
首都大学東京 博士(理 学)学 位論文(課 程博士)

論 文 名1伽07∫oα14εvε1(脚 ε刀∫(～プc1α∬∫cα1卿紘 加 α吻1c3

流 体 数 理 の 古 典 理 論(英 文)

著 者 増 田 茂

審査担当者

主 査

委 員

委 員

委 員

岡 濁 正 己

神 島 芸宕

払 野 健 爾

上記の論文を合格 と判定する

平成23年3.月 之∫ 日

首都大学東京大学院理学研究科教授会

研究科長 商 聯 睾



 DISSERTATION  FOR  A DEGREE OF 

     DOCTOR OF SCIENCE 

TOKYO METROPOLITAN UNIVERSITY

TITLE Historical development of classical fluid dynamics

AUTHOR : Shigeru MASUDA

EXAMINED BY

Examiner in chief

Examiner

Examiner

Examiner

       okad( 

P

QUALIFIED BY THE GRADUATE SCHOOL OF SCIENCE 
      TOKYO METROPOLITAN UNIVERSITY

Dean

Date \ A P,v (-IA L ) ) I 1



Doctoral Course in Mathematics, Graduate School of Tokyo Metropolitan Univ., Abstract (2011/02/11), pp.1-4

Historical development of classical fluid  dynamics

                  Shigeru MASUDA 

(Doctoral Course in Mathematics, Graduate School of Tokyo Metropolitan University)

Abstract

Aims.

  In our thesis, we discuss the classical theory of mathematical fluid dynamics, with interest in the 
theoretical formulation of the microscopically-descriptive [ MD] hydrodynamical [ HD ] equations, above 
all, the Navier-Stokes [ NS] equations, up to the fixed formulation, from the viewpoint of the mathematical 
history. We want to study the fluid dynamics in particular, not from all-inclusive history of topics, but 
from the mathematical deductions of the classical theories. Our initial motivation of study had been to 
seek from the classical theories for something new of deductive method of the MDNS equations.

Main results.

  We treat the following kernel problems of theories, discussed in order from the viewpoint of theoretical 
and mathematical history, viz. : 

  (1) exact differential / complete differential 
   (2) the "two-constant" theory 

   (3) tensor function 
  (4) rapidly decreasing function [ RDF ] 

  (5) collision in gas theory 
  (6) solutions of the NS equations

We believe, in particular, the following discovering approaches : 

 • comparative and detailed descriptions of the various deductions of the MDNS equations by Navier, 

   Cauchy, Poisson, Saint-Venant and Stokes, above all, the contribution of Saint-Venant to the 
   universal form of tensor for the linear NS equations and our mention of the "two-constant" 

   theory by Laplace as a progenitor of it 
  • theoretical deduction of the MDNS equations, including the "two-constant" theory, tensor func-

   tion and rapidly decreasing function 
 • as a contemporary of an epoch of the formulation of NS equations, we pay attention to Gauss' 

   contributions to the fluid mechanics including some mathematical achievements, 
  • the consistent follow-up of the MDHD equations after the formulation of the NS equations, 

   including the gas theory, up to fixed formulation of our equations,
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and these results from it, may be original. These total problems are the main themes we would like to 

present now.

The authorities for our originalities of results.

We have the following authorities for our originalities of our results. 

• We refer O.Darrigol [1, 2] and C.Truesdell [3, 4, 5] as the introductions to start our study. They 
 doesn't refer many of our results, in particular, HD equations by Euler, Lagrange, Laplace, Gauss, 

 Maxwell, Kirchhoff, Boltzmann, and so on, while we mentioned them. 
• Darrigol [1, 2] doesn't show his definition of the two-constant theory, but discusses from the point 

 of view of exact science, and citing only one paragraph in his book. We owe our motivation to 
 enhance this theme to Darrigol, however, we could adopt our own study, above all, from the 

 mathematical viewpoint in Part 2, Part 3 and Part 4 . 
• We couldn't cite some important persons including Newton, D.Bernoulli, and so on for fluid 

 dynamics, however, we have intention to cover the important problems for the NS equations and 
 the clasical theories of the HD equations in the 18-19 and the first half of 20 centuries. 1 

• We have scarecely heard about the history of mathematics on -the NS equations up to Ladyzhen-
  skaya.

Contents.

   The contents of our thesis consist of the following three parts entitled with : 

Part 1. Exact differential as the criteria of equilibrium/motion and irrotational motion/rotary motion 
Part 2. The "two-constant" theory and tensor function underlying the NS equations 
Part 3. The MDHD equations in the gas theory 
Part 4. The early studies of solutions of Navier-Stokes equations

Part 1. ( pp. 1-26 ) contains the problem (1) : 
  In the classical fluid mechanics, it had been an important principle to see whether equilibrium or 

motion, that in three variables, for udx + vdy + wdz to be satisfied with an exact differentiability or 
a complete differentiability. By Maupertuis, Clairaut, d'Alembert, Euler, Lagrange, Laplace, Cauchy, 
Poisson and Stokes succeeded its theoretical side. From the geometrical point of view, Gauss and Riemann 
applied it. Gauss proposed a general principle between equilibrium and motion. Moreover Helmholtz and 
W.Thomson applied it to the theory of vorticity. To Helmholtz's vorticity equation, Bertrand criticized 
but Saint-Venant sided with Helmholtz. We would like to report on their studies of exact differential 
from the historical view of fluid dynamics. 

 In §2, we show the proofs of the eternal existence of once-occurred exact differential by Lagrange, 
Cauchy and Stokes. 

 On the other hand, the formulations of two-constant theory in equilibrium/motion was deduced by 
Poisson, Navier, Cauchy, Saint-Venant and Stokes, and today's NS equations were formulated and used 
in practice. The studies of it up to the present are shown in the following papers.

Part 2. ( pp. 27-164) consists two parts of : 

    • The main or general remarks titled the "two-constant" theory and tensor function underlying the 
      NS equations. (pp. 27-52 ) 

    • The particulars appending detailed contents to the main (pp . 53-164) : 
       A : Detailed commentary of deduction of the NS equations, the "two-constant" theory and 

          tensor function 
        B : The "two-constant" theory in the capillary action 

       C : Laplace and Gauss

1(4) To establish a time line of these contributor
, we list for easy reference the year of their birth and 

death: Sir I.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d'Alembert(1717-1783) , Lagrange(1736-1813), 
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857), 
Saint-Venant(1797-1886), Stokes(1819-1903).
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       D : Abstract of Gauss' papers on Disquisitiones generales circa superficies curvas. ( General 
          survey on the curved  surface  ) 

       E : Gauss' papers on Principia generalia theoriae figurae fluidrum in statu aequilibrii ( General 
         principles of theory on fluid figure in equilibrium state ) 

        F : Poisson's "two-constant" theory in the capillary action 
        G : Figures. 

  The contents of Part 2 are of the fundamental problems (2), (3), and (4) of our main results , in which 
we treat the process of the formulation of the NS equations and the contained-in-itself, fundamentally 
mathematical theories such as the "two-constant" theory, tensor and RDF. 

  The "two-constant" theory introduced for the first time by Laplace in 1805 still forms the basis of 
current theory describing isotropic, linear elasticity. The NS equations in incompressible case : 

Otu —pAu+u• Vu+Vp= f, div u=0. 

  as presented in final form by Stokes in 1845, were derived in the course of the development of the 
"two-constant" theory. 

 Following in historical order the various contributions of Navier, Cauchy, Poisson, Saint-Venant and 
Stokes over the intervening period, we trace the evolution of the equations, and note concordances and 
differences between each contributor. In particular, from the historical perspective of these equations we 
look for evidence for the notion of tensor. 

 Also in the formulation of equilibrium equations, we obtain the competing theories of the "two-
constant" theory in capillary action of Laplace and Gauss. 

 Finally, we uncover reasons for the practice in naming these fundamental equations of motion as the 
NS equations. 

 In the appendices, we show the process of formulation citing their main papers of Navier, Cauchy, 
Poisson, Laplace and Gauss with our commentary.

Part 3. ( pp. 165-192 ) discuss the problem (5) : 
    The MDHD equations are followed by the description of equations of gas theory by Maxwell, Kirch-

hoff and Boltzmann. Above all, in 1872, Boltzmann formulated the Boltzmann equations, expressed by 
the follwing today's formulation : 

         ~tf + v • V f = Q(f, g), t > 0, x, v E R''(n > 3), x = (x, y, z), v = (  rl ~) (1) 

Q(f, g)(t, x, v) = ff 52 
  These — v*,a){g(v*)f(v') — g(v*)f (v)}dadv*, g(v*) = g(t, x,v*), etc. (2) 

                  R35

  These equations are able to be reduced for the general form of the HD equations, after the formulations 
by Maxwell and Kirchhoff, and from which the Euler equations and the NS equations are reduced as the 
special case. 

 After Stokes' linear equations, the equations of gas theories were deduced by Maxwell in 1865, Kirchhoff 
in 1868 and Boltzmann in 1872. They contributed to formulate the fluid equations and to fix the NS 
equations, when Prandtl stated the today's formulation in using the nomenclature as the "so-called NS 
equations" in 1934, in which Prandtl included the three terms of nonlinear and two linear terms with 

the ratio of two coefficients as 3 : 1, which arose Poisson in 1831, Saint-Venant in 1843, and Stokes in 
1845. Prandtl says, "The following differential equation, known as the equation of Navier-Stokes, is the 
fundamental equation of hydrodynamics," 

                          Dw_ g —1grad p+3vgrad div ©w + v/w, 
                         dt 

Dw _Ow            where,dt at+ w • Vw, v =µ, w=(u, v, w), g = (X, Y, Z) 

Part 4. ( pp. 193-235 ) sketches the early studies of solutions of the NS equations. 
 In this part, we discuss the weak solutions by Leray and Hopf, the generalized solutions/ the strong 

solutions by Kieselev, Ladyzhenskaya in the course of history of the studies of solutions of the NS 
equations. 
Conclusions. 

    • We had owed the development of classical fluid dynamics including NS equations, to the various 
      results for centuries past, based on such the fundamental and mathematical theories as of the
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 kinetic equation by Newton, of the exact differential, of the molecular activities in motion and 
 equilibrium including the capillary action, of "two-constant" and of the RDF, by many progenitors 

 of the theories2 who studied the the formulation of HD equations and the mathematical theories. 
 And even now, the studies for the open problems are in progress. We believe that the studies from 

 the viewpoint of mathematical history are also able to play a part in contributing to verify these 
 past facts and past development, and to make out the future development of the fluid dynamics. 

• The "two-constant" defined at first in the kinetic equations of elasticity was applied to that of 
 fluid by the MD method by Navier, Cauchy and Poisson, but later it was fixed as "two-coefficient" 

 in the HD equations since Poisson's fluid equations. The former's ratio of coefficient attached to 
 the tensor function with the main axis ( the normal stress ) of Laplacian to that of grad div  : 

 coefficient of tensor  __1and the latter's is 3. coefficient of grad div 
• The original RDF was deduced in the course of formulation of the equation of fluid dynamics, 

 including the equations of capillary action by Laplace and Gauss, in particular, Gaussian function 
 in the equations of capillary action was deduced over a hundred years ago before Schwartz' 

 distribution and hyperfunction.

  Remarks. Throughout our thesis, in citation of bibliographical sources, our are delimited by (4) and 

(if necessary) (fr). And by =*, we detail the statement by original authors, because we would like to 
discriminate and to avoid confusion from the descriptions by the original authors. The mark : = means 
transformation of the statements in brevity by author. And all the frames surrounding the statements 
are inserted for important remark by author. Of course, when the descriptions are explicitly distinct 
without these marks, these are not the descriptions in citation of bibliographical sources.

TABLE 1. Comment descriptions by marks in our thesis

case of comment mark in paragraph mark in equation or statement

1 comments by an original author ( usual  description  ) =, =

2 comments by another person to the original author ( usual description )
3 comments by author () • • • our comment- • • (1-)_* .*

4 additional comments to our comments On • • • our comment- • • (1) =* *

 The abridgements  mean  : 
    • NS : Navier-Stokes, (ex. the NS equations. ) 

    • MD : microscopically-descriptive, ( ex. the MD equations. ) 
    • HD : hydrodynamical, (ex. the HD equations. ) 

    • RDF : rapidly decreasing function, (ex. the RDFs. ) 
The introductions refered for beginning our study. 
Except for over a hundred primary sources which we show in the references of each part, we show only 
the following introductions :

REFERENCES

[1] O.Darrigol, Between hydrodynamics and elasticity theory : the first five births of the Navier-Stokes equation, Arch. 
  Hist. Exact Sci., 56(2002), 95-150. 

[2] O.Darrigol, Worlds of flow: a history of hydrodynamics from the Bernoullis to Pmndtl, Oxford Univ. Press, 2005. 
[3] C.Truesdell, Notes on the History of the general equations of hydrodynamics, Amer. Math. Monthly 60(1953), 445-458. 
[4] C.Truesdell, The rational fluid mechanics. 1687-1765. Introduction to Leonhard Euleri Opera Omnia. Vol XII seriei 

   secundae, Auctoritate et impensis societatis scientiarum naturalium helveticae, 2-12 1954, 10-125. 
[5] C.Truesdell, Editor's introduction to Leonhard Euleri Opera Omnia Vol. XIII seriei secundae, ibid., 2-13 1955, 9-105.

2(4) We mean at least
, progenitors such as Newton, D.Bernoulli, Maupertuis, Clairaut, Euler, d'Alembert, Lagrange, 

Laplace, Navier, Cauchy, Gauss, Poisson, Saint-Venant, Stokes, Helmholtz, W. Thomson, Maxwell, Kirchhoff, Boltzmann, 
Prandtl et al., who we mention in our papers.
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Exact differentials as criteria for

equi librium/motion and irrotational motion/rotary mot ion

ABSTRACT. Exact differentials in fluid dynamics are important quantities in any mathematical analysis 
of continuous systems; for example, we may need to know if udx + vdy + wdz satisfies exact, or equiv-
alently complete, differentiability in three dimensions. In the hands of d'Alembert, Euler, Lagrange, 
Laplace, Cauchy, Poisson and Stokes, these practitioners have succeeded in developing its theoretical 
consequences. From the geometric point of view, Gauss and Riemann had applied such constructs, 
while Helmholtz and W. Thomson applied these to the theory of vortices. Although Helmholtz's vor-
ticity equation was strongly criticized by Bertrand, Saint-Venant sided with Helmholtz. Here, we would 
like to review from the historical viewpoint the study of exact differential in fluid mechanics. 

 In §2, we present proofs of the eternal existence of unique exact differentials by Lagrange, Cauchy and 
Stokes. 

 From a separate development, the formulation of the two-constant theory in equilibrium/motion had 
been deduced by Navier, Poisson, Cauchy, Saint-Venant and Stokes. Today's Navier-Stokes equations 
were formulated and used in practice. An up-to-the present study is given in papers to follow.

  Mathematics Subject Classification 2010 : OlAxx, 76A02, 76Mxx, 76-02, 76-03, 33A15, 35Qxx 35-xx. 
  Key words. Exact differential, complete differential, fluid dynamics, fluid mechanics, microscopically-

descriptive equations, hydrostatics, hydrodynamics, hydromechanics, mathematical history.
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1. Introduction - the mathematical historic view of exact differentials

    1 In the early development of fluid mechanics
, exact differentials of the form udx + vdy + wdz had 

been used in theories of equiliblium, in various applications and appeared in numerious discussions. We 

present a summary of this development from a historical viewpoint in Table 1, under the following topic 
headings: condition of equilibrium of fluid, proof of the eternal continuity in time and space of exact 

differentials, curvature, electromagnetism, topology, vorticity , discussion of Helmholtz's papers, other 

applications. 

 Our motivation to study these topics arises from the last pages of Poisson's article 73 [37, pp.173-4], 
in which he remarked that although the exact differential may hold at some initial time in the motion, it 
doesn't follow that it always holds at later times.2 We would like to reveal the mistake behind "Poisson's 
conjecture" and the fact that the Navier-Stokes equations can be formulated following this train of ideas.

               2. Observations from the exact differential to the vortex 

2.1. Maupertuis' principle of minimum action. 
 P.L.Maupertuis' paper is famous for its stating of the Principle of least action, notwithstanding its 

application to geometrical optics. The paper on the law of equilibrium was read to members of l'Academie 
Royale des Sciences de Paris in 1740: 

         Ce n'est que dans ces derniers temps qu'on a decouvert une loi dont on ne sauroit trop vanter 
       la beaute & l'utilite, c'est que dans tout systeme de corps elastiques en mouvement, qui aggisent 

       les uns sur les autres, la somme des produits de chaque masse par le quarre de sa vitesse, ce 
       qu'on appelle la force vive, demuere inalterablement la meme. • • • 

         Soit un systeme de corps qui pesent, ou qui sont titres vers des centres par des forces qui 
       agissent chacune sur chacun, comme une puissance N de leurs distances aux centres: pour que 
       tous ces corps demeurent en repos, it faut que la somme des produits de chaque masse, par 

l'intensite de sa force, & par la puissance N + 1 de sa distance au centre de sa force ( qu'on 
       peut appeller la somme des forces du repos ) fasse un maximum ou un minimum. [31, pp.47-48] 

In the proof of the above propositions, he concluded that: for a system in equilibrium, it is necessary 
that the following holds:

rnfzndz+m'f'z'T`dz'+rrt"f"z"ndz"=0,(1) 

      where rn, rn', m" are masses and f, f', f" are forces. Hence, the value of m f zn+ldz + 
m' f'z'n+1 dz' + rn" f" en-14 dz" is then either a maximum or minimum. [31, p.52] 

 As an aside, if homogeneous, we can substitute z, z', z" with x, y, z and rrc f, rra' f', rn"f" with P, Q, R 
then (1) becomes Euler's form of an equation for which he had cited Maupertuis: dS = Pdx+Qdy+Rdz = 
0.

1(11) To establish a time line of these contributor
, we list for easy reference the year of their birth and 

death: Sir I.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d'Alembert(1717-1783), Lagrange(1736-1813), 
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857), 
Saint-Venant(1797-1886), Stokes(1819-1903). 

2(4) Poisson stated: Mais la demonstration qu'on donne de cette proposition suppose que les valeurs de u , v, w, doivent 
satisfaire non seulment aux equations differentielles du mouvement, mais encore a toutes celles qui s'en deduisent en les 
differentiant par rapport a t; ce qui n'a pas toujours lieu a l'egard des expressions de u, v, w, en series d'exponentielles et 
de sinus ou cosinus dont les posans et les arcs sont proportionnels au temps; et la demonstration etant alors en defaut, it 
peut arriver que la formule udx + vdy + wdz soit une differentielle exacte a l'origine du mouvement, et qu'elle ne soit plus 
a toute autre époque. [37, p.174]
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TABLE  1. Theories, applications and discussions about the exact differentiability of 

udx + vdy + wdz in fluid mechanics

equilibrium proof curvature lelectromagnetics 'topology Ivorticity discussion application

Maupertuis
1740,68 [31, 32]
Clairaut
1741-43,1808(2ed.) [6]

Clairaut
1741-43,1808(2ed.) [6]

d'Alembert
1749-52 [8]
Euler
1752-55 [13]

 Euler  [E226]
1755-57 [13]

d'Alembert
1761 [9]

d'Alembert
1761 [9]

Lagrange
1781-1869 [26]

Lagrange
1781-1869 [26]

Lagrange
1781-1869 [26]

Laplace
1806/07-29 [29]
Cauchy
1815-27 [5]

Cauchy
1815-27 [5]

Navier
1822-27 [34]
Gauss
1813 [15], 1827 [17J,
1830 [181

Gauss
1828 [16]

Poisson
1829-31 [37]

Power
1842-42 [39]

Stokes
1845-49 [43]

Stokes
1845-49 [43]

Stokes
1845-49 [43]

Green
1850 [20]

Riemann
1857 [40]

Helmholtz
1858 [21]

Helmholtz
1868 [22, 23, 24]

Clebsch
1858-1859 [7]

Thomson
1867-69 [47]

Thomson
1867-69 [47]

Thomson
1867-69 [47]
Bertrand
1868 [1, 2, 3, 4]
Saint-Venant
1868 [42]

Lamb
1879 [28]

Leray
1934 [30]

I cite below

 Gauss proposed the general principle of both static state and motion in a note in 1827 generalized 
Maupertuis' principle of minimum action, which we mention below in §3. 

2.2. Clairaut's effort and exact differential. 
 Writing on hydrostatics in 1740, Clairaut had already  used  effort ( response) and exact differential. In 

his thesis, Theorie de la figure de la terre, tiree des principes de l'hydrostatique ( Theory of the shape 
of the Earth, derived from the principle of hydrostatics ), he proposed the term exact differential earlier 
than Euler. 

         Si on voulait presentement faire usage de cette quantite, pour trouver en termes finis la valeur 
       du poids du canal ON, en supposant que la courbure de ce canal fut donnee par une equation 

      entre x et y, on commencerait par faire evanouir y et dy de Pdy + Qdx ; cette differentielle 
       n'ayant plus que des x et dx, on integrait en observant de completer l'integrale, c'est-a-dire
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  d'ajouter la constante necessaire, afin que le poids flit nul, lorsque x serait egal a CG ; on ferait 
  ensuite X = CI, et l'on aurait le poids total de ON. [6, §16, p.35-371

Mais comme l'equilibre du fluide demande que le poids de ON ne depende pas de la courbure de 
OSN, c'est-a-dire de la valeur particuliere de y en x, it faut donc que Pdy +Qdx puisse s'integrer 
sans connaltre la valeur de x, c'est-a-dire qu'il faut que Pdy+Qdx soit une differentielle complete, 
afin qu'il puisse y avoir equilibre dans le fluide. [6, §16, p.35-37] .

   In a footnote, Clairaut commented on exact differentials 3 as follows: 

         J'entends par differentielle complete, une quantite qui a pour integrale une function de x et 
       de y. ydx + xdy, dx sont des differentielle completes, parce qu'elles ont pour integrales 

                                   2 a2-1-xy 

       xy, /a2 + xy, xd+ydx est aussi une differentielle complete, parce que son integrale est representee 
       parl'arc dont la tangente est x, le rayon etant 1. Mais y3dx + x3dy, y2dx + x2dy, ne sont pas 

       des differentielles completes, parce qu'aucunes fonctions de x et de y n'en sauraient etre les 
integrales. [6, p.37, footnote]. 4 

2.3. D'Alembert's exact differential. 
D'Alembert [8] teaches us various types of the exact differential of the complex value. ( Now we show 

here e.d. in brief. ) 
        If Mdx + Ndz and Ndx — Mdz are the exact differentials, we propose to find the quantity of 

       M and N. 
        • Mdx + Ndz is e.d. Mdx + N - . 
         • Ndx — Mdz is e.d. = Ndx — Mdz or Ndx + M---- is e .d. 

(M + N) (dx +) and (M — N) (dx —) are e.d.s 
        • dx + T = du (a function of F )± x + T = u, 

• dx — T = dt = (a function of G) + x — 7=-T. = t, 
     • M+NfT=a & M—N =f3, 

              — a is a function of u, i.e. M + N = a function of F + x + V7, 
              — f3 is a function of t, i.e. M — N = a function of G + x — . 

D'Alembert proposes the following simple format. 
3(4) It is called the condition for exact differentibility as follows. Now, for brevity, we treat only a two variable case. 

  In the domain K of the xy-plane, where the two functions cp(x, y) E C1 and -0(x, y) E Cl are given, and we suppose 
ep(x, y)dx -f 11)(x, y)dy(2) 

is the total differential of an arbitrary function F(x, y), namely dF = codx +'xdy. Hence, Fx = yo, Fy = 11).   Then by the assumption, we obtain Fxy = cpy and Fyx = , namely, 
cpy = y x •(3) 

(3) is the necessary condition that (2) becomes an exact differential, and if the domain K is simply-connected, (3) imme-
diately becomes also a sufficient condition. We treat belowexact differential and complete differential as being equivalent.   4Two examples of exact differentials given by Clairaut are simple: if we consider xdy+y2x and set P =—x2+y2 and Q = x2+.y2,then we obtain:2 

UP y2 — x2 aQ 
ay (x2 + y2)2 ax 

Considering also yd,x+xdy  andputP= y  and Q = x  , then we obtain:          2V a2+xy 2/a2+xy 2\/a2+xy 

aP _2 /a2+xy — y(a2+xy)2x_UQ 
ay(2 /a2 + xy)2ax 

In contrast, as two examples of inexact differentials, we find for x2dy + y2dx 

aP aQ 
                                    ~,=2y8:c= 2x, 

                                    y and for x3dy + y3dx, we get 

                             ay=3y2~ax= 3x2.
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 •  .512  _ (IR = crla.  dz dx' dx dz 

   — q + RV —1 = F + x +--- ---

of equilibrium/motion and irrotational motion/rotary motion 

qdx + pdz, pdx — qdz are e.d.s

p and q are the real numbers

  we must suppose  G

where

—1=F+x+Z
1&

1q1=G+x—,/z1    {(Fq  =2+x+~Z')+ (C+x—,/z_1)}, 
P= 2;_r1{ + x ~1) — (C+x— ~/zl)} 
are the real numbers 

nust suppose G = F,
ll q= {e(F+x+~zl)+++ x;_                      —----') +--1 

p=----11{ (F+x+1-) — (F+x—----Z)}+. 
^Z1) and~(F+xf )denote the d 

on the exact differential.

5

(F+x+) _((F+x_ ~zl) (
F+x+)+((F+x— v1)

                              denote the differential functions.

2.4. Euler's study on the exact differential. 
 Euler investigated the nature of exact differentials in the following papers: 

   • (E258) Principia motus fluidal—um ( Principles of the motion of fluids ) [1752], (1756/57), 1761. 
    • (E225) Principes generaux de l'etat d'equilibre des fluides [1753], (1755), 1757. 

    • (E226) Principes generaux du mouvement des fluides [1755], (1755), 1757. 
    • (E227) Continuation des recherches sur theorie du mouvement des fluides [1755], (1755), 1757. 

    • (E375) Sectio prima de statu aequiliblii fluidorum ( Section 1. On the state of equilibrium of 
     fluids ) (1768), 1769. 

    • (E396) Sectio secunda de principiis motus fluidorum ( Section 2. On the principles of motion of 
     fluids ) (1769), 1770. 

        where (E...) denotes the Enestrom Index, while the years appearing at the end of the item are 
      respectively: 

        — in square brackets, the year commented on by C.Truesdell [48], 
        — in parenthesis , the year commented on by Enestrom in Euleri Opera Omnia [13], and 

       — unbracketed, the published year commented on by Enestrom in Euleri Opera Omnia [13], 

2.4.1. Development of the exact differential by Euler. 
 Of the many papers in which Euler discussed exact differentials, we shall take a closer look atone of 

these. In (E396), Euler posed Problem 34: 

§88. Si cuiusque fluidi elementi ternae celeritates u, v, w ita sint comparatae, ut formula 
       udx + vdy + wdz integrationem admittat, aequationem, qua pressio fluidi exprimitur, evolvere. 

      (E396) [13, p.127]. 
(Translation) = If the three elements of the velocity of an arbitrary fluid element: u, v and .w are 

        proportional to each other and the expression: uds + vdy + wdz is integrable, derive the equation by 
        which the fluid pressure can be expressed. 

Euler solved his problem as follows:5 

dI = udx + vdy + wdz + .1=)dt. 

                dududuU=u()+v()+w()+ (v).           
                            du dv du dw du d4) 

         where, it holds the exact differential, then ——,— = —,— = d
y dxdz dxdt dx 

By substituting these terms for U, we get the following expression of U : 

       _dudvdwdo(4)             U=u(dx)+v(dx)+w(dx)+(dx)4 
Similarly we get the followings :

dv
__dw dv__du dv__d4) d

z  dy  ' dxdy ' dt dy 

dw_du dw=dv dw=db

dx dz ' dy dz ' dt dz

5(1).) The term 4)dt is the originality by Euler.

  -1/- = u(dy)+v(dy)+w(dy) -I- (dy), 
  W =u(dz)+v(dz)+w(az)_i_(dzz).(5)
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Now we postulate that the outer forces P, Q, R act such that:

f(Pdx+Qdy+Rdz)=S. 
Staying with Euler's notation, we consider pressure = p and density = q in the fluid element, so that 
then 

2gdp = 2gdS — Udx — Vdy — Wdz,(6) 

q in which we assume the time t is constant, for the hypothesis is as follow : 

     dx(dt) +dy(dt) +dz(dt) =dx(d_) +dy(dy) +dz(z) = d43, 
Here, from (4) and (5), the reduction on the other elements of (6) are observed 

                Udx + Vdy +Wdz = udu + vdv + wdw + d4).(7) 

When we integrate the above pressure formula (6), then we get from (7) the following : 

                  2g Jp =2gS— 1(u2+v2+w2) -4)+f :t, 
       q2 

where f : t is Euler's notation for At). Here, the density q is assumed to be a function of p only; for 
other reasons, if this equation also satisfies positivity requirements, and q is a function depending on p,6 
then this quantity becomes 

f                    2gJp= 2gS —2(u2 + v2 + w2) — 4.. 
q Euler proposes the Euler's equations in (E226) ¶21 7: 

      ¶21. Nous n'avons done qu'a egaler ces forces acceleratrices avec les accelerations actuelles 
      que nous venons de trouver, et nous obtiendrons les trois equations suivantes :

P-

Q — 
R-

1LIE — 
y dx 

 1cl_E  — 
y  dy  

 1(12  —_ 
q dz

du 
dt+udx+vdy +wdz, 
dv 
dt+2Ga+vdy+waz, 
dw dw dwdw 
do+udx+vdy+wdz

Si nous ajoutons a ces trois equations premierment celle, que nous a fournie la consideration 
      de la continuite du fluide : 

dq d.qu d.qv d.qw 
+----— 0 dtd

x+dy+dz 

2.5. Lagrange's velocity potential cp. 
 Citing Euler's method, Lagrange however was the first to use yo for the velocity potential, the symbol 

widely reserved for this in modern conventions. 

§ 14. nous supposerons de plus que les forces acceleratrices P, Q, R du fluide soient telles, que 

Pdx + Qdy + Rdz 

       soit une differentielle complete ; ce qui a lieu, en general, lorsque ces forces viennent d'une ou 
       de plusieurs attractions propotionelles a des fonctions quelconques des distances. 

         De cette maniere, si l'on fait 

                             dV = Pdx + Qdy + Rdz, 

      la equation proposee etant divisee par A se reduira a cette forme 
 dp dpdpdplldqdqdqdqllrdrdrdrdr)d z = dV — dII 

 Cdtdx+qdy+rdz/dx+Cdt+pdx+qdy+rdzJdy+ldt+pdx+q dy+rdzl 
         Ainsi le premier membre de cette equation devra etre en particulier une differentielle complete 

       relativement a x, y, z, puisque le second en est une. 

Qu'on retranche de part et d'autre la differentielle de 

p2+q2+r2 
                                   2 

6(J) This is called a barotropic fluid
, for which q = f (p). 

7[12, p.65]
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dp 

dt

   prise relativement  a x, y, z, laquelle est 

      (p-+ q-+rdp)dx+ (p-+q-+r-dxdydz             dxdy

on aura, en ordonnant les termes, cette transformee 

x +d~dy +zdr 
dtd

)dy+
dr dr dr 

pdx +qdy +rdz  dz;

     Cdp~q)(qdx — pdy) + (-22d—dr) (rdx — pdz) +rid—r)(rdy — qdz) = dV——p2+q2+ra dy dxdz dxz dyA2 

        Donc le primier membre de cette equation devra etre pareillement une differentielle exacte. 

§15. li est visible que, si l'on suppose que la quantite 

                               pdx + qdy + rdz 

       soit elle-meme la differentielle exacte d'une fonction quelconque co compose de x, y, z et t, on 
        aura 

                             p =d~, q =d~,'r=dcp               dx dydz 

       Donc 
                           dp d2co dq d2co dr _ d2cp 

                       dt dtdx dt dtdy' dt dtdz' 

                            dp   d2cp dq   d2co  
                           dy dxdy' dx dydx' 

       Ainsi l'equation precedente deviendra par ces substitutions 

               d2d2d2
dtdx dx + dtdy dy + dtdz dz = dV0p2 +r2  

                                      + 

       laquelle est evidement integrable par raport a x, y, z ; de sorte qu'en integrant, on aura 
                        dcp =V—dll p2+q2+r2 d

tJ A 2 • 

      [26, pp.710-711] 

2.6. Laplace's necessary and sufficient conditions of fluid equilibrium. 
 Laplace stated the exact differential as the necessary and sufficient condition for fluid equilibrium: 

        Therefore, to support the equilibrium of a homogeneous mass of fluid, for which exterior 
       surface is free and contains within it a fixed solid nucleus, of any figure whatever, it is requisite, 

      and it is sufficient ; 
        • First, that Pbx + Qby + Rbz should be an exact differential ; 

         • Second, that the resultant forces acting on the exterior surface should be perpendicular to 
          the surface and should be directed toward the inner part of the fluid. 

      [29, Chap. IV p.95]. 

2.7. Navier's equation of fluid equilibrium. 
 Navier deduced an expression for the forces of molecular interaction between fluid elements under a 

state of motion as follows: 8

    Paraphrasing from Navier's work, we consider two molecules M and M'. Let x, y, z be the 
    rectangular coordinates of M and x + a, y + 0, z + y be the rectangular coordinates of M'. 
    The length of a rayon emitted from M : p = \a2 + 02 + 72. The velocity components of the 

    molecule M are u, v, w and that of the molecule M' are 

dSx dSxdbxdby ayydbz d6zdbz     b
x +d

xa +dy/3+dzf,oy +dxa +dy/3db                              +-zy,oz +dxa +dy/3+dzy, 

dbx dbx d&xdbydSydbydbz dbzdbz 
    (5a =d

xa +dy/.3+dzy'b/3_dxa +dy13 +dzy,by_dxa +yQ+dzy. 

a6 + /38/3 + yby  b
y =.                                    A 

   _1(dbx 2 d8xdbxdbydby2 d6yzdbzdbz 2l   by p(dxa +dyal)+dzay +dxal3+dyP+dzPy dbz                              +d
x ay +--dyP7 +dz'/ 

8(J/) Navier ([34, pp.391-398]), §II. Equations de l'equilibre des fluides.



8 Exact  differential as the criteria of equilibrium/motion and irrotational motion/rotary motion 

  where 

dSxdSy/~ =dayd6zdbxd6z 
          dyaN+dx-Up0'dz/3+dy/.3'y=0,dz—cry+dx—cry= 0. 

  We introduce, as does Navier, a function f (p) depending on the distance p between M and M'. 
  We denote by V) the angle between Navier's "rayon" p and its projection onto the a3-plane, 

  and cp the angle which this projection forms with the a-axis, and then we can evaluate only the 
  terms as follows: 

8f (P) (d5x2+da2+
pdx dyNdz 

  Here, we assume that the components of the rayon in the above polar coordinate system are:

and then evaluate  finally  the following 

8 [dpp3f(p) f2 d'f2 dcp (dSx a 
 00o \ dx 

We use the following formulae:

a  = p cos cos cp, 
 = p cos sin cp, 

ry = p sin 'i/), 

ng (8) 

COS3 1/1 COS2 (p + aydCOS3 

            y

f cos' x dx = 71 
f sin"' x cos x dx = 
f sin2 x dx = ix — 

            f cos2 x dx = 2 x +

 sin2

n-1 x sin x +f COSn-2 
sin"`+1 x 

rn+1 

sin 2x, 

4 sin 2x.

so +
dSz . 2 — sin 
dz       4/1

cos 'l/I I .

(8)

xdx,

from which we obtain: 

  Zfrd'cos3z/~= 2,Jdzbsin2~/~cos z/>lfodcp cos2cp=Jzdcp sin2cp =-4,   303o 

Equation (8) simplifies to: 

             2/°°dSxd6                 g34 0dpP3f(P)(dx+d'y+dz 
Here for brevity we write 

             f~                       3dPP3f(P)=p 

where p 9 depends not on the distance p but only on the coordinates of x, y, z which determine 
the position of the molecule M. Hence we have 

                    p (d6x day dbz l 
dx  dy  dz /• 

The equation describing the equilibrium condition of the system is: 

0 =Jff4dxdydp(dax+yday  +z) + Pax + QSy + Raz] . 
                             y By partial integration we obtain 

0 = fffdxdYdz[1'P_ dd)ax+  (Q )8y+ (dp) Sz] 
   — ff dydz (p'bx' — p"8x") — ff dxdz (p'ay' —p" ay")  — ff dxdy (p'6z' — p" Oz") .

9(4) In Part 2 of our following papers , we would 
including Navier's p, showed in Table 2, 3 and 4.

like to introduce a universal method for the two-constant theory
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2.7.1  . Two conditions deduced from the indeterminate equations. 

Navier reduced the indeterminate equations for fluid equilibrium into two parts. 

• Exact differential for the equilibrium conditions of an arbitrary interior point of the fluid, 

 dpdp dp 

                      _ 

                    dxP, dy = Q, dz= R, 

                      dp = Pdx + Qdy + Rdz

p = f(Pdx  + Qdy + Rdz) + const.
 As a result, Navier explained exact differentials for the conditions of fluid equilibrium as follows: 

         formule ou la fonction sous le signe f doit etre necessairement susceptible d'une integration 
         exacte, pour que le fluide soumis a l'action des forces representees par P, Q, R, puisse 

         demeurer en equilibre. [34, p.396]. 
• The boundary condition at the surface,

       Citing Lagrange [27, pp.221-223,§29-30], Navier explained the mathematical method as follows: 
     if we substitute 

       — dydz —p ds2 cos 1, 1 : the angles by which the tangent plane makes on the surface frame 
         with the plane yz, 

       — dxdz ds2 cos Tn, rn : similarly, the angles with the plane xz, 
       — dxdy —p ds2 cos n, n : similarly, the angles with the plane xy, 

      — f f dydz, f f dxdz,ffdxdy -* Sds2 
     where 1, rn, n are the angles the tangent plane on the surface makes with the planes yz, yz, and 

xy respectively. Hence, noting the conditions manifesting at the points on the surface of the fluid 
     element, we get the indeterminate equations as follows: 

0 = Sds2 [(p' cos l'Sx' — p" cos l"Sx") + (p' cos rn,'Sy' — p" cos rn"Sy") + (p' cos n' z' — p" cos n"Sz")],

0 = J (Pdx + Qdy + Rdz) + const.

      Therefore, we get the differential equation: 

                          0 = Pdx + Qdy + Rdz 

      and among the variations ox, Sy, Oz, we derive the following relation: 

                         0 = Ox cos 1+ Sy cos m + Oz cos n. 

Navier cited Laplace for the molecule idea and chose consistently a repulsive force in his own papers 
[33, 34] for the function depending on the distance between molecules: 

         Les lois de l'equilibre des fluides, enoncees ci-dessus, sont conformes a celles que les geometres 
       ont etablies d'apres le principe de l'equilibre des canaux, ou en supposant le fluide decompose 

       en elements rectangulaires infinirnerrt petits, et exprimant que chacun de ces elements, soumis a 
       l'action des pressions exercees sur ses faces, et des forces acceleratrices appliquees aux molecules, 

       doit etre en equilibre. La consideration des forces repulsives que la pression developpe entre les 
       molecules, dont M.Laplace avait deja deduit les equations generales du mouvement des fluides, 

      dans le XII' livre de la Mecanique celeste, parait dependre plus immediatement des notions 
       physiques que l'on peut se former sur la nature de ces corps. [34, p.398] 

However, N.Bowditch10 pointed out that Laplace had rethought the repulsion theory and changed it, in 
1819: co(f) = A(f) — R(f), where co(f) : a function depending on the distance f between the molecules, 
A(f) : attractive force, R(f) : repulsive force. 

io(4) N.Bowditch[29, p.685] commented as follows: 
       This theory of capillary attraction was first published by La Place in 1806 ; and in 1807 he gave a 

        supplement. In neither of these works is the repulsive force of the heat of fluid taken into consideration, 
        because he supposed it to be unnecessary. But in 1819 he observed, that this action could be taken 

       into account, by supposing the force cp(f) to represent the difference between the attractive force of the 
       particles of the fluid A(f), and the repulsive force of the heat R(f) so that the combined action would 

       be expressed by, co(f) = A(f) — R(f) ; • • •
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2.8. Poisson's deduction of the equilibrium and an 
 We cited Poisson's deduction [37, pp.90-124].11

exact differential.

2.8.1. Poisson's condition for 

 Poisson proposed his tensor:

fluid

(§24.12p)

equiliblium.

 Xp 

Yp 

Zp

—iE_i.-L2+.1.13.'              d
zdydx ' 

-dQ1 +dQ2j _.dQ3  -d
zdydx ' 

   Ra+dR~4 -Eaa —
dzdydx '

Poisson explained his function R of the molecular action shown in Tables 2, 3 and 4 as follows: 12 

       R etant une fonction convenable de r, x, y, z, insensible pour toute valeur sensible de r, nous 

       exprimerons generalement l'action mutuelle de p et a' par la formule: 

                  dR(ll1dRrl1dR(l (§43.1p) R+12dx(u+u,)+1d(v+v,)+2d-(w+w'). 

                                      y 

       Nous supposerons toujours cette force dirigee suivant la droite qui joint les deux points µ et a' 
; et nous la regarderons comme positive ou comme negative, selon qu'elle tendra a les ecarter 

       ou a les rapprocher l'un de l'autre. [37, p.97]

(9)

(§46.4p)
_ 1 p 

6E3E rR,
    1 

q= 4E3
r2z'R

r
(10)

N=p+q(1 1l

(§51.10p) pX—'
dp 0

, d
x

pY—dy=0, pZ—dz =0'

(§51.11p) dp = p(Xdx +Y dy + Zdz). (11)

 Pour que l'equilibre du fluide soit possible, it faudra donc que les forces donnees soient telles 
que la formule Xdx + Ydy + Zdz, multipliee par la densite p, soit la diferentielle exacte d'une 
fonction de trois variables independantes x, y, z. Quand cette condition sera remplie, l'equation 
(11) fera conna%tre la pression p en chaque point interieur du fluide ; et la grandeur de l'intervalle 
moyen e, qui est la seule inconnue du probleme, se trouvera implicitement determinee en founc-
tion de x, y, z, au moyen de la primiere equation (10).

Xdx +Ydy + Zdz = dcp.

where N is the vertical force , and A, a'

dp = pdcp,

are the radii of the principal curvature. In equation (9),

P3=Q2=R1 =13,

while the other 6 forces in the tensor are zeros.

2.9. Helmholtz's vorticity equations.

11(J) §V. Calcul des pression dans les Fluides en equilibre ; Equations differentielles de cet equilibre. 
12(4) We would like to introduce a universal method for the two-constant theory including C1, C2, C3, 

Table 2, 3 and 4, in the following papaer of Part 2.
C4, showed in
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2.9.1. Helmholtz's definition of irrotational motion. 
 Helmholtz used Euler's equations  (1H), because he had not known at that time of Navier's equations.

(1H)

X — h=dt+Udx+Vdy+wdz, 

Y —hdddyy—d~t~ud~z+vdy+wdz, 
 Z  — 1 ciE — dw +IL+~dw+,wdw T.,dz dtdxdydz , 
du+dv+dw—0 

         dxdydz.

 F  — Vp = 

V. U =0, 

where F ==_

du 
dt U • Vu,

(X, Y, u (u,v,w).

We consider the forces X, Y and Z of the potential V: 

             dVdV dV                 (l
aH) X = —Y = —= —              d

xdydz 

and moreover, the Geschwindigkitespotential p (velocity  potential ), so that: 

(1bH) u =dco, v = —thp, w = —dcp               dxdydz 

From the conservative law of (12) (= 1H), we also get the divergence of the null value as follows:

Acp =0,

(12)

(13)

Helmholtz did not mention explicitly vollstandigen Differentialien (exact differential or complete differ-
ential), however from (13) we can deduce the condition for the exact differential as follows: 

        ,du dvdv dwdw du           (1cH) —d
y— —dx=0,—dz——dy=0,—dx— —dz= u, V x u0 

To study these three conditions (1cH), Helmholtz, by considering an infinitely small volume of water in 
a time period dt, made a comprehensive investigation into the variation from the following three various 
motions: 

   (1) einer Fortfilfrung des Wassertheilchens durch den Raum hin, 
( a carrying away of the small particle of water through the volume, ) 

   (2) einer Ausdehnung oder Zusammenziehung des Teilchen nach drei Hauptdilationsrichtungen, wobei 
ein jedes aus Wasser gebildete rechtwinklige Parallelepipedon, dessen Seiten den Hauptdilation-

      srichtungen parallel sind, rechtwinkelig bleibt, wahrend seine Seiten zwar ihre Lange andern, aber 
      ihren friiheren Richtungen parallel bleiben, 

( a stretching or contraction of the particle in the three main axis directions, where, each from 
      water of the rectangle parallelepiped, whose sides are parallel to the direction of main axis, while 
      the length of their side is changed, however the side remains in the parallel direction,) 

   (3) einer Drehung um eine beliebig gerichtete temporare Rotationsaxe, welche Drehung nach einem 
      bekannten Satze immer alsResultante dreier Drehungen um die Coordinataxen angesehen werden 

       kann, 
         when a rotary motion around an arbitrary oriented, temporary axis of rotary motion exists, 

      whatever the rotary motion is able to be considered according to a famous theorem as a resultant 
      force of three rotary motions around the coordinate axis.) [21, p.29]

u7,-_-A, 

v:-,--_--B, 

w-1.--_-C,

du —a 
dx — 
dv  =  b 
dy — , 
dw = c 
dz — )

dw dv 

 dy  dz 

du dw = 

dz dx  

dv ___ du — „, 
dxdy=

• • • exact differential conditions

  When we now consider a molecule with coordinates x, y and z, is at an infinitely small distance from 
coordinate point :y and Z", then

 u=  A  +  a(x  —  X)  +  -y(y  —  Y)  +  0(z  —  i), 

v = B + -y(x — X) + b( — y) + a(z — ), 
w = C ± ,3(x — i) + a(Y — ) + c(z — 4

  u- A a 7 
. v = B + 7 — b a y — Y . (14) 

  wC)3a cz — 
___ _
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When we put 

cp = A(x—:c)+B(y—y)+C(z—z) 

                  + 2a(x —x)2 +j--b(y — y)2 +2c(z — z)2 

                  + a(y—y)(z—z)+,3(x—x)(z—z)+-y(x—)(y—y), 

then 

                       _dco_dco_dcp— . ud
xVdwdz                                    y 

Moreover, if we choose suitable coordinates x1, M. and z1 centered on point (x, y, z) : 

yo = Aixi + Biyi + C1z1 +2aix12 + 1b1y12 + 1C1z12 
    11 1 = (A1 +2aix1) xi + (Bi +2biy1) yi + (C1 +2ciz1) zi 

ului wl 

The velocity components u1, v1, and w1, resolved in this new coordinate system are: 

                      ui = Al + alx1, vi = B1 + bly1, w1 = C1 + eiz1. 

Here, Helmholtz observed two points of view as follows: 

    • The velocity u1, parallel with the xl-axis, is the same for all water particles of the same x1 value, 
      or the water particles that lie in the yizi-plane at the beginining of the time period dt , are also 

      in the same plane at the end of the time period dt. This also holds for the x1y1- and xizi-planes. 
    • If we therefore consider a parallelepiped bounded by the three parallel planes and their infinites-

      imal neighboring planes, therein are the enclosed water particles formed, even after the passage 
      of time period dt, from the same parallel coordinate planes by the surfaces of a right-angled 

      parallelepiped. 
Given the above, Helmholtz finally summarized as follows: Of all motions satisfying condition (1cH), 
there can only be 

    • translations, and 
    • extensions or contractions along an edge, 

and does not have any "Drehung" ( rotary motion / rotation ). 

2.9.2. Helmholtz's deduction of rotary motion in vorticity equations. - Helmholtz's decom-
position. 
 Next, Helmholtz assumed conditions for rotational motion as follows: 

    • We consider the rotational motion of an infinitely small mass of water located at the point (x, y, z). 
    • The rotary motion is around the axis on a parallel with the x, y and z. 

    • The mass goes through the point (ii:, y,z), directed at angles 6, Ti and (. 

We derive the resultant velocity components parallel with coordinate axes (x, y, z) as follows: 

      (z———y0y)~—z—z)r/       —(z--0.T1)0z)(x((y—:c)r~)~*—(x — x)~(y —0((z—z)       (y( —(x—)~0(x — x)rl — (y — y) 0 
0 ( —r~x — :- 

                                       * —( 0y(15) 
                             ri—0z—z 

Combining (14) with (15) we the obtain the response tensor: 

          a 'Y Q 0 ( —ija ('Y+() (0-71) 
          7— ba+—~06_('y— () — b (a + e) 

        C~acrl—0 (,Q+r) (a — f) c
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 U  =- 

V 

w =

u 

v 

w

A ± a(x — :ê) + (7 + ()(y — ) + (0 — 77)(z — 4 
B ± (7 — ()(x — ̂X') + b(y" — y) + (a + e)(z — :i), 

C ± (i3 + 71)(x — :6) + (a — e)(y — 'fi) + c(z — ,Z)

A 

B 

C

+

a  (2'  +  0 (Q — 77) 
('Y—(-) —b (a+ 0 
(Q + 77) (a — 0 c

 x -

  z -

, 

x y 
z

By differentiating u, v and w with respect to x, y and z respectively, then the following vorticity equations 

result:

 a  (7  +) (0 - 71) 

 ('),-0 -b (a+ 0 
(0+i) (a — f) c

 (2H)

dv 

 dv 

dw 

dv 

du 
dy

dw = 
dy 
   = 271, 

dv =2( . 
dx

x u) = 1] W (16)

2.10. Thomson's circulation theorem and the criterion of the irrotational motion on the 
complete differential. 

 Thomson defined the Helmholtz-like velocity potential as follows: 

        §31. Let now the "velocity potential" ( as we shall call it, in conformity with a German 
      usage which has been adopted by Helmholtz ), be denoted by  0  ; that is (§16 ) , let be such 

       a function of ( x, y, x, t ) that 

                     (3T) u=dv=dw=d                     dx' dy dz' 

      and let ( or ~¢ ) denote its rate of variation per unit of time at any instant t, for the point 
( x, y, z ) regarded as fixed. 

      Also, let q denote the resultant fluid velocity, so that 

               (4T) q2 = u2 + v2 + w2 = (~~) 2 +(d) 2 + (d~) 2.                      dxdy dz 
       The ordinary hydrodynamical formula gives                                          

• 1 2                              (
5T) p=H-q-2q 

       where H denotes the constant pressure in all sensibly quiescent parts of the fluid. [47, p.26] 
Thomson's propositions, now called collectively Thomson's circulation theorems, are as follows: 

Prop 2.1. The line-integral of the tangential component velocity round any closed curve of a moving 
fluid remains constant through all time. [47, p.50] 
Prop 2.2. The rate of augmentation, per unit of time, of the space integral of the velocity along any 
terminated arc of the fluid is equal to the excess of the value of 2 q2 —p, at the end towards which tangential 
velocity is reckoned as positive, above its value at the other end. [47, p.50] 

  He explained the condition "complete differential" as a criterion for irrotational motion13 as follows:

 §59(e). The condition that udx + vdy + wdz is a complete differential [ proved above (§13) to 
be the criterion of irrotational motion ] means simply 

• That the flow [ defined §60 (a) ] is the same in all different mutually reconcilable lines from 
      one to another of any two points in the fluid ; or which is the same thing, 

    • That the circulation [ §60 (a) ] is zero round every closed curve capable of being contracted 
     to a point without passing out of a portion of the fluid through which the criterion holds. 

     [47, p.50]

His definitions are as follows: 

         §60. Definitions and elementary propositions. 
         • (a) The line-integral of the tangential component velocity along any finite line, straight or 

          curved, in a moving fluid, is called the flow in that line. If the line is endless ( that is, if 
          it forms a closed curve or polygon ), the flow is called circulation. [47, p.51]

13(4).Irrotational motion means laminar flow, having no rotary motion.
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2.11. Disputes over Helmholtz's paper. 

2.11.1. Bertrand's criticism of Helmholtz's definition of rotary motion. 
 In various articles Bertrand [1, 2, 3, 4] and Saint-Venant [42] discussed Helmholtz's theorem. 

particular, Bertrand had always criticized Helmholtz on this point. As the decisive example of 
motion along only the z-axis Bertrand stated: = 0, i = 0 and (= 1. 

         La possibilite de cette decomposition n'est nullement justifiee. M.Helmholtz l'adopte comme 
evidente en s'assurant sur le nombre de constants introduites dans l'expression generale du de-

       placement des points infiniment voisins. Acceptons ces assertions, et suivons-en les consequences: 
       en designant par , r, ( les composantes de la rotation, it en calcule l'expression par les formules 

       (2) de la page 31 de son Memoire,14 et • • - 
         Supposons, par exemple, en adoptant la notation de M. Helmholtz, • • • Les formules de 

       M.Helmholtz nous donnent cependant, dans ce cas, = 0, rj = 0 and C = 2, et feraient croire 
       que chaque molecule tourne uniformement autour d'un parallele a l'axe des z. 

        Un tel exemple n'est-il pas decisif ? [2, p.268]. 

2.11.2. Helmholtz's responses to Bertrand. 
 Helmholtz responsed to Bertrand as follows: 

         Par la methode de decomposition choisie par moi, j'ai aussi fixe, comme on voit, le sens dans 
       lequel it faut prendre le terme rotation dans mon Memoire. 

         Nommons u, v, w les composantes de la vitesse paralleles aux axes des coordonnees x, y, z. 
       Alors le resultat de mon analyse preliminaire, qui semble etre l'object de la critique de M.Bertrand, 

        est celui-ci.

In 

the

 Si l'expression (udx + vdy + wdz) est une differentielle exacte, il n'y a pas de rotation dans la 
partie du fluid correspondant. Si cette expression n'est pas une differentielle exacte, il y a rotary 
motion.

 M.Bertrand, au contraire, a demontre que, dans un nombre tres-considerable de cas, on peut 
construire des parallelipipedes obliques ayant une direction determinee pour leur aretes, qui se 
transforment en d'autres parallelipipedes dont les aretes restent paralleles a celles des premiers 
; et l'illustre geometre suppose que j'ai omis ce cas dans mon analyse, parce que je n'ai parle 
que des parallelipipedes rectangles. [22, pp.136-137]

        3. Gauss' note on the general principle of both static state and motion 

  In 1827, Gauss [17] porposed "ein neues allgemeines Grundgesetz der Mechanil" ( a new general 
principle of machanics ) referring the equation on minimum action (1) by Maupertuis [31], to which 
Bertrand refers in his note edited in the Lagrange's works [27, Vol.12, pp.365-368, Note 8] . 15 Gauss 
asserted that we can't distinguish the static state from the moving state according to the principle of 
d'Alembert'', and proposed his general principle. We cite here the introduction and the translation of 
top paragraph from German to French by Bertrand as follows : 

        M. Gauss a fait connaItre, dans le Tome IV du Journal de M. Crelle, un beau theoreme 
      qui comprend a las fois les lois generales de l'equilibre et du mouvement, et samble 

      l'expression la plus generale et la plus elegante qu'on soit parvenu a leur donner ; les 
      lecteurs francais nous sauront gre de reproduire ici la traduction des quelques pages 

consacrees par illustre geometre a l'exposition du nouveau principe. 
           Le principe des vitesses virtuelles transforme, comm on sait, tout probleme de 

      Statique en une question de Mathematiques pures, et, par le principe d'Alembert, la 
      Dynamique est, a son tour, ramenee a la Statique. Il resulte de la qu'aucun principe 

      fondamental de l'equilibre et du mouvement ne peut etre essentielment distinct de ceux 
      que nous venons de citer, et que l'on pourra toujours, quel qu'il soit, le regarder comme 

      leur consequence plus ou moins immediate. [27, p.365] 

Gauss proposedhis principle as follows : 

  14(4)(2H) (=(16)). 
15(4) Lagrange had already passed away in 1813. This note was written not by Lagrange but by Bertrand. 

  16(f) In 1758, from the Newton's kinetic equation ( the second law of motion ) : F = mr, d'Alembert proposed 
F — mr = 0, where, F : the force, m : the gravity, r : the acceleration. According to his assertion, the problem of kinetic 
dynamics turns into that of the static dynamics.
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        Das neue Princip ist nun folgendes. Die Bewegung eines Systems materieller, auf 
      was immer  fur eine Art unter sich verkniipfter Punkte, deren Bewegungen zugleich an 
      was immer fur ausf3ere Beschrankungen gebunden sind, geschieht in jedem Augeblick 

      in moglich griif3ter Ubereinstimmung mit der freien Bewegung, order unter moglich Me-
      insten Zwange, in dem man als Maf3e des Zwanges, den das ganze System in jedem 

      zeittheilchen erleidet, die Summe der Produkte aus dem Quadrate der Ablenkung jedes 
      Punkts von seiner freien Bewegung in seiner Maf3e betracht. [17, p.233] 

Bertrand translated Gauss' note from German to French as follows : 

<< Le nouveau principe est suivant : 
      Le mouvement d'un systeme de points materiels lies entre eux d'une maniere quelconque 

      et soumis a des influences quelconques se fait, a chaque instant, dans le plus parfait 
       accord possible avec le mouvement qu'ils auraient s'ils devenaient tous libres, c'est-a-dire 

      avec la plus petite contrainte possible, en prennant pour mesure de la contrainte subie 
      pendant un instant infiniment petit la somme des produits de la masse de chaque point 
      par le carre de la quantite dont it secarte de la position qu'il aurait pris s'il eat ete libre. 
     [27, p.366] 

The sum of the product of mass at the every point by the square of the distance between two molecules. 
We assume that rn, m', m" : mass of point, a, a', a" : position, b, b', b" : position after infinitesimal 
small interval of dt, by the force which the points are activated and the initial velocity of the time interval. 
Hence, we assume that it allows b, b', b" to conbine with c, c', c". Then 

rn(bc)2 + in/ (b'c')2 + m"(b"c")2 .. • 

will be minimum. The equilibrium is a particular case of the general law. 

rn(ab)2 + rn' (a'b1)2 + m"(a"b")2 • • 

is a minimum, namely, the conservation of system at rest, which lies nearer to free motion with each point 
than the possible deplacements which we consider. Here may be the important part for Gauss to assert 
eagarly, so we cite Gauss' original to which Bertrand refers as follows : 

        selbst ein Minimum sei, oder daf3 das Beharren des Systems im Zustande der Ruhe, 
      der freien Bewegung der einzelnen Punkt naher liege, als jedes mogliche Heraustreten 

      aus demselben. [17, p.234] 
           sera un minimum, ou, en d'autre termes, lorsque la conservation du system dans 

l'etat de repos sera plus pri's du mouvement libre que chacun tend a prendre que tout 
deplacement possible qu'on imaginerait. [27, p.367] 

We assume that the force which operate on the point rn in the time interval dt is clearly composed : 

   (1) a force, which recieves in addition to the effect of the velocity, moves the point a at c, 
   (2) a force, which operates on the point at rest at c, moves instantly from c to b. 

These assumptions are applied to another point in the same manner. 
  Gauss proved his assertion as follow : we assume that -y -y', -y", • • • are the positions which rn, rn', m" 

can take without any obstacles to combine with, and 0, 0', 0" are the angles which c'y, c'ry', c"ry" makes 
with cb, c'b', c"b". 

7b2 = cb2 + c-y2 — 2cb.c-y cos 0

Ern-yb2 — > rncb2 = Erne-y2 — 2 > mcb.cry cos 0 > 0, 

then > rnryb2 > E mcb2 = > mryb2 must be the maximum, or E mcb2 must be the minimum. ^ 
 Gauss concludes as follows : 

        Es ist sehr merkwurdig, daB die frien Bewegungen, wenn sie mit notwendigen Bedin-
      gung nicht besteben konnen, von der Natur gerade auf disselbe Art modificirt werden,
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   wie der rechnende Mathematiker,17 nach der Methode der kleinsten Quadrate, Erfahrun-
   gen ausgleicht, die sich auf unter einander durch notwendige Abhangigkeit verkniipfte 

Grof3en bezieben. Diese Analogie lief3sich noch weiter verfolgen, was jedoch genwartig 
   nicht zu meiner Absicht gehort. [17, p.234] (do.) 

Bertrand translates Gauss' conclusion as follows :

Il est bien remarquable que les mouvement libres, lorsqu'ils sont imcompatibles avec 
      la nature du systeme, sont precissement modifies de la meme maniere que les geometres, 

      dans leurs calculs, modifient les resultants obtenus directement en leur appliquant la 
methode des moindres carres pour les rendre compatibles avec les conditions necessaires 

      qui leur sont imposees par la nature de la question. 
        On pourrait poursuivre cette analogie, mais cela n'entre pas dans le but que je me 

      propose en ce moment. [27, p.368] (do.) 

 It is very remarkable to be able to explain the free movement, which was incompatible with the static 
state, by the same method as the mathematicians had already calculated the problem, we can do it in 
applying the least square method to show to be compatible with the necessary conditions imposed on the 
characteristic of the question.

      4. Proofs of the eternal continuity in time and space of an exact differential 

4.1. Lagrange's first proof. 
 Historically, Lagrange proved, for the first time, the exernity of time for exact differentials in 1781 and 

in the process used cp to denote the velocity potential.

 p=P'+p"t+p"t2+... 

q = qr + qat + giiit2 +... , 

r=r'+et+r"t2+... ,

 a  =  ar + arrt + arrrt2 + .. • 

i3 = or + /rrt + frig + ... , 
'Y = ,yr + -y"t + 7"t2 + ...

where

dy dx  — 

dE _ dr =a 
dz dz7 
cll _ dr =,1, 
dz dy

 —c=~~
~ dy  dx 

_dr' _~/ 
dz dz 

dz -dy 3

clzi  _ ii 
dy  dx 

d — dr" =nil 
dz dz' 

dg" —dr"_,,,, 
dzdy'

Jdx  +dgdy + jdz + a(qdx - pdy) + i3(rdx - pdz) + 'y(rdy - qdz).

17(11) Maupertuis et al . Gauss says above : 
         Der grof3e Geometer, der das Gebaude der Mechanik auf dem Grunde des Princips der virtuellen 

        Geschwindigkeiten, auf eine so glanzende Art aufgefiirt hat, hat es nicht verschmaht, Maupertuis Princip 
        der kleinsten Wirkung zu grof3erer Bestimmtheit and Allgemeinheit zu erheben, ein Princip, dessen man 

       sich zuweilen mit vielem Vortheil bedinnen kann. [17, p.232] 
Bertrand translates above as follow 

« Le grand geometre qui a si brillamment fait reposer la science du mouvement sur la principe des 
        vitesses virtuelles n'a pas dedaigne de perfectionner et de generaliser le principe de Maupertuis relatif a 

        la moindre action, et l'on sait que ce principe est employe souvant par les geometres d'une maniere tres 
        avantageuse. [27, p.365] 

Here, we can summarize this paragraph by Gauss as follows : if the great mathematicians had regard the science of movement 
on the principle virtual velocity, without paying no attention to perfect or to generalize the principle on the minimum action 
by Maupertuis, then we observe that this princeple is used often by the mathematicians with a very useful manner, which 
is Gauss' selling point mentioning in this note.
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Substituting 

becomes:

the time-series expansions and rearranging with respect to powers of t, the

 (p"dx + q"dy + r"dz) 

+ a'(q'dx — p'dy) +13'(r'dx — p'dz) +7'(r'dy — q'dz)] 
+ t 2(p"dx + q"'dy + r"'dz) 

+ a'(q"dx — p'dy) + (3'(r"dx — p"dz) + -y'(r'dy — q'dz) 

+ a"(q'dx —pdy) +0"(r'dx — pdz) +7"(r'dy — q'dz) ] 
  t2 [3(p()dx  + q(4)dy + r(4)dz)

+ 

+ 

+

+

differential

{(p' 
 (a' + a"t + a"'t2 + ...){(q'dx — p'dy) + (q"dx — p"dy)t + (q"'dx — dy)t2 + ... } 

 (01+0"t+0/11t2+...){(r'dx—pdz)+(r"dx—p"dz)t+ (el dx—p"dz)t2+...} 
1/J IIJ .71 i I q'dz)J!lIIJI/I dz)t2 + • •}

a'(q"dx — p"dy) + (rl„dx — dz) + (r"idy — dz) 

a"(q"dx — p'dy) + 0"(r'dx — p"dz) + ,y"(r"dy — q"dz) 

(q'dx — p'dy) +,C3"'(r'dx — p'dz) +,y"(r'dy — q'dz) 

...},

For this expression to become an exact differential that is independent of t, the coefficient of t must become 
an exact differential. If we suppose that p'dx + q'dy + r'dz is an exact differential, then a' = /3' = -y' = 0. 
Hence, 

    • the first term in (17), p"dx + q"dy + r"dz, must be the exact differential. If we suppose that 

      p"dx + q"dy + r"dz is the exact differential, then the conditions a" = 0" = 'y" = 0 are necessary. 
    • the coefficient of t in the second term of (17) must be an exact differential and must reduce to 

2(p"'dx + q"'dy + r"'dz), requiring that a"' = 3"' = 7"' = 0. 
    • the coefficient of t2 in the third term of (17) must be an exact differential and will reduce to 

3(p(4)dx + q(4)dy + r(4)dz), and thus a(4) = R(4) = 7(4) = 0. 
    • by successive iterations higher-order exact differentials are generated to any order. 

Hence, if we suppose that p'dx + q'dy + r'dz be an exact differential, 

p"dx + q"dy + r."dz p"'dx + q"'dy + r'"dz, p(4)dx + q(4)dy + r(4)dz .. • 
must be exact differentials, when time t is assumed infinitesimally small. We cite Lagrange [26, §19, 
pp.716-717] as follows: 

Il s'ensuit de la que, si la quantite 

pdx+gdy+rdz 

est une differentielle exacte lorsque t = 0, elle devra l'etre aussi lorsque t aura une value 
       quelconque tres-petit ; d'ou l'on peut conclure, en general, que cette quantite devra etre toujours 

       une differentielle exacte, quelle que soit la valeur de t. Car puisqu'elle doit l'etre depuis t = 0 
jusqu'a t = 0 ( 0 etant une quantite quelconque donnee tres-petit ) , si l'on y substitue partout 

       0 + t' a la place de t, on prouvera de meme qu'elle devra etre une differentielle exacte depuis 
t' = 0 jusqu'a t' = 0 par consequent elle le sera depuis t = 0 jusqu'a t = 20 ; et ainsi de suite. 

         Donc, en general, comme l'origine des t est arbitraire, et qu'on peut prendre egalement t 
       positif ou negatif, it s'ensuit que si la quantite 

pdx+qdy+rdz 

       est une differentielle exacte dans un instant quelconque, elle devra l'etre pour tous les autres 
       instants. Par consequent, s'il y a un seul instant dans lequel elle ne soit pas une differentielle 

       exacte, elle ne pourra jamais l'etre pendant tout le mouvement ; car si elle l'etant dans un autre 
       instant quelconque, elle devrait l'etre aussi dans le premier. [26, §19, pp.716-717].

(17)

(18)
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 Lagrange's claim is as follows: initially, we suppose 0 is a small value and that t is in the interval 
0 < t < 0. Next, we substitute t with 0 + t', and setting t' in the interval 0 < t' < 0, we then get 
0 < t < 20. We substitute t similarly and reiterate. Finally, we find that if pdx + qdy + rdz is an exact 
differential at t = 0, then this conjecture holds also for all t such that 0 < t < oo.

4.2. Cauchy's proof.

agoaqoago (1
c) uoS + as = 0,vob + ab= 0, wob +ac= 0. (19)

From (19), we get (3c) :
     au0 _av0au0_aw0av0_ awo (3c) 

abas'acas'acab

8u _ Uv __tjuo_t7vot~wo_8uo8x dy OxS(+1a)[ (8b 8a)8z8c+(8a 8c 8b+ 
8w8u 1___duo_ dvo 8x8zS(+---------------) [(8b 8a)8c+(dwo _ 8uo8a 8c 8b+ 
8w _8u__ 1 c3uo_8vo8x8wo_8uot~x 8x 8zS(±) [ ( 8b 8a)8c+( 8a 8c8b+

i.e.

dy _dv 
 ayax 

dw _ du 

dxdz w _u 
axdz

1

'St±dx  pi  dx   da  db  do

 8z 
dc 

C 
x 

ac

8z 

b 
x 

8b

8z 

c)a 
a dx 

da

(dvo_8wo8z  8c8b)aai, 
(dvo_8wply 8c 8b)8a , 
(dvo_8wo8x  8c Oa] 

/ Qua' _8vo  
8b8a 
   8 _Q 

    0a8c 

dvo —dwo 8
c8b

(20)

(21)

where S is the relative sign of the permutation of a, b, c. Stokes explained Cauchy's S as follows: 

        S is a function of the differential coefficients of x, y and z with respect to a, b and c, which 

      by the condition of continuity is shown to be equal to ~, po being the initial density about the 
       particle whose density at the time considered is p.                        

1   
=1                                   d

x 8z                                 'S(18a8b8c 

then (21) becomes (22) as follows:

 8u8v____r3vo8z_ r3uodzdy 8x—(8b 8a)dc+(a..v,.8a 8c)db+ 
8w _au_ _8up_8vo8wo_a_1_,,..I ax8z8b 8a 8c+8a 0c 8b+1 
8w _8u_au._8vp 8x+8wo_8uoax+ 
ax 8z—8b8a 8o8a8cdb

Z.P. •*

 8u _ a v 
ay ax 
8w _ 8u 

x Oz 
OWOtt 

axaz

 8z 8z 8z 

cOb a 

dx x x 
do db da

ovQ _dwo18z 8c 8bJUa 
8vo _8wo  
8c8b 8a' 

2,9) _awn 8x 
8c8b 8a' 

(8b 8a ) 
   8wo _8u°  

8a 8c` 
8v2 _8wo 1 8

c8b ,

(22)

Stokes [43] evaluated Cauchy's proof and developed his own proof with Lemma 4.1 as follows: 
        §11  •  •  • Since aQ, & are finite, ( for to suppose them infinite would be equivalent to supposing 

      a discontinuity to exist in the field, ) it follows at once from the preceding equations that if 
wo = 0, wo = 0, wo' = 0, that is if uoda + vodb + wodc be the exact differential, either for the 

       whole fluid or for any portion of it, then shall w' = 0, w" = 0, WI" = 0, i.e. udx + vdy + wdz 
       will be the exact differential, at any subsequent time, either for the whole mass or for the above 

       portion of it. 
         §12 It is not from seeing the smallest flaw in M.Cauchy's proof that I propose a new one, 

      but because it is well to view the subject in different lights, and because the proof which I am 
       about to give does not require such long equations. • • • [43, p.108]

4.3. Stokes' proof. 
 Stokes[43] stated in his abstract of Section 2, 

    • Objections to Lagrange's proof of the theorem that if udx + vdy + wdz is the exact differential 
      at any one instant it is always so, the pressure being supposed equal in all directions. 

    • Principles of M.Cauchy's proof. 
    • A new proof of the theorem.
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    • A physical interpretation of the circumstance of the above expression being the exact differential. 
Stokes proposed his new proof, comprising Power's method [39] showed in (18) of Lagrange and criticizing 

 Newton[35], Lagrange[26], Cauchy[5] and Poisson[37, pp.173-4].18 As an aside, Stokes cited Newton's 
proposition XL, Theorem XIII. [35] . 

         Si corpus cogente vi quacunque centripeta, moveatur utcunque, & corpus aliud recta ascendat 
       vel desendat, sintque eorum velocitates in aliquo aequlium altitudinum casu aequales, veloci-

       tates eorum in omnibus aequalibus altitudinibus erunt aequales. 
         If the body moving with an arbitrary centripetal force, or another bodies ascending straight-

       forword or decending straightforword, it takes the equal velocities at any same altitude in 
        everywhere. 

Stokes stated: 
         I confess I cannot see that Newton in his Principia Lib.I, Prop. 40, has proved more than that 

       if the velocities of the two bodies are equal increments of the distances are ultimately equal: at 
       least something additional seems required to put the proof quite out of the reach of objection. 

He claimed a lemma to prove that udx + vdy + wdz will always remain an exact diferential over intervals 
of finite time. Stokes posed the lemma as follows: 

Lemma 4.1. (Stokes) If w1, w2, • • • , co„are n functions of t, which satisfy the n differential equations

(25s)

where  P1,  Q1,  • • • Vn may be functions of t, col, • • w„, and if when col = 0, w2 = 0, • • • ,w, = 0, 
the quantities P1, • • ,Vn. is infinite for any value of t from 0 to T, and if wi, • • • wn are each zf 
t = 0, then shall each of these quantities remain zero for all values of t from 0 to T. 

  Proof. First step : we evaluate the behavior of w1, w2 i • , w,,, in the interval of 0 < t < T 
that: at the time of T, 

       it may be taken so small that the values of wl, w2, • • • , w7 are sufficiently small to exclude all 
       the values which might render any one of the quantities P1, Qi, • • • , V1, • • • , P., Q., • • • 

       infinite. 

Defining L such that: 

                           L = max (P1, Qi, ... , V1, • • • 7 Pn, Qn, ... , Vn), 

then (25s) becomes:

(26s)

dt=  1'iw1 + Q1w2 ... + Viwn) 

dwn  

dt — PnWl + QnW2 ... ± Vnwn, 

 of t, w1 i • • • w7,, and if when w1 = 0, w2 = 0, • • • , wn = 0, none of 
)• any value of t from 0 to T, and if w1i • • • wn are each zero when 
ies remain zero for all values of t from 0 to T. 

he behavior of col, W2, • • • , wn in the interval of 0 < t < T << 1 such

dt= 

do; n  

dt —

L(wi + w2 + • • • + wn),

L(W1+W2+•••+wn),

0<vt<T.

Setting S2 : 

S2- col +w2-••+con, 

we obtain 
di 

dt= rnLS2, S2=Ce'ra,t, 0 <v t <T, 

...but no value of C different from zero will allow S2 to vanish when t = 0. 

Hence, we arrive at C = 0, and then 

                                        W1 =W2 =•••=Wn=0. 

       Since then wi, W2, • • • , wn would have to be equal to zero for all values of t from 0 to T even if 
      they satisfied equation (26s), they must a fortiori be equal to zero in the actual case, since they 

      satisfy equation (25s). 

 Second step : we evaluate w, in the interval of 0 < t < T.

18(.0 We introduced "Poisson's conjecture" in the introduction §1.
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This lemma might be extended to the case in which n = oo, with certain restrictions as to the 

convergence of the series. We may also, instead of the integers 1, 2, • • • , n have a continuous 

variable a which varies from 0 to a, so that co is a function of the independent variables a and 

t, satisfying the differential equation:

dL_1 
—pa dtJIF(ct,w,t)coda, 

      0

where we suppose I' (a, 0, t) < cc,

  When t = 0, we 

a=oo

obtain w = 0,

dw 

dt

0<da<a, 0<dt<T.

0 <v t < T. Finally, we consider this integral equation in

f~ da, 0<va<oo, 0<dt<T.

putting

      The proposition might be further extended to cases for which a = oo, with the equations (25s) 
       are already more general than I19 shall have occasion to employ. ^ 

We suppose p to be a function of p and f,l(p), namely, here we suppose the barotropic fluid, then

(275)df(p)  
       dx

X—
Du 

Dt'

df(p) =Y — Dv 
dyDt'

df(p) = Z — D w 
dz Dt '

The force X, Y, Z will here be supposed to be such that Xdx+Ydy+Zdz is an exact differential, 
this being the case for any forces emanating from centers, and varying as any functions of 
the distances. Differentiating the first equation (27s) with respect to y, and the second with 
respect to x, subtracting, putting for Du/Dt and Dv/Dt their values, adding and subtracting, 
du/dz.dv/dz20 and employing the notation of Art. 2, we obtain

(28s)

Du// _ _ dv /  du // dv /// D
tdw+dzw+ da w+dz w 

                                         du           w/ _du+dwCA)"+dwW/// D
tdydxdzdy 

Thou' du / dv // du dv 1 /// 
Dt —dz""dz w — dx + dy W •

      By treating the first and third, and then the second and thir 
       manner, we should obtain two more equations, • [43, p.111] 

According to Stokes' explanation, from (27s), we get:

Dw' 

Dt

d of equation (27s) in the same

Dt 12 \ dy dz ) 

 (dv dw)1dw dv ll dv1(du dw   dy+dz){2(dy dz)J+dx{2(dzdx 
1dv dw)( dw dvldv du dvdw  
2L-(dy+dzJdy dz) + dx dzdx2 + 
1dv dw)( dw dv)dudv dw 
2L—(dy+dzldy dz)+dx1 dz dy Xi 
  1du dv dwlldw dv) 
 2dx+dydzl(dy dz ) 

 —w' div u .

)} + 
dwdv 

dx2

dw f 1 (dv 
dx 12(dx 

 du dw

dx dy

dy) I

19(4) Stokes. 
20(j) sic.
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 Dw"D f 1(du dw) 
Dt=Dtl.2dz dx ) r 

= duf1(dw dv+(dudwf1(du dw+dwf1(dv dv.                                      )i    dyi2-dy dz ) Idx+dz)12dz dx)Idy2-dxdy)} 
    1 dudw du dv dw dv dwdududw(du dw                                )i 

   2dy2 dy dzdy dx dy2(dx+dz)dx 
    1dv(du dw(du

+dw(dudw)- 

= 

              dx ) dx dz )dz dx ) 

      ( du dv dw) ( du dw)      2
clxdydz)clz dx ) 

  = --co" div u.

DcomD f ( dv du) 

          Dt=Dt 2 thr, -dy ) I 
duf _1(dwdv+dv 

= dz 1 2 dy dz )./ dz 2 
             1 du dw dudv dvdu 

2_dz dy dz2dz2 

         =1 dw ( dv du)( du 
_ dz dx -dy) 

= +1(du++dw(dv                -
2-dxdydz)dx 
             = —co" div u. 

We can then arrange (28s) by the array:

(28s)

 Dw'  

Dui"  
Dw "

Cdu dw( du dv1dv      )idzdx\dx+dy)12Cdx 
dvdwdu dvdv  du 

dzdx-Cdx+dy)C dx  dy) _ 
dv) dui + dyCdx dy)_ 

du 

dy)

 Dt

 @IR   dx dy 

 o  (du 
 dx ' 

     — (Lcil

    dv 

   dy 

du 

   dy 

   du 

   dz 

dz 

dw) 

dd 
du 4 .. dv 
dx dy

 d 
 r

dv 
dz

0 0 

 

!'"L'z) 
  dw 

   dz

dv dw 
dx dx 

  dw)dw 
  dz)dy 

du dv 
dx+dy

WI 

 WII 

W'II

dyl }

WI 

 con 

will

           ~W —W div u,(23) 
where 

     ,_1(dwdv\„_1(dudw\,,,_1(dvdu\(,„,,,
2\dy dzl'w2\dz dx/'w2dx dy/'W=w,w,w 

      Now for points in the interior of the mass the differential coefficients ~Z, • • • will not be infinite, 
       on acount of the continuity of the motion, and therefore the three equations just obtained are 

       a particular case of equations (25s). 
  Stokes concluded this problem with the following: 

        If then udx + vdy + wdz is an exact differential for any portion of the fluid when t = 0, that 
       is, if co', w" and w"' are each zero when t = 0, it follows from the lemma of the last article that 

W', w" and co' will be zero for any value of t, and therefore udx + vdy + wdz will always remain 
      an exact differential. [43, p.111]. 

Thus the proof of this problem, demonstrating the eternal continuity in time and the space of an exact 
differential, had been solved by Stokes or Cauchy.
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 TABLE 2. C1, C2, C3, C4 : the constant of definitions and computing of total moment of 
 molecular actions by Poisson, Navier, Cauchy, Saint-Venant & Stokes

notname elastic solid moment of elastic fluid equiliblium of fluid

1 Poisson

C1= k=27r~`rsd.fr—15Eadr
C2=K=2">2fr—3

a

C3 =f2" dyf0rcos/3sin/.3dI3g3X/~~ {L7r 27r27r5 ~ 15} ~15
 C4 = fo~d'y f02 cos /3 sin Qd/3 g4 ~ 3

Remark:
C3 is choiced as the common factor of {•, • }

1[~d•rfrCl= —k=—3pe.>r3dr
_ _2irrrr3d.r{r

15/~4dr

C2=—K=-6Erfr
27rr=3E4~fr

_rr3
C3dTfrC'10%rd 7ldrfrE=F=

3Er3 dr

{11110,30}30
C4: (3-2)pf N= fi Erfr~fi

lriz1Cl= —q= 14s3EC2=p-ErR
N=p+q(*+~)
where N : the vertical force,

A, A' : the radii of

the principal curvature

2 NavierC1 =~= 15
Lc" dP•P4fP

C3 =f?,df027rcos (p&p g3=IN,,5,5}
2r1 

7rl627r —241515

C1 = E  fo dp • P4f (P)
C2 = E=3fdp

//•''P2''F(P)C3 = f02dof02cos4'd4'g3{7r7r27r1,30}~15
C4 = fn2 dcpfo2 cos '04g4~23

C1 = p 417 dpp3f (P)
C3 = f2df02 dcpg3~1 7i 87r 47r{36•

3 Cauchy

C1 = R = - ° j r3f(r)dr
= ±2f°f0[r4f'(r) — r3f(r)]dr

C2 = C = ±23° fo r3f(r)dr
C3 = 2 fo " cos2 qdq fo cos2 a cos2 /3dp

=fo7r cos2 qdq f0cos2 p sin2 p sin pdp
15 7

C4 =2f2"f~cos2 a sin pdqdp
= 7rcosf'~2 p sin pdp =2 ,

 4  Saint-  V
enant

Cl=e, C2= 3

5 IStokes Ci=A, C2=B Ci=,a, C2=4

                                 5. Conclusions 

We state our conclusions: 

(1) The study of exact differentials began with a discussion of the equilibrium condition given by 
   Maupertuis [31] in 1740 and Clairaut [6] in 1743 and developed by Euler [14] in 1769-70 in ex-
   tending the now-called Euler equations. Following that, various points of view were discussed (cf. 
   Table 1). We saw that one of the ideas had come largely from fluid mechanics, for which Navier, 

   Cauchy, Poisson, and others, had proposed equations of equilibrium and motion of fluids. When 
   considering the classical topics of mathematical physics as applied to fluids, exact differentials 

    are necessary in these endeavors. 
(2) Gauss [17] propose the general principle on both static and motional state, to which Lagrange 

   [27] refered as the most general and elegent principle in the ever heard. According to Gauss' 
   principle, we can't distinguish the static state from the motinal state, and the former is one of 

   the latter. Gauss applied this principle to his later studies, such as the capillary action, which 
   we discuss in Part 2 of our following papar. 

(3) The proof of the conservation in time and space of an exact differential was discussed by La-
   grange, Cauchy, Stokes, and others. The herein-called "Poisson conjecture" in 1831, cited in 

   the Introduction (§1) as one of our main motivations for this study, had its beginnings with the 
   incomplete proof by Lagrange [27]. However, thereafter, Cauchy [5] had presented a proof as 
   early as 1815, while Power [39] and Stokes [43] had tried by other methods. To date Cauchy's 

   proof is still considered to be the best. 
(4) In another approach to exact differentials, Helmholtz [21] and Thomson [45, 46, 47] proposed 

   vortices and related concepts, and Bertrand [1, 2, 3, 4] and Saint-Venant [41], and other, discussed 
   the relationship or distinction between rotational motion and irrotational motion with the exact 

   differential with Helmholtz [21] proposing a criterion for it.
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   TABLE 3. The expression of the total moment of molecular actions by Poisson, Navier, 
   Cauchy, Saint-Venant & Stokes

23

 k

 K

 27r

15

27r
71-

E

E (3- fr

1
Poisson
[36]

elastic solid r5

r3

d. f r
dr

2
Poisson
[37]

motion of fluid k

K

1

30

1
6

E

E

r3
f r

dr

fr

c1 27r13— 47r 15 — 30

127r1C
4 = —

3
Poisson
[37]

equiliblium of fluid
1

4

6

7

E77

E

1

r

ri2z'R

R

ri = Vx/2 y'2

4
Navier
[33]

elastic solid 27r

15
dp P4 f P p: radius

5

Navier
fluid
[34]

motion of fluid

E

27r

15

27r

3

dp

r dp

P4

P2

f(p)

F(p)

p: radius

6

Navier
fluid
[34]

equiliblium of fluid
47r

3 fo°° dpP3 f (p) p: radius

7
Saint-Venant
[41]

fluid E
3

8
Stokes
[43]

fluid /1 3

9
Stokes
[43]

elastic solid A

TABLE 4.  Ci,  C2 and 

Poisson & Navier

equation of equilibrium of fluid containing exact differential by

noiname C1, C2 of equilibrium equation of equilibrium with exact differential term

1
Poisson
[37]

Cl —"q 41= 63  E
 C2  =  p  61E3  E  rR

N = p+ q

where N :

A, : the

± b.)
the vertical force,

radii of the principal curvature

0 = fff dxdydzp(d7 dd%yddSzz) + Pox+ Q6y-1- ROz
By integration by parts

2

Navier
fluid
[34]

C1= P77:`+'fq7 dAP3 f (P)
fC3 =thpg3I

,= 3

0 = fff dxdydz — 2)6x (Q — Oy (R — 2)(5 z]
— ff dydz(p'Sx' — p"Sx") — ff dxdz(p'Oy' p" Oy") — ff dxdy(p/Oz` —

. condition of inner point and exact differential
11E, = P,Q(-LER.dp= Pdx+ Qdy+ Rdz
dxdydz

. boundary condition and relation of variation Ox,6y,Oz

0 = Pdx Qdy Rdz 0 = Ox cos 1+ Oy cos in + Oz cos n

These have had a major 
Navier-Stokes equations.

effect on the development of the equations of fluid mechanics, including the
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The
"two-constant" theory and tensor function underl 

        the  Navier-Stokes equations
ying

ABSTRACT. The "two-constant" theory introduced first by Laplace in 1805 still forms the basis of 

current theory describing isotropic, linear elasticity. The Navier-Stokes equations in incompressible case 

Utu — pAu+u• Vu+Vp=f, div u=0. 

as presented in final form by Stokes in 1845, were derived in the course of the development of the "two-

constant" theory.

    Following in historical order the various contributions of Navier, Cauchy, Poisson, Saint-Venant and 

Stokes over the intervening period, we trace the evolution of the equations, and note concordances and 

differences between each contributor. In particular, from the historical perspective of these equations 

we look for evidence for the notion of tensor.

    Also in the formulation of equilibrium equations, we obtain the competing theories of the "two-

constant" theory in capillary action of Laplace and Gauss.

    After Stokes' linear equations, the equations of gas theories were deduced by Maxwell in 1865, 
Kirchhoff in 1868 and Boltzmann in 1872. They contributed to formulate the fluid equations and to fix 
the NS equations, when Prandtl stated the today's formulation in using the nomenclature as the "so-
called NS equations" in 1934, in which Prandtl included the three terms of nonlinear and two linear terms 
with the ratio of two coefficients as 3 : 1, which arose Poisson in 1831, Saint-Venant in 1843, and Stokes 
in 1845. Prandtl says, "The following differential equation, known as the equation of Navier-Stokes, is 
the fundamental equation of hydrodynamics," 

                            Dw
_ g ——grad p+1v grad div Aw+vAw, 

                          dtP 

          where, Dw = ~3
t+ wVw, v, w = (u, v, w), g = (X, Y, Z)                  dt

    In the appendices, we show the process of formulation citing their main papers of Navier, Cauchy, 
Poisson, Laplace and Gauss with our commentary. 

 In addition to, from the viewpoint of mathematics, several important topics such as integral theory in 
§E.17 and §E.23 which is Gauss' selling point. We show his unique RDF and reduction of integral from 
sextuple to quadruple, in the sections §E.2, §E.16 and §E.17. In and after §E.18, we show his calculus 
of variations in the capillarity against the RDF and calculation of the capillarity by Laplace. 

    Finally, for the question to be solved by variational equation introduced in §E.18 and §E.19, we 
sketch his method deduced from the previous work of theory in curved surface [15], to the capillary 
problems including the height of fluid and the tangent angle made between the fluid surface and the 
wall in §E.28 and §E.29.
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                                   1. Introduction 
  1 In the early 19th century

, many investigators contributed to the development of the Navier-Stokes 
 (NS) equations, the basis for the description of viscous incompressible fluid flow. From their inception 

with work of Laplace, the main contributors were Navier, Cauchy, Poisson, Saint-Venant and Stokes. 2 
We study the original contributions of each of these investigators and the form of the NS equations as 
formulated by their authors, and endeavor to ascertain their aims and conceptual thoughts in developing 
the then new equations. Historical order is followed as determined by date of proposal or publication.

    In 1805, Laplace introduced the "two-constant theory" , so-called because of the prominence of 
two constants in his theory, in regard to capillary action with constants denoted by H and K. 3 (cf. 
Table 2, 3). Thereafter, contributing investigators in formulating NS equations, i.e. equations describing 
equilibrium or capillary situations, have presented various pairs of constants . The original two-constant 
theory is commonly accepted as describing isotropic, linear elasticity. [11, p.121]. However, the persistence 
of just two constants in later developments is to be particularly noted . We believe that Poisson was one 
of few who were aware of this aspect when he introduced Laplace's deductions when, in 1831, he states, 

      "elles renferment les deux constantes speciales donc j'ai parle tout a l'heure" [62, p.4].

        (Engl. Transl.) "they incorporate the two special constants of which I mentioned just 
      a while ago." 

    With this viewpoint in mind, we retrace the evolution of the two-constant theory over the subsequent 
four decades culminating in 1845 with the presentation of the NS equations in the work of Stokes. 
We especially pay attention to how contributors to this development introduce their two constants . 
To facilitate comparisons of each contributor, we develop a universal notation that helps in expressing 
the kinematic equations that are contained in the NS equations. The need for this is highlighted by 
two separate developments represented by Navier and Poisson. Indeed, at the time, there were heated 
arguments over Navier's use of integration and Poisson's use of summation .

    Moreover, we trace the evolution of the stress tensor term that conventionally describes viscous 

forces. In so doing, we endeavor to ascertain if the notion of tensor, which is usually thought of as a 

later mathematic development stemming from the work on differential geometry
, is present in any of the 

earlier formative works on elasticity and fluid dynamics.

    Another topic discussed in the final section is the rapidly decreasing functions [RDFs] which were 
included in the "two-constant" and which provided the common, mathematical interpretation of fluid 
properties among the then progenitors, in particular by Gauss, a contemporary of the progenitors of the 
NS equations, who contributed to the formulation of fluid mechanics in the development of Laplace's 
capillarity.

    Finally, we uncover reasons for the practice in naming these fundamental equations of fluid motion 
"NS equations" . In Table 6, we present a chronology outlining this practice . The last entry from 1934 
by Prandtl [64, p.259] grouped the equations containing three terms: 

  1) the nonlinear term 
  2) the tensor function with the main axis (the normal stress) of Laplacian multiplied by v

1(.11) Throughout this paper, in citation of bibliographical sources , we show our own paragraph or sentences of commen-
taries by surrounding between (.u.) and (¶f). ((k) is used only when not following to next section , ). And by =*, we detail 
the statement by original authors, because we would like to discriminate and to avoid confusion from the descriptions by 
original authors. The mark : = means transformation of the statements in brevity by ours . And all the frames surrounding 
the statements are inserted for important remark of ours. Of course , when the descriptions are explicitly distinct without 
these marks, these are not the descriptions in citation of bibliographical sources . 

2(4) To establish a time line of th ese contributor, we list for easy reference the year of their birth and 
death: Sir I.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d'Alembert(1717-1783), Lagrange(1736-1813), 
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855) , Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857), 
Saint-Venant(1797-1886), Stokes(1819-1903). 

3(4) Of capillary action
, Laplace [34, V.4, Supplement p.2] acknowledges Clailaut [8, p.22], and Clailaut cites Maupertuis 

[42] .
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  3) the gradient term of divergence multiplied by  s and used the term "the Navier-Stokes equations" 
for this set of equations.

  These equations with the two coefficients in the ratio of 1 : 3 originated from Poisson [16] in 1831. 
Moreover, these equations contained both a linear and a nonlinear term developed earlier in Navier's 
equations [20] in 1827. Still earlier, the nonlinear term was introduced by Euler [12] in 1752-5. 

  Cauchy [7] in 1828, with (46)c, expressed the linear term as two terms , one the tensor function with 
the main axis ( the normal stress ) of Laplacian and the other a gradient of divergence term, with two 
coefficients or constants, which are our main theme in our paper.

                             2. Preliminary Remarks 

    In this paper, we use the following definition according to Cauchy of the second-rank tensor in 
Euclidean three-space, following closely the presentation of I. Imai [22, p.178] : we call a 3 x 3 array 
denoted here by P = (P3) a second-rank tensor if it returns a new vector P7, when contracted from 
the right by the unit vector n represented by the column matrix of directional cosines. Thus the vector 
P.,L - P • n has column matrix

Pnx - Pxx Pyz Pzx 1 
Pny = Pxy Pyy Pzy m 

                         Pnz - - Psz Pyz Pzz- n- 
  In what follows, "tensor" means the "stress tensor" as introduced above . 

 Throughout this paper, we display for brevity a tensor by specifying only its components , P. If the 
tensor satisfies Pij = Pji for all i, j = x, y, z then this tensor is said to be symmetric . An example of a 
symmetric tensor is the well-known Kronecker-delta 5i j. . Alternatively , if then the tensor is 
said to be anti-symmetric or skew-symmetric.

    In addition, we have employed the Einstein summation convention where summation is implied over 
twice reeated indices.For examle, we can writes—du~v dwy     PP~i -1 aaxi—x}y+~zsimplified asv= akvk = 
Vk k.

  In labeling some equations we provide two numbering schemes. Numbers on the right-hand-side 
correspond to our normal indexing while numbers on the left-hand-side of equations refer to those given 
by the author in his original paper. The subscript to the original indexing, is in the format for example 
Ne/Nf, , where the capital letter is an author designation and the lower case superscript gives the type 
of theory; the above example then signifies "elasticity/fluid by Navier. For equations indexed by section 
in the original papers, the citation is then in the format "section no.-no. by author". When referring to 
a "fluid" , an "elastic fluid" is implied.

                 3. A universal method for the two-constant theory 

    In this section, we propose a universal method to describe the kinetic equations that arise in 

isotropic, linear elasticity. This method is outlined as follows: 

    • The partial differential equations describing waves in elastic solids or flows in elastic fluids are 

      expressed by using one constant or a pair of constants C1 and C2 such that:

                                       2            for elastic solids:~ tu— (CiT1 + C2T2)=f, 
           for elastic fluids:~t— (C1T1 + C2T2) + • • • = f, 

  where T1, T2 , • • • are the terms depending on tensor quantities constituting our equations . For 
example, the NS equations corresponding to incompressible fluids consist of the kinetic equation 

along with the continuity equation and are conventionally written, in modern vector notation
, as f

ollows:

Ou 
—Au+u•Vu+~   /~p=f

, divu=0. (1)
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   Here u is the velocity, f accounts for the body forces present, p the pressure and 0 - V • V 

 the Laplacian or Laplace operator. 

• The two coefficients Ci and C2 associated with the tensor terms are the two constants of the 

 theory, definitions of which depend on the contributing author. For example, E and E were 

 introduced by Navier, R and G by Cauchy, k and K in elastic and (K + k)a and (K3k)a in 
 fluid by Poisson, e and s by Saint-Venant, and it and s by Stokes. Since Poisson, the ratio of 
 coefficient attached to the term of the tensor function with the main axis ( the normal stress ) 
 of Laplacian to that of grad div : COefficientoftensor = 3 was fixed. Moreover, C1 and C2 can be                                        coefficientofgraddiv 

 expressed in the following form:

{
C1 = .CrlgiSi, 

C2 = £r2g2S2,

Si = f
(f'g3— C3, S2 = fg4 C4,

 C1 = C3Lrigi = s,Crigl, 
 C2 = C4Gr2g2 = 23 .Cr2g2.

   Here .0 corresponds to either Eo as argued for by Poisson or fo as argued for by Navier. A 
 heated debate had developed between the two over this point. It is a matter of personal preference 

 as to how the two constants should be expressed. 

• The two constants depend on two radial functions r•i and r2 related to the radius of the active 

 sphere of the molecules, raised to some power of n for Poisson's and Navier's cases; the relationship 

 between these functions can be expressed by a logarithm with base r such that: log, 2 = 2. 
• gi and 92 are the kernel functions having both 

   — the physical caracteristics come from the fluid dynamics described by the microscopically 
     basic relations of the attraction and/or repulsion and 

   — the mathematical requirements for the rapidly decreasing function. 
• Si and S2 are two expressions which determine the angular dependence on the surface of the 

 active unit-sphere centered on a molecule through application of the double integral (or single 
 sum in the case of Poisson's fluid). 

• g3 and g4 are certain compound spherical harmonic functions determining the momentum over 
 the unit sphere. 

• C3 and C4 are indirectly determined as the common coefficients derived from the invariant 
   tensor. With the exception of Poisson's fluid case, C3 of Ci is 4, and C4 of C2 is15, which are 

 evaluated over the unit spheres for each molecule, and which are independent of the preference 

 in using integrals or summations. In Poisson's case, we obtain the same values as the above after 

 multiplying by 4 . The integrals are calculated from the total momentum of the active sphere 
 surrounding the molecule. 

• The ratio of C3 to C4 : =  including Poisson's case.

                   4. Genealogy and settlement of the stress tensor 

    In Figure 1, we have traced the genealogy of the tensor terms, in particular noting the form of each 
tensor appearing in the NS equations. These tensors are listed in Table 5, where we have differentiated 
those tensors associated with elastic solids or elastic fluids. From this genealogy, it could be asserted that 
Cauchy [6, 7] was the first user of "tensors" and arguably its inventor. This view is supported by the 
admission of Poisson [60] that he received the idea of a "symmetric tensor" from Cauchy. Moreover, the 
idea of tensor by Saint-Venant concurs with the work of Stokes. Here, we denote the two routes as NCP 
and PSS, both of which are portrayed in our figure, and by which we can explain the genealogy of tensor 
as it applies to the NS equations. cf. Table 5.
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 Fig.1: A genealogy of the stress tensors in the prototypical Navier-Stokes equations
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G Kirchhoff[23] : 
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Saint-Venant [67] t Stokes [74]t Maxwell [43]I7 Kirchhoffl Boltzmanna

II 4— 
III—

Non-MD deduction 

  PSS pattern

Gas theory by MD deduction

t%7 = -E(Sij2Lk,k ui,j -{- ui i), t = (p — E2tk,k)(5ij — E(ui,j + uj,i) 
         a t2~ =-3((Sijuk,k+uij+uj,i),t2j = -P8ij + Avk,k(Sij + l.L(vi,j + vj,i) 

t?'f = Avk,k5ij j (vi,j +vj,i) 
t = ( (Pxx + Pyy + Pzz) - 8 vk k)(Sij + E(vi,j + vj,i),  (Pxx + Pyy + Pzz) = -P 

2 to = (-p --3•AVk,k)Oij { l-t(vi,j 
stated his reduction of the number of independent to from 9 to 6 is due to Cauchy. 

           a to =(—P—gl-LVk,k)50 +u(vi,j +vj,i) 
ti- = (-p - 2kvi,i)(50 + f (Uij + vj,i) 
tij = (-p - 3 Rvk,k)(5ij + ReVi,j + vj,i)

(cf.§5.2)

  We cannot ascribe to Euler a definite form for the stress tensor; however, Voigt [77] 
version in 1905. 4 He begins by introducing an exterior subscript index of the vector 
indices to the product of elements. 

[t3.T]1 = B1.T1, .. • 
  Then he defines the derivative of the synthetic function as follows: 5

has presented a 

as also interior

Here,

         dt[w.T] - V 
he defines two vectors as follows:

[T] =
T1 

T2

(37)v

 [w  .T] =

[Tdw  .—dt]+[w.[w.T]

 'w1 T1 

W2 T2 
'W3 T3

  4As an aside , W.Voigt [77] states Euler equations with his invented tensor in 1905 as follows : ( we show his sketched 
contents  ) 

          Auch hier sind die  Ausdriicke fur die Componenten nach den Richtungen der Tensoren Tl, T2, T3 - 
        auf denen eine Seite hervorzuheben ist - von Interesse ; es gilt namlich, wenn diese Richtungen wieder 

        durch die Indices 1, 2, 3 characterisirt werden, hochst einfach 

(19)v [t3.T]1 = ,131.T1, ••• 
          Bei Benutzung dieses Resultates and bei Beriicksichtigung der Constanz der Componenten von T 

       nach den mit dem Korper bewegten Axen nimmt die Gleichung (32) v ( [w.T] = D) die Form an 

                       (37)v [T.dt _ -^- [w.[w.T]] # D ; 
       es ist dabei zu beachten, dali dieselbe iiber die Richtungen, nach denen die Componenten der in ihnen 

auftretenden Vectoren zu nehmen sind, noch weite Freiheit laiit. 
         Der wichtigste Fall ist der, dali jene Richtungen in die eine Seite der Tensoren T1, T2, T3 - die 

Haupttragheitsaxen des Korpers - fallen. Hier reducieren sich nach (19)v die Componenten von [w.T] 
       auf w1T1, w2T2, w3T3, and es folgt, da die Th von der Zeit unabhangig sind, aus (37)v,

                    {T1 d1 +"w2w3{T3 — T2} = Di,                            T2 V- +w3w1{Tl —T3}=D2, 
                          T3ddt3 +wiw2{T2 —Tl} = D3 

Das sind die Eulerschen Gleichungen. [77, §11, pp.14-15.]

 5(4) By # , Voigt means . , i.e. equality by definition.
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  then if  Tn are independent of time, we can deduce the vectorial form of  (37)v:

 Tl dt+w2w3{T3—T2} = Dl, 
T2 di—Lt+ w3w1{T1—T3} = D2, 
T3 +7E002{7'2 — T1} = D3

He states that these are the Euler equations as expressed in tensor form. 

                 5. Derivations of the two constants and tensor 

 Recently, Darrigol [11, p.121] has concluded6 
    "it is called that the two-constant theory is the one now accepted for isotropic, linear 

    elasticity," 
but Poisson [62, p.4] had stated already in 1831: 

   L'equation qui resulte de cette consideration et celle qui appartient a la surface entiere 
   sont le deux equations du probleme ; elles renferment les deux constantes speciales donc 

   j'ai parle tout a l'heure. [62, p.4].

[(Engl.transl.) The equation that results from this consideration and that which 
      belongs to the whole surface are the two equations of problem; they incorporate the two 

      special constants of which I have just spoken]; 
and from these two equations Laplace had provided explanations of various phenomena observed by 
physicists. Therefore, we believe that Laplace was the first to establish a "two-constant" theory [37] in 
Table 3. 

5.1. Navier's two constants and tensor. In his theory of elasticity in (2), Navier deduced the single 
constant E. 

  The corresponding NS equations derived for incompressible fluids by Navier himself (1) are in their 
original form as follows: 

    l =

    {X+6(3(12U  d2ud2u1_dududupdx+CV+z2'+2dxdy+2dxdz dl dx'U—dyv—dzw, 1 = Y + E d2 v_4_d2vd2ud2wdv _dvdvdv 
p dy+3dy_i_+2dxdy+2dydzdt dxu—dy 41—dz • W ;(2) 
1= Z + d2d2d2wd2ud2v _dw _ dwdwdww 

    p dzdx2'+WI2+3+2dxdz+2' u —dydzdt dxdy71 —dz; 

  along with the equation of continuity: 2 + dy +z = 0. 

  Navier provided an evaluation of the two constants as follows: 

3-1087r4`.1--744~/2272—()Nf e=30fdppf (p) =15Jodppf (p),E=6JdPPF(p) =3fdpp2F(p).(3) 
  In the case of fluids, Navier was well aware of the necessity for the equation of continuity, because 

from 

  (2) he obtained e0 by differentiating the equation of continuity with (1x, cy, „I-1z ). For example, the 
e-terms in (2), as well as (4), are reduced to €Du as for example in (5). 

  This is solely due to the mass conservation law, according to the explanation given by Navier.

 6(1) Darrigol [11, p.121] uses such terminology, however, not explaining his definition or concreate meaning of the the 
two-constant theory. Here, we introduce his sentence cited from Darrigol, to whome our motivation owe largely, as follows 

          In the final version of his theory, Cauchy proposed the more general, two-constant relation 

                                  = K'(dzu3 + 03u2) + iv'si3akuk 

        between stress and deformation. This allowed him to retrieve Navier's equation of equilibrium as the 
        particular case for which K' = K". The two-constant theory is the one now accepted for isotropic 

       elasticity. [11, p.121]
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  As an aside, Navier always used his often-used method involving a four-step procedure to solve 
  three of the equations, such as the equilibrium equation for the fluid [47], the kinetic equation for the 

elastic solid [46], and the kinetic equation for the fluid [47] with the following general method: 

   (1) initially, deduce either one constant or two constants, including the incomputable function such 
     as f p, f (p) or F(p) in Table 3, 

   (2) then construct the indeterminate equation, 
   (3) next expand it in a Taylor series and integrate it by parts, exchanging d and b, and then pair up 

     with the same integral operator, and finally 
   (4) solve the indeterminate equation from the two conditions of the interior and the boundary. 

  We present more details of this procedure by outlining Navier's analysis of fluid flow [47]. 

5.1.1. Indeterminate equation. As called then by Navier, the indeterminate equation is given as 
follows:

(3-24) N f 0 fffdxdYdz

— e f / dxdydz

[P — —p 
[( — g - p 
[R—~— p       dz 

   duddu+  3
~~~~
 1.4 (.4 act, (4 Lb  ULL <JUll 

 dx dx dy dy dz dz 

du dx dydydx)(dxd:   tidy di  Sdv dv 

du Odw d dx dz ddx)(dy u Odw dv

   Sds2E(u6u v5v w8w),

Ta-   + UP+vPy+ WcPz)]OCIL du 

Til dv +w ddxv + v ddv _i_w1121)1x,,,                  Y-1-dzJ"' 

dt ' "' dd 7 4 - V dd wy 4 - W dd If ) ] 6w dw _i_ 

duMu  _i_  du Mu dy dy 1 dz dz ) + ( dd vy Oddxu ± dd v Mu 
1 Sdv V dx) dx dx +1dy dy       +(dvOdv2dv Odv +ddvOddvY' 
aOdw)_i_(dv6dwdv Mw)j: (dz ' 
z dx ' dy dz ' dz dy ' ddwx '

                        -C dy )+(ddzdx+dx dz                                    _i_w tidydw Odu                    _L)                                  v 5du 

                         dz )(dwdy dz'dz dy                        _i_Mvdw Mv                          _i_)                                   Odv 

                  ( dw Mw _LdwMw _i_3 dw Odw 
                            dxdx1dy dy 1 dz dz

(4)

where (P, Q, R) are the components of the applied force, S shows an integration to be performed in the 
total area of the surface and ds2 is its area, and with the quantity E, varying it according the the nature 
of the material with which the surface contacts. 

5.1.2. Determinate equation from a Taylor series expansion and integration by parts. Putting 
Sds2 E(uSu+ v8v + w6w) = 0 in the indeterminate equation (4) and performing a Taylor series expansion 
to first-order and neglecting higher-order terms, we have the determinate equation as follows:

(3-20)Arf 0 Ndx,dydz
 {P—sk—  dx 

[Q—— 

      y [R— —       dz

P 

P 

P

 From (5) we obtain (2), i.e. the kinetic equation, which is equivalent to the first equation of (1). 

5.1.3. Determinate equation deduced from boundary condition. As a boundary condition, Navier 
used two constants in one equation. In this respect, his method is unique within developments of the 
period. Navier had explained his method as follows: 

  regarding the conditions which apply at points on the surface of the fluid element, if we substitute 
    • dydz --3 ds2 cos 1, where 1 is the angle by which the tangent plane makes with the yz-plane 

      of the surface frame, 
    • dxdz --* ds2 cos rn, where similarly rn is the angle with the xz-plane, 

    • dxdy — ds2 cos n, where similarly n is the angle with the xy-plane, 
    • ff dydz,fdxdz, ff dxdy –+ Sds2 , where S is the sign of integral in respect to ds2 on the 

       surface, 

then, because the factors multiplying Su, Sv and ow respectively reduce to zero, the following determinate 
equations should hold for any point on the surface of the fluid element:

(3-32)N f

du vw)e(d d2std2uu dt 

 dv _L_  dv _L_ , dv _L_ dv dt `'" dx ' dy ' dz) 6 (Sg (!"--124 dd2z12' )]5v (5) 
dwdwdw _t_dwd2 w_L_d2 w_L_d2w)16,, 7/"F+Udx'dy'dz) 'dx2'dy2' dz2 ) J 
1, which is equivalent to the first equation of (1). 

boundary condition. As a boundary condition, Navier 
spect, his method is unique within developments of the

            dvdudw Eu+ E[ COS I 2du+ cosrn(du'+ cosn                                      Tt(—-I-                                       dzdx)i="'        dxdy dx) 
Ev +E[ COS 1(du dvdv                  + cos rn 2-a- + cos n(avdiv)i=0       dy'dx)d z'dyI 

                              (--;-          du )dwdv Ew + E[ COS1( dw+,COS Trt+—)+ cos n 2ddwz= 0.       dx dzaydz

(6)
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  Here the value of the constant E must vary in accordance with the nature of solid with which the 
fluid is in contact. The equations of (6) are an expression of conditions prevailing on the boundary of the 
surface and constitute the so-called boundary conditions. The first terms on the 

  left-hand-side of (6) are defined in (3) for the expression that we seek for the sum of the momentum of 
all interactions arising between molecules on the boundary and the fluid, while the second terms are the 
normal derivatives. Here, derivative terms on the left-hand-side of (6) are expressible as vi,j + vi,i. If we 
introduce the basis of the tensor as [ cos l cos m cos n ] T , then the tensor part of (6) is expressible 
as: 

jl         ti7= E~l2vi,.7- (vi,7+v.7,i)}6i7+(Vi713,i)] +713,i)] = E{O6i7+ (vi,.7+ v7,i)} = E(vi,7 + vi,i)•

5.2. Cauchy's two constants and tensor. In this section we adopt the following definitions: 

    • a, b, c: the coordinate values of a molecule m in the rectangular axes of x, y, z ; 
    • a + Aa, b + Ab, c + Ac: the coordinates of another molecule rn; 

    • , r~, (: three functions of a, b, c representing infinitesimal displacements parallel to the axes of 
      molecule m; 

    • (x, y, z), (x + Ax, y + Ay, z + Az): the coordinates of molecules m and in in the new state of 
      the system; 

    • r(1 + E): the distance between molecules m and m;7 
    • c: the dilatation of the length r in the path from the first state to the second, and then we have 

x=a+, y=b+r), z=c+(; 
    • X, Y, Z: the quantities of the algebraic projections such that : 

        — of which a resultant are consisted ; 
        — from this resultant divided by m, or, which return to itself, by the accelerated force which 

          acts on the molecule m and which will be due to the actions of molecules m, rn', rn", • • • 

  Cauchy deduced the following three elements of material points of elasticity after calculating the 
  interactions of molecules, the details of which are omitted for the sake of brevity. However, to begin 

we start with the following equation of elasticity

(40)c

  which displays all nine components of the tensor. (Th 
by the two constants  G and R.) Cauchy said of the elen 
G,H,I,L,M,N,P,Q,R: 

       If we suppose that the  molecules rn, rn', rn", • • • ar( 
      way in relation to the three planes made by the mo 

      coordinates, then the values of these quantities beco 
      a series of changes are made among the three angles: 

    Cauchy then resulted in the case of symmetric tensors 

(41)c G=H=I, L=M=N, P=Q: 

which reduces the form of the equations (40) c to the equatio 
main axis (the normal stress) of Laplacian with R-1- G and 
2R:

(46)c

 X  =  (L+G)  +(R+H) +(Q+I) +211#+2QA, 
 Y=(RG)(MH)(PI)— +2Pb~+2R, 

Z=(Q+G)O+(P+H)c+(N+I)f +2QPari + 

 nine components of the tensor. (The invariants of the tensor are represented 
is G and R.) Cauchy said of the elements of the tensor, i.e. the fixed values: 

 R: 

ise that the molecules rn, in', rrc", • • • are originally allocated by the same 
ion to the three planes made by the molecule m in parallel with the plane 
then the values of these quantities become remain invariable, even though 

annges are made among the three angles: a, 0, 'y. 

. sulted in the case of symmetric tensors such that: 

G=H=I, L=M=N, P=Q=R, (45)c L= 3R. 

rm of the equations (40) c to the equations consisted of the tensor function with the 
aal stress) of Laplacian with R + G and the term of gredient of the divergence with

X=(R+G)(G"+ + 
Y = (R + G)a+ +ac; 
Z=(R+G)a+a + )

+ 2Rdja, 

+ 2R-0-1-',where, (47)cv=+8r~+a(r3ab d
c 

+ 2Rac,

7(I1) This bold type m is different from m, the latter is top one of m, in', m", • • • .
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 (.).) Cauchy may have been the inventor of the term 8 "tensor" , and Poisson supported Cauchy's priority 
in the symmetry properties of the tensor when he reduced the number of independent components from 
nine to six elements, by the following quote: 

        D'un autre cote, it faut, pour l'equilibre d'un parallelepipede rectangle d'une etendue 
      insensible, que les neuf composantes des pressions appliquees a ses trois faces non-

      parallelles, se reduisent a six forces qui peuvent etre inegales. Cette proposition est 
      due a M.Cauchy, et se deduit de la consideration des momens.9 [60, §38, p.83] 

          [(Engl. transl.) On the other hand, one needs for equilibrium of the rectangular 
      parallelepiped of infinitesimal volume, that the nine components of the pressure applied 

      to its three non-paralleled faces, reduce to six forces which may be unequal. This propo-
      sition is due to Mr. Cauchy, and deduced from the consideration of momentum. ] 

(it) 
Continuing, we define the density of molecules as: 

  (48)c 0 = 14,  where M is the sum of the masses of molecules contained in the sphere and V is the 
volume of the sphere. We then find expressions for the two constants, G and R:

(50)c

where we have  used

G = f © f °° f0- fo r3f(r) cos2 a sin p drdgdp = f 2 34 f° 
                                                 o R — fo f02-        o- for3 f (r) cos2acos2/3sin p drdgdp 

 = 27bf0r 3 f(r)dr _ 27---for4f1(r) — r3f(r)] dr

r3f(r)dr,

(7)

(51)c cos a = cos p, cos j3 = sin p cos q, 

When we calculate these values in the general case 10 then

(56)c

By  (41)c

cos -y = sm p sm q. 

(7) yields the following expressions:

A [(L G) + (R — (Q — A, 
B (R — H) a±(m+ H) -I- (P — A, (57)c 
C (Q — 1")-41 (P — + (N I)gd 
  and (45)c, we obtain the following reduced form: 

2(R G) (R — G)v, , -{-K3 = 2(R +G) (R — G)v, , 
F 9077 = (R 0(5-6 + (R - - - 0 , 

e sake of convenience, in the particular case when both (41)c

 A  =  2(R  G)  —0a  +  (R  —  G)v  , = 2(R + G)2 + (R — G, 
              077     = (R + G)(— + —) = (R + G)(P4, + ,  AOb 0c 

For the sake of convenience, in the particular case when both 

sufficient to have :

D- 

E- 

F-

 (P  +  I) (P + HI A, 
(Q - I - GYA + (Q + I)k-- 6., 
(R + Hl + (R + G)tLiA,

      0( = 2(R+ G)-
0c+ (R - G)v, 
0* an = (R + G)(-5-6 + 

and (45)c hold, it is 

1 
(59)c (R+ G)A-2k, (R - G)AK, R =k +2KG=k -2K.                    4A4A 

8(4) The editors of Hamilton's papers [20, p.237, footnote] say, "The writer believes that what originally led him to use 
the terms 'modulus' and 'amplitude,' was a recollection of M. Cauchy's nomenclature respecting the usual imaginaries of 
algebra." 

9(4).) Poisson always writes "moments" as "momens". 
10(4) We obtained the following intermediate results, which were needed:

 fo' focos2 a sin pdgdp = 27r focos2 p sin pdp = 27r—°°33p= 43 
fo 7r fo cos2 a cos2 sin pdp = fo 7r cos2 qdq fo cos2 p(1 — cos2 p) sin pdp = 

     117r_27r. __—14r237r Cg —15—5'423

g127r—coss p27r2_2__47r 2+4sin 2q_05JO=—~)(35) 15
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Equations (56)c and (57)c can be displayed in a more convenient manner

 (fi0)c
A F E 

F B D = 

E D C

OA+Kv2k(8+d)1k 
2k8b+dkab+Kv1k 
2kd+a2k\8C+ d J

  Here, we must remark that the layout of the symmetric tensor of (58)( 
  invention. If, moreover, the condition (54)c : R = —G holds, then 

following identities: (61)c A = B = C = Kv, D = E = F = 0. 

5.2.1. Equilibrium and kinetic equation of fluid by Cauchy.

d a 
d  b 

ka+ Kv 

7 or (60)c 
   0 hold
 (60)c is Cauchy's 
0 holds, thus

(8)

yielding the

    In what follows, equations referring to Cauchy's work on fluids will be designated in the form (.)c. 
instead of by (•)c to distinguish these from equations appearing in his work on elasticity above.

(Verification of equations for fluids.)

  By replacing (a, b, c) of (56)c and (57)c with (x, y, z), we derive an equivalent set of equations for 
fluids as for elasticity. We omit for the sake of brevity the precise process in leading to the two constants 
or equations and present the final form

(76)c.

  We follow the layout of Cauchy's symmetric  
R+G and 2R with Cauchy's usage Cr R+G = 
for fluids  both in motion and in equilibrium to the 
we would like to adopt not Cauchy's CI and C; bi 
do so, as can be seen by checking the reciprocal co

rd+x+aE r3z,A F E+,X0=0X  dAr8y 

 +B+aD+YO=0,4ciaF B D+0Y=0 [
~+D+~z+ZO=0,E D CZ 
the layout of Cauchy's symmetric ensor as presented originally in (76) c.. By replacing 

                             -d---6,,  C2 - 2R = k----21 , we can reduce these equations 
 1 in motion and in equilibrium to the same form (46)c found for elasticity. However, here, 

to adopt not Cauchy's CI and C; but C1 = R and C2 = G, because it is more rational to 
be seen by checking the reciprocal incidence in Table 3. 11

(4.) Here, Cl is the constant to the tensor function with the main axis of Laplacian. CZ corresponds to 
the grad.div term. In today's NS equations, the ratio of coefficients : - _  coeffienoftensor _ k  CZcoefficicienttofgrad.divk+2K 
By Prandtl [64, p.259] in 1934, the ratio was fixed at 3. We had have to wait the formulation by Poisson 
in fluid equation. In this Cauchy's paper, we can not confirm explicitly the deduction of the value, except 
for the elasticity. cf. Poisson's equations (7-9) pf or Table 7. (-ft)

(Comparison with and comments on Navier's equation in elasticity.)

    Cauchy states: for the reduction of equations (79)c. and (80)c. to Navier's equations( [46] ) to 
determine the law of equilibrium and elasticity, it is necessary to assume such as the condition which 
we have mentioned above: k = 2K. If G = 0 then we get the equations of equilibrium and the kinetic 
equations in elastic equilibrium, then Cauchy's tensor is equivalent not only to the tensor in elasticity 
but also to the tensor of E's term in Navier's fluid equation (2) ( c.f. Table 5 ). 

5.3. Poisson's two constants and tensor. 

5.3.1. Principles and equations in elastic solids. 
 Below, we deduce K and k according to Poisson [59, pp.368-405, §1-§16]. For simplicity, we introduce 

the following definitions:

 axl + byi + c(zi — (i) _ 0, 

a'xl+ Wm. +c'(zi —(i) =IP, 
a"xi + b"yi + c"(zi — (i) = 0,

dududu1 4,2+IPdy+eaz=4, 
,~`dv',/,dvdv,,,,//,,/ cc2+o2+edz =(, dwdwet0d-+0%+edx-Bl

(9)

  We assume that  a is the average molecular distance, w represents a finite surface 

11(Tx) Here , C1 and C2 are not the two-constant defined earlier by us but introduced temporarily by Cauchy himself.
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area, and a is the average number of molecules on w. We then get the pressure terms. 

       P =  E co + 4')(fr.',Q =E('o +'0')(fr' R=E co + 8')(fr./ . 
a3r'a3r'a3rl 

By using Poisson's so-called effective transformation, 12 we obtain from (10) the following:

P =  fo22' fo2R-

Q = fo-1 fo27r 
R=ff027 

Later, Poiss(  Later, Poisson solved again this p 

principles behind elasticity and fluids, 

and k for both elasticity and fluids as

39

(10)

 (g  +  g')  E f r + (gg' hh' +11')g E C.55 d't-Tfr 
(h h') E f r (gg' hh' 11')h E d----- A, A := cos 0 • sin 0 df3 c17, (11) 

(1+1') E f r (gg' hh' ii,)i E difri 
solved again this problem in another book [60], 13 in which he deduces the general 

elasticity and fluids, and hence derives the representative two-constant theory with K 
isticitv and fluids as follows:

P= K(1+ -,x-) ± k( 
Q= K(1 + dc-) + k( 
R= K(1+ IV + k( 

  where, for simplicity, 
(4) By the way, from 

[c, c', c"F correspondii

3 du _i__dvJ._dw  dx'dy' dz 

 du j ... 3  dv +dw 
dx'dyIdz 

du _i_ dv _i_ 3 dw 
dx 1 dy ' dz

)r simplicity, he uses similarly K and k. 
e way, from (12) we can express the pressure 
corresponding to two constants : K and k ar 

 P  -

Q = K 
 R

 1+ 
dv 

dx 
dw 
dy

du 
dx 

1+ 
 dw 
  dx

du 
dy 
dv 
dy 
1+ 

(10),

du 
dz 

dw 
dx 
dw 
dz

 c  [K dduy k( dduy ddvx)]c/ ^K dduz k dduz ddwx 
c, Kdvk(dy_4_du)c•K kddudw     dx +dx'dydz+z dy 

cil K ddwy k (ddwy dduz) c/ K ddwx k (ddwx dduz)1c, 
 and k. 

3 the pressure : [P, Q, R3T by the two tensor on the basis of 
: K and k are given as follows :

+ k

  Moreover, instead of a in (10), he introduces  e as the average distance between molecule 
the following considerations: 

® "on volt que la pression N restera la meme en tous sens autour de ce point: 
            sera normale a ce plan et dirigee de dehors en dedans de A, ou de dedans 
             dehors, selon que sa value sera positive ou negative,

 dudvdwdudwdudv  3
dx+dy+dzdz+dxdy+ dx 

dvdwdudvdwdvdu 
dz+dydx3dy+dzdx+ dy 

dwdvdwdu dudvdw 
dy+dzdx+dz dxfdy+3 dz _ 

E as the average distance between molecules, and from

elle 

en

(12)

 

[ (Engl.transl.) we see that the pressure N remains the same in all directions 
            around this point: A, and directed for outward to inward or from inward to 

            outward, according to that the value will be positive or  negatived 
(4) ( then we ought to consider as )(-11-) ; 

                                                               x 

    •from the assumption of isotropy and homogeneity of space,r22 ± y2 + z2, 
       implying E z7. fr = E r fr, (cf. Poisson [60], pp. 32-34): 

           1 E ,.27rE 
 (3-8) peK—ri"—----- k -----3d. fr=27r                        r -------- 3 d. T                                                     (13) 6E33 47E330E3 E dr 15 47E3 r dr 

             "... et etendant les sommes Ea tous les points materiels du corps qui sont 
            compris dans la sphere d'activite de M. (cf. Poisson [60], p. 46): 

              [(Engl.transl.) "... and extending the summation E to all the material points 
            of the bodies contained in the active sphere of M.] 

12(4) 7-47fri = fr (4,41 00')d.rtrf T. ([60, p.42]). 
13(4) In Poisson [60] Chapter 3 is titled "Calcul des Pressions dans les Corps elastiques ; equations differentielles de 

l'equilibre et du mouvement de ces Corps."
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5.3.2. Fluid pressure in motion. 

compressible, reads as follows:

and tensor function underlying th

Poisson's tensor of the

e Navier-Stokes equation

pressures in a fluid,14 which he assumes

(7-7) P1

 U1 

V1 

W1

U2 U3 

V2 V3 

W2 W3

 Q 

o

 P

 du+dw 
 dzdx 

 dv dw 
 dz + dy 
 &Pt   a 

ac
 L _°

xi

(du    dy cldvxp—aac 

p — a  
 —dtt d+2~dy 
dz  (dv  dw            dz dy

            du 
Xt di+ 2R du 

 (ddv    duydx 

Rdu dw    (dz + dx

 (k  +  K)a  =  0, (k — K)a = /0', p = tbt = K, = 0 + 0' = 2ka, 

  where Xt is the density of the fluid around the point M, and 71)t is the pressure. Here K and k are the 
same constants as in (3-8)pe (=(13)) for an elastic body. Velocity and pressure are defined as follows:

u = (u, v, w) _dx dy dz  ( 
dt'dt)    dt ''

TO .=
dbt 

— a — 
   dt

0+/3' dxt

Xt dt '
( p, if incompressible.)

from which follows:

 d2  x  _ 

 2 

d2z

du
t+udu+vdu+wdu dtdxdydz , 

dt+uax+vdy+wdz, 
dw +ud_m -I- V + 2U d~. 
dtdxdydz

(7-9) Pi

     Tire)_drad2ud2ud2u P(X— )—dx+0(d +o.), 

p(y — d)dmR(dtdf_v),    dtdy—dxddz      d2zdwd2wdwc1 ,45P(Z—t.)—dz +/3(++) 
whereuu=p+a(K+k)(du+dv+dw),         3dx

(dydz P(DuX)++a(K+k)(d2u d2u1(X(Kk)d(ddxudvw1=0,  DGdx\+dy+dz~J+1                          3dxdyddz 

P(Dv—Y)+d~y+a(K+k)(d+(421,d-2v)+lct(K-~-k)(deux+dy+dw=0, Dtddxdz3dddz 

p( DDT — Z) + d + a(K + k) (d+d4v+) + 3 a(K + k) dz (ai + ay + z) = 0, 
: k) is the constant to the tensor function with the main axis ( the normal stress 
x(K + k) corresponds to the coefficient of grad.div term. In today's N S equations, 
ient attached to the term of the tensor function with the main axis ( the normal stress 
hat of grad div : creffietienrtitooffgtreandsoL =- 3, like Poisson deduced in (7-9) pf and Stokes' ( 
ensor (15) by Saint-Venant. By Prandtl [64, p.259] in 1934, we had have to wait by

(14)

(4) Here, all) of 
Laplacian. s cthe 
ratio of coefficient ) of 
Laplacian to that12)s 
through the tthe 
time, when including this ratio of two coefficients, as what is called the N S equations were expressed in 
fluid equation

5.4. Saint-Venant's tensor. 
 Saint-Venant 15 explained that the object of his paper [67] was to simplify the description and calcula-

tion of the molecular interactions without specifying the molecular function. We present Saint-Venant's 
tensor, which from the extract seems to anticipate that of Stokes [67] .16 For this section, we introduce 
the following parameters: , r~, ( are the velocity components at the arbitrary point rrt of a fluid in motion 
in the coordinate directions x, y, z respectively, 

Pxx, Pyy, Pzz are the normal pressures and Pyz7 Pxx, Pry are the tangential pressures with sub-index 
pair indicating the perpendicular plane and direction of decomposition.

14(,) In Poisson [60], Chapter 7 is tilted "Calcul des Pressions dans les Fluides en mouvement ; equations diferentielles 
de ce mouvement." 

15(4) Adhemar Jean-Claude Barre de Saint-Venant (1797-1886). 
16(4) This is an extract from his main paper , however we can't get this main paper until now. Even in all the list of 

Saint-Venant's works by Boussinesq and A.Flamant [5] : Notice sur la vie et les travaux de Barre de Saint-Venant, it does 
not appear.
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  where 1 (P        3 x x + py y ± pzz) _ _2E (sk _L la _L 10 = „.                                3 dx ' dy ' dz 
 From the last equation, we solve the normal pressure as follows: 

       4d77d(                (2)
svPvx=7+2Ed x,Py,=7F+2E—,Pzz=7r+ 2E—.               dydz 

  From  (1)sv  , obtaining the tangential pressures: Pyz, P., Pxy, the tensor reduces to symmetric form 
as follows :

Pi T3 T2 

 T3 P2 Ti = 

 T2TiP3 

 +2£d, 
 £ dy+ dx 

6 d+

E clu) dy dx 

+2£ dy 

 £dd

E (cA 
   dx dz 

£(dzdy/ 
   +2£d

(15)

  Saint-Venant stated that by using his theory, we can obtain concordance with Navier, Cauchy 
Poisson: 

       Si l'on remplace  7V par w —E(2 + ay + z ), et si l'on substitue les equations (2)sv et 
      (3)sv dans les relations connues entre les pressions et les forces acceleratrices, on obtient, 

      en supposant E le meme en tous les points du fluide, les equations differentielles donnees 
      le 18 mars 1822 par M.Navier ( Memoires de l'Institut, t.VI ), en 1828 par M.Cauchy 

      ( Exercices de Mathematiques, p.187 ) 17, et le 12 octobre 1829 par M.Poisson ( meme 
Memoire, p.152 ) 18. La quantite variable cr ou 7r n'est autre chose, dans les liquides, 

      que la pression normale moyenne en chaque point. [67, p.1243] 

[ (Engl.transl.) If we replace 71. with zu — E( + ay + t), and substitute the quations 
      (2)sv and (3)sv in the known relation between the pressures and accelerated forces, by 

      supposing E is the same at all points of fluid, then we get the differential equations given 
     by Navier [47] on 18 March, 1822, by Cauchy [7, p.1871 in 1828, and by Poisson [60, 

      p.152] on 12 October in 1829. The variable quantity or 7 is nothing but the normal 
      average pressure at every point in liquids. ] 

  Saint-Venant's paper [67] seems to provide Stokes with a clue to the notion of tensor (19) and his 
principle, because we can see the close correspondence by comparing 19 Saint-Venant's tij:

                                                                                   and

tij = (ir + 2Evi,j — 7)6ij +7, (where 'y = E(vi,j + vj,i)), 

       (-3(Pxx3\1 + PyyPzz) —3(ddxdy+dy+ddz+ 2EVi,j—7)6ij +7            /J 

     =-(3(I'xx+Pyy+Pzz)-3vk,k)0ij+\vi7+Vi,j) 2EVi,j6ij = r(vi,.7+v7,i)Sij = 7Sij (16) 
  with Stokes' tij (20). Here, using (16), we put Pxx = Pyy = Pzz = —p by assuming isotropy and 
homogeneity, 20 which Stokes similarly considers his principle as follows: 

        If the molecules of E were in a state of relative equilibrium, the pressure would be 
      equal in all directions about P, as in the case of fluids at rest. Hence I shall assume the 

      following principle: 
        • that the difference between the pressure on a plane in a given direction passing 

         through any point P of a fluid in motion and the pressure that would exist in 
         all directions about P if the fluid in its neighborhood were in a state of relative 

         equilibrium depends only on the relative motion of the fluid immediately about P, 
          and 

        • that the relative motion due to any rotary motion may be eliminated without af-
          fecting the differences of the pressures above mentioned. 

17(4) Cauchy [6, p.226] 18(4) Poisson [60, p.152] (7-9)p f . 
19(j.) Here, for the sources of the tensorial descriptions of tij of Poisson and Cauchy we cite C.'Iruesdell [75], of Navier 

in G.Darrigol [11], otherwise in Schlichting [69]. 
20(4) cf. I.Imai [22, p.185].
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       [74, p.80]. 
  As a consequence, we think that (16) is equivalent to Stokes' tij as follows. For example, if we put 

e - µ, and choose the txx component of Saint-Venant's tensor from (15): 

d2 d 2e(chi d(2 d 1 dr) dC 1l 
dx3 dx 3 dy dz3 dx 3 dy dz 

                 d 1 rd dri d(l1 __ = —p+2e{dx 3dx+dy+dzJ—p 12e(dx— (5)lJ(19), 
  which recovers the P1 component derived by Stokes. The other tensor components are likewise demon-

strated but we omit the proof here for brevity. Moreover, Saint-Venant proposed that if put the following 

                  rddll                     7r=—r(d +dy_y+dzl*o,—evk,k 
then 

tij = (Zz7 — evk,k + 2evi,j — 'y) bij +7 = (ar — evk,k)6ij + r(vi,j + vj,i)• 
This form of his tensor plays a key role in common with Navier's, Cauchy's and Poisson's constants. 

5.5. Stokes' equations and tensor.

By expressing the fl

(12)s

  Stokes pointed  out 

zzr=p+ (K+k) (Ldtix ddwz                             which then gives Vw = Vp + .CV(V • u). Stokes also 
      The same equations 

     fluid (Mem 
but his principles 

He further stated: 
      Observing that ct(K + k) - ,Q, this value ofreduces Poisson's equation (7-9) P f (= 

      in our renumbering) to the equation (12)s of this paper. 
  Stokes proposed his approximate equations in [74, p.93] :

(13)s

fluid equations in the following form 

P(Dud_µdd2+dd~dd++d                                           udvw=0, DtX)+         dx(dxdydz) 3dx(dxdydz 
 DvdCA)d2vd2vddudv dw P(Dt~')dy—µ(+dy)-3dy(dx+dy+dz=~~(17) 
 Dwd d2wd2w15)ddd                       uvw

__ P(Dt—Z)+az—~(+++-3dz(2dyd +dz 0, 

 git the coincidence with Poisson using the correspondence: 

k) (ddux ddwz which then gives Vw = Vp + ;V(V • u). Stokes also commented: 
quations have also been obtained by Navier in the case of an sible 

)rinciples differ from mine still more than do Poisson's. [74, p.77, footnote]

rd Du 

P(Dt 
P(Dw

         d2u d2u= O  —X)+ 2 —µ(+d-+d2u), 
— Y) + d — it( cc/.723.) + dy + ) = 0, 

           dwdwd2w= O —Z)+ dz—µ(-+dy2+-),

du dv 

dx+dy

 dw 
+ d

z=0,

(14)

which are identical to 
    "These equations are applicable to the determination of the motion of water in pipes 

   and canals, to the calculation of the effect of friction on the motions of tides and waves, 
   and such questions. ([74, p.93]) . 

Here we shall trace his deduction with the Stokes tensor in the form:

(18)

 P1 

 T3 

 T2

T3 T2 

P2 T1 = 

T1 P3

         du p-2p,(-8 
—u du +  dv 

     rly d:c 

    dw+ du —1d
xdz

 dv 

  (du      dy+7, 

p-2µ( y -b) 
—(dvdw 

    Ti+dy

— (dw du 
       dx + dx 

   (dv dw -µ~
z+dy 

p-2p, -6)
(19)

He then remarked about  6  :

21(4) cf . Navier [47].
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"Tt may also be very easily provided directly that the value of 35
, the rate of cubical 

dilatation, satisfies the equation

   du dv dw 35
= —+ — + — 

   dx  dydz

    [74, p.90] 
We find that Stokes' tensor can be described compactly in component form as follows:

 –tij = {p – 2,a(vii – 5) ± 71c5ii – 'y, where, 7 = + 
       = {p — 2p, 7(-6ij 6ij - 1) where, 2itvi,j6ii = p,(vi,i + vj,i)Oii – 78ij, 

                       2      (
p +– =(p –3Avk,k)c5ij – Vj,i)(20) 

    Therefore, the sign of –tij depends on the location of the tensor in the equation. 
  22 Now, in considering the coincidence of (15) with (17), we see that Stokes' tensor may have originated 

in Saint-Venant's. The article [52] by J.J. O'Connor and E.F. Robertson pointed out this resemblance. 
Moreover, Stokes reported on the then academic activities within hydromechanics [73], in which he cites 
Saint-Venant [67] saying: 

      "I shall therefore suppose that for water
, and by analogy for other incompressible fluids." 

     ([74, p.93]). 
  At any rate, we obtain (13)s (=(18)) with (19) and the following (21):

 P

 A

A

Du _ Tr) DtA) 
 Dv  y) 
 DtJ 
Dw Z)DtJ

where

+dPl_i_dT3+ddzpDd-x+ P = 0, 

+ 

 dT3+dT      dP2_(Dv _ y+0  dxdy dz—pDQ, 

+a2+dy'+dd3=p(Dt-Z)+R=0, 
- 

P- - Pi T3 T2  

Q =T3 P2 Ti.d
dy R T2 T1 

      -P3- - dz -

(21)

          6. The rapidly decreasing functions including in the "two-constant" 

  In Table 3, we show the form of  gl and 92, which are kernel functions and with which the progenitors 
of the fluid equation developed their formulae. Here we refer to these functions as rapidly decreasing 
functions (RDFs). While formulating the equilibrium equations, we obtain the competing theories of 
"two-constant" in capillary action between Laplace and Gauss.

  In 1830, after Laplace's death, Gauss [17] started publishing his studies on capillarity following his 
famous paper on curved surfaces [15]. In the paper, Gauss criticized Laplace's calculations of 1805-7 
in which the "two-constant" in his calculation of capillary action were introduced. At about this time, 
Gauss had studied what became to be called Gaussian function or Gaussian curve and using this as his 
RDF Gauss criticised Laplace's example function e—if as the equivalent function to cp(f ). Here, cp(f) is 
the RDF, which depends on distance f. In that paper, Gauss [17] pointed out various deficiencies: 

  1. Laplace had mentioned only attractive action and without considering the repulsive action; 
  2. Laplace could not identify the correct example function as the equivalent function of the RDF; 

and 
  3. Laplace lacked any proof from say a geometrical point of view. 

  The following are Gauss' criticisms to Laplace in the preface of [17]. 
      • Judging from the second dissertation : -< Supplement a la theorie de l'action capillaire 

([35] ), Mr. Laplace had scarcely investigated of p f , not only the complete attraction, 
      but also a part, and tacitly understood incompletely the general attraction ; by the way, 

      if we would refer the latter in comparison with our sensible modification, on the contrary, 
      we can assert it to be more inferior to the bad experiments and be clearly visible.

22( ) Schlichting reverses the sign of Stokes' tensor as follows: ai3 _ —p6ii + E4,8Z + aosz) — 32 ' [69, p.58, in the 
footnote] .
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         But it is not at all necessary to limit the generality by such a large quantity, this 
      point is more clear than words, we would see easiest, only by investigating if these 

      integrations would be able to be extended, not only at infinity but also at an arbitrary 
      sensible distance, or if the occurring in experiment could be wider extended up to the 

      finitely measurable distance. [17, p.33] 
    Here, we can consider these arguments on the RDFs as simple examples of today's distribution 

and hyperfunction of Schwartz in 1954/55, but which were popular in the 1830s, during the time the NS 
equations were being discussed in their microscopically-descriptive formulation. 

  However, Gauss' criticisms in 1830 naturally drew no rebuttal. We present a sketch of these assertions 
on the RDFs in Tables 8 and 9 in their original, cross-indexed narratives, where, we show the then family 
of RDF by using our notation f E RD.F', and f is a function included in the two-constant belonging to 
the then rapidly decreasing function.

7. Conclusions

    The "two-constant" theory is the currently-accepted theory for isotropic, homogeneous, linear elas-
ticity. (Darrigol[11, p.121] ); the terminology : "two-constant" theory is due to Prof. Darrigol. In our 
report, we provided a universal expression of this theory within a historical context and identified the 
following features: 

   (1) the "two-constant" were defined in terms of kernel functions of RDFs, describing the charac-
      teristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary 

      for the interpretation of the nature of fluid or the formulation of the equations of the fluid me-
      chanics including kinetics, equilibrium and capillarity. With their origin perhaps arising in the 
      work of Laplace in 1805, these sorts of functions are simple examples of today's distribution and 
      hyperfunction of Schwartz proposed in 1954/55. 

  (2) the genealogy of tensor as it pertains to the development of the NS equations in the original 
      mathematical formulations; 

  (3) the tensors and the corresponding equations as developed historically by Navier (1822), Cauchy 
     (1828), Poisson (1829), Saint-Venant (1843) and Stokes (1845) ( sic. in order ); and finally 

   (4) the appearance of the notion of tensors especially in the work of Saint-Venant. 
  (5) Gauss [17] also contributed to develop fundamental conception of RDF or MDNS equations for 

      fluid mechanics including capillary action, because he formulated the equations with two-function 
      instead of two-constant and these were the superior method than other contemporaries with the 

      progenitors of NS equations. 
  (6) According to Bolza [3], Gauss [17] had broken one of the neck of fundamental problems, such as 

      multiple integral and calculus of variations, however, we must recognize that even he owed the 
      latter to its progenitor Lagrange, and calculation of capillarity to its progenitor Laplace. 

It is our contention that Saint-Venant's was an epoch-making contribution, by simplifying and identifying 
the concordance between the earlier pioneers of the MDNS equations, in using only tensors without 
recourse to the microscopical descriptions, and providing context for the contribution of Stokes.
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TABLE 1. C1, C2, C3, C4: definitions of constants and computation of total momentum 
of molecular actions by Navier, Cauchy, Poisson, Saint-Venant & Stokes

45

 nolname/problem elastic solid elastic fluid remark

 1

Navier
 elastic:  [46]
fluid:[47]

( Navier[46] only: )
C1 =Ef;oo dP • P4 f P

2irC3 = f2„d21)focos (pdcp g3{id,it,

§ = 27r overl5

( Navier[47] only:
Ci =as -?-71dpp4f(p)
C2 =E-:Ef ipoodP • P2F(P)
C3 = j'0 f02 cos 11)(111) g3

C4 = f02 dyo g4

a = p cos tp cos (p,
= p cos sin yo,

-y psin7P

2

Cauchy
elastic and
fluid[7]

( Cauchy[7] )
= R =27_,Afo°3 r3f(r)dr

=+211r5 — r3f(r)] dr
C2 = 2'36' r3f(r)dr
C3 = 102' COS2 qdq cos2 a cos2 Odp,

=cos2qdq J cos2 p sin2 p sinpdp =
C4 = 4) 107r cos2 a sin pdqdp

= 7r fa cos2 p sin pdp ,

( Cauchy[7] )
same as elastic solid

cos a = cos p,

cos /3 = sin p cos q,

cos -y = sin p sin q

A = -151: mass of
molecules per

volume.

3

Poisson
elastic:

[59, 60]
fluid: [60]

( Poisson[59] only: )
= c E 7,43d r

C2 = K E
C3 = dry j' cos sin ,343 93 { ,
C4 = 102' dry f02-r- CO S sin 3d3 94 2-31

Remark: C3 is chosen as the common factor of {-, -}

( Poisson[60] both elastic and fluid )
=k301 E3r3d.Srf 

7rv,d. fr=2
1547i3 dr

C2 =- K 6E3 Erfr
= E 4L3 fr

C3:G =AEdifr ,d. 1 frE = F = LEr3----
{ ÷d,

C4 : (3-2)p f N = 6,3 Erfr

In Poisson[60],
he treats both
elastic and fluid
the same.

x1 = r cos /3 cos 7,
Y1 = sinOsin-Y,

= —r cos 3

 Saint-Venant 4 
 [67]

C1 = E, C2 =

5 IStokes[74] A, C2 =B C2 7--

TABLE 2. Ci , C2 

Poisson & Navier

and equation of equilibrium of fluid containing exact differential by

noiname CI ., C2 0f equilibrium equation of equilibrium with exact differential term

1
Poisson
[60]

 = _q= R
 r

C2 =p,_=_-ErR

N=p+q(*+
where N : the ver

A, : the radii of

vertical force,

of the principal curvature

0 = fff dxdydz_pddcS:dday.yd5: + Pox + Q(SyROz
By integration by parts

2

Navier
fluid
[47]

= pdPP3 f (P)
C3 f7f-2-dcog39

=V-
13'3'416

0 = fff dx dydz [ (P — 2)ox (Q — )o+ (R —(4.,)(5z1
— ff dydz (p'Sx' — p"Ox") — ff dxdz(p'Sy' — p"Oy") — ff dxdy(p'Sz' —

. condition of inner point and exact differential
.̀12. = P ,LIE= Q,=R dp = PdxQdyRdzdxdy7dz•

. boundary condition and relation of variation Ox,6y,Oz

0 = Pdx Qdy Rdz 0 = Ox cos 1+ Oy cos m Oz cos n



46  The "two-constant" theory and tensor function underlying the Navier-Stokes equation 

TABLE 3. The expression of the total momentum of molecular actions by Laplace, 
Navier, Cauchy, Poisson, Saint-Venant  & Stokes. (Remark. 6-8  : capillarity, 9-10 : 
equilibrium, else : kinetic equation)

no iname problem C1Ic2IC'3 IC4 G r1Ir2191 92 'remark

1
Navier
1827 [46] elastic solid  E

 27r
15 f°°dop p4 fp p : radius

2

Navier
fluid
1827 [47]

motion of fluid

E

27r

15

27r

dp

r dp

p4

p2

f (p)

F(p)

p : radius

3
Cauchy
1828 [7]

system

of

particles

R

G

27r

15

27r
3

fO dr

fn °O dr

r3

r3

f (r)

f(r)

f (r) - f [rf' (r) — f(r)]

f(r') f(r)

4
Poisson
1829 [59] elastic solid k

K

27r

15

27r
3

E1
a1

r5

r3

d.Tjr
dr

fr

5
Poisson
1831 [60]

motion of fluid k

K

1

30

1
F

E 1

E 1

r3

r

d.Tfr
dr

fr

1 27r 1c
3-47r15 30

1 27r 1C4 — 4
7r =

6

6-2

Laplace
1806,7 [37]

Rewritten by
Poisson 1831 [62]

capillary action H

H

K

K

27r

4p2

27r

27r2
3p

f°° dz
dz

JO" dr

f°° dr

z

r4

r3

11(z)

(pr

kif(z)

cpr

z : distance

[62, pp.14-15]

7
Gauss
1830 [17] capillary action

attraction :
— f x.dx—dcpx,
f f x.dx = —cpx,
repulsion :
—Fx .dx = dipx,

f Fx.dx = —4 x
8

Poisson
1831 [62] capillary action H

K

7r
4p2

232

p

f dr
f° dr

r4

r.3

cpr

CDT

[62, p.14]

[62, p.12]
   Navier 
9 fluid 

  1827 [47]
equilibrium of fluid  47r 

3 .1'0°0 dpip3 f(p) p: radius

Poisson 10 1831 [60] equilibrium of fluid q

p

1 

4

1

7 riz'R 
  r R

C3 

C4 =

47r7r - 4 

1 27r _ 1

11
Saint-Venant
1843 [67] fluid E

E

3

12
Stokes
1849 [74] fluid  fi E

3

13
Stokes
1849 [74] elastic solid A B A=5B
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TABLE 4. S, S2, g3, g4 : the trianglar functions for 

molecular actions in unit sphere by Poisson, Navier,

calculation of total 
Cauchy & Stokes

momentum of

no

1

2

3

3

name

Poisson

Navier 
elastic solid 
(1827) [46]

Navier 
fluid 
(1827)[47]

Cauchy 
(1828)[7]

S1 S2, 93, 94

•g3 and g4 are in the following tensor : 

   g = a sin [3 cos -y + b sin 0 sin -y — c cosi 3, g' = g + h fly` 
   h = a' sin 0 cos 7 ± b' sin 0 sin -y — c' cos 0, h' = gc2 - F 

1 = a" sin /3 cos 7 + b" sin 0 sin -y — c" cos 0, 1, = g ti- + h 
       71"- 

 {P = g g'_(g±gi)E4fr+(ggi 
                                -I- hh' ± Ing E rci55, _( 

Q =f g- [(h + h') ici35-fr + (gg' ± hh' ± 11')h E 4 (1 
  R=f072rg-[(1 + 1')E4 fr + (gg' + hh' ± 11')1E7,,,4q 

i.e.    - P
9 + g' (gg' + hit/ + 11')g - . Q = fo27` fo; A ( h ± h' (gg' ± hh' + 11')h 

    R1 ± 1'(gg'+ hit/± 11')1 
-_- 

  = fo'hijdo d7([ 94g3][Kic: ] ) ' 
where A := cos 0 • sin 0 do d-y, K' := E r:f5r k' := E 4 

•S1 and S2 are given above .

 du h du du 
 dx dz 

hr g dd.rx 

 1" = gj- hccit, ± ddwz 
+11')g d4frl 

      a dr ", 

^1l' )h  
        7-5 d' 3:fr 1 A

dr 

E z
  r5 difr

  dr

f PI

.g3 : 
   _ 1.2 g3 

j 
    r dx 

as 

    cos2

cos)s2 cos2 cp + (2,dycos2 IP sin (p cos cp (1,1 
sin2 co + (2 + 2) sin cos sin cp + sin2

                     IP sin (io cos cp ± 2) cos 1/, sin 7/) cos co

.g3 : 

 a = p cos cos , 3 = p cos 11) sin cp, -y = p sin 

g3 = V SV = [a + + 2-y) + 0(2. + +
[a ( 

.g4

cSdu a 4 _ 15du m Odu, d
x dy dz

g4 = V5 V

where

a'2

0/2 {

7/2

) (
    &iv 64v 6dv       a+ P + 'Y

dy (71i-7) + dx idv

)

  = p cos cos co,

Sdw (5dw Sdw         a + P

dw „ dw Rdw, 
dxdy.fr" dz 

 6
ddyw + .5ddzw 1,

(u sin2 r — v sin r cos r)c5u, 

(—u sin r cos r v cos2 r)Sv }, 
(u cos2 r sin2 s + v sin r cos r sin2 s + w cos r sin s cos s)(5u, 

(u sin r cos r sin2 s + v sin2 r sin2 s + w sin r sin s cos s)(5v , 

(u cos r sin s cos 8+ v sin r sin s cos s±wcos2 s)(5w 

(u cos2 r cos2 s + v sin r cos r cos2 s — w cos r sin s cos .9)(5u, 

(u sin r cos r cos2 s + v sin2 r cos2 s — w sin r sin s cos s)(5v , 

(—u cos r sin s cos s — v sin r sin s cos s + w sin2 s)5w 
co, 13' = p cos 11) sin w, -y' = p sin 1/).

}

) x

.93 =94 =

(44)c

where 
           C 

• From  (49)c 

and (50)c

Si=2 . 
  =127r 

S2  =

  v, =

2. 

 G = G(cos2 al + cos2/3i + cos2y1)=GA1, 
L = L(cos4 al + cos4/3i + cos4 71) 

  +6R( cos2/31cos2y1+ cos2yicos2 ai + cos2 ai cos2/31)=LB -I- 6RC, 
R = R( cos2/31 cos2y2+ cos2/32 cos2yl+ cos2y1 cos2(x2 

+cos2y2 cos2 al + cos2 al cos2/32 cos2a2cos2/31) 
  +4R( cos/31 Cos/31 cosyicosy2 + cosyicosy2 cos al COs a2 

+ COS al COS a2 cos)31 cos/32 ) 
  +L( cos2 al COS2 a2+COS2/31COS2/32 + COS2ylCOS2y2)E."-:RD + 4RE+LF 

 cos2 ai+cos2/31+cos2y1= 1, cos2 a2+cos2/32 + cos2y2= 1, 
 cos al cos a2 + cos/31 cos/32 + COS 71 COSy2 = 0 

))cG =oS[+rcos2af(r)v], R =oS[r cos2 a cos2/3f(r)v] 

~G = fofo" for3f(r) cos2 a sin pdrdgdp, ))G R =fofo " for3 f (r) cos2 a cos2/3sin pdrdgdp 
g"focos2 a cos2 /3 sin pdp = a fo " cos2 qdq fo cos2p(1 — cos2 p) sin pdp 

 3 5) 15 =G3' 2" f' cos2 a sin pdgdp = 2 27r fo cos2 p sin pdp =  - C4.

47
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TABLE 5. Concurrences and variations of tensors

1
name/
problem

tensor  ( 3x3 coefficient matrix ( 3 x 5) in equations

   Navier  1-1 
elasticity

tij = 
(5-4)Ne

—E

E(bijUk,k +ui,j +uj,i)

=  -E

where

dudvdw dudd  3
dxdy_f_ dzdyd, 

dudvdu dv  dw 
dydxdx3 dy  dz
dwdudvdw1 
dx+dzdz+dyJ 

 +dududv E`Zdxdy+ dx 
 du+dvE+2dv 

dydxdy 
dwdu dvyw 
dx+dz dz+dy 
_dudvdw Ed

x+dv+ dz

(du dv 
dw du 

dx dz 
dv dw 

dz  dy 

E+2dz

dw du 
       dxdz 

dv dw 
      dz+dy 

du dv 
dxdy+3dz

We define the coefficient matrix in elasticity 

 C,  : the coefficient of
 82u a2u 

8xi 

a2v 8 v 
e 

a2w 8 w

a2u 
8z2 

a2v 
8z2 
a2 w

82v  
axay 

82w 
8y8z 

a2u 
az8x

82w  
8zax 

a2u 
axay 

82v  
ayaz

 

: ce as follows:

then

 (6-1)Ne c7, = —E
3 1 1 

1 3 1 

1 1 3

2 

2 

2

2 

2 

2
(23)

   Navier 1_2 
fluid

to = 
(23)

 (13 — euk,k)Si3

where

 — 2edz 
—erddyu+ ddvx) 

   \ 

  dw du) _6(
dxdz 

-e'= 1l —

e(ui,; + uj,i)

   /du dv)   edydx 

    — 2E dy 
    —e/dv  dw) 

      dz dy 

erdu+dvdw)   dx      didz

   dw du)   6(
dx+dz 

— er dv + dw 
dz dy 
    — 2E )

 Similarly, we define the  coefficient matrix in fluid : C7 
, which contains p in (1,1)-, (2,2)- and (3,3)-element. 

p-3E —E —E —2e —2E 
 (23) CT =—Ep — 3E — E — 2E — 2E 

                   —E —Ep-3e —2E —2E 1
   Cauchy 

   system 
   (contains 

2 both 
   elastic 
  body 
  and fluid)

tij = .tvk,ktSij ~(vi,j + vj,i)
(60)c

kd + Kv 

   k 

   20b+ Da 
  k21 

   2aa+ do 
where v = d

 kk 
2 8b  + 8a2 8a + do 

             k  k
8b+ Kv2 8c+8b 

 2(a+b)kd+Kv 
+ +

 (46)c  C7,= 

  [ 3 1 1 
R1 3 1 

1 1 3 
where P=Q=R,

L R Q 2R 
R M P 2P 

Q P N 2Q 
2 2 
2 2 , 
2 2 
L = M = N,

2Q 
2R 
2P 1
L = 3R.

(6) Pe

3-11Poisson 
         elasticity

ti.7 = — 
(6)pe

_a2 
3

where

 a2 
 3 k°ij"uk,k + ui,j -I- Uj,i 

' 
E -F du du _L_dv dxdydx 
du +dvE -I-2dv d

ydxdyy d
wdu dvdw 

. dx+dz dz+dy 
  _dudvdw Ed

x+dy+ dz

dw ^du 

dx dz 
dv ^dw 

dz  dy 

E+2aZ

    d2u2(d2u2d2v2d2w1c
c/.72.1d2ul  X — + a`+3dydx+3dzdx +dy~+3dz~ 

= 0, 

    d2v2rd2v2d2u2d2w1c(1.72;3,1d2v) Ydt~a~y~+3dxdy+3dzdy+ 3+3 

= 0, 

  d2w2/d2w21d2w1d2w Z—+ aI+
3dxd2udz+3dyd2vdz+3+3 

= 0,        2 [ 3 1 1 2 2 ±, c= — 31 3 1 2 2 
           1 1 3 2 2

   Poisson 3-2 
fluid

tij = —pSij + )tvk,kSij + it(vi,7 + vJ,%)
(7-7)p f

   duzdw  F'
dz +dx 

 /~dvzdw 
 Ndz  +dy 

7r+2,3dz/,(

where =  p — a ad

   dudv 
    dy+dx 

 7r+20dv        d
y 

dv dw1 
dzdy 

      dxt  
xt dt

)ir+2,du Ja:~ 
  dudv 

   dydvw 
dudw 
dz+ da

              +0 0  0 

(7-9)  p f=CT=0 'u7 + 0 0 
a /3 w + 0 

According to Stokes: if we put 

zv=p+ i ( K + k ) ( t + ay + ~Z)

CT =

(12)s (= 
  Remark:

 ddvdw )dxu+dy+dz 
 p+V 0 0 

0 p+3 R 
0 0 P+4J3

(120)). 
a(K + k) = 0.

i 

3

3 
3 

3

 0 

 0 

0

0 

0 

0

Saint-

Venant 
fluid

Stokes 

fluid

 (Pxx +2Pyy +Pzz)—3 vk,k)bij+e(vi 
(—p—2vk,k)bij + E(vi,j + Uj,£)

7r+2Ea, 
E ag.+An dydx 

E ci +a

,j + vj,i)

 7r+2Ecy E(2 + ~y I , 
(a + d) 7r+2Ea/ 

Pxx I Pyy Pzz) — 2E(++. 
             3dxdydz 

 -?5E- (dx+ y+a) (117)
tij = (—p — f /LVk,k)5ij + l~(vi,j + vj i), 
tensor = —1 x

   uudwdu~ p2it (ddxs)d                dydxvd—µdxdz 

—1"(du dv _ 2 dv_d z+Sdvdw    6+dx PN(5'—Ndy 
—N(dw dudv dw_2dw_     dx + dz—N'(dz + dyPNdzS 
?,re 35 = d + dv + dZ (124)

No description in [67], however, we can see easily that, 
for example, in case of P1, 

Pl=7r+2Ea = —p — 3 (a +ay + )+2Ea 
 _ —p + 3 dx — *(:1-1-  + a) , others are in the same way. —p+ 4E EE-S- E 

~al-34EEE      ,-~ —p~
p+E34E~E 

                                              E

(12)s

  (124). 
  Remark:

Cf

_p + 3 li F~ 
f~ p+ 3 F~ 
/2 N —p+

3µ=2µ(1—
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TABLE 6. Concurrences and variations of tensors (continued from Table 5)

1Iname/ 
 problem

tensor ( 3 x 3 )

6

Maxwell
(1865-66)
 [43]fluid

tip _ (-p -
_Mp9k

pA
_M8v 8u_ Mdwdu3kpe2p(axcry)6kp®2p(dx+dz)

------- dudv _dw Mdvdwdx2dydz)6kpe2pdz+dy
------ 8v8wMdudvdw

azayp—9kpe2pdx—dy—2dz

7

Kirchhoff
(1876) [23]
fluid

ax az

tij = (—p — 2kvi,1)Sii + k(vi,a +Vj,i),
au8v8u8wap-2kax—k(ax+ay)—ku(ax+az)

- —avp2k11-"ay kaz+ay)
dvwaw—11k }a

ax azayp-2kaz

8

Boltzmann
(1895)[2]
fluid

zR.(v+ ,,~tij = (—p —g~vk>k)Si.Y+z,Ji,i),
p-2Rau1avwax-saxu+aay+ai3z)}-(+)au- ~(axaw+auaz)

duau18u _au,—Ravx4_aayp2Ray 3 ax+auay+a8z}- reaz-}away
-Te(dwau(au awaw1au8v8wax+az—~(8z+dy) p-27Z{az-3(ax+ay+a)}

z where, R. =  m6kpe
9p'
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TABLE 7. The kinetic equations of the hydrodynamics until the "Navier-Stokes equa-
tions" were fixed. (Rem. HD : hydrodynamics, N under entry-no : non-linear,  gr.dv  : 
grad.div, E : s dv in elastic, F : sdv in fluid. The group of entry 6-14 show F = 3 in 
fluid.)

no name/prob the kinetic equations A Igr.dvIE IF

Euler x  _ 
'12=du+ udu+ vdu+ wdu11752-55haxatdxaydz '()1=dvdvdvdv dudvdwY—h dy—dt+udxvdy'dz'wdx+dy+dz=0N [12, p.127].

fluid Z — ha—dt'dx'dy+u'dz '

Navier
2 (1827) [46]

elastic solid

II d2txe 3 ddamddx2d~'+ 2-----d2z
dtdadbdodbdadcda/

9d2v=Ed+3d+d—+2aaab+2dab
II d2 d2 d2 d2 d2d2i
gdt~=TO-+ 2clack;+ 2 dbdc

where H is density of the solid, g is acceleration of gravity.

E 2E 2

3Navier(1827)[47]

fluid

d2u d2u d2u d2vdew_du _ dudududx = X +E(3dx2++4_2dxdy+2dxdzdt dxudyvdzw
12vd2vd2vd2udewdv_dvdv dv
P dyY+Eax-2+ 3dy+2dxdy+2dydz dt dx'4L—dyZ1—dzw
1d2w dew dewd2ud2vdw_dw dw dwp dz =Z+E+aye+3dz2+2dxdz+2 dydz)dt dx dy v dz w ;

E 2E
2

Cauchy
(1828) [7]

4systemof particles
in elastic solid
and fluid

(L+G)+(R+H) +(Q+I) +2RA+2Q tac,+X = ,
(R+G)+(M+H)`---9+(P+I)`+2P,`z+2RA+Y=—a2ayv2d~dzd2dyat

(Q+G)d3x----+ (P +H)---2+ (N + I)9+ 2Qa----+ 2Pay8z + Z = dti ,
G=H=I, L=M=N,P=Q=R, L=3R

R+

G
2R

if

G

=0

2

if

G

=0

2

Poisson
(1831) [60]
elastic solid5 
defined
in general
equations

du2 (d2u2 d2v1d2u1d2u=lHd2uX —2dt2'+ a+dydx +23 dd2wzdx +3dy+3)pd2.'
d2vd2v2d2vj

3,d2_d2vY —+ a2d:E+3dxd2udy+ 32dd2wxdy+13dx2-+dz2'v)II—pdy2•'
Z — d2w + a2 d2w+2  d2u+2 d2v+1 d2w+1 d2w) — H d2w

d2-.dz23 dxdz3 dydz3dx23 dy p dz2-'

a2
3

2a2

3 2

R
3 3

Poisson
(1831) [60]

6 fluid defined
in general
equations

rrDu42ud2uduaddudvdwIp(Dt-X)+a+a(K+k)(+9+ )+Kk)ddx+dy+dz =0,
IIp(nt— Y) ++a(K + k)(`,1' +dy+dam)+s(K + k)dy(ate+y+ dx)= 0,w— Zd2w+'fit*d2waddudvdwP(DDt)+ + aK + kdz(k)(St*dz2-)+K + k()dz(++= Odxdydz)'

X-d2xdo+d2u+d2u+d2urP(~•) =dx~(~dye~),
II P(Y—d4)=y+(3(S+—a+d4),

1p(Z_dam)—_draf/3(d2+d—+dam)dtdzdxdydz

where m = p — ca — 3+ 3  dt, /3 — a(K + k)
Saint-Venant

7 (1843)[67] He didn't describe the equations in [67], however his tensor is in Table 5 (4).
fluid

E 3 3

Stokes
8 (1849)[74] (12)s

fluid

Du~'(d2u •d2ud2u)P(Dt) dxNdx~dy+c121 J
Dv(d2vdyv d2v)°(DtY)d—µ++7273dydxdy
Dwz),_(d2wd2wd2w)P( DtdzNX42'dz~

+dw)O3dxdxddz dw)O
dz'

u  dw O.3 d
z dx dy dz

/1
Lr
3

3

Maxwell

9(1865-66)[43]

HD

au — CP
at + dx•M

Pfat+~ - C•M
dw -CP
i3t+dzM

Id2u d2u d2u1 ddu dv dwLdx2aye,+dx dxdydz
d2v d2v d2v ^1 d du dv dw
dx2+-cry'  dy dz
d2w d2wd2w1 ddu dv dw
Ti'd~2+(75 + 3dx dx + dy + dz

= pX,

= pY, where, CM = 64114,2
1=pZ

CM C
3

3

Kirchhoff
10 (1876)[23]

HD

du d C
" dt + dxK

N'dt+y —
 2+d

zdt—GK

1 daudv OwDu+
as ax+i3y+dz

1 ddu dv dw03dy(dx+dy+dz
ddu dv dwOZ

'3az axaydz

— tX' 
1 dudvdw_

=AYµdtaxdya
, where, CK = 3w

= µZ,

CK 0
3 3

11leigpa—at+ v02u - ud~- vay'du+d"=0
N(1883)[65]11 _—dv2dvdv' dxdy=HD

p dydt± UvY7 - 'tldx- udy
L

duit 1
BoltzmannP at  dx

12 (1895)[2] (221)B p a' dy — R
HDdwp 

dtazR

[Au + 3dx (dx + dy + Wiz) = PX,
Ov+3dy(dx+dy+az) —pY'
1-Ow + 3 8z (dx + day + az )1 = pZ

7Z
3

3

13Prandtl(1905)[63] p( + v • Vv) + 0(V + p) = k02v, div v = 0N HD
k

14Prandtlax+u~+v2y+waz= x —P a+sax (ay+dy+z)+v(++5),
(1934) [64]N 
HDfor incompressible, it is simplified as follows : div w = 0,Wit'= g — grad p + vOw

L
3

3
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  Name/Problem/Bibl./ 
no Corresp. 

  (with/against disputer)
Assertions

1
Laplace (1749-1827)
capillary action : [37]

 •(L1) We shall put, as in II(f) = c' — fo df.cp(f ), the integral f df.cp(f) being taken from f = 0,
and c being its value when f is infinite. II(f) will be a positive quantity, decreasing with
extreme rapidity; and we shall have, by taking the integrals from f = 0 to infinity ;

f f4df.c0(f) _ —f4.II(f) +4 f f3df.II(f). — f4.II(f) = 0 when f = co; for although f4
then becomes infinite, the extreme rapidity with which II(f) is supposed to decrease, renders
f4.II(f) nothing. (cf, Navier (N4)).
•(L2) The functions (p( f) and II(f) may be very well compared with exponentials like c—~f ;
c being the number whose hyperbolic logarithm is unity, and i being a very great positive and
integral number, where, f is used for the distance between two molecules by Laplace.
[37, pp.812-813]

2
Fourier (1768-1830)
heat : [13, 14]

•(Fi) On designe par cp(p) une certain fonction de la distance p a une grandeur solides et dans
les liquides, devient nulle lorsque p a une grandeur sensible. [13, §59]
•(F2) On voit par ce resultat que la temperature des differents points de l'axe decroit rapidement
a mesure qu' on s'eloigne de l'origin. [13, §332]

3

Poisson (1781-1840)
elastic: [56, 59, 60J
fluid: [60]
The origin disputed :[56]
(with Navier[57, 58])

•(P1) The function as an example of fr by Poisson : aL-1 n~ 1 , which can not express both
the modes of attraction and rejection and is not coincident with his E r3 fr accrding to Navier.
•(P2) Poisson must use summation instead of integral.
On this point, Navier points out Poisson's logic for the necessity of summation. (cf. Navier (N2))
•(P3) Mais si l'on exprime avec lui les forces moleculaires par des integrales, on peu voir par
une simple integration par partie, que le coefficient k ou e s'evanouit en meme temps que K ;
en sort que les equations d'equilibre ne renferment plus rien qui depende de l'action des
molecules ; resultat absurde que l'on ne peut eviter qu'en exprimant les resultantes de cette
action, par des sommes non reductibles a des integrales, ce qui empeche qu'on n'ait
necessairement e = 0 par suite de K = 0. : Poisson [58, p.207, §2].
Where, e cited by Poisson is Navier[46]'s one, which is equal to Poisson's k according to Poisson.

4

Navier (1785-1836)
elastic : [46]
fluid : [47]
(with Poisson
[48, 49, 50, 51],
with Arago[51])

•(N1) Si par exemple on prend pour cette fonction e_kP, e etant le nombre dont le logarithme
neperien est l'unite, et k un coefficient constant, on aura

fo dp • p4e—kP = j, fo dp • p6e—kP =, etc.
Or pour que la quantity e—kP decroisse avec une tres-grand rapidite, quand p augmente,
it faut supposer que le coefficient k est un tres-grand nombre.

[46, p.383] (cf. Laplace (Li), (L2), Gauss (G2) )•
.(N2) Navier explains the use of integral against Poisson's necessity of summation :

Donc la difficulte d'accorder l'etat naturel du corps avec 1'etat varie, c'est-h-dire,
de faire en sorte que k conserve une valeur, tandis que K est nul, n'existe veritablement pas ;
ou du moins it n'est pas necessaire, pour resoudre, de supposer que les quantites k, K
sont de sommes plutot que des integrates : its suffit de supposer que r4 fr n'est pas nut
quand r = 0. [50, p.103, §7].
•(N3) Navier points out the following operation : [r4 f (r)]o = 0, for f (r) —> 0 in r --> 0.
"J'ai remarque d'abord qu'il fallait lire : << si l'on fait attention que r4 fr est nulle aux deux

limites, etc.>> J'ai remarque ensuite que rien n'obligeait a admettre que r4 fr est nulle a la
limite corresponante a r = 0;
•(N4) It must read " If one observes that r4 fr is null at both limits etc...."
Moreover, the writer [ Poisson ] does not show the necessity that r4 fr be null at the limit
corresponding to r = 0.

5
Cauchy (1789-1857)
elastic and fluid : [7]

•(C1) D'ailleurs, si, pour des valeurs croissantes de la distance r, la fonction f(r) decroit plus
rapidment que la fonction que -., si de plus le produit r4f(r) s'evanouit pour r = 0, on trouvera,
en supposant la fonction f'(r) continue, et en integrant par parties,

r4f'(r)dr = —4 g° r3f(r)dr. [7, p.242]

6

Gauss (1777-1855)
capillary action : [17]
(to Laplace [17],
to Bessel[18])

•(G1) Judging from the second dissertation : -< Supplement a la theorie de l'action capillaire >-,
Mr. Laplace had scarcely investigated of cp f , not only the complete attraction, but also a part,
and tacitly understood incompletely the general attraction ; by the way, if we would refer
the latter in comparison with our sensible modification, on the contrary, we can assert it to be
more inferior to the bad experiments and be clearly visible.
•(G2) Laplace considers exponential e—'f as an example of equivalent function to cp f,
denoting the large quantity by i, or becomes infinitesimal. (cf. Laplace (L2).)

But it is not at all necessary to limit the generality by such a large quantity, this point is
more clear than words, we would see easiest, only by investigating if these integrations would be
able to be extended, not only at infinity but also at an arbitrary sensible distance, or if the
occurring in experiment could be wider extended up to the finitely measurable distance.

[17, p.33]
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TABLE 9. 

capillarity,

theory and tensor function underlying

Cross-indexed differences on the 

P,,Nn,Cn,Ln,Gn : in Table 8.

RDFs f

the Navier-Stokes

E 1ZDJ (Remark.

equation

entry 1,5,6 : on

1 2 3 4 5

Name/Problem/ 
no Bibl. (Year read) 

  - Year published/
Laplace Poisson Navier

f(r) 
at 
r=0

f(r) 
at 
r = cc

1

Laplace
capillary action : [37]
1806-07

 Li:K,H
L2 :force attractive only and

f c—tf, , f E RD.P

0 0

2

Poisson
elastic : [56],(1828)-28;
[59],1829;[60],(1829)-31
fluid : ]60],(1829)-31
disputing origin:
[56] ,1828
(with Navier :
[57],1828;[58],1828)

Refer to Laplace's f E 7ZDF k, K

Pi —, Nl :

ftiab—( n.)'
P2 N2 : not by

integral but by
sum because

k = —K = 0
at once.

P3 -, N3 : k = E

of Navier
P4 - N4:IEROT

0 0

3

Navier
elastic: [46] , (1821)-27
fluid: [47], (1822)-27

(with Poisson :
[48],1828; [49],1829;
[50],1829; [51],1829
with Arago[51],1829)

Refer to Laplace's integral

Ni —, Pi : f ,., e-kP
N2 -+ P2 : not by sum but

by integral as Laplace does
N3 -• P3 : [r4f (r)]0 0 0,

E k
N4 -4 P4 : r4 f (r) forr=0,

f E RDJ
but only in r = co,
f(r)740asr—*0

E in elastic

E, E in fluid
0

4
Cauchy elastic & fluid
:[7]

0 0

  Gauss 
 capillary action  : [17] 5 
(to Laplace [17],1830 

 to Bessel[18],1830)

G1 —• L1 :Laplace's deduction is 

conspicuous. 

G2 -* L2:no necessary to limit i of 

c—tf to be very large.

  Poisson 
capillary action : 6 
[62],1831, 
 (to Gauss[62])

Same K and H with Laplace 0 0
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  APPENDIX A. Detailed commentary of principles and deduction of equations or tensor 

 A.1. From Lagrange to Laplace. 
 Lagrange had completed "Mecanique analytique" , and told it to Lalplace in the letter in 1782. 23 

Lagrange discusses the dynamics of the planetary corps with the attractions and applies it to the general 
dynamics. However, his dates are a few earlier for him to apply the existence of the atom or molecule to 
his equations of fluid dynamics. He passed away in 1813. In the early of the 19th century, Gay-Lussac, 
Dalton and Avogadro had proposed the atomic-molecular theories. 

 Lagrange had proposed three classes, by which all the system of corps action each other. 24 

        On peut range en trois classes tous les systemes de corps qui agissent les uns sur les 
      autres, et dont on peut determiner le mouvement par les lois de la Mecanique ; car 
      leur action mutuelle ne peut s'exercer que de trois manieres differentes qui nous soient 

       connues : 
        • ou par des forces d'attraction, lorsque les corps sont isoles, 

        • ou par des liens qui les unissent, 25 
        • ou enfin par la collision immediate. 

      Notre systeme planetaire appartient a la premiere classe, et par cette raison les problemes 
      qui s'y rapportient doivent tenir le premiere rang parmi tous les problemes de la Dy-

      namique. Nous allons en faire l'objet de cette Section. [31, Vol. 12, Part 2 ( La 
Dynamique ), §7, p.1]. 

Our planerary system belongs to the first calss ( caused by the force of attraction ), then he seeks the 
mechanics in it. 

 Lagrange described the hydrodynamic equations :

A 

A 

 0

d2x -
crer ' 
d2x  x 
do 
d2x  x 

b, c) : 
A : Dre:

 0x + 
8a 

ax 
ab+ 

ax 
ac

 2 

d+Y 
 Cy +  Y 

  + Y

 da + 

db 

8c

 d2  Z 

 2  dt2+Z 

d2+Z 

t

 0z 
 8a 
8z 
ab 

dz 
ac

 8a —o 
DA =0 
ab 

da=0 
do

(22)

26 where where, a = (a, b, c) : position on t = 0, X = (x, y, z) : position on t = t, X = (X, Y, Z) : 
outer force, 0 : density, A : pressure. 

 The Lagrange's hydrodynamic equations of today's vectorial descripsion coppreponding to (22) are : 

                  3-.t~xj(02x,2
jK~)=-Op(i=1,2,3)              j~~0ai0taai 

j=1 

where, a = (a1, a2, a3) : position on t = 0, X = (x1, x2, x3) : position on t = t, K = (K1, K2, K3) : outer 
force, p : pressure, p : density. 
Lagrange communicated his "Mechanique analitique" to Laplace, however, from the hydrodynamic equa-
tion by Lagrange, we can scarecely find the MDFD equations, for lack of the epochal background on 
atomic-molecular theories.

    Laplace studied the capillary action ( cf. [34, 35, 36, 37] ), in which he treated the attractive forces. 
In the introduction of [35] following with [34], Laplace says, "So as to make clear more and more about 
the identity of attractive forces, upon which this actions depends, which produce the affinities of the 
bodies" (Supplement [35]). We would like to discuss Laplace with Gauss later. 

A.2. Naviers' principle and equations. 

  23(t) Lagrange corresponds with Laplace saying, "J'ai presque acheve un Traite de Mecanique analytique, fonde unique-
ment sur le principe ou formule que j'expose dans la premiere Section du Memoire ci-joint; mais, comme j'ignore encore 
quand et ou pourrai la faire imprimer, je ne m'empresse pas d'y mettre la derniere main. [32, Vol. 14, §16, No. 20 Lagrange 
a Laplace. Berlin, 15 septembre 1782. p.116] 

24(4) This paragraph doesn't exist in the first edition. The following content we refer is in the 4th edition was published 
after the 3rd edition published by Bertrand. The first edition uses the title page in 1788 as the published year, instead of 
the 4the edition in 1789. It reads that Quatrieme Edition. D'apres la troisieme edition de 1853 publiee par Bertrand. 

25(.) Combination in chemistry, etc. 
26(4) Lagrange [31, Vol. 12, §11, p.280] De mouvement des fluides incompressibles, or [31, Vol. 12, §12, p.325] De 

mouvement des fluides compressibles et elastiques.
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A.2.1. From Euler to Navier. 

 The corresponding Navier-Stokes equations on the incompressibl

the Navier-Stokes equation

1dE/d2ud2ud2ud2vd2wdu_du_du_du 
       Pdx= X _i_13dE+WI+dz~+2dxdy_i_.2dxdzdt dxudy •'vdz •'w, 

    1d2vdvd1vd2ud2w_dv_dv_dv_dv 
      p dy= Y ++ 3dy+4-+ 2dxdy+ 2dydzdtdx' udy' vdz ' w , 
1 d1' Z + Ed2wd2wd2wd2ud2v1_ dw  dw_ dw_ dw 
p dz=+dy+3W+2dxdz+2' vdydzJdt ax aydz• w' 

and the equation of continuity : 

du dv dw 

               —  

                                         —
dx+dy+dz=0. 

He explains E from various concepts in [45, p.251] : 
E is the constant which we mentioned above. Many experiments teach that this con-

      stant takes the various values for each fluids, and varies with the temperature for each 
      fluid. It is considerd also as variant with the pression ; but we have observed as the 
      known facts, on the contrary, that E is almostly independ of the force which tends to 
      compress the partial differences of the fluid. 

Navier cites the Euler's equations of the ideal fluid ([47, p.399]) :

 P-

Q -

R-

dx 

dy 

dz

=p 

=p 

=p

)ressible fluid (1) by Navier are as follow  : 

du  _ du _du_du d
t dx •udy •vdz •w; 

dv _dvdv() 
dtdx •u—dy•v— dz •w;(23 
dw_dw dw dw 
dtdx •2t— dy •v —  dz •W ;

du+udz+vdy+wdz), 
dv+udx+vdy+wdz), dw+udx+vdy +wdz),

(24)

(25)

with (24). Referring to (25) by Euler who passed away in 1783, Navier observed in 1822 that he hadn't 
sought for nouvelles forces moleculaires anywhere in the Euler's descriptions and that had motivated to 
formulate self-made MD fluid dynamics equations : 

        Mais, d'apres les notations exposees ci-dessus27, it est necessaire d'admettre l'existence 
      de nouvelles forces moleculaires, qui sont developpees par l'etat de mouvement du fluid. 

      La recherche des expressions analytiques de ce forces est le principal object que l'on s'est 
      propose dans la composition de ce memoire. [47, p.399] 

A.2.2. Principles and means of constant E in elastic solid. 
From Navier [46, p.386], we cite his context about the computation of momentum of total forces by 

integral: 
•¶4.

(3-5)Ne \Va2+N2+~2 

    1 dxdxddx dzdddz 

  

+ ---------------fa2+(—+y)a0+(—+—)a`y+y132+(y+—)~-y+ ^
a2 + 02 + 72Ldadbdadodadb do db 

Le premier terme est la valeur primitive de la distance MM' des deux points que l'on 
considere, qui a ete representee ci-dessuus pa p. Le second terme represente donc la 
variation que cette distance a subie par suite du changement de figure du corps, et a 
laquelle la force qui agit de M' sur M est proportionnelle. Si on remplace a, 0, -y par les 
valeurs

 (X =  p  cos  V)  cos  (P, 

/~ = p cos sin cp, 
-y = p sin V),

cette variation deviendra 

       f=p [—dacos2cos2 (p + 
        + dbcos sin(p + (

dx 
(db 
dy 

do

+ d) cos2IP sin (p cos cp + 
  dz. 
+db) sn cos sin (p + do

27(4) (25)

dx 

do + 

sin

dz 

da

2 01

dz 

do
72] •

) cos sin V cos co 

       (26)
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 (.l1.) Here, Navier immediately introduces harmonic function, although which may simplify 
elastic structure and we can consider the elastic structure as simple, however by this, 
we can not get generality. By the way, Cauchy begins with the general case, and finally 
apply polar system by harmonic function. Cauchy criticizes Navier' special case. cf. 
Cauchy (51)c. (ft) 

Representons pour abreger, cette quantite par f . La force avec laquelle le point 
M' attire M sera donc proportionnelle a f . Le moment de cette force, cette expres-
sion etant prise dans le meme sens que dans la Mecanique analytique,28 sera evidement 
proportionnel a f b f, oua26 f 2. Parconsequent 

  • si l'on multiplie 16f2  par dpd dcpp2 cos Of p ; 
  • si l'on transporte le signe 6 en avant des signes d'integration relatifs a p, ,c and cp, 

    ce qui est permis ; 
  • et si l'on integre entre les memes limites qu'on l'a fait dans le no 3 : 

on aura une quantite proportionnelle a la somme des moments de toutes les forces 
interieures par lesquelles le point M est sollicite. Cette quantite est donc ( continue 
below ) [46, p.386]
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(4-7)Ne f000  d,c

x

j:6 

[ 

   cos2 cos2 so + d
a 

bcos2sin2w + (

 i27rf 
i do fo dv,p4 1 Dos bfp(26f2) 

                       p27r 1,./dpi(171)/dcop4 cos'f p 

                 0

dx dy 2dx dz 

(db+da) cosip sin so cos so + (dc + da 
dy dzdz2]2 —de +db) sin%cosqsinco-{dosin.

) cos V) sin /' cos so

         2=dx244dx 2dy2dx dy          f=(da)cos/ cosCO+ { (db) + (da)+ 2dbda } cos40 sin2cp cos2so 

             {(dx)2(dz)2 dx dz}222(p(CdY)24„i,4(p             +d
o+da+ 2—de dacossincos-}-dbcos4'sin 

           + {(r)2+(ddbz)2+2dody dzdb .sin2vcos2sin2 (JO +( dz)2                                                              sin   dodo 

(4) Here, we would like to show Navier's mistake. At first we integrate above with respect to cp. By using 
the formulae below including (89) : 

                      f cos' xdx = -7,1i cosn-1 x sin x -I- ,n1f cos"—2 xdx, 
                      f sin'xdx =—.7.-isin'-1 x cos x-r:—n,7,1 ----- f sin`r''-2 xdx, 

then : 

 2~r27r3 27r27r
J0cos4cpdcp=/sin4cpdcp= —~,0sin2cos2 cpdcp = —4,0cos2 cpdcp =sin2cpdcp= n(27)   04fo27r 

28(4) Lagrange [31].



56 The
 "two -constant" theory and tensor function underlying the N avier- Stokes equation

Hence, it follows that : 29 

              f~r2/2irdpJ_dbJ4p4 cos IPfpf2       20 

0 

           26fdpfdcb 
                            2 X-[3-cosdx5V +{(dx+dy)2+2dxdyCOOda2db da db da 

           12dz                +4,dxdz+ da) 2+2dedaJcos3Sln2 + 3db2 cos 
            + 4{ (dy dz2dy dz23d2z4                    dc+db)2do db}sin%cos+ 8d22sinIP cos 0]. (28) 

(.J) Here, we would like to notice our correction of the last term of [. • • 8 • • • ] in (28) from 3 to 8, however 
this correction will not give any effect to Navier's description below. Next we integrate above with respect 
to O. Then 

         cos5=16cos3 sin2'd'=42sin4 cos Ido =2(29)      15'15' ,5 

  2 After representing the coefficient which is on the front of the integral with respect to p with E, we get 
from (28) the following : 

         1frd2xdx dy2dx dydx dz2dx dz l 
         2eSLl3da2+{(db+da)+ 2db da }+ {(- dc+da)+ 2do da J 

d2y r dy dz2dy dzld2z                           +3 
db2 + l (dc + db)+2do db J+3dC2 J • (30) 

Here, choosing as a common factor, 7÷/ by integral with respact to cp from (27) and 15 by integral with 
respect to from (29) respectively, we get

(3-9)Ne
 _1~r16 E

21 1000    dPP4fP = 
27r 

15

 ~fdPPfP (31)

This e of (31) should be multiplied by 
namely it becomes the same as (52). 
•¶5.

1 
2'

when the momentum of the total forces in the so lid are computed,

(5-1)Ne 0= EN

IIl

da db do

da db dc

 dx bdx dx bdx dx bdy - bdx

as 
dx 

dc 

de

as 

dc 

dc

db db 

ac da 
  Sch 

de db

db 

dz 

da 
dz 

db

da as db 

ac as a 

ac:dbdb 

ds (X'Sx'

+b+dxtidy+bdx   da da da dbdb da

+= dxbdz        ada do - do as 

        + Y'Sy' + Z'Sz').

  dzbdx+b#

L=+ ---+3 +

(XSx+Y(5y+ZSz) —

db 

dz 
de

db 

de

(32)

When the first term of 6 in the right-hand 

Efff da db de

it-hand side of (32) is arranged in respect to ox,  Sy and b 

dxSdxdxSdx dx SdxSdxdzSdx 3
da da+db db + dodo+2da db+2 da dc 

(11_2. 3,1E 5 - +2dxS+2dzS 
 da da db db do doda db db do 

dz Sdz dz SdxdzSdzdxSdzSdx 
         db da da +'3de do '2da'2db

z then

(33)

29(4) Remark : f p does not mean f x p but f (p). 
d2x dxdzd2z 
d7+do da da•

We compute (.-1- .)2 in (28) as usual, for example  (dxdz  \d
oda )2 =
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                                       bxX'bx'by'' by' Moreover, we rearrange (33) for differential :,Or, ,~~., ,(I(L,dzby,,dZ',db , ~G, , , as follows :

E f f da db dc
3  dx  adx (Mx dz &Ix dx 5dx c12, Odx dx Odx dz Odx  da da db da dc da db db ' da db dc dc da dc 

 dx (My Ody dx (My3cly<My dz ödy dy dz ady 
 db da da da da db db db dc db de dc db dc 

dx adz dz adz dm adz dz adz dx adzi 3d adz _L adz  d
c da ' da da dc db ' db db ' da de ' dc dc db dc

57

(34)

Using (33) and integration by parts of Sx, Sy and bz, we make the top term of (35), in which —E is leading. 
And using (34), we show only the first differential order : 6x1, Sy', Sz' in the middle term of (35) as follows

(5-2)Ne 0

= _cfff da db de 

                  dx' ^f f db' dc' (3_da' 
               dx' ^E[ f f de' 

dx'  •[ff db' del (de, + 
- fil da db dc(XS:i

2222 2 

3da2+db2+dc2 + 2----db+ 2 d2z

Tai + 
d2z d2Z 
da 2 db 2 

dz'

     db+ dc2+dadb
_ + 3 d2z + 2  d2 

+ 2  d2z     dbdc

dx' d db' do (3 da' + db' 
„„ /dx'

+ d
e'

dr2 dadc

) + JJ da' do'

     d2 + 2
d 

dx' dy'

6x 

Sy 

Sz

 + 1 ! da' db'
dx' dz'

da') ff da' dc' da'+ de' 
da' )+jjdadc( dzi'dydc'db')+h

   db' 

   0

do

                ) + dal di,' (

do 

 + da' db' (dYi

+

 da'

da db dc(X (Sx + YSy + ZSz) — I ds(X'Sx' + Y'Sy'

     da' db' (aY. do'+ db'1Jy~ 

— da'+db'3de'I JSzi 

               (35)

We solve the indetermate equations (35) 
the following two equations from (35) : 
• The force inside the solid corps :

- fff da db dc(X Sx + YSy + Z(5z)

• The force on the boundary : 

fds(X'Sx' + Y'Sy' + Z'Sz') 
       ~r dxrdy'         Jdb'doC3 da' db' 

       if'+
6.[f dx' dz'

30
of equilibrium in an elastic solid as follows.

=Efff da db do

  ff X' 

 J dsY' = e Z'

ly' dz'  --d--  ) ffia'cie'( 
f f do! de' (dxf+ 3P_              da' 

  if &Mc'—dz           del db

dxdz' 

 da'db'' 
   dx'd,y/  

   db' ' da' 

  de' da'

At first, we get

 3  d2x j d2 x d2 x j9d2y9d  da2'db2dc2 dadbda2dzc) 
cfg + 3 dd20 cli2g _,_ 2  d2 x _t_ 2  d2 z  

              

' dadb dbdc 

d2z d2 z  

da2 db2 + 3 dd2c; +2-----d2x22-2-                  dadcdbdc

,d chi dy'  C 

db' da' 

 ody +' dz' 

  db' de' 

dz' 

W)

here this tensor is symmetric.

        dy'  
  db' ' da' 

dx' 3 dydz' 
da' ' db''dc' 

dy' j dz'

lx' dy' 

117 ± dal ) + g dbl 
        dz' 

   

- - -d- , f f da' db' (–d 
    if da' db' (dx dY              da db

Ox 

Sy 

Sz. 

dx' dz' —de ± —da')]Sx' 
y' dz' \-1 

de' db' 

dy' dz' 

db' + 3----de!)]Oz/

(36)

dx' 
dc' 

dy' dz' 

 ,de! db" dx 3 dz'

 f f  db'  dc' - f f 
da'dc' , 

f f da'db' -

From (36), we get the inside forces of the elastic solid as follows :

30(4) Navier says that (35) is usually called "equations indefinies" . [46, p.384,389]

(37)

(38)
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 (5-3)Ne

 —X=E 

—Y=E 

—Z=E

(3d2xd2xd2xd2yd2z)  da+db+717+2dadb+2 dadc

d +  3 db---+ d- + 2 dadb  2 dbdc 
aQ+da+3 d2z2dddc+2aa

(39)

where X, Y and Z are positive values. 
 Next, we get also X', Y' and Z' from the (37) : we suppose that :31 

    • db'dc' — ds cos 1, 1 : the angles by which the tangent plane makes on the surface frame 
      with the plane bc, 

    • da'dc' --> ds cos m, m : similarly, the angles with the plane ac, 
    • da'db' —* ds cos n, n : similarly, the angles with the plane ab, 

    • f f db'dc', f f da'dc', f f da'db' -f f ds , 

then from (37), we get the forces operation on the surface of the elastic solid as follows :

(5-4)Ne

 X' = e 

Y' = £ 

Z'=e

cos 

cos 

cos

1 (3da'_i_b+

 ids' +  db'da' 

l dx' -{- dz' dc'da'

 d~, 
+  cos 

+ cos

+ cos

m 

rn

     Cdx' dy, OSm db'  +  da' 

dx'+3+dz' 
da'db'dc' 

L12+db,+ COS

+ cos na:'+aa' 

+ cos n(-2-+db, 
n(dx' ++3dz' 

da'db'dc'

)]' ,
(40)

 X' 

Y' 

Z'

 =E

3dx'++dz'  da' db'  dc' 
  dx'+dy'  

  db' da' 
  dx'+dz' 

  dc'da'

   dx' +dx'+ _____d z' 
 db' da'dc'da' 

dx' _L_3+dz'dy'+dz' 
da'db'dc' dc'db' , 

+ dz'dx' ++ 3 dz' dc' db'da' db' dc'

 cos  1 

cos in 

cos n
(41)

 (J) By the way, when we rearrange (32) to compare with equations of equilibrium in fluid, then (32) 
becomes (42) as follows :

(5-1)Ne 0

= 5 ff dadbdc
 q  dx Sdx

as as 

dx Sdy dx 6dy  

da db  db da

dx bdx dx Sdx 

do do

dx Sdz dx bdz 
da do  do da

+ 

+

 dc ao au au uu 
ll1  a+3a+ 

da daal         db db do do 

di adzj (dz adz

adx 4_

db dc T do dbJ     dz Sd:  + 
da da

 + de  as as de 
  Sdy dz Sdy 

db de + de db

dz 

de 

dz 
db

Sdx dz Sdx

  dz SdzdzSdz) 
 db                +db +3do do

- JJJ dadbdc(X Sx + YSy + ZSz) — J ds(X'Sx' Y'Sy' + Z'Sz'). (42)

Navier deduces the equations of equilibrium in fluid as follows :

31(4) On this method Navier cites Lagrange ([31, pp.113-188,1 partie ,§ 5]), Solution de differents problemes de statique. 
In fluid case, Navier rethinks this method afterward. c.f. (69).
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(3-24)Nf 0

= JJf dxdydz

— e f if dxdydz

[P-:-      dx 

[Q- d- 
      y [R-~-       dz 

  3du Sdu     dxdx 

  duSdv 
  dx dy 

  du Sdw  

   dx dz

A 

P 

R

3du du Odu du (5clu  dx dx  + dy dy dz dz 

du  6dvdu dx dy dydx)dx  &Iv (dv 6d 
dx dzd      'zdx)'(dy du Odw du (5dw dv 6

Sds2E(u6u v6v w6w).

dt '"'dx 

du+, du +v du _i_v iILO- 
           clY'dzYU 

dt '``'dx± vdY+ wdz)J"V dv _i_,dvdvc12_,1x 

            dY '''COJ"W dw rtC+ ut-± v-4:2--'4 -i,,dwi 

dy dy + dz dz)_i_(dv6du(M                             _i_dvu_i_               'dy dx'dx dy)' du Odu du (5clu 

1, My v dx) + (dd xv add: + 3ddyd                 vOd;+dzdv6dzdv)+ u 6dw) _i_ ( dv dw _i_dv(5(1w  zdx,dydz'dz dy)+dx (5ddxw

(dw(Mudw 6du) 
 dz dx dx dz 

(dwödvdw 6dv) 
 dy dz ' dz dy 

+ dw 6dw o dw Odw) dy dy dxcix

(43)

When we compare only the terms of E between (42) in elastic 
none, and the both tensor are symmetric respectively. 
• ¶ 6. Navier computes the acceleration around the point M. 
is acceleration of gravity, then

solid 

H is

and (43) 

density

in fluid, the defference is 

of the solid per volume, g

(6-1)Ne

 II d2 x —
g Wr 

11 cy 
9 dt2 
H d2 z  
y dt2

= E 

=s 

= E

3d2 x d2x d2----x +2  d2'Y2  d2 z  da2db2dc2 dbda deda)' 
4+342,d2„d222 daCr62-dcdadbdcd2+-                            b 
d2 z d2 z Qd2Zd2xd2 
da2db2`"dc2-4-4dadX:

(44)

Poisson comments that  E in (39) and (44) equals Poisson's corresponding parameter in (6)pe ( = (94) ), 
namely Navier's E is equivalent to Poison's 4, however Navier denies it. 

A.2.3. Deduction of the expressions of forces of the molecular action which is under the 

state of motion. 

 Navier deduces the expressions of forces of the molecular action which is under the state of motion as 

follows : 32 

We consider the two molecules M and M'. x, y, z are the values of the rectangular coordinates of M and 

x + a, y + z -y are the values of the rectangular coordinates of M'. The length of a rayon emitting 

from M : p = -Va2 + /32 + 72. The velocities of the molecule M are u, v, w and that of the molecules M' 
are 

        du dududv dv dvdw dw dw     (3-3)Nf u +—
dxa+ —,dyP dz-Y, '1)+—dxa+—dzw—dxa+—dyP—'y(45)                                         dy

V is the quantity on which the proportional action depends as follows : 

              a           du du du13dv                         dvdv7dw dwdw (3-4)N f V = —(—a +— ,u+—7)+ —(—a+ —,--y)+ —(—a,—"Y)• (46) 
        pdx dy dzpdx dy dzpdx dy dz 

V represents the force which exists between two certain molecules of fluid. The increment of V is as 

follows : 

      a/---- ++du6du(6dv Odvdv7Odw  (3-5) Nf W= dxa ++--y)a                                     +7)+p(dx+Odw+Sdw7). (47)        dydzpdxdzdydydz 

f(p) is a function depends on the distance p between M and W. We define that o is the angle of the 
rayon p with its projection on the a/3-plane and (p is the angle which this projection forms with the a 
axis, and then 

(3-9)Nf = p cos cos (,o, = p cos sin cp, -y = p sin(48) 

32(4j.) Navier ([46, pp.399-4051)
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TABLE 10. Combination between V and SV

 a2  11   I I I 15 I I I 17
all 2 I 14

cry 3 I 1 I 16

Oa 9 1 110

02 8 I I I 1111 I I 114

07 121 113

rya I 1161 I I 119
-Y13 181 120

72 151 1 1 1171 1 1 121

We calculate  dpd  dcpp2 cos co of the element 
and integrate with respect to co, from 0 to

of the volume in the new system of coordinates 

2 and with respect to p from 0 to oo.
(a, 0, 7),

(3-6)Nf 

169) 
     p4

1 

p4
f (p)V61/ = 

  (du du du     dxa+dyp+dz 

         Sdu Sdu Sdu 

   dx a+ dy dz

-"(TEr 
av 

7)+0(

dv 
a+ 

Sdv 

dx

dvdv, 

dyP + dz 7) 
a+Sdv~+    d

y

+7( 
Sdv 

dz 7)

w dw 

dx+ dy 

+7 8dw    C dx

~+

+

dw 

dz 

Sdw 

dy

y) x
Q+

6d 

dz
7)], 

 (49)

here, by the symmetry we supposed, we get the relations as follows :

Sdu 

dy

  du, 

  y 

0=0

 dv 

dx

Sdv  
a d

x

Sdv  

dz

dv 

dz

7

   dw 
– 7

dy 

7Sdw   d
y

a

 du 
a-7  d

z 

Mu 

dz

 dw 
7dxa 

Sdw 
ya  d

x

Because we integrate only
1 

8
volume of the total sphere, total of the sphere is multiplied by 8.

(3-7) Nf 

8

+

+

f (p) (du Mu 4 du Sdu 
p4 \ dx dx a + dy dy 

du Sdv du Sdv) 2 2 
dx dy +dy dxla +( 
du Sdw du Sdw \ 22 

               7 dx dz + d
z dxIa+

 22duMu2 2) (dvSdudv Sdu ) 22 (dwSdudw Sdu \ 2 2 a+
dz dza')//+\dx dy+dy dx )a + \ dx dz + dz dx / a 

dv Sdv 2 2 dv Sdv 4 dv Sd'v 2 2 \ ( dw Sdv dw Sdv\ 2 2 
dx dx a + dy dy + dz dz 7 /+\dy dz+dz dy/Q ry 
dv Sdw dv Sdw\2 2(dw Sdw 2 2 dw Sdw22dwSdw 4) 

\dydz+dz dyI7 +ldx dx a 7+dy dy1-'7 + dz dz ry i i

We get 21 terms in (50) from (49). We show the combination between V and SV in Table 
the row is V and the column is SV and the numbers are the order of the description of the 
(50). By the formulae of the original function of infinite integral :

10, in which 

21 terms in

f sin2 xdx =  a  x - 4 sin 2x, f cos2 xdx = 2 x + 4 sin 2x, 
f sin3 xdx = -A cos x(sin2 x + 2), f cos3 xdx = ssin x(cos2 x+2), 
fsinnxdx = -1-slnn-1x cos x +nre1f sinr''-2 xdx, fCOS-2xdx=1-n cos 
f sin x cos xdx = - cos:;-fsinmx cos xdx = sin"`+1:~      m}1m+1

°-1 x sin x + n, 11f cosr-2 xdx,
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We get the result of the integration except for  fo dp as follows :, 

        1f2f21r2f27r 
              P4 Jd'bdcpa4 cosV=p4 JdPdcp cos5 0 cos4 y=10' 

      frf 4/aJ2d 24,34cos 0= J2 f2d2~1 d(p cos5 0 sin4 tp =10ooo 
                 f2f2 ddcosV= f2J2ddcossin4(p=,         JoP0

Ir 
                  -7

4, 

          12f2dtda22cos0=22d'dcos50sin2 y cos2 OJoPJoJo 
         4J2 f 2dda2y2 cos 0=f2fddcos3sin2 cpcos2 cp =30JJoPo0 

             4 

          1 aad'd (p,C32-y2 cos 2/J =42 2di/Id(pcos30sin2ysin2y3O 
PJoJoPJoJo 

Total of the sphere is multiplied by 8 taking e as the common factor : 

            3-10_8ir°°4ir°°4             (3-10)e=30Jdpp4 0                               f (P) =15dppf (P) 

    0 We get now r of (23), and using the law of conservation of mass : (24), it turns out the term of p 
the today's formulation : (1) from next :

e

 3  d2ud2ud2ududvdwdu  dx2+dz2+dz2+2dxdy+ 2dzdx 

d2v+3+d2 +2 dudv+2dudv 
dxdydz2dxdydydz, 
d2wd2wd2wdvdwdwdu  
dx2+•dy2+3dz2+2 dydz+2 dzdx

thu.
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(51)

©u of

Exactly speaking, Navier ([46, p.405]) says this E must be mupltiply by a , for double count, when we 
get the total momentum of the forces caused by the reciprocal actions of the molecules of a fluid in the 
following section, as follows :

For this reason, Darrigol cites Navier's tensor from this by using tensor notation.33 

A.2.4. Deduction of the expressions of the total momentum of the forces caused by the 
reciprocal actions of the molecules of a fluid. 

 Navier uses the above results to seek the expression of the total momentum of the forces caused by the 
reciprocal actions of the molecules of a fluid as  follows  : 34 Here, we rotate the rectangular coordinates for 
7' to coincide with the direction of a rayon MN of which M is the common origin of the both rectangular 
coodinates of a, /3, ry and a', ,3', 'y' satisfying co = r and = s and then we get the new relation of a', 0' 
and •y' from (48) as follows : 

a' = p cos IP cos co = p cos r cos s, ,C~' = p cos sin co = p cos r sin s, y' = p sin IP = p sin r (53) 

33(40 O.Darrigol [10, p.112] interprets that this is Navier's tensor as follows : 

15fdpp4f (p)=k, M = f~ij=wjdT 
                                             0 aij = —kN2(oijakuk + aiuj +ajui) _ —kN2(bijukk +uji +uij), 

                                                                       where N = 1. 

In analogy with Lagrange's reasoning, Navier integrated it by parts to get 

                            M = f QijOiwAS'i — f(0iaij)wjdr. 

                                                      34(I/) Navier ([46, pp.405-416])
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 In fig.1, we suppose that : the point P is the projected point on a/3-plane from N. The angle of PMN 
equals s. N, R and Q are on the common line on the /3'-y'-plane. Plane MNR and plane MRQ are on 
the common /3"y'-plane. MNLMQ, and MRLMP. Therefore, the angle made by MQ and MR equals 
s.

bath

beta' gamma

a

alpha'

R

M -'  k 
s

p

N

gamma'

alpha

fig.1 Rotation of coordinates

From the above, we get the following

or

a 

0 

 ̀ Y

(3-17)Nf

 = -a' sin  r+,3' cos  r sin  s+-y' cos  r cos  s, 

 = a' cos r + /3' sin r sin s + 'y' sin r cos s, 

= 0' cos s - -y'sins

where last terms of the right hand-side of a, 0,-y ( or 
for the transformation) are the original values of (48) 
added by the rotation. (.O By the way, if we call the 
A-1 = A = AT, i.e.

 (I 

0, 
-r/

 — sin r cos r sin s cos r cos  s 
 cos  r sin r sin s sin r cos s 

     0 cos s — sin s 

hand-side of ca, (3,-y (or the val 
the original values of (48) except 
By the way, if we call this rotat

— A-1

 a 

 0 7

— sin r 

cos r cos  s 

cos r cos  s

a'

 -A

 a' 

'3' 
7'

 Le values in the 3rd column of the 3 x 3 matrix 
xcept for the term of 'y', and the rest terms are 
rotation matrix A, we get det(A) = 1, so that

 cos r 

sin r sin s 

sin r cos s

 0 

cos s 
— sin s

 a 

 7

Using (45),(46) and (47), like (49), the expression : (54) is considered as the expression which must be 
integrated for all the value in respect to  a' and /3' and for the only positive value in respect to 7'. Then 
we get following : 

(3-18)NI 

    -2F(p)VSV =F~p)x 
[ a'(—u sin r+v cos r)+)3'(u cos r sin s+v sin r sin s+w cos s)+'y'(u cos r cos s+v sin r cos s — w sin s) ] x 

[ a' (—Su sin r + Sy cos r) + 0' (Su cos r sin s + Sv sin r sin s + Sw cos s) + 'y/(Su cos r cos s + Sy sin r cos s — Sw sin s) ] 
                                                            (54) 

We get the right-hand side of (54), except for F4-4  as follows : 
       [a'a + /3'b + ry'c] [a'(dSu + eSv) + /3'(f Su + g6v + how) + 'y'(iOu + jOv + kOw)] 

or

abc]
a' 

 3' 
'Y' (H' ' ' I

 d  e  0 

f g h 
i j k

 Su 

 Sv 

Sw
))

then we get
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                    131 -fa  +  db g a + eb ha 
                       =f c + ib gc + jb hc + kb 

ia + cd ja + ce ka 

We get effectively the following :

a' 01 ={— 2u sin r cos r sin s + v sin s(cos 

2v sin r cos r sin s + u sin s(cos

e Navier-Stokes 

Su 

  Sw

equations

2r — sin2 r) — w sin r cos s}Su + 
2r — sin2 r) + w cos r cos s }Sy + 

   { cos s(v cos r — u sin r)}Sw

63

Ocri = cos r{ 
 sin r{

2u cos r sin s cos s + 2v sin r sin s cos s w(cos2 s — sin2 s)}6u + 
2u cos r sin s cos s + 2v sin r sin s cos s + w(cos2 s — sin2 s)} Sy + 

{u cos r + v sin r — 2w sin s cos s }6'w

   =  — 2u sin r cos r cos s v cos s(cos2 r — 

    2v sin r cos r cos s + u cos(cos2 r

sin2 r) + w sin s sin r (Su + 

sin2 r) — w sin s cos r}6v + 

{ sin s(u sin r — v cos r) }Sw
On this point, Navier explains as follows : 

       On the above expression, we must integrate for all the value with respect to a' and 0', 
      but with respect to 7', only positive value. This operation becomes symple by remarking 

        • that if we consider four points placed symmetrically, this sign for 7' is positive, but 
         the other coordinates a' and 0' differ from each other by sign of point two by two, 

          and 
        • that if we add the values which the above expression (54) takes in these four points, 

          it rests, as the result of the addition, only the terms which are relative to the terms 
         of a'2 and the terms of 0'2, the terms gained are to be multiplied with 4. 

      Hence performing the multi indexes, all is reduced to integrate the quality in the volume 
      of T1,- of a sphere where a', /3' and 7' take the positive values as follows :

(3-19)Nf 4 F (p) 
P2

 /2 a

or2

7/2

{ (u sin2 r — v sin r cos r)6u 

( —u sin r cos r + v cos2 r)Ov } 
(u cos2 r sin2 s + v sin r cos r sin2 s + w cos r sin s cos s)Su 

(u sin 7' cos r sin2 s + v sin2 r sin2 s + 'w sin r sin s cos s)Sv 

(u cos r sin s cos s v sin r sin s cos s w cos2 s)Sw 

  cos2 r cos2s + v sin r cos r cos2 s — w cos r sin s cos s)Ou 

(u sin r cos r cos2 s + v sin2 r cos2 s — w sin r sin s cos s)Sv 

(—u cos r sin s cos s — v sin r sin s cos s w sin2 s)Sw

}

}

(55)

a' = p COSI') COS CO, /3' = p cos '0 sin cio ,   = p sin '0
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Making the calculation of the element of volume  dpdzPdcpp2 cos zi) with respect to z' and cp from 0 to 12'1, 
                                                                             we get the following three results of the finite integrations :

1 

P2 o 

1 

P2 0 

  1 

P2 2

jdcbd9a/2 cos0 

2 

 f2dzbdcpJ3'2cos.,____ 
oo          n 

 22 
dzbdcpry'2 cos

  1 

  p2  P 

 2  P 

E

 r2 

 Jo

                   7rd
z/~dcp cos3l~Jcos2cp=6 

 0 

  2
dz7r/~dcp cos3z/~sin2cp=6 

 0 2 / 
dz/~dcpsin2,p cosz/~_ 

Jo6

F(p) is the same function as f (p) in (49), which is a function which depends on the distance p between 
M and M'. Taking s as the common factor, we put

              /' 
 (3-22)Nf647rJ°°dpp2F(P) 

              0

0dPP2F'(P)
(56)

and define :

(3-23)Nf E(uSu + vSv + w6w)

for the expression which we seek for the sum of the momentum of the total actions caused between the 
molecules of the wall and the fluid, following the direction which passes the point M of the surface of 
the boundary of the fluid and the wall. E represents a constant of which the value are given by the 
experiment, according to the characteristic of the wall and the fluid, and which are able to be regarded 
as the measure of its reciprocal action. We get the following equilibrium of a fluid using c of (51) and 
the above E(u(5u + vSv + wow) :

(3-24)Nf 0 = fff dxdydz

-  E  ill  dxdydz

[P —~—    dxP 

   ~— L"d
yP 

[R — a - p

du+udt+vay+wz)JSu 
dv+udd+v +wz)]Sv

 dw dw4dw+?i'  +u —v—dw
aL

du bdu +du Sdu+
_777-777

ax 

du .5d1 
dz dz

ay 

  dv 

ay ax 

ay ay 

dz ay        dz

 )]Sw
ax ax 

du Sdv 

dx dy 

du Sdw 

dx dz

ay ay

  dv Sd-u dw Sdu dw bdu + 
—dz dx + dx dz

 duSdvdv(My    -+--+

+U

ay ax 

duSdt 

dz ax
+ dvU

ax ax 

dv 

ay dz
-}

dxy 

  dv &Iv 

dz dz + dw Sdv dw Sdv

+ Sds2E(u6u + vSv + wbw)

dw Sdw + 
dx dx

 aydzdz ay 

  d   dwSddywdz dz             dw Sdw      +3 

         (57)

Here, Here, S means the integration in the total surface of the fluid, E of (56) must vary in accordance 
with the nature of solid with which the fluid contacts. Shifting d to the front of 6 of the middle term of
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the right hand-side of (57)

(3-25)Nf

theory and tensor function underlying the Navier-Stokes 

and by Taylor expansion using the integration by parts

 c  fff dxdydz

                    th       + E if dy' dz/ [(3—du' + 
                          dx'                          

- d 

       ( 

       •E if dx' dz'u'de 
                       dy'dx' 

      • E ff dx' dy'_(dduz:ddwz 
       - E if dy" dz" (3 du"+ 

                            dx" 

                   du"d       - E if dx" dz" [(—  
                   dy"d 

                   du"d        -Eff dx" dy"\                     dz" d 

GO By the way, we show again (3-25)Nf

(3-25)Nf E  fff dxdydz

E if

E

   tdu'dv'w' dyidz32:+ddyd                    ,+dz' 

 dx'dy [ dz,+d.,>8u' 
dy"dz" 3 dv,"+dv"+dv        d~"dy"d< 

dx"dz"  dun+dv"(52G"       dy„dx„ 

dx"dy" [ dduz""+ddw:c")6u" 
                  if we check the e term 

solid, and the coordinate 

.cidence with the tensor bE 

. rms of fluid as follows 35:

equations

 '
3d2u   dx2 

2-----d2u   dxdy 

2 d2u    dxdz 

du'+du'_L_dw')6,12+(dduy:±ddxv: dx'dvi)6,,,/_i__(du'_,,,_3du'_i_dw' 
y' _i_ d: 

z' + dx' 

3dx"„+dv”+dw")671,/±(du"± 
du" dy„ + ddxV/:, )(5u// ± ( ddVe", + 3 ddvy:: ± , 
du"  
dz"+

3((itx2+dy2+d +2dxdy±2dzdx)6u 
2 d dy + d+ 3 di:v + dz2 + 2 dydz) Sv 
2 dxdz_L_2dydz_L.aJ._dy2_i_3dz2) Sw 
  dv'dw'(du'de(du'dw' +dy'+dz')Su' +(dy'+dx')Sv, +dz' ̂ de)Sw~. 
 dv'du'dv'dw`dv'dw' +dx')Su +(dx'+ 3dy'+dz')Sv' +dz' •dy')Sw'. 
 dw`(dv'dw'du'dv'dw' + dx')Su'+ldz'+ dy')Sv~ +dx'+dy'+ 3----dz')Sw' 

x"dv"dw"du"dv"du"dw' 

u"+dy"+dz")Su„+(d y”+dx")----)öv"+dz"+dx'' 
" dv"du"dv"dw"(dv"dw' ''' +  dx")Su'~+(dx" +3dy"+dz" )6v"  +(dy"                                    +d

yn 
" dw"dv" dw"(du"dv"dw 
`'+ dx")Su"+(dz//+ dy" )Sv" +(dx"+dy"+ 3dz' 
25) N f keeping the tensorial structure : 

'')6u 

,)(5v 
—----)6w 

Z + C:i%) ( 5 ul + (0 ± 2; Sy' + c. ,+4, Sw'] 
14)5u/ + (2:7 + 3--Fcciivi, + ---,-,Tddw' Sv/ + dz~ + yy, Sw'_ .. • 
5-) (Su' + (2; + c(L,-71,--;',-) Se + eci-E-t:', +y, + 3 dz') Owl 
- --i--ivi:, + ddt,::: )6u" + (dduyi,/, + dv"Sy" + du"+ dw"Sw"]               dx"dz"dx'~J 

(IA (5U" ± edlux,", + 3 cdivy; ± dz" Sv// + dz:, + d„---5Sw"] 
ddtxu : : ) 6 U" + edhZ/ : + dd;: : ) y u du"d"dw"/l                      +dx„+dyv„+ 3dz„Sw]

 )  Sw'~ 

)öw' 

  )Swl
  dw" + 

dx" 

  dw" 

  dy" 

   dw" 
+ 3 d

z"

Sw"] 

)Sw"_ 

)Sw"i

65

(58)

(59)

(60)

(61)

(62)

(63)

(64)

• • first order

• • • second order

(4) By the way, if we check the E terms of Su', 6v', Sw', after replacing u = {u, v, w} of fluid 
{x, y, z} of elastic solid, and the coordinate system : {x, y, z} of fluid {a, b, c} of elastic solid, then 
we can see the coincidence with the tensor between the equation (38) or (65) in elastic solid and (59)-(61) 
in the first order terms of fluid as follows 35:

fds
X' 

Y' 

Z'

=e

 3 dx'dy' dz'  dadb'  dc' 
dx' dy'  

  db' da' 
  dx' dz' 

dc' da'

  dx' dy'  
db' die 

dx' dz' 

  .ctiL dz'

dx' dz' 

dc' ' dce 
  dy' dz' 

  dc' db' 
dx' (124' 3 dz' 
da' '

 ff db' dc' ff 
da' de 

ff da' d11
(65)

here this tensor is symmetric. 
  Using the following equations deduced from the conservation law : 

                           du dv dw                              (3 — 26)Nf — + + — ----- 0,                            dx dy dz 

and

(3-27)Nf

 d 

dx 

 d 

dy 

 d 
dz

du  j _ dv j_ dw 
dx dy dz 

du jj dv dw 

dx dy dz 

du dv jj dw 

dx ' dy ' dz

d2u•d2u •d2w  
7:7dxdydxdz== °' 

d2v _E d2u d2w__ d
y2dxdydydz 

d2w•d2u •d2v  
dz2dxdzdydz 13,

35(1) Navier [46] neglected the terms below the second Taylor expansion in elastic case .



66 The  "two -constant" theory and tensor function underlying the Navier-Stokes equation

we get the short expression as follows : 

d2ud2u (3-28) N f e ffdxdydz [ (2 + d + dz2) S2 
          +(d2w d2w d2wl               dx2 + dy2 + dz2)bw] 

         + Ef dy'dz'[2dx'Su'+ (du'+dx,)6v'+ 1 

                                y 

         + E I I dx'dz'[(d'+d,)6u,+2dy'6v,+ 1 
+ e ff dx'dy' [(dz'+dx')Su' + (dvi                                         dz'+d y 

                ffrrrr)— dy"dz" [2duSur' + (7id~u+dvvdx,rdxr, 
          //du"dv"dv"              — cJJdx"dz"[(dyrr+dx'r)bur, + 2dy~rSv,, 

         rrdu"dw"           — eJJdx"dy"[ (+ dx")bu"+(dvF                                          dz"+ 

We show again (3-28)Nf keeping the tensorial structure : 

  (3-28)Nf 
2 d2u d2u2d2v     E f~~dxdydz [ (dx2 + d2+dz2)Su +(dx2 +d2 +    yy

. fII

6ill dxdydz[(2+2+dz2)Su\dx2+dy?2ad2 
 a-w  a-w 

 dx2 + dy2 

E if dy' dz' [2d 
E if dx' dz' [  

             c E ff dx' dy' [ (  
 fr E JJ dy" dz" [2 

c ff  dx" dz" [ ( 

e if dx" dy" [(

dy' dz' [ 
dx' dz' [ 

dx' dy'

)6y
Sw] 

     /du'' 

+~du+dv)Sv'+(du+dw)Sw'] 
  dy' dx'dz' dx' 

dv ) Su' + 2 dv Sv' + (—dv' + dw') Sw1 
dx' dy' dz' dy' 

dw'( —dz'y//'dx')Su' + +') Sv' +2dz'Sw'] 
u„ +du"+dv"Sv„+du"+dw"Hoe]    (dy/ dx"(dz"dx") 

 dv"dv" dv" dw" *dx")6u" + 2d//Sy" +(dz"+d----„)6w         ]yy 
 dw"„dv” dw"dw"„}dx") Su+(dz+----„)6v" + 2 dz"Sw 

                 y

if

2dy,5u'+(du'+dx,)bv'+ 
 du'+du'        1Su'+24'5v' + 
 du'dw'// di/dw dx'+dx')6,'+dx'+ dy 
r2du'Su//+du"+dv"Sv/ L

rdx"d--dx" L dy',' + dx")Su'/+2dy„av' 
L az" + dxii )60  + (dzrr +

 dy"dz" [ 

dx"dz"[ 

dx"dy"[ 

       L,61-t' + (du,+x,) 6v/+++ 
                 ly         yi+)16u/ + 2% (5.v' +dzi+ 

      

jz' +)6u'+ (+)öv'+ 
du" (50 +(du"_i_dv"6vil + du" 
dx"dy"dx"dz~~ 
du"dv"//dv""dv" 
dyi ' dx"Su+2dy"Sv+dz" 
du" . dw" 1 r...// . ( dv" . dw" r..

d2 v 

dz2 

ow'] 

Ow'] 

6w']

) sv +

d2w d2wd2w 

dx2+dy2+dz2

(66)

dw' 
I' 
dw' 
lyi

+ 21L-°'6/.1 

 du"  . dw"

dy"

+ 

+

dx" 

 dw" 
dy"

Sv"+2dz„

Considering 

    • that  Sds2E(uSu + vSv + w6w) of (57) is zero, 
    • that all the remaining terms of the (66) are zero, 

then, combining the first term of right-hand side of (57) 
expression as follows :

(3-29)N f 0 = JJJ dxdydz
[P - 

 [Q - 

[R -

dx 

dy 

dz

P 

P 

P

 6w"] 

6w"] 
6 w"]

with the first

du+udx+vay+wdz~ 
dt+udx+vay+wdz) 
dz+udz+vdy+wdz

• • • first order

term

• • second order

)aul

of (66), we get the

(67)

last

At last, solving what Navier called the indeterminate equations, we get 
terms under the symbol of integral of the right-hand side of (68) with zero of the left-hand side of (68) 

 On the other hand, to deduce (69) from (66), we transpose (59)-(61) as follows :

+ E (` + + ] 6u 
  (',1412-)+(D21] (68)      d2w d2w d2w )16w 

,t (23) from (68), combining the

(3-30)Nf

EuSu +  e  [2 f f dy'dz' + ff dx'dz' (dy~ + dx, 
EvSv + 6[ f f dy'dz' (~ ,+v,) + 2 f f dx'dz' z 
EwSw + e[ f f dx'dz'( +ay,)+ ff dx'dz' (

          dudw 
            dz'+dx 

            dv' dw 
dz' + dy 

1-7 ± WI) ± 2 f f dx'dy

• ]6t'+...Su"+...=0 

]Sv'+•..sv"+.••=0 
dz~] OW/ +...Sw"+... =0.
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A.2.5. Boundary condition. 
 About the handling of  Sds2E(u6u  + vnv + wSw) of (57) and all the remaining terms of the (66), Navier 

explains as follows : regarding the conditions which react at the points of the surface of the fluid, if we 
substitute 

o dydz -* ds2 cos 1, 1 : the angles by which the tangent plane makes on the surface frame 
      with the plane yz, 

    • dxdz -* ds2 cos m, rn : similarly, the angles with the plane xz, 
• dxdy ds2 cos n, n : similarly, the angles with the plane xy, 
o f f dydz, ff dxdz,fdxdy -* Sds2 , where S is the sign of integral in respect to ds2 on the 

       surface, 

then because the affected terms by the quantities Su, 6v and 6w respectively are reduced to zero, the 

following determinate equations should hold for any points of the surface of the fluid :

(3-32)Nf

Eu E[ COS 12(-dh..± cosm(-LLIE)  +  COS  n 
     xdy dx 

Ev E[ COS 1 (—du--I-+ cos m2—dv+ cos n 
     dy dxdy

Ew E[COS 1(2dudw     1w   dx) COS M (—dvdu))    dz+ dy

du dw 
dz dx

dz ' dy ) 

+ cos n2 ."] 
         dz

dvdw

= o, 

= o, 

 = 0,

(69)

here the value of the constant E which is varied according to the nature of the solid with which the 
fluid is in contact. (69) express the boundary condition. The first terms of the left-hand side of (69) are 
defined by (56) for the expression which we seek for the momentum of the total actions which caused 
between the molecules of the boundary and the fluid, and the second terms are the normal derivatives 
gained from (66). Here, (69) is put by :

Eu  v E

    du  2
dx 
 dudv 

dy+dx 
dudw 
dz+ dx

du _i_dv 
dydx 

2 dv   dy 
dvdw 
dz+ dy

dudw 
dz+ dx 
dvdw 
dz+ dy 

   dw  2
dz

  cos  1 

 cos  m, 0 

 cos n

(70)

On If putting the basis of the tensor as [ cos 1 cos rn cos n T, then the tensor part of (70) is expressed 
as follows : 

       = ER2vi,i — (vi, + vj,i ) 6ii + + vi,i )] = E{05ii + (vi,i + vi,i )1 = E(ni,j + vi,i) 
Moreover, by using Darrigol's simple notation36, we can express this condition as 

Ev s =0, 

where Od_ is the normal derivative, and v11 is the component of the fluid velocity parallel to the surface. 

(4) We have one question. Why Navier's E implies in the today's NS equations, in which E is not 
used ?

36(4) Darrigol [10, p.115]
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A.3. Cauchy's deduction of tensor. 

A.3.1. Deduction of the equations of accelerated force. 
37 We show the summary of Cauchy's twelve assumptions in Table 11 framed below, 

#1 to #12 in the following.
which are numbered

TABLE 11. Assumptions of the system of particles by Cauchy

no litem ref. equations

1 mouvement par des forces d'attraction ou de repulsion mutuelle

2

La lettre S indiquant une somme de termes semblables, mais relatifs aux diverses molecules

 m, m', • • • , et la signe f devant etre reduit an  signe + ou au signe — suivant que la masse m sera

attiree ou

repoussee par molecule m.

(3)c

3-1 L'etat du systeme de points materiels soit change (4)c — (6)c

3-2
Les molecules m, m, m', • • • se deplacent dans l'espace, mais de maniere que la distance de deux

molecules m et m varie dans un rapport peu different de l'unite (7)c

4 , 77, : des fonctions de a, b, c, qui representent las deplacements tres petits et paralleles
aux axes d'une molecule quelconque m (8)c — (11)c

5
Les deplacements , r~, ~ sont tres petits, alors, en considerant ces deplacements comme infiniment

petits du premier ordre, et negligeant les infinirnent petits du second ordre. (12)c — (31)c

6

Les equations qui expriment l'equilibre ou le mouvement du systeme des masses m, m, m', • • •

soumises, non seulement a leurs attractions ou repulsions mutuelles, mais a de nouvelles forces

acceleratrice.
(32)c — (34)c

7

Les sommes comprises dans les formules (26)c et (30)c s'evanouissent.
Les masses rn, rrt', m", • • etant deux a deux egales entre elles, sont distribuees, symetriquement
de part et d'autre de la molecule m

(35)c — (36)c

8
Parmi les sommes comprises dans les formules (26)c, (30)c et (31)c,
toutes celles qui renferment des puissances impaires de cos a, de cos ,3, ou de cos y s'evanouissent. (37)c — (40)c

8-1
Les molecules rrt, rrt , m , • • • sont distribuees symetriquement par rapport a chacun

des trois plans

8-2
Deux molecules symetriquement placees a l'egard d'un des trois premiers plans offrent toujours
des masses egales

9
Les molecules rn, m', m", • • • primitivement distribuees de la meme maniere par rapport

aux trois plans menes par la molecule m parallelement aux plans coordonnes (41)c — (42)c

10

Les molecules rn, rrt', rn', • • • primitivement distribuees autour de la molecule m, de maniere
que les sommes comprises dans les equations (37), (38), (39) deviennent independantes 
des directions assignees aux axes des x, y, z

(43)c — (52)c

  •  If 1. At first, we 
distributed in a certain 
attraction or repulsion.

consider that the great number of molecules or material points are 

potion of the space and its motion are brought about by the forces 
Strictly speaking, we must cite Cauchy's assumptions as follows  :

arbitrarily 

of mutual

 #1. Considerons un tres grand nombre de molecules ou points materiels 
distribues arbitrairement dans une portion de l'espace, et solicites au mouvement 
par des forces d'attraction ou de repulsion mutuelle. [7, p.227]

The definition of the various terms are : 
    • m (in roman style ) : mass of this molecule ; 

    • rn, m', m" (in italic style) : masses of another molecules, of which the existing are assumed at 
      a certain time ; 

    • a, b, c : the coordinate values of the molecule m on the rectangular coordinates : x, y, z ; 
    • a + Aa, b + Ab, c + Ac : the coordinate values of the molecule m ; 

    • r : the distance between m and m (with scalar value) ; 

37(i.) For convenience' sake, we put ". ¶ (number)" as the paragraph number which is not in the text by Cauchy, but 
we count the number and show it, and moreover, we suppose the sections.
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• a, /3, 7 : the angles formed by the vector of ray : r with each half axis of the positive coordinates. 

  Cauchy's hypothesis of molecular activities are as follows :

 #2. la lettre S indiquant une somme de termes semblables, mais relatifs aux 
diverses molecules m, m', • • • , et la signe + devant etre reduit au signe + ou 
au signe — suivant que la masse m sera attiree ou repoussee par molecule m. 
Ajoutons que les quantites Aa, Ab, Ac pourront etre exprimees en fonction de r 
et des angles a, 0, 7 par les formules : [7, p.228]

(3)c Aa = r cos a, Ab = r cos 0, Ac = r cos -y.

•¶3.

#3. Supposons maintenant 
  • que l'etat du systeme de points materiels soit change, et 

  • que les molecules m, m, rn', • • • se deplacent dans l'espace, mais de maniere 
   que la distance de deux molecules m et rn varie dans un rapport peu different 
    de l'unite. 

#4. Soient , rl, ( : des fonctions de a, b, c, qui representent les deplacements 
tres petits et paralleles aux axes d'une molecule quelconque m ; [7, p.228]

• x, y, z ; x + ©x, y + Ay, z + Az : les coordonnees des molecules m, rn dans le 
 nouvel etat du systeme ; 

• r(1 + e) : la distance des molecules m, rn dans ce nouvel etat ; 
• e : la dilatation tres petite de la longueur r dans le passage du premier etat au 

 second ; et l'on aura evidement 

               (4)c x=a+ , y=b+r1, z=c+(..

(5)c

 Ax  =  Aa  +  A  =  r  cos  a  + 

Ay = Ab + AT/ = r cos 0 + 

Az = Ac + A( = r cos -y + A(.

38 

(6)c r2(1 + E)2 = (Ax)2 (Ay)2 + (Az)2 
      = r2(cos2 + cos2 + cos2) + 2r(cos + cos pAn + cos 'TA() + (A)2 + (A77)2 + (A)2 

      = r2 + 2r(cos aig + cos 0Ar/ + cos 7A() + (A)2 + (An)2 + (A)2 

Here we used the following by (8)c 

                         cos2 (Aa)2 (Ab)2 (Ac)2                 cos2a+ cos2+ cos- -y = 2 ±2= 1. 
                                                                                           7.2                                                              r

                                           1 
     (7)c 1 + E = 1 + –2 (cos ct6. + cos oAn + cos A) + —r2 (A)2 (An)2 + (A()2), 

We can put the following with the equivalent expressions :39 
Aa Ax,Ab  AyAa  Az     (8)

c,(9)c cos a= -------------,cos/3==,cos -y =               rr (1 +E)r r(1 + E)r r(1 + E) 
• ¶ 4. After all, the algebraic projections of resultant forces of attractions and repulsions performed by 
the molecules rn, rn', , • • • on the molecule m come to be equal three products : 

38(4) For misprints in Cauchy [7, p.228], we substituted ̀"+" by the second "=" in each line of (5)c, for example, from 
-Er cos a into = r cos a in sic. : = Aa r cos ce ± 

39(t) In Cauchy, it reads : 
        les cosinus seront representes, non plus par (8)c cos a = • • • main par (9)c . (sic). 

Then we can state the expression combining each term of (8)c with the coressponding term of (9)c.
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(10)c 

Here we put the accelerated force as fc 

(11)c 

      les trois products : mX, mY, 
      projections algebriques : 

        • de la resultante dont it s' 
        • de cette resultante divisei 

          qui sollicitera la molecule 
• ¶ 5. The deplacements : , 7, ( a

mS 

mS 

mS

 + mr(°+E)  f[r(1  +  e)] 
± m 7(°+E) f[r(1 + E)] 
f m r(°+E) f[r(1 + 0] 

=S ± mf[rr(1+(1+EE))]  Ax 
= S ± mf[r(1+E)] 0 

         r(1+E) y , 

= S+ mf[r(i+E)] Az . r(1+E) 

, et les trois quantites

the accelerated force as follows

 X 

 Y 

Z

Navier- Stokes equation

 •ois products : mX, mY, mZ, et les trois quantites : X, Y, Z representeront les 
ctions algebriques : 
de la resultante dont it s'agit ; 
de cette resultante divisee par rrc, ou, qui revient au meme, de la force acceleratrice 

qui sollicitera la molecule m et qui sera due aux actions des molecules m, m', m", • • • 
deplacements : e, r~, ( are infinitesimal, then we can neglect these values of second order.

 #5. Dans l'hypothese que nous avons admise, c'est-a-dire lorsque les 
deplacements e, r), sont tres petits, alors, en considerant ces deplacements comme
infinirnent petits du premier ordre, 
ordre, on tire de l'equation (7)c

et 

[7,
negligeant les in 
p.230]

finiment petits du second

             (7)c(12)c s =r (cos aAe + cos OAT/ + cos-0,(). 

(13)c 
     f[

r(1 + E)]— (1—E.)f(r) +~rf'(r)=f(r+ srf,(r) — f(~) — ef'(r)—f(r)+ 5rf'(r)rf(r). 
(4.) Here, we introduce the method of simplified calculation by Cauchy : (11)c turns into from (5)c 
(13)c as follows : 

f[r(1 + 0]  O
x _ f[r(1 + E.)]  (r cos a + Ae) (: from (5)c ) 

r(1 + s)r•(1 + E) 
                 rf'(r) —f(r)O4r•cosal_ (1+5 f()) (f(r)                             r.) (r cos a +r cos aJ(:from (13)c ) 

(1 + 5 rf' (r(r)r-------cos a 1r                    f(r)1 (1 +(f-----()) r cos a 

= r1 + s+rf' (r) — f(r)0 +(rf' (r) — f(r) l ( Ae  )1                    1                                                      f(r) cos a f(r) rcosa f(r)r cos a)
LV^- (1 + Er f/  (r~r)f(r) +r cos a)f(r) cos a. 

Similarly, we can get the following : 

f[r(1 + r)] 0 = 1 + Erf'(r) — f(r) +  Or) + erf'(r) — f(r)V Anl}f(r)cos      r(1 + e)f(r)r•cos 0(f(r) I(r cos,3l() 
ti (1+Erf'(r)—f(r•) + AT/ )f(r) cos )3'                   f(r)r cos 0 

    f[r(1 + e)]Oz ={1 + ere(r) — f(r)+L < +)( rcos)}                                                    (rf'(r) — f(r)  L(lf(r)cosy r(1+s)f(r) rcos 7f(r)'Y 

,., (1+Crf'(r)—f(r) +  0(  )f(r) COSry. 
                             f(r) r• cos7

and
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 (T1') 
According to Cauchy's assumption, we get the following (14)G from (11)c by combining (5)c with (13)c•

(14)c

 X=S 

Y=S 

Z=S

                           a 

          r
m  1  + rf /(f(r)f(r)E+r                               cos                             /3. 

±  m[1 + rf (r)_f(r)E+rcosryIcos'yf(r)}.

± m u1 + rf (r) f (r) E +  ©~ cos af(r) , 

cos 13f(r)

•¶6. From the initial condition, by considering the equilibrium of X, Y, Z, we get some results. 
 lorsque le premier etat du systeme des points materiels est etat d'equibre, it suffit de 

remplacer ~, 77, (par zero dans les formules (14)c, pour faire evanouir X, Y, Z.
Then we get (15) c as follows

(15)c S [±7n cos af(r)] = 0,

(16)c

X 

Y 

Z

 X  =  S 

Y=s 

    Z = S

= S{ ± Tri

 S[±m  cos  Of(r)] = 0, S[+m cos -yf(r)] = 0.   1 + m Jrf' (0 — f(r)1E cos a + 
± 'at [tie (r) — f(r) fe cos 0 + Ali_ 
± m Rrf' (r) — f(r)}E cos 7 + f(:;) A(] . 

[E cos a A- (rf'(r) — f(r))E E COS 0 Arif(r)I' 
E cos 7 A(  - r

From  (l2)c

(16)c

(17)c

•¶7.

(18)c

X 

Y 

Z

 =S{  ±rn

X= S 

Y = S 

Z=S

 Trt[y-L: 

 Trt[firr 

      f(r  M 
_ r

1
(cos + cos 0ATI + cos -yA() cos a 
(cos ct,A. + cos 0Ari + cos 7A() cos /3 
(cos a/g + cos oAn + cos -yA() cos 7

      f(r) ^rf'(r)-f(r)

1 - (rf' (r) — f(r))E r AT/f(r) 

-

      f(r) rr(r)-f(r)

      f(r) ^ (7.) -f(r)

cos2 a) + rf/(r)-f(r) ( COS a cos 13,Ari + cos a cos 'TA)] 
cos2 0) ATI rf' (r)-f(r) ( COS COS -yA( + cos 0 cos aA) 
cos2 -y) + rf/(7.)-f(r) ( COS 7 COS a.g + cos 7 cos oAn):

The formulation of accelerated force.

^= ra      (— cos a—cosp—cos-y)    aabac 
+ va.cos2 a + cos2 [3 + cos2 + 2J cos 
±••• , 

ATI = r cos a + --Raab cos 0 + :2 cos 7) 
        cos2 a + aa2bri cos2 + aa2cY cos2 -y + 2. cos 

+ • • • , 

A( = r(-F).�ya cos a + -�.80b cos +cos 7) 
•( cos2 a + ao2bi cos2 + cos2 7 +at-7-1'cos 
+ • • • ,

},

 (19)c
0 

Da'

(20)c

 ab' 

02~ 
0a2 
0271 

a2

ac' 

02 
ab2 
02,1 
TO 
a2 
TO

an an an 

Oa' ab' ac 

a2  02 
ac2 abac ' 
82n 02,7 
8c2 abac 
a2 02 
8c2 ' abac'

 cosy+2dscosycos a+28~b

0 cos+ 2d    yas cos y cos a+ 2 gadb 

 cos y+ 2
       n2,----- cos y cos a + 2 as---b

a( 
' Oa' 

a2[S  
acaa' 
82,7 
acaa' 
02C  
acaa

a( a( 

 ab' ac' 

02 
aaab' 
ar,  
aaab, 
02( 
aaab'

cos a cos 0)

cos a cos 0)

cos a cos 0)
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We show  6,  rh, (i with Jacobian :

(21)c

(22)c

 e1 
 171 

(1 

772 

(2

es equation

acos a +acos /3 +dcosry,1cos a                                                agbc  cos a +acos o +dcosry,~*[7(1111=Lcos/3 acos a +acos +dcosry,cos 7ac 

ida+ cos2 +4 cos2acos2+2;0,y7cos a +cos/3cos '+ 2 cos2bcos a cos     db~do~dbiddcdadaidb 

da2cos2a+ 4 cos2~3+d4cos2ry+ 2acos/3cos7+ 2-55acos-ycos a + 2abcos a cos/3, 
4cos2a+a4cos2/3+acos2 -y + 2a-cos/3cos -y + 2acos -y cos a + 2bcos a cos/3,

712 

(2 1 =
8282 82 _ 8618----/08b 3c 8c 3a &yj)b 
8---- (12 062 aka, ---- 8c8c  0

a8b8c8b8c 8c8a aaab

 cos2 a 
  cos2 

cos2 'y 
2 cos 13 COS 7 
2 cos ly cos a 
2 cos a cos

From (18)c, we get the following : 

                     r62;772), (23)c0=r21+, Or1=rii+ 0(=r((i+2r(2), 
and from (12)c and (23)c, we get the following : 

(24)c E =r(cos a0 + cos 13ATi + cos' A() _ 1 cos a + nl cos (3 + cos 'y + 2 (2cosa + n2 cosC3+ (2 cos7) 
The equation (14)c turns into the following :

(14)c (25)c X =Xo+X1+X2, Y=Yo+Y1+Y2, Z=Zo+Z1+Z2

(4) Cauchy will calculate the following matrix : 

       XXo 
          Y=Yo+ 
       Z Zo 

(it)

X1 x2 -Y1 1 + Y2 
Z1Z2

(26)c Xo = S[±rn cos af(r)], Yo = S [+m cos /3f(r)] , Zo = S [±rn cos -yf(r)]

(27)c

(28)c

We put  f  (r)

X1 = S[±rn if(r)] + S 

Y1 = S[±iniilf(r)] + S 

Zl = S[+m(jf(r)] + S 

X2 = S[± 2r 2f(r)] + S 

Y2 = S[±rf ij2f(r)] + S 

Z2 = S[± 2r(2f(r)] + S 

in brief as follows :

 ±  m(1 cos a + cos j3 + (1 cos ry) cos a[rf' (r) — f(r)] 

+ m( 1 cos a + rli cos 03 + (i cos ry) cos,3[rf' (r) — f(r)] 

f m(61 cos a + cos /3 + (1 cos -y) cos -y [rf' (r) — f(r)] 

+ 2r ( 2 cos a + 172 cos /3 + (2 cos'y) cos a[rf' (r) — f(r)] 

± 2r ( 2 cos a + 112 cos ,C3 + (2 cos -y) cos /3[rf' (r) — f(r)] 

f 2r ( 2 cos a + 1/2 cos /3 + (2 cos 7) cos -y [rf' (r) — f(r)]

(29)c .f(r") = ±[rf'(r) — f(r)] (71)
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(30)c

 X1 =Xoa +Yoa + zo 
 + d S [77-1f (r) cos3 a] +aS[mf (r) cos2 a cos0] +dS[m f (r) cos2 a cos 7] 

+ a S [m f (r) cos2 a cos 0] + a S [m f (r) cos a cos2 ,3] + a S [rrL f (r) cos a cos 3 cos 7] 
+aS [rrL f (r) cos2 a cos-y] +bS [mf (r) cos a coscos 7] +aS[m f (r) cos a cos2'y] , 

Y1=Xoa +Yoa+Zo 
+ a S [m f (r) cos2 a cos Q] +aS[mf (r) cos a cos20] + S [m f (r) cos a coscos-y] 

 + d S [rn f (r) cos a cos2 0] + b S [m f (r) cos3 j3] + S [rri f (r) cos2 0 cos 7] 
 + v S [rn f (r) cos a cos 0 cos -y] + b S [m f (r) cos2 Q cos 7] + a S [m f (r) cos a cos2 'y] , 

Zl = X0 +Yob+Zod +•••

(4) The equations in (30)c have the 36(

Xi = rn f (r)

Yl = rn f (r)

Zi = rn f (r)

  We see  X, Y and Z are 
(30)c, all the terms contain 
summation under the symbol of .

(31)c

Ic have the 36(= 3 x 12) terms at maximum. (-fr) 

     y(  X° + S cos2aYPIS cos2aS cos2 a 

  ( act rri f (r) cos a)dbac da(rra f (r) cos a+ S cos a cos j)dS cos a cos 3~cS cos a cos 0 
PS.
aa   (mf(rZ°)cosa+S cos a cos y)f8b8c                            Scosacosy4S cos a cosy    

(----------  S cos a cosb(rra f (r) cos j3+ S cos a cos [3)PS cos a cos 13 
    2 S cos1( ~Q+ S cos2,0)'.2.S  cos2 0    8aabmf(r) cos 0do 

 S cos 0 cos y(rra f(cos---------- + S cos 0 cos y)S cos 0 cos y 
  S cos a cos yS cos a cos y(rrL-------------f(Xcosy+ S cos a cosy)                       ac

S cos 0 cos y'2S  cos 0 cos y(---------Y°+ S coscos y) dadomf(r)cosry 

      SCOS2yS cos2 y( Z°---------+ S cos2 y) 8aat,8cmf (r)cos 7 

.e computed according to (25)c by only X2, Y2, Z2, because in (, 
;ain the terms of cos a or cos 0 or cos 7 in odd power, which 1

 cos a 

cos0 

cos 'y 

cos a 

cos /3 

cos 'y 

cos a 

cos0 

COS 'Y

 (26)c, (27)c and 
become zero by

X2 = S [± n+r. cos2 af(r)] + f4cos2 /3f(r)] + ----J S[+9 cos2 -yf(r)] 

+ 

         [±mr coscos -yf(r)] +Oac,20,,[±Trir cos -y cosaf(r)] +oaa21[±mr cos a cos0f(r)]       mac 

 + f (r) cos4 a] + --4aa:S['F f (r) cos2 cos2 /3] + f(r) cos2 a cos2 7] 
           02e.  •aac 0[Trtr f (r) cos2 a cos cos -y] oac204a [rrtr f (r) cos3 a cos -y] + ----- [mr (r) cos3 a cos gb  

    '0•-22,710[Tri, f (T.) cos' a cos 0] +---- f (r) cos a cos3 13] + 43 [ 7--TF f (r) cos a cos ,3 cos2 -y] 
 + [mr f (r) cos a cos2 cos 7] + 88:81, 0[7nr f (r) cos2 a cos cos -y] + ,7b S[mrl(r) cos2 a cos2 

 + j [9f (r) cos3 a cos -y1 + 0 [f (r) cos a cos2 13 cos 7] + [.i-/r f (r) cos a cos3 -y] 
      82‹         0[7-nr f (r) cos cx cos 0 cos2 -y] + S [mr f (r) cos2 a cos2 7] + aa0I [mr f (r) cos2 a cos i3 cos 7],       abac 

                                                      o2 Y2 -= S[±9L cos2 af(r)] + 3L S[±9Lt. cos2 /3f(r)] S[± cos2 -yf(r)] 
+... 
      02 

 

+ ---- S 1"21- f (r) cos2 a cos2 /3] +882b1,1S[; f (r) cos4 0] + 03 S[,f(r) cos2 cos2 -y] 
+... 
     +c'b S [mrf (r) cos2 cos2/3] 
+... 
     82, ------ s[rrir f (r) cos2cos2 -y], 

     abac 

Z2 = Ca4 S [± cos2 af(r)] + S[±91: cos2 0f(r)] + S[±F-F cos2 7f(r)] 
+... 

     + S[-F f (r) cos2 a cos2 0] + 802J S[i!: f (r) cos2 cos2 -y] + SP-2" f (r) cos4-y] 
+... 

     + oal--- S [mrf (r) cos2 -y cos2 a] 
+... 
     •S[mr f (r) cos2 cos2 7]

(72)
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 (.U.) The equations in (31)c have the 72 (= 3 x 24) terms at maximum. By (25)c, we have to calculate 
totally 117 (= 9+36+  72) terms at maximum, however, according to the following articles, we can reduce 
these difficulties of calculation. 

    • By (35)c, all terms in (26)c are zero. 
    • The terms led by the symbol of 0 terms in (31)c are deleted. 

    • Finally, in #8, by introducing original idea of Cauchy on the symmetric tensor, we can reduce it.

X X0 X1 X2F X X1 X2 
  Y=Yo+Y1 + Y2Y=Y1+Y2 

 ZZoZ1Z2ZZlZ2 

By the way, Poisson calculates 63 terms at maximum, which we will mention below. (t) 
• ¶ 8. Remark : in the right-hand sides of (25)c, X2, Y2i Z2 are not only the largest valued terms in 
(25)c, but in (25)c even non-zero terms too, owing to the same sign. Cauchy says : 

• To gain the sum which is relative to the coefficients of (20)c in the second terms ( which are only 
     under the symbol of 0 ) in (31)c,4° 

       — it is sufficient to multiply succeedingly the quantities of 
            * the term under the symbol S in the right-hand side of (26)c 41 

            * the second terms under the symbol S in (30)c 
          by the three factors r cos a, r cos 0, r cos -y, or a of these, viz. 2 r cos a etc. ( as the basis 

         like (72), where, (30)c are multiplied by only cos as the basis, ) and 
        — if each of these value differs infinitesimally to zero, even if it is due to a infinitesimal value 

          of vector r, we can neglect X2, Y2 and Z2 in (25)c, in comparison with the quantities Xo, 
Yo, Zo, X1, Yi and Z1. 

    • However, we must consider that each of sum contained in (31)c is composed of the terms to which 
      the sum has an effect with the same sign, while each sum is composed of the terms to which the 

      sum has an effect with the contrary sign, when they correspond to the molecules situated in the 
      part, and the other point with (a, b, c) on the direction orienting to the same point. 

    • It turns out that the latter sums are to disapper in the most cases, however, they are not one 
      with the same as the former. 

    • Hence, we can conclude that the terms X2, Y2 and Z2 in the second term of (25)c are not only 
      of having numerical large value, but also of just nonzero terms. 

By the way, to be exact, we cite Cauchy's original as follows : 
        Comme, pour obtenir les sommes qui servent de coefficients aux expressions (20)c 

      dans les seconds membres des formules (31)c, il suffit de multiplier successivement les 
quantites renfermees sous le signe S dans les seconds membres des formules (26) c et 
(30) c par les trois facteurs r cos a, r cos 13, r cos -y ou par les moities de ces facteurs, et 

      que chacun de ceux-ci differe tres peu de zero quand on attribue au rayon vecteur r une 
      valeur tres petite, il semble, au premier abord, qu'on pourrait, dans les equations (25)c, 

negliger X2i Y2, Z2 vis-à-vis des quantites X0, Y0, Zo, X1, Yi, Zi. 
        Mais on doit observer que chacun des sommes comprises dans les formules (31) c 

      se compose de termes qui sont tous affectes du meme signe, tandis que chacune des 
      sommes compose de termes qui sont affectes de signes contraires quand ils correspondent 

      a des molecules situees du part et d'autre du point (a, b, c) sur une droite quelconque 
menee par ce meme point. Il en resulte que les dernieres sommes peuvent s'evanouir 

      dans beaucoup de cas, mais qu'il n'en est pas de meme des autres. Donc it peut ar-
      river que, dans les seconnnds membres des equations (25)c, les termes X2, Y2, Z2 
      soient, non seulement ceux qui offrent les plus grandes valeurs numeriques, mais encore 

      les seuls qui different de zero. [7, p.236] 
• ¶ 9. Remark : the equations of accelerated forces follow not only in the forces come from its mutual 
attraction or repulsion but also in the new accelerated forces. 42

  40 (4),.. Reamrk. Cauchy uses the symbol only by S, however, we use S in (30)c , while in 
discriminate between both, where 0 means the S to be deleted defined like #2 in ¶ 2. 

41(j) According to his original below, there is the second term in (26) c as well, however, 
42(4) These analyses don't appear in Navier's papers.

(31)c, we invent of ours to

there is actually not.
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 Les valeurs de X, Y, Z etant determinees par les formules (25)c, (26)c, (30)c et (31)c 
en fonction des quantites (19)c et (20)c, on etablira sans peine les equations qui expri-
ment l'equilibre ou le mouvement du systeme des masses m, m, m', • • • soumises, non 
seulement a leurs attractions ou repulsions mutuelles, mais a de nouvelles forces acceleratrice. 
[7, p.236]

 #6 En effet, supposont que, au bout du temps t, l'etat d'equilibre ou de mou-
vement du systeme coincide avec l'etat dans lequel les coordonnees de la molecule 
m se trouvent representees par x, y, z ; et soient a cette époque X, y, Z le pro-
jections algebriques de la nouvelle force acceleratrice cy appliquee a la molecule m 
sur les axes coordonnees. On aura evidemment, si le systeme est en equilibre, [7, 
p.236]

(32)c x+x=0, Y+y=0, Z + .Z = 0.

 Au contraire, si le systeme se meut, en designant par V la force acceleratrice qui 
serait capable de produire a elle seule le mouvement effectif de la molecule m, et 
par X, Y, Z les projections algebriques de cette force sur les axes coordonnees, on 
devra, dans les equations (32)c, remlacer les quantites X, y, 2 par les differences 
X — X, y - Y, Z - Z. Comme on trouvera, d'ailleurs, en prenant a, b, c pour 
variables independantes, et ayant egard aux formules (4)c, [7, pp.236-7]

(4)c x = a + , y=b+rl, z=c+(. 

52x (33)
c
                 •=at2_at2'• 

it est clair que le mouvement d'un 
      equations. 

Replacing X, y, 2 of (32) c with X —.k,  Y — Y, 
forces as follows :

(32)c

 X  +  X  —  X  = 

y ± y — I, = 

z + z —..k =

o, 

0, 

0,

D2y  

= 3t2 = 

molecule

Z— Z,

A.3.2. Reduction of tensor. 
• ¶ 10. The values of X, Y and Z , determined 
simplified with several hypotheses as follows : 
• ¶ 11. (26)c and (30)c disappear and X, Y, Z 
distribution of the molecules.

5277  a2z a2<- 

at2 ' — at2 = Do' 

quelconque m sera determine par les

and considering (4)c, we get the new accelerated

(34)c

by the

 X+X=X= 

Y + Y = dc21, 
Z+Z=Z= a

statements (25)c, (26)c, (30)c,

are reduced to only X2i Y2, Z2

(31)c, are

for the symmetric

 #7. D'abord 
(26)c et (30)c 
primitif du 
tre elles, sor 
sur des droites 
cide. En effet, 
formules (26)c 
nuscosa,cosi@ 
cestermes,com

 on peut supposer 

s'evanouissent.

         systeme, les  

            istribuees, symE                                    que les sommes comprises dans les formules                                C'est ce qui arrivera en particulier si, dans l'etat                         masses

 rn", • • • etant deux a deux egales en-

                        de part et d'autre de la molecule m,

menees par le point (a, b, c) avec lequel cette molecule coin-
comme chacun des termes renfermes sous le signe S dans les 

et (30)c, offrant un nombre impaire de facteurs egaux aux cosi-
              cos'y, change necessairement de signe avec ces memes 

ces termes, pares deux a deux, seront evidemment, dans le cas dont 
equivalents au signe pres, mais affectes de signes contraires. [7, p.23'7]

facteurs, 

it s'agit,
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 Alors les formules (15)c seront verifiees, c'est-a-dire que l'etat primitif du systeme sera 
un etat d'equilibre ; et, comm on aura d'ailleurs

(35)c Xl = 0, Yl = 0, Zl = 0,

      les valeurs de X , Y, Z se reduiront a celles de X2, Y2, Z2. 

• ¶ 12. At last, we get X, Y and Z from (26)c, (30)c, (31)c 
the terms of cos a or cos or cos 'y in odd power, which becomes 
cos a, cos3 a, cos /3, cos3 /3, • . )

[7, pp.237-8] 

after deleting the terms containing 
zero in summation, (ex. including

 #8. On peut supposer encore que, parmi les 
(26)c, (30)c et (31)c, toutes celles qui ren 
cos a, de cos 0, ou de cos'y s'evanouissent. 

• si, dans l'etat primitif du systeme, 
distribuees symetriquement par rapport

     On peut supposer encore que, parmi les sommes comprises dans les formules 
     (30)c et (31)c, toutes celles qui ferment des puissances impaires de

 fermant le point (a, b, 
z, x et des x, y, et 

• si deux molecules 

c), sont paralle

est ce qui arriva en particulier

rn es molecules m,', m", • • • sont 

  achacun des trois plans qui, ren- 

desauxplansonnes des y, z, des

   deuxmolecules~etriquement placees a l'egard d 'un des trois premiers

   plans offrent toujours des masses egales. 
Dans la supposition dont it s'agit, non seulement les formes (15)c et (35)c seront 
verifiees, mais de plus les valeurs de X, Y, Z, equivalentes a celles de X2, Y2, Z2, 
se reduiront a [7, p.238]

(36)c

  d2rnrcos2U2m2mr X =s•S[±acosaf(r)] +abiS[±arcos/3f(r)] +82d2,iS[±acos2yf(r)] 
+ da----S [Zrcos4af (r)] +d4S [2rcos2acos2 of (r)] +8ci S[7cos2acos2')'f(T.)] 
+ S[rnr cos2a cos2/3f (r)] +eS[mrcos2acos2 7f (r)] , 

Y = 88c32a[gs+amcos2 aftr)]+yS[+rnr2cos2/3f(r)] +802„                                     do2S[±cos2'yf(r)]      ()]dL—r 
   i32rmrcos2282rrnr4(~82rrrar  +JS [2cosa cos2f (r)] +dbS[2cosNf (r)] + S [2cos2/3cos2'y f (r)]ac 

±db S [rrar cos2 a cos2 /3 f (r)] +db S [Tar cos2 /3 cos2 'y f (r)] 
  82rnr•2dmr2~rrar Z = S[±2cosaf(r)] +S[±cos2 +S[±2cos2'yf(r)] 

 ~2rr~82mr  +S [m2cos2a cos282Nf (r)] +8bi S [rnr2COS2/3cos2'y f (r)]+S [2COO 'y f (r)] 
+ S [mr cos2'y cos2af (r)] +dbS [mr cos2C3cos2-yf(r)]   

     acaa

X = {s[+r cos2 af(r)] + S [ 2r f (r) cos4 a] } 
 + ))bi. S[±-÷- cos2 /3f(r)] + S[ 2r f (r) cos2 a cos2 0] 

 + J S[± f: cos2 'yf(r)] + S [ 2r f (r) cos2 a cos2 'y] 
 + J d S [mr f (r) cos2 a cos2 0] + A dS [mr f (r) cos2 a cos2 7], 

  ~2rrarcos2rar2 Y =CyS [±2cosaf(r)] + S[af (r) cosa cos20] 
     cc332~~  +b S[+ 21- cos2 /3f(r)] + S[r2r f (r) cos4 /3] 

       2 

 +a S[±91:  cos2 'yf(r)] + S[ r2r f (r) cos2 /3 cos2 71} 
 + S [mr f (r) cos2 /3 cos2 7] + b S ['air f (r) cos2 a cos2 0], 

Z = a S[±91: cos2 af(r)] + S[ 2r f (r) cos2 a cos2 /3] 

   Sirnrcos2rrarr cos22'y  +S[+2cos/3f(r)] + S["2f (r) cos/3 cos] 

   Si+ S [± 7 cos2 'yf(r)] + S [ 2r f (r) cos4 71} 
 +d aS [rnr f (r) cos2 'y cos2 a] +a aS [rnr f (r) cos2 0 cos2 'y]

(73)
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[ X Y

rnr 

2

Z 
82~ 
a----,i2 
e73 
of--- 
8  
8c2

824 82 E 22'a- 
 al28as bac3a  ayai
8ga<8~   8ka~~8c agab 

 84 8(a-a-a
b2 8cacaa abac -

S { * cos2 af(r) + f (r) cos4 al S { ± cos2 af(r) + f (r) cos2 a cos2 /3 S 
S± cos2Of(r)+f (r) cos2 a cos2 Q S ± cos2Of(r) + f (r) cos4 0 S 

S± cos2 yf(r) -I- 1(r) cos2 a cos2 y S ± cos2 7f(r) + f (r) cos2 0 cos2 y 

2S f (r) cos2 a cos2 02S f (r) cos2 0 cos2 y 
2S f (r) cos2 a cos2 y2S f (r) cos2 a cos2 /3

 02 

S  
0c2

02 02
2 02r, 32( ak2 ac. pap &pa 

dh2 O 2 8b28c8ctdb 
a( O( a a77  
ab2 0c2 dcOa 8bOc

G+L 
H+P 

I+Q 
  2R 

  2Q

G+R 

H+M 

I+P 

 2P 

 2R

G+Q 
H+P 

I+N 
2Q 
2P

± cos2 af(r) +  f(r) cos2 a cos2 i3} 
± cos213f(r) + f(r) cos2 0 cos2 -y'. 

S{ ± cos2 7f (r) + f (r) cos4 7} 
2S f (r) cos2 ly cos2 a 
2S f (r) cos2 0 cos2 'y

where, we define 9 parameters in (73) by G, H, I, L, M, N, P, Q and R as follows :

(37)c 
 (3S)c 
(39)c

G = S[± 2" cos2c~f(r)], H=S[±2Tcos2j3f(r)], I-S[±2''yy                                             cos2f(r)], 
L-S[T2Tcos4a(r)], M-S[r2Tcos4Nf (r)], N-S[ ~rcos4 -y f(r)], 
P - S [ ZT cos2 ,~ cos2 'y ,f (r)], Q — S [ 2T cos2 'y cos2 CY f (r)],R = S [ 4 cos2 (x COS2 N f(r)] ,

Then from (73) it turns into the following

(40)c

•  ¶ 13. Invariable values 
 If we suppose that 

to the three planes made by the molecule m in p 

quantities: G, H, I, 1 
among the three angles

X = (G + L) + (H + R) a + (I + Q) 0 + 2R aaab + 2Q 8 da. , 
Y=(G+R)~d +(H+M)a+(I+P)dt+2Paa +2Radb, 
Z=(G+Q) +(H+P)aa2 +(I+N)1 +2Qa,a +2F.88,2,7,.  

                      are originally distributed by the same way in relation 

made by the molecule m in parallel with the plane coordinates, then the values of 

--------- invariable, even though a series of changes are made

 #9. Si l'on supposait les molecules rn, rra', rri", • 
distribuees de la meme maniere par rapport aux trois plans 
molecule m parallelement aux plans coordonnes, les valeurs
G,H,I,L,M,N,P,Q,R 
ec

devraient rester les memes apres

                                                     

• primitivement 

menes par la 

trs des quantites 

                                                  un ou plusieurs

hanges operes entre les trois angles a, 0, 'y; et l'on aurait par suite [7, p.239]

(42)c

 X 

 Y 

 Z

(41)c G=H=I, L=M=N, P=

X = (L + G) 0_ + (R + G)(0 +8c2 
                     Y = (L + G)0 + (R + G) aa2,;1 + 54, 

Z = (L + Q)S + (R + G) L))2a, ± 0

  =

 (92 
0a2 
82,1 

02, 
7-0

 02  (92 E 

ab2 t ) 
02 ri 027i 
UP, 1- UJ: 

82( a2 (

Q = R.

+ 2R 

+ 2R 

+2R

 ej2L. 02( 
aaaba•caa 

(02( 82 
Obac Daab 

•0277 
 acaaa•bac

 (9282(  aa0b 3c0a), 
abac aa0b 

82 .a2,77 a
caa-1-dbdc

 L  +  G 

R+ G 

 2R

(74)

• ¶ 14. For the angles : al, 01, 71, a2, 132, 72, a3, /33, 73 are perpendicular among each planes, the values 
of sums : G, H, I, L, M, N, P, Q, R do not alter even by replacing cos a, cos /3, cos ry with the trinomial :
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 #10. Supposons enfin les molecules m, m', m", • • • primitivement distribuees 
autour de la molecule m, de maniere que les valeurs des sommes comprises dans les 
equations (37), (38), (39) deviennent independantes des directions assignees aux
axes des x, y, z. 

mais de plus, si 

trois demi-axes

Alors, non seulement les conditions (41) devront etre satisfaites, 
l'on nomme al , 01, 'yl , 02, 02 , '72 , a3 i /33, '73 les angles formes par 
perpendiculaires entre eux avec les demi-axes des x, y et z pos-

            rera pas valeurs des sommes G, H, I, L, M, N, P, Q, R en y 
placant les trois quantites cos a, cos 0, cos 'y par les trinomes [7, p.239]

rem-

 cos a 

cos 0 

cos 'y

cos a cos a1 + cos 0 cos 01 + cos 'y cos 71, 

cos a cos a2 + cos 3 cos / 32 + COS -y cos 1y2, 

cos a cos a3 + cos /3 cos /33 + COS 'y Cos 'y3,

(43)c

 G=S

L=S

R=S

 

(  cos  a  cos  ai + cos 0 cos 01 + cos y cos yi) 2f(r)] , 
2r( cos a cos a1 + cos 0 cos /31 + cos y cos y1)4f(r)], 
' 2r ( cos a cos al + cos(3cos01 + cosycos y1) 2( cos a cos a2 + cos 0COS 02 + cos y COS y2)2 f (r)]

(75)

(44)c
G = G(cos2  al + cos2 01 + cos2 yl) - GA1, 
L = L(cos4 al + cos4 Rl + cos4 yl) + 6R( cos2 Ql cos2 yl + cos2 yl cos2 al + cos2 al cos2 Ql) - LB + 6RC, 
R = R(cos2 01 COS2 72 + COS2222222222) Q2 cosyl +cos71 cosa2 +cos72 cosal + cosal cosQ2 +cosa2 cos~1, 

+4R( cos )31 cos 02 cos 71 cos 72 + cos 71 cos y2 cos al cos a2 + cos al cos a2 cos 01 cos 04 
+L (cos2 al cos2 a2 + COS2 01 cos2 02 + cos2 yl cos2 y2) - RD + 4RE + LF, 

                                                          (76)

where

cos2  al + cos2 N1 + cos2 lyi = 1, 

cos2 (12 + COS2 02 + cos2 -y2 = 1, 

cos al cos CY2 + cos 01 cos 02 + cos'y1 cos'y2 = 0

(4) and

 Al 

A2 

B 

C 

D 

E 

F

cos al + cos2 01 + cos2 'y1, 

  cos2 a2 + COS2 /32 + COS2 72, 
= cos4 al + cos4 01 + cos4 

  cos2 Nl cos2 ̀ yl + cos2 -yl cos2 al + cos2 al cos2 /31, 

 cos2 /31 COS2 ')'2 + COS2 /32 COS2-}-22222222                          7'1cos'Yl cosa2 +cos'y2cosal +cosal cos/32 cosa2 cos01, 

cos /31 cos /32 cos 71 cos 'T2 + COS 7'1 COS'y2 cos a1 cos a2 + cos al cos a2 cos /31 cos /32i 

  cos2 a l cos2 a2 + cos2 01 cos2 /32 + cos2 'yl cos2 -y2

then

{
1—B 

1—D

   2 =A—B= 

= A1A2 — D

2C, 

=F= —2E (77)
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 (t) namely : 

 1 — (cos4 al + cos4 131 + cos4 `y1) = ( cos2 al + cos2 01 + cos2 71) 2 — (COS4 al + cos4 01 + cos4 'yl ) 
   = 2 ( cos2 01 cos2 '71 + cos2 'y1 cos2 al + cos2 a1 cos2 01) , 

1 — ( cos2 01 COS2 72 + cos2COS222 cos22 cos222 cos2)                        Q271 +cos71 cosa2 +cos72 cosa1 +cosal cos112 cosa2 cos~1 
   = ( cos2 a1 + cos2 /1 + cos2 71) ( cos2 a2 + cos2 /32 + COS2 72) 

     — ( cos2 01 cos2 72 + COS2 02 COS2 71 + cos2cos2a2+ cos2 COS2222 cos2)                                        'Y1a'Y2 cosal + cosa1 cosQ2 cosa2 cos/31 
   = ( cos2 al cos2 a2 + cos2 01 cos2 112 + cos2 71 cos2 72) 

_ ( cos 01 cos 112 cos 71 cos 72 + cos 71 cos 72 cos a1 cos (12 + cos al cos a2 cos 01 cos 02) 

From the second equation of (76) (: (44)c ) by (77) 

L(1—B)=2LC=6RC

(45)c  L  =3R,

or, from the th ird equation by (77) 

R(1 — D) = —2RE = 4RE + LF 2LE = 6RE

(45)c L -= 3R

From (74)(= (42)c) we get (78)(= (46)c) by (45)c as follows :

(46)G

X=(R+G)(+++2Rd¢, Y = (R +  G)ri27,8-----2~~"         +8b2+ ,2 + 2Rdb, 
Z=(R+G)+4+4)+2RdG, 
   where(47)c v = a -I-ar-+ ~~. 

as ab ac

(78)

( c.f. (78)(= (46)c) (115)(= (7-9)pf) 

G=H=I, 

(4).) By the way, Cauchy says, when we 
Cauchy's R with Navier's E, as follows :

(120)(= (12)s) ). Moreover, from 

 L=M=N, P=Q=R. 

put G=H=I=0in(40)c,we

(41)c:

can see the coincidence of

 L R 
R M 

Q P

Q 2R 2Q3 1 1 2 2 
P 2P 2R = R 1 3 1 2 2 
N 2Q 2P1 1 3 2 2

(79)

These coefficients of (79) equal (39) of Navier. 
• ¶ 15. Density : d defined by mass of a sphere : M and the volume of a sphere : V as follows : 

        Concevons maintenant que, dans l'etat primitif du systeme des molecules m, rra', rn,", • • • , 
      et, du point (a, b, c) comme centre avec un rayon l convenablement choisi, on decrive une 

      sphere qui renferme toutes les molecules dont l'action sur la masse m a une valeur sen-
      sible. Divisions le volume V de cette sphere en elements tres petits v, v', V", • • • , mais 
      dont chacun renferme encore un tres grand nombre de molecules. Soient A.M1 la somme 

      des masses des molecules comprises dans la sphere, et [7, p.241]

(48)c d=M=
mass of system of particles

volume of system of particles
= density
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 #11. Enfin supposons que les sommes des masses comprises sous les vol-
umes  elementaires v, v', v", • • • soient proportionelles a ces meme volumes, et 
representees en consequence par les produits Av, Av', Av", • • • . Alors, si la fonc-
tion f(r) est telle que, sans alterer sensiblement les sommes designees par G et 
par R, on puisse faire abstraction de celles des molecules m, m', m", • • • qui sont 
les plus voisines de la molecule m, les valeurs de G, R fournies par les equations 
(37)c et (39)c differeront tres peu de celles que determinent les formules 

(49)GG=SS[±r cos2 af(r)v], R = ° S [r cos2 a cos2 0 f (r)v] 

quand on etend le signe S, non plus a tous les points materiels m, m', m", • • • , 
mais a tous les elements v, v', v", • • • du volume V. 

  Or, dans cette derniere hypothese, le second membre de chacune des ex-
pression (49)c pourra etre remplace par une integrale triple relative a trois 
coordonees polaires dont l'une serait le rayon vecteur r, tandis que les deux autres 
representeraient les angles formes : 

  • par le rayon vecteur r avec l'axe des x ; 
  • par le plan qui renferme le meme rayon et l'axe des x avec le plan des x, y. 

[7, p.241-2]

 #12. Soient p, q les deux angles dont it s'agit. Chaque integrale triple devra 
etre prise entre les limites p = 0, q = rr, q = 0, q = 2n, r = 0, r• = 1; et l'on 
pourra meme, sans erreur sensible, remplacer la seconde limite de r ou le rayon I 
par l'infini positif. [7, p.242]

(50)cG =±4- f °°f02Ir f0r3f(r•) cos2 a sin pdrdqdp,    R=2fofo Jor3f(r) cos2 a cos2 /3 sin pdr•dgdp (80)

We compute in general case such that :

(51)c

 cos  a  = cos p, 

cos0 = sinpcosq, 

cos 'y = sin p sin q

(.u.) At this step after various considerations and calculations, Cauchy introduces his polar system (51)c for 
the first time in his paper. This means "Cauchy's rigorous calculus" based on his rigidity in mathematics. 
By the way, Navier uses it at first step of his calculation in (26). cf. Grabiner [19] (-)

                                                                        3 

f0271 focos2 a  sin  p dq dp=27r focos2 p sin p dp = 27r [ —°S~] =43 
                          o' 

fo fo cos2 a cos2 /3 sin p dp = fo w cos2 q dq fo cos2 p(1 — cos2 p) sin p dp 
         11             2~ _co~7r_27r2_2_ 47r 1 _[2+4sin2q]o [5]o—(0                        2)(35)15

(81)

147r 27r C
3 2 15 15 '

   _ 147r_27r C4 -
2- 3 3

Then (80) turns out by (71) the following :
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(52)c
    ±27r 

 3 

 27r  A

                          15 

 D'ailleurs, si, pour des valeurs croissa 

dement que la fraction A, si de plus le 
supposant la fonctionr(r) continue, et en integrant par parties, 

                (53)cJor4f'(r)dr = —4Jr3f(r)dr      00

 for3f(r)dr, 
ocO r3f(r)dr   =±2"i.0f°°r4f'(r)— r3f(r)dr    I _ 

rrtes de la distance r, la fonction f(r) 
t pour r =

(82)

decroit plus rapi-

0, on trouvera, en

On aura donc alors

(54)c R = —G,

et, par consequent, on tirera des formules (46)c

(55)c X =2R-Ov,Y=2R~b,Z=2Ra
c

(Jj.) This interpretation is very important in the sense of RDF by Cauchy. 
• ¶ 16. 

       Lorsque les quantites, desinees dans les formules (40)c et (48)c par les lettres G, H, I, L, 
      et 0, deviennent constantes, c'est-à-dire, independantes des coordonees a, b, c, ou, ce 
      qui revient au meme, de la place qu'occupe la molecule m, alors, en faisant, pour plus 

      de commodite,

M,N,P,Q,R

(56)c

 A=

B=

C=

 A 

 B 

 C

(L + G)?:(4 + (R - + (Q - G)%adA, 
(R - H) + (M + H) + (P - A, 

(Q - + (P - 14, + (N + IYik A, 
     L+G R-G Q-G 

= A R-H M+H P-H 

      Q-I P-I N+I 
                   _ _

(57)c

 D=

E_

F=

 D 

E 

 F

 (P +I) + (P + 

.(Q + + (Q + 
(R + H)4 + (R + G)PALS., 

      0 P+I P+H 
= Q+I 0 Q+G 

      R+H R+G 0

Then (40)c is reduced to the following :

(58)c

 = 

 Y  =1 

jr =

aA aF as 

as 8b -ac 7 

aF 8B as 
' aa -ac 

8E _,_ as ac aa ab -' ac)

 0 

   ac. 

aa 

- 
X - AF 

Y = F B 

Z ED

Dc 
0 

Da

D

ab 

Da 
0

a 
aOL 
atf' 
Dc

By (41)c and (45)c,

G= H = I, L = M = N, P = Q = R, L =3R.
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where,
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           0= (L+G)aa +(R—G)(ab+ac) 
               = (L+G)On+(R—G)(v— 

ac) 
                = (3R + G — R+ G)--a-Ca+ (R — G)v 

            = 2(R + G)as + (R — G)v 

           0= (L + G)On+ (R — G) (aa+ac) 
                (L + G)0b+ (R — G) (v —an) 

             = (3R+G—R+G)6b +(R—G)v 
             =2(R+G)ab+(R—G)v

 (47)c V a
s + ab + ac'

By the same way,

A =  (R+G) jj 
A= (R+G)a 
A=(R+G)a

—9(R-1' +(R—G)v,

ac 

ac 

8a

For convenience's sake, in the particular case, for (41)c and (45)c to hold, it is sufficient to be as follows

                (59)c (R+G)0 = 2k, 
For the equations (56)c and (57)c,

 (60)c

 A 

 F 

 E

F E 

B D = 

D C

 ka + Kv 
1 PI + 
2 8b8a 

1ka+a

(R — G) K

2k(a+a)2k 
  ka+Kv2k 

 2k(       2.) 
Hi k = 0 holds , an 

D=E=F=0.

a+a 
8 +a 
ka + Kv

If, moreover, the condition  (54)c : R = —G holds, then k = 0 holds , and the following hold : 

(61)c A=B=C=Kv, D=E=F=O. 

A.3.3. Consideration of Elastic Fluid by Cauchy. 
We show the equation number of fluid by Cauchy in below, with (.) c. instead by (.)c for discrimination 
with the elastic equations as above. 
• ¶ 17. Assumption of elastic fluid. 

 As the equations in equilibrium : 

          (L+G)-+(R+H)~y +(Q+I)+2Rad +2Qd d +X =0, 
    (67)c (R+G)vx---+(M+H)d +(P+I)r,z7 +2Pa s +2Rdj+Y=0, 

          (Q + G) a---:i + (P + H) 08yi + (N + I) aG + 2Q as a + 2P dydx + Z = 0, 
and as the equations in motion : 

 +(R+H)+(Q+I)0+2Rda 5+2Qda a+X =ati,   (68){((LR++GG))8862i                 +(M+H)+(P+I)d+2Pd+2Ra+Y=dt, 
        (Q+G)d-+(P+H)di+(N+I)G+2Q18 +2Pad +Z= ati
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       Si de plus les valeurs de G, H, I, L, M, N, P, Q, R deviennent independantes en 
     chaque point des directions assignees aux des x, y et z, les conditions (41)c et (45)c 

      seront verifiees, et, en supposant la quantite v &terrain& par l'equation (47)c, ou, cc 
      qui revient au meme, par la suivante 

                      a. 071 a( (69)
c , = + + — =V • u = div u, u= (-, ri, ()•                   ax ay az 

As the equilibrium of fluid :

(70)c*

(R +  G) 

(R + G) 

(R + G)

a2~
y 

 8y2 8y2 T 8z2

 +  2Ra  +  X  =  0, 

+ 2R + Y = 0, 

+ 2R'k + Z =0,

and as the equations in motion :

By (54)c :

(71)c.

 (R  +  G) 

(R+G) 

(R+G)

02602602e     1-tV1-eTI. 
02 n . 02 n . a2 n 

02 c . 02 c . 02 c

R =  —G, we get A = 0 of (71)c., then 

                           Ov (72)
c. 2R—av + X = 0,2R—a

y              ax

                     2 

+2R+X=, 

+ 2R19-11.+ Y =at2  , 
                    2 +2Raz+Z=at2,

 +Y=0, 2ROz+Z=0

      Dv02Dv32,0 3v02(     (73)
c2R—+ XOt2 ,2Rjy+ YOt2 , 2R Oz+ Z Ot2 

 On doit observer 
 • que la quantite v, determinee par formule (69)c., represente la dilatation qu'eprouve 

   un volume tres petit, mais choisi de maniere a renfermer avec la molecule m un grand 
   nombre de molecules voisines, tandis que ces molecules changent de position dans 
   l'espace. 

• Ajoutons que les formules (72)c. et (73)c., etant semblables aux formules (63)c, (72)c. 
  et (77)c. des pages 173, 175 and 176,43 paraissent convenir a un systeme de molecules 

   qui seraient disposees de maniere a constituer un fluide elastique. 
[7, p.248]

• ¶ 18. Verification of equations in elastic fluid. 
By replacing (a, b, c) of (56)c and (57)c with (x, y, z), we get (74)c*, (75)c. of the equivalence of

(56)c and (57)c. 
• ¶ 19.

(67)c (76)c.

43(4) Equations (63)c ,

(63)c

a A a F x =0 ,     ay az 
 OF aB y-A= 0, axaz + 

   apt+w .=0 , ax +ay'az

 A F E 

F B D 

EDC

-o 

-

(72)c and (77)c of p.173, 175, 176 are included in [6], which are as follows : 
0/(p) al(p)001(p)        k(X)

, ------= k(Y —7)—), ------= k(Z — —0w); a
xatayat az

81(P) (72)
c

(77)c

81(P) = kX' 
ay

, 821 

   = 

 at

= kY,
at(P)       = kZ; 

az

+L

X

800 kav 
= 

ax at

800 

ay '

800  

fit k----• at az

=0
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• ¶ 20. Two-constant by Cauchy. 

(.lf.) In this article, Cauchy states two-constant in his fluid equations, 
sponds to the tensor function with the main axis ( the normal stress ) 

(11') 
We get the tensor from (76)c. as follows :

Then (74)c

(60)c

and (75)c

(77)c-
A 

F 

 E

are reduced to the following

 (78)c•
 A  F 

F B 

E D

E 

D 

C

F 

B 

D

E 

D 

C

k +Kv2
ik 
2 

 lk 
 2

A+ 
a+a 
I  (71)c.

in which the two-constant corre-

of Laplacian and grad.div term.

i ik 2kCAy+ax 2 
 kg  +Kv 2k 

11 J 2k(az + ay 
with the following

d+d 
 az 8y

k9+Kv 
 44By replacing  Rd- G and 2R in the equation (70)c. and (71)c. with the following : 44 

             kk+2K                     C
lR+G=20,C2-2R=20 

(.t1.) Here, Cl is the constant to the tensor function with the main axis (the normal stress) of Laplacian. 
C2 corresponds to therms of the gradient of divergence of u. In today's NS equations, the value of ratio 

                        coefficient of tensork  of coefficients :c=coefficient of grad.div=k+2KBy Prandtl [64, p.259] in 1934, the ratio was fixed at 
3. We had have to wait by the time, when including this ratio of two coefficients, what is called the NS 
equations were expressed by Prandtl in fluid equation. cf. Table 7. () 
As the equations in equilibrium of fluid :

(79)c•

and as the equations in motion of  fl

(80)c*

 Cr` 

C* i 

Cr 

i flui

C 

C 

C

i 

i

    ;a4i++dzi  
:_ + + az,1 

8xi+ayi+ 
n2 n2 n2 

8x+ay+8z 

8x2+8y+~3zll

 +C2—~+X= 

+C2dy+Y= 
+C* + Z =

0, 

0, 

0,

                     2 +C2d+X =4, 
                     a +c*    2ay ,+Y =-, 

                    2 +c'~3z+Z=4.

• If 21. Comparison with Navier's equation in elasticity. 
 Cauchy says : for the reduction of the equations (79)c. and (80)c. to Navier's equations( [46] 

determine the law of equilibrium and elasticity, it is necessary to assume such as the condition whic 
have mentioned above : 

(81)c* k = 2K 
• If 22. Comments on Navier's equations in elasticity. 

        On voir au rest que, si l'on considere un corps elastique comme un systeme de points 
materiels qui agissent les uns sur les autres a de tres petites distances, les lois de l'equilibre 

      ou du mouvement interieur de ce corps seront exprimees dans beaucoup de cas par des 
      equations differentes de celles qu'a donnees M.Navier. 

        • Les formules (67)c. et (68)c. paraissent specialement applicables au cas on, l'elasticite  
n'etant pas la meme dans les diverses directions, le corps offre trois axes d'elasticite 

           rectangulaires entre eux, et paralleles aux axes des x, des y et des z. 
        • Les formules (70) c. et (71) c. , au contraire, semblent devoire s'appliquer au cas 

on le corps est egalement elastique dans tous les sens ; et alors on retrouvera les 
          formules de M.Navier, si l'on attribue a la quantite G une valeur nulle.

44(4) The following notation : Ci and C2 are not our two-constant but the two 

confusion, we don't use C1 and C2 by Cauchy but Cr and q.
symbols by Cauchy. To

) to 
h we

avoiding
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      • Ajoutons que, si, dans les formules  (67)c. et (68)c., on reduit a zero, non seulement 
        la quantite G, mais encore les quantites de meme espece H et I, ces formules 

       deviendront respectivement (83)c* et (84)c. [7, pp.251-252] 
If G = 0, then we get the equations of equiblium in equal elasticity :

(67)c. (83)c.

L4+ R4+ Q4+ 2R----6)2ri+ X = 0,     ayazaxay azax 

Ra4T + M4 + P4 + 2P---a2 + 2R21L + Y = 0, ax ay azayaz axay 
 02c p

1-02cN02(,9-2•2pa2r)z0, D-P.az2Yazaxayaz

and as the equations of motion in equal elasticity:

 (68)c. (84)c.

     512 ,82 „5,2 , L ± R =-4 + Qyrz--in + 2R axil, +2Q-----,  +  X  = 5i, axc)yJ  ,..925,2 „82,0 D  82( , 828277  4p 
az_ ---+4/5,a-,-2Rasay+Y=at2, ax2dycry z 

82 c2 .2..,.2 .     --L-P--�-82Q 8242P 82riZ— ----C Q
t..-71'-ay2+Naz2± 2-azax±Oyaz±—at2
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A.4.
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Poisson's equations deduced from his principle.

A.4.1. Principle for the equations in elastic solid. 
 We deduce K and k in accordance with Poisson [59, p.368-405, 

    • § 2. For abbreviation, we put the  following  :

 axi + byi + c(zi — (i) = 95, 
a'xi + b'yi + c'(zi — (i) = IP, 

a"xi + b"yi + c"(zi — (i) = 0,

 §1-§16] as follows.

dududu/ 
 dx+4dy+eax=, 
dv dvdv 

 dx+ ody+ edz 
/Ow dwdw dx+i~Idy8dz -e

(83)

Namely,

[ B
a b c 

a' b' c' 

a" b" c" 1
 x1 

Y1 

zl -

CY 

0' 1
du du du 

dx dy dz 
dv dv dv 

dx dy dz 
dw dw dw 
dx dy dz

 cb 
 0 
 B 1=Vu•

0 

B

r2 = 02 + ,o2 + 02,

(r)2 = (0+0')2+(0+0')

r2 = xi+ yi + (zi

2 + (0 + B')2
,

- (1)2,

(r')2 = r2 + 200' + 20/' + 200' + (c02 + (/')2 + (01)2 

• § 3. We assume that a : the average molecular interval, w : surface, a : the number of molecules 
on W. 

      (O.+~ ,)( P = a3r')(fr,Q =2_,(0+a3r'' fr R =(eaB/)~fr'.(84) 
• § 4. 

                    r'=r+ -
TT (00'+ op' +B0') 

 At the same degree of approximation, we get : 45

We get the three elements of force  P, Q, R from (83) and (84) :46

(1)Pe

P =  E  (4)„±t:.) fr + >(00' + OP' + OW) c. f r 
Q = E (0a3')( fr +E(00' + ' + OW) a3r d. fr , 
R = E (d  fr +E(00' + b b' + 00') a----r d. fr

(85)

   P 

   R

 + 0') 
(+0') 
(e+')

($4'+1pl'+ee')o 
+etyytp 

(00'+Ipb'+e8')e 1
  S r  

 d.1        rfr 
 87r dr

45(4) We correct this equation . Poisson [60], the corresponding equation (100), there is Tdr 
46(4) We use pe in the left-side equation number as Poisson's equation number in [59]. And p 

number in Poisson [60]

1
f means Poisson's equation
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We  donate  : 

/3 : the angle between the vectorial rayon of one of molecules : r and the axis of (, and 
-y : the angle which the projection of the rayon on the x—y plane makes with the axis of x.

 xi = r cos [3 cos ly, 

yi = r sin /3 sin -y, 
 = r cos /3, 

E take the form : pFr, which is expressed by 
Dsines of 0 and 7,

87

We have :

The quantities which majored under the take the form : pFr, which is expressed by 

p : an entire function with sines and cosines 
 Fr : a same function as fr, of which value are insensible for total sensible value of the variable, and 

moreover, which equals 0 for the particular value of r = 0. 
We consider that the summation in question is composed by the parties of the form : 

E [(EEP)Fr], 
r 0 7 

here, the outer E corresponds to r and can extend to r = oo, and the inner double Es correspond to 0 
and y. 

    • § 5. The value : > >p related to sr2 is assumed the product of p and the number of molecules 

      which contain in the surface of sr2, and which is expressed by a 22 

 

. We consider a hemisphere 
      with the radius : r = 1 on the x1—y1 plane as follows :

n` 
S, 
                                                             (.Y 

7 

        This new summation extends to the all parties in the hemisphere of the unit for the radius. 
      Because p doesn't decrease very rapidly, we can change s with the diffrential element of the above 
      surface, and the sign : > with the signs of integration, we can take the following : 

                                       f2f2~r                s = sin/3d/3dy,Ps =JJp sinJIdiidy, 
0 700 

T2 2 27r 
PP sin MOO, 

07o 0 

              E E E p) Fr] =22n p sin /3d/3dy E_2 Fr.                                    Jo Jo 0 7 

    • § 6. 

                  = gr,/ = hr, 0 = 1r, = g'r, = h'r, 0' = l'r,

9 
h 

l

      g = a sin 0 cos 7 -I- b sin /3 sin y — c cos /, g' 
      h = a' sin /3 cos y + b' sin /3 sin y — c' cos /3, 1 

l = a" sin /3 cos y + b" sin /3 sin y — c" cos 0, 

  In brief : 

   a b c sin/3cosy g' 
    a' b' c' sin /3 sin yIi' 

   a" b" c"— cos /31' 

                                                                  - By using Poisson's so-called effective transformation,

[
P =  fo2 fo 

Q 
 = 2~r  = f02 f0 

R = fo2 fo

_du+h du+ldu —9d
xdydz 

h'=gdv+h~tv+ldv                 d    dxdyz~ 

l~=dw+hdwdwz    9dxdydz

du du du 

dx dy dz 
dv dv dv 

dx dy dz 
dw dw dw 
dx dy dz

 ailed effective transformation, 47 we obtain from (84) 

(g + g')E'046-fr + (gg' + hh' +11i53.d.fr                   ')gE 

(h + h') E fr + (gg' + hh' +11')h E ------ 

(1 +1') E fr + (gg' + hh' +11')1 E4 dill A, 
oe') d:r.drf  ([60, p.42]).

 47(4)
 fr' = fr + (00' + 00' + 00')

 h = Vu • 

the following : ft)It 

(86)
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 (4) (86) implies the following : 

 [PR 
        27rr

Q/ °( 

              2 

       f:7rf:( 

 g + g' (gg'+hh'+ll')g 1 
 h+h' (gy'+hh'+ll')h 
1+ l' (gg'+hh'+ll')l 

 9+g' P' 
h           K +h'Q'[ ]P 
1+1' R'

        T3 T 

       a 

 Ersd.Tfr a~ dr 1 ),
(87)

where 

P1 
Q' 
R' 

    (930xu+g2h~yu 4_ g2lgOzu)-}-(g2hVxv + gh2Vyv + ghlVzv)(g2lOxwghl0yw + gl20=w) 
(g2hVxu+ gh2Vyu +ghlVZu) + (gh2Vxv + h3Vyv + h2lVZv) + (ghlVxw+ h2l0ywhl2Vzw) (88) 
(92iVxu + ghlVyu + gl2gVzu)+ (ghlVxv + h2lVyv + hl2V v)+ (g12Vxw + hl2Vyw + l3V w)

° := cos/3• sin/3d0dry, Qx2b:_~~, etc , K_Er r  
Below, we use the following integral formulae : 

f sin2 xdx = 2 - 1 sin 2x, 
f cos2 xdx = 2 + -1 2x, 
f sin x cos xdx = 2 sin2 x, 
f sin2 x cos2 xdx = - s (4 sin 4x - x), 

                          m+1 

f sin x cos"xdx =-°Omi+1 
x  f sin"''x cos xdx = sim++m+11 , 

        ncosm-1x sin"+1xm-1m-2ra 

f COSrrix sinxdx = m+n},,t+nf cosx sinxdx, 
 cos"nsin"-1xcosm+1xn-1n-2 f x Slnxdx =- m+n+m+n f cos"x Slnxdx, 

(r1') 
  At first, we get the following :

- Ed r

(rn > 2 & n > 1), 

(m>1 &n>2)

g + g' = (a sin /3 cos 'y+b sin /3 sin ry-c cos /3)(1+ 2)+hay +ldz, 
     h + h' = g dx + (a' sin /3 cos 'y + b' sin /3 sin -y - c' cos 3) (1 +y) + l 2 , 

    l + l' = g t + hdy + (a" sin 3 cos -y + b" sin 0 sin 'y - c" cos 0) (1 + az) 

For the integral of g + g', we put : A - a sin /3 cos !y + b sin /3 sin ly and B - c cos 0. 

 f2ir22ir2      dryfg°=fdly (a sin3cos ly + b sin 0 sin 'y - c cosi3) cos/3sin/3d/3  0o0Jo 

             f27r2 d"yf(A - B) cos/3sin,3d3.0Jo 
27r227r2 

fd7f Acos/3sin/3d/3= fdf d/3(asin2/3cos/3cos+bsin2/3sin7cos/3) 
  a[Sill3  1i27r 

 3 Jo

f2Jf7rf2r2zrJ0—Bcossind,3 = cJdryJ—cos2sind,3 = —cJd[—0oo30 
    We get the following summary of the first half of (87) by the same way as above :

f27r2irdJdycos-y+b[S1113/3]27r               3 o J7sinry=  0 

 sin0d0  = —c27rdry[—co3]o=—27rc 
           Jo

f2r27=_2?ruuu z) JOJO(y+yi)0-3Gd                            +GdxLi ddy~'“ddz 5 

('r/'tidviidv J0J027-(tLi+It)~= —327r.G'+cdx +cdy+C    2~ri2~rdwi dw// dw ) .f0/o(l+l)0 =—(c”+cd+cdy+cdz
— 

3 (c + Vu • c),

(89)
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     where c.----( c c'c")T. Below, we use the  relations as follows : 

a2 4. + e2 = 1, aa' + bb' ± cc' = 0, a/a" + bib" ± cfc" = 0, a"a + b"b ± ec = 0. 

     A.4.2. Summation of last half term. 
      We show only the value of ff g3 L. in (88) in detail. 

Ifg3=-f27ri     Ad-yfg3 cos 0 sin 0d0     oo 

 =id-yf(a sin 0 cos-y+ b sin13sin7– c cos 0)3 cos 0 sin130 
  oo 

      27rit-  =fdyfd,3(a sin 0 cos-y+ b sin,3sin-y– c cos 0) (a2 sin2 0 cos27+ b2 sin2/3sin27+ c2 cos2/3   of 
 + 2ab sin2 0 cos 7 sin 7 – 2bc sin 0 cos 0 sin -y – 2ca sin 0 cos 0 cos -y) cos 0 sin 0 

     When we arrange ff g3A with respect to c's terms, then we may compute only 5 terms : 
cAl , cA2 , cB1, ,cB2 and cCi .relative to c as follows: 

   fl g3=                   [(a sin 0 cos7) * (-2ca sin 0 cos 0 cos -y) 
               + (b sin 0 sin 7) * (-2bc sin /3 cos /3 sin 7) 

                – c cos ,3 * (a2 sin2 0 cos2 7 + b sin2 0 sin2 -y + c2 cos2 0)1 cos 0 sin 0 
                 = –c(– 2a2 sin3 0 cos2 0 cos2 7 

+ b2 sin2 7 sin3 /3 sin2 /3 

+ a2 sin3 0 cos2 0 cos2 7 + b2 sin3 /3 cos2 0 sin2 7 

+ C2 COS4 /3 sin /3) 
                   –c(Ai + B1 + A2 + B2 + C) 

     We compute the first term : –ca2 with the integral in the right-hand side above as follows : 
• – cAl : a * (-2ca) : 

             27rir-        —2a2cId7odOsin3 /3 cos2 /3 cos27= –—4a2C2+-1sin 27-27r= —7r                                                                    —4ca2 
    o15 _ 2 4_ o15 

     Similarly, 
* – cA2 : –c * a2 : 

                            27r            –ca2foCOS2 'yckyJsin3 0 COS2OdO                             Oi 
                                              3-Ir"2i               = –ca2027rcos27dc7sin20COS02+_f                                          cos2 /3 sin/3d/3) 

                  _5_o50 

                        2 
               27r2 cos3 

/3-1.2) = —cacos2-yd7(-2-(– (-1)) +         fo                   535[ 
     23_o)                          22-71r272 

                 1 

                = –ca-2f27rCOS2-yd-y= –ca—15-2+–4sin 27 = –—15ca    500 

* — C.Bi : b * (-2bc) 

     27ri4 y1-27r4        –2b2cid-y0d,3sin3 0 cos2 13 sin2 -y = –—15b2C[—2––4sin 27= –—1571Cb 

                                                                              2 

 0- 0 

      • — cB2 : –c * b2 : 

      27ri        –cb2isin2-yd7osin3     o2 /3y1-27r27r                                  sin2/3d/3= –cb2-5––sin 2'y= _cb2                                1 _ 2 4- o15
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  f0 10 
       27, g3 A : i

_2771.2c _(a:4_fr.):::: c+2)(_:2____4 )7(1,2 _ _27 cc2 
   foi f2R-

 rr /27 
      ghl015 1515 15 

            = — —27r {2c(cc' + aa' + bb') + e' (c2 + a2 + b2)} = --27c 
  1515 

          00 

         15(3cc'c" + aa'c" + aa"c' +  a'a"c  + bb'c" + bb"c' + b'b"c) 
        15{c"(cc'+aa'+bb')+c'(a"a+b"b+c"c)+c(a"a'+b"b'+c"c)} 

Therefore, in brief : 

ffg3~ 25G' if g2hA27r ffghlt=0. 
We get the same as above. 

            If h30 ——27rc'5if l3A ——27c", 

                             

5-----' 

    if gh2A 15 'ifif 215//' 

Ifh2/.6.215 ' ff h120 ——215

  The "two-constant" theory and tensor function underlying the Navier-Stokes equation 

• — cC : —cc2 : 

        f21T r~—c3d-yJcos4,3sin30_ _c3f27rd7r—co5C31 =—cc2   oILJ 
  The integral of the terms of 2ab, —2bc and —2ca are all zero respectively. Therefore we get the 

following equation : 

 Jo Jo15 1515 155 

                 _ _ _27c (a2 ± b2 ± c2) _ _ _27re =1 

   foi fo2R-           92hA = —27r (3c2c/ + 2aa'c + 2bb' e + a2 c' + b2e) 
                 = — —15 {2c(cc' + aa' + bb')+ e' (c2 + a2 + b2)}=__27rc', 

   ri r27

= 0.

We show in brief :

27r r3 
3a5f r=K,

2n 

15

r5 d.~ fr 
------- k. 

a5 dr (90)

These coefficients were replaced later with 
 By using (90), we get the following from

(96), 
(86)

in Poisson[60],p.46, p.140.)

P 

Q 

R

-K 

-K 

-K

C+ dyC- dyC 

C/ + dvxC+ dy( 
 C//  + dw+du     C C

    du 

dz dz c//) 

    d

fi

cil)— k(3dxc-+-dycl 
—k(d:~G+3dyc, 

d-/dw dw 
dz L  ds(' (Ty

+ dduzdC"+dv:cdydxc/+dvC+dwcu+ 

  dv u du / dudw// +
dzC+d~C+dyC+dyC + 

/dw/ldu//dudi;ll r+3
dz+dx      CC+dzC+dyC

dw Cl 

dw  dz dzc/) 
+dzC

(91)

('u') 

[C~
By the way, we can state the linear relation of  P, 

 c', OF are as follows :

P 

Q 
R

 =  -K

 1+ 
dv 
 dx 

dw 
 dx

du 
dx 
1+ 
 dw 
  dy

du du 
dy dz 
dv dw 
dy dz 

1+ d

-k

 fP,Q,R,w 

3 dx+ ~y+ 
dv dw 
dz + dy 

dw+du 
dxdz

hich made of two tensors on the basis of

dwdu +dv 
dzdydx 

        dvdw 
     dx3dy+ dz 

             dwdv 
            dy+ dz

du dw 
      dz + dx 

dv + du 
     dx dy 

du  dv  3 dw 
dx dy dz
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• § 8.

 (3)Pe

 x = _d_a _LdP2_LdP3   Pd
z'dy' dx ) 

y _clga_Ld2_Lc/Q3  P—d
z1dy1 dx , 

z — dR1 _L dR2 _L dR3   P — dz ' dy ' dx

• § 10.

(4) pe

 Xl+Plc"+P2c'+P3c=0, 

Y1 + Q1c" + Q2c' + Q3c = 0, 

Z1+R1c"+R2c'+R3c=0.

 where c, c' and c" are cosines of the angles 
 the normal line to the surface of separation. 

• § 14.

formed between the original coordinates x;, y, z and

(4) This article is very important for discussion of disputes between Poisson and Navier or between 
Arago and Navier. Why Poisson uses > instead of f . According to Poisson, if we would compute 
K and k under the symbol f like in (93), then we end up the result : k = —K = 0 at the same 
time, so that Poisson uses the symbol E. (cf. Table 9.) a (11-)

a(l).) cf. There are many referrnces on these topics : Navier 
[51] in 1829 and Navier with Arago [51] in 1829. Above all,

with Poisson : [48] in 1828; [49] in 1829; [50] in 1829; 
in [51], Navier's everlasting assertions are repeated.

 Les equations (3) et (4) conviennent aussi a l'etat primitif du corps ; et pour les 
appliquer a ce cas particulier, it suffit d'y faire u = 0, v = 0, w = 0, et d'y supprimer 
toutes les forces donnees, exterieures ou interieures. On a alors 

R1=Q2=P3=—K; 
les six autres quantites P1, Q1, etc., sont nulles, et les six equations (3) et (4) se reduisent 
a quatre, savoir : 

            dK dK dK = 0,
dy=0,dz_0' K = 0.  dx 

D'apres les trois premieres, la quantite K est une constante qui est nulle en vertu de 
la derniere. En remettant done pour K ce que cette lettre represente ( no.6 )48, et 
supprimant le facteur constant 32 5 , on aura 

>r3fr=0 
Ainsi, dans l'etat du corps qu'on peut regarder comme son etat naturel, ou it n'est soumis 

qu'a l'action mutuelle de ses molecules, due a leur attraction et a la chaleur, les intervalles 
qui les separent doivent etre tels que cette equation ait lieu pour tous les points du corps. 
Si l'on y introduit une nouvelle quantite de chaleur, ce qui augumentera, pour la meme 
distance, l'intensite de la force repulsive, sans changer celle de la force attractive, it faudra 

que les intervalles moleculaires augmentent de maniere que cette equation continue de 
subsister; et de la vient la dilatation calorifique, differente dans les differences matieres, 
a cause que la fonction f r n'y est pas la meme. 

 Cette equation donne lieu de faire une remarque importante ; c'est que les sommes E 
du no.6, que representent les lettres K et k, ne peuvent etre changees en des integrales, 

quoique la variable r croisse dans chacune d'elles par de tres-petites differences egales a 
; car si cette transformation etait possible, k serait zero en meme temps que K ; d'ou it 

resulterait qu'apres le changement de forme du corps, les forces P, Q, R, seraient nulles 
comme auparavant, et que des forces donnees qui agiraient sur le corps ne pourraient

48(4) § 6.
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 se faire equilibre, ce qui est inadmissible. Pour faire voir que k s'evanouirait au meme 

  temps que K, observons qu'on aurait 

2ir°Or32ir°°r51 —K =3J
oaf rdr, k =15Joasd.rfr' 

 en multipliant sous les signes E par ,e , et remplacant ces signes par ceux de l'integration. 
 Or, si l'on integre par partie, et si l'on fait attention que f r est nulle aux deux limites, 

it en resultera 

2ir'r3                    k=-3Jsfrdr= —K 

                                  0 

 ce qui montre que la quantite K etant nulle, on aurait aussi k = 0. [59, p.398-399, § 14] 
• § 16. 

        Je substitute, en outre, dans les equations (3)pe a la place de P, Q, etc., leurs 
        valeurs, et je suppose le corps homogene; en observant que K = 0, it vient

(92)

(93)

(6)pe

 d2u2(d2u2d2v 2  d2w1d2u1d2u `Y —+aC+3dydx + 3 dzdx3-d-WI3az~0~ 
   d2v2/d2v 2  d2u2  d2w 1 d2v 1 d2vY 

    Teralyg+3dxdy+3dzdy+3+3dz~_u, 
   d2wd2w2d2u 2  d2v1d2w 1 d2w Z —7-+a2C—+3 dxdz+3dydx+3+3 c'2-~'

(94)

      a2 etant un coefficient, egal a sP .Ces equations ont la meme forme que celles qui 
      ont ete donnees par M.Navier49, et qu'il a obtenues en partant de l'hypothese que les 

      molecules du corps, apres son changement de forme, s'attirent proportionnellement aux 
      accroissements de leurs distances mutuelles; et en admettant, de plus, que les resultantes 

      de ces forces peuvent s'exprimer par des integrales, ce qui rendrait nul le coefficient a2, 
      ainsi qu'on l'a vu plus haut. Les equations relatives a la surface, formees de la meme 

maniere, se trouvent aussi dans le Memoire de M.Navier. [60, p.403-4,§1.6] 
We can see that (6)pe ( = (94) ) is able to be modified to (44) as follows :

 X  — 

Y— 

Z—

d2v a2   -+3 

d2v a2 +
3 

d2w a2 +
3

(3~  dud2v 3+2 
dydx

 d2vd2 3
dy+2dxdy +cdA

(3 d+2dxdz+2

     22 —oCry'lTri2") d2wdudu 
izda 

2 /2w d2v d2v                 = 0, 

d2v+d2d2w           ) =0, dydzdxTy 
                    'r)

A.4.3. General principle and equations in elastic solid and fluid. 
 Poisson proposed two constants k and K in his compressible fluid equations in 1829, and issued in 

1831( [60, p.46, p.140] ) , 
1 3d.Tfr_27r 13d.Tfr 1_27rrfr (3-8)Pf k=

30e3r -------dr 15 47E330E3 drK6E3> rf r3 471E3(96) 
e : la grandeur moyenne des intervalles moleculaires autour du point M. (the mean value of the molecular 
intervals around the point M. )([60], p.141). 

 We summarize Poisson's deduction of k and K in [60], which is a little different from [59, p.368-405, § 
1-§ 16].50 

• § 15. Here, at first, we introduce the setting of situation by Poisson for strict description. 
              Soit w de sa section horisontale; sur cette section elevons dans A une cylindre 

            vertical, dont la hauteur soit au moins egale au rayon d'activite des molecules; 
            appelons B ce cylindre : l'action des molecules de A' sur celles de B, divisee par 

  49By Poisson's footnote : Tome VII de ces Memoires, which is Navier[46]. 
50(J) In Poisson [60], the title of the chapter 3 is "Calcul des Pressions dans les Corps elastiques ; equations defferentielles 

de l'equiblibre et du mouvement de ces Corps."
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Nw=E-fr 

        la somme E s'etandant a tous les points rn de B et rn' 
     We put Nw such that N : the pressure 

   — related to the unit of the surface ; 
   — and caused the vertical component of the force : fr actirq 

     below to above, 
 is T fr, then we get : 

Nw=~—fr, 

r 

 where the sum E covers all points rn of B and rn' of A'. 
• § 16. We put N : the pressure, e : the mean value of the 

 M as above. We put v : a proportional number to the volume 

                      Nw=Evz_jr 
                                                                            r•

      w, sera la pression exercee par A sur A', rapporteeal'unite de surface et relative 
      au point M. [60, p.29] 

  Namely, 
 — We put w : the area of the holizontal section ; on this section in A, in which a vertical 

   cylinder stands, at the height of which equals at least the radius of sphere of the molecular 
    activity. 

 — We call B : the cylinder : the molecular action of A' on it of B , divided with w, is the 
   pressure activated by A' on A, related to the unit of the surface and relative to the point 

   M. 
Poisson continues : 

        Nous la representerons par Nw, en sort que N soit la pression rapporteea 
l'unite de surface; et a cause que la composante verticale de la force f r aggisante 

      au point rn et dirigee de bas en haut, estTfr, nous aurons

de A'. [60, p.30]

                                          fractingat the point rn and passing from

lecular intervals around the point 

      wz.

wz 
where v =3

then

If we call  µ the mass of a molecule, or its mean value, the mass of the cylinder : wz turns equal to vp, 

and the ratio : expresses the density. Hence, we put it with p, and put its value for v, we have : 

                                __ 

P3 

    • § 17. We see also that the quantity : r fr obeys under the sign > being null for all the points 
      of the plane moved by M, the sum which it makes, become a of the same sum extended to all 

      the points of A and of A'. Moreover, r2, which is the square of the distance from M' to the three 
      planes of the rectangle passing through M, and the sum > f r having the same sum which we 

      replace successively z2 with the two another squares : x2 and y2, then it turns that it equals 

> rf r. After these considerations, we have the following :

(3-2)  p  f
'
3 E 

E

E fr E rfr;
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• § 20.  (This section corresponds to the sections from § 2 to § 4 in [59] describing the elastic solid.

(3-6) p

 x' =  axl + byi — czi, 

y' = a'xl + b'yi — c'zi, 

z' = a"x + b" c"zi

(.O Namely,

 x' 

Yi 

z'

co 
IP 
B

a b  —c 

a' b' — c' 

a" b" — cii

x1 

 yl 

z1

=

 x1 

Y1 

z1

a a' 

b b' 
 —c — c'

(11-) where, 9 coefficients a, b, • • • are the cosines of the angles which xl, 
the axis z1, with the axis of x, y, z, and these cosines are given. 

ri = (Co +(p')2+(0+'J)2+(0+01)2 

Here, for abbreviation :

 (4) Namely,

 axl + byi — czi - (P, 

axl+byi—czl-V), 

a"xi + b"yi — c"zi = 0,

a b —c 

a' b' — c' 

a" b" — c"

x1 

 yi 

zl

 (P' 

0'

 du du du 1 

 dv
d,/'dv dvI'1   x +Y'ay+ eaz=4' , 
 c!--I5dwdw~ cp—I5+0~y+Bdz-9

  a" 

 b" 
—  c" 

Yi a]

 x' 

Y' 

zi

 (98)

and the extension of

 du du 

dx dy 
dv dv 

dx dy 
dw dw 

dx dy

du 

dz 
dv 

dz 
dw 
dz

 ep 

 B

 =Vu•
 v 
 0 
 B

(99)

 (it) 

     wP=—E +~/fri,wQ=-E+/frl wR=-E8+e'fri. 
   rl rlrl 

 for the components of the total action of A' on B, in covering the summation > to the all points 
rn' of A' and to the all points m of B. Because the function fri is regarded as positive or 

 negative, in accordance with the distance : r1, the force which it represents, becomes repulsive 
 or attractive, the components act in the direction of x, y and z, positive or negative, with their 

 values above turn into positive or negative. 

1 ((p+(P')z11(2~J+V')z11 (0+B')z1  P3~             fri,Q=-3~fri R32frl. 
  rlerlrl 

 By observing that

/'                                 r2=(p2+/,2+02
, 

 and by neglecting the quantities of the second order with respect to cp', ', 0', we get the following 

1 
                    r1 = r + r((pep'+00'+00') 

 At the same degree of approximation, we get the following :51

 1d.i fr f
r1= - fr + GP(Pi + OP' + 00')  T, (100)

51(J.) Because this equation (100) must equal (85) in [59] of elastic solid, we corrected here Poisson's misprint.
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        TABLE 12. The 63 coefficients of the components of —H

95

Xizi of E yi zi of F zi zi (= zi) of G number of term

a(ca + 2ca)  ea' + 2caa 3ca b(cb + 2cb) cb2 + 2cbb = 3cb CC = C 7

dv a' (ca' + 2c'a) ca'2 2c'aa' b'(cb' + 2c1 b) cb12 + 2c1 bb' cci2 7
dw

dz
a" (ca" + 2c" a) = ca"2 + 2c"aa" b" (cb" + 2c" b) = cb"2 + 2c" bb" cc"2 7

du dv
dv'dx a(c' a + 2ca') = ga2 2caa' b(c b + 2c11) = c' b2 + 2cbb' cc! = c'c' 7 x 2 = 14
du dw

dz rig,
a(c" a + 2ca") = c"a2 2caa" b(c"b + 2cb") = c"b2 + 2cbb" ece = e2 cil 7 x 2 = 14

17,
dz dv

ca' a" + c' aa" + c" cb' b" + cbb" + c"bb' cc' c" 7 x 2 14

number of term 27 27 9 63

 (3-7)  pf

_ 
P 

Q 
   R

 P 

 Q 

 R

  = -

1 

53

-r>2 

-E

(co+st/)zl

("0+41)zi.
    r 

(w+w/)zi  

r Cd)Z1 
(' + 0')Z1 
(u.) + unzi

f r —A+OP' + 00%0Zid.rtfrr 
 r —apcoi +7,b17bi00/)21)Zid;trfr  

f r A E@Pco' ++190')Luzid'-r                                         rdr 

((p(p' + OP' + e 0%0 
)Z1 (co(p' + Op' + 001)'0Z1d.f  
)Z1(aW' +00' + oe')u)__rd,

(101)

A.4.4. The first coefficient : K in summation of P, Q, R in elastic solid. 

• § 21. ( This section corresponds to the sections from § 5 to § 7 in [59] describing the elastic solid. 

   ) 

                             z2,1 

                      Ev.,. - -6 ETfr, 

E (p-Hpri)zi f r=_e c+ cddux + et dduy + c" j) ) E rfr __16 (c(1 ± ddux) ± e dduy ± et/ dduz) E rfr, 

{ 

    (0+0, /), fr =. _4 c/ ± cddevi ± c/ ddvy + c" 9j) ) E 7, fr. = _e (c ddvx ± et (1 + ddvy ) + ell ddvz) E 7f,r., 
    (w+w,)zi fr = _ _61 (ci/ + cddwx + c/ ddwy + cil ddwz ) E rfr = _e (e ddwz + e/ ddwy +c" (1 + ddwz )) E rfr, 

           r 

      A.4.5. The second coefficient : k in summation of P, Q, R in elastic solid. 
       We denote the second summation in P of (101)(= (3-7)p f) by H such as : 

1 

                HE(cpcp' +Obi + 00')d.frcozi (102) 
rdr 

               d. 1 f rd.-,1-. ,frd.f T 
            ExTz? r=.E,EOrz?-----=F,Ez`i 7".=G,       rdrrdrrdr 

      We get the 63 coefficients of components of —H as in Table 12.52 The sums of E, F and G are 

      equal for A and for A', because the terms related to the plane made of xi and yi, become equal 

      to zero by taking the differential : we can take the volume of the total body, and take successively 

      the value as of it. When we regard the body as homogeneous in the sphere of the molecular 

      activity, we get the following : 

                   E ztd.rtrfr=E Y1d-----rdr—Exld.fr                                                 rdr------- ,    { E 22dAfrr=Ex7z? d,.,-,,i,f.r=..E4d0 ;t7f .r . 
52(1) Tables 12, 13 and 14 are made by us.
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  TABLE 13. The coefficients by the combination of the terms of z? x  zi in G

C2 x'2I c'2 y/ c"2z' 2cc'x'y' 2c'c"y'z' 2cc"x'z'

 C2  X/2 C4 X/4 2c c'2 x'2 y'2 2c2c"2/12Z12 4c3cx/3y/ 4c2c'c"x12y'z' 4c3c"x'3z'

C/2 y/2 C/4 y/4 2c'2 c//2 y'2 z'2 4cc3x'y/3 4c'3c"y'3z' 4cc'2c"x'y'2z'

C//2 z'2 c//4 z/4 4cc'c'2x'y'z12 4c'c"3y'z'3 4cc"3x'z'3

2cc'x' y' 4c2 c/2 x/2 y'2 8cc'2c"x'y'2z' 8c2c'c"x12 y'z'

2c'c"y'z' 4c'2 c"2 y'2 z'2 8cc'c"2x'y'z'2

2cc"x'z' 4c2c"2x'2z12

TABLE 14. The 21 coefficients by the combination of the terms of z? x  z? in G

c2x'21c'2y' c"2 z' 2cc'x' y' 2c'c"y'z' 2cc"x'z'

 C2  x/2 C4 x/4 2c2c'2x'2 yr2 2c2c"2x'2z'2
c/2 y/2 C/4 y/4 2c'2 c/2 y/2 z/2

C//2 z'2 c//4z/4

2cc'x'y' 4c2c'2xF2y'2

2c'c"y'z' 4c'2 c"2 y'2 z'2

2cc"x'z' 4c2 c//2 x/2 z'2

          Ezi4drfr=~`yi4d•T.fr=Exi4drfT=`2Ci           rdr/~rdr/~ rdT 

             (/i2'2d•Tfr,/2/2d•r.fr=i2~2 d•Tfr          .7T_dT—.7T(LT—TdT2E = 

From (98) we get the following :

 xi=  ax'  +a/y'+a"z' 

yi=bx'+b'y'+b"z' 

zl=—cx'—c'y'—cl/z/

2F.
(103)

      In Table 13, 

4(c3c'x'3y' + e2 c.' c"x'2y'z' + c3c"x'3z' + cc3x'y'3 + c'3c /y'3z' + cc/2c /x'y/2z' 

  r+cCcCi2x/y'zi2 +Cc"3y/z/3 + cc"3x'zi3 + 2e2c"x'y'2z' + 2e2c'c"xi22•f'z' + 2ecC/2x/y/z/2) = 4[(c2x/2+C2y'2 + C/2z/2)(cc'x'y'+c'c"z'+ cc"z') + 2(c2 e"+ cC2C'x'2f'2z'+ cCC'x'y'z'2)] 

     Hence, we can consider only the elements of Table 14. From (103) and the 21 elements in the 
     upper-trianglar matrix including the diagonal of Table 14 , we get G as follows : 

     G=Ez4dlfr               1 rdr 

            1 d.ri f r [(c4x'4 /4/4//4/4)(c2/2/2/22//2/2/22/22)]~-cy+c,z+Cxy+cc4~fz~-Cczx/2J 2 

[(c4 =+C4+c"4)+6.2F(c2c'2+c2C/2+C2C/2)I 
     = G((c4+C4+c"4)+6F(c2C2+c2c"2+c'2c"2).(104) 

      Here, we put the following for convenience' sake : 

                       a = c4 +C4 +c/4, = c2c2 +c2c/2 +c2c/2•
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 Because  Of53 

                     {c2 + c'2 + c"2 = 1,                           c4 + c'4 + c"4 + 2c2c'2 + 2c2c"2 + 2cr2cu2 = 1, 

              (c2+ c/2 + c"2)2 = 1, 
                        \ c4 + c/4 ± cu4 + 2c2c/2 ± 2c2cu2 ± 2c/2c"2 _ 1 a = 1 — 20, 

 then, from (104), we get G = aG + 60F and then : 

G = (1 — 20)G + 60F 2,3G = 60F, 

 it becomes at last : 

G = 3F. 

 Moreover, because of r? = x7. + y? + z?, we get the following : 
d. ,,, f r 
rdr 

   d.lfrd.1frd.1f rd.1f rf rd.1f r 
EX1-----rd±E Yd          l----r±EZd                       1-----r+ 2ExTy?r± 2EXjAri+2Ey?zd                                                        ?r(105)  rrrrrrrdrrarrr 

 From (103), (105) we get : 

              1 d.f r 
r3---------                     -r. = 3G + 6F = 5G = 15E = 15F. 2 d

r 

                     1d. 1 f r1\-^3d.,i.fr                                  E = F =            G=—Er3-----r 
         10dr'30r dr ' 

 As the common factor, we take A , then finally H of (102) turns into : 

 H = _I. v, 3d. 7.1 f rFe (3du+dv+dw)+ c,( du+dv )+ („(du+dw )].                                                   (106)      30 -.1drLdxdydz)dydx)dzdx)i 

 The second summation contained in Q of (101) (= (3-7) pi ) is deduced from H with the cyclical 
 permutation of u and v, x and y, c and c', and similarly in R with the cyclical permutation of u 

 and w, x and z, c and c". In this manner, the equations (101) (=- (3-7)pf) turn out as follows :

P= 

Q = 

R

K(1+~)+k 

 K(1+ ~y)+k 
K(1+ t-) + k

,-) du idv 4_ dw_ t)--"r
17Mdy 1 dz 

du  3 
yd v±dw        d dx'dz 

du + dv i qdw 
dx dym 3dz

 c 

 + 

 +

K du k (du dv ) ci 
 dy dy dx 

K dv k (dv j_ du) c  dx dx dy 

K dw kdwdve/    d
y'dy'dz

Kt+kdduzddwxCil, 

K dv                +dvC", dz dz dy 

 K dw k (LIE + du y 
     dx         dx dz

(107)

where, for abbreviation, Poisson uses :

 (3-8)pf
6E3 Erfr

53(4k) We corrected Poisson's mistake : 

c4 c/4 ̂ cn4 ^2c2c/2 2c2cn2 2c/2c"2 = 0 = 1. 

Because if 

c2 c/2 cn2 = 1 

then we get clealy 

c4 ̂ c/4 ^cn4 2c2c/2 2c2cn2 2c/2c"2 = 1 

Inversely, if the equation equals 0, then 

G = —2/3G + 6J3F (1 + 213)G = 6f3F G = 

Then we can't get G = 3F.

613         F
. 1

+ 213

(108)
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 (4) By the way, we can state the linear relation of P, Q, R , which made of two tensors on the b 
[c, c', c" ]T of L, M, N and H, I, J respectively, are as follows :

[

• § 22.

(3-9) pf

R1 [

[HI 

J

L 

M 

N

 H + I  1 , 
 J 3 du+ dv+ dw  dxdydz 

dvdw 
 dz+ dy 

 dwdv 
 dy+ dz

 L 

M 

 N

We get the general equations as follows

 then  we get 

P= Pic" +P2c'+P3c, 

Q=Q1c"+Q2c'+Q3c, 
R = Ric" + R2c' + R3c 

 get  the  tensor  on  the asis

P1 P2 P3 
 Q1 Q2 Q3 = 

 R1 R2 R3 

   • § 23. 
      When we st 

    the following : 

         P1 P2 
(3-11)Pf Qi Q2 

        R1 R2 

   • § 24.

 K  z  +  k 4'--4- 
Kdz+ k z 
K(1+ dd )+k

]=K
 1  +  du du du  dx dy dz 

dx1 + dv dw ddy dx 
dw dwdw 
dydx1 +dz

asis of

lvdw dudwdudv 
dy+dzdz+dxdy+ dx 

dui _dwdvdu 
       dx3dy+dzdx+ dy 

          dwdu dudvdw 
            dx+dzdx+dy+3dz 

ions as follows : 

       PrPl P2 P3 ;c,[C21=Q1 Q2 Q3 
CRR1 R2 R3 

Dasis of [c", c', c]7' from (107) as follows : 

+ dwK du4-`ydvK(1 +du   dxdy+ k+dx(do 

 dyK(1+ "y)+k (ft +34y+d 
k (du+dv+3a,,Kaw+kdw +dv  dxdyd dy dy dz

When we suppose that the initial state of the elastic solid is natural

(3-12)pf

P3 

Q3 
R3  1 =

k 

k 

k

 Xp=L+dP2+  dzdx dy, 

  — YrdQi+dQ2+dQ3   p dz dy dx 

Zp= d+dd---3               +~~

du dw 
dz + dx 

dv dw 
dz + dy 

du dvdw 
dxdy3dz

C,, 

C' 

C 1 ,
K(1 +) + k (3+ f: + ay + 

 dwdvdvdu 
   dz Kdx+ kdx+dy 
dvdwdwdu +
dzKdx+ kdx+dz 

iral, it turns K = 0, so we get

du dv 
dy + dx k 

ddvdw 
dux+3dydz 

    dw dv    k 
dy + dz

Y _ 1 
Z p

P1 

Q1 
 R1

3dudvdw   dx_i__dy+ dz 

     dvdu    IC
dx+dy 

    k dw _i_du      d
xdz

P2 P3 

Q2 Q3 
R2 R3

d 

d
cf 

dx  1 (109)

• § 27. 
   In homogeneous case,  S means the difference of the contraction or dilatation : 

r' — r 
--S 

r 

                   P = —51cSc, Q = —51kSc', R= —5kSc"; 

                                 K = —5k5. 

 Replacing € and r of K in (108) (= (3-8) pf) with E' and r', 

                        K __3>r'fr' 

 and r' and E' with 

r'=r—rS, E'=z-E5.
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 54 For 6 is very small value
, we can develope K into the convergent series, with the order followed 

the power of 6, and neglecting the bigger power than the first, then it turns out as follows  : 

               _ 13a~rfr ---r_
e33d.fT       K6

e6edr 
then, because E rfr = 0, by the condition of natural state,

K = — 6
E3 Er.3

d.T fr       =—5k6. 
dr

    • § 31. Finally, Poisson assumes isotropic elasticity in natural state and the perpendicular pressure 
      on the surface of corps. 

        Je substitute, en outre, dans les equations (12)55, a la place de P1, Q1, • • • , leurs 
      valeurs. Je supose le corps homogene, et je prends alors pour son etat naturel auquel 

repondent les coordonees x, y, z, du point quelconque M, un etat dans lequel la surface 
      du corps est soumise a une pression normale et la meme en tous ses points. En la 

representant par II, on aura K = H (§ 27). La quantite k Rant negative ( meme § 27 ) 
      et independante de :r, y, z, je fais, pour abreger 

He puts H the normal pressure on the corps, and for abbreviation, he uses : 

                             5k                                 --a2 
P 

then the motional equations of elastic corps are as follows :

 Xd2u    —  dt2 

y d2v    TET 

Z d2w  dt2

  a2 

^a2 

^a2

kddddy221:2322 iddxdY22dudv: 
(d2w 2 d2u  dz2 3 ,dxdz

2 d2w

3 dzdx

2 d2w

+ 3

azay 

d2a

3 dydz

d2u

3dz)[Id 
                          2v              dd22               2v  

+3dY2+Pd
2:2d2v    d2v:d 

 3 dx2p dy2 

+1 d2w 1 d2w=d2w    3 dx23 dy2     zv2 77 dz2

(110)

A.4.6. Fluid pressure in motion, the

• § 60.56 

 Ft  =  Pic"  +  Pc'  +  .13c  —  K  c, 
Fit = qic" + q2e + q3c. — Ke , 
F"t = feic" ± k2e + k3c. — K c"

13. 
QC 
ki

11 .1J 
Qi2 (23 
R 2 R'3

 (K  +  k) 

(K + k)

differential

 K  +  2(K + k)Cu.,2

du dw 
dz +dw 

dv dw 
dz dy

Ft 

F't 

F"t

equation of motion.

Pl  p2 p3 
QC Q2 Q3 

 l.R2 R3

 -K
 C 

 C' (111)

 (K  +  k)(t + 2) K + 2(K + k)?-1— (K + k)div u 
  K + 2(K + k)dl— (K + k)div u (K +du1-) 

— (K + k)div u (K +0(2+ti)(K + k)(2+`-t-)
                   _ddddyvddwz       where, div u = 

    • § 63. Deduction of compressible, fluid equations. 

 54(i) Then we get : 
1              K

6(z)3 ----------Er(1 —(5)f(r—7-5)                                               —ES 

55(U) §24, (3-12)pf (= (109)). 
56(4) Below, we use (0)pf for example, (7-9) means the equation numbered for the equation (9) in the chapter 7 

described by Poisson [60], in which pf means the equation in the fluid problem by Poisson, because he numbered them by 
the same number between chapters.
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 57 Poisson's tensor of the pressures in fluid reads as follows  :

(7-7)Pf

Ui U2 U3 
V1 V2 V3 

 W1  W2  W3 

(k + K)a =

     du 
     dz 

     dv 

 p  —cdt

/3, (k—K)a=

  dv dwa V -

           

' I
x!. 

p='

dw 

dw 

dy dx

   dudv  (dy+dx 
     dIPt 0' 

P` 

       then

&Pt p — 
dt 

  dv dw 

 at+2/3 Xt

dz t dy

dv 

ldy

  Ix!.+ 2R du 
Xt dt dx 

(du dv dy + dx 

  (du dw      dz  dx

)3+3'=2ka, (112)

where  Xt is the density of the fluid around the point M, and Ot is the pressure, and both depend on t, 
so we mean Xt and 7t as X(t) and z/J(t). 

(.u.) By the way, here, we can show the conversion of tensor (7-7) P f , replacing the first column with 
the third one, then we see easily the conventional style of array as follows :

 U3 

V3 

W3

U2 

V2 

1472

U1 

V1 

W1

      dh/,t P—ad
t — 

0(dudv 
0 ( dy+dx  dudw 

dz+ dx

Xtd2Rdx 
       &P t 

    dv dw 
     dz dy

   dudv 

  Lixtdydxv  dv 
Xt dt f         2R dy 

)dIit  Jp-~dt

 Q

dudw 
dz+dx 

dvdw 
dz+ dy

 Ix!+23 dw 

dz

 (1)

Poisson deduces his fluid equation by the following steps :

(7-8) p 

where, u =

From (113),

  P(Xd2x_dUidU2dLI       —)—dx+dy+ dx ' 

p(Yd2y=c/cdV2dV3          dt~)—dz+dy+ dx ' 
  /d2zdWidWadW   P(Z —dt~) —dz+ dy+dx' 

(u, v, w), f = (X, Y, Z) and the elem 
            dx _dy 

                   dt—u'dt 

    d2    TRY—dt +'a~~+dy+wdz 
     2ydv 

    dt2=dt+udx+vdy+~vdz, 

      2 

  d—dt+udt+vdy+waz, 

            _d'bt                    w —p — a d
t

 P(f - lit) =
 U1 

V1 

Wi

U2 

V2 

1472

f = (X, Y, Z) and the elements of velocity u = (u, v, w) are 

      dx _dy_dz_ 
          dt=u' dt=v' dt=w

Finally, we get the fluid equations in compressible condition :

(7-9) pi

 (.u.) If we put u = (u, v, w) and f

                 -t—pAu + —V@ 
57(11) In Poisson [60], the title of the chapter 7 is 

defjerentielles de ce mouvement."

U3 

V3 

W3

dy T wdz,',it — 
dv dvdt—dtdxdyu dz , 
dy +dz,c121 
d
ywdz,dt dt 

{+++udz 
+ d'bt  /3+/3'dxt 

p— dt 
xt dt 

is in compressible condition : 

    d2x d2uud2d2u 
P(X—~)=ax+)3(++), 

     d
d2ty) dizr d2v d2v d2v 

    d2z—dcvd2dwd2w P(Z —dIT)—dz0(w+ d +), 
where ' - P — a dtt — PX~ dt 

 (115) becomes as follows : 

        — 0 d-t —  +  dxt — f 
        dt xt dt

d 
dz d 

dy 

ddx

(113)

(114)

(115)

 ̀ Calcul des Pressions dans les Fluides en mouvement ; equations
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A.4.7. Stokes' comment on Poisson's fluid equations. 

(4) Stokes comments on Poisson's (7-9)p f as follows : 
       On this supposition we shall get the value of fromfrom that of RC— K in the equations 

     of page 140 by putting 
                   du dvdw1 dxt 

              ==— 

dx dy dz 3t dt 
      We have therefore 

                             a—dxt = —a (K —5k) dxt                       d
t 3xtdt • 

      Putting now for f3 + 0' its value 2ak, and for xlt dcTti its value given by equation (116)58, 
      the expression for v3, page 152,5° becomes 

                       = p —(K + k)(du  dv dw 
                 3dx dy dz 
      Observing that a(K +k) = /3, this value of 'co. reduces Poisson's equation (7-9)pf [=(115)] 

     to the equation (12)s[=(120)] of this paper. ([74, p.119]) 
Namely, by using a(K + k) = /3 in (112) and the following :

then (115)( = (7-9) P f

 +c!--11D' ddz: —1.12dx 
                         dw) dru___ciE ± 4(K +A')(7--k(TTdy                k)1(Tx_du4_ddvy                                           dz) 

                                      dzi dy—dYl'\\dt dd 1duu++ddvdw\ dzdz                    v++, 
dtv _dP+a(K ± k)

ZkT.,dY  —-3-

) turns out :

(7-9)P)

 p(X  — 

P(Y - 
p(Z 
where

d2x

dt4 dy dx2 ' de ' d
dz2 P(Z. d

d21'n = dz 0(ddx2 ddylf dz2----) 
 where 'cc = p 3-(K k ) ( + + ddwz ) , 

p(DEst; _ x) + ± a(K d              k)(d2 
                                   dx2dd2v1.,d2,,zt  

_ I Dv -,(7\ do d2v d2v d2v'

dt2 

c__;t4) 
d2 z  

dt2

 = dtv,  (.4( d2u d2u d2u     d
x dx2 dy2 dz2 

 = dru _4_ fq( d2u d2v d2w      d
y ' f`-'‘ dx2 ' TrIv ' dz2 

(Ivo rxi d2w d2w \

p(Du
 I)(:

— X) +  

of—yc____ 
 —Z)+ —,t(

vwv_ ----- 

dx2y

  (12)s
Dw

)(dx2 + d22 ---- 
          y 22 dx2+dy2+dz2)        a

a dx2++dz2) 
2d2w

+dy+

+dz2) + 3 a(K + k)1(Pc 
--- ± sa(K+k)d(2-

             `)+ 3 ct(K + k)diz( 
d2u)____La(dudvdw 

       3dx dx+dy+dz) d2v ) _ E d (du_i_dvdw3 dy dxdy+dz) 
d2w ) E d (du_L_dvdw3 dz dxdy+ dz

dx du+dy+
                du dv ~~

+ dz)
dy 

 = 0, 

= 0, 

  = 0 .

    = 0 , 

uz)0, 
=0,

Therefore, Poisson treats the matters on conditions of both compressible and incompressible fluid.

    Here, ct(K + k) is the constant to the tensor function with the main axis ( the normal stress ) of 
Laplacian. s a(K -F- k) corresponds to the coefficient of grad.div term. In today's NS equations, the ratio 
of coefficients : coefficient of tensor = 3 as well as Poisson deduced in (7-9) pf and Stokes' (12)s through 

coefficient of grad div 

the tensor by Saint-Venant. By Prandtl [64, p.259] in 1934, the ratio was fixed at 3. By then, we had 
have to wait the time of formulation by Prandtl in fluid equation. cf. Table 7. ft)

58M Poisson [60, p.141],

59(0 cf. (114)

(7-2) p f
du dv 

dx+dy+

dw 

dz

 1 dxt 

xt dt
(116)
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A.5. Saint-Venant's tensor. 
 Saint-Venant60 explains the object of his paper [67] to simplify the description and calculation of 

molecular relation without setting the molecular function. His method is an epoc-making method of 
tensor : 

        Cette Note a pour objet de faciliter l'examen du Memoire de 1834 et de ce qui y a 
ete ajoute en 1837, en simplifiant, comme on va le dire, l'exposition du point principal, 

      qui est la recherche des formules des pressions dans l'interieur des fluides en mouvement, 
      sans faire de supposition sur la grandeur des attractions et repulsions des molecules en 

      founction, soit de leurs distances, soit de leurs vitesses relatives. [67, p.1240] 

We show Saint-Venant's tensor, which seems to hint Stokes, from the extract [67]. , 77, : velocities on 
the arbitrary point m of a fluid in motion of paralleled direction of the coordinate x, y, z respectively. 
Pxx, Pyy, Pzz : normal pressure and Pyzf Pzx, Pxy : tangential pressure with double sub-indices showing 
perpendicular plane and direction of decomposition, if strictly speaking, such as the following : 

Pxx, Pyy, Pzz les pressions normales supportees au meme point par l'unite superficielle 
      de petites faces perpendiculaires aux x, aux y, aux z, c'est-a-dire les composantes, dans 

      un sens normale a ces faces fictives, des pressions qui s'exercent a travers ; 
Pyz, Pzx, Pxy les pressions tangentielles sur les memes faces et dans les trios sens, c'est-

      a-dire les composantes, parallelement aux faces, des pressions dont nous venons de parler 

        • la premiere sous-lettre designant toujours la face, par la coordonnee qui lui est 
          perpendiculaire, et 

        • la deuxieme specifiant le sens de la decomposition. [67, p.1240]

Pxx — Pyy   Pzz — Pxx    Pyy — Pzz    Pyz    Pzx    Pxy  
(1)sV 2(i) 2(c —) 2(~_+ 

        dxdydxdzdydzdzdydxdzdy dx 

where, we put 

                1 2edtdri d() 
              3(PxxPyy+r-zz)y 3(dx+d+—dz)-7r' 

We put normal pressure respectively as follows : 

             (2)sv Pxx =it+2e,Pyy=+ 2s-dy,Pzz = 71 + Gs—z, 
                                       y From (1)sv, we get tangential pressure respectively as follows : 

                                de         (3)sv Pyz =e(+),Pzx=e(~~),Pxy= E(+d?1).           dz dydx dzdy dx 

From (2)sv, we get 7r as follows : 

         ddri d( _125de Pxx+Pyy+Pzz = 371 +2e(dx+dy+dz) 'r3(Pxx+Pyy+Pzz)3(dx

= 5
,

dri 
dy

d( 

dz

P1 T3 T2 T3 P2 T1 1 = 
T2 T1 P3

where

7r+25a ,C7ffddY++2E:l  dy +dxy 

 dxdz dz dy 

lr=s(Pxx+Pyy+Pzz

e(d+d) 
E ((la _L 

dz dy 

7r+2Ed 
2E (3 dxd+d+

(117)

Saint-Venant proposes 

and Poisson as follows

the univarsal method that we can deduce the concurrence with Navier, Cauchy

 6O01 Adhemar Jean Claude Barre de Saint-Venant (1797-1886).
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       Si l'on remplace71parw-e(a+ddyz),et si l'on substitue les equations (2)sv et 
 (3)sv dans les relations connues entre les pressions et les forces acceleratrices, on obtient, 

      en supposant e le meme en tous les points du fluide, les equations differentielles donnees 
      le 18 mars 1822 par M.Navier ( Memoires de l'Institut, t.VI ), en 1828 par M.Cauchy 

      ( Exercices de Mathematiques, p.187 )61, et le 12 octobre 1829 par M.Poisson ( meme 
Memoire, p.152 )62. 

        La quantite variable 'CO ou 7r n'est autre chose, dans les liquides, que la pression normale 
      moyenne en chaque point. [67, p.1243] 

  This paper [67] seems to give Stokes a hint of tensor (124), partly because Stokes reports on the 
Saint-Venant's paper [67] in the report [73] by Stokes before Stokes issues his paper [74]. And partly 
because we can see by comparing63 tij with Stokes' tij (125) : 

tij = (?r + 2evi,j - 'y)Sij + 

          (1+Pyy{Pzz) -2srd+dri+d~l2evi,j - 7)6ij+ry              -kr-sx
\dx dy dzl 

           (3(Pxx+Pyy+Pzz)—3 vk,k)Sij + E(vi,j + vj,i) 2s24,j8ij = r(vi,j + vj,i)bij = ̂ /Sij (118) 

                                      3                                i 

     where 'y = e(vi,j+vj,i), Vk,k =Cdw                                         vi_du+dv+.. • Einstein's convention 
i-1CJ~xidx dy dz 

Here, using (118), if we put64 Pxx = Pyy = Pzz = —p by Stokes principle in § A.6, then (118) is equivalent 
to Stokes' ti j as follows : 

     tij 

 = {12e12e             ((P /xx+Pyy+Pzz)—3vk,k}Sij+e(vi,j+vj,i)=(—p —3vk,k)Sij+e(vi,j+vj,i) 
2 Stokes' : — tij = (P + 3Avk,k)6ij — p,(vi,j + vj,i) (125). 

Moreover Saint-Venant assumes that : if we put rr = — 5(2-  + +) = v:7 — evk,k then 
              = (to. — evk,k + 2evi,j - `y)Sij + 7 = (nr — evk,k)bij + e(vi,j + vj,i) (119) 

(.(J.) By the way, we check the coincidence of Saint-Venant's tensor with Stokes'(124) concerning only 
(1, 1) element or P1. 

Pi of (117) 71 + 2e dx
                 2 d 2e           _—p+(2--)e---                   dx 3(dri d()           3dy dz 

         -p+e{ 3—dx3(—dy +dz)} 
         -p+2e{ 3dx 3(dy+dz)} 

        -—p+2e{dx()} 

                   d  

 = —p+2e(ldx —S)p-2,a(du                                           dx 

where, 

12eddr~d(ll _ 
        3 (1-xx+Pyy+Pzz)3(dx + —dy+dz 

  61Cauchy [6, p.226] 
62Poisson [60, p.152] (7-9)p f =(115). 

  63(4) In our paper , we cite the description of to of the tensor : 
from G.Darrigol [11]. in other case computed by ourselves or referr 

  64(4) cf.I.Imai [22, p.185].

— o)    P1 of Stokes (124) .

     S=1(<+  +--). 
          3 dx dy dz
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Other elements are coincident with (124) in the same way. 
 From here, we get the to of Poisson, Navier and Cauchy as follows : 

     • to=zi7bij—EVk ,k~ij+E(vi,j+vji),CJ= —p, —E = a, E = 
            Poisson's to =+ Avk,k(ij+/~(21i,j+ vii),

• tij Zi76ij — EVk,kb 

Cauchy's to

ij + E(vi,j + vj,i), ZJ = 0, 
= Avk,k8ij + p(vi,j + vj,i

—E = A, 
)'

E=µ

• tij = wr Sij — E(vk,k6i7 + vz,J + v j,i), w = 0, 
          Navier's ti3 = —E((Souk,k + uz,~ + 
 Moreover, we can add Stokes' 

• to= VJ6..— EV6i+E(v~- VzJ=—E =—2  z~z~k,kz~(z,~i)~—P~3µl 
Stokes'tij = (—p — 3µvk,k)Sij + u(vij +vj,i)'

E=µ
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A.6. Stokes' principle, equations and tensor. 
 Stokes says in [74, p.80] :65 

        If the molecules of E were in a state of relative equilibrium, the pressure would be 
      equal in all directions about P, as in the case of fluids at rest. Hence I shall assume the 

      following principle  : 
        • That the difference between the pressure on a plane in a given direction passing 

         through any point P of a fluid in motion and the pressure which would exist in 
         all directions about P if the fluid in its neighborhood were in a state of relative 

         equilibrium depends only on the relative motion of the fluid immediately about P  
; and 
        • that the relative motion due to any rotary motion may be eliminated without af-

          fecting the differences of the pressures above mentioned. 

Stokes comments on Navier's equation  : 

      The same equations have also been obtained by Navier in the case of an incompressible 
      fluid (Mem. de 1'Academie, t. VI. p.389 )66, but his principles differ from mine still more 

      than do Poisson's. [74, p.77, footnote]

(12)s

p(737Du.x)zdp(dd2u d2u  d2ud(du dvdw                  x2dy2dz23 dxdxdydz)= 13, 
id Dv y) //T.„ d2v d2v d2yd (dudv dw  Dt)dP'(dx2dz2 3 dy dx dy dz = "1, 

P(I4 Z)dx (d2 w d2w d2w                                   ddu dv _j_dwn                 dx2dy2dz23dzdxdydz)0.
where Stokes says the coincidence with Poisson : 

                     du dv dw             vo. = p + —a(K + k)(—dx + —dy + —dz VZTJ = Vp + —3N7 • (N7 • u). 

                3 

      Observing that a(K + k) EE /3, this value of w reduces Poisson's equation (9)p f (=(115) 
     in our renumbering ) to the equation (12)s of this paper. 

(4) By the way, (12)s turns to :

Or

moreover, when we use vectorial notation after replacing with f 

 Du1Du    P(Dt f) + N7p ii (Au + 'V (V u)) = 0 or  Dt 

 Stokes proposes the Stokes' approximate equations in [74,  p..

(13)s

Stokes proposes  that

65(4) Stokes [74, p 
Differential Equations. Applicat 

66(~) Navier [47].

 u_42uud2u12w P(DDt-X) +dx(d               3dd2                        x2+dy2+ 31dd2vxdy+ddxdz 
4vd2v1 d2u1 p(DDtv—Y):11—ld(dx2d2v+d2                               dy2dz2+3dxdy+3dydd2wz 

P(DDTdp(d2wd2w4d2w1 d2u1d2w    Dt-Z)+dz-dx2+dy2+3dz2+dxdz+3dydz 

P(Du—X)+d4d2---u+3d2uud2v2wz   Dtdx3dx2dy2+3d2dz2
L+dxdy+ddxd\ P(Dv—Y)+_(3d22+4dy2+3d22+d2-----yyw)  Dtd3dxddzdxd•dddz 

P(Dw—Z)+~'-L~(3d2w+3dy2+4d22d2u+dyw)  Dtdz3dxddzdxdzddz 

use vectorial notation after replacing with f - (X, Y, Z), we get : 

'p—µ (Au + 3V(V u)) =0 or D —~Du—V(V•u)+1VP=f 
                DtP3p 

he Stokes' approximate equations in [74, p.93] : 

  Dud2ud2u  
P(Dut_X)+dx-µ(d2dx2+dy2+d=z2)0,                              du dv dw 
P(Dt-Y)+d—p(ddx2dd)=0,—~—+—=0. 

        2y22dxdy dz 
P(DDTZ) +itod2+dy2+d2 ) 0, 

        Section 1. Explanation of the Theory of Fluid Motion proposed. Formulation 

Application of these Equations to a few simple cases.

105

(120)

(121)

(122)

(123)

of the
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      These equations are applicable to the determination of the motion of water in pipes and 
      canals, to the calculation of the effect of friction on the motions of tides and waves, and 
       such questions. 

Here we shall trace his deduction on Stokes' tensor  :

P1 T3 T2 

P2 T1 

T1 P3

 P-2µ(d- —6) 
du dv —µ d

y + dx 
dw du —N 
dx + dz

 (c7; du 
p-211 

      dv — (a; 
36 =

 du  
dydv 

        v  S 
         y

dw

where

ay 
du d

x

 —µ(dw 
—it(dv 

T -;  

p — 2µ (

    dw du     du 

dz 

) 

     iw 

    dy

a) (124)

+dy+         dw 

 dz

Here, he writes, "it may also be very easily provided directly that the value of 36, the rate 
 dilatation". 

(.1j-) By the way, Stokes' tensor is described compactly as follows : 
—tij = {p — 2µ(vi j - 6) + 'y}6ij - 

_ {p - 2µvi,7}8Zj +'y(—(Sij + (Si, — 1) = 2µO(5i3 = µ(vi + v3,i)(59,3 — 7Si~ 
= (P + 2117)6ij — Y 

_(p+ 3pivk,k)(Sij— + vj,i), 

Here, the sign of —tij depends on the location of the tensor in the equation, and we consider the 
with (120). 67 We see Stokes' tensor comes from Saint-Venant's tensor. From here, the 
J.J.O'Connor and E.F.Robertson points out this resemblance as well.68 
By d'Alembert's principle 69,

 P 

 P 

P

 Du 

 DI 

Dv 
Dt 

Dw 

DI

-X 

-Y

By (124)

Using

and

(124)
d 

dx 

d 

dy 

d 

dz

(126), we get

4) and 

 P-2i 

P-2p 

P-2p

d 
dxF 

d , 
dy 

d 
dzp

µ 

Ii

P 

Q 
R

z)
(123). 

 P1

          = Dv + d
x+dy+dDt`Z'+ P 

 d ad2dTlD +dy+dx+=dz/~ (Dtv—Y+ Q 
 dDa di2 ~ ._(D G/w_z)+ R + dz+dx+dyP\ 

We seek the tensor for such that :

T3 T2 

P2 T1 

T1 P3

 l 

 T71 

n

(126), 
( d

u1dudvdddi 
dx2µsdx+dy+dwz+dy 

dv1dudvdwddi dy2µsdx+dy+dz}+{— 
 )dxud         +dy+dz)}+dx{-µ(d 

d2ud2u d2u1 ddudv  dw dx4-dydzl)+3dxdx+dy  dz 
d2v d2v d2v1 d(du dv dw d-1-dydz~)+3 dy dx  dy  dz }~ 
d2w d2w d2wl1 d(du dv dw 7+CUT+3dz(dx+dy+ dz)

P1 T3 T2 

T3 P2 T1 

T2 T1 P3

dudv 
dy+ dx 

 du ..1_dv 
dy dx 

dwdu 
dx+ dz ) 1

 o, 

o, 

0

    d 
    dz 

 + dz 

 +dyS 

(yP—µ~

d 

 dd 
day 

dz

of cubical

  (125) 

coincident 
article by

 µ d21      dwx+dzJ ,  „dvdw12
) ' 

2 22 
    _i__i_

, 

d2v22 

'_I__i_' 

d7_i_dy+)

(126)

 67(4) Schlichting writes Stokes' tensor with the minus sign as follows : 

a2, = —p5i3+µ(8v;+dvi)—2tot,8vk 
                                 8x~dxj 38xk 

[69, p.58, in footnote] 
68(4) cf. J.J.O'Connor, E.F.Robertson, http://www-groups.dcs.st-and.ac.uk/ history/Printonly/Saint-

Venant.html.[52] 
69(11) In 1758, from the Newton's kinetic equation ( the second law of motion ) : F = mr, d'Alembert proposed 

F — mr = 0, where, F : the force, rn.: the gravity, r : the acceleration. According to his assertion, the problem of kinetic 
dynamics turns into that of the static dynamics.
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Therefore we get  (123)  . 
 By the modern vectorial expression, if we take f = (X, Y, Z), v - p , and if, as Stokes says, 

Du/Dt = Du/Ot, then (123) turns out as follows : 
                         Du —vAu+ 1Dp=f , divu=O. 

P (4) By the way, here we shall get the tensor of Stokes equations from Navier's (23). We put 
same as Stokes equations :

 P 

 P 

P

 du 

dt 

dv 

dt 

dw 
dt

Using d'Alembert principle (126), we transfl 
last two terms of the coefficient of 2 with 2 
follows :

107

we put

as the

 x) LIE d2u d2u d2u 2  d2vi2d2w_Lduduv_c/aw = 0 ;      dxdr2 + dy2 + dz2 dxdy dxdzx'dy'dz   -y) (12.(d2 v_L3 d2v d2v_L.2 d2u  
    dydx2'dy2dz2dxdy +2dydz+dxdydz=                               d2w_Ldv,_L dv dv 0 

— dx2Z)`172—E(d2-----w d2-----wdy2±3d2w+2d2u±2d2 v  dzdwdwdw                  dz2dxdzdydz)V ±—dzW = ° ; 
lembertprinciple(126),wetransform the terms of the coefficient of 3 with 3 = 2 + 1 and the 
Tins of the coefficient of 2 with 2 = 1 + 1, respectively. We show here the viscosity term as

—E 

—E 

—E

2d2d2ud2u  d2u2                       d2vd2w  (dx2u+dx2)+dy2+dz2+dxdy+2 dxdz 
d2v _L d2v)+d2v+2 d2u+2 d2w 
dxdydydz2dxdy dydz 

d2w d2w (d2w d2wd2ud2v 
dx2+dy2 + 12dz2+dz2 )+2 dxdz + 2dydz

We get the tensor ti~

 —E 

 —E 

—E

P - e (22 + 8) 
___E(st, ± 2 
_E. (dw _L_du 

     dxIdz

----- 1d  (du_i_dv_i_dw1+7 
 dx2M dx  dx'dy'dz 

d dua_dv){2dd:v2+dy                                    d
dxu_ dx dy'dx1- 

dx dx+dudz 
 d dwj_)_i_ 

             'dy dz+dy 
               d (dv_i_dw 

 _ e ( dd u + dd us ) _ e ( dd wx + dd uz ) 
p — E (2 (di + 6) —.(dz'dy)                          ,dv_j__ dw 

_(ddvz_1_dw) p —(22-1+ 5) 

         

' dy

- 2a) ; 
+ 2 e`i'z ; 

  (du d (du dw)}.  dydy dx dz dz dx) 
d u d v d w + tiz (ddzv + ddwy ; dx dy dz 

 +2 dd2  + dx dx dy+ dd vy + ddwz) ;

where  =du dv dw S + 
  dxdy  dz'
(127)

or

 p  2e(  dd (5) 
_e( dduy dd vx 
_e(dw 4_ du 

   dx dz 

re we see (124),

    s (du_t_dv 
     dy'dz 

p 2e(ddvy 8) 
(dv dw) 

dz dy 

(127) and (128)

  e(ddtv. dduz) 
_ e( dv dw) 
      dz ' dy 

p — 2E +6)
where 0rdudvdw ho - — + — ± —. 

   dxdydz
(128)

Therefore we see (124), (127) and (128) are the invariant-tensors equivalent each other except for the 
sign of  6. 

A.7. The authorized expressions of two-constant and the  NS equations by Prandtl. 
 By Prandtl [64, p.259] in 1934, the ratio was fixed at 3. We had have to wait by the time, when 

including this ratio of two coefficients, what is called the NS equations were expressed by Prandtl in 
fluid equations : 

Dw               (15-5)p , —dt = g - -1 grad p + -1v grad div Aw + vAw(129) 
P3 

where, -f÷-ir,' -.._-_= V- -Fw•Vw, v = Lp, w= (u, v, w), g= (X, Y, Z) . Namely :

7it" "rr. Lt-a—  VD—  + = X — 122, v a        yaz a •-j--cr                 p xx c au , au au au 

7-)T U ± + W—az = Y — 12E v a (al    x dyp ay 7—ay av av - av 

at -..EuT;G--+v—+w—aw= Z —12EvaC         aYaZpaz-3-az awawaw

                           auay aw 

                                        1/4axaym az 

                                       7___a
c)uDvya                          xD                                                        awz 

                         (oaav                                     xvay± 79 _a wz

)  ) ± v(7)-7+(92u ay2 +     a2un2 \ 

  + vG,2 + o2v+02v         t_,,xay2az2),       82,-1 

5 -Z-) ± v(-a'f +----w+           Pis)       xdy2az2 hv;42—.-,2

(130)
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For incompressible, it is simplified as follows  : 

 (15-6)pr~w= g —1grad p+ vLw, div w = 0 
Prandtl shows NS equations deducing from the Newton's fundamental law of mechanics, Mass x acceleration=force. 

Dw =F + G(131) (15-1)PrP-----
dt 

Prandtl says : 
      where the total force has been decomposed in body forces F and surface forces G. Leaving 

      out of the discussion systems in which centrifugal forces, Coriolis forces, etc., occur, the 
      only body force is the force of gravity per unit volume : F = pg. [64, p.251] 

        Now we have to come to the point where the total surface force G can be expressed 
      as a function of the rate of change of deformation. [64, p.258] 
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w 

div 

0

0 

w 

div

Then

 Gx 

Gy 

G,

— a
. + 

_2p+µ 

a

02u  02u o2ud8u 8v dw), TO'+vy~+)+38x(ax+aydz 
02v T+yd1+~y(aux'ay+8w1 888zl3~3dx~38zJ, 
02 w 02w _,_ 02 wE d8u 8v 0w 
d+ ayUz2-)+3 8z(ax + 8y + ez

  G = —grad p+3µ grad divOw + µLw

(133)
Since, from (132)

                 G= V•II 

= pV(Vw + wV) — grad p — 3µgrad div w 
= µV•Vw+µ grad div w— grad p— 3grad div w 

                 = —grad p +3µ grad div w + pAw 
Substituting (133) into (131), we find (129) or (130).
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                 APPENDIX B. The "two-constant" theory in capillarity 

  Gauss didn't mention the following fact, and Bowditch  70 also didn't comment on Gauss' work in 
Laplace's total works [37] except for only one comment of the name "Gauss" [37, p.686] . 71 

 N.Bowditch comments as follows : 
       This theory of capillary attraction was first published by La Place in 1806 ; and in 

      1807 he gave a supplement. In neither of these works is the repulsive force of the heat 
      of fluid taken into consideration, because he supposed it to be unnecessary. But in 1819 
      he observed, that this action could be taken into account, by supposing the force (p(f ) 

      to represent the difference between the attractive force of the particles of the fluid A(f), 
      and the repulsive force of the heat R(f) so that the combined action would be expressed 

     by, co(f) = A(f) — R(f) ; ... [37, p.685]. 
We would like to pay attention to Bowditch's remark about the works of Gauss and Poisson as follows : 

       In 1830, Gauss published a work on capillary attraction entitled "Principia generalia 
theorice figurce fluidorum in statu equilibrii, etc.," ("General principle of theory of the 

      figure of fluid in state equilibrium" ), where, by means of the principle of virtual velocities, 
      he obtains the figure of the capillary surface, and other theorems as they are given by La 

      Place in this volume, and he also gives a more complete demonstration of the constancy 
      of the angle of contact of the fluid with the sides of the tube. Finally, M.Poisson, in 

      1831, published his "Nouvelle theorie de l'action capillaire, etc.," ( "New theory of the 
      capillary action" ), where he expressly introduces into the formulas the consideration 

      of the change of density of the fluid at its surface and near the sides of the tube in 
      consequence of the corpuscular attraction. [37, p.686] 

In his historical descriptions about the study of capillary action, we would like to recognize that there is 
no counterattack to Gauss, but the correct valuation. Gauss [18] stated his conclusions about the papers 
by Laplace as follows : 

        At hancce propositionnem cardinalem totius theoriae per calculum demonstrare ne 
      suscepit quidem ill. Laplace ; quae enim in dissertatione priori p.5 huc spectantia af-
      feruntur, argumentationem vagam tantummode exhibent et quad demonstrandum erat 

      iam supponunt : calculi autem p.44 sq. suscepti effectu carent.

  (Engl.transl.) To this cardinal proposition of the total theory with calculation for 
demonstration, we can not accept the papers by Mr. Laplace ; in p.5, since not only he 
developed clearly incorrect argument but also showed even the false proofs : we consider 
that his calculations in the pages and the following after p.44 are the vain effects.72 [18,

pp.33-34]

70(4) The present work is a reprint , in four volumes, of Nathaniel Bowditch's English translation of volumes I, II, III and 
IV of the French-language treatise Traite de Mecanique Celeste by P.S.Laplace. The translation was originally published 
in Boston in 1829, 1832, 1834, and 1839, under the French title, "Mecanique Celeste", which has now been changed to its 
English-language form, "Celestial Mechanics." 

710 .) Bowditch's comment number [9173g]. 
72(l There are 35 pages of calculation between p.44 and p.78 in his Supplement.
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                            APPENDIX C. Laplace and Gauss 

C.1. Laplace's theory of the capillary action. 
 We show below the four available originals of the capillary action by Laplace, which we mention, in 

which the top halves are the original by Laplace, to which Gauss and Bowditch et al., referred, and last 
two are the translations by Bowditch, in the commentary of which he cited Gauss [17].

    1 . [34] P.S.Laplace, Traite de mechanique celeste. Supplement au dixieme livre du traite de 
 Mecanique celeste. Sur l'action capillaire, Ruprat, Paris, 1798-1805, pp.1-66. ( We use this 

     original printed by Culture et Civilisation, 1967. ) 
    2 . [35] P.S.Laplace, Supplement a la theorie de l'action capillaire, Tome Quatrieme, Paris, 1805, 

      pp.1-78. (op. cit. ) 
    3 . [36] P.S.Laplace, Supplement a la theorie de l'action capillaire, translated by N. Bowditch, Vol. 

     I §4 90-95, 1966. (This is the complete works of Laplace. ) 
    4 . [37] P.S.Laplace, On capillary attraction, Supplement to the tenth book of the Mechanique 

Celeste, translated by N. Bowditch, same as above Vol. IV 685-1018, 1806,1807. 1966. (op. cit. 

C.1.1. Laplace's conclusions of theory of the capillary action. 
 Laplace stated his "complete theory" of attraction which have an effct on the capillary action in the 

introduction [34], as follows : 

        J'ai cherche, it y a longtemps, a determiner les lois d'attraction qui representent ces 
phenomenes : de nouvelles recherches m'ont erifin conduit a faire voir qu'ils sont tous 
representes par les memes lois qui satisfont aux phenomes de la refraction, c'est-a-dire 

      par les lois dans lequelles l'attraction n'est sensible qu'a des distances insensibles; et it 
      en resulte une theorie complete de l'action capillaire. [34, p.2] 

        De ces resultats relatifs aux termines par des segmens sensibles des surface spherique, 
      je conclus ce theoreme general : << Dans toutes les loi qui rendent l'attraction insensible 
      a des distances sensibles, l'action d'un corps termine par une surface courbe, sur un canal 

interieur infiniment etroit, perpendicularire a cette surface dans un point quelconque, est 
egale a la demi-somme des actions sur le meme canal, de deux spheres qui auraient pour 

      rayons le plus grand et le plus petit des rayons osculateurs de la surface, a ce point >>. 

     [34, p.4] 
From the translation by Bowditch [37], for brevity, we show the corresponding part with above as followsFrom the translation by Bowditch [37], for brevity, we show the corresponding part with above as follows 

        A long while ago, I endevored in vain to determine the laws of attraction which would 
      represent these phenomena ; but same late researches have rendered it evident that the 

      whole may be represented by the same laws, which satisfy the phenomena of refraction ; 
      that is, by laws in which the attraction is sensible only at insensible distances ; and from 

      this principle we can deduce a complete theory of capillary attraction. [37, p.688] 

        From these results, relative to bodies terminated by sensible segments of a spherical 
      surface, I have deduced this general theorem. "In all the laws which render the attraction 

      insensible at sensible distance, the action of body terminated by a curve surface, upon 
      an infinitely narrow interior canal, which is perpendicular to that surface, at any point 
      whatever, is equal to the half sum of the actions upon the same canal, of two spheres 

      which have the same radii as the greatest and the least radii of curvature of the surface 
      at that point." By means of this theorem, and of the laws of the equilibrium of fluids, we 

      can determine the figure which a fluid must have, when it is included whithin a vessel of 
      a given figure, and acted upon by gravity. [37, p.689] 

The target of Supplement, Laplace says, is "so as to render more evident the identity of the attractive 
forces, upon which this action depends, with those which produce the affinities of bodies" (Supplement 
[35]) 
        L'objet de ce Supplement est de perfectionner la theorie que j'ai donnee, des phenomenes 

      capillaires ; d'en etendre les applications ; de la confirme par de nouvelles comparisons 
      de ses resultats avec l'experience ; ce en presentant sous un nouveau point-de-vue les
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effets de l'action capillaire, de mettre de plus en plus en evidence  l'identite des forces 
attractives dont cette action depend, avec celles qui produisent les affinites. [35, p.1]

( Engl. transl. by Bowditch ) : = The object of this supplement are, to complete 
      the theory which I have given of the capillary phenomina; to extend its application; to 

confirm its results by a comparison with experiment ; and to present, in a new point of 
      view, the effects of the capillary action, so as to render more evident the identity of the 

      attractive forces, upon which this action depends, with those which produce the affinities 
     of bodies. [37, p.806] 

C.1.2. Laplace's theory of the capillary action. 
 Laplace's theories of the capillary action are described in the 14 articles. We cite only the contents of 

no 1 ([35, pp.10-14]) of theory of [35] pointed out by Gauss: 
¶ no 1 of the theory of capillary action : 

Considerons vase ABCD ( fig. 1 ), 73 plein d'eau jusqu'en AB, et concevons un 
      tube capillaire de verre, NMEF, ouvert par ses deux extremites, et plongeant dans 

      son extremite inferieure; l'eau s'elevera dans le tube jusqu'en 0, et sa surface prendra 
      la figure concave MON, 0 etant le point le plus bas de cette surface. Imaginons par 

      ce point et par l'axe du tube, un filet d'eau renferme dans un canal infiniment etroit 
      OZRV; it est clair, d'apres le principe que nous venons d'exposer sur le peu d'etendue 

      des attractions capillaires, que l'action de l'eau inferieure a l'horizontale 10K, sera la 
meme sur la colonne OZ, que l'action du vase la colonne VR. Mais le menisque MIOKN 

      agira sur la colonne OZ de bas en haut, et tendra parconsequent a soulever le fluide. 
      Ainsi, dans l'etat d'equilibre, l'eau du canal OZRV devra etre plus elevee dans le tube 

      que dans le vase, pour compenser par son poids, cette action du menisque. 
        Soit r la distance du point attire, au centre d'une couche spherique dont u est le rayon 

      et du l'epaisseur. Soir encore 0 l'angle que le rayon u fait avec la droit r, l'angle que 
      la plan qui passe par les deux droites r et u fait avec un plan fixe passant par la droite 

      r : l'element de la couche spherique sera u2du.dw.dO. sin .0. Si l'on nomme ensuite f la 
      distance de ce element, au point attire que nous supposerons exterieur a la couche; nous 

       aurons 

f 2 = r2 — 2ru. cos .0 + u2. 

      Representons par cp(f) la loi de l'attraction a la distance f, attraction qui, dans le cas 
      present, est insensible lorsque f a une valeur sensible; l'action de l'element de la couche 

      sur le point attire, decomposee parallelement a r, et dirigee vers le centre de la couche, 
       sera 

                                        r— u. cos .0
co(f.) u2du.d~.dB. sin .B.--------------- 

      On a 
                                   r — u. cos .0df 

_ fdr 
      ce qui donne a la quantite precedente, cette forme 

                             u2du.dro.dB. sin .0.--,.o(f) 
                                                    ar 

      Designons par c— II( f ), l'integrale f df .cp(f ), prise depuis f = 0; c etant la valeur de cette 
integrale, lorsque f est infini; H(f) sera une quantite positive decroft avec une extreme 

      rapidite; de maniere a devenir insensible, lorsque f a une valeur sensible. [35, pp.10-11] 

¶ no 4 ([35, p.18-23]) of the theory of capillary action : 
       Soit donc O( fig. 3 ) 74 le point le plus bas de la surface AOB de l'eau renfermee 

      dans un tube. Nommonz z la coordonnee verticale OM; x et y, les deux coordonnees 
      horizontales d'un point quelconque N de la surface. Soient R et R' le plus grand et le

73(4) The original fig . 
74(t) The original fig .

1 by Laplace [35] is shown in the last page in the appendix § F.3 of our paper. 
3 by Laplace [35] is shown in the last page in the appendix § F.3 of our paper.
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plus petit des rayons osculateurs de la surface  a ce point. 
  R et R' seront les deux racines de l'equation 75 

R2.(rt s2) R.\/(1 + p2 q2).{(1 + q2).r — 2pgs (1 + p2).t} + (1 p2 q2)2 = 0, 

equation dans laquelle 

       dz  dz  d2z  d2z  dp  dq  d2z 
     P dx' q dy' r dx2' `S dxdy dy dx' t dy2. 

 On aura donc 

1 1 (1 + q2).:41 pq. (dy + a) + (1 + p2). ay (1 q2).r — 2pgs + (1 +p2).t 

R 

  R' 1+p2+g2)2(1+p2+g2)2 

 Cela pose, si l'on concoit un canal quelconque infinirnent etroit NSO ; on doit avoir par 
 la loi de l'equilibre du fluide renferme dans ce canal, 

K—2.(R+R+gz=K—2.(b+b7);= (+)RR-2H=b+b,; 
 b et b' etant le plus grand et le plus petit des rayons osculateurs de la surface au point 

0, et g etant la pesanteur. En effet, l'action du fluide sur le canal, au point N, est par 

ce qui precede, K — 5-1.01  + )) ; et de plus, la hauteur du point N audessus du point 
O est z. L'equation precedente donne, en y substituant pour R + R, , sa valeur, 76 

                (1 + q2).r — 2pgs + (1+ p2).t 2gz_1 1        (a)
(1+p2+q2)2Hb +b'" 

  [35, p.19]

(134)

(135)

(136)

(137)

(138)

C.1.3. Laplace's supplement for theory of the capillary action. 
 Laplace stated the supplement under the title of Nouvelle maniere de considerer l'action capillaire in 

[35, p.14] . We show the original contents of p.5 and p.18 of [35] pointed out by Gauss. These translations 
are available by Bowditch [37] 77. 
¶ pages 5-6 of Supplement [35, pp. 5-6] : 78 

(1) L'integrale relative a f peut etre prise depuis f = 0 jusqu'a f infini; ensorte qu'elle 
          est independente des dimensions de la masse attirante. C'est la ce qui caracterise 

          ce genre d'attractions qui n'etant sensibles qu'a des distances imperceptibles, per-
          mettent d'ajouter ou de negliger a volonte, les attractions des corps, a des distances 

          plus grandes que le rayon de leur sphere d'activite sensible. 
      (2) Designons comme dans le n° 1 de ma Theorie de l'action capillaire, par c — 11(f), 

l'integrale f df .cp(f ), prise depuis f = 0; c etant la valeur de cette integrale, lorsque f 
          est infini. II(f) sera une quantite positive decroissante avec une extreme rapidite; 

          et l'on aura, en prenant les integrales depuis f = 0,

f f4df. (f) _ —f4•n(f) +4J f3df.I1(f)•
— f 4.11(f) est nul, lorsque f est infini; car, quoique f 4 devienne alors infini, l'extreme 
rapidite avec laquelle II(f) est suppose decroItre, rend f 4.II(f) nul.

(3) Les functionscp(f) et II(f) ne peuvent etre mieux comparees qu'a des exponentielles 
   telles quec—'1,c etant le nombre dont le logarithme hyperbolique est l'unite, et i 

etant un tres-grand nombre.

75(4) (134) is a quadratic equation with respect to R. 
76(4) From (136) and (137) we get it . 
77(4) In this translation by Bowditch[37], the relation with the original pages is not shown. 
78(4j-) Remark. Here, the itemized style is not of Laplace but of ours, for convenience' sake.
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      (4) En effet,  c-if est fini lorsque f est nul, et devient nul lorsque f est infini; de plus, it 
decroft avec une extreme rapidite, et le produit f ".c-i f est toujours nul, quel que 

          soit l'exposant n, lorsque f est infini. 

      (5) Soit encore, comme dans le n° 1 de la Theorie citee, 

                     ffdf.11(f) = c' -
 etant la valeur de cette integrale, lorsque f est infini. (f) sera encore une 

quantity positive decroissante avec une extreme rapidite; et l'on aura 

4. f f 3df•11(f) = -4f2.T(f)+8. f fdf.(f). 
         dans le cas de f infini, f 2 x11 (f) devient nul; on a donc en prenant l'integrale depuis 

         f = 0, jusqu'a f infini, 

4 f f3df.II(f) = 8 f fdf•W(f)• 
      (6) Einfin, si l'on designe, comme dans le n° cite, par 2 l'integrale f f df.'Y(f) prise 

         depuis f nul, jusqu'a f infini; on aura 

                 ff4dfC0(f) =8 ffdf.'11(f) =4H  
          Les deux forces tangentielles precedentes paralleles aux axes des x et y deviendront 

          ainsi : 

                        (SC + E).H, (3F + D).H. 

          [35, (Supplement) p.5] 

(We show the translation by Bowditch as follows : ) 

      (1) The integral relative to f may be taken from f = 0 to f = co, so that it is 
          independent of the dimensions of the attracting mass. This is what characterizes 

          this kind of attractions, which, being sensible only at insensible distance, allows us 
          to notice or neglect, at pleasure, the attractions of the bodies situated beyond their 

          sphere of sensible activity. 
      (2) We shall put, as in 

11(f) = c' - fdf.5P(f), 

                                            0 

         the integral f df .cp(f) being taken from f = 0, and c being its value when f is 
         infinite. II(f) will be a positive quantity, decreasing with extreme rapidity; and we 

         shall have, by taking the integrals from f = 0; 

                ff4df. (f) = -f4.11(f) +4 f f3df.II(f)• 
- f 4.II(f) is nothing when f = co; for although f4 then becomes infinite, the 

         extreme rapidity with which 11(f) is supposed to decrease, renders f 4.II(f) nothing. 

      (3) The functions (p(f) and II(f) may be very well compared with exponentials like 
c-if; c being the number whose hyperbolic logarithm is unity, and i being a  very  

          big positive  number. 

      (4) For c-if is finite when f = 0, and becomes nothing when f is finite; moreover it 
          decreases with extreme rapidity, and in such a manner that the product r.c-if 

          always vanishes when f is infinite, whatever be the value of exponent n. 

      (5) We shall now put, as in, 

                     Iffdf.E(.f) =c'— (f); 

                                  0

113

(139)

(140)
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 c' being the value of that integral when f is infinite.  W(f) will also be a positive 
 quantity decreasing with extreme rapidity; and we shall have

4 j f3df.II(f) = —4f2•4/(f) + 8 f fdf. (f)•
When f is infinite, f 2.W(f) becomes nothing; therefore we shall have, by taking the 
integral fron f = 0 to f = 00

4 f 00co 

   f3df•II(f) = 8ffdf.`I'(f) 
00

(141)

      (6) Lastly if we put as in, 
                          H—f2~ro.fdf•'y(.f), 

          we shall have, 

                                      co 

                Jof4dfco(f)=8ffdf•T(f) =4H.(142) 

                                            0 

          Thus the two preceding tangential force, parallel to the axes of x and y, will become 

                        (SC + E).H, (3F + D).H. 

       [37, pp.812-813] 
Remark by us: above (142) tells us simply that we get its equation from (140) and (141), 

               0000 

f00fdf.(f) =—f4(f)+4ff3df•II(f) ...(140), 4ff3df•II(f) = 8ffdf.'I`(f) ...(141).    000 

¶ p.18 of Supplement : 
        Fixons a cette extremite, l'origine des coordinees x, y, z d'un point quelconque du 

      plan solide; l'axe des x etant sur la ligne a de la plus courte distance de l'extremite de 
      la droite au plan, et l'axe des y etant horizontal comme l'axe des x. 

        En designant par z' l'abaissement au-dessous de l'origine des coordonees, d'un point 
      quelconque de la ligne attiree; l'attraction vertical du plan solide sur ce point sera a la 

      distance s, et s 

(z---------+ z')  
                  N f f dx.dy.dz. •cp(s); 

s co(s) etant la loi de l'attraction a la distance d'un point attirant du plan, au point attire 
      de la ligne ; ensorte que l'on a 

82=x2+y2+(z+z')2. 

      Pour avoir l'attraction verticale du plan solide, sur la ligne entiere; it faut multiplier la 
      triple integrale precedente par dz', et l'integrer par rapport a z' depuis z' = 0 jusqu'a z' 
       infini. 

        En designant donc comme dans le no 1 de ma Theorie de l'action capillaire, par c—II(s), 
l'integrale f ds.cp(s) prise depuis s = 0, la constante c etant l'integrale entiere depuis s 

      nul jusqu'a s infini; on aure 

                      f dz,. (z sz') •cP(s) = II(s); 

s etant dans la second membre de cette equation, ce que devient s, a l'origine des 
coordonnees, ou lorsque z' est nul. 

        L'attraction du plan solide sur la ligne entiere sera donc

fff dx.dy.dz.II(s).

C.2.

  [35, 

Gauss'

(Supplement) pp.18-19]. 

paper.
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C.2.1. Gauss' papers of the capillary action. 
 Gauss states common motivations with Laplace about MD equations. For example, in §10, §11, §12, 

which we mention below, he states the difficulties of integral f  r2cpr.dr, in which he confesses that he also 
is included in the person who feels difficulties to calculate the MD integral. 

C.2.2. Gauss' letters corresponded with Bessel about Laplace's theory of the capillary ac-
tion. 
 Gauss corresponded with Bessel about Laplace's two papers [35]. 

        Allein in der ganzen ersten Abhandlung selbst finde ich kein Wort, was dienen kann 
      diess zu beweisen. Es kann also wohl nichts gemeint sein als die Stelle in der Einleitung 

      pag. 5, wo ich aber den Schluf3, daf3 die >> plans (en question) sont egalement inclines 
a leurs parois<< keineswegs auf eine befriedigende Art begrundet finde. Ich gestehe, daf3 

      mir dieser Hauptheil von Laplace's Theorie der praecisen mathematischen Begrundung 
      des ubrigen keineswegs wurdig zur Seite zu stehen, sondern mehr den Character der 

      vaguen Apercus, die man friiher von dem granzen Phaenomene hatte, to tragen scheint.

  Freilich konnte man sagen, daf3 Laplace these Liicke einigermassen in der zeiten Ab-
handlung ausgefiillt hat. Das Rapprochement in der ersten Methode die Haarrohrchen 
zu behandeln mit der andern in der zweiten Abhandlung ( die doch wohl im Grunde 
nichts weiter ist als die Ladande'sche ) fiihrt zu einer Bestimmung des Winkels quaes-
tionis, pag. 18. ( 27. Januar 1829. ) [18, pp.487-490].

(Engl. transl.) Only in all the first paper, I can find no word to be useful for me. It is 
sufficient to be no meaning as the part of the introduction 79 in page 5, where I conclude 
that his phrase "the plane (in question ) inclines equally to its wall" is not based on 
the admitted method. I can not help confessing that these main theory by Laplace's 
Theory is for me to be convinced which is never worth consulting it as the ( concise ) 80 
mathematical ground.

C.2.3

    Although we can say, of course, that Laplace complemented these defects in the second 
  paper, however, his approximation in the first method, dealt the capillar action with 

  another one, in the second paper ( which is fundamentally inferior to the writing by 
  Ladande81 ), he deduces the doubtful formulae of angle. page 18. 

. Bessel's reply to Gauss. 
   Gegen die Gleichung der Oberflache habe ich nie ein Misstrauen errrpfinderl, allein 

  den Winkel habe auch ich nicht fur erwiesenermaf3en unabhangig von dem Durchmesser 
  der Rare u.s.w. gehalten, sondern diese vielmehr als der Erfahrung, welche mit dem 

  Raisonnement Seite 5 zusammentrifft, entsprechend; denn das Aufsteigen der Fliissigkeit 
  in eigen Rohren konnte nicht dem Durchmesser derselben umgekehrt proportional sein, 

  wenn dieser Winkel nicht stets gleich bleibe. ( 10. Februar 1829 ) [18, pp.491-493].

  (Engl. transl.) To the equation of surface, I did not have any doubts, however, about 
that the angle is independent of the diameter of the tube, etc., I have not accepted as 
being beyond doubt, but also these, strictly speaking, in the experience, which consider-
ing with the assumption of the page 5, phenomena of fluid in the tube, it is impossible 
to be in inverse proportion to the diameter of the tube, because this angle is not always 
equal.

79(4) The introduction takes 1-9 pages in [35] and 685-694 pages in [37]. 
80(4) We do not know about the meaning "praecisen" . We can consult the word "praecise" whose meaning is "in short, 

in few words, briefly, concisely " of only as adverb with the following dictionaries edited by C.T.Lewis, "Elementary Latin 
Dictionary Lexicon" [41], or "Lexicon Latino-Japonicum" by Kenkyusha. In this sentence by Gauss, it must be used as 
adjective, so that we use as "concise". 

  81(4) Ladande , Joseph Jerome Lafrancois de, (1732-1807), i.e. an astronomer who then was criticized for his astronomical 
writings by Gauss. cf. Shogakukan Robert Dictionnaire Francais-Japonais by Shougakkan, 1988. p.1390
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C.3. Laplace's two-constant in the  Supplements. 
 We show Laplace's usage of two-constants in calculating of the capillary action in Supplement [35, 

pp.9-14] as follows : 

27r.{1 + (A + B).r}.41(r). 

Maintenant, si l'on nomme R le rayon osculateur de la section de la surface, par un plan passant par les 
axes des x et des z, et si l'on nomme pareillement R' le rayon osculateur de la section de la surface, par 
un plan passant par les axes des y et des z ; 

                             A — B                          2R' 2R' 

27r.{1 + —r.(-1R+—1)1.111(r). 
Laplace stated that : 

        Pour avoir l'action entiere du corps, sur un fluide renferme dans un canal infinirnent 
etroit per pendiculaire a la surface, et dont la base est prise pour unite; it faut multiplier 

      l'expression precedente par dr, et l'integrer depius r = 0 jusqu'a r infini. Soit alors 82 

                 27r J T f.df = K, 2n f !f.f.df  = H,(143) 
       l'action du corps sur le canal, sera 

                      H 1 1l                       K+2.(R+R'); 
(Jj.)Here, (143) means that these K and H are the two-constant, which, we think, had appeard for the 
first time. These mean 

rr                  27rJ(f)df = K, 27rJfW(f)df = H, 

(it) 
 When we denote h+ z the height of the point on the sea level, g : mass gravity and D : density, then 

gD.(h+z) = 2.(R + R'). 
However, if we denote by (135) 

                      dz dz 
                             dxp~dy= 4 

and by the theory of curved surface : 

1 1 (1q ) dx pq•(dydx1p )' y  
                                                     (144) R R(1+

p2+q2)2 

            lH.f(1+q2)•_pq.(d+)+(1+p2)•dy          2L
(1+p2+q2)]=9D.(h+z) 

equation qui est visiblement la meme que l'equation (a) 83 du n° 4 de la Theorie citee. 

         Maintenant, it est facile de s'assurer par la theorir des surfaces courbes, que si l'on 
      nomme tv l'angle que la plan tangent a la surface du fluide interieur au tube, forme avec 
      les parois du tube toujours suppose vertical, it l'extremite de sa sphere d'activite sensible 

; on a 

                              COSdy — qdx         os_ ------------------ 
ds. /1 + p2 + q2 

82(J) cf . Gauss cites this Laplace's (143) in (176). 
83(4) cf . (138).
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ds  etant l'element de la section ; on a donc en observant que l'angle ro est constant, 
comme je l'ai fait voir dans latheorie citee, 

    r 

                    J/Pdyqdxc. cos ur                          V1+p2+q2 

c etant le contour entier de la section; partant 

     —1.H.Ifdxdy. { (d. P )+ (d. q  )}=.H.c.cos  rU 
     20.+p2-1-q2~/1+p2+q22 

        dxdy 

ce qui donne 

1 
                           gD.V = 2 .H.c. cos 

ainsi le volume du fluide, eleve au-dessus du niveau par l'action capillaire, est propor- 
tionnel au contour de la section de la surface interieure du tube. On peut parvenir a 
cette equation remarquable, en considerant sous le point de vue suivant, les effets de 
l'action capillaire.

117
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             APPENDIX D. Disquisitiones generales circa superficies curvas. 

                        (General survey on the curved surface) 

  We show the only relative and available articles : §8, §10, §11, §12, §21 and §22 of the deduction of 
theorem of curvature and the first and second fundamental forms to the next appendix E. 

  Remarks. 
    • The contents are not literal or word-for-word translation from Gauss, but our free translation 

      commenting our interpretations. 
    • Throughout this paper, in citation of bibliographical sources, we show our own paragraph or 

      sentences of commentaries by surrounding between (J) and (f ). ((it) is used only when not 
      following to next article/section ). And by =*, we detail the statement by original authors, 

      because we would like to discriminate and to avoid confusion from the descriptions by original 
      authors. The mark : = mean transformation of the statements in brevity of ours. And all the 

      frames surrounding the statements are inserted for important remark of ours. Of course, when 
      explicitly without these marks, it is not the description in citation of bibliographical sources. 

    • Throughout both papers of appendix D and E, Gauss didn't use today's expression of array or 
      determinant at all, so all the expressions of the sort of that are of ours.

D.B. Theorem of curvature.

Theorem D.8.1. The curvature in surface point 
numerator is a value and the denominator is, on 
curvature in a sectioned normal plane. 

D.10. Deduction of the formula of curvature.

of fluid is expressed by the 
the contrary, the product by

fraction, 
the two

of which the 
radii of limit

The letters a,

A 

B 

C

b

Adx  +  Bdy + Cdz

 d2x 

 yy= a, 

d =7
, c are permuted cyclically. 

be' — cb', b 

ca' — ac', * A =b, 

ab' — ba' 

'dz = 0, namely dz = — G dx 

{C dp = b' dx — a' dy, .,,

d2x  

dpdq 

d2y  

dpdq 

d2 z  

dpdq

c 

c'

d2x =a
, 

d~ii

, B=

—Bdy.

c a 

c' a'

We denote

{C dp = b' dx — a' dy,           Cd1 
                    L We take the complete differential of (146) in respect to t and 

C3 dt = (A4d — CV) (b'dx — a'dy) + (C dq 
C3du= (B t —Ct)(b'dx—a'dy)+ (Cdci

  C3 [ dt 

du 1

 

,  C=

dz _t 
dx= 

b' — a' 
—b a

A C 
dA dC 
dp ,7) -9

 C 
dB dC 
dp dp

U. 

— Ad~) 
    dq 

— BdC    d
q

C A 
dC dA 
dq dq

C B 
dC dB 
dq dq

— A and

    dx 

] [ dy

a 

a

 b 
' b'

dy=u=—C.

1

(bdx — ady), 

) (bdx — ady)
 b' 

dy

a' 

 dx

b a 

dy dx

(145)

(146)

(147)

We substitute (147) to the followings  :
dA 
dp 
dB 
dp 
 dC 
dp

=c'33+b'y'— ell' —W'y, 

=a''y+ ea' — cry' —c'a, 

=b'a+a13'— ba' —a'/3,

dA 

dq 

dB 

dq 

dC 

 dq

= c'3'+fry" —c13" —b''Y', 

= a'y' + ea" — ay" — c' a' 

= b' a' + a0" — ba" — 0'
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 C3T = 

C3 U = 

C3V =

(b')2 (aA + 0B + 7C) — 2bb'(a'A + ,Q'B + yC) + b2 (a"A + 13"B + y"C), 
—a'b'(aA -I- 03B + yC) + (ab' + ba') (a'A + j3'B + yC) — ab(a"A + 13"B + y"C) , 
(a')2 (aA + [3B + yC) — 2aa'(a'A + O'B + yC) + a2 (a"A + 0"B + y"C)

D 

D' 

D"

(1)G 
 (2)G 
(3)G

a /3 
a' 0' 

ari

Aa+B,3+Cy=D, 

Aa' + B + C7' - D', 

Aa" + BP" +Cy"-D"

y - - A -

y' B = 

y" C

Substituting (149) for (148), we get the following : 

 C3T = (b')2D — 2bb'D' + b2D", 

 C3U = —a'b'D + (ab' + ba')D' — abD", C3 
 C3V = (a')2D — 2aa'D' + a2 D"

 d2  x 
 dp2 

d2x 

dpdq 

d2 x

 T 

 U= 

 V

C6 (TV — U2) = (DD" — (D')2)(ab' — ba')2 = 
Therefore, the formula for the curvature is as follows :

(122 
d 
dy  
dpdq

d2 
dp2 

d2 

dpdq 
d z 
9

 (b')2 — 2bb 
—alb' (ab' + ba') 

(a')2 — 2aa'

(DD" — (D')2) C2

A 

B 

C

b2 
 — ab

, 
a2

(148)

(149)

D 

D' 

D"

k E--_
DD" — (D')2

(A2 + B2 + C2)2
(150)

D.11. Evolving the equation of curvature. 

 Suppose that x, y and z are functions of two independent variables u and v, with all partial derivatives 
up to those of the third order. The letters a, b, c are permuted cyclically.

dx = adu +  a'  dv, 

dy = bdu dv, 

dz = cdu c'dv

a2 + b2 + c2 = E, 

aa' bb' ± cc' = F, 

(a')2 + (b')2 + (c')2 = G,

     dx 

=.* dy bb' 

  dz c'

    E 

=.* 

G

du 

dv

abc 

abc 

a' b' c'

     a a' a' 

    b b' b' 

     c c' c'
(151)

Let us treat v as the independent variable, u as a function of it. For the square of the distance of arc we 

shall have 

ds2 = Edu2 + 2Fdudv + Gdv2

Tit 

rn' 

rn"

 (4)G 

(5)G 
(6)G

CV 0 
U' o' 

CV' jri

(7)G 
(8)G 

(9)G

 aa + b,3 + c'y = rn, 

aa' + b/3' + c'y' = rn! , 

aa" + bj3" + c-y" = TO ,

7 
        b  = 

7" _ c

 d2x 

 dp2 

 d2x  

dpdq 

d2x 

 dq2

a'cx + b'[3 + c' -y = n, 

a'cx' + b'03' + c'y' = n' 

, a'cV' + W/3" + c'7" = n"

d2 

(12 y  
dpdq

d2 
  dp 

d2 z  

dpdq 

d2 z  

dq2

 _
a 

 b 

C

(152)

(153)
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n 

n' 

n"

theory and tensor function underlying the Navier-

    a j3 
at /3' 

an R„

From (145) and (151) , we get the fo

7 

7,,

The first expression A2 + B2 + C2 = EG — F2

A2 + B2 + C2 =*

a' 

b' = 

c'

 d~ 
 dp 
d2x 
dpdq 

d2x 
4

dp 
d y  

dpdq 
d  
dq2

d~ 
dp 

d2z 
dpdq 

d2 
9

Stokes equation

a' 

 b' 

 c' 1
get the following expression : 

A2+B2+C2=EG—F2=*A F G 

B2 + C2 = EG — F2 is verified easily by extending the following : 

(bc'—cb')2+(ca'—ac')2+(ab'—ba')2 
A2B2C2 

(a2+b2+c2) ((a)2 + (b2+(cT)—(aa +bb'+cc)2  EG — F2 
 E~~ F2

We deduce the relative formulae to curvature. 
 Step 1. At first, we should solve the following system of linear equations from the equations 

(149), (4)G of (152) and (7)G of (153) :

D 

m 

n 1 =

(1)G 
(4)G 
(7)G

 A  B 

 a  b 

 a'  b'

Aa + B13 + C-y = D, 

as+b13+c'y=rn, 

a'a+b'/3+c'-y=n,

C 

c 

c'

aA B 

Q=a b 
-y a' b'

C 

c 

c'

 d2x 

cy 

d 

dpz

 At the first step : 1-1, eliminating  /3 and -y, and multiplying these by bc' — cb', b'C — c'B, 
and adding these expressions, we get the following expression : 

(A(bc' — cb') + a(b'C — c'B) + a'(cB — bC)) a = D(bc' — cb') + rn(b'C — c'B) + n(cB — bC)

(1)G of

cB — bc,

(154)

A B CD B Ca rrt n 
        a a b c = Tribe AD = a E F(155) 
          a' b' c' n b' c'a' F G 

(4) We see the expression (155) of AD, by extending the following determinant, which we substitute the 
defined values above mentioned for m, n, E, F and G of (155) : 

                                    a as+b13+c'y a'a+b' +c'ly 
AD=A(Aa+B/3+C7)a a2+b2+c2 aa'+ bb' +cc' 

                                   a' aa' + bb' + cc' (a')2 + (b')2 + (c')2 

  In fact, from (155), we can verify AD as follows : 

         AD = a (EG — F2) +a(nF — mG) + a'(mF — nE) 

0 

            *aE F+ ar~rrz+ a'm = a E F 
F GG FE F 

a' F 

Gauss deduces this relation without using the expression of array in this paper [15]] at all. (-11-) 
 At the second step : 1-2, eliminating similarly a and -y using the same equations (1)G, (4)G, (7)G, and 

multiplying these by ca' — ac', c'A — a'C, aC — cA, and adding these expressions, we get the following : 

  (B(ca' — ac') + b(c'A — a'C) + b'(aC — cA)) /3 = D(ca' — ac') + m(c'A — a'C) + n(aC — cA)
A B C 

a b c 

a' b' c'

A 

a 

a'

D C 

m c 

Ti c'

BD =

13 
b 
b'

m 

E 

F

Ti 

F 

G
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 At the final step : 1-3, eliminating similarly a and  0, and multiplying these by ab' — ba', 
a'B, bA — aB, and adding these expressions, we get the following expression : 

  (C(ab' — ba') + c(b'A — a'B) + c'(bA — aB))ry = D(ab' — ba') + m(b'A — c' B) + n(bA — aB)

b'A —

A B C 
* 7 a b c 

                     a' b' c' 

Here, we get the three expressions :

A 

a 

a'

 B 

 b 

 b'

D 

m CD = C

AD = aA a(nF — mG) + a'(mF — nE), 

BD = 0A b(nF — mG) b' (mF — nE), 
CD = -yA c(nF — mG) c' (rnF — nE)

- 
A 

D B 

      C

a a 

b 

C

a 

b' 

C'

E 

F

G

Tn 

E

F

rn 

F

F

Ta 

E 

F

F 

G

(156)

Multiplying (156) by a", /3" and -y" respectively, and adding the gained expressions in the each hand 
side, then we get the following expression : 

             DD" = (aa" + 00" -I- -y-y")A rn" (nF — mG) n" (m,F — nE)(157) 
aall + 00" + Ty" rnn 

=*rn" E F 
F G 71" 

Step 2 . Similarly, from the equations (2)G, (5)G, (8)G :

(2)G 
(5)G 
 (8)  G

Aa' + B3' + C7' 

act' + b/3' + c,71 = 

a' a' + b'/3' + c' 7'

We get the three expressions correspond

AD' 

BD' 

 CD'

V'y' = D' 
, D' A B C 

= rn' , rn' = a b c 

         n' a' b' c'    =n'
, 

esponding to (156) : 

= a'/ + a(n'F — rn` G) + a'(rn'F — n'E), 
= j3'O+b(n'F—m'G)+b`(rn'F—rc'E) , 
= 'y'0 + c(n'F — m'G) + c' (ml F — n'E)

A     D'[B 

C

a' 

/3'
a 

b 

c

a 

c'

E 

F

n' 

G

rn' 

E

F 

G

rn' 

F

n' 

F

a'

Multiplying (158) by a', j3' and 'y' respectively, and adding the gained expressions in the each h 
then we get the following expression corresponding to (157) : 

(D')2 = ((a')2 + (01)2 + (,y/)2)0 + rn'(n'F — m'G) + n'(rn'F — ri E) 
(a')2 + 01)2 ('y')2 rn' n' 

=* m'E F 
       n'F G

(158)

and side,

(159)
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Step 3. From (157) and (159), we get the following expression  : 

      DD" – (D')2 =  (act" + 33" +7-y" – ((a/)2 + (0')2 + (/)2)) (E~F2) 

0 

                 + E((n')2 – nn") + F(nm" – 2m'n' + mn") + G((m')2 – mm")) (160) 

Here using the following relations : 

  dE dE,dF dF„,dG,dG„        =2m,—=2rn,-=rn+n,—=rn+n,—=2n,—=2n 
 dpdqdpdqdpdq 

     1 dE ,1 dE„dF 1 dG _dF 1 dE,_1 dG„1 dG–rn=
2dp' rn=2q' m =dq2dp'n2dq, n2dp, n= 2 dq 

then the first term in the right hand side of (160) except for A turns into : 

             222do dn'drn" dm' 1 ddE ddF 1 ddG as„+18„+Ty„–((a,)+(,Q,)+('y,))d
q – dp – dp dq   2 dq2 + d pdq  2 d p2 

From the equation of curvature (150) in the end of last article § D.10, we get the following expression : 

                                              DD"– D'2      (A2 
+ B2 + C2)2k = (EG – F2)2k = (EG – F2)2 (A2 + B2 + C2)2 = DD" – (D')2 (161) 

Substituting (160) for the right hand side of (161), we get finally the following expression :

4(EG - F2)2k  402k = 4(DD" - (D')2) 

                                                            • dE dG dE dG dE dFdF F
-- — -- — 2-- +4— 

  dp dq dq dp dq dq dp 

4mn"4(nm" -2m'n') 

G( dE dG dE dF dE 2 l 
  dp dp -2dpdq +(dq) 

771771 r(7re) 2 

2EG - F2)(ddE-2ddF+~~ dq2 dpdq dp

   "iaar au ac 21          -2--+(-)J 
   dq dq dp dq dp

2 ("+"+"_ ((a1)2+(T)2+(7r)2) )

(.u.) This equation is a quadratic equation in respect to EG — F2 : 

             4k(EG-F2)2+2CddE-2ddF+d'2                                           (EG-F2)                         dq2dpdqdp 

dE dG dF dG dG 2l                E(
dgdq-2dpdq+(dp)l 

                F(dE dG dE dG dE dFdF dFdE dG                   dgdq-dpdp-2dgdqI-4dpdq-2dpdp) 
                 G(\ dE dG dE dF dE 2                    dpdp-2dpdq+(dq)I=0 

84 

84This equation means that the curvature depends only on the first fundamental form : (174). cf. Kobayashi [28, p.200]
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D.12. Deduction of formulae of a line-segment on the curved surface. 
 From the following  expression  : 

                   dx2 + dy2 + dz2 = Edp2 + 2Fdpdq + Gdg2, 

the general line-segment on the curved surface is expressed as /Edp2 + 2Fdpdq + Gdg2. And we con-
sider the following expression ,/E'dp2 + 2F'dpdq + G'dg2, as the line-segment /(dx')2 + (dy')2 + (dz')2, 
denoting the functions : E', F', G' of p and q. 

E=E', F=F', G=G' 
From the formula in the article § D.11 we get the following theorem : 

Theorem D.12.1. (Invariability of curvature. ) Even if the curved surface turns into another shape 
of surface, the curvature of surface stays invariable in each point. 

  The following are clear : after the curved surface turns into another shape of surface, the shape of the 
surface again returns to the first shape. ^ 
D.15. Deduction of theorem of the shape.

Theorem D.15.1. The shape of the curved surface will reach the shortest length in the same oriented 

point of fluid length, taking the normal line at the limit. ^ 

D.21. Deduction of formulae. 
 We would like to restore the general meanings to the -< characters p, q, E, F, G, co >- , which were 

accepted, additionally speaking, which are determined by dual alias variables p`, q', where, a infinite 
line-segment is expressed by : 

VE'dp'2 + 2F' dp' dq + G'dq'2 

                  dp' = adp + ~idq,*-dp' _-a 0-dp- 
                dq' = ydp + bdq -dq'- -Y6- -dq- 

Now we would like to investigate the geometric meaning of these coefficients a, 8, y, 6. 
Quatuor85 is here the linear system considered in the curved surface, for these, they were constants 

such as q, p, q', p'. If we determine these by points, these respond to the variable values of q, p, q', p', the 
positive variations dq, dp, dq', dp' are responded 

\/E.dp, VG.dq, -/E'.dp , 'VG' .dq' 
We denote the angles by M, N, M', N' 

p+dp, q+dq, p +dp', q'+dp' 
are independent of the values of variations dq, dp, dq', dp' 

^E.dp. sin M + fG.dq. sin N = ./E'.dp'. sin M' + VG' .dq'. sin N' 
We, however, introduce these by notating 

• N—M=w 
     • N'—M'=co' 

• N—M'=0. 
These equations of the invented methods are seen in the following formats 

   /i.dp. sin (M' — co + 5) +VG.dq. sin (M' + 5) = V E'.dp'. sin M' + ./G'.dq'. sin (M' + co'), (162) 
 MNN' 

or 

 /E.dp. sin(N`-W—WI + 0) +~.dq.sin (N' — co' + W) =\/E'.dp'. sin (N' —)-I-\/G'.dq'. sin N' (163) 
M'M'-FN—W.N M' 

'/E' . sin co' .dp' = \/E.sin(w + co' — b).dp + 1/G.sin(co' — /).dq (164) 

85(4) Here, we mean temporarily Quatuor as the quaternion named it. Hamilton [20]'s Quatuor is another one, in which 
Hamilton used his defined word "tensor". cf. the footnote ( 8 ) in Cauchy, § 8.
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 G'. sin w'.dq' = ^E.sin(0 — w').dp + \id. sin 7/).dq(165) 

We can construct the equations in combining the left hand-side of (164) with that made by substituting 
N' = 0 in the left hand-side of (163). And also the left hand-side of (165) with that made by substituting 
M' = 0 in the left hand-side of (162) then 

E'. sin w'.dp' = /E.dp. sin(—co — w' + W) + 10.dq. sin(—w' + 0), 

G'. sin w'.dq' = -V T.dp. sin(—w + 0) + -^G.dq. sin(0) 

(.lJ.) That is 

     

. sin w'.dp'_~.sin(w + w' —W))/.sin(w' —)1 r dp1dp' = adp +/3dq,  [ GE''. sin w'.dq'][ff.sin(~%— w') Aid. sin 0 JLdqdq' = rydp + Sdq 
(r)

 a  _ VE sin(w-Fw'-0)  
E'' sinw' ' 

0 _ G sin(w1-0)  E'' sinw' 

ry _ E sin(xb—W')  ' •sinw' 

6 __ V G sin 0  
G'''sin co'

(166)

 cos W 

cos W' _ 

sill W = 

Sin W1 =

   F  
,/ EG' 

      F'
N/E' G' '

FG-F2
EG

F' G' - F' F'

E'G'

 a 

 13 

7 
S

(E'G' — F'F')
(E'G' — F'F')
(E'G' — F'F' )

(E'G' — F'F')

_ \/EG'. sin(w + co' — 0), 

= VGG'. sin(w' — 0), 
= A/EE'. sin('b — w), 
= A/GE' . sin 0

(167)

Substituting 

dp' =adp + /3dq, * 1 dp' 1 —a/3dp/31dp'I1I(168) dq'=d+Sddq'lySdqryS[dq'1dpJ[dqJ q-ydpq[aJ 
for 

EdP 2 + 2F' dp' dq' + Gdq'2(169) 

and combining the value gained from (169) with the following value : 

Edp2 + 2Fdpdq + Gdg2 

then the following corresponding relation holds : 

        E' (adp + /dq) 2 + 2F' (adp + /dq) (dp + Sdq) + G' (-ydp + Sdq)2, 
Edp2 + 2Fdpdq + Gdg2// 

Substituting the right hand side of each expression for zero, from these relation, we get the following 
expression using the relation between the coefficients and their roots of the quadratic equation : 

                       EG — F2 = (E'G' — F'F')(aS — 0-y)2 

From (168) 

     (aS —0'Y)d8d=d`'~ad'adq'* (aS — 07) [dgJ[S7 a J[dq' J      (/+y)q'ypq
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D.22. First Fundamental  Forr 

 From the general survey in the 

with the most general meaning, 

denoted by r, (p. We assume El =

and tensor function underlying the Navier-Stokes equations 125

    —2F75G2-y=
E,EGG,IFF,2F,.E' 

E136 — F(ca5 + ,37) Gct-y = E,EGG,I.r2F„ 
E2-2F+Ga2=E,EGG„IFF,2F, .G1 

 Form and Second Fundamental Form. 
a the previous article, we shift to the latest application, where p, q are put 
ng, or p', q', adopted in the article 15, in which these -< characters were 
El = 1, = 0,u/ = 721, A/G' = rn, then from (166) we get the following :

a = \/. ..g . cos(w —  0), 

 0 = Va. cos 0 , 
rn.-y = Nif . sin( — w), 

m.(5 = f a. sin 0

 Here we show the quaternion equations 
with above values of a, 0, li, (5 ,

(167) in the above article give the following, in replacing them

(E.

 Ark  .  cos(w — V))

\Fa . cos

(F.

dp' 

dp 
• d

p

(170)

(171)

(172)

(173)

(174)

(175)

Here, the quantities r, cp, 11) ( and if one is necessary to get 7n, then even rn ) are determined from the 
gained equations above with respect to p and q : clearly, the integral of (174) gives r, and the integral of 
(175) gives v), and another equations (170) and (171) give 7/) itself, in addition to, (172) and (173) give 
in. 

 General integral equations (174) and (175) are necessary for two functions arbitrarily introduced, 
because it is very easily recognized that if it is perpendicular, then these equations are considered as 
unrestricted to this case.
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     APPENDIX E. Principia generalia theoriae figurae  fluidrum in statu aequilibrii. 
           (General principles of theory on fluid figure in equilibrium state) 
  In this dissertation, Gauss treats many important topics to the modern mathematics such as the 

following : 
    • (E.0) Preface 

    • (E.1-E.5) Introduction 
    • (E.6-E.9) Reduction from the sextuple integral to the quadruple integral 

    • (E.10-E.12) Criticism of Laplace's molecular calculation of capillarity equations 
    • (E.13-E.17) Ideas by Gauss 

    • (E.18-E.19) Variation problem 
    • (E.20-E.24) Deduction of Gauss' integral formula 

    • (E.25-E.26) Geometric meaning of curvature (a + dy in V ) 
    • (E.27-E.30) Application of geometrical method to meniscus 

    • (E.31-E.33) Attraction in condition by A, a, 0 
    • (E.34) Summary 

86 In particular, in these contents, included with many important topics from the viewpoint of mathe-
matics, such as 

    • Integral theory in §E.17 and §E.23 which he aims to be one of his proud points to publish this 
      paper 

     • The unique "two-function" , corresponding to "two-constant", which we show in Table 3 and in 
      §E.2 

    • Idea of RDF, which we show in Table 8, 9, and in Preface ¶4 
    • Reduction of integral from sextuple to quadruple, in the articles §E.2, §E.16 and §E.17 

    • In and after §E.18, we show his calculus of variations in the capillarity against the RDF and 
      calculation of it by Laplace. 

    • Finally, for the question to be solved by variational equation introduced in §E.18 and §E.19, we 
      sketch his answers deduced from the previous work of theory in curved surface [15], to the height 

      and angle in question in §E.28 and §E.29. 
    Throughout our paper, we show the process of formulation of calculus of variations87 using the 

two functions characterized from the attraction and repulsion, and his criticism to Laplace imaging the 
Gaussian function as the rapidly decreasing function by Gauss in 1830. And we introduce a contribution 
to the hydromechanics, because he was a contemporary of the epoch of formulation of the NS equations, 
which are our main theme in our paper.

E.O. Preface. 
¶ 2. 

 • Since Mr. Laplace, from here, presented conveniently the unique supposition about the inner, molec-
ular activity, moreover, giving up diminution of law for the increasing distance, we have got the first 
result in the surface of the fluid figure based on the accurate calculation, and have established the general 
equation for the figure of equilibrium, not only the precise capillary phenomenon as described, but also 
try to explain the related problems. 

 • This investigation is discussed getting the consented with and confirmed in everywhere, by the exact 
experiment, among the first class of increasing natural philosophers, geometricians, and referred and 
criticized by some authorities from all the directions to the maximum part such as a minor or nonsense. 
¶ 3. (Two RDF functions and two-constant defined by Laplace.) 

 • In the calculation by Mr. Laplace, we have at least a thing, which we can give evidence about it, 
and for which we would not absolutely consent with him. 

 • In the previous commentary : -< Theorie de l'action capillaire >-, denoting by cp f intensity of the

86(j) We entitled for explanation of contents in each article below, where, there was not at all name of title but only 
the number in Gauss' paper. The article number is the same as Gauss' numbering of article. 

87(4) Lagrange [31, p.201]. Today's mathematical nomenclature is calculus of variations or calcul des variations by The 
mathematical dictionary (4th edition in 2007) edited by MSJ, 1954, p.432, (Japanese).
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attraction in the distance  f  , the integrals read : 88

   ~Pf df Ilx, 
   r. 100 IIf.fdf = Tx,

Extending the integral interval by x to 0, Laplace defined the two constants : 89

r00 2
7r J f . df = K, 

Jo

    r00 2
7r/f.f.df= H, 

   0

(176)

where denoting by 7r the of the circumference of the circle with radius = 1.

In a word, the -< indoles >- ( characteristics ) of the function cp f reserves ineffective, as long as 
this f were insensible for all sensible value. Hence, 

    • from only this supposition, it is not deduced absolutely, 
    • moreover, II f and xlif are for the finite values, this function f needs to be infinitesimal, can 

     not absolutely be true, 27r fonitef df and 27r fonite Alff f df turn into another infinitesimal 
     value of K and H as we read in the dissertation ; 

    • of course, the form of function cp f may be considered to be infinite, although the funda-
      mental supposition satisfies these would be erroneous conclusions for this. 

    • If it is supposed that cp f is complete attraction, in fact, it will moreover conserve the 
      fractional form , which depends on the general attraction ; 

    • but as long as we can not measure the attractive particle, even we know the occurrence 
      in experiment, it is too infinitesimal in comparison with all the earth, then although, if 

     we extend infinitely the second integral of (176), we should infer that the function' f is 
      restricted to infinity.

¶ 4. (Criticism to Laplace by Gauss.)

88(4) cf. Laplace states the two-constant (176) in his original paper. Poisson cites these equations in 
89(4) Poisson rewrites these equivalent equations by using (176) by Laplace . cf. (239), (240).

(238).
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• However, something similar to simple carelessness form the basis, such that Laplace discusses 
about the form than about the relating action with it. 

 • Judging from the second dissertation : -< Supplement  a la  theorie de l'action capillaire - ( 

[35] ), Mr. Laplace had scarcely investigated of (,of, not only the complete attraction, but also a 
part, and tacitly understood incompletely the general attraction ; by the way, if we would refer 
the latter in comparison with our sensible modification, on the contrary, we can assert it to be 
more inferior to the bad experiments and be clearly visible. 
• He considers exponential e-11 as an example of equivalent function to co f, denoting the large 

quantity by i, namely becomes infinitesimal.

 But it is not at all necessary to limit the generality by such a large quantity, this point 

is more clear than words, we would see easiest, only by investigating if these integrations 

would be able to be extended, not only at infinity but also at an arbitrary sensible distance, 

or if the occurring in experiment could be wider extended up to the finitely measurable 

distance. a

'CO We show the paragraph of his Latin original as follows : 

          Sed ne opus quidem est, generalitatem tantopere limitare, quum is, qui rem potius 
        quam verba intuetur, facillime videat, sufficere, si intergrationes illae non in infinitum, 

sed tantummode usque ad distantiam sensibilem arbitrariam, aut si mavis ad distantiam 
        finitam dimensionibus in experimentis occurrentibus maiorem extendantur. [17, p.33]

¶5.

• On the other hand, a person studied this theory with more decisive mistakes, and to this theory, 

nobody criticize this sophist. Both are clearly to be criticized as a part owner of it.

 • Here we established the general equation for fluid of liberal surface with differential by the partial 
coordinates : this equation depends on the force by molecular attraction, which the particles of the fluid 
are in motion, and additionally, this theory is absolute and is never rested essentially deficient in it. 

 • In addition to this equation between partial differential, (its integration, if it were postulated in 
analysis, an arbitrary function is induced ) it is not sufficient for the figure of surface, determined from 
all aspects, unless the new conditions of the nature of the fluid in the defined boundary were accepted. 

 • Total condition is set up by another theory, which is, the angle of the plane to the surface of the liberal 
fluid in tangently contact with the vase ( exactly speaking, in the boundary of the sensibly attractive 
force to the wall of vase ) with the plane of the wall of vase, it is a tangential constant, we put with the 
relation with intensity of the molecular force determined between vase and fluid, so that, the continuity 
of figure at the neighborhood of the contacted with the liberal surface of the fluid is not interrupted.

 • Hence, to the cardinal proposition of the total theory with calculation for demonstration, we 
can not accept the papers by Mr. Laplace ; in p.5, since not only he developed clearly incorrect 
argument but also showed the false proofs : we consider that calculations in the pages and the 
following after p.44 are the vain effects.

[18, p.33-34]90

E.1. Introduction. 

 On the formulation of the equilibrium equation in the system of particles of a material, we would like 

to solve how much the motion confine the condition, provided that the principle of motion of force adapts

90M There are 35 pages of calculation between p .44 and p.78 in his Supplement.
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at maximum. 
 We would like to construct the system as follows  : 

    • from the physical point  m, rn', rn", • • • , in which we denote the mass of the concentrate 91 by 
      this letter, we think, which is accepted, 

    • we figure that 
        — P is an accelerated force which is active in point m, and these systems of motion, made 

         by an arbitrary material, infinitesimally small, and accepts the condition of the affinity of 
         system ( motion of force ), 

        — dp is the motion of the point m in direction of the projection of force P , i.e. made by the 
         angle of cosine, which face with the direction of the force P, multiplicated ; 

    • next, > Pdp is the production of the sum of all similar one with respect to all force of the sole 

      point m. 
    • As the same way, P' represents the indefinite force of the sole point m', 

    • in addition to, dp' is the motion of the point rn' made with the projection of singular direction, 
      similary with the other points. 

From these idea, the condition of equilibrium of the system is consisted of that and the sum are 

mE Pdp +m'EPdp +rra"E Pdp" +••• 
Provided that the force of motion becomes = 0, we can explain precisely the principle of motion of the 

general force, and even in this case, for the sum of null motion, we can get the positive value. 92

E.2. Three basic forces and two kernel functions : f derived from yo and F derived from 13. 
 We consider the force reduced to three main forces. 

    • I. Gravity. 
    • II. The attractive force, which itself corresponds to the points rn, rn', rn,", • • • . The intensity of 

attraction of function is proportional with the distance if this function, the -< characteristic >- 
denoted by f in mass and supposed that the attraction is uniformly concentrated in the point. 

    • III. The forces, m, rn', m", • are attractive to the infinitesimal fixed points. For these forces, 
      in the similar way, we will designate the -< characteristic F >- such that the inverse-directional 

      distance is used, and with M, M', M", • • • , which are treated as a fixed point in one case, or a 
      mass in the other case, which are supposed in these concentrate. 

We get E Pdp of the previous article as follows : 

         —gdz 

          — rn' f (rn, rn')d(rn, rn') — rra"f (rn, rn")d(rn, rn") — rn"' f (rn, rn,"')d(rn, m"') — • • • 
         — MF(m , M)d(rn, M) — M'F(rn, M')d(rn, M') — M"F(rn,, M")d(rn, M") — • • • (177) 

where, the difference d(rra, rn'), d(m, m") etc. are partial, relative to the only motion of the force of in. 
We denote :

 co such that : — f x.dx = dcox,

d4)x,

(178)

(179)

where, woo = 0, and in case of cot f,°° f x.dx = —cot. 
(.l) On the other hand, Gauss didn't describe explicitly cp0. By the way, this method without taking of "two-constant" by Gauss corresponds to the expressions by Laplace, Poisson, Navier et al. Poisson [62, 
p.8] considers this method as one of Gauss' characteristic, however Poisson chose his own method like 
Laplace. cf. the entry no.8 in Table 3.(t)

91(4) In this paper , Gauss cites the concentrate in § E.2, E.18. 
92(.0 Gauss didn't say "nonnegative" but "positive" value.
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At any rate, we get the integral of it from (177) as follows : 

               —gdz 

              + m'dcp(m, m') + m'd(p(rn, m") + mm dc,o(rn ,  m r') + .. • 

             + Md43(m, M) + M'dl(rn, M') + M"dCm, M") + • • •

S2=—gmz— gm' z'— gm" z"—gm"'z"'—••• 

                + rn { rn'cP(~rnrn') + rn"cp(rn,mil)") +rn"' cp (rn,rn"') + • • • } 
              + a {m cp(m,m)+m cp(rn,m )+•• . } 
             + rn" {rn"' cp (rn, rn"r) + . . . } 

+ rn{M(13(rn, M) + M' Cm, M') + M"(1)(rn, M") + • • • } 
                + m'{M.1)(m',M)+M'(1.(m',M')+M"(1.(m',M")+•••} 

                + m"{MCrn",M)+M'(D(rn",M')+M".13(rn",M")+•••} 
+ ••• 

The function SZ is expressed by the following sequence : 

52 = Enil—gz +                         1m'cp(m, m') +2m"cp(m, m") +1m"'cp(rn, m'') + • • • 
+M1'(rn,M)+M' Cm, M')+M"4(rn,M")+••- 

where, -. characteristic E >- represents the expression of sum, in which m', m", rn"', • • • follow by per-
muting cyclically after rn's term. 

E.3. The sum of force : C2. 
 If we locate the discrete points M, M', M", • • • , and assume the continuous corpus extending in the 

space S, and C is the uniformalized density, then the sum 

M Cm, M)+M'4),(m,M')+M"41.(m,M")+••• 

is transformed into the integral

C I dS.4)(m, dS)
in the total space S, in which we denote the second analogy with (m, dS), which means the distance from 
the point m to the arbitrary points in the space S, and we call its element dS. 

 In addition, if we locate the discrete points m,7721, m", • • • , and assume the continuous corpus extending 
in the space s, and the density is uniformly c, then we get the sum : 

—gz +2cdscp(µ, ds) + CJdS.(1)(µ, dS) 
where, z is the altitude of the point ,a in the hyperplane H, in addition, we integralate the first integral, 

over the total space s and the second integral, over the space S. By the following expression : 

CZ = c I ds. [ds] ,
we integrate over the total space s. For brevity, we express :

 —yc  f  zds +2c2Jfds.ds'.cp(ds, ds') + cC JJ ds.dS.1.(ds, dS) (180)
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where, s, s' are specially denoted spaces ( satisfied with the mobile material ), however with the duplex 
integration93, integrate twice with the element to resolve it. 

 (4) Here the integral (180) contains sextuple integral when using both (178) and (179). (i)

Poisson cites Gauss' minimum denoted by CZ in (180) in his preface of [62] and states : 

    Depuis que cet ouvrage est ecrit, j'ai connaissance d'un Memoire de M.Gauss, qui 
parait en ce moment sous le titre de Principia generalia theorice figurce fluidorum in statu 
oequilibri94 . Pour former les equations de cet equilibre, l'auteur a recours au principe 

  des vitesses virtuelles, qu'il applique a la masse entiere du liquide, et non pas, comme 
  dans la Mecanique analytique95, a une element differentiel de cette masse. Il trouve, de 

  cette maniere, qu'une certaine integrale sextuple, etendue a toute cette masse, doit etre 
  un minimum. Dans le cos d'un liquide homogene et incompressible, il reduit d'abord 

  cette quantite a une integrale quadruple ; et en considerant specialment le cas oil les 
  forces appliquees au liquide sont la pesanteur et l'attraction mutual de ses molecules, 

  dont la sphere d'activite est insensible, it reduit de nouveau la quantite dont il s'agit, qui 
  est ensuit composee de trois termes, savoir, 

  (1) le produit du poids du liquide et de l'ordonnee verticale de son centre du gravite, 
  (2) l'aire de sa surface libre multipliee par une constante96 qui ne depend que de la 

maniere du liquide, 
  (3) et l'aire des parois fixes contre lesquelles it s'appuie, multipliee par une seconde 

     constante97 de la maniere du liquide et de celle de la partie solide du systeme. 

  [62, pp.7-8]

E.4. The characteristics, indoles of fluid. 
 The -< characteristics r (-< indoles >- ) of fluid consists of the perfect mobility, for example, in the 

minimum particles, however the figure were big, it can be induced to any size, or minimum potential, 
the mutual figure depends on each changing. In unexpansible fluid (the liquid ), which we called in our 
discussion, the volume of this particle keep to be constant due to the all movable figure. Consider that 
the following motion of this fluid 

    • which is limited by the solid corpus (the vase ), 
    • and which are obeyed by the attraction between the mutual particles, 

    • the attraction between the particles of fluid, 
    • and the attraction between the particle of fluid and that of the vase, 

    • the status of equilibrium, 
    • and value of this St, when Cl is maximum, etc. 

    • and without infinite transportation between the particle of fluid, this Cl can induce positive 
       increment. 

Why this St can get the value, as long as such as : 

    • how long the period the figure, 
    • what sort of fluid satisfy it, 
    • moved (only by the interior fluid ), 

    • accepting the equilibrium, 
    • how many times SZ for zero bring up the infinitesimal motion with the figure of vase. 

    Therefore, here, we consider that, if we can assume the figure does not move at all, (the vase which 
the fluid is contained, is along and tangential in everywhere ), the force can not move in the fluid the 
interior of the fluid, if the equilibrium is holds by itself.

E.5. The expression of SZ : the fundamental theory of fluid equilibrium.

93(4) In below, Gauss uses "duplex" not only as both P and U, but also as two triangles. 
94Gottingue , 1830. This is commented by Poisson [62]. 
95(4) cf. Lagrange [31]. 
96(4) It means c in the second term of(180). 
97(4) It means C in the third term of (180).
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We would like to proceed to precisely investigate the expression of  52, which we must consider as 
if the fundamental of the theory of fluid equilibrium. 

      (Latin) Progredimur ad accuratiorem investigationem expressionis 52, quae 
      tamquam fundamentum theoriae aequilibrii floidorum considerari debet.

We would like to take up, at first, 

    • the term f zds : the production made by the volume of the space s at the altitude of the central 
      gravity of the surface plane H. 

    • In addition, gc f zds : the production of mass at the altitude of the fluid. 
 Hence, thus fluid particles does not obey the other force except for the gravity, in the state of equilib-

rium, the center altitude of the gravity becomes minimum as possible as, and therefore, we get easy the 
liberal part or liberal parts of surface, the part of the horizontal plane in the one same place, it becomes 
the surface and boundary of fluid. 

E.6. Transformation of the expression and the definition of s, S, cp, 41.. 
 We take the transformation as follows : 

    • of the second and third terms to two cases of the particular problem, where, proposition of the 
      dual spaces whatever, single element of the first space with second element, we combine and 
      product from the third factor, put from the element volume of the first space and the volume 

      element of the second space, and the function data of the mutual distance, and then we can sum 
      up to the last, 

    • the second term to the same way, where the both space is the same, 
    • the third to it, where all of a side of space is from the other side of space, 

then, the problem is completed. The two different cases are completed, namely 
    • when one side of space is part of the other side of space, 

    • or when each side has the common part with the other part. 

Although, moreover, the first case is sufficient to institute us, or we can easy return the rest to the other 
side, when the work evaluate, the problem in itself complete by accepting the general sign. 

  In this problem, we denote the spaces by s and S, the function on distance denoted with the -< 
characteristic cp >- , as the same as in the application to the second located term S and s of (180), and 
to the third located term, we may replace 41 with cp. The integral is given as follows :

 ffds.ds.o(ds,ds)  f (181) 
 We would like to show that the spatial elements, depending on the three variables, which imply 

that the sextuple integral are to be reduced to the quadruple integral.

On Here the integral (181) contains triple integral when using either (178) or (179), then (180) contains 
sextuple integral. 98 

E.7. Preparation for evolving the equation.

fds.cp(µ, ds)
where u is the fixed point in the exterior or 

with radius = 1 of which the center is µ. 

dH _ ± dt' . cos q' _ ± 
                                   r'r'

interior of the space s. We consider the surface of sphere

dt". cos q"
=±

dt"' . cos q"'

r"r" ru1 r"i
etc.

fr2r.dr  = —cpr
98(J) Poisson recognized this Gauss' achievement in [62], however he investigated this problem by his own method.
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We integrate :

J ds.cp(p,, ds)
where µ is the fixed point in the exterior or interior of the space s 

                                           dt'. cos q' ./r' dt". cos q" .0r"  

f ds.cp(p, ds) = dH.(Or— Or„+ Or„,+ etc ) = -----------------r`r'+r"r”+ 
at the time when µ exists in the exterior of the space s :

dt"'. cos q"'./r"'
+...

J ds.cp(µ, ds)
               = dII.(00 — Wr' +,/r" — Or"' + etc ) 

                             dt'. cos q'. r' dt". cos q".Wr" dt"'. cos q'' .'r'" dII
.~i0 + ----------------- 

r' r'+r" r" + r"'r"'-------------------------- + .. . 
at the time when µ exists in the interior of the space s. 
 When we take the sum by the arbitrary surface of the spherical part, we get the integral f ds.cp(p, ds) 
is completed, then 

                      //IIdt. cos q.,pr in the first case                     ds.rn(p 
        7,T2                           ds) =4

7r00 + dt. cos2q.i/ir in the second case 

where 
    • dt : the infinite arbitrary elements on the surface of space s, 

    • q, r : these are the values underlined in the previous pages about the determinate expressions, 
      with respect to the element of r, 

    • 71 :  of the circumference of circle with its radius = 1. 

 We see easy the rest, if the point t is neither interior, nor exterior of the space s, or in the surface of 
these, to satisfy the secondary formula, the factor will move 4n in 27, even if the surface in the point µ 
were given neither as the cusp nor as the aciform 99 type ; however, by our proposition, it is not at all 
necessary to satisfy this case. 

E.B. Evolution of equation if ds.dS.cp(ds, dS). 
 By the discussion in the previous article, the evolution of equation if ds.dS.c,o(ds, dS) reduced to 

                      47raroo + f dt.dS. cos q.(dt, dS)  
                                   (dt, dS)2 

where a denotes volumes of these spaces, is common in both space s, S, if s, S alternate mutually, the 
first term 47o00 vanishes. New integral seems duplex in appearance, however, it turns to quintuplex. 
When we reduce to the quadruple, we must consider the integral 

                          JdS. cos q.0(µ, dS)  (µ, dS)2 
by the arbitrary elements of the space S are extended, denoting again µ fixed point, and q : angle between 
two straights ( 0 < q < 7r ) emitting from this point. Others are easily perspective, if the point p is only 
exterior or interior of the space s, evaluate the secondary formula, move the factor 4n to 27, and then if 
our propositions are not useful for you, please read the following cases. 

dII = —dT". cos x' = dT"'. cos x" = —dT". cos x"' etc. 

                                       /'dr.r 

                   

J ------—Or r.2 
here, accepting arbitrary the integral constant, our integral of the interior space S of prism, 

               = dII. (BR' — OR" + BR" — etc) 
—dT'. cos x' OR' — dT". cos x" OR" — dT"'. cos X"'OR"' — etc 

dS. cos q.%(µjdS) = dT. cos x.OR                        (µ,dS2 —~ 
99(4) E .g. A needle, a pin, a sting, etc.
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 4iro-00 — JJ dt.dT. cos X.0(dt, dT)
where x indicating the mutual inclination of the element dt, dT, by the normal-direction, which is 
measured by the outer direction to the space s, S, which the integral by the complete surface, of which 
the space can be extended. 

E.9. The three cases of integral. 
 As the same as the previous method, the division of space S in the element of prism depending is, thus 

the second method is necessary for the same division of space S in the element of prism. We consider 
that : 

    • at first, the surface of the sphere of the radius = 1, and around the center µ, are described with 
      the infinitesimally small elements divided ; 

    • next, toward points, these element dil draw the straight line to the point µ, and this surface of 
      the space S are cut at the points P', P", P"', • • 

    • then, we denote the distances between these points P', P", P"', • • • and µ by R', R", R"', • • • 
    • finally, the straight line at µ toward all points on the peripheral elements dII in the form of 

      pyramidal shape, and among P', P", P"', • • • cut the elements from the surface space S, and we 
      designate these elements with dT', dT", dT"', • • • . 

Moreover, we assume Q' inner straight line P'µ then normal in the elements dT' extend exterior and 
Q" Q"' • • have the inclination of similar normal in the same way, drawn from the straight line toward 
µ. Therefore we put 

dll _ ± dT'. cos Q'_dT". cos Q"_dT"'. cos Q"'  
              (R')2------------— (R")2(R")2 

where the sign changes superior or inferior, according to that the line µP' take interior or exterior of the 
space S.100 

  Then, it seems clear that for all partial spaces of S, inside of its pyramidal space, the angle q is constant, 
we deduce as if it were the same as in article 7, if we would set indefinitely, 

                                  Jcpr.dr = —Or 
if we assume the integral constant as arbitrary, the integral 

                            /'dS. cos q.5(µ, dS)  
                      J (µ, dS)2 

(I) In the case of the point µ existing in the exterior of space S : 
[dT. cos q. cos Q.9R             J 

R2 
(II) In the case of the point it existing in the interior of space S :

B0. fdn.cosq 
                                         (III) In the case of the point µ existing on the surface of space S : 

B0. I M. cos q
                          cos q = cos k. cos v + sin k. sin v. cos w 

Integral f dII. cos q becomes 

J dvJdw (cos k. cos vsin k. sin v. cos w) sin v 

                       0 

                   „Tr 27r cos k. cos v. sin v.dv = —27 cos k [ 2sin2 v] 
 22 

Applied to our first integral ff ds.dS.y(ds, dS) of (181), then 

100() cf . (211).

= —7r cos k



The "two-constant" theory and tensor function underlying the Navier-Stokes equations 135

• (I) If the surface space s, S do not have common part, then 

 4rr6o +If dt.dT. cos q. cos Q.8(dt, dT)  
(dt, dT)2 

• (II) If the surface space s, S have common part, which is T, then 

                             dt.dT. cos q. cos Q.8(dt, dT)  4rr6o Teo + if(d t, dT)2 
• (III) If the surface space s, S have plural, finite and discrete common parts, then 

                               dt.dT. cos q. cos Q.8(dt, dT )       47o-00+rr(T—T)8o+ ff  
(dt,dT)2

E.10. Criticism of Laplace's molecular calculation of capillarity equations. 

 • We are almost ready to introduce two transformations of the integral ff ds.dS.cp(ds, dS) in the articles 
8 and 9, by praising ourselves, even the equations were evolved, we may apply each time our proposition 
to it. 

 • Here, the function co is used originally as the function f , for the further study built on the hypothesis, 
on which Mr. Laplace studies, says that the force of molecular activity are more finite in the infinitesimal 
distance. This phrase when the liquid move adhering, how long keeps the uniformity, under everybody 
can observe it, the attractive activity fr, expressed by the function of distance r, and since he treats the 

gravity g as homogeneous, which is due to liquid mass ; this is a defect of his supposition. and denoting 
the liquid mass by M, whatever we can try in the experiment, and he says almost the same as nothing 
with respect to every part of media. 

 • M fr in the infinitesimal distance is not only finite, but also even r can be decreased over an arbitrary 
boundaries.

• Without theory and the policy to investigate that the gravity comes from the hypothesis, in the 
other point, the law of the function fr, as the same as the unknown in general, which we can not 
help making a mistake about the mathematical - character >- , look like peculiar : namely, as 
long as even the fact, standing on the most precise mathematics, can not punish himself, if so, so 
much as the mathematical precision, more, even without the experiments, we can get the absolute 
level of value ; without an experiment ( or proof ), none is free from the amusement by oneself in 
seeking after absolute truth ; if you would success, withdraw your supposition itself.

101

E.11. Function cpr as the constant of integral f fr.dr. 
(.u.) Remark. below, (pr - cp(r), cp0 - cp(0), f r - f (r) like the function in (178) and (179).(t) 

• Even if we suppose the function denoting by fr (or the function by Fr) of attraction, that the fact that 
the relation is proportional reciprocally with inverted r2, had been proved in the astronomy, if the figure 
between the fluid and a vessel, in any infinitesimal particle, the gravity can also affect to the modification. 
r increasing in even infinitesimal, fr turns into, by itself, infinitesimal, but also more rapidly decreased 
rather than . 

 • Hence, we can make a deduction from here as follows : even the integral f fr.dr in everywhere, it 
is finite, turns into infinitesimal, then that the constant of integral f fr.dr = —(pr, is supposed to be 
acceptable and have cpoo = 0, if (pr this value of integral fr°°fx.dx is extended. 

 • In any way, (pr the distance denoting positive qualityby r, not only infinitesimal, but also finite r ; 

continues to decrease with respect to the distance r, it can go beyond the arbitrary boundary, generally 

speaking, if there is non-obstacle, then cp0 = co.

101(4) Navier cites the molecular theory by Laplace and chooses consistently repulsive force in Navier's papers [46, 47] 
as the function depending on the distance between molecules, however, N.Bowditch 102 points out that Laplace rethinks 
the repulsion theory and changes it, in 1819 : co(f) = A(f) — R(f), where co(f) : a function depending on the distance f 
between the molecules, A(f) : attractive force, R(f) : repulsive force.
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E.12. The difficulty of calculating f  r2cpr.dr. 
On Remark. below, (pr - cp(r) like the function in (178) and (179).(t) 

• Hence, since the function cor, in everywhere, instead of the finite value of r it turns into infinitesimal, 
and increasing r continues to decrease, f r2cpr.dr always allows to extend finitely to an arbitrary big 
value, and moreover keep infinite, then as long as the latter, whatever we are ambitious, even if any 
experiments can teach us, it is just that : about how to make the infinitesimal integral, even by the big 
interval, in the case which we were unsuccessful in integral.

• The very calculations by Mr. Laplace show us all these situations, in which my supposition is 

included ; since nature of the unknown function (pr is suggestive, and using it, we can supersede 

it or abstain from it to many suppositional hypotheses.

 • This constants of integral f r2cpr.dr = —Wr are able to be determined as we choose it, to make 
  = 0, for the value of fluid with the finite distance of r, moreover, by its experiment, we can afford to 

get the length of circumference of the body. 
 • Hence, Or for all this sort of value will be always finite (positive for minimum, negative for maximum 

), speaking in general, if there is non-obstacle, then for the infinitesimal value of r, we can convert to 
the finite value : although ought to add, we give an explanation to the phenomenon, as the decreasing 
distance r in infinitesimal, the value Or itself means always as finite, as long as 00 depends on the finite 
quantity. 

 • Besides these, ̀T is the quantity when the gravity is homogeneous, is linear, especially, `9B 
is already-known-linear (for natural body, in this case, the function fr is useful for the force of the 
attractive activity ), of which the magnitude may be very suspect, however, in the known case, it is an 
almost-approximate value, except for suppositional hypothesis. 

E.13. Proof of that is linear in insensible magnitude and its avoidance. 

(.O Remark. below, or -'(r•),'0 - (0), Or - 0(r) like the function in (178) and (179)a) 
We consider the completely equivalentalentintegral : 

               J 'r = —Or ~* J '(r) = —0(r)(182) 
Here, we suppose that : 

    • by choosing the constants, Or = 0 for an arbitrary value r, for an arbitrary sensible between its 
      interval, on which the experiment tells us of the fact,1°3 for this, we can set how we get the way 

      insensible Or is for any sensible value r in everywhere, even if it evaluate sensible for the insensible 
        value. 

    • We assume cer explains the area of two-dimensional figure, in particular,921is linear. 
    • Naturally, another is linear in insensible magnitude, which we prove as follows. 

When Or continues decreasing from r = 0, and certainly, such as, insensible have gone, as soon as r get 
sensible value, for Or = a0o, 104 must be insensible : denote this value of r by p. We would consider the 
integral f (0o — 71)r)dr, which we integrate it from r = 0 to r = R, it becomes from (182), 

  RR 

                  (o— Wr)dr = [Wor + Or]o= RW0 — 00 + 9R. (183) 
                       0 Cleary, this integral more greater, when it is integrated from r = p to r = R, the extension becomes at 

any times greater than the integral f ('o — ,p)dr between the same limits. The last integral becomes 

R JOh — P)dr = (0o — p)(R — p) = 1Wo•(R — p) (184)                                          2 P 

which is generalized for this value R(> p) from (183) and (184), 

RW0—eo+OR> 2o•(R—p) 
103(4) Gauss cites frequently the word "experiment" , for example, such as ¶4 in Preface, or §E.15, §E.18. 
104(4) Which we say a half-life of the radiation.
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If R = ,and moreover, if R is a sensible quantity, then 

001 
                         00 -00+0R=0R>-00.(R—p) 

This expression becomes absurd and invites contradiction. (11) limR_,„ 0(R) = 0.0-) ^
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Solving method : If we can not avoid this tremendous magnitude of '0o, by cutting only zero, 
00 is possible to be the usually sufficient quantity and to be comparable with the dimension of 
body in carrying out an experiment. ( If so, we get the same situation as a usual condition of 
experiment )

E.14. Integral (I) and (II). 
 Moreover, that comes from this -< "indole" ( characteristic) function : 0 >- with respect to the integral 

(I)

integral (I) : ff dt.dT cos q. cos Q.0(dt, dT)

(dt, dT)2

(4).)where, (•, •)2 means the square of distance between them. (ft) We would like to investigate this 
integral (I), starting with the simplification of it, to be able to alternate the surface points µ, considering 
specially the integral (II) 

                               fdt. cos q. cos Q.0(p, dt)                     integral (II) :   (
µ, dt)2 

by all the surface : t, we consider to extend it. We denote the following : 

    • Q the angle between two straight lines emitting from the point µ, 
    • the second toward the element dt, 

    • the second toward the fixed point; 

similarly, 

    • q the angle between two straights emitting from the point dt 
    • the second toward the element µ, 

    • the second normal element toward the exterior direction 

Then 

    • at first, we observe, if point µ is sensible in the distance on the surface : t, all value 0(p, dt) is 
      insensible : in this case, total integral (II) are insensible. Here we can get sensible value in this 

      integral, how long we can extend the surface t in insensible distance at point µ, clearly enough 
      the integral (II) by this part, all neglected, that is sensible in distance. 

    • Next, instead of doof (II), we replace by ±dH, and denoting dHon the surface of the sphere                            µ,dG 
      with the radius = 1, with the center : µ, the description of element id, in which the element dt 

      of the exterior or interior plane, direct the point µ. 

Hence, we get the integral (II) as follows 

        fdt. cos q. cos Q0(p, dt) =i,+dHcos Q.0(µ, dt), where, ±al =dt.cos qf 
  J(µ, dt)(µ, dt) 

here it is clear that this integral refers to the value as long as it is sensible, in respect to all the elements 
dH, at the insensible distance (µ, dt), then the sensible magnitude of space on the surface covers the 
sphere. We consider the following three cases. 

   (1) In which, the radius of curvature of the surface t is infinitesimal at the point µ. 
   (2) In which, the continuous curvature at the point µ which the inner distance is infinitesimal. (cf. 

      [15, art.3]). 
   (3) In which, the radius : of curvature of the surface t is open at the point of µ. 

We would like to treat other reserving problems in the following article.
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E.15. Integral  (II)  . 
(4) Remark. below, Or - 0(r), 8'r - 0'(r) like the function in (178) and (179).(10 

It is the most clearest case that every point µ is not in the surface t, however, in the sensible distance from 
here : in this case of our integral, it is possible to have sensible value, which we would like to investigate 
precisely. 

    • At first, splitting a surface on the sphere, to a point is made normal in surface t, moreover, we 
      draw the fixed straights emitting from both the points G and H respectively; 

    • next, we assume the arc GH = k, 
    • then, as another arc made of G and an arbitrary point, assuming G. = v on the surface of the 

      sphere ; 
    • finally, we assume the surface angle w made of arcs k and v. 

Here, the method for the element dII is possible to admit the product sin v.dv.dw, and we call the distance 
(ii, dt) r briefly. Then the integral (II) turns into : 

               JdvJdw [ ± (cos k. cos v + sin k. sin v. cos w)Or. sin v] (185) 
We denote this minimum distance with p ( at this point G, it correspond to v = 0 ), r =—P—cos, when 
v = 0, then r = p, if w is independent of it. When we integrate (185) with respect to w, from w = 0 to 
w = 27, then 

                       r f27rJdvdw [ ± (cos k. cos v + sink. sin v. cos w)Or. sin v] 
                                 =* ± J270r. cos k. cos v. sin v.dv 

_* ± f 2rr cos k.8r.dr(P) (p).dr 
                                                    7.

+ 2n cosk.p2Or.dr 
                        Jr3 

(.O where, we used 

               r =p=cos v ==sin v.dv =P.dr (It) 
cos vrr2 

Here, we consider this integral as the interval from r = p to an arbitrary sensible, however, small value, 

then 

                   / 27 cos kp2Br.dr_ ±11"cos k (2r2Ier3r ) 
We consider generally : 

ffOr.drJe3r=—B'r,Jr3r= 0,(186) 
for an arbitrary sensible as its interval, on which the experiment tells us of the fact, we neglect the 
insensible terms then the integral (II) : 

                    ±7cos k (2r2fBr.dr) = +rr cos k.e'p(187) 
                                                                r.3 

If it seem to be doubtful, or to be right, we have the partial surface t inter insensible distance, to the 

point µ position for the plane, and consider this location of the sphere, and R the distance from the 

center of the sphere to the point p taking as positive or negative, according to whether the center is in 

the direction toward G or in opposite direction. 

  Hence, we get the followings : 

       • 

                     fcosv=(1—)+2R 
                       sin v.dv = [(1 — 2R)+aR]dr 

      where, if the mode R is a sensible quantity, we can see easily that the integral for this case, is 
      not different with the above-mentioned in (187), sensible quantity about the value, +or cos k.9'p .
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 • Another is the curvature of the surface t in its part, come from this, as long as the radius of 

   curvature is insensitive, always we can assign the dual surface of a sphere, surface t in this point 

     the nearest point by tangential angle, inter this t set, 

 • and these radii are sensible magnitudes, clearly, then our integral inter integral fall into the related 

    surface, 

 • and therefore, we could explain without sensible error, by the same formula, 

 • which, not only above things, but also we would suffer from the exceptions, when the surface t 

   in the insensible distance to the point  µ, would offer even the curvature of insensible radius, or 

   aciform type, or the cusp 105

E.16. Reduced integral from sextuple to quadruple. 
 Therefore it is clear that the transform come out from the integral (II) to integral (I), here insensible 

occure not only in this case, but also when the sensible value is produced for null point of the surface T, 
but also when the complex element of the surface T, for which points the integral (II) becomes sensible, 
the area consists of also insensible magnitude. Which are considered rightly, the integral (I) will appear, 
how much is able to acquire the sensible value, how long be able to keep the partial surface T or partial 
sensible magnitude in the insensible distance to the positive surface t. 

  Our integral (I) neglecting the insensible factors :

= — J 7r8'p.dr + fnO'P.dT' 
Clearly this is not important, either the parts T and T' or to the surface T to t is rather important. The 
value of (181) becomes

JJ ds.dS.cp(ds, dS) = 471-a -WO — 7rT00 + 7-rT'60 — rr J dT.B'p + rr J dT'.0'p (188) 
                  triple integral 

(.u.) Just this transformation is boastful reducible method of integral from the sextuple to quadruple, 
what is called by Gauss in (181) .

E.17. Method of reduction of ff ds.dS.co(ds, dS) from sextuple to quadruple. 
 • Therefore, we can assume the primitive function 0' of (186), i.e. 

             2r2 fOr.dr= —O r~*O'r=f20 c.dx(189)           r3r2Jx3 
• We consider the integral from x = r to an arbitrary, sensible and constant value, denoted by R. Namely 

we integrate the following :106 

I` 29x.dx Or OR Jx3=r2—R2(190) 
                               R Clearly this integral is smaller than this f 2osx3dxwith the interval, this is = 7 — R2 . Moreover, it is 

smaller than . Otherwise, by infinite integral, it become as follows : 

                        /'2Bc.dc =—Br/'dOx=—Ox—/Wx.dx 

     

J -------+ JJ(191)            x3x2x2x2x2 

Moreover, from (189), (190) and (191), 

8'r—[20x.dx—*_Oxf/>x.dx-x.=7. _(Or OR['r.dx_*(OrOR)_'r(192)   r2Jx3x2Jx2 _—.r2 R2)Jr2—\7.2R2Ir 
• Integrating with the smaller interval than the integral f ;t2dx . Moreover, from (192), this is smaller 
than !i•therefore,the value of4-is greater than the right-side expression of (193) 107 

        O'r Or ORWrr2.8R 
r2=Cr2—R21—rO'r = Or— R2rbr(193)

105(4) cf . the footnote above in the last line of § E.7. 
106(4) This function is rapidly decreasing function . Here, Or, OR mean 0(r), 0(R) and are assumed as 0(r) > 0(R). 
107(4) Multiplying by r2, which is infinitesimal value. Today's description of (193) is 0'(r) = 0(r) — T R R) — ro(r).
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From (193), the interval of  O'r : 

Or and Or — r2.R2— rWr =* O'r 
• If we differentiate this expression, by r decreasing infinitely, then we see clearly that we can evaluate 
this quantity to be infinitesimal, for example, when 00 in (188) is the finite quantity. Thus we have 
concluded that it is due to Bo = 00. We see clearly that the formula (188) of previous art.16 ( §E.16 ) 
turns into 

    • —7rT80 and for instance, under the interval —7r f d'.B'p 
    • 77-1O0 and for instance, under the interval 7r f dr' .0' p, 

if the difference or the distance is insensible or considerable as null, to count respectively the part of 

T, T'orr, T'.

By using this method of solution, we can cultivate the elegant 

must surpass to conserve the distinction of our proposition.

E.18. Variation problem to be solved. 
 In the application of previous survey to the evolution the second term of the expression  Si in §E.3 and 

§E.6 denote by S in § E.20 a, T, T' will be use as s, t, 0, if t is the total surface of the space s, in which the 
fluid is filled. Therefore whenever this space extensional sensible part however insensible concentration 
is kept, this sort of gap ( crevice ), the second part of the expression CI of (180) in the art. § E.3 becomes 

                          = 17rc2(s)0 — W0) 
We assume the exceptions as follows : 

   (1) the space s contains the insensible part of the thickness, and this surface offers the dual sensible 
     part of the liquid, 

        • in which we denote the alternative t', 
        • thick space in the neighborhood of the infinite elements : dt' by p, 

        • by accepting the expression above terminology,

7rC2 J O'p.dt' 

  (2) We put the - characteristic f >- for the force of molecular attraction and -< characteristic >- F. 
     The relation with the vase ought to yield oneself to the attractive force, we denote the functions 

     by the - characteristic >- with 0, 0, 0, 0' and similarly with 43, 4, e, e' applying the same relation 
     between F and f . The third part of the expression S2 becomes generally speaking : 

rcCT e0 

  (3) If in the neighborhood of the sensible part T' of the surface T have the thick of fluid, we denote 
     the next term, in which infinite thick of fluid by p, as we accept from the experiments 

—ircCTU'p.dT' 

   (4) If the surface of the vase is contiguous except for the part T, we offer T" in the distance we 
      denote the next term, in which by p indefinite distance for points in anywhere, 

+7rcCT e' p. dT" 

In static equilibrium it is due to the maximum value, this turns into

In an arbitrary fluid, of which the figure is yield oneself to the space s 

expression becomes as follows  : 

r 

                         J  zds  + /rc90 .t — 7CTeo .T               2g g

meaning invariant, of which the
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and in an equilibrium state which is due to minimum. Here, we denote 

 irc802 'rCTe0 _ a _2t-T+U 
        2g2g 

and denoting by W, then

141

(194)

E.19. Decomposition of variation of  W. 
 The first term of the variation of W by (195) is as follows : 

                                andh + a'h'dh', 

and T of the second term : 

                                 bdh + b'dh'. 

The last term of the variation of W by (195) 

dU-0 

Then from (195) and above three conditions, we get dW as follows :

hdh  + a'h'dh — (2132 — a2)(bdh + b'dh')

Moreover, for the volume of the integral of fluid is invariant, then 

                              adh + a'dh' = 0 

                  dW = dh a(h — h') — (2132 — a2)(b — ab )] 

a h—h'=(2,32—a2)(b — 

We can assume a >> a, in comparison with , then 

                              h—h'=(202-2)b 

a We get the maximum height h :

Then 

                     =  (202 _ a2)b' hi, = (202 — a2)b" 
a'a" 

E.20. Geometric structure for analysis. 
 Moreover, now, with theorem in §E.18, we would like to determine the -< "indoles" >- ( characteristics 

 of the figure in equilibrium, these problems are changed in evolution of the general variation, expressed 
with W, if the motion of the figure of the space filled with a fluid occured in only infinitesimal. If when 
we variation calculation of the duplicated integral for case, then even the boundary as if the variable 
insufficiently investigated, we could approach this precise survey to a little profound. 

 We consider the following : 
    • the surface, denoted by s 

    • a part U, on which all the points is determined by the coordinate x, y, z, these three values are 
      the distances to an arbitrary horizontal plane.
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It is capable to recognize z is, for example, as the indetermate function by x, y, for these secondary partial 

differential with a conventional method, by omitting a bracket, we show it by 

                           dz 
dx.dxdzd                                         — •y                                  d

y 

 (.O These descriptions by Gauss mean as follows : 

dzdz _d2zdzddz_d2z dzd,xdz=d2  .dx -(z    —l      dx`dx 1. dx2 ' dyy=(l_\dy) y dy2 ' dx dx x, dxx' 

(M 
 The structure we are considering is the following : 

   (1) We define the points consisted of an arbitrary and every points on the surface, denoting s with 
      respect to the rectangular surface, normal to the exterior direction of s, and in addition, we set 

      an angle by cosine between this normal direction to the axis of rectangular coordinate x, y and z 
      with parallel, which we denote by ,7-1 and (. Thereby it will be : 

e2 + n2 + (2 = 1,dz =—dz= —1*2 + ~+ (2=* 1 + (()2\/2_*(196)         ,dxdy 

   (2) The boundary of surface U become linear in itself, as the same as denoted by P, and while the 
      motion is supposed necessarily, this element dP (as the same way of dU as the surface) is treated 

      as positive only. 
   (3) The angle by cosine, that directions of the element dP are expressed with the axis of coordinate of 

      x, y, z, denoted by X, Y, Z : since we would avoid giving ambiguous sense about the direction, 
      we define these angles as follows : 

        at first, 
        • we assume that the normal straight in the element dP to the surface U, and draw a tangent 

        • looking this line innerward, we draw the second side, 
        • at last, in the normal straight with respect to the surface, we put the third side in the space 

           s to the exterior, 
      and constituting similarly the next system of three straights and the coordinate axis x, y, z. 

        Secondly, thus, we see easily the following expressions (cf. Disquisitiones generales circa super-
      ficies curvas ), using the angle by cosine with the straights to the axis of the coordinates x, y, z 

       are respectively 

yl°Z (°Y, e°X — °Z, °Y—(°X ~* X Y Z ,(197) 
o no (0 

      here, we suppose that .° y°, (0 are the values of , n, ( for the points of the element dP. 
(.O where, a, 0, -y are temporarily used values of ours to correspond to (218). By the way, we see 

      (197) is the same with the determinant to be mentioned again below (218).

E.21. Variation of a triangle dU of the surface U. 
 Here we would like to supplement the preliminary. We assume the surface U is the part by an arbitrary 

infinitesimal perturbation. 

    • If we consider sufficiently all the perturbation, for this boundary P always invariant, at any 
      rate, it maintains, in this vertical surface, we can induce clearly the variation of only the third 

      coordinate z, this problem is far easy to evaluate it ; 
    • moreover, the maximum problem in general, in the following investigating method, considering 

      the variable boundary, in which ambiguity and difficulty combine elegantly, bring up perturbation 
; how we can show, always from the start of all, three coordinates handle the variation. 

We the force as we image it, and anywhere on the surface, in which the coordinates, which are x, y, z, 
had substituted in another, these coordinates are x + 6x, y + Sy, z + Sz, where 6x, Sy, Sz are able to 
regard as if these were the indeterminate functions of x, y, if these values stay infinitesimal. Now we 
would like to inquire into the variation of singular (individual) element, expressed with W and surely the 
initial are made of variation of these elements dU.
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 Now, we assume a triangle consisted of three points 
triangle dU consisted of these points, of which the  coo]

  If we assume 

follows :

 P1 

P2 

P3

dx.d'y — dy.d'x

and tensor function underlying the Navier-Stokes equations 143 

sisted of three points :131, P2,P3.108We put the element of U by a 
nts, of which the coordinates are : 

 xyz 

x + dx y + dy z + g.dx + dy.dy 
x + d'x y + d'y z + 2.d'x + t.dlY 

> 0, then the twice area of this triangle is gained by our principle as

(dx.d'y — dy.d'x)

4(198) becomes(~x'diy(—dy.d'x)from (196). (1-) 
• location value by perturbation of P1 : x  +  Sx, 
• Location value by perturbation of P2:

 x  +  dx 

+ dy 

z + .dx +•dv           dy-

• Location value by perturbation of P3

 x  +  dx 

y + dy 
z+ t.dix+ "114.d'y

 1+

+ 6y,

Sx dx dday-x .dy 

Sy + ddax-Y .dx dda; .dy 
zdc-t.dx te-.dy 

on of P3 : 

• 
(5x-kfa÷:.dx-1-döz 
(5y +ydda..xddayy .1 

ozaz.dx(la z .(    dx dy

 d/  x thia;         dy •"' 

   +•d'y      dy 

  + .d'y

)2

 z  +

) 2 (198)

  (X + OX) + (1 +                     ddax'x ).dX -caiy                               .dy 
  (y + Sy) + .dx + (1 + dd6y9 ).dy 

                     (sLzclO z (z +Sz) + (2-+dd6:).dx,                    dy dy

 (4) Totally, we can see that the values of coordinate of each point are 
'(P

i) : x+bx, y+Sy, z+Oz, 
 (P2) : x + 8x + (1 + ja~).dx + ay •dy, y -I- Sy da: .dx + (1 + d°y ).dy, 

(P3) : x + 6x + (1 + dax).d'x ay •d'y, y + by + ax .d'x (1 d J ).d'y, 

We can also show the matrix with variation only as follows :

  (x  +  (5x) + (1 + as).d' z +yd'y, 
             (1+ 

       dzdbzidz dOz 
(z+8z)+(~+~).dx+(dy+ dy).dy 

Ant are as follows :

z ++ (`.(+1.++ (cci—  *).dy 
 z + + ( + ((st + e).d'y

6xSy 

(1 + ddas-x).dx + ddey-x .dy a----Y.dx + (1 +an.dy      dx,dydz                                        (1-7,+ li.).dX + ec-i-+ 
i_L_1&ix\.(fx_i_dOx.di„Y,ayAix ± ( 1_i_a)(y.dly(-ddi+1-1dLxz)' di X + (-cl k1 _dx)'dydx1dy) 

6xSySz 

= (1 +÷-:) . dx +d-P-c. d yd6V.dx + (1 +(16Y).dy                dxdyE.dx + D.dy 

                                                 ( 

    (1 + 45,--:).dt-5,1             x +7.dd5y                       ydx.dfx + (1 + dc-1).d' y E.d' x + D.d'y 
                      dz d8zdz d 

                        where, E-_— ----'                                         +D-,_.-E:—d
y+ —(                              dx dx 

r, these principle comes from Lagrange [31, pp.189-236], 109 in which La; 
Jariationsli° in hydrostatics. (11-) 

)lex triangles 111 including these points, by the same method, for brevity, 
98) is expressed as follows : 

                   (dx.d'y — dy.d1x)V—A7

 By the way, these principle comes fr 
 rnethode des variations11° in hydrostatil 

    The duplex triangles 111 including 
sum by N, (198) is expressed as follows

5z 
 +(-----5z-).da;+(dz+d(5z'\.,1„, .dxkdy'dyI"'Y 

(ddxz+dd5xz) .d/ x_.„( dz+dc 5 z \.,p„,                1\dy'dy I"'Y

dzy(199) 
  y Lagrange states his

by denoting the

 1080 -) The symbols : Pl, P2, P3 are of ours instead of "the first point", etc. 
109(4) Article 7. De l'equilibre des fluids incompressibles, §2. Ou l'on deduit les dois generates de l'equibre des fluides 

incompressibles de la nature des particules qui les composent. [31, pp.204-236] 
110(4) Lagrange [31, p.201]. Today's mathematical nomenclature is calculus of variations or calcul des variations. 
111(j) The duplex triangles construct a rectangle made of two adjoining triangles .
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These  values  : dxdy—dydix, dzd' x— dxd' z and dyd' z—dzd'y are calculated in permutation by Jacob 
IJI of the three determinants extracted from (199) : 

1 + d6xd:1_i_d6xdOx1_i_clam dOy  
(X,y):aydxay'(x'z):''dx dy'(y,z)1dy dx     1+'E DD E 

      dxdy 

(fr) 
We denote temporarily the following sum by N, then

N

ian

where, C E----..._ V + — 111 + - )- = 1 + + , D = +E = ± 

                                                                                _ 

          dx J \ dy i dy . dxdx dydy dy ' dx dx 

and Di, D2, Ei, E2 are the two terms consisting of D and E respectively, and these coefficients are 
correspond to the variables of the equation (201) showed in our footnote on the theory of curved surface 

             112 by Gauss [15]. 

Extending (200) with neglecting the second order of 6, for example, -dc1;;'s .dda: or (t-)2, etc., and for 
brevity, denoting the sum by L, then 

(I1) 

                           2 

                    dOx d6y)2(dOx-----d6y  o C=(1 + - +1 + 2+ 
              dx dydx dy 

                            [(dxdx1+ 2d6x+(cl6x\2+iay)2-( dz+d6z)2 ®-(1+d6x)2+( doy)2-1D2         dx)dx)i=dx))_ cly dy 
                                      d6x\/dzdzd6z 

                          (1+ 2 dx)((—dy)2+ 2—dy—dy+ (051)2) 

                                                                             Y 

                                           dz 2dz d6z) 
                           (1 + 2ax—)((                                dx)dy)+2-d)                                          dydy) 

                                 dz 2d6x(dz)+ 2+ 42dz d6zd6xi_z_d6z = ( 
                               dy )+ 2 dxdy)dydydxAY dy 

_ (dzy+2d6x( (.1z2+ 2dz d6z 

                   — 

               =d
y                                         dx cl'y) dy dy 

   112(4.) In Disquisitiones generales circa superficies curvas, Gauss deduces the following concluding equation ( cf. [15]) : 
                                dr drdrdr 

                   EG — F2 = E()2—2F.—d
p.—dg± G(—dp)2(201) 

We see (200) resembles one in [15]. 

                   N = C2 + G' D2 + Et E2 — 2F' DE(202) 

If we assume that 1; _= D,(c-P-:iE-_--E, E' = E3+ E?, F' = D1E2+ El D2 and G' = D?..d- D3, then E', F' and GI correspond 
to E, F and G in [15].

d6xay d6x &Sy - 2d6xdz d6zd6xdz d6z\2                                                                                      2 

[(1-1-7X) (1-1-Cr-)•+[(1+CET)(-5+CFO(-a7-I-7E.)            y dy dx _ ....----.„-----,•-.......„--,....—,----,- 
C. outer product of (x,y)DE 

                                                              outer product of (x,z) 
-

1 ± ay)( dz+d6z) ay ( dz+az)-2     d
y)dxdx ) dxUydy )         ....—.. .,---, 

  ED 

                outer product of (y,z) 

e2 + [(IL +dOX)D —d6xE- 2+r(1+d6y)E -d6yD-2       dx)D—dy _Rdy ) dx - 
e2 + [(1 +c1SX)2+(ay)21D2+r(d6x)2+(1+dby)21E22 71+d6x)d6x+(1 +dy)d6y-iDE 

      dx)dx)JIAdy)dy)i..dx) dy dy ) dx 

c2 + [D + JA D2 + E? + El E2 -2 [D1E2 + E1 D2 DE,(200) 
s---,,---":, '*----„--,..----.„----, 

G' of (202)E' of (202)F' of (202) 

C((16x) (1 d6y) d6x d6ydSxayDE                                   dz d6zdz d6 z  -----_-_--1+—+=1++=+ = +      d
x ) dy ) dy . dxdx dy ' dy dy ' dx dx 

D2, El, E2 are the two terms consisting of D and E respectively, and these coefficients are 
id to the variables of the equation (201) showed in our footnote on the theory of curved surface 
pi. 112 

ding (200) with neglecting the second order of 6, for example, -d4s .dda: or (t-)2, etc., and for
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Similarly changing x with y in corresponding expression, 

 0 udd6xy+(1 +dd6y\2-E2=+(1 + 2dd(Sy+(dOy)2)1 (dz2                                                          +d6z  
    Y)Y)Y)ydy) dx 

                             (12ay( (dz2dz+(az \2    +)                               d
y ) dx)dx dxdx) 

                             (1 + 2ay) ( ( dz2+ 2dzaz 

                                     ) 

                       dy) dx dx 
                              ( dz)2+2ay ( dzy+2dzaz+4dz d6z                              

.dx)dy dx) dx dx dy dx dx 
                          (                                  dz22 ++dSyHdz)2 ±2_dz_d6z                =

dydxdxdx 

    –2[0+DE              d6x)ax(_ay)ay  
           dxdydydx 

= +2 [(1 +ax)ax+(16yagi (dz±d6z)(dz ----                  dx)ddydy ) dxdx)(dy dy ) 
– –2 -I-                 -ax dOx ax ay ay ay- ( dz dz 2 az dz d6z d6z  

_ dy dx dy dx dy dx dy dx dy dx dy 

              .4(                (Mxay)(dz dzc,d6z dz) 
                dy dxdx dy dx dy 

            –2 (dOx dz dzay dz dz2axaz dz2ayaz dz) 
                  dy dx dydx dx dydy dx dydx dx dy) 

          – .4— 1- 
               odz dz (d6x,d6y  

                 dx dydy dx 

(it) 
                                                                   - 

2                        dz 2 dz 2—L           -11-V =1+ (—
dx) () 1+----------------                                   (fD2 (c4)2_ 

where, L is gained by extracting only one order terms in the expanded terms from (200) : 
(4) Here we can't solve a question : where the inconsistency by the coefficient 2 in front of L in (203) of 
The calculations by Gauss are interpreted as follows : 
N 

C2 + (0)D2 (*)E2 (.)DE 
              ay) +(dz)2+ 2d6x(dz)2+ 2dz+dz)2+22d(Sy dzV+2dzaz2dz dz(c/Sx      1 + 2(---- 

       dx dy)dxdy)dy dydx)dy dx) dx dx dx dy dy

=* 2[dd. x, 

dx

0c2 

{ +

                                                                         145

dz) 2 dz dz d6x 
dy dx dy dy

d(Sy 

dx

                                                 , •D2•E2 

      ____dz)j dy dy 
                          dz      d6Y{[1 +(— 

 dxi     dydx

 dz d6z\ 

 dx dxi 
+[1+

 •DE 

dz)2 
dx)

                                               L 

 =*2L[1 +(zdz.)2(Ty_dzyi 
(ft) We continue from Gauss. From (203), a first triangle L is the following : 

L =*2+)2/1 
dx ri ( dz ax dz dz ay dz dz d6y -1 

+ (d.z) 21           d
x L dy) _ dy dx dy dx dx dy dy _ ) 

=*ax dz21dz dz(ax+defy -1 +(dz)+ 
dxL)dxdydydx)dy_)_ 

Here we may recall (196), then the following holds : 

2dz dz 71Z/dx\2 _*      4_172_4_(2=            d
x=dy=1-4-(./x) dy)

az dz az dz 
+ +d

x dxdy dy 
az dz az dz 
dx dx+dy dy 

772 4_ (21

(2

(204)

(205)

dz) 21 
dy 

(203)

(2
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The ratio of the first triangle to the second and plus 1 becomes, 

 1  +------------------L=* 11st triangle=* 1 + (2L 
                 1 + (dzay                        )2+(ax)2+2nd triangle 

         ax 

(.u.) The two triangles of first and second are contiguous and construct a quadrilateral by two. ft) 
 Moreover, this is independent of the figure of triangle dU, then, it turns out, 

                     SdU = (LdU =* (2LdU 
                      1+(dx)2+(dy)2 

Moreover, this is independent of the figure of a triangle dU, then, it turns out, 

                    SdU = /LdU=*(2LdU 
+(dx )2 + C,14)2 

                                     Expanding L in (207) using (196) and (204), then 

SdU = dUdSx d6y            [dSx 22lrdSy ((2 2ldzdzdx~~+(2)–(dy+dxl+dy+(2)dx~d y~l~]
(.lj.) where, we used the following : (2 (1 + a~) = (2 + (2 = 2 + (2, 
Here, the coefficient of 2 in (204) is unnecessary, since dU is a triangle _ 
to Gauss' description, dU means a triangle in (207) or (208). 

E.22. Integral expression by decomposing dU into dQ and dU. 
 From (208), all variation of the surface U is obtained by the 

       f dU L(r72 + (2)----dx–eri(dx) –(( dx A, (x–diffe 

      I dU[– + + – B, (y–diffe        dydy dy

(i+) 
defined in

(206)

(207)

(208)

= (2+(2 = (2+712. 

§E.21, then according

                                                 following two integrals

rential part) (209)
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 (ft) 
 Therefore, from here, it is clear that the part A, which corresponds to the part of the surface depending 

on between the interval : y, y + dy, turns into the following integral, i.e. substituting the right hand-side 
of (212) into A of (209), then 

                              d5end6y                  A = dy f dx(r12.4-(2edSz) 
                           (dxx(.dx 

extending from x = x° to x = x', next, from x = x" to x = x"' etc. In fact, the limit of this integration 
by parts is expressed as follows : 

      +<-27/2+(2                                                                   d§-2,        A = -------6x.sye6z) dyd xdy f (6x (dx(Sy-----s(5z—ck   (n2)dx(213)   (Cdx 

Here, we construct A using (211) and (212), then 

(7702 4_ <-02 62 ,n0                                       v  6,yo _ .o6zo) yOdp0             (0(0 

                    + (T/'2 ± <12 -----oyi — ort)rdpi 
        CC 

                         ( Tr2 ± ("2 '''                                 6x/in                          +C6,0_-//(5,z/i)yildp1/ 
                                             (11 ° 

                         + etc. 
                                                712 +(2                                                   d§D-,                    – f ( dU (Sx  ((5y------(5z.(-1--C-) 

                 dxdxdx 

or in sum, 
                      2

d                                                                .a2_�......2g-2,                     ,2.2 E(-'(5x07Sye6z)YdP I (dU(Sx  ( Sy—�-- – oz--Cd )     ((dx dx dx 

This total quantity A is expressed by

 772  +  (2 

C
  — -Sy — eSz)Y dP — I (WU (Ox — 611

dx
Z — d

x

where, the first integral is extended to all the circumference of P, and the second is extended to all the 
surface of U. 

E.23. Analytic reduction of SU to two integrals of Q and V via A and B. 
 By calculation from (209) as the same as (210), we get B similarly and immediately

 ,02 + (2 

—Sx — 
(

(Sx  

 2 + (2

Sy Oz)Y dP f (WU (Sx----- 
                      dx 

Sy – 716 z) X dP I (WU (5x – Sy 
d:y dy

– Sz 
dx 

dy 
oz—    d

y

Here we determine for all the circumference P, we get (Q from the first terms of both 

          (-CESx e (2 Sy ri8z) X + (T12 ± (2 Ox – – .(5z)Y Q, 

_X 07 Y (ri2 + (2)] ax – [X(2 + (2) + Olay + (X – YOSz = (Q

(214)

(214)

(215)

and (215),
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Moreover, for every point of the surface U, weeget V from the second terms of both (214) and (215), 

       %(r'2+tS2~2+{2 

        (__cd dx-------)öx +(dxdd(------- (Sy + (-~-d~+_y) cbz-V (216) 

           d 

 yy 

That is, we can put

The first integral is to be extended along all the circumference  P, and the second is on all surface U. 
(4) This is what is called the Gaussian integral formula in two dimensions. 

E.24. Geometric reduction of Q and V. 
 Formulae for Q and V notably contradict X. +Yri+ Z( = 0,114,Q has always the symmetric form as 

follows : 
6x Oy Oz 

Q = (17( — Zri)Ox + (Z6 — X()Oy + (Xri — Ye)Sz the value of determinant : X Y Z (218) 
                                                     6 77 

(4) Here, the expression by determinant is of ours not by Gauss.() 
When we see the form of V, we can reduce from the formulae (196) 

dz dx ri 
                dx ( dy (' 

the following as 

                                                     (219)                            dy dx 

therefore, 

dr/ d 6 A clI<L 
                        dy-•(7dy71dy= •dydx 

Moreover, for e2 + 772 + (2 = 1, we can deduce 

                                 ,.. de dr] + 71- + - =0(220) 
                    dx dx dx 

by dividing the both side of hand of (220) with (, 

6 d6 d( —
(—dx=—(.dx+dx                                                      (221) 

and therefore by (221) 

                dri24,-(2=dr,A.)(q.    s=(222) 
             dx dx( dx dxdx ( dx 

We may replace the coefficient of (ox in V of (216), using (219) and (222), 

d'2---------4(-(2 

           dy dx 

                     cgP. 
                 = 
dy-—dx+( dx.----(from (222), ) 

          = (6d7-16d6                    --TIS—+ (, from (219), ) 
       ( dy dx 

6 (d6 dri) 
= ( dx dy 

114(4) This means Z( $ 0.
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Similarly for  (Sy

dx

d~

dy   \dx+dy)

Then V of (216) is reduced as follows :

V = (Ox-{-r1Sy+(Sz)(dx dyl 
               d

+dri

E.25. Geometric meaning of d + ay in V. 
 Before going forward, we must illustrate conveniently the important geometrical expression. Here 

we restrict the various directions of methods, we would like to present the intuitionally simple method 
as follows, which we introduced in Disquisitiones generales circa superficies curvas. We consider the 
following layout of structure. 

    • At first, we consider a sphere, of which the radius = 1 at the center of an arbitrary surface, and 
     we denote the values of the axes of coordinates x, y and z by the points (1), (2) and (3), 

    • next, taking exterior domain denoted by s, we number a point denoting by the point (4) toward 
      the normal direction on surface ; 

    • then, from an arbitrary point on surface, we draw a straight line toward different point, which 
     we denote by the point (5), 

    • finally, for the variation of itself, we suppose that for the quantity \Sx2 + Sy2 + 6z2 to be always 
      positive, and we denote the quantity by Se for brevity, then

 Sx =  Se. cos(1, 5) 
Sy = Se. cos(2, 5) 
Sz = Se. cos(3, 5)

, where Se - .05x2 + Sy2 + Sz2.

(4) (Remark. If we assume each (•) a unique point each other in both, then (•, .) means the angle between 
two points taking an intermediate of an origin. ) By the way, before Gauss' method of description of 
angle, we can show the same method by Lagrange in 1788 as follows : 

        Comme ces quatre systemes de coordonnees repondent aux quatre angles du nouveau 
quadrilatere dans lequel s'est change le rectangle dx dy, it est clair qu'on aura les cotes 

      de ce quadrilatere en prenant la racine carree de la somme des carres des differences des 
coordonnees pour deux angles adjacents a chaque cote. Ainsi, en marquant la droit qui 

      joint deux angles par la reunion des deux numererons qui repondent a ces angles, on 
      aura (1, 2) = dx,J • • • Lagrange [31, pp.207-208]

  (Trans.) 
It is clear that by two adjacent angles made by each side or edge are By /Sx2 + Sy2 + Sz2 : the square 
root of sum of the each square of differences. Therefore by marking the line joining the two angles, with 
the pair of two number corresponding to these angles, we have (1, 2) = dx,J• • • • • • (t)

    Here, we would like to express the every point on the surface. About this boundary, when we treat 
the periphery P, we can approach this from the two different directions. 115 Hence, 

    • at first, we denote the point corresponding to dP by the point (6), 
    • next, we draw a straight line of the inner normally-directed tangential to the surface, then we 

     denote the point by (7),

115(J.) Namely, clockwise and counterclockwise.
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TABLE 15. Comparison of Q and V in  bU = f QdP + f VdU between analytic and 
geometric method

nolvalue analytic method geometric method

1  Q  Q  =  (  Sx e+:(Sy — r~Sz X +(2±c2o x — Sy — Sz) Y Q = —Se. cos(5, 7)

2 V

22z2
NLV =C~~~------------ —ax )(6x+a(d---— --------~ys----- )Sy+ ( I)(_Sz

V = Se. cos(4, 5). +y)
= Se. cos(4, 5). R + 1-4)

    • then, by this hypothesis, these points (6), (7) and (4) look toward the same direction, 116 using 
     above-mentioned (1), (2) and (3) then (4, 6), (4, 7) and (6, 7) make a cube, 117 if we assume each 
      angle as the rectangle. 118 

Thus, the equations (197) in the above-mentioned (  §E.20) are transformed into

 (.1).) Namely cos(1, 7), cos(2, 7), cos(3, 7) are determined 
cos 
X 

(it) 
The formulae in the previous article take forms as follows : rjZ - (Y=cos(1, 7) ~X-Z= cos(2, 7)                                            -r~X= cos(3, 7) )aredeterminedby

              the its cofactor of following matrix :                 
',3,7) 
Z

Q = -Se. cos(5, 7), V = Se. cos(4, 5). (_+
dE

da

dri 

dy
(223)

where, 
    • Q expresses the translation of this point along the periphery P, to which a plane of 

      tangential surface U, taking as normal in the domain, positive to the opposite direction ; 
    • the factor V is, like cos(4, 5) clearly indicates, the translation of this point on the surface 

U, taking as positive in the domain of the exterior space s.

 Here we may summarize Q and V in SU = f QdP + f V dU by the two methods between analytic and 
geometric in Table 15. 

    We may explain by replacing +y in V of (223), from the point of view in geometric meaning. 
In such case, it turns out that : from (196), 

_-~.z 77 = -(.y(224) 
                 *2 + r12 + (2 = (2 + (2 ((dz( )2dz)2) 

                                             y Then 

                        1 =1 (dz)2(—
dy) 

Taking(225)               (2dxdy Taking derivative in both side of hand of (225) 

                                 dzd dz dzddz                       2(-s=2d~.d(+ 2dy. . d( 
116(1) This image is considered that there are three directions emitting from a common point and making a certain 

angle with two directions ( i.e. points.) 
117(4) (4, 6), (4, 7) and (6, 7) make a plane consisting of a cube respectively. 118(1J.) When cos(4, 6) = cos(4, 7) = cos(6, 7) = 2 .
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                  dz 2dz              1  =x ((2 
                    dx d( dy  d( 

and finally we get the following expression after replacing (226) with 6 and n from (224) 

                      d( = 2d +77(2d2 
                                 dx

119 Using (224) and (227)
, 

d =(d2 z dzd2z dz d2z d2z  
             dx                        dx2dx•dx =dx2dx(dx2 +dx.dy 

                              \d2z d2zd2zcd2z             =2)
dx2dx.dy—C(ri2k‘ri2dx2 dx.dy 

dri d2zd2z d2zd2zd2zd2zd2z 

dy =dy2 +712( dy2 + &/‹. dx.dy = —C(1 r2)2 + dx.dy = ((e dy2 + 671( dx.dy 

Therefore, again from (224)

 151 

(226)

(227)

      dri 

 dx dy 

where, (3

—(3 

1+

d2zf
)        dz)2 dx2dy I 

(dzy(dzyri (TX)+

2d2z 

dx.dy

dz 

di

dz 

dy

d2 z + 

dy2 {1+
dz 

dx )2}
(228)

This is equal to (174) in Gauss [15]. 120 This value turns into a constant such as 121

d

dx

dri

dy

 1 1 
— -+ (229)

where R and R' are the radii of curvature respectively.122 
On Together (228) with (229) are what Gauss called it the first fundamental theorem referred in 

119(4) The above expressions are to be used by a, that is 

0( =                      a
xay 

120(4) Kobayashi [28], p.138 (3.9), the first fundamental form : 

I„ = Eaduadua 2Faduc,dvc,Gadvadva 

= (dua, dva)_--[dua dva 

where, 

apapapapapap E
a =.-----,ra=-----•,Ga =• a

u„ auc,auc,avc,Ova avc, 

121(4)        cf. Laplace, IV, p.826 [9853], the equation (136) : 

1 1   =(1 +Pq*('d1`,4!) ++P2).2-                        —+ 
             R R'(i+ p2 q2)4 

   122,.,       .t).) cf. Poisson [60], p.105.

§E.28.
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E.26. Reduction of  U. 
 From (217), (223) and (229)

(I) SU =JQdP+JVdU = — f8e. cos(5, 7) .dP+ fee.  cos(4, 5).(R+Ri) dU 
                        —Q of (223)

V of (223)

Now, we consider Q of (223),

fe. cos(5, 7)dP' = I Se. cos(5, 7)dP(3) + J Se. cos(5, 7)dP(4)

J Se. cos(5, 7)dP(2) = f Se. cos(5, 7)dP(3) + J Se. cos(5, 7)dP(5)

(230)

(231)

If we add both hand sides of two equations (230) and (231) above, then

 Se. cos(5, 7)dP' + I Se. cos(5, 7)dP(2) = J Se. cos(5, 7)dP
For SU = SU' + SU', the variational values of SU', SU" fit by substitution. 
of the formula (I).

Thus, we can see the truth

  In short, it is observed that, the variational theorem (I) is to be deduced from the consideration 
of geometry, and moreover it is easier than by the analytic method to solve our problem, although 
we are managing to solve it, and ocasionally, by the variational calculation, for including double 
.integral of the limit of the variable, so that we have sought for it insufficiently up to now. 

  However, in some way, we would like to try to investigate it from the view-point of another 
geometrical method which we can challenge sufficently to lead the readers.

E.27. Geometrical method. Deducing the parts of Q. 
 Evolving further the variation, for the expression W is explained by the variation of figure of the space 

s, we would like to start to argue at first, from the variation of the space s. Recalling that we consider 
in §E.21, the prism with the equal sides and oriented to the solid body, then, on this point, we can see 
that this prism has the following : 

    • the size of basement : dU, 
    • the height : Sx + riey + (Sz = Se. cos(4, 5), where Se = /Sx2 + Sy2 + 5z2 

    • the sign (+ ) of height depends on the transposition of triangle, according to the location of 
      whole solid lying whether interior or exterior of the space s. 

Hence, we can get

(II) Ss = J dU.Se. cos(4, 5)
Next, from (II), the variation of f zds (III) follows :

(III) S f zds = I zdU.Se. cos(4, 5)
 As long as the variational quantity T, we can see that P is the limit point having commonly the surface 

T and U, the transposing point of the circumference P satisfies owing to these condition, and newly keeps 
in the surface space S. By the transposing element dP, as the partial displacement of the surface T, 
we get easily +dP.Se. sin(5, 6). In general, the choice of positive or negative sign depends on the sign of 
cos(4, 5). We would like to explain it by introducing the new directions such that : 

    • the space S tangential in the surface plane, 
    • the normal-directional line P, and 

    • the exterior space s, 

respectively. If denoting the responding direction with the point (8), then by the transposing element 
dP, we get the surface variation of T, from the definition, as dP.Se. cos(5, 8), namely (IV) :

(IV) ST = J dP.Se. cos(5, 8),
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where, the sign of factor cos(5, 8) depends on the conditions of whether increment or decrement. 
 When we assume that  : 

    • at first, the point (6) were the pole of the maximum circle passing through the two points : (7) 
     and (8), then the point (5) is the highest point in the circle made by the two points (6) and (8)  ; 

    • next, the points (5), (7) and (8) make a rectangular triangle, having the rectangle at the point 

    (8)  ; 
    • then, we can get the expression : cos(5, 7) = cos(5, 8). cos(7, 8), where, the arc (7, 8) is the 

      measure of angle between planes of the two surface spaces : s and S, which are tangential 
      intersecting with the point P and the plane domain, including null space ; 

    • finally, we denote the angle making with (7, 8) by i, i.e. i = (7, 8) and by 27r—i, the angle between 

      plane domain, in which the space s is continue. 
Then we can formulate (V) as follows : 

                         (V) cos(5, 7) = cos(5, 8). cos i

E.28. Result.1 : deduction of height from the first fundamental theorem. 

 By the combination of above formulae I, • • • , IV, we get the variational expression of W. 

SW = J dU.6e. cos(4, 5) . [z + a2 (-1R+R,)—JdP.Se.cos(5, 8) .(a2 cos i — a2+2,32) 
(II) Os(IV) ST 

where, 

                      z -f- a2 (R+R,)=Const.

The equation is constituted by -< the first fundamental theorem >-, in the theory of fluid equilibrium, 
in which Mr. Laplace missed, however, it would come to be different if he had used our method.

If we set Const = 0, then

z=—a2(
where, z is the height of capillary action, a and 

following corollaries follow :

1 1l —R+—R'). 
 are the values defined in (194) . And moreover, the

Corollaries : 

   (1) If free surface U is not classified, in any point in a section, the surface must be concavo-
      convex, ( i.e. concave curvature is greater than convex curvature,) in addition, convexing 

      the maximum radius is equivalent to concaving with the maximum radius. 
   (2) For upper normal plane to surface, it becomes concavo-concave, ( i.e. biconcave, which is 

      concave in both sides, ) or if there is in anywhere, convexo-concave, ( i.e. convex curvature 
      is greater than concave curvature, ) concave curvature will be convex. 

   (3) It becomes convexo-convex, ( i.e. biconvex, which is convex in both sides, ) or if there is 
      in anywhere, concavo-convex, convex curvature will be concave. 

   (4) Free surface U can not have partial finite plane if not horizontal and coincident with 
      normal plane.

E.29. Result.2 : deduction of angle from the second fundamental theorem. 

SW = — J dP.6e. cos(5, 8).(a2 cos i — a2 + 2,32) = a2 J dP.Se. cos(5, 8). (1 — 2 ( )2 — cos i)
Here, we assume A such that
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 A 
sin  2

cos A = 1 — 2 sin2 ( (232)

where, the integral is to be extended along the total line P. Remember that the factor cos(5, 8) is 
equivalent with sin(5, 6), 123 and the sign becomes plus or minus, according to fluid in motion in the 
neighborhood of element dP or moreover, it reaches to the end point of P, or it comes to disappear. 
Here, we conclude that as follows : 

    • in state of equilibrium, it becomes always i = A. 
    • If in every part of the line P, it becomes i < A, then initially generated momentum in this part 

      keeps invariable in the line P, and W show negative variation. 
    • If in a part of the line P, it becomes i > A, then both cases of minimum condition and equilibrium 

       confront.

This is  -<  the second fundamental theorem >-, which Mr. 

proof in the meaning of the principle of molecule.

E.30. In case of the vase having the

Laplace has investigated almost without

figure of cusp or aciform.

• The theorem above of arrangement which lacks in singular case, we can not pass over it. 
• On the surface of the vase near the ultimate limit P, there exists the only plane contact with the 

 surface of vase. 
• If the continuous curvature in this point P the singular line interrupted, it is considered easily 

 that not only the cusp, but also the aciform 124 of line P sifts, we do not change our conclusions 

a2dP.Se. sin(5, 6).(cos A — cos i) 

—a2dP.6e. sin(5, 6).(cos A + cos k)

i=A,i>A 
k=27—A, k>27r—A 

In the state of equilibrium, therefore, it can not become i + k < 27, if, that is equivalent to the following 
: in the state of equilibrium, the limit of free surface of fluid can not become up to the finite extension, 
in the aciform, concave surface of vase. 125 To the contrary, the quantities by this limit coincident with 
aciform convex, this is required and sufficient for equilibrium, where, a is the inclination. 

    • When the angle lies between fluid plane and tangent vase as follows : 

    between A and A + a (included) =* A < * < A + a, exterior-measured fluid, 
    between 27 — A and 27r — A + a * 27r — A < * < 27 — A + a, interior-measured fluid, 

      where, * means the angle. 
    • When the angle lies between two surface planes of vase from both side to aciform tangent in this 

      point indefinitely denoted with 27r — a, to what extent we can measure this angle of domain of 
         vase.

123(4) i.e. cos(5, 8) = sin(5, 6), where the point (8) is the point of rectangle, the points (6), (8) and (5) make a straight 
line in the direction from left to right. 

124(4) For example , a needle, a pin, a sting, etc. See the footnote above in the last line of § E.7. 
125(4) This French is sic by Gauss . 

        in statu aequilibrii limes superficiei fluidi liberae U esse nequit, per extensionem finitam, in acie concava 
superficiei vasis.
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E.31. Relations of quantities of attractions between fluid and vase in respect to the angle 
A. 
 The constant a2 and  /32, which ratio of the angle A determined depending on the function f and F, 

and in a sense, we can consider as if the strength of molecular force, of the particle of fluid and using 
vase. If the function is compared with, f x and Fx are in ratio determination independent of the distance 
x, putting n and moreover N, we can clearly stated that a2 : 02 = en : CN, i.e. the constants a2 and j32 

proportionate to the attraction, where each distance between two molecules of equal volume, one is fluid 
and the other is vase. In respect to the cases of A, we assume that it is acute, rectangular, obtuse and 

                                126 both are rectangular
, as following :

 /32 < a a2 A is acute, 
02 = a a2, A is rectangular, 
02 > 2a2 or132 < a2 A is obtuse, 

  = a2both a and 0 are rectangular

: in a sense of such supposition ( although there were no sufficient reasons, it looks like true, it does not 
contradict ) it must be the following : 

    • in the first case, the double quantities of particulate attractions of fluid have mutually larger than 
      the double attractions of particle of vase of fluid ; 

    • in the secondary case, the quantities of first attraction were equal to the double of another ; 
    • in the third case, the first quantities is minor than double attractions of the other, or the first 
      quantities are larger than another ; 

    • finally, in the fourth case, the quantities of both attraction equal. 

The first example explains the case of mercury in glass vase. 

E.32. In the case of 02 > a2.

    • How much the value of angle A in this case, where the attraction of vase become the largest than 

     the attraction of partial fluid mutually ? 

    • The imaginary value, which for 02 > a2 the formula sin a A = a the angle A assign, at the 
      moment prove that the supposition in such case, non admissible. 

    • In fact the quality 02 > a2, we can not consist the supposition of limit on the surface T with the 
      minimal condition with respect to the function W.127 

    • It seems to be that, in everywhere, namely, if we consider infinitesimal expansion as the ultra 
     limit of the fluid layer, as well as T, we take the argument T', and as well as U, to which this 
      argument approximately equals, the value of function W assume the sensible variation equals 

     negative quality —(2/32 — 2a2)T' ; this value W continues decreasing infinitesimally for a long 
      time, would occupy total surface of vase up to T'. 

    • Variation —(202 — 2a2)T' the more it becomes exact, the more the thickness takes minor, and as 
      long as we discuss the value of expression of W, nothing disturb, these thickness takes continuing 

      to disappearance. 
    • However, this disappearing thickness ( exactly distinguish with insensible ) is exists except for 

      the mathematical fiction, so that the minimum value for W is got in the case of 02 = a2. 
    • However, we change the view into our problem of phyisics, when the following accessory of this 

      thickness must be naturally pleasure, even if it is insensible, such that it can keep equilibrium. 

126(4) cf. (194), (195). 
127(4) By (194) and (195), we get 

           f zds — 1 cszPo + 1 7rctOo — 17rCTeo f zds — 1 cs00 + a2(T + U) — 2,82T 2g 2g g2g 

then we get (195) :
r W-Jzds+(a2 —202)T+a2U
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• Whenever this part approaches, the expression of W, such as we have mentioned in §E.18, it is 
 incomplete, and we denote it the part of vase, which the layer covers by T', whose thickness in 
 the point is indefine by p, the expression C2128 extends moreover the boundary 

                    irc2J8'p.dT' –ncCJO'p.dT'
 Until this time, the value of this W, 

 r ----- JO'p.dT' –g8'p.dT' =dT'(-232.0'op – 02.0'p)(233) 
 where, we substitute (233) by the terms as we had denoted in (194) and (195) as follows : 

                  a2 _ 7rc0o2_irCT Oot-T+U         2
g=2gU, 

• Therefore, the value of this W, by extension of such a layer, then accept the variation 2(02 – a2 )T', 
 the total variation, its value

rof W, which we have the situation of the layer omitted, then we have 

             JdT'[132(1–~,o)–a2(10~0 
 This variation, for 00 = 00 and Oo = e0, become zero for disappearance of thickness : 8' p and O'p 

 reduce the density of p, the thickness decrease, and then for insensible value of this p, evaluated 
 as insensible, the variation of thickness inverse the value –2(02 – a2)T` converges, moreover for 

 the equilibrium state of fluid, the expression W becomes never suitable correctly if ultra sensibly 
 decrease, it turns equivalently into sensible.

J zds – 202 – (12 )(T +T') – a2 + a2

If 02 – a2 = 0 then

E.33

fzds  – a2T + a2 
  i.e. which expression, in the minimum, become for the case 02 = a2. 

• Hence, we get the figure of equilibrium fluid in vase, as 02 > a2, for brevity, as the figure of 
  equilibrium fluid in vase 02 = a2, here the difference is strict equilibrium results in the layer of 
  the insensible thickness. 

• Besides, Mr. Laplace then stated that, for this case of vase of fluid insensible thickness are covered 
  equivalent to be strictly with such vase, whose particles, the attractive force of fluid particles exist 

  mutually and uniformly. 
• By itself, hence, the arrangement obeys the descriptions in §E.18 read as the vertical capillarity 

  ascending fluid in tube : quantity clearly 02 > a2, in which we proposed the formulae that can 
  substitute 0 with a in this point. 

. In the case of 02 < a2.

  • In this case, where 02 < a2, the wet vase with the insensible fluid layer can not have the point, 
   even if law of function 0' and O' are, when for the value of the function 

                  a2(1–e~o)-02(1Oo) 
   for brevity, we describe as Qp, this value continues increasing, if p increases from the sensible value 

   at the zero value : because, clearly from the characteristic of this function Qp would contradict 
   with minimal condition. 

  • By itself, this characteristic occurs the hypothesis, by that in the article 31, where we had stated 
   that fx and Fx are determined independently in proportion of x, from this fact, we deduce that 

   B'p = 6,0 and namely, Qp = (a2 – 02)(1 – e o). 
128(4) c.f. (180).

r ff rf=_ocJzds+c2ds.ds'.cp(ds, ds')+cCfds.dS.(1)(ds, d5')



The "two-constant" theory and tensor function underlying the Navier-Stokes equations 157

    • However, if the functions f and F will occur simultaneously as inverse, it is not at all impossible, 

     that this value  BP rapidly decrease, as well as 1, the function Qp, in both insensible value of 
 00 

      this p, at first negative, and after, their values reaches to minimum ( i.e. at last, negative ), while 
      a2 — 02 ascends by the value 0 of the inverse their positive limit. 

    • In this case equilibrium at least postulate with insensibility, this thickness in general, showing is 
     stated such that Qp contradict not at all sensibly with the least value. 

    • Although if we denote by —(/Y)2, it turns to (j')2 < /32 ; the figure of other part of the substantial 
      indeterminate fluid, moreover, if in vase, with respect to the situation, 32 must substitute the 

      quantity (/')2, i.e. the angle between plane of the free surface of fluid in contacting substantial 
     part tangent with the wall of vase turns into 2 aresine4. ( cf. (232). ) 

    • Moreover, doubts in such case existing in natural phenomena, seem to be filled with the more 
      complicated phenomena. 

E.34. Summary. 
 Another with our proposition we presented, the general principle of this sort of stability descending as 

a result of special phenomena, especially, essential principles fit the theory in this case, by Mr. Laplace 
and the contemporary with him rushed and succeeded, so many phenomena in fluid equilibrium were 
solved, the new and so many results were produced : however, even so, the reserved were remained. 
Inversely, from this, it is possible to indulge in giving out the new light of this argument, or to fall into 
incorrect interpretation. 
¶I. 

    • Our theory does not only arrogate by ourselves to determine the figure of fluid equilibrium in 
      mathematical exactitude, but also we recognize that, of the determination of figure, such as, an 
      equilibrium figure varies different only in sensible quantity. 

    • If we recognize that there are errors in theory something imperfect, then they were 
        — to prove in total , or, 

        — to prove how much it is possible, or, 
        — to prove how long we ignore the molecular attraction . 

    • In state of equilibrium, the function Si 129 becomes exactly maximum, so that, the function 

2rresb0 SZ 

g gc 
      becomes minimum, this, moreover, for the indole ( characteristics ) of the molecular attraction, 

      not only the function W is the exact equation, nevertheless, but also insensible in this place 
      different. 

    • Figure for this W fit minimum, not exact equilibrium figure, if differential become insensible, as 
      long as everywhere move sensible, the function W becomes lowest in the value of figure. 

    • Clearly, sensible differential in surface curvature is not excluded, as long as it were limited by 
      partially insensible surface : 

        — because in equilibrium figure, exact constant-angle over A denotes impossible by considering 
          it sufficient, that if there were immensurable distance between the vase, as Mr. Laplace then 

         had thought correctly that, as if the inclination in limit of sphere of sensible attraction with 
          vase is coincident with sensible value of A. 

¶ II. 
    • We should clearly distinguish the equilibrium figure with quiet figure. Fluid equation in the 

      state of equilibrium, it keeps. In the quiet figure of fluid have a little different equilibrium figure, 
      nevertheless, may occur, and fluid in quiet permanent or if moving, accept the momentum in 

      this moment, before reaching to the equilibrium of fluid, similarly, for example, cubic horizontal 
      plane not only in equilibrium but also super plane. 

    • Clearly, the first fundamental equation (§28) independently of perturbative limit P, i.e. in addi-
      tion to, not only minimum condition but also necessary condition, here, we suppose this invariable 

      limit : why, how long this perfect fluid delights in flow, on the other hand, at the same time, 
      another fluid is able to increase freedom, while we postulate the minimum force of motion, the 

      fluid will accommodate inevitably itself to its condition.

129(4) c.f. (180).
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    • The second principal reason  (§29) essentially depend on perfect limit of P on the surface of vase. 
    • Minimum condition in value W in itself we postulate the equation i = A : in fact, since surface 

     fluid will accommodate itself to this first principle, the angle i does not yet reach the normal 
      value, the value is not only W absolute minimum, but also in the equilibrium state, it can not 

     become perfect without translocation of limit P if without fluid motion in contact with vase, 
      what sort of motion can inevitably obstacle friction. 

    • From here, it is clear that, in an experiment, why each corps institutes this great differential 
      would meet with the angular value i . 

    • Similarly, in the case, where, 02 > a2, the fluid in vase, whose wall get wet at this time, above 
      all, which is consisted of the law of equilibrium, next, in part, which is substantial fluid, become 

i=27: 
     if this wall in vase were dry until now except for fluid, which is in the state of non equilibrium 

      base of dry vase raise to be possible for equilibrium, after all, the value of angle i reaches to 27r. 
    • From here, on the other hand, the theory tells us that the capillary phenomena of fluid, such that 

      including the wet wall, 
        — in the dry tube, this shows many irregularities, ascending very frequently, small by far, 

       — in the wet tube at this time, where the most beautiful harmony with theory is always seen. 
If III. 
The constant inequality made by a and /3, from the phenomena it is deduced, 

    • when the inequality becomes 0 > a : where, the figure whose fluid in vase forms equilibrium of 
      various material by its case not defferent with respect to immensurable vase got wet. 

    • Another inequality 0 < a : where, it determines the ratio inter the constant which is the aide of 
      the angle i, therefore, when the mode of ratio that the force is scarcely estimated. 

    • On mercury in the glass vase, Mr. Laplace studied the angle to be i = 43°12'. 
    • In wide of large precision, by far, the constant a is able to be determined, especially if the wet 

       vase can admit so. 
    • For water, at 8.5° C in temperature, we should determine according to the experience cited by 

       Mr. Laplace. 130 
    • These sorts of things were already studied by physicians Segner and Gay-Lussac : 

E.35. Conclusions of ours. 

   (1) The "two-constant" were defined in terms of kernel functions of RDFs, describing the charac-
      teristics of dissipation or diffusion within isotropic and homogeneous fluids that were necessary 

      for the interpretation of the nature of fluid or the formulation of the equations of the fluid me-
      chanics including kinetics, equilibrium and capillarity. With their origin perhaps arising in the 
      work of Laplace in 1805, these sorts of functions are simple examples of today's distribution and 
      hyperfunction of Schwartz [70] proposed in 1954/55. Another evidence of the then backgrond is 

      the atome theory by Galton, who suggested the existence of atom in 1808. 
   (2) Gauss [17] also contributed to develop his self-made RDF or MDNS equations for fluid mechanics 

      including capillary action, because he formulated the equations with two-function instead of two-
      constant and this is an exceptional case from other contemporaries of NS equations. 

   (3) According to Bolza [3], Gauss [17] had broken one of the neck of fundamental problems, such as 
      multiple integral and calculus of variations, however, we must recognaize that even he owed the 

      latter to its progenitor Lagrange, and calculation of capillarity to its progenitor Laplace.

130(4) Following is the footnote by Gauss : H denoted by Mr. Laplace corresponds to our 71-c00, since we denotes a in
• the author's expression (194), then the expressionA0 equals 22
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                     APPENDIX F. Poisson's paper of capillarity 
 F.1. Poisson's comments on Gauss [17]. 

 Poisson [62] commented in the preface about Gauss [17]: 
    • Gauss' success is due to the merit of his -< characteristic >- 

    • even Gauss uses the same method as the given physics by Laplace. 
    • Gauss calculates by the condition only the same density and incompressibility 

After all, Poisson insists that 
    • We can take even any method to solve the problem, and carefully check our own equations and 

      conditions from every points. 
The following is a paragraph of the preface by Poisson [62] : 

        Par les regles connues du calcul des variations, on determine la surface inconne du liq-
      uide qui rend cette somme un minimum, et, comme on sait, on trove a la fois l'equation 

generale de cette surface et l'equation particuliere de son contour, ce qui est l'avantage -< 
caracteristique >- de la methode que M.Gauss a suive. Mais cet illustre geometre etant 

      parti des memes donnees physiques que Laplace, et n'ayant pas non plus considere la 
      variation de density aux extremites du liquide, qu'il a regarde, au contraire, comme in-

      compressible dans tous ses parties, les objections qui s'elevent contre la theorie de l'autre 
      que par la maniere de former les equations d'equilibre. On peut, a cet egard, employer 

differens moyens ; mais, sans craindre de compliquer le calcul et d'en augmenter les 
difficultes, it importe de ne negliger aucune des circonstances essentielles de la question, 

      parmi lesquelles it faut compter surtout la dilatation du liquide pres de sa surface libre 
      et la condensation qui peut etre produite par l'attraction du tube. [62, 8] 

( Engl. transl. ) By the method known as calculation of variations, we determine the unknown 
surface of fluid which this sum show minimum, and as we know, we get at once the general equation 
of the surface and the particular equation of the arbitrary height, these are due to the characteristic 
advantages of the method Mr. Gauss had approached. But even this great prodigious mathematician 
had based the similarly given phisics with Laplace, and not considering the variation of density at the 
extremity of liquid, where there is regard contrary, as the incompressible in all the particle, the objection 
which evolves to another theory than by the manner of formulation of the equilibrium equations. We can, 
in this point, use the different methods; but without being afraid to the calculation and the difficulties 
extended by it, it is important not to neglect any essential circumstances of the problems, among which, 
to challenge especially the dilatation of liquid in neighborhood of free surface and condensation producing 
by the attraction of tube. 
F.2. Poisson's two constants : K and H in capillary action. 

 We cite Poisson's K and H from [62, 12-14]. 

                            K = 27rp2q Jr3(prdr 

                                              0

where,

q
(y + z)dydz  1 

3 Jo
dy

[1 + (y + z)20. 

(1)p K 3np2 

0

00

(1 + y2)

r3c,ordr

 _1 
33 

2

(234)

rl = u sin v, 77' = cos v 

= Q712 + Q'(r7')2 + Q"rlrl' 

We denote A and A' radii of two principle curvatures. 
               1 _d(1_ do                 _2Q= 2Q' ,                      A dr,2~A'd(rl,)2

The average value

          1 1 1  = —H(Q+Q') =—2H(~+ ~~),
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where, we denote H for convenience sake 
                                     co p00 su3                        H a irp2 10J(pr—duds                or 

where, 

                s=ux, ds = udx, u= r   du = dr  V1
+ X2 1/1+x2

oo                      co
(2)p H =7p2r4cprdrf~=rcpr dr(235) 

                      Jo^1 + x2 4Jo 
The normal action on this point : 

               (3)p N = K — 2H(~+~,)(236) 
F.3. Coincidence of Poisson's K and H with Laplace's K and H. 

 Poisson proved Laplace's formulae as follows : 

        Les expressions des coefficiens K et H que cette formule renferme s'accordent avec 

      celles que Laplace a trouvees, sous une autre forme, pour les memes quantites. En effet, 

      on suppose, dans la M

eecanique celeste,131f 

                  (pr dr = c— HT.,Jr•IIr dr = c' — Tr(237) 
        les integrales commencant avec r, c et c' etant leurs values quand r a une grandeur 

      sensible, Hr et Tr designant des founctions qui s'evanouissent pour tout valeur sensible 

       de r. D'appres cela, on a 

       fh/h                K = 2rrp2Tr dr, H = 27p2JrWr dr(238) 

   o 

      en retablissant la densite p que Laplace a prise pour unite, et la limite h etant une 

quantite de grandeur sensible, qu'on pourra, si l'on vent, remplacer par l'infini. Or, si 
      l'on integre par partie, it vient 

                                                                          it                    /j°dr/ 

                K = 2rrp2hWh — 271-p2Jrdr----dr = 27rp2Jr2Hr dr, 

                   H =rrp2h2„h — 7rp2hr2drdr =rrp2
Johr3IIr dr 

    1 integrant de nouveau, on a 

                222jhK = 2----3h3IIh—2rrrpjhr3 dHr dr =23r3cpr dr(239)    
             22h
H =4h4IIh—r4rdr=4frcpr dr(240)         jh 

    0 

      ce qui coIncide avec les formes (234) et (235), en prenant It = co. [62, pp.14-15] 

( Engl. transl. ) The expressions with coefficients K and H which these formulae included are coincident 
with that which Laplace had found under another form of (238), for the same quantities. In fact, we see 
that in Mecanique celeste, as follows : 

••• (238) 
   the integrals of the right hand-side of (237) beginning with r, c, and c' in which values r were sensibly 

large, Hr and Tr are designated as the dissipating functions, even if r were sensibly large value. For this 
reason, it turns : 132 

• • • (expressions) 
  Laplace set density by p = 1, and h the big value, then we substitute h with oc. Or if integrate it by 

parts, it turns out 
131(4) cf. (139). 
132(4) We cite these two-constant (238) : K and H by Laplace replacing h = oo in Table 3. These equations are 

described above in the preface by Gauss. cf.(176).
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•  •  • (239), (240) 
where if we replace h = oo, then we get a coincidence with our formulae (234) and (235). 133
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APPENDIX G. FIGURES

the

The following original figures were drawn by Laplace [35], in which we cited only fig. 1 and fig. 3 in 
appendix C.1.2.
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 Remark  : The Fig. 1 and Fig.3 in these figures, correspond the above-mentioned figures which are 
identified with fig. 1 and fig.3 in Appexdix C.1.2. citing from this original figures by Laplace.
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ABSTRACT. The microscopically-description of hydromechanics equations are followed by the descrip-
tion of equations of gas theory by Maxwell, Kirchhoff and Boltzmann. Above all, in 1872, Boltzmann 
formulated the Boltzmann equations, expressed by the following today's formulation : 
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  These equations are able to be reduced for the general form of the hydrodynamic equations, after 

the formulations by Maxwell and Kirchhoff, and from which the Euler equations and the Navier-Stokes 

equations are reduced as the special case.

    After Stokes' linear equations, the equations of gas theories were deduced by Maxwell in 1865, 

Kirchhoff in 1868 and Boltzmann in 1872, They contributed to formulate the fluid equations and to fix 

the Navier-Stokes equations, when Prandtl stated the today's formulation in using the nomenclature as 

the "so-called Navier-Stokes equations" in 1934, in which Prandtl included the three terms of nonlinear 

and two linear terms with the ratio of two coefficients as 3 : 1, which arose from Poisson in 1831, 

Saint-Venant in 1843, and Stokes in 1845.
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1. Introduction

    We have studied the original microscopically descriptive Navier-Stokes ( MDNS ) equations as 
the progenitors  2, Navier, Cauchy, Poisson, Saint-Venant and Stokes, and endeavor to ascertain their 
aims and conceptual thoughts in formulations these new equation. "The two-constant theory" was 
introduced first introduced in 1805 by Laplace  3 in regard to capillary action with constants denoted by 
H and K. 

 Thereafter, various pairs of constants have been proposed by their progenitors in formulating MDNS 
equations or equations describing equilibrium or capillary situations. It is commonly accepted that this 
theory describes isotropic, linear elasticity. 4 We can find the "two-constant" in the equations of gas 
theories by Maxwell, Kirchhoff and Boltzmann, which were fixed into the common linear terms, and 
which originally takes its rise in Poisson and Stokes. 

 The gas theorists studied also the general equations of hydromechanics, which have the same proportion 
of coefficients as the equations deduced by Poisson and Stokes with only the linear term and the ratio 
of the coefficient of the tensor function with the main axis of Laplacian to that of gradient of divergence 
term is 3 : 1. ( cf Table 2. )

2. A universal method for the two-constant theory

    In this section, we propose a universal method to describe the kinetic equations that arise in 

isotropic, linear elasticity. This method is outlined as follows: 

• The partial differential equations describing waves in elastic solids or flows in elastic fluids are 

      expressed by using one constant or a pair of constants C1 and C2 such that:

                                        2           for elastic solids:~t2—(C1T1+ C2T2) = f, 
           for elastic fluids: ~t—(CiT1+ C2T2) + • • • = f, 

  where T1, T2, • • • are the terms depending on tensor quantities constituting our equations. For 

example, the NS equations corresponding to incompressible fluids consist of the kinetic equation 

along with the continuity equation and are conventionally written, in modern vector notation, as 

follows:

                 t~u 
            ~t—µ©u + u Vu+Vp= f, div u = O.(3) 

   Here u is the velocity, f accounts for the body forces present, p the pressure and 
0 - V • V the Laplacian operator. 

• The two coefficients C1 and C2 associated with the tensor terms are the two constants of the 
 theory, definitions of which depend on the contributing author. For example, e and E were 

 introduced by Navier, R and G by Cauchy, k and K in elastic and (K + k)ct and (K3k'a in fluid 
 by Poisson, e and 3 by Saint-Venant, and tt and 3 by Stokes. Since Poisson, the ratio of two 

 coefficient in fluid was fixed at 3. Moreover, C1 and C2 can be expressed in the following form:

1(J) Throughout this paper , in citation of bibliographical sources, we show our own paragraph or sentences of commen-
taries by surrounding between (.u-) and (11-). (( ) is used only when not following to next section, ). And by =*, we detail 
the statement by original authors, because we would like to discriminate and to avoid confusion from the descriptions by 
original authors. The mark : = means transformation of the statements in brevity by ours. And all the frames surrounding 
the statements are inserted for important remark of ours. Of course, when the descriptions are explicitly distinct without 
these marks, these are not the descriptions in citation of bibliographical sources. 

2(4) To establish a time line of these contributor , we list for easy reference the year of their birth and 
death: Sir I.Newton(1643-1727), D.Bernoulli(1700-1782), Euler(1707-1783), d'Alembert(1717-1783), Lagrange(1736-1813), 
Laplace(1749-1827), Fourier(1768-1830), Gauss(1777-1855), Navier(1785-1836), Poisson(1781-1840), Cauchy(1789-1857), 
Saint-Venant(1797-1886), Stokes(1819-1903). The order in our paper below is by date of proposal or publication. 

3(4!.) Of capillary action, Laplace[11, V.4, Supplement p.2 ] achnowledges Clailaut and Clailaut cites Maupertuis. 
4(t) Darrigol [6, p.121].
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TABLE 1. The two constants in the kinetic equations

noiname problem  C1IC2IC3 IC4 IL ri 1r2 igi g2 remark

 p:  radius1
Navier
[14]

elastic solid
27r

15
dp P4 fp

2
Navier

[15]
fluid

E

27r

15

27r

dp

f(7) dp

P4

P2

f(p)

F(p)

p: radius

3
Cauchy
[31

system

of particles

in elastic

and fluid

R

G

4.7k fr dr

fr dr

r3

T3

f (r)

±f(r)

f(i) ±[TV (T.) - f(r)]

f (r) f(r),
A =L.4v:mass of molecules
per volume.

4
Poisson
[16]

elastic solid k

K

27r

15

27r

a

E 73,15,

E 7.15.

r5

r3

d. -71; fr
dr

fr

5
Poisson
[17]

elastic solid

and fluid

K

1

30

1vs
C E 7.51

r3

7'

fr

,fr

C3 =41721;1=30
1 271C4 =-r 71- —

dr.

6
Saint-Venant
[21]

fluid E
E

3

7
Stokes
[22]

fluid
3

8
Stokes
[22]

elastic solid A B A =5B

 Ci--=: 

 {LrigtSt,S1 = if 0   C2 Er2 92 S2/{--C3,C1 = C3                     S2 = ilf g4 —> C4 7,Crigi =.7r.Crigi, 
                                                                  15__ 

                                                  C2 = C4 LT2g2 = k'r,Cr292 • 

   Here .0 corresponds to either E0' as argued for by Poisson or Lc° as argued for by Navier. 
 A heated debate had developed between the two over this point. It is a matter of personnel 

 preference as to how the two constants should be expressed. 
• The two constants depend on two radial functions ri and r2 related to the radius of the active 

 sphere of the molecules, raised to some power of n for Poisson's and Navier's cases; the relationship 
 between these functions can be expressing by a logarithm with base r such that: log,. 1:1-7,2 = 2. 

• gi and 92 are the kernel functions having both 
   — the physical caracteristics come from the fluid dynamics described by the microscopically 

     basic relations of the attraction and/or repulsion and 
   — the mathematical requirements for the rapidly decreasing function. 

• Si and S2 are two expressions which determine the angular dependence on the surface of the 
 active unit-sphere centered on a molecule through application of the double integral (or single 

 sum in the case of Poisson's fluid). 
• g3 and g4 are certain compound spherical harmonic functions determining the momentum over 

 the unit sphere. 
• C3 and C4 are indirectly determined as the common coefficients derived from the invariant 

   tensor. With the exception of Poisson's fluid case, C3 of C1 is k , and C4 of C2 is Ikr, which are 
 evaluated over the unit spheres for each molecule, and which are independent of the preference 

 in using integrals or summations. In Poisson's case, we obtain the same values as the above after 

 multiplying by -4-r. The integrals are calculated from the total momentum of the active sphere 
 surrounding the molecule. 

• The ratio of C3 to C4 : 2- = including Poisson's case.

2.1. Poisson's Fluid pressure in motion.
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TABLE 2. The kinetic equations of the hydrodynamics until the "Navier-Stokes equa-
tions" were fixed. (Rem.  HD  : hydrodynamics, N under entry-no : non-linear, gr.dv : 
grad.div, E : s dv in elastic, F : 9 A. v in fluid. The group of entry 6-14 show F = 3 in 
fluid.)

no I name/prob the kinetic equations 0 Igr.dvIE IF

1

 N

Euler
(1752-55)
[7, p.127]
fluid

X – 1d~_du a_u du+,Udu a_ ,,,,duLdx–dtdxdydz'

_I. ~_dvdvdvdv dudvdwuY
hdy-dt 'dx+Udy+wdz'dx+dy+dz =".

Z — 1 _42=dw+udw+vdw+wdwhdz–dtdxdydz'

2

Navier
 (1827) [14]
elastic solid

n d2x — a(3d2xd2xx2 d'lyd2 )z 
g dt2lda+db+d2dc2+dbda + 2dcda

l'II d+3d2+d—+2d2x +2d2z)
WIdadbdcdadb dcdb'

I, d2zd2zd2zd2zd2d2y y dt2 =Ed a 2 1+3dc2+2dadc+2dbdc)
where H is density of the solid, g is acceleration of gravity.

e 2a
2

3

N

Navier

(1827) [15]
fluid

d2u d2u d2ud2v+ 2
dxdzydu_dududup dx=X+e3dx2+dy2-f-dz2+2dxdydtdx.u_d•v–d•2U ;

d2vd2v d2vd2ud2wdv dv dv dv= YE
dx2+ 3TO-' dxdy+2dydz–dt–dx •u–d yv–azw;

1F=Z +d2 d2d2wd2ud2vdw dw dwdw
pdzdx2+dy2+3dz22dxdz2dydz–––ayv–dz;wdtdx u

e 2a
2

4

Cauchy
(1828) [3]
system
of particles
in elastic solid
and fluid

(L + G)--- + (R + H) aayi + (Q + I) j- + 2R,,xdy + 2Q j + x =,
(R+G)`t+(M+H)w+(P+I)~2'+2Pl+2Rf, +Y=aG)`043.2yU2a28za2ay2t
(Q+G)j+(P+H)80y2+(N+I)j+2Qj+2Payarz +Z= ,
G=H=I, L=M=N, P=Q=R, L=3R

R+

G
2R

if

G
=0

2

if

G

O

2

5

Poisson
(1831)[17]
elastic solid
defined
in general
equations

d2u2 (d2u2  d2v2  d2w1 d2u1 d2u)=IId2uX—+a1d+3 dydx+3 dzdx+3TO-+3dz)p
d2v2 d2v 2  d2u2  d2w 1 d2v1 d2v11d2v dt2+ady2+3 dxdy+3 dzdy+3 dx2+3 ctz'E)p dy2id22(d2w2  d2u2 d2v1d2w1d2w)=IId2wGdt2+a`d z21-3 dxdz+3 dydz33pdz'

a2

3

2a2

3 2

6

Poisson
(1831)[17]
fluid defined
in general
equations

Dtdxdxudyudzu3dxdxdydzA(--x)+—+a(K+k) ----2+----2+---2+–(x+k)——+—+—=o,

A(Dt—Y)++a(K+k)(+d+ddzz)+3(K+k)y(dc+y+dz)=0,
l p(DDT_Z)++a(K + k) ( ddT+d2w dy2+d2d2°)+(K+k)d0.1u+dv+dw)_ 0dzIdzxdy3,
(p(Xd2x)= dza+0(d2u+d2u+d2u)
IIdt2dxdx2dy2dz2,2,222P(Y —SD=~z + /~(d+d+ddzz ),

Z _ d2dlad2wdwd2w P(z) =azQ(a x~~ydz2
13where z~=ad'It— +f3 dxt/=a(K+k)—pa—dtxtdt'

R
3 3

7

Saint-Venant
(1843)[21]
fluid

He didn't describe the equations in [21], however his tensor is in Table 5 (4). e
3

3

8

Stokes
(1849) [22]
fluid

(12)s

Dud2ud2ud2uddudvdwP(Dtx) +~dx2+dy2+dz23dx dx+dy+dz~'
D _d2d2vd2vddwP(Dvty)+dyltd~~+dy2dz2---auxclyvdrlz =o,
DDT_Z+(d2w d2wd2w)–L~d (A(Dt) dz–Ndx2+dy2+dz23 dz I.

I-t
F?
3

3

9

Maxwell
(1865-66)
[12]
HD

pat+dx–CM
pat+dy—CM

aw dpP
at +dz —C'M

= pX,

= pY, where, CM = 6k
pe2

1= pZ
CM C

3 3

d2u d2u d2u 1 d du dv dw
dsdy2 +dx dx  dy  dz-
d2v d2v d2v 1 ddudv dwdx2+dydz7+3dx(dx+dy+dz)d2w d2w d2w1 d(dudwdx2+dy2+dz2+3 dx(dxdy'dzdv

10

Kirchhoff
(1876) [9]
HD

pdt+ax–~yK

Iit+ay — GK
dw pi —G.udt+ az

A,D1 aauUvaw+3axax+ay+az

l aauayawOv}—.I+—3Tr
yay az

Az+1 &3az(auaxayay+awaz)

–aux' 
dµ+au+av+aw =o

ypdtaxdyy az=A,1P
where, CK ss 3K µ

=µZ

CK
3

3

11

N

Rayleigh
(1883) [20]
HD

1 dp=_du-L//CPU—vdu
p dx=dtdxdy'du dv_~

_dv2dvdv'dxdy–fl
p dydtv©U2tdxUdy

v

12

Boltzmann
(1895)[2]
HD

(221)B

pt+P—R
~ at+ay —R

p6z+z—R

Al-auavaw~u +d x+dy+dz= AX,

w+say(a~+T1-=PY'
18auavaw~w+3dz(~x+dy+dz)=pZ

3
3

13

N

Prandtl
(1905)[18]
HD

p ( "i + v • Vv) + V (V + p) = k02v, div v = 0 k

14

N

Prandtl
(1934) [19]
HD

auauauau1.,Uau8vaw1a2ua2ua2u
at+uax+vay+waz= xp as+3 as as+ay+az

LSJ+ v as2+1+Uz-,for incompressible, it is simplified as follows : div w = 0,±;'= g — f grad p + v©w v
3

3
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          TABLE 3. Geneology of tensors

in gas theory

1  I  name tensor ( 3x3  ) coefficient matrix ( 3 x 5) in equations

1-1Navier 
  elasticity

ti = —E 
(5-4)Ne

—E

 _ -E

where

 (sijuk,k + u'i,j + Uj,i) 

3 

 udvwdu 3ddx +dy+ddz{dyu+ ddvxddxw+ddz 
dudvdudvdw dvdw dy+dx(dx+3dy+dz dz+ dy 
dwdudvdwdudvdw dx+dz(dz+dy) (dx+dy+3 dz

E + 27,-; du du_4_dv  dydx 

dy+axE + 2-d-,--,- 

                         

,// d
wdu dvdw 

dx+dz dz+ dy 
_dudvdw Edx+dv+dz

dw du 
dx dz 
dv dw 
dz  dy 

E+2dz

We define the coefficient matrix in elasticity  :  

: the coefficient of_1
 82u a2u 
ax2 -57 
02v a2v  -

;-c7 '57 
a2w 82w 
ax2 ay2

then 

(6-1)Ne

a2u 02,0 02w 
asay azas 

02u 02w 02u • 
0z2 ayaz asay 
02w 82u 02u 
7z2- azax ayaz 

3112             = —e[ 1 3 1 2 
1132

2 

2 

2

 1-21 Navier 
  fluid

   --,---: (p — euk,k)5ii — e(ui,j + ui,i) 
    E' — 2E2 — r(du4_,dv.\                       kdy'c1s1 

    _( ddu
y+ddvx)e' — 2r                           d y 

    

_ _ ... r ( ddwx + dduz )— E. ( ddvz + ddwy ) 
where E' = P — E(t + :iT:Li + 1-E-)

   dwdu) —Ed x+dz 
  dvd — E~ dz + dw 

 E1-2Edz)

Similarly, we define the coefficient matrix in fluid :  
, which contains  p in (1,1)-, (2,2)- and (3,3)-element. 

p — 3E — —E —2a —2a 
 CfT—E p — 3c —E —2r —2a 
           —E —E p — 3E —2e —2a _

   Cauchy 
   system 

2(contains b
oth 
   elasticity 

  and fluid)

tij =

(60)c
k2-1- Kv 
  k 8 an 
2 ab 8a 

  k 8( 0 
    2 8a I a,: 

where v =

 ,i(vi,i vi,i) 

is( p_i_,L) 2 \ ) 

Ku 
k (i)a +a< 

\acab 
+ +

k 8( 8 

2 3 

2 

 k an 4._ 2c, ao 

k-q�: + Kv

(46)c 

       3 1  1 
 R 131 

              _1 1 3 
where P = Q = R,

L R Q 2R 

R M P 2P 

Q P N 2Q 
 2 2 

22 , 

 2 2 
L = M = N,

2Q 

2R 
2P

L =3R.

(6)p€

3-11 Poisson 
   elasticity

tii = - 

(6) pe 

2 3 

where

 2 9-'-- (8- 'ilk k 3 t3 ,  +  Ui,j ± Uj,i) 

 E + 26,111 ____du ± ____dv    dxdy dx 
 du _4_ dvdv 

  dy 1 dx6-1-2-d-
 dw _L_ dud _L_ cYw 

. dx ' dzdvz ' dy     d
u dv du, 

dx dy dz

dw  du 
dx ' dz 
dv dw 
dz dy 
E + 2

 X  d2u 

+a2 
  fd  d2v q           2  d2 + 32ddz2dwx + 31dd2yl +„pl.) + 3dydx 

y 

±a2 (d2 v 2  d2u 2 d2w 1 d2v 1 d2v  dy23 dxdy 3 dzdy 3 dx2 3 dz) 
Z d2w  

+a2 (d22 4_2  d2u 2  d2v4_1 d2w 1 d2w       dz23 dxdz + 3 dydz' 3 dx2  3 dy) 
           3 1 1 2 2 

               a2 = — 1 3 1 2 2 
           1 1 3 2 2

= 0,

= 0,

  0,

3-2Poisson fl
uid

tij = —Ai + Avk,k6ii + itevi,i + vj,i) 
(717) p f 

  13(2- + t 13(t ± ) ir +213Pv 
    0 (ddvz + ddwy ir + 20 ddvy 0 (dduy + dd vx) 

    7r   +2/3 13(2 + t)13(2 + 2.) 
               d where it = pa :ibit x'8' div

 +  0 0 0 
(7-9) f 

        _ w-po 
According to Stokes: if we put 
 =-- p 3-(K k)(2- + 2- ) 

      - 
+ 0 -11- 

   = p+ 
            48 3 

                    P 

 Remark: cv(kk) =

 O  0 

O 0 

O 0

(12)s.

4

Saint-

Venant

fluid

 tij  =  (Psx  Pyy  P)  Vk,k  )(5ij  E(Vi,j 
(—P  Ilvk,k)Oij E(Vi,j

7r-F2EfIC-E('AE('Ad-L1-4-)
dxdydxdx dz

c•t + 2 ± 2et E(2 (14)
E sg. ( (la 71. 2e±c

dx dz dz dy dz

where 7r = A (Pxx Pyy Pzz) "1" Cd4c

dy

c.
c.4z2E (A: •cia AO

3 dx dy dz )

no description in [21].

7'1' —13 — 1 dd dd dd z
tij = (—p — + vi,i),

5
Stokes

fluid

tensor = —1 x

p 211( dd xu 8) _ il(dduy ddxv) _ il(ddwx + d uza )
dy dx9dydzdydudv, dv , dv ^dw

_tt( dd wx + dd uz ddvz dd wy p 2 ddwz (5.)

(12)s =

Remark:1/2= 2/41 —A)

+

p13L

_

' 3 3 3

where 36 = -L. 'iv dWdx dv dz
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 llname tensor ( 3x3  )

6
Maxwell

fluid

P 9km:92- dx2du

6Pay
M n(axau ^aukpe2M  (aw •au

 6kpe2P as. az,

to = (—p — iPvk,k)(50 + + vj,i),

[ p 92:92 p (2 dduxddvy ddwz
dw)
dz 

 M  JavaM (dw du
6kpe2Pas.'ay) , 6kpO2Pdx dz

)p 9k1,12pddUx2 ddvyddwM  (dy dwdz)6kpO2Pdz dy

)

 6kpe2P az  ay)PM   qav a w9k:/de2 pduxddd-yv2dwz

7
Kirchhoff

fluid

 tij  (—p  —  2kvi,i)Sii  k(vi,i  vi,i), -
p — 2kg-2-1k (a,+_k(+)
—k(+ — 2kt- — k(!+)
—k CLL.'k(P-12.p — 20-w-

axazazayaz

8
Boltzmann

fluid

to (—p — :Iiruk,k)(50 + + vi,i),
p 2.7z{ aasu 1 (au au aw)} _Tz(Ovau)_R(aw.au)3asay.azasayas az

_RJauaup2R .{au_(auauaw)R(auaw).ayay3as.ay.— az

_R(awauTz(auaw27z{aw1(auauaw)}asaz_azay)-3- ax ay az
M where, R=61c00

9-r.

 * § 63. 

5 Poisson's tensor of the pressures in flui
d reads as follows :

(7-7)Pf

 U1 

V1 

W1

U2 U3 

V2 V3 

W2 W3

 (k+K)a=0,

 j3 

o

du  dw 
dz dx 

dv dw 
dz dy 

,d1Pt , 
di 

0' P

du _j_ dv d
y ' dx 

 &Pt

     dv 

     dx

(k — K)ct

a=4,.=

P a ---ctr

    dt 

P = = K,

  dxt 

P dt 
0/ dxt  
xidt20dyv        dw m (dv 

      dz dz 

          then

     dv dw -1-
   dy 

+ = 2ka,

13X 

 oddt(t 2:61dx  1""dydx 

    ldz ' dx

(4)

where  Xt is the density of the fluid around the point M, and 'bt is the pressure. Here we can replace the 
first column with the third one, then we see easily the conventional style of array as follows :

U3 

V3 

 W3

U2 U1 

V2 V1 

W2 W1

The elements of velocity u = (u, v, w) are

p a dcrtt 

 (dduy dd  (du dw 
   dz ' ds 

, w) are  : 

 dx — =  u ,  dt

 01  t + 2I du 
xt dt dx 

do pa
dt  

dv dw 
dz dy

R(du_i_dv1' dydx 
atddt+2F'dy 

d bt   P — a d
t

dxdydz 

 dt=u,dt=V,dt=w 

d2 d
t2 = dt +Udx+vdy+v'dz, 

d  
Tirl2 y—t+Ztz+vdy+wdz, 
d2  

    dt+ dt2 — 2t dx +vdy + W dz

0 

Q 

xt

du _i_ dw 
dz' dc 

dv _I_ dw 
dz ' dy

 d  ttlw 
Yt dt f2dz

 5(11) In Poisson [17], the title of the chaper 7 is 
defferentielles de ce mouvement."

"Calcul des Pressions dans les Fluides en mouvement ; equations
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w _.-----E p a
d'bt  

dt

0 + O' dxt
Xt dt '

(5)

a

(7-9)Pf

 P(xdd2j)=dd:0(dd2.12'+dd2y12'dd2zU, 

p(Y)—dw0(dd2x1    dt2dydz2 

P(Z ----(4(d2w dw d2w        d2t)=ddz:+ Pkdx2dy2dz2

(6)

a() (7-9) p f means the equation number with chapter of Poisson [17]

If we put f = (X, Y, Z) then (6) becomes as follows : 

                           au                                        —
tywr= f 

2.2. Stokes' comment on Poisson's fluid equations. 
 Stokes comments on Poisson's (7-9) p f as follows : 

       On this supposition we shall get the value of St from that of — K in the equations 
     of page 140 by putting 

du dv dw = 1 dxt =
dxdydz 3xt dt • 

      We have therefore                  d
xt s dxt                             a —=—(K-5k)=+ 5k)

xtdt• 
                        du dv dw 1 dxt (7-2)P f++• 

                       dzdt 
     Putting now for /3 + /3' its value 2ak, and for ---- its value given by equation (8) 6, the 

      expression for zu, page 152, 7 becomes 
    dcbt xdxt     "U7=p—a0+0' dt=p(K5k) + 2ak)-----pk)(—du—dv 

       xt dt3Xtdt 3dx dy dz 
      Observing that a(K k) = 0, this value of tr; reduces Poisson's equation (7-9)pi [=(6)] 

     to the equation (12)s of this paper. ([22, p.119]). 

Namely, by using a(K k) = /3 in (4), we get the following :

then (6)( -= (7-9)j ) turns out :

 _ 112 _rciu_dvdw 
dxdx +3 dx dx ' dy ' dz 
dr° (12 p_ d ( du dv dw d

y dy 3 dy k dx dy dz ) 
dsudpdw 
dz=dz 3 dz dx dy dz

( 7 )

(8)

~( Du _X++CYK f~£d2ud2ud2uad(du DT)dxa(K) Cdx2+dy2+dz2_i_3(K+) dx dx 
Dv _17-\++CtiK+]~d2d2vd2vaddu P(Dtdy()dx2+dy2++3(K +)dydx 
Dwdp/d2wd2wd2waddu P(Dt—Z)+dz+ a(K + k)(dx2+dy2+-+3(K+) dzdx

(12)s

p(-17-5=-L:  -  X)  + - 11( 
P(% —Y) g

d2u  + +I
d2vd

d2  d 
d2w d2w d2w 
dx2 + dy2 + dz2

d2u ci2u 

dz 2 

               /2 v 

        1;7 )

du dv dw 

dx'dydz

dudvdw      
I-I_•-I__

WY 

_dv 
uy

           dz 

       iw)dz
dudvdw 

      I

d(du 
   3 dxdx 

___d(du 
   3 dydx 

)d(du 3 dzdx           ,dx'

ay 

   dv d           'dz 
dx'dy'dz 
duw ) 

(du dv dw  dx ' dy ' dz

      du dv dw 
    = = _.

) = 0, 
=0 , 

11-v) — 0 
dz 7 

Li)) = 0 
 lz 

Lf) = 0, 
42-v-) — 0 
dz

6(4) Poisson[17, p.141] 
7(4) cf. (5)
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Therefore, Poisson contains both compressible and incompressible fluid. 

            3. 'Drafts of 'On the dynamical theory of Gases' by Maxwell 

3.1. A progenitor of gas theory after Poisson and Stokes. 
 (4) Even after Poisson, Saint-Venent and Stokes, we can cite the progenitors of microscopically de-

scriptive, hydromechanical equations, which are specializes in gas theories, in which they describe the 
hydrodynamic equations, and they contribute to fix the tensor and equations of NS, so we have to trace 
them. cf. Table 2, 3, 4.

  Maxwell [12] had presented between late 1865 and early 1866, the original equations calculating his 
original coefficient, with which his tensor coincides with Poisson and Stokes, and his gas theory prior to 
Kirchhoff [9] in 1876 and Boltzmann [2] in 1895 as follows: (ft)

  if the motion is not very violent we may also neglect dt(p2 - p) and then we have 

2 M du dv dw                  =P —-----p 2-----
                        9kpe2 dx dy dz 

which similar expressions for 772p and (2p. By transformation of coordinates we can 
expressions forrjp,rl(p andp.They are of the form 

                            M (dv dwl 
=—

6kp02p\dzdyl

 Po  
Porlo 
P60

Having thus obtained th 

equation of motion

porlo 

Pig  
p(orlo

go (o 
prlo (o 

Pa

 X. 

= Y. 

       Z.

e values of the pressures

 Xy  Xz 

 Yy  Yz 

Zy Zz 

in different

easily obtain

(9) 

the

(10)

- 
P1 T3 T2 - 

= T3 P2 T1 , 

   T2T1P3 

             directions we may substitute them in the

4-i-+:14(142) + tiy-(XTI) + 1(14) 
P:it + l(grl) ±(fly(072) + 1(ArK) 
PV + ti.(14() + Ii(P07) + 1(1)(2)

= X p
, 

=1 7.P , 

= Z p.

(11)

This becomes as follows :

 ,  LIR  P  
t  dx 

v LIE 
P a t dy 

 w 1_E P 
at m dz

PM  
6kpe2 

PM  
6kp02 

PM  

6kp02

d2u d2 u_Ld2u 1 d(dudv 
dz2dy2dz2 dx dx d 

dz2-3-dydxdy d2v_Ldy2d2v d2v 1 d dx2 (du dv 
cow d2w aw 1 di du dv
dx2 dy2 - dz2

_L 1 d 
dz

 =  pX, 

=py, 

I = pZ.
(12)

Maxwell states as follows: 

        This is the equation of motion in the direction of x. The other equations may be 

      written down by symmetry. The form of the equations is identical 

        • with that deduced by Poisson 8 from the theory of elasticity by supposing the strain 

          to be constantly relaxed at the given rate 

        • and the ratio of the coefficients of V2 to -,d77-17„.c1-2), agrees with that given by Professor 
         Stokes, 9 which means (12) equals (12)s. 

      The quantity 6kp402 is the coefficient of viscosity or of internal friction and is denoted by 
µ in the writings of Professor Stokes and in my paper on the Viscosity of Air and other 

      Gases. [13, pp.261-262]. 

8(.1) The Equation(9) in [17, p.139], which we cite as (6) (7-9)p f above. 
9(4) Stokes [22]



174The microscopically-descriptive hydromechanics equations in gas theory 

3.2. Law of Volumes. 
 In late 1865 or early 1866, Maxwell proposed this paper. It was likely that  Boltzmann10 had got his 

idea from this paper. 

        u, v, w are the components of the mean velocity of all the molecules which are at 
      a given instant in a given element of volume, hence there is no motion of translation. 

rl, are the components of the relative velocity of one of these molecules with respect 
      to the mean velocity, the 'velocity of agitation of molecules'. 

       In the case of a single gas in motion let Q be the total energy of a single molecule then 

Q =2M{(u + + (v +77)2 + (w + (-)2 + Q + 772 + (2)} 
      and 

SQ _ 
StM(uX + vY + wZ). 

        The general equation becomes 

  2p7{u2+v2+w2+(1+0)(2+r12+(2)} 
    +(up2+ vprl + wP cd 

y) +(uPrl + vpr12 + wPrrC) + dz (up C + vPrl( + wP(2) 

    +12d xd(1 + 0)1)W+ 712 + (2)+1d2dy(1 + 0)Prl(2+ r12+ C2) +2d2                                               dz(1+ 0)0)1)((e+rl2+ (2) 
    = p(uX + vY + wZ). 

      Substituting the values of pX, pY, pZ 

      2_1p0(1   +~)(2+ 712 + (2) 
         2 du 2 dv2

dzdwdv dwdw du ldu dv l       + P (-17;+ Prldy+P(2+Prl~/+dy)+P~~(dx+dz+ P/rl(dy+ Tr) 
      + 1P(1+~)(2+r12+2)(drld() 

    2dxdydz 
         = O. 

Deviding by p of both hand-side, 

2(3t(1+ 2+r12+(2) 
         2du 2 dv2dw dv dwdw dudu dv          +d x +rldy+dz +rl`(dz + dy)+~(dx+dz) dw)dw/ + dx) 

        +2(1+0)(e+72+2)(dx+`~r/+`~~)      2dxdydz 

           = O. 

If we set 7Z =•(1+2-------,then we get the second, linear term of the left hand-side by Maxwell is written by 

tensor

P 2 X77 P( - 
POI P712 Pr1( = —7Z 
PX(- P(rl PK2 

which is 'general tensor'. 

m1844-1906.

au (ay,au)(aw,au)  axax ayax+az 

('av_i_auay (ay_.1_Ow  ax,ay 8y az,8y 

(ow j_ au (ay ,_aw)aw axiOz az,ay8z
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3.3. Determination of the inequality of pressure in a medium. 
2p=p M p(2du dv dw),712p = p M p(du2dv  dw  \2M ( du                                9k

pe2 dx dy dz),(P = P ------ 9kpe 2P—dx       9kpe2 dx dy dz) 

  71("P++ 
         M p(dvdw)ip,I=Mp(dvdw)(p= M (dw du =)                                                             6kpe2cl.zdy)'6kp02(:/.zdy)'6k pe2pdx± dz 

                                                              Op) Here, the relation of the coefficient between (13) and (14) is the relation between2p ( = 7,72p = 
and 71(p ( = Om = (p ) become 29 kt1;462 = 16. (1 + Dki1142• The left hand-side corresponds the coefficients 
of 2, Tx-', ti on the diagonal of the right hand-side in (13). The right hand-side corresponds with the 

               d2ud2v  coefficients ofanddd2z'fin (14). 
              dx2,dy2 

 Then we construct the tensor which is completely equal to (27) as follows :

- 
p'2 
i*/ 

_ X‹.

P671 
Prl2 
P(ri

14( "- 
pi( = 
P'2

Having thus obtained 

equation of motion.

the values

    M,(2du dv dw) 
P 9kpe2Pdxdydz 

• 

  M,(av_i_auM  
  6kpe2Pax' ay P 9kpe2P 

M   Al------    ,(aw_Lau 
 6kpe2Pax'az 6kpe2t" 

dues of the pressures in different

 M  ,(av_Lau)M (dw_Ldu) 6kpe2Pax ay6kp02 P dx dz 

(du 2 dv dwM ,(dv_Ldw) 
dxdy dz6kpe2Pdzdy 

av 8wM  (du dv 2 dw Oz ) ay) P 9kpe2P dx dy dz 
                                                                                                                                                             • directions we may substitute them in the

which become the following equations that are completely equal to

Pdt +  x  (p  2)  + dy (P rl) + a (p () = X P, 
pdt + (poi) + dy (prl2) + z (pno = Yp, 
P ai +1-([4()+  f(p(rl)+ d'z (X2) = Zp, 
equations that are completely equal to (185) B 
pM d2ud2ud2u1 d(dudvdw_ 

6kp02 dx2+dy2+dz2+3 dxdx+dy+dz—X p, 

pM d2vd2vd2v1_d_dudvdw 
6kp02 dx2+dy2+dz2+3 dy dx+dy+_dz—YP, 

 pM d2wd2wd2w1ddvdw6kpe2 dx2+dydy2+dz2+3 dz(si_u_dx+dy+__dz~'p

dv 

dy

 Ifwe set  7?1" then these equations are completely equal to (221)B. These facts state that 
Boltzmann ha 

3.3.1. 'LecturesonGasTheory'andLecturesonHeatTheorybyKirchhoff. 
            We introduce'LecturesonGasTheory'byKirchhoff[9,pp.156-1721.Hestatedhistheorycitingonly 

Maxwell in 1868basingonMaxwell'stheoryasfollows: 
       Wir 

      dabei der Maxwell'schen Darstellung. 
He says, 'We turn here into the investigation of a gas, which is not stable, and follow the description by 
Maxwell." Afterward, Boltzmann referred many contents of gas theory from both Maxwell and Kirchhoff. 
For example, Kirchhoff states three assumptions of the number of molecule : we will investigate the 
change, which these integral operated in a time dt, where the time is infinitesimally small. We show the 
change by d ( Nae2)  dt. It consists of three parts : 

    • the value of Q enlarged by flowing into and flowing out a certain molecule in the parallelepiped 
     in a time dt ; 

    • The outer force on the molecules, such as gravity operate, make change its velocity ; 
    • By the collision of each two molecules in the parallelepiped. [10, Lecture 15, p.157] 

which Boltzmann cites almost assumptions. In Boltzmann's description about the condition no. 3, 

   (3) Those of our do molecules that undergo a collision during the time dt will clearly have in general 
      different velocity components after the collision. 

        • ( Decrease : ) Their velocity points will therefore be expected, as it were, from the paral- 
         lelepiped by the collision, and thrown into a completely different parallelepiped. The number 

          d'rawill thereby be decreased. 
        • (Increase : ) On the other hand, the velocity points of m-molecules in other parallelepipeds 

         will be throne into dw by collisions, and dmwill thereby increase.             du—pMcl`ucl`ud`u-13'ddux +dv+dd—w_             Pdt+ dx 6kp02dx2+dy'2+dz2+dxddyX P,             p8vpMd2vat+dy 6kpe2 dx2+d2vdy2+d2vdz2+1 ddu3 dy dx+dvdy+dw_dz—Yp,(14) 

         dwpMd2wd2wd2w1 d dudvdw _              Pat+dz 6kpe2 dx2+dy2+dz2+3 dz(dx+dy+dz—Zp 

        had

  MP then these equations are completely equal to (221)
B. These facts state that 

            got his idea of special form of hydromechanics from Maxwell. 

             on Gas Theory' and Lectures on Heat Theory by Kirchhoff. 
            'Lectures on Gas Theory' by Kirchhoff [9, pp.156-1721. He stated his theory citing only 

           8 basing on Maxwell's theory as follows :

—2

(13)

dw 

dz
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        • ( Total increase by collision between  m-molecules and ml-molecules : ) It is now a question 
         of finding this total increase V3 experienced by do during time dt as a result of the collisions 

          taking place between any m-molecules and any m1-molecules. 
In 1894, Kirchhoff, in Lectures on Heat Theory [10, p.194], stated hydrodynamic equations in incompress-
ible fluid.

 du _La iL 
 dl  ax 

 dv  2p .  P 1-`dt — 13tt 

IdLdw t2E 1 E.        'az—31c.

 Au + 

+ 

  + Az

(au av8w 8xay 8z 

(au 8v aw dx dy Oz 

(au Dv Ow 
 ax ay Oz

=  µX, 

= µy, 

= µZ,

1 dµ On av aw 

                          µdtaxayaz—0. 
Kirchhoff explains his viscosity term as follows : 

        Als solche werden wir annehmen, daf3 u, v, w in dem Gas dieselben Werthe haben, 
      wie in dem festen Korper, also verschwinden, wenn dieser ruht; and daf3 die absolute 

      Temperatur im Gas, die 2
, einer Constanten ist, gleich ist der Temperatur des fasten 

Korpers. • • • 
        Die mit proportionalen Glieder, durch welch unsere Gleichungen sich unterscheiden 

      von den in erster Annaherung geltenden, bedinden die Erscheinungen der Reibung and 
       der 4Warmeleitung. • • • 

       Die Grosse sK El der Reibungscoefficient. [10, §3, pp.194-5] 
[ (transl.) We assume it as such that u, v, w in the gas have each value in the solid, when these move, 

and that the absolute temperature in gas which is equal to the multiplied by of an constant, is equal to 
the temperature of solid. • • • The proportional terms with , by which our equations are distinguished 
with one in the first adaption, bring up as the phenomena of viscosity and the heat conduction. • • • The 
term sk 2is called by viscosity coefficient. • • • ] 

  He introduces the real value of sh f, in his following context, which we omit it for lack of space.
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                   4. 'Lectures on Gas theory' by Boltzmann 

In general, according to Ukai [23], we can state the Boltzmann equations as follows: 11

 ~cf  +  v • V f
f _ Q(f, g), t > 0, x, v E (n > 3), x = (x, y- , z), Q(f, g)(t, x, v) =fB(v— v,a){g(v)f(v') — g(v)f(v)}do•dv, yell*                         32 

                      v,_vv*+Iv +v*ov,_v+v*+~v—v*  
      222 2

where,

• 

• 

• 

• 

• 

• 

•

V = ( 1 MO, (15) 

= g(t,x,v*), (16)

a E §n-1 (17)

f = f (t, x, v) is interpretable as many meanings such as 
 — density distribution of a molecule 

 — number density of a molecule 
 — probability density of a molecule 

at time : t, place : x and velocity : v. 
f (v) means f (t, x, v) as abbreviating t and x in the same time and place with f (v') 
Q(f, y) of the right-hand-side of (15) is the Boltzmann bilinear collision operator. 
v • OX f is the transport operator, 
B(z, a) of the right-hand-side in (16) is the non-negative function of collision cross-section. 
Q(f, g)(t, x, v) is expressed in brief as Q(f). 
(v, v*) and (V', v*) are the velocities of a molecule before and after collision. 
According to Ukai [24], the transport operators are expressed with two sort of terms like Boltz-
mann's descriptions : (114)B and (115)B including the collision term 0„ • (Ff) by exterior force 
Fas follow :12

 Q(f)
f f  0tf + v Vf + Vv • (Ff)= Q(f) 

JB(v—v*,a){f(v*)f(v')— f(v,k)f(v)}dcrdv,,  p32

(18) 

(19)

where, v • V f + Vv • (F f) are transport operators operating under the exterior force : F(t, x, v) = 
(F1, F2, F3). The right-hand side of (18) is expressed in brief as Q(f) meaning Q(f)(t, x, v). 

4.1. Development of partial differential equations for f and F. 
 We show the Figure 6 in the last page of our paper, which defines the model of the collision between 

the molecule rn1 calling the point of it and the molecule rn wich we call the point rn. The instant when 
the molecule rn passes vertically throught the disc of rn1 molecule, is defined as collision. We show 
Boltzmann's definitions as follow : 

      We fix our attention on the parallelepiped representing all space points whose coordinates 
      lie between the limits 13 

(97) B [X, x + dx], [y, y + dy] , [z, z + dz] , do = dxdydz 
        We now construct a second rectangular parallelepiped, which include all points whose 

      coordinates lie between the limits 

(98) B [e' e + de] , [rl, TI + dy] , [(, (+ d(] 

      We set its volume equal to 

dl;drldt = dw(20) 

11(,) We refer the Lecture Note by S.Ukai: Boltzmann equations: New evolution of theory, Lecture Note of the Winter 
School in Kyushu of Non-linear Partial Differential Equations, Kyushu University, 6-7, November, 2009. 

  12 (4),..) In the Boltzmann' original equations, they are used with two terms like (114)B, (115)B. We can refer the General 
lecture in the autumn meeting of MSJ by S.Ukai [24] : The study of Boltzmann equations: past and future, MSJ, 23, 
September, 2010. 

13(4) (• )B in the top of the equation or expression means the number cited in Boltzmann[1] in below of our paper.
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       TABLE 5. The symbols and definitions

gas theory

no symbol defined content of conformation in modeling of collision. cf. The Fig

 

. 6 in the last page. cf.

 

T  irn1

1  X,  Y,  Z (21) The component of accelarating force of a molecule in a coodinate direction.

2 mX,rnY,mZ The component of the external force acting on any rn-molecule. m

3 e, 7), (98)B The component of velocity of any in-molecule in a coodinate direction. m

4 f (99)B f = f(x, y, z, , ii, (, t)
5 fi (99)B fi = f(x, y, z, i, 7n, (1, t), different only with velocity of f. m

6 F (100)B F = F(x, y, z, e, rl, ~, t) M1

7 F1 (103)B F1 = F(x, y, z, 1;1, rtl, S1, t), different only with velocity of F. M1

8 el, 771, ~1 (102)B The component of velocity of any mi-molecule in a coodinate direction. M1

9 3 p.116 The moving direction ( or velocity ) of an m-molecule to an mi-molecule. Fig. 6 m

10 gdt p.116 The moving distance of an rn-molecule to an m1-molecule during dt. Fig. 6 in

11 b (104)B

The length of a line originated from m1-molecule, where, b is the smallest possible

distance of the two colliding molecules that could be attained if they moved

without interaction in straight lines with the velocities they had before the collision.

In other words, b is the line PIP, where P1 and P are the two points at which

mi . and in would be found at the moment of their closest approach if there were

no interraction.

Fig. 6 M1

12 Q The limit of the length of a line. [0, o•]. Fig. 6 nL1

13 E (104) B
An angle formed between a line b and a line rn1H, where, e is the angle between

the two planes through the direction of relative motion, one parallel to Pi P along b,

and the other to the abscissa axis.
Fig. 6 rrL 1

14 ' 
, (108)B The component of velocity of a molecule after the collision. rn

15 b' (109)B The length of a line after the collision. Fig. 6 rn 1

16 E' (109)B An angle formed between a line b and a line rn1 H after the collision . Fig. 6 M1

17
do :

parallelepiped
(97) B

We set do = dxdydz in which the in-molecules lie,

and we always call this parallelepiped the parallelepiped do.
m

18

dw:

parallelepiped
of velocity point

(98B)
(20)

We set dw = dt;drid( in which velocity point of the rn-molecules lie,

and we always call this parallelepiped the parallelepiped dw.
rn

19 dwi (102B)
(24)

We set dw1 = d ldr11d(1 as well as dw, in which velocity point of the m1-molecules lie,
and we always call this parallelepiped the parallelepiped dw1.

rn1

20 dn (99)B
The in-molecules that are in do at time t and whose velocity points lie in dw
at the same time will again be called the specified molecules, or the "dn molecules."
dn = f(x, y, z, , 77, (, t)dodw = fdodw

rn

21 dn' (99)B
The number of m-molecules that satisfy the conditions (97)B and (98)B at time t + dt.
dn' = f(x, y, z, l;, rl, (, t + dt)dodw

22 dN (100)B
The number of mg-molecules that satisfy the conditions (97)B and (98)B at time t.
dN = F(x, y, z, l;, rl, ~, t)dodw = Fdodw

23 dNi (103)B dN1 = F(x, y, z, 711, c1, t)dodw = F1dodw1 rn'

24 v1 (107)B The number of all collisions of our dn molecules during dt with rn1-molecules. rn1

25 1/2 (106)B The number of m-points that pass an m1-point at any distance less than a during dt. rn rn 1

26 V3 (105)B The number of collisions between m-molecules and n1-molecules. rn1

27 V1 (22)
The increase which dn experiences as a result of motion of the molecules during
time dt, where all rn-molecules whose velocity points lie in dw move in the x-direction

with velocity e, in the y-direction with velocity rl, and in the z-direction with velocity (.
A2 (C0)

28 V2 (23)
As a result of the action of external forces, the velocity components of all the molecules

change with time, and hence the velocity points of the molecules in do will move.
A3 (cP)rn

28 i1 (111)B
The total increase experienced by dn as a result of collisions of in-molecules

with rn1-molecules.
rn rrL 1

30 V3 (112) B
The net increase experienced by dn as a result of collisions of m-molecules

with mi .-molecules. V3 = i, — v1
A4 ((p)rn rn1

31 V4 (113)B
The increment experienced by dn as a result of collisions of in or mi-molecules with

each other.
A5 ((P)rn rn1

32so, dw „do cP (116)B cp = cp(x, y z, l , rl, e, t), -dw do cP - cp fdodw, multipling the number fdodw by co rn

33 Edw,do (117)B 4) = (1.(x, y, z, , 71, c, t),>dw do ̀1' — (1)Fdodw, multipling the number Fdodw by ( in

34 c1'1, dw, do 431 (117)B
~1 = 4)(x, p, z, 1, rll, yl, t),

Edw,do 4'1 = (D1Fidodwli multipling the number Fidodw by 4)1
rn 1

35 Ai (Co) (121)B The effect of explicit dependance of co on t.

36 A2 (CO) (122)B The effect of the motion of the molecules. V1 rn

37 A3 (40) (123)B The effect of external forces. V2
38 A4 (cP) (124)B The effect of collisions of in-molecules with m1-molecules. V3 m M1

39 A5 (W) (125)B The effect of collisions of in-molecules with each other. V4 rn

40 B1(c,o) (127)B The total effect in w of explicit dependance of co on t.

41 B20,0) (128)B The effect in co of the motion of the molecules. V1

42 B3 ((P) (129)B The effect in co of external forces. V2 in

43 B4(50) (134)B The effect in co of collisions of in-molecules with rig-molecules. V3 in rrc1

44 B5 OP) (139)B The effect in co of collisions of rn-molecules with each other. V4 rn

45 {Cr,(<P)}1 (125)B The effect in co and o as the same as {A,,(so)}i or {Bn(co)}i
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and we call it the parallelepiped dw. The molecules that are in do at the time t and whose 
velocity points lie in dw at the same time will again be called the specified molecules, or 
the "dn molecules." Their number is clearly proportional to the product  do  •  dw. Then all 
volume elements immediately adjacent to do find themselves subject to similar conditions, 
so that in a parallelepiped twice as large there will be twice as many molecules. We can 
therefore set this number equal to 

            (99)B dn = f (x, y, z, , r), (, t)dodw = fdodw 

Similarly the number of rn1-molecules that satisfy the conditions (97)B and (98)B at 
time t will be : 

           (100)B dN = F(x, y, z, , 7], (, t)dodw = Fdodw 
 The two functions f and F completely characterize the state of motion, the mixing 

ratio, and the velocity distribution at all places in the gas mixture. We shall allow a 
very short time dt to elapse, and during this time we keep the size and position of do 
and dw completely unchanged. The number of m-molecules that satisfy the conditions 
(97)B and (98)B at time t + dt is, according to Equation (99)B, 

dn' = f (x, y, z, , r], (, t + dt)dodw = fdodw 

and the total increase experienced by dn during time dt is

(101)B dn' — dn =dtdo dw dt.

  

, r], ( are the rectangular coodinates of the velocity point. Although this is only an imaginary point, 
still it moves like the molecule itself in space. Since X, Y, Z are the components of the accelerating 
force,14 we have: 

ddr) d(                  =X — Y           =Z(21) 
                  dt' dt' dt 

4.2. Four different causes bringing up increase of dn. 
 Boltzmann explains an increase of dn as a result of the following four different causes of 171, V2, V3 

and V4 :

• V1 

• V2 

• V3 

• V4

increment by transport through do 

increment by transport of external force 

increment as a result of collisions of Tn-molecules with rn1-molecules 

increment by collision of molecules with each other

We extract an outline by the Boltzmann [2] as follows : 
      The number dn experiences an increase as a result of four different causes. 

      (1) ( V1 : increase going out through do ; ) All rn-molecules whose velocity points lie in 
          dw move in the x-direction with velocity e, in the y-direction with velocity 77, and 

          in the z-direction with velocity (. 
           Hence through the left of the side of the parallelepiped do facing the negative 

          abscissa direction there will enter during time dt as many molecules satisfying the 
         condition (98B) as may be found, at the beginning of dt, in a parallelepiped of base 

         dydz and height edt,15 viz. 

e • f(x, y, z, (, r], (, t)dydzdwdt 
          molecules. Likewise, for the number of rn—molecules that satisfying (98B) and go 

         out through the opposite face of do during time dt, the value: 

e • f(x + dx, y, z, , r], (, t)dydzdwdt 
14(t) Da X, Y, Z die Componenten der beschleunigenden Kraft sind, so ist: • • • Boltzmann [1, p.1031. 
15(.t1.) 6 : the x-direction with velocity multiplied by dt becomes the length of a edge of which consists a parallelepiped 

with a base dydz.
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By similar arguments for the four other sides of the parallelepiped, one finds that 

during time dt, 

          ~~+rl0y+Oz)do•dw dt 
more molecules satisfying (98B) enter do than leave it. This is therefore the increase 

 V1 which  dn experiences as a result of motion of the molecules during time dt.

Vi—(      af 5f ax+5(3fy~z) do dw dt (22)

(2) ( V2 : increase by external force ; ) As a result of the action of external forces, the 
   velocity components of all the molecules change with time, and hence the velocity 

   points of the molecules in do will move. Some velocity points will leave dw, others 
   will come in, and since we always include in the number dn only those molecules 

   whose velocity points lie in dw, dn likewise be changed for this reason.

V2 =-(Xdf+Yf +Z 
de dy

df
az )do  dw dt (23)

Boltzmann defines the effects of collisions as follows : 

     (3) ( V3 : increase as a result of collisions of rn-molecules with m1-molecules ; ) Those 
        of our d'n molecules that undergo a collision during the time dt will clearly have in 

        general different velocity components after the collision. 
           • (Decrease : ) Their velocity points will therefore be expected, as it were, from 

            the parallelepiped by the collision, and thrown into a completely different 
            parallelepiped. The number dn will thereby be decreased. 

           • ( Increase : ) On the other hand, the velocity points of 'rn-molecules in 
            other parallelepipeds will be throne into dw by collisions, and dn will thereby 

                increase. 
           • ( Total increase by collision between rn-molecules and rn1-molecules : ) It is 

             now a question of finding this total increase V3 experienced by do during time 
             dt as a result of the collisions taking place between any m-molecules and any 

rn1-molecules. 
        For this purpose we shall fix our attention on a very small fraction of the total 

        number vl of collisions undergone by our dn molecules during time dt with rn1-
        molecules. We construct a third parallelepiped which includes all points whose 

        coordinates lie between the limits 

            (102)B [61, 6 + d6), [771, r11 + dill], [6i, + d(1] 

        Its volume is 

dw1 = deidrlld(1 

        It constitutes the parallelepiped dw1. By analogy with Equation (100)B, the number 
        of rn1-molecules in do whose velocity points lie in dw1 at time t is : 

                         (103)B dN1 = F1dodw1i 
        where F1 is an abbreviation for F(x, y, z, ~1, rh, (1).

(24)

Boltzmann difines a passage of an m-point by an rn1-point as follows : 

         (a) (How to pass : ) We define a passage of an rn-point by an mi-point as that 
             instant of time when distance between the points has its smallest value ; thus 

m would pass through the plane through rn1 perpendicular to the direction 
             g, if no interaction took place between the two molecules.
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 (b) ( v2 : the number of passages of an  m-point by an mi-point : ) Hence, v2 
    is equal to the number of passages of an rn-point by an mi-point that occurs 

    during time dt, such that the smallest distance between the two molecules is 
    less than a. 

 (c) (A plane E : ) In order to find this number, we draw through each mi-point 
    a plane E moving with mi, perpendicular to the direction of g, and a line G, 

    which parallel to this direction. 
 (d) (When a passage ends : ) As soon as an m-point crosses E, a passage take 

    place between it and the mi-point. 
 (e) (A line m1X : ) We draw through each mi-point a line m1X parallel to the 

    positive abscissa direction and similarly directed. 
 (f) (Half-plane : ) The half-plane bounded by G, which contains the latter line, 

    cuts E in the line miH, which of course again contains each mi-point. 
 (g) ( b and e : ) Furthermore, we draw from each mi-point in each of the plane 

    E a line of length b, which forms an angle 6 with the line mi H. 
 (h) ( Rectangles of surface area R formed by b and € : ) All points of the plane 

    E for which b and E lie between the limits 

             (104)B [b, b + db], [E, E + dE] 
    form a rectangle of surface area R = bdbde. 

 In Figure 6 16 the intersections of all these lines with a sphere circumscribed about 
mi are shown. The large circle (shown as an ellipse) lies in the plane E ; the circular 
arc GX H lies in the half-plane defined above. In each of planes E, an equal and 
identically situated rectangle will be found. We consider for the moment only those 
passages of an rn-point by an mi-point in which the first point penetrates one of 
the rectangles R. 

II = Rgdt = bdbdc gdt, E H = dN1H = Fidodwi gbdbd€dt 
RdNl (103)B H 

 Since these volumes are infinitesimal, and lie infinitely close to the point with 
coordinates x, y, x, then by analogy with Equation (99)B the number of rn-points 
(i.e., rn-molecules whose velocity points lie in dw) that are initially in the volumes 
E H is equal to : 

        (105)B v3 = f dw > II = f Fidodwdwigbdbdedt 
 This is at the same time the number of rn-points that pass an mi-point during 
time dt at a distance between b and b+db, in such a way that the angle E lie between 
€ and E + dE. 

 By v2 we mean the number of rn-points that pass an mi-point at any distance 
less than a during dt. We find v2 by integrating the differential expression 1/3 over 
E from 0 to 27, and over b from 0 to a. 

         fcrf2~r~/27r(106)B v2=JdbJv3de=dodwdwidtJdbdEg•b•f•F1•000
 The number denoted by vi of all collisions of our do molecules during dt with 

mi-molecules is therefore found by integrating over the three variable 1, 711, ~1 
whose differentials occur in dw1, from —co to +oo; we indicate this a single integral 
sign : 

             r00rcorQ127(107)Bvi=Jv2dwi = do•dw•dtJdwiJdbfFgbde 

                                               0 

 We shall consider again those collisions between m-molecules and mi-molecules, 
whose number was denoted by 1/3 and is given by Equation (105)B.

16(4) We show this Figure 6 in the last page of our paper citing [1, p.107], which is equal to [2, p.117], however, we must 
correct the symbol R by H of [2, p.117].



182 The microscopically-descriptive hydromechanics equations in gas theory

 These are the collisions that occur in unit time in the volume element do in such 
a way the following conditions are satisfied  : 

 • The velocity components of the  m-molecules and the m1-molecules lie between 
the limits (98)B and (102)B, respectively, before the interaction begins. 

 • We denote by b the closest distance of approach that would be attained if the 
molecules did not interact but retained the velocities they had before the collision.

 The total increment it experienced by dn as a result of collisions of m-molecules 
with rn,i-molecules is founded by integrating over E from 0 to 27r, over b from 0 to o-, 
and over 61, i1, (1 from —co to +co. We shall write the result of this integration 
in the form :

               ffaf271-(111)B it = dodwdtf/f'Figbdwidbde 
                 JJo

 Of course we cannot perform explicitly the integration with respect to b and E 
since the variable 6', ri', (' and 6',, 74, (i occurring in f' and Fl are functions 
of (6, 77, <", 6i, 74, (, b and c), which cannot be computed until the force law is 
given.17 

 The difference it — v1 expresses the net increase of dn during time dt as a result 

of collisions of rn-molecules with m1-molecules. It is therefore the total increase V3 

experienced by dn as a result of these collisions, and one has

(112)B V3 = dodwdt  IL (f ' F1 — f Fi)dwidbd€

(4) ( V4 : increment by collision of molecules with each other ; ) The increment V4 
   experienced by dn as a result of collisions of rn-molecules with each other is found 

   from Equation (112)B by a simple permutation. One now uses el, TA, and     
, for the velocity components of the other rn-molecule before and after the 

   collision, respectively, and one writes sri and f for

fl = f (x, y, z, j, rh, (1, t) and f = f (x, y, z, 711 t)

Then :

(113)B dodwdt  IL (f'fi — ffi)gbdwidbd

4.3. Formulation of Boltzmann's transport equations. 
 According to Boltzmann[1, pp.110-115], 18 his equations (so-called transport equations) are the following 

19

 Since now V1 + V2 + V3 + V4 is equal to the increment dn' — do of do during time 
dt, and this according to Equation (101)B must be equal to ve dodwdt, one obtains 
on substituting all the appropriate value and deviding by dodwdt the following partial 
differential equation for the function f :

17(4) Hier kann die Integration nach b and E natiirlich nicht mehr sofort aus gefiihrt werden, da die in f' and Fi 
vorkommen den Variabeln C', r7', and i, 74, (C. Function von , r~, (, ~i r(, (, , b and csind, welche nur berechnet 
werden konnen, wenn Virkungsgesetz der wahrend eines Zusammenstosses wirksamen Krafte gegeben ist. [1, p.112]. 

18(ll) Boltzmann(1844-1906) had put the date in the foreword to part I as September in 1895, part II as August in 1898. 
19(.(S) We mean the equation number in the left-hand side with (•)B the citations from the Boltzmann[1] or [2]. We state 

only the symbol f instead of f °° . cf. (107)B.



The microscopically-descriptive hydromechanics equations in gas theory 

     TABLE 6. Combination of function before and after collision
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no item V3 before V3 after f of V4  beforei  f of V4 afterIF of V4 before F of V4 after

1 function of ml  f' f  f' F F'f
2 function of rn F1 F'1 I fi fi F1 P-'_

 3  I increment f,ff—ffl     — FFi

         af of of kf a f af of        (114)
B 7)7 + +71+(7-)+X iT)G- -1- YT) + Z T-z 

       V1V2 

                              oo27r             =LL1 (f' Fi' — fFi)gb dwi db de+ Ifc.°1.27r(f' fl— f fi)gb dwi db de 
                                                      0JO 

v3V4 

             //COf2lri1                        (fiFif Fi) +Or' fi– fMigb dwi db d€ 
V3 + V4 

  Similarly we obtain the equation of F: 

        aF„oF„OF1aF,aF,OF1OF1 (115)
Bat+a z+711 ay+(i.az +.)(1  az+Y, ay+z,  az 

           ..._ .„,__, ...._..„._., 

      V1V2 

00 27r
,              = frf27r(f' Fi — f Fi)gb dwi db de+ ff/(F,Fi— FF1)gbdwi db de 

     000JO 
V3V4 

               ffc'af2'[(fiFi — f Fi) + (FT,'– FF1) gb dwi db de   00 

V3 + V4 

where, 

{f = f (x, y, z, , 71, (,t), fl= f (X, y, z,7 TA, (1, t),..t•= f (x, y, z,-11_,nil,(11 t),  F = F(x, y, z, ,77,(, t), F1F(x, y, z,61 ,711,(1, t), F F(x, y, z,/1, nil,(1.,0(25) 
Namely, we can verify (114)B for f : 

V1+ v2 + v3 + V4 Of –(6Of±Of+ (Of) _()(Of+ yOf+ zOf) 
    dodwdtOt\ OxTiay az l \ de ay az l 

        V1V2 

                                          27r 

          ffo'fo( f' F—                           'f Fi)gb • dwidbd€ +if(f' f'f fi)gb • dwidbdE.                                                       00fr27r +1 

V3V4 

 Similarly we obtain (115)B for F. 

 V1 + V2 + V3 + V4 OF(,0F1 .OFI+ (OF1),')(OF].+ 37OF ZOFI)             =±T1 
  dodwdtatax ayaz) d6ayaz 

               + f f 000fo2 71-.,/                               (fIli– f Fi)gb•dwidbd€ +00,.27r/i                                   flo1(FFi.– FFi)yb • dwidbde. 
(4) Here, we can confirm the identity with the today's description of the Boltzmann equations (15) and 
(16) : 

               at f + v • V. f +w • Vvf =Q(f, , g),01-E+ v•VF + w•\7F = Q(F, C), 
                         ....„,.._...-s...„..._..–,..._..,—,,..._.—,,--, ..._____, 

           V1V2V3, V4V1V2V3, V4 

Q(f , g)(t, x , v) = fIB(v – v,,cr)-{g(e)Pe) – g(v) f (vildo-dv, g(v) = g(t,x,e), etc. 
                    ill3§2 

             t > 0, x, v, w E R0(n > 3), x = (x,y, z), v = (, 77, (), w = (X, Y, Z).
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In the case of (18) and (19)

 Q(f)

 Of+  v  •  Vxf  +  Vv• (ft f)=Q(f) 

 f VlV2V3 , V4 =JB(v —v*,c-)-(f (v*) f (v') — f (v*) f (v)}dadv* 
      32

4.4. Time-derivatives of sums over all molecules in a region. 
        Let cp be an arbitrary function of x, y, z, , 77, (, t. The value obtained by substituting 

      therein the actual coodinates and velocity components of a particular molecule at time 
      t will be called the value of cp corresponding to that molecule at time t. The sum of all 

      values of co corresponding to all the rn-molecules that lie in the parallelepiped do and 
      whose velocity points lie in the parallelepiped dw at time t is obtained by multiplying cp 

      by the number fdodw of those molecules. We denote it by (116)B. 
        Similarly we choose for the second kind of gas any other arbitrary function of 

      x, y, z, ~, r~, ~, t and denote by (117)B. The sum of the values of corresponding to 
      all the rn1-molecules lying in do whose velocity points lie in dw1. 4)1 is the abbreviation 

      for c(x, y, z, 1, rh, (1, t). [2, §.17, pp.123-124]. 

4.5. General form of the hydrodynamic equations. 
   As the general expressions for fluid mechanics, he states that when we substitute for its value 

from Equation (114)B, it turns into (120)B, (126)B, (140)B, a sum of five terms, each of which has its 
own physical meaning, as follows:

(116)B 

 (117)B 

(118)B 

(119)B

„ do (P yfdodw,     

,do .1)Fdodwi, 
              dofçofdw, 

ff (pfdodw,

(120)B #t- dw ,do(P = (f---+ dodw = An(cp)- dodw, 
404)1 = 43iFidodwi, 

(126)BA->w,do(13= do f (f'4+(p4) dw =[E752=1 13,,((p)]do, 
(140)B E„,0 = ff (f--+) do = E,5,1 cri(c)

4.5.1 . Conformation of Ari(W).

whereIA„(co)2_1

(121)B 

(122)B 

(123)B 

(124)B 
(125)B

 AIM — at", 

A2 (CO) = —(+,-,g ±(g), 
A3(,0)=_(,) .)(P, +yg + zgao, 
A4((p) =,,,'Lc°f02-(f/Fi - fFogb dwi 
A5 (co) =coHoc°f027r(f.' fl — f fi)gb dwi

correspond to the effects such as

 In order to findat we have simply to integrate 

4.5.2. Conformation of  Br  (cp).

db df, 

db dE,

Al (cp) : the explicit dependence of co on t; 
A2 ((p) : the motion of the molecules; 
A3 (co) : the external forces; 
A4 (co) : collisions of m,-molecules with ml-molecules; 
A5 (y) : collisions of rn-molecules with each other; 

rw,do(1°, we have simply to integrate at>wdo cp over all possible values of dw.
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 One obtains each B by multiplying the corresponding A by dw  = d dridc and integrating over all these 
variables from —oo to +co, which we indicate by a single integral sign. Thus : 

                                                    co                (127)BB1(o) = fA1((p)dw= ffdw 
                                     Of            (128)B B2((o) = f A2(o)= — f (p(Ox+ri~f+~) 

                                             y 

         (129)B B3(40) = f A3(40) = — f (xa +Yay +Zb7z)dw 
                                                      'co27r 

    (134)B B4(p) = f A4((p)dw = ffff((p —~)(f'F— fFi)gb dw dw1 db de 

                    0 

                            fff~//~(135)B B51() = fA5(io—)dw =J('—)ffob dwdw1 db de                              0
fff 00f2rr(136)B =f0(cp —p')f`fgb dw dw1 

 (135`)B Bs1((p) = f A5((oi — (pi)dw =ffff2ir(co— Col) ff'gb dw dw1 db dE 
                              00 

rrrrcof
o2'r

From (135)B, 

                       ~~o02ir    (137)B B53(40) =2(B51+ B51) =—91ffff(co'+cPi—cP— Col) ff'gb dwdw1 db de 
                1 From (136)B, 

co2rr 

   (138)B B54(W)=2(B52+B52) =2f JJJ(O+o1—~`—c1)f`flyb dw dw1 db de 
The arithmetic mean of (137) B and (138) B, 

                          ~~co27r  (139)B B5((70)= 2(B53 + B54) =4ffJf(o+~1—~`—co1)(f'fl—ffi)gb dw dw1 db de 
 p 4.5.3. Conformation of CrL((p). 

5 (140)B dt>0= E Cr,((p) 
      w,on=1 

                      Cl((p) + C2(cp) + C3 ((p) +C4(w) + C5(40) 

                            increments except for those resulting from collisions increments of those resulting from collisions 

Remark: since in ~ cp of (140)B one has to integrate over all values of do and dw, this quantity is 
now a function only of time. Hence the use of symbol is unnecessary, and we can express differentiation 
by the usual Latin letter d. Each C is obtained by multiplying the corresponding B by do and integrating 
over all volume elements, or else by multiplying the coresponding A by dodw and integrating over all do 
and dw as we show in (119)B. 

 Integrating {Bn((p)}372_1 of (127)B, (128)B, (129)B by do from —oo to +oo, 

(141) B Cl (Co) + C2 (CO)+C3 (CO)=ff fdouw (at+Ox+r~v~y+~z+X~x+1'~y+ZOz) 
Integrating B4(co) of (134)B by do from —oo to +oo, 

                    co~
(1421)B C4() =ffff f2( —)(f'Ff— fFi)gb do dwdw1 db de 



186 The microscopically-descriptive hydromechanics equations in gas theory

Integrating  B5(co) of (139)B by do from —oo to +oo, 

                 1     (1422)B C5((p)=4 ffff  f2( V)+(Pl—~'—`~i)(f'fi—ffi)gbdodu)dwldbde 
4.5.4. More general proof of the entropy theorem. Treatment of the equations corresponding 

to the stationary state. Boltzmann assert the following conditions 

                (147)B ffi = f'fi, FF1 = F'Ff, fFi = f'F1. 

4.5.5. Linearity of Ak, Bk, Ck• 

        Since A, B, C are only the increments of definite quantities resulting from specified 

      causes, most authors express them as derivatives of those quantities. Maxwell writes 

      at~~, do cp,Kirchhoff D~~,docpfor B5 ((p) etc. As with all differentials, the A for a 
      sum of two functions is equal to the A's for the addends :

 Ak(c10 + 0) = Ak((P) + Ak (V* 
Bk((P--F1P)= B k (40) + B k(0) ) 
COP + 0) = C k (CO) + C k (P)

      for any subscript k. These equations follows from the circumstance that (,o occurs in all 

      the integrals A, B, C only linearly. 

4.6. Special form of the incompressible, hydrodynamic equations.

(171)B   +
Op 3(pu)

+
0(pv)

+
a(Pw)

P(TC'du 
p (vavt 

  Ow

 at ax

    „, aU„,„aU 77- 

ay

= pX 

= PY

  az 

8(41)  
a.

=0

0(korio) 0(f)0(0)

(173)B 

c'Y az ) 

           "DT + vQ.V. ,„,0v 
Xay c-4-,                 at, 

            7)7 + VAL° + 21Lil           +w      da:61Y  TT;

a(Porio)

ay 

D(p)  
'a
y

az ,

a(p(o )

 )az= pZ —

ax

D(po(o) a(prio (0)
Dx ay

az , 

D(p)  
az

Boltzmann says, "These equations as well as Equation (171)B, are only special cases of the general 
equation (126)B and were derived from it by Maxwell and ( following him ) by Kirchhoff.” Boltzmann 
concludes that if one collects all these terms, then Equation (126) reduces in this special case to: 

 (177)B a(ticd) -Fa(X(p)a(P177)a(P-OP)[aePaco                                pv-—,—] =rn[B4((p) B5(cp)] axOyaz Ori0( 
                                                                                                 collision terms 

Boltzmann states about (177)B : 
       From this equation Maxwell calculated the viscosity, diffusion, and heat conduction 

      and Kirchhoff therefore calls it the basic equation of the theory. If one sets co = 1, he 
      obtains at once the continuity equation (171); for it follows from Equations (134) and 

     (137) that B4(1) = B5(1) = 0. Subtraction of the continuity equation, multiplied by ep, 
     from (177) gives (using the substitution [158]): [2, p.152]. 

where, (158) : = U, = v, = w. 

                                                                     aco   (178)Bp(-2.8+a+a(P6°(P) +a(PriwP) +a(P(pc°)-pX—+ Y—Z—       atxayazaxayaz_`cK au 0( _ 

                          = m,[B4(cp) + B5()1 
                                                                collision terms 

If one denotes the six quantities (179)B : pa, pig, P7706, P66714070 by Xx, Yy, Zz, Yz = Zy, Zx = 
xz, Xy = Yx, namely, when we use the symmetric tensor, then we get the following :

 p  gorio go(0 
peon° grid  prio0 
go(c. gbno 4

 X. Xy Xz P1 T3 T2 

= Yx Yy Yz = T3 P2 T1 , 

Z. Zy Zz T2 Ti. P3
(26)
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(180)B

 P 

 P 

P

These are not NS equations for lack of the pressure term. Moreover (181)B : P = 14(1 = 
 P<-13, (:177o = ()(13 = 77go = 0. Here, he assumes that from the supposition of isotropy and hom( 

p = A•(Xx + Y,, + Z,), which is the same as the principle by Saint-Venant or Stokes. 
 He deduces a special case of the hydrodynamic equations as follows: 

        For the present, we assume as a fact of experience that in gases the normal pressure 
      is always nearly equal in all directions, and that tangential elastic forces are very small, 

      so that Equations (181) are approximately true. Substitution of the values given by this 
      equation into Equation (173) yields:

at ax -"- ay az ax I ay z                                    a 

au„au„au„„au)axa,ax,aXz y 

at "'ax -" ay ' az ax' ay az 

av _ay) ay, a Yy ayz _ 
'at ax " az) ax ay az ,7P`I aw,aw,awwawaZzaz,az 

for lack --e pressure term. Moreover (181)B : p = ps:3 = prg = 
. Here, he assumes that from the supposition of isotropy and homogeneity,

(183)B

 P 

 P 

P

au au , au au) 
at ax ay az 

av , av , av , --7- --1-  u7-- -r-  v-,--- --r-  W P,---v-) 
di dx ay az 

aw _i_„,aw_i_,,aw_i_,,,,aw 
at'`-'at:'-ay'—az

— pX =0
, 

+ — pY =0,   ay 

) -;(2)i — pZ =0

which are the so-called Euler equations in incompressible condition of (171)B.

(185)B

We set the values of (26)

 au P
TA-  ± 

 av P
T( 4- 

 aw P
7ir

 pa  gorio 
go 770 Prg  
PO PO no

as follows, which is the same tensor as Stokes

(220)B

Fromm  (220)B, we u 

8(1)0 a(gono)  
ax au _ 

a(gono) a(Prie)  
ax ay 

a(p4oCo) a(p(ono) 
axay

Poo 

p11oo

we calculate the components of (185)B

0(r,o(o) 
 az  

0(pno(0)  
   az 
 0(4)  

az

8(4) a(i07-10)a(go)  
a.'azpX=0, 

a(Xono)a(Png)a(Pno(o)  
 as •'azpY=0, 

 (p0(0) atp(orio) 0(4) pz— 
axay'az 

lich is the same tensor as Stokes : 

P 2R. { — + +1)1)1 —R(t- 
            p2R,{(au_i_av    axayay3ax•ayaz 

    aowx po_ul_ R, (pz aawy) p 2R aawz _ 
lents of (1851 as follows:

ax 3 

_R(ary 
     as ' ay 

as • az

(auayaw)  as•ay' 

p 222 — ( ay3 

_ ( ow) 
az • ay

Then, substitution of these values into the equations of motion

 _ (8, y _u        as ' ay ) 

as ' ay ' az 
au ay aw)} 
p — { 2 t- — 
(185) B yields:

 _ (owau) 
       as• az 

_ R , aayz aawy 

au ay aw)}

-R(t +k) 
— R(gi + a4;) 
8u ay aw)} 
as • ay • az

a 
 aec 

 aoy 

Dz

(221)B

Pat, ap Patrax 

,,av_i_22 P
at ,- ay 

,au_Le2E Pa
t'ax

 —1z 

—7 

   —7

 Au  + 

       a Av + 

Aw

(a. ax

 au + +. aw

(a,
au avJ

ay 

au 

ay

U2 

8w

 —  pX  = 

— AY = 

— pZ =

0, 

0, 

0

We can interpret that as the special cases, Boltzmann have deduced th 
the tensor (220)B to (173)B, for lack of pressure terms.

e NS equations after substituting
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We can construct the tensor with the Equations

-  
g.2 
gri 
W-

/471 X‹* - 
Pr/2 Pr/( = 
PO P(2 _

From R.—----Mp          —6kpe
27 

the coefficient.

    Mdu dv P—
9kpO2P2  cdx  dy 

  M 8v8u 
      6k21'peax + ay 

  M  (aw 8u 
  6kpe2 P 8x  8z

(13) and (14) as follows:

dw  
 dz 6kpe2 Pax+au8y 

       M C8v) 
 _ Mdudv_dw P 

9kpe2Pdx—2 dy dz 

  Mdv 8w 
   6kpe2Pdz...FayP— pE 

rLl

  Mdw du 
  6kpe2Pdx+dz 

  Mdv dw 
  6kpe2Pdz+dy 

  du dvdw 
   dxdy2dz

we get (220)B. The equations (11) equals (185)B and (12) equals (221)B except for

(27)

4.7. Entropy. 

 The word entropy was deduced by Clausius [4] in 1865, and following his nomenclature, Boltzmann 
constructed his first version of equations in 1872, applying entropy to his gas theory. We show citing [4] 
Clausius' Greek nomenclature, meaning "conversion" of material as follows  :

 (60)c S=So+J T,(65)c fdQ =S — So
welch, nur etwas anders geordnet, dieselb ist, wie die unter (60) angefuhrt zur Bestimung 
von S dienendene Gleichung. 

 Sucht man fur S einen bezeichnenden Namen, so konnte man, ahnlich wie von der 
Grosse U gesagt ist, sie sey der Warme - and Wirkinhalt des Korpers. Das ich es aber 
fur besser halt, die Namen derartiger fur dir Wissenschaft wichtiger Grossen aus den 
alten Sprachen zu entnehmen, damit sie unverandert in allen neuen Sprechen angewandt 
werden konnen, so schlage ich vor, die Grosse S nach dem griechischen Worte ri Tpo7rr/, 
die Verwandlung, die Entropie des Korpers zu nennen. 

 Das Wort Entropie habe ich absichtlich dem Wort Entropie durch diese Worte banannte 
werden sollen, sind ihren physikalischen Bedeutung nach einander so nahe verwandt, dass 
eine gewisse Gleichartigkeit in der Benennung mir zweckmassig zu seyn scheint. [4, 389-
390]

        (Transl.) (60)c, (65)c, which seemed to be like only reallocated expression, however, 
      the usage cited in (60)c, is useful equation. 

        We sought some suitable name for the nomenclature for S, like the quantity U, such 
      as the value of warm and value of work of a material. I considered that it seemed to be 

      suitable to be adopted from the old Greek as the nomenclature for the important quantity, 
      so I owed it to the quantity S from Greek word po7ril, which means "conversion", the 

       Entropy of the material. • • • 

  Boltzmann consider when the following conditions do not hold, where, the number of the two molecules 
f and fl, F and F1 and f and F1 before and after collision, namely from (147)B, 

ff1 f'fi, FF1 FtFI, fF1 

    We construct the expression H for the gas contained in the volume element do. The value thus 

found will be multiplied by —RM and divided by do. Let this quantity be

J=—RM J flnfdw.

Jdo is then the "entropy" of the gas contained in do, if it had the same energy ( heat) content and the 
same progressive motion in space, and obeyed the Maxwell velocity distribution law. It can be calculated 
just as in §19, and has the value 

                          Rp„71) 
                 µ p 

here, this value AE is called Boltzmann constant and it was inscribed on his epitaph as 

                                 S = kinw
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which is also 

                                                         3 

                               TZ =(±)kexp  S 

                                    5. Conclusions 

  Maxwell in 1865, Boltzmann in 1895 and Prandtl[18, 19] in 1904 both used the "well-known hydro-
dynamic equations" and at latest in 1929, used the nomenclature of "Navier-Stokes equations" , using 
the two-constant not of Navier, but of Saint-Venant, Stokes, and expanded by Maxwell, Kirchhoff and 
Boltzmann. These three persons verified the hydrodynamic equations without the name as Navier-Stokes 
equations. 

 In short, we can state that after formulating by Navier (1827) [15], Cauchy (1828) [3], Poisson (1831) 
[17], Saint-Venant (1843) [21] and Stokes (1849) [22], the topics of hydrodynamic history are rebuilt by 
Maxwell (1865) [12], Boltzmann (1895) [2] and Prandtl (1927) [19] in the cyclic interval of about 30 years 
or so. 

 As the two constants, Saint-Venant had used e and 3 and Stokes p. and 3 while Boltzmann used R. 
and 3 after tracing Maxwell. According to Prandtl[18], we can suppose that the naming may be decided 
in "The third international mathematical Congress" in Heidelberg in 1904 or few years later than it. 
Boltzmann states hydrodynamic equations as well as the Euler equations of (183)B: 

      Die Gleichungen 221 sind die bekannten auf innere Reibung corrigirten hydrodynamis-
      chen Gleichungen. [1, p.169] 

(transl.) Equations (221) are the well-known hydrodynamic equations corrected for 
      internal viscosity. [2, p.176] 

According to Boltzmann's description, we can suppose the fact that the then academic society had not 
fixed yet the name of this equations, up to 1895 or 1898.

    Basically, the NS equations were deduced from Newton's kinetic equation (the second law of motion 
: F = rrtr, 20 however, the gas equations by Boltzmann were not deduced from it, but he based on and 

evolved the idea of gas theory by its progenitors Maxwell and Kirchhoff.

    When we consider the contribution by Boltzmann to the NS equations, Boltzmann show the Euler 
equations and the NS equation as the special case of his general hydrodynamic equations. He verified 
the validity of the Euler equations and the NS equations, which were recognized in 1934 at latest by 
Prandtl [19, p.259], and at the epoch about one hundred years after Navier's paper [15] in 1821. 

                        6. Epilogue. Boltzmann and Humanity 

  In 1898, Boltzmann had published Vorlesungen fiber Gastheorie, II Teil. ( The lecture of gas theory, 
Part II ), in which preface, he had expressed his fear that the theory of gases were temporarily thrown 
into oblibion as follows : 

        Es ware daher meines Erachtens ein Schaden fiir die Wissenschaft, wenn die Gastheorie 
      durch die augenblicklich herrschende ihr feindselige Stimmung zeitweilig in Vergessen-
      heit geriethe, wie z.B. einst die Undulationstheorie durch die Autoritat Newton's. [1, 

      Vorwort] 
          In my opinion it would be a great tragedy for science if the theory of gases were 

      temporarily thrown into oblibion because of a momentary hostile attitude toward it, as 
      was for example the wave theory because of Newton's authority. Forward to Part II. 

     [2, p.215] 
 After eight years, a newspaper in Wien 'Neue Freie Presse', ( New Free Press, Wien, Freitag, 07/Sep-

tember in 1906, Nr. 15102 ) reports Mach's consternation confronted by the news of Boltzmann who 
had taken his life. Here we cite our transcription from the Fraktur printing style of the newspaper in 
1906, which is in Broda [5] 21, and we show it in our last page of our paper, thanking Saburo Ichii and 

20(4) The Newton's kinetic equation (the second law of motion ) : F = rnr, where, F : the force, m : the gravity, r : 
the acceleration. 

21(ll) The original by Broda didn't cite this newspaper, however, the translators into Japanese [5] cites a photo of the 
then news stories in the Fraktur printing style. Here we cite our transcription from the Fraktur printing style into the 
today's German style for convenience' sake.
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Toshihiko Tsuneto and the publishing company Misuzu Shobo. From here, we can see Boltzmann was 
having both the ardent passion to the learning and the pure humanity in his lifetime. 

 Remark. Mach had been the supervisor of Boltzmann and both were the then position of `Hofrat', 
namely the advisor to Court of the Empire of Austria-Hungary, 22 so that the news reads. 'Hofrat Mach' 
or 'Hofrat Boltzmann'. 

        Hofrat Professor Mach fiber den Tod Boltzmanns. 
        • Hofrat. Mach, der durch den Tod Boltzmanns zehr schmerzlich beriihrt worden 

      ist, feilte and mit, daf3 das fraurige Ende der durch Selbstmord gerade jetzt nicht zu 
befiirchten war, da sich sein geistiger Zustand in der lasten Zeit etwas gebessert hatte. 

      Seit etwas zwei Jahren war zu er allerdings Unfallen von Irrwahn ausgefahrt, in denen 
      sich bei ihm namentlich der Trieb zur Flucht fahlbar machte. Er muf3te deshalb sorgfaltig 

uber macht werden. Doch traten wieder Momente ein, in denen er beruhigender Zus-

      prache zuganglich war. Dies war auch der Fall, als er zur Erholung nach Duino gebracht 
      wurde. Er versprach sich ruhig zu verhalten, and die Familie glaubte, daB die Besserung 

      anhalten werde, so daf3 man nicht aus den Eintritt seiner verburgten Gerachten zufolge 
      hat Boltzmann schon damals verfahrt, Hand an sich zu legen. 

        • Gelegentlich der Unwesenheit von Professor Dftmalb in Wien habe ich Boltzmann 
      zum leztenmal in wirtlich froher Laune gesehen, in so guter Stimmung, wie selten vorher 

and nie wieder seither. Wir wohnten damals zusammen den Boriragen des Berliner 
Castes im Ingenieur- and Architektenverein bei and zum Abschied war die Sachwelt bei 

      einem Bankett vereinigt. Dftmalb saf3 auf den Ehrenplatz, Boltzmann zu seiner Rechten 
and ich zur Linken. Die "Glucksformel" , die Dftmalb entwickelt hatte, gab Boltzmann 
AnlaB zu einer geistspriihenden den Tischrede. Lange saf3en wir beisammen, and nach 

      Mittelnacht geleitete ich ihn heim. Boltzmann war von einer kindlichen Reinheit des 
      Geistes, von unerschopflicher Liebenswurdigkeit and gliicklich, wenn er jemanden gefallig 

       sein konnte. 
        • Un Unerkennung als Gelehrter hat es ihm nie geschkt. Seine Bedeutung war je 

uberagend, daB man sich ihr nicht entziehen konnt. Es war ihm auch beschieden, aus 
      dem Kreise seiner Schiller groBe Manner hervorgehen zu sehen. Der Schwede Arrhenius, 

      der Berliner Bernst, beide Koryphaen der Wissenschaft, waren Horer Boltzmanns, and 
      beide haben oft betont, wie unendlich viel sie ihrem Meister zu danken haben. Nach der 
      Pensionierung von Professor Mach hat Hofrat Boltzmann auch philosophische Vorfrage 

      gehalten, die sich auf3erordentlich guten Besuches zu erfreuen hatten. 
        • Es ist ein Jammer, daf3 ein Mensch von der gewartigen Bedeutung Boltzmanns vor 

      der Zeit aus dem Leben geschieden ist. Er hat der Wissenscaft Immenses geleistet, aber 
      es war immer noch Prozef3 von ihm zu erhoffen. 

  Translated sketches of the news story : 
   • Mach was surprised at the news of Boltzmann's death. Mach had heard that Boltzmann was saying 

himself his recent steady calm, so the people of family had supposed that Boltzmann was recovering from 
being in the low spirits and had not been afraid of such an imminent state of mind. 

  • We lived then together with the gests from Berlin of the association of tecknology and architecture 
in Boriragen. He avoided the drinking party or banquet for his standard of value. Dftmalb took the 
seat of honor, to whom Boltzmann sat the right side and I the left side. Dftmalb proposes "the formula 
of happiness", Boltzmann gave the oppotunities for the speech. We were sitting together with him. At 
midnight, we went back to home. Boltzmann had a childish unalloyed genuine of mind and devoted 
endless kindness in perfect happyness to anybody, whom, when he could be kind to. 

  • His temperate obstinancy as a scholer didn't allow him to play his cards well. His idea was so noble 
that one should have not been easy to get along with him. Boltzmann kept away from the troubles with 
the scholars. Arrhenius of Swedish and Bernst of the Berliner were the authorities in each academic arena 
and colaborators of studies with Boltzmann and also the good listeners of Boltzmann's talks, and both 
have emphasized that how very frequently they had thanked their savant, Boltzmann. Boltzmann gave 
also the lectures on philosophy. 

   • The interviewee, Mach concludes his talk in the last paragraph with the following evaluation to 
Boltzmann : "It is greatly to be regretted that a promissing person upon his future, considering the

22(4) The Empire of Austria -Hungary : 1867-1918.
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importance of Boltzmann, passed away his 

under the process of extending it eternally."

life. He had achieved the great tasks, however, it was still
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The early studies of solutions of the Navier-Stokes equations

ABSTRACT. After the NS equations were fixed or so, many researchers of hydrodynamics studied the 
mathematical analyses, in particular, the functional analysis on the solutions of the NS equations. From 
the viewpoint of the mathematics, the full-scale studies have been begun to the weak solutions by Leray 
[12, 13, 14] in 1933/34 and by Hopf [4] in 1950/51. And soon after that, A.A.Kiselev [5, 7] in 1954/55, 
and Kiselev and Ladyzhenskaya [8] in 1957 and Ladyzhenskaya [11] in 1959 constructed the generalized 
solutions / the strong solutions. Prodi [23] and J.L.Lions [15] discussed the uniqueness of the solution 
of the NS equations in the three dimensions. 

 We sketch these historical facts at the beginning of the study on the solutions of the NS equations. 
 Finally, we show two sort of translations into English on the solutions of the NS equations, viz. 

  • from Hopf's German paper [4] only on the existence of a weak solution like Leray 
  • from Ladyzhenskaya's Russian paper [11] of a generalized / strong solution like Kiselev in the first 

    time 
We think that both are notable and full-scale studies not only of the NS equations or of the mathematical 
history, but also of the pure mathematics like functional analysis.
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1. Introduction

    After Stokes' linear equations, the equations of gas theories were deduced by Maxwell in 1865, 
Kirchhoff in 1868 and Boltzmann in 1872, They contributed to formulate the fluid equations and to fix 

the Navier-Stokes equations, when Prandtl stated the today's formulation in using the nomenclature as 
the "so-called Navier-Stokes equations" in 1934, in which Prandtl included the three terms of nonlinear 
and two linear terms with the ratio of two coefficients as 3 : 1, which arose from Poisson in 1831, Saint-
Venant in 1843, and Stokes in 1845.

  In 1932, Hadamard published a book entitled "Le  probleme de Cauchy et les equations aux derivees 
partielles lineaires hyperboliques", ( The Cauchy problem and the partial differential equations of the 
linear hyperbolic type. ), in which he refers theoreme de Cauchy-Kowalewski : 

        Les trois questions suivantes se posent evidemment en ce qui concerne le probleme de 
Cauchy : 

      (1) Le probleme de Cauchy a-t-il une solution ? 
       (2) N'a-t-il qu'une seule solution ( en d'autres termes, le probleme est-il correctment 

        pose ? ); 
       (3) Et enfin comment peut-on calculer cette solution ? 

Quoique les deux premieres questions puissent etre considerees simplement comme preliminaires, 
      nous allons commencer par examiner comment on peut y repondre. 

        On sait que Cauchy lui-meme, puis Sophie Kowalewski, et, au meme moment, Dar-
      boux,1 consideraient le cas dans lequel (2) ou (H) 2 peuvent etre resolus par raport a r 

      ( ou r„, ), savoir : 

          (2')Ha r = f(u, x, y, p, q, r, s, t), ou : (II')Ha rm = f(u, xi, ... ), 
      ce qui est le cas pour (2) ou (H) si : 

                    (3)Ha0,ou -----$0;ar m 
      sous cette hypothese, ils ons demontre (ou du moins sont consideres generalement comme 

      ayant demontre) que le probleme de Cauchy, par rapport a x = 0 ( ou xr„ = 0), admet 
      toujours une solution et une seule. [3, pp.10-11, art. 7] 

  These questions correspond the following mathematical concepts : 

   (1) Existence of a solution of the Cauchy problem 
   (2) Uniqueness of the solution ( well-posedness ) of the problem 

   (3) Solvability of the solution on the problem

 After the NS equations were fixed or so, many researchers of hydrodynamics studied step by step the 
mathematical analyses, in particular, the functional analysis on the solutions of the NS equations : 

    • At first, the full-scale studies have been begun with the weak solutions by Leray [12, 13, 14] in 
     1933/34 and by Hopf [4] in 1950/51. 

    • And soon after that, A.A.Kiselev [5, 7] in 1954/55, and Kiselev and Ladyzhenskaya [8] in 1957 
      and Ladyzhenskaya [11] in 1959 constructed the generalized solutions / the strong solutions. 

    • Prodi [23] and J.L.Lions [15] discussed the uniqueness of the solution of the NS equations in the 
      three dimensions in 1959.

 We sketch these historical facts and their assertions at the beginning of the solutions of the 

equations. 

 Finally, we show two sort of translations into English on the solutions of the NS equations, viz. :

NS

1Cauchy, C.R.Acad. Sc., vol. 14, p.1020 ; vol. 15, p.44, 85, 131(1842), Sophie Kowalewski, Thesis, Gottingen (1874) et 
ournal far math., t. 80 (1875), pp.1-32 ; Darboux, C.R. Acad. Sc., vol. 80 (1875), pp.101-104 et p.317. 

(4) We can see that Cauchy is a progenitor of the analysis. He also published the two papers on the NS equations [1, 21 
in 1828. 2(4) The equations (2) and (II) defined by Hadamard are as 

(follows :             (2)Ha4'(u, x, y, p, q,r,s, t) = 0, (H)Ha4'(u, xi, Pi, ri, sik) = 0, 2 = 1, ... , m.



196The early studies of solutions of the Navier-Stokes equations 

    •  From Hopf's German paper [4] only on the existence of a weak solution like Leray 
    • From Ladyzhenskaya's Russian paper [11] of a generalized / strong solution like Kiselev in the 

      first time 

We think that both are notable and full-scale studies not only of the NS equations or of the mathematical 
history, but also of the pure mathematics like functional analysis.

2.1. 
4

Leray's

    2. The studies of the weak solution of the NS equations 

introduction to construct the solution of turbulent flow. Leray 3 [14,p.195] says :

 If I should succeed to construct the solution of the equations of Navier5 which become 
irregular, I shall have the right to insist that there exist effectivelly the solutions of 
turbulent flow marely no reducing, in the solutions of regular flow. Similarly, if this 

proposition should be false, the notion of solution of turbulent flow which will play no 
role any longer in the study of viscous liquid, will do no harm to its interest : it must 
well present the problems of mathematical physics for which physical cause of regularity 
is not sufficient to justify the hypothesis of the regularity made in setting of equation.

2.2. Hopf's comment to Leray. E.Hopf[4] comments on his Lemma 5.1, which we mention below, 
to the J.Leray[14] in [4] : 

        In the Rellich's theorem, the convergence of the x-integral on the quadratic of the 
      derivation is presupposed. Our converging presupposition relates even to the (x, t)-
      integral and is therefore better adapted to the situation in our problem. Leray prove and 

      use Lemma 2, which is even near to Rellich's lemma, operate like this theorem, only 
      with (x)-integral. Our proof of convergence is more direct. 

Hopf improved Leray's method described in [14] and proposed Lemma 2 in 1950/51. We show the 
English translation of Hopf [4] in § 5 below.

            3. The study of the generalized solution / the strong solution 

3.1. Kiselev. Kiselev 7[7], who published a paper titled "Non-stationary flow of the viscous incompress-
ible fluid on the smooth three-dimensional domain" in 1956, is one of the progenitors of the generalised 
solution and the strong solution as follows :

                           3 

              Lv-Ov+E vkdv — vLv = —grad p -}- f, 
                 Ot k_1 dxk 

div v = 0, 

vlt_0 = a, 
Ids = 0 

where f = f (x, t) and a(x) is the given vector, v is the viscosity coefficient, which, for the 
brief description's sake, (we) deal as the constant. (We) call the vector v the generalised 
solution of the problem (1)-(4) on Qt, if v E L2(Qt), exists generally in the sense of 
S.L.Sobolev[25]. 

Theorem 1 (Uniqueness theorem). The problem (1)-(4) have in Qt not more than 
a generalised solution

(1) 

(2) 

(3) 

(4)

3(4) Leray, Jean. (1906-1998). 
4(4) This English version from French was made by the author of this paper . cf [14]. 

  5(4) Leray didn't use the NS equations but "the equations of Navier" . Prandtl used the NS equations in his lecture in 
1929 and in his text [22] published in 1934. 

6(4) This English version from Germany was made by the author of this paper . 
7(4) Kiselev

, Andrei Alekseevich.
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     Theorem 2 (Existence theorem 1). Supposing a E  W22) and satisfies the conditions 
     (2) and (4), f E L2(Qt) and at E L2(Qt) and satisfies the condition Mall { + La1I + 

IIf II }t=o < 1 where /3 : a constant, depending on the domain Sl, and the symbol II • II 
      means the norm in L2(S2). Then the problem (1)-(4) have the generalised solution, in 

      any cases, for all t E [0,T], where T : an arbitrary number < 1, satisfying (MaM + 
fo IIf Ildt) (IIf — Lallt-o + maxo<t<T 11f11 + foT 11/.11 II dt) < . ^ 

3.2. Kiselev and Ladyzhenskaya. They say in [8]: 
       In (our)8 paper, (we) study the problems of the incompressible viscosity: 

3 

       -Ov — v©v +vkOv = —grad p + f(x, t), div v = 0, vls = 0, vlt-0 = a (1) Ot
k_1oxk 
      Formulation 1. (We) shall call it a generalized solution of problem (1), that is 

      the vector function v(x, t), having the generalized derivatives E L2(QT) of the first 
      order, summing to the power of 4 in a plane of t = const for an arbitrary profile QT, 

fSZ >i v4(x, t)dx < const, and satisfying the conditions: div v = 0,vls= 0, vlt—o 
    a and the equality: fofSZat+v--- —vkv a-f4]dxdt = 0 • • • (3) d4E L2 (QT) 

     such that e E L2(QT), div 4 = 0, 431s s = 0. ^ 
      Formulation 2. (We) shall call it a generalized solution of problem (1), that isthe 

      vector function v(x,t), having the generalized derivatives E L2(QT) in the form ofdtax2 
      and its all belongings satisfirlg the same condition as in Formulation 1. ^ 

      (The Theorem 3,4 and 5 are new contents in [8] in comparison with [5, 7]. The following 
      theorem is same as Kiselev[5, 7], about a strong solution which is already in [7].) 

     Theorem 6. If a E J0,1(52) n W2 (5l), and f and ft are E L2(Qt), Qt =52 x [0,1], then 
      the problem (1) has the generalized solution in the sense of Formulation 2 on the 
      cylinder QT = Sl x [0, T], such that T : no-smaller than an arbitrary number, depending 

      on v, Ilallw2 (m, II L2(c,), IlftllL2(Q,) and the scale of the domain O. 09 

We show the English translation of Ladyzhenskaya [11] in § 7 below. 

            4. Study of function space LP for the uniqueness of the solution 

4.1. Prodi. 10 Prodi [23] is one of the progenitors with J.L.Lions [15, 16] 11 of the modern style combining 
with the function spaces, which J.L.Lions didn't described in [15]. Prodi's main theorem in 1959 is the 
following : 

        when B is a space of Banach, (we) put u E LP(0, T; B). This means as follows : u 
      is the function of t with the value in B, and integrable to the power of p within the 

      interval : (0, T). In special case, LP (0, T; LP) is equivalent with LP (Sl x (0,T)). By setting 
      p and q as the number such that p > 3,+ v = 2. (We) have evidently 2 < q < 6. 

+ui 
             Dui—µ02•u.i = — ax + f3, 6jau. = 0, (J = 1, 2, 3). 

      Theorem 7. A function u which is a solution of the defined problem is unique if satisfies 
      the following condition u E L P (0, T; LP (C2)) by the arbitrary value of p, with 3 < p < 

+oo . ^

  8(4) We refer the original [15] in using (we/our) . This English version from Russian was made by the author of this 
paper. The first English version : Amer. Math. Soc., Transl(2) 24(1963) by John Abramowich without corrections and 
comments. After conveying deep gratitude to him, we corrected the original misprints, amended phrases and words. 

  9(4) cf . Kiselev [7, p.27]. 
  10(4) This English version from Italian with comments was made by the author of this paper . 

  11(4) This is not yet found in J .L.Lions [15].
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  5.  Hopf  : Uber die Anfangswertaufgabe far die hydrodynamischen Grundgleichungen. 

( On the initial-value problem for the hydrodynamic control-equations) 

5.1. Introduction. Hopf 12 [4] is one of the most important papers for the weak solution of the NS 
equations, however we have scarcely had the English translated version of Hopf [4] from German up to 
now, so we introduce our translation below. 13

Uber die Anfangswertaufgabe fir die hydrodynamischen Grundgleichungen. 

( On the Initial-value Problem for the Hydrodynamic Control-Equations) 
     Eberhard Hopf ( Commented by the author of this paper. )

1. Preliminaries

f,g,h: function, a,u,v,w : field. 
G : (x)-domain, 
G : (x, t)-domain, 
x : xl,x2,... 7xn~ 

u2 : u2 = E u(x, t)li = 1, 2, • • • n}, 
dx:dxldx2•••dxn. 
  The divergence-free property of an (x, t)-domain: G on u = {u(x, t) ( u E C1} 14 is described by the 
differential equality: 

au  di
vu= =0, v=1,2,•••,n.(1) O

x, 

We shall not use the summation symbol: > but conventional summation-description. We say that (x, t)-
domain G define scalar or vector-valued function v(x, t) E N in G, if v - 0 holds in the exterior of the 
compact subset C this domain. The functions of the often used class below converge even in DO. Its 
description is like this: The divergence-free on u: 

                        u = {u(x, t)1 u E C1 in G}

(-J(u•Vh) dt= — f(divu•h)
I'a 

dt) = 0, vh(x, t) E

Dh 

Dx;
dxdt

N in G. (2)

We define the scalar product of the two vector fields: v(x, t) and w(x, t) in G by

             ff vw 
so we can say: 

the divergence-free on u = {u(x, t)1 u E C1 in G} ul , h E N in G : unique.15 
  The following contrapositions to these facts is here of interest: 

    • The continuous field h' (x, t) in G with its component : the gradient-field(: hi = Z) of the 
      function h(x, t) which is unique and moreover its x—derivative continue. 

    • It is necessary and sufficient that in G continuously x-differentiable and divergence-free field of 
      the class N is orthogonal.

12(4) Eberhard Hopf (1902-83). 
13(4) Except for 11 remarks by Hopf, which we mark with (E.H), and the other footnotes marked with (1}) are by the 

author of this paper. The numbers of equations correspond to that in the original paper. 
14(4j,) C1 is used in meaning that u is continuously x—differentiable, which is abbreviated by the author of this paper. 
15(E .H) The formulation of the concept in the (:r, t)-domain instead of (x) is effective for our problem. Application of 

Hilbert space theory on the problem of the potential theory and mathematic hydro•dynamic, we find in the following papers: 
O.Nikodym,"Sur un theorem de M.S.Zaremba concernant les fonctions harmoniqes." J.Math.pur.appl., Paris,Ser.IX 12 
(1933), 95-109; J.Leray, "Sur le mouvement d'un liquide visqueux emplissant l'espace." Acta math., Uppsala 63 (1934), 
193-248; H.Weyl,"The method of orthogonal projection in potential theory." Duke math.J.7 (1940), 411-444.
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The necessity is further the result of the integral theorem. That the condition is sufficient holds from the 
following thought: by using  w(x, t) = co(t)w(t) with the scalar co, we can restrict on the corresponding 
proposition for x-domain:G. It holds also 

          wihi dx = 0, vw = {w(x) 1 w E N in G : smooth & divergence— free}. 

c The proposition holds if we can satisfy that the circulation of h' : 

                       Lhwi dxi=Jhds 
     c converges along the closed path in G. We see clearly that we have to prove only for the continuous curved-

path without self-crossing. We get the vanishing by selecting the suitable value on w. To arbitrary small, 
known € > 0, there is always the smooth and divergence-free stream: w(x) with the following properties: 

  w vanishes at 0 only in the closed cylinder with the thickness < e around the path: C. On each plane 
C vertically-passing through cylindrical section, the vector w makes an angle < E to normal-direction 
(direction of C in the section) . The section-flow of w, which is independent of the special section on the 
divergence-free, is equivalent to 1. This fact is sufficient for the proof of the converge of the circulation 
along C. We use such a w(x), corresponding to a given, but small enough selected E > 0. 

  We put the hyper.plane-element on the cylindrical section with dF and we select the arc-length: s 
along C as the parameter across the section, so we can put in the cylinder the volume-element: dx in the 
form pdFds, where p is in the neighborhood of

rC continuousand on C equal to 1. Then, we get 

                   Jhiwidx=J ds.
We replace here the component hi„ by the component hs, gained in the section-point of C with the section, 
and we replace again lw(x)I by the component ws, in the normal-direction of dF, and replace p with 1, then from integral of the right-hand 

fsirfhs[JwsdF] ds =Jh'sds, 
that is, the circulation. On the ground of the given properties of w, it become clear in itself that by this 
replacement, the error with E is evaluated —f 0. Therefore the proposition is proved. ^ 

  The control-equation of Navier-Stokes16for the movement of a homogeneous and incompressible fluid 
is : 

0u1 0u _ap 32ui3 
              at~``~ax, axi+µaxpaxp(3) 

where it is a positive constant, the kinematic viscosity coefficient 17 and 

                                     div u = 0. 

Each of u(x, t) and p(x, t) is a solution in the (x, t)-domain: G, moreover the derivatives which appear 
in the equation, ut, ux and uxx, are continuous. 

  We give now a new time-dependent and in G divergence-free vector field: a = a(x, t). It must be 
a E N in G and smooth enough: a and the differentials: at, as, axs are continuous in G. On a is not 
imposed any further restriction. For a E N in 618 and for uc,- = dlyq" the following holds: 

                        rra2ti 

                   JJcai~tdxdt=—f.c ataaiuidxdt 
                           auiIfaai  

                JJaiva-----dxdt=—JJuaui dxdt           G ax,G ax, 
16(t) L.M.H.Navier(1785-1836)'s in 1822, G.G.Stokes(1819-1903)'s in 1844, was proposed respectively. 
17(4) Due to H . Kozono [10] , (3): the kinetic equation conventionally used to be described as follows: 

au                                -
at- pAu+u • VuVp = 0, here owing to dyadics, 

C)u n C7u1n aun u•Vu=(u•V)u=)uk,=(~uk,EukU ~-----)• 
                    k=1kk=1kk=1k

18(u) In the original paper , there is G instead of G, which is corrected by the author of this paper.
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               a2uzd
xdt =—auidxdt=~2a~ 

    f 

   ai---------ui dxdt         fa Dxi Dx0..cc~xo ax,sJ.O ox/3Dx/3 19 For div a=0 and a
rEfairN f(a f(div J idxdt(-, Vp)dt=— a, p)dt) = 0. 

We find therefore, that the field u(x, t) satisfies the following condition: 

    Dai0 a~i2 

            I/'/'/' ai         IfGatui dxdt +IIG 0xaunui dxdt +µJ/cax0Oxouidxdt = 0. (4) 
for every smooth enough field a(x, t) in G with the property 

diva=0inG, aE NinG.(5) 

Moreover even
rthe divergence-free of field u: f(f, JJOhui dxdt(—J(Oh u)dt = — div u)dt) = 0, h E N in G,(6) 

               c Dxi 

holds for every smooth enough function of the given class in G . The control-equation is brought into 
the form of an equation between a linear functional operator of the arbitrary field and functions a, h. 
The important matter is that the unknown field u(x, t), on which this operator depends, appears without 
derivatives in them. 

  We must make it consent that, on the equation (4) and (6) which we understood in just clear sense, we 
return again to the differential-form of the equation, when we restrict sufficiently smooth solution-field 
u E G. We see already that under this presupposition (6) return again to div u = 0 in G. For sufficiently 
smooth u, we may cancel all the familiar partial integration. It follows then, that 

                    {auC~ui02ui }dxdt                 fcaiatui + u~~xadxdt 
must hold for every smooth field a(x, t) of the form (5). By the familiar theorem, it follows that the term 
in brackets above must be the derivative v---- of a unique function p(x, t) in G. We see that the arbitrary 
integral form of equation is the physical formulation of uniqueness of pressure. 

  It comes from the general mathematical theory on the integral-form of the equation. It is however 

effective to free from the technical restriction on the smooth solution-field u. Two bilinear forms : 

                                  auOu u  fiuidx,dx 
Dxo Oxo 

in the energy-equation become the problem on Hilbert space of the vector field. It means that a methodical 
profit in wider space of the differentiable-property of the solution u become the theme of a formulation, 
which is able to be studied almost separately on the existence-problem.20 

  The arbitrary initial-value-problem of the hydro-dynamic control-equation is as follows. The solution 
u(x, t) is to be on the above unstable domain G(t), t > 0 of x-space, when u(x, 0) in G(0) is as above, 
is given (with a suitable formulation condition of the continuous connection for t —> 0) and when the 
boundary condition of u in the boundary of G(t), t > 0 (in suitable formulated sense of connection). 
J.Leray had devoted to three works in the early 30 years.21 Leray had already solved this study by the 
aide of method of Hilbert space and by integral interpretation of equations in three dimensions.22 Leray 
had solved this existence-problem for all t > 0 in his three papers in the following cases: 

   a) G = total plane with the kinetic energy < oo. 
   b) G = fixed ellipsoid with the boundary value= 0. 

   c) G = total three dimensional spaces with the kinetic energy < oo. 

19(4) In the original paper, ui in last term is absent, and this is inserted by the author of this paper. 
20(E.H) cf. Additionally, "The handling of the quadratic variational and linear differential-problem with the method of 

Hilbert space" by R.Courant and D.Hilbert, Methoden der mathematischen Physik, Bd.2 Berlin 1937, Chap.VII. 
21(4) J. Leray(1906-1998). a) "Etude de diverses equations integrales non lineaires et quelques problemes que pose 

l'Hydrodynamique." J. Math.pur.appl., Paris,Ser.IX 12 (1933), 1-82; b) "Essay sur les mouvements plans d'un liquide 
visqueux que limitent des parois." J.Math.pur.appl., Paris,Ser.IX 13(1934), 331-418; c)1.c.f.n. 

  22(E.H) C.W.Oseen based already long ago on his famous hydrodynamic study of a form of the controll equation, in 
which the secondary derivative is zero. He successed in proof on the existence only for sufficiently short time. cf. his work: 
Hydrodynamik(Leipzig 1927).
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  On the remarkable work of the differentiability problem, Leray points out a marked difference between 
the  cases: n = 2 and n > 2. In the first case at least, if G = total plane, differentiability of the solution 
went well, but the method for n > 3 was gave up, to which we should evaluate as natural. Even by 
smoothness of all above data, the smoothness of solution in all time space was not proved. Strange to 
say, he gave up the proof on the uniqueness in 3D. These problems have never been explained enough 
even now. It is difficult to believe that the initial-value problem of the viscid fluid for n = 3 could have 
more than one solution, and we are to devote more in the approach on the uniqueness problem. It comes, 
however, only from another new studies, that, with the nonlinear partial differential problem, the number 
of the independent variable on the local properties of the solution has a fundamental impact. 

  We ignore the problem of the differentiability and even uniqueness in the proposing paper, at least 
initial-value problem, in which we start from the view on the integral of the equation as the primitive 
form. On this fact, we want to return to the (in our space not easy) proof of energy-equation in our 
following papers. The main purpose of this paper is the construction of the approximate solution,23 
which occupy a very wide space in Leray's work, here is treated by a simplified process, which can apply 
to wider class of the partial differential-problem. Also to that we want to return later. The method 
suggests the solution of the initial-value problem et > 0 in considerable generality, however, in this first 
paper, the origin of the methodically basic idea is more important for us than the generality of the 
result. We restrict here on the case, in which x-domain G is fixed in time, however completely arbitrary, 
and where, u is supposed to have the vanishing boundary value. The boundary condition is defined by 
the concept of Hilbert space, so wide enough the solvability is, and so close the uniqueness of the solution 
is, at least to hold in the two dimensions.24 In the pure existence-theorem, the dimension number plays 
no role.

                    2. Function class H' . Solution of class H' 

f (x, t) : measurable function with the bounded norm of.L2(G) on the class H E R, H:Hilbert space. 

s-llmn—>co fn f* E H

f 2 dxdt < no. 
c 

in fn f* E H in G.

J f1g dxdt .Jf*gdxdt, VgEHin6.                     C:

a 

converges. There is then 

Then the norm

fg dxdt, Vg : fixed function E H, strong dense set 

31 f* : weak admissible function in G. Here instead of G. we must use G.

  f2dx 

 C

is fundamental. We recall the weak compactness of the function sequence: { Li} with uniformly bounded25 
norm (theorem of F. Riesz).26 

  Following criterion is often used by J. Leray for strong convergence, we also use it, namely:

w— lim f, . f * (x, t) lim ff  t2 dxdt > ff f*2dxdt, 
n—,00C;

here

s-limn_,~ fn f* <--- = holds in the above inequality.

23(4) This solution is called "weak solution" , a term which is not at all used in this paper. 
24(4) If G is total x -space, in the condition of bounded kinetic energy and bounded dispersion-integral, it becomes the 

closed boundary condition. For understanding of the boundary condition is recommended by R.Courant and D.Hilbert, 
Methoden der mathematischen Physik, Bd.2 Berlin 1937, Chap.VII. 

25(4) This original word is "gleichmassig beschrankten" ,cf J.Serrin,p.72, K.Masuda,p.644. 
26(4) cf. Leray, I, §3. Forte convergence en moyenne. §4. Procede diagonal de Cantor.
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All this holds for the vector-fields u, v in  G, ifthe

cthe scalar product                        IJuv2dxdt 
             J and its corresponding norm are used.

w—  urn u u*(x,t) urn f f 2424 dxdt > fIdxdt. 
s— Ern un u*(x,t) < holds in the above inequality.

We use like Leray the concept of the generalized (total space) x-derivative27 of function f (x,t) and field 
u(x, t). 

Definition 2.1. f (x,t) defined in (x, t)-dornain : 36 should be f E II/ in 6 <---> it has the following propertie 

                            f C H in 6 
3n, f E H in 6 s.t. 

ffii dxdt = — f fa—Ohf dxdt (hEN inGs),= 1, 2, • • • , n.(7)                            aXi 

f(x,t) e H', Vf E C in 6 s.t. f and all al. E C. 
For such a f, 

                         Of  

— This follows from the integral theorem and from the assumption that h E N i.e. h vanishes in the exterior 
of the given compact subset C C. It is clear that f E Hi in 6 

  generalized x-derivative : fi in G uniquely determine until on the value in a (x, t)-null set. 

Lemma 2.2. 

                      f E H in G and \if, w— lim f„ —> f* 

V f, f f f2 dxdt f fJjJj dxdt 
uniformly bounded 

f* E 11' in Gs and V w— lim f, > f7 

28 Proof 
vf satisfies (7), where h is an arbitrary and admissible function, 

                                       Oh             w— urn— ffOh f„dxdt)— f ff*dxdt. 
        Oxia axi 

For fixed h, i along fn 

               w— lim J./ hfq,„dxdt = f fdxdt.                                             n--+oo 

The admissible function h in 6 in Hilbert space H strong dense and from the presupposition H-norm of 
  in 6 weak converges. We put f: as limit function, so from (7) follows: 

                              Oh 
              ffiidxdt = — ffaaxif* dxdt eh and Vi. 

27(4j.) cf. Leray, I, §7. Quasi-derivees., §9.Quelques lemmes concernant les quasi-derivees. 
28(J) Ilf112+11N7111

2 --7--11f11111
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Definition2.1  = f* E H' in G and from the uniqueness on x-derivation 
                    * *^                                    f

i=f~i• 
A field is called E H' in G, when all components satisfy this. In the above integral-form of hydro.dynamic 
control-equation, no derivative of 'a appear. It is important in itself to set on the solution of weak 
differentiability-formation as belonging to class H'. We may put therefore viscosity term in (4)

       /~02arraai 
          µJ--------ui dxdt = —µJJ^uidxdt O.(8)             ax/axpa ax3 

Definition 2.2. u(x, t) is called a solution of class H' of the hydro. dynamic equations in the domain: 

(x, t) of G, if the following conditions are satisfied. 
   a) u E H' in G. 

   b) Divergence-free: vh E N in G and hi E C. 
   c) Kinetic equation: the relation of (4) is satisfied by va(x, t) E N in G, 

       div a = 0 and at, a.,;, ay,; are continuous, 'namely a E C2. ^ 

  We consider that under the presupposition a) even that in u non-linear term in the control-equation(4) 
is a well-defined Lebesgue integral by the admissible field: a. If u E H in G , this case already holds. For 
a) the condition of incompressibility b) is identified as follows: 

                     div u - ui,i = 0, for almost all x, t in G 

hold.29 We think that in the control-equation(4) all integrands are zero in the exterior of G. This is 
integrable if it looks at all over the (x, t)-space. With this arrangement the following theorem holds, 
which we shall prove, although we shall not use it in this paper. 

Theorem 2.1.                            
i              C~affO~ai/'/'C~ai  

    f =Ta2uZdx = J tGTaudxdt +J<TJa~~u0ui dxdtµJ~TJu.c,eui dxdt.^(9) 
Here da(x, t): admissible field under the Definition 2.2 c). 

  Proof 
We think that with a(x, t) even h(t)a(x, t) is an admissible field, if h(t): a total arbitrary dt differentiable function. We set in the bracket

fff K[a, u] dxdt =J{—K[a, u]dx}dT = 0.                                        00=T 

ha instead of a in the equation (4), so the equationalsoholds as follows 
                                                                 00 

           Jooh(T){JK[a, u]dx}dT=Jh'(T){I_aiuidx}dT = 0.(10)       C0t=T00t=T 

The brace in —oo < T < DO by Lebesgue integral on T, which for all h(T) with continuous It' (T) is, as you 
know, is equivalent to 

          f fTftaudx =K dx}dt—ff K dxdt VT.^        —Tco00                         fixed ixed<T 

          3. The boundary condition for vanishing. The initial value problem 

  The cross section t = const of (x, t)-domain G is x-domain G(t). We must approximate to boundary 
of G(t) nearest as could as possible with help on concept of Hilbert space of boundary condition of the 
vanishing of a function g(x, t) dt and a field u(x, t) bt. This reach that we can get the function g from the 
function E N in G, by the suitable limit-procedure. Then it is necessary, sufficient effective restriction 
for the real space x-derivative of approximated function (not but the t-derivative) to make use of which 
the "vanishing" at the boundary of x-domain G(t) is essentially preserved. We suggest the boundary 
condition with the belonging to the following functions class: H'(N). 

  29(E.H) When we study that, we had not mentioned in this paper, the problem of limit-procedure: p. 0 in the 
hydrodynamic fluid, we loss the function space H' of its condition which is essentially bound with the case µ > 0. 
Obviously we must then be depend on the derivation-free definition of the divergence-free.
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Definition 3.1.
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w-  Ern y„(x, t) - g(x,t), 
    n—>oo 

    V7
,y2dxdt + 

             ca

7 NinG, yyEC,

ff'y,j'y,j (11)

is uniformly bounded,3°

g(x,t) is called g E H' (N) in G. ^

Lemma 3.1. G : cylindrical domain : x C G, 0 < t < T, 

                      s- Ern yn(x, t) = g(x, t) E N in G 
n—>oo 

y(x, t) E the exterior of 3compact subset C G y --> 0; uniformly bounded. 

                         > g(x,t) E H' (N) in G. ^ 

  Proof31 
We put 

y - co(t)7(x, , t), cp E C, et E< 0, T >, 

0 for 0<t<E,T-E<t<T, 
    cp=0<limcp<1. 

1 for 2E<t<T-2cE->o 

In addition, we put y - (p-y, 

g E H (N). ^ 

Lemma 3.2. By V f E H' in G and dg E H' (N) in G, the following equation holds : 

            ffg,j dxdt = - ff gdxdt, (i = 1, 2, • • • , n). ̂  
Proof 
 Definition2.1 f,V y : continuously di f f erentiable in G and E N. Definition3.1 

                                   w- lim yn - g 
n—roo 

with uniformly bounded integral by(11). 
 Lemma2.2 instead (Tin -> gi) of (yr, -> g) in G. 

d f 
,d y =d f ,d g. ^ 

For effective formulation of the initial condition, we introduce now the class: H(N). We restrict ourselves 
by it on the x-space and field u(x), which in a x-domain G is cleared. When we regard only function 
f (x), which belong to both class H and N in G, so it is clear that it is equal the strong convex hull of this 
function space with H. This holds on vector field in G. Otherwise it is however, when we are restricted 
on the divergence free field in G. 

Definition 3.2. A weakly limited field E N and E C2 and divergence-free in G 

(divergence-free field E H ) is called E H(N) in G. ^ 
32 

  We prove easily: 
the field u(x) E H(N) in G is divergence-free and cp(x) E Hin G= 

 dx = 0.

3o(E .H) II'Y112 + 11V7112 =11711H1 
31(4) cf . Leray, III, §16. 
32(E .H) From the theorem by Saks, it is then even strong limit-field of just such a field.
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 33 Belonging of the divergence-free field E H(N) compensate clearly the boundary condition of the 
vanishing of the normal component. 

  We can now formulate the existence theorem34 for the  hydro.dynamic initial value problem.

Existence Theorem 
G : x-domain, U(x) : divergence- free,' U(x) E H(N). 

   t in C,3 u(x, t) defined with the following properties : 
   A) In every cylindrical domain : (x, t), x C G, 0 < t < T, 

      u is a solution E of hydro.dynamic control-equation(Definition 2.2). 
   B) V t > 0, vanishing of boundary value :

  In every cylindrical domain, u E (N). 
C) Initial value condition:

For t, s— lim un,(x, t) U(x) in G. 0

               4. Simplification of the problem. Approximation-process 

  For the construction of the solution u of the initial-value-problem for a fixed-time x-domain G, we get 

from the equation

    fDai  uidxdt +IT 
    JGat

              La.u-dx 

Oa 

.167. ai 
-----uauidxdt +1,      xa

t=1- 

T

 — aiuidx

16
02ai

0X00x0

tT

uidxdt. (12)

35

Lemma 4.1. vt in G,given,x C G, 0 <t < T, u(x,t) E H. 
7: >V r> 0 and va(x) E C2 and : 

                    a = a(x), div a = 0 in G, a E N in C, 

namely, a(x) 0,V a E the exterior of a suitable compact subset C G. 

    u holds (12) in the half-cylindrical domain C : x C G, 0 < t and v a(x,t) : admissi 
(--> See condition c) in Definition2.2 on the solution-definition). El 

  Proof 
We describe (12) in the following abbreviated form: 

f(') f (7) = f g(t)dt

(13)

ble field,

fCO00 
              ,(t) f (t)dt +J(p(t)g (t)dt = 0,vcoEC(0, Do), 0 <Vt<o0. 

0 We moreover, describe this equation fully, so we see that the equation (4) is satisfied in above half-
cylinder by all fields a = (,o(t)a(t), where a(x) is an arbitrary of above admissible field : (13) and co(t) 
is an arbitrary one of admissible function. We can approximate now, however, all the admissible field 
a(x, t) in the condition c) of the solution-Definition 2.2, in the half-cylinder G , so by the summation on 
fields with the special technique , with which we can exchange in the control-equation. We can always so 
arrange it, for example, that the convergence of field and its derivation until above-mentioned order in 

  33(E.H)

dx —(div u.) = 0.

34(4) cf . Leray, III, §19, IV, §25. 
35(4) In the original paper , there is u instead of ui, which is corrected by the author of this paper.
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 G is equivalent and that the approximated field vanishes in the exterior of a suitable fixed and compact 
subset of  G. ^ 

  It is now clear, that a field u(x, t), which is a solution of the equation (4) in the domain of lemma, 
which is further divergence-free in half-cylinder, and which satisfies the solution-Definition 2.2 E H' in 
all cylindrical sections. 

  We get an even more suitable form of the equation on the basis of the following facts. 

Lemma 4.2. There is a sequence: 3a" E C2 in G and in G linear independent field in (12): 

                 a = a"(x), div a" = 0 in G, a" E N in G,(14) 

with the following properties: 
a E C2 in (12) is a uniformly-limit-field in G of a sequence of bounded linear-combinations: {a"}, with 
uniformly converge of only the derivative until 2-order in G. By given a(x) in this approximation only 
such linear-combination is used, that is, have null-value in the exterior of the dependent compact subset 
C G. ^ 

  On the basis of this fact, it is clear that a field u(x, t), which is in all cylindrical section E H and 
which satisfies the control-equation (12), T/ >'' T > 0 and for all field : a of the above sequence, these 
effect automatically for all above admissible field (13). To sum up, we could say that the control-equation 
(4) for the present expression could be made up by the control-equation (12) with (14). 

  In the function space of the divergence-free vector-field: a, (12), (14) is an affine coordinated-
description of hydro.dynamic equation. The affine system of the coordinated-vector(14) can be described 
simply by the linear transformation, that is, in the sense of bilinear form:

  vi wi dx 
c

is orthonormal. We may moreover presuppose that the sequence of (14) : {a"}satisfies these conditions: 

                                                    (15) 

• 

                                 Lemma 4.3. The orthonormal system on the field : a" 
is complete in the field-space of divergence-free field:  U(x) E H(N) in G. ^ 

  Proof 
Lemma 4.3 holds from Definition 3.2 and Lemma 4.2. ^ 

  The approximation process 
The k-th approximation step holds so that we think over only the first k of the unbounded, many control-
equations: (12),(14), 

a = a" (x), (v = 1, 2, ... , k),(16) 

and seek to solve these by the theorem 

U = uk(x, t) = E Av(t)a"(x)(17) 
v=1 

with to-be-given scalar factor a" = A ,,. This theorem satisfies, from (14) by itself, the condition of 
divergence-free and the boundary condition of the vanishing: 

div uk=0inG, ukeNinG.(18) 

Because only differentiable A(t) come into question and because the admissible field a is independent of 
t, the first k of equation (12) could be described in the form 

       3uiaai2     ('C~ai 
            fa2—dx= ----uauidx-E-/t-----------uidx.(19) 
             GatJJcUxaJJG Dxo3xo 

For (15), the k's equation (19),(16) with (17) become an ordinary differential system 

                     dA, = F"(A1, ... ,Ak) (v = 1, 2, ... , k),(20) 
                    dt
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where the right-hand side  F"  = Fy is the polynomial on A with constant coefficient. (19),(16) and (17) 
i.e. equivalent meaning equation (20) share now with the strict hydro•dynamic equation, the important 
property such that the energy-equation36: 

                dt 2uiuidx=—µJ~x2~xZ-----dx.(21)          ccpQ 

holds for the solution.37 Since namely the equation (19) exists for all field of (16), so also for its linear 
combination (17): u = uk holds. The energy-equation follows in the usual way ( and without difficulty 
on boundary) because by (18) 

          /024 _/OK1 
                   JGox,2G~'aid:CJC~x'Ll~dx = 0,(K =2~~Liui)         Gcz 

38 39 and 

                 C~22GiOu,i au, 
--------uidx = — ---------dx, (u = uk)                fG Ox00x0c 3xo 3x1 

hold.40 From (21), 

                       fuiuidx=A+...+A k, (u = uk)
by no means increase41. Hence, we decide that each of the initial solution of the system (20) at t = 0 
exists vt = 0. 

  The approximation process mean formally very simple as follows. We think by ourselves the both 
sides of the Navier-Stokes differential equation and the solution u formal from the orthonormal system 
of the field a" expanded : u = Ave. We make then purely formally first order for the unbounded many 
scalar Fourier coefficients A of a system of the unbounded many differential equations . Our k-th step is 
simply, so that we use only the first k-th of this equations and evaluate in them all the unknown with 
index v > k equal to 0. This method, by which we prove bellow, the existence theorem, moreover supply 
us a proposition on the convergence properties of this simplest and nearest approximation process. 

  As the initial value of A" (t) at t = 0, we select the Fourier coefficients of the expansion of the given 
field U(x) from the a". While the solution A(t) in k-th step, in general, of the k-depend is this initial 
value of which is independent. From the presupposition U E H(N) in G and from the completeness 
lemma 4.3 holds 

                  s- lim uk(x, 0) -* U(x) in G.(22) 
k-~co

                         5. Proof of existence theorem 

We summarize : the sequence field {uk (x, 0} has the following necessary properties:42 

5a) vuk(x, t) E C2 ,V x C G,v t > 0. 
5b) Vuk(x, t) E exterior of compact x-dornain C G, depend on only k 

uk(x,t) —. 0. 
5c) vuk(x, t) satisfy (19) vt > 0, 

   and (12) at Ti > r > 0 in the k-th order of (14), (v = 1, 2, • • • , k).

36(4) cf . Leray, II,Movements infinitement lents., §13,III.Movements reguliers §17.
37(E.H) IIu!I2+2I2fo 
38(E.H)

IouII2 dr = 0.

OK  
 axauadx-—(K • div u) = 0. ~G

39((L) cf. 
40(E .H)

cf. definition 
41(0 cf . 
42(.) cf .

Leray,III,§17, V,§27.

    fr72 uiaui       G Ux00x0uidx =Ox0ux — ~G 
by (1) 

Leray, V. Solutions turbulents. §31. 
Leray, V. §28.

Oui dui----d
x O

x0 8xo

8ui  h
ere ui = O

x0
(div u) • u = 0.
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5d)

5d) The  integrations  : 
                          T 3u

iOui            u
iujdx,-----dxdt, 
                 G                           0G t9x1 Dx/3 

exist under the convergence as k oo. These are in 
5e) The initial value :euk (x, 0) satisfies (22) . ^ 

follows directly from the combination of (21) and (22).

(u = uk(x, t))

dependent of (ek,d t,V T).

(23)

  1st step: 
vav (x) is continuous and a" (x) � 0 only in a compact subset c G. We apply the first half of 5d) to 

(a = a") of the left-hand side of (19), in which we evaluate 
• the linear term in u = uk by using the Schwarz inequality,43 and 
• the quadratic term in u by using the absolute-convergence for the derivative on a, 
so we get as follows: the right-hand side of (19): (a = au, u = uk, k > v) is uniformly bounded by the 
fixed-value v,V k and Vt. 
Of the left-hand side, we consider similarly as follows : 

                           d 
aiuidx                              dt

G 
By the fixed-value v, the time function:

fa(x)ui (x, t)dx>0

satisfies a k-independent Lipschitz condition44 vt > 0. In addition, this is uniformly bound vt, ek. From 
the famous axiom of choice45 there is also k' E Z such that 

                   lim
Ga' (x)uk(x, t)dx, dt > O,v vfixed(24) 

                           where, this is uniform for each bounded t-interval. The sequence of k' : {uk } is dependent of index v, but 
we can select it to index: v+1 as the subsequence of the preceding sequence. With the diagonal method46, 
then a fixed sequence of ki E Z, which we put moreover with k , make just-made limit-proposition true 
for all fixed v, v = 1, 2, • • • . By these sequence, k' is operated as follows:

  2nd step: 

We prove here that the {uk (x, t)} converges weakly in G, dt > 0, t : fixed. For the proof, we fix to. From 
the first half of 5d), the sequence of these field at (t = to) is weak compact in G. This proposition would 
be proved, if we show that each sequence in G can have only unique weak-limit-field. We put u*(x, to): 
limit-field, and k" ( < k' ): partial sequence, which is depend of to, such that 

          limwi(x)ur(x, to) dx =wi(x)ui(x, to) dx, vw(x) E H in G. 
   k"coGC 

In the case of w = a', the value of the right-hand side is however already fixed by the limit of (24). u* 
and u** 47 are two weak-limit-fields and v is its differential-field, so then

holds. 

in G.

From De 

Therefore

finition 3.2

IGaZ vi dx = 0,

u*, u**, v E H(N) in G.

vividx = 0 fG

vv
.

From Lemma 4.3 a" span field-space by itself

43(4) cf. Leray, I. Preliminaires. §2. Rappelons l'inegalite de Schwarz. 
44(i) cf. Leray, I, §5. 
45(4) AA

EA � 0 = IIAEAAa � 0. K.Masuda use the theorem of Ascoli-Arzela instead of axiom of choice. 46
(4) cf. Leray, I, §4. Procede diagonal de Cantor. V,§29. 

47(1)-) This symbol: u** is not at all used in the other formulation in this paper.
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and the proposition holds. It holds also that in  G  et > 0, a value-given field u* (x, t) such that 

lim wi(x)ui (x, t) dx =
Cwi(x)ui(x, t) dx, et > 0,V w(x) E H in G (25)                G k'—roo 

u* satisfy the condition B) of the existence theorem in §3. It follows from 5b) and 2nd half of 5d) and 
by using Lemma 3.1. We prove simply also as follows: 

                       w— lim uk —* u*, uk E G, 0 < t < T. 
k' co 

  3rd step: 

  We prove that u* (x, t) satisfies the condition A) of the existence theorem. u* E the vcylindrical 
domain, x C G, 0<t  < T, u* E H', which is the super•class of H'(N): H'(N) C H'. 

From the description in the first half of §4, we are sufficient if only we show that as follows : u* satisfy 

(12), va = a", T/ >V T > 0. From 5c) u = u* satisfy (12) for the same VT,v Ti and for the first ki : a'. 
We fix T, T' and index: v, and get limit with k' —p oo. It is clear that we may replace u* instead of u on 
the left-hand side of (12). Similarly, the third integral on the right-hand side of (12) holds. We consider 
that the inner integral as the following : 

                rT f wi(x)u'(x,t) J dx]dt (26) 
                         T- 

for 5d) the first half is uniformly bounded function on t, k', and that we can apply the Lebesgue's 
convergence theorem on the outer t-integral. We may also exchange the order of both limit-procedures: 

(k —> oo) and integration in 2nd integral of the right-hand side in (12), by more consideration, we use 
that on the 2nd half on 5d). We need now the following theorem which we shall prove in §6 later.

Lemma 5.1. { f k } = { f k (x, t) } f k E Cl in x C C, 0 < t < T} have the following 
properties : 
Vt,fkENinC, 

              w— lim f k(x, t) —> f*(x,t),  in x and t (0 < t < T), 
k-->oo 

the integrations : 

                 f (x, t)dx,ff2dxdt, (f =fk)          G LT 
 C are uniformly bounded dk,d t. 

               s— lim f k(x, t) —> f*(x,t),  x C QG, (0 < t <T), 
k—>oo 

where, V Q : (section of x-space) < co. 
In particular, if G degenerates, this deduction satisfies in itself. ^

From 5a),5b), from the result of 2nd step, and from 5d) v(fixed T), by the components of {uk' (x, t)} , 
the presupposition of the lemma is satisfied. 

d Q(: section of x-space) < 00 

                         rT r                 limJJ(u — u7) (u — u?) dxdt —0, (u=uk ) 
                            Q C 

Therefore, we can justify the limit-procedure: k' —* co of the 2nd integral of the right-hand side in (12) 
(a = a', v : fixed). We consider that a-factor of the integrant vanishes on the exterior of the fixed 
compact subset C(C C G). By evaluation on Q 1 C and T > T, by this integral, 

                                         T' 

                            (ai ,ua)(ui) dxdt, (a = a", u = uk ).          T IQC 
produce the following situation. The first factor of the integration converges weakly in the integration 
domain to ai,au„, while the second factor converges strongly to u7. This holds limit-process : k' —> cc 
under the integral symbol, as we know. Therefore, it is proved that u* satisfy (12) a"(x) and VT >
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0,  T' > 0. The condition A) of the existence theorem, therefore, is verified until on the divergence-free. 
The last property is satisfied in itself by a trivial way, moreover Vt: fixed. 

  For the completion of the proof of the existence theorem, it is further necessary to show that the 
initial value condition C) holds. From energy-equation (21) follows 

     1        fuiui dx=1 fuiui  dx JJ:;:;dxdt, vu E {uk}. (27)      0 2T0G 00 

The left-hand side of (27) converges by (22) as follows : 

~ 

1 s– lim –uiuiki dx — –UUUi dx. 
                k'—,00 2 G2G

                  w– lim 1UkU.~dx1u*u*dxt = T. 
                k'—roo2G2G 

In the (x, t)-cylindrical domain, from Lemma 2.2 and 5d) 

                    k*                                  w– limui=uiR 

holds. By the application of Lemma 2.1 from(27), therefore, the inequality48 folio, 

          fuur fuu i dx>_uz uZ dx+µJ2dxdt, vT>0      2GT0 

49 In particular
,

limt_,0 J 

G

                                                the inequality48 follows:

u7 u7 dx < fuu i dx. 

                           Y

50 To the last inequality, by using Lemma 2.1 again, we get that the initial value condition C) is satisfied. 
On the problem of the strong convergence at fixed t, we shall no further mention here.

                                6. Proof on Lemma 5.1 

  The lemma is narrowly applied by Rellich's axiom of choice and is proved.5x2 In advance, we would 
like to remark that when G isn't restricted, even Rellich's axiom of choice does not hold for G by itself. 
One of the antitheses is the case, where G is total x-space and 

                  fk(x, t) = f (x1 + k, x2, ... , x.a), f E H U N in G. 
In this case, f* = 0 holds, but it does not satisfy strong convergence to 0.53 The proof of Lemma 5.1 
comes from Friedrichs' inequality: 
Q(: section of x-space) < oo, to given dE > 0 exists a bounded number of fixed functions: wv(x) E H in Q 
s.t. the equation:

dx<E [ffwv
-2 

dx + E dx, 

Q

Vf(x)
EH in Q

48(4) cf. Leray, IV, §24. Due to H.Kozono [10], the energy inequality is described by µ = 1 as follow: 

                 IIu(t)II2 +2 fIlVu(T)II2~1T <1[a]]2,daELQ,0<t < co, 
                                   0 IIu(t) — a[12 0, t —> +0 

where a E LQ: total of vector-value-functions: a E L2, satisfing div a = 0, namely a : symbol of the "solenoidal". This 
usage is due to P.L.Lion [17], K.Masuda [18], H.Kozono [10] et al. 

49(4) cf. Leray, IV, §24 
50(4) cf. Leray, III, §19., IV, §24. 

  51(E.H) cf. Courant-Hilbert, 1.c.f.n. In the Rellich's theorem, the convergence of the x-integral on the quadratic of 
the derivation is presupposed. Our converging presupposition is related rather to the (x, t)-integral and is therefore better 
adapted to the situation in our problem. Leray prove and use Lemma 2 in (1.c.f.n.), which is even similar to Rellich's 
lemma, it is true to operate like this theorem, but only with the (x)-integral. Our proof of convergence is more direct. 

52(4) cf. Leray, V,§30. 
53(j.) From the lemma, we can therefore only induce the strong convergence of the approximate: u(x,t) —> u*(x,t) 

in the cylindrical section, if G is restricted. Meanwhile the strong convergence holds clearly by the arbitrary G. Leray 
deduce by his approximation in the case, where G is of the total x-space, with the help of the complex estimation of the 
energy-distribution in G. We want to return to the strong convergence-properties of our approximation later.
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is held by means of  f  (x).54 
  For the proof of Lemma 5.1, we would like to remark at first on the fact that by the fixed t, f k (x, t) 

of lemma in G is f E C1 and f E N. If we clear this function in the exterior of G by null, this fact is 
useful, if this proposition is verified in the total x-space instead of on the G. In particular, 

                  t —* fix = f : (E Q(: section of x-space) < oo) E H . 
The generalizing of these functions and the last setting is produced by the total presupposition :E N. 
This presupposing is however used only in these order. We set arbitrarily a section: Q and a number: 
E > 0 and select various parameter-functions such w„ as satisfy the Friedrichs' inequality in Q. We use 
by the fixed t on the function 

f (x, t) = f k (x, t) — f l (x, t),(28) 
which is in Q surely f E H'. By integration on t, follows that total functions (28) of the inequality 

          TT2 fTr
f2 dxdt < Ef[f fw„ dx] dt+EJf'f'Z dxdt(29)             Jo0QQ 

holds. From the presupposition (weak convergence by fixed t ) 

                      limJ 
                                               k,/—>ooQ 

holds. The presupposition of bounded (first half) on the basis exist moreover, the function on t 

f(fk  - fl)w„ dx
uniformly bounded with both k and 1. Therefore, the first term of the right-hand side of the (29) with 
both k—oo and 1—*oo: 

fT _ f_ 2 limJ / f w„ dx dt — 0(30) 
k,l—'o0 0 Q -

                                                 v 

holds. From the presupposition, exists also the factor with e for (28) under one fixed convergence. From 

                              T 

                lim-----//(f k — f1) 2 dxdt < cc, de > 0 
                      k,l—*oo0Q 

follows, however E was arbitrary, the strong convergence of our sequence in (x, t)-domain, x C Q, 0 < 
t <T. We see easy that the limit function in the context of lemma is the function f * (x, t), so Lemma 
5.1 is proved. ^

54(0 The w„ would become as the orthogonal in Q. The inequality is then described by an evaluation of the difference ' 
in the Bessel's inequality. On the proof of the inequality, we find by Courant-Hilbert, 1.c.f.t. Chap.VII, §3, par. 1. We agree 
by ourselves to that the proof leads us in two dimensions, even the function in n dimensions. The Friedrich's inequality 
doesn't hold for the arbitrarily restricted domain.
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                      6. Appendices to Hopf's paper  ((4)) 

  Theorem 1 by J.Leray and J.P. Schauder [8] is as follows. 

Theorem 1. Let 

x — F(x, k) = O.(1) 

be the given equation. We apply three following groups of the hypotheses : 

 (H1) The unknown x and all the limits, determining F, belong to the fully normed linear space E. The 
     total of the limit of the parameter k fill the segment K of the axis of the substantial number. 

F(x, k) defined for all the pairs (x, k), where x is the derivative element from E and k is the 
      derivative element from K. 

F(x, k) turns into each bounded space of the point x E E in the compact space. 
       F(x, k) completely continuous with respect to k to each bounded subspace of the space E. 

 (H2) In the arbitrary point kr, of the segment K all solutions of the continuous and their indexes can 
      investigate the method of the chapter II ; we shall assume the total of the indexes suitable in zero. 

 (H3) At last, we shall assume such a proved fact that the solutions of the problem (1) is bounded in the 
      own group (a priori independent of k ).

  We show the another simple definition55 of same theorem as follows : 
X : Banach space. 
D : the bounded open set including zero. 

F(x, t) : D x [0, 1] —> X : the compact map, where F(x, 0) - 0. and F(x, t) � x, 

  The compact map : F(x, 1) has a fixed point in D.

if x E 3D.

6.1. The fundamental solutions of the Stokes hydrodynamic differential equation 
((4) Extracted from Oseen and translated from German ).

6.1.1. Fundamental solutions for the condition on the velocity components. We turn back to 
our problem, to determine the fundamental solutions of the Stokes differential equations. We said that 
we shall select these fundamental solutions so that the detail functions v depend only on the two points P 
and PO), moreover, that the system of these functions in all themselves way of the coordinate depended, 
we also select the right hand direction system. It is easy to assume that these new functions of the 
components of the one than the transformation (10)56 of the invariant tensor with the range there are 2. 
We have used from these underlying, deduced, a tensor which in an arbitrary right hand direction system 
of the following components : 

2 
tjk =5jkO~(r)—~(r), r2 = (xj —x(°))2, r > 0,(11) U

xi xk 

f k is here and bellow the jk-component of a tensor, these diagonal components of (j = k) have the value 
1 and the else components have the value 0. The three functions tlk, t2k, t3k satisfy always, i.e., when k 
have the value 1, 2, 3, the equation : 

      n 3(
12) 

                                         uxi 

When we define that of the equation : 

                                  32 3232                OxOx~= 0 (Ox =Ox2+0x22+t~z2)(13) 
57 should be satisfied and when we put : 

                      a& =                     —~---xPk 
8xk

55(t) "The Iwanami mathematical dictionary . Revised 3", Iwanami, Tokyo, 1996, pp.933-934, (in Japanese ) 
56(4) xij = aj + ljkxk, x(313) = aj + ljk4). 

  57By a function
, which depends on many points, it is useful and sometimes important for the operator 0 to operate by 

an index of the point to indicate with respect to this.
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so we have for all admitted j- and k-value : 

aPk  
i t xtjk — ax~ = 0.(14) 

For these k-value ( 1, 2 and 3 ) and also the three functions tik, t2k, t3k and Pk are one solution of the 
Stokes equation i.e., we can put the equation (13), ' depends only on r, to the familiar transformation 
of 0 in the polar coordinate in the following form : 

d4(T )) =0. 
                                    dr4 

These generalized solution is also = ar2 + br' + c + d, where a, b, c, d are the constants. We put from 
the basis, which we define soon, c1(r) = r. We have then : 

                                       (0)(0) Sjk (xi — xj))(xk — xk~)  0I) _ —, tjk = + 
        r' Tr3

0  1 _(xk — xk°))                          Pk=-2µax
kr2,u T3 

We observe now a domain B of (x1, x2, x3)-space. F is its boundary surface. We assume that the Stokes 
differential equation has a regular solution in B. We show with P(°) _ (x?, 4°) , x3°)) of an arbitrary 
point in the interior of B. We surround with a sphere with r = e and select e so small that this sphere 
lies in the interior of the F. B(6) is a subspace of B, which includes the exterior of the sphere with r = E. 
We use the formula (2)58 on the domain B(e), and we put with vjk = tjk, P = Pk. The boundary is 
consist of the two subspaces of F and the sphere with r = E. Because the value of rtjk is over even in 
the point of P(°) is stable and because the boundary of the sphere with r = e is proportional with e2, we 
have : 

                                              duj                     loJ —tjk(1—pnj)dS=0.                        !'—E dn 

Moreover 

                                       (°)xk —luj—PkndS = limuk + 3'a(x—)  (dtikµdo)E—,of=ET2r 2• 
We put 

                      uj =u~°)+ Tv where u~°)= uj (P(°~) 
and because we put with yo as a bounded function of the point P in the neighborhood of P(°). We have 

then because 

              dS= 4rr — x(°))(xk —43)) dS4=47rSkf2'f22r=ETTT3
                 limf-u, (dtikd pkr'j)dS = 87rµuk(P(°)).                                      -E 

Therefore : 

uk(P(°))87p,f{tjk (1LdoPrzi)a3 (/lJk 
                                    d

dnPk'rtj) }dS.(15) 
When we get the 12 functions Tjk and Pk, which in the interior of the boundary F, we can put in the 
form of : Tjk = tjk + Tjk, Pk = Pk + Tk, where Tjk, Pk for all k-value (k = 1, 2 or 3) of the interior of F, 
the regular solution of the given Stokes equations, so we can deduce directly owing to the product of (15)

58(4)

I (duidvjl v\~do—pnj)—ujCudo—pni/dS = O. (2)
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 tjk,  pk by T3k, Pk. When the new T3k all disappear when the point P, included in the boundary F so we 

get :

uk (P(°))= 8~p, Fu3 (dIskµn—Pk n3) dS. (16)

6.2. On the boundary value problem of the hydrodynamic viscous fluid. 
((4) Extracted from Odqvist and translated from German ).

6.2.1. Definitions, Expressions, Green formulae. We investigate, in the following, the space domain 
Q, which is restricted to the finite many, bounded continuous surface. The points of Q is spanned by 
the certain fixed, right oriented coordinate system xl, x2, x3. The interior points of Q is put with the 
coordinate xi (i = 1, 2, 3) or yi in brief, (x) or (y). The spatial element is put with dQ. The standard 
point is meant, if necessary, as dxQ, dyQ. We put each domain Q as the "interior domain" with Q(i), we 
can include an exterior domain Q(e) such that Q(i) + Q(e) makes the total space. 

 The total surface of the body ("the boundary surface") of the domain Q is called and consist a 
continuous tangential plane. The points on T are put as (0), (r/), • • • and the surface elements with 
dT or dj, • • • . The normal line from the interior point is put with ni (i = 1, 2, 3). 

 The functions of the coordinate xi, i, • • • of the points, we use, in brief, with f (x), f (77), f (x, rl), • • • , 
etc. It holds therefore, ni = ni(r/). 

 The distance of the two points x and x' is put with r'. 
 A function f (x) of the, we know, 2 points x and x' of a domain Q of the form 

If(x)-f(x')1 <Cxy,, 

where with h of the real, positive and smaller the an arbitrary, and C : a positive constant depending 
only on h, which we call as H-continuous with the exponential h (Holder). 

 An surface of T guarantees in the neighborhood of the point, which the expression of the form : 
6 = (6i, 2), if the coordinate system is suitably selected. The function f(6, 6) have the first derivative 
which is H-continuous with the exponential h, so the boundary belongs to the class Ah. Therefore, from 
here, the 2 differential quotients of f(6, 2) exist and H-continuous, and so T belongs to the class Bk. 
The extended domain Q belongs to the class of both Ah and Bh59. In our last result, we shall use the 
class Bh in §6. Although overall with the small presupposition of the class Ah so wide operate than it 
can. 

 In the following, the double index in an arbitrary product of the differential quatations, etc., follows 
with respect to these indices that we should summarize, we write the equation (0.01) in brief 

{p,Au, Cjui `:  auk 
a:~k= 0. 

We study for the moment only its conditions of the viscous fluid, which obey the simple differential 

equations, which, by the conventional way, we eliminate the quadratic term : 

0ui 
u k a

r k 

We have the Stokes equation 

auk = 0.                                              O
xk

 We call the following problem the first Stokes boundary value 
 Determine in a space domain Q of the class Ah of the functions ui, 

Q satisfy : 

                            Op Ouk   =----= 0 
                                   OXiaxk

problem : 

p, such that on the other hand, in

(3)

  59Compare with L.Lichtenstein : New evolution of the potential theory. Conformal mapping, The Encyclopedia of 
Mathematical Science, IIC3, Teubner, 1919.
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and on the  other hand, the functions ui(x) get by the approximation of the boundary surface : T of Q 
the given value ui (t;) . 

 The stress tensor operating in the fluid is described by 

                                      auk aui                             T
ik = —psik + µ I+   \a

xiaxkJ 

where 

                                          1,i=k, S
ik =                                        0

, i k. 

The stress tensor operating on the surface element with the normal : nk is put with 

Tiknk• 

The problem of the equation (1.03) in a domain Q then to investigate that the operating stress tensor 
(: Tiknk) on the cubic surface (: T) get the given value, we call the second Stokes boundary value 
problem. We call the equation (1.03) the homogeneous Stokes equation. 

 We now two arbitrary, twice continuously differentiable vector ui and vi and an arbitrary continuously 
differentiable scalar value p, then the "Green identity" 

f[Tv]dQ(4) 

 2 

       ~(i)axk 

            µ (auk aui avk avi  lavk-ap0aukl1}a2
J\/\+l~µi+µt/J         ~(.)2axiaxkaxiarkaxkaxi axi axk 

          POik — ----                (auk ----  
                           OUi 

                       l-L\ 
              T _axiaxk 

holds. The first 2 integrals are the space integral on the space element dQ of Q(i), and the last one is a 
surface integral on the surface element dT of T. 

 We exchange in (1.04) ui and vi and put q instead of p and substitute them, then it turns out from 
(1.04), here we call "Green reciprocal formula" : 

 fL 
         op 0

\OUk~JavkOq 0  (  avkavk----     µDui--+µ—vi—qr—µ0vi—}µui—pdQ 
    c2(i)          axiaxi0:/caxkaxiaxiaxkaxk 

= f {Ti(u)nv — T k(v)nkui}dT, (5)
where, 

                                                         `~~Tduk                   Tik(u) _ —PSik +ita ~,;+oi ,(6) 
                      Tik(v) = gOik + µ (ft + aavi 

 Now, put down ui = vi in (1.04) and select for the functions : ui, p, such that they satisfy the equation 
(1.02), then it turns out the "Green energy formula": 

    f~/(aukOttz1_7i ----Tk(u)uk_dQ = —JT7'k(u)r~kudT =f~{2 axi+axk()   () axi_(z) 

hence the physical fact to the expression turns out that : the operating force of the surface force equals 
to the viscosity force reduced by the operation of the outer force. Because the author acknowledges 

the heuristic meaning of this, never occurring,60 Green formulae, as the true reason, so that it is lately 
success to construct the same formulation of the potential assuming by the double boundary layer, which 
we can deduce from its integral equations with "regular" kernel, and which was impossible with the 
same method as known already so far61

60cf . F.K.G.Odqvist, The boundary value problem of the hydrodynamic viscous fluid, Stockholm, 1928, P.A.Norstedt 
o.Soner. p. 49. 

  61Compare with C .W.Oseen,Hydrodynamick, Leipzig, 1927.
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6.2.2. Hydrodynamic potential. To get a particular solution of (1.02), as you know, we can use the 
fundamental tensor. Under this, we see the results : 

              kxy=87,1p{i:Oik +(Yi—xir(8)                                              )LYk—zA-.)} 
   y7 

                      qVik((X:))=x4k7.,ye    { and the unknown solutions are 62 

 {Ui(X) = p fc2 Vik(x, y)XK(y)dQ, (9)  P  (x) = p i
g qk(x , y)X K(y)dQ . 

The fundamental solutions correspond to, as you know, the turning out of the function : 7..-„from the 
potential theory and we can say the total concept of the functions Ui, P as the hydrodynamic space 
potential. It holds the important relations for (x) � (y) : 

                            Oqk avik  
               ,LtAxvik == 0, Axqk= 0,(10)                               axi'axi 

                            aqkavik  
              ,aAyvik=,„= 0,Ayqk=0,(11) 
oyioyi 

Vik (X, y) = Vki(y, x).(12)

62Here Xk (y) is to satisfy the given conditions
, cf. the following theorem 1 on page 337.
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7. Ladyzhenskaya : Investigation of the Navier-Stokes equations for the stationary motion 
                           of the incompressible fluid 

7.1. Introduction. 
 Ladyzhenskaya 63 [111 is one of the most important papers including Leray [12, 13, 14] and Hopf [4], 

from the viewpoint of mathematical history, of the early studies of the solution on the Navier-Stokes 
equations. However, this paper [11] was written in Russian, we introduce her paper by our translation 
into English. In addition, the first English version : Amer. Math. Soc., Transl(2) 24(1963) by John 
Abramowich was published without corrections and comments. After conveying deep gratitude to him, 
we corrected the misprints by translator, amended phrases and words. We show the paper of hers below. 
64

Investigation of the Navier-Stokes equations for the stationary motion of the incompressible fluid 
     Ladyzhenskaya, Ol'ga Aleksandrovna ( Commented by the author of this paper. )

  The motion of the viscous incompressible fluid for the model of Navier-Stokes is described by the four 
functions : 

                      u(x) = (ui(x), u2(x), u3(x)), p(x), 

satisfying the equations : 
3 

Au — grad p=E ukC~u+f(1) 
Oxk k=1 

div u = O. (2) 

where f (x) = (f 1(x), f2 (x), f3 (x)) : the vector of the mass force, u(x) : the vector of the velocity of the 
flow of the fluid at the point of x = (x1, x2, x3), and p(x) : the pressure at the point. For the brief, of 
the description of the coefficients of the viscosity and the density of the location, we put by regarding 
as 1. We shall study the motion in this domain Sl of the three-dimensional, Euclidian space E3, having 
its fixed boundary S ( S may consist of an arbitrary isolated, closed surface ). The case of the moving 
boundary, we assume the similar investigation. To the boundary S, we assume the essential, incidental 
condition : 

u~s = O.(3) 

The problem in the definition of u and p in the domain SZ in the equations (1),(2), and the equation (3), 
and the condition in infinity : u —+ up° with respect to lad —> oo, if f : the unbounded domain. To this 
problem, in many papers devoted their times. Out of them, we select the papers, such as Lichtenstein [1], 
Odqvist [2] and Leray [3], in some studies the solubility of the problem (1)-(3) for the domain S2 of the 
derivative form. In the paper [2], Odqvist studied the method of the potential of the linearized problem 

(1)-(3) : problem, equations (1), omitted nonlinear terms. (We put that exists the various methods of 
the linealized equations of (1) ; all of them come to the equations, varying each other in the terms of the 
lowest order for the comparison with the term Au : describing below the method of the solution of the 
problem (1)-(3), thus, we consider this terms without showing the efforts. ) 

 Except for this, in its study and its own problem (1)-(3) and show its solubility << in the large >>. 
In the paper [3] by Leray give a priori estimate for the solution of the problem (1)-(3). The result of 
the paper [3] in the combination with the following results of Leray and Schauder65, to the fixed point 
completely the continuous transformation of the Banach space, may claim the solubility of the problem 
(1)-(3) << in the large >> in the case of the sufficiently smooth S and f of the problem (1)-(3), in fact, 
the solution of J.Leray. On this problem, sophisticatedly show giving the examples, the force of the 
achievement by Leray and Schauder of the method of the study of the nonlinear problem, which may 
investigate the existence of the solution of the problem and in these cases, when we stay in the condition 

63(4) Ladyzhenskaya, Ol'ga Aleksandrovna (1922-2004.) 64(4) Except for four remarks by Ladyzhenskaya, which we mark with (O.L), and the other footnotes marked with (.t) 
are by the author of this paper. The numbers of equations correspond to that in the original paper. 

65(4) This method is so-called the Leray-Schauder's fixed point theorem.
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of the  non•uniqueness of the solution of the proof of the solubility << in the general >> problem (1)-(3) in 
the bounded and continuous domain E2 ( interior and exterior problem ), fundamentally using the stated 
above ( all is sophisticatedly made ) the paper by Odqvist and discover the paper [3] by Leray. For 
this, we propose all the studies in the two differential functional, generalized quadratic integrable space 
of the order 1, and in the space Cl (C2) : continuously differentiable functions. The study in the space 
1471 (El) have such merits, that they may prove the solubility of the problem (1)-(3), because of the only 
general properties of the operators, compared with the current problem, investigate such a special analytic 
formation, corresponding to them, with respect to this of the assumption of f and the boundary, even the 
minimum. In them, we have defined the existence of the so-called generalized solutions of the problem 
(1)-(3). (of course, with respecting to the performance of the defined conditions of the smoothness for f 
and S. ) 

 For convenience's sake of the reader of the paper, we chose separately the case of the homogeneous 
boundary conditions (on S and in infinity ). Their study seems to be possible proposal of the very large 
and little large sufficiently. In the current problem, we limit the investigation of the stable flow in infinity : 
uc, = const, in addition, in the paper, the methods allow to learn also very general cases. In the paper, we 
show that the stationary problem of the hydrodynamic ( interior and exterior) have, at least, the unique 
solution for all the limit value of the Reynolds number. All these generalized solutions are functions, twice 
continuously differentiable in the interior of a certain domain, having up to S, continuously differentiable 
of the order 1, only if the domains of the solid S smooth ( have the twice derivatives, satisfying the 
Holder's condition) and the mass forces f satisfy the Wilder's condition. 

 We investigated also establishing the motion in the tube of an arbitrary profile end, which are cylindrical 
tubes, extending to infinity. We see, with respect to an arbitrary Reynolds number, exists, at least, the 
unique laminar motion, which, in infinity, converge to the stationary situation, corresponding with the 
unbounded cylindrical tubes, having as well as the profiles that also end of our tubes.

                            1. The generalized solutions. 

1.1. The homogeneous boundary conditions.

¶ 1. The basic spaces and the formulation of the problem 
 We put L2 (E2) : Hilbert space of the vector u(x), defined in E2, with the quadratically integrable (in 

E2 ) components. The scalar product in it, is defined by the equation

(u, v) u2v2dx=fuvdx. f2 2
Here and below, for the pair of indexes, we use the implicit summation symbol in the range from 1 to 3. 
On the boundary S of the domain E2, we impose that it has not measure of volume. Take an example of 
the set M of all the functions in E2, continuously differentiable, solenoidal vector u(x) and introduce in 
it, the scalar product

(u,v)HuXkvXkdx=ui.,vi.,dx.    fJ S2 (4)

The solenoidal of u means that div u = 0, and the finiteness in 52 : as well as u nicely to zero only in 
this bounded, strictly interior sub domain of the domain ft We show that the equation (4) is, in fact, 
may turn out in the capacity of the scalar product in M. for this, we must investigate only this, that 
from the equation : (u, v) H = 0, we deduce the equation : u = 0. For the boundedness of the domain, 
this deduce from the inequality 

                                     r3                        v2(x)dx < C0JE(v2)xidx, 
              S2S2 k

=1 

and that also from the larger, strong inequality ( cf. [4] ). 

              (fv4(x)dx) < CSZ(f(v2))dx,(5)     iz i=i 

strictly, for an arbitrary function v equals zero on S. For the unbounded, however, in the domain S2 these 
inequalities are not available in the ( C0 = cc ). However, for any functions in S2 the functions v(x) and
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any point y, strictly, inequality  : 

                v2(x)  dx< 4E(v2)xkdx.(6) 
                       JsaIx —yI2Jsa                                                              k=1 

It turns out from the equation : 66 
   3 ~v y

k—xk 3uvtyk — xk3ayk—---------xkv2(x)  2 Sv(x)--------dx =dx =—fv2 ---dx = 3oJsaOxk ~x y1tOxkIx—yI2sa Ix — yI2 k=1k=1k=1 

and follows from its inequality : 67 

                  v2(x)  dx < 2Jv2 (x) dx f(v2)xk. 
                                                    stlszlt k 

Inequality (6) may conclude that from (u, u) = 0 deduce u = 0 and in the case of the unbounded domain. 
The complement of the space M, for the norm II' II H, corresponding the scalar product (4), turns out in 
the ample Hilbert space, which we show through H(52). 

 We explain, by this property, it has all the elements of such a constructed space H. The element v 
from H have the quadratically integrable on C2, the generalized derivatives of the order 1 and 

s av
z 

• 

                                 divu=E---=0. 
OXi k

=1 

These components vi belong to the inequality (6) for all y and the inequality (5) for all the bounded 
domain ft On the boundary S the vector v moves to zero ( because this embedding theorem [4] instruct 
us. ) In the case of  the unbounded domain S2, the element v, in the defined mean, disperse to zero with 

respect to IxI - ,N/73                  =1x2—~oo. This mean is instructed by the inequality (6). The summation of 
all these functions v also belong to H. Let's define now, that we can see the unknown solution of the 
problem. By the generalized solution of the problem (1)-(3) belonging to the class H, we call the vector function u(x), belong to H and satisfying the

fintegral equation :f               fuxkxkdx  —ukuXkdx = —Jfdx(7)      22S2 
for all 43 E M. 

 On the validity of the reason of this problem of extensively conceptual solutions, we deduce the fol-
lowing idea. First, if it turns out that the generalized solution u has the locally, quadratically integrable 
generalized derivatives of the order 2, then from (7) by the partial integral, it turns out the equation : 68 

                     ft(Au—ukOu—f)~dx-0,                                 t Oxk 

from which we deduce ( cf. [5] ), that the expression exists in the parentheses, is the gradient vector, i.e., 
that u satisfy the equation : 69 

Du — uk Ou—f = +grad p 
Oxk 

with the completely, certain function p) 70 (we see that p, such as this seems to be directly defined up 
to an arbitrary constant element ), second, in the case of the linearized problem ( when we cut off the 
nonlinear terms and when we have in the condition of the theorem of the uniqueness of the classical 

66(4) We correct the last hand side of the next equation : — f 
Iv2(yl'„dx —> 3fsa 1:2(yl)2dx, because of E3k—i d-xk =                                                               Stx -

-3. 

67(.1J.) From (6), after raising to the power of 2 of the both hand sides of (6) and multiplying the both hand sides of (6) 
by the just-gained left hand side. 

68(4) By using the partial integral , from the left hand side of (7), we deduce as follows : 

                 uxk xkdx —uku~Xkdx = — duxk  cDdx uk----flU_ —f~dx 
      J0J0J0 axkJSt dxk Jsa

 69(4) From (1). 
70(O.L) We can prove that p(x) is the unique function of :c
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solution ) it turns out the uniqueness theorem of the generalized solution. Certainly, for the solubility of 
the both of the generalized solutions may have the identity  (uxi  , .13xi) = 0 with respect to all 4 E M, 
where, just now proposed above of the investigation for the scalar product (4) deduce that u - 0. 

 We can prove that it turns out the uniqueness theorem of the generalized solution and the nonlinear 
problem (1)-(3), if the small domain S2 or if the small f . We put that in the case of the bounded domain 
SZ for the generalized solution u, the identity (7) have naturally for an arbitrary element 4. from H, only 
if f E L2(S2) ( or, even if f define the linear functional in H ). This deduce from (5) and its, that M is 
dense in H. 

 We turn now into the proof of the existence theorem, moreover at first investigate the linear case.

¶ 2. Linealized problem 
 It is defined as the function from H, satisfying the identities : 

Du —gradp= f, div u=0, = O. 

This defines such functions from H, satisfying the identity 

                              (u, 43)H = —(f, 43) 

for any 43 from M. It turns out

(8)

(9)

Theorem 1. The problem (8) has u and moreover unique generalized solution from H for any f 
being the linear functional in H.  ^

The value (f, 43) in (9) teach such as limit the linear function f to the element 43. The proof of the 
Theorem 1 directly deduce from Riesz's theorem71 on this, that an arbitrary linear functional, including 
(f, (13), can become in the way of unique, proposed in the form of the scalar product of the continuous 
element u also become the unknown solution. ( We see that for this identity (9) have naturally for all 43 
from H and not only from M) . 

 We put some sufficiently conditions, as f becomes the linear functional in H. 
Result 1. The problem (8) has the unique, generalized solution from H, 

   1) if SZ : the bounded domain, f of the summed in SZ to the power of 5, and the functional (f, 43) in 
     (9) calculate as fo f4)dx ; 

2) ifx=dfak(ik= 123)f(C2), ()Lifki xk        fZ ()=d~ik E L2and the functionalf , ~is estimated asz~~dx 

   3) if for f , the smooth integral 

3 

Ix—yrEf?(x)dx 
                   SZk=1 

      for such a point y and (f, 43) =fSZ fNdx. 
In the lines 2) and 3), SZ can become the unbounded domain. ^ 

 The validity for all these satisfied easily prove owing to the Cauchy's inequality by reason of the 
inequality (5) and (6). We see that the problem (8) in the bounded domain from a viewpoint of the 
theory of the extended selfadjoint operator investigated in the paper by S.G.Krein [6]. It turns out here 
the method of the proof ( he knows the own origin from Friedrichs ) considerably simple. ( cf. moreover 
[7] ).

¶ 3. Nonlinear problem ( bounded domain ) 
 We put Sl : the bounded domain, and f is the linear functional in H. The integral : fSZ fcl•dx, fixing 

in the right hand side of (7), will exist as the problem of the linear functional f by 43 and will deal this 
as (f, cla). Owing to Riesz's theorem (f, c13) = (F, 4 )H, where F E H, and so on, integral fSZ uku4;,,,dx 
define the linear functional in H on (13 with respect to an arbitrary element u from H. This deduce from

71(4) This is called the Riesz's representation theorem .
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(5), just

 G((~~ 3414/i34\4/3                   `JS2E ukdx1CE uidx~(IE 
k=1\z=1/\///z,k=1 

3z =~(fEul cdx)2Mx 
                                 S2 k=1 

               G V )'-uIIHII'lIIH. 

Owing to the Riesz's theorem exists such element Au in H, such that 

J

[UkUdX 
 S2

fuku4'xkdx = (Au, 43)H  S2

           

i 
          z 

 Sdx 

    k

(10)

As a result of the identity (7), we can rewrite in the form of 

(u—Au+F,43)H =O.(11) 

Therefore the problem define the generalized solutions simplified for the solution of the nonlinear equation 

u—Au+F=0(12) 

in the space H. We show that the operator A completely continuous in H, i.e., that it is continuous and 
it transforms compactly an arbitrary bounded set in H. Because of H : Hilbert space, then sufficiently, 
it shows that A arbitrarily, weakly converges in H, the sequence {vm} converges strongly. Therefore, vTr` 
may converge weakly in H to v. Owing to the embedding theorem (cf. [4] ) VTrt may converge strongly 
on v in L4(S2).

                                                             rn 
— (Avm—Avr°,—vvrc4,dx=f(/vtv+(mT/v—v()H =f(vvm)lfvl)dx. 

  222

Applying for the estimate of the right hand side, the Holder's inequality and the inequality in (5), as well 
as in the above, we see 

            (Ay"' — AV",4,)HGCIIVT~—Vrr1IIL4(S2)(II1nUIH+Ilvrr`IIH)II43IIH, 

where, we assumeI. = AV — Avm, 

IIAvn`T — Avnll <_ v' — 11 L402)  0, n,'rn -p cc. 

Hence, we prove that A : completely continuous. Hence for the investigation of the solubility of the 
equation (12), we can apply the Leray-Schauder's method (the Russian translated version of their paper 
given in [8] ). Let's contain in (12), such a substantial parameter A : 

u — AAu + F = O. (12A) 

for A = 0, the transformation : v = u + F is each other unique transformation of H in H. Hence 
the power in an arbitrary point v E H of this transformation, investigating at all H, equals to 1. In 
particular, it equals to 1 also in v = 0. This means that the highest index of the solution of the equation 
: u + F = 0 equals to 1. For this, to be able to claim the constancy of this index for the solution of the 
equation (12A) for all ) E [0, 11, we must prove sufficiently that all the possible solutions of the equation 
(12A) does not go beyond the limit of a certain sphere of the space H. If it turns out this last one, then, 
by reason of the Theorem 172 in our footnote73 on this paper [8] ( pp. 84-85 ), equation (12A) will at 
least the unique solution with respect to all a E [0,1]. Like this, for the proof of the solubility of the 
equation (12,) sufficiently investigate the a priori estimate in H for all the spaces of this solutions with 
respect to a E [0,1]. For this, we recall that (12,) turns out, putted in the form (7), is

(u, 44)H — A f ukulixkdx = —(F, 4)H. 
            S2

72(4) We show this Theorem 1 in our appendix by the author of this paper . 
73(4) Uspekhi Mat .Nauk 1(1946), no 3/4(13/14), 71-95. (Russian)
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here, in the capacity of the  4), we can select an arbitrary element E M, and by just it, and from H. 
put I = u. This integral, standing with respect to A, disperse because 

       f1fc~u2 1 
               Jukuuxkdx = —uk dx =—J(div u)u2dx = 0.              stt0xk 2 st 

and therefore 

IIuIIH = —(F,u)H < IIFII IIuIIH = Ifl IIuIIH, 
where l f 1 is the norm of the linear functional f. Hence, the desiring a priori estimate : 

IIuIIH < ~f~, 
and from these and the existence theorem,

We

(13)

Theorem 2. The problem (1)-(3) in the bounded domain S2 has, at least, the unique generalized 
solution from H for any linear functional f in H, in particular, for all f, integrable to the power 
of Q.inQ. ^

If 4. Nonlinear problem ( unbounded domain ) 
 We put 52 : the unbounded domain74 and f the linear functional in H(S2). We put the symbol 52,,, (n = 

1, 2, • • •) the sequence extending of the domain covering in the range of all the ft We see easily that 
if each from the vector v, belonging to H(S2") , extends to all Si, containing this, equal to zero in the 
exterior of H(S2"), then it become belong to H(S2). Therefore f can be estimated as the linear functional 
in all E H(52), moreover, for 4) E H(S2"), 

I(f, 4))1 <— If! 114'IIH(sO) = If I14'IIH(s10, 
where lfl : the norm of the linear functional v in H. For each from the domain 52,, of the problem (1)-(3) 
have, at least, the unique solution u" and for all these solutions, the valid estimate (13), just the estimate 

IIuIIH < Ifl. (13') 
Therefore, the total of the solutions {u"} weak compact in E H(S2). We show that all from its weak limit 
of u become the generalized solution E H(52) of the problem (1)-(3). For this, sufficiently prove that u 
become the following identity (7), just this identity : 

                    (u, 4')11 — fuku4)X,kdx = —(f,`3) (7') 
                                     t Y43 M (however V43 H(52)! ). We take an example such 4 E M. It is bounded. Therefore, for it 

and all u" with sufficiently distant at the value n become exactly identity (7'). Moving for (7') to the 
limit for the partial sequences nk, for all n"k converge weakly to u, assure, using (5), that u satisfy (7') 
with 4, took an example E M. QED.

Theorem 3. The problem (1)-(3) with zero satisfy in infinity, have, at least, the unique generalized 
solution E H(S2) for the unbounded domain S2, if all f define the linear functional in H(52) (the 
enough conditions of this given in (2)-(3) and Result 1). ^

1.2. heterogeneous boundary conditions. In this paragraph, we want to investigate generally the 
problem which we sketch the system n of the flow of u, which, in infinity, is equal to the problematic, 
accustomed vector um. For this, in the capacity of the auxiliary problem, we study at first, the problems 
of the Navier-Stokes system, in the bounded domain with the heterogeneous boundary conditions. 

IT 1. Flow in the bounded domain. 
 We shall find the generalized solutions of the system (1)-(2) in the bounded domain Si with the boundary 

S (this, as the everywhere be able to consist of the separated surfaces : Si + S2 + • • • + Sr, ) satisfying 
the boundary equation : 

uls = als•(14) 

74(O.L) We mean that the domain can be extend up to the infinity.
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We assume that the vector a is by the boundary value of the vector a(x) = rot b(x), where b(x)  E  W2  (Q), 
such that 

                  f3                   max Ib(x) I < const ,Eb4 kdx < const . 
                                                       2 a k= 1 

With no difficulty, we summarize for as the condition of the boundary with respect to also al S that the 
continuation of aIs with S zero in 52 possibly ( of course, that f (a, n)dS essentially equal zero ! ) 

 The generalized solution of the problem (1),(2),(14) named vector function u satisfying the integral 
identity : 

                   uyk(Dxkdx — fuku4Dxkdx = —(f,10)(15) 
       sza 

with respect to all 43 E M and that v = u — a E H(52). 
 The assumptions on f are the same as the smooth, in the first order. For these conditions, it turns out

Theorem 4. The problem of (1), (2) and (Li) have at least, the unique generalized solution for 
all f, being by the liniar functional in H(S2). ^

This theorem prove the same as by the method of the Theorem 2,3 in §1. The various papers of the 
solutions of the problem comes just to the solution v of the equation : 

v—AIv+F=O,(16) 

where, F : the given element of H, and Al : completely continuous operator in H(tl). The solution u 
of the problem is connected with the solution of the equation (16) by the equation : u = v + a. For 
the proof of the solubility of the equation (16) is proved with no difficulty, that the norm in H all the 
possible solution of the equation : 

v — AA1v + F = 0,(17) 

with respect to A E [0,1], bounded in total such a constant. We show this. Let's v be such a solution of 
the equation (17). Then v + a satisfy the identity (15), if in it with respect to the nonlinear term define 
the factor A, i.e., 

       f(vf                + a)Xkkdx —A(vk + ak)(v + a)Xkdx = —(f, 4)). (18) 
   tsa 

We substitute in this identity for 4 = u and use such that 

                                                          2 

Jst(vk + ak)vvXkdx =2J(vk + ak)~~kdx=0, 

                     faXkvXkdx < IIallHIIvIIH,                                  sa

I(f,v)I < IfI IIVIIH 

where f I is the norm of the linear functional, the given f in H 

fakavXkdx  <CJadxllvIIH<Cs~IavH,(19) ast i 

where the constant CSZ depends on the volume of ft Therefore from (18) we deduce the inequality 

IIvIIH < A fvkavxkdx  +IIaIIHIvIH+~CSZavIH+IfI IIvIH•(20) 
                          2 We assume that IIvIIH with respect to all A E [0,1] unbounded in total. Then it exists such a sequence 

as A = A1, A2, • • • -p Ao and the corresponding its solutions vTh = v(x, An) of the equality (17), for all the 
value 

Nn, =11 v~ I I H
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converges to the limit with respect to n  -j oo. For all vT`, the valid inequality (20) with the same 
constant CSZ. Divide the both hand sides of the inequality (20) by NT2, and put this as the inequality for 
the function wa = Nn 

            1 <a~f wkawXkdx +NIIaIIH+ANstHallII+NIfl.(21) 
7LTL„ 

The set of the function {wT° } continuously, bounded in H : I l w" I I H = 1, and therefore, it strong, compact 
in L4(52). Without the boundedness of the coincidence can assume that all the sequence wT° converge 
on an arbitrary function w, strongly in L4(52) and weakly in H. The limit function w E H. With no 
difficulty, we verify that the integral J wkawxk dx converges on fSZ wkawxk dx. (21) converges n - co. 
As a result, it turns out

1<\o fwkawxk dx 

 2

(22)

 The functions : u, v and w found for the fixed vector a(x) E ft However, u(x) depends on only the 
role of a(x) on S ( cf. the definition of the generalized solution of the problem (1),(2) and (14). ) If 
we, instead of the original : a(x) = rot b(x), get arbitrarily from the vector a(x, 6) = rot [b(x) (x, 6)], 
where (x, 6) is such a << cutting-off >> function, that is twice continuously differentiable, and equals to 
1 in the neighborhood of the boundary S and zero at the point of 52, separating from S at the distance 
of the larger 6(6 > 0), then the solution u(x) of the problem (1),(2) and (14), found according with such 
a(x), becomes the solution of this problem and for all such a(x, 6). We construct the sequence of the 
cutting-off >> functions : (x, 0) with 6 -+ 0 such that                       

I (x,s)1<c,~0x ,<S, 
with the unique and the same constant c for all 6 E (0, 6i). The vector vT` - v(x, )TL) = u(x, )T1) - a(x, 6) 
depends on 6, however, the limit value for wTt = Nn of the vector w is independent of S same as NTL -- cc 
with respect to n - co, hence a(x di -p 0 with respect to n -* oo. Hence the inequality (22), validly for 
w with all the vector a in the form of rot [b(x) (x, 6)]. We see easily that 

la(x, (5)1 < cl (b + E Ibxk (x) I) , (23) 
Hence from (22), it turns out

1 < ao

 _< Aoc, i WkWxk ('-' + E Ibx2 (x)1)dx 
   Qs8 Z 

< Swdxw,dx+ ac(wdxfwdxfb ~pG2 Jfo6k1ar2~k122tfk4xk24kkJJSa kJvS2b k2a k2b a k 
Here 526 : the boundary zone of the width 6, and c2 : the absolute constant defined an arbitrary domain 
ft For w E H(52), then for this equals to the inequality : 

( f2                                    r ~aw2(x)dx)<co6(f~sEwxkdx).(25) 
k This inequality deduce easily with using the Cauchy's inequality from the expression 

W(x) = W(y)I yES + Lx---OWdl, 
                                       if we consider that W15 = 0. Owing to (25) and (5) from (24) we deduce

   wkwxk a(x , S)dx f2a 
Aoci I wkwxk (- 

      Qs

(24)

dx)4 .

                      1 < Aoc4 fEWXkdx. 
                                             S26 k 

However this inequality, such as L2, >i k w dx converges on zero with respect to 6->0. The gained 
h contradiction proves the boundedness of (1v(x,A)IIH for A E [0,1]. On this account, Theorem 4 is proved. 

El
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 At the symposium of the differential equations held in November 1957, in Kharkov, a theorem was 
repoted by  I.I.Vorovic, (proved by him with V.I.Judovic ), which was on the existence of the generalized 
solution of the problem (1),(2),(14) with respect to the condition (a, n) IS = 0. Under the performance of 
this condition, it may be possible to give the direct a priori estimate of IIv" II through the given problem75. 
According to what I.I.Vorovic teached me, their study of the differential properties of this problem hasn't 
progressed very far.

¶ 2. Flow in the unbounded domain. 
 We put the system n of the fixed, bounded such that we sketch the flow flax u(x) with the given value 

of this by the limit u00 = const in infty. We put by a(x) such that is solenoida1,76 locally quadratically 
integrable vector with the quadratically integrable in Cl, generalized, arbitrary derivatives, equal to zero 
on S and uc° with respect to the larger IxI ( > Ro ). The generalized solution of the problem sketched, 
we call the function u, satisfying the integral identity77

 - fuu~dx = -(f,) fuxk4?xkdx 
Za

(26)

with respect to all 1. E M and that v = u — a(x) E H(SZ). We remember that the condition of the tool 
: u — a(x) in H produce such that 

       _2r3              (u(x)ix)) dx < const,fE(usk — ask )2dx < const. (27) 
                                                            k=1 

The inequality (27) also assure that u(x) in the defined sence, converges to uac with respect to IxI —* oo. 
 On f, we make these assumptions as well as in ¶ 4 in § 1. The boundedness on S comes merely to the 

possibility of the construction of the << cut-off >> functions (x, 5), i.e., of the functions, equal 1 in the 
neighborhood of S, zero in the point of St, separating at S with the distance of the larger than 5, and 
obeying the inequality 11 < el, I a()x-----I < s . 78 To these functions, except for the obvious coincidence, we 
can get the twice continuously differentiable ( because we can always manage to get by the complementary, 
averaged value 11 ). We put the vector b = (a2x3, a3x1, aix2), where a = u,,. Undoubtedly, that the 
vector e(x, 6) = rot (b(x) (x, 5)) coincides with u,, in the neighborhood of S and equal zero in the 
exterior of the adjoining zone C26. In the capacity of the functions a(x) in the definition of the generalized 
solution, can get any from the functions a(x, 6) = — e(x, 6). We use this below. 

 We have

Theorem 5. The problem of the sketching the system n of the solid, the flow equal in infinity : 
u,, = const , have always, at least, the unique, generalized solution with respect to all f, satisfying 
the linear functional in H, in particular, with respect to f - 0. ^

The construction of the generalized solution may have the propagation such as in ¶ 4 in §1. We construct 
just the sequence of the domain C2„, converge on Q. For each from Sir, select the solutions um of the 
system (1),(2) satisfying the boundary conditions : 

un s = 0, un r n = a(x) rn 

(S + Fr, : the domain SZr, ), and we show that the norms in H(SlrL) of all v = u — a uniformly ( for n ) 
bounded 

IIvrLIIH(szn) < C.(28) 
The estimate (28) can be selected from vn of the sequence, converge on an arbitrary function u = v + a. 
This equation is performed as well as in ¶ 4 § 1, and therefore we would not repeat it here. 

 Hence, we remain to prove the validity of (28). This makes, in general, as well as in the above part 
for the proof of the uniform, for A, boundedness of IIv(x,A)IIH. We assume just the induction, that 
NnL = Willma n)  -+ co with respect to n —* oo. We put it and bellow in the capacity of a of the function 
a(x, 6) = u , — e(x, 5). We substitute in (18) v = vn, = vn, a = 1, and we estimate in the right hand 

75(O.L) This fact owed already to the paper [3] by Leray. 
76(.11.) The divergence of u is zero. 
77(0 This equation is the same as (15). 
78(0.L) We assume, for example, a cylinder as S.
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side of the gotten equation as well as in the above, considering only that because  a(x, (5) equals to the constant vector u, in the exterior of the adjoining, partial zone 52b, then, instead of (19), we can get 

2akavkdx = faka1,~vTdx = fakax,~vndx<cillaiIH(sis)IIv~'IIH(Stn)• ntntg 

with the same as the constant c1 for all n and S E (0, 1). Under this, instead of (20) we get 

IIV1H(s2n) <- fvkavkkdx +IIaIIH(sza)IIV'~IIH(s2n)+clllallH(Sta)IIvnIIH(s2n)+IflIIVTIIH• (29) 
                          tn 

We repeat each other belong to v" (x) by zero in the exterior of S2Tt in all S2 and introduce the functions : 

                  wn (x) = vNx) , where Nn = I l vn l I H (stn) • 
                                                         rc 

The functions wn(x) can be assumed as the elements of H(S2), bounded in total in H(S2). For them, the 
exact or the same as (29) 

           1 <fwkewkkdx +1IIaIIH(sta) +C1IIaIIH(std)+1 IfI~ 
      StbNTiNTNn 

if we consider that

                          vk avkk dx =-vke(x,S)vkk dx.                    S2n f2b 
Judging moreover, sequentially as well as in the above, we reach the contradiction with our assumption, 
that N, -> oo with respect to n --> co. Hence (28) is proved, and Theorem 5 is just also proved. ^

                              2. The classical solution. 

2.1. Preliminary comments. In this chapter, we intend the boundary S of the smooth ( having an 
arbitrary twice derivatives, satisfying the Holder's condition ), and by the exponential. With respect to 
the execution of this condition each from the generalized solution u(x), an arbitrary existence proved 
in the chapter I, give the classical solution, more precisely speaking, twice continuously differentiable in 
the interior of S2 functions, and once continuously differentiable in Cl functions. satisfying the equation 
(1),(2) and uniformly bounded. In §2, we give the estimates of the brief proof of this some proof fact. In 
just the following paragraph independent of the chapter I, the existence of the classical solution of the 
hydrodynamic problems. 

 To put it briefly, we limited in this chapter to study the problem only with respect to homogeneous 
boundary condition and the function f(x). Considering the inhomogeneity of the boundary condition is 
executed as the same as in §2 in this chapter I and it turns out fundamentally to just its result that and 
in the case of the homogeneous condition. The fundamental results of this chapter belong, in fact, to 
Leray [3] . 

 Oseen [9] had constructed the fundamental singular solution for the linealized system (8). His expression 
is as follows : 79 

           J1(Si  +(yi - xi)(yi - xj)Pix,1 yi - xi          7i(x, y) =87r _ Ix - yl Ix - y13(y)47r ly - x13 

and have the following properties80 : 

                                        2 

                 E3-1 (a2T. • -a= -(516(x - y) (i,= 1, 2, 3), 
  UT2;(30) 

ay,=0, x~y, 

where 6(x - y) is the three-dimensional 6-functions, and 6-2, is the Kronecker symbol. Using this solution, O
dqvist proposed in the paper [2], the potential of volume and the potentials of the double- and triple-

layered and proved that they have the properties, analogous to the properties of the ordinary electro•static 
potentials, constructed by using 4,11-y1. This could use it for the solution of the boundary problem for the 
linear system (8) and, in particular, use the Green function Gii (x, y), gi(x, y) ( more precisely speaking, 

79(4) cf. Our appendix by the author of this paper and §2. Hydrodynamische Potential. (2.01) p.334, [2]. 80(.J.) cf. §1. Difirritionen. Bezeichungen. Greensche Formeln. Stokesschen Gleichungen (1.02) p.332, [2].
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the Green tensor ). The functions  Gii  (x,  y), gi(x, y) satisfy the system (30) and moreover the boundary 
condition

Gi.l (x, y) = 0 with respect to x E S2 and y E S. 

Solutions of the problem (8) owing to it we put the style

ui(x) = — fGij (x, y)fi (y)dy (i = 1, 2, 3), p(x) = fgi(x,y)fi(Y)dY. 
                                                     S2

(31)

In the same paper, Odqvist studied the differentiable properties of the potentials and the solutions of 
the problem (8) in the boundary of the domain ft In particular, he proved the following estimate of the 
Green function in the closed, bounded domain S2 :81 

                Gi~ (x,y)<I x`yl ,8G(k,y)~xcyl2 ,x,y E S2,(32) 
                       0Ge>(x,y)—c)Gi.i(±,y) < cp.—±-1 11n~x_H2            8xkdxk -R3, 

moreover the last estimate is for any x, E S2, separating from y with the distance of the non-smaller 
than R. 

 We put that the method of the proof of the estimate (32), except for an arbitrary change, is adaptive 
also with the case of the Green function for Laplace operator. We shall not prove the referred-here proofs 
on the linealized problem (1) and (2). The principle direction of the problem is completely clear and the 
eventual proposition of it was made very sophisticatedly in the paper [2] . 

2.2. The proof of the classical, generalized solutions. In this paragraph, we shall sketch the fun-
damental method of the proof on it, that each generalized solution, gotten in the chapter I, is by the 
classical if for f and S under the condition, designated in the above paragraph. With respect to this, 
we limit the interior problem and the homogeneous boundary conditions. For another problem, this is 
adaptive analogously. 

 Thus, we may have the generalized solution u(x) of the problem (1),(2) and (3), i.e., u(x) belongs to 
H, and d.I, E M ( and even for it dci) E H ) satisfy the equation (7) or that

uxk~'xkdx = — fukuxk4)dx — ffdx. 
                                   S2S2

(33)

We put in (33) as 43 the << cutting-off >> Green function : G(y, x), considering y fixed in the interior 
point of S2. The << cut-off >> of Gi7 (x, y) is able to propose variously, for example, such as 

Gij (y, x) =j(y,x)+ gij(y, x), 

where gii (y, x) is a smooth part of Green function and82

T;`(y, x) _
 Tj(y,x) for 

rra for 
—rn for

With respect to the fixed y and sufficiently large rn, < 

H. Substitute in (33) instead of 43j (x) the function G7,3 and afterward move to the limit with rn oo. 
Because of the strict estimate (32) for Gij ( and i.e. for gii ), and the inequality (13) for u, then with 
no difficulty, we verify that in the both terms of the right hand side of (33), we may move to the limit 
with rn, under the symbol of f , move the limit to y, it turns out for example, in the norm of the subspace 
L3 (a'), here S2' is an arbitrary, interior sub domain of the domain a We also transform the left hand 
side of (33) using the partial integral to the form of 

                      fOT"p(y, x) C.~'S,        —fu7 (x)AT jt(y, x)dx—2G7 (x)23—fu7 (x)A9i7 (y, x)dx,     (~J)i~(~J)0

 — rn, < Tij (y, x) < rn, 
Tij (y, x) > rn,, 

Tij (y, x) < 

G7,3 and afterward move to the limit with rn oo. 
 for gii ), and the inequality (13) for u, then with 

right hand side of (33), we may move to the limit

81(4) cf. §5. Der Greensche Tensor and Seine Eigenschaften. pp.357-366, [2] 
82(4) The original top statement in the following conditions , Tij (y, w) for — Tri < I Ti j (y, x) < in, but it seems to be 

incorrect.
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where  522;  (y) : the domain, in any = T2j, S3(y) : its boundary, and put using (30), move the limit 
with m —* oo in the norm of L3 (CV). As a result of this, we put as the conclusion, that for almost all 

y E CZ, for u(x), the valid equation follows :

u2(y) = — JGii (y, x)ukuybkdx — fGij(Yx)fj(x)dx  (i = 1,2,3). (34) 
                        s2 

From this relations on u2(y), the estimates (32) on G27 and inequality (13), we may conclude that ui(y) 
are twice continuously differentiable in the interior of C2, continuously differentiable up to S and satisfy 
all the conditions of (1),(2) and (3). Or such a thing that the functions fS2 G2j (y, x) fj (x)dx have the just 
now mentioned properties of the differentiabilities are besed on the reason of the estimate (32) and the 
Holder's function fj, as well as this operates in the Newton's potential theorem. By them, for the proof 
of that just the functions :

ui (y) = fCij (y, x)ukujxk dx, 
have the properties, it is sufficient to show that u(y) and uyk are continuous in 52 and satisfy the HOlder's 
conditions in the interior of ft From the inequalities (32),(13) and (6) deduce the boundedness of Iv2(y)I 
in a In this case also, ukuXk is integrable in C2, by the order 2. From this and the estimate (32), with 
no difficulty, we convict that vi(y) satisfy the HOlder's conditions on fl. The differentiability for v2(y) at 
Yk also again using (32) and only that the defined properties for u, consistently, and convict that uyk is 
integrable on SZ at the order 6, ( cf. [4] ) and afterward and in it convict that they satisfy the HOlder's 
condition. 
 This is the generalized method of the proof of the claim, stated at the beginning of the paragraph. 

We ought to propose the local investigation of the differentiable properties of the generalized solutions. 
For the unbounded domain, this claim establishes in principle as well as by the reference of the integral 
expression of the type of (34), instead of CZ, only select such a bounded partial part SZn of the domain S2 
, and i.e., instead of, Gi;, : the Green's tensor for the domain fin. 

2.3. The nonlinear problem. ( The bounded domain, homogeneous boundary conditions. ) 
We assume in the system (1), parameter A for the nonlinear terms and study it such linear, assuming the 
right hand side of (1) as the free term. Then, the formula (31) is

ui(x) = —a J G27 (x, y)uk (y)ujyk dy — J Gii (x, y)fj (y)dy• 
  S2S2

(35)

The differential of this equation with respect to x1 become moreover, the following relation : 

au2 (x)_—ADCii (x, y)  uk (y)ujvkdy —fOGZ' (x,2J)f~(y)dy        Oxl52OxlS2&Xi 
To all this system, yste, we put as the form of one equation 

v=ADv+cp 

and study this in Banach space C(52), each belonging to arbitrary one are continuous in SZ functions 
norm in C(SZ) is defined as 

Ilvllc —xES2, max...,12Ivi(x)I 

Owing to the estimate (32) of the ordinary method prove that if f2 are the continuous in SZ, then the 
components j' ~dfi dy are continuous and even satisfy the HOlder's condition with an arbitrary constant 
a( for example, with a < 4 ). We show this, for example, for fS2 aG (k,y) fidy.83 

             i, aGi~y)I=f(aG3(XY)—)f~(y)dylf+ I 

                                                                    2 

       0Oxk3xkS2fK-KPfS2 

where Kp is the sphere of I xr— y l < p. 

                <cmaxi/lc1 +12)dy<c1P           finicIfIIx- yI2Ix— yI, 
                                          83(4) Correcting the first term of the right hand side of the following equation in the original of [11] ;ffKP, we put 

it as fonKP I •
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                                 <G2-~~ln-                   ~xII2•  f-sanK,P3 
We put p = x - x 4 , then 

I<c31x- -42. 

Hence, we see that the operator D is completely continuous operator in C(S2). 
 We use now the Schauder-Leray's parameter extension method84 for the proof of the solubility of the 

equation (37) in C(Sl). With respect to A = 0, the transformation : By = v - cp, investigated in all H, 
has the order 1 at all the points. Thus for the solubility of (37) with respect to A = 1, sufficiently, we 
investigate the a priori estimate for the solution of the equation (37), i.e., prove that for all the perturbed 
solutions of the equation (37) with respect to all A E [0,1] strict inequality 1174 < c4 with not only the 
unique but also the constant c4. 

 Let v be an arbitrary solution of the equation (37). Maybe proved that this last one are 9 components 
of derivatives up to xi at the first 3 and i.e., the equation (37) can put in the form (35),(36) with 
vi = ui, (i = 1, 2, 3). Functions vi(x) and fi of the continuous, i.e., with just now proved cpi and 
vi(i = 1, 2, • • • , 12) it will be satisfied the Holder's condition up to x. Therefore, the multiplication 
uk(y)ui.5k of the potential of volume in (35) and (36) satisfy the Wilder's condition. Also to this we 
estimate the possibility and for f i. Owing to this, we can claim that vi = •ui (i = 1, 2, 3) have continuously 
twice derivatives with respect to xk in the interior of F. (This is able to be proved by the familiar theorem 
on the Newton's potential method.) As a result of (31), they will satisfy the system (1) with the parameter 
A for the nonlinear terms. Increasing its scalar by u and integrate afterward with respect to Si, we assume 
that for u the identical equation : 

(u, u)H = -(f, u)•(38) 

Hence, as is stated above, follows the estimate 
    fz5(39)                              2 k 

with respect to all A. From the formula (35) for ui and the inequality (6),(32) and (39), we deduce 
directly . 

                 323 max l ui(x)I < c t~x1y~lukui,kIdy+ G6 < Gft~xuk2 dy~~u3xkdy+c6< c6.(40) k,7k,~=1k,7=1 

Owing to the estimate of max I au; I we get the equation (36). From it, and also from (32) and (40) follows 
024 (x) 

e7 12Iu~ykIdy +c7.(41)                       OxiJsa~x— Y12 

Multiplying both hand sides of this inequality with 1z1 integrate totally with respect to x in the domain 
Si and summing up totally with respect to i and 1, then as a result, we get 

1  014               dx_< 9c7~u~dy 1  1 dx +c8_<c9It---------1Iu~UIdy + c8. (42) EJsi~x-.z12 Oxlf2 OykJst~x- zI2 ix -y~2Iy-zlk i,1J,kJ,k 

With respect to this, we used the familiar formula construction of the integral by the functional form . 
We estimate now the right hand side of (42) with the Cauchy's inequality and use the inequality (39). 
This assure us such that the right hand side of (42), and i.e., of (41) is not superior than an arbitrary 
constant c10 such that 

                              max 
              DuiGO< 

c10.(43) 
x,i,1 DX 

All the constants starting with c5, are independent of A and determine only by the size of the domain 
Si, max Ifil and the constant with from the inequality (32). Inequality (40) and (43) prove that all 
the positive solutions v of the equation (37) are not over the sphere of the space C(S1) with a radius of 
p = max(c6, c10), and therefore, on the equation (37), we are applicable of the Schauder-Leray's theorem, 

  84(4) This method is so-called the Leray-Schauder's fixed point theorem. cf. Our appendix by the author of this paper.
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which assures at least, the unique solution for all the values of the parameter A, in the number and with 
respect to A = 1. QED.

Theorem 6. The problem(1)-(3) have, at least, the unique solution  ui(x), continuous together 
with derivatives in the first order in 52 and having continuously differentiable in the second order 
in the interior of a The pressure p(x) has a continuous in S2 and continuously differentiable in 
the interior of ft With respect to fi(x), we seem such that they satisfy the Holder's condition with 
an arbitrary positive constant. ^

 We can prove that in the conditions of Theorem 6, the second derivatives ui satisfy the Holder's 
condition. We can also see the next improvement of the properties of the differentiabilities on the 
solution with the improvement of the differentiabilities properties of f i and S. 

2.4. The nonlinear problem. ( The unbounded domain with the homogeneous boundary 
condition. ) Now we take 52 - unbounded domain. In brief, fi(x) equals to zero for the large Ixl. 
We suppose to take the paragraph 4 in §1, of the chapter I. We take the continuity extending into 52 
of the domain S2n(n = 1, 2, ...) and corresponding them to the classical solution un(x), satisfying the 
null boundary conditions. We prove that from them we can choose the subspace, uniformly approaching 
together with the own derivatives to the solution of the system (1),(2) in any bounded sub domain CV of 
the domain ft We fix 52'. We mean GZi (x, y) as the Green's function, corresponding to the domain 52'. 
We take S'-mean the boundary of 52', belonging S, and F'- remained part. For all u''1 with the sufficiently 
large number n, strict equation 

u'l(x) = —fG~; (x, y)uk(y)u~~k dy —fr,~G(xy) uj (y)dSy—fGZ; (x,y)f3(y)dy.(44) 
   S2 y S2 

This is proved, by the accustomed method. The unique, excellent equation (44) deduced from (35), shows 
the existence of the integral on F', which does not disppear in this case, because on F', the functions u7 
are not necessary to change to zero. For ur3`(x) with respect to all n the exact estimate (39) with not 
only the unique but also the constant c5. Certainly, the integral (f, un), considering the estimation of the 
finiteness of f by us, are extended in fact, into a certain bounded domain, which we name the domain 
521 to make it clear. Hence, using (5) and the Cauchy inequality it turns out

(f,un)I < ff2dxf(un)2dx<enfE((ui')xk)2dx 
             21S21S2n i

,k 

where, the constant c11 is general for all un. Substituted this inequality into (38), we see on the validity 
(39), where the constant : e5 = ci1. In addition, as the result of (6), it turns out a general and the 
estimate : 

                                     ~u~`2 
              h7,Ix(2) dy < 4c5.(45) 

Fixing sub domain f2" of the domain S2', which is separated from the boundary F', with a certain positive 
distance S. We prove that for x E Si", functions l uz (x)l are uniformly bounded. Certainly, the uniform 
boundedness of the module of the first term in the right hand side of (44) is deduced from (39) and (45), 
(ref (40)). The boundedness of the third term is clear. The boundness of the second term is deduced from 

  thatbx E 52"andEF,it turns out the inequalityaGi'(x'y) itand the integralu"'IdS ,Yy,qY<en„—~,gfrI,yis 
estimated by L, (q2 + >k u~ k )dy. (The latter is the result of the Sobolev's embedding theorem; this 
can also show and directly, using the formula of the function with the integration from its derivatives to 
the direction of the integral method.) 

 Thus, the proposal of (44) together with the estimate (39) and (45) are able to claim uniform bound-
edness of l ui (x) I for x E S2" C C2'. Let it be : S2"" C S2'" C S2" in addition, their distance between the 
boundaries : P"", P"', P", are not smaller than S each other. We put for Iuz(x)I of the formula such as 
(44), for the domain S2" with GZI defferentiate totally this with respect to x1 and consider that l uz (x) I 
is already estimated in the Cr, for a equals to the estimate of (32) and u71,, (y) E L2(52"). In its 

                 `

k 
function of fS2„u"u'" .7ykdy it turns out belonging to L6(52") and two different terms become uniform        axl
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boundedness for x  E  Cr. Then, forux,we can claim of uniform boundedness in L6(S1"). After this, 
we put the formula (44) for ui` in the domain CZ" with the function Ci'j and differentiate totally this 
with respect to xi. From this, the last relation is already proved that in SZ" function u y is the uniform 
boundedness together with our own Holder's constant. 

 Thus, in some steps, we are certain of uniform boundedness on lei', u z and our Wilder's constant in an 
arbitrary bounded sub domain SZ" of the domain ft From this, we may choose from um the subsequence 
approaching any functions arbitrarily together with any first order in the bounded sub domain a" of 
the domain ft Get for ui of the formula (44) for SZ" and Cly and changing in it into boundary, we are 
certain that for ui equal to very this formula. From this, we have proved now by the famous method on 
it that u satisfies equation (1), (2) and conditions (3). To them it remains to solve moreover , in this 
point that u gets null conditions in infinity. 

 We see that, by analogy with the above, we can prove the uniform boundedness in an arbitrary strict 
null bounded sub domain of the domain SZ of an arbitrary with um of the second order, and of the Wilder's 
constant for them. This guarantees the capability of an arbitrary convergence of ukn together with an 
arbitrary, all orders up to 2.

2.5. The behavior of the founded classical solutions with respect to IxI -p co. We show that 
the classical solution u(x), founded in the above paragraph, become to dissipate to zero with respect to 

IxI —> co, if the boundary S is allocated completely in the bounded part of the space x. For this, we 
introduce the study, except for the fundamental singular solutions Ti j , Pi of the linearized Navier-Stokes 
system : 

                   1 [ 6-1(yi — xi)(yi — xj)1 yi — Xi  
          7i~ (x, y)=8

7rLIx — y1+Ix — y13~'i(x,y) =4ir ly — 43 

Already the singular solutions : Tij and Pi of this system is defined the following equations : 

    T ~(x, y, R) =1oZ + (3R2 — 2r2)_(yi — xi) (Y1 — xj) -, P' (x,y,R) = 5 Yi — xi        87r _ R3R347r I y — x13 

The singular solutions : 

T . (x, y, R) = Tii (x, y) — Ti (x, y, R), Pin (x, y, R) = Pi (x, y) — Pi (x, y, R) 

have the following properties : in the domain SZR(x), included in the interior of the sphere SR(x) in a 
radius R with the center of the point x, follows the equation : 

                              2 

             ~~T(x,y,R)—~P~~y,y,R) =—86(x—y) (i,3 = 1,2,3), 
                                                    (46) 

               vi;=0,Tj(x,y,R)IyESR=0.                    y~ 

We put R an arbitrary value such that S exists in the interior of SR. This is from (46) for the founded 
earlier classical solution u(x) and p(x) of the exterior problem by the ordinary method, follows the given 
expression : 

ui(x)(47) 

_ — fTi~uk(y)ujvkdy —fTijf7(x)dy 
            2R(x)S2R(x) 

           +fT3----pocos(nyk)dS— fSR u~[~T----—Pocos(nyk)dS.     syyy 

We extend R to 0o in this equation and then it turns out that in infinity exists the following expression 
for ui(x) : 

ui(x) = — f2Tijuk(y)uiyk dy —f~Tiifj (x)dy +fTi~[cny3—poik] cos(nyk)dS. (48)
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Certainly, we simply see that with respect to R  -> oo, it turns out validly as following (cf. 
(32) ) 85 

,j(x)dy,   iR(x)^oIR(x)^ft 

         J,r3u3               s- p6k] cos(nyk)dS->JTj['— p6] cos(nyk)dS, 

                                          Tj fj (x)dy -> O.                    1:2R(z)

Thus, we ha 

           k,jL—StRi(z) 
            ve ^b'l) '-- 

.7Rk (x)->0.Forthissequence,Rkturnstoa 
with no difficulty 
third terms initconvergewithrespecttojx1 
into the two terms. 

             fTiiukujydy =f2     S2p                ks2 

85(4) In the original, Tjjuk(y)ujyk dy—fStT'tju 
because these are no terms in (47). 

86(4) In the original, there is no range on th

(39),(6) and

We see that with respect to R-o0 

                                      ari JR(x)_fTjukujykdy +J'LGj [ayk-Pi]cos(nyk)dS->0.        0R()5R 

Certainly86 

l7R(x)lCC1                 [-DElukll ujbk14+2fE l uj l dS] •              RSiR( x) jsR 

We multiply the both hand sides of this inequality by~i Rand integrating totally in the range of R1 > 0 
up to oo, and put u-0 in the interior of S and we put this integrated result in the following form : 

    1T./R~.7R(x)l dR <R -luklujykr2~RlRRlf°°dR                  1^0~w                                                   -1 3
,kR 

After some computations, exchanging the order to be integrated in the first term of the right hand side, 

, we see in the following inequality : 

  11001 
      RjR(x)1R C1l 

   /00//R1r2//°O/uj     <JrJUkUj ykdrdw +J—J _lukuj~kldwdr+JdRJ~i3l dS      Rlk
,71`"'I-1/R1 k 1RlSR r 

     I1u1dy                    +L_ciRl(x)t lx-ylx—y3dy 
k,7 

r1r1------------------------
yl fEu? -------4dy\t -StRI(x) Ixyl                                                               23 dy < const. ——

 Tijukujy
k  dy + 12—C2p

--------- dy < const. 

such sequence as Rk —> oo, for all 

get (48). From the expression (48), 
oo. Certainly the second and 

. The very first term is just divided

Tijukuiyk dy

ao(,) In the original, Tij uk (y)u,yk dy —+ f, TTi ukujyk dy, T23 f3 (x)dy — fSZ T;~ f, (x)dy, but we correct these terms, 
because these are no terms in (47). 

86(4) In the original, there is no range on the integration. We correct the range from f 3,k iukIlu,yk Idy to f
0tR(,) E3,k IukIlU7yk idy, by considering of the rested terms from (47).
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where  S21, is the common sphere of < p with 52. To the second term of the above equation, from this 
integration of the fundamental inequalities (39),(32) and (6), we estimate thus :

      Tiaukujyk 12-Op 
        S2-C2, k

dy

Iuk1
 —ylI uayk I dy 

<

ci.\/ sa E
u2

Ix -YI2
dy >/u? dy 

    J aSk kS2—SlP

< cZJE u? dyJu?dy. 
                                       S2jki~/kS2—S2Pk3,k7, 

Hence, it seems that, choosing p, sufficiently large, we can deduce the right hand side an smaller arbi-
trary r being independent of this, where x exists. After this, fixed p, we put lx1 such a number that 
Li, Tijukujvk dyl stayed smaller than E. 

 Thus, we assure that any classical solution u(x) from the best case by us, uniformly converge to zero 
with respect to Ix1 — oo.

recieved 1958.4.1

3. ( REFERENCES BY LADYZHENSKAYA )

REFERENCES

[1] L.Lichtenstein, Vorleesungen fiber einige Klassen nicht-linearer Integralgleichungen and Integro-Differentialgleichung 
   nebst Anwendungen, Springer, Berlin, 1931. 

[2] F.K.G.Odqvist, Uber die Randwertaufgaben der Hydrodynamik zaher Flussigkeiten, Math. Z., 32(1930), 329-375. 
[3] J.Leray, Etude de diverses equations integrates non lineares et de quelques problemes que pose l'Hydrodynamique, 

  J.Math.Pures Appl., 12(1933), 1-82. 
[4] S.L.Sobolev, Some applications of the functional analysis in mathematical physics, Izd. LGU., 1950. 

(.t.t) Remark. We referred the following third edition : Translations of Mathematical Monographs, Volume 90, Amer. 
  Math. Soc., 1991. (of which the Russian original version : in 1988)87 

[5] H.Weyl, The method of orthgonal projection in potential theory, Duke Math. J., 7(1940), 411-444. 
[6] S.G.Kren, Differential equation on Banach space and its application to hydromechanism, Uspekhi Mat. Nauk SSSR, 

  T. XII, B.1(73) (1957), 208-211. 
[7] S.G.Mihlin, The minimum problem of a quadratic functional, GITTL, Moskow, 1952. (Russian) 
[8] J.Leray and J.P. Schauder, Topology and functional equations, Uspekhi Mat. Nauk, 1(1946), no 3/4(13/14), 71-95. 

  (Russian) 
(4) Remark. The original is as follews :J.Leray, J.P. Schauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole 

  Norm. Sup., 51(1934). 
[9] C.W.Oseen, Neure Methoden and Ergebnisse in der Hydrodynamik, Leipzig, 1927.

8. Conclusions

  We show merely the early studies of the solutions of the NS equations during 1933-59, in particular, 
the followings are the first versions in the analytic history of the NS equations : 

    • Leray in 1933/34 and Hopf in 1950/51 discussed the weak solutions 
    • Kiselev in 1955/56/57 and Ladyzhenskaya in 1957/59 discussed the generalized / strong solution 

    • Prodi in 1959 and J.L.Lions in 1959 discussed the uniqueness of the solution in LP function space 
      in the three dimensions 

 We show the two translated versions into English : Hopf [4] and Ladyzhenskaya [11], because in these 
papers, there are historically first full-scale discussions of the solutions of the NS equations such that : 

    • Hopf [4] asserts the existence of a weak solution like Leray, without uniqueness 
    • Ladyzhenskaya [11] discusses a generalized / strong solution like Kiselev in the first time.
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  Regrettably, we omitted the citing of Leray's papers [12, 13, 14] partly because of lack of space, 
partly because of availability of an English version by Dr. Bob Terrell  (cf. [14]. )

and

  We can see that there are another full-scale discussions on the mathematical and fluid dynamics or 
functional analysis, in Lelay, Hopf, Kiselev, Ladyzhenskaya, Prodi, J.L.Lions, etc., just during 1933-59, 
and many great studies follow after that such as [6] . We think that the solving the problems of fluid 
dynamics have made to find a clue to many mathematical studies and its developments.
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