy g;+d6z)d$+(3;+dbz)dy
(1+d5::)d.f +daz d.t %.(FVL-I- +%E)d’ ( ;,_-""_c:f:)d"b"'_( y_l_d&;)d;y
o by dz
= | (+4)de+%2dy  Qrde+(1+%Y)dy  Ede+ Ddy
1+ “fff).d’:.c+ “5; dy Brdz+(1+ m) dy Edz+D.dy
dz dbz dz dbz
where, FE= E + E' D= Iy + E (}.99)
By the way, these principle comes from Lagrange [31, pp.189-236], '® in which Lagrange states his
méthode des variations'!? in hydrostatics. (1)

The duplex triangles ' including these points, by the same method, for brevity, by denoting the
sum by N, (198) is expressed as follows :

(da.d'y — dy.d'z)VN

108(1}) The symbols : Py, P», P3 are of ours instead of “the first point”, etc.

109(y) Article 7. De I'equilibre des fluids incompressibles, §2. Ot l'on déduit les dois générales de Uéquibre des fluides
incompressibles de la nature des particules qui les composent. [31, pp.204-236]

lw(J}) Lagrange [31, p.201]. Today's mathematical nomenclature is calculus of variations or calcul des variations.

111(1}) The duplex triangles construct a rectangle made of two adjoining triangles.
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These values : dzd'y—dyd'z, dzd'z—dzd z and dyd’z— dzd'y are calculated in permutation by Jacobian
|.7| of the three determinants extracted from (199) :

| 5 E B | o |V | s |5 E
(1) _ _
We denote temporarily the following sum by IV, then
T R
C. outer product of (x,¥) ’ D 2
outer prod:cl. of (x,z)
o () e
E ————
; outer prud:ct of (y,z) ’
= [+ )o-Ge] + [0+ GE-Fo)
= [+ + () ]+ (B + (+ ) 1= o[+ ) o+ (+ ) Z]PE
= ¢+ [D}+D§| D + | B} + B3 E? —2[DiBs + EvD2| DE, (200)
N — oS J— — ——
' of (202) E’ of (202) F'! of (202)
whore, 0= (1+82) (14 DY) BBy T, D p=FE =T+ E

and Dy, Ds, E,, E; are the two terms consisting of D and E respectively, and these coefficients are
correspond to the variables of the equation (201) showed in our footnote on the theory of curved surface
by Gauss [15]. 112

Extending (200) with neglecting the second order of 4§, for example, 2= i:f—f or (4 )2, etc., and for
brevity, denoting the sum by L, then

)
. 2= (1+%+%)2§1+2(%+%)
e - [ () (16 )

IR

1R

[

(1+2F) (G 25 % + &)
(12 (& )2 iy

dz 2d§m dz) dizdgéz d.’ﬁ_x dé_z
(j_y)g-'- E(: 2 jnger dz P dy
@) %G Y5

112

1201y In Disquisitiones generales eirca superficies curvas, Gauss deduces the following concluding equation ( cf. [15]) :

dr dr dr .2
¥ =E Y3yt Mt MR (sl 201
EG - (dql oat () (201)
We see (200) resembles one in [15].
N=C?>+G'D?+E'E?-2F DE (202)

If we assume that “f =D 3; =B, B'= E24+E?, F' = D1Es+EDs and G' = D?+ D2, then E', F' and G’ correspond
to B, Fand G in [15]
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Similarly changing = with y in corresponding expression,

145

(@) + 0+ = [(F) + 2P+ (@DNED)
= (2 (@ g T+ @)
= (12 2)((F) %)
- () ey e na
. (B th(E) s
. —2[(1+%)%+(1+% déy]D
- oty Sy ey s
_ _Q[ddx déz déz | déy @@](dzdz _dé_z@_l_@@)
b j;: dyd dda: d;ﬁyddw dx dy de dy = dz dy
z dz
= A+ e )
B d&cdzdz déy dz dz ddz déz dz déy doz dz
- (F st oent e e as)
- dz dz fdéz  déy
- _Ed_y(d_y E)

()

- (e

7+ ) o+ )

where, L is gained by extracting only one order terms in the expanded terms from (200) :

({}) Here we can’t solve a question : where the inconsistency by the coefficient 2 in front of L in (203) of

The calculations by Gauss are interpreted as follows :
N

_*

C? + (o) D? + (8) E* + (e)DE

Ll ) eyt e g
.E'z -52 .52 -EE
ot () ) () (e ] () (2]

L
= 2L+[1+(i‘:’ +(%)2] (203)

(1) We continue from Gauss. From (203), a first triangle L is the following :

L= - {1+ (@) + (@) )]
S ()]t a2
= i+ @) ]-E2G D F@ T+ 58 o
Here we may recall (196), then the following holds :
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The ratio of the first triangle to the second and plus 1 becomes,
L . st triangle

e O o T SRR oy
1+ (%)2 + (j—;)z 2nd triangle ¢

() The two triangles of first and second are contiguous and construct a quadrilateral by two.(f)
Moreover, this is independent of the figure of triangle dU, then, it turns out,

LdU

—* 2
8dU = W =* (*LdU (206)
Moreover, this is independent of the figure of a triangle dU, then, it turns out,
Ld
Sl = — sl Oy (207)

LA (R 4 (452
Expanding L in (207) using (196) and (204), then
déx 2 déz  ddy ddy
§dU = au[ (+¢?) - (dy +=D)en+ (g +q) e - r,l(] (208)
({}) where, we used the following : s (1 -I—-d—:-) = C2+C2§7 =£24¢2, (2 (1+ :—;) = C2+C2%; =+
Here, the coefficient of 2 in (204) is unnecessary, since dU is a triangle defined in §E.21, then according
to Gauss’ description, dU means a triangle in (207) or (208).

E.22. Integral expression by decomposing dU into d() and dU.
From (208), all variation of the surface U is obtained by the following two integrals

/ av (v +¢ )@ —&n (d‘sy) sc@] =A, (z—differential part) (209)

f dU[ gn‘m (5 +¢ )‘ﬁy abz ] B, (y—differential part) (210)

and these are separately trea.ted‘ We consider the follomng !

e at first, we take a plane, normal to the coordinate axis y, and such as,

— for the value of this ¥ to be determinate suitably taking the exterior value to the peripheral,
— for the last value of y to be in the surface U.

e next, for this plane, on the peripheral P, we split into two part, or four, or six, etc., for the points
of which by the first coordinate, to be followed by z° z’, 2", ; namely, as if the indices are
different each other, we should number suitably by the indices to these points ;

e then, by the same way, we split the surface with other plane, for this infinite neighborhood to be
parallel, and to encounter with the point of the second coordinate y + dy ;

e finally, between these planes, we could get the elements of peripheral dP°,dP',dP",---,

then we could see easily the left-hand side being expressed as follows :
dy = -Y%P® = +Y'dP' = —-Y"dP" = +Y"'dP" etc. (211)

(1) where dP* means the various P not the derivative, and the sign changes superior or inferior, according
to that the line uP* from the center u takes interior or exterior of the space S. cf. §E.9. (1)

If, in addition to, we consider the infinitely many planes, normal to the coordinate axis x, of which the
element dr between z° and z’, or between z” and z”, or etc., it corresponds to the element : 113

dx.dy

dU = (212)
(1) Namely, this correspondence comes from (208)
[oaw=" [ (i +c) e - By - 2eq] + [av](e+ ) G - Grn - Gond]
- dyfdxg[ (7 +¢?). S0z _ Lug, —i‘?—z—ac]m,[dy [(2 %) 2 ‘i‘sﬁ—‘”—ze ~f‘~"—z;<}

" ~

A B

H3(4y) In fact, comparering the two expressions : (209) with (213) and (210) with (213), then this correspondence
deduced.
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(M)
Therefore, from here, it is clear that the part A, which corresponds to the part of the surface depending
on between the interval : y, y+ dy, turns into the following integral, i.e. substituting the right hand-side
of (212) into A of (209), then

n+C”d61 &n doy
A= d/d:c o —Ed&z)

extending from = = z° to z = 2/, next, from z = z” to @ = z" etc. In fact, the limit of this integration
by parts is expressed as follows :

2+ 2 2+ = dﬂ

Here, we construct A using (211) and (212), then

02 02 0,,0
(n +C 50 81

8y° — g“JzD)Y%P“

¢° ¢o
7]’2"'(!2 Y ‘f'rf re t ' '
+ ( Tt = —¢'62)Y'dP
"2 12 !
(?? ;C éx” e C?.I" 6yh‘ . gﬂé‘zu) Y”dPH
+
a
N _ _ 5, %
/ :;dU 51 by— — o )
or in sum,
o g = f Bl S
Z( b~ by gaz)mp gdU(é.c gy~ —ézdw)

This total quantity A is expressed by

P+, & .
A_/( Tt — Loy - gaz)mp /CdU T—éya——éza)

where, the first integral is extended to all the circumference of P, and the second is extended to all the
surface of U.

E.23. Analytic reduction of dU to two integrals of () and V via A and B.
By calculation from (209) as the same as (210), we get B similarly and immediately

[P s .
A_/(Téw——c—-ciy—~£6z)}’dP—/§dU(éz < gyt —éza) (214)
_[(tn, £+ o O
B / (?53 ey - r;éz)XdP+ / CdU(é.r.— —dy dy +ozg ) (215)

Here we determine for all the circumference P, we get (Q from the first terms of both (214) and (215),

&n £2+¢2 "+, &y B
(?61— c r5y—n52)X+ (—-—C—J.c— ?Ey—ﬁﬁz)Y=Q,

[X{n +Y (nﬂ + c;z)] oz — [X (2 +¢2) + an] Sy + (Xn¢ — YEC)dz = ¢Q
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Moreover, for every point of the surface U, we get V from the second terms of both (214) and (215),

d&n dﬂ’_+ci d& Pl d  d
il
(j_ dx )Cé‘z—i_(dz ¢ )Cay+(£+@)gézzv (216)
That is, we can put
5U = f QdP + f vau (217)

The first integral is to be extended along all the circumference P, and the second is on all surface U.
({}) This is what is called the Gaussian integral formula in two dimensions.

E.24. Geometric reduction of  and V.
Formulae for Q and V notably contradict X¢ + Y7 + Z¢ = 0,'4,Q has always the symmetric form as
follows :

dz
Q=(Y(—2Zn)dz+(Z€ — X )by + (Xn—YE)Sz =  the value of determinant : Z | (218)
¢

Jn;qg.
S <&

({) Here, the expression by determinant is of ours not by Gauss.(f})
When we see the form of V, we can reduce from the formulae (196)

dz I3 dz 1
the following as

J1
P
— (219)
therefore,
dg _gdn de _
dy  (dy
Moreover, for £2 4 5% + (% = 1, we can deduce
Eg + % + c—c (220)
by dividing the both side of hand of (220) with ¢,
£d§  (ndn  d
Cae (g =2 (221)

and therefore by (221)

dﬂi"ﬁ d d1
3 =7_c+(2ﬂ+d€) net _§ & (222)
du: ¢ dx iz ¢ dx
We may replace the coefficient of (dz in V of (216), using (219) and (222),
i ot
dy dx
451
dy ¢ dx
_ Edfr z{;
= f;;é += ¢ d (, from (219), )
E d«f dn
' ( ¥ dy)

114())) This means X¢ + Y+ ZC #0.

(, from (222), )
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Similarly for (dy

2+ 2
s s sl 1(& , dn)
dx dy C\dz  dy
Then V of (216) is reduced as follows :

d
V = (€6z +ndy + Céz)(f—x + d—’;)

E.25. Geometric meaning of % - % in V.

Before going forward, we must illustrate conveniently the important geometrical expression. Here
we restrict the various directions of methods, we would like to present the intuitionally simple method
as follows, which we introduced in Disquisitiones generales circa superficies curvas. We consider the
following layout of structure.

e At first, we consider a sphere, of which the radius = 1 at the center of an arbitrary surface, and
we denote the values of the axes of coordinates z,y and z by the points (1), (2) and (3),

e next, taking exterior domain denoted by s, we number a point denoting by the point (4) toward
the normal direction on surface ;

e then, from an arbitrary point on surface, we draw a straight line toward different point, which
we denote by the point (5),

e finally, for the variation of itself, we suppose that for the quantity /dz2 + dy? + 922 to be always
positive, and we denote the quantity by de for brevity, then

§u = de.cos(1,5)

0y = be.cos(2,5) , where de=\/dz?+ dy? + 022

bz = de.cos(3,5)

(4}) (Remark. If we assume each (e) a unique point each other in both, then (e, e) means the angle between
two points taking an intermediate of an origin. ) By the way, before Gauss’ method of description of
angle, we can show the same method by Lagrange in 1788 as follows :

Comme ces quatre systémes de coordonnées répondent aux quatre angles du nouveau
quadrilatére dans lequel s’est changé le rectangle dz dy, il est clair qu’on aura les cotés
de ce quadrilatére en prenant la racine carrée de la somme des carrés des différences des
coordonnées pour deux angles adjacents & chaque c6té. Ainsi, en marquant la droit qui
joint deux angles par la réunion des deux numerérons qui répondent & ces angles, on
aura (1,2) = dz,/--- Lagrange [31, pp.207-208]

(Trans.)
It is clear that by two adjacent angles made by each side or edge are By /dz? + dy? + 022 : the square
root of sum of the each square of differences. Therefore by marking the line joining the two angles, with
the pair of two number corresponding to these angles, we have (1,2) =dz,/--+ -+ (1)

Here, we would like to express the every point on the surface. About this boundary, when we treat
the periphery P, we can approach this from the two different directions. !5 Hence,

e at first, we denote the point corresponding to dP by the point (6),
e next, we draw a straight line of the inner normally-directed tangential to the surface, then we
denote the point by (7),

lls(J}) Namely, clockwise and counterclockwise.
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geometric method

TABLE 15. Comparison of @ and V in 6U = [QdP + [VdU between analytic and
no|valuelanalytic method
11Q

Q= (ﬁgaz — S gy — néz)x % (ﬂ%iax — &5y — gaz)y
2 v 42

Igeometric method
V = (Tg_- -

1
Q = —de.cos(5,7)
d 2 2 ﬁ d 2+ 2 i
) ¢sa + (G — S ) cou+ (4 + 82) oz

dg 4 dn
dz+dy

V = de.cos(4, 5).
= de.cos(4,5).( & + ﬁl,)
e then, by this hypothesis, these points (6), (7) and (4) look toward the same direction,
angle as the rectangle.

above-mentioned (1), (2) and (3) then (4,6), (4,7) and (6,7) make a cube, 7 if we assume each
118

16

using
Thus, the equations (197) in the above-mentioned ( §E.20 ) are transformed into

nZ — CY = cos(1,7)
(X —€Z =cos(2,7)

&Y —nX = cos(3,7)
(1) Namely cos(1,7), cos(2,7), cos(3,7) are determined by the its cofactor of following matrix :

cos(1,7) cos(2,7) cos(3,7)
X Y

3 1
()
The formulae in the previous article take forms as follows :

¢

Q

where,

_ dé  dn
be.cos(5,7), V= de.cos(4,5).( 32 + dy), (223)
e () expresses the translation of this point along the periphery P, to which a plane of

tangential surface U, taking as normal in the domain, positive to the opposite direction ;
e the factor V is, like cos(4,5) clearly indicates, the translation of this point on the surface
U, taking as positive in the domain of the exterior space s.

geometric in Table 15.

€T
In such case, it turns out that : from (196),

Here we may summarize Q and V in 6U = [ QdP + [ VdU by the two methods between analytic and
We may explain by replacing %{ + 5;—;} in V of (223), from the point of view in geometric meaning.

dz dz
== Tz’ n=- Ty (224)
d dz
e §2+TF2+C2=C2+C2((4—§)2
Then

2
#(Z))
1 dz\2  ,dz\2
a=it () +(3)
Taking derivative in both side of hand of (225)

dy

(225)
dz
—9¢~3 = gﬁf_d

angle with two directions ( i.e. points.)

116(11) This image is considered that there are three directions emitting from a common point and making a certain
117{1}.) (4,6),(4,7) and (6, 7) make a plane consisting of a cube respectively.
18(1}) When cos(4,6) = cos(4,7) = cos(6,7) = 5
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dz ,d4z dz e 4y

e 2 dx
1= Cd:zg T T (226)
and finally we get the following expression after replacing (226) with £ and 1 from (224)
d¢ = &¢? d. + qzd— (227)
19 Using (224) and (227),
dé d’z  dz d{ dzz dz  d?z d?z
d - iR dkds Cdz‘s‘:d 2 +én ‘;dz.dy
:-E
tfz cfz
= G- )T e = (7 + ) e e e
dn d*z d*z d*z (F d*z
= Cd‘}2+n(dy2+£n§d$m —¢(1 —z)h;ﬂr{nc —¢(¢? +C)dy2+£ncdzdy
Therefore, again from (224)
b dy __a[da | dyhy s s ds | dap | odeye
&ty — Y 2{1+(dy) } 7 TR dy2{l+ ()}
dz .2 dz,21-%
where, ¢* = [1+ (2 + ) ] (228)
This is equal to (174) in Gauss [15]. *2° This value turns into a constant such as **'
d{ dr; 1 1
T A kel i3 Tk (229)

where R and R’ are the radii of curvature respectively. 122
({}) Together (228) with (229) are what Gauss called it the first fundamental theorem referred in §E.28.

119(1) The above expressions are to be used by 8, that is

Oz Oz
e 2 2
I = EC*0— 4+ d_ay

120(yy) Kobayashi [28], p.138 (3.9), the first fundamental form. :
le = FEadugdus +2F, duadvﬂ + Gadvgdu,
= (e dug) [ Fa Ga ] [ dvs }
where,

_ 9p dp gp dp dp Op
E Fy= Go=—.—
“ = Due Oua’ Dy Dva

o= —.— o

e Oug '
121011y ef. Laplace, IV, p.826 [9853], the equation (136) :

d d d
1 1 (1 +q2).EE —pq.(;ﬁ+g;"')+[l +p2).%

=+
k- R (1492 + 1)

122(41) ¢f. Poisson [60], p.105.
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E.26. Reduction of éU.
From (217), (223) and (229)

= e

() 6U= f QdP + f VdU = — / Soscon(s, 1) AP+ [ SeccostB) (o 4 )dlf
g ol ’ R R’
—Q of (223) V of (223)
Now, we consider @ of (223),
/ de. cos(5, T)dP’ = / Se. cos(5,T)dP® + f Se. cos(5, 7)dPW (230)
/ Se. cos(5, T)dP® = f de. cos(5,7)dP®) + / Se. cos(5, 7)dP® (231)

If we add both hand sides of two equations (230) and (231) above, then
f de.cos(5, T)dP’ + f de. cos(5,7)dP® = f de.cos(5,7)dP

For U = U’ + 6U", the variational values of §U’, U" fit by substitution. =~ Thus, we can see the truth
of the formula (I).

In short, it is observed that, the variational theorem (I) is to be deduced from the consideration
of geometry, and moreover it is easier than by the analytic method to solve our problem, although
we are managing to solve it, and ocasionally, by the variational calculation, for including double
integral of the limit of the variable, so that we have sought for it insufficiently up to now.

However, in some way, we would like to try to investigate it from the view-point of another
geometrical method which we can challenge sufficently to lead the readers.

E.27. Geometrical method. Deducing the parts of Q).

Evolving further the variation, for the expression W is explained by the variation of figure of the space
s, we would like to start to argue at first, from the variation of the space s. Recalling that we consider
in §E.21, the prism with the equal sides and oriented to the solid body, then, on this point, we can see
that this prism has the following :

o the size of basement : dU,

e the height : &6z + ndy + {5z = de. cos(4,5), where de = /62 + dy? + 622
e the sign ( 4 ) of height depends on the transposition of triangle, according to the location of
whole solid lying whether interior or exterior of the space s.

Hence, we can get
i = / dU.Se. cos(4, 5)
Next, from (II), the variation of [ zds (III) follows :

(1) & / - f et Bes coll B

As long as the variational quantity T, we can see that P is the limit point having commonly the surface
T and U, the transposing point of the circumference P satisfies owing to these condition, and newly keeps
in the surface space S. By the transposing element dP, as the partial displacement of the surface 7',
we get easily £dP.de.sin(5,6). In general, the choice of positive or negative sign depends on the sign of
cos(4,5). We would like to explain it by introducing the new directions such that :

e the space S tangential in the surface plane,

e the normal-directional line P, and

e the exterior space s,
respectively. If denoting the responding direction with the point (8), then by the transposing element
dP, we get the surface variation of T, from the definition, as dP.de. cos(5,8), namely (IV) :

Iv) JTsfdPAée.cos{E),S),



The “two-constant” theory and tensor function underlying the Navier-Stokes equations 153

where, the sign of factor cos(5, 8) depends on the conditions of whether increment or decrement.
‘When we assume that :

e at first, the point (6) were the pole of the maximum circle passing through the two points : (7)
and (8), then the point (5) is the highest point in the circle made by the two points (6) and (8) ;

e next, the points (5), (7) and (8) make a rectangular triangle, having the rectangle at the point
8);

e then, we can get the expression : cos(5,7) = cos(5,8).cos(7,8), where, the arc (7,8) is the
measure of angle between planes of the two surface spaces : s and S, which are tangential
intersecting with the point P and the plane domain, including null space ;

e finally, we denote the angle making with (7,8) by 4, i.e. ¢ = (7,8) and by 27 —1, the angle between
plane domain, in which the space s is continue.

Then we can formulate (V') as follows :

(V) cos(5,7) = cos(5,8).cosi

E.28. Result.1 : deduction of height from the first fundamental theorem.

By the combination of above formulae I, -- -, IV, we get the variational expression of W.
W = / dU.de. cos(4, 5) .[z-!-ozz(% + %)] - f dP.de. cos(5,8) .(a? cos i — a? + 262)
—_—— N—  —
(11} és (IV) 6T

where,

z+az(% + %) = Const.

The equation is constituted by < the first fundamental theorem >, in the theory of fluid equilibrium,
in which Mr. Laplace missed, however, it would come to be different if he had used our method.

If we set Const = 0, then

1 1
e e A
zZ=—0 ( R + R’)'
where, z is the height of capillary action, & and § are the values defined in (194). And moreover, the
following corollaries follow :

Corollaries :

(1) If free surface U is not classified, in any point in a section, the surface must be concavo-
convex, ( i.e. concave curvature is greater than convex curvature, ) in addition, convexing
the maximum radius is equivalent to concaving with the maximum radius.

(2) For upper normal plane to surface, it becomes concavo-concave, ( i.e. biconcave, which is
concave in both sides, ) or if there is in anywhere, convexo-concave, ( i.e. convex curvature
is greater than concave curvature, ) concave curvature will be convex.

(3) It becomes convexo-convex, ( i.e. biconvex, which is convex in both sides, ) or if there is
in anywhere, concavo-convex, convex curvature will be concave.

(4) Free surface U can not have partial finite plane if not horizontal and coincident with
normal plane.

E.29. Result.2 : deduction of angle from the second fundamental theorem.
W = — f dP.de. cos(5,8).(a? cosi — o + 20%) = o? f dP.de. cos(5, 8). (1 - 2(2)2 —cos i)

Here, we assume A such that
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2
cos A = 1—-25in2(§) =1 —25—2‘ (232)

If e,in-;i = g, then &W = azfdP.ée. cos(5, 8).(cos A — cosi)

where, the integral is to be extended along the total line P. Remember that the factor cos(5,8) is
equivalent with sin(5,6), '** and the sign becomes plus or minus, according to fluid in motion in the
neighborhood of element dP or moreover, it reaches to the end point of P, or it comes to disappear.
Here, we conclude that as follows :
e in state of equilibrium, it becomes always ¢ = A.
e If in every part of the line P, it becomes i < A, then initially generated momentum in this part
keeps invariable in the line P, and W show negative variation.
e If in a part of the line P, it becomes i > A, then both cases of minimum condition and equilibrium
confront.

This is < the second fundamental theorem >, which Mr. Laplace has investigated almost without
proof in the meaning of the principle of molecule.

E.30. In case of the vase having the figure of cusp or aciform.

e The theorem above of arrangement which lacks in singular case, we can not pass over it.
e On the surface of the vase near the ultimate limit P, there exists the only plane contact with the

surface of vase.
e If the continuous curvature in this point P the singular line interrupted, it is considered easily
that not only the cusp, but also the aciform 2% of line P sifts, we do not change our conclusions

1

o?dP.de.sin(5,6).(cos A — cosi)
—a?dP.se.sin(5,6).(cos A + cos k)

t=A, i>A
k=2r—A, k>2r—-A

In the state of equilibrium, therefore, it can not become i+ k < 2, if, that is equivalent to the following
. in the state of equilibrium, the limit of free surface of fluid can not become up to the finite extension,
in the aciform, concave surface of vase. **® To the contrary, the quantities by this limit coincident with
aciform convex, this is required and sufficient for equilibrium, where, @ is the inclination.

e When the angle lies between fluid plane and tangent vase as follows :

between A and A+a (included) =*A<*x<A+a, exterior-measured fluid,
between 2r — Aand 2r —A+a =*2r— A <* <2x— A+a, interior-measured fluid,

where, * means the angle.
e When the angle lies between two surface planes of vase from both side to aciform tangent in this
point indefinitely denoted with 2w — «, to what extent we can measure this angle of domain of

vase.

123(11) i.e. cos(5,8) = sin(5, 6), where the point (8) is the point of rectangle, the points (6), (8) and (5) make a straight
line in the direction from left to right.
124(41) For example, a needle, a pin, a sting, etc. See the footnote above in the last line of § E.7.
125({1) This French is sic by Gauss.
in statu aequilibrii limes superficiei fluidi liberae U esse nequit, per extensionem finitam, in acie concava
superficiel vasis.
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E.31. Relations of quantities of attractions between fluid and vase in respect to the angle
A.
The constant & and (2, which ratio of the angle A determined depending on the function f and F,
and in a sense, we can consider as if the strength of molecular force, of the particle of fluid and using
vase. If the function is compared with, fz and Fz are in ratio determination independent of the distance
«, putting n and moreover N, we can clearly stated that o : #2 = en : CN, i.e. the constants o® and 32
proportionate to the attraction, where each distance between two molecules of equal volume, one is fluid
and the other is vase. In respect to the cases of A, we assume that it is acute, rectangular, obtuse and
both are rectangular, as following : 126

f? < 1a?, A is acute,

p? = 3a?, A is rectangular,

£ > %az or B2 <a? A is obtuse,

(2 = o? both a and f are rectangular

: in a sense of such supposition ( although there were no sufficient reasons, it looks like true, it does not
contradict ) it must be the following :

e in the first case, the double quantities of particulate attractions of fluid have mutually larger than
the double attractions of particle of vase of fluid ;

e in the secondary case, the quantities of first attraction were equal to the double of another ;

e in the third case, the first quantities is minor than double attractions of the other, or the first
quantities are larger than another ;

e finally, in the fourth case, the quantities of both attraction equal.

The first example explains the case of mercury in glass vase.

E.32. In the case of §2 > a?.

o How much the value of angle A in this case, where the attraction of vase become the largest than
the attraction of partial fluid mutually ?

e The imaginary value, which for 4% > a? the formula sin %A = fg the angle A assign, at the
moment prove that the supposition in such case, non admissible.

e In fact the quality 5% > a2, we can not consist the supposition of limit on the surface T with the
minimal condition with respect to the function W.1%7

e It seems to be that, in everywhere, namely, if we consider infinitesimal expansion as the ultra
limit of the fluid layer, as well as T, we take the argument 7", and as well as U, to which this
argument approximately equals, the value of function W assume the sensible variation equals
negative quality —(24% — 2a2)T" ; this value W continues decreasing infinitesimally for a long
time, would occupy total surface of vase up to T".

e Variation —(263% —2a?)T” the more it becomes exact, the more the thickness takes minor, and as
long as we discuss the value of expression of W, nothing disturb, these thickness takes continuing
to disappearance.

e However, this disappearing thickness ( exactly distinguish with insensible ) is exists except for
the mathematical fiction, so that the minimum value for W is got in the case of 3% = o?.

e However, we change the view into our problem of phyisics, when the following accessory of this
thickness must be naturally pleasure, even if it is insensible, such that it can keep equilibrium.

126(41) of. (194), (195).
127(y) By (194) and (195), we get
fzd.s Lo+ lncwo - ch:Teo = [zds - icswa + (T + U) —26°T
2g 2g q 29
then we get (195) :

wEfzdsﬂa? — 26°)T + U
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e Whenever this part approaches, the expression of W, such as we have mentioned in §E.18, it is
incomplete, and we denote it the part of vase, which the layer covers by T”, whose thickness in
the point is indefine by p, the expression 2*?® extends moreover the boundary

wcng'p.dT' - :lrcC/@'p.dT"
Until this time, the value of this W,
202
Li% / o'pdr’ - =5 f 0 p.dT" = / dT’(%?—Ae’p— —"‘—.e’p) (233)
g g B to

where, we substitute (233) by the terms as we had denoted in (194) and (195) as follows :

ol 'frr_-Bg1 g = TFCT@{]’
29 29

e Therefore, the value of this W, by extension of such a layer, then accept the variation 2(4%2—a?)T",

the total variation, its value of W, which we have the situation of the layer omitted, then we have

| g2 e!p 2 8";)
—zde | (1—50) ~@ (1—@;)]
This variation, for 6 = fy and O} = O, become zero for disappearance of thickness : §'p and ©'p
reduce the density of p, the thickness decrease, and then for insensible value of this p, evaluated
as insensible, the variation of thickness inverse the value —2(4% — &?)T" converges, moreover for

the equilibrium state of fluid, the expression W becomes never suitable correctly if ultra sensibly
decrease, it turns equivalently into sensible.

t=T+U,

fzds —2(8? — )T +T') — 2T + *U
If 5% — o® = 0 then
/zd.s — T + o®U

i.e. which expression, in the minimum, become for the case 4% = o?.

e Hence, we get the figure of equilibrium fluid in vase, as #% > o2, for brevity, as the figure of
equilibrium fluid in vase 3?2 = o2, here the difference is strict equilibrium results in the layer of
the insensible thickness.

e Besides, Mr. Laplace then stated that, for this case of vase of fluid insensible thickness are covered
equivalent to be strictly with such vase, whose particles, the attractive force of fluid particles exist
mutually and uniformly.

e By itself, hence, the arrangement obeys the descriptions in §E.18 read as the vertical capillarity
ascending fluid in tube : quantity clearly % > a?, in which we proposed the formulae that can
substitute 8 with « in this point.

In the case of % < o?.

e In this case, where 42 < o?, the wet vase with the insensible fluid layer can not have the point,
even if law of function 6’ and ©' are, when for the value of the function
Opy 2 ©p
o?(1-==) -1 - —=
-5 -pu-g)
for brevity, we describe as Qp, this value continues increasing, if p increases from the sensible value
at the zero value : because, clearly from the characteristic of this function Qp would contradict
with minimal condition.
e By itself, this characteristic occurs the hypothesis, by that in the article 31, where we had stated
that fz and Fz are determined independently in proportion of «, from this fact, we deduce that

%ﬂﬂ = %f, and namely, Qp = (o — #%)(1 — %f).

1281y c.f. (180).

Q= __qcfde. %c’* ff ff_ms’,(p(ds,cw)+cc[fds.ds.<1s(ds,43)
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o However, if the functions f and F will occur simultaneously as inverse, it is not at all impossible,
that this value %f rapidly decrease, as well as %nﬁ, the function @p, in both insensible value of
this p, at first negative, and after, their values reaches to minimum ( i.e. at last, negative ), while
o? — (3 ascends by the value 0 of the inverse their positive limit.

e In this case equilibrium at least postulate with insensibility, this thickness in general, showing is
stated such that Qp contradict not at all sensibly with the least value.

¢ Although if we denote by —(8')?, it turns to (8')% < 2 ; the figure of other part of the substantial
indeterminate fluid, moreover, if in vase, with respect to the situation, #? must substitute the
quantity ()2, i.e. the angle between plane of the free surface of fluid in contacting substantial
part tangent with the wall of vase turns into 2 arcsineg;. (cf. (232).)

e Moreover, doubts in such case existing in natural phenomena, seem to be filled with the more
complicated phenomena.

E.34. Summary.

Another with our proposition we presented, the general principle of this sort of stability descending as
a result of special phenomena, especially, essential principles fit the theory in this case, by Mr. Laplace
and the contemporary with him rushed and succeeded, so many phenomena in fluid equilibrium were
solved, the new and so many results were produced : however, even so, the reserved were remained.
Inversely, from this, it is possible to indulge in giving out the new light of this argument, or to fall into
incorrect interpretation.

91

e Our theory does not only arrogate by ourselves to determine the figure of fluid equilibrium in
mathematical exactitude, but also we recognize that, of the determination of figure, such as, an
equilibrium figure varies different only in sensible quantity.

e If we recognize that there are errors in theory something imperfect, then they were

— to prove in total, or,

— to prove how much it is possible, or,

— to prove how long we ignore the molecular attraction.

e In state of equilibrium, the function  '?° becomes exactly maximum, so that, the function

2mesPp0 Q
g gc
becomes minimum, this, moreover, for the indole ( characteristics ) of the molecular attraction,
not only the function W is the exact equation, nevertheless, but also insensible in this place
different.

e Figure for this W fit minimum, not exact equilibrium figure, if differential become insensible, as
long as everywhere move sensible, the function W becomes lowest in the value of figure.

e Clearly, sensible differential in surface curvature is not excluded, as long as it were limited by
partially insensible surface :

— because in equilibrium figure, exact constant-angle over A denotes impossible by considering
it sufficient, that if there were immensurable distance between the vase, as Mr. Laplace then
had thought correctly that, as if the inclination in limit of sphere of sensible attraction with
vase is coincident with sensible value of A.

9 II.

e We should clearly distinguish the equilibrium figure with quiet figure. Fluid equation in the
state of equilibrium, it keeps. In the quiet figure of fluid have a little different equilibrium figure,
nevertheless, may occur, and fluid in quiet permanent or if moving, accept the momentum in
this moment, before reaching to the equilibrium of fluid, similarly, for example, cubic horizontal
plane not only in equilibrium but also super plane.

e Clearly, the first fundamental equation (§28) independently of perturbative limit P, i.e. in addi-
tion to, not only minimum condition but also necessary condition, here, we suppose this invariable
limit : why, how long this perfect fluid delights in flow, on the other hand, at the same time,
another fluid is able to increase freedom, while we postulate the minimum force of motion, the
fluid will accommodate inevitably itself to its condition.

129013 c.f. (180).
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e The second principal reason (§29) essentially depend on perfect limit of P on the surface of vase.
e Minimum condition in value W in itself we postulate the equation 7 = A : in fact, since surface

9 IIL

fluid will accommodate itself to this first principle, the angle i does not yet reach the normal
value, the value is not only W absolute minimum, but also in the equilibrium state, it can not
become perfect without translocation of limit P if without fluid motion in contact with vase,
what sort of motion can inevitably obstacle friction.
From here, it is clear that, in an experiment, why each corps institutes this great differential
would meet with the angular value i .
Similarly, in the case, where, 32 > o2, the fluid in vase, whose wall get wet at this time, above
all, which is consisted of the law of equilibrium, next, in part, which is substantial fluid, become
1=2m:
if this wall in vase were dry until now except for fluid, which is in the state of non equilibrium
base of dry vase raise to be possible for equilibrium, after all, the value of angle ¢ reaches to 2.
From here, on the other hand, the theory tells us that the capillary phenomena of fluid, such that
including the wet wall,

— in the dry tube, this shows many irregularities, ascending very frequently, small by far,

— in the wet tube at this time, where the most beautiful harmony with theory is always seen.

The constant inequality made by « and 3, from the phenomena it is deduced,

when the inequality becomes > « : where, the figure whose fluid in vase forms equilibrium of
various material by its case not defferent with respect to immensurable vase got wet.

Another inequality # < « : where, it determines the ratio inter the constant which is the aide of
the angle i, therefore, when the mode of ratio that the force is scarcely estimated.

e On mercury in the glass vase, Mr. Laplace studied the angle to be i = 43°12'.
e In wide of large precision, by far, the constant « is able to be determined, especially if the wet

vase can admit so.

For water, at 8.5° C in temperature, we should determine according to the experience cited by
Mr. Laplace. 130

o These sorts of things were already studied by physicians Segner and Gay-Lussac :

E.35. Conclusions of ours.

(1)

(3)

The “two-constant” were defined in terms of kernel functions of RDF's, describing the charac-
teristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary
for the interpretation of the nature of fluid or the formulation of the equations of the fluid me-
chanics including kinetics, equilibrium and capillarity. With their origin perhaps arising in the
work of Laplace in 1805, these sorts of functions are simple examples of today’s distribution and
hyperfunction of Schwartz [70] proposed in 1954/55. Another evidence of the then backgrond is
the atome theory by Galton, who suggested the existence of atom in 1808.

Gauss [17] also contributed to develop his self-made RDF or M DN S equations for fluid mechanics
including capillary action, because he formulated the equations with two-function instead of two-
constant and this is an exceptional case from other contemporaries of N.S equations.

According to Bolza [3], Gauss [17] had broken one of the neck of fundamental problems, such as
maultiple integral and calculus of variations, however, we must recognaize that even he owed the
latter to its progenitor Lagrange, and calculation of capillarity to its progenitor Laplace.

ISD(JJ.) Following is the footnote by Gauss : H denoted by Mr. Laplace corresponds to our wc#0, since we denotes e in
the author’s expression (194), then the expression —%= equals ﬁg’
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APPENDIX F. Poisson’s paper of capillarity

F.1. Poisson’s comments on Gauss [17].
Poisson [62] commented in the preface about Gauss [17]:
e Gauss’ success is due to the merit of his < characteristic >
e even Gauss uses the same method as the given physics by Laplace.
e Gauss calculates by the condition only the same density and incompressibility

After all, Poisson insists that

e We can take even any method to solve the problem, and carefully check our own equations and
conditions from every points.

The following is a paragraph of the preface by Poisson [62] :

Par les régles connues du calcul des variations, on détermine la surface inconne du lig-
uide qui rend cette somme un minimum, et, comme on sait, on trove a la fois 1’équation
geénerale de cette surface et 'équation particuliére de son contour, ce qui est ’avantage <
caractéristique > de la méthode que M.Gauss a suive. Mais cet illustre géomeétre étant
parti des mémes données physiques que Laplace, et n’ayant pas non plus considéré la
variation de densité aux extrémités du liquide, qu’il a regardé, au contraire, comme in-
compressible dans tous ses parties, les objections qui s’élévent contre la théorie de 'autre
que par la maniére de former les équations d’équilibre. On peut, & cet égard, employer
différens moyens ; mais, sans craindre de compliquer le calcul et d’en augmenter les
difficultés, il importe de ne négliger aucune des circonstances essentielles de la question,
parmi lesquelles il faut compter surtout la dilatation du liquide prés de sa surface libre
et la condensation qui peut étre produite par 'attraction du tube. [62, 8]

( Engl. transl. ) By the method known as calculation of variations, we determine the unknown
surface of fluid which this sum show minimum, and as we know, we get at once the general equation
of the surface and the particular equation of the arbitrary height, these are due to the characteristic
advantages of the method Mr. Gauss had approached. But even this great prodigious mathematician
had based the similarly given phisics with Laplace, and not considering the variation of density at the
extremity of liquid, where there is regard contrary, as the incompressible in all the particle, the objection
which evolves to another theory than by the manner of formulation of the equilibrium equations. We can,
in this point, use the different methods; but without being afraid to the calculation and the difficulties
extended by it, it is important not to neglect any essential circumstances of the problems, among which,
to challenge especially the dilatation of liquid in neighborhood of free surface and condensation producing
by the attraction of tube.

F.2. Poisson’s two constants : K and H in capillary action.
We cite Poisson’s K and H from [62, 12-14].

K = 2mp%q / rSordr
0

q_f ] [1+J(ryz4)rdf;i?% f(1+y2)%

2 (9]
(e K= 2np? f Beordr (234)
0

where,

n=usinv, 7' =cosv

(=Qr+Q'(0)*+ Q"
We denote A and N radii of two principle curvatures.
L_d o 1
A dp? 2Q, N d(n)? =2¢,
The average value
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where, we denote H for convenience sake

oo poo 3
H= ?rp"z/ / tprﬁduds
o Jo 4

where,
s=ux, ds=ud g g &
5= S 5 = :L'T = y —
V1+ 22 V142
2 H:ﬂ)2[ r rdr/ I—=—7r2/ rior dr 235
{ )P £ . @ A m 4 P s b4 ( )
The normal action on this point :
1 1 1
B)p N=K- EH(X+¥) (236)

F.3. Coincidence of Poisson’s K and H with Laplace’s K and H.
Poisson proved Laplace’s formulae as follows :

Les expressions des coefficiens K et H que cette formule renferme s’accordent avec
celles que Laplace a trouvées, sous une autre forme, pour les mémes quantités. En effet,
on suppose, dans la Mécanique céleste,'!

f‘ﬁ’fdr:c—ﬂ?", frl'lrdr‘:c’—llfr (237)

les intégrales commencant avec r, c¢ et ¢’ étant leurs values quand r a une grandeur
sensible, [Ir et Wr désignant des founctions qui s’évanouissent pour tout valeur sensible
de r. D’apprés cela, on a

h h
K=2mp* [ ¥rdr, H= 2w;12/ rr dr (238)
0 0

en rétablissant la densité p que Laplace a prise pour unité, et la limite h étant une
quantité de grandeur sensible, qu'on pourra, si I'on vent, remplacer par I'infini. Or, si
’on intégre par partie, il vient

h h
A
K = 2np?h¥h — 2mp* rLdr = 2rp? r?Ir dr,
p
o dr 0

h h
H = np*h®Wh — Trpzf 2 @dr = :-rp2/ r1lr dr
0 dr 0

intégrant de nouveau, on a

] 2 2 I dlT 9 2 h
K= %Tph‘“’ﬂh - % 4 r?’d—:dr - ﬂ:‘ap /a r3or dr (239)
2 2 ph o h

ce qui coincide avec les formes (234) et (235), en prenant h = co. [62, pp.14-15]
( Engl. transl. ) The expressions with coefficients K" and H which these formulae included are coincident
with that which Laplace had found under another form of (238), for the same quantities. In fact, we see
that in Mécanique céleste, as follows :
v (238)
the integrals of the right hand-side of (237) beginning with r, ¢, and ¢’ in which values r were sensibly
large, [Ir and Ur are designated as the dissipating functions, even if r were sensibly large value. For this
reason, it turns : 32
.- (expressions)
Laplace set density by p = 1, and h the big value, then we substitute i with oo. Or if integrate it by
parts, it turns out

1310y of. (139).
132(11) We cite these two-constant (238) : K and H by Laplace replacing h = co in Table 3. These equations are
described above in the preface by Gauss. cf.(176).
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-+ (239), (240)
where if we replace h = 0o, then we get a coincidence with our formulae (234) and (235). 33
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APPENDIX G. FIGURES

The following original figures were drawn by Laplace [35], in which we cited only fig. 1 and fig. 3 in
the appendix C.1.2.



Remark : The Fig.! and Fig.8 in these figures, correspond the above-mentioned figures which are
identified with fig.1 and fig.? in Appexdix C.1.2. citing from this original figures by Laplace.
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The microscopically-descriptive hydromechanics equations in
the gas theory

ABsTRACT.  The microscopically-description of hydromechanics equations are followed by the descrip-
tion of equations of gas theory by Maxwell, Kirchhoff and Boltzmann. Above all, in 1872, Boltzmann
formulated the Boltzmann equations, expressed by the following today’s formulation :

Wf+v -V f=Q(f,9), t>0, x,veR"(n>23), x=(x,v,2), v=(&n]), (1)
QU2 = [ [ Bo— v oHawl)f() — 9o fo) o, gol) = glt,z, k), ete. (2)
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These equations are able to be reduced for the general form of the hydrodynamic equations, after
the formulations by Maxwell and Kirchhoff, and from which the Euler equations and the Navier-Stokes
equations are reduced as the special case.

After Stokes' linear equations, the equations of gas theories were deduced by Maxwell in 1865,
Kirchhoff in 1868 and Boltzmann in 1872, They contributed to formulate the fluid equations and to fix
the Navier-Stokes equations, when Prandtl stated the today’s formulation in using the nomenclature as
the “so-called Navier-Stokes equations” in 1934, in which Prandtl included the three terms of nonlinear
and two linear terms with the ratio of two coefficients as 3 : 1, which arose from Poisson in 1831,
Saint-Venant in 1843, and Stokes in 1845.
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1. Introduction

We have studied the original microscopically descriptive Navier-Stokes ( MDNS ) equations as
the progenitors 2, Navier, Cauchy, Poisson, Saint-Venant and Stokes, and endeavor to ascertain their
aims and conceptual thoughts in formulations these new equation. “The two-constant theory” was
introduced first introduced in 1805 by Laplace ® in regard to capillary action with constants denoted by
H and K.

Thereafter, various pairs of constants have been proposed by their progenitors in formulating M DN S
equations or equations describing equilibrium or capillary situations. It is commonly accepted that this
theory describes isotropic, linear elasticity. * We can find the “two-constant” in the equations of gas
theories by Maxwell, Kirchhoff and Boltzmann, which were fixed into the common linear terms, and
which originally takes its rise in Poisson and Stokes.

The gas theorists studied also the general equations of hydromechanics, which have the same proportion
of coefficients as the equations deduced by Poisson and Stokes with only the linear term and the ratio
of the coefficient of the tensor function with the main axis of Laplacian to that of gradient of divergence
term is 3 : 1. ( cf Table 2. )

2. A universal method for the two-constant theory

In this section, we propose a universal method to describe the kinetic equations that arise in
isotropic, linear elasticity. This method is outlined as follows:

e The partial differential equations describing waves in elastic solids or flows in elastic fluids are
expressed by using one constant or a pair of constants Cy and Cs such that:

; s 5*u
for elastic solids: T (C1Ty + CoT) =1,
for elastic fluids: (';_1: —(C\Th + CoT) + -+ =1,
where Ty, T, -+ are the terms depending on tensor quantities constituting our equations. For

example, the NS equations corresponding to incompressible fluids consist of the kinetic equation
along with the continuity equation and are conventionally written, in modern vector notation, as
follows:

dua
ot

Here u is the velocity, f accounts for the body forces present, p the pressure and
A =V -V the Laplacian operator.

e The two coefficients C; and C; associated with the tensor terms are the two constants of the
theory, definitions of which depend on the contributing author. For example, € and E were
introduced by Navier, R and G by Cauchy, k and K in elastic and (K + k) and (K—';m in fluid
by Poisson, £ and § by Saint-Venant, and i and &£ by Stokes. Since Poisson, the ratio of two
coefficient in fluid was fixed at 3. Moreover, C; and C> can be expressed in the following form:

—pAu+u-Vu+Vp=1£f, divu=0. (3)

L()) Throughout this paper, in citation of bibliographical sources, we show our own paragraph or sentences of commen-
taries by surrounding between (4} and (ff).  ((ff) is used only when not following to next section, ). And by =*, we detail
the statement by original authors, because we would like to discriminate and to avoid confusion from the descriptions by
original authors. The mark : = means transformation of the statements in brevity by ours. And all the frames surrounding
the statements are inserted for important remark of ours. Of course, when the descriptions are explicitly distinct without
these marks, these are not the descriptions in citation of bibliographical sources.

2({1) To establish a time line of these contributor, we list for easy reference the year of their birth and
death: Sir 1.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d’Alembert(1717-1783), Lagrange(1736-1813),
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857),
Saint-Venant(1797-1886), Stokes(1819-1903). The order in our paper below is by date of proposal or publication.

3(4}) Of capillary action, Laplace[11, V.4, Supplement p.2 | achnowledges Clailaut and Clailaut cites Maupertuis.

4(14) Darrigol [6, p.121).
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TABLE 1. The two constants in the kinetic equations

[no name problem Ch|Cs|Cs |Cy |L£ 1 T2 L(h Igg remark
1 Efﬁ”er clastic solid |¢ | |2 S dple| |fe p : radius
Navier i i o ;
2 [15?1 fluid e &= I dolp®| |F(p) p : radius
E| & |dd | F(p)
system
Cauchy of particles 2 o gl a ; - fon
3 3) e BN R ZA I3 drir®| | F(r) f(r) = £[rf' (r) — £(r)]
and fluid
flr) #K(r),
G ZA|[Zdr| |? +f(r)|A = 4: mass of molecules
per volume.
4 ﬁ%]]mn elastic solid |k e >t d—:‘,ﬁ
K 27" b ;;15 e fr
- - - =
5 Poisson elastic ?Olld & 513 5 213 3 d,d’:f o # % _ %
(17] and fluid
K 3 Eal fr |Ca=g%=1
Saint-Venant|,, . .
6 [21] fluid & I3
Stokes
i B
i [22] fluid 1|5
Stokes : 3 .
8 22] elastic solid |A |B A=5B

Ci = Lrig1 51, S1=[[g3— Cs, 5 Cy = CsLrigy = 2 Lrgy,
Cy = Lrag2Ss, Sz = [ 94— Ca, Cy = CyLrags = E Lrags.

Here L corresponds to either ) ¢” as argued for by Poisson or fnm as argued for by Navier.
A heated debate had developed between the two over this point. It is a matter of personnel
preference as to how the two constants should be expressed.

e The two constants depend on two radial functions r; and rq related to the radius of the active
sphere of the molecules, raised to some power of n for Poisson’s and Navier’s cases; the relationship
between these functions can be expressing by a logarithm with base r such that: log, &I = 2.

e ¢g; and go are the kernel functions having both

— the physical caracteristics come from the fluid dynamics described by the microscopically
basic relations of the attraction and/or repulsion and
— the mathematical requirements for the rapidly decreasing function.

e 5; and S, are two expressions which determine the angular dependence on the surface of the
active unit-sphere centered on a molecule through application of the double integral (or single
sum in the case of Poisson’s fluid).

e gs and g4 are certain compound spherical harmonic functions determining the momentum over
the unit sphere.

e (3 and (4 are indirectly determined as the common coefficients derived from the invariant

tensor. With the exception of Poisson’s fluid case, C3 of Cy is %", and Cy of Cy is %, which are
evaluated over the unit spheres for each molecule, and which are independent of the preference
in using integrals or summations. In Poisson’s case, we obtain the same values as the above after
multiplying by % The integrals are calculated from the total momentum of the active sphere
surrounding the molecule.

e The ratio of C3 to Cy : %f = é including Poisson’s case.

2.1. Poisson’s Fluid pressure in motion.
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TABLE 2. The kinetic equations of the hydrodynamics until the “Navier-Stokes equa-
tions” were fixed. (Rem. HD : hydrodyna.mics N under entry-no : non-linear, gr.dv :
grad.div, F: = d in fluid. The group of entry 6-14 show F' = 3 in
fluid.)
no|name/prob  [the kinetic equations A |Er.dvE F
[ [Buler 14d du du du du
1 |(1752-55) &= 1"32 ¥ vg; + wf?’
L G £ v -
N |7, p.127] Y ?5 +u v T + + =0.
fluid Z_TIZE=_RT+“&:+UT+W&:' ;
t Bl
Ods—c 3—:r+—f+"=r+2a‘%£& +2££),
Navier md?y _ a? a2 d?
2|z |ODve |5t =e(GH +og¥ + E*”dafﬁ%;& ' e b |3
elastic solid %%-f-=€ —5+ _7+3F dadc"'z':':ﬁyé
where II is density of the SOlld, _q is acceleratmn of grav:ty
1dp _ d d .
5 Navier Eﬁ_x+€3w+_ﬁ'+_ﬁ'+2dxdy+ dzd:) _____ _d_:"’_d_:'“"
d
Nga_i?){xs} 1R =Y+e(53 +3;§g+m :M;;HIE ﬁ! g: u— Gy, e |oe B
ul 1dp _ d d d dw i
E_dg"z_!_s _2'+_T+3ET+24.“& 2dydz) _Jug d::'u—d_‘;'v—ﬂ‘w‘
Cauchy
(1828)(3) (L"'G)E;”R""H)Wi"‘(‘?""”ﬁ*'? 8:!:?)1;+2Qb_£-z8m +X =25, it |if
4 [system (R+Gj—} (M+H)—§ (P+I)E§+2P9—§;+2Rm§;+y_ R+l |G |G
of particles _ 82 G =0]|=
Vo St ok (Q+c)ﬁ +(P+H)5S +(N+r)$§+2gazax+zpayaz+z_5§, 112
and fluid G=H=1I L=M= N P=Q=R, L=3R z |2
Poisson 2 z < P .
Gsoniur) | [x -G +et(e + St + S + 358+ 38) = B
5e]ast1csolld Y — +2dv+2d.u+2dw+_l_d2 4 1dy 2y _ I d%v a? |2a® 1
defined 3?-7 @ 3 dxdy 3 dzdy 3d=z? T 3dz2) T o dy?? 3 3 2
. a3 o p? d'*‘ +2d3 +_5;.1" pldw  1dw) _ Ddlw
b Serfer ﬁ"r dzZ 7 3dzdz ' 3 dyd 3dz? T 3 dy? p dz%
equations
oBE-X)+ EraK+k) (St + o8+ T8) + s+ hE(R+ 2+ 22) =0
dzx ?1;;}‘2“ ?‘2‘ 3 de\dz " dy T dz '
d d d(du , dv  dw) _
_— p( —~Y}+—2+a(1{+k) G+ GE 8 SR duygeyde) =,
(1831)[17] oBE -2+ oK +k)(GF+9R+58) +§K+RE (£ +2+42) =0,
6 |fluid defined p(x -5 = o +g[E, d; + L3, 6 |2 3
in general dyy d2u
equations pl¥ — #) +ﬁ{_7 T ? i d_v
ﬂ(Z—,ﬂ +ﬁ(—z+—r+—?)
wherepr—a% _}cf_% B=alK+k)
Saint-Venant
7 |(1843)[21] He didn't describe the equations in [21], however his tensor is in Table 5 (4). e |5 3
fluid
Du dp d*u d (du , dv =
Stokes o(pi —X)+ % _u.( _vz d_f)_EE‘EE(?-'_“_H-FE 0,
D o u u
8 E11§39)[22] (12)¢ p(?‘;~}'}+gﬂu;a(m+jf%;+j—z:)—§%(% +j—y+§—';)=o, T 3
ul Dw li w dw d  du du dw y _
LP("ﬁT‘Z)“" #( Zt o) —5& E+E§+?‘£)—G'
Maxcwell pBt + 2 — Cu| ¥ g +T£?+34 Erg+e)]=rx
(1865-66) Bu d (d d d » c
9[]2] pF+HE Char E+W+—T+§T(3§+ ;+E‘.':') = pY, where CM_.ng@CMg 3
HD PG+ Oy 4 Ly Ly L (deydeydu)] =)z
. pde 4+ L —Cplau+ il ﬂ“+"“+"—‘; = pX,
Kirchhoff d: 5 ) o9 bik 1E+E+ R+ =0 -
10| (1876)(9] 488 —ox|avt+iZ (52 +8 +?,; =al, QRS A, Ck |$ 3
HD y 4 2w ’ = 3ku
Fm‘*'ﬁe K|Az+ 3 ( + 52 )| = #E,
Rayleigh ldp _ o5+ vViu —ust — ‘ud“
;1 (1883)(20] {f;;; dﬂ ) 3: &, dydoo v
HD S + vV =R —ugs
f 18 (u , 8v , dw\| —
Boltzmann +32 RlAut 55 (9 + 55 + z) =pX,
12 3395)12] (221)p pﬁ+a -R|av+ 3L (%2 + 5+ 52)]=pY, R |2 3
dw 18 (du du dw _—
P+ -Rlaw+i2(32+ 5+ 58)| =0z
13 Prandtl
N |(1905)(18] ( +v- Vv) +V(V +p) =kV2, divv=0 k
HD
Prandtl 8 du 8 Bu 1
4] ospe) |9+ U By Hud =X-1824 2.0 (fu g +82‘) (L +~—ﬁ;+-§ L s s
N HD for incompressible, it is simplified as follows : divw =10, =¥ =g¢- ra.d p+ vAw 3
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TABLE 3. Geneology of tensors
(1 |name tensor ( 3x3 ) coefficient matrix ( 3 x 5) in equations
tij = —€(dijur i +vij +u54) We define the coefficient matrix in elasticity :
(5-4)ne C% : the coefficient of
du du dw du du dw , du T 2 2 o o 2
3E+E+E) ay T iz dz T dz ou g—"f “g-i‘r d*’; ;’(;v
g du | du du+3d‘u dw dv | duw det oy gg dady)  gaow
ay P 3— E; Ty [} g%y 87v " w g% u
Navier 0r2  by? B8z2 Dyo=z dedy o
1-1 e dw 4 du dv 4 dw) (d“ + + 3 82w ffyw 82w 8%u 8%y
elasticity #m T ez hea 9 oy? 027 DBa0x  Oyos
E+2 g d]_. du: vy d s then
=—¢ ﬁ—;+% +2j“ E+e |, 311232
£+ d+'£“‘ e+ dw (6)ne = Ch= —e|1 3 1 2 2
s T B Y = 13 2 2
where G—T+T+T 1
dz__ dy ' dz
bij = (p = Fithy k)05 — E(u"’ + u-""'} T Similarly, we define the coefficient matrix in fluid : CJ.
o ¢ — 2%; = 5( e+ —e(gr -z + , which contains p in (1,1)-, (2,2)- and (3,3)-element.
avier _ du 25“"' — dw
1-2ﬁuid E( d, E(dx‘l' &,) ; p—3 —&g —g -2 -2
—e(“‘”-ﬁ- =) —e( —!-d"’} e —2e2) C-'{.: - p—3 -—eg —2 -2
where E—p—E(d: -—— ‘") —€ —& p—3 -2 -2
dx tdy t i
Cauchy | 3. = Mkikdis + p(vig +j,3) L R Q 2R 2Q
s;“t:nf' (60)¢ (46)c=>C&= | R M P 2P 2R
il kfog | @ k(@ a
. [iptiing k;,é +Kv —(3&+aﬂ) EEB%JW%; . 1Q2 P2 N 2Q 2P
ﬁ 2'1 9n kfon , @
both 3 kS +K"20c+?)'§ ' = R[1312 2],
elasticity _3 + _.g ( ) k2 4 Ky 1132 2
and fluid) Ha
where V= +d_b+{)r' WhereP:Q:R, L:M:N, L=3R.
('3}.t=-G
iu
AT 2 2 2
2 d-u 2y 2 d%w 1d%u o, 1d%ul) _
Lij = ‘%(5-':'1-'-!:.::4'“:"54‘%,5) (_5 @zt idza: Tz T 33’) =B,
©)p d d du ‘
i €4 258 i 4 L2y 2 d?u | 2 4 1d? . 1d%) _
3-1 PCI]SE‘KOTI al du dju dI dl: du.l -_! 3d 3 dzl}; + 3 ﬁ T 3 Eg-) - 0’
elasticity [ —%- 'EJ+'¢E ez+'2d s ; d
du  du dy ‘f‘“ e+ 24w
dr ' dz dz +a3 aw_i_gd"‘u_!__z_d"’o +ld'2w+ldzw):0
where E—%+§£+%‘zﬁ d=T 3 dxdz 3 dydz 3 d=Z 3 dy? !
v ,[3 11 22
Cq= —‘-'3— 1 312 2
1 18 2 2
w+p B I¢] 00
bij = —PBij + Mo 1ij + plvi 5 +v,0) (79)p; = Cp= B @w+B B 0 0
(T-Tps B B w+p 00
) g 3_;1 + dTw ﬁ(ﬁi + du) i 2ﬂdu Aa::cc:rding to Stokes: if we put
Poisson 3 Y S(K +k
fluid d=Tdy) T dy dy ! p+—£ '3 ﬁ 8 8
dw dv dw
T+26G; ﬁd(EJrf_yd ﬁ(d,+,u) > ChL= 8 p+% 8 % % = (12)s.
— e L
where 7 = p — a“t — 5 4t 6 6 p+id B2
Remark: a(K+k)=g
tij —( (P “|‘Pyy + Pzz) — "“k k}‘su +E('U:3 + vj, i)
= (_P S _ Vg fc)atg + E(UI.J + v.’iﬂ)
™+ kﬁ, e(£+ %)
Saint-
ifx J i’l dy | d¢
4 | Venant ¥ 7+ 323 ( + ? no description in [21].
fluid ( + —Q) n+ 2%
where T= (P.:; + Pyy +P¢,) - —(g “+ —‘1 o+ i)
= ¥(8:81%)
tij = (—p — $pvk,k)0i5 + #(”z.g + 1{;,‘)‘
tensor = —1 x e i @
du _ _c_l_t_.l_ azl dur du =P 3 1= I 3 3
5 |Stokes e 2"‘( 5) ‘“( *‘(dz‘*dz) (12)s = Cl= po—pt+ ¥ op B2
fluid -#(d,,+dx p- 2;1(—— — (g + g pou —ptde BB
—p( 4o _#( + dy) p_gﬂ(%:_’_g) Remark: $p=2p(1-3)
where 34 = d"' + 5 dv 4 d d
de " dy T dz
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TABLE 4. Geneology of tensors (continued.)

1lname tensor ( 3x3 ) 1l
ti; = (—P 8uuk ) + o 3 vja),
e (gd_u_d_‘-'_d_w) _Lp(a_u,a_u) M _ (_w d_u)
Maccwell Qkpeg dy dz 6kpBa dx fy kaeg dx dz
: M du dw dur
fluid ~ 5505 P da:+dy P=oiposPlae 24y — 4= Skpegp( )
M du _ d
ﬁkpazp(ﬂr- + 5% skpezp(az 53 ay) B okpezp( Y —ay — E)
tr._; = ("‘33' 2k I)alj + k('”:,; +'UJ,¢): '
Ou du w du
7| Kirchhoff 2k Gz ( ¥ ﬂy) (T +* )
fuid —k(a: + gg p—2k8z —k(§+ ?,j)
Hw 8
_k( 5 _k(az + 85-) p— 252
"‘ij =( P— .ka k)alj 2E, P(UI.J + vy, ‘)l
i du | @ du 4 8 P 9
- p-rm(B-f(Be g e e)) -m(egr) -m(3egy)
oltzmann du Liu. du 1/ 8u du dw du dw
| af g vl o)) n )
dw du dhw 1(du du dw
L _R(dz+ A _.R(d:‘-l‘dy) P 2R{E_§ 0:+E+—z }
where, R = TErta
e §63.
5 Poisson’s tensor of the pressures in fluid reads as follows :
(7-7)ps
d dw du dv du
Up Uz Us Az +@ ’8(_&54—&;) ks %u‘ﬁ_—FQﬁ_‘E
dyit ' dyt
Vi Ve Vo | o= | p(E+45) pootf -G g A(B+E) |,
1 2 3 7] du dan e dur
e %'ﬁ""zﬁa— B(4 +Ty) ﬁ(a"‘m)
(k+K)a=g, (k—K)a=p, p=+4t=K, then p+p =2ka, (4)

where yt is the density of the fluid around the point M, and 4t is the pressure. Here we can replace the
first column with the third one, then we see easily the conventional style of array as follows :

e - dxt d du du dw
Us Uz Uy p-atf - GE +2PE {j(dy"'dz) PlE+a
BV | o= | A(fd) poot - B ot s(ied) |,
WS W?, W]

du. d?.l.l' dﬂ dlﬂ dw
ﬁ(_z__i__‘_ 6(._;4_,.__) p— a.._‘E_ ﬁ?_2§_+2r(j'—-z—
The elements of velocity u= (u, v,'w) are :

e _. H_ &
@ @ &

2

% = d“~’r-ﬂut‘i”“‘—i-ﬂu‘d““—{»-wdl,
d21.|l'_d'u

P =t +“dx +”dy+wdz'

dzz_,n'.w
9 = a +T.£ +‘U——+w-—-

5(1)) In Poisson [17], the title of the chaper 7 is “Calcul des Pressions dans les Fluides en mo t ; équations
defferentielles de ce mouvement.”
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dpt B+ p dxt
=p— Qe — li 5
CEPTE G T Tt dt (®)
a
(X — mr +16(_§+_i‘+_5:
(7-9) ps pY — ai‘) 9= 1 B4y + 4 + 4 as ; (6)
d2 g
oz - GF) = +,3{—r+—r+—{-
() (7-9) py means the equation number with chapter of Poisson [17]
If we put f = (X, Y, Z) then (6) becomes as follows :
1
@+g&u+—Vw=f (7)
ot p p
2.2. Stokes’ comment on Poisson’s fluid equations.
Stokes comments on Poisson’s (7-9) p; as follows :
On this supposition we shall get the value of %%;—‘ from that of R| — K in the equations
of page 140 by putting
du dv  dw 1 dxt
de ~ dy  dz =~ 3xt dt’
We have therefore
dxt « @k — 5y XL dxt
“ar T3 xtdt’
du dv dw 1 dyt
(7-2) pr sttt " da (8)
Putting now for B+ 3’ its value 2ak, and for %% its value given by equation (8) ¢, the
expression for w, page 152, 7 becomes
_ dypt B+ dxt dxt dv dw

Observing that a(K + k) =

to the equation (12)g of this paper. ([22, p.119]).
Namely, by using a(K + k) = 8 in (4), we get the following :
=+ ’§di(r+ e+ 4,
‘i_‘: - jy +££(ﬁ; + + dW)
dw d o du
dz _E+§Edz+d_y+dz)

then (6)( = (7-9) ps ) turns out :

3, t.h1s value of w reduc%‘ Poisson’s equatlon (7-9)9; {—(6)]

+ +
2 2 2
p g’;—Y)+§§+u(K+k)E37¥+j—y§+%;§)+§(K+k)%(-“—;+ﬁ L

=
{-]
_|_
o
5
T
Il
e

d
2 2 2
p(Be-2)+ L+ a(K+k)( G2+ 58+ 8) + §(K+h) & (L + %
du | Pu | dlu d (du | dv | dw) _
P -X)+E—n(Lr+ o+ 58) -4 (R+8+9) =
2 2 2
= (19s {pB-V)+Z-p(E+fr+5) b4 (L+2+4) =0,
2 2 2 '
B -2+ E-u(ES+ G+ G) - d (R g+ 2

2 2tl'. 2t! L 14 xt
o - X)+ &+l +k) (S8 + 53+ L¥) + S(K+ R4 (2 + %2 +92) =0,
+‘1‘“):0,

6(1) Poisson[17, p.141]
T(4) cf. (5)
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Therefore, Poisson contains both compressible and incompressible fluid.

3. ’Drafts of ’On the dynamical theory of Gases’ by Maxwell

3.1. A progenitor of gas theory after Poisson and Stokes.

(4) Even after Poisson, Saint-Venent and Stokes, we can cite the progenitors of microscopically de-
scriptive, hydromechanical equations, which are specializes in gas theories, in which they describe the
hydrodynamic equations, and they contribute to fix the tensor and equations of NS, so we have to trace
them. cf. Table 2, 3, 4.

Maxwell [12] had presented between late 1865 and early 1866, the original equations calculating his
original coefficient, with which his tensor coincides with Poisson and Stokes, and his gas theory prior to
Kirchhoff [9] in 1876 and Boltzmann [2] in 1895 as follows: ()

if the motion is not very violent we may also neglect E,%(pgg — p) and then we have

M du dv dw
D= = - 9
Cr=r-ge, ( &y dz) ©)
which similar expressions for 7%p and (%p. By transformation of coordinates we can easily obtain the

expressions for £np, 1n¢p and (€p. They are of the form
dv dw
Cep=— )

L RPN LR 1
Gk,o@gp(dz dy a0

P'&O’!O .07?0 P’Wﬂg = Y. ¥, Y. Ts P, Ty
p&olo  plomo  pC2 Ze Zy Z: . T P

Having thus obtained the values of the pressures in different directions we may substitute them in the
equation of motion

&3 ﬂ&onnp%?c? [xr X Xz] {Pl T Tz]

P+ ;r(pfﬂ) + 42 (0m) + ££(0€C) = Xp,
ﬂ;n 4= (pkn) + (PTJ' + 45 (mC) =Yp, (11)
P + dx(P€C ) + ,,(an) + 5(0¢?) = Zp.

This becomes as follows :

pM d7u 1d(d —
o3+ B2 - o |5 +¢Ty!+—!+§a(a+@+z) =X,
du pM d*v 1d (du duv d g

5+ & — e m‘+—w+"‘f+§r(a+ +:z;) =pY, (12)

pM d*w 1dfdu | dv | dw
p'Zfi'+dz_6kp93 ?;r+:1;f+ R e e o ]Zﬂz-

Maxwell states as follows:

This is the equation of motion in the direction of x. The other equations may be
written down by symmetry. The form of the equations is identical
e with that deduced by Poisson ® from the theory of elasticity by supposing the strain
to be constantly relaxed at the given rate
e and the ratio of the coefficients of V? to %%%’f agrees with that given by Professor
Stokes, ¢ which means (12) equals (12)s.
The quantity —éﬁ%? is the coefficient of viscosity or of internal friction and is denoted by
u in the writings of Professor Stokes and in my paper on the Viscosity of Air and other
Gases. [13, pp.261-262].

8(4) The Equation(9) in [17, p.139], which we cite as (6) (7-9) ps above.
9(1)) Stokes [22]
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3.2. Law of Volumes.
In late 1865 or early 1866, Maxwell proposed this paper. It was likely that Boltzmann'® had got his
idea from this paper.

u, v, w are the components of the mean velocity of all the molecules which are at
a given instant in a given element of volume, hence there is no motion of translation.
&, 1, C are the components of the relative velocity of one of these molecules with respect
to the mean velocity, the 'velocity of agitation of molecules’.

In the case of a single gas in motion let @ be the total energy of a single molecule then

Q= sM{(u+ 8% + 0+ + (w0 +BE + 72+ )

and

% = M(uX +vY +wZ).

The general equation becomes

spa W+ + 0+ (L4 B)E +nP +¢?))

+ i(upﬁg + vpbn + wpéC) + i(“ﬁfﬂ +vpn® + wpn() + —d~(up€C +vpn +wp¢?)
+ (1 +B)pe(E +n* +¢3) + 24 (1 +B)m(€® +n* + ¢?) + (1 +B)p¢(E + 1 +¢%)
= p(uX+*vY +wZ).

Substituting the values of pX, pY, pZ

19
5p5(1+B)E +1° +(7)

p£2d—:+prigj—;+ﬂcgﬁ+pric(@ ) pas(“’ j:)Jr &1(du jz)
d§ | dn dC

1 2, .2, 2
+ g+ BE P+ O (G + T+ E)
= )

Deviding by p of both hand-side,

(1 +B)(E +n*+ (%)

28)5
T TR )
+ —(1+ﬁ)(£ 1 +C)( + 32+ %)

= 0

If weset R = TT%ET)’ then we get the second, linear term of the left hand-side by Maxwell is written by
tensor

du du + du dw + du

T T Y i z
PE: pén  pEC os \9= "dy) \O=T B
pkn p® pn¢ | =-R (B+5) 2 (&+%
pEC pCn pg (a_w+6_u a_u+a_w) dw

dx dz dz dy z

which is ’general tensor’.

10(y) 1844-1906.
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3.3. Determination of the inequality of pressure in a medium.

M (du dv dw M ydu _dv dw
2 T S o TS e (PO oy 2 - R . i o O, 0 2
Sp=p gr'cp@gp( dz  dy dz)’ TE=N Qkp(-)zp(dz dy dz)’ <

s M dv  dw M (dw du)

Mo duy o M vy My da
6kpOs \dz T dy ) ST TBkp@,P\dz T dy /) P T T6kp0, \dz T dz
Here, the relation of the coefficient between (13) and (14) is the relation between £2p ( = 7%p = (?p )
and n¢p (= &np = (¢p ) become 22 = L(1+ 3) 125, The left hand-side corresponds the coefficients
of %, %", -ﬁ-r!‘- 0211 i’.he2 dia,gona::l of the right hand-side in (13). The right hand-side corresponds with the
coefficients of %, -ﬁ;‘f and 4% in (14).

Then we construct the tensor which is completely equal to (27) as follows :

M du _ dv _ d M_ (v, du M_ (dw | du
ot ptn pEC P gkpegf’(%“; —dy E%) - skpezp('z}f 1 “8;) - ﬁkpezp(ﬁ + d_;)
2 _ M i du M d dv _ dw M dv | dw
pn pnt g | = | —weP\a o) P gkpezp(a—l‘ -2 - a) - skpe,i"(a # Ty) (13)
pEC pCn pG M (0w ou) M (0v, ow M (du _ dv _gdw
6kp0: P\ 0z T Bz hp0P\9z T3y ) P oRper P\ ~ dy 3z

Having thus obtained the values of the pressures in different directions we may substitute them in the
equation of motion.

PoE + 4 (0€%) + 45 (pEn) + 4 (pEC) = X,

P%e + 4= (k) + 4= (o) + 4 (om¢) = Yp,

P52 + 4= (pEQ) + 35 (pCm) + £(pC?) = Zp,
which become the following equations that are completely equal to (185) 5

Qu  dp  pM [ dfu , dPu 4 dPu 4 1.d (du  dv | dw =
Potta e\ Taf T T\t T =Xp,

du d M d?v dv d*v 1 d {du dv dw oy
pﬁ""ig_skpez E’+W+F+§Ty(ﬁ+ﬁ+a) —Yﬂ, (14)
dw | d pM_[dw | d®w  d®w ; 1d (du 4 dv 4, dw)| _
Pﬁ+a‘§—skpez{w+a—yr+w+§a(a+a—y+a }—ZP
If we set R = ﬁg—z, then these equations are completely equal to (221)p. These facts state that

Boltzmann had got his idea of special form of hydromechanics from Maxwell.

3.3.1. ’Lectures on Gas Theory’ and Lectures on Heat Theory by Kirchhoff.
We introduce ’Lectures on Gas Theory’ by Kirchhoff [9, pp.156-172]. He stated his theory citing only
Maxwell in 1868 basing on Maxwell’s theory as follows :

Wir wenden uns jetzt zur Betrachtung eines Gases, das nicht in Ruhe ist, und folgen
dabei der Maxwell’schen Darstellung.

He says, “We turn here into the investigation of a gas, which is not stable, and follow the description by
Maxwell.” Afterward, Boltzmann referred many contents of gas theory from both Maxwell and Kirchhoff.
For example, Kirchhoff states three assumptions of the number of molecule : we will investigate the
change, which these integral operated in a time dt, where the time is infinitesimally small. We show the
change by i(-gf—)ldt. It consists of three parts :

o the value of ) enlarged by flowing into and flowing out a certain molecule in the parallelepiped

in a time dt ;

e The outer force on the molecules, such as gravity operate, make change its velocity ;

e By the collision of each two molecules in the parallelepiped. [10, Lecture 15, p.157)
which Boltzmann cites almost assumptions. In Boltzmann’s description about the condition no. 3,

(3) Those of our dn molecules that undergo a collision during the time dt will clearly have in general
different velocity components after the collision.

e ( Decrease : ) Their velocity points will therefore be expected, as it were, from the paral-
lelepiped by the collision, and thrown into a completely different parallelepiped. The number
dn will thereby be decreased.

e ( Increase : ) On the other hand, the velocity points of m-molecules in other parallelepipeds
will be throne into dw by collisions, and dn will thereby increase.
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o ( Total increase by collision between m-molecules and mq-molecules : ) It is now a question
of finding this total increase V3 experienced by dn during time dt as a result of the collisions
taking place between any m-molecules and any m;-molecules.

In 1894, Kirchhoff, in Lectures on Heat Theory [10, p.194], stated hydrodynamic equations in incompress-
ible fluid.

du a 1 du d h —
a5z~ 3 (%+a—§+a—i’) = uX,
du du dw s
(5;+To;+5';) = uY,
du du dw s
(5;+5;+$) = uZ,

dv , 9p _
g+ 5y

®h RR R
>
<

+ + +

T L [
Sio 2o S

ldp Ou  Ov  Ow _
wodt +6:c+6y+ 0z —
Kirchhoff explains his viscosity term as follows :
Als solche werden wir annehmen, daff u, v, w in dem Gas dieselben Werthe haben,
wie in dem festen Korper, also verschwinden, wenn dieser ruht; und dafi die absolute
Temperatur im Gas, die JE mal einer Constanten ist, gleich ist der Temperatur des fasten
Koérpers. ---
Die mit + proportionalen Glieder, durch welch unsere Gleichungen sich unterscheiden
von den in erster Anndherung geltenden, bedinden die Erscheinungen der Reibung und
der Warmeleitung. - - -
Die Grosse %ﬁ heifit der Reibungscoefficient. [10, §3, pp.194-5]
[ (transl.) We assume it as such that «, v, w in the gas have each value in the solid, when these move,
and that the absolute temperature in gas which is equal to the multiplied by *E of an constant, is equal to
the temperature of solid. ---  The proportional terms with %, by which our equations are distinguished

with one in the first adaption, bring up as the phenomena of viscosity and the heat conduction. --- The
term 3L is called by viscosity coefficient. - --]

0.

He introduces the real value of ﬁf: in his following context, which we omit it for lack of space.



The microscopically-descriptive hydromechanics equations in gas theory 177

4. ’Lectures on Gas theory’ by Boltzmann

In general, according to Ukai [23], we can state the Boltzmann equations as follows: **

Of+v-Vxf=Q(f,9), t>0, x,veR*n>3), x=(z,9,2), v=(nC(), (15)
Q) = [ [ Bo=v.a} o)) ~g0.)f0)}dodvn,  gl) = g(t,2.00), (16

v,:v+v.+lv+m|a o = P v — v,

n—1
5 5 , 5 —5 0 ogES (17)

where,
e f= f(t, =, v) is interpretable as many meanings such as
— density distribution of a molecule
— number density of a molecule
— probability density of a molecule
at time : t, place : x and velocity : v.
e f(v) means f(t,z,v) as abbreviating ¢t and z in the same time and place with f(v")
e Q(f,g) of the right-hand-side of (15) is the Boltzmann bilinear collision operator.
e v.V.f is the transport operator,
B(z, o) of the right-hand-side in (16) is the non-negative function of collision cross-section.
Q(f,g)(t,z,v) is expressed in brief as Q(f).
(v, v.) and (v', v]) are the velocities of a molecule before and after collision.
According to Ukai [24], the transport operators are expressed with two sort of terms like Boltz-

mann’s descriptions : (114) g and (115) g including the collision term V, - (F f) by exterior force
F as follow : '

OS +v-Vaf + Vo () = Q) (19)
Q= [, [, Blo= 0.0} @IW) - o))} dods. (19)

where, v - Vi f + V, - (Ff) are transport operators operating under the exterior force : F(t,z,v) =
(Fy, Fy, F3). The right-hand side of (18) is expressed in brief as Q(f) meaning Q(f)(t,z,v).

4.1. Development of partial differential equations for [ and F.

We show the Figure 6 in the last page of our paper, which defines the model of the collision between
the molecule m, calling the point of it and the molecule m wich we call the point n. The instant when
the molecule m passes vertically throught the disc of mmy molecule, is defined as collision. We show
Boltzmann’s definitions as follow :

We fix our attention on the parallelepiped representing all space points whose coordinates
lie between the limits *?

97 g [z, z+dx], [y, y+dy]l, [z, z+dz], do=dxdydz

We now construct a second rectangular parallelepiped, which include all points whose
coordinates lie between the limits

(98)s [§ £+dE], [n, n+dn], [( ¢+dl]
We set its volume equal to

dédnd¢ = dw (20)

11(11) We refer the Lecture Note by S.Ukai: Boltzmann equations: New evolution of theory, Lecture Note of the Winter
School in Kyushu of Non-linear Partial Differential Equations, Kyushu University, 6-7, November, 2009.

12(11) In the Boltzmann’ original equations, they are used with two terms like (114) g, (115) 5. We can refer the General
lecture in the autumn meeting of MSJ by S.Ukai [24] : The study of Boltzmann equations: past and future, MSJ, 23,
September, 2010.

13(1) ( - )p in the top of the equation or expression means the number cited in Boltzmann[1] in below of our paper.
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TABLE 5. The symbols and definitions
[no| symbol defined |content of conformation in modeling of collision. cf. The Fig. 6 in the last page. lef. rifrry
1 X V.2 (21) [The component of accelarating force of a molecule in a cobdinate direction.
2| mX,mY,mZ The component of the external force acting on any m-molecule. m
3 g, iy (98) 5 |The component of velocity of any m-molecule in a coddinate direction. m
4 I (99)3 fzf(‘tl o5& mG t) m
5 h (998 |f1= f(z, y, z, &1, m, G, t), different only with velocity of f. ™
6 F (100) 5 F=F(‘T: ¥i % & m 6 t) my1
7 F (103) g |1 = F(z, v, z, &, m, (1, t), different only with velocity of F. my
8 &1, T, C1 (102) g |[The component of velocity of any mi-molecule in a coddinate direction. m1
9 g p.116 |The moving direction ( or velocity ) of an m-molecule to an mj-molecule. Fig. 6|m
10 gt p.116 |The moving distance of an rn-molecule to an rmj-molecule during di. Fig. 6|m
The length of a line originated from mj-molecule, where, b is the smallest possible
distance of the two colliding molecules that could be attained if they moved
without interaction in straight lines with the velocities they had before the collision. 4
1 4 (104)5 In other words, b is the ligﬁ P, where Py and P are the two points at which Fig. 6] pm
my and m would be found at the moment of their closest approach if there were
no interraction.
12 a The limit of the length of a line. [0, o]. Fig. 6] |m
An angle formed between a line b and a line m) H, where, € is the angle between
13 € (104) g |the two planes through the direction of relative motion, one parallel to Py P along b, Fig. 6 |ma
and the other to the abscissa axis.
14 &, 9, ¢ (108) g [The component of velocity of a molecule after the collision. T
15 b’ (109) g [The length of a line after the ecollision. Fig. 6 |m1
16 e (109) g [An angle formed between a line b and a line m H after the collision . Fig. 6| |m;
17 do : (975 ‘We set do = dxdydz in which the m-molecules lie, =
parallelepiped and we always call this parallelepiped the parallelepiped do.
tfparsiipea| (3889 |We s do = i n which oty ot of o molrls i .
of velocity point :
19 Bieny (102) | We set dwy = d€1dn1d¢; as well as dw, in which velocity point of the mnj-molecules lie, -
(24) |and we always call this parallelepiped the parallelepiped duw;.
The m-molecules that are in do at time ¢t and whose velocity points lie in dw
20 dn (99) 5 |at the same time will again be called the specified molecules, or the “dn molecules.” |
dn = f{zr ¥z & 1 G t)dﬂdtd = fdodw
21 dn' (99), The number of m-molecules that satisfy the conditions (97) g and (98)g at time ¢ + dt. w
Bldn' = f(z, v, z, & n, (, L+ dl)dodw
The number of mi-molecules that satisfy the conditions (97) g and (98) g at time &.
a2 i W&l = Pz, v, 2, £, 1, ¢, tdodis= Fudo P
23 dNy (103) g |dNy = F(z, y, 2z, &, m, §, t)dodw = Fydodw, my
24 2 (107) g |The number of all collisions of our dn molecules during dt with 7n1-molecules. mirny
25 v (106) g |The number of m-points that pass an mj-point at any distance less than o during dt. mlmy
26 v3 (105) g [The number of collisions between m-molecules and m;-molecules. iy
The increase which dn experiences as a result of motion of the molecules during
27 %1 (22) |time dt, where all rn-molecules whose velocity points lie in dw move in the z-direction |Aa(y)|m|
with velocity &, in the y-direction with velocity 7, and in the z-direction with velocity ¢.
As a result of the action of external forces, the velocity components of all the molecules
= ¥a s change with time, and hence the velicity I;uints of theymolefules in do will move. Az (i) |my
a The total inerease experienced by dn as a result of collisions of m-molecules
28 i (111)g| . iy
with m-molecules.
The net increase experienced by dn as a result of collisions of m-molecules
A0 Vs (112)s with rrp-molecules. pV;; =i; — Uyl Aulp)pan
a1 Vi (113) 5 The increment experienced by dn as a result of collisions of m or mi-molecules with P -
each other.
32 @ Pauan? |(116)Ble=(z, y, 2, £ 1, (, 1), zm(p = ypfdodw, multipling the number fdodw by |
33| @, ZMQ (117 g|® = ®(z, v, 2, & 7, C, 1), Ef&-ﬁ@ ¢ = & Fdodw, multipling the number Fdodw by ® m)|
P =P(x, v, 2 &, n1, (1, 1),
34 1, P a0 01 |(117)8 Ea&; 3, = dllFl?Eodwl, rr?ultiplin,g the number Fidodw by &) i
35 Ai () (121) g |The effect of explicit dependance of ¢ on t.
36 Az () (122) g [The effect of the motion of the molecules. Vi |m|
37 Az(p) (123) g [The effect of external forces. Va  |m|
38 A4(p) (124) g | The effect of collisions of m-molecules with mi-molecules. Va  |m|my
39 As () (125) g [The effect of collisions of m-molecules with each other. Va  |m|
40 Bi () (127) g [The total effect in w of explicit dependance of ¢ on ¢.
41 Ba(p) (128) g [The effect in w of the motion of the molecules. Vi m
42 Bz(p) (129) g [The effect in w of external forces. Vo  |m|
43 By () (134) g [The effect in w of collisions of m-molecules with rmj-molecules. Vs mfmy
44 Bs () (139) g |[The effect in w of collisions of m-molecules with each other. Vi |m]
45|  {Cn(e)}7  [(125)p|The effect in w and o as the same as {An(p)}} or {Ba(@)}s
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and we call it the parallelepiped dw. The molecules that are in do at the time ¢ and whose
velocity points lie in dw at the same time will again be called the specified molecules, or
the “dn molecules.” Their number is clearly proportional to the product do-dw. Then all
volume elements immediately adjacent to do find themselves subject to similar conditions,
so that in a parallelepiped twice as large there will be twice as many molecules. We can
therefore set this number equal to

(99)8 dn= f(z, y, z, £, 1, ¢, t)dodw = fdodw

Similarly the number of mj-molecules that satisfy the conditions (97)p and (98)p at
time ¢ will be :

(100)g dN = F(z, vy, z, &, n, ¢, t)dodw = Fdodw

The two functions f and F' completely characterize the state of motion, the mixing
ratio, and the velocity distribution at all places in the gas mixture. = We shall allow a
very short time dt to elapse, and during this time we keep the size and position of do
and dw completely unchanged. The number of m-molecules that satisfy the conditions
(97) and (98) g at time ¢ + dt is, according to Equation (99) g,

dn' = f(z, vy, 2, & 0, ¢, t+ dt)dodw = fdodw
and the total increase experienced by dn during time dt is

-

(101)g dn' —dn= %do dw dt.

£, m, € are the rectangular coddinates of the velocity point. Although this is only an imaginary point,
still it moves like the molecule itself in space. Since X, Y, Z are the components of the accelerating
force,'* we have:

dé dn d¢
—_— = —_—= _— = 2

dt dt L di 4 1)
4.2. Four different causes bringing up increase of dn.

Boltzmann explains an increase of dn as a result of the following four different causes of Vi, Va, Vs
and V4 ¥

X,

Vi : increment by éransport through do

V4 : increment by transport of external force

V3 : increment as a result of collisions of m-molecules with m;-molecules
Vi : increment by collision of molecules with each other

We extract an outline by the Boltzmann [2] as follows :

The number dn experiences an increase as a result of four different causes.

(1) ( V4 : increase going out through do ; ) All m-molecules whose velocity points lie in
dw move in the z-direction with velocity &, in the y-direction with velocity 7, and
in the z-direction with velocity (.

Hence through the left of the side of the parallelepiped do facing the negative
abscissa direction there will enter during time dt as many molecules satisfying the
condition (98 5) as may be found, at the beginning of dt, in a parallelepiped of base
dydz and height £dt,'® viz.

- flz, y, z, & n, ¢, t)dydzdwdt

molecules. Likewise, for the number of m—molecules that satisfying (98 ) and go
out through the opposite face of do during time dt, the value:

€'f($+dI, Y, 2 ‘f: m, Ca t)dydzckudt

14(1) Da X, Y, Z die Componenten der beschleunigenden Kraft sind, so ist: --+ Boltzmann [1, p.103].

15(y)) ¢ : the a-direction with velocity multiplied by dt becomes the length of a edge of which consists a parallelepiped
with a base dydz.
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By similar arguments for the four other sides of the parallelepiped, one finds that
during time dt,
af | _of
— — + —
(f oz " dy
more molecules satisfying (98 z) enter do than leave it. This is therefore the increase
V4 which dn experiences as a result of motion of the molecules during time dt.

af
+Ca)do-dwdt

— (8 of
W= (Eam—i-r,:ay

af
5 §$)do dis dt

(22)

(2) ( Va : increase by external force ; ) As a result of the action of external forces, the
velocity components of all the molecules change with time, and hence the velocity
points of the molecules in do will move. Some velocity points will leave dw, others
will come in, and since we always include in the number dn only those molecules
whose velocity points lie in dw, dn likewise be changed for this reason.

- _(x9 , 98 ,0f
Vo= (ng+Y3y+Zaz)dodwdt

(23)

Boltzmann defines the effects of collisions as follows :

(3) ( Va3 : increase as a result of collisions of m-molecules with 7n;-molecules ; ) Those
of our dn molecules that undergo a collision during the time dt will clearly have in
general different velocity components after the collision.

e ( Decrease : ) Their velocity points will therefore be expected, as it were, from
the parallelepiped by the collision, and thrown into a completely different
parallelepiped. The number dn will thereby be decreased.

( Increase : ) On the other hand, the velocity points of rn-molecules in

other parallelepipeds will be throne into dw by collisions, and dn will thereby

increase.

( Total increase by collision between m-molecules and mj-molecules : ) It is

now a question of finding this total increase V3 experienced by dn during time

dt as a result of the collisions taking place between any m-molecules and any
rni-molecules.

For this purpose we shall fix our attention on a very small fraction of the total

number v; of collisions undergone by our dn molecules during time dt with m;-

molecules. We construct a third parallelepiped which includes all points whose

coordinates lie between the limits

(102)3 [&1! 51 + d€1]1

Its volume is

[m, m+dm], [, ¢ +dé)

dwy = d€1dmdG
It constitutes the parallelepiped dw;. By analogy with Equation (100) g, the number
of my-molecules in do whose velocity points lie in dw; at time ¢ is :
(103)g  dNy = Fidodw,,

where F; is an abbreviation for F(z, y, z, &, m, Q).

Boltzmann difines a passage of an m-point by an m;-point as follows :

(a) ( How to pass : ) We define a passage of an m-point by an m,-point as that
instant of time when distance between the points has its smallest value ; thus
m would pass through the plane through m; perpendicular to the direction
g, if no interaction took place between the two molecules.

(24)
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(b) ( v2 : the number of passages of an m-point by an mi-point : ) Hence, v
is equal to the number of passages of an m-point by an m;-point that occurs
during time dt, such that the smallest distance between the two molecules is
less than o.

(¢) (A plane E : ) In order to find this number, we draw through each m-point
a plane F moving with m,, perpendicular to the direction of g, and a line G,
which parallel to this direction.

(d) ( When a passage ends : ) As soon as an m-point crosses F/, a passage take
place between it and the m-point.

(e) (AlinemiX : ) We draw through each m;-point a line m, X parallel to the
positive abscissa direction and similarly directed.

(f) ( Half-plane : ) The half-plane bounded by G, which contains the latter line,
cuts E in the line m H, which of course again contains each m,-point.

(g) ( bande: ) Furthermore, we draw from each m;-point in each of the plane
E a line of length b, which forms an angle € with the line m; H.

(h) ( Rectangles of surface area R formed by b and € : ) All points of the plane
E for which b and e lie between the limits

(104) [b, b+db], [e, €+ de]

form a rectangle of surface area R = bdbde.

In Figure 6 16 the intersections of all these lines with a sphere circumscribed about
my are shown. The large circle (shown as an ellipse) lies in the plane E ; the circular
arc GX H lies in the half-plane defined above. In each of planes E, an equal and
identically situated rectangle will be found. We consider for the moment only those
passages of an m-point by an m;-point in which the first point penetrates one of
the rectangles R.

I1 = Rgdt = bdbde gdt, Z Il =dNIl = Fydodw, gbdbdedt
R’ dNy (103)p I

Since these volumes are infinitesimal, and lie infinitely close to the point with
coordinates z, y, , then by analogy with Equation (99) 5 the number of m-points
(i.e., m~molecules whose velocity points lie in dw) that are initially in the volumes
> 1T is equal to :

(105)p w3 = fdwy Tl = fFydodwduw gbdbdedt

This is at the same time the number of /n-points that pass an rn;-point during
time dt at a distance between b and b+ db, in such a way that the angle € lie between
€ and € + de.

By v2 we mean the number of m-points that pass an mi-point at any distance
less than o during dt. We find v, by integrating the differential expression v over
e from 0 to 2, and over b from 0 to o.

2m

a 2m a
(106) 1 :_[ dbf v;;dfzdodwdwldtf db deg-b-f-Fy
0 0 0

0
The number denoted by vy of all collisions of our dn molecules during di with
my-molecules is therefore found by integrating over the three variable £, n1, G
whose differentials occur in dw,, from —co to 4-00; we indicate this a single integral
sign :

o0 00 a 2w
(107)g w1 = f vadw; = do - dw - dtf dun / db fFigbde
—00 -0 0 0
We shall consider again those collisions between m-molecules and m;-molecules,

whose number was denoted by v3 and is given by Equation (105)s.

16(1)) We show this Figure 6 in the last page of our paper citing [1, p.107], which is equal to [2, p.117], however, we must
correct the symbol R by H of [2, p.117].
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These are the collisions that occur in unit time in the volume element do in such
a way the following conditions are satisfied :

e The velocity components of the m-molecules and the m;-molecules lie between
the limits (98) 5 and (102) g, respectively, before the interaction begins.

e We denote by b the closest distance of approach that would be attained if the
molecules did not interact but retained the velocities they had before the collision.

The total increment i; experienced by dn as a result of collisions of m-molecules
with rn;-molecules is founded by integrating over € from 0 to 2, over b from 0 to o,
and over &1, m, ¢ from —oo to +o0o. We shall write the result of this integration
in the form :

o p27
(111)p iy = dodwdt / f f'Fi gbdw, dbde
0 Jo

Of course we cannot perform explicitly the integration with respect to b and ¢
since the variable ¢, n', ¢’ and &}, 7}, (] occurring in f’ and F] are functions
of (& n, ¢, &, mi, ¢{,b and €), which cannot be computed until the force law is

: 17
given.

The difference 43 — vy expresses the net increase of dn during time dt as a result
of collisions of m-molecules with mi-molecules. It is therefore the total increase V3
experienced by dn as a result of these collisions, and one has

a2
(112)p Vs =iy — v1 = dodwdt / / f (f'F! — fF)dw, dbde
0o Jo

(4) ( V4 : increment by collision of molecules with each other ; ) The increment Vj
experienced by dn as a result of collisions of m-molecules with each other is found
from Equation (112)p by a simple permutation. One now uses &, 71, ¢ and
&L, i, ¢ for the velocity components of the other m-molecule before and after the
collision, respectively, and one writes f1 and f] for

fl Zf(ﬂ':, U, z, {11 Ty Clu t} and f{ =f{‘.13, Y, z, Ei! 7};.: Ci: t)

Then :

oo 2w
(113)p Vi = dodwdt ff f (f' f1 = ff1)gbdwidbde
o Jo

4.3. Formulation of Boltzmann’s transport equations.
According to Boltzmann[1, pp.110-115], '® his equations (so-called transport equations) are the following
. 19

Since now Vj + Vo + V3 + Vj is equal to the increment dn’ — dn of dn during time
dt, and this according to Equation (101)p must be equal to %{dodwdt, one obtains
on substituting all the appropriate value and deviding by dodwdt the following partial
differential equation for the function f :

17(1].) Hier kann die Integration nach b und e natiirlich nicht mehr sofort aus gefiihrt werden, da die in f’ and F|
vorkommen den Variabeln &', 7/, ¢’ und &}, 5, ¢{ Function von &, 7, ¢, £}, n}, ¢{,b und esind, welche nur berechnet
werden kénnen, wenn Virkungsgesetz der wihrend eines Zusammenstosses wirksamen Krifte gegeben ist. [1, p.112].

18({1) Boltzmann(1844-1906) had put the date in the foreword to part I as September in 1895, part IT as August in 1898.

19(1l) We mean the equation number in the left-hand side with (-) g the citations from the Boltzmann[1] or [2]. We state
only the symbol [ instead of [ . ef. (107)g.
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TABLE 6. Combination of function before and after collision
[no]  item  [V5 before] Vj after [[f of Vi before]f of V; after[F of V; before[F of Vj after]
1 |function of my f il f f F F’
2 | function of m| F F{ fi £ I F]
3| increment | ['F - TF f'ii—Fh P —FFi]
31’ af of  of af  ,of  ,of
(114)5 +§dm+ndy+caz‘+f(f).'c+y3y+z(')z‘
Vi Vi
o 27 o0 2
I [ ar = srgan waes [T [T 5~ s109b dn e
1] o (1] (4]
va Vi
o 2
JL [ 6 E = gm0 g10)ab din ab ae
VsIVa .
Similarly we obtain the equation of F' :
(115)5 dj‘ +£1@ +md£ +cldF +X1%F +Y1°;)F +Zlaaii
Vi va
=] 2w == 2T
ff (f'F — fFi)gb dwy db de+/f (F'F} — FFy)gb dw, db de
0 0 0 4]
Vs Va
oo 2m
f[ / [(f’F{ — fR) + (F'F - FFI)]_qb duwn db de
0 0
Va+Vy
where,
f:f(xl Y, %, & m, G, t}: h :f(xv ¥ %, &, m, G, t}, fl f(.’l’.‘, Y, 2 51! 7»'!13 Cl! t)v (25J
F= F($, Y, 2, 5! 7, gv t): Fl =F($: Y, %, 61: m, Cl) t):

_F("Lv Y, z, ‘51! f-’]_: Cl} t)
Namely, we can verify (114) g for f :

i+Vo+Va+Vy 2)"' af Qi af Of af af
dodordt = (5 +ag 45 ) (x d§+yay+zﬂz)l
\71 Va
00 2 o] 2
J[7 [ r = srogp-amasaes [ [ - 111100 dinbae.
o Jo o Jo
Va Va
Similarly we obtain (115)p for F.
Vi+Vo+ Va4V _ f)F]_ OF 3F1 OF; dF; JdF OF,
dodeodt = gty + 05 ) T F Y5 o)

27 2
f] ] (f'F! — fF)gb - dw;dbde + f f / (F'F! — FFy)gb - dw;dbde.

(1) Here, we can confirm the identity with the today’s description of the Boltzmann equations (15) and
(16) :

Of+y-Vxf+w -V =Q(f,9), OF+y VxE+w-V,F=Q(FG),

W Va V3, v4 Vi Va V3, V4

Qo) = [ | [ Bo= 0,0} e IW) - g0 f0))dodvn,  g6L) = glt,202), et

t >D! xl‘r?weRn(YLZ 3)) X = (E)y’z)? v =(£FYI!C)I W= (X! YI Z)'
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In the case of (18) and (19)
Af+v -Vef+Vy-(Ff) = Q(f)

W Va Va,H;
AN = [ [ B f @10 ~ fw.)fw)}dads.

4.4. Time-derivatives of sums over all molecules in a region.

Let ¢ be an arbitrary function of z, y, z, &, n, {, t. The value obtained by substituting
therein the actual coddinates and velocity components of a particular molecule at time
¢ will be called the value of ¢ corresponding to that molecule at time f. The sum of all
values of ¢ corresponding to all the m-molecules that lie in the parallelepiped do and
whose velocity points lie in the parallelepiped dw at time ¢ is obtained by multiplying ¢
by the number fdodw of those molecules. We denote it by (116) 5.

Similarly we choose for the second kind of gas any other arbitrary function @ of
z, Yy, z, £ 1, ¢, t and denote by (117) 5. The sum of the values of ® corresponding to
all the m,-molecules lying in do whose velocity points lie in dw;. ®; is the abbreviation
for ®(z, y, z, &, m, (i, t). [2, §.17, pp.123-124].

4.5. General form of the hydrodynamic equations.

As the general expressions for fluid mechanics, he states that when we substitute for ?J"t: its value
from Equation (114)p, it turns into (120)p, (126)p, (140)p, a sum of five terms, each of which has its
own physical meaning, as follows:

(116)3 Zdw,doqo = np_fdudw, {120}3 E)élf. Zdw,du(p = (fa -'-L dodw = [Eu"‘l '*(W)]dad“d
(117)3 Zdw,do@ = ¢ Fdodw,, Zdw,da Py = &y Fydodw, ,

(18)5 Touop=do [ pfdw, (126)8 § T, a0 =do [ (58 + 9% )do = [ iy Balp)] do,
(119)8 .0 = [f ¢fdodw, (140)5 45,0 = JJ (£5% + %) dodw = 5, Ca(0)

4.5.1. Conformation of A,(p).
=52,

(121)3 Al(ﬁo) = at

(1225 Ax(e) = —o (63 +n% +¢2L),

(123)p  Az(p) = —yp X%,_E + Y% + Z%é),

(124)8  As(0) =@ [J5° Jo"(f'F{ = fF1)gb dwy db de,

(125)8  As(0) =@ [fg" J" (f'fi = [ F1)gb dwy db de,
where {A,(¢)}2_, correspond to the effects such as

A; (@) : the explicit dependence of ¢ on t;

As(yp) : the motion of the molecules;

Asz(yp) : the external forces;

A4(¢p) : collisions of m-molecules with 7n;-molecules;

Az () : collisions of m-molecules with each other;

In order to find £ 7, 4, %, we have simply to integrate & 3 ,, ¢ over all possible values of duw.

w,do

4.5.2. Conformation of B, (¢y).

(12605 23 o= Bule)]do.
w,do n=1
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One obtains each B by multiplying the corresponding A by dw = dfdnd( and integrating over all these
variables from —co to +oco, which we indicate by a single integral sign. Thus :

(127)5 Bi(e) = f Aoy = [ % jaw

u%bzmwszWMwEJ@@?+§E+C)

(290 Bae) = [ Aa(ohdo = [o(x5E +v 5L+ 25 Yaw

(134)p Ba(g) = fA,;((p)dw _ %//fu D (0= ) 'F! = fF)gb dw duy db de

(135)s Bulp) = [ sl —)aw= [[[ N / i e

wos = [[[ h / o @V g d b de

(13508 Bia(o) = [ A} = pr)do = /f/ [%(wl 1) f Fgb du dwy db de

oo 27
(136)5  Bla(p) = / Al =g il = /// / (i~ Ll P Aib dhor i, 5
From (135) g,

1 - 1 o0 27 ;
(1305 Bra(e) = 5B+ B = [[[7 [+~ 0o fab dw don v ae
From (136) g,

1 1 oo 27
(138)s Boa(p) = 5Boa+ Boa) =5 [[[ [ (ot on =o'~ ) Fiob d dn b e
0
The arithmetic mean of (137) g and (138) g,
1 1 00 2w
(1390 Bo(e) = 5Boo+ B = 7 [[[ [0t or—of ) 1~ 11000 do o b

4.5.3. Conformation of C,,(¢p).

10 =30 = 3 Culy)

n=1

Ci(p) + Ca2(p) + Cs(p) + Ca(p) + Cs(p)
£ ) CAE) T RS

~
increments except for those resulting from collisions  increments of those resulting from collisions

Remark: since in ) , ¢ of (140)5 one has to integrate over all values of do and dw, this quantity is
now a function only of time. Hence the use of symbol % is unnecessary, and we can express differentiation
by the usual Latin letter d. Each C is obtained by multiplying the corresponding B by do and integrating
over all volume elements, or else by multiplying the coresponding A by dodw and integrating over all do
and dw as we show in (119) 5.
Integrating {Bn(p)}3_; of (127)p, (128)5, (129)s by do from —oo to +o0,
of

(141) 5 Cl(tp)+Cg((p)+Ca(tp)=/ffdodx.u % veol 4 a£+4_f+xai+ya{+zai)

Integrating Ba(y) of (134) g by do from —co to +co,

)5 cito) =3 [[[[ - / 70— @) (F'F} — [F)gb do du dun db de
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Integrating Bs(y) of (139) g by do from —co to +o0,

o0 2w
s o) =7 [[[[" [ ot er—o )t = £11)gb do do dun ab ae

4.5.4. More general proof of the entropy theorem. Treatment of the equations corresponding
to the stationary state. Boltzmann assert the following conditions

(1478 fH=Fffl, FARA=FF, fFR=[fF.
4.5.5. Linearity of Ay, By, Ci.

Since A, B, C are only the increments of definite quantities resulting from specified
causes, most authors express them as derivatives of those quantities. Maxwell writes
it 2w, do's Kirchhoff e w, do'P for Bs(p) etc. As with all differentials, the A for a
sum of two functions is equal to the A’s for the addends :

Ax(p + 1) = Ac(p) + Ar(¥),

Bi(¢ + ) = Bi(p) + Bi(¥),

Cik(p + ) = Ci(yp) + Cr(¥)
for any subscript k. These equations follows from the circumstance that ¢ occurs in all
the integrals A, B, C only linearly.

4.6. Special form of the incompressible, hydrodynamic equations.

9p , Opw)  Oev) | O(pw)
171 — =
(171)5 ’)t Oz * dy dz
(-{i‘-‘— +u-?~‘5 +1.!-;“'~‘-‘ +‘w-‘3‘-‘-) =pX — a(gig} - a("g‘:'") — 6(”“5‘2‘“),
o v ¢ 7, o2 é T,

(173)p p(m +ufl +vfe +de) = py — Lefomw) _ 2pma) _ Heono)
a (e apG3
P("Si’+“'3'5+""5§+w'2}"5) = pZ ~ o) . Aemis) . Ha)

Boltzmann says, “These equations as well as Equation (171)g, are only special cases of the general
equation (126)p and were derived from it by Maxwell and ( following him ) by Kirchhoff.” Boltzmann
concludes that if one collects all these terms, then Equation (126) reduces in this special case to:

(177)s 8(gf)+d(3i‘p) "(g:‘o) d(gz_) ch;(g-l-Ydtp zd“’] m[B4(<p +Bs(¢)]

{.‘a-‘.hstc.m terms
Boltzmann states about (177) 5 :

From this equation Maxwell calculated the viscosity, diffusion, and heat conduction
and Kirchhoff therefore calls it the basic equation of the theory. If one sets ¢ = 1, he
obtains at once the continuity equation (171); for it follows from Equations (134) and
(137) that B4(1) = Bs(1) = 0. Subtraction of the continuity equation, multiplied by ¢,
from (177) gives (using the substitution [158]):  [2, p.152].

where, (158) : € =& +u, n=m+v, (=C( +w.

dp 9P % d(plop) |, Npmop) , 8(pSop)  [vOp , 0P , ,0p
(178)5 p(8t+ud+ 3+w82) e e [x €RTE wl

= m[Ba(p) + Bs(o)]
———

collizsion terms

If one denotes the six quantities (179) 5 : p€Z, pm3, pG3, p110C0, P€0Co; P€oTo bY Xa, Yy, 22, Y = 2y, Zy =
X., X, =Y., namely, when we use the symmetric tensor, then we get the following :

F’fo Pfﬂﬂo Pé_ﬁc—ﬂ l X .Xg Xz] lPl T Tg]

ploo pg_pmolo [=| Yo Yy Y: 3 P, T
pkoCo  plomo pCE Ze Zy Z: T, T Ps

(26)
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o2 +ude + ﬂ+w3_u)+ﬂz+_a+%—p){,
180)5  { p( % +udl +ofe +wde) + Lo + P 4 2 = py,
dy

o5 +ufl+vge +wT)+§Z’-+ + 2% = pz

These are not NS equations for lack of the pressure term. Moreover (181)p : p = % = R =
p_§§, ﬁ = ED? =70Co = 0. Here, he assumes that from the supposition of isotropy and homogeneity,
p = 3(Xz + Yy + Z.), which is the same as the principle by Saint-Venant or Stokes.

He deduces a special case of the hydrodynamic equations as follows:

For the present, we assume as a fact of experience that in gases the normal pressure
is always nearly equal in all directions, and that tangential elastic forces are very small;

so that Equations (181) are approximately true. Substitution of the values given by this
equation into Equation (173) yields:

p %‘f-ﬁ-ugi+vdy+w3;) %‘3 =0,
(183)5 {p(Z+ul+ 'uay ) +% - 0,
p(5¢ +uf2 wje) + %E =0

which are the so-called Euler equations in incompressible condition of (171) 5.

pdu + d(ﬁﬁo) + E’(ﬂé;m) + 3(93(;(0)

—pX =0,
(185) 5 J_or:gl+ﬂ%?§1+@ f,y=0,
pﬂw Ui G‘(.OEGCO} + d(ﬂ(ﬂﬂ + 5(1"% —pZ=0
We set the values of (26) as follows, which is the same tensor as Stokes :
€8 pomo  po & 2R{_ ~3 (3: oyt 32‘)} (au +5 ) _R(a_w =)
(@006 |l p_pmo | = ~R(Z+2) - 212{-— ~3(g g ""’)} R(g+42)
pEoCo plomo  pC3 —R(g—:’ 4.0 _R(b’z +52) p- 27?,{& _ _‘(ﬂu +EE+ g }

From (220) 5, we calculate the components of (185) g as follows:

NpED)  Opfamm)  O(pEata)
i dy dz
dlptomo)  Olemd)  9(pmoto)
dx dy 8z__
oEolo) lelomn)  A(CE)
dx dy dz

u 2(8u du Hw du du dw du
PR -3 o)) —R(ReR) -R(EeR) | g
= | —R(2+2) p-r{22- g(% + g;; +2)} —R(%2+42) %
& a a duw g & &
~R(32+4: —R( u::) R{2g-3(+5+52)) |1 %

P+ -R[Au+ 32 (2 +5+32)|-px =0,
(20)a | o+ 5 - Rlav+3L (e +5+92)|-pr =0,
19 (Qu 4, 2 e =

PR+ -Rlow+ i (g + g +32)|-pz=0

‘We can interpret that as the special cases, Boltzmann have deduced the NS equations after substituting
the tensor (220)g to (173)p, for lack of pressure terms.
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We can construct the tensor with the Equations (13) and (14) as follows:

M (od d d M 8 a M (dw | du
€2 ptn  pEC P~ grpes P (2_u — d_'f) - akpegp(ﬁi + }ﬁ) ~ BkpO3 i"’(d— + EZ)
2 _ u du M d dw
ﬁ?g F’E-* P'gg = ﬁkpegp(d +a) P~ Qkpegp( ?'d_y - E) - kaezp(d_: +ay (27)
(2 /2 M 0 M Hw du dv dw
~kp6, P ( +5) - skpegp(‘a_z % d_y) B= gkpaap(" Ty~ 25)

From R = g2-—p, we get (220)5. The equations (11) equals (185) 5 and (12) equals (221)5 except for
the coefficient.

4.7. Entropy.

The word entropy was deduced by Clausius [4] in 1865, and following his nomenclature, Boltzmann
constructed his first version of equations in 1872, applying entropy to his gas theory. We show citing [4]
Clausius’ Greek nomenclature, meaning “conversion” of material as follows :

(60)c S=Sy+ f % (65)c /%g =8 — S,

welch, nur etwas anders geordnet, dieselb ist, wie die unter (60) angefiihrt zur Bestimung
von S dienendene Gleichung.

Sucht man fiir S einen bezeichnenden Namen, so kénnte man, dhnlich wie von der
Grosse U gesagt ist, sie sey der Wirme - und Wirkinhalt des Kérpers. Das ich es aber
fiir besser halt, die Namen derartiger fiir dir Wissenschaft wichtiger Gréssen aus den
alten Sprachen zu entnehmen, damit sie unveréndert in allen neuen Sprechen angewandt
werden konnen, so schlage ich vor, die Grésse S nach dem griechischen Worte 7 7pow7),
die Verwandlung, die Entropie des Korpers zu nennen.

Das Wort Entropie habe ich absichtlich dem Wort Entropie durch diese Worte banannte
werden sollen, sind ihren physikalischen Bedeutung nach einander so nahe verwandt, dass
eine gewisse Gleichartigkeit in der Benennung mir zweckmissig zu seyn scheint. [4, 389-
390]

(Transl.) (60)¢, (65)c, which seemed to be like only reallocated expression, however,
the usage cited in (60)¢;, is useful equation.

We sought some suitable name for the nomenclature for S, like the quantity U, such
as the value of warm and value of work of a material. I considered that it seemed to be
suitable to be adopted from the old Greek as the nomenclature for the important quantity,
so I owed it to the quantity S from Greek word 7) 7pon7), which means “conversion”, the
Entropy of the material. ---

Boltzmann consider when the following conditions do not hold, where, the number of the two molecules
fand fi, F and F} and f and Fy before and after collision, namely from (147) g,

fh#ffi, FR#FFR, fF#fF.

We construct the expression H for the gas contained in the volume element do. The value thus
found will be multiplied by —RM and divided by do. Let this quantity be

J= —RM/flnfdw.

Jdo is then the "entropy” of the gas contained in do, if it had the same energy ( heat ) content and the
same progressive motion in space, and obeyed the Maxwell velocity distribution law. It can be calculated
just as in §19, and has the value

i" ln(-—)

here, this value %ﬂ is called Boltzmann constant and it was inscribed on his epitaph as

S=klnw



The microscopically-descriptive hydromechanics equations in gas theory 189

which is also
T3
(5 ) =ews

5. (jonclusions

Maxwell in 1865, Boltzmann in 1895 and Prandtl[18, 19] in 1904 both used the “well-known hydro-
dynamic equations” and at latest in 1929, used the nomenclature of “Navier-Stokes equations”, using
the two-constant not of Navier, but of Saint-Venant, Stokes, and expanded by Maxwell, Kirchhoff and
Boltzmann. These three persons verified the hydrodynamic equations without the name as Navier-Stokes
equations.

In short, we can state that after formulating by Navier (1827) [15], Cauchy (1828) [3], Poisson (1831)
[17], Saint-Venant (1843) [21] and Stokes (1849) [22], the topics of hydrodynamic history are rebuilt by
Maxwell (1865) [12], Boltzmann (1895) [2] and Prandtl (1927) [19] in the cyclic interval of about 30 years
or so.

As the two constants, Saint-Venant had used ¢ and %, and Stokes p and 4, while Boltzmann used R
and % after tracing Maxwell. According to Prandtl[18], we can suppose that the naming may be decided
in “The third international mathematical Congress” in Heidelberg in 1904 or few years later than it.
Boltzmann states hydrodynamic equations as well as the Euler equations of (183) p:

Die Gleichungen 221 sind die bekannten auf innere Reibung corrigirten hydrodynamis-
chen Gleichungen. [1, p.169)]
(transl.) Equations (221) are the well-known hydrodynamic equations corrected for
internal viscosity. [2, p.176]
According to Boltzmann’s description, we can suppose the fact that the then academic society had not
fixed yet the name of this equations, up to 1895 or 1898.

Basically, the N.S equations were deduced from Newton’s kinetic equation ( the second law of motion
) : F =1mr, 20 however, the gas equations by Boltzmann were not deduced from it, but he based on and
evolved the idea of gas theory by its progenitors Maxwell and Kirchhoff.

When we consider the contribution by Boltzmann to the NS equations, Boltzmann show the Euler
equations and the NS equation as the special case of his general hydrodynamic equations. He verified
the validity of the Euler equations and the NS equations, which were recognized in 1934 at latest by
Prandt] [19, p.259], and at the epoch about one hundred years after Navier’s paper [15] in 1821.

6. Epilogue. Boltzmann and Humanity

In 1898, Boltzmann had published Vorlesungen iiber Gastheorie, II Teil. ( The lecture of gas theory,
Part II ), in which preface, he had expressed his fear that the theory of gases were temporarily thrown
into oblibion as follows :

Es wire daher meines Erachtens ein Schaden fiir die Wissenschaft, wenn die Gastheorie
durch die augenblicklich herrschende ihr feindselige Stimmung zeitweilig in Vergessen-
heit geriethe, wie z.B. einst die Undulationstheorie durch die Autoritit Newton’s. [1,
Vorwort]

In my opinion it would be a great tragedy for science if the theory of gases were
temporarily thrown into oblibion because of a momentary hostile attitude toward it, as
was for example the wave theory because of Newton's authority.  Forward to Part II.
[2, p.215]

After eight years, a newspaper in Wien 'Neue Freie Presse’, ( New Free Press, Wien, Freitag, 07/Sep-
tember in 1906, Nr. 15102 ) reports Mach’s consternation confronted by the news of Boltzmann who
had taken his life. Here we cite our transcription from the Fraktur printing style of the newspaper in
1906, which is in Broda [5] 2!, and we show it in our last page of our paper, thanking Saburo Ichii and

29(J,l) The Newton’s kinetic equation ( the second law of motion ) : F = mr, where, F : the force, m : the gravity, r :
the acceleration.

21(}}) The original by Broda didn’t cite this newspaper, however, the translators into Japanese [5] cites a photo of the
then news stories in the Fraktur printing style. Here we cite our transcription from the Fraktur printing style into the
today’s German style for convenience’ sake.
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Toshihiko Tsuneto and the publishing company Misuzu Shobo. From here, we can see Boltzmann was
having both the ardent passion to the learning and the pure humanity in his lifetime.

Remark. Mach had been the supervisor of Boltzmann and both were the then position of ‘Hofrat’,
namely the advisor to Court of the Empire of Austria-Hungary, ?* so that the news reads 'Hofrat Mach’
or '"Hofrat Boltzmann’.

Hofrat Professor Mach iiber den Tod Boltzmanns.

e Hofrat. Mach, der durch den Tod Boltzmanns zehr schmerzlich beriihrt worden
ist, feilte und mit, dafl das fraurige Ende der durch Selbstmord gerédde jetzt nicht zu
befiirchten war, da sich sein geistiger Zustand in der lasten Zeit etwas gebessert hatte.
Seit etwas zwei Jahren war zu er allerdings Unfillen von Irrwahn ausgefahrt, in denen
sich bei ihm namentlich der Trieb zur Flucht fiihlbar machte. Er mufite deshalb sorgféltig
iiber macht werden. Doch traten wieder Momente ein, in denen er beruhigender Zus-
prache zugénglich war. Dies war auch der Fall, als er zur Erholung nach Duino gebracht
wurde. Er versprach sich ruhig zu verhalten, und die Familie glaubte, dafl die Besserung
anhalten werde, so dafl man nicht aus den Eintritt seiner verbiirgten Geriichten zufolge
hat Boltzmann schon damals verfiihrt, Hand an sich zu legen.

® Gelegentlich der Unwesenheit von Professor Dftmalb in Wien habe ich Boltzmann
zum leztenmal in wirtlich froher Laune gesehen, in so guter Stimmung, wie selten vorher
und nie wieder seither. Wir wohnten damals zusammen den Borirdgen des Berliner
Gastes im Ingenieur- und Architektenverein bei und zum Abschied war die Sachwelt bei
einem Bankett vereinigt. Dftmalb saff auf den Ehrenplatz, Boltzmann zu seiner Rechten
und ich zur Linken. Die “Gliicksformel”, die Dftmalb entwickelt hatte, gab Boltzmann
Anla8 zu einer geistsprithenden den Tischrede. Lange safien wir beisammen, und nach
Mittelnacht geleitete ich ihn heim. Boltzmann war von einer kindlichen Reinheit des
Geistes, von unerschopflicher Liebenswiirdigkeit und gliicklich, wenn er jemanden gefallig
sein konnte.

e Un Unerkennung als Gelehrter hat es ihm nie geschkt. Seine Bedeutung war je
iiberagend, daBl man sich ihr nicht entziehen konnt. Es war ihm auch beschieden, aus
dem Kreise seiner Schiiler grofie Manner hervorgehen zu sehen. Der Schwede Arrhenius,
der Berliner Bernst, beide Koryphéien der Wissenschaft, waren Horer Boltzmanns, und
beide haben oft betont, wie unendlich viel sie ihrem Meister zu danken haben. Nach der
Pensionierung von Professor Mach hat Hofrat Boltzmann auch philosophische Vorfriage
gehalten, die sich auflerordentlich guten Besuches zu erfreuen hatten.

o Es ist ein Jammer, daf ein Mensch von der gewartigen Bedeutung Boltzmanns vor
der Zeit aus dem Leben geschieden ist. Er hat der Wissenscaft Immenses geleistet, aber
es war immer noch Proze von ihm zu erhoffen.

Translated sketches of the news story :

e Mach was surprised at the news of Boltzmann’s death. Mach had heard that Boltzmann was saying
himself his recent steady calm, so the people of family had supposed that Boltzmann was recovering from
being in the low spirits and had not been afraid of such an imminent state of mind.

e We lived then together with the gests from Berlin of the association of tecknology and architecture
in Borirdgen. He avoided the drinking party or banquet for his standard of value. Dftmalb took the
seat of honor, to whom Boltzmann sat the right side and I the left side. Dftmalb proposes “the formula
of happiness”, Boltzmann gave the oppotunities for the speech. We were sitting together with him. At
midnight, we went back to home. Boltzmann had a childish unalloyed genuine of mind and devoted
endless kindness in perfect happyness to anybody, whom, when he could be kind to.

e His temperate obstinancy as a scholer didn’t allow him to play his cards well. His idea was so noble
that one should have not been easy to get along with him. Boltzmann kept away from the troubles with
the scholars. Arrhenius of Swedish and Bernst of the Berliner were the authorities in each academic arena
and colaborators of studies with Boltzmann and also the good listeners of Boltzmann’s talks, and both
have emphasized that how very frequently they had thanked their savant, Boltzmann. Boltzmann gave
also the lectures on philosophy.

e The interviewee, Mach concludes his talk in the last paragraph with the following evaluation to
Boltzmann : “It is greatly to be regretted that a promissing person upon his future, considering the

22(14) The Empire of Austria-Hungary : 1867-1918.
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importance of Boltzmann, passed away his life. He had achieved the great tasks, however, it was still
under the process of extending it eternally.”
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ABSTRACT. After the NS equations were fixed or so, many researchers of hydrodynamics studied the
mathematical analyses, in particular, the functional analysis on the solutions of the NS equations. From
the viewpoint of the mathematics, the full-scale studies have been begun to the weak solutions by Leray
[12, 13, 14] in 1933/34 and by Hopf [4] in 1950/51. And soon after that, A.A Kiselev [5, 7] in 1954/55,
and Kiselev and Ladyzhenskaya [8] in 1957 and Ladyzhenskaya [11] in 1959 constructed the generalized
solutions / the strong solutions. Prodi [23] and J.L.Lions [15] discussed the uniqueness of the solution
of the NS equations in the three dimensions.
‘We sketch these historical facts at the beginning of the study on the solutions of the NS equations.
Finally, we show two sort of translations into English on the solutions of the NS equations, viz.
¢ from Hopf's German paper [4] only on the existence of a weak solution like Leray
e from Ladyzhenskaya's Russian paper [11] of a generalized / strong solution like Kiselev in the first
time
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history, but also of the pure mathematics like functional analysis.

Mathematics Subject Classification 2010 : 01Axx, 7T6A02, 76Mxx, 76-02, 76-03, 33A15, 35Qxx 35-xx.

Key words. The Navier-Stokes equations, fluid dynamics, fluid mechanics, hydrostatics, hydrody-
namics, hydromechanics, microscopically-descriptive equations, weak solution, strong solution, mathe-
matical history.

193



194 The early studies of solutions of the Navier-Stokes equations

CONTENTS

1. Introduction

2. The studies of the weak solution of the NS equations

2.1. Leray’s introduction to construct the solution of turbulent flow

2.2. Hopf’s comment to Leray

3. The study of the generalized solution / the strong solution

3.1. Kiselev

3.2. Kiselev and Ladyzhenskaya

4. Study of function space L? for the uniqueness of the solution

4.1. Prodi_

5. Hopf: Uber die Anfangswertaufgabe fiir die hydrodynamischen Grundgleichungen.

( On the initial-value problem for the hydrodynamic control-equations)

.1. Introduction

Preliminaries

Function class H'. Solution of class H'

The boundary condition for vanishing. The initial value problem

Simplification of the problem. Approximation-process

Proof of existence theorem

Proof on Lemma 5.1

Appendices to Hopf’s paper (({))

.1. The fundamental solutions of the Stokes hydrodynamic differential equation

((}) Extracted from Oseen and translated from German )

6.1.1. Fundamental solutions for the condition on the velocity components

6.2, On the boundary value problem of the hydrodynamic viscous fluid.
((1) Extracted from Odqvist and translated from German )

6.2.1. Definitions, Expressions, Green formulae

6.2.2. Hydrodynamic potential

7. Ladyzhenskaya : Investigation of the Navier-Stokes equations for the stationary

motion of the incompressible fluid

7.1. Introduction

1. The generalized solutions.

1.1. The homogeneous boundary conditions.

1.2. heterogeneous boundary conditions.

2. The classical solution.

2.1. Preliminary comments.

2.2. The proof of the classical, generalized solutions.

2.3. The nonlinear problem. ( The bounded domain, homogeneous boundary
conditions. )

2.4. The nonlinear problem. ( The unbounded domain with the homogeneous
boundary condition. )

2.5. The behavior of the founded classical solutions with respect to |z| — co.

3. ( References by Ladyzhenskaya. )

References

8. Conclusions

References

Acknowledgments

R SRR SR

195
196
196
196
196
196
197
197
197

198
198
198
201
203
205
207
210
212

212
212

214
214
216

217
217
218
218
222
226
226
227

228

230
231
233
233
233
234
235



The early studies of solutions of the Navier-Stokes equations 195

1. Introduction

After Stokes’ linear equations, the equations of gas theories were deduced by Maxwell in 1865,
Kirchhoff in 1868 and Boltzmann in 1872, They contributed to formulate the fluid equations and to fix
the Navier-Stokes equations, when Prandtl stated the today’s formulation in using the nomenclature as
the “so-called Navier-Stokes equations” in 1934, in which Prandtl included the three terms of nonlinear
and two linear terms with the ratio of two coefficients as 3 : 1, which arose from Poisson in 1831, Saint-
Venant in 1843, and Stokes in 1845.

In 1932, Hadamard published a book entitled ”Le probleme de Cauchy et les équations auz dérivées
partielles linéaires hyperboliques”, ( The Cauchy problem and the partial differential equations of the
linear hyperbolic type. ), in which he refers théoréme de Cauchy-Kowalewsksi :

Les trois questions suivantes se posent évidemment en ce qui concerne le probleme de
Cauchy :
(1) Le probléme de Cauchy a-t-il une solution ?
(2) N’a-t-il qu’une seule solution ( en d’autres termes, le probléme est-il correctment

posé 7 );

(3) Et enfin comment peut-on calculer cette solution ?
Quoique les deux premiéres questions puissent étre considérées simplement comme préliminaires,
nous allons commencer par examiner comment on peut y répondre.

On sait que Cauchy lui-meme, puis Sophie Kowalewski, et, au méme moment, Dar-
boux,! considéraient le cas dans lequel (2) ou (II) ? peuvent &tre résolus par raport & r
( ou ry, ), savoir :

(2’).&'& = f(ua T, ¥, P, q, T, 5 t)r ou: (H’)Ha Tm = f(uv I, )v
ce qui est le cas pour (2) ou (II) si :

P
(3) Ha B #0, # 0;

sous cette hypothése, ils ons démontré (ou du moins sont considérés généralement comme
ayant démontré) que le probléme de Cauchy, par rapport & © = 0 ( ou z,, = 0), admet
toujours une solution et une seule. [3, pp.10-11, art. 7]

0P

Orm

These questions correspond the following mathematical concepts :

(1) Existence of a solution of the Cauchy problem
(2) Uniqueness of the solution ( well-posedness ) of the problem
(3) Solvability of the solution on the problem

After the NS equations were fixed or so, many researchers of hydrodynamics studied step by step the
mathematical analyses, in particular, the functional analysis on the solutions of the N.S equations :
e At first, the full-scale studies have been begun with the weak solutions by Leray [12, 13, 14] in
1933/34 and by Hopf [4] in 1950/51.
e And soon after that, A.A.Kiselev [5, 7] in 1954/55, and Kiselev and Ladyzhenskaya [8] in 1957
and Ladyzhenskaya [11] in 1959 constructed the generalized solutions / the strong solutions.
e Prodi [23] and J.L.Lions [15] discussed the uniqueness of the solution of the NS equations in the
three dimensions in 1959.

We sketch these historical facts and their assertions at the beginning of the solutions of the NS
equations.
Finally, we show two sort of translations into English on the solutions of the N.S equations, viz. :

1Cauchy, C.R.Acad. Sc., vol. 14, p.1020 ; vol. 15, p.44, 85, 131(1842), Sophie Kowalewski, Thesis, Gottingen (1874) et
ournal fiir math., t. 80 (1875), pp.1-32 ; Darboux, C.R. Acad. Sc., vol. 80 (1875), pp.101-104 et p.317.

({) We can see that Cauchy is a progenitor of the analysis. He also published the two papers on the N5 equations [1, 2]
in 1828,

2l[J,l) The equations (2) and (IT) defined by Hadamard are as follows :

(Q)Hﬂ d')(u: L, ¥ P g T8 t) =0, (H)Hn ‘1’(1.1'., Liy Pis Tis Sik) =0, i=1,---,m.
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¢ From Hopf’s German paper [4] only on the existence of a weak solution like Leray

e From Ladyzhenskaya’s Russian paper [11] of a generalized / strong solution like Kiselev in the

first time

We think that both are notable and full-scale studies not only of the NS equations or of the mathematical

history, but also of the pure mathematics like functional analysis.

2. The studies of the weak solution of the NS equations

2.1. Leray’s introduction to construct the solution of turbulent flow. Leray 3 [14, p.195] says :
4

If T should succeed to construct the solution of the equations of Navier® which become
irregular, I shall have the right to insist that there exist effectivelly the solutions of
turbulent flow marely no reducing, in the solutions of regular flow. Similarly, if this
proposition should be false, the notion of solution of turbulent flow which will play no
role any longer in the study of viscous liquid, will do no harm to its interest : it must
well present the problems of mathematical physics for which physical cause of regularity
is not sufficient to justify the hypothesis of the regularity made in setting of equation.

2.2. Hopf’s comment to Leray. E.Hopf[4] comments on his Lemma 5.1, which we mention below,

to the J.Leray[14] in [4] : €

In the Rellich’s theorem, the convergence of the x-integral on the quadratic of the
derivation is presupposed. Our converging presupposition relates even to the (z,t)-
integral and is therefore better adapted to the situation in our problem. Leray prove and
use Lemma 2, which is even near to Rellich’s lemma, operate like this theorem, only
with (z)-integral. Our proof of convergence is more direct.

Hopf improved Leray’s method described in [14] and proposed Lemma 2 in 1950/51. We show the

English translation of Hopf [4] in § 5 below.

3. The study of the generalized solution / the strong solution

3.1. Kiselev. Kiselev 7[7], who published a paper titled ”Non-stationary flow of the viscous incompress-
ible fluid on the smooth three-dimensional domain” in 1956, is one of the progenitors of the generalised

solution and the strong solution as follows :

3 =
Lv= bv ka—,dl —vAv = —grad p+f,

T
dt k=1 ()x;_-
divv =0,
v|£=0 = a,
V[S =0

where f = f(x,t) and a(x) is the given vector, » is the viscosity coefficient, which, for the
brief description’s sake, (we) deal as the constant. (We) call the vector v the generalised
solution of the problem (1)-(4) on @, if v € L?(Q,), exists generally in the sense of
S.L.Sobolev[25].

Theorem 1 (Uniqueness theorem). The problem (1)-(4) have in Q, not more than
a generalised solution

3() Leray, Jean. (1906-1998).
4(1}) This English version from French was made by the author of this paper. cf [14].

(1)

)
©)
(4)

5(4}) Leray didn’t use the NS equations but “the equations of Navier”. Prandtl used the NS equations in his lecture in

1929 and in his text [22] published in 1934.
5(1}) This English version from Germany was made by the author of this paper.
7(})) Kiselev, Andrei Alekseevich.
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Theorem 2 (Existence theorem 1). Supposing a € W.Z(Q) and satisfies the conditions
(2) and (4), £ € La(Q,) and 95 € Lo(Q.) and satisfies the condition ||| { ||f + Lal| +
[If]l }e=o < %; where B : a constant, depending on the domain 2, and the symbol || - ||
means the norm in La(S2). Then the problem (1)-(4) have the generalised solution, in
any cases, for all t € [0,T), where T : an arbitrary number < [, satisfying (||a|| -+

T 2
Sy W€1e) (1If = Lallimo + maxocecr £ + J3 15E1dt) < 4. D

3.2. Kiselev and Ladyzhenskaya. They say in [8]:
In (our)® paper, (we) study the problems of the incompressible viscosity:

3
%:—F — VAV + ;ng—; = —grad p + f(z,t), divv=0, v|s=0, v|i=p=a (1)
Formulation 1. (We) shall call it a generalized solution of problem (1), that is
the vector function v(z,t), having the generalized derivatives € Lg(Q@r) of the first
order, summing to the power of 4 in a plane of ¢ = const for an arbitrary profile Qr,
fn > vi(z, t)dz < const, and satisfying the conditions: div v =0, v|s=0, v|—o=

aand the equality: [y fo, |47 ®+v % 22 —uvgE — 8| dedt =0+ (3) Y@ € Lo(Qr)
such that 22 € Ly(Qr), div®=0, ®|s=0. O

Formulation 2. (We) shall call it a generalized solution of problem (1), that is the
vector function v(x,t), having the generalized derivatives € Lo(Qr) in the form of ;f:,;‘
and its all belongings satisfing the same condition as in Formulation 1. O

(The Theorem 3,4 and 5 are new contents in [8] in comparison with [5, 7]. The following
theorem is same as Kiselev[5, 7], about a strong solution which is already in [7].)

Theorem 6. Ifa € Jy1(2) N W2(Q2), and £ and £, are € L2(Q,), Q: = Q2 x [0,1], then
the problem (1) has the generalized solution in the sense of Formulation 2 on the
cylinder Qr = Q2 x [0,T], such that T' : no-smaller than an arbitrary number, depending
on v, |lallwzys [€lla(@u)s IIfellza(q) and the scale of the domain Q. mi

We show the English translation of Ladyzhenskaya [11] in § 7 below.

4. Study of function space L? for the uniqueness of the solution

4.1. Prodi. '° Prodi [23] is one of the progenitors with J.L.Lions [15, 16]'! of the modern style combining
with the function spaces, which J.L.Lions didn’t described in [15]. Prodi’s main theorem in 1959 is the
following :
when B is a space of Banach, (we) put w € L?(0,7; B). This means as follows : u
is the function of ¢t with the value in B, and integrable to the power of p within the
interval : (0, 7). In special case, LP(0, 7; L?) is equivalent with L?(£2 x (0,7)). By setting

p and ¢ as the number such that p > 3, I—l'_ -+ % = % (We) have evidently 2 < ¢ < 6.
S tuGE —phouy =~ 4 f;, FE=0, (j=1,2,3).

Theorem 7. A function u which is a solution of the defined problem is unique if satisfies

the following condition u € L (0,7; LP(S2)) by the arbitrary value of p, with 3 < p <
+oco . O

8(1}) We refer the original [15] in using (we/our). This English version from Russian was made by the author of this
paper. The first English version : Amer. Math. Soc., Transl(2) 24(1963) by John Abramowich without corrections and
comments. After conveying deep gratitude to him, we corrected the original misprints, amended phrases and words.

9(y) cf. Kiselev [7, p.27].

10(.!].) This English version from Italian with comments was made by the author of this paper.

11(44) This is not yet found in J.L.Lions [15].
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5. Hopf : Uber die Anfangswertaufgabe fir die hydrodynamischen Grundgleichungen.
( On the initial-value problem for the hydrodynamic control-equations)

5.1. Introduction. Hopf '? [4] is one of the most important papers for the weak solution of the NS
equations, however we have scarcely had the English translated version of Hopf [4] from German up to
now, so we introduce our translation below. 3

Uber die Anfangswertaufgabe fiir die hydrodynamischen Grundgleichungen.
( On the Initial-value Problem for the Hydrodynamic Control-Equations)
Eberhard Hopf ( Commented by the author of this paper. )

1. Preliminaries

Frg, b function, a,u,v,w: field.
G : (x)-domain,
G : (z,t)-domain,
€Ly, T2, y,Tn,
wi v = {u; € u(z, t)[i =1,2,---n},
dx : d:cld:cg S d:cn.

The divergence-free property of an (z, t)-domain: G on u = {u(z,t)| u € C'}  is described by the
differential equality:

divuzaa—;i:(}, v=12,n. (1)

We shall not use the summation symbol: 5 but conventional summation-description. We say that (z, t)-
domain G define scalar or vector-valued function v(z,t) € N in G, if v = 0 holds in the exterior of the
compact subset C this domain. The functions of the often used class below converge even in dG. Its
description is like this: The divergence-free on w:

u = {u(z,t)| w € C* in G}

= // uiﬁ dadt
& Oz

(= /(u -Vh) dt = — f(div u-h)dt) =0, h(z,t) € N inG. (2)

We define the scalar product of the two vector fields: v(z,t) and w(z,t) in G by

// Uiy d.’Cdﬂ,
G
50 we can say:

the divergence-free on u = {u(z,t)| u € C* in G} = ul P heNin G : unique.’®
The following contrapositions to these facts is here of interest:
e The continuous field &'(z,t) in G with its component h; : the gradient-field(: h; = FI) of the
function h(z,t) which is unique and moreover its x—derivative continue.
e It is necessary and sufficient that in G continuously z-differentiable and divergence-free field of
the class N is orthogonal.

12()) Eberhard Hopf (1902-83).

13(1}) Except for 11 remarks by Hopf, which we mark with (E.H), and the other footnotes marked with (I}) are by the
author of this paper. The numbers of equations correspond to that in the original paper.

14({1) C! is used in meaning that u is continuously x—differentiable, which is abbreviated by the author of this paper.

15(f2.H) The formulation of the concept in the (:, t)-domain instead of () is effective for our problem. Application of
Hilbert space theory on the problem of the potential theory and mathematic hydro-dynamic, we find in the following papers:
O.Nikodym,“Sur un théorem de M.S.Zaremba concernant les fonctions harmoniges.” J.Math.pur.appl., Paris,Sér.IX 12
(1933), 95-109; J.Leray,“Sur le mouvement d'un liquide visqueux emplissant l’espace.” Acta math., Uppsala 63 (1934),
193-248; H.Weyl,“The method of orthogonal projection in potential theory.” Duke math.].7 (1940), 411-444.
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The necessity is further the result of the integral theorem. That the condition is sufficient holds from the
following thought: by using w(z,t) = ¢(t)w(t) with the scalar ¢, we can restrict on the corresponding
proposition for z-domain:G. It holds also

/: w,-h; de =0, Yw={w(z) we N inG: smooth & divergence—free}.
é

The proposition holds if we can satisfy that the circulation of h':

f how; da; = ] h.ds
(i c

converges along the closed path in G. We see clearly that we have to prove only for the continuous curved-
path without self-crossing. We get the vanishing by selecting the suitable value on w. To arbitrary small,
known € > 0, there is always the smooth and divergence-free stream: w(z) with the following properties:

w vanishes at 0 only in the closed cylinder with the thickness < € around the path: C. On each plane
C vertically-passing through cylindrical section, the vector w makes an angle < € to normal-direction
(direction of C in the section) . The section-flow of w, which is independent of the special section on the
divergence-free, is equivalent to 1. This fact is sufficient for the proof of the converge of the circulation
along C. We use such a w(z), corresponding to a given, but small enough selected € > 0.

We put the hyper-plane-element on the cylindrical section with dF and we select the arc-length: s
along C as the parameter across the section, so we can put in the cylinder the volume-element: dz in the
form pdFds, where p is in the neighborhood of C continuous and on C equal to 1. Then, we get

fh;w,- dx:/[fh:u|w|pdf‘] ds.

We replace here the component k., by the component h;, gained in the section-point of C with the section,
and we replace again |w(z)| by the component w,, in the normal-direction of dF', and replace p with 1,
then from integral of the right-hand side

f i / w_.,dF] ds = / h.ds,

that is, the circulation. On the ground of the given properties of w, it become clear in itself that by this
replacement, the error with ¢ is evaluated — 0. Therefore the proposition is proved. O]
The control-equation of Navier-Stokes'Sfor the movement of a homogeneous and incompressible fluid
is :
Ou; Ou; dp &%,
—_ + Uy e * 3
ot v Oo Oz; +”0:};53&;‘3 (3)
where p is a positive constant, the kinematic viscosity coefficient!”, and
divu=0.
Each of u(z,t) and p(z,t) is a solution in the (z,t)-domain: G, moreover the derivatives which appear
in the equation, u, w, and wu.., are continuous.
We give now a new time-dependent and in G divergence-free vector field: a = a(z, t) It must be

a € N in G and smooth enough: a and the differentials: a;, a., ., are continuous in G. On a is not

imposed any further restriction. For a € N in G*®and for uadﬁ‘- = aiﬁﬁ the following holds:

f/ a,-‘z‘-‘id dt = /f 001, dudt
¢ ot
f / a,ua L dzdt = f ] —uqu; dadt
G Lo Gax&

lﬁ(lj.) L.M.H.Navier(1785-1836)’s in 1822, G.G.Stokes(1819-1903)’s in 1844, was proposed respectively.
17(11) Due to H. Kozono [10] , (3): the kinetic equation conventionally used to be described as follows:

-

¥ pAu+u-Vu+ Vp = 0, here owing to dyadics,

u- Vu—(u V)u—wzﬂuk (Z k L] Z kg;uﬂ)
k=1

18(1}) In the original paper, there is G instead of G, which is corrected by the author of this paper.
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0%u; da; Ou, / 0?a;
=— =04 O o= :
f Je & Bagbzg T / P el S I B s

Brordiva=0andae N

/ ] a.u— dadt(= f (a, Vp)dt = — / (div o, p)dt) =

We find therefore, that the field u(z,t) satisfies the following condition:

da; da; H%a;
—u; dzdt — g t; drdt ———u; dzdt = 0. 4
ff( ot +ffcaxau L +u//c‘:3$33$au’ : @
for every smooth enough field a(x, t) in G with the property
diva=0inG, a€ NinG. (5)
Moreover even the divergence-free of field w:
]/ 2, drdt(= f(Vh u)d /(h div u)dt) =0, he NinG, (6)

holds for every smooth enough function of the given class in G . The control-equation is brought into
the form of an equation between a linear functional operator of the arbitrary field and functions a, h.
The important matter is that the unknown field u(x, ), on which this operator depends, appears without
derivatives in them.

We must make it consent that, on the equation (4) and (6) which we understood in just clear sense, we
return again to the differential-form of the equation, when we restrict sufficiently smooth solution-field
u € G. We see already that under this presupposition (6) return again to div u = 0 in G. For sufficiently
smooth u, we may cancel all the familiar partial mtegra.tlon It follows then, that

Ou; Ou; &2,
/ f “*{ Ut e - “axﬁaa:ﬁ}dxd*

must hold for every smooth field a(x, t) of the form (5). By the familiar theorem, it follows that the term
in brackets above must be the derivative QE of a unique function p(z,t) in G. We see that the arbitrary
integral form of equation is the physical formulatlon of uniqueness of pressure.

It comes from the general mathematical theory on the integral-form of the equation. It is however
effective to free from the technical restriction on the smooth solution-field . Two bilinear forms :

fu,:u.-d:z, /%%dﬂi
Ozg Ozg

in the energy-equation become the problem on Hilbert space of the vector field. It means that a methodical
profit in wider space of the differentiable-property of the solution u become the theme of a formulation,
which is able to be studied almost separately on the existence-problem.??

The arbitrary initial-value-problem of the hydro-dynamic control-equation is as follows. The solution
u(z,t) is to be on the above unstable domain G(t), ¢t > 0 of z-space, when u(z,0) in G(0) is as above,
is given (with a suitable formulation condition of the continuous connection for ¢ — 0) and when the
boundary condition of u in the boundary of G(t), ¢ > 0 (in suitable formulated sense of connection).
J.Leray had devoted to three works in the early 30 years.*! Leray had already solved this study by the
aide of method of Hilbert space and by integral interpretation of equations in three dimensions.?? Leray
had solved this existence-problem for all ¢ > 0 in his three papers in the following cases:

a) G = total plane with the kinetic energy < co.
b) G = fixed ellipsoid with the boundary value= 0
c) G = total three dimensional spaces with the kinetic energy < co.

19(}}) In the original paper, u; in last term is absent, and this is inserted by the author of this paper.

20(5‘ H) cf. Additionally, “The handling of the quadratic variational and linear differential-problem with the method of
Hilbert space” by R.Courant and D.Hilbert, Methoden der mathematischen Physik, Bd.2 Berlin 1937, Chap.VII.

21(4}) J. Leray(1906-1998). a) “Btude de diverses équations intégrales non linéaires el quelques problémes que pose
i‘Hydmd;mamique ” J. Math.pur.appl., Paris,Sér.IX 12 (1933), 1-82; b)*Essay sur les mouvements plans d’un liquide

que limitent des parois.” J.Math.pur.appl., Paris,Sér.IX 13(1934), 331-418; c)l.c.f.n.

22{E H) C.W.Oseen based already long ago on his famous hydrodynamic study of a form of the controll equation, in
which the secondary derivative is zero. He successed in proof on the existence only for sufficiently short time. ef. his work:
Hydrodynamik(Leipzig 1927).
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On the remarkable work of the differentiability problem, Leray points out a marked difference between
the cases: n =2 and n > 2. In the first case at least, if G = total plane, differentiability of the solution
went well, but the method for n > 3 was gave up, to which we should evaluate as natural. Even by
smoothness of all above data, the smoothness of solution in all time space was not proved. Strange to
say, he gave up the proof on the uniqueness in 3D. These problems have never been explained enough
even now. It is difficult to believe that the initial-value problem of the viscid fluid for n = 3 could have
more than one solution, and we are to devote more in the approach on the uniqueness problem. It comes,
however, only from another new studies, that, with the nonlinear partial differential problem, the number
of the independent variable on the local properties of the solution has a fundamental impact.

We ignore the problem of the differentiability and even uniqueness in the proposing paper, at least
initial-value problem, in which we start from the view on the integral of the equation as the primitive
form. On this fact, we want to return to the (in our space not easy) proof of energy-equation in our
following papers. The main purpose of this paper is the construction of the approximate solution,??
which occupy a very wide space in Leray’s work, here is treated by a simplified process, which can apply
to wider class of the partial differential-problem. Also to that we want to return later. The method
suggests the solution of the initial-value problem "¢ > 0 in considerable generality, however, in this first
paper, the origin of the methodically basic idea is more important for us than the generality of the
result. We restrict here on the case, in which z-domain G is fixed in time, however completely arbitrary,
and where, u is supposed to have the vanishing boundary value. The boundary condition is defined by
the concept of Hilbert space, so wide enough the solvability is, and so close the uniqueness of the solution
is, at least to hold in the two dimensions.?? In the pure existence-theorem, the dimension number plays
no role.

2. Function class H' . Solution of class H'
[f(z,t) : measurable function with the bounded norm osz(@) on the class H € R, H:Hilbert space.

f _f? dadt < o0.
G

5-limy o0 fn — f* € H in G= w-limy, 0o fn — f* € H in G

[/_fgdzdt—»f[_f‘gdmdt, Vg€ HinG.
o [

f/‘"fy dedt, Yg: fized function € H, strong dense set
é

converges. There is then 31 f* : weak admissible function in G. Here instead of G, we must use G.

Then the norm
] 2% dx
C

is fundamental. We recall the weak compactness of the function sequence: {f,} with uniformly bounded?
norm (theorem of F. Riesz).”®
Following criterion is often used by J. Leray for strong convergence, we also use it, namely:

w- lim fu = f*(z,1) =>E/fdf2 d:cdtzf‘/ﬂf"z dadt,

here

s-limy 00 frn — f* <= = holds in the above inequality.

2B(J,l) This solution is called “weak solution”, a term which is not at all used in this paper.

24(.]}) If ¢ is total z-space, in the condition of bounded kinetic energy and bounded dispersion-integral, it becomes the
closed boundary condition. For understanding of the boundary condition is recommended by R.Courant and D.Hilbert,
Methoden der mathematischen Physik, Bd.2 Berlin 1937, Chap.VIL

25({].) This original word is “gleichmdssig beschrdnkten” cf J.Serrin,p.72, K.Masuda,p.644.

26())) cf. Leray, I, §3. Forte convergence en moyenne. §4. Procédé diagonal de Cantor.
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All this holds for the vector-fields u, v in G, if the scalar product

/ / Uiy dzdt
G

and its corresponding norm are used.
Lemma 2.1.

w— lim u, — u*(z, t):}»El"f/ Uitk dwdthf wiu! dzdt.
n—vo0 G é

s— lim u, — u*(z,t) <= = holds in the above inequality. O

n—oo

We use like Leray the concept of the generalized (total space) z-derivative®” of function f(z,t) and field
u(z, t).

Definition 2.1. f(z,t) defined in (z,t)-domain : 3G should be f € H'in G <> it has the following properties

feEHinG
In, fu€ Hin G si.
f]_hj,,; dzdt = // ﬂfd dt (heNinG), “h(z,t),i=1,2,---,n. O (7
(e
fle,t)eH', YfeCinG st fandall §L €G.
For such a f,
aof _ .
Bz 1

This follows from the integral theorem and from the assumptlon that h € N i.e. h vanishes in the exterior
of the given compact subset C G. It is clear that f € H' in G
= generalized z-derivative : fi; in G uniquely determine until on the value in a (x,t)-null set.

Lemma 2.2.
feH inGand"f, w— lim f, — f*
T— 00

/f(;-f2 da:dt+/féfrifq ddt

uni formly bounded
= f*e H inGand Yfi, w—lim fi;, — f5 O

in

28 Proof
¥ f satisfies (7), where h is an arbitrary and admissible function,

w— ﬁl’ilo // 6}6 fu d-Ldt /[ _f’ dadt.

For fixed h, ¢ along f,
w— lim ff hfi, dedt = f] hf; dzdt.
n—oo o A

The admissible function A in G in Hilbert space H strong dense and from the presupposition H-norm of
f+i in G weak converges. We put [ as limit function, so from (7) follows:

j / _hfl; dadt = f f ~— " dadt Yhand ¥
G

27(1}) cf. Leray, I, §7. Quasi-derivées., §9.Quelques lemmes concernant les quasi-derivées.

28(0) 1Az + VA2 = 111 g
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Definition2.1 = f* € H' in G and from the uniqueness on z-derivation
=50
A field is called € H' in G, when all components satisfy this. In the above integral-form of hydro-dynamic

control-equation, no derivative of u appear. It is important in itself to set on the solution of weak
differentiability-formation as belonging to class H . We may put therefore viscosity term in (4)

Bzai C'){Lg
i o g dadt O, 8
uf fc';3$33$ﬂu ’ “/ ¢ Oz (®)

Definition 2.2. u(z,t) is called a solution of class H > of the hydro-dynamic equations in the domain:
(z,t) of G, if the following conditions are satisfied.
a) ue H inG. A
b) Divergence-free: "h € N in G and L€ e
¢) Kinetic equation: the relation of (4) is satisfied by a(z,t) € N in G,
div a = 0 and ay, Gy, Gy are continuous, namely a € C2. O

We consider that under the presupposition a) even that in u non-linear term in the control-equation(4)
is a well-defined Lebesgue integral by the admissible field: a. If u € H in G , this case already holds. For
a) the condition of incompressibility b) is identified as follows:

divu=wu;; =0, foralmostall z, tin é
hold.?® We think that in the control-equation(4) all integrands are zero in the exterior of G. This is

integrable if it looks at all over the (z,t)-space. With this arrangement the following theorem holds,
which we shall prove, although we shall not use it in this paper.

Theorem 2.1.

/ ajuide = [ /da‘u, dxdt —i—f / —ugu; drdt — f / Ui ——uip drdt. O (9)
=T t<T t<T t<T

Here Va(x,t): admissible field under the Definition 2.2 c).

Proof
We think that with a(x,t) even h(t)a(z,t) is an admissible field, if h(t): a total arbitrary vt differentiable
function. We set in the bracket

ffK[a u] dzdt = / { - Kla,uldz}dr = 0.

ha instead of @ in the equation (4), so the equation also holds as follows
oo o0
f h(T){ Kla,u]dz}dr :f h’('r}{f a;uidz}dr = 0. (10)
—o0 t=r —00 t=7

The brace in —co < 7 < 0o by Lebesgue integral on 7, which for all h(7) with continuous k' (7) is, as you
know, is equivalent to

f aiwde = / { K dz}dt = f / K dxdt Yr. O
t=7 —oo JU fized <

3. The boundary condition for vanishing. The initial value problem

The cross section t = const of (z,t)-domain @ is z-domain G(t). We must approximate to boundary
of G(t) nearest as could as possible with help on concept of Hilbert space of boundary condition of the
vanishing of a function g(z,t) ¢ and a field u(z,t) ¥¢. This reach that we can get the function g from the
function € N in é, by the suitable limit-procedure. Then it is necessary, sufficient effective restriction
for the real space z-derivative of approximated function (not but the ¢-derivative) to make use of which
the “vanishing” at the boundary of z-domain G(t) is essentially preserved. We suggest the boundary
condition with the belonging to the following functions class: H'(N).

2Q(E.H) When we study that, we had not mentioned in this paper, the problem of limit-procedure: g — 0 in the
hydrodynamic fluid, we loss the function space H' of its condition which is essentially bound with the case p > 0.
Obviously we must then be depend on the derivation-free definition of the divergence-free.
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Definition 3.1.
w— lim v.(z,t) = g(z,t), Y€ NinG, +.€C,

Y, / f ~% dxdt + f f Yy dadl (11)

= g(x,t) is called g€ H (N) in G. O

is uniformly bounded,>®

Lemma 3.1. G : eylindrical domain:z C G, 0<t<T,
s—r}Lrgio?n(w, t)=g(z,t) € NinG
y(w,t) € the exterior of >compact subset C G =y — 0; uniformly bounded.
= g(z,t) e H(N)in G. O

Proof®!
We put

v = p(t)y(z,t), p€C, t€<0,T >,

If

@ :>0<lirré(,o<1.

0 forO<t<e T—-e<t<T,
1 for2e<it<T—2¢
In addition, we put ¥ = -,

=>geH(N). O

Lemma 3.2. By Yf e H in G and g € H'(N) in G, the following equation holds :
// gif dedt = ~f/ gfidzdt, (i=1,2,---,n). O
Proof

Definition2.1 =Y Y v : continuously dif ferentiable in G and € N. Definition3.1 =
w— lim Tn — 9
TE—+ 00
with uniformly bounded integral by(11).
Lemma?2.2 = instead (yi, — gi) of (1 — g) in G.
YiYy=Y (Vg O

For effective formulation of the initial condition, we introduce now the class: H(N). We restrict ourselves
by it on the z-space and field u(z), which in a z-domain G is cleared. When we regard only function
f(z), which belong to both class H and N in G, so it is clear that it is equal the strong convex hull of this

function space with H. This holds on vector field in G. Otherwise it is however, when we are restricted
on the divergence free field in G.

Definition 3.2. A weakly limited field€ N and € C?* and divergence-free in G
= (divergence-free field€ H )is called € H(N)in G. O
32

We prove easily:
the field u(z) € H(N) in G is divergence-free and ¢(z) € H in G =

['U.,:tp!" dz = 0.

S0(E.H) |Inll2 + [IV7ll2 = [yl
31(y) of. Leray, III, §16.
32(F.H) From the theorem by Saks, it is then even strong limit-field of just such a field.
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33 Belonging of the divergence-free field € H(N) compensate clearly the boundary condition of the
vanishing of the normal component.
We can now formulate the existence theorem®! for the hydro-dynamic initial value problem.

Existence Theorem
G : z-domain, U(z) : divergence-free,” U(z) € H(N).
="t in G, u(z,t) defined with the following properties :
A) In every eylindrical domain : (z,t), © C G, 0<t<T,
u is a solution € H of hydro-dynamic control-equation(Definition 2.2).
B) Yt > 0, vanishing of boundary value :

In every cylindrical domain, w € H' (N).
C) Initial value condition:

For t, s— }ir‘% Un(z,t) = U(z) in G. O

4. Simplification of the problem. Approximation-process

For the construction of the solution u of the initial-value-problem for a fixed-time z-domain G, we get

from the equation
fu,-ul-dm —f a,;uid:r
G t=7" & =7

T’ But- T) 60.,; Ti Ozai
= —udadt —uquidaedt ———u;dadt. 12
/T /;.a:“ +£ ]Gax{,“““’ +“[ Lazﬁamﬁ“ (12)

Lemma 4.1. Yt in G,given,z C G, 0 <t <T, ul(z,t) € H.
7 >V 7> 0and Ya(z) € C? and :

a=a(z), diva=0inG, a€ N inG, (13)

namely, a(z) — 0,Y a € the exterior of a suitable compact subset C G.

35

= u holds (12) in the hal f-cylindrical domain G:z C @G, 0 <t and Ya(z,t) : admissible field,
(— See condition ¢) in Definition2.2 on the solution-de finition). 0O

Proof
We describe (12) in the following abbreviated form:

fe) -1 = [ " gyt

= /m @ () f(t)dt + /m e(t)gt)dt =0 Ype C(0,0), 0<"t< 0.
0 0

We moreover, describe this equation fully, so we see that the equation (4) is satisfied in above half-
cylinder by all fields a = @(t)a(t), where a(z) is an arbitrary of above admissible field : (13) and (t)
is an arbitrary one of admissible function. We can approximate now, however, all the admissible field
a(z,t) in the condition c) of the solution-Definition 2.2, in the half-cylinder G , so by the summation on
fields with the special technique , with which we can exchange in the control-equation. We can always so
arrange it, for example, that the convergence of field and its derivation until above-mentioned order in

83(p.H)

/u,-tp:,- de = —(div u-) =0.

34(1) of. Leray, II1, §19, IV, §25.
35(1}) In the original paper, there is u instead of u;, which is corrected by the author of this paper.
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G is equivalent and that the approximated field vanishes in the exterior of a suitable fixed and compact
subset of G. [

It is now clear, that a field u(z,t), which is a solution of the equation (4) in the domain of lemma,
which is further divergence-free in half-cylinder, and which satisfies the solution-Definition 2.2 € H' in
all eylindrical sections.

We get an even more suitable form of the equation on the basis of the following facts.

Lemma 4.2. There is a sequence: >a” € C? in G and in G linear independent field in (12):
a=a"(z),dva"=0in G, a“€ NinG, (14)

with the following properties:

a € C? in (12) is a uniformly-limit-field in G of a sequence of bounded linear-combinations: {a“}, with
uniformly converge of only the derivative until 2-order in G. By given a(z) in this approzimation only
such linear-combination is used, that is, have null-value in the exterior of the dependent compact subset

c Gy B

On the basis of this fact, it is clear that a field w(x,t), which is in all cylindrical section € H and
which satisfies the control-equation (12), 7 > 7 > 0 and for all field : a of the above sequence, these
effect automatically for all above admissible field (13). To sum up, we could say that the control-equation
(4) for the present expression could be made up by the control-equation (12) with (14).

In the function space of the divergence-free vector-field: a, (12), (14) is an affine coordinated-
description of hydro-dynamic equation. The affine system of the coordinated-vector(14) can be described
simply by the linear transformation, that is, in the sense of bilinear form:

/ ‘Ugw,-d:r:
a

is orthonormal. We may moreover presuppose that the sequence of (14): {a"} satisfies these conditions:
/ Dakis = By (15)
G
Lemma 4.3. The orthonormal system on the field : a¥
is complete in the field-space of divergence-free field: U(z) € H(N)in G. 0O

Proof
Lemma 4.3 holds from Definition 3.2 and Lemma 4.2. [

The approximation process
The k-th approximation step holds so that we think over only the first k of the unbounded, many control-
equations: (12),(14),

{5:("‘”(3‘:): (U: 1:2v”' vk): (16)
and seek to solve these by the theorem
k
u=uk(z,t) = A (t)a" () (17)
v=1

with to-be-given scalar factor A, = ME. This theorem satisfies, from (14) by itself, the condition of
divergence-free and the boundary condition of the vanishing:

divu*=0in G, «* e NinG. (18)

Because only differentiable A(£) come into question and because the admissible field o is independent of
t, the first k of equation (12) could be described in the form

8‘&,‘ ﬂa,- 626',,'
i—dr = | —u,u;d ———u;dz. 1
A fcaxu“°“ ““/Gaxﬂaxﬁ“ (19)
For (15), the k’s equation (19),(16) with (17) become an ordinary differential system
s =F,(M, M) (v=1,2,--- k), (20)

dt
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where the right-hand side F,, = F* is the polynomial on A with constant coefficient. (19),(16) and (17)
i.e. equivalent meaning equation (20) share now with the strict hydro-dynamic equation, the important
property such that the energy-equation®:

d1 Ou; Ou;

_— sude = — ——dz. 21

dt 2 Guu H ca&'ﬁaiﬁﬁ ( )
holds for the solution.?” Since namely the equation (19) exists for all field of (16), so also for its linear
combination (17): u = u* holds. The energy-equation follows in the usual way ( and without difficulty
on boundary ) because by (18)

81&; (')K

1
v uptide = i -am—auad.c =0, (K= §u,;u.-)

0%u; Ou; Ou;
L 'd' — '_l (&C — k
];; 8;:56:35 o _/(; (9:1?3 3.’.."'3 i (u e }

38 39 and

hold.*0 From (21),

by no means increase’. Hence, we decide that each of the initial solution of the system (20) at t = 0
exists Yt = 0.

The approximation process mean formally very simple as follows. We think by ourselves the both
sides of the Navier-Stokes differential equation and the solution « formal from the orthonormal system
of the field «” expanded : u = A, a”. We make then purely formally first order for the unbounded many
scalar Fourier coefficients A of a system of the unbounded many differential equations . Our k-th step is
simply, so that we use only the first k-th of this equations and evaluate in them all the unknown with
index v > k equal to 0. This method, by which we prove bellow, the existence theorem, moreover supply
us a proposition on the convergence properties of this simplest and nearest approximation process.

As the initial value of A,(t) at t = 0, we select the Fourier coefficients of the expansion of the given
field U(z) from the a¥. While the solution A(t) in k-th step, in general, of the k-depend is this initial
value of which is independent. From the presupposition U € H(N) in G and from the completeness
lemma 4.3 holds

s— lim ug(z,0) — U(x) in G. (22)
k—oco

5. Proof of existence theorem

We summarize : the sequence field {u*(z,t)} has the following necessary properties:*?
5a) YuF(z,t) e C?¥Yz Cc GVt > 0.
5b) YuF(z,t) € exterior of compact z-dormain C G, depend on only k
= uk(z,t) — 0.
5¢) YuF(z,t) satisfy (19) Yt >0,
and (12) at 7 > 7 > 0 in the k-th order of (14), (v=1,2,---,k).

1

36(y)) cf. Leray, II,Movements infinitement lents., §13,II1. Movements reguliers §17.
ST(E.H) ||ull3 +2u [5 [|Vul3 dr =0.

38(E.H)
9K ugdr = —(K -div u) = 0.
¢ Oza
39(11) ef. Leray,IIL§17, V,§27.
10 H)
Fui du; Ou; Bu; Bu; _
ide = ——u; — b T , h —u; = (d cu=0.
& (’){Bgaﬂ:ﬁu O;cﬂn el a.'b"g 0*5;3 ere axﬁu ( h 'U) u

cf. definition by (1)
‘u(J,I.} cf. Leray, V. Solutions turbulents. §31.
42(11) cf. Leray, V. §28.
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5d) The integrations :
T A
f b f f 0i 0% yott,  (u = u*(z,1) (23)
G o Je

axg 8.’.8;3

exist under the convergence as k — co. These are independent of (Yk,”t,7 T).
5e) The initial value :"u*(z,0) satisfies (22). O
5d) follows directly from the combination of (21) and (22).

1st step:
Ya*(z) is continuous and a”(z) # 0 only in a compact subset C G. We apply the first half of 5d) to
(a = a") of the left-hand side of (19), in which we evaluate
- the linear term in u = «* by using the Schwarz inequality,*® and
- the quadratic term in « by using the absolute-convergence for the derivative on a,
so we get as follows: the right-hand side of (19): (¢ = a”,u = «*,k > v) is uniformly bounded by the
fixed-value v,¥ k and 1.
Of the left-hand side, we consider similarly as follows :

By the fixed-value v, the time function:
f o (@)t (z, O)dz > 0
G

satisfies a k-independent Lipschitz condition® ¥t > 0. In addition, this is uniformly bound Y¢, Yk. From
the famous axiom of choice®’, there is also k' € Z such that

F lim a.:;’(m)t.f.fJ (z,t)dz, “t>0Yv: fized (24)
K —ooJo
where, this is uniform for each bounded t-interval. The sequence of k : {uk’} is dependent of index v, but
we can select it to index: v+1 as the subsequence of the preceding sequence. With the diagonal method*,
then a fixed sequence of k' € Z, which we put moreover with k', make just-made limit-proposition true
for all fixed v, v =1,2,---. By these sequence, k" is operated as follows:

2nd step:

We prove here that the {u* (z,t)} converges weakly in G, ¥t > 0, ¢ : fixed. For the proof, we fix t;. From
the first half of 5d), the sequence of these field at (t = tp) is weak compact in G. This proposition would
be proved, if we show that each sequence in G can have only unique weak-limit-field. We put w*(z, to):
limit-field, and .'c"( <k ): partial sequence, which is depend of tg, such that

k’!im /w,;(m)uf(m,t@dm:/wi(z)uz(x,tn) de, “Yw(z) € HinG.
—ooJa G

In the case of w = a”, the value of the right-hand side is however already fixed by the limit of (24). u*
and «** 47 are two weak-limit-fields and v is its differential-field, so then

] alv; dz =0, .
-

B

holds. From Definition 3.2 v*, v**, v € H(N) in G. From Lemma 4.3 a" span field-space by itself

in G. Therefore
/ vvde =0
(e

43(y) cf. Leray, I. Préliminaires. §2. Rappelons l'inégalité de Schwarz.

44(1)) of. Leray, 1, §5.

A5() Apen # 0 = Myep Ay # 0. K.Masuda use the theorem of Ascoli-Arzel instead of axiom of choice.
46[”,) cf. Leray, I, §4. Procédé diagonal de Cantor. V,§29.

47(1}) This symbol: u** is not at all used in the other formulation in this paper.
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and the proposition holds. It holds also that in G ¥t > 0, a value-given field u*(z,t) such that
lim f u;u;(a:)ufr (x,t) dz :/ wi(z)uf (z,t) de, "t>0"w(z) € HinG (25)
kK —o0 e G

u* satisfy the condition B) of the existence theorem in §3. It follows from 5b) and 2nd half of 5d) and
by using Lemma 3.1. We prove simply also as follows:

’
k

w— lim u* —»u*, u* €6, 0<t<T.

k' =00

3rd step:

We prove that u*(z,t) satisfies the condition A) of the existence theorem. u* € the Ycylindrical
domain, # C G, 0<t<T,u* € H , which is the super-class of H'(N): H'(N)cC H'.

From the description in the first half of §4, we are sufficient if only we show that as follows : u* satisfy
(12), Ya = a¥,7 >¥ 7 > 0. From 5¢) u = u* satisfy (12) for the same Y7,Y 7 and for the first k : a”.
We fix 7,7 and index: v, and get limit with k' — co. It is clear that we may replace u* instead of u on
the left-hand side of (12). Similarly, the third integral on the right-hand side of (12) holds. We consider
that the inner integral as the following :

/:i [/ng(x)uf’ (z,t) dx] dt (26)

for 5d) the first half is uniformly bounded function on ¢,k’, and that we can apply the Lebesgue’s
convergence theorem on the outer ¢-integral. We may also exchange the order of both limit-procedures:
(k' — co) and integration in 2nd integral of the right-hand side in (12), by more consideration, we use
that on the 2nd half on 5d). We need now the following theorem which we shall prove in §6 later.

Lemma 5.1. {f*} = {f*(z,t)}|f* € C* inx C G, 0 <t < T} have the following

properties :
Vt, f* € N in G,

w— klim fE(z,t) = f*(z,t), inzandt (0<t<T),
—+ 0O

the integrations :

T
f fz(:rv t)d:r‘ / f fi’if?" CL'L‘df., (f = fk)
G 0o Jo
are uniformly bounded Yk t.
= s— lim fE(@,t) = f*(z,t), 2CQG, (0<t<T),

where, ¥ Q : (section of z-space) < 0.
In particular, if G degenerates, this deduction satisfies in itself. O

From 5a),5b), from the result of 2nd step, and from 5d) ¥(fized T), by the components of {u’””(z, t)},
the presupposition of the lemma is satisfied.
Y Q(: section of z-space) < co

'

i

= lim f [ ly— oS tiet) B, Trsmn®),
kK —oo Jp QG

Therefore, we can justify the limit-procedure: k' — oo of the 2nd integral of the right-hand side in (12)

(a = a”, v: fized). We consider that a-factor of the integrant vanishes on the exterior of the fixed

compact subset C(C' C G). By evaluation on @ D C and T' > 7, by this integral,

f f (aiata)(u;) dzdt, (a=da", u= uk’].
T QG

produce the following situation. The first factor of the integration converges weakly in the integration
domain to a;qu},, while the second factor converges strongly to u;. This holds limit-process : k& — oo
under the integral symbol, as we know. Therefore, it is proved that u* satisfy (12) Ya“(z) and Y7 >
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0,7 > 0. The condition A) of the existence theorem, therefore, is verified until on the divergence-free.
The last property is satisfied in itself by a trivial way, moreover ¥t: fixed.

For the completion of the proof of the existence theorem, it is further necessary to show that the
initial value condition C) holds. From energy-equation (21) follows

1 1 T r ou; ou; v K
E/‘u,u, da:lo e El:u‘u, dm|T+p,/0 - Doy Ol dzdt, "u € {u" }. (27)

The left-hand side of (27) converges by (22) as follows :

1 A 1
s— lim = uf uf do — — U,'U,‘, dx.
2 2 Jo

K —o0 G
1 K gk Lif s
2w— lim - [ UF U do— < | v'u"de, t=T.
[ E——) G 2 el

In the (z,t)-cylindrical domain, from Lemma 2.2 and 5d)
w— lim ui‘:ﬂ =ujg

kK —oo
holds. By the application of Lemma 2.1 from(27), therefore, the inequality®® follows:
1

1
5 ), U;U; dz f ulu) dx‘ - p./[) Lua‘ﬁut.ﬁ dzdt, T >0

Py

49 In particular,
Et—-ﬂj u;u;' dx < f UgU,‘ dz.
G e

50 To the last inequality, by using Lemma 2.1 again, we get that the initial value condition C) is satisfied.
On the problem of the strong convergence at fixed ¢, we shall no further mention here.

6. Proof on Lemma 5.1

The lemma is narrowly applied by Rellich’s axiom of choice and is proved.?®? In advance, we would
like to remark that when G isn’t restricted, even Rellich’s axiom of choice does not hold for G by itself.
One of the antitheses is the case, where G is total z-space and

Hx,t) = f(@1 + k@9, ,2), fE€H UN inG.

In this case, f* = 0 holds, but it does not satisfy strong convergence to 0.°® The proof of Lemma 5.1
comes from Friedrichs’ inequality:

Q(: section of z-space) < oo, to given Ye > 0 exists a bounded number of fixed functions: w,(z) € H in Q
s.t. the equation:

/c;fzdrgzu:[/qfwyd,x]z+equqﬁ‘-dm, Vi(z) € H inQ

48(1)) f. Leray, IV, §24. Due to H.Kozono [10], the energy inequality is described by u = 1 as follow:
t
Ilﬂ(f)||§+?f [IVu(r)|3dr < |lall3, YaeLl, 0<t<oo,
i

||1.I.(£} - 0.”2 —0, t—+40
where a € L2: total of vector-value-functions: a € L2, satisfing div @ = 0, namely o : symbol of the “solenoidal”. This
usage is due to P.L.Lion [17], K.Masuda [18], H.Kozono [10] et al.

49(4) cf. Leray, IV, §24

50(11) of. Leray, III, §19., TV, §24.

51(E.H) cf. Courant-Hilbert, l.c.f.n. In the Rellich's theorem, the convergence of the x-integral on the quadratic of
the derivation is presupposed. Our converging presupposition is related rather to the (i, t)-integral and is therefore better
adapted to the situation in our problem. Leray prove and use Lemma 2 in (l.c.f.n.), which is even similar to Rellich’s
lemma, it is true to operate like this theorem, but only with the (x)-integral. Our proof of convergence is more direct.

52(})) of. Leray, V,§30.

53())) From the lemma, we can therefore only induce the strong convergence of the approximate: u(z,t) — u*(a,t)
in the cylindrical section, if G is restricted. Meanwhile the strong convergence holds clearly by the arbitrary G. Leray
deduce by his approximation in the case, where G is of the total z-space, with the help of the complex estimation of the
energy-distribution in . We want to return to the strong convergence-properties of our approximation later.
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is held by means of f(z).>*

For the proof of Lemma 5.1, we would like to remark at first on the fact that by the fixed ¢, f*(z,)
of lemma in G is f € C! and f € N. If we clear this function in the exterior of G by null, this fact is
useful, if this proposition is verified in the total z-space instead of on the G. In particular,

t — fiz = f: (€ Q(: section of z-space) < c0) € H'.
The generalizing of these functions and the last setting is produced by the total presupposition :€ N.
This presupposing is however used only in these order. We set arbitrarily a section: () and a number:

€ > 0 and select various parameter-functions such w, as satisfy the Friedrichs’ inequality in . We use
by the fixed t on the function

f{”-‘)t) =fk($stJ _fl(w)t)) (28}
which is in @ surely f € H'. By integration on t, follows that total functions (28) of the inequality

f:quQdzdtszf:[/c)fwudw]zdtﬂ/:[Qﬂ,-ﬁidwdt (29)

holds. From the presupposition ( weak convergence by fixed ¢ )
lim f fw, dz=0
Q

k,t—ooo

holds. The presupposition of bounded ( first half ) on the basis exist moreover, the function on ¢

f (F* = fw, de
Q

uniformly bounded with both k and I. Therefore, the first term of the right-hand side of the (29) with

both k — co and [ — co:
T 2
k,llinmz”:/u [/;fwl, dx] dt — 0 (30)

holds. From the presupposition, exists also the factor with e for (28) under one fixed convergence. From

T
lim / f{f" — 2 dadt <ce, Ye>0
k,l—oo Jg Q

follows, however ¢ was arbitrary, the strong convergence of our sequence in (x,%)-domain, z C @, 0 <
t <T. We see easy that the limit function in the context of lemma is the function f*(z,t), so Lemma
5.1 is proved. O

54{1],) The w, would become as the orthogonal in Q. The inequality is then described by an evaluation of the difference °
in the Bessel’s inequality. On the proof of the inequality, we find by Courant-Hilbert, l.c.f.t. Chap.VII, §3, par. 1. We agree
by ourselves to that the proof leads us in two dimensions, even the function in n dimensions. The Friedrich’s inequality
doesn’t hold for the arbitrarily restricted domain.
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6. Appendices to Hopf’s paper (({))
Theorem 1 by J.Leray and J.P. Schauder [8] is as follows.
Theorem 1. Let
z — F(z,k) =0. (1)
be the given equation. We apply three following groups of the hypotheses :

(Hy) The unknown = and all the limits, determining F, belong to the fully normed linear space £. The
total of the limit of the parameter k fill the segment K of the axis of the substantial number.
F(z,k) defined for all the pairs (z,k), where z is the derivative element from & and k is the
derivative element from K.
F(z, k) turns into each bounded space of the point © € € in the compact space.
F(z, k) completely continuous with respect to k to each bounded subspace of the space £.
(Hs) In the arbitrary point k,, of the segment K all solutions of the continuous and their indezes can
investigate the method of the chapter II ; we shall assume the total of the indezes suitable in zero.
(Hs) At last, we shall assume such a proved fact that the solutions of the problem (1) is bounded in the
own group ( a priori independent of k ).

We show the another simple definition®® of same theorem as follows :
X : Banach space.
D : the bounded open set including zero.

F(x,t) : D x [0,1] = X : the compact map, where F(x,0)=0. and F(z,t)#x, ifzedD.
= The compact map : F(z,1) has a fixed point in D.

6.1. The fundamental solutions of the Stokes hydrodynamic differential equation
((4) Extracted from Oseen and translated from German ).

6.1.1. Fundamental solutions for the condition on the velocity components. We turn back to
our problem, to determine the fundamental solutions of the Stokes differential equations. We said that
we shall select these fundamental solutions so that the detail functions v depend only on the two points P
and P, moreover, that the system of these functions in all themselves way of the coordinate depended,
we also select the right hand direction system. It is easy to assume that these new functions of the
components of the one than the transformation (10)°° of the invariant tensor with the range there are 2.
We have used from these underlying, deduced, a tensor which in an arbitrary right hand direction system
of the following components :

?a(r) (0)y2
tik = 86 AD(r) — m, rf=(zj—=z;")%, >0, (11)
djk is here and bellow the jk-component of a tensor, these diagonal components of (j = k) have the value
1 and the else components have the value 0. The three functions &y, tox, t3x satisfy always, i.e., when k
have the value 1,2, 3, the equation :

c')tjk

sk LR ) 12

9e; 0 (12)
When we define that ® of the equation :

H? o? o? ) (13)

A AP =0 (Ap=——S+—-—+—=—
( £ Oa? " Oa2 ' Ox?
57 should be satisfied and when we put :
3]
—#m AP = py

55(]1)“The Iwanami mathematical dictionary. Revised 3", Iwanami, Tokyo, 1996, pp.933-934, ( in Japanese )
0 '
56(y) @ = aj + Lixk, -"-‘g Y = aj + i_-,-'k-’l-‘f)A
57By a function, which depends on many points, it is useful and sometimes important for the operator A to operate by
an index of the point to indicate with respect to this.
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so we have for all admitted j- and k-value :

Opy.
pBoti — == =0, (14)
# 5$j
For these k-value ( 1,2 and 3 ) and also the three functions ¢y, tak, t3r and pi are one solution of the
Stokes equation i.e., we can put the equation (13), ® depends only on r, to the familiar transformation
of A in the polar coordinate in the following form :

d*(r®)
drt

These generalized solution is also ® = ar?® + br + ¢ + ‘—:, where a, b, ¢, d are the constants. We put from
the basis, which we define soon, ®(r) = r. We have then :

=0.

(0) (0)
2 A T;—I T — &
A@=;‘ thc:%k—F(J 5 )@k k),

=
o1 (z — z)
Pk = —2#13—“; =2

We observe now a domain B of (x), 3, z3)-space. F is its boundary surface. We assume that the Stokes
differential equation has a regular solution in B. We show with P© = (29,23, z{"’) of an arbitrary
point in the interior of B. We surround with a sphere with » = € and select £ so small that this sphere
lies in the interior of the F. B(e) is a subspace of B, which includes the exterior of the sphere with r = €.
We use the formula (2)°® on the domain B(e), and we put with vjx = tjx, = px. The boundary is
consist of the two subspaces of F' and the sphere with r = €. Because the value of rt;; is over even in
the point of P(®) is stable and because the boundary of the sphere with r = ¢ is proportional with 2, we
have :

lim tik (p% - pnj) dS =0.

=0 T=E
Moreover
@ dit . ; (0)+ Tk ——:L'Lo) ds
i 0 (02 o)<ty | ot -y 2

We put

uj = uf,‘m +71yp  where uﬁo) = u;(P©)

and because we put with ¢ as a bounded function of the point P in the neighborhood of P(®). We have
then because

e — O — O g
[ ﬁ=4ﬂ_‘ ] (25 — 2'9)(@x — 3, )ﬁ_‘mé
T T=E

= e— ihe W
— T2 2 T2 3

dt;
lim u; (p% - pk'n._._;) dS = 8mpur(P®).

=0 Jr=¢ d

Therefore :

,uk(P(U)) = gl” fF {tjk (ﬂ% —pnj) —uj (,'_Lcii—;:c —pknj) }dS [15)

When we get the 12 functions Tx and P, which in the interior of the boundary F', we can put in the
form of : Tjx = tjr + Tjk, Px = pr + 7, where 7, py for all k-value (k = 1,2 or 3) of the interior of F,
the regular solution of the given Stokes equations, so we can deduce directly owing to the product of (15)

58(1})

/p‘vj (#% —:m;') —uj (#%’ —ﬁnj)|d3=0- (2)
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tik, Pk by Tjx, P.. When the new T} all disappear when the point P, included in the boundary F' so we
get :

1 dT;
oy = — N Pt L ds
ug(PP)) Svmj;-n’(“ s Pkn,)db‘ (16)

6.2. On the boundary value problem of the hydrodynamic viscous fluid.
(() Extracted from Odgqgvist and translated from German ).

6.2.1. Definitions, Expressions, Green formulae. We investigate, in the following, the space domain
@, which is restricted to the finite many, bounded continuous surface. The points of Q is spanned by
the certain fixed, right oriented coordinate system w1, x2, x3. The interior points of @ is put with the
coordinate x; (i = 1,2,3) or y; in brief, (z) or (y). The spatial element is put with d@. The standard
point is meant, if necessary, as d. @, d,Q. We put each domain @ as the “interior domain” with Qy, we
can include an exterior domain Q(.) such that Q; + Q) makes the total space.

The total surface of the body (“the boundary surface”) of the domain @ is called and consist a
continuous tangential plane. The points on T' are put as (£), (7),--- and the surface elements with
dT or d¢T, - - -. The normal line from the interior point is put with n; (i = 1,2,3).

The functions of the coordinate x;,&;, -+ of the points, we use, in brief, with f(z), f(n), f(z,n), -,
etc. It holds therefore, n; = n;(n).

The distance of the two points = and z’ is put with 7.

A function f(z) of the, we know, 2 points z and ' of a domain @ of the form

If(z) - fa)| < CE ,,
where with h of the real, positive and smaller the an arbitrary, and C : a positive constant depending
only on h, which we call as H-continuous with the exponential h (Hdlder).

An surface of T' guarantees in the neighborhood of the point, which the expression of the form :
&3 = (&1, &2), if the coordinate system is suitably selected. The function f(£;,£&;) have the first derivative
which is H-continuous with the exponential h, so the boundary belongs to the class Ah. Therefore, from
here, the 2 differential quotients of f(&;,&2) exist and H-continuous, and so T belongs to the class Bh.
The extended domain @) belongs to the class of both Ah and Bh%®. In our last result, we shall use the
class Bh in §6. Although overall with the small presupposition of the class Ah so wide operate than it
can.

In the following, the double index in an arbitrary product of the differential quatations, etc., follows
with respect to these indices that we should summarize, we write the equation (0.01) in brief

& &
{mui — pur G = 2 — pX,,

duy
?}Eﬁ—[].

(1)

We study for the moment only its conditions of the viscous fluid, which obey the simple differential
equations, which, by the conventional way, we eliminate the quadratic term :
prg—
* oy
We have the Stokes equation

Bl = g, = o, )
Suk — ,
diy,
We call the following problem the first Stokes boundary value problem :
Determine in a space domain @ of the class Ah of the functions w;, p, such that on the other hand, in
Q satisfy :
op  Ouk

,uAug = 5:5;, 3’_~Bk =0 (3)

59Compare with L.Lichtenstein : New evolution of the potential theory. Conformal mapping, The Encyclopedia of
Mathematical Science, [IC3, Teubner, 1919.
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and on the other hand, the functions u;(z) get by the approximation of the boundary surface : T" of @
the given value u;(£).
The stress tensor operating in the fluid is described by

du du;
Tk = —p5k+,u(6; + ﬁ)

where
1, 1=k
E'k = 1 ) H
! {o, i# k.
The stress tensor operating on the surface element with the normal : ny is put with

T,-km;.

The problem of the equation (1.03) in a domain @ then to investigate that the operating stress tensor
(: Tiemi) on the cubic surface (: T) get the given value, we call the second Stokes boundary value
problem. We call the equation (1.03) the homogeneous Stokes equation.

‘We now two arbitrary, twice continuously differentiable vector u; and v; and an arbitrary continuously
differentiable scalar value p, then the “Green identity”

s

For TikvikldQ (4)
Q)

o L B ) G ) o o= v (G

[, (32 + 2 o

holds. The first 2 integrals are the space integral on the space element dQ of Q;, and the last one is a
surface integral on the surface element d7" of T

We exchange in (1.04) u; and v; and put g instead of p and substitute them, then it turns out from
(1.04), here we call “Green reciprocal formula”

fqm [uAui ;,Jp + %(g—ﬁ)]v;—qg—zm [“AU*_%“L“%(%)]m—p%}dQ

=L{T«ak(u)nkw—'ﬁk(v)ﬂkui}dT: (5)

T = ~phus + (82 + 52 ), (6)
-+

dxp.

Ti(0) = g+ p(52 + 52

Now, put down u; = v; in (1.04) and select for the functions : u;, p, such that they satisfy the equation
(1.02), then it turns out the “Green energy formula”:

/Qm ai,c! [Ti.‘c(u)ﬂk} dQ = —fT'ﬂk(u)nku,;dT = f(é(i]{%(%% + -g%;)? - pXkuk}dQ, (7)

hence the physical fact to the expression turns out that : the operating force of the surface force equals
to the viscosity force reduced by the operation of the outer force. Because the author acknowledges
the heuristic meaning of this, never occurring,%® Green formulae, as the true reason, so that it is lately
success to construct the same formulation of the potential assuming by the double boundary layer, which
we can deduce from its integral equations with “regular” kernel, and which was impossible with the
same method as known already so far®'.

60.f, F.K.G.Odqvist, The boundary value problem of the hydrodynamic viscous fluid, Stockholm, 1928, P.A.Norstedt
o.Séner. p. 49.
51Compare with C.W.Oseen, Hydrodynamick, Leipzig, 1927.
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6.2.2. Hydrodynamic potential. To get a particular solution of (1.02), as you know, we can use the
fundamental tensor. Under this, we see the results :

ak(z,y) = 5L
and the unknown solutions are 52
{Ui(z) = ﬂfQ vir(z, ) Xk (y)dQ, )
P(z) = p [ ar(z,y) Xk (y)dQ.

The fundamental solutions correspond to, as you know, the turning out of the function : ;L from the

potential theory and we can say the total concept of the functions U;, P as the hydrody}qgmic space
potential. It holds the important relations for () # (y) :

dqr.  Ouig

A ik = 1 aoo =Y A:l: =Y,y
HAzvie =5 =, 5 0 a =0 (10)
_ Oqx  Ovi _ _
P:'&yv:k = ay! 3 ay‘ = 0! quk =0, (11)
vik (2, y) = vki(y, ©)- (12)

62Here X &(v) is to satisfy the given conditions, cf. the following theorem 1 on page 337.
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7. Ladyzhenskaya : Investigation of the Navier-Stokes equations for the stationary motion
of the incompressible fluid

7.1. Introduction.

Ladyzhenskaya ® [11] is one of the most important papers including Leray [12, 13, 14] and Hopf [4],
from the viewpoint of mathematical history, of the early studies of the solution on the Navier-Stokes
equations. However, this paper [11] was written in Russian, we introduce her paper by our translation
into English. In addition, the first English version : Amer. Math. Soc., Transl(2) 24(1963) by John
Abramowich was published without corrections and comments. After conveying deep gratitude to him,

we corrected the misprints by translator, amended phrases and words. We show the paper of hers below.
64

Investigation of the Navier-Stokes equations for the stationary motion of the incompressible fluid
Ladyzhenskaya, Ol’ga Aleksandrovna ( Commented by the author of this paper. )

The motion of the viscous incompressible fluid for the model of Navier-Stokes is described by the four
functions :

u(z) = (u1(), uz(z), us(z)), p(e),
satisfying the equations :

3
du
Au—grad p= up=— + 1, 1
grad p k§=1 * D (1)

divu=0. (2)

where f(z) = (fi(z), f2(x), f3(z)) : the vector of the mass force, u(z) : the vector of the velocity of the
flow of the fluid at the point of x = (1, 22,23), and p(x) : the pressure at the point. For the brief, of
the description of the coefficients of the viscosity and the density of the location, we put by regarding
as 1. We shall study the motion in this domain 2 of the three-dimensional, Euclidian space E3, having
its fixed boundary S ( S may consist of an arbitrary isolated, closed surface ). The case of the moving
boundary, we assume the similar investigation. To the boundary S, we assume the essential, incidental
condition :

ulg =0. (3)

The problem in the definition of u and p in the domain € in the equations (1),(2), and the equation (3),
and the condition in infinity : u — ue with respect to |z| — oo, if £ : the unbounded domain. To this
problem, in many papers devoted their times. Qut of them, we select the papers, such as Lichtenstein [1],
Odqvist [2] and Leray [3], in some studies the solubility of the problem (1)-(3) for the domain 2 of the
derivative form. In the paper [2], Odqvist studied the method of the potential of the linearized problem
(1)-(3) : problem, equations (1), omitted nonlinear terms. (We put that exists the various methods of
the linealized equations of (1) ; all of them come to the equations, varying each other in the terms of the
lowest order for the comparison with the term Au : describing below the method of the solution of the
problem (1)-(3), thus, we consider this terms without showing the efforts. )

Except for this, in its study and its own problem (1)-(3) and show its solubility < in the large >>.
In the paper [3] by Leray give a priori estimate for the solution of the problem (1)-(3). The result of
the paper [3] in the combination with the following results of Leray and Schauder®, to the fixed point
completely the continuous transformation of the Banach space, may claim the solubility of the problem
(1)-(3) < in the large > in the case of the sufficiently smooth S and f of the problem (1)-(3), in fact,
the solution of J.Leray. On this problem, sophisticatedly show giving the examples, the force of the
achievement by Leray and Schauder of the method of the study of the nonlinear problem, which may
investigate the existence of the solution of the problem and in these cases, when we stay in the condition

63())) Ladyzhenskaya, Ol'ga Aleksandrovna (1922-2004.)

64(])) Except for four remarks by Ladyzhenskaya, which we mark with (O.L), and the other footnotes marked with ({})
are by the author of this paper. The numbers of equations correspond to that in the original paper.

65(]1) This method is so-called the Leray-Schauder’s fixed point theorem.
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of the non-uniqueness of the solution of the proof of the solubility < in the general > problem (1)-(3) in
the bounded and continuous domain € ( interior and exterior problem ), fundamentally using the stated
above ( all is sophisticatedly made ) the paper by Odqvist and discover the paper [3] by Leray. For
this, we propose all the studies in the two differential functional, generalized quadratic integrable space
of the order 1, and in the space C(f2) : continuously differentiable functions. The study in the space
W} (€2) have such merits, that they may prove the solubility of the problem (1)-(3), because of the only
general properties of the operators, compared with the current problem, investigate such a special analytic
formation, corresponding to them, with respect to this of the assumption of f and the boundary, even the
minimum. In them, we have defined the existence of the so-called generalized solutions of the problem
(1)-(3). ( of course, with respecting to the performance of the defined conditions of the smoothness for f
and S. )

For convenience’s sake of the reader of the paper, we chose separately the case of the homogeneous
boundary conditions ( on S and in infinity ). Their study seems to be possible proposal of the very large
and little large sufficiently. In the current problem, we limit the investigation of the stable flow in infinity :
Uso = const, in addition, in the paper, the methods allow to learn also very general cases. In the paper, we
show that the stationary problem of the hydrodynamic ( interior and exterior ) have, at least, the unique
solution for all the limit value of the Reynolds number. All these generalized solutions are functions, twice
continuously differentiable in the interior of a certain domain, having up to S, continuously differentiable
of the order 1, only if the domains of the solid S smooth ( have the twice derivatives, satisfying the
Hélder’s condition ) and the mass forces f satisfy the Hélder’s condition.

We investigated also establishing the motion in the tube of an arbitrary profile end, which are cylindrical
tubes, extending to infinity. We see, with respect to an arbitrary Reynolds number, exists, at least, the
unique laminar motion, which, in infinity, converge to the stationary situation, corresponding with the
unbounded cylindrical tubes, having as well as the profiles that also end of our tubes.

1. The generalized solutions.

1.1. The homogeneous boundary conditions.

¥ 1. The basic spaces and the formulation of the problem
We put L(£2) : Hilbert space of the vector u(z), defined in Q, with the quadratically integrable ( in
§2 ) components. The scalar product in it, is defined by the equation

(u,v):fuivl-dxz/uvdz.
[o! Q

Here and below, for the pair of indexes, we use the implicit summation symbol in the range from 1 to 3.
On the boundary S of the domain ), we impose that it has not measure of volume. Take an example of
the set M of all the functions in €, continuously differentiable, solenoidal vector u(z) and introduce in
it, the scalar product

(,v)g = l} Uy, Vg de = ];3 i, Vi, dz. (4)

The solenoidal of u means that div u = 0, and the finiteness in {2 : as well as u nicely to zero only in
this bounded, strictly interior sub domain of the domain §2. We show that the equation (4) is, in fact,
may turn out in the capacity of the scalar product in M. for this, we must investigate only this, that
from the equation : (u,v)y = 0, we deduce the equation : u = 0. For the boundedness of the domain,
this deduce from the inequality

3
fvz(:::)d:c SCQ/ Z(uz),‘.dx,
0 =1

and that also from the larger, strong inequality ( cf. [4] ).

(]uvd‘(x]da:)% ECQ(/Qg(ﬂZ)Ii)%dm, (5)

strictly, for an arbitrary function v equals zero on S. For the unbounded, however, in the domain ) these
inequalities are not available in the ( Co = co ). However, for any functions in {2 the functions v(z) and
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any point y, strictly, inequality :

J e < fKZ (+)aude ©)

y=
It turns out from the equation : 66
f ('}uy::—' f 39 Ye =%k, _ / i O yx— ok 3/ _v3(z) i
= 5¢k |z — 'y|2 o Dz |z — yf? Q Oz |z — yiz ale—yP

and follows from its inequality :

vi(z) . 2@ [ S
Q |E—y|2dLS2 j;z |$”'y|2d£ js'zzk:( Je:

Inequality (6) may conclude that from (u, u) = 0 deduce u = 0 and in the case of the unbounded domain.
The complement of the space M, for the norm ||-|| i, corresponding the scalar product (4), turns out in
the ample Hilbert space, which we show through H(f2).

We explain, by this property, it has all the elements of such a constructed space H. The element v
from H have the quadratically integrable on (), the generalized derivatives of the order 1 and

dwu—zg:' —

These components v; belong to the inequality (6) for all y and the inequality (5) for all the bounded
domain 2. On the boundary S the vector v moves to zero ( because this embedding theorem [4] instruct
us. ) In the case of the unbounded domain €2, the element v, in the defined mean, disperse to zero with

respect to |z| = \JZLI x? — co. This mean is instructed by the inequality (6). The summation of
all these functions v also belong to H. Let’s define now, that we can see the unknown solution of the
problem. By the generalized solution of the problem (1)-(3) belonging to the class H, we call the vector
function u(z), belong to H and satisfying the integral equation :

/ u,, B, dz — / wud,, do = —/ fode (7)
Q 0 Q
for all @ € M.

On the validity of the reason of this problem of extensively conceptual solutions, we deduce the fol-
lowing idea. First, if it turns out that the generalized solution u has the locally, quadratically integrable
generalized derivatives of the order 2, then from (7) by the partial integral, it turns out the equation : %

L (Au-—ukg—k —f)qm =0,

from which we deduce ( cf. [5] ), that the expression exists in the parentheses, is the gradient vector, i.e.,
that u satisfy the equation :

du
Au — up— — f = +grad
k Brx grad p
with the completely, certain function p) ™ (we see that p, such as this seems to be directly defined up
to an arbitrary constant element ), second, in the case of the linearized problem ( when we cut off the
nonlinear terms and when we have in the condition of the theorem of the uniqueness of the classical

2
66(1}) We correct the last hand side of the next equation : — [, T(;)Td" —3[, ‘:—(“Eggdl' because of 373 _ QH&;—’-K =
-3.

57(4) From (6), after raising to the power of 1 of the both hand sides of (6) and multiplying the both hand sides of (6)
by the just-gained left hand side.
58(3}] By using the partial integral, from the left hand side of (7), we deduce as follows :

fuqu»,kcu /ukuqﬁxkdx— fa“‘* <I>d::+/uk—<1)— ffchdx
Q Oy, Q

59(4) From (1).
70(0.L) We can prove that p(z) is the unique function of =
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solution ) it turns out the uniqueness theorem of the generalized solution. Certainly, for the solubility of
the both of the generalized solutions may have the identity (u.,,®:,) = 0 with respect to all ® € M,
where, just now proposed above of the investigation for the scalar product (4) deduce that u = 0.

We can prove that it turns out the uniqueness theorem of the generalized solution and the nonlinear
problem (1)-(3), if the small domain Q or if the small f. We put that in the case of the bounded domain
§2 for the generalized solution u, the identity (7) have naturally for an arbitrary element ® from H, only
if f € La(€2) ( or, even if f define the linear functional in H ). This deduce from (5) and its, that M is
dense in H.

‘We turn now into the proof of the existence theorem, moreover at first investigate the linear case.

9 2. Linealized problem
It is defined as the function from H, satisfying the identities :

Au—gradp=f, divu=0, ulg=0. (8)
This defines such functions from H, satisfying the identity
(1.1, @JH = _(fa q)) (9)

for any ® from M. It turns out

Theorem 1. The problem (8) has u and moreover unique generalized solution from H for any f,
being the linear functional in H. [

The value (f, ®) in (9) teach such as limit the linear function f to the element ®. The proof of the
Theorem 1 directly deduce from Riesz’s theorem™ on this, that an arbitrary linear functional, including
(f,®), can become in the way of unique, proposed in the form of the scalar product of the continuous
element u also become the unknown solution. ( We see that for this identity (9) have naturally for all ®
from H and not only from M ).

We put some sufficiently conditions, as f becomes the linear functional in H.
Result 1. The problem (8) has the unique, generalized solution from H,

1) if © : the bounded domain, f of the summed in 2 to the power of g, and the functional (f, ®) in
(9) calculate as [, f®dz ;

2) if fi(z) = 4= (4,k=1,2,3), fix € L2(R2), and the functional (f, ®) is estimated as [, fix®;,, dz

3) if for f, the smooth integral

3
f; D WAC

k=1
for such a point y and (f, ®) = [, f®dz.

In the lines 2) and 3), 2 can become the unbounded domain. O

The validity for all these satisfied easily prove owing to the Cauchy’s inequality by reason of the
inequality (5) and (6). We see that the problem (8) in the bounded domain from a viewpoint of the
theory of the extended selfadjoint operator investigated in the paper by S.G.Krein [6]. It turns out here
the method of the proof ( he knows the own origin from Friedrichs ) considerably simple. ( cf. moreover

[71)-

9 3. Nonlinear problem ( bounded domain )

We put €2 : the bounded domain, and f is the linear functional in H. The integral : fsz fPdz, fixing
in the right hand side of (7), will exist as the problem of the linear functional f by ® and will deal this
as (f,®). Owing to Riesz’s theorem (f, ®) = (F,®)y, where F € H, and so on, integral [, upu®,, dz
define the linear functional in H on @ with respect to an arbitrary element u from H. This deduce from

71(JJ) This is called the Riesz’s representation theorem.
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(5), just
|/ukul1>xkd3:|

Q
3 1 3 1 3 1

< \/5(/“;:111.}"42:)4(fngufdm)q(/gmgl@fﬂdx)z
2 3

= ([, 3 uba) el

< V3C|lull%l®lla-

Owing to the Riesz’s theorem exists such element Au in H, such that
/ wpud,, de = (Au, @) 4. (10)
Q

As a result of the identity (7), we can rewrite in the form of
(u— Au+F,®)y =0. (11)

Therefore the problem define the generalized solutions simplified for the solution of the nonlinear equation

u—Au+F=0 (12)

in the space H. We show that the operator A completely continuous in H, i.e., that it is continuous and
it transforms compactly an arbitrary bounded set in H. Because of H : Hilbert space, then sufficiently,
it shows that A arbitrarily, weakly converges in H, the sequence {v™} converges strongly. Therefore, v™™
may converge weakly in H to v. Owing to the embedding theorem ( cf. [4] ) v"* may converge strongly
on v in L4(S2).

(Av™ — AV™ By = f(’u};‘v’" — vt ) B, dz = / (vp'v™ —vEv")®,, d +f v (v —v")®,, d.

9] [7) Q
Applying for the estimate of the right hand side, the Holder’s inequality and the inequality in (5), as well
as in the above, we see

(Av™ — AV, 8)y < C|Iv" = V™|l Ly (IV"* ]| + V™ | ) | @]l 1,
where, we assume ® = Av™ — Av™",
[Av™ — Av?|| < Cillv™ = v™[lLy@) = 0, 7m,m — o0.

Hence, we prove that A : completely continuous. Hence for the investigation of the solubility of the
equation (12), we can apply the Leray-Schauder’s method ( the Russian translated version of their paper
given in [8] ). Let’s contain in (12), such a substantial parameter A :

u-Mu+F=0. (12))

for A = 0, the transformation : v = u + F is each other unique transformation of H in H. Hence
the power in an arbitrary point v € H of this transformation, investigating at all H, equals to 1. In
particular, it equals to 1 also in v = 0. This means that the highest index of the solution of the equation
: u+ F = 0 equals to 1. For this, to be able to claim the constancy of this index for the solution of the
equation (12,) for all A € [0, 1], we must prove sufficiently that all the possible solutions of the equation
(12) does not go beyond the limit of a certain sphere of the space H. If it turns out this last one, then,
by reason of the Theorem 172 in our footnote™ on this paper [8] ( pp. 84-85 ), equation (12)) will at
least the unique solution with respect to all A € [0,1]. Like this, for the proof of the solubility of the
equation (12)) sufficiently investigate the a priori estimate in H for all the spaces of this solutions with
respect to A € [0, 1]. For this, we recall that (12,) turns out, putted in the form (7), is

(u, @)H - Afﬂukuq):kd:c = —(F, ‘P)H.

72(0.) We show this Theorem 1 in our appendix by the author of this paper.
(1)) Uspekhi Mat.Nauk 1(1946), no 3/4(13/14), 71-95. (Russian)
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here, in the capacity of the ®, we can select an arbitrary element € M, and by just it, and from H. We
put @ = u. This integral, standing with respect to A, disperse because

1 du? 1
2, AT = = —dr = ——= div u)u?dz = 0.
/s.z Rl 2 Jo ¥ 0zk 2 [1( )

and therefore
lull} = —(F,w)u < |F|l llullaz = I [ulla,
where |f] is the norm of the linear functional f. Hence, the desiring a priori estimate :
ulla < If], (13)
and from these and the existence theorem,

Theorem 2. The problem (1)-(3) in the bounded domain S has, at least, the unique generalized
solution from H for any linear functional £ in H, in particular, for all £, integrable to the power
of g in 2. O

9 4. Nonlinear problem ( unbounded domain )

We put € : the unbounded domain™ and f the linear functional in H(£2). We put the symbol §,, (n =
1,2,---) the sequence extending of the domain covering in the range of all the 2. We see easily that
if each from the vector v, belonging to H(f2,) , extends to all €2, containing this, equal to zero in the
exterior of H(f),), then it become belong to H(2). Therefore f can be estimated as the linear functional
in all € H(£2), moreover, for ® € H(2,),

I(£,@)| < If] || @]l ey = IE] 1@l e (2,

where [f| : the norm of the linear functional v in H. For each from the domain §,, of the problem (1)-(3)
have, at least, the unique solution u™ and for all these solutions, the valid estimate (13), just the estimate

lu™le <[f]. (13

Therefore, the total of the solutions {u™} weak compact in € H(f2). We show that all from its weak limit
of u become the generalized solution € H((2) of the problem (1)-(3). For this, sufficiently prove that u
become the following identity (7), just this identity :

i, 85— [R i, de=—€,8) ()

Y® € M ( however Y® ¢ H(S2)! ). We take an example such ® € M. It is bounded. Therefore, for it
and all u" with sufficiently distant at the value n become exactly identity (7). Moving for (7') to the
limit for the partial sequences ny, for all n,,, converge weakly to u, assure, using (5), that u satisfy (7)
with ®, took an example € M. QED.

Theorem 3. The problem (1)-(3) with zero satisfy in infinity, have, at least, the unique generalized
solution € H(Q) for the unbounded domain 2, if all £ define the linear functional in H(QY) ( the
enough conditions of this given in (2)-(3) and Result 1). O

1.2. heterogeneous boundary conditions. In this paragraph, we want to investigate generally the
problem which we sketch the system n of the flow of u, which, in infinity, is equal to the problematic,
accustomed vector u.. For this, in the capacity of the auxiliary problem, we study at first, the problems
of the Navier-Stokes system, in the bounded domain with the heterogeneous boundary conditions.

9 1. Flow in the bounded domain.
We shall find the generalized solutions of the system (1)-(2) in the bounded domain 2 with the boundary
S ( this, as the everywhere be able to consist of the separated surfaces : Sy + Sg + -+ + S, ) satisfying
the boundary equation :

uls = als. (14)

74(0.L) We mean that the domain can be extend up to the infinity.
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We assume that the vector a is by the boundary value of the vector a(z) = rot b(z), where b(z) € W2(Q2),
such that

3
b(z)| < t 5 < .
Ijlea‘.)z(l (z)| < const /x; igl bj,, dz < const

With no difficulty, we summarize for as the condition of the boundary with respect to also a|g that the
continuation of a|g with S zero in § possibly ( of course, that [(a,n)dS essentially equal zero ! )

The generalized solution of the problem (1),(2),(14) named vector function u satisfying the integral
identity :

fu,;k@xkdm-]uku@zkdz = —(f,®) (15)
§ Q

with respect to all ® € M and that v=u—a € H(0).
The assumptions on f are the same as the smooth, in the first order. For these conditions, it turns out

Theorem 4. The problem of (1),(2) and (14) have at least, the unique generalized solution for
all £, being by the liniar functional in H(Y). O

This theorem prove the same as by the method of the Theorem 2,3 in §1. The various papers of the
solutions of the problem comes just to the solution v of the equation :

v—Av+F =0, (16)

where, F : the given element of H, and Ay : completely continuous operator in H(2). The solution u
of the problem is connected with the solution of the equation (16) by the equation : u = v +a. For
the proof of the solubility of the equation (16) is proved with no difficulty, that the norm in H all the
possible solution of the equation :

v—-AMv+F =0, an)

with respect to A € [0, 1], bounded in total such a constant. We show this. Let’s v be such a solution of
the equation (17). Then v + a satisfy the identity (15), if in it with respect to the nonlinear term define
the factor A, i.e.,

f{v +8)s, Ba, d — ,\fs(m, +aR)(v +a)®,, dz = —(f, B). (18)

‘We substitute in this identity for ® = u and use such that

1 ov?
[SL[U;: -+ ak)vv,,cd..:, = E A(Uk =+ Gk)b-ad.ﬂ =0,

f BV < [l V]| a1,
2

I(E, ) < IE] lIvllars

where |f| is the norm of the linear functional, the given f in H

| [ wavade <€y [ 5 atdelvila < Callalivia, (19)
2 Qs

where the constant Cq depends on the volume of 2. Therefore from (18) we deduce the inequality
Vil < /\| f“ vka"udx‘ +llallallvliz +ACallall Ivila + I£] vz (20)

We assume that ||v||yz with respect to all A € [0,1] unbounded in total. Then it exists such a sequence
as A = A1, Ag,- -+ — Ag and the corresponding its solutions v = v(z, A,,) of the equality (17), for all the
value

No = [[v*|a
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converges to the limit with respect to n — co. For all v, the valid inequality (20) with the same
constant Cq. Divide the both hand sides of the inequality (20) by N2 and put this as the inequality for
the function w,, = L—ﬂ

An. Cﬂ

1< | [ wpaw?,de| + - lalls ol + -l (21)

The set of the function {w™} continuously, bounded inH: ||w [z = 1, and therefore, it strong, compact
in L4(R2). Without the boundedness of the coincidence can assume that all the sequence w™ converge
on an arbitrary function w, strongly in L4(2) and weakly in H. The limit function w € H. With no
difficulty, we verify that the integral [, wfaw}, dx converges on [, wgaw,, dz. (21) converges n — oco.
As a result, it turns out

1< ,\n[ fg 2 wiaws, dol. (22)

The functions : u,v and w found for the fixed vector a(z) € Q. However, u(z) depends on only the
role of a(x) on S ( cf. the definition of the generalized solution of the problem (1),(2) and (14). ) If
we, instead of the original : a(x) = rot b(z), get arbitrarily from the vector a(z,d) = rot [b(z)¢(z, §)],
where £(z, ) is such a < cutting-off > function, that is twice continuously differentiable, and equals to
1 in the neighborhood of the boundary S and zero at the point of ), separating from S at the distance
of the larger 4(d > 0), then the solution u(z) of the problem (1),(2) and (14), found according with such
a(xz), becomes the solution of this problem and for all such a(x, ). We construct the sequence of the <
cutting-off > functions : £(z,0) with § — 0 such that

¢(z,d) ¢

&) < ___l g<

@)l <e, |Z5| <3
with the unique and the same constant c for all § € (0,4d,). The vector v* = v(x, A,) = u(z, A,) —a(z, d)
depends on §, however, the limit value for w™ = ﬂ of the vector w is independent of § same as INV,, — oo

with respect to n — oo, hence % — 0 with respect. to n — co. Hence the inequality (22), validly for

w with all the vector a in the form of rot [b(z){(z,d)]. We see easily that
ja(z,0) < (5 + X Ibea(a)l), (23)
k
Hence from (22), it turns out

15)\0‘/ wszka(m,é)dm|
Qs

Xoc1 /ﬂ (% - Z |b, (J:)|)dx

IA

WEWa,

IA

Here €25 : the boundary zone of the w1dth d, and ¢ : the absolute constant defined an arbitrary domain
Q. For w € H(S2), then for this equals to t.he inequality :

( /“6 w‘Z(;.:)dx)% < csg( La ;wikM)%. (25)

This inequality deduce easily with using the Cauchy’s inequality from the expression
* ow
w(e) = wipllyes + [ Gl
v
if we consider that w|g = 0. Owing to (25) and (5) from (24) we deduce
1< Aoy f w Ldz.
25 I

However this inequality, such as fn, T w? _dx converges on zero with respect to § — 0. The gained

contradiction proves the boundedness of ||v(z, A)|| g for A € [0,1]. On this account, Theorem 4 is proved.
O

)«0(2 /Zwﬁdﬂ: _/g Zw“df —|—,\0c2 f Zwidz fzwmkdx ]zb4 da:) X
25

(24)

e
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At the symposium of the differential equations held in November 1957, in Kharkov, a theorem was
repoted by L.I.Vorovié, ( proved by him with V.I.Judovié ), which was on the existence of the generalized
solution of the problem (1),(2),(14) with respect to the condition (a,n)|s = 0. Under the performance of
this condition, it may be possible to give the direct a priori estimate of |[v"|| through the given problem™.
According to what 1.I.Vorovié teached me, their study of the differential properties of this problem hasn’t
progressed very far.

9 2. Flow in the unbounded domain.

We put the system n of the fixed, bounded such that we sketch the flow flax u(z) with the given value
of this by the limit u., = const in infty. We put by a(z) such that is solenoidal,”® locally quadratically
integrable vector with the quadratically integrable in €2, generalized, arbitrary derivatives, equal to zero
on S and u. with respect to the larger |z| ( || > Rg ). The generalized solution of the problem sketched,
we call the function u, satisfying the integral identity ™

fuqu)udx—fuku@udx= —(f,®) (26)
Q Q

with respect to all ® € M and that v = u — a(z) € H(2). We remember that the condition of the tool
: u—a(z) in H produce such that

/ (u(z) — a(z))?
Q

3
dx < const, f z(“zk — a,,)2dz < const. (27)
|z — vl ey

The inequality (27) also assure that u(z) in the defined sence, converges to u., with respect to |z| — co.

On f, we make these assumptions as well as in § 4 in § 1. The boundedness on S comes merely to the
possibility of the construction of the <« cut-off > functions &(z, §), i.e., of the functions, equal 1 in the
neighborhood of S, zero in the point of £2, separating at S with the distance of the larger than §, and
obeying the inequality |§| < ¢, ]}%fj < 4. ™ To these functions, except for the obvious coincidence, we
can get the twice continuously differentiable ( because we can always manage to get by the complementary,
averaged value |€] ). We put the vector b = (aaws, a3y, ayzs), where o = us,. Undoubtedly, that the
vector e(z,8) = rot (b(z)&(z,d)) coincides with u., in the neighborhood of S and equal zero in the
exterior of the adjoining zone {25. In the capacity of the functions a(«) in the definition of the generalized
solution, can get any from the functions a(z,d) = us — e(z,d). We use this below.

We have

Theorem 5. The problem of the sketching the system n of the solid, the flow equal in infinity :
U, = const , have always, at least, the unique, generalized solulion with respect to all £, satisfying
the linear functional in H, in particular, with respect to £ =0. O

The construction of the generalized solution may have the propagation such as in § 4 in §1. We construct
just the sequence of the domain 2, converge on ). For each from §2, select the solutions u™ of the
system (1),(2) satisfying the boundary conditions :

“nis =0, unlr,. - a("‘")lr,,‘

(8 +T'y, : the domain €2, ), and we show that the norms in H(2,) of all v = u — a uniformly ( for n )
bounded

V"l a2,y < C. (28)

The estimate (28) can be selected from v™ of the sequence, converge on an arbitrary function u = v+ a.
This equation is performed as well as in 9 4 § 1, and therefore we would not repeat it here.

Hence, we remain to prove the validity of (28). This makes, in general, as well as in the above part
for the proof of the uniform, for A, boundedness of |[v(z, A)||- We assume just the induction, that
Ny = |[v™*||a(@,) — oo with respect to n — co. We put it and bellow in the capacity of a of the function
a(xz,d) = us — e(z, §). We substitute in (18) v = v, ® = v*, XA =1, and we estimate in the right hand

75(0.L) This fact owed already to the paper [3] by Leray.
76(14) The divergence of u is zero.

T""(J,l) This equation is the same as (15).

78(0.L) We assume, for example, a cylinder as S.
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side of the gotten equation as well as in the above, considering only that because a(z,§) equals to the
constant vector U, in the exterior of the adjoining, partial zone €2, then, instead of (19), we can get

‘/ akav:da:’ — |f akaxkv"dx‘ = |f akamkv“dw| gclﬂa”ﬁmﬁ)||v“[|H(g“).
Qa Qn Q5

with the same as the constant ¢; for all n and ¢ € (0,1). Under this, instead of (20) we get
1" Brcony <| [ vkavz,de] + Bl v icony + cillallyagliv*llcan + 16 v (29)

We repeat each other belong to v™(x) by zero in the exterior of 2, in all £ and introduce the functions :

vz
W) = N—” where Na = [v"{la,)-
The functions w™(z) can be assumed as the elements of H (), bounded in total in H(f2). For them, the
exact or the same as (29)

T b 1 €1 2 1
1< | [ wpewt,de] + g-lallney + 5Nl + -1
if we consider that

] vipavy, do = —/ vpe(x,d)vy dz.
mn 15

Judging moreover, sequentially as well as in the above, we reach the contradiction with our assumption,
that N,, — co with respect to n — co. Hence (28) is proved, and Theorem 5 is just also proved. [

2. The classical solution.

2.1. Preliminary comments. In this chapter, we intend the boundary S of the smooth ( having an
arbitrary twice derivatives, satisfying the Holder’s condition ), and by the exponential. With respect to
the execution of this condition each from the generalized solution u(z), an arbitrary existence proved
in the chapter I, give the classical solution, more precisely speaking, twice continuously differentiable in
the interior of §) functions, and once continuously differentiable in € functions. satisfying the equation
(1),(2) and uniformly bounded. In §2, we give the estimates of the brief proof of this some proof fact. In
just the following paragraph independent of the chapter I, the existence of the classical solution of the
hydrodynamic problems.

To put it briefly, we limited in this chapter to study the problem only with respect to homogeneous
boundary condition and the function f(z). Considering the inhomogeneity of the boundary condition is
executed as the same as in §2 in this chapter I and it turns out fundamentally to just its result that and
in the case of the homogeneous condition. The fundamental results of this chapter belong, in fact, to
Leray [3)].

Oseen [9] had constructed the fundamental singular solution for the linealized system (8). His expression
is as follows : ™

i Yi — Iy
ar |y —z|®’

(i — z:)(y; — z5)
|z —y|?

11 &
Tig(e,) = g2 [ | Py =

and have the following properties® :

2 Hp. 1 Ll
b 22Ty — 30 = 88z —y) (5,5=1,2,3), -
BT,- i

"C'Ty;' s 0) T '?é Y,

where §(z — y) is the three-dimensional J-functions, and 5{ is the Kronecker symbol. Using this solution,
Odqyvist proposed in the paper [2], the potential of volume and the potentials of the double- and triple-
layered and proved that they have the properties, analogous to the properties of the ordinary electro-static
potentials, constructed by using E'Ilfyf This could use it for the solution of the boundary problem for the

linear system (8) and, in particular, use the Green function Gy;(z,y), gi(z,y) ( more precisely speaking,

7(44) cf. Our appendix by the author of this paper and §2. Hydrodynamische Potential. (2.01) p.334, [2].
SD(JJJ cf. §1. Difinitionen. Bezeichungen. Greensche Formeln. Stokesschen Gleichungen (1.02) p.332, [2].
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the Green tensor ). The functions Gy;(z,y), gi(z,y) satisfy the system (30) and moreover the boundary
condition

Gij(x,y) = 0 with respect to z € Q and y € S.

Solutions of the problem (8) owing to it we put the style

ui(z) = — /; : Gij(z,y)fi(y)dy (1=1,2,3), p(z)= f gi(z, ) fi(y)dy. (31)

In the same paper, Odqvist studied the differentiable properties of the potentials and the solutions of
the problem (8) in the boundary of the domain 2. In particular, he proved the following estimate of the
Green function in the closed, bounded domain © ;3!

9Gi;(z,y) c 3
nJ(I y)) |J:-'y'| | | (;-’3& ‘ = Te— yig T,y € SZ, (32)
9Gij(zy) AG5(E,9) r.:|:|: | l]n]z z“
dxy EE = JE]

moreover the last estimate is for any x, & € (Q, separating from y with the distance of the non-smaller
than R.

We put that the method of the proof of the estimate (32), except for an arbitrary change, is adaptive
also with the case of the Green function for Laplace operator. We shall not prove the referred-here proofs
on the linealized problem (1) and (2). The principle direction of the problem is completely clear and the
eventual proposition of it was made very sophisticatedly in the paper [2].

2.2. The proof of the classical, generalized solutions. In this paragraph, we shall sketch the fun-
damental method of the proof on it, that each generalized solution, gotten in the chapter I, is by the
classical if for f and S under the condition, designated in the above paragraph. With respect to this,
we limit the interior problem and the homogeneous boundary conditions. For another problem, this is
adaptive analogously.

Thus, we may have the generalized solution u(z) of the problem (1),(2) and (3), i.e., u(z) belongs to
H, and ¥® € M ( and even for it *® € H ) satisfy the equation (7) or that

fuzktil,,kd:;:= —f ukuﬁ‘bdw—/ f®dz. (33)
Q Q

We put in (33) as ® the < cutting-off > Green function : G7}(y,x), considering y fixed in the interior
point of 2. The < cut-off > of G;;(x,y) is able to propose varlously, for example, such as

Gy, =) = Ti7 (v, 2) + 9i5(y, ),
where g;;(y,z) is a smooth part of Green function and®?

Ti.‘f(y: 3"') for —m< T;J(y, ) <m,
TG (y,z) = {m for Ti(y,@) >m,
—m _f(i‘-‘“' zJ(y: ) = —m,

With respect to the fixed y and sufficiently large mn, of the vectror (G}, G%, G%) (i =1,2,3) belong to
H. Substitute in (33) instead of ®;(z) the function G} and afterward move fo the hmlt. with m — oco.
Because of the strict estimate (32) for G; ( and i.e. for gij ), and the inequality (13) for u, then with
no difficulty, we verify that in the both terms of the right hand side of (33), we may move to the limit
with m under the symbol of [, move the limit to y, it turns out for example, in the norm of the subspace
Ls (€¥'), here 2’ is an arbitrary, interior sub domain of the domain (2. We also transform the left hand
side of (33) using the partial integral to the form of

~ PRCLLAEES / RC

SI(JJ.) cf. §5. Der Greensche Tensor und Seine Eigenschaften. pp.357-366, (2]
S2w) The original top statement in the following conditions, Tj;(y,z) for —m < |Ty;(y,«)| < m, but it seems to be
incorrect.

ﬁds js; u;(z)Agi(y, v)dx,
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where €2;;(y) : the domain, in any T]' = Tj;, S;;(y) : its boundary, and put using (30), move the limit
with m — oo in the norm of Lg(ﬂ’) As a result of this, we put as the conclusion, that for almost all
y € (2, for u(z), the valid equation follows :

u,-(y) S [E Gij (yi I)ukuj,,k da — .[S}Gij [y'z)fj(z)dm (3 =1, 21 3) (34}

From this relations on u;(y), the estimates (32) on G;; and inequality (13), we may conclude that u;(y)
are twice continuously differentiable in the interior of {2, continunously differentiable up to S and satisfy
all the conditions of (1),(2) and (3). Or such a thing that the functions [, Gi;(y, z)f;(z)dz have the just
now mentioned properties of the differentiabilities are besed on the reason of the estimate (32) and the
Holder’s function f;, as well as this operates in the Newton’s potential theorem. By them, for the proof
of that just the functions :

ﬂa(y)=Lsz(y,$)ﬂk3j=,‘d£,

have the properties, it is sufficient to show that u(y) and u,, are continuous in 2 and satisfy the Holder’s
conditions in the interior of {0. From the inequalities (32),(13) and (6) deduce the boundedness of |v;(y)|
in €. In this case also, ugu,, is integrable in (2, by the order 2. From this and the estimate (32), with
no difficulty, we convict that v;(y) satisfy the Hélder’s conditions on . The differentiability for v;(y) at
Yk also again using (32) and only that the defined properties for u, consistently, and convict that wu,, is
integrable on (2 at the order 6, ( cf. [4] ) and afterward and in it convict that they satisfy the Hélder’s
condition.

This is the generalized method of the proof of the claim, stated at the beginning of the paragraph.
We ought to propose the local investigation of the differentiable properties of the generalized solutions.
For the unbounded domain, this claim establishes in principle as well as by the reference of the integral
expression of the type of (34), instead of €2, only select such a bounded partial part €),, of the domain
, and i.e., instead of, G;;, : the Green's tensor for the domain 2,,.

2.3. The nonlinear problem. ( The bounded domain, homogeneous boundary conditions. )
We assume in the system (1), parameter A for the nonlinear terms and study it such linear, assuming the
right hand side of (1) as the free term. Then, the formula (31) is

w(e) = =& [ Gulopuus, dy ~ [ Gole.n) iy (35)
The differential of this equation with respect to x; become moreover, the following relation :
Qui(x) IG;;(x,y) 0Gy;
o == [ e, dy ~ [ T wiy (36)

To all this system, we put as the form of one equation
v=ADv+p (37)
and study this in Banach space ('((2), each belonging to arbitrary one are continuous in ) functions. The
norm in C(§2) is defined as
' lole = __, max  [|vi(z)]

€0, i=1,2,:
Owing to the estlma.te (32) of the ordinary method prove that if f; are the continuous in , then the
components [, —@1- Jidy are continuous and even satisfy the Holder’s condition with an arbitrary constant

a( for example, with a < ;). We show this, for example, for f“ ‘;,(: 9Gy(z.y) [dy.®?

! E| Q (aG;ﬂ(::‘y) ()G;x:: y) fj(y)dy‘ = ‘.[HK |+|/l K, ﬂﬂ

where K, is the sphere of |55£ — y| < p.

1 1
,] ‘Sc maXIfeI/ ( 5+ 1= g)dySclp,
ankK, K, Mz —y? |z -yl

83(4}) Correcting the first term of the right hand side of the following equation in the original of [11] ; ‘fnx, I, we put

it as }fsmx,, | .
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_ = _ =2
\f |th mﬂﬂh il
Q-ONK, P

I < es|lz —&|%|In |z — 2|

We put p = |z — &, then

Hence, we see that the operator D is completely continuous operator in C(f2).

We use now the Schauder-Leray’s parameter extension method® for the proof of the solubility of the
equation (37) in C(2). With respect to A = 0, the transformation : Bv = v — ¢, investigated in all H,
has the order 1 at all the points. Thus for the solubility of (37) with respect to A = 1, sufficiently, we
investigate the a priori estimate for the solution of the equation (37), i.e., prove that for all the perturbed
solutions of the equation (37) with respect to all A € [0, 1] strict inequality ||[v||¢ < ¢4 with not only the
unique but also the constant ¢4.

Let » be an arbitrary solution of the equation (37). Maybe proved that this last one are 9 components
of derivatives up to z; at the first 3 and i.e., the equation (37) can put in the form (35),(36) with
v = u;, (i = 1,2,3). Functions v;(z) and f; of the continuous, i.e., with just now proved ; and
vi(i = 1,2,---,12) it will be satisfied the Hélder’s condition up to x. Therefore, the multiplication
ug(y)uq,, of the potential of volume in (35) and (36) satisfy the Holder’s condition. Also to this we
estimate the possibility and for f;. Owing to this, we can claim that v; = u; (i = 1,2, 3) have continuously
twice derivatives with respect to ;. in the interior of I'. (This is able to be proved by the familiar theorem
on the Newton’s potential method.) As a result of (31), they will satisfy the system (1) with the parameter
A for the nonlinear terms. Increasing its scalar by u and integrate afterward with respect to 2, we assume
that for u the identical equation :

(l.l, u)H = _'(f! ll). (38)
Hence, as is stated above, follows the estimate

S| ud dz<es (39)
ix e “k

with respect to all A. From the formula (35) for u; and the inequality (6),(32) and (39), we deduce
directly :

max o x)|<cf2| st by +co < me_ 7y Z/ 2 dy+co <y (40)

k=1

Owing to the estimate of max |—i[ we get the equation (36). From it, and also from (32) and (40) follows

f)ua(z)
8-!.'{ / |$_ |2 Zlﬂuu,_ |d’y+(7 (41)

Multiplying both hand sides of this inequality with |='=_—ZF integrate totally with respect to x in the domain
2 and summing up totally with respect to ¢ and [, then as a result, we get

1 Ju; 1
E dr <9 d < d 2
mfgsw—zw o ‘JZI@J Lix—zF‘lz—JIz o “"’]ay—zlz'“’“'”“‘“‘”

With respect to this, we used the familiar formula construction of the integral by the functional form .
We estimate now the right hand side of (42) with the Cauchy’s inequality and use the inequality (39).
This assure us such that the right hand side of (42), and i.e., of (41) is not superior than an arbitrary
constant ¢;g such that

81'.&,1(.’.5)

222 < g0

4,1 | duy ‘ =410 (43)

All the constants starting with ¢s, are independent of A and determine only by the size of the domain
), max |f;| and the constant with from the inequality (32). Inequality (40) and (43) prove that all
the positive solutions v of the equation (37) are not over the sphere of the space C(f2) with a radius of
p = max(cg, ¢10), and therefore, on the equation (37), we are applicable of the Schauder-Leray’s theorem,

84(11) This method is so-called the Leray-Schauder’s fixed point theorem. cf. Our appendix by the author of this paper.
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which assures at least, the unique solution for all the values of the parameter A, in the number and with
respect to A = 1. QED.

Theorem 6. The problem(1)-(3) have, at least, the unique solution u;(x), continuous together
with derivatives in the first order in Q and having continuously differentiable in the second order
in the interior of (). The pressure p(x) has a continuous in ) and continuously differentiable in
the interior of (). With respect to fi(x), we seem such that they satisfy the Holder’s condition with
an arbitrary positive constant. [

We can prove that in the conditions of Theorem 6, the second derivatives u; satisfy the Holder’s
condition. We can also see the next improvement of the properties of the differentiabilities on the
solution with the improvement of the differentiabilities properties of f; and S.

2.4. The nonlinear problem. ( The unbounded domain with the homogeneous boundary
condition. ) Now we take () - unbounded domain. In brief, fi(z) equals to zero for the large |z|.
We suppose to take the paragraph 4 in §1, of the chapter I. We take the continuity extending into 2
of the domain §2,(n = 1,2,...) and corresponding them to the classical solution u"(x), satisfying the
null boundary conditions. We prove that from them we can choose the subspace, uniformly approaching
together with the own derivatives to the solution of the system (1),(2) in any bounded sub domain €}’ of
the domain 2. We fix Q. We mean G;(«,y) as the Green’s function, corresponding to the domain £'.
We take S’-mean the boundary of €', belonging S, and I'- remained part. For all u™ with the sufficiently
large number n, strict equation

IG, (x,
W@ =~ [ Gy, d- [ ,#uﬂywﬂ— [ Guensww. @

This is proved, by the accustomed method. The unique, excellent equation (44) deduced from (35), shows
the existence of the integral on I'', which does not disppear in this case, because on I, the functions u}
are not necessary to change to zero. For uf(x) with respect to all n the exact estimate (39) with not
only the unique but also the constant ¢5. Certainly, the integral ( f, u™), considering the estimation of the
finiteness of f by us, are extended in fact, into a certain bounded domain, which we name the domain

) to make it clear. Hence, using (5) and the Cauchy inequality it turns out

|(f,u™)] < \/];h fzckr\/fﬂl(u“)zdw < m‘//” Z((u}‘)z,‘ﬁdfﬂ

n ik

where, the constant ¢y; is general for all u™. Substituted this inequality into (38), we see on the validity
(39), where the constant : ¢; = ¢f,. In addition, as the result of (6), it turns out a general and the
estimate :

> (v)

Q. |z— yl2
Fixing sub domain " of the domain 2, which is separated from the boundary I/, with a certain positive
distance 6. We prove that for # € {0, functions |u?(z)| are uniformly bounded. Certainly, the uniform
boundedness of the module of the first term in the right hand side of (44) is deduced from (39) and (45),

(ref (40)). The boundedness of the third term is clear. The boundness of the second term is deduced from
G (x,y

B | < 57, and the integral [, [u}|dS, is
estimated by fm(u;l’ S 5 u}‘f " Jdy. (The latter is the result of the Sobolev’s embedding theorem; this
can also show and directly, using the formula of the function with the integration from its derivatives to
the direction of the integral method.)

Thus, the proposal of (44) together with the estimate (39) and (45) are able to claim uniform bound-
edness of |ul(z)| for € " C Q. Let it be : Q" C Q" C " in addition, their distance between the
boundaries : I I, T, are not smaller than 4 each other. We put for |u’(z)| of the formula such as
(44), for the domain Q" with GY; defferentiate totally this with respect to ; and consider that |ul(x)|

is already estlmated in the ", for —1 equals to the estimate of (32) and u} (1;) € La(2”). In its

S I % A (45)

it, that by =z € " and y € T, it turns out the inequality

function of fn** dn uku dy it turns out belonging to Lg(€2") and two different terms become uniform
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boundedness for = € Q. Then, for uf, , we can claim of uniform boundedness in Lg({2”). After this,
we put the formula (44) for u} in the domain Q" with the function G7; and differentiate totally this
with respect to ;. From this, the last relation is already proved that in Q" function up, s the uniform
boundedness together with our own Hélder’s constant.

Thus, in some steps, we are certain of uniform boundedness on u?, u?:; and our Hélder’s constant in an
arbitrary bounded sub domain " of the domain 2. From this, we may choose from u™ the subsequence
approaching any functions arbitrarily together with any first order in the bounded sub domain Q" of
the domain €. Get for u]' of the formula (44) for Q" and G7j’ and changing in it into boundary, we are
certain that for u; equal to very this formula. From this, we have proved now by the famous method on
it that u satisfies equation (1), (2) and conditions (3). To them it remains to solve moreover , in this
point that u gets null conditions in infinity.

We see that, by analogy with the above, we can prove the uniform boundedness in an arbitrary strict
null bounded sub domain of the domain €2 of an arbitrary with u™ of the second order, and of the Hélder’s
constant for them. This guarantees the capability of an arbitrary convergence of u* together with an
arbitrary, all orders up to 2.

2.5. The behavior of the founded classical solutions with respect to |z| — co. We show that
the classical solution u(z), founded in the above paragraph, become to dissipate to zero with respect to
|| — oo, if the boundary S is allocated completely in the bounded part of the space z. For this, we
introduce the study, except for the fundamental singular solutions T3;, P; of the linearized Navier-Stokes
system :

L 8 (yi— )y — =) 1 g —a

Ty; =i [ i~ LAY — % ] Pilin i) == o BT

:J(Ivy) SW[I:L'_M + Ix_yr3 ? (w y) 47 Iy—wi3
Already the singular solutions : Tj; and P; of this system is defined the following equations :

5 yi—

(yi — z:)(y; — ;) 5
dr |y —af®

T! !
R3

N 2_ o2
i@y R) = o35 + BR? —2r%) -

] ) }:’i’(:‘;a y, R) =
The singular solutions :
T:_;(J’:y: R) = T,;j(I, y) - T:j(:sry| R)r P;;(:'B: Y, R) = -Pi(':c: y) - P;(:I;, Y, R)

have the following properties : in the domain §2g(z), included in the interior of the sphere Sg(z) in a
radius R with the center of the point z, follows the equation :

Zk %T;.;($= Y, R) o aﬁ’é:;,_u,m = _555(:5 2 y) (i:j =1,2, 3)!
P A » i (46)

ol =0, Ti(z,y,R)lyesa =0.

We put R an arbitrary value such that S exists in the interior of Sp. This is from (46) for the founded
earlier classical solution u(z) and p(zx) of the exterior problem by the ordinary method, follows the given
expression :

ui(z) (47)
s [ Tl (y)us,, dy — / TY f5()dy
Qr(z) Qr(x)

I

1 aﬂ:ﬂ' - . aTﬁ 1ok
+ [’T,J {3{;& pﬁk] cos(nyx)dS A uj [ ux P; Jj] cos(nyg )dS.

We extend R to co in this equation and then it turns out that in infinity exists the following expression
for ui(x) :

Ou; :
ui(z) = - / Tjuk(y)us,, dy — j T f()dy + ] Tis | 5> — o} cos(nyn)ds. (48)
Q Q 5 Yk
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Certainly, we simply see that with respect to R — oo, it turns out validly as following ( cf. (39),(6) and
(32) ).%°

/ T{;u,‘c(y)ujyk dy — f T"J'ukujykdya / T”fj dy — / ﬂ}f;(-f)dy:
nR(" 0 QR(,)
Ou; j Au; :
i ] 7 v Ll R '
[T‘J[ay Pék] cos(nyy )dS —’]Sﬂj[ay—-—-k pék] cos(nyx)dS,

[ ths@dy—o.
Rz

‘We see that with respect to R — oo

1

oT!
ip(z) = T unu; d+f uj|—=—2 — P5%| cos ds — 0.
@)= [ Tyt [ o[ = P costunn)
Certainly®6

i@l <aalg [ S sl by + g5 [ S hulas]
et

Qrie) 5k

We multiply the both hand sides of this inequality by —*= and integrating totally in the range of R; > 0
up to oo, and put u = 0 in the interior of S and we put thls integrated result in the following form :

1[°°1 < JdR (R 2 “ dR
— —\|ir(x dRSf —f f w1 rdrdw—l—f -—-f |u;|dS.
o ), FiRE@WRS | 5 | le:l%ﬂ [ o Z i

After some computations, exchanging the order to be integrated in the first term of the right hand side,
, we see in the following inequality :

= f Lin(e)ldr

< / TZ/ [ugu ]drdw—}-[m r Z[ |upuw Idwdr—i—f z Iuji
= kWiy e kU

Ry * Jjwl=1 Tk o I g Jlwl=1 W Ry sg T

fz |u’°u}y,¢ / Z |'”'_?|
e | —J| Q—Qg, (z) |-"-”* yla
1 V3Y u?
< 2\/5/ Zu?ﬂk dy + \/f —dy ] A—"-d'y < const.
Q% Q 2] Q d

~QR, (=) |z —y|t g, (x) |z —y[?

Thus, we have proved that f: +lir(z)|dR converge, i.e. exists such sequence as Ry — oo, for all
Jry () — 0. For this sequence, Ry turns to a limit value in (47) and get (48). From the expression (48),
with no difficulty already proved, that u;(z) — 0 with respect to |z| — oo. Certainly the second and
third terms in it converge with respect to |x| — oo, to zero, for Ti-f The very first term is just divided
into the two terms.

[T{jﬂkﬂjud? =/ T.-,-ukujudy+f T; uku,vkdy
Q Q, a-9,

85{1}) In the original, T.-_,uk(y)u_.,-n dy — f(} Tijukuj,, dy, Ti; fi(z)dy — fﬂ T;; fi(x)dy, but we correct these terms,
because these are no terms in (47).

86(})) In the original, there is no range on the integration. We correct the range from [37, & [k, ldy to
f“mx) ik [ug|luj,, [dy, by considering of the rested terms from (47).
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where (2, is the common sphere of |y| < p with 2. To the second term of the above equation, from this
integration of the fundamental inequalities (39),(32) and (6), we estimate thus :

| f Tijukus,, dy|
Q-9,

||
< ¢ / lwjy, Idy
a-0, Zk: |z — g™

2
Uk / 2
e E —= E us d
lvj:; — |z -yl yv o Ja-a, b
cz\//‘; Z u‘?"" dy\//r; Q Z uﬁ”“ e
ik T

P gk

IA

A

Hence, it seems that, choosing p, sufficiently large, we can deduce the right hand side an smaller arbi-
trary € being independent of this, where z exists. After this, fixed p, we put |z| such a number that
| fn,, Tijuguj,, dy| stayed smaller than e.

Thus, we assure that any classical solution u(z) from the best case by us, uniformly converge to zero
with respect to |z| — oo.
recieved 1958.4.1
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8. Conclusions

We show merely the early studies of the solutions of the N.S equations during 1933-59, in particular,
the followings are the first versions in the analytic history of the NS equations :
e Leray in 1933/34 and Hopf in 1950/51 discussed the weak solutions
e Kiselev in 1955/56 /57 and Ladyzhenskaya in 1957/59 discussed the generalized / strong solution
e Prodiin 1959 and J.L.Lions in 1959 discussed the uniqueness of the solution in L? function space
in the three dimensions

We show the two translated versions into English : Hopf [4] and Ladyzhenskaya [11], because in these
papers, there are historically first full-scale discussions of the solutions of the NS equations such that :

e Hopf [4] asserts the existence of a weak solution like Leray, without uniqueness
e Ladyzhenskaya [11] discusses a generalized / strong solution like Kiselev in the first time.

87(]}) Sobolev says in the preface to the third edition : In this edition misprints and errors are corrected, certain
definitions and formulations of the theorems are refined, clarifications are added, corrections are made in a number of
proofs, bibliographical remarks and comments are given, and editorial changes are introduced.
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Regrettably, we omitted the citing of Leray’s papers [12, 13, 14] partly because of lack of space, and
partly because of availability of an English version by Dr. Bob Terrell ( cf. [14]. )

We can see that there are another full-scale discussions on the mathematical and fluid dynamics or
functional analysis, in Lelay, Hopf, Kiselev, Ladyzhenskaya, Prodi, J.L.Lions, etc., just during 1933-59,
and many great studies follow after that such as [6]. We think that the solving the problems of fluid
dynamics have made to find a clue to many mathematical studies and its developments.
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