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Abstract. In our previous work, we characterized Solovay reducibility using Lipschitz
condition, and introduced quasi Solovay reducibility (qS-reducibility, for short) as a Hölder
condition counterpart. In this paper, we investigate effective dimensions and ideals closely
related to quasi Solovay reducibility by means of the rate of convergence. We show that
the qS-completeness among left-c.e. reals is equivalent to having a positive effective
Hausdorff dimension. The Solovay degrees of qS-complete left-c.e. reals form a filter. On
the other hand, the Solovay degrees of non-qS-complete left-c.e. reals do not form an ideal.
Based on observations on the relationships between rational sequences and reducibility,
we introduce a stronger version of qS-reducibility. Given a degree of this reducibility, the
lower cone (including the given degree) forms an ideal. By developing these investigations,
we characterize the effective dimensions by means of the rate of convergence. We give a
variation of the first incompleteness theorem based on Solovay reducibility.
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1. Introduction

1.1. Background. Martin-Löf randomness, also called 1-randomness, has been the central
notion in the theory of algorithmic randomness. Informally speaking, a real is random if
its binary expansion is complicated in a certain algorithmic sense. In particular, left-c.e.
random reals have many interesting properties. Here, a real number is called left-c.e. if
the left set of its Dedekind cut is computably enumerable. For the general background on
the study of randomness, see Downey and Hirschfeldt[6] or Nies[13].

The starting point of our discussion is the following theorem.

Theorem 1.1 (Demuth[5], Downey et al. [7].). If the sum of two left-c.e. reals α, β is
1-random, then at least one of α or β is 1-random.

See also Corollary 9.5.9 of [6]. The theorem intuitively says that, in the unit interval of
the real line, the addition of two non-random reals results in a non-random real.
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Our main goal of this paper is to reinvestigate the theorem above in terms of the rate
of the convergence inspired by the recent result by Barmpalias and Lewis (Theorem 1.2)
and our previous work on quasi Solovay reducibility.

Solovay reducibility is a preorder that compares two reals in terms of algorithmic com-
plexity. A real α is Solovay reducible to a real β, α ≤S β in symbols, if there exists a partial
computable function f from Q to Q and a positive constant c such that for each rational
q < β, f(q) < α is defined and α− f(q) < c(β− q). Informally speaking, if we have a good
approximation q of β then we get a good approximation f(q) of α. If we restrict ourselves
to the left-c.e. reals, Solovay completeness coincides with 1-randomness. Miyabe et al. [12]
studied effective dimensions and Solovay degrees. Among others, the sum of non-random
reals is studied by means of the concept of ideals of the partially ordered set.

We may view Solovay reducibility from the perspective of analysis. In our previous
work (Kumabe et al. [8]), we showed that for left-c.e. reals α and β, α ≤S β if and
only if there exists a Lipschitz continuous function from (−∞, β) to (−∞, α) satisfying
certain conditions. We also introduced the concept of quasi Solovay reducibility, which
corresponds to the Hölder continuous functions. A real α is quasi Solovay reducible to
a real β, α ≤qS β in symbols, if there exists a partial computable function f from Q to
Q and positive constants d, ℓ such that for each rational q < β, f(q) < α is defined and
(α − f(q))ℓ < d(β − q). We showed that for left-c.e. reals α and β, α ≤qS β if and only
if there exists a Hölder continuous function from (−∞, β) to (−∞, α) satisfying certain
conditions.

In this paper, we investigate effective dimensions and ideals closely related to quasi
Solovay reducibility. The most important concept in our method is the rate of convergence.
Barmpalias and Lewis-Pye[2] investigate a quantity similar to the left-hand derivative.

Theorem 1.2. (Barmpalias and Lewis-Pye[2]. See also Miller [11]. ) Suppose 〈an〉 ↗
α, 〈bn〉 ↗ β. If β is random, then the following hold.

lim
n→∞

α− an
β − bn

exists.

Moreover,

• The limit value is independent of the choice of sequences.
• The limit value = 0 if and only if α is not 1-random.

1.2. Overview. In Section 2, we characterize qS-completeness among left-c.e. reals by
means of Solovay reducibility and dimension. In particular, qS-completeness is equivalent
to having a positive dimension. In Section 3, we investigate some ideals of left-c.e. reals.
We show that the Solovay degrees of qS-complete reals form a filter. On the other hand,
the Solovay degrees of non-qS-complete reals do not form an ideal. We investigate the
relationships between rational sequences and reducibility, and by means of those investi-
gations, we introduce a stronger version of qS-reducibility. In the stronger version, the
lower cone below (≤) a given degree forms an ideal. In Section 4, by developing Section
3, we characterize the effective dimensions by means of the rate of convergence. Section
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5 is an appendix. As a by-product of our observation, we show a variation of the first
incompleteness theorem by means of Solovay reducibility.

1.3. Notation. In this paper, 〈an〉n∈N, or 〈an〉 denotes a sequence of numbers. Unless
otherwise specified, α and β denote left-c.e. reals.

Convention on sequences: Throughout the paper, unless otherwise specified, 〈an〉 ↗
α denotes that 〈an〉 is a strictly increasing computable sequence of rationals, and 〈an〉
converges to α.

We are mainly interested in Solovay reducibility and quasi Solovay reducibility and
their stronger versions. In their analysis, K-reducibility and strong K-reducibility play an
important role to connect our analysis to effective dimensions.

Definition 1.1. A real α is called K-reducible to a real β, α ≤K β in symbols, if K(α ↾
n) ≤ K(β ↾ n)+O(1). Here, K is the prefix-free Kolmogorov complexity , and α ↾ n is the
first n bits of the binary expansion of α.

Definition 1.2. A real α is strongly K-reducible to a real β, α �K β in symbols, if
limn→∞(K(β ↾ n)−K(α ↾ n)) = ∞.

Clearly, if α �K β, then α ≤K β. The converse does not hold; we will see stronger
results later.

2. Characterization of qS-complete reals

In this section, we characterize qS-complete reals by means of Solovay reducibility and
dimension. In the first subsection, we review previous work on Solovay reducibility and
K-reducibility, and we show a slightly stronger result than the original. Throughout the
paper, we sometimes use Lemma 2.1. In the second subsection, we show that qS-complete
left-c.e. reals are characterized by means of a positive effective Hausdorff dimension.

2.1. Solovay reducibility and K-reducibility. Solovay reducibility implies K-reducibility.
It is known that the inverse implication does not hold ([7]). On the other hand, strong
K-reducibility implies (a property slightly stronger than) Solovay reducibility.

Proposition 2.1. (Prop. 2.3 of [12]) Let α, β be left-c.e. reals. If α �K β then α <S β.

The proof of Prop. 2.1 in [12] is useful when we are interested in rational sequences
converging to α and β under assumption of α �K β. For later convenience, we reconstitute
the main part of the proof in a generalized form. See the notation section for the convention
on sequences 〈as〉.

Lemma 2.1. Let α, β be left-c.e. reals. Suppose that 〈as〉 ↗ α and 〈bs〉 ↗ β. Let ℓ,m be
positive reals.
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(1) If limn(K(β ↾ ℓn)−K(α ↾ n)) = ∞, then there exists a strictly increasing sequence
〈sn〉 of natural numbers with the following properties: For almost all n and for each
s such that sn ≤ s ≤ sn+1, the inequalities Eq. (1) and Eq. (2) below hold:

α− as ≤ 2−n(1)

β − bs ≥ m2−ℓ(n+1)(2)

(2) If lim supn(K(β ↾ ℓn) − K(α ↾ n)) = ∞ then there exists a strictly increasing
sequence 〈sn〉 of natural numbers with the following properties: For infinitely many
n, the above-mentioned inequalities Eq. (1) and Eq. (2) hold for all s with sn ≤
s ≤ sn+1.

Remarks (for both assertions). (a) In the case where β is rational, the assumptions on the
limit do not hold. Thus we may assume that β is irrational.

(b) The sequence 〈sn〉 need not be computable.
(c) For simplicity, we concentrate on the case where ℓ,m are positive integers. The

following proof works for the general case with minor changes. In the general case, a real
number expressing the length of a string should be replaced by a certain integer. For
example, β ↾ ℓn should be replaced by β ↾ bℓnc.

Proof. (1) Given n, let sn be the least s such that as ↾ n = α ↾ n. Then we have
α− as ≤ α− asn ≤ 2−n for each s such that sn ≤ s ≤ sn+1. Therefore, we have Eq. (1).

If the string asn ↾ n is given, we know n as its length, and we can find sn by means of
sequence 〈as〉. Then we can compute bsn ↾ ℓn, which implies the following inequality:

(3) K(bsn ↾ ℓn) ≤ K(asn ↾ n) +O(1) = K(α ↾ n) +O(1)

We are going to show that for almost all n and for each nonnegative integer k such that
k ≤ m/2+1, β ↾ ℓn is neither lexicographic kth successor of bsn ↾ ℓn nor lexicographic kth
predecessor of β ↾ ℓn, where the 0th successor (predecessor) denotes bsn ↾ ℓn itself. The
proof is as follows. If the above-mentioned assertion fails, for infinitely many n, we have
K(β ↾ ℓn) ≤ K(bsn ↾ ℓn)+O(1). By Eq. (3), we have K(β ↾ ℓn) ≤ K(α ↾ n)+O(1), which
contradicts to our assumption of lim infn(K(β ↾ ℓn)−K(α ↾ n)) = ∞.

Hence, for almost all n, it holds that β − bsn ≥ m2−ℓn. Thus, for almost all n and for
each s such that sn ≤ s ≤ sn+1, it holds that β − bs ≥ β − bsn+1 ≥ m2−ℓ(n+1). Hence, for
almost all n we have Eq. (2).

(2) We define 〈sn〉 in the same way as above. Then, we have Eq. (1). In addition, for
all n we have Eq. (3).

Then we can show that for infinitely many n and for each nonnegative integer k such
that k ≤ m/2+1, β ↾ ℓn is neither lexicographic kth successor of bsn ↾ ℓn nor lexicographic
kth predecessor of β ↾ ℓn. The proof is given by means of our assmuption of lim supn(K(β ↾
ℓn)−K(α ↾ n)) = ∞.

Therefore, for infinitely many n, it holds that β−bsn ≥ m2−ℓn. Thus, for infinitely many
n and for each s such that sn ≤ s ≤ sn+1, it holds that β − bs ≥ β − bsn+1 ≥ m2−ℓ(n+1).
Hence, for infinitely many n we have Eq. (2). □
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Proof. (of Proposition 2.1, sketch) Under the assumption of Lemma 2.1 assertion (1), let f
be a partial function from Q to Q such that for each q, f(q) = as, where s is the least one
such that q < bs. Then it holds that (α−f(q))ℓ ≤ (2ℓ/m)(β−q). We look at the case where
ℓ = m = 1. Thus we know: If α, β are left-c.e. and irrational then α �K β =⇒ α ≤S β.
If β ≤S α, then β ≤K α, which contradicts α �K β. □

2.2. Characterization of qS-complete reals by dimension. Effective Hausdorff di-
mension and effective packing dimension are characterized by prefix-free Kolmogorov com-
plexity.

Theorem 2.1. (Mayordomo[10]) Given α ∈ 2ω, the effective Hausdorff dimension dim(α)
is characterized as follows.

(4) dim(α) = lim inf
n

K(α ↾ n)
n

Theorem 2.2. (Athreya, Hichcock, Lutz and Mayordomo[1]) Given α ∈ 2ω, the effective
packing dimension Dim(α) is characterized as follows.

(5) Dim(α) = lim sup
n

K(α ↾ n)
n

A survey of algorithmic dimensions may be found in Chapter 13 of [6].
For a left-c.e. real, Solovay completeness and 1-randomness are equivalent. In this

section, we show that qS-completeness and dim(α) > 0 are equivalent. We are interested
in the structure of the Solovay degrees of qS-complete sets. We will see that the set of
these degrees forms a filter.

Tadaki[15], in his study on partial randomness, introduced the generalized halting prob-

ability ΩT =
∑

p∈dom(U) 2
−|p|/T for each positive real number T ≤ 1, where p runs over the

domain of a fixed universal prefix-free machine. In our previous work[8], we introduced a
variation of the generalized halting probability for T of the form 2−n.

Definition 2.1. Ω20 denotes Ω. For each positive integer n, letting 0.a0a1a2 . . . be the
binary expansion of Ω2−n , we define Ω2−(n+1) as 0.b0b1b2 . . . , where b2n = an, and b2n+1 =
1− an for each n.

In our previous work[8], we showed that Ω2−n are qS-complete. Now we improve the
result as follows.

Theorem 2.3. The following are equivalent for a left-c.e. real α.

(1) α is qS-complete.
(2) For some n ∈ N+, letting T = 2−n, ΩT ≤S α.
(3) dim(α) > 0

Proof. (1) =⇒ (3): Since Ω ≤qS α, there are ℓ ∈ N and sequences 〈ωs〉 ↗ Ω and 〈as〉 ↗ α

such that (Ω− ωs)
ℓ < d(α− as). Let U be a universal prefix-free machine (see Section 3.5

of [6]). Take a string σ such that U(σ) = α ↾ (nℓ) and |σ| = K(α ↾ (nℓ)). We can compute

ωs such that Ω − ωs < d1/ℓ2−n by means of σ and constant bits. If Ω − ωs < 2−m then
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Ω ↾ m is either ωs ↾ m itself or that plus 2−m, and the latter is given by additional 1 bit
information. To sum up, we can find Ω ↾ n by means of σ and constant bit. Therefore, it
holds that K(α ↾ (nℓ)) ≥ K(Ω ↾ n)−O(1) ≥ n−O(1). Hence dim(α) ≥ 1/ℓ > 0.

(3) =⇒ (2): For some T of the form T = 2−n, it holds that Dim(ΩT ) < dim(α).
Therefore, ΩT �K α. By Proposition 2.1, we have ΩT ≤S α.

(2) =⇒ (1): By [8], Ω ≤qS ΩT . □

3. Ideals on left-c.e. reals

The underlying intuition of this section is that the addition of two non-random left-
c.e. reals results in a non-random real. It is known that this is the case if randomness
means 1-randomness. This means the non-complete Solovay degrees form an ideal. We
will investigate some ideals and filters of qS-degrees. In the first subsection, we show that
the Solovay degrees of qS-complete reals form a filter. On the other hand, Solovay degrees
of non-qS-complete reals do not form an ideal. In the second subsection, we observe the
relationships between rational sequences and degrees. Based on these observations, in the
third subsection, we introduce a stronger version of qS-reducibility that has a nice property
with respect to addition.

3.1. The filter of the Solovay degrees of qS-complete reals. A subset F of a partially
ordered set (P,≤P ) is a filter if the following hold.

• a ∈ F ∧ a ≤P b =⇒ b ∈ F
• a, b ∈ F =⇒ ∃c ∈ F c ≤P a ∧ c ≤P b

A subset X is an ideal if the following hold.

• a ∈ X ∧ b ≤P a =⇒ b ∈ X
• a, b ∈ X =⇒ ∃c ∈ X a ≤P c ∧ b ≤P c

We consider the Solovay degrees of left-c.e. reals. Given a Solovay degree a, we define
dima as to be dim(a) for some a ∈ a. Since Solovay reducibility implies K-reducibility,
this definition is well-defined (See [12, Section 4]). The Solovay complete degree forms a
filter obviously. For each rational r ∈ (0, 1), let Fr denote the family of all Solovay degrees
a such that dima > r. Then, for each rational r ∈ (0, 1), Fr is a filter (Miyabe, Nies and
Stephan [12, Theorem 5.1]).

An analogous question is whether the Solovay degrees of qS-complete reals form a filter.
The answer is affirmative.

Corollary 3.1. (to Theorem 2.3) We consider the Solovay degrees of left-c.e. reals. Then
the family of Solovay degrees of all qS-complete left-c.e. reals is a filter.

Proof. The first requirement of a filter is obviously satisfied. As the degree c in the second
requirement, by Theorem 2.3, we can take the Solovay degree of some ΩT , where T = 2−n

for a natural number n. □
We are going to investigate ideals. By Theorem 1.1, the Solovay degrees of non-ML-

random left-c.e. reals form an ideal. Miyabe, Nies and Stephan [12, Proposition 5.7] showed
the following: For each r ∈ [0, 1], the family of left-c.e. degrees a such that Dim(a) < r
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is an ideal of left-c.e. Solovay degrees. The same thing holds for Dim(a) ≤ r in place of
Dim(a) < r.

We ask whether the family of left-c.e. degrees of non-qS-complete left-c.e. degrees forms
an ideal. The answer is negative.

Corollary 3.2. (to Theorem 2.3) There are non-qS-complete left-c.e. reals α and β such
that α+ β (real addition) is qS-complete.

Proof. The following was shown in [12, Theorem 4.1]. Suppose that g is a computable

function such that
∑

n 2
−g(n) is finite and a computable real. For a string σ, let C(σ)

denote its plain Kolmogorov complexity (see Section 3.1 of [6]). Let α be a left-c.e. real
such that C(α ↾ n) ≤ n−g(n) for all n. There exist left-c.e. reals β, γ such that α = β+γ,
dim(β) = dim(γ) = 0 (and both β, γ satisfy certain requirements).

For example, we look at the case of α = Ω1/2 and g(n) = n/2−O(1). By Theorem 2.3,
α is qS-complete, and neither β nor γ is qS-complete. □
3.2. Rational sequences and reducibility. By Corollary 3.2, the Solovay degrees of
non-qS-complete left-c.e. reals do not form an ideal: Neither do the qS-degrees of them.
Now we ask whether there is a stronger version�qS of qS-reducibility such that α, β�qSγ =⇒
α+β�qSγ. In this subsection, we investigate the relationships between computable ratio-
nal sequences and reducibility. Based on these observations, we will see an example of a
stronger version of qS-reducibility with the above-mentioned property in the next subsec-
tion. Solovay reducibility has many equivalent assertions. Downey et al. characterized it
via rational sequences.

Lemma 3.1. (Downey et al. [7]) Suppose 〈bn〉 ↗ β. The following are equivalent.

(1) α ≤S β
(2) ∃〈an〉 ↗ α ∃d > 0 such that ∀n ∈ N an − an−1 < d(bn − bn−1).

In the case of quasi Solovay reducibility, the following holds.

Proposition 3.1. The following are equivalent.

(1) α ≤qS β
(2) ∃〈an〉 ↗ α, 〈bn〉 ↗ β ∃d, ℓ > 0 such that

∀n,m ∈ N (n < m =⇒ (am − an)
ℓ < d(bm − bn)).

Proof. The direction of (2) =⇒ (1) is given by taking limit of m → ∞. By carefully
examining our construction of Hölder continuous function in Theorem 2 of (the preprint
version of) [8], we show the direction of (1) =⇒ (2). □

In the case where β is 1-random, the rational sequences have more interesting properties.
We are interested in the limit of (α − an)

ℓ/(β − bn) under the assumption that β is qS-
complete.

Lemma 3.2. For left-c.e. α and β, the following are equivalent.

(1) α ≤qS β

(2) ∀〈bs〉 ↗ β ∃〈as〉 ↗ α ∃d, ℓ ∈ N+∀s (α− as)
ℓ ≤ d(β − bs)
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(3) ∀〈as〉 ↗ α ∃〈bs〉 ↗ β ∃d, ℓ ∈ N+∀s (α− as)
ℓ ≤ d(β − bs)

(4) ∃〈bs〉 ↗ β ∃〈as〉 ↗ α ∃d, ℓ ∈ N+∀s (α− as)
ℓ ≤ d(β − bs)

Proof. (1) =⇒ (2): Let as = f(bs).
(1) =⇒ (3): Given 〈as〉, take a temporary sequence 〈β∗

s 〉 ↗ β. Let N ∈ N+ be large
enough. For each s ≥ N , take the largest t such that f(β∗

t ) ≤ as, and we define bs as β∗
t .

Then (α− as)
ℓ ≤ (α− f(β∗

t ))
ℓ ≤ d(β − bs).

(2) =⇒ (4), (3) =⇒ (4): These are obvious.
(4) =⇒ (1): Given q < β, find s such that q ≤ bs, and let f(q) = as. □
The ∃ − ∀ version of (2) is not equivalent to (1), because when both of α and β are

rationals, we can chose arbitrarily slow {as} afterword. Therefore, ∀ − ∀ version of (2)
is not equivalent to (1) in general. The situation is different with the hypothesis that β
is qS-complete. We are going to see this in Lemma 3.3. The ∃ − ∀ version of (3) is not
equivalent to (1), because when both of α and β are rationals, we can chose arbitrarily fast
{bs} afterword.

Lemma 3.3. Suppose 〈as〉 ↗ α, 〈bs〉 ↗ β. If β is qS-complete, then there exist positive
integers d, ℓ such that:

∀k (α− ak)
ℓ ≤ d(β − bk)

Proof. Suppose that β is qS-complete. Then the statement of Lemma 3.2 (2) holds with
α = Ω. That is, it holds that: ∃{ωs} ↗ Ω ∃d, ℓ ∈ N+∀s (Ω− ωs)

ℓ ≤ d(β − bs)

On the other hand, by Theorem 1.2,
α− as
Ω− ωs

has a limit. Therefore, there exists a

positive integer e of the following property: ∀s α − as ≤ e(Ω − ωs). Hence, it holds that
(α− as)

ℓ ≤ eℓ(Ω− ωs)
ℓ ≤ eℓd(β − bs). □

Lemma 3.4. Suppose 〈as〉 ↗ α, 〈bs〉 ↗ β. Suppose that x ≥ 1 is a real number, and the
following limit > 0 exists.

lim
s→∞

(α− as)
x

β − bs
Then x is uniquely determined (depending on 〈as〉 and 〈bs〉).

Proof. Suppose that the limit > 0 exists for x and that the same thing holds for y > x in
place of x, too. Then we have:

(α− as)
y

β − bs
= (α− as)

y−x (α− as)
x

β − bs
→ 0 (s → ∞)

This contradicts the assumption. □

Theorem 3.1. It holds that (1) =⇒ (2) =⇒ (3). If β is random, we also have (2) ⇐
(3).

(1) α �K β. To be more precise: limn→∞(K(β ↾ n)−K(α ↾ n)) = ∞.

(2) α �S β. To be more precise: ∀〈an〉 ↗ α ∀〈bn〉 ↗ α limn→∞
α− an
β − bn

= 0.

(3) α <S β
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We call �S above strong Solovay reducibility. This definition was clearly inspired by
Theorem 1.2.

Proof. (1) =⇒ (2): Assume (1). Given 〈an〉 and 〈bn〉, apply Lemma 2.1 (1) to the case
where ℓ = 1. Then for almost all n, we have (α − an)/(β − bn) ≤ 2/m. Since m was
arbitrary, we are done.

(2) =⇒ (3) is obvious.
(3) and β is random =⇒ (2): By Theorem 2.3 (b) of [11]. □

In particular, if β = Ω the assertions (2) and (3) of Lemma 3.1 are equivalent. In the
proof of the following lemma, we will observe that given a left-c.e. real γ, the set of left-
c.e. α such that α �S γ forms an ideal. These two facts are important to see that the
non-random left-c.e. reals form an ideal.

Lemma 3.5. In Lemma 3.1, the following hold.

(a) If β is random then (2) implies the following (1−).
(1−) lim supn→∞K(β ↾ n)−K(α ↾ n) = ∞

(b) (2) does not imply (1).
(c) (3) does not imply (2).

Proof. (a) Assume (2) of Lemma 3.1. By [2] (see also [11]), α is not 1-random. Therefore,
∀c¬∀∞n n − c ≤ K(α ↾ n). In other words, for all positive integer c, there are infinitely
many nc such that the following holds.

(6) nc − c > K(α ↾ nc)

Thus, there is an increasing sequence {nc}c≥1 of positive integers such that Eq. (6) holds
for each c. Since β is random, for some positive integer d, it holds that ∀n K(β ↾ n) > n−d.
Thus for each positive integer k, we have the following.

(7) K(β ↾ nk)−K(α ↾ nk) > (nk − d)− (nk − k) = k − d.

Hence, lim supn→∞K(β ↾ n)−K(α ↾ n) = ∞.
(b) There exists a non-random left-c.e. real α such that lim infn(K(Ω ↾ n)−K(α ↾ n)) <

∞. Thus, α 6�K Ω. On the other hand, by [2] (see the paragraph just after Theorem 1.2),
we have α �S Ω.

(c) Every non-random left-c.e. Solovay degree can split into lesser left-c.e. Solovay
degrees (Downey et al. [7]. See also section 9.5 of [6]). We are going to observe that this
property of <S is not shared by �S . Let α, β, and γ be left-c.e. reals such that α, β �S γ.
Given 〈as〉 ↗ α and 〈cs〉 ↗ γ, modify 〈cs〉, if necessary, so that 〈cs − as〉 is an increasing
sequence of positive rationals. Let bs = cs − as. Then we have the following.

(8)
α+ β − (as + bs)

γ − cs
=

α− as
γ − cs

+
β − bs
γ − cs

→ 0

Thus, it holds that α+ β �S γ. We have shown α, β �S γ =⇒ α+ β �S γ, therefore
<S and �S are not equivalent for left-c.e. reals. However, we know that (2) implies (3).
Hence (3) does not imply (2). □
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For any left-c.e. real α, the family of left-c.e. degrees ≤S α forms an ideal, but the family
of left-c.e. degrees <S α does not form an ideal unless α is 1-random. By the proof of (c)
above, we know that the family of left-c.e. degrees �S α forms an ideal. The case α = Ω
corresponds to Theorem 1.1.

3.3. Ideals and a stronger version of qS-reducibility. Based on the observation in
the previous subsection, we introduce a stronger version of qS-reducibility.

Definition 3.1. α �qS β denotes the following assertion.

∃ℓ ∈ N ∀〈an〉 ↗ α ∀〈bn〉 ↗ β limn→∞
(α− an)

ℓ

β − bn
= 0

The goal of this section is to show that α, β�qSγ =⇒ α+ β�qSγ.

Theorem 3.2. Suppose that β is left-c.e. Then we have (1q) =⇒ (2q), and (2q) =⇒
(3q). In addition, if β is qS-complete then we have (3q) =⇒ (1q).

(1q) For some ℓ, limn→∞(K(β ↾ ℓn)−K(α ↾ n)) = ∞.
(2q) α �qS β

(3q) α ≤qS β

Proof. (1q) =⇒ (2q): Assume (1q). Apply Lemma 2.1 (1) to given 〈an〉 and 〈bn〉. Then
for almost all n, we have (α− an)

ℓ/(β − bn) ≤ 2ℓ/m. Since m was arbitrary, we are done.
(2q) =⇒ (3q) is obvious.
(3q) and β is qS-complete =⇒ (1q): We have K(α ↾ n) ≤ K(β ↾ ℓn) + O(1). It is

enough to show that for some c > 0 we have limn→∞(K(β ↾ cn) −K(β ↾ ℓn)) = ∞. Let
d = lim infn→∞K(β ↾ n)/n, and let D = lim supn→∞K(β ↾ n)/n. Since β is qS-complete,
by Theorem 2.3, d is positive. It is not hard to see that for any ε > 0, for sufficiently large
n we have d − ε < K(β ↾ n)/n < 1 + ε. Now, suppose ε > 0 is small enough. We take
a sufficiently large integer k depending on ε. Then the following holds for all sufficiently
large n.

(9)
K(β ↾ kℓn)−K(β ↾ ℓn)

ℓn
= k

K(β ↾ kℓn)
kℓn

− K(β ↾ ℓn)
ℓn

≥ k(d− ε)− 1− ε > 0

Therefore it holds that limn→∞(K(β ↾ kℓn)−K(β ↾ ℓn)) = ∞. □
Proposition 3.2. In Theorem 3.2, we have the following.

(a) We can not replace (3q) by α <qS β.
(b) (3q) does not imply (2q).
(c) (2q) does not imply (1q).

Proof. (a) Consider the case where α = β = Ω, ℓ = 2, 〈an〉 ↗ Ω and 〈bn〉 ↗ Ω. By [2] (see
also [11]), (α − an)/(β − bn) → 0 (n → ∞). Therefore, (α − an)

2/(β − bn) → 1 (n → ∞).
Thus, (2q) holds under the current assumptions. On the other hand, we have β ≤qs α,
thus α <qS β does not hold.

(b) Consider the case where both of α and β are computable. Then (3q) holds, and (2q)
does not hold.



RATIONAL SEQUENCES CONVERGING TO LEFT-C.E. REALS 11

(c) follows from the two lemmas below. □
Definition 3.2. A real α is a strongly c.e. real if there exists a c.e. set A of natural
numbers and α =

∑
n∈A 2−n.

It is easy to see that any strongly c.e. real is left-c.e.

Lemma 3.6. Let α be a computable real and β be a strongly c.e. real. Then, for all ℓ ∈ N
we have K(β ↾ ℓn)−K(α ↾ n) < O(1) for infinitely many n. Thus, (1q) does not hold.

Proof. This fact immediately follows from the fact that any strongly c.e. real is infinitely
often K-trivial by Proposition 2.2. in [3]. For the sake of completeness, we give details here
again.

Let B ⊆ N be an infinite c.e. set and β is the strongly c.e. real defined by B, that is,
β =

∑
n∈B 2−n. Take a computable sequence 〈Bs〉 of finite sets of natural numbers such

that Bs ⊊ Bs+1 and B =
∪

sBs. Define bs =
∑

n∈Bs
2−n, which is the corresponding

approximation of β. For each n ∈ B, There are infinitely many n ∈ B such that n is
enumerated into B at stage s and no m ≤ n is enumerated into B after the stage s, that
is,

(10) ∃∞n∃s[n ∈ Bs ∧ ∀m < n(m 6∈ Bs → ∀t > s m 6∈ Bs)]

For such a pair n, s, we have bs ↾ n = β ↾ n. Hence, K(β ↾ n) ≤+ K(n) for infinitely many
n. This implies K(β ↾ ℓn) ≤+ K(ℓn) ≤+ K(n) for infinitely many n.

On the other hand, since K(n) ≤+ K(α ↾ n), we have lim infn→∞K(β ↾ ℓn) − K(α ↾
n) < ∞. Thus, (1q) does not hold for any computable real α and for any strongly c.e. real
β. □
Lemma 3.7. There exists a strongly c.e. real β such that α�qSβ for every computable

real. Thus, (2q) holds for this β and any computable real α.

Our proof idea is as follows. We shall take a variant of the halting problem as a set B
and let β be the corresponding real. Since B knows the strings with which the machine
halts as inputs, one can compute a fast-growing function f that dominates all computable
functions.

Our goal is to show

(11) lim
s→∞

α− as
β − bs

= 0.

Otherwise, bs is a good approximation of β for infinitely many s, and one can compute a
sufficiently long initial segment of B, from which one can compute a function g such that
g(s) ≥ f(s) for infinitely many s. This would contradict the property of f .

Proof. First, we construct the strongly c.e. real β. Let σn be the enumeration of 2<ω in
the length-lexicographical order, that is, empty string, 0, 1, 00, 01, 10, 11, . . .. We define
a c.e. set B by

B = {n ∈ N : U(σn) ↓}
and let β =

∑
n∈B 2−n.
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We define a function f : N → N as follows.

(12) f(n) := max{s ∈ ω : ∃k ≤ 2n[U(σk) halts at stage s.] }

Here U is a fixed universal plain machine. By saying U(σ) halts at stage s, we mean
U(σ)[s] ↓ and U(σ)[s− 1] ↑.

Claim 1: f dominates any computable function g, that is, f(n) ≥ g(n) for almost all n.
Fix an index e of a computable function such that Φe is total. Since U is universal, U can

simulate Φe(n) within C(〈e, n〉)+O(1), where C denotes the plain Kolmogorov complexity.
Since C(〈e, n〉) +O(1) = O(log n), there exists a program σk with k ≤ 2n such that U(σk)
simulate Φe(n) for all sufficiently large n. By the usual convention, the halting stage is
larger than the output. Hence, f dominates Φe. This proves Claim 1.

We are going to show (2q) α�qSβ with ℓ = 1. Suppose 〈as〉 ↗ α and 〈bs〉 ↗ β. Later we

need to construct a total computable function g from 〈bs〉. For infinitely many s, the term
bs is a good approximation, but for other s, the term bs may not be a good approximation,
which may prevent the totality of g. Thus, we first translate 〈bs〉 into a well-behaved
sequence 〈dn〉.

Claim 2: From each computable sequence 〈bs〉, one can compute a computable increasing
sequence 〈Dn〉 of finite sets of natural numbers such that, letting dn =

∑
m∈Dn

2−m, we
have Dn ↗ B and 〈dn〉 ↗ β. Here, by Dn ↗ B, we mean that Dn is increasing and
limnDn = B.

Let 〈Bs〉 be an increasing computable sequence of finite sets of natural numbers con-
verging to B. Let B′

s be the binary expansion of bs, that is, bs =
∑

n∈B′
s
2−n. If there are

two such sets, choose one of them as you wish. Given n, we can computably find k ≥ n and
s ≥ n such that B′

k ↾ (2n+ 1) ⊆ Bs ↾ (2n+ 1) because B′
k ↗ B and B is not computable.

Then define Dn := B′
k ↾ (2n + 1) for this k and define 〈dn〉 as above accordingly. The

resulting dn may be smaller than bk and bn because we cut the B′
k to make Dn, but the

difference is at most 2−2n−1. Therefore we have bn ≤ dn + 2−2n−1 and

(13) β − dn ≤ β − bn + 2−2n−1

Therefore, 〈dn〉 ↗ β. This proves Claim 2.

Now we are ready to prove the lemma. For simplicity, we first observe the case where
α− an < 2−2n/n. Assume for a contradiction that Eq. (11) fails:

(14) ∃ε > 0 ∃∞n
α− an
β − bn

> ε

We define a function g by

g(n) := max{s ∈ ω : ∃m ∈ Dn[U(σm) halts at stage s.] }+ 1(15)

Since Dn ⊆ B, U(σm) halts for every m ∈ Dn. Hence, g is a total computable function.
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If Eq. (14) holds for some n, then we have β − bn < 1/(εn22n) and β − dn < 2−2n by
Eq. (13). Then, Dn ↾ 2n = B ↾ 2n and g(n) = f(n) + 1. Since there are infinitely many
such n, this contradicts Claim 1.

In the general case, we need one more trick. Take a computable subsequence 〈nk〉 such
that α− ank

< 2−2k−2/k for all k. We may have

β − dn ≤ β − bn + 2−2k−1

for nk−1 < n ≤ nk by a similar construction in Claim 2. Now we define a total computable
function g by

g(k) := max
n∈(nk−1,nk]

max{s ∈ ω : ∃m ∈ Dn[U(σm) halts at stage s.] }+ 1

If Eq. (14) holds for some n, then, by taking k such that nk−1 < n ≤ nk, we hae

β − dn ≤ β − bn + 2−2k−1 ≤ β − bnk−1
+ 2−2k−1

<
α− ank−1

ε
+ 2−2k−1 <

1

εk22k
+ 2−2k−1 < 2−2k.

For this n, k, we have Dn ↾ 2k = B ↾ 2k. Thus, there are infinitely many k such that
g(k) = f(k) + 1, which contradicts Claim 1. □

Lemma 3.8. α, β �qS γ ⇒ α+ β �qS γ

Proof. Take appropreate 〈an〉 ↗ α, 〈bn〉 ↗ β and ℓ. Then for any 〈cn〉 ↗ γ, we have the
following.

lim
n→∞

(α− an)
ℓ

γ − cn
= 0, lim

n→∞

(β − bn)
ℓ

γ − cn
= 0

Here, we have the following.

((α+ β)− (an + bn))
ℓ =

ℓ∑
k=0

(
ℓ

k

)
(α− an)

k(β − bn)
ℓ−k

≤
ℓ∑

k=0

(
ℓ

k

)
(max{α− an, β − bn})ℓ

≤ O(1)(max{α− an, β − bn})ℓ

Therefore, ((α+ β)− (an + bn))
ℓ/(γ − cn) → 0 (n → ∞). □

By these results above, we know that the family of left-c.e. degrees �qSα forms an ideal.
We also note that since ≤qS is a standard reducibility, the family of left-c.e. degrees ≤qS α
also forms an ideal.
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4. Effective dimensions via the rate of convergence

By developing the previous section, we characterize the effective Hausdorff dimension of
the left-c.e. reals by the rate of convergence of their computable approximations. In order to
sketch the motive for the following theorem, let us observe the case where (α−as)

ℓ/(Ω−ωs)
has a positive limit c ≤ 1. For sufficiently large s, the approximate value of ℓ log(α−αs) is
given by log(Ω−ωs)+ log c. Thus it is natural to look at the ratio log(Ω−ωs)/ log(α−αs)
to investigate the role of ℓ in this context.

Theorem 4.1. Let α be a left-c.e. real. Suppose that 〈ωs〉 ↗ Ω and 〈as〉 ↗ α.
(1)

(16) lim sup
s→∞

log(Ω− ωs)

log(α− as)
= Dim(α)

(2)

(17) lim inf
s→∞

log(Ω− ωs)

log(α− as)
= dim(α)

Remark: In the both assertions, the results are independent of the choice of 〈ωs〉 and
〈as〉.

Proof. (1) Let d = Dim(α). For simplicity, we often omit the floor symbols b c. In the
proof, a real number expressing the length of a string should be replaced by a certain
integer.

Claim 1. lim sups log(Ω− ωs)/ log(α− as) ≤ d.
Proof of Claim 1: Suppose ε > 0. We are going to show log(Ω−ωs)/ log(α− as) ≤ d+ ε

for sufficiently large s. For some constant c, for all n we have the following.

(18) K(Ω ↾ (d+ ε)n) > b(d+ ε)nc − c

Given a positive integer N , all sufficiently large n satisfies the following.

(19) b(d+ ε)nc − c > b(d+ ε/2)nc −N

Since d = Dim(α), for almost all n, we have the following.

(20) (d+ ε/2)n > K(α ↾ n)
By Eq. (18), Eq. (19), and Eq. (20), for almost all n we have K(Ω ↾ (d+ ε)n)−K(α ↾

n) > N . Since N was arbitarary, it holds that limn→∞(K(Ω ↾ (d+ ε)n)−K(α ↾ n)) = ∞.
Therefore, we can apply Lemma 2.1 (1) to this case with ℓ = d + ε, and m = b2d+εc.

Let 〈sn〉 be the sequence in Lemma 2.1 (1). Then for almost n and each s such that

sn ≤ s ≤ sn+1, we have α − as ≤ 2−n and Ω − ωs ≥ 2−(d+ε)n. Noting that the divisor
log(α − as) is negative, we get lim sups log(Ω − ωs)/ log(α − as) ≤ d + ε. Since ε > 0 was
arbitrary, we have shown Claim 1. Q.E.D. (Claim 1)

Claim 2. lim sups log(Ω− ωs)/ log(α− as) ≥ d.
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Proof of Claim 2: Suppose ε > 0. Given a positive integer N , all sufficiently large n
satisfies the following.

(21) K(Ω ↾ (d− ε)n) +N < (d− ε/2)n

For infinitely many n, we have the following.

(22) (d− ε/2)n < K(α ↾ n)

By Eq. (21) and Eq. (22), for infinitely many n, it holds that N < K(α ↾ n) − K(Ω ↾
(d− ε)n). Therefore, for infinitely many n, we have the following.

(23) N < K(α ↾ n/(d− ε))−K(Ω ↾ n)

Therefore we can apply Lemma 2.1 (2) to this case. The roles of α, β in the lemma are

performed by Ω and α, respectively. Let ℓ = 1/(d− ε), and m = 21/(d−ε). Let 〈sn〉 be the
sequence in Lemma 2.1 (2). There are infinitely many n such that for each s such that sn ≤
s ≤ sn+1, Ω−ωs ≤ 2−n and α−as ≥ 2−n/(d−ε). Thus, we have log(Ω−ωs)/ log(α−as) ≥ d−ε
infinitely often. Hence it holds that lim sups log(Ω− ωs)/ log(α− as) ≥ d− ε. Since ε > 0
was arbitrary, we have shown Claim 2. Q.E.D. (Claim 2)

By Claims 1 and 2, we have shown Eq. (16).
(2) Let d = dim(α).
Claim 3. lim infs log(Ω− ωs)/ log(α− as) ≤ d.
Proof of Claim 3: Suppose ε > 0. For some constant c, for all n we have Eq. (18). Given

a positive integer N , all sufficiently large n satisfies Eq. (19). Infinitely many n satisfies
Eq. (20). Therefore, for infinitely many n we have K(Ω ↾ (d+ ε)n)−K(α ↾ n) > N . Since
N was arbitrary, it holds that lim supn→∞(K(Ω ↾ (d+ ε)n)−K(α ↾ n)) = ∞.

Therefore, we can apply Lemma 2.1 (2) to this case. We get lim infs log(Ω−ωs)/ log(α−
as) ≤ d+ ε. Since ε > 0 was arbitrary, we have shown Claim 3. Q.E.D. (Claim 3)

Claim 4. lim infs log(Ω− ωs)/ log(α− as) ≥ d.
Proof of Claim 4: Suppose ε > 0. Given a positive integer N , all sufficiently large n

satisfies Eq. (21). For almost all n, we have Eq. (22). Therefore for almost all n, it holds
that N < K(α ↾ n)−K(Ω ↾ (d− ε)n). Thus for almost all n, we have Eq. (23).

Therefore we can apply Lemma 2.1 (1) to this case. Letting 〈sn〉 be the sequence in
Lemma 2.1 (1), for almost all n and for each s such that sn ≤ s ≤ sn+1, Ω−ωs ≤ 2−n and

α− as ≥ 2−n/(d−ε). Thus, for almost all n we have log(Ω−ωs)/ log(α− as) ≥ d− ε. Hence
it holds that lim infs log(Ω− ωs)/ log(α− as) ≥ d− ε. Since ε > 0 was arbitrary, we have
shown Claim 4. Q.E.D. (Claim 4)

By Claims 3 and 4, we have shown Eq. (17). □
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5. Appendix: A variant of the first incompleteness theorem

Based on non-computability Ω, Chaitin[4] showed a variant of Gödel’s first incomplete-
ness theorem. Suppose that T is a consistent computable theory extending PA. Then there
exists a natural number b such that for every natural number a, we have T ⊬ b < K(a).

As a by-product of our observation, based on Solovay reducibility, we give a variant of
Chaitin’s incompleteness theorem. For simplicity, we use non-random left-c.e. real α and
Ω. However, the proof works for any pair of left-c.e. reals α, β provided that β is not
Solovay reducible to α. The absence of Solovay reduction plays the role of Gödel sentence.
For each natural number m, we let m denote the numeral for m in a given formal system.

Proposition 5.1. Suppose that T is a consistent c.e. theory extending PA. Suppose that
β is a left-c.e. real that is not Solovay complete (among the left-c.e. reals). Assume that
〈ωs〉, 〈qs〉 are computable (strictly) increasing sequences of rationals converging to Ω, and
that 〈bs〉, 〈rs〉 are computable (strictly) increasing sequences of rationals converging to β.
Then the following holds.

For every positive integer L, there exists a natural number n such that for all natural
numbers m, t,

(24) T ⊬ ∀s ≥ t
(
|ωs − qm| < L|bs − rn|

)
Proof. We prove the proposition by contradiction. We assume that for some positive
rational number L, for every natural number n there exist natural numbers m, t with
the following property.

(25) T ` ∀s ≥ t
(
|ωs − qm| < L|bs − rn|

)
We fix L for a while. Let φ(x, y, z) denote the following formula.

(26) ∀s ≥ x [|ωs − qy| < L|bs − rz|]

Since T is c.e., we can effectively perform the following procedure: Given n, enumerate
all proofs in T ; if we find a proof of φ(t,m, n) for some (t,m), output (t,m). By Eq. (25),
each input n has an output.

To be more precise, there exists computable function f : N =⇒ N × N such that for
all natural number n we have the following. Here, f : n 7→ (t,m) and 1st((t,m)) = t and
2nd((t,m)) = m.

(27) T ` ∀s ≥ 1st(f(n))
(
|ωs − q

2nd(f(n))
| < L|bs − rn|

)
Since T is Σ1-sound, it is Π1-sound, too. Therefore, the following holds (in the standsard

model).

(28) ∀s ≥ 1st(f(n))
(
|ωs − q2nd(f(n))| < L|bs − rn|

)
By taking the limit s =⇒ ∞, we get the following.

(29) Ω− q2nd(f(n)) ≤ L(β − rn).
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Now, we replace L by a slightly larger rational number. We abuse notation and denote
this new rational number by the same symbol L. Note that function g(n) := 2nd(f(n)) is
computable. Then for all n we have Ω−qg(n) < L(β−rn). Therefore, it holds that Ω ≤S β.

This contradicts that Ω is Solovay complete, and β is not Solovay complete. □

Proposition 5.2. Let φ(x, y, z) be the formula defined in the proof of Theorem 5.1.

(1) For any n there exists (t,m) such that N |= φ(t,m, n).
(2) T is incomplete.

Proof. (1) We fix a positive rational L and take a natural number n as in the proof of
Theorem 5.1. If we take m big enough, then we have Ω − qm < L(β − rn).. Therefore
L(β − rn) − (Ω − qm) > 0. Let h(s) denote L(bs − rn) − (ωs − qm). Then we have
lims→∞ h(s) = L(β − rn)− (Ω− qm) > 0.

Hence there exists t such that the following holds.

(30) ∀s ≥ t
(
ωs − qm < L(bs − rn)

)
In summary, for any n there exist t and m such that we have N |= φ(t,m, n).
(2) Now, assume for a contradiction that T ` ¬φ(t,m, n) holds for the above-mentioned

t,m and n. Since φ(t,m, n) is a Π1-sentence, ¬φ(t,m, n) is a Σ1-sentence. Thus, by Σ1-
soundness of T , we have N |= ¬φ(t,m, n). This contradicts to (1). Hence it holds that
T ⊬ ¬φ(t,m, n). On the other hand, by Theorem 5.1, for any t,m, we have T ⊬ φ(t,m, n).
Hence T is incomplete. □
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