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Abstract 

Aging populations have become a serious issue in many countries. Recently, 

service robots have been developed to help older adults and people with disabilities 

live independently. Service robots use various types of sensory information to 

understand environmental conditions and interact with people. While the RGB-D data 

are important for localizing the object and manipulation, a 2D occupancy map is often 

sufficient for navigation tasks. It is a fundamental problem for a service robot to 

achieve high accuracy and detailed representation in the human-centered environment 

during manipulation and navigation tasks in real-time control. Moreover, the 

navigation tasks are usually challenging to deal with indoor furniture such as chairs 

and tables if the service robot relies only on 2D LiDAR. The 2D LiDAR only scans 

one slice of the environment and, as a result, the service robot often misses the big 

part of obstacles. Therefore, the service robot needs to ensure safety more efficiently 

without high computational costs. Furthermore, maintaining and representing the 

various types of information from the 2D occupancy map and the 3D object 

information is also essential for service robots to simplify access to multiple types of 

maps for diverse applications.  

To address these challenges, this thesis introduces a unified map technique, 

which manages multiple modular map representations. This unified map enables 

online object mapping and updating using RGB-D data, providing 2D and 3D 

representations of the mapped objects. The unified map consists of three layers: the 

lowest layer comprises a 2D predicted occupancy map that specifies the global robot 

pose, the middle layer utilizes 3D object detection to build environmental knowledge 

and activity recognition framework using a graph neural network (GNN), and the 

highest layer integrates and maintains the various representations and information 

from the lowest and middle layers within a single module. The detected objects from 

RGB-D data are consolidated into 2D polygons and 3D representations using instance 

object segmentation with fast point cloud segmentation.  
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This thesis is organized as follows; Chapter 1 explains the social and technical 

background leading to this research objectives. The contribution of this thesis is also 

highlighted and discussed in this chapter. Chapter 2 presents an overview of service 

robots, visual and distance sensors, and intelligent technologies related with the 

proposed method. Furthermore, this chapter explains the previous works related with 

map building, manipulation, navigation, and human activity recognition.  

Chapter 3 presents an investigation of the 2D predicted occupancy map method 

as the lowest layer to enable service robots to navigate safely in indoor environments 

using 2D LiDAR only. I investigated and demonstrated that the 2D predicted 

occupancy map enables all local planners to generate better collision-free paths using 

only 2D LiDAR instead of sensor fusion (RGB-D camera with 2D LiDAR) with a raw 

map. The proposed method was used for a sampling-based global planner using an 

unsupervised method.  

Chapter 4 discusses the middle layer of a unified map based on 3D object 

detection information. The 3D object detection framework contains semantic 

information such as object types, colors, and positions. Using the various types of 

information on objects, I build a new framework to recognize the interaction between 

humans and their surrounding objects using GNN. This framework focused on the 

problem of classifying three activities where these activities were conducted in the 

same environment. The activity classification was learned from a 3D-detected object 

information corresponding to the human position. Next, human utterances were used 

to label the activity from the human and 3D object positions. The experimental results 

show that the proposed framework recognizes human activities more accurately than 

the deep layer aggregation (DLA) and X3D networks with conventional video datasets. 

Chapter 5 proposes an integration method of two maps in the lowest and 

middle layers into a unified map to maintain multiple maps and object information 

simultaneously. The proposed framework can significantly reduce the complexity of 

interacting with different maps and can make it more accessible to robots. Some 

experiments are conducted to show the performance of the proposed frameworks to 

support daily human activity in human-centered environments with low computational 

costs.  

Finally, chapter 6 summarizes the thesis, and discusses the limitation of the 

proposed framework and the future vision of this work.
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Chapter 1 

1. Introduction  

1.1 Background 
The aging population worldwide is on the rise and is predicted to continue to 

increase. According to a report in 2015, the number of people aged 60 years or older 

was close to 900 million, estimated to reach 2 billion by the year 2050 [1]. As a crucial 

asset to society, older adults need care in age-friendly physical and social 

environments. While healthcare facilities such as adult day care, long-term care, and 

nursing homes can provide the necessary healthcare, nutritional, social, and daily living 

support to the elderly, they may also result in the loss of independence and may be 

expensive. Consequently, older adults should age in place, the familiarity and security 

of their own homes. Encouraging older adults to engage in self-care activities 

independently can help them maintain their independence and provide them with a 

sense of accomplishment, enabling them to enjoy independence for longer [2]. 

Providing a physical environment that promotes active aging through innovative 

technologies such as smart homes and assistive robots can be an effective approach to 

achieving this goal. These technologies can assist older adults with their daily activities, 

help them maintain their independence, and enhance their quality of life. However, 

several challenges must be addressed to ensure that mobile service robots can be 

effectively applied in human-centered environments. Robots operating in environments 

with elderly or disabled individuals encounter people with varying needs who typically 

have limited experience with robots. 

Moreover, robots that share their space with people must increase their 

adaptability and flexibility and consider human comfort and safety to be tolerated and 

accepted. Therefore, developing a mobile service robot that can navigate human-

centered environments and interact with people safely and comfortably is a complex 

challenge requiring complete information and representation of the environmental 

condition to get a deeper understanding environment. 
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1.2 The Challenge of Providing Accurate 
Information for Service Robot 
Modern intelligent and autonomous service robot applications need to 

comprehensively understand their environment beyond traditional 2D occupancy 

maps. Environmental understanding refers to the ability of a robot to perceive and 

comprehend its surroundings, including the environment's layout, the presence of 

obstacles, and the location of the robot itself. The environmental context knowledge is 

achieved through various sensors and algorithms that process sensor data, such as 

object detection, to construct a map of the environment. For service robots, a proper 

environmental understanding is crucial for navigation and interacting reasonably with 

the world. While 2D occupancy maps suffice for planar navigation, 3D information is 

necessary for any manipulation and can serve as a dataset for accurate behavior 

recognition. Therefore, many previous works constructed and maintained a unified map 

(2D and 3D maps) representation by using various modular frameworks [3]–[6]. Due 

to the modularity, extending the previous systems with additional task-related 

representations is easily possible. The previous system [3]–[6] demonstrates a potential 

application where the robot utilizes mapped representations of objects within its 

environment. Specifically, in this experiment [4], the robot aims to identify a requested 

cup by searching for all cups near a coffee machine. This information lets the robot 

plan a path to reach the desired cup based on the mapped 2D shapes. However, more 

than relying on the 2D shape representation is required when physically grasping the 

cup. In such cases, the robot can employ the 3D point cloud representation to enhance 

its ability to grasp the cup accurately.  

From that example, a unified map offers clear advantages for intelligent service 

robots. However, their full potential has yet to be fully utilized, explored, and evaluated 

in many applications for service robot tasks in human-centered environments. This gap 

calls for additional research and development to bridge the current disparity and fully 

leverage the benefits that unified maps can offer in enhancing the capabilities and 

functionality of intelligent service robots. 
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1.3 Problem and Objectives 
The possibility of low real-time performance is expected if the robot 

simultaneously applies several fusion sensor modules for navigation and manipulation 

in unified map. It is due to the computational process of a large amount of labeled data 

from object recognition and 3D map reconstruction. In previous research of unified 

map[], the service robot is expected to rely on fusion sensor for each task to ensure the 

safety during navigation and manipulation. Due to the modularity of unified map, each 

task can be individually dependent on one related sensor. For example, when the 

service robot has collected the target object position, the robot can reach the target 

position by only using 2D LiDAR. When the robot needs to grasp the target object, 

RGB-D camera can ensure the target object position and orientation. Nevertheless, if 

the robot only relies on horizontal 2D LiDAR during navigate the target object, as a 

result, most often miss the big part of obstacles. Consequently, the resulting 2D 

occupancy maps frequently may not accurately represent the occupied area in the 

environment. For instance, when the 2D LiDAR detect the table and chairs, the 

scanning result only shows the table and chair legs in a 2D occupancy map.  

Therefore, to overcome these issues, this thesis presents development of unified 

map technique for managing several modular map representations to improve the safety 

and the various applicability. This unified map is based on three map layers. The lower 

layer is a 2D predicted occupancy map. The 2D predicted occupancy map is to ensure 

the robot safety during the navigation task and make the robot to use 2D LiDAR only 

when facing the unseen and cluttered obstacle. The global robot pose is specified by 

this layer. Then, in the middle layer is built by utilizing given 3D object detection to 

build the foundation of environmental knowledge and activity recognition framework 

using Graph Neural Network (GNN). The highest level is then integrated and 

maintained the various representations and information from the lower and middle 

layers of the map within a single module known as the unified map. The detected 

objects from RGB-D data are formed into 2D polygon and 3D representation in a single 

map using the instance object segmentation with a fast point cloud segmentation. This 

framework serves as an interface, unifying and simplifying access to multiple types of 

maps for diverse applications. 
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1.4 Contributions 
This thesis presents an advanced learning and perception approach for mobile 

service robots that utilizes an efficient and accurate environmental information 

representation known as the unified map. The main objective of the unified map is to 

simplify and manage various types of information from different sensor data to enable 

robots to perform specific tasks such as recognition, navigation, and manipulation in 

human-centered environment. The main objective of the unified map is to simplify and 

manage various types of information from different sensor data to enable robots to 

perform specific tasks, such as recognition, navigation, and manipulation, more 

effectively.  Furthermore, this thesis examines how the mobile service robot can learn 

and generate the important task from simple and efficient data and map representation. 

Further, this thesis provides the comparison result of the proposed framework with the 

related recent research topic with quantitative and qualitative result. This section 

outlines the thesis and summarizes its main contributions. 

1.4.1 Learning From 2D Occupancy Map and Partial Obstacle Representation  

Service robot requires exploring and performing the navigation task safely to 

reach the grasping target and ensure human safety in the indoor human-centered 

environment. An indoor home environment has complex obstacles such as chairs, 

tables, and sports equipment, which is difficult for robots that rely on 2D LiDAR. On 

the other hand, the conventional approaches overcome the problem by using 3D 

LiDAR, RGB-D camera, or fusing sensor data.  CNN has shown promising results in 

dealing with unseen obstacles in navigation by predicting the partial obstacle from 2D 

grid maps to perform collision avoidance using 2D LiDAR only. Thus, Chapter 4 

investigates and utilizes the proposed obstacle prediction network by [7] using 

preexisting 2D occupancy map in unified system. From this investigation, the 

limitation of obstacle prediction network is discovered from several experiment by 

using different local planners. To reduce the limitation, Chapter 5 discussed and 

proposed a deep reinforcement learning-based local navigation by integrating the 

unsupervised growing neural gas global planner approach to generate the roadmap 

navigation path based on uncertainty and incomplete information of the 2DPOM. 
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1.4.2 Learning From Human Activity and Object Interaction for Activity 

Detection 

Human environments are designed and managed by humans for humans. Thus, 

adding robots to interact with humans and perform specific tasks appropriately is an 

essential topic in robotics research. In recent decades, object recognition, human 

skeletal, and face recognition frameworks have been implemented to support the tasks 

of robots. However, recognition of activities and interactions between humans and 

surrounding objects is an ongoing and more challenging problem. Chapter 3 deals with 

human activity recognition. By using 3-dimensional object information in the unified 

map, a human activity detection framework is presented.  This study proposed a GNN 

approach to directly recognize human activity at home using vision and speech teaching 

data. Focus was given to the problem of classifying three activities, namely, eating, 

working, and reading, where these activities were conducted in the same environment. 

From the experiments, observations, and analyses, this proved to be quite a challenging 

problem to solve using only traditional convolutional neural networks (CNN) and video 

datasets. Moreover, human utterances were used to label the activity from the collected 

human and object 3D positions. The experiment, involving data collection and learning, 

was demonstrated by using human-robot communication to show the efficiency of the 

whole recognition system.  

1.4.3 Implementation of Unified Map System for Daily Task Service Robot 

To demonstrates the concrete application of the proposed system, Chapter 6 

shows the manipulation and navigation task based on unified map and calculate the 

computational cost in the whole system. The experiment is conducted based on the 

daily activity scenarios of the human at home environment.  

1.5 Dissertation Scope 
The scope of the dissertation was: 

• To build the unified map, the prerequisite systems should be built in advance. 
The 2D occupancy map is built from 2D laser scanner of the service robot. The 
robot is teleoperated in advance to collect the map in 3D simulated environment 
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and real-world environment. Then, the collected 2D occupancy map is 
improved by using additional framework to predict the unseen and cluttered 
obstacle. Next. the predicted 2D occupancy map is used to formulate the new 
path planning system and the result is investigated and evaluated by using static 
predicted obstacle and human walking.  

• Furthermore, the 3D object-oriented map is also built by using existing method 
of deep learning-based object recognition with Xtion camera from head of 
service robot Toyota HSR. The deep learning-based object recognition is 
typically a list of bounding boxes and associated class labels that identify the 
objects detected in an image or video frame. Each bounding box is represented 
by its coordinates, typically the x and y coordinates of the top-left corner and 
the width and height of the box and is usually accompanied by a confidence 
score that indicates the algorithm's confidence in the accuracy of the prediction. 
The class labels associated with each bounding box represent the type of object 
detected, such as "bottle," "laptop," "cup," etc. Then, the ROS tf package is used 
in this framework to define the coordinate frames for the camera and the object 
of interest. The tf package allows to specify the position and orientation of each 
coordinate frame relative to the other. Then, Transform the 2D bounding box 
coordinates of the object into 3D coordinates using the camera's intrinsic and 
extrinsic parameters and the tf package. Further, the 3D position of the object 
frame is collected and used for building unified map and robot human-activity 
recognition teaching data.  

• The unified system of the proposed method is conducted in 3D simulation by 
using ROS and Gazebo and in an office environment.  

1.6 Brief Outline of Thesis 
This dissertation is organized into six chapters. Chapter 1 gives the introduction, 

background, scope of this work and the contribution of this contribution. Chapter 2 

presents the related works and literature reviews, as well as justifications relevant to 

this thesis. 

Chapter 3 presents an investigation of the predicted 2D occupancy map 

approach to enable mobile service robots to navigate safely in indoor environments 

using 2D LiDAR only. I investigated and demonstrated that the 2-dimensional 

predicted occupancy map enables all local planners to achieve better collision-free 
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paths by using only 2D 2D LiDAR instead of sensor fusion (RGB-D camera with 2D 

Lidar) with a raw map. This advanced investigation was then used to propose a 

sampling-based global planner using an unsupervised approach.  

Chapter 4 deals with human activity recognition. By building the 3-dimensional 

object information framework, a human activity detection framework is presented in 

this thesis. The human activity recognition framework is based on human and object 

interactions. By utilizing the proposed framework, the service robot can learn to 

identify human activities within a home environment. Object localization data obtained 

from 3D object-oriented map framework are labeled using multi-modal 

communication, which provides the necessary activity data for teaching. The study 

focused on classifying three activities, namely eating, working, and reading, which 

were performed within the same environment. However, it was observed that this was 

a challenging task to accomplish using conventional 2-dimensional convolutional 

neural networks (2DCNN) and video datasets. To overcome these limitations, the  

activity data teaching was implemented using Graph Neural Network (GNN) to classify 

the human activity with improved accuracy and efficiency.  

Figure 1.1: The structure of the thesis 
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Chapter 5 integrate the 3D object-oriented map and 2D occupancy map into a 

unified map framework. The unified map is proposed to handle the information and the 

maintain multiple map and object information in a unified system to enable easy access 

and use in different applications. A unified system can significantly reduce the 

complexity of interacting with different maps, making it more accessible to robots. 

Some experiments are conducted to show the performance of the proposed frameworks 

to support human daily activity at real-home environment. The approaches in this thesis 

represent significant steps towards developing flexible, autonomous service robots that 

can be robustly and reliably applied in human-centered environments with low 

computational costs. 

Finally, the chapter 6 summarizes the dissertation on the result of unified map 

implementation from the human-centered environment point of view.  Several future 

directions and open problems are discussed in this chapter.  
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Chapter 2 

2. Literature Review 

This chapter offers a thorough and insightful overview of the latest 

developments in service robot technology and research, while also highlighting the 

related fundamental theories that underpin these advancements. Specifically, Chapter 

2.1 delves into the most recent technological breakthroughs in service robots and their 

applications, while Chapter 2.2 focuses on presenting the foundational theories that 

support these innovations, including map representations, path-planning algorithms, 

and convolutional neural networks (CNN). Moreover, the critical evaluation of 

previous research works is discussed in section 2.3, which serves to highlight any 

potential gaps in the existing body of knowledge. By providing a comprehensive 

review of the existing research in this field, this chapter aims to identify areas where 

further investigation and development are needed, and ultimately contribute to 

advancing the field of service robotics.  

2.1 Recent Technology and Application of Service 
Robots 
Service robots are a sort of robot that is commonly utilized in non-industrial 

contexts. Frontline companies are progressively introducing robots [8]. Service robot 

research is gaining traction, and various definitions have been offered to describe 

service robots. For example, the International Federation of Robotics [9] specifies 

service robots as those "that perform useful tasks for humans or equipment, excluding 

industrial automation applications." They are defined by Wirtz et al. [10] as "system-

based autonomous and adaptable interfaces that interact, communicate, and deliver 

service to an organization's customers." A service robot contains not only technological 

features for providing services, but also the capacity to interact with humans [11]. 

Service robots have advanced at a rapid pace, paralleling improvements in computer 

vision, speech recognition, sensors, and artificial intelligence. Sensor, navigation, and 

machine learning advancements are making robots smarter, more mobile, and less 
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expensive for a broader range of tasks that are frequently performed in dynamic 

contexts, necessitating the ability to navigate across populated and sometimes restricted 

locations [12]. 

Service robots have numerous potential advantages, including increased 

productivity, constant service quality, and lower human expenses. Service robots 

enable businesses to instantly collect data from their surroundings, analyze the data on 

the fly, and respond to changing client needs. Intelligent robot wheelchairs, 

surveillance drones, teaching robots, therapy robots, entertainment robots, and self-

driving autos are a few examples. According to the Gartner Hype Cycle 2019 for 

artificial intelligence [12] smart robots is on the rise and will reach a plateau in 5 to 10 

years when the technology is widely adopted. Automation and labor substitution can 

help to offset some of the costs associated with the use of service robots [13]. 

The likelihood of the robot market expanding is quite promising. According to 

Markets and Markets [14] the service robotics industry is predicted to increase at a 

compound yearly growth rate of 22.6% from USD 37.0 billion in 2020 to USD 102.5 

billion by 2025. According to a Brookings Institution survey [15], 52% of 2021 adult 

Internet users believe robots will perform most human activities, and 94% of those who 

have used robots claim they have enhanced corporate efficiency. 

Industrial robots have been widely used in a variety of production jobs such as 

hazardous material handling, hazardous operations, and machine monitoring and 

operation. Service robots, on the other hand, are used for specific service functions. 

Service robots offer significant prospects to boost efficiency and cut expenses [11]. 

When COVID-19 is a serious concern to public health, consumers are more frequently 

Figure 2.1: Various Service Robots: Fetch Robot[15], Toyota HSR [19], PR2 Robot  [17] 
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presented with options for human and robot services in the hospitality industry, and 

they have a more positive view toward robot-staffed hotels [16]. With the increased 

usage of robots and artificial intelligence, researchers and practitioners have been 

debating the influence of robots on the labor market and economy because to their 

potential for substituting human jobs and labor [16]. 

Within the realm of robotics, various companies have made noteworthy 

contributions. For instance, Fetch Robotics, a renowned US-based robotics company, 

has developed an autonomous logistics support robot called "Freight." This self-

propelled robot can handle a load of up to 100 kg, alleviating workers from 

transportation tasks and enabling them to focus on other essential duties such as picking 

and assembly work. The incorporation of autonomous intelligence allows Freight to 

navigate its environment, create maps, and adapt to changing surroundings. By 

embedding crucial information and rules in the map, such as movement priority routes 

and no-go areas, multiple robots can effectively share information and respond flexibly 

[13]. Another influential player in the robotics industry is Willow Garage, founded by 

Scott Hassan, an early architect of Google. Willow Garage's primary mission was to 

accelerate the development of robotics applications by establishing an innovative 

research lab. With the creation of the Robot Operating System (ROS), an open-source 

robotics framework, and the production of robots like the PR1 and PR2, Willow Garage 

aimed to provide a common development platform for personal robotics. The PR2 Beta 

Program, launched in 2010, provided free PR2 robots to 11 institutions worldwide, 

furthering the advancement of personal robotics [17]. 

Figure 2.2: HSR Sensor and Control Model 
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Toyota, a prominent automobile manufacturer, has also made significant strides 

in robotics with the introduction of its Human Support Robot (HSR)[18]. Developed 

as part of the Partner family of robots, HSR addresses the growing need for long-term 

elderly care, particularly in countries like Japan. With its compact and maneuverable 

cylindrical body, HSR features a folding arm capable of retrieving objects from 

shelves, picking items up from the floor, and performing various tasks. The robot is 

extensively used for research in Toyota facilities and university labs in Japan and the 

United States. 

Therefore, I used Toyota HSR in this research due to the availability and 

support from the university, and Toyota can make it easier to access the documentation 

and community resources for research. Additionally, being part of the Partner family 

of robots, the HSR benefits from Toyota's commitment to advancing robotic 

technology and its potential applications. 

Toyota HSR Specifications: In this dissertation, I used The Toyota Human 

Support Robot (HSR) that equipped with a 4-DOF manipulator arm mounted on a torso, 

featuring prismatic and revolute joints, and a differential drive base[19]. Notably, the 

HSR possesses a revolute joint directly on top of its differential drive base, rendering 

it effectively omnidirectional. To facilitate manipulation, the joint space 𝐪 ∈ 	ℝ!" is 

utilized, employing the depicted actuators in Fig. 2.1 and the specifications are shown 

in Table 2.1.  Apart from 𝐪, the HSR's end effector  

incorporates a parallel gripper with series elastic fingertips designed for grasping 

objects, with the fingertips boasting a maximum width of 135 mm. 

𝐪 = +𝑞#$%&	()*(, 𝑞#$%&	+%,, … , 𝑞-%.$	/0**/
1 (2.1) 

 Regarding perception capabilities, the HSR incorporates several sensors. For 

obstacle avoidance, the base-mounted UST-20LX 2D scanning laser is employed. 

Additionally, the HSR is equipped with the head-mounted Xtion PRO LIVE RGB-D 

camera for depth sensing and the end effector-mounted wide-angle grasp camera for 

object segmentation. The head camera's gimbal system consists of tilt and pan joints, 

providing 2-DOF movement, while the grasp camera moves in conjunction with the 

arm and wrist joints. Both cameras stream RGB images at a resolution of 640x480. 

It is worth noting that the HSR's manipulation DOF encompasses a significant 

contribution from its mobile base. Although numerous planning algorithms excel when  
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dealing with high-DOF arms in stationary bases, the HSR's odometer errors accumulate 

during trajectory execution, which can result in missed grasps. 

2.2 Machine Learning Theories and Applications 
for Robots 
This section aims to provide a comprehensive explanation of the fundamental 

theories that form the backbone of this dissertation. By delving into these essential 

concepts, readers will gain a deeper understanding of the research studies presented 

within this work. The knowledge shared in this section serves as a foundation upon 

which the subsequent chapters build, allowing for a more nuanced exploration of the 

research topics. Sections 2.2.1 to 2.2.3 delve into the intricate details of map 

representations, path planning algorithms, and convolutional neural networks in the 

context of robotics applications. In Section 2.2.1, various map representations 

commonly employed in robotics are discussed. This includes an examination of grid-

based representations, such as occupancy grids and cost maps, as well as graph-based 

representations, such as topological maps and visibility graphs. Exploring these 

different approaches helps understand the advantages and limitations of each 

representation, enabling informed decision-making in the context of robotic mapping. 

Moving on to Section 2.2.2, the focus is on path planning algorithms. The discussion 

covers classical algorithms like Dijkstra's algorithm, A* search, and probabilistic 

roadmaps (PRMs), along with more advanced techniques such as Rapidly-exploring 

Random Trees (RRT) and its variants. Understanding the underlying principles and 

trade-offs of these algorithms allows researchers and practitioners to effectively 

navigate the vast search space of possible paths and make informed decisions in 

robotics applications involving autonomous navigation and path planning. Finally, in 

Section 2.2.3, the role of convolutional neural networks (CNNs) in the realm of robotics 

Table 2.1: HSR Specifications[18], [19] 

Height 𝜙430×1,005(~1,350)mm 
Weight 37Kg 
Arm Length 600mm 
Shoulder Height 340~1,030mm 
Grasped Object ~1.2kg weight 

130mm width 
Maximum Velocity 0.8km/h 
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is explored. With the rise of deep learning, CNNs have proven highly effective in tasks 

such as object recognition, localization, and semantic segmentation. The fundamental 

concepts of CNNs, including convolutional layers, pooling layers, and fully connected 

layers, are discussed. Moreover, the section explores how these networks can be trained 

and fine-tuned for specific robotics applications, such as visual perception and scene 

understanding.   

2.2.1 Map Representations 

To plan a path, the robot must digitally represent the environment. There are 

two distinct approaches: discrete and continuous approximations. In the discrete 

approximation, the map is divided into chunks of equal or varying sizes, such as a grid 

or hexagonal map, or even rooms in a building, which are referred to as topological 

maps. Discrete maps are well-suited for a graph representation, where each chunk 

corresponds to a node, and these nodes are connected by edges if the robot can navigate 

between them. An example of a topological map is a roadmap, where intersections 

serve as vertices and roads as edges, labeled with their respective lengths (Figure 2.3). 

From a computational standpoint, a graph can be stored as an adjacency matrix. On the 

other hand, a continuous approximation involves defining inner boundaries (obstacles) 

and outer boundaries, usually in the form of a polygon, while paths can be encoded as 

sequences of points represented by real numbers. Despite the memory advantages 

 

Figure 2.3: A generic path planning problem from node A to node E.  The shortest 
path is A-B-C-D-E 
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offered by continuous representations, discrete maps remain the prevalent choice in the 

field of robotics.  

The most commonly used map for identifying obstacles is called the 2D 

occupancy map. In this map, the environment is divided into squares of a specific size, 

such as 1cm	x	1cm , and obstacles are marked on these squares. A probabilistic 

occupancy grid map can also assign a probability value to each square, indicating the 

likelihood of containing an obstacle. This is especially useful when there is uncertainty 

in the robot's position while sensing obstacles. However, grid maps have drawbacks in 

terms of their high memory requirements and the time it takes to process large numbers 

of vertices in the data structure. To address this, an alternative approach is to use a k-d 

tree structure to store the grid map. A k-d tree divides the environment recursively into 

k pieces, such as four pieces for 𝑘	 = 	4. Each piece is further divided into four sub-

pieces until the desired resolution is achieved. This tree structure allows for efficient 

storage, as not all vertices need to be divided into the smallest possible resolution. Only 

areas with obstacles require further division. 

In addition to discrete representations, there are also combinations of discrete 

and continuous representations. For example, roadmaps used in GPS systems are stored 

as topological maps, which include GPS coordinates for each vertex. These maps may 

also incorporate overlays of aerial and street photography or even 3D point clouds 

stored in an octree, a type of 8-dimensional tree. These diverse map representations are 

utilized at various stages of the path planning process based on their specific 

characteristics and suitability. 

Figure 2.4: A grid map and its corresponding k-d tree 
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2.2.2 Robot Localization 

Adaptive Monte Carlo Localization (AMCL) [20], which utilizes the Particle 

Filter, is employed to address the problem of localization in this work. In this approach, 

each particle represents a potential solution for the robot's position. The Particle Filter 

undergoes the following steps iteratively: 

Do 

1. A particle is randomly selected from the previous distribution and its position 

is adjusted based on the physical system. 

2. The particle is placed in the discretized state space, and if it occupies an empty 

bin, the number of non-empty bins (denoted as k) is incremented. 

3. The particle's weight is determined by how well it aligns with the recent sensor 

data. Particles that closely match the sensor data receive higher weights than 

those that deviate to a lesser extent. 

4. The sample size bound 𝑀2 is adjusted based on the number of non-empty bins 

𝑘. As the level of agreement among particles increases with smaller k, the final 

sample size (denoted as 𝑛) decreases. 

This iterative process continues until the sample size reaches or exceeds the 

specified bound 𝑛 ≥ 𝑀2. As the iterations progress, the particles gradually converge 

towards the most probable position of the robot. In step 3, the correspondence between 

the sensor data and the particle's environment is estimated by comparing them to the 

global map. However, it's important to note that AMCL may encounter challenges in 

crowded and dynamic areas, as people can obstruct significant environmental features, 

making it difficult to establish a clear correspondence. 

2.2.3 Navigation 

The navigation system relies on the Navigation Stack within ROS [21]. This 

stack includes a global planner responsible for calculating the most efficient long-

distance routes from point A to point B, utilizing a global costmap. The costmap is a 

grid-based representation of occupancy, where each cell value indicates the likelihood 

of being in an unsafe position. The global costmap primarily relies on the pre-existing 

global map of the environment but also incorporates sensor data. This allows for the 

detection of new objects through sensors, which can then be integrated into the global 



CHAPTER 2. LITERATURE REVIEW 
 

 17 

costmap, even if they are not initially included in the map of the world. In this section, 

some basic path-planning algorithms and problem will be discussed. 

Dijskstra’s algorithm.    One of the earliest and simplest algorithms for finding 

paths is Dijkstra's algorithm[22] (Dijkstra, 1959). The algorithm starts at the initial 

node, marking the direct neighbors of that node with the cost to reach them. It then 

iteratively selects the node with the lowest cost and updates the costs of its adjacent 

nodes if a lower cost can be achieved through that node. This process continues until 

the goal node is reached, and the robot can follow the edges with the lowest cost. 

In Figure 2.3, Dijkstra's algorithm would initially assign costs of 3, 5, and 7 to 

nodes B, C, and F, respectively. It would then explore the edges of node B, which has 

the lowest cost. During this exploration, it discovers that node C can be reached in 

fewer steps (3+1 < 5), so the cost of node C is updated to 4. To fully evaluate node II, 

Dijkstra's algorithm considers the remaining edge and assigns a cost of 3 + 12 = 15 to 

node E. 

The node with the lowest cost now becomes node C (cost 4). Node E is then 

updated to a cost of 14 (smaller than 15), and node V is assigned a cost of 4 + 5 = 9, 

while node F remains at a cost of 4 + 3 = 7. Despite finding two paths to the goal, with 

one being better than the other, the algorithm continues because there are still 

unexplored nodes with overall costs lower than 14. Continuing the exploration from 

node D leads to the discovery of a shortest path A-B-C-D-E with a cost of 13, and no 

more nodes remain to be explored. 

Since Dijkstra's algorithm will not stop until no node has a lower cost than the 

current cost to the goal, it can be certain that it will find the shortest path if one exists. 

This property makes the algorithm complete. The algorithm explores nodes in a manner 

that resembles a wave front emanating from the starting vertex and eventually reaching 

the goal. However, this process can be highly inefficient, especially when exploring 

nodes far from the goal. This inefficiency becomes apparent when additional nodes are 

introduced to the left of node A in Figure 2.3 

2.2.4 Theory of Artificial Neural Networks 

This section provides a concise overview of the important fundamental ideas 

pertaining to neural networks, with a particular emphasis placed on convolutional 

neural networks and graph neural networks. In addition, this part explains the 
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fundamental learning process, regularization, activation function, batch learning, and 

normalization in artificial neural networks. Additionally, the basic graph neural 

networks for human activity recognition were studied in this part.  

Artificial Neural Networks: The biological neuron present in the animal brain 

serves as the model for the artificial neuron. Each neuron in the human brain, which 

has over 100 billion neurons and processes sensory data including vision, touch, and 

sound, gets several inputs from neighboring neurons known as dendrites. By processing 

these inputs, the neuron determines whether a specific action potential has been 

reached. If this threshold is surpassed, the neuron "fires" through its singular output, 

known as an axon. The output generated by the axon is then transmitted to all 

subsequent interconnected neurons. 

The artificial neuron, also known as a perceptron, simplifies the modeling of 

biological neurons. In this simplified representation, each artificial neuron possesses 

𝑛	input connections. The neuron processes these inputs by calculating the weighted 

sum, incorporating 𝑎  bias term, and subsequently applying an activation function: 

𝑓(∑𝜃3𝑥3 + 𝑏)[23]. Figure 2.4 illustrates an artificial neuron and the biological neuron.  

Figure 2.6: Neural Network with one input, one output and two hidden layers 

Figure 2. 5: Artificial neuron (right) and organic neuron (left). The artificial neuron simulates 
the dendrites as the weighted inputs and processes the sum using an activation function. [23] 
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Neural networks approximate a nonlinear function 𝑓(𝑥)  by chaining together 

numerous neurons. The parameter set 𝜃, which comprises all weights 𝜃3 of all neurons, 

must be changed such that the Neural Network produces the best possible function 

approximation. The process of determining an appropriate parameter set is known as 

learning. The artificial neurons are organized in layers using a feedforward Neural 

Network. The neurons in the layers are linked in a forwarding manner. There are no 

connections between neurons that are fed back to preceding neurons. Each network 

includes one input layer for processing raw input data and one output layer for storing 

the approximated outcome. Between those two levels, there may be one or more hidden 

layers where significant computation occurs. A fully connected, feedforward deep 

neural network can be seen in Figure 2.6.  

  Learning Process: The learning process's purpose is to identify a parameter 

configuration that produces the best possible function approximation. The real result Y 

of a certain input X is presented in supervised learning and may be utilized to adjust the 

parameters. It is a looping process that includes the following steps. 

1. Forward Pass : The input X passes into the network, and the predicted result  
Y4567 = 𝑓(X, θ) is obtained. 

2. Loss : The loss 𝐿(θ) is computed when the estimated output Y4567 is compared 
to the actual result Y. The loss function is chosen based on the learning task. 
The relevant loss functions are given below: 

o Mean-square-error [24].  It is generally used and calculate the L2-
distance between Y4567 and Y. 

𝐿(θ) =
1
2E(Y3 − Y4567,3)9

:

3;!

 2.1 

o Logistic Loss function [24]. The logistic loss function penalizes 
correctly classified elements that have low confidence. Still, samples 
that are incorrectly classified receive penalties more severely. 

𝐿(θ) =ElogJ1 + expJ−Y3 . Y4567,3NN
:

3;!

 2.2 
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Back-propagation: The calculation of the global gradient of loss ∇𝐿(θ) is 

performed and subsequently propagated in a backward manner throughout the neural 

network. Initially introduced by [25], the back-propagation algorithm contributes local 

loss gradients to all hidden neurons. The fundamental principle underlying this 

algorithm is the chain rule, which enables the computation of derivatives for composite 

functions by multiplying their respective local derivatives. Specifically, when 

considering a function 𝑦 = 𝑔(𝑥)  and 𝑧 = 𝑓J𝑔(𝑥)N , the derivative <=
<2

 can be 

determined using equation 2.3, as explicated in [26]. 

𝜕𝑧
𝜕𝑥 =

𝜕𝑧
𝜕𝑦
𝜕𝑦
𝜕𝑥 2.3 

The chain rule is applied to facilitate the propagation of the global gradient loss 
<>(@)
<@

	backward through the network. This propagation occurs in the reverse direction 

of the forward pass. As depicted in Figure 2.7, a neuron characterized by the function 

𝑧 = 𝑓(𝑥, 𝑦, θ)  is examined. Its local derivatives denoted as <=
<2
, <=
<B

 and can be 

determined during the forward pass. During the back-propagation phase, the local 

gradient of loss is computed by multiplying the local derivative with the local gradient 

of loss from the connected neuron in the subsequent layer <>
<C

. Consequently, individual 

local gradients of loss: <>
<D
, <>
<E

 are obtained for each input of the neuron, which is then 

further backpropagated to the primary neurons. When a neuron is connected to multiple 

neurons in the subsequent layer, the gradients are aggregated using summation. [23]. 

 
Figure 2.7: The local gradient of loss for the input x and y can be computed by 

applying the chain rule. 
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Update: The weights of all neurons undergo updates during the training 

process, and one commonly used optimization algorithm is stochastic gradient descent 

(SGD). SGD combines the principles of Batch Learning and gradient descent. Gradient 

descent modifies the weights in the opposite direction of the gradient of the loss 

function, aiming to bring the function approximation closer to the local minimum with 

each iteration. It is anticipated that, after a number of iterations, a local minimum will 

be reached. The update rule of gradient descent, as depicted in Equation 2.4, governs 

this process. The learning rate parameter α determines the pace at which the minimum 

is approached. If the learning rate α is set too high, there is a possibility that the 

minimum cannot be attained, as the magnitude of the steps taken will be excessively 

large and overshoot the target. 

θ3 ← θ3 + 𝛼∇@	𝐿(θ) 2.4 

2.2.5 Activation Functions in Neural Networks 

  There are three generally used activation functions: sigmoid, tanh, and ReLU, 

which will be explained in this chapter. The most widely used function is the ReLU 

function, which may be found expressed as an Equation in 2.5. It prevents the output 

from falling below zero in any circumstance. It has a non-saturating form, which makes 

it possible for the gradient to converge more quickly while being trained. An additional 

benefit is that it is a straightforward operation that requires less computation cost. [27] 

ReLU(𝑥) = max	(0, 𝑥) 2.5 

Equation 2.6 is shown the sigmoid function, which is still another type of activation 

function. It converts the value 𝑥 that is given as input into a value between 0 and 1. 

Large negative values become 0 and large positive values become 1. 

sigm(𝑥) =
1

1 + 𝑒F2 2.6 

The sigmoid function is less popular because it has significant drawbacks. If the output 

of the neuron saturates at 0 or 1, the local gradient approaches zero. During back-

propagation, the global gradient is multiplied by the local gradients, resulting in a 

product of zero. Eventually, the weights will stop changing, and the network will be 

incapable of effective learning. It is particularly problematic if the network is initialized 
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with weights that result in saturated outputs. Another drawback is that the sigmoid 

function output is not zero-centered. [27] 

Equation 2.7 shows the tanh function. It centers the sigmoid function at zero. The 

disadvantage of saturation continues to exist. 

tanh(𝑥) = 2	sigm(2𝑥) − 1 2.7 

2.2.6 Batch Learning and Normalization 

Batch Learning is based on the concept of processing a set of m training samples 

(mini-batches) as opposed to a single training example. The gradient is the average of 

all m training examples that have been processed. This can result in a more precise 

gradient with less variance, which can reduce training time. In addition, Batch Learning 

accelerates training when a graphics processing unit (GPU) is used. All training 

samples can be independently, or in parallel, processed. [27] 

Batch normalization: By zero-centering and rescaling the data, batch 

normalization[28] applies normalization to the entire collection. The expected mean 

and variance of the normalized data are close to zero and one, respectively. In a batch 

𝐻  with 𝑚 samples, each value h3  is normalized according to equation 2.9 over the 

entire batch. Mean (Equation 2.10) and variance (Equation 2.11) are calculated 

element-by-element for each spatial position in the entire batch. 𝛿 > 0 is a minuscule 

number that prevents division by zero. Using Equation 2.11, the normalized value 

𝒴3`will be further processed. 𝛾H: and 𝛽H: are batch normalization 𝑏𝑛 layer parameters 

that are learnt alongside the initial parameter set of the Neural Network. The additional 

learning dynamics enhance the expressive capacity of the network. 

𝒴3 = 𝛾H:𝒴3` + 𝛽H: 2.8 

𝒴3` =
h3 − 𝜇
𝜎  2.9 

with 𝜇 = !
I
∑ h3I
3;!   2.10 
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with 𝜎 = 	i !
I
∑ (h3 − 𝜇)9I
3;! + 𝛿 2.11 

The application of batch normalization to both the input data and the output of any 

hidden layers has a regularizing effect on the learning process and precludes overfitting. 

Another benefit is that it reduces training time. It must be noted that batch 

normalization is only applicable when the precise position of the features is irrelevant 

and only their presence in the input data. 

2.2.7 Convolutional Neural Networks 

Convolutional Neural Networks are modeled after the brain's receptive field, 

which processes sensor input data and is sensitive to specific stimuli, such as visual 

system boundaries. They efficiently manage large input data and are therefore 

extensively used in modern approaches in the fields of Computer Vision, such as object 

detection [29]–[32] or image segmentation [33]–[37]. 

Figure 2.8 depicts the LeNet-5[38] image recognition system. It provides the 

typical architecture of Convolutional Neural Networks, which consists of 

Convolutional Layer stacks followed by a subsampling Pooling Layer. Typically, the 

final concealed layers of a network are entirely interconnected to compute the network's 

final low-dimensional output. In the early phases of a network, it is presumed that low-

level features such as edges and corners are learned, while in later layers, these features 

are combined to form high-level features.   

Figure 2. 8: The LeNet-5 [38] is demonstrated to illustrate a typical architecture for a 
Convolutional Neural Network. It can identify integers on images. Two layers of 

Convolutional Layers, each followed by a subsampling Pooling Layer, are used to 
compute the input image. The final three layers are entirely interconnected in order 

to transfer the high-level characteristics to the final digit classification. 
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Convolutional Layer: The Convolutional Layer extends the discrete convolution 

operation, which applies a square filter 𝑓 of size [𝑚	 × 𝑚] with 𝑚 = 	2k	 + 	1  to an 

input matrix g at position [𝑥, 𝑦] by computing the dot product. The discrete convolution 

procedure is illustrated by the Equation 2.12 

h[𝑥, 𝑦] = 𝑓 ∗ 𝑔[𝑥, 𝑦] = E E 𝑓[𝒰, 𝒱]𝑔[𝑥 − 𝒰, 𝑦 − 𝒱]

𝑘

𝒱=−𝑘

𝑘

𝒰=−𝑘

	 2.12 

  One neuron in a Convolutional Layer is represented by a [m m d]-sized 

filter.The neuron's weights consist of the filter values and a bias b. The filter shifts the 

input matrix g by a depth of d and produces an output h[x, y] for each [x, y] position. 

Note that the depth d of the input matrix g and the filter f is identical. Zero padding can 

be used to produce an output h that has the same dimension as the input g. The zero-

padding operation extends the input matrix g by (m 1)/2 rows or columns with zero 

values on each side.The Convolutional Layer is comprised of various filters (= 

neurons). All filters with the same size but distinct filter values are applied to the same 

input g to generate an activation map. The layer's final output is an array of all 

activation maps. Commonly, the filter is shifted by a constant stride S over the input, 

so that every Sth position of the input is convolved. It reduces the amount of data in the 

subsequent layer. 

  The number of weights in a Convolutional Layer is kept low compared to a 

fully-connected Layer, and the layer's computation is more efficient. Typically, the 

filter size is maintained considerably smaller than the input data, resulting in the 

detection of small, low-level features. Small filters necessitate fewer parameters as well 

as fewer convolution operations. In addition, the filter is applied to various input 

locations owing to filter shifting. This is based on the premise that identical features 

can present in various locations of the input and be detected by the same neuron. 

Feature detection with Convolutional Layers is therefore translation-invariant. 

Pooling Layer : The Pooling Layer performs subsampling in the width and 

height spatial dimensions by applying a downsampling filter to the input. Max- and 

average-pooling filters are common pooling filters. At max-pooling, a [m ×m]-sized 

filter is slid over the input, leaving only the highest value in the output. Figure 2.9 

provides an example: A [2 × 2]-filter is shifted with a 2-dimensional step over the 2-
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dimensional input. The output size is a quarter of the input. In average-pooling, the 

filter calculates the average of each position [𝑥, 𝑦]	 and its companions. 

Pooling reduces data capacity, resulting in an increase in network efficiency. It 

is useful when the precise position of a feature is not important, but rather its presence 

in the input. 

2.3 Related Works 

2.3.1 Dynamic, Cluttered and Unseen Obstacle in Indoor Navigation Problem 

Mobile manipulation robot tasks are typically specified by end-effector and base 

navigation subgoals. Hence, navigation has the main contribution to the mobile 

manipulation tasks, such as reaching and placing the target object.  

According to [39], [40] typical ROS navigation approaches consists of a 

combination of global and local planner approaches. Global planner techniques like 

prospective field strategies, cell decomposition, roadmaps, and Dijkstra require a 

complete environment model. The global method calculates a whole trajectory from 

the beginning place to the target position. These methods cannot induce reactive 

Figure 2. 9: On a 2-dimensional input of size [4 × 4], a max-pooling filter of size 
[2 × 2]- with a stride of 2 is employed. The output remains its highest value and its 

quantity is reduced by 4.[27] 
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avoidance behavior in the robot's surroundings. In this scenario, integrating local 

planner methodologies [41] can improve navigation performance. 

The ROS-based navigation system often uses the Trajectory Rollout [42] and 

the Dynamic Window Approach (DWA) [41]. A 2D occupancy map planner controls 

a mobile robot. Local planners use a 2D occupancy map to compute a mobile robot's 

path from start to finish. DWA controls discretized space differently from Trajectory 

Rollout. The DWA local planner evaluates just the collision-free area following the 

current state, whereas the Trajectory Rollout simulates all subsequent states [42].  

Elastic Band (EBand) and Time Elastic Band (TEB) are other local planners 

[43], [44] . The EBand planner specifies a subset of the maximum free space location 

in a configuration using the bubble area and the robot can move more freely [43]. The 

simplified robot model and 2D occupancy map data produce the bubble. The Bubble 

band analyzes obstructions and internal pressures to decrease bubble-to-bubble force. 

EBand planners generate collision-free, deformable trajectories. It continuously 

deforms the calculated route to avoid obstructions. The mobile robot can react to a 

sudden movement. TEB works like EBand. It minimizes time expense rather than 

energy [44].  

Deep reinforcement learning have made indoor learning-based robot navigation 

more popular [45]–[50]. Guldering et al. [9] used PedSim[51] ROS Navigation stack 

plugins to avoid active human walking and static obstacles like walls and corridors in 

their learning-based local planner. 2D LiDAR only detects one slice of the 

surroundings and sometimes misses large items. Thus, 2D occupancy maps frequently 

misrepresent the robot workspace's free area. These works [39], [45], [52] suggest 

choosing and preparing obstacles based on the robot's capabilities and sensor 

restriction. To acquire a comprehensive environment representation, the navigation 

system can use an RGB-D camera, 3D LiDAR, or sensor fusion [53],[54]. However, 

this program might drain power and slow navigation performance. 

Lundell et al. [55] used a fully convolutional network (FCN) autoencoder to 

estimate laser rangefinder scanning with actual obstacle distances from 2D laser scans. 

Their later result [56] unified the processed laser scans into occupancy maps with 

uncertainty approximation. The actual obstacle distances data is collected for training 

with a 3D camera measurement. The authors presented that their strategy could avoid 

collisions with obstacles in real-world scenarios. This method depends on an additional 

RGB-D camera for making the training examples, which is discarded when 
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implementing the navigation in realistic scenarios. Moreover, this method cannot be 

implemented directly in a different type of 2D LiDAR angle and range data. 

Kollmitz et al. [7] proposed obstacle prediction networks for predicting unseen 

obstacle shapes in 2D map created with 2D 2D LiDAR. Their strategy uses a fully 

convolutional neural network (FCN) trained from collision events recorded with a 

bumper. The results confirm that the trained FCN on a simulated collision dataset can 

predict and segment the unseen obstacles in a 2D map. They also demonstrate that the 

implementation of this method can be further enhanced by combining new obstacle 

examples collected during real-world applications.  

  The comparison result that indicates the advantages and limitations of obstacle 

prediction networks [7] with other various types of obstacle and local planners and 

sensor configuration has yet to be discussed in recent papers or in original papers. 

Therefore, we initiate to investigate the efficiency between this method and the 

conventional method for robot navigation in a 3D simulated environment. Since our 

robot has multiple sensors and cameras for manipulation and navigation, the 

combination sensor for the navigation task will spend more computation time. 

However, the computation cost is not our focus in this work. We focused on which 

method can enhance the robot's navigation efficiently and avoid collision in different 

types of objects that are difficult to detect by using 2D LiDAR only. Using the Kollmitz 

et al.[7] result, we can rely on 2D LiDAR only for navigation and decrease its limitation 

with the recent result of neural networks. We evaluated this result with RNS and 

various conventional local planners such as TEB Planner [44], DWA Planner [41], 

EBand Planner [43], and a global planner. 

2.3.2 Recent Research in Human Activity Recognition  

Recognizing human activities using graph convolutional neural networks has 

attracted the attention of many robotics and computer vision researchers in recent years. 

Activity recognition is required for homecare robots that are taking care of children, 

the elderly, or persons with disabilities. With this implementation, the inference of 

human activities using perceptual information plays an important role in human-robot 

interactions, smart surveillance, and content-based video analysis. A lot of work has 

been conducted toward predicting human activities in 2D and 3D images and videos 

where the overall technique observes and correlates with HOI.  [57]–[60]. The principal 
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method for predicting HOI is extracting visual characteristics from instance detectors 

and spatial knowledge to instantiate multi-streams of deep neural networks. Each 

stream includes detected human and contextual objects. The last step is designed for 

inference application. The work of [57] presented the forecasting of a human activity 

by predicting the possible trajectory movement towards a targeted object from RGB 

and depth sensors data. Using this strategy, the predicted trajectory for the ongoing 

action can be visualized. However, the camera should be set up at a certain distance 

and height to avoid the broader field of view that may lead to occlusions and poor 

activity prediction. Wang et al. [61] proposed a fully-convolutional approach that 

predicts the interactions between human-object pairs from RGB images. The network 

can predict the context of human activities by localizing the interaction points from the 

object, human and pairwise streams. 

GNN has been utilized to predict human activities from HOI by extracting the 

image features into graph structures. Qi et al. [58] used a graph parsing neural network 

to detect HOI and predict human activity from various RGB datasets. Morais et al. [59] 

introduced asynchronous-sparse interaction graph networks, which are constructed 

from the temporal structure and content label of human-object interaction activities. 

This method uses a graph attention network model for HOI detection in the RGB 

dataset. Their approach involves the construction of nodes and edges from visual 

features. An adjacency matrix defines the structure and properties of the network, and 

is updated by a weighted sum of the messages from the other nodes. Finally, for 

interaction inference, a node readout function is employed. Simonovsky and 

Komodakis [62] proposed the edge-conditioned convolution (ECC) GNN, a spatial 

domain operation on graph signals in which filter weights are conditioned on edge 

labels and dynamically formed for each input sample. It was demonstrated that this 

strategy could generalize the traditional convolution on graphs if edge labels are 

suitably chosen, and this claim was empirically tested on MNIST. Moreover, this 

method was also evaluated for point cloud classification, achieving a new state-of-the-

art performance on the Sydney dataset. The current work was inspired by [62], and 

their model was used for the proposed method. A 3D object and human pose of point 

clouds data were used to construct the edge features for the graph data by transforming 

the centre of the 2D bounding boxes of the YOLO and Mediapipe face detection 

frameworks into the 3D point cloud by utilizing the ROS library features. The data was 

labelled using human speech when the robot questioned the human to learn the HOI. 
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In the application for this study, a 3D object and human pose data were used to 

construct the graph data by transforming the centre of the 2D bounding boxes into a 

3D point cloud by utilizing the ROS library features. The data was labelled using 

human utterances in a human-robot communication scenario for the data collection. 

The data was collected during the ongoing activity, and the robot asked the human, 

"What are you doing now?". Then, the uttered answer would be specified as an activity 

label. After collecting the data, a graphical representation was constructed for the 

training process. 

2.3.3 Unified Map Concept in Service Robot Applications 

Modern intelligent and autonomous robotic applications often demand a more 

comprehensive understanding of the environment than what can be derived from 

traditional occupancy grid maps. A prime example is the task of autonomous semantic 

exploration, where a robot must label objects in its surroundings while navigating 

independently. To tackle this task effectively, the robot needs to maintain several types 

of maps. Firstly, an occupancy map is necessary for navigation purposes. Additionally, 

an exploration map is needed to keep track of the areas that have already been visited. 

Lastly, a semantic map is essential for recording the locations and labels of objects in 

the environment. 

While three-dimensional (3D) information is indispensable for manipulation 

tasks, two-dimensional (2D) information often suffices for navigation tasks [63]. 

However, the occupancy map in this system frequently fails to accurately represent the 

obstacle areas in the environment. For instance, when the 2D LiDAR detect tables and 

chairs, the resulting 2D occupancy map only shows the legs of these objects. 

As the number of required maps increases, applications face the challenge of 

managing and dealing with various map representations, which can become 

burdensome. Therefore, it is crucial to create and maintain an accurate representation 

of the environment while ensuring safety during navigation. 
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Chapter 3 
3. Advanced Investigation on 2D Predicted 

Occupancy Map 

3.1 Introduction 
Service robots are frequently operated in designed environments for and 

occupied by humans. Especially in countries with low birthrate issues, such as Japan 

and many other developed countries, service manipulation robots such as Toyota HSR 

are possible solutions to improve the quality of life (QOL) for aged people in the home 

environment or the public area [18]. These environments usually consist of various 

complex objects such as chairs, tables, and sports equipment with a narrow workspace. 

At the same time, we expect to increase the robot’s adaptability in various 

environments and ensure the user's safety and comfort.  

The service manipulation robot generally can be combined with the 

manipulation and navigation task as whole-body manipulation or decomposed for  

Figure 3.1: The human walking direction toward robot position is out of robot 
camera view. The robot changes the trajectory due to the human walking is detected 

by 2D LiDAR. 
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 different purposes and needs [19], [64]–[66]. The decomposed task of the service 

manipulation robot is typically defined by a set of mobile base navigation and arm 

manipulation subgoals. Thus, navigation significantly enhances the arm manipulation 

tasks, such as picking, placing, pulling, and pushing. Particularly, Toyota HSR has a 

shorter arm [18] and less degree of freedom (DoF) than other domestic service 

manipulation robots such as Fetch [67], Tiago[a], and PR2 [17]. Moreover, the compact 

body of HSR is more suitable for navigating narrow and small environments such as a 

house, office, and hospital room. These abilities have been shown in [17]–[19], [67], 

[68], and the result shows that HSR always performs the base navigation task to reach 

the grasping object. 

 Toyota HSR has several sensors, such as 2D LiDAR to build the 2D map and 

sense the obstacle for navigation, IMU for localization, and several cameras, including 

an RGBD camera and a pair of RGB cameras in a stereo setup in the head part. 

However, the possibility of low real-time performance is expected if we simultaneously 

apply several fusion perception modules for navigation and manipulation. It is due to 

the computational process of a large amount of labeled data from object recognition 

and 3D map reconstruction. On the other hand, it is difficult for a service robot to detect 

Figure 3.2: Simulated home environment. The left part is the realistic simulated 
environment; the center part indicates the 2D recorded map obtained from laser 

observation; the right part shows the details of the complex obstacle that 2D laser 
rangefinders cannot fully detect. 
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the surrounding approaching dynamic obstacle, such as a walking human toward the 

robot position where the walking direction is out of camera view such as in Figure 3. 1 

description. Thus, the robot requires a more extensive range of sensors such as 2D 

LiDAR to generate a safer path a 2D map. Nevertheless, horizontal 2D LiDAR only 

scan one slice of the environment and, as a result, most often miss the big part of 

obstacles. Consequently, the resulting 2D occupancy maps frequently may not 

accurately represent the occupied area in the environment. For instance, when the 2D 

LiDAR detect the table and chairs, the scanning result only shows the table and chair 

legs in a 2D occupancy map. Therefore, it may produce the unsafe trajectory planning 

from global and local planners when the mobile manipulation robot performs the 

navigation task. Figure 3. 2 described the unseen obstacle or partially observed object 

examples viewed by 2D LiDAR in the human-centered environments that we obtained 

from Toyota HSR ROS package for SH and from AWS RoboMaker for LH. Many 

previous works [39], [45], [47], [48], [52], [69] have proposed DRL-based local 

planners and used the recorded 2D maps from 2D LiDAR to train the deep with static 

obstacles and reactive human walking. This trial-and-error strategy lets the robot learn 

static and dynamic obstacle avoidance behavior based purely on observations. The 

training process is accelerated with deep neural networks, and recent research showed 

excellent results in robot navigation. The purpose of using 2D LiDAR only in these 

navigation approaches is to reduce the computational cost during learning navigation 

and avoid active walking humans with simple static obstacles in indoor environments. 

However, the unseen obstacles or partially observed objects are not considered as the 

navigation task problem in these recent works [39], [45], [47], [48], [52], [69].  

 Based on this report [7], the tiny or incomplete obstacle representation in a 2D 

occupancy map can trap the robot when an attempt to avoid the collision. Moreover, 

the recent result from [7] has shown an outstanding solution to solve the unseen 

obstacle problem in several indoor environments without inflation layer or safety layer 

parameter tuning using the feature of ROS Navigation Stack.  Since all the local 

planners depend on the 2D occupancy map information to find the collision-free path, 
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combining the ROS navigation stack with this work [7] is essential to perform obstacle 

avoidance more efficiently using 2D LiDAR only. However, to apply and utilize this 

method in different types of robots such as Toyota HSR, we should conduct further 

investigation and evaluation to measure the effectiveness and limitation with different 

kind of obstacles and existing global and local planners. 

We make the following contributions: 

• We present an investigation and comparison study for possible solutions to the 
unseen obstacle problem in the service robot (Toyota HSR) navigation. 

• We compare obstacle prediction network results with a raw map and sensor 
fusion (obstacle data acquired through the combination of the RGB-D camera 
and 2D LiDAR) and various conventional local planners in simulated 
environments to find its methods' upper limit and efficiency. 

Since the DRL local planner uses the recorded map to avoid static obstacles, 

this investigation can be considered as a future work application on the learning-based 

local planner. The paper is arranged as follows; Section II explains the related work of 

the investigation method. Section III describes the proposed integration navigation 

Figure 3.3: Initial step to build the predicted map using this method 
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system obstacle prediction network results. Section IV explains the experimental setup 

and defined parameters that we used in the evaluation. Section V shows the evaluation 

result and discussion. Finally, conclusions and future work suggestions are presented 

in Section VI.  

3.2 Integration System between Obstacle Prediction 
Network and ROS Navigation Stack 

In this section, we explain each step to investigate and evaluate the recent result 

of obstacle prediction networks and how to integrate it for local navigation in a 3D 

simulated world using Toyota HSR. First, we will explain how to obtain the predicted 

map using this method [7]. Afterward, the predicted map can be used for the RNS 

system for navigation tasks. Robotic systems depend on accurate information about the 

environments they interact, particularly during navigation. In the previous works [45], 

[50], [52], [70], the recorded 2D map is used for DRL agents and the traditional local 

planner methods to learn or perform the local navigation, avoid dynamic and static 

obstacles, and find the best path to reach the goal. The recorded map (raw map), such 

as in Figure 3. 2, generally can be obtained by using Grid mapping [71], Hector-SLAM 

Figure 3.4: Raw map, predicted map and heat map from 3D environment of Small 
House and Large House. 
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[72]  or Google Cartographer [73] to record the map from a real-world environment or 

3D realistic simulation. First, we use the Kollmitz et al. trained architectures [7] to 

predict the unseen obstacle in our 2D recorded map that we collected from Hector 

SLAM by teleoperating the robot. The 2D map prediction is used to perform the 

navigation task. Figure 3.3 illustrates the process of how we obtained the predicted map 

by using Kollmitz et al. architectures. The authors use the LeNet architectures with a 

fully convolutional model to get shorter training process time and better accuracy. This 

model's dataset uses SceneNet [74], consisting of a 3D environment with 52 indoor 

scenes with various room layouts and furniture. The authors also used the simulated 

version of the service robot equipped with a sensitive force sensor that records the 

collision examples. The authors drove the robot to a random position in a simulated 

environment until they received the collision signal. Then collision data from the sensor 

is saved as the dataset. They divided the dataset into 34 rooms for training, 9 rooms for 

testing, and 9 rooms for validation.  

 To get the predicted 2D map, we inserted the raw maps that we obtained from 

Hector-SLAM into a pre-trained neural network for collision prediction and 

segmentation. The segmentation result of a small house (SM) and large house (LH) can 

be seen in Figure 3.4. The predicted map indicates the table legs and chair legs, and 

free space among them can be segmented as obstacle marks by using the trained 

networks in both map. The heat maps result shows the data visualization representing 

the magnitude of a free-collision and collision area as colors in two dimensions. In 

Figure 3.4, the raw map on the left side detects that the table and chair legs look like a 

Figure 3.5: General ROS Navigation Stack (RNS) design for investigating the 
effectiveness of predicted map based on sensor input from HSR sensor. 
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tiny dot in the 2D occupancy map. On the other hand, the predicted map in the center 

visualized that the several small dots around the table are merged, becoming a new 

obstacle footprint. For more explanation about the details of the network, architectures 

can be read in the original paper. To evaluate the effectiveness of the predicted map in 

local navigation, we designed the integration system based on RNS such as Figure 3.5. 

A brief explanation of nodes from the integration system is as follows: 

• Global planner: NavFn is a global planner node in RNS that drives on a 2D 
occupancy global costmap by using the Dijkstra strategy to achieve the goal 
point using the global map. This path message uses general type navigation 
msgs/Path.msg, which includes the waypoints without the orientation. 

• Odometry: In this system, we used wheel odometry which is used to create the 
ego-motion measurements from the starting point of the vehicle.   

• Global and local costmap: The local and global costmap nodes represent the 
robot of the vehicle to an obstacle using the robot geometry [34]. The 2D map 
has the obstacles inflated by a safety boundary where the robot should not allow 
entering. Moreover, this map is used by local and global planners to adjust the 
path based on the distance from the robot to the obstacles. We use the very 
small value of the inflated layer in each costmap to measure the effectiveness 
of the predicted map. 

 

Tabel 3.1: Stages of testing configuration 

 

 
Global planner /Nafvn 

TEB Planner/DWA Planner/Eband Planner 

Sensor Map Environment 

Stage 1 

laser Only raw 

SH laser + RGBD raw 

laser Only Predicted map 

Stage 2 

laser Only raw 

LH laser + RGBD raw 

laser Only Predicted map 
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• Input/Sensor Usage: The integration of RGB-D camera and 2D LiDAR with 
the raw map will be compared to 2D LiDAR only with predicted maps. We also 
provide the experiment of the navigation with 2D LiDAR only and with a raw 
map to know the robot is difficult to avoid the table, chair, and sports equipment 
such as in SH and LH 3D environments.  

• Transformation messages (tf) : tf message is a robot transform message in the 
ROS package which manages the position and orientation between various 
sensors connected to an HSR. In this case, the reference point of Odometry is 
at the center of the robot base. So, a TF between the Odometry (Odom), robot 
mobile base (base_link), and X-Tion camera and 2D LiDAR is established 
using TF library in ROS.  

• Recovery behavior: this node provides the simple recovery motion to clear the 
space in the costmaps by rotating the robot 360 degrees.  

3.3 Kinematics and Local Planners Formulation 
This section discusses about HSR service robot kinematics and the applications 

of velocity-based local planner that calculates the optimal collision-free both in 2D raw 

map and in predicted map. In HSR, a dual-wheel caster drive mechanism is used for 

mobility [75]. The scheme of this mechanism is described in Figure 3.6. 𝐽 is denoted 

as Jacobian form in Equation 3.1 based on radius of the wheel 𝑟 and the angle from the 

pivot axis that connected to the top table is 𝜃J. Moreover, 𝕨 is denoted as the treat of 

the wheels and the distance from the axle center to the center axis is denoted by ℎ.  

The velocity of the right and left wheels, as well as the rotation axis 𝜔K , 𝜔> , 𝜔J  is 

calculated using Equation 3.1 from the velocity of the body 𝓋2 , 𝓋B,	𝓋L as shown in 

Equation 3.2.  

𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑟
2 cos 𝜃ℎ −

𝑟J
𝕨
sin 𝜃ℎ

𝑟
2 cos 𝜃ℎ +

𝑟J
𝕨
sin 𝜃ℎ 0

𝑟
2 sin 𝜃ℎ +

𝑟J
𝕨
cos 𝜃ℎ

𝑟
2 sin 𝜃ℎ −

𝑟J
𝕨
cos 𝜃ℎ 0

𝑟
𝕨

−
𝑟
𝕨
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⎥
⎥
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⎥
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This mechanism is a holonomic one since 𝐽 maintains its full rank regardless of the 

condition it is in. As a result, it can generate speed in any direction. 

Dynamic Window Approach (DWA) Planner: DWA[41] is a velocity-based local 

planner that determines the best collision-free ('admissible') velocity for a mobile 

service robot to achieve its goal. It converts a desired goal 𝑥M, 𝑦M, 𝜃M into a velocity 

command 𝓋2 , 𝓋B,	𝓋L  for HSR. The key objectives are to compute a valid velocity 

search space and to determine the best velocity. The search space is built from the set 

of velocities that result in a safe trajectory such as enabling the robot to stop before 

colliding, given the set of velocities that the robot can attain in the next time slice given 

its dynamics ('dynamic window'). The ideal velocity is used to optimize the robot's 

clearance, velocity, and heading closest to the desired goal. It is simpler to explain using 

the following pseudo-code:

x
𝜔𝑅	
𝜔𝐿
𝜔ℎ
y = 𝐽F! x

𝓋𝑥
𝓋𝑦	
𝓋𝜃

y = [𝓋, 𝑤] 3.2 

 

 
 

Figure 3.6: HSR base drive mechanism 
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Algorithm 1 Dynamic Window Approach Algorithm 
1: Start DWA (robotPose(𝑥", 𝑦", 𝜃")), robotGoal (𝑥M, 𝑦M, 𝜃M)) 
2:    DesiredVelocity(𝓋2 , 𝓋B,	𝓋L) = calculateV(robotPose,robotGoal) 
3:    laserscan = readScanner() 
4:    allowable_v = generateWindow(robotV, robotModel) 
5:    allowable_w  = generateWindow(robotW, robotModel) 
6:  for each v in allowable_v (𝓋2 , 𝓋B) 
7:       for each w in allowable_w(𝓋L) 
8:       dist = find_dist(v,w,laserscan,robotModel) 
9:       breakDist = calculateBreakingDistance(v) 

10:       if (dist > breakDist)   
11:          heading = hDiff(robotPose,goalPose, v,w) 
12:          clearance = (dist-breakDist)/(dmax - breakDist) 
13:          cost=costFunction(heading,clearance,abs         

                   (desired_	𝓋(𝑥M, 𝑦M, 𝜃M)-	𝓋(𝑥", 𝑦", 𝜃")) 
14:          if (cost > optimal) 
15:             best_v = v 
16:             best_w = w 
17:             optimal = cost 
18:    set robot trajectory to best_v, best_w 
19: END 

 Elastic Band Planner: Elastic Band is a type of obstacle avoidance method 

first proposed by Quinlan and Khatib [76]  for use in robotics. The advantage of this 

method is that the navigation behavior of the mobile robot is not fully determined at 

the planning level, but local navigation behavior does not limit the performance 

required to reach the desired position. By deforming the path when changes in the 

environment are detected, this method avoid the cost of recalling the path planner; the 

robot can respond in real-time to data obtained from 2D LiDAR. Nevertheless, while 

performing local navigation behaviors, the method can maintain a collision-free path 

to the desired goal. An elastic band is visualized by a finite series of bubbles constructed 

from configurations or via points for the mobile robot. Figure 2.9 describes the elastic 

band planner in static and dynamic obstacles. This method assesses the condition that 

the bubbles at consecutive via points overlap to ensure that a collision-free path can be 

generated between the via points. If the path remains inside the bubbles, it will be 

collision-free. Obviously, a straight line between the via points will satisfy this 
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requirement for the circular bubbles. However, by selecting more complex curves, this 

method can significantly enhance the path from a control point of view. It is simpler to 

explain using the following pseudo-code: 

Figure 3.7: Elastic Band planner performance in static and dynamic 
obstacles  
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Algorithm 2 Elastic Band Algorithm 
1: eb[0] = path.start 
2: i = 0 
3: for each point along path 
4:   if dist(eb[i],point)> c 
5:     eb.add(point) 
6: while robot not at path.goal 
7:   for each bubble b in eb 
8:     f_e = b.pos – closestObstacle(b) 
9:     f_i = (b.pos – eb[b.i – 1].pos) + (b.pos – eb[b.i + 1].pos) 

10:     b.integrate(f_e+f_i, b.vel) //update velocity from forces 
11:     b.dampen(b.vel) //filter state 
12:     b.integrate(b.vel, b.pos) 
13:     dist = abs(b.pos – eb[b.i + 1].pos) 
14:     if dist > c 
15:       eb.add(midpoint(b, eb[b.i+1])) 
16:     if dist < c_min 
17:        eb.remove(b) 
18:   tmp_goal = eb.closestbubble(path.robot + lookahead) //set goal from 

robot position 

Timed-Elastic Band (TEB) Planner: TEB planner is an improved Elastic 

band planner for locally optimizing the robot's trajectory with respect to trajectory 

execution time, separation from obstacles, and compliance with kinodynamic 

constraints at runtime. The TEB planner optimizes robot trajectories by subsequent 

modification of an initial trajectory generated by a global planner. The objectives 

considered in the trajectory optimization include the overall path length, trajectory 

execution time, separation from obstacles, passing through intermediate waypoints, 

compliance with the robot's dynamic, kinematic, and geometric constraints, and 

dynamic obstacles. It also allows efficient online motion planning of robots. Figure 3.8 

shows the general robot system with TEB planner. 
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3.4 Experiment Setup  
To test and evaluate the approach from [7], we formulate a simple test where 

the robot navigates from the initial point to several checkpoints and a final goal point. 

Fig. 6 describes the robot navigation point in each environment. We designed the 

checkpoints based on the unseen obstacle position in the 3D environments to evaluate 

how the robot performance avoids the unseen obstacle using different combinations of 

sensors, maps, and local planners.  

The testing scenario is divided into 2 stages such as in Table 3.1. In each 

scenario, several combinations are configured in the RNS system and 3D environment 

to investigate and analyze the performance of robot navigation with different types of 

unseen obstacles. The navigation parameters in RNS are defined in Table 3. 2. We used 

small values on inflation radius to evaluate the effect of the 2D predicted map and 2D 

LiDAR only, navigation with sensor fusion and raw map and raw map with 2D LiDAR 

only in the experiments. The inflation radius is a safety distance parameter around the 

obstacles. Suppose the value of the inflation radius is more than 0.1. In that case, the 

Figure 3.8: General TEB planner architectures for robot navigation system 
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2D LiDAR can neglect the narrow free space between the table and chair legs. Also, 

sometimes robot is difficult to enter a narrow space.     

We evaluate the efficiency of local planners with a different type of 2D map by 

calculating the path length and the average time to reach the goal. In addition, we define 

the percentage of the success rate of each episode based on achieved checkpoints(cp). 

If the robot cannot reach a cp1 in less than 2 minutes, the navigation process to reach 

cp1 will terminate and attempt to the next cp.  

We used a laptop with intel® Core TM i7-8750 CPU @ 2.20GHz processors 

with eight cores, 16GB RAM, NVIDIA GeForce RTX 2070 graphics card, and Ubuntu 

18.04 LTS 64bits operation system. The Toyota HSR is used for the development of 

 

Tabel 3.2: Navigation parameters in RNS 

Costmap Common Parameters 
Parameters Values 
Radius  0.25 
Laser_scan_layer : 

Topic: hsrb/base_scan 
Clearing  True 
Obstacle_range 2.0 
Raytrace_range 3.0 

RGBD__layer : 
Topic: /head_rgbd_sensor/ 

depth_registered_poi
nts 

Clearing  True 
Obstacle_range 6.0 
Raytrace_range 10.0 

inflation radius          0.1 
cost scaling factor 10.0  

Global costmap parameters 
update frequency  10  
static map True 

Local costmap parameters 
update frequency  10  
rolling window width true 
height resolution 0.025 
publish frequency  1.0  
static map false  
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this project [18]. It has an omnidirectional dual-wheel caster drive that can move in any 

direction on a 2D plane and sensors used for 2D and 3D cameras.  

3.5 Result and Discussion 
From 2 stages, 10 experiments were carried out for each local planner and map, 

environment, and sensor combination. 18 subsets of tests were conducted, totaling 180 

navigation experiments in simulated environments. The primary purpose of these 

investigations is to evaluate the robot’s navigation behavior in unseen obstacles, maps, 

and environments using 2D LiDAR only and sensor fusion. The raw map and 2D 

LiDAR results indicate that the local planner could not generate a collision-free path 

when facing the table, chair, and sports equipment. On the other hand, the predicted 

map with 2D LiDAR only and sensor fusion with the raw map can still manage the 

difficult obstacle. In this experiment, we conduct different rules for this configuration.  

Tabel 3.3: Investigation and comparison results between 2D map prediction with 
RNS and conventional method 

 
 

Figure 3.9: Start, checkpoints and goal for the robot navigation test in SH and LH 
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Figure 3.10: Example results using the raw map and conventional local planners. 

The robot cannot avoid by only using laser rangefinders. 

 
Figure 3.11: The example results of using predicted map. We used laser 
rangefinders only. The predicted map has significant role to improve the 

navigation performance in real-world obstacle condition. 

We terminate the simulation when the robot hits an obstacle or is freezing for 

more than a minute. It is difficult for the local planners to pass the table and chair safely 

by using raw map configuration such as in the Figure 3.10. However, the trial-error 

parameter tuning in inflation layers can be used to find the appropriate inflation layer 

using the raw map and 2D LiDAR only. Nevertheless, this method is time-consuming 

and  



CHAPTER 3. ADVANCED INVESTIGATION ON 2D PREDICTED MAP 
 

 46 

tedious due to should be tried every time the map and environment change. Table 3. 

the presented the quantitative result from the navigation experiment. As we expected,  

all the local planners with laser and the 2D predicted map outperformed in each 

environment, TEB Planner and EBand Planner managed a 100% success rate in SH 

and 75% in LH. In the predicted map, the local planners could find the collision free 

path easily by only using the 2D LiDAR due to the unseen obstacle has already 

predicted by the obstacle prediction networks. When the robot faces the chair, table, 

and sports equipment, the tiny footprint represented in the raw map can be merged into 

the predicted map. Therefore, the free-collision area between tiny obstacles is become 

new obstacle footprint that make the local planner to generate safer collision free path. 

The example behavior of the robot using the predicted map is shown in Fig. 8. DWA 

planner with the predicted map only attains a 75% success rate in SH due to a freezing 

behavior when the robot approaches the cp1 in SH but can safely avoid the obstacle in 

another unseen obstacle. It is due to the limitation of DWA Planner when facing the 

narrow space, as explained in [46]. All the local planners with a predicted map could 

not reach the maximum success rate in the LH environment. It is due to the mobile base 

colliding with the flat surface of the chair's leg, as shown in Figure 3.12. This type of 

chair is hard for the robot to avoid collision by only using the 2D LiDAR. Therefore, 

after the robot hits the chair, the robot will move to the following cp to finish the 

mission. Figure 3.13. is an example of the robot avoiding collision with sports 

equipment objects using the 2D LiDAR and RGB-D camera. When we used the 

conventional sensor fusion method, the detected free space between the wall and the 

table from the camera could be considered an alternative path for the robot.  

 

 

Figure 3.12: The example results in failed navigation behavior using the predicted 
map and TEB Planners. The other planners also failed in this stage. The predicted 
map could not predict this type of chair. The leg part of the chair has a flat surface 

that is adhered to the floor. 
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Nevertheless, the robot cannot pass the narrow space due to its size. Therefore, some 

local planners could not achieve the maximum success rate due to this limitation. TEB 

Planner achieves the best results among 3 conventional sensor fusion approaches with 

a success rate of 100 % in SH and 75% in LH. While EBand Planner has second best 

performance and reached a success rate of 60% in SH and 75% in LH. DWA Planner 

has only reached a 40% success rate in SH and 75% in LH. Overall, the path length for 

each local planner with the highest success rate did not significantly differ. It is because 

we used the static obstacle only. 

3.6 Summary 
This paper presented an investigation and comparative study of the approach to 

solving unseen or partially observed obstacles using only 2D LiDAR. We compare the 

result of Kollmitz et al. [7] with the conventional method to perform the navigation and 

avoid a collision from an object such as a table, chair, and sports equipment that is 

difficult for 2D LiDAR to fully observed. The conventional method uses sensor fusion, 

such as a combination of RGB-D camera and 2D LiDAR. All methods were evaluated 

using the RNS in the simulated 3D environment. All the local planners with 2D LiDAR 

and the 2D predicted map had achieved significant performance in each environment 

than only using the conventional method with raw map. Since the learning-based 

(DRL) local planner uses the recorded map to avoid static obstacles, the 2D predicted 

map could be considered a future work application for the learning-based local planner. 

 
Figure 3.13:  The example results from using 2 observation resources. We used X-
Tion RGB-D camera and laser rangefinders. The robot can avoid a collision with 

sports equipment obstacles.   
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Chapter 4 

4. Activity Recognition From 3D Object-Oriented 
Map 

4.1 Introduction 
The problem of a large elderly population and a low birth rate has become a 

serious social issue in several nations. Thus, developing a homecare robot to do work 

is being considered as a potential solution to the problem of the increase in aging 

societies across the globe. Many homecare robots are equipped with various sensors, 

such as RGB-D cameras, 2D LiDAR, stereo cameras, and arms, to understand a 

situation and carry out physical tasks in a dynamic environment. Furthermore, the 

Robot Operating System (ROS) is designed as a software system architecture to 

manage sensor inputs and outputs in many robotics applications. Many researchers are 

interested in developing a learning model for understanding the context of the 

environment from object detection and human behavior estimations [77]–[80]. This 

capability affects the level of interaction with the environment and the action that is 

performed. For instance, a homecare robot at home is expected to take the initiative to 

help in the daily household chores, such as performing tasks in the kitchen to prepare 

food or wash the dishes, etc. Then, the question arises: What information will the robot 

need to help humans in their daily activities? Some of that information is defined 

below: 

• The robot must obtain information on the objects in the home environment, 
including the class, position, and orientation of the objects. 

• The robot needs to know the position of the human and recognize the activity 
when the human interacts with several objects at home.  

However, it is no easy task to obtain this high level of ability in homecare 

robots, such as understanding human activity from semantic information and human-

object interaction (HOI). Many efforts have been made to recognize human activities 

using images and videos with 2D and 3D visual information [81]–[84]. Semantics and 

the context of a situation are usually used for classification, which involves typical HOI 
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[85]–[87]. However, most of their frameworks require massive, labelled datasets and 

much training time to achieve a high level of accuracy. 

Recently, studies on the analysis of graphs using machine learning have been 

gaining more attention because of the outstanding expressive power of graphs. For 

instance, graphs can be used to denote a large number of applications across different 

scopes, including the extraction of topologies and geometries from 3D object detection 

or point cloud [88]–[90], natural science problems [91], [92], pharmaceutical research 

[93], [94] and other areas [95]. Graph computation, which is a unique form of data 

structure for supervised and unsupervised learning strategies, focuses on tasks, such as 

clustering, link prediction, and classification. Graph neural networks (GNNs) are deep 

learning-based approaches in the graph domain. Due to their effective performance, 

GNNs have lately become a widely used strategy for the analysis of graphs. Therefore, 

formulating these interactions into a graph representation based on the detected object 

and human features will be of significant help to the robot in learning human activities 

and deciding on the appropriate tasks.  

In this paper, an efficient learning method was proposed to predict daily human 

activities in an indoor environment. The approach used a GNN, which was trained 

based on activities recorded directly from the Toyota HSR (Human Support Robot). 

The activities were labelled directly from human speech. The real-time YOLOv3 object 

detection [96] and MediaPipe [97] face detection frameworks were implemented using 

an Xtion RGB-D camera from the HSR head to obtain the object class, geometry, and 

human face position in a real indoor environment. Human activity is a huge topic in 

robotics. Therefore, the aim of this paper is to create a method to learn and predict three 

specific activities, namely, eating, reading, and working, from utterances. With this 

method, the robot can be trained to predict daily human activities in real-world 

applications using ROS environment. A human activity dataset recorded directly from 

a human-robot communication (HRC) system was also introduced. To summarize, the 

contributions of this work are as follows:  

• A GNN model was proposed that utilized the prior information from HOI and 
HRC to classify human activities, especially eating, reading, and working, in a 
very similar environment. 
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• The proposed method can efficiently construct the labelled dataset using 
human-robot communication. When the robot detects a human doing an activity 
with some objects, the center of the detected 2D bounding box object is 
transformed into a 3D position. Then, the human can ask the robot to collect 
the dataset of the current activity and train the teaching data using utterances.  

• The method was applied using a Toyota HSR robot with an ROS environment 
system in a real-world indoor environment. The proposed method can tackle 
the problem of activity recognition in a very similar environment, which is 
difficult to classify using conventional 2D CNN.  

The rest of the paper is arranged as follows. Section 4.2 discusses the method 

and explains the related works and the GNN strategy, along with explanations of the 

network configuration and various features. Following this, section 3 presents an 

evaluation of the approach in a real-world indoor environment, as well as a comparison 

with multiple dataset combinations. The conclusions are given in section 4. 

4.2 Human Activity Recognition 
Human activity recognition (HAR) is one of the most difficult tasks in robotics 

and computer vision since it requires assigning a label to each activity. HAR can be 

divided into three types: (1) by vision, (2) by sensors, and (3) by waves/radio. (1) Vision 

Figure 4.1: Data collection system of proposed method and graph data 
representation 
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typically refers to a camera that utilizes red, green, and blue (RGB) colours from a 

video to identify a human activity [4], [22]. Nevertheless, RGB is just a 2D vision, and 

does not indicate how far the object is. Therefore, a depth camera was added to the 

vision to make it RGB-D [23], [24]. By having depth, the 3D position of an object or 

human can be efficiently recognized, and the HAR can be realized using the 3D pose 

and visualization [10]. (2) Sensors refer to devices that do not use RGB-D data [25], 

such as mobile phone accelerometers and gyroscopes. The data is numeric and reliable, 

but the drawback of this method lies in the coverage issue, where the individual is 

required to always carry the device. (3) Finally, waves/radio is the latest technology 

that utilizes Wi-Fi signals to predict human activity [26]. The recognition coverage is 

more extensive and there are no problems with privacy. However, this method is still 

new and requires more extensive research to make it more reliable. 

4.3 Human-Object Interactions to Recognize the 
Human Activity 
Recognizing human activities using graph convolutional neural networks has 

attracted the attention of many robotics and computer vision researchers in recent years. 

Activity recognition is required for homecare robots that are taking care of children, 

the elderly, or persons with disabilities. With this implementation, the inference of 

Figure 4.2: Processing a subgraph in edge conditional convolution method 
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human activities using perceptual information plays an important role in human-robot 

interactions, smart surveillance, and content-based video analysis. A lot of work has 

been conducted toward predicting human activities in 2D and 3D images and videos 

where the overall technique observes and correlates with HOI.  [57]–[60]. The principal 

method for predicting HOI is extracting visual characteristics from instance detectors 

and spatial knowledge to instantiate multi-streams of deep neural networks. Each 

stream includes detected human and contextual objects. The last step is designed for 

inference application. The work of [57] presented the forecasting of a human activity 

by predicting the possible trajectory movement towards a targeted object from RGB 

and depth sensors data. Using this strategy, the predicted trajectory for the ongoing 

action can be visualized. However, the camera should be set up at a certain distance 

and height to avoid the broader field of view that may lead to occlusions and poor 

activity prediction. Wang et al. [61] proposed a fully-convolutional approach that 

predicts the interactions between human-object pairs from RGB images. The network 

can predict the context of human activities by localizing the interaction points from the 

object, human and pairwise streams. 

GNN has been utilized to predict human activities from HOI by extracting the 

image features into graph structures. Qi et al. [58] used a graph parsing neural network 

to detect HOI and predict human activity from various RGB datasets. Morais et al. [59] 

introduced asynchronous-sparse interaction graph networks, which are constructed 

from the temporal structure and content label of human-object interaction activities. 

This method uses a graph attention network model for HOI detection in the RGB 

dataset. Their approach involves the construction of nodes and edges from visual 

features. An adjacency matrix defines the structure and properties of the networks and 

is updated by a weighted sum of the messages from the other nodes. Finally, for 

interaction inference, a node readout function is employed. Simonovsky and 

Komodakis [62] proposed the edge-conditioned convolution (ECC) GNN, a spatial 

domain operation on graph signals in which filter weights are conditioned on edge 

labels and dynamically formed for each input sample. It was demonstrated that this 

strategy could generalize the traditional convolution on graphs if edge labels are 

suitably chosen, and this claim was empirically tested on MNIST. Moreover, this 

method was also evaluated for point cloud classification, achieving a new state-of-the-

art performance on the Sydney dataset. The current work was inspired by [62], and 
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their model was used for the proposed method. A 3D object and human pose of point 

clouds data were used to construct the edge features for the graph data by transforming 

the center of the 2D bounding boxes of the YOLO and Mediapipe face detection 

frameworks into the 3D point cloud by utilizing the ROS library features. The data was 

labelled using human speech when the robot questioned the human to learn the HOI. 

In the application for this study, a 3D object and human pose data were used to 

construct the graph data by transforming the center of the 2D bounding boxes into a 

3D point cloud by utilizing the ROS library features. The data was labelled using 

human utterances in a human-robot communication scenario for the data collection. 

The data was collected during the ongoing activity, and the robot asked the human, 

"What are you doing now?". Then, the uttered answer would be specified as an activity 

label. After collecting the data, a graphical representation was constructed for the 

training process.  

4.4 Data Preparation 
 This section explains the approach for predicting specified human activities at 

home from a homecare robot system in real-world applications. The dataset was pre-

processed and collected from the YOLO and MediaPipe face detection frameworks, 

and each detected object and activity were classified using direct communication with 

the Toyota HSR robot. The activity labels were specified into 3 categories: eating, 

Figure 4.3: The proposed GNN with ECC for the activity recognition 
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reading, and working. Next, a graph convolutional neural network proposed by [62] 

was used. The data collection process for the approach is shown in Fig. 1, where the 

dataset from the YOLO object detection and MediaPipe face detection frameworks was 

collected using an Xtion RGB-D camera from the Toyota HSR head. 

 To obtain the 3D position of each detected object and a human face, we 

transform the center of the bounding boxes of each detected object and a human face 

by using the point cloud data type service in the ROS environment and transform it into 

3D real-world position by using tf2 of ROS library [98]. Afterward, the object and 

human position can be constructed in a graph representation. During the labeling 

process, our robot only has a Japanese voice system. Therefore, we conduct the human-

robot communication for label collection in Japanese such as in this video 

[https://youtu.be/WI8vl_UJwCc]. We used Google Could Speech-to-Text frameworks 

[URL : https://cloud.google.com/speech-to-text] to recognize the human voice and 

convert it to text. We stored the collected dataset on the server PC for graph 

construction and training.  

4.5 Graph Construction and Features 
In this paper, we represented the HOI containing the relationships between 

human positions and the surrounding objects as a graph form 𝐺 = (𝑉, 𝐸), where 𝑉 is 

the set of |𝑉| = 𝑁,	 and 𝑁  denoted as the centroid of 3D detected object 𝑝 ∈ 𝑃 .  

Meanwhile, 𝐸	is a set of edges with |𝐸| = 𝑀, where 𝑀 is the number of edges. Then, 

we specify each detected object to graph signal by  𝑋"(𝑖) = 𝑋N(𝑝). Then, we connect 

each node 𝑖 to all nodes 𝑗 by directed edge (𝑗, 𝑖). In our works, we specify an edge from 

𝑗 to 𝑖 by calculating the distance of each number of centroids from the detected object 

by 𝑑 = 𝑃O − 𝑃3 	where 𝑑 represented in cartesian coordinates as 3D edge label vector  

𝐿(𝑗, 𝑖) = (𝑑2 , 𝑑B , 𝑑=) and  𝐿: 𝐸 → ℝP×R   is feature matrix with features number of 

each edges 𝐶. Afterwards, the node embedding is constructed from the name of the 

YOLOv3 object class by creating the vocabulary dataset, which encodes the object 

names with their IDs. The ID is an integer (index) that identifies a word's position in 

the vocabulary dataset such as shown in the subgraph in Fig. 2. The vocabulary dataset 

to construct the node embedding is arranged as follows: 

 



CHAPTER 4. ACTIVITY REGOGNITION FROM 3D OBJECT-ORIENTED MAP 
 

 55 

{"face": 0, "tvmonitor": 1, "laptop": 2, "mouse": 3, "keyboard": 4, "book": 5, "soup": 

6, "sandwich": 7, "salad": 8, "pizza": 9, "cup": 10} 
 

 

4.6 Graph Neural Network with ECC Graph Neural 
Network with Edge-Conditioned Convolution 
A GNN can solve many complex problems, especially for activity 

classifications [60], social network recommendations [95], and predicting chemical and 

molecular properties [62]. In this paper, a GNN was used with the ECC by [62] to 

process the normalized graph structure data. This approach was used [62] to perform 

the graph classification to predict human activities, such as eating, working, and 

reading. The entire architecture was made up of 4 ECC layers and 2 fully-connected 

(FC) layers. The 4 ECC layers were used to aggregate the information from each of the 

human interactions and objects, while the 2 FC layers were used to perform the final 

recognition. There are three aggregations (or message-passing) approaches in the ECC, 

which are "add", "mean", and "max", where "add" is to calculate the total neighbours' 

features, "mean" is to calculate the average, and "max" is to use the maximum features 

during the message-passing. In this approach, the "mean" for all the ECC layers was 

used to obtain stable features. The overview of the GNN architecture is shown in Fig. 

3. Moreover, the Cross-Entropy Loss function was utilized in the proposed GNN, as 

well as the Pytorch Geometric package [99], a python library dedicated to the GNN. 

The graph neural network can be described in the following form [62], [100] as: 

 
𝑋!(𝑖) =

1
|𝑁(𝑖)|

) 𝐹!
"∈ℕ(&)

+𝐿"&; 𝑤!/𝑋!()(𝑗) + 𝑏!  

𝑋!(𝑖) =
1

|𝑁(𝑖)|
	 ) Θ"&!

"∈ℕ(&)

𝑋!()(𝑗) + 𝑏!  

(4.1) 

where 𝑋S(𝑖) denotes the node embedding corresponding to the 𝑖-th vertex in 

layer 𝑙, and |𝑁(𝑖)| is the total number of neighborhood node of 𝑖-th node. Each layer 𝑙 

includes a multi-layer perceptron as a filter generating network 𝐹S with learnable 𝑤S 

and bias 𝑏S that implements aggregation between nodes 𝑖 and 𝑗 with edge
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embeddings	𝐿O3 .  The computed 𝑋S(𝑖) are used to train two FC networks for final 

prediction. We illustrated the ECC and the overall architecture of the proposed method 

in Fig. 2 and Fig. 3 respectively.   

4.7 Positional Data HOI and Scenarios 
To decrease the overfitting of small dataset, we collect the dataset by makes the 

data slightly different from one to another group of class of data. During the dataset 

collection, we specified 2 scenarios (A and B) for each activity and asked the subject 

to follow the scenario A and B in each specified task such as eating, reading, and 

working. To describe more detail about this scenarios, Table 1. describes the scenarios 

of human-object interaction for data collection. We decided to use 8 objects for 3 

activities. We collect the 𝑃" = +𝑝2 , 𝑝B , 𝑝=	/ from the human face and object position 

during human interaction with an object. When the data reached 1000 for each A and 

B scenario, the utterance was used to label the collected dataset. The human utterance 

is converted into text using Google speech-to-text [URL : 

https://cloud.google.com/speech-to-text]. This automatic speech recognition can 

accurately convert more than 125 languages. In total, there are 6000 data to train the 

GNN. Afterward, we use the collected dataset to transform it into graph data 

 

Table 4.1: Scenarios of the data collection 
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representation. We used 80% of the dataset for training the GNN, while 20% was for 

testing the networks.  

4.8 Comparison Method  
In this paper, the proposed method for the recognition of eating, reading, and 

working in a similar environment was compared with the DLA [101] and X3D 

networks [102] approach using different datasets. These two architectures commonly 

use an image or video dataset to make an image or video classification. Therefore, only 

6 videos were collected for each specified activity, where 4 videos were for training 

and 2 for testing. The video dataset was conducted with a slightly different scenario of 

object and environment, such as described in Fig. 4. Moreover, the video was labelled 

manually in these methods without a speech-to-text recognition framework.  

4.9 Experimental Results 
This section will discuss the experimental setup and several results. The object 

and human face detection was carried out using MediaPipe and YOLOv3. The centre 

of the object and face detection was converted into the 3D position using the ROS tf 

library, as shown in Fig. 5. The subjects were asked to use several objects to perform 

the specified tasks, such as eating, reading, and working. The Toyota HSR would ask 

Figure 4.4: Video dataset of eating, reading and working to train and test DLA and 
X3D networks as comparison methods.   
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what kind of activity was being done, and the subject would answer by speech. The 

robot would collect the detected object and face position with the utterance information. 

To visualize the brief experimental setup and the results in greater detail, the 

experimental example, data collection and inferencing were uploaded to this URL: 

[https://youtu.be/WI8vl_UJwCc]. In the proposed method, 100 epochs were used to 

train 4000 positional datasets, and the proposed architecture was tested with 2000 

positional graph datasets. However, by using DLA and X3D, 50 epochs were used to 

train the collected videos. Generally, video classification frameworks are trained with 

huge datasets with a high number of epochs, such as by using UCF101[103] and 

kinetics dataset [104]. However, this study had its limitations in terms of the dataset 

collection and computational cost. 

Table 4.2: Comparison results between the proposed method, DLA and X3D 

Network 
Architecture 

Total 
Training 

Data 

Total 
Testing 

Data Epoch Training 
Time(seconds) 

Training 
Loss 

Avg 
Training 
Accuracy 

(%) 

Avg 
Testing 

Accuracy 
(%) 

GNN with 
ECC(Ours) 

4000 
positional 

objects 

2000 100 100.346 0.0145 99.789 91.26 

DLA 4 videos 2 Videos 50 4030.784 0.306 99.96 22.67 
X3D 4 videos 2 Videos 50 129.456 7.187 91.00 64 

Figure 4.5: Experimental setup, collecting the dataset and visualizing the centre of 
the object into 3D Position. 
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4.10 Training Results 
 This section presents the results of the GNN with ECC by using positional 

datasets. Table 2 gives a comparison of the efficiency of the proposed method with the 

DLA and X3D network architectures. The details of the DLA architecture are presented 

in [https://github.com/kuangliu/pytorch-cifar] and those of the X3D network are 

presented in [https: //github.com/facebookresearch/SlowFast]. It can be seen from 

Table 2 that the proposed method can efficiently recognize reading, eating, and 

working from the dataset collection in general. The positional dataset was collected and 

labelled in csv file format. Therefore, less time was spent on processing this collected 

dataset than on training the video dataset as only the 3D position of the object had to 

be processed with 3 discrete classifications. However, the object and face positions had 

to be extracted from the YOLOv3 and MediaPipe frameworks beforehand. However, 

it took the longest time to train the 4 videos using the DLA architecture, among other 

methods. 2D CNN, which commonly requires many datasets and takes a longer time 

Figure 4.6: Confusion Matrix for Proposed Method, DLA and X3D 
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to achieve high accuracy, was used in the DLA architecture. In the X3D, a similar 

dataset as in the DLA was used, but the X3D showed a better performance with a 

shorter training time and higher accuracy than the DLA. The outstanding performance 

of the 3D CNN in X3D architecture is discussed in [102]. Feature extraction of the 

object and face detection was not required to classify the activity in X3D. The video 

only had to be resized for the dataset pre-processing,  

such as in the DLA. It could be concluded from the results that different datasets 

and tools have different training times and accuracy scores. Nevertheless, the proposed 

method outperformed the other methods, where the GNN with ECC was able to detect 

eating, reading, and working based on 3D position data, and achieved a shorter training 

time. The confusion matrix for each tool is shown in Fig. 7. The X3D network may 

achieve a similar result as the proposed method if the parameters are tuned and the 

number of epochs is increased. However, the duration of the training time may have to 

Figure 4.7: Inferencing test by using HSR Head camera 
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be increased. This will be investigated in a future work. By using this method, the robot 

will always be able to detect activities accurately while the objects and humans are in 

a 3D global position. Therefore, this method can be used directly for navigation targets 

or manipulation targets based on the current situation.  For the inferencing test using 

an HSR camera, the trained proposed network was tested for the detection of working, 

eating, and reading activities, as depicted in Fig. 7. 

4.11 Summary  
In this paper, a human activity prediction using a GNN with ECC model was 

proposed based on the concept of human-object interactions from pragmatic research 

on human-robot communication. To obtain a homecare robot that can help with human 

activities, the proposed model can teach a robot to recognize human-specific activities 

using utterances and object information. It was also shown that the proposed system 

can recognize the tasks for each specified activity and detect the object related to the 

selected activity. From the viewpoint of the graph with ECC layers, it was assumed that 

the human activity consisted of the positional relationship with objects around the 

target human and the meaning of those objects. The object position was obtained by 

combining object recognition and face detection, and it was converted into node 

embedding using a distributed representation of words. ECC layers was used to 

construct the graph representation for the prediction model. Since human prediction 

requires instruction, the system was configured with human speech instructions to start 

the data collection and training. Through experiments to determine the performance of 

the prediction model, it was confirmed that the model could achieve an accuracy of 

91% in the testing stage. The proposed method was also compared with the DLA and 

X3D networks. The proposed method had a lower training time as only the positional 

dataset collected from human interactions with objects was used to extract the features 

of the 2D object and face detections. However, the limitation of the proposed method 

only used the human 3D position. To detect more complex activities and discriminate 

different activities with a similar object, we need to use the whole human body 

movement dataset, such as the skeleton data. For example, the robot detects a human 

holding a book and standing in front of a bookshelf. This activity can be classified as 

reading or arranging the books on a bookshelf in our proposed method. Therefore, the 
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skeleton dataset representing a particular activity with a similar object should be 

considered to discriminate the different activities with a similar object in future work. 

Thus, the model can generate the robot task based on the current situation and 

environment.   
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Chapter 5 

5. Integration of 3D Object-Oriented Map and 2D 
Predicted Occupancy Map into Unified Map 

5.1 Introduction 
Maps are crucial in various mobile robotics applications, providing vital 

information for navigation and understanding the environment. Traditional research in 

this domain has primarily focused on geometric map representations, such as grid 

maps, which have been extensively studied and widely implemented. However, as the 

field of robotics progresses, there is a growing interest and significance placed on 

mapping not only geometric but also semantic information. The exploration and 

integration of semantic information into maps have gained increasing attention within 

the robotics researchers' community. This emerging trend is driven by the recognition 

that incorporating semantic understanding enhances the robot's ability to interact with 

and interpret its surroundings more effectively. Semantic maps enable robots to 

recognize and comprehend objects, scenes, and other contextual cues within their 

environment by going beyond purely geometric information. 

Including semantic information in maps provides a valuable foundation for 

advanced robotic functionalities, such as object manipulation, human-robot interaction, 

and task planning. Robots can better understand and reason about their surroundings 

by incorporating semantics into maps, leading to more intelligent and context-aware 

behaviors. This integration improves the overall performance and capabilities of 

mobile robots and enables them to adapt and cater to specific user needs in various 

application domains. 

To achieve accurate semantic maps for navigation purposes, extensive research 

has primarily focused on two approaches: object-based SLAM algorithms [105] and 

comprehensive 3D world reconstruction with semantic annotations [106]. However, 

there has been a noticeable increase in interest in maps that prioritize objects 

specifically [3], [107]–[109]. This shift is primarily driven by the practical advantages 
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of concrete object instances, which can be easily accessed and utilized in an object-

based approach. 

In many existing approaches that generate object-oriented maps, a common 

characteristic is the inclusion of a 3D object reconstruction alongside its corresponding 

position within the map. While including 3D information is crucial for tasks involving 

object manipulation, navigation tasks often require only 2D information, which is 

generally sufficient [63]. 

5.2 Unified Map Problem Formulation 
Generally, Maps show objects location in the environment. In this section, I will 

discuss the problem formulation of unified map by combining 2D predicted occupancy 

map and 3D object instances data. Let the map parameter is defined by ℳ =

(𝑃, 𝑂, 𝜀, 𝑐, 𝑠): 

• 𝑃 is a position of spatial location for each object. 
• 𝑂  denotes as object, which generally includes a 𝑣 ∈ 𝑉,  where 𝑉  is set of 

possible values and position 𝑝 ∈ 𝑃; 
• 𝜀 is an object entity 𝜀	 ⊆ 𝑂	, following the object definition 𝑂. 
• a “content” function 𝑐 : 𝑃 → 𝑂 that, given a position, returns a set of objects at 

that position.  
• a “search” function 𝑠  : 𝑉  → 𝑃  that, given a value, returns the positions of 

objects having that value. 
In here, I use 2D predicted occupancy map ℳ47 as a general representation of 

a grid map. As a result, each 𝑝T ∈ 𝑃T is represented as a row and column pair in a 

ℳ47; technically, 𝑃T =	{(r, c)	|	r, c	 ∈ ℕ}  . Each position relates to a cell 𝑜T ∈ 𝜀T, 

which has the object representation 𝑂 = (𝑣, 𝑝),	  where 𝑣 ∈ [0, 1]	  denotes the 

probability of the occupancy map. It is clear from this formulation that there is no 

simple way to get the extent of an item in grid maps for objects spanning several cells 

because each cell is treated individually. Object-oriented maps, on the other hand, 

should record identified items together with their extent. As a result, grid representation 

is inappropriate for these maps, and polygonal maps should be used instead. So, in 

object-oriented maps, an object  𝑜U ∈ 𝜀U, is defined by its label and occupied area, i.e., 

𝑂 = {(𝑣U , 	𝐴U)},	  with 𝑣U ∈ 𝑉U and 	𝐴U ⊆		𝑃U, where 𝑉U is the set of all class labels. 

In this situation, the position definition relates to coordinates in a frame of reference, 
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therefore 𝑃	 = 	 {(𝑥, 𝑦)	|	𝑥, 𝑦	 ∈ ℝ}.  Because the map representations differ, an 

application that has to manage information from various type of maps would require 

distinct routines to handle the different types of representations independently. Ideally, 

the application should only interface with a "master" map that contains all 

environmental knowledge derived from other maps. In this research, i present a system 

for providing uniform access to maps from various types of maps that I call Unified 

Map. The unified map framework is described in Figure 5.1.  

 
Figure 5.1: Unified map Framework. Integration from chapter 3 and chapter 4  

5.3 Unified Map Framework  
Let's specify a hypermap as ℳV 	= 	 (𝑃V, 𝑉V, 𝐵),  where 𝑃V  and 𝑉V  are the 

framework's definitions of position and value and	𝐵 = 	 {(ℳ3 , 𝕥3 , 𝕦3)}3;!W   respectively 

consists of the 𝑁 maps ℳ3 and the interface functions 𝕥3 and 𝕦3. The framework uses 

a function 𝕥3:	𝑃V → :	𝑃3 	to translate from its own position definition to that of the 𝑖-th 

layer, and a function 𝕦3:	𝑉V →	𝑉3 	 to translate from the framework value definition to 

that of the 𝑖-th layer. 

The "content" and "search" parts of the framework make use of the 𝕥3  and 

𝕦3 functions as follows: A collection of layers 𝐼 = {𝑖3 , 𝑖9, … , 𝑖I	}	at position 𝑝V ∈

𝑃V	and is specified as:  

 



 

 66 

�̂�(𝑝V, 𝐼) = {𝑐3(𝕥3(𝑝V))}3∈Y 5.1 

 

Instead, the "search" functions allow one to seek for the location of objects in a 

collection of layers I that have the value 𝑉V , and is defined as:   

𝑆�(𝑉V, 𝐼) = {𝕥3F!(𝑆3(𝕦3(𝑣V)))}3∈Y 5.2 

where t1 is 𝕥3F! inverse function.  

The unified and its layers are kept on the map server node. In addition to 

offering services that let other nodes query the map for data, it can store and load 

unified map files. Furthermore, the metadata of the unified is published, as is each 

layer's content that is published to a subject. The rviz plugin's unified map display has 

the ability to subscribe to the metadata topic. For the layers that subscribe to the relevant 

subjects, it automatically builds the required displays. The global position definition 

𝑃	V =	 {(𝑥, 𝑦)	|	𝑥, 𝑦	 ∈ ℝ} is used for spatial searches. There are other options for area 

inquiries in addition to point queries. A list of points can be used to represent a basic 

polygon as the area. Strings are the global value type 𝑉V . The framework uses the 

content function to obtain values from the layers when a service for a spatial query is 

performed, whereas the search function is employed when a service for a value service 

is queried. Following the formalism described in next section, the occupancy and 

semantic layers are represented as a grid map ℳ	  and a polygonal map ℳV , 

respectively. The layer implementation manages all conversion operations. 

 
Figure 5.2: Examples of the object visualization in 2D occupancy map from object 

detector frame work 

Polygonal object in 2D occupancy map: While incremental mapping for 2D 

occupancy maps is a well-studied problem, less research has been conducted on 

mapping for polygonal maps. According to the preceding section, a semantic object 
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Figure 5.3: Object visualization in 2D Predicted Map 

consists of a label 	𝑣U and an area 𝐴U. The area is defined by a set of polygon's vertices. 

During the process of mapping, new sensor data must be incorporated so that the area 

of this polygon can be estimated incrementally. This presents three primary difficulties: 

1) after each new reading, the labeled objects in the scene must be placed on the map 

with an estimate of their coverage area; 2) when a portion of the environment is 

observed again after some time, new readings must be integrated with the estimate of 

the area of already known objects; 3) confidence in the existence of objects must be 

updated whenever an already mapped area is observed, and eventually, objects with 

low confidence must be removed from the map.  

The evidence gathering process for semantic mapping can be divided into three 

phases: object detection, area generation, and map construction. Figure 5.3 depicts the 

information transfer between the camera and the map generator. A RGB-D camera is 

used as the mapping sensor. A commercially available deep learning algorithm 

performs object detection on the RGB image. Figure 5.3 depicts how, for each 

detection, the algorithm generates bounding boxes around the object. Occasionally, 

these bounding boxes may incorporate portions of the scenery. Consequently, the 

detected pixels are transmitted to corresponding points in a point-cloud generated from 

the depth image of the RGB-D camera, and the background is eliminated using a 

segmentation algorithm. 

Then, to ascertain the object's area on the map, the object's point-cloud cluster 

is projected onto the plane of the map frame. The transformation between the camera 

frame and the map frame must be known, so a localization is conducted on the existing 

occupancy layer. As an object's area, the convex hull is computed from the projected 

cloud. The region is forwarded to the map generator. 

The generator searches the map for analogous regions of the same class. The 

similarity is determined by calculating the Jaccard index of the new areas and any 

overlapping map area. Calculating the Jaccard index between areas A and B is as 

follows:  
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𝐽Z5(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| 

5.3 

If the index exceeds a predetermined threshold, it is presumed that the areas 

belong to the same object. If an object is determined to be a potential match for the new 

area, the area is added to the object's area list and the probability of its existence is 

increased. A new object is created if not. If the existence probability exceeds a 

predetermined threshold, the object is included in the map. 

The average centroid of all collected areas is calculated to determine the area to 

display for the object. The region whose centroid is closest to the mean is selected as 

the optimal region and depicted on the map. In order to eliminate falsely detected 

objects, the existence probability must be decreased if no object is detected. 

For this purpose, the camera's field of view is utilized: for each object on the 

map within the field of view of a sensor measurement that has not received new 

evidence, the probability of its existence is decreased. The visibility region is computed 

by projecting the entire camera point cloud onto the (𝑥, 𝑦) plane of the map frame and 

then computing the convex hull.  

5.4 Experiments Setup 
In this section I will discuss the experiments setup of unified map in human-

centered environment. The performance of unified map is compared to the Zaenker et 

al. [3] approach. Our approach is not only focus on mapping and polygonal 

construction, but I also focus on efficiency and safety during navigation in unified map. 

I test this framework on home-like environment such as in Chapter 3. I use the SH 

environment and 2D predicted and raw map to compare the unified map framework 

and Zaenker et al. [3] framework. I carried out 2 experiments, mapping and obstacle 

avoidance. I used the Toyota HSR and collected RGB-D data with an Asus Xtion Pro 

mounted at a height of 1.35m and in an angle of 36◦ from the horizontal facing down 

detect the surrounding object during mapping and obstacle avoidance. In the 

experiment of obstacle avoidance, I use 2D LiDAR only and TEB planner to show the 

performance that the proposed method has significant contribution and better 

performance.  
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Figure 5.4: Comparison Result of Mapping in 3D environment. 

5.5 Results on Mapping and Obstacle Avoidance 
In the mapping result, HSR's RGB-D camera can detect both tabletop and 

ground objects. In the proposed framework, I used YOLOv3 to detect the adjacent 

object, whereas the framework developed by Zaenker et al. [3] employed Yolact. The 

detection of visualization in Zaenker et al. is marginally more precise than in the 

proposed framework. For example, in a table with no chairs, polygonal forms such as 

the table dimensions can be generated. However, in the proposed framework, the 

polygonal form in the 2D predicted occupancy map only depicts a small table size. Due 

to an occlusion issue in the object detector, the camera generates the refrigerator 

information despite the fact that there is no refrigerator in the larger room section.  

In terms of performance in obstacle avoidance, the proposed method 

outperforms the Zaenker et al. [3] framework. In this investigation, the 2D predicted 

map plays the most significant role. The Zaenker et al. [3] framework utilizes only the 

conventional map from gmapping. The detected object only displays its size, color, 
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class, and shape, while the visualization that covers unoccupied cells in the occupancy 

map is not represented as an obstruction. Consequently, this infrastructure is required 

for camera usage during obstacle avoidance.  

 
Figure 5.5: The comparison results in collision avoidance 

 

5.6 Summary  
In this chapter, the unified map is constructed using 3D object-oriented data and 

a 2D map of predicted occupancy. Using polygonal map visualization in 2D predicted 

maps and obstacle avoidance, the performance of the proposed framework is evaluated. 
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I compare the proposed framework to the framework developed by Zaenker et al. [3] 

The results are depicted in Figures 5.4 and 5.5, which show that the proposed 

framework excels in obstacle avoidance using only 2D LiDAR and that the mapping 

performance is competitive despite the framework's slightly less accurate object record 

and visualization.   
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Chapter 6 

6. Concluding Remarks 

6.1 Conclusion  
 

 In this thesis, I have presented a novel method to unified map by utilizing 

modular object representations. Our approach differs from previous works in the way 

the created map is represented, as it allows for the incorporation of multiple 

representations within a single framework. This flexibility enables us to capture a richer 

and more comprehensive understanding of the environment. One key contribution of 

our approach is the 2D predicted occupancy map. The 2D predicted occupancy map 

can make the robot rely on 2D LiDAR only during navigation in 3D real-world 

environment and dynamic obstacle. Additionally, i have introduced a new applicability 

of the unified map for human activity recognition.  The data of unified map can be used 

for service robot to understand the semantic representation more deeply by using GNN. 

To evaluate the effectiveness of our approach, we conducted four real-world 

experiments. The results obtained from these experiments demonstrated significant 

improvements in performance when compared to an existing framework. Various 

metrics were employed to assess the quality and reliability of the mapping outputs, and 

our approach consistently outperformed the comparative framework. Furthermore, we 

evaluated the runtime performance of our system, specifically focusing on its capability 

for online mapping while the robot is in motion within the environment. The evaluation 

results highlighted the efficiency and effectiveness of our approach in generating real-

time mapping results, indicating its practical applicability for dynamic environments.  

In summary, our research presents an innovative approach to online semantic 

mapping by employing modular object representations. Through the incorporation of 

multiple representations, likelihood calculations, and object refinement steps, our 

approach enhances the accuracy, robustness, and runtime efficiency of the mapping 

process. The conducted experiments validate the efficacy of our approach, showcasing 

its superiority over existing frameworks.  
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6.2 Future works 
In the future works of the unified map, a key objective is to integrate lifelong 

mapping techniques into the existing framework. Lifelong mapping refers to the 

continuous updating and prediction of the 2D occupancy map in real-time, using only 

a 2D LiDAR sensor. This approach offers several advantages, including the ability to 

dynamically adapt the map based on evolving environmental conditions and the 

elimination of the need for additional sensor inputs. 

To further enhance the capabilities of the unified map, the visualization of 2D 

object polygons will be incorporated through the utilization of an RGB-D camera. This 

integration will enable the map to capture and represent not only the spatial occupancy 

information but also the geometric characteristics of detected objects. By incorporating 

object polygons, the resulting map becomes more informative and visually 

interpretable, allowing for a more comprehensive understanding of the environment. 

One significant advantage of this proposed approach is the direct usability of 

the resulting map within the unified map framework. Unlike traditional methods that 

require extensive preprocessing steps to refine and align the map data, the integration 

of lifelong mapping and object polygon visualization eliminates the need for such 

preprocessing, simplifying the overall mapping process. Consequently, the unified map 

can be readily utilized in various robotic applications without significant delays or 

complex data transformations. 

Furthermore, in order to exploit the rich information available in the 

environment, the structural elements of the scene, such as architectural components, 

will be leveraged to refine the map's accuracy and detail. These elements provide 

contextual information that can significantly improve the map's understanding of the 

environment. By incorporating this additional information, the map becomes more 

robust, enabling more accurate localization, object detection, and scene understanding. 

Moreover, the map information will be employed for room classification tasks. 

The objective is to enable the robot to categorize different types of rooms based on the 

objects detected within them. This classification capability is particularly relevant in 

human-centered environments, where distinct types of rooms, such as kitchens, 

bedrooms, living rooms, bathrooms in residential settings, or workspace areas in office 

environments, hold specific functional characteristics. By analyzing the objects present 
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within a given room, the robot can infer the room's purpose, facilitating context-aware 

decision-making and task execution. 

Overall, the future development of the unified map aims to integrate lifelong 

mapping, object polygon visualization, and the utilization of structural elements to 

create a comprehensive and efficient mapping framework. This framework not only 

reduces the preprocessing burden but also enables accurate room classification, 

empowering robots to navigate and interact intelligently in a wide range of 

environments.
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