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1 Introduction

For a smooth projective variety X defined over an algebraically closed field k
of characteristic p ≥ 0, we denote by Db(X) the bounded derived categories
of coherent sheaves on X. We say that a smooth projective variety Y is
derived equivalent to X or a Fourier–Mukai partner of X if there exists an
equivalence Db(X) ∼= Db(Y ) as k-linear triangulated categories.

The derived category of coherent sheaves was introduced by Grothendieck
and Verdier in 1960s as an appropriate framework for their theory of duality.
Later, it has been observed that the derived category of coherent sheaves
contains a lot of information about the variety, and that the derived category
of coherent sheaves has connections with other subjects. An important one
is homological mirror symmetry conjectured by Kontsevich [24]. Roughly
speaking, it states a correspondence between the algebraic geometry and the
symplectic geometry. Since the appearance of this conjecture, there is a
growing interest in the derived category of coherent sheaves.

Of course, if X and Y are isomorphic, then X and Y are Fourier–Mukai
partners each other. But in general, there exist pairs of varieties which are
Fourier–Mukai partners and not isomorphic to each other. The first example
of such pair was discovered by Mukai in [29], which states that an abelian
variety A and its dual Â are derived equivalent. Note that A and Â are
not even birationally equivalent in general. The idea of using moduli spaces
was applied to K3 surfaces by Orlov [30] and he got the characterization of
Fourier–Mukai partners of K3 surfaces. Moreover, Borisov and Căldăraru [9]
discovered a pair of Calabi–Yau threefolds which are derived equivalent and
not birationally equivalent. Moreover, Kuznetsov discovered other examples
of such pairs in [25] using his theory called homological projective duality.

We let FM(X) denote the set of isomorphism classes of Fourier–Mukai
partners of X. It is a fundamental question to describe the set FM(X)
explicitly. It is known that |FM(C)| = 1 for any smooth projective curve
C (see [3, Theorem 7.16]). On the other hand, smooth projective surfaces
S may have non-trivial Fourier–Mukai partners, namely |FM(S)| 6= 1 may
occur. Bridgeland, Maciocia and Kawamata showed in [12] and [23] that if a
smooth projective surface S over C has a non-trivial Fourier–Mukai partner
T , then both are abelian surfaces, K3 surfaces or elliptic surfaces with non-
zero Kodaira dimension. For these surfaces, there are characterizations of
their Fourier–Mukai partners.
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Theorem 1.1 ([30]). Let X and Y be K3 surfaces over C. The following
conditions are equivalent:

(1) There exists an equivalence Db(X) ∼= Db(Y ).

(2) There exist v ∈ H̃(X,Z) satisfying v2 = 0 and an ample divisor ω on
X such that there exists an isomorphism Y ∼= Mω(v), where Mω(v) is
a moduli space of ω-stable sheaves on X.

(3) There exists a Hodge isometry H̃(X,Z) ∼= H̃(Y,Z).

Here, H̃(X,Z) is a Mukai lattice, i.e., H∗(X,Z) endowed with the Mukai
pairing.

Theorem 1.2 ([12]). Let π : S → C be an elliptic surface over C with non-
zero Kodaira dimension. Then

FM(S) = {J i(S) | (i, λπ) = 1}/ ∼= .

where J i(S) is the relative moduli space of stable pure-dimension 1 sheaves
on the fiber π, which parametrizes degree i line bundles. For more details,
see §3.

In positive characteristic, it is known that similar results hold to the case
k = C. For example, Lieblich and Olsson gave a generalization of Theorem
1.1 to fields with p 6= 2 in [27]. It is also known that Enriques and bielliptic
surfaces do not have any non-trivial Fourier–Mukai partners [?]. Moreover,
we get a generalization of Theorem 1.2 to arbitrary characteristic fields. (See
Theorem 3.3. )

In this thesis, we study the set FM(S) of elliptic ruled surfaces S defined
over k with arbitrary p. Here, an elliptic ruled surface means a smooth
projective surface with a P1-bundle structure over an elliptic curve. The
author and Uehara obtain the following theorem, which is a generalization
of the result for k = C in [40] to an arbitrary algebraically closed field k.

Theorem 1.3. Let S be an elliptic ruled surface defined over k and π : S →
E be a P1-bundle over an elliptic curve E. If |FM(S)| 6= 1, then S is of the
form

S = P(OE ⊕ L)
for some L ∈ Pic0E of order m ≥ 5. Furthermore, we have

FM(S) = {P(OE ⊕ Li) | i ∈ Z with (i,m) = 1 and 1 ≤ i < m}/ ∼=, (1)
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and
|FM(S)| = ϕ(m)/|HL

Ê
|.

Here, ϕ is the Euler function, and we define

HL
Ê
:= {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(E) such that φ∗L ∼= Li} (2)

as a subgroup of (Z/mZ)∗. We also have |HL
Ê
| = 2, 4 or 6, depending on the

choice of E and L.

In the case p - m = ord(L), it is known (cf. [40, Equation (3.4)]) that
S = P(OE ⊕ L) is a quotient of F0 × P1 by a cyclic group action, where
F0 is an elliptic curve, and Uehara uses this fact to describe the set FM(S)
in [40]. On the other hand, in the case p > 0 and p | m, an elliptic ruled
surface S = P(OE⊕L) does not admit a similar construction (see [39, §5.1]).
Therefore, we need more general treatment to show Theorem 1.3.

Moreover in the proof of Theorem 1.3, we study the structure of the
group HL

Ê
, which heavily depends on the structure of the automorphism

group Aut0E of E. In the case k = C, it is a rather simple task, but in the
case arbitrary k, especially, in the case p = 2, 3 and j(E) = 0 = 1728, we
need a different approach from the one in [40] (see Lemma 4.7).

In the proof of Theorem 1.3, we obtain some evidence of the Popa–Schnell
conjecture in [35], which states that for any Fourier–Mukai partners Y of a
given smooth projective variety X, there exists an equivalence of derived
categories of their albanese varieties, i.e., Db(Alb(X)) ∼= Db(Alb(Y )).

Proposition 1.4 (=Corollary 5.22). Let X → A and Y → B be Pn-bundles
over abelian varieties A and B for n = 1, 2. If X and Y are Fourier–Mukai
partners, then so are A and B. Furthermore, the Popa–Schnell conjecture
holds true in this case.

The plan of this thesis is as follows. In §2, we state several facts about
derived categories of coherent sheaves . A criterion of fully faithfulness in [5]
is extended to the case including positive characteristic.

In §3, we explain some results and notation of relative moduli spaces of
stable sheaves on elliptic fibrations, a main tool for the study of Fourier–
Mukai partners of elliptic surfaces. We obtain a characterization of Fourier–
Mukai partners of elliptic surfaces with non-zero Kodaira dimensions in The-
orem 3.3 for arbitrary p = ch k, which was originally proved by Bridgeland
in the case p = 0.
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In §4, we show several results on automorphisms of elliptic curves.
In §5, we apply Pirozhkov’s result [34] to show Proposition 1.4.
In §6, we explain several results of ruled surfaces on elliptic curves, which

are based on [17].
Finally, in §7, we first narrow down the candidates of elliptic ruled surfaces

with non-trivial Fourier–Mukai partners by Proposition 1.4 and the main
result in [39], and then prove Theorem 1.3.

Notation and conventions All algebraic varieties X are defined over an
algebraically closed field k of characteristic p ≥ 0. A point x ∈ X means a
closed point unless otherwise specified.

For an elliptic curve E, Aut0(E) is the group of automorphisms fixing the
origin.

By an elliptic surface, we will always mean a smooth projective surface S
together with a smooth projective curve C and a relatively minimal projective
morphism π : S → C whose general fiber is an elliptic curve. An elliptic ruled
surface means a smooth projective surface with a P1-bundle structure over
an elliptic curve.

For a morphism π : X → Y between algebraic varieties, the symbol
Aut(X/Y ) stands for the group of automorphisms of X preserving π.

2 Preliminaries

2.1 Adjoint functors

For the study of the derived category of coherent sheaves, adjoint functors
appear frequently, for example, see Lemma 2.15. In this subsection, we recall
the definition and basic properties of the adjoint functors. Most of results
are found in [20].

Definition 2.1. Let A and B be arbitrary categories and F : A → B be a
functor. A functor H : B → A is right adjoint to F , we write F a H, if there
exist isomorphisms

HomB(F (a), b) ∼= HomA(a,H(b)) (3)

for any a ∈ A and b ∈ B which are functorial in a and b.
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A functor G : B → A is left adjoint to F , we write G a F , if there exist
isomorphisms

HomA(G(b), a) ∼= HomB(b, F (a)) (4)

for any a ∈ A and b ∈ B, which are functorial in a and b.

Clearly, H is right adjoint to F if and only if F is left adjoint to H.
A right (or left) adjoint functor is, if it exists, unique up to isomorphism.

It can be verified by Yoneda’s lemma.
Suppose F a H, under the correspondence

HomB(F (a), F (a)) ∼= HomA(a,H(F (a))), (5)

the morphism idF (a) induces a morphism a→ H(F (a)). By the functoriality
of the isomorphism, we get a natural transformation

h : idA → H ◦ F. (6)

Similarly, suppose G a F , then we get a natural transformation

g : G ◦ F → idA. (7)

For the induced natural transformation h described in (6), composing the
functor H from the right, we can define the natural transformation

hH : H → (H ◦ F ) ◦H.

Similarly, for the induced natural transformation g : F ◦H → idA, composing
the functor H from the left, we can define

H(g) : H ◦ (F ◦H) → H.

We can check that the compositions

H
hH−→ (H ◦ F ) ◦H = H ◦ (F ◦H)

H(g)−−→ H (8)

F
F (h)−−→ F ◦ (H ◦ F ) = (F ◦H) ◦ F gF−→ F (9)

are the identities.
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Lemma 2.2 (Lemma 1.21 in [20]). Let F : A → B and H : B → A be functors
and suppose F a H. Then the induced natural transformation h : idA → H◦F
induces the following commutative diagram:

HomA(a, b)
h(b)

//

F
))RR

RRRR
RRRR

RRRR
HomA(a,H(F (b)))

∼=
��

HomB(F (a), F (b))

(10)

for any a, b ∈ A. Here, the vertical isomorphism is given in (3).
Similarly, for functors G a F , the induced natural transformation g : G ◦

F → idA induces the following commutative diagram:

HomA(a, b)
F

**TTT
TTTT

TTTT
TTTT

T

g(a)

��

HomA(G(F (a)), b) ∼=
// HomB(F (a), F (b)).

(11)

Recall that we say a functor F is fully faithful if the natural map

HomA(a, b) → HomB(F (a), F (b))

is bijective for all objects a, b ∈ A. By Lemma 2.2, we get the following
corollary.

Corollary 2.3. Let F : A → B and H : B → A be functors and suppose F a
H. Then F is fully faithful if and only if the induced natural transformation
h : idA → H ◦ F is an isomorphism.

Similarly, if G a F , then F is fully faithful if and only if the induced
natural transformation g : G ◦ F → idA is an isomorphism.

2.2 Exact functors

Let A and B be triangulated categories and F : A → B be an exact functor.
In this subsection, we describe a useful criterion for F to be fully faithful.

Let us start with the definition of a spanning class.
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Definition 2.4. Let A be a triangulated category. A set Ω of the objects of
A is called a spanning class for A if for any object a of A,

Homi
A(ω, a) = 0 ∀ω ∈ Ω, ∀i ∈ Z ⇒ a ∼= 0,

Homi
A(a, ω) = 0 ∀ω ∈ Ω, ∀i ∈ Z ⇒ a ∼= 0.

Example 2.5. Let X be a smooth projective variety. Then the set

Ω = {Ox | x ∈ X}

is a spanning class for Db(X).

In the following theorem, spanning classes play an important role.

Theorem 2.6 (Proposition 1.49 in [20]). Let A and B be triangulated cate-
gories and F : A → B an exact functor with a left and right adjoint. Suppose
that A has a spanning class Ω. Then F is fully faithful if and only if for all
elements ω1, ω2 ∈ Ω and for all i ∈ Z, the homomorphism

Homi
A(ω1, ω2) → Homi

B(F (ω1), F (ω2))

is an isomorphism.

Next, we give a criterion for a fully faithful functor to be an equivalence.
Let us start with the definition of a Serre functor.

Definition 2.7. LetA be a triangulated category and suppose that all Hom’s
in A are finite dimensional, i.e. for any a, b ∈ A,

∑
i dimHomi(a, b) < ∞

holds. An autoequivalence
SA : A → A

is said to be a Serre functor if for any a, b ∈ A, there exists an isomorphism

HomA(a, b) ∼= HomA(b,S(a))∨

which is functorial in each a and b.

Lemma 2.8 (Lemma 1.30 and Remark 1.31 in [20]). Let A and B be tri-
angulated categories with finite dimensional Hom’s and F : A → B be an
exact functor. Suppose that both A and B have Serre functors SA and SB
respectively.
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(1) The functor F admits a left adjoint functor if and only if F admits a
right adjoint functor.

(2) If F is an equivalence, then it commutes with Serre functors, i.e.

F ◦ SA ∼= SB ◦ F

holds.

In particular, applying Lemma 2.8 (2) to the identity functor, we see that
a Serre functor is unique if it exists.

Here we give some remarks on indecomposable triangulated categories.

Definition 2.9. We say that a triangulated category A is decomposed into
triangulated subcategories A1 and A2 if the following three conditions hold:

(1) Both categories A1 and A2 are non-trivial.

(2) For all a ∈ A, there exists a distinguished triangle

b1 → a→ b2 → b1[1]

with bi ∈ Ai for i = 1, 2.

(3) HomA(b1, b2) = HomA(b2, b1) = 0 for all bi ∈ Ai for i = 1, 2.

A triangulated category A is said to be indecomposable if it cannot be de-
composed.

Proposition 2.10 (Proposition 3.10 in [20]). For a Noetherian scheme X,
Db(X) is indecomposable if and only if X is connected.

The following criterion is useful.

Theorem 2.11 (Corollary 1.56 in [20]). Let F : A → B be an exact functor
with left adjoint and right adjoint. Assume that A is non-trivial, Ω is a
spanning class of A, B is indecomposable and F is fully faithful. If for any
ω ∈ Ω, there exists an isomorphism

F ◦ SA(ω) ∼= SB ◦ F (ω)

then F is an equivalence.
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2.3 Fourier–Mukai functors

First, we note a generalization of Serre duality, called Grothendieck–Verdier
duality.

Let X and Y be smooth projective varieties and f : X → Y be a mor-
phism. We define the relative dualizing bundle

ωf := ωX ⊗ f ∗ω−1
Y

where ωX and ωY are the canonical bundle of X and Y respectively.
The following theorem is a special version of Grothendieck–Verdier dual-

ity. For more general version, see [16].

Theorem 2.12. For any E ∈ Db(X) and F ∈ Db(Y ), there exists a bifunc-
torial isomorphism

Rf∗ RHomX(E ,Lf ∗(F)⊗ ωf [dimX − dimY ]) ∼= RHomY (Rf∗E ,F). (12)

Corollary 2.13. Let X be a smooth projective variety. Then

SX(-) := (-)⊗ ωX [dimX] : Db(X) → Db(X)

is a Serre functor.

Proof. Let E1 and E2 be objects in Db(X). We write E∨
2 := RHomX(E2,OX)

for the derived dual of E2. Applying Theorem 2.12 to

f : X → Spec k, E := E1
L
⊗ E∨

2 and F = k,

we get an isomorphism

RHomX(E1, E2 ⊗ ωX [dimX]) ∼= RHomX(E2, E1)∨.

Taking 0-th cohomology, we get the assertion.

Let us define

f ! : Db(Y ) → Db(X), E 7→ Lf ∗(E)⊗ ωf [dimX − dimY ]. (13)

Corollary 2.14. The functor f ! is right adjoint to Rf∗.
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Proof. Applying RΓ to both sides of (12) we get an isomorphism

RHomX(E ,Lf ∗(F)⊗ ωf [dimX − dimY ]) ∼= RHomY (Rf∗E ,F).

We get the conclusion by taking cohomology in degree zero.

We know that the functor Rf∗ is right adjoint to Lf ∗. In conclusion we
get

Lf ∗ a Rf∗ a f !.

Now we introduce a fundamental notion. For smooth projective varieties
X and Y , we denote by πX and πY the projections of X ×Y to X and to Y ,
respectively. For P ∈ Db(X × Y ), we define a Fourier–Mukai functor ΦP as
follows:

ΦP(-) := RπY ∗(P
L
⊗ π∗

X(-)). (14)

By the definition, we immediately see that a Fourier–Mukai functor is
exact. If a Fourier–Mukai functor gives an equivalence, we say that it is a
Fourier–Mukai transform.

Let E and F be objects of Db(X). For an integer i, we define

Homi
Db(X)(E ,F) := HomDb(X)(E ,F [i]).

If E and F are sheaves, then these spaces are just the Ext-groups, i.e.

Homi
Db(X)(E ,F) = ExtiX(E ,F).

We note that for any equivalence Φ: Db(X) → Db(Y ), we get

Homi
Db(Y )(Φ(E),Φ(F)) = Homi

Db(X)(E ,F) (15)

since Φ commutes with the translation functors. From (15), we get

χ(Φ(E),Φ(F)) = χ(E ,F),

where χ(E ,F) is the relative Euler characteristic

χ(E ,F) :=
∑
i

(−1)i dimHomi
Db(X)(E ,F).

By Riemann–Roch theorem, the relative Euler characteristic is given in
terms of the Chern characters of E and F . In particular, if X is a surface,
we get

χ(E ,F) =r(E)ch2(F)− c1(E) · c1(F) + r(F)ch2(E)

+
1

2
(r(F)c1(E)− r(E)c1(F)) ·KX + r(E)r(F)χ(OX),

where KX is the first Chern class of the canonical bundle ωX .
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2.4 Criterion of fully faithfulness

Let X and Y be smooth projective varieties and ΦP : Db(X) → Db(Y ) be a
Fourier–Mukai functor. The aim of this subsection is to give a criterion for
ΦP to be fully faithful.

Lemma 2.15 ([29]). For any P ∈ Db(X × Y ), we let

PL := P∨ ⊗ π∗
Y ωY [dim Y ] and PR := P∨ ⊗ π∗

XωX [dimX],

where P∨ = RHom(P ,OX×Y ), the derived dual of P. Then the induced
Fourier–Mukai functors

ΦPL : Db(Y ) → Db(X) and ΦPR : Db(Y ) → Db(X)

are left, respectively right adjoint to ΦP .

Proof. The proof is a straightforward application of Corollary 2.14. For any
E ∈ Db(X) and F ∈ Db(Y ), we get a sequence of functorial isomorphisms:

HomDb(X)(Φ
PL(F), E) ∼= HomDb(X)(RπX∗(PL

L
⊗ π∗

YF), E)

∼= HomDb(X×Y )(PL
L
⊗ π∗

YF , π∗
XE

L
⊗ π∗

Y ωY [dim Y ])

∼= HomDb(X×Y )(P∨ L
⊗ π∗

YF , π∗
XE)

∼= HomDb(X×Y )(π
∗
YF ,P

L
⊗ π∗

XE)

∼= HomDb(Y )(F ,RπY ∗(P
L
⊗ π∗

XE))
∼= HomDb(Y )(F ,ΦP(E)).

This shows ΦPL a ΦP . For ΦP a ΦPR , the proof is similar.

The following theorem is essential.

Theorem 2.16 ([30]). Let F be an exact functor from Db(X) to Db(Y )
where X and Y are smooth projective varieties. Assume that F is fully
faithful and has the right or left adjoint functor. Then there exists an object
P ∈ Db(X × Y ) such that F is isomorphic to the Fourier–Mukai functor ΦP

defined in (14), and the object P is unique up to isomorphism.
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Here, we give a criterion for a Fourier–Mukai functor to be fully faithful.
The following theorem is proved in [5, 11] in the case k = C. Most of the
proof is similar to the one in [5, 11]. See also Remark 2.18.

Theorem 2.17. (1) The functor ΦP : Db(X) → Db(Y ) is fully faithful if
and only if the following two conditions holds:

(1-a) For any points x, y ∈ X,

Homi
Db(Y )(Φ

P(Ox),Φ
P(Oy)) =

{
k if x = y and i = 0

0 if x 6= y or i /∈ [0, dimX]

and

(1-b) the homomorphism

Hom1
Db(X)(Ox,Ox) → Hom1

Db(Y )(Φ
P(Ox),Φ

P(Ox))

is injective.

(2) Suppose that ΦP is fully faithful. Then ΦP is an equivalence if and only
if for any point x ∈ X,

ΦP(Ox)⊗ ωY ∼= ΦP(Ox)

holds.

Proof. (1) If the functor ΦP is fully faithful, the conditions (1-a) and (1-b)
hold obviously.

For the opposite direction, note that {Ox | x ∈ X} given in Example 2.5
is a spanning class for Db(X). By Theorem 2.6, it is enough to show that for
any point x ∈ X and for all i ∈ Z, the homomorphism

Homi
Db(X)(Ox,Ox) → Homi

Db(Y )(Φ
P(Ox),Φ

P(Ox))

is an isomorphism.
We shall use the following commutative diagram given in (11) associated

to the adjointness ΦPL a ΦP .

Homi
Db(X)(Ox,Ox)

ΦP

++WWWW
WWWWW

WWWWW
WWWWW

W
gOx

��

Homi
Db(X)(Φ

PL ◦ ΦP(Ox),Ox) ∼=
// Homi

Db(Y )(Φ
P(Ox),Φ

P(Ox))
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Therefore, the desired conclusion is equivalent to that the vertical mor-
phism is an isomorphism. So it is enough to show that ΦPL ◦ ΦP(Ox) ∼= Ox

via the natural transformation g.
First we check that ΦPL ◦ΦP(Ox) is a sheaf supported at the point x. For

any point z
ιz
↪→ X, there are isomorphisms of vector spaces

Liι∗z(ΦPL ◦ ΦP(Ox))
∨ ∼= Homi

Db(X)(Φ
PL ◦ ΦP(Ox),Oz)

∼= Homi
Db(Y )(Φ

P(Ox),Φ
P(Oz))

coming from the adjunctions Lι∗z a Rιz∗. Here, Liι∗z is the i-th cohomology
of Lι∗z. Hence we see that Liι∗z(ΦPL ◦ΦP(Ox)) = 0 for z 6= x or i /∈ [0, dimX]
by the assumption. Thus by [5, Proposition 1.5], ΦPL ◦ ΦP(Ox) is a sheaf
supported at the point x. Furthermore, for the adjunction morphism ΦPL ◦
ΦP(Ox) → Ox, let K be the kernel of its morphism, then we get a short
exact sequence

0 → K → ΦPL ◦ ΦP(Ox) → Ox → 0 (16)

in Coh(X).
Let us show thatK = 0. Consider the natural transformation h : idDb(Y ) →

ΦP ◦ΦPL and g : ΦPL ◦ΦP → idDb(X) defined in (6) and (7), respectively. The
composition

ΦP(Ox)
h
ΦP−−→ ΦP ◦ ΦPL ◦ ΦP(Ox)

ΦP (g)−−−→ ΦP(Ox)

yields the identity by (8). Since ΦP(Ox) 6= 0 by the assumption, we see that
ΦPL ◦ ΦP(Ox) → Ox is not zero.

Applying the functor HomX(-,Ox) to (16), we get HomX(K,Ox) = 0 by
the assumption (1-b) and ExtiX(K,Ox) = 0 for i 6= 0 since ΦPL ◦ ΦP(Ox)
and Ox are sheaves supported at a point. Therefore, we get K = 0, which
completes the proof.

(2) The proof of [11, Theorem 5.4] works for arbitrary algebraically closed
fields.

Remark 2.18. There does not exist the condition (1-b) in [5, 11] because
in the case ch(k) = 0, the condition (1-b) holds automatically. See [20, Step
5 in the proof of Proposition 7.1]. On the other hand, in the case ch(k) > 0,
there exists a functor satisfying the assumption (1-a) but not fully faithful.
Here we describe it given in [18, Remark 1.25].

15



Let X be a smooth projective variety of dimension d over k with p > 0.
It is well known that the relative Frobenius morphism Fr: X → X(p) is
topologically a homeomorphism. Let us consider the direct image functor

Fr∗ : D
b(X) → Db(X(p))

which can also be described as a Fourier–Mukai functor ΦΓ where Γ ⊂ X ×
X(p) is the graph of Fr. Since Fr∗Ox

∼= OFr(x) for any x ∈ X, we see that ΦΓ

satisfies the condition (1-a) in Theorem 2.17. However, Fr∗OX is a locally
free of rank pd. So, we see that

Hom0
Db(X(p))(Fr∗OX ,Fr∗Ox) ∼= Hom0

Db(X(p))(Fr∗OX ,OFr(x)) ∼= kp
d

.

Since Hom0
Db(X(p))(OX ,Ox) ∼= k, the functor Fr∗ is not fully faithful.

Lemma 2.19 ([12]). Let X and Y be surfaces and Φ: Db(X) → Db(Y ) be a
Fourier–Mukai transform. For any point x ∈ X, there exists an inequality∑

i

dimExt1Y (H
iΦ(Ox), H

iΦ(Ox)) ≤ 2,

and moreover, each of the sheaves Φi(Ox) satisfies Φ
i(Ox)⊗ ωY ∼= Φi(Ox).

Proof. Let us consider the spectral sequence

Ep,q
2 =

⊕
i

ExtpY (Φ
i(Ox),Φ

i+q(Ox)) ⇒ Homp+q
Db(Y )

(Φ(Ox),Φ(Ox)).

Since Y is a surface, the E1,0
2 term survives to infinity. On the other hand,

by (15) we get

Hom1
Db(Y )(Φ(Ox),Φ(Ox)) ∼= Hom1

Db(X)(Ox,Ox) ∼= k2,

so, the result follows.

Recall that a smooth projective variety Y is called a Fourier–Mukai part-
ner of X if Db(Y ) ∼= Db(X) as k-linear triangulated categories. We write
FM(X) for the set of isomorphism classes of Fourier–Mukai partners of X:

FM(X) := {Y smooth projective variety | Db(X) ∼= Db(Y )}/ ∼= .
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It can happen that X does not have any non-trivial Fourier–Mukai part-
ners, i.e. |FM(X)| = 1. For example, let X be a smooth projective variety
with ample canonical or anticanonical sheaf. Then |FM(X)| = 1 holds by
[6].

On the other hand, there exists a variety which has a non-trivial Fourier–
Mukai partners. For example, as mentioned in §1, for an abelian variety
A, FM(A) contains Â. In general Â is not isomorphic to A, so in this case
|FM(X)| 6= 1.

For a study of Fourier–Mukai partners, the following is useful. For a
proof, see e.g. [20, Corollary 6.14].

Proposition 2.20. Let X and Y be smooth projective varieties and Φ: Db(X) →
Db(Y ) be a Fourier–Mukai transform. Suppose there exists a closed point
x0 ∈ X such that

Φ(Ox0)
∼= Oy0

for some y0 ∈ Y . Then there exists an open neighborhood U of x0 and a
morphism f : U → Y such that f(x0) = y0 and

Φ(Ox) ∼= Of(x)

for any closed point x ∈ U .

3 Relative moduli spaces of sheaves on ellip-

tic fibrations

3.1 Fourier–Mukai partners of elliptic surfaces

We study the set FM(S) for elliptic surfaces S. Let π : S → C be an elliptic
surface and Fπ be a general fiber of π. We define

λπ := min{D · Fπ | D is a horizontal effective divisor on S}. (17)

Fix a polarization on S and consider the relative moduli scheme M(S/C) →
C of purely 1-dimensional stable sheaves1 on the fibers π, whose existence

1Here we consider the Gieseker stability, equivalently the slope stability for 1-
dimensional sheaves. Moreover, the stability does not depend on the choice of polarizations
for such sheaves.
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is assured by Simpson in the case p = 0 in [37], and by Langer in the case
of arbitrary p in [26]. For integers a > 0 and i with i coprime to aλπ,
let JS(a, i) be the union of those components of M(S/C) which contains a
point representing a rank a, degree i vector bundle on a smooth fiber of π.
Bridgeland shows in [10] that JS(a, i) is actually a smooth projective surface
and the natural morphism JS(a, i) → C is a minimal elliptic fibration.

Lemma 3.1 (Lemma 4.2 in [12]). For any integers a and b with b coprime
to aλπ, there is an isomorphism

JS(a, b) ∼= J b(S).

Put J i(S) := JS(1, i). We can also define an elliptic surface J j(S) → C
for arbitrary j ∈ Z, which is not necessarily fine but the coarse moduli space
of a suitable functor (see [21, §11.4]). We have J0(S) ∼= J(S), the Jacobian
surface associated to S, J1(S) ∼= S and

J i(J j(S)) ∼= J ij(S) (18)

for i, j ∈ Z. See the argument after (23) for the proof of (18).
It is well known that the following statement holds in the case p = 0 by

[10, Theorem 1.2]. We state that it is also true for arbitrary p.

Proposition 3.2. Elliptic surfaces S and J i(S) for some integer i with
(i, λπ) = 1 are derived equivalent via a Fourier–Mukai functor

ΦP : Db(J i(S)) → Db(S)

for a universal sheaf P on J i(S)× S.

Proof. First note that the coprimary assumption implies that J i(S) is a fine
moduli space. Let us check the conditions (1-a), (1-b) and (2) in Theorem
2.17. The conditions (1-a) and (2) can be checked same as the proof in [10].

For (1-b), we will consider the map

Ext1Ji(S)(Ox,Ox) → Ext1S(Px,Px),

which is the Kodaira–Spencer map. Actually, the map is an isomorphism in
our case because P is a universal family. This completes the proof.

We have a nice characterization of Fourier–Mukai partners of elliptic sur-
faces with non-zero Kodaira dimensions.
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Theorem 3.3. Let π : S → C be an elliptic surface and T a smooth projective
variety. Assume that the Kodaira dimension κ(S) is non-zero. Then the
following are equivalent.

(i) T is a Fourier–Mukai partner of S.

(ii) T is isomorphic to J i(S) for some integer i with (i, λπ) = 1.

Proof. It follows from Proposition 3.2 that (ii) implies (i). The opposite
direction was proved in [12, Proposition 4.4] when p = 0 and S has no (−1)-
curves. The most of proof there works even for p > 0.

Let Φ: Db(T ) → Db(S) be an equivalence. Take a point x ∈ S lying on
a smooth fiber Fx of π and take t ∈ T such that the support of E := Φ(Ot)
contains x. Since

HomDb(S)(E , E) ∼= HomDb(T )(Ot,Ot) ∼= k,

the support of E is connected, hence either Supp E = Fx or Supp E consists
of a single closed point.

If E is a vector bundle on Fx, its Chern class is of the form (0, aFπ, b) for
some integers a and b. Now we know that

χ(E ,Φ(OT )) = χ(Ot,OT ) = 1.

Using Riemann–Roch theorem we see that aλπ is coprime to b by the defini-
tion of λπ. Since E is supported on an elliptic curve,

Ext1S(Hi(E),Hi(E)) 6= 0

for any i ∈ Z. Hence Lemma 2.19 induces that E has only one non-zero
cohomology sheaf. Thus, we see that E is a shift of a simple sheaf. In
particular, E is stable.

Let us consider the equivalence

ΦP : Db(JS(a, b)) → Db(S)

induced by the universal family P . It takes Oz to E for some point z ∈
JS(a, b). Hence the composition

Ψ := Φ−1 ◦ ΦP : Db(JS(a, b)) → Db(T )
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satisfies Ψ(Oz) = Ot. By Proposition 2.20, there is a rational map f : T 99K
J i(S) such that Ψ(Oz) ∼= Of(z) for any z in an open subset of T . Because ΦP

is an equivalence, we can avoid the possibility that f is purely inseparable,
and hence f is a birational map. Then the proof of [12, Proposition 4.4]
works in the rest (including the case that S is not minimal). Finally, Lemma
3.1 gives the conclusion of this case.

If E is concentrated in a single point z ∈ S, then Φ(Ot) = Oz. Then we
get a birational map between J1(S) and T . So, the above discussion gives
the conclusion.

As a consequence of Theorem 3.3, we obtain

FM(S) = {J i(S) | i ∈ Z, (i, λπ) = 1}/ ∼= .

Moreover, we see that there exist natural isomorphisms

J i(S) ∼= J i+λπ(S) ∼= J−i(S). (19)

Hence, in order to count the cardinality of the set FM(S), we often regard
an integer i as an element of the unit group (Z/λπZ)∗. It follows from the
isomorphisms (18) and (19) that the set

Hπ := {i ∈ (Z/λπZ)∗ | J i(S) ∼= S} (20)

forms a subgroup of (Z/λπZ)∗. Moreover, we see from (18) that J i(S) ∼=
J j(S) for i, j ∈ (Z/λπZ)∗ if and only if (S ∼=)J1(S) ∼= J i

−1j(S). Combining
all together, we have the following.

Lemma 3.4. For an elliptic surface π : S → C with κ(S) 6= 0, the set FM(S)
is naturally identified with the group (Z/λπZ)∗/Hπ.

Since Hπ contains the subgroup {±1} if λπ ≥ 3, we see

|FM(S)| ≤ ϕ(λπ)/2, (21)

where ϕ is the Euler function.
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3.2 Weil–Châtelet group

In this subsection, we recall the definition of the Weil–Châtelet group. For
more details, see [36, Ch.X.3] and [21, Ch.11.5].

Definition 3.5. Let E0 be an elliptic curve over a field K. A homogeneous
space for E0 is a pair (E, µ) where E is a smooth curve over K and

µ : E × E0 → E

satisfies the following properties:

(1) µ(p,O) = p for all p ∈ E.

(2) µ(µ(p, P ), Q) = µ(p, P +Q) for all p ∈ E and P,Q ∈ E0.

(3) For all p, q ∈ E, there is a unique P ∈ E0 satisfying µ(p, P ) = q.

We say two homogeneous space (E, µ) and (E ′, µ′) are equivalent if there
exists an isomorphism θ : E → E ′ defined over K which is compatible with
the action of E0, i.e. the following diagram is commutative:

E × E0

µ

��

θ×idE0// E ′ × E0

µ′

��

E
θ

// E ′

The collection WC(E0) of equivalence classes of homogeneous spaces for
E0 has a natural group structure (cf. [36, Theorem X.3.6], [21, Proposition
11.5.1]), and it is called the Weil–Châtelet group.

Note that the minus element of (E, µ) is given by (E, µ ◦ (id× (−1))).

Proposition 3.6 (Proposition X.3.3 in [36]). Let (E, µ) be a homogeneous
space for E0. Then (E, µ) is in the trivial class if and only if E(K) is not
empty.

Let π : S → C be an elliptic surface (over an algebraically closed field k)
and J iη denote the generic fiber of πi : J

i(S) → C for i ∈ Z. Then J0
η is an

elliptic curve over the function field of C, and we have a natural homogeneous
space structure

µi : J
i
η × J0

η → J iη (L,M) 7→ L ⊗M,
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and hence we can regard (J iη, µi) ∈ WC(J0
η ). We define

ξ := (J1
η , µ1) ∈ WC(J0

η ), (22)

then, we have
iξ = (J iη, µi) (23)

(cf. [21, Remark 11.5.2]) and thus

ord ξ | λπ. (24)

It follows from (23) that the generic fibers of J i(J j(S)) → C and J ij(S) → C
are isomorphic to each other, and taking the relative smooth minimal models
of compactifications of generic fibers, we obtain J i(J j(S)) ∼= J ij(S) as in (18).

Take a closed point x ∈ C and consider the henselization of the local ring
OC,x and denote it byOh

C,x. We also denote the base change of π0 : J
0(S) → C

by the morphism SpecOh
C,x → C by

J0
x → SpecOh

C,x.

Then it is known by [13, Proposition 5.4.3 in p.314, Theorem 5.4.3 in p.321]
that there exists an exact sequence:

0 → Br(J0(S)) → WC(J0
η ) →

⊕
x∈CWC(J0

x)

∈ ∈

ξ 7→ (ξx)x∈C

(25)

Here, we denote the image of ξ (given in (22)) in WC(J0
x) by ξx. It follows

from [13, Proposition 5.4.2] that mx = ord ξx, where mx is the multiplicity
of the fiber of π over the point x ∈ C. Define

λ′π := l.c.m.x∈C(mx) = ord((ξx)x∈C). (26)

Since ord ξ is divided by ord((ξx)x∈C), we see from (24) that

λ′π | λπ.

In particular, if i ∈ Z is coprime to λπ, then i is coprime to each mx, and
thus we have

ord(iξ)x = ord i(ξx) = ord(ξx) = mx. (27)
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Lemma 3.7. Let π : S → C be an elliptic surface. Then we have the follow-
ing statements.

(1) For i ∈ Z with (i, λπ) = 1, consider the elliptic fibration πi : J
i(S) → C.

The multiplicities of the fibers Fx and F ′
x of π and πi over a fixed point

x ∈ C coincide. Furthermore, if the fiber Fx is smooth, then it is
isomorphic to F ′

x.

(2) Let S be an elliptic ruled surface, and take S ′ ∈ FM(S). Then S ′ is
also an elliptic ruled surface with an elliptic fibration.

Proof. (i) Combining (27) with (23), we know that the multiplicity of the
fiber of πi over the point x is also mx. This shows the first statement. By the
property of the relative moduli scheme, the fiber F ′

x is the fine moduli space
of line bundles of degree i on a smooth elliptic curve Fx. Consequently, the
second statement follows.

(ii) Theorem 3.3 implies that there exists an integer i with (i, λπ) = 1
such that J i(S) ∼= S ′, which implies that S ′ has an elliptic fibration π′. The
Kodaira dimension is derived invariant by [38, Corollary 4.4], hence S ′ is a
rational elliptic surface or an elliptic ruled surface. Then, [19, Theorem B]
implies that S ′ is also an elliptic ruled surface.

Define a subgroup H ′
π of the group Hπ(:= {i ∈ (Z/λπZ)∗ | J i(S) ∼= S}

given in (20)) to be

H ′
π :={i ∈ Hπ | i ≡ 1 (mod λ′π)}. (28)

We use the following lemma to obtain a lower bound of the cardinality of the
set FM(S).

Lemma 3.8. Let π : S → C be an elliptic surface with Br(J0(S)) = 0. Then
we have ∣∣Hπ/H

′
π

∣∣ ≤∣∣Aut0(J0
η )
∣∣.

Proof. For each i ∈ Hπ, fix an isomorphism θi : J
1
η → J iη over the generic

point η ∈ C. Then we obtain a structure of a homogeneous space on J1
η by

the action
µ′
i := θ−1

i ◦ µi ◦ (θi × idJ0
η
) : J1

η × J0
η → J1

η
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such that (J iη, µi) = (J1
η , µ

′
i) holds in WC(J0

η ) by the definition. On the
other hand, by [36, Exercise 10.4], (J1

η , µ
′
i) = (J1

η , µ1 ◦ (idJ1
η
× φ)) for some

φ ∈ Aut0(J
0
η ). We define an equivalence relation ∼ of Aut0(J

0
η ) such that

φ1 ∼ φ2

for φi ∈ Aut0(J
0
η ) when

(J1
η , µ1 ◦ (idJ1

η
× φ1)) = (J1

η , µ1 ◦ (idJ1
η
× φ2)).

Then we can define a map

f : Hπ → Aut0(J
0
η )/∼ i 7→ φ.

We see that ij−1 ∈ H ′
π if and only if f(i) = f(j) as follows. First note that

we have an injection

WC(J0
η ) ↪→

⊕
x∈C

WC(J0
x) ξ = (J1

η , µ1) 7→ (ξx)x∈C

by the vanishing of the Brauer group Br(J0(S)) and (25), and hence

ord ξ = λ′π(:= ord((ξx)x∈C)). (29)

We observe that for i, j ∈ Hπ, the condition f(i) = f(j) is equivalent to the
equality iξ = jξ by (23), which is also equivalent to i−1j ∈ H ′

π by (29).
Consequently, we obtain an inclusion

Hπ/H
′
π ↪→ Aut0(J

0
η )/∼

and the conclusion.

4 Elliptic curves and automorphisms

Let F be an elliptic curve over an algebraically closed field k with p = ch k ≥
0. The explicit description of the automorphism group Aut0(F ) fixing the
origin O is well-known, and is given as follows.
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Theorem 4.1 (cf. Appendix A in [36]). The automorphism group Aut0(F )
is

Z/2Z if j(F ) 6= 0, 1728,

Z/4Z if j(F ) = 1728 and p 6= 2, 3,

Z/6Z if j(F ) = 0 and p 6= 2, 3,

Z/3Z o Z/4Z if j(F ) = 0 = 1728 and p = 3,

Qo Z/3Z if j(F ) = 0 = 1728 and p = 2.

Note that in the last second case, Z/4Z acts on Z/3Z in the unique non-
trivial way, and in the last case, the group is so called a binary tetrahedral
group, and Q is the quaternion group. In the last two cases F is necessarily
supersingular.

For points x1, x2 ∈ F , to distinguish the summation of divisors and of
elements in the group scheme F , we write x1 ⊕ x2 for the sum of them by
the operation of F , and

i · x1 := x1 ⊕ · · · ⊕ x1 (i times).

Furthermore, we use the symbol Ta to stand for the translation by a ∈ F :

Ta : F → F x→ a⊕ x.

We also write
ix1 := x1 + · · ·+ x1 (i times)

for the divisors on F of degree i. We denote the dual abelian variety Pic0 F
of F by F̂ . It is well-known that there exists a group scheme isomorphism

F → F̂ x 7→ OF (x−O), (30)

where O is the origin of F .
We will use the following lemma several times.

Lemma 4.2. Take a point a ∈ F with ord(a) ≥ 4, and φ ∈ Aut0(F ). If
φ(a) = a, then φ = idF .

Proof. In any of the cases in Theorem 4.1, we have ord(φ) ∈ {1, 2, 3, 4, 6}.
Let us first consider the case ord(φ) = 2, 4 or 6. In this case, φi = −idF for
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some i ∈ Z, and hence we get −1 · a = a. The condition ord(a) ≥ 4 yields a
contradiction. Next, consider the case ord(φ) = 3. Then we have

(φ− idF )(φ
2 + φ+ idF ) = 0

in the domain End(F ), which implies that φ2 + φ + idF = 0, and hence
φ2(a) ⊕ φ(a) ⊕ a = O. By the assumption φ(a) = a, we see that 3 · a = O.
This is absurd by ord(a) ≥ 4.

For a non-zero integer m, we define the m-torsion subgroup of F to be

F [m] := {a ∈ F | m · a = O}.

Equivalently, F [m] is the kernel of the multiplication map by m. Recall that

F [m] =


Z/peZ if F is ordinary, m = pe, e > 0

{O} if F is supersingular, m = pe, e > 0

Z/mZ× Z/mZ if p - m.

(See [36, Corollary III.6.4].) Note that these 3 cases do not exhaust all
possibilities (i.e., cases where m is divisible by p but is not power of p is not
covered.)

Take a ∈ F with ord(a) = m. In order to count Fourier–Mukai partners
of elliptic ruled surfaces, we need to study the subgroup

Ha
F := {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(F ) such thatφ(a) = i · a} (31)

of (Z/mZ)∗. Note that the definition of HL
Ê
given in (2) is compatible with

(31). We obtain the following result as a direct consequence of Lemma 4.2.

Lemma 4.3. Take a ∈ F with ord(a) ≥ 4.

(1) We have an injective group homomorphism

ι : Ha
F ↪→ Aut0(F ). (32)

Furthermore, we have |Ha
F | = 2, 4 or 6.

(2) Suppose that p > 0 and ord(a) = pe. Then (32) is an isomorphism.
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Proof. (i) Take i ∈ Ha
F . Then there exists φ ∈ Aut0(F ) such that φ(a) = i ·a,

and define ι(i) to be φ. The well-definedness of ι follows from Lemma 4.2, and
ι is injective by the definition. Since Ha

F is regarded as an abelian subgroup
of Aut0(F ) described in Theorem 4.1, and Ha

F contains {±1} as a subgroup,
we obtain the second assertion.

(ii) The existence of an order pe element in F implies that F is ordinary.
Since F [pe] = Z/peZ = 〈a〉, for any φ ∈ Aut0(F ) we see that φ(a) = i · a for
some i ∈ (Z/peZ)∗. Hence the injective homomorphism in (32) is surjective,
and then we can confirm the statement.

Remark 4.4. If ord(a) ≤ 3, the map (32) may not be well-defined in the
same way as in the proof of Lemma 4.3. For example, let F be a complex

torus C/(Z+
−1 +

√
−3

2
Z). In this case Aut0(F ) contains a complex multi-

plication by
−1 +

√
−3

2
. Consider the element a =

1

3
+
2

3
· −1 +

√
−3

2
. Then

−1 +
√
−3

2
· a = a, so the map (32) is not well-defined.

From now on, by (32) we often regard Ha
F as a subgroup of Aut0(F )

when ord a ≥ 4. Note that we immediately see that Ha
F = {1} if m = 2 and

Ha
F = {±1} if m = 3.
We need the following to show Lemma 4.7,

Lemma 4.5. Let F be an elliptic curve, and take g ∈ Aut0(F ) with ord(g) ≥
3 (note that this condition implies j(F ) = 0 or 1728). Let m be a positive
integer satisfying p - m. Then there exists α ∈ F [m] with ord(α) = m such
that α and gα generate F [m].

Proof. For k = C, F is a complex torus. Since j(F ) = 0 or 1728, we can put

F = C/(Z+ Zτ), τ =
−1 +

√
−3

2
or

√
−1.

Then we see that

F [m] =

{
n

m
+
n′

m
τ | m,n, n′ ∈ Z

}
.

In each case, complex multiplication by τ is an element of Aut0(F ) and the

elements
1

m
and

1

m
τ generate F [m].
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Let us consider another field k with p = 0. The defining equations of F
is

y2 + y = x3 if j(F ) = 0

y2 = x3 + x if j(F ) = 1728,

so F can be defined over Q. Take the smallest finite extension K of Q such
that F [m] ⊂ F (K). Then F [m] = 〈α, gα〉 for some α ∈ F (K) by the result
of the case k = C. Note that the automorphism g and the base change of
the field extension commutes. Since algebraically closed field k with ch k = 0
contains K, the element α can be taken as an element in F (k), which gives
the assertion.

Let us consider the case p > 0 and p - m. Regard F as an elliptic curve
over K as above. By [36, Proposition VII.3.1], the reduction map

F [m] → F̃ [m]

is bijective, where F̃ is a mod p reduction of F . Moreover, observing the
action of Aut0(F ) and Aut0(F̃ ), the above map commutes with the action of
their automorphisms. Hence the assertion follows from the case p = 0.

Note that in this case, we easily see that α and gα are linearly independent
i.e. for any x, y ∈ Z/mZ, the equality x · α⊕ y · gα = 0 implies x = y = 0.

Remark 4.6. Set L := Z/mZ × Z/mZ(∼= F [m]). In Lemma 4.5, the auto-
morphism g really need to come from an automorphism group of F . In fact,
take m = 5 and the automorphism

h :=

(
2 0
0 2

)
of L with ord(h) = 4. Since we have hα = 2α for any α ∈ L, it turns out
that α and hα cannot generate L.

A part of the following lemma is shown in [40, Lemma 2.3] in the case
k = C.

Lemma 4.7. Let F be an elliptic curve, and take a ∈ F with ord(a) = m ≥ 4.

(i) One of the following cases occurs:
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(a) There exists n ∈ Z such that m divides n2+1 and Ha
F = {±1,±n}.

(b) There exists n ∈ Z such that m divides n2 + n + 1 and Ha
F =

{±1,±n,±n2}.
(c) Ha

F = {±1}.

(ii) Assume that p does not divide m.

(a) If j(F ) 6= 0, 1728, then Ha
F = {±1}.

(b) Suppose j(F ) = 1728 and p 6= 2, 3. If there exists n ∈ Z such
that m divides n2 + 1 and a ∈ 〈n · α ⊕ gα〉 the subgroup of F [m],
for some α ∈ F [m] and g ∈ Aut0(F ) with ord(g) = 4 satisfying
the condition in Lemma 4.5. Then Ha

F = {±1,±n}. Otherwise,
Ha
F = {±1}.

(c) Suppose j(F ) = 0 and p 6= 2, 3. If there exists n ∈ Z such that m
divides n2+n+1 and a ∈ 〈(n+1)·α⊕gα〉 the subgroup of F [m], for
some α ∈ F [m] and g ∈ Aut0(F ) with ord(g) ≥ 3 satisfying the
condition in Lemma 4.5. Then Ha

F = {±1,±n,±n2}. Otherwise,
Ha
F = {±1}.

Proof. (i) We freely use Theorem 4.1 below. In the case F is ordinary, the
assertion directly follows from the description of automorphism groups in
Theorem 4.1. Suppose that F is supersingular. In the case p = 2, Ha

F is
an abelian subgroup of the binary tetrahedral group. This condition implies
that Ha

F is isomorphic to one of Z/2Z, Z/4Z or Z/6Z. Hence, we get the
assertion. In the case p = 3, then Aut0(F ) is isomorphic to Z/3Z o Z/4Z,
and then the rest of the proof is similar to the previous case.

(ii) Note that the cardinality |Ha
F | is even, since Ha

F always contains {±1}
as its subgroup. (a) is obvious by |Aut0(F )| = 2. Hence, let us consider the
case (b). Take a generator g of the cyclic group Aut0(F ) ∼= Z/4Z. It follows
from Lemma 4.5 that we can set

a = x · α⊕ y · gα

for some x, y ∈ Z and suppose that ga = n · a holds for some n ∈ Z. Then
we have

nx ≡ −y, ny ≡ x (modm)

since g2 = −1. Hence, we deduce that a ∈ 〈n ·α⊕ gα〉 and m divides n2 +1.
In the case (c), the proof is similar to the case (b).
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Assume that m = npe with e ≥ 0 and p - n. We easily see that the
natural projection

(Z/mZ)∗ → (Z/nZ)∗.
induces a group homomorphism

Ha
F → Hpe·a

F . (33)

Lemma 4.8. The homomorphism (33) is surjective.

Proof. Assume that there exists φ ∈ Aut0(F ) such that φ(pe · a) = i1p
e · a

for some i1 ∈ (Z/nZ)∗. Since

F [m] ∼= Z/nZ× Z/nZ× Z/peZ

the element a ∈ F [m] can be decomposed by a = a1 + a2 where ord(a1) = m
and ord(a2) = pe. Note that by the assumption we get φ(a1) = i1 · a1.
Moreover, since a2 generates F [pe](∼= Z/peZ), there exists i2 ∈ (Z/peZ)∗
such that φ(a2) = i2 · a2. Let us consider the isomorphism

(Z/nZ)∗ × (Z/peZ)∗ → (Z/mZ)∗

and let i ∈ (Z/mZ)∗ be the image of (i1, i2). Then we see that

i · a = i · (a1 + a2)

= i1 · a1 + i2 · a2
= φ(a1) + φ(a2)

= φ(a)

so the homomorphism (33) is surjective.

Lemma 4.9. If n ≥ 3, then the homomorphism (33) is an isomorphism.

Proof. By Lemma 4.8, we see that if |Ha
F | = 2 then |Hpe·a

F | = 2. Hence it is
enough to show that |Ha

F | > 2 implies |Hpe·a
F | > 2 because the groups Ha

F and
Hpe·a
F are isomorphic to one of Z/2Z, Z/4Z or Z/6Z. In the case Ha

F
∼= Z/4Z.

Then there exists i ∈ (Z/mZ) such that i2 = −1 and

φ(a) = i · a

for some φ ∈ Aut0(F ). Denote by ī the image of i by the projection Z/mZ →
Z/nZ, which induces Ha

F → Hpe·a
F . Since we have φ(pe · a) = i · pe · a, we see

that ī ∈ Hpe·a
F . Since ī2 = −1, we get Hpe·a

F
∼= Z/4Z. In the case Ha

F
∼= Z/6Z,

the proof is similar.
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Take a ∈ F and put m := ord(a). Assume furthermore that p - m. Let us
define an elliptic curve E to be F/〈a〉, and consider the quotient morphism

q : F → E = F/〈a〉.

Then we can find L ∈ Pic0E = Ê with m = ord(L) such that F̂ ∼= Ê/〈L〉
and the dual morphism

q̂ = q∗ : Ê → F̂

of q coincides with the quotient morphism

Ê → Ê/〈L〉.

The following lemma for k = C is shown by case analysis in [40, Lemma
2.4]. We give a more direct proof for an arbitrary algebraically closed field
k.

Lemma 4.10. In the above notation, the equality Ha
F = HL

Ê
holds.

Proof. If m = 2 or 3, then Ha
F = {1} or {±1}, respectively, without depend-

ing the choice of a ∈ F . So the assertion is clear.
In the case m ≥ 4, suppose that we are given i ∈ Ha

F . Then there
exists φ ∈ Aut0(F ) such that φ(a) = i · a, which means that φ preserves the
subgroup 〈a〉 of F . Then we see that φ induces the automorphism φE of E
which makes the diagram

F

ϕ
��

q
// E

ϕE
��

F q
// E

commutative. Taking the dual of it, we obtain the commutative diagram:

F̂ Ê
q̂

oo

F̂

ϕ̂

OO

Ê
q̂

oo

ϕ̂E

OO

Since Ker q̂ = 〈L〉, we see that φ̂E = φ∗
E preserves the subgroup 〈L〉 ⊂ Ê.

Hence, we get
φ∗
EL ∼= Lj
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for some j ∈ HL
Ê
. It follows from Lemma 4.2 that the equality j = 1 holds

only if φ∗
E = idÊ, in particular φ = idF . Hence, we have an injection

Ha
F ↪→ HL

Ê
i 7→ j.

Because the conditions on a ∈ F and L ∈ Ê are symmetry, we conclude the
equality Ha

F = HL
Ê
.

Remark 4.11. Suppose that j(F ) 6= 0, 1728. Then Lemma 4.7 (ii-a) tells
us that |Ha

F | = 2, and hence |HL
Ê
| = 2 by Lemma 4.10. A similar statement

holds if we relace a ∈ F with L ∈ Ê.

5 Admissible subcategories

In this section, we summarize some definitions and results in [34], and give
their application to Popa–Schnell conjecture in [35]. Throughout this sec-
tion, let D be a k-linear triangulated category. We also refer to [32] for
fundamental notions of ∞-categories.

5.1 Basic properties

In this subsection, we give basic properties of admissible subcategories. For
more details, see [20].

Definition 5.1. Let A ⊂ D be a full triangulated subcategory. If the inclu-
sion functor ι : A ↪→ D has the left (resp. right) adjoint functor, we say A is
a left (resp. right) admissible subcategory of D. A left and right admissible
subcategory is called an admissible subcategory.

Remark 5.2. Let B be a left (resp. right) admissible subcategory of D and
A be a left (resp. right) admissible subcategory of B. Then A is a left (resp.
right) admissible subcategory of D. Indeed, the inclusion functor

A ι−→ B θ−→ D

has a left adjoint functor θL ◦ ιL, where ιL and θL are left adjoint functor of
ι and θ, respectively.

32



Remark 5.3. Let X be a smooth projective variety. In this case A ⊂
Db(X) is left admissible if and only if right admissible. For the proof, see [8,
Propositions 2.6, 2.8 and Theorem 2.14].

Example 5.4. Let X := P(E) → Y be a Pn-bundle. Then π∗Db(Y ) is an
admissible subcategory of Db(X).

To see this, it is enough to show that π∗ : Db(Y ) → Db(X) is fully faith-
ful since π∗ has a right adjoint functor Rπ∗. Because of Corollary 2.3, we
will check that Rπ∗π∗F ∼= F for any F ∈ Db(Y ). By the projection for-
mula, we only have to check that Rπ∗π∗OY

∼= OY . Since a fiber of π is Pn,
H i(Xy,OXy) = 0 for any i 6= 0, where Xy = π−1(y). On the other hand,
since H i(Xy,OXy)

∼= (Riπ∗OX)|y, we see that Riπ∗OX = 0 for i 6= 0. Hence,
we get Rπ∗π∗OY

∼= OY .

Now let us recall some basic notions.

Definition 5.5. Let D be a k-linear triangulated category and C be its full
triangulated subcategory.

(1) The right orthogonal subcategory to C is a full subcategory of D

C⊥ := {E ∈ D | HomD(F,E) = 0 for any F ∈ C}.

Similarly, the left orthogonal subcategory to C is

⊥C := {E ∈ D | HomD(E,F ) = 0 for any F ∈ C}.

(2) A triangulated subcategory C is called thick if it is closed under taking
direct summands.

Definition 5.6. (1) An object E ∈ D is exceptional if RHomD(E,E) = k
holds, or equivalently,

Homi
D(a, a) =

{
k if i = 0

0 if i 6= 0

holds.

(2) A collection of exceptional objects

(E1, . . . , En),

where E1, . . . , En ∈ D is an exceptional collection of length n if RHomD(Ej, Ei) =
0 for any 1 ≤ i < j ≤ n.
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(3) An exceptional pair is an exceptional collection of length 2.

Lemma 5.7. Let X be a smooth projective variety and E ∈ Db(X) be an
exceptional object. Then 〈E〉 is an admissible subcategory of Db(X), where
〈E〉 is the smallest thick subcategory of Db(X) which contains E.

Proof. Let us consider the functor

-
L
⊗ E : Db(Spec k) → Db(X).

By the definition of exceptional objects, any object in 〈E〉 is of the form⊕
E[i]⊕ni . Hence, we see that the essential image of the functor -

L
⊗ E is

〈E〉. We know that the functor

RHomX(E, -) : D
b(X) → Db(Spec k)

is right adjoint to -
L
⊗ E. Since E is exceptional, we have isomorphisms of

functors

RHomX(E, (-)
L
⊗ E) ∼= RHomX(E,E)

L
⊗ (-) ∼= idDb(Spec k).

This completes the proof.

Definition 5.8. A collection of full triangulated subcategories D1, . . .Dn is
called a semiorthogonal decomposition of D if the following two conditions
hold.

(1) For all 1 ≤ j < i ≤ n and any objects Ei ∈ Di, Ej ∈ Dj we have
HomD(Ei, Ej) = 0.

(2) The smallest triangulated subcategory of D containing D1, . . . ,Dn co-
incides with D.

In this case we denote it by

D = 〈D1, . . . ,Dn〉

a semiorthogonal decomposition.

34



Let (E1, . . . , En) be an exceptional collection in D. If the smallest trian-
gulated subcategory of D containing E1, . . . , En coincides with D, then we
get a semiorthogonal decomposition

D = 〈〈E1〉, . . . , 〈En〉〉.

In this case, we say (E1, . . . , En) is a full exceptional collection and we denote
it by

D = 〈E1, . . . , En〉.

Theorem 5.9 ([4]). There is a full exceptional collection

Db(Pn) = 〈OPn(i),OPn(i+ 1), . . . ,OPn(i+ n)〉

for any i ∈ Z.

Proposition 5.10. Let C be a full subcategory of D and ι : C ↪→ D be the
fully faithful functor. Then the following statements are equivalent.

(1) The functor ι has a right (resp. left) adjoint functor, i.e. the category
C is a right (resp. left) admissible subcategory.

(2) There exists a semiorthogonal decomposition

D = 〈C⊥, C〉 (resp. D = 〈C,⊥ C〉).

Proof. We denote by ιR the right adjoint functor of ι. By the natural trans-
formation given in (7) we get a distinguished triangle

ι ◦ ιR(E)
gE−→ E → G→ ι ◦ ιR(E)[1]

for any object E ∈ D. For any object C ∈ C apply the functor HomD(ι(C), -)
to the distinguished triangle, we get a long exact sequence

→ Homl
D(ι(C), ι ◦ ιR(E))

ϕl−→ Homl
D(ι(C), E) → Homl

D(ι(C), G)

→ Homl+1
D (ι(C), ι ◦ ιR(E))

ϕl+1−−→ · · · .

By the construction, we see that each φl is an isomorphism. Hence, we get

RHomD(ι(C), G) = 0
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for any object C ∈ C. So we get G ∈ C⊥, which gives the proof of (1) ⇒ (2).
For the converse, suppose that there exists a semiorthogonal decompo-

sition D = 〈C⊥, C〉. Then for any object E ∈ D, we get a distinguished
triangle

ι(F ) → E → G→ ι(F )[1]

for some F ∈ C and G ∈ ι(C)⊥. Let us define π(E) := F , and we will
show that π is a functor from D to C. Let ι(Fi) → Ei → Gi → ι(Fi)[1] be
distinguished triangles for i = 1, 2 and f : E1 → E2 be a morphism in D.
Consider the following diagram

ι(F1) // E1

f

��

// G1
// ι(F1)[1]

ι(F2) // E2
// G2

// ι(F2)[1].

Since G2 ∈ ι(C)⊥, a composition of morphisms

ι(F1) → E1
f−→ E2 → G2

is zero. So, we get a morphism ι(F1) → ι(F2). Since ι is fully faithful, we get
a morphism F1 → F2 in the category C. Hence, π is a functor.

For each C ∈ C, applying the functor HomD(ι(C), -) we get an isomor-
phism

HomD(C, π(E)) ∼= HomD(ι(C), E)

because G ∈ ι(C)⊥. Hence, we see that π is right adjoint to ι.

Lemma 5.11. Let D be a triangulated category. Then any left or right
admissible subcategory of D is a thick subcategory.

Proof. Let C ⊂ D be a right admissible subcategory, ι : C ↪→ D be an in-
clusion and ιR : D → C be its right adjoint. For an object E ∈ C, suppose
that there is a decomposition ι(E) = A ⊕ B. Since ιR ◦ ι = idC, we get a
decomposition

E = ιR(A)⊕ ιR(B)

in the category C. On the other hand, since E ∈ C we get

HomD(A,G)⊕ HomD(B,G) = HomD(E,G) = 0

for any object G ∈ C⊥. Since ⊥(C⊥) = C, we see that A,B ∈ C.
In the case C ⊂ D is a left admissible subcategory, the proof is similar.
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For a semiorthogonal decomposition D = 〈D1, . . . ,Dn〉, we see that

D = 〈D1, . . . ,Dk−1, 〈Dk, . . . ,Dl〉,Dl+1, . . . ,Dn〉

is also a semiorthogonal decomposition of D where 1 ≤ k ≤ l ≤ n.

Proposition 5.12. Let X be a smooth projective variety. If there exists a
semiorthogonal decomposition

Db(X) = 〈D1, . . . ,Dn〉,

then all Di are admissible subcategories.

Proof. Since we have a decomposition

Db(X) = 〈D1, 〈D2, . . . ,Dn〉〉

we see that D1 is a left admissible subcategory by Proposition 5.10. Note
that by Remark 5.3, D1 is also a right admissible subcategory. Similarly, we
see that D2 is an admissible subcategory of 〈D2, . . . ,Dn〉. By Remark 5.2
D2 is also an admissible subcategory of D. Repeating this procedure, we see
that Di is admissible for each 1 ≤ i ≤ n.

For an exceptional pair E ,F , the left mutation LEF of F through E
and the right mutation RFE of E through F are defined by the following
distinguished triangles:

RHomD(E ,F)⊗ E ε−→ F → LEF
RFE → E η−→ RHomD(E ,F)∨ ⊗F

The following lemma is well-known. See e.g. [20, Corollary 3.15].

Lemma 5.13. Let C be a smooth projective curve.

(1) For any object E ∈ Db(C), there is a decomposition

E ∼=
⊕
i

Hi(E)[−i]

into a direct sum of shifts of cohomology sheaves.
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(2) For any coherent sheaf F on C, there is a decomposition

F ∼= T ⊕ E

into a direct sum of a torsion sheaf T and a locally free sheaf E .
The complete description of admissible subcategories of Db(P1) is easy to

be seen. Here we give a proof of this.

Proposition 5.14. Any non-trivial admissible subcategory in Db(P1) is of
the form 〈O(j)〉 for some j ∈ Z.
Proof. Let A ⊂ Db(P1) be a non-trivial admissible subcategory and E ∈ A
be an object. By Lemma 5.13 (1), there is a decomposition

E ∼=
⊕
i

Hi(E)[−i]

and by Lemma 5.13 (2), each Hi(E) is decomposed into a direct sum of
torsion sheaves and locally free sheaves. Note that any locally free sheaf on
P1 is decomposed by a direct sum of line bundles

⊕
lO(jl) for some jl ∈ Z.

Assume that there exists an object E ∈ A which contains a (shift of) line
bundle O(j) as a direct summand. By Lemma 5.11, we see that O(j) is in A,
hence 〈O(j)〉 ⊂ A. Since we know that ⊥〈O(j)〉 = 〈O(j + 1)〉 by Theorem
5.9, ⊥A ⊂ 〈O(j +1)〉. Hence we see ⊥A = 〈O(j +1)〉 or 0. For the first case
we get A = 〈O(j)〉 and for the latter case we get A = Db(P1), which is a
trivial one.

It remains the case that for any E ∈ A, the object E contains no line
bundles as direct summands. Since any torsion sheaf on P1 is a filtration of
structure sheaves of finite points, so A contains Ox for some x ∈ P1. If we
take a semiorthogonal decomposition

Db(P1) = 〈A,⊥ A〉

then ⊥A also has no line bundles by a similar argument to the previous case.
Since both A and ⊥A have only direct sums of shift of torsion sheaves and

HomP1(Oy,Ox) = HomP1(Ox,Oy) = 0

for y 6= x, we see that Db(P1) is decomposed into A and ⊥A in the sense of
Definition 2.9. This contradicts Proposition 2.10.

Theorem 5.15 (Theorem 4.2 in [33]). Any admissible subcategory in Db(P2)
is generated by a subcollection of a mutation of the standard exceptional col-
lection Db(P2) = 〈OP2 ,OP2(1),OP2(2)〉.
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5.2 Pirozhkov’s result and its application

For a Noetherian scheme S over k, we denote by Perf(S) the full subcategory
of Db(S) consisting of perfect complexes. Note that for a smooth projective
variety S, we know that Perf(S) = Db(S). A stable k-linear ∞-category D
is said to be S-linear if there exists an action functor

aD : D × Perf(S) → D

together with associativity data.
For a morphism f : X → S between smooth projective varieties X and S

over k, the category Db(X) has a natural S-linear structure via the functor

Db(X)×Db(S) → Db(X) (E ,F) 7→ E
L
⊗X Lf ∗F .

Definition 5.16 ([34]). Let S be a Noetherian scheme over a field k. We
say that S is noncommutatively stably semiorthogonally indecomposable, or
NSSI for brevity, if for arbitrary choices of

(1) D, a S-linear category which is proper2 over S and has a classical
generator, and

(2) A, a left admissible subcategory of D which is linear over k,

the subcategory A is closed under the action of Perf(S) on D.

Remark 5.17. For a definition of a classical generator, see [7]. For a quasi-
compact and quasi-separated scheme S, the category Perf(S) has a classical
generator [7, Corollary 3.1.2]. In particular, for a smooth projective variety
S, the category Db(S) has a classical generator.

Theorem 5.18 (Lemma 6.1 in [34]). Let π : X → S be a smooth projective
morphism which is an étale-locally trivial fibration with fiber X0. Assume
that S is a connected excellent scheme3.Then for any point s ∈ S the base
change map

S-linear admissible
subcategories
A ⊂ Db(X)

 restriction to Xs
∼= X0−−−−−−−−−−−−→

{
admissible subcategories

A0 ⊂ Db(X0)

}
is an injection.

2See [32] for this notion.
3In [34, Lemma 6.1], Pirozhkov assumes that S is a scheme over Q, but it is not needed

in its proof.
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Definition 5.19. Let π : X → S be a smooth projective morphism of
Noetherian schemes.

(1) An object E ∈ Perf(X) is π-exceptional if Rπ∗ RHomX(E , E) ∼= OS.

(2) A collection of π-exceptional objects E1, . . . , EN ∈ Perf(X) is a π-
exceptional collection if Rπ∗ RHomX(Ej, Ei) = 0 for any 1 ≤ i < j ≤ N .

(3) A π-exceptional pair is a π-exceptional collection of length 2.

For a π-exceptional pair E ,F , the left π-mutation LEF of F through E
and the right π-mutation RFE of E through F are defined by the following
distinguished triangles:

π∗Rπ∗ RHomX(E ,F)⊗OX
E ε−→ F → LEF ,

RFE → E η−→ π∗Rπ∗ RHomX(E ,F)∨ ⊗OX
F .

We see that mutations commute with base change.

Lemma 5.20 (Lemma 2.22 in [22]). Consider the following Cartesian square
of finite dimensional Noetherian schemes, where π is smooth projective.

Y
f

//

φ
� �

X

π
��

T g
// S

For any π-exceptional pair (E ,F), it follows that (f ∗E , f ∗F) is an ϕ-exceptional
pair and we have the following isomorphisms:

Lf∗E (f
∗F) ' f ∗(LEF)

Rf∗F (f ∗E) ' f ∗(RFE)

We apply Lemmas 5.18 and 5.20 to obtain the following.

Proposition 5.21. Let π : X → S be a Pn-bundle (n = 1, 2) over a smooth
projective variety S. Then any non-trivial S-linear admissible subcategory of
Db(X) is of the following form:

(1) (Case n = 1)
Db(S)(i)(:= π∗Db(S)⊗OX

OX(i))

for some i ∈ Z.
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(2) (Case n = 2)
π∗Db(S)⊗OX

〈E1, . . . , El〉 ,

where E1, . . . , El (1 ≤ l ≤ n+ 1) is a π-exceptional collection.

Proof. (i) Any non-trivial admissible subcategory in Db(P1) is of the form
〈OP1(i)〉 for some i ∈ Z by Proposition 5.14. Since the restriction of the
admissible category Db(S)(i) to a fiber is 〈OP1(i)〉, the injective base change
map in Theorem 5.18 is surjective. Hence the result follows.

(ii) Theorem 5.15 states that any non-trivial admissible subcategory A in
Db(P2) is generated by a subcollection of successive mutations of the standard
exceptional collection OP2 ,OP2(1),OP2(2). Lemma 5.20 yields an S-linear ad-
missible subcategory AX of Db(X), which is generated by a π-exceptional
subcollection obtained by successive π-mutations of the π-exceptional col-
lection OX ,OX(1),OX(2), and its derived restriction on a fiber is A. This
means that the injective base change map in Theorem 5.18 is surjective,
hence, we obtain the result.

Popa and Schnell showed in [35] that for smooth projective varieties X
and Y over C, if Db(X) ∼= Db(Y ) then Alb(X) and Alb(Y ) are isogenous. On
the other hand we know that derived equivalence between abelian varieties
induces their isogeny by Orlov [31].

The Popa–Schnell conjecture in [35] states that for any Fourier–Mukai
partners Y of a given smooth projective variety X, there exists an equivalence
Db(Alb(Y )) ∼= Db(Alb(X)) of derived categories.

From Proposition 5.21, we deduce that the Popa–Schnell conjecture holds
true in certain situations.

Corollary 5.22. Let X → A and Y → B′ be Pn-bundles over abelian vari-
eties A and B for n = 1, 2. If X and Y are Fourier–Mukai partners, then
so are A and B. Furthermore, the Popa–Schnell conjecture holds true in this
case.

Proof. Put Db(A)(i) = π∗Db(A) ⊗ OX(i), where π is the P1-bundle X →
A. Since abelian varieties are NSSI by [34, Theorem 1.4], any admissible
category of Db(X) is A-linear. Proposition 5.21 implies that any non-zero
indecomposable admissible subcategory of Db(X) is equivalent to Db(A).
This completes the proof of the first assertion. We see that A ∼= Alb(X) and
B ∼= Alb(Y ), and hence obtain the second.

41



If X is an elliptic ruled surface over C, namely n = 1 and k = C, in
Corollary 5.22, the statement follows from [40, Theorem 1.1]. The proof
given above for n = 1, 2 and arbitrary k is more direct and natural.

Remark 5.23. Let X → E and X ′ → E ′ be Pn-bundles over elliptic curves
E and E ′ for n = 1, 2. As a consequence of Corollary 5.22, if X and X ′ are
Fourier–Mukai partners, then Db(E) ∼= Db(E ′), and hence E ∼= E ′ by [20,
Corollary 5.46].

6 Elliptic ruled surfaces

6.1 Basic properties of ruled surfaces

In this subsection, we give some basic results of ruled surfaces. Most of
results are found in [17, Ch. 5 §2].

Let π : S → C be a ruled surface i.e. π is a surjective morphism to a curve
C such that the fiber Sp is isomorphic to P1 for any p ∈ C. The following
characterization is well-known.

Proposition 6.1. If π : S → C is a ruled surface, then there exists a locally
free sheaf E of rank 2 such that S ∼= P(E) over C. Conversely, every such
P(E) is a ruled surface over C.

Proposition 6.2. If S → C is a ruled surface, then it is possible to write
S ∼= P(E), where E is a locally free sheaf on C with H0(E) 6= 0 but for any
invertible sheaf on L on C with degL < 0, we have H0(E) = 0. Moreover,
the integer deg E depends only on S.

If a locally free sheaf E satisfies the conditions in Proposition 6.2, we say
E is normalized. Let us put e := − deg E , which is an invariant of S.

Proposition 6.3. Let S := P(E) → C be a ruled surface over the curve C
of genus g, where E is a normalized locally free sheaf.

(1) If E is decomposable, then E ∼= OC ⊕ L for some L ∈ PicC with
degL ≤ 0. So, we see that e ≥ 0. Moreover, all values of e ≥ 0 are
possible.

(2) If E is indecomposable, then we get −2g ≤ e ≤ 2g − 2.
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6.2 Vector bundles over elliptic curves

Atiyah classified indecomposable vector bundles on elliptic curves [1]. We
summarize his result we need below.

Let ME(r, d) = M(r, d) be the set of isomorphism classes of indecom-
posable vector bundles of rank r and degree d on an elliptic curve E.

Theorem 6.4 (Theorem 5 in [1]). (1) There exists a vector bundle Er,0 on
E, unique up to isomorphism, with h0(Er,0) 6= 0.

(2) If E ∈ M(r, 0), then there exist a line bundle L ∈ Pic0(E) such that
E ∼= Er,0 ⊗ L.

Theorem 6.4 says that for E ∈ M(r, 0), we have

h0(E) = h1(E) = 0 when E 6= Er,0

and
h0(Er,0) = h1(Er,0) = 1.

Hence we see that the vector bundle Er,0 is the only normalized vector bundle
in M(r, 0).

Actually we can define Er,0 by putting E1,0 = OE and the unique non-
trivial extension

0 → Er,0 → Er+1,0 → OE → 0

inductively. We can also see that Er,0 ∼= (Er,0)∨.

Corollary 6.5. Let E be an elliptic curve. For any L1,L2 ∈ Pic0E we get

HomE(L1,L2) =

{
k if L1

∼= L2

0 if L1 6∼= L2.

Next we describe indecomposable vector bundle of rank 2 and degree 1.

Proposition 6.6. Let S be a ruled surface over an elliptic curve E, corre-
sponding to an indecomposable vector bundle E . Then e = 0 or −1 and there
is exactly one such ruled surface over E for each two values of e.

Indeed, we can construct indecomposable vector bundles with e = −1
explicitly. For a closed point P ∈ E, we define a vector bundle EP by the
following non-split exact sequence

0 → OE → EP → OE(P ) → 0.
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Although EP 6∼= EQ for distinct points P,Q ∈ E, we have P(EP ) ∼= P(EQ)
by Proposition 6.6. We can also see that

M(2, 1) = {EP | P ∈ E}.

Let f : S → E be a ruled surface over an elliptic curve E, corresponding
to a normalized vector bundle E . Put a general fiber of f by Ff and take a
section C0 with C

2
0 = −e. Let us define a divisor D which satisfies OS(D) ∼=

detE . Then we have
KS ≡ −2C0 − eFf

by [17, Corollary 2.11]. Note that if S has an elliptic fibration, then −KS is
nef. Moreover, we can see that −KS is nef if and only if e = 0,−1. We can
also deduce from the above discussion that

E =

{
OE ⊕ L or E2,0 if e = 0

EP if e = −1.
(34)

for some E ∈ Pic0E and P ∈ E.

7 Fourier–Mukai partners of elliptic ruled sur-

faces

7.1 Elliptic ruled surfaces

In this subsection, we recall a result in [39].
Let S be an elliptic surface and π : S → C be a relatively minimal elliptic

fibration. We denote by
π∗(pi) = miDi

the multiple fibers of π, where mi is the multiplicity and pi ∈ C for i =
1, 2, . . . , λ. We know that R1π∗OS

∼= Lπ ⊕ Tπ, where Lπ is an invertible
sheaf and Tπ is a torsion sheaf. Note that Tπ = 0 in the case p = 0. The
multiple fiber is said to be tame for a point pi /∈ Supp Tπ and wild for a point
pi ∈ Supp Tπ

The canonical bundles on S and C are related by the canonical bundle
formula:

ωS ∼= π∗(ωC ⊗ L−1
π )⊗OS(

λ∑
i=1

aiDi) (35)
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for some integer ai with 0 ≤ ai ≤ mi−1. If ai 6= mi−1, then π∗(pi) is known
to be a wild fiber.

Let E be a normalized rank 2 vector bundle on an elliptic curve E and

f : S = P(E) → E

be a P1-bundle on E defined by E . If S has an elliptic fibration, then e = 0
or −1 holds by the discussion around (34).

The following theorem gives a classification of ruled surfaces over elliptic
curves from the point of view of elliptic fibrations. In the tables contained
therein, the symbol ∗ stands for a wild fiber. Moreover, as mentioned above,
if a multiple fiber miDi is tame, then ai = mi− 1 where ai and mi are given
in (35). Hence, we omit the value of a in the list. For example, (2, 0/2∗) in
the case (ii-3) stands for one tame fiber of multiplicity 2 with a1 = 1 and one
wild fiber of multiplicity 2 with a2 = 0.

Theorem 7.1 (Theorem 1.1 in [39]). Let us consider the above situation.

(1) For e = 0, we have the following:

E ∃ an elliptic fibration on S? p

(i-1) OE ⊕OE no multiple fibers p ≥ 0
(i-2) OE ⊕ L, ordL = m > 1 (m,m) p ≥ 0
(i-3) OE ⊕ L, ordL = ∞ no elliptic fibrations p ≥ 0
(i-4) indecomposable no elliptic fibrations p = 0
(i-5) indecomposable (p− 2/p∗) p > 0

Here L is an element of Pic0E.

(2) Suppose that e = −1. Then the isomorphism class of such vector bundle
E on E is unique, and S has an elliptic fibration. The list of singular
fibers are as follows:

(ai/mi) E p

(ii-1) (2, 2, 2) p 6= 2
(ii-2) (1/2∗) supersingular p = 2
(ii-3) (2, 0/2∗) ordinary p = 2
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By [12] and [23], we know that if S has non-trivial Fourier–Mukai part-
ners, S has an elliptic fibration. Hence, from now on, we suppose that S has
an elliptic fibration π : S → P1. Theorem 7.1 says that the multiplicities of
all multiple fibers of π are the same number m.

When e = 0 (resp. e = −1), we see

Fπ · Ff = mC0 · Ff = m (resp. Fπ · C0 = m(2C0 − Ff ) · C0 = m) (36)

by [39, Remark 4.2], and hence

λπ = m = λ′π (37)

for both cases (recall the definitions of λπ and λ′π in (17) and (26) respec-
tively). Here Fπ (resp. Ff ) is a fiber of π (resp. f), and C0 stands for a
section of f satisfying C2

0 = −e.
Consider the case |FM(S)| 6= 1. Then the inequality (21) yields m =

λπ ≥ 5. Hence, S fits into either (i-2), m ≥ 5 or (i-5), p ≥ 5 in Theorem
7.1. Then S ′ ∈ FM(S) is also an elliptic ruled surface admitting an elliptic
fibration π′ fitting into the same case as S by Lemma 3.7.

Lemma 7.2. Suppose that |FM(S)| 6= 1. Then S fits into the case (i-2).

Proof. It suffices to show that |FM(S)| = 1 in the case (i-5). Suppose that S
fits into the case (i-5). As we explained above, S ′ ∈ FM(S) is also an elliptic
ruled surface in the case (i-5). In other words, S ′ has a P1-bundle structure
f ′ : P(E ′) → E ′, where E ′ is the indecomposable vector bundle of rank 2,
degree 0 on an elliptic curve E ′. By Corollary 5.22, we have E ∼= E ′. Then,
we see S ∼= S ′ by [17, Theorem V.2.15], in other words, |FM(S)| = 1.

The purpose of this paper is to describe the set FM(S) for elliptic ruled
surfaces. Hence in the sequel, we will concentrate on the case (i-2), the
unique candidate of S admitting non-trivial Fourier–Mukai partners.

7.2 Case (i-2).

Take L ∈ Pic0E with 1 < m := ordL <∞, and set

S := P(OE ⊕ L).

The following lemma is elementary and useful.
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Lemma 7.3. (1) There exists an isomorphism S ∼= P(OE ⊕M) over E if
and only if L ∼= M±1.

(2) For φE ∈ Aut(E), we have an isomorphism f ∗φE in the fiber product
diagram:

P(OE ⊕ φ∗
EL)

��

f∗ϕE // S

f
��

E
ϕE

// E

2

(38)

(3) For some M ∈ Pic0E, let fT : T := P(OE ⊕M) → E be the P1-bundle
over E. Suppose that we are given an isomorphism φ : T → S. Then,
if we replace φ appropriately, we can take φE ∈ Aut0(E), which makes
the diagram

T

fT
��

ϕ
// S

f
��

E
ϕE

// E

(39)

commutative. Moreover, we have an isomorphism

T ∼= P(OE ⊕ φ∗
EL) (40)

over E, and an isomorphism

M ∼= φ∗
EL. (41)

Proof. (i) This fact directly follows from [17, Exercise II.7.9(b)].
(ii) This assertion must be well-known. We leave the proof to readers. (For

example, use [17, Proposition II.7.12].)
(iii) Since S has a unique P1-bundle structure, the existence of φE ∈ Aut(E)

fitting in (39) is assured. Next, write φE = Ta ◦ φ0
E for some φ0

E ∈ Aut0(E)
and a ∈ E. Since T ∗

aL ∼= L, the isomorphism f ∗Ta (given as f ∗φE in (38))
gives an automorphism of S. Then, if necessary, replace φ with (f ∗Ta)

−1 ◦φ,
we may assume that φE ∈ Aut0(E). By the universal property of the fiber
product in (38), we obtain an isomorphism (40) over E. Then by (i) there
exists an isomorphism M±1 ∼= φ∗

EL. Since (−idE)
∗L ∼= L−1, f ∗(−idE) also

gives an automorphism of S. Thus, replace φ with f ∗(−idE) ◦ φ if necessary,
we may assume that φE ∈ Aut0(E) and (41) holds simultaneously.
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Lemma 7.4. For i ∈ (Z/mZ)∗, S ∼= P(OE ⊕ Li) if and only if there exists
an automorphism φE ∈ Aut0(E) such that φ∗

EL ∼= Li. Consequently, the set

{P(OE ⊕ Li) | i ∈ (Z/mZ)∗}/ ∼=

is naturally identified with the group

(Z/mZ)∗/HL
Ê
.

Here, recall that HL
Ê
:= {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(E) such thatφ∗L ∼= Li}.

Proof. “If” part follows from Lemma 7.3 (ii). “Only if” part follows from
Lemma 7.3 (iii).

Consider the dual morphism

q1 : F0 :=
̂̂E/ 〈L〉 → E (42)

of the quotient morphism Ê → Ê/ 〈L〉. Then it follows from the definition
of q1 that q∗1L ∼= OF0 holds. Thus we have a diagram

F0

q1

��

F0 × P1p1
oo

p2
//

qS

��

P1

q2
��

E S π
//

f
oo

2

P1,

(43)

where the left square diagram is a fiber product, and the right one is obtained
by the Stein factorization of π ◦ qS. The reason why π ◦ qS factors through
p2 is as follows. First, we have q∗SωS

∼= ωF0×P1 by [39, Lemma 2.14]. On the
other hand, the elliptic fibration p2 (resp. π) are defined by the linear system
of some multiple of −KF0×P1 (resp. −KS). Therefore π ◦ qS factors through
p2.

Recall that the elliptic fibration π has exactly two multiple fibers.

Convention. By the action of PGL(1, k) on P1, we always assume below
that in the case (i-2), the elliptic fibration π has multiple fibers over the
points 0 and ∞ in P1. Furthermore, we also assume that q2(0) = 0 and
q2(∞) = ∞.
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For y0 ∈ P1 with y := q2(y0) ∈ P1\{0,∞}, we denote by Fy the non-multiple
fiber of π over the point y. Then it follows from f ◦ qS = q1 ◦ p1 that the
restriction of qS induces the isomorphism

qS|F0×y0 : F0 × y0 ∼= Fy, (44)

since we see from (36) that f |Fy is finite morphism of degree m. We tacitly
identify F0 and Fy by this isomorphism.

Take x0 ∈ F0 and set x := q1(x0) ∈ E. Then in a similar way to (44), we
have an isomorphism

qS|x0×P1 : x0 × P1 ∼= Fx, (45)

where Fx is the fiber of f over the point x. We identify P1 and Fx by (45).
By our convention above, we see that the two multiple fibers of π intersect
with each fiber P1 of f at 0 and ∞ respectively.

Recall that f has two minimal sections, let’s say C0 and C1, corresponding
to the projections

OE ⊕ L → OE and OE ⊕ L → L. (46)

Then the multiple fibers of π are given exactlymC0 andmC1 (see [39, Remark
4.2]).

We use the following lemma to show Claim 7.7.

Lemma 7.5. Let us regard the multiplicative group Gm as a subgroup of
Aut(OE ⊕L)(∼= Gm ×Gm) by the diagonal embedding. Then there exists an
injective homomorphism

ι : Gm
∼= Aut(OE ⊕ L)/Gm ↪→ Aut(S/E).

Here, for λ ∈ Gm, the automorphism ι(λ) of S induces the action on each
fiber P1 of f fixing the points 0 and ∞.

Proof. The existence of the injection ι is assured in [15, p.202].4 Note that
since any elements of Aut(OE ⊕ L) preserve the projections in (46), any
β ∈ Im ι preserves the minimal sections C0 and C1, and hence it gives an
automorphism on each fiber P1 of f fixing the points 0 and ∞.

4See also [28, Lemma 3]). Because ∆ in ibid. is trivial, we actually see that ι gives an
isomorphism.
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7.3 Proof of Theorem 1.3.

Let S be an elliptic ruled surface and suppose |FM(S)| 6= 1. Lemma 7.2
implies that

S ∼= P(OE ⊕ L)

for some L ∈ Pic0E with ordL = m ≥ 5. Now if S ′ ∈ FM(S), by the same
reason we get S ′ ∼= P(OE′ ⊕ L′) for some L′ ∈ Pic0E ′ with

m = λπ = ordL = ordL′.

Moreover, by Corollary 5.22, we see that E ∼= E ′.
We divide the proof of Theorem 1.3 into two cases: The case m = pe ≥ 5

for some e > 0, and the case arbitrary m ≥ 5 with m 6= pe for any e > 0. In
both cases, first we define an injective map

{J i(S) | i ∈ (Z/mZ)∗}/ ∼=↪→ {P(OE ⊕ Li) | i ∈ (Z/mZ)∗}/ ∼=, (47)

and secondly, we shall see
|Hπ| ≤ |HL

Ê
|. (48)

The cardinality of the L.H.S in (47) is ϕ(m)/|Hπ| by Lemma 3.4, and the
cardinality of the R.H.S. in (47) is ϕ(m)/|HL

Ê
| by Lemma 7.4. Therefore,

combining (47) with (48), we can conclude that (47) is a bijection, and hence
Theorem 3.3 yields

FM(S) = {P(OE ⊕ Li) | i ∈ (Z/mZ)∗}/ ∼=

as required in Theorem 1.3.

Case: m = pe ≥ 5 for some e > 0. Theorem 7.1 implies that J i(S) ∼=
P(OE ⊕ Li) for some Li ∈ Pic0E with ordLi = pe. But in this case, E is
necessarily ordinary, and hence Ê[pe] is a cyclic group generated by L. So
in this case, Li ∼= Lβ(i) for some β(i) ∈ (Z/mZ)∗, and thus we can define an
injective map (47) by J i(S) 7→ P(OE ⊕ Lβ(i)).

Denote by F0 the elliptic curve satisfying F̂0 = Ê/ 〈L〉 as in §7.2. Then
by (44), a general fiber of the elliptic fibration π : S → P1 is isomorphic to
F0.

Claim 7.6. The inequality (48) holds (if m = pe ≥ 5).
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Proof. [13, Propositions 5.3.3, 5.3.6] implies that κ(J0(S)) = −∞. Com-
bining this fact with [13, Corollary 5.3.5], we see that J0(S) is an elliptic
ruled surface with a section. Therefore, by the classification in Theorem
7.1 and [13, Theorem 5.3.1 (i)], we have J0(S) ∼= F0 × P1. Then we have
Br(J0(S)) = 0 by [14, Proposition 2.1]. Moreover we have λπ = pe = λ′π by
(37), and hence the group H ′

π in Lemma 3.8 is trivial. Therefore Lemma 3.8
yields ∣∣Hπ

∣∣ ≤ ∣∣Aut0(J0
η )
∣∣.

Recall that HL
Ê
= Aut0(E) by Lemma 4.3 (ii) in the case m = pe ≥ 5. Hence,

to obtain the conclusion, it suffices to check that |Aut0(J0
η )| ≤ |Aut0(E)|.

Thus we may assume 2 < |Aut0(J0
η )|. Note that we have a surjective homo-

morphism
Aut0(J

0(S)/P1) → Aut0(J
0
η ),

where Aut0(J
0(S)/P1) means the automorphism group of J0(S)(∼= F0 × P1)

over P1, fixing the 0-section. Thus, we have an isomorphism Aut0(J
0(S)/P1) ∼=

Aut0(F0), and moreover obtain

2 < |Aut0(J0
η )| = |Aut0(J0(S)/P1)| = |Aut0(F0)|.

This yields j(F0) = 0 or 1728. Since the morphism q1 : F0 → E obtained
in (42) is a composition of relative Frobenius morphisms (cf. [36, Theorem
V.3.1]), [17, Exercise IV.4.20(a)] produces the isomorphism E ∼= F0, which
completes the proof.

Claim 7.6 completes the proof of Theorem 1.3 in the case m = pe ≥ 5.

Case: Arbitrary m ≥ 5 with m 6= pe for any e > 0. We may put
m = npe with e ≥ 0, n > 1, p - n. We generalize the method of [40] below.

Recall that S ∼= P(OE ⊕L), and define elliptic curves F0 and F as F̂0 :=
Ê/ 〈L〉 and F̂ := Ê/

〈
Lpe

〉
. Denote by

qE : F → E

the dual morphism of the quotient morphism Ê → F̂ = Ê/
〈
Lpe

〉
. Set

M := q∗EL and T := P(OF ⊕M).
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Then we see F̂0 = F̂ / 〈M〉 and ordM = pe. Moreover if e > 0, the existence
of a non-zero element M of F̂ [pe] implies that F is ordinary, and the dual
morphism of the quotient morphism

F̂ → F̂0 = F̂ / 〈M〉 .

is the e-th iteration of the relative Frobenius morphisms (cf. [36, Theorem
V.3.1]). Then we obtain the following commutative diagram:

F0

Fre

��

F0 × P1p1
oo

p2
//

h1
��

P1

FreP1
��

F

qE
��

T π1
//

q

��

f1
oo

2

P1

qP1
��

E S π
//

f
oo

2

P1

(49)

Both of the left squares are fiber product diagrams, and the right squares
are obtained by the Stein factorizations of π1 ◦ h1 and π ◦ q respectively.
Moreover, we have

deg qE = deg q = deg qP1 = n.

Take
i ∈ Z with 1 ≤ i < m, (i,m) = 1. (50)

Note that this condition implies that (i, pe) = (i, n) = 1, and hence we
sometimes regard i ∈ (Z/peZ)∗ or i ∈ (Z/nZ)∗ below.

Recall that we have already proved Theorem 1.3 for line bundles whose
order is p-th power. By applying it to M, we obtain

J i(T ) ∼= P(OF ⊕Mβ(i)) (51)

for some β(i) ∈ (Z/peZ)∗. Moreover, since (Fre)∗M ∼= OF0 , we have a
diagram

F0

Fre

��

F0 × P1p1
oo

p2
//

hi
��

P1

FreP1
��

F J i(T ) πi
//

fi
oo

2

P1

(52)

as in (43). Here fi is a P1-bundle defined by using the P1-bundle structure
on P(OF ⊕Mβ(i)) and the isomorphism (51).
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Fix an n-th primitive root of unity ζ. Consider the multiplication on Gm

by ζ, and extend it to the automorphism of P1. Denote it by gP1 . Because we
see that qP1 in (49) fixes points 0 and ∞ in P1, it turns out that the morphism
qP1 is the quotient morphism by the action of the group 〈gP1〉 ∼= Z/nZ on P1.

Take a ∈ F such that E ∼= F/ 〈a〉 and ord a(= ordLpe) = n. Then we
can construct an action of the group G := Z/nZ on J i(T ) as follows.

Claim 7.7. For each s ∈ (Z/nZ)∗ and t ∈ (Z/peZ)∗, there exists an au-
tomorphism gs of J t(T ) which induces the translation Ts·a of F and the
automorphism gP1 of P1.

Proof. Since T ∗
s·aM ∼= M, there exists an automorphism

α ∈ Aut(J t(T ))(
(51)∼= Aut(P(OF ⊕Mβ(t))))

compatible with Ts·a on F . Note that Ts·a lifts a translation Ts·b on F0 for
some b ∈ F0 with Fre(b) = a, and hence α lifts to Ts·b × idP1 on F0 × P1.

F0

��

Ts·b
�����

F0 × P1

����

��

oo // P1

��
���
�

��

F0

Fre

��

F0 × P1

ht

��

oo // P1

��

F
Ts·a����

�
J t(T )oo //

α����
P1

idP1
��

F J t(T )
ft

oo
πt

// P1

Therefore, α respects the elliptic fibration πt, i.e. α ∈ Aut(J t(T )/P1).
Next take an integer q with peq = 1 in (Z/nZ)∗. It follows from Lemma

7.5 that there exists an automorphism β ∈ Aut(J t(T )/F ) which induces the
automorphism gqP1 on each fiber Fft (which we identify with P1 by (45)) of
the P1-bundle ft. Combining (45) with the commutativity of the right square
in (52), we see that πt|Fft

: Fft → P1 coincides with FreP1 , and then β induces

the automorphism (gP1)p
eq = gP1 on P1, the base space of πt.

P1

gq
P1

��

∼=
//

FreP1

((
Fft

� � // J t(T ) πt
//

β

��

P1

(gP1 )
peq=gP1

��

P1
∼= //

FreP1

66Fft
� � //// J t(T )

πt // P1,

Hence, the automorphism gs := α ◦ β has the desired property.
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Denote by g a generator of the cyclic group G = Z/nZ, and define the
action of G on J t(T ) by

ρs,t : G→ Aut(J t(T )) g 7→ gs. (53)

For the integer i given in (50), regard i ∈ (Z/nZ)∗ and i ∈ (Z/peZ)∗, and set
ρi := ρi,i. We define the quotient variety to be

Si := J i(T )/ρiG (54)

by the action ρi, and denote the quotient morphism by

qi : J
i(T ) → Si.

It is easy to see that S is the quotient of T = J1(T ) by the action ρs,1 for
some s. Replace a ∈ F with s · a, and redefine gs and ρs,t by this new a, so
that S = S1 holds. After this replacement, we consider only the action ρi,
but not general ρs,t.

We set
g0i := Ti·b × gqP1 ∈ Aut(F0 × P1).

Then we see that ord g0i = ordTi·b = ord gqP1 = n and it is compatible with
gi ∈ Aut(J i(T )) defined in Claim 7.7:

hi ◦ g0i = gi ◦ hi. (55)

We also define the action on F0 × P1 by

ρ0i : G→ Aut(F0 × P1) g 7→ g0i (56)

for each i.
Take an integer j with 1 ≤ j < m, (j,m) = 1 and ij = 1 in (Z/mZ)∗.

For the projection

p13 : F0 ×∆P1 × F0 → F0 × F0,

define a line bundle

U0 := p∗13OF0×F0(∆F0 + (j − 1)F0 ×O + (i− 1)O × F0)

on
F0 ×∆P1 × F0(∼= (F0 × P1)×P1 (F0 × P1)).
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Then F0 × P1 in the second factor in R.H.S. serves as J i(F0 × P1) where U0

plays the role of a universal sheaf, and moreover it is shown in [40, page 3229]
that it satisfies

(ρ01(g)× ρ0i (g))
∗U0

∼= U0. (57)

On the other hand, it follows from [10, Theorem 5.3] that we can take
a universal sheaf U ′ on T ×P1 J i(T ), which satisfies that U ′|z×Ji(T ) is a line
bundle of degree j on F0 for general z ∈ T . For a point (x, y) ∈ F0 ×
(P1\{0,∞}), there exists an isomorphism

((h1 × hi)
∗U ′)|(F0×P1)×P1 (x,y)

∼= U ′|T×P1hi((x,y))
, (58)

since the restriction of h1 × hi gives

(F0 × P1)×P1 (x, y) ∼= F0 × y ∼= Fy ∼= T ×P1 hi((x, y)),

where the second isomorphism comes from (44). Hence, we see that the
L.H.S. in (58) is a line bundle of degree i on F0. Then, by the universal
property of U0, there exists an automorphism φ0 ∈ Aut(F0) such that

(idF0×∆P1
× φ0)

∗U0
∼= (h1 × hi)

∗U ′ ⊗ p∗3N0

for some N0 ∈ Pic0 F0.
We shall construct an elliptic ruled surface T ′ and (iso)morphisms φF , φ, h

′

which make the following diagrams commutative:

F0

Fre ��

ϕ0
�����

F0 × P1

����

hi

��

oo

F0

Fre

��

F0 × P1

h′

��

oo

F
ϕF����

�
J i(T )oo

ϕ
����

F T ′oo

(59)

First, φ0 descends to φF ∈ Aut(F ) via Fre : F0 → F by [36, Corollary II.2.12],
and φF induces an isomorphism

φ : J i(T ) ∼= P(OF ⊕Mβ(i)) → T ′ := P(OF ⊕ φF∗Mβ(i)).

Note that φF∗ ∈ Aut0(F̂ ) preserves the subgroup ker F̂re = F̂ [pe] = 〈M〉 of
F̂ , and thus φF∗Mβ(i) ∈ 〈M〉. Hence, we obtain a morphism

h′ : F0 × P1 ∼= P(OF0 ⊕OF0) → T ′ ∼= P(OF ⊕ φF∗Mβ(i)),
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which fits into the diagram in (59). Moreover we have the following commu-
tative diagram:

F0 ×∆P1 × F0

h1×h′
��

F0 ×∆P1 × F0

(idF0×∆P1 )×ϕ0
oo

h1×hi
��

p3
// F0

Fre

��

T ×P1 T ′ T ×P1 J i(T )
idT×ϕ

oo

fi◦p2
// F

Take N ∈ Pic0 F such that (Fre)∗N = N0, and define a line bundle

U := (idT × φ)∗(U ′ ⊗ (fi ◦ p2)∗N )

on T ×P1 T ′ so that
U0

∼= (h1 × h′)∗U (60)

holds. The pair (T ′,U) serves as J i(T ) and its universal sheaf, ane thus we
redefine T ′ to be J i(T ).

Claim 7.8. The universal sheaf U on T ×P1 J i(T ) satisfies

(ρ1(g)× ρi(g))
∗U ∼= U .

Proof. Take y0 ∈ P1\{0,∞} with y := Fre(y0) ∈ P1\{0,∞}. Denote by
Fy×F ′

y the fiber of π1×πi : T ×P1 J i(T ) → P1 over the point y. Pull back the
isomorphism (60) to the subscheme F0×y0×F0, which is isomorphic to Fy×F ′

y

by (44), and combine (55) and (57) with it, then we have isomorphisms

((ρ1(g)×ρi(g))∗U)|Fy×Fy
∼= ((ρ01(g)×ρ0i (g))∗U0)|F0×y0×F0

∼= U0|F0×y0×F0
∼= U|Fy×Fy .

F0 × y0 × F0
� � //

∼=
��

F0 ×∆P1 × F0

h1×hi
��

p2
// P1 3 y0

FreP1
��

Fy × F ′
y
� � // T ×P1 J i(T )

π1×πi
// P1 3 y

This yields that the line bundle L := (ρ1(g)× ρi(g))
∗U ⊗ U−1 is trivial over

the open set (π1 × πi)
−1(P1\{0,∞}) by [17, Exercise III.12.4]. We also see

by (55), (57) and (60) that (h1 × hi)
∗L is trivial over P1\{0,∞}, and thus

L ∼= OT×P1J
i(T )(b(D0 ×D′

0 −D∞ ×D′
∞)) (61)
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for some b ∈ Z, where peD0 and p
eD′

0 (resp. p
eD∞ and peD′

∞) are the multiple
fibers over 0 ∈ P1 (resp. ∞) of π1 and πi. Note that ordL divides pe, the
multiplicity of the multiple fibers. Since ord(ρ1(g) × ρi(g)) = n and the
R.H.S. in (61) is (ρ1(g)× ρi(g))-invariant, we see that

U ∼= (ρ1(g)× ρi(g))
n∗U ∼= (ρ1(g)× ρi(g))

(n−1)∗U ⊗ L ∼= · · · ∼= U ⊗ L⊗n,

and hence ordL | n. Since p - n, we have ordL = 1, as it is required.

Recall that we have the following commutative diagram by the definition
of Si in (54):

F

qE

��

J i(T )
fioo

πi //

qi

��

P1

qP1
��

E Si πSi

//oo

2

P1

Here, qE and qP1 are the same one appeared in (49), and πSi
is an elliptic

fibration.

Claim 7.9. For each i, there exists α(i) ∈ (Z/mZ)∗ such that we have an
isomorphism

Si ∼= P(OE ⊕ Lα(i)).

over E.

Proof. First of all, we know by Theorem 7.1 that there exists an isomorphism
Si ∼= P(OE ⊕ Li) over E for some Li ∈ Pic0E with ordLi = m. Then the
result follows from

Li ∈ ker(F̂re ◦ q̂E) = 〈L〉 ∼= Z/mZ.

Recall that S = S1 below.

Claim 7.10. There exists an isomorphism J i(S) ∼= Si.

Proof. First, we shall show that there exists a coherent sheaf Ui on S × Si
such that

(q1 × idJi(T ))∗U ∼= (idS × qi)
∗Ui (62)
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for the morphisms

T × J i(T )
q1×idJi(T )→ S × J i(T )

idS×qi→ S × Si.

Claim 7.8 implies that

(ρ1(g)× idJi(T ))
∗U ∼= (idT × ρi(g)

−1)∗U .

Push forward the both sides by the morphism q1 × idJi(T ). Then we obtain

(q1 × idJi(T ))∗U ∼= (idS × ρi(g)
−1)∗(q1 × idJi(T ))∗U ,

that is, the sheaf (q1 × idJi(T ))∗U is G-invariant with respect to the diagonal
action of G on S × J i(T ), where G acts on S trivially. Since G = 〈g〉 is
a finite cyclic group, the G-invariance of coherent sheaves is equivalent to
the G-equivariance, and hence there exists a coherent sheaf Ui on S × Si
satisfying (62).

For z ∈ J i(T ), we have

Ui|S×qi(z) ∼= ((q1 × idJi(T ))∗U)|S×z ∼= q1∗(U|T×z).

Here, the second isomorphism follows from [5, Lemma 1.3] and the smooth-
ness of q1. Suppose that z is not contained in multiple fibers of πi, that is,
y := πi(z) ∈ P1\{0,∞} by the convention stated in §7.2. Then U|T×z is actu-
ally a sheaf on Fy × z, and the restriction q1|Fy×z is an isomorphism by (44).
It turns out that Ui|S×qi(z) is also a line bundle of degree i on FqP1 (y) × qi(z).

Then, by the universal property of J i(S), there exists a morphism from

π−1
Si
(P1\{0,∞})(⊂ Si) → π−1

Ji(S)
(P1\{0,∞})(⊂ J i(S))

over P1\{0,∞}, where πSi
and πJi(S) are the elliptic fibrations on Si and

J i(S) respectively. Since Ui|S×qi(z1) 6∼= Ui|S×qi(z2) on Fy for z1 6= z2 ∈ J i(T ),
this morphism is injective, and hence Si and J i(S) are birational over P1.
Then, [2, Proposition III.8.4] implies that Si ∼= J i(S).

Combining Claims 7.9 and 7.10, we obtain the inclusion (47) by the map

J i(S) 7→ P(OE ⊕ Lα(i)).

The next aim is to show (48).

58



Claim 7.11. There exists an injective group homomorphism

α : Hπ/{±1} → HL
Ê
/{±1}.

Proof. Take i ∈ Hπ(:= {i ∈ (Z/mZ)∗ | J i(S) ∼= S}). We have α(i) ∈
(Z/mZ)∗ so that there exists an isomorphism

ψ : P(OE ⊕ Lα(i))
∼=→ Si

∼=→ J i(S)

by Claims 7.9 and 7.10. We use ψ and the P1-bundle structure on P(OE ⊕
Lα(i)) to fix a P1-bundle structure on J i(S):

fJi(S) : J
i(S) → E

Then Lemma 7.3 (iii) implies that there exist an isomorphism ϕ and an
automorphism ϕE ∈ Aut0(E) fitting in the commutative diagram

P(OE ⊕ Lα(i)) ψ
//

��

J i(S)

fJi(S)

��

φ
// S

f

��

E E φE

// E

(63)

and ϕ∗
EL ∼= Lα(i) is satisfied.

Take another isomorphism ϕ′ : J i(S) → S. Then since ϕ′ ◦ ϕ−1 is an
automorphism of P(OE ⊕L), we have (ϕ′

E ◦ϕ−1
E )∗L ∼= L±1 by Lemma 7.3 (i)

and (ii). Thus, we obtain the group homomorphism

α : Hπ → HL
Ê
/{±1}(:= {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(E) s.t.φ

∗L ∼= Li}/{±1}.)

Thus it suffices to prove Kerα = {±1}. Suppose i ∈ Kerα. Since ϕ∗
EL ∼= L±1

holds in this case, Lemma 4.2 implies that ϕE fitting in the diagram (63) is
either idE or −idE. Replace ϕ with f ∗(−idE)◦ϕ (see the notation in Lemma
7.3 (ii) and the proof of ibid. (iii)) if necessary, then we may assume that
ϕE = idE. We have the following commutative diagram 5:

F

��

��
�

��
�

J i(T )
fioo

��

∃ϕ
��

F

qE

��

T
f1

oo

��

E
��
�

��
�

Si
φ����
�

oo

E Soo

(64)

5Here, we identify Si and J i(S) by Claim 7.10.
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Because the front and the back squares in (64) are the fiber product diagrams,
there exists an isomorphism φ : J i(T ) → T which makes the right square the
fiber product.

Since φ descends to ϕ : Si = J i(T )/ρiG → S = T/ρ1G for G = Z/nZ =
〈g〉, we have

ρ1(g) ◦ φ = φ ◦ ρi(g)l

for some l. Recall that both of ρ1(g) and ρi(g) induce the same automorphism
gP1 on the base curve P1 of the elliptic fibrations on T and J i(T ) (see Claim
7.7 and (53)), then we see l = ±1. Next recall ρ1(g) (resp. ρi(g)) induces
the automorphism Ta (resp. Ti·a) on F , the base curve of the P1-bundle f1
(resp. fi). Then we know that

Ta = (Ti·a)
l = Tli·a,

and hence, 1 = il in (Z/nZ)∗. Therefore, we have i = ±1, and hence
Kerα ⊂ {±1}. The other direction is obvious.

By Claim 7.11, we conclude that |Hπ| ≤ |HL
E | as is required in (48).

Therefore, we complete the proof of the first statement in Theorem 1.3
for arbitrary m ≥ 5. The second follows from Lemma 4.3 (ii).
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