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Chapter 1

Introduction

Fukaya and Oguni [9] introduced a wide class of metric spaces, called coarsely

convex spaces. Coarsely convex spaces can be regarded as the counterpart

of simply connected, complete, Riemannian manifolds with non-positive sec-

tional curvature in coarse geometry. This class includes many classes of

metric spaces. In particular, a class of geodesic coarsely convex spaces is an

important subclass of coarsely convex spaces.

Let (X, dX) be a geodesic metric space. Let E ≥ 1 and C ≥ 0 be

constants. Let L be a family of geodesic segments. The metric space X is a

geodesic (E,C,L)-coarsely convex space, if E, C, and L satisfy the following

conditions:

i). For all u, v ∈ X, there exists a geodesic segment γ ∈ L with γ : [0, a] →
X such that γ(0) = u and γ(a) = v.

ii). Let γ, η ∈ L be geodesic segments with γ : [0, a] → X and η : [0, b] →
X. For all t ∈ [0, a], s ∈ [0, b], and c ∈ [0, 1], we have

dX(γ(ct), η(cs)) ≤ (1− c)EdX(γ(0), η(0)) + cEdX(γ(t), η(s)) + C.

We say that X is a geodesic coarsely convex space if there exist E, C, and

a family of geodesic segments L such that X is a geodesic (E,C,L)-coarsely
convex space. A coarsely convex group is a group G acting properly and
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cocompactly on a coarsely convex space. The classes of metric spaces listed

in Table 1.1 are examples of geodesic coarsely convex spaces.

• Geodesic Gromov hyperbolic metric spaces.

• CAT(0) spaces.

• Systolic complexes [15].

• Proper injective metric spaces [5], especially, the injective hulls of lo-

cally finite coarsely Helly graphs [3].

Table 1.1: Examples of geodesic coarsely convex spaces.

Pisanski and Tucker [16] introduced free products of Cayley graphs, and

Bridson and Haefliger [2, Theorem II.11.18] constructed metric spaces on

which free products of groups act properly and cocompactly. By slightly

modifying their construction, we define free products of metric spaces with

nets, and we obtain the following result.

Theorem 1.0.1. Let X and Y be metric spaces with nets. If X and Y

are geodesic coarsely convex spaces, then the free product X ∗Y is a geodesic

coarsely convex space.

Let X be a proper metric space. The coarse assembly map is a homomor-

phism from the coarse K-homology of X to the K-theory of the Roe algebra

of X. The coarse Baum–Connes conjecture states that for “nice” proper met-

ric spaces, the coarse assembly maps are isomorphisms. Fukaya and Oguni

[9, Theorem 1.3] showed that for proper coarsely convex spaces, the coarse

Baum–Connes conjecture holds. Combining this result and Theorem 1.0.1,

we obtain the following

Theorem 1.0.2. Let X and Y be proper metric spaces with nets. If X

and Y are geodesic coarsely convex spaces, then the free product X∗Y satisfies

the coarse Baum–Connes conjecture.
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Let G and H be groups acting properly and cocompactly on X and Y ,

respectively. We can construct the free product X and Y with respect to

their actions. Moreover, G ∗H acts properly and cocompactly on it. There-

fore, combining Theorem 1.0.2 and the Švarc–Milnor Lemma, we obtain the

following.

Theorem 1.0.3. Let X and Y be proper metric spaces with nets. We

suppose that X and Y are geodesic coarsely convex spaces. Let G and H

be groups acting properly and cocompactly on X and Y , respectively. Then

G ∗H satisfies the coarse Baum–Connes conjecture.

This doctoral thesis includes the content of the paper [6] to appear in

Kyoto Journal of Mathematics.
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Chapter 2

Preliminaries

2.1 Free products of metric spaces

To prepare for the definition of free products of metric spaces, we introduce

several notations.

Definition 2.1.1. Let (X, dX) be a metric space and let X0 be a set. An

index map is a map iX : X0 → X such that for any compact subset K ⊂ X,

the preimage i−1
X (K) is a finite set. We choose a base point eX ∈ iX(X0). We

call (X0, iX , eX) a net of X. For x0 ∈ X0, we denote by x0 the image iX(x0).

Example 2.1.2. Let (X, dX , eX) be a metric space with a base point eX .

Let G be a group acting on X by isometries. We say that G acts properly

on X if for any compact subset B ⊂ X, the set

{g ∈ G | g(B) ∩B ̸= ∅}

is a finite set. We say that G acts cocompactly on X if there exists a compact

subset K ⊂ X such that ⋃
g∈G

g(K) = X.

When a group G acts properly and cocompactly on X, the orbit map o(eX) :

G → X, g 7→ g(eX) is an index map of X. Then (G, o(eX), eX) is a net of X.

We call (G, o(eX), eX) the G-net.
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Remark 2.1.3. In the definition of the net in Definition 2.1.1, we do not

require that the index map is injective. Indeed, let G be a group acting on a

metric space X with base point eX as in Example 2.1.2. Then the orbit map

o(eX) : G → X is injective if and only if the stabilizer of eX is trivial.

Let (X, dX) and (Y, dY ) be metric spaces with nets and let (X0, iX , eX)

and (Y0, iY , eY ) be nets of X and Y , respectively. We choose ϵX and ϵY such

that iX(ϵX) = eX and iY (ϵY ) = eY , respectively. Let X∗
0 = X0 \ {ϵX} and

Y ∗
0 = Y0 \ {ϵY }. A normal word on X∗

0 ⊔ Y ∗
0 is a finite sequence

w0w1 · · ·wn (n ≥ 0, wi ∈ X∗
0 ⊔ Y ∗

0 )

such that for all i, we have

wi ∈ X∗
0 ⇒ wi+1 ∈ Y ∗

0 ,

wi ∈ Y ∗
0 ⇒ wi+1 ∈ X∗

0 .

Let ω = w0w1 · · ·wn be a normal word. We define the length of ω to be n+1.

We denote by ϵ the empty word. We define that the length of the empty word

is zero.

We define W to be the set consisting of the empty word ϵ and all normal

words. We define WX to be the subset of W consisting of ϵ and normal words

whose last letter does not belong to X∗
0 , that is,

WX :={w0w1 · · ·wn ∈ W | wn /∈ X∗
0}

⊔
{ϵ},

and we similarly define WY , that is,

WY :={w0w1 · · ·wn ∈ W | wn /∈ Y ∗
0 }

⊔
{ϵ}.

We use the following disjoint union X̃ ∗ Y ,

X̃ ∗ Y :=(WX ×X)
⊔

(WY × Y )⊔
(WX ×X∗

0 × [0, 1])
⊔

(WY × Y ∗
0 × [0, 1])

⊔
(ϵ× [0, 1]).

We define an equivalence relation ∼ on X̃ ∗ Y as follows:
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• (ϵ, eX) ∼ (ϵ, 0) and (ϵ, 1) ∼ (ϵ, eY ).

• Let ω ∈ WX and x0 ∈ X∗
0 .

{ω} ×X ∋ (ω, x0) ∼ (ω, x0, 0) ∈ {ω} × {x0} × [0, 1],

{ωx0} × Y ∋ (ωx0, eY ) ∼ (ω, x0, 1) ∈ {ω} × {x0} × [0, 1].

• Let τ ∈ WY and y0 ∈ Y ∗
0 . we define

{τ} × Y ∋ (τ, y0) ∼ (τ, y0, 0) ∈ {τ} × {y0} × [0, 1],

{τy0} ×X ∋ (τy0, eX) ∼ (τ, y0, 1) ∈ {τ} × {y0} × [0, 1].

Definition 2.1.4. The free product X ∗ Y is the quotient of X̃ ∗ Y by

the equivalent relation ∼.

The free product X ∗ Y consists of the following two types of components

(see Figure 2.1).

• The sheets consists of {ω} × X and {τ} × Y , where ω ∈ WX and

τ ∈ WY . For simplicity, we write {ω} × X and {τ} × Y as ωX and

τY , respectively. We identify X and respectively Y with ϵX and re-

spectively ϵY . We call ω and τ index words. For each sheet, the height

of the sheet is the length of the index word.

• The edges consists of the following three:

– There exists an edge {ϵ}× [0, 1] connecting (ϵ, eX) ∈ {ϵ}×X and

(ϵ, eY ) ∈ {ϵ} × Y

– Let ω ∈ WX and x0 ∈ X∗
0 . Then there exists an edge {ω}×{x0}×

[0, 1] connecting (ω, x0) ∈ {ω} ×X and (ωx0, eY ) ∈ {ωx0} × Y .

– Let τ ∈ WY and y0 ∈ Y ∗
0 . Then there exists an edge {τ}× {y0}×

[0, 1] connecting (τ, y0) ∈ {τ} × Y and (τy0, eX) ∈ {τy0} ×X.
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x0y0X y′0x
′
1Y

x0Y y′0X

x0

eYy0

eX

x′
1

eY

y′0

eX

eX eY

ϵX ϵY

Figure 2.1: The free product X ∗ Y . Here, x0, x
′
1 ∈ X∗

0 and y0, y
′
0 ∈ Y ∗

0 .

Notation 2.1.5. Each point p ∈ X ∗ Y can naturally identified with the

triplet (ω, z, t) where ω ∈ W, z ∈ X ⊔ Y and t ∈ [0, 1) satisfying:

• If ω ∈ WX , then z ∈ X,

• If ω ∈ WY , then z ∈ Y ,

• If z /∈ iX(X0) ⊔ iY (Y0), then t = 0.

We call (ω, z, t) the coordinate of p. We say that p belongs to sheets if t = 0,

and say that p belongs to edges if t > 0. When p belongs to a sheet, we

abbreviate (ω, z, 0) as (ω, z).

Notation 2.1.6. We use the following notations.

• For z ∈ X ⊔ Y , set

∥z∥ :=

dX(eX , z) if z ∈ X,

dY (eY , z) if z ∈ Y.
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• For u, v ∈ X ⊔ Y , set

dX⊔Y (u, v) :=


dX(u, v) if {u, v} ⊂ X,

dY (u, v) if {u, v} ⊂ Y,

∞ else.

We will construct the metric d∗ on the free product X ∗ Y . First, we

define a function D∗ : W × W → R. Let ω = uw0 · · ·wn ∈ W and ω′ =

uw′
0 · · ·w′

m ∈ W , where u = u0 . . . uk ∈ W is the maximal common prefix,

that is, we have w0 ̸= w′
0. We define

D∗(ω, ω
′) :=dX⊔Y (w0, w′

0) +
n∑

i=1

∥wi∥+
m∑
j=1

∥∥w′
i

∥∥+ n+m+ 2.

For ω = w0 · · ·wn ∈ W , we define

D∗(ϵ, ω) :=
n∑

i=1

∥wi∥+ n+ 1.

Finally we define D∗(ϵ, ϵ) = 0.

Now we will define the metric d∗ on X ∗ Y . First, we define d∗ on sheets.

Let p, q ∈ X ∗ Y . We suppose that p and q belong to sheets. Let (ω, u, 0)

and (τ, v, 0) be the coordinate of p and q, respectively, Here, ω, τ ∈ W and

u, v ∈ X ⊔ Y , as in Notation 2.1.5. We consider the following three cases.

(I) ω and τ are equal.

In this case, first, we suppose that ω = τ ̸= ϵ. Then we define

d∗(p, q) := dX⊔Y (u, v).

Next, we suppose that ω = τ = ϵ. Then we define

d∗(p, q) :=

dX⊔Y (u, v) if {u, v} ⊂ X or {u, v} ⊂ Y,

∥u∥+ ∥v∥+ 1 else (see Figure 2.2).

8



ϵX ϵYeXu eY v

{ϵ} × [0, 1]

Figure 2.2: An example of case (I). Let p = (ϵ, u) and q = (ϵ, v), where

u ∈ X, and v ∈ Y .

(II) ω is a proper subword of τ .

In this case, there exists τ ′ ∈ W \ {ϵ} such that τ = ωτ ′. Let z be the

initial letter of τ ′. First, we assume that ω is not the empty word. See

Figure 2.3. In this figure, z = x′
0. Then we define

d∗(p, q) := dX⊔Y (u, z) +D∗(ϵ, τ
′) + ∥v∥ .

Next, we assume that ω is the empty word. If {u, z} ⊂ X or {u, z} ⊂ Y

holds, then we define

d∗(p, q) := dX⊔Y (u, z) +D∗(ϵ, τ
′) + ∥v∥ .

Otherwise, we define

d∗(p, q) := ∥u∥+ ∥z∥+D∗(ϵ, τ
′) + ∥v∥+ 1.

(III) Neither (I) nor (II).

In this case, there exist the maximal common prefix ρ ∈ W (possibly

the empty word) and ω′, τ ′ ∈ W \ {ϵ} such that ω = ρω′ and τ = ρτ ′.

Let z0 and w0 be the initial letter of ω
′ and τ ′, respectively. See Figure

2.4. In this figure, z0 = x0 and w0 = x′
0. Then we define

d∗(p, q) := d∗((ρ, z0), (ρ, w0)) +D∗(ϵ, ω
′) +D∗(ϵ, τ

′) + ∥u∥+ ∥v∥ .
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v
ωx′

0y
′
0x

′
1Y

ωx′
0y

′
0X

ωx′
0Y

ωX
x′
0

eY

u

y′0

eX

eY

x′
1

Figure 2.3: An example of case (II). Let p = (ω, u) and q = (ωx′
0y

′
0x

′
1, v),

where ω ∈ WX \ {ϵ}, x′
i ∈ X∗

0 , y
′
0 ∈ Y ∗

0 , u ∈ X, and v ∈ Y .

Finally, we extend d∗ on edges in an obvious way. From the construction, it

is clear that d∗ is , non-degenerate, and satisfies the triangle inequality. This

completes the construction of the metric d∗ on the free product X ∗ Y .

Example 2.1.7. Let G and H be finitely generated groups and let SG

and SH be finite generating sets of G and H, respectively. Let Γ(G,SG) and

Γ(H,SH) be Cayley graphs of G and H. We can construct the free product

Γ(G,SG) and Γ(H,SH) with respect to (G, ιG, eG) and (H, ιH , eH), where

ιG and ιH are the inclusion maps. The resulting space Γ(G,SG) ∗ Γ(H,SH)

coincides with the free product of Cayley graphs in the sense of Pisanski and

Tucker [16].

The following example shows that the coarse geometry of a free product

depends on the choice of nets.
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ρx0Y ρx′
0Y

eY eY

x0 x′
0

ρX

y0

eX
u

y′0

eX
ρx′

0y
′
0X

x′
1

eY

ρx0y0X

ρx′
0y

′
0x

′
1Yv

Figure 2.4: An example of (III). Let p = (ρx0y0, u) and q = (ρx′
0y

′
0x

′
1, v),

where xi, x
′
i ∈ X∗

0 , y0, y
′
0 ∈ Y ∗

0 , u ∈ X, and v ∈ Y . Here, ρ ∈ WX and

x0 ̸= x′
0.

Example 2.1.8. For m ∈ N, set Gm = Z/mZ. We assume that Gm acts

on R2 by rotations, that is,

[l] · (r cos θ, r sin θ) =
(
r cos

(
θ +

2πl

m

)
, r sin

(
θ +

2πl

m

))
.

Let o((1, 0)) be an orbit map of (1, 0) by this action. The triplet (Gm, o((1, 0)), (1, 0))

is a net of R2. For m,n ∈ N, we consider the free product R2 ∗ R2 with re-

spect to (Gm, o((1, 0)), (1, 0)) and (Gn, o((1, 0)), (1, 0)). We will see how the

growth type of R2 ∗ R2 depends on the choice of nets.

We denote by V (R) the number of the points of the form (ω, (p, q)) in

the closed ball of radius R centered at (ϵ, (0, 0)), where ω is a word and p, q

are integers.

Set G∗
m = Gm \ {0} and let W be the set of normal words on G∗

n ⊔ G∗
m,

and the empty word ϵ.
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(1) Suppose m = 1. In this case, G∗
m is empty, so normal words consist

only of single letters, namely, W = G∗
n ⊔ {ϵ}. Then, the number of

sheets is n + 1. We illustrate the shape of R2 ∗ R2 in Figure 2.5. We

can estimate V (R) as follows:

V (R) ≤ (n+ 1) · 2πR2.

Therefore, in this case, R2 ∗ R2 has a polynomial growth.

Figure 2.5: m = 1.

(2) Suppose m = 2 and n = 2. In this case the set of letters G∗
2 ⊔ G∗

2 =

{1} ⊔ {1} contains two elements. We illustrate the shape of R2 ∗R2 in

Figure 2.6. We can estimate V (R):

V (R) ≤ R · 2πR2.

Therefore, in this case, R2 ∗ R2 has a polynomial growth.

(3) Suppose m ≥ 3 and n ≥ 2. In this case G∗
m has at least two elements.

Then the free product has a tree-like structure. Since the growth of the

free product of the groups Gm∗Gn is exponential, the number of sheets

grows exponentially. Therefore, in this case, R2 ∗R2 has a exponential

growth.
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Figure 2.6: m = 2 and n = 2.

Remark 2.1.9. Let X, X ′, and Y be metric spaces. We suppose that X

and X ′ are quasi-isometric. In general, X ∗ Y and X ′ ∗ Y are not necessarily

quasi-isometric. For example, let Γ2 be a Cayley graph of Z/2Z for some

generating set, and Γ3 be that of Z/3Z. It is clear that Γ2 is quasi-isometric

to Γ3. By Proposition 3.2.1, Z/2Z ∗Z/2Z acts properly and cocompactly on

Γ2 ∗ Γ2, and so does Z/3Z ∗ Z/2Z on Γ3 ∗ Γ2. Since Z/2Z ∗ Z/2Z has two

ends and Z/3Z ∗ Z/2Z has infinitely many ends, Γ2 ∗ Γ2 and Γ3 ∗ Γ2 are not

quasi-isometric.

2.2 Coarsely convex spaces

In this section, we briefly review coarse geometry and coarsely convex spaces.
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2.2.1 Geodesic metric spaces and proper metric spaces

A metric space (X, dX) is a geodesic metric space if for any x, x′ ∈ X,

there exists a map γ : [0, a] → X such that γ(0) = x, γ(a) = x′, and

dX(γ(t), γ(t
′)) = |t− t′| for all t, t′ ∈ [0, a].

We say that a metric space (X, dX) is a proper metric space if every

bounded closed subset in X is compact.

2.2.2 Coarse equivalence and quasi-isometry

Let (X, dX) and (Y, dY ) be metric spaces. We say that a map f : X → Y is

a coarse map if there exist a non-decreasing function ρ+ : [0,∞) → [0,∞)

such that the inequality

dY (f(x), f(x
′)) ≤ ρ+(dX(x, x

′))

holds for any x, x′ ∈ X, and for any bounded subset B ⊂ Y , the preimage

f−1(B) is bounded.

We also say that a map f : X → Y is a coarse embedding if there exist

non-decreasing functions ρ−, ρ+ : [0,∞) → [0,∞) such that

lim
t→∞

ρ−(t) = ∞,

and the inequality

ρ−(dX(x, x
′)) ≤ dY (f(x), f(x

′)) ≤ ρ+(dX(x, x
′))

holds for any x, x′ ∈ X. When we can choose ρ− and ρ+ to be affine maps,

we say that the map f is a quasi-isometric embedding.

LetX ′ ⊂ X. ForM ≥ 0, we say thatX ′ isM-dense inX ifX = BM(X ′),

where BM(X ′) is the closed M -neighborhood of X ′. We say that X and Y

are coarsely equivalent if there exist a coarse embedding map f : X → Y

and M ≥ 0 such that f(X) is M -dense in Y . We say that X and Y are

quasi-isometric if there exist a quasi-isometric embedding map f : X → Y

and M ≥ 0 such that f(X) is M -dense in Y .
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Let λ ≥ 1 and k ≥ 0. A (λ, k)-quasi-geodesic segment is a (λ, k)-quasi-

isometric embedding γ : [0, a] → X, that is, the inequality

λ−1|t− t′| − k ≤ dX(γ(t), γ(t
′)) ≤ λ|t− t′|+ k

holds for all t, t′ ∈ [0, a].

2.2.3 Coarsely convex spaces

Definition 2.2.1. Let (X, dX) be a metric space. Let λ ≥ 1, k ≥ 0, E ≥
1, and C ≥ 0 be constants. Let θ : R≥0 → R≥0 be a non-decreasing function.

Let L be a family of (λ, k)-quasi-geodesic segments. The metric space X is

(λ, k, E, C, θ,L)-coarsely convex, if L satisfies the following:

(CC1) For any v, w ∈ X, there exists a quasi-geodesic segment γ ∈ L with

γ : [0, a] → X, γ(0) = v and γ(a) = w.

(CC2) Let γ, η ∈ L be quasi-geodesic segments with γ : [0, a] → X and

η : [0, b] → X. Then for all t ∈ [0, a], s ∈ [0, b], and c ∈ [0, 1], we have

that

dX(γ(ct), η(cs)) ≤ (1− c)EdX(γ(0), η(0)) + cEdX(γ(t), η(s)) + C.

We call this inequality the coarsely convex inequality.

(CC3) Let γ, η ∈ L be quasi-geodesic segments with γ : [0, a] → X and

η : [0, b] → X. Then for all t ∈ [0, a] and s ∈ [0, b], we have that

|t− s| ≤ θ(dX(γ(0), η(0)) + dX(γ(t), η(s))).

The family L satisfying (CC1), (CC2), and (CC3) is called a system of good

quasi-geodesic segments, and elements γ ∈ L are called good quasi-geodesic

segments.

We say that a metric space X is a coarsely convex space if there exist

constants λ, k, E, C, a non-decreasing function θ : R≥0 → R≥0, and a family
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of (λ, k)-quasi-geodesic segments L such that X is (λ, k, E, C, θ,L)-coarsely
convex.

If the family L consists of only geodesic segments, then L always satisfies

(CC3) by the triangle inequality.

Lemma 2.2.2. Let (X, dX) be a metric space. Let L be a family of

geodesic segments. Then L satisfies (CC3). In particular, we can take a

non-decreasing function satisfying (CC3) to the identity map idR≥0
.

Proof. Let (X, dX) be a metric space and let L be a family of geodesic

segments. Let γ, η ∈ L be geodesic segments with γ : [0, a] → X and

η : [0, b] → X. Set t ∈ [0, a] and s ∈ [0, b]. We suppose that t > s. Since γ

and η are geodesic segments, we have

|t− s| = dX(γ(0), γ(t))− dX(η(0), η(s)).

By the triangle inequality, we have

dX(γ(0), γ(t))− dX(η(0), η(s))

≤ dX(γ(0), η(0)) + dX(η(0), η(s)) + dX(η(s), γ(t))− dX(η(0), η(s))

= dX(γ(0), η(0)) + dX(γ(t), η(s)).

Therefore the family L satisfies (CC3).

Let X be a metric space. For a map γ : [a, b] → X, we denote by γ−1,

the map γ−1 : [a, b] → X defined by γ−1(t) := γ(b− (t−a)) for t ∈ [a, b]. For

c ∈ [a, b], we denote by γ|[a,c] the restriction of γ to [a, c]. Let L be a family

of quasi-geodesic segments in X. The family L is symmetric if γ−1 ∈ L for

all γ ∈ L, and L is prefix-closed if γ|[a,c] ∈ L for all γ ∈ L with γ : [a, b] → X

and for all c ∈ [a, b].

The following Proposition 2.2.3 plays an important role in the proof of

the main result.

Proposition 2.2.3. Let (X, dX) be a metric space. Let E ≥ 1 and C ≥ 0

be constants. Let L be a family of geodesic segments. Suppose that L satisfies
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the following (gCC1), (gCC2), and (gCC3), then X is (1, 0, E, 2C, idR≥0
,L)-

coarsely convex:

(gCC1) For any v, w ∈ X, there exists a geodesic segment γ ∈ L with γ :

[0, a] → X, γ(0) = v and γ(a) = w.

Let γ, η ∈ L be geodesic segments with γ : [0, a] → X and η : [0, b] → X.

(gCC2) Suppose γ(0) = η(0). Then for all t ∈ [0, a], s ∈ [0, b], and c ∈ [0, 1],

we have that

dX(γ(ct), η(cs)) ≤ cEdX(γ(t), η(s)) + C.

(gCC3) For t ∈ [0, a], let γ′ ∈ L with γ′ : [0, d] → X, γ′(0) = η(0), and

γ′(d) = γ(t), we have

dX(γ(ct), γ
′(cd)) ≤ (1− c)EdX(γ(0), η(0)) + C.

Proof. Since L is a family of geodesic segment, by Lemma 2.2.2, (CC3)

holds. (gCC1) implies (CC1).

Let γ, η ∈ L be geodesic segments with γ : [0, a] → X and η : [0, b] → X.

Let t ∈ [0, a], s ∈ [0, b], and c ∈ [0, 1]. Let γ′ ∈ L with γ′ : [0, d] → X,

γ′(0) = η(0), and γ′(d) = γ(t). By (gCC3), we have

dX(γ(ct), γ
′(cd)) ≤ (1− c)EdX(γ(0), γ

′(0)) + C

= (1− c)EdX(γ(0), η(0)) + C. (2.1)

By (gCC2), we have

dX(γ
′(cd), η(cs)) ≤ cEdX(γ

′(d), η(s)) + C

= cEdX(γ(t), η(s)) + C (2.2)

Combining (2.1) and (2.2) yields

dX(γ(ct), η(cs)) ≤ dX(γ(ct), γ
′(cd)) + dX(γ

′(cd), η(cs))

≤ (1− c)EdX(γ(0), η(0)) + cEdX(γ(t), η(s)) + 2C

Therefore, L satisfies (CC2).
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We say that X is a geodesic coarsely convex space if there exist constants

E, C, and a family of geodesic segments L such that L satisfies (gCC1),

(gCC2), and (gCC3).
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Chapter 3

Main results

In this section, we consider the free products of geodesic coarsely convex

spaces.

3.1 Free products of geodesic coarsely convex

spaces

Theorem 3.1.1. Let X and Y be metric spaces with nets. If X and Y

are geodesic coarsely convex spaces, then the free product X ∗Y is a geodesic

coarsely convex space.

In the rest of this section, we give the proof of Theorem 3.1.1. First, we

construct the family of geodesic segments L∗ in X ∗ Y . Let (X0, iX , eX) and

(Y0, iY , eY ) be nets of X and Y , respectively, and let S be the sheets of X ∗Y .

Since X and Y are geodesic coarsely convex, we can suppose that X and

Y are (1, 0, EX , CX , idR≥0
,LX)-coarsely convex and (1, 0, EY , CY , idR≥0

,LY )-

coarsely convex, respectively. We define

E := max{EX , EY },
C := max{CX , CY }.
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For any S ∈ S and for any x, y ∈ S, we choose a good geodesic in S

from x to y, denoted by γS(x, y). Let E be the set of edges. For e ∈ E and

v, w ∈ e, let γe(v, w) be the geodesic segment on e from v to w.

Note that e ∈ E is a unit interval. Then, for e ∈ E and v, w ∈ e, we have

γe(w, v) = γe(v, w)
−1. We define

L := {γS(x, y) | S ∈ S, x, y ∈ S}
⊔

{γe(v, w) | e ∈ E, v, w ∈ e}

For a, b ∈ X ∗ Y , we define a geodesic segment from a to b by connecting

γ ∈ L at the identified points, denoted by Γ(a, b). Firstly, we suppose that a

and b belong to sheets S1 and S2, respectively. Let eS1 and eS2 be base points

of S1 and S2 and let (ω, u) and (τ, v) be coordinate of a and b, respectively.

Here, ω, τ ∈ W and u, v ∈ X ⊔ Y , as in Notation 2.1.5. We consider the

following three cases.

(I) ω and τ are equal.

In this case, first, we suppose that ω = τ ̸= ϵ or S1 = S2. Then we

define

Γ(a, b)(t) := γS1(u, v)(t).

Next, we suppose that ω = τ = ϵ and S1 ̸= S2. Let eϵ = {ϵ} × [0, 1].

Then we define

Γ(a, b)(t) :=


γS1(u, eS1)(t) for 0 ≤ t ≤ ∥u∥ ,

γeϵ(eS1 , eS2)(t− t1) for t1 ≤ t ≤ t1 + 1,

γS2(eS2 , v)(t− t2) for t2 ≤ t ≤ t2 + ∥v∥ ,

where t1 = ∥u∥ and t2 = t1 + 1.

(II) ω is a proper subword of τ .

In this case, there exists τ ′ ∈ W \ {ϵ} such that τ = ωτ ′. Let z be

the initial letter of τ ′. We define the geodesic segment from a to b

inductively for the length of τ ′. First, we assume that ω is not the
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empty word and the height of τ ′ is equal to 1, that is, τ ′ = z. Let

e = {ω} × {z} × [0, 1] Then we define

Γ(a, b)(t) :=


γS1(u, z)(t) for 0 ≤ t ≤ d∗(u, z),

γe(z, eS2)(t− t1) for t1 ≤ t ≤ t1 + 1,

γS2(eS2 , v)(t− t2) for t2 ≤ t ≤ t2 + ∥v∥ ,

where t1 = d∗(u, z) and t2 = t1 + 1. Next, we assume that ω is the

empty word and τ ′ = z. Let e′ = {ϵ} × {z} × [0, 1]. If {u, z} ⊂ X or

{u, z} ⊂ Y holds, then we define

Γ(a, b)(t) :=


γS1(u, z)(t) for 0 ≤ t ≤ d∗(u, z),

γe′(z, eS2)(t− t1) for t1 ≤ t ≤ t1 + 1,

γS2(eS2 , v)(t− t2) for t2 ≤ t ≤ t2 + ∥v∥ ,

where t1 = d∗(u, z) and t2 = t1 + 1. Otherwise, then we define

Γ(a, b)(t) :=



γS1(u, eS1)(t) for 0 ≤ t ≤ ∥u∥ ,

γeϵ(eS1 , eS0)(t− t1) for t1 ≤ t ≤ t1 + 1,

γS0(eS0 , z)(t− t2) for t2 ≤ t ≤ t2 + ∥z∥ ,

γe′(z, eS2)(t− t3) for t3 ≤ t ≤ t3 + 1,

γS2(eS2 , v)(t− t4) for t4 ≤ t ≤ t4 + ∥v∥ ,

where t1 = ∥u∥, t2 = t1 + 1, t3 = t2 + ∥z∥, and t4 = t3 + 1. Here,

S0 = ϵX or S0 = ϵY . We denote by eS0 , the base point of S0. From

the construction, it is clear that Γ(a, b) is a geodesic segment.

Finally, we suppose that the length of τ ′ is greater than 1. Let τ ′ =

l0l1l2 . . . ln and let a′ = (ωl0l1 . . . ln−1, ln). Let ê = {ωl0l1 . . . ln−1} ×
{ln} × [0, 1]. By the assumption of induction, Γ(a, a′) is defined. Then
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we define Γ(a, b) as follows:

Γ(a, b) :=


Γ(a, a′)(t) for 0 ≤ t ≤ d∗(a, a

′),

γê(ln, eS2)(t− t1) for t1 ≤ t ≤ t1 + 1,

γS2(eS2 , v)(t− t2) for t2 ≤ t ≤ t2 + ∥v∥ ,

where t1 = d∗(a, a
′), t2 = t1 + 1.

(III) Neither (I) nor (II).

In this case, there exist the maximal common prefix ρ ∈ W (possibly

the empty word) and ω′, τ ′ ∈ W \ {ϵ} such that ω = ρω′ and τ = ρτ ′.

Let z0 and w0 be the initial letter of ω′ and τ ′, respectively. Set a′ =

(ρ, z0) and b′ = (ρ, w0). Then we define

Γ(a, b) :=


Γ(a, a′)(t) for 0 ≤ t ≤ d∗(a, a

′),

Γ(a′, b′)(t− t1) for t1 ≤ t ≤ t1 + d∗(z0, w0),

Γ(b′, b)(t− t2) for t2 ≤ t ≤ t2 + d∗(b
′, b),

where t1 = d∗(a, a
′) and t2 = t1 + d∗(z0, w0).

Finally, we extend Γ(a, b) on edges in an obvious way. We denote by [a, b],

the image of the geodesic segment Γ(a, b). Define

L∗ := {Γ(a, b) | a, b ∈ X ∗ Y }.

Example 3.1.2. Let a = (ux0y0, x) and b = (ux′
0, y), where u ∈ WX is

the maximal common prefix, x0, x
′
0 ∈ X∗

0 , y0 ∈ Y ∗
0 , x ∈ X, and y ∈ Y . Let

e1 = {ux0}×{y0}×[0, 1], e2 = {u}×{x0}×[0, 1], and e3 = {u}×{x′
0}×[0, 1].

Then the path Γ(a, b) : [0, d∗(a, b)] → X ∗ Y is given as follows (see Figure
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3.1):

Γ(a, b)(t) =



γux0y0X(x, eX)(t) 0 ≤ t ≤ dX(eX , x),

γe1(eX , y0)(t− t1) t1 ≤ t ≤ t1 + 1,

γux0Y (y0, eY )(t− (t1 + 1)) t1 + 1 ≤ t ≤ t1 + dY (eY , y0) + 1,

γe2(eY , x0)(t− t2) t2 ≤ t ≤ t2 + 1,

γuX(x0, x′
0)(t− (t2 + 1)) t2 + 1 ≤ t ≤ t2 + dX(x0, x′

0) + 1,

γe3(x
′
0, eY )(t− t3) t3 ≤ t ≤ t3 + 1,

γux′
0Y
(eY , y)(t− (t3 + 1)) t3 + 1 ≤ t ≤ t3 + dY (eY , y) + 1,

where t1 = dX(eX , x), t2 = t1 + dY (eY , y0) + 1, and t3 = t2 + dX(x0, x′
0) + 1.

ux0Y ux′
0Y

eY y

x0 x′
0

uX

eY
y0

eX
x

ux0y0X

Figure 3.1: An example of Γ(a, b) ∈ L∗

Lemma 3.1.3. We suppose that X and Y are (E,C)-geodesic coarsely

convex spaces. For v, w ∈ X ∗ Y and t′ ∈ [0, d∗(v, w)], let w
′ = Γ(v, w)(t′).

Then,

d∗(Γ(v, w)(ct
′),Γ(v, w′)(ct′)) ≤ C

holds for c ∈ [0, 1].
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Proof. Set Γ(v, w) = Γ1 and Γ(v, w′) = Γ2. Let S ′ ∈ S such that

w′ ∈ S ′. Since Γ1 and Γ2 are geodesic segments, we can define Γ2 to be

Γ2 : [0, t
′] → X ∗ Y . Let

T := max{t ∈ [0, t′] | Γ1(s) = Γ2(s) for any s ∈ [0, t]}

We can put Γ1(T ) = Γ1(c0t
′) = Γ2(c0t

′) for some c0 ∈ [0, 1]. Let p = Γ1(T ).

By the definition of L∗, we obtain that p is in S ′. Moreover, there exist

p′ ∈ S ′ satisfying the following conditions: Let γS′(p, p′) ∈ L be the geodesic

segment with γS′(p, p′) : [0, u] → S ′ and let γS′(p, w′) ∈ L be the geodesic

segment with γS′(p, w′) : [0, v] → S ′. Such that

Γ1([c0t
′, t′]) ⊆ γS′(p, p′)([0, u]),

Γ2([c0t
′, t′]) = γS′(p, w′)([0, v]).

Note that Γ1([0, c0t
′]) = Γ2([0, c0t

′]), u ≥ v, and w′ = Γ1(t
′) = γS′(p, p′)(v).

Then for all c ≤ c0, we have that Γ1(ct
′) = Γ2(ct

′). We suppose that c > c0.

Then there exist c1 ∈ [0, 1] such that

Γ1(ct
′) = γS′(p, p′)(c1v),

Γ2(ct
′) = γS′(p, w′)(c1v).

Since X and Y are geodesic coarsely convex spaces, by the coarsely convex

inequality, we have that

d∗(Γ1(ct
′),Γ2(ct

′)) = d∗(γS′(p, p′)(c1v), γS′(p, w′)(c1v))

≤ c1Ed∗(γS′(p, p′)(v), γS′(p, w′)(v)) + C

= c1Ed∗(w
′, w′) + C = C.

This complete the proof.

Proposition 3.1.4. The family of geodesic segments L∗ satisfies (gCC1),

(gCC2), and (gCC3).
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Proof. We remark that X and Y are geodesic spaces. Then, by the

definition of L∗, it is clear that L∗ satisfies (gCC1).

We will prove that L∗ satisfies (gCC2). Let Γ1 ∈ L∗ with Γ1 : [0, t] → X ∗
Y and let Γ2 ∈ L∗ with Γ2 : [0, s] → X ∗ Y . We suppose that Γ1(0) = Γ2(0).

The geodesic triangle ∆(Γ1(0),Γ1(t),Γ2(s)) has the following form (see Figure

3.2): There exist S ∈ S and p, a, b ∈ S such that

[Γ1(0),Γ1(t)] = [Γ1(0), p] ∪ [p, a] ∪ [a,Γ1(t)],

[Γ1(0),Γ2(s)] = [Γ1(0), p] ∪ [p, b] ∪ [b,Γ2(s)],

d∗(Γ1(t),Γ2(s)) = d∗(Γ1(t), a) + d∗(a, b) + d∗(b,Γ2(s)).

We set

p := Γ1(c0t) = Γ2(c
′
0s),

a := Γ1(c1t),

b := Γ2(c
′
1s),

where c0, c1, c
′
0, c

′
1 ∈ [0, 1]. Since Γ1 and Γ2 are geodesics, we have c0t = c′0s.

S

Γ1(0)

p

a

b

Γ1(t)

Γ2(s)

Figure 3.2: An example of geodesic triangles of X ∗ Y .

Without loss of generality, we may assume that c1 ≤ c′1. Since Γ1,Γ2 are
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geodesics with respect to the metric d∗, we have

c′1 · d∗(Γ1(t),Γ2(s))− d∗(a, b)

= c′1{d∗(Γ1(t), a) + d∗(a, b) + d∗(b,Γ2(s))} − d∗(a, b)

= c′1d∗(Γ1(t), a) + c′1d∗(b,Γ2(s))− (1− c′1)d∗(a, b)

= c′1d∗(Γ1(t),Γ1(c1t)) + c′1d∗(Γ2(c
′
1s),Γ2(s))− (1− c′1)d∗(a, b)

= c′1(1− c1)d∗(Γ1(t),Γ1(0)) + c′1(1− c′1)d∗(Γ2(0),Γ2(s))− (1− c′1)d∗(a, b).

Moreover, by c1 ≤ c′1, the right-hand side of this equality can be estimated

as follows:

c′1(1− c1)d∗(Γ1(t),Γ1(0)) + c′1(1− c′1)d∗(Γ2(0),Γ2(s))− (1− c′1)d∗(a, b)

≥ c′1(1− c′1)d∗(Γ1(t),Γ1(0)) + c′1(1− c′1)d∗(Γ2(0),Γ2(s))− (1− c′1)d∗(a, b)

= (1− c′1){c′1d∗(Γ1(t),Γ1(0)) + c′1d∗(Γ2(0),Γ2(s))− d∗(a, b)}
≥ (1− c′1){c1d∗(Γ1(t),Γ1(0)) + c′1d∗(Γ2(0),Γ2(s))− d∗(a, b)}
= (1− c′1){d∗(a,Γ1(0)) + d∗(Γ2(0), b)− d∗(a, b)}
≥ 0.

The last inequality follows from the triangle inequality. Then, we have

d∗(a, b) ≤ c′1 · d∗(Γ1(t),Γ2(s)). (3.1)

We will show that there exist E∗ ≥ 1 and C∗ ≥ 0 depending only on E

and C such that for all c ∈ [0, 1],

d∗(Γ1(ct),Γ2(cs)) ≤ cE∗d∗(Γ1(t),Γ2(s)) + C∗.

We divide the proof into the following cases:

I). Γ1(ct) ∈ [Γ2(0),Γ2(cs)], or Γ2(cs) ∈ [Γ1(0),Γ1(ct)].

II). Γ1(ct) ∈ [p, a] and Γ2(cs) ∈ [p, b] (see Figure 3.3).

III). Γ1(ct) ∈ [p, a] and Γ2(cs) ∈ [b,Γ2(s)] (see Figure 3.4).
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IV). Γ1(ct) ∈ [a,Γ1(t)] and Γ2(cs) ∈ [b,Γ2(s)] (see Figure 3.5).

We consider case I). Note that Γ1(0) = Γ2(0). In case I), we suppose that

Γ1(0), Γ1(ct), and Γ2(cs) are on the same geodesic segment. Then we have

that

d∗(Γ1(ct),Γ2(cs)) = c|t− s|
≤ cd∗(Γ1(t),Γ2(s)).

In case II), we can put

Γ1(ct) = γS(p, a)(ct− c0t),

Γ2(cs) = γS(p, b)(cs− c′0s).

Set T := (c1 − c0)t and S := (c′1 − c′0)s. Then we have

Γ1(0)
p

a

Γ1(t)

b

Γ2(s)

Γ1(ct)

Γ2(cs)

Figure 3.3: Case II)

p = γS(p, a) (0) = γS(p, b) (0) ,

Γ1(ct) = γS(p, a)

(
c− c0
c1 − c0

T

)
, a = γS(p, a) (T ) ,

Γ2(cs) = γS(p, b)

(
c− c′0
c′1 − c′0

S

)
, b = γS(p, b) (S) .

27



We define a′ ∈ [p, a] to be

a′ := γS(p, a)

(
c− c′0
c′1 − c′0

T

)
.

Firstly, by the coarsely convex inequality in S and inequality (3.1), we have

d∗(a
′,Γ2(cs)) = d∗

(
γS(p, a)

(
c− c′0
c′1 − c′0

T

)
, γS(p, b)

(
c− c′0
c′1 − c′0

S

))
≤ c− c′0

c′1 − c′0
· Ed∗(γS(p, a)(T ), γS(p, b)(S)) + C

=
c− c′0
c′1 − c′0

· Ed∗(a, b) + C

≤ cc′1 − c′0c
′
1

c′1 − c′0
· Ed∗(Γ1(t),Γ2(s)) + C

≤ c · Ed∗(Γ1(t),Γ2(s)) + C. (3.2)

Inequality (3.2) follows from c′0 ≤ c ≤ c′1.

Next, we consider the distance between a′ and Γ1(ct). Then

d∗(a
′,Γ1(ct)) = d∗

(
γS(p, a)

(
c− c′0
c′1 − c′0

T

)
, γS(p, a)

(
c− c0
c1 − c0

T

))
=

∣∣∣∣ c− c′0
c′1 − c′0

T − c− c0
c1 − c0

T

∣∣∣∣
By the triangle inequality (c1 − c0)t ≤ (c′1 − c′0)s + d∗(a, b) and inequality

(3.1), we have

c− c′0
c′1 − c′0

T − c− c0
c1 − c0

T =
c− c′0
c′1 − c′0

(c1 − c0)t−
c− c0
c1 − c0

(c1 − c0)t

≤ c− c′0
c′1 − c′0

{(c′1 − c′0)s+ d∗(a, b)} − (c− c0)t

≤ (c− c′0)s− (c− c0)t+
c− c′0
c′1 − c′0

d∗(a, b)

≤ c(s− t) + cd∗(Γ1(t),Γ2(s))

≤ c · {2d∗(Γ1(t),Γ2(s))}.
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Similarly, by the triangle inequality (c′1 − c′0)s − d∗(a, b) ≤ (c1 − c0)t and

inequality (3.1), we have

c− c0
c1 − c0

T − c− c′0
c′1 − c′0

T =
c− c0
c1 − c0

(c1 − c0)t−
c− c′0
c′1 − c′0

(c1 − c0)t

≤ (c− c0)t−
c− c′0
c′1 − c′0

{(c′1 − c′0)s− d∗(a, b)}

= (c− c0)t− (c− c′0)s+
c− c′0
c′1 − c′0

d∗(a, b)

≤ c(t− s) + cd∗(Γ1(t),Γ2(s))

≤ c · {2d∗(Γ1(t),Γ2(s))}.

Then we have

d∗(a
′,Γ1(ct)) =

∣∣∣∣ c− c′0
c′1 − c′0

T − c− c0
c1 − c0

T

∣∣∣∣
≤ c · {2d∗(Γ1(t),Γ2(s))}. (3.3)

Combining (3.2) and (3.3) yields

d∗(Γ1(ct),Γ2(cs)) ≤ d∗(Γ1(ct), a
′) + d∗(a

′,Γ2(cs))

≤ c · {2d∗(Γ1(t),Γ2(s))}+ c · Ed∗(Γ1(t),Γ2(s)) + C

= c(2 + E)d∗(Γ1(t),Γ2(s)) + C.

We consider case III). In case III), we supposed that Γ1(ct) ∈ [p, a] and

Γ2(cs) ∈ [b,Γ2(s)], where a = Γ1(c1t) and b = Γ2(c
′
1s). Let t′ := c1t and

s′ := c′1s. We define

a′ := Γ1(ct
′),

b′ := Γ2(cs
′).

Since a = Γ1(t
′) and b = Γ2(s

′), we have a′ ∈ [Γ1(0), p] ∪ [p, a] and b′ ∈
[Γ1(0), p] ∪ [p, b]. By the same argument as in case I) or case II), we have

d∗(a
′, b′) = d∗(Γ1(ct

′),Γ2(cs
′))

≤ c(2 + E)d∗(Γ1(t
′),Γ2(s

′)) + C

= c(2 + E)d∗(a, b) + C.
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Γ1(0)
p

a

Γ1(t)

b

Γ2(s)

Γ1(ct)

a′

b′

Γ2(cs)

Figure 3.4: Case III)

We remark that d∗(Γ1(t),Γ2(s)) = d∗(Γ1(t), a)+ d∗(a, b)+ d∗(b,Γ2(s)). Then

we have

d∗(Γ1(ct),Γ2(cs))

≤ d∗(Γ1(ct), a
′) + d∗(a

′, b′) + d∗(b
′,Γ2(cs))

= d∗(Γ1(ct),Γ1(ct
′)) + d∗(Γ1(ct

′),Γ2(cs
′)) + d∗(Γ2(cs

′),Γ2(cs))

≤ c(t− t′) + c(2 + E)d∗(Γ1(t
′),Γ2(s

′)) + C + c(s− s′)

= cd∗(Γ1(t),Γ1(t
′)) + c(2 + E)d∗(Γ1(t

′),Γ2(s
′)) + C + cd∗(Γ2(s

′),Γ2(s))

≤ c(2 + E){d∗(Γ1(t), a) + d∗(a, b) + d∗(b,Γ2(s))}+ C

= c(2 + E)d∗(Γ1(t),Γ2(s)) + C.

We consider case IV). In case IV), we supposed that Γ1(ct) ∈ [a,Γ1(t)]

and Γ2(cs) ∈ [b,Γ2(s)], where a = Γ1(c1t), b = Γ2(c
′
1s), and c1 ≤ c′1. We

remark that c1 ≤ c′1 ≤ c. Then, by inequality (3.1), we have
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Γ1(t)
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Figure 3.5: Case IV)

d∗(Γ1(ct),Γ2(cs))

= d∗(Γ1(ct), a) + d∗(a, b) + d∗(b,Γ2(cs))

= d∗(Γ1(ct),Γ1(c1t)) + d∗(a, b) + d∗(Γ2(c
′
1s),Γ2(cs))

≤ c
(
1− c1

c

)
t+ c′1d∗(Γ1(t),Γ2(s)) + c

(
1− c′1

c

)
s

≤ c(1− c1)t+ cd∗(Γ1(t),Γ2(s)) + c(1− c′1)s

= c{d∗(Γ1(t), a) + d∗(b,Γ2(s))}+ cd∗(Γ1(t),Γ2(s))

≤ c{2d∗(Γ1(t),Γ2(s))}.

Therefore, for all Γ1,Γ2 ∈ L∗ with Γ1 : [0, t] → X ∗Y and Γ2 : [0, s] → X ∗Y ,

d∗(Γ1(ct),Γ2(cs)) ≤ c(2 + E)d∗(Γ1(t),Γ2(s)) + C (3.4)

holds for all c ∈ [0, 1].

Finally, we will show that there exist E∗∗ ≥ 0 and C∗∗ ≥ 0 such that for

all t′ ∈ [0, t], s′ ∈ [0, s], and c ∈ [0, 1],

d∗(Γ1(ct
′),Γ2(cs

′)) ≤ cE∗∗d∗(Γ1(t
′),Γ2(s

′)) + C∗∗.
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We recall that in general, Γ1|[0,t′] is not in L∗. Let Γ
′
1 ∈ L∗ be the geodesic

segment from Γ1(0) to Γ1(t
′). By Lemma 3.1.3,

d∗(Γ1(ct
′),Γ′

1(ct
′)) ≤ C. (3.5)

holds for any c ∈ [0, 1]. Let Γ′
2 ∈ L∗ be the geodesic segment from Γ2(0) to

Γ2(s
′). By Lemma 3.1.3, we have that for all c ∈ [0, 1],

d∗(Γ2(cs
′),Γ′

2(cs
′)) ≤ C. (3.6)

Since Γ′
1, Γ

′
2 ∈ L∗ with Γ′

1 : [0, t
′] → X ∗ Y and Γ′

2 : [0, s
′] → X ∗ Y , by (3.4),

(3.5), and (3.6),

d∗(Γ1(ct
′),Γ2(cs

′))

≤ d∗(Γ1(ct
′),Γ′

1(ct
′)) + d∗(Γ

′
1(ct

′),Γ′
2(cs

′)) + d∗(Γ
′
2(cs

′),Γ2(cs
′))

≤ c(2 + E)d∗(Γ
′
1(t

′),Γ′
2(s

′)) + 3C

= c(2 + E)d∗(Γ1(t
′),Γ2(s

′)) + 3C.

Therefore, we obtain that (gCC2) holds.

Next, we will show that L∗ satisfies (gCC3). Let Γ1 ∈ L∗ with Γ1 :

[0, t] → X ∗ Y and let Γ2 ∈ L∗ with Γ2 : [0, s] → X ∗ Y . We suppose that

Γ1(t) = Γ2(s). First, we will show that

d∗(Γ1(ct),Γ2(cs)) ≤ (1− c)(2 + E)d∗(Γ1(0),Γ2(0)) + C

holds for c ∈ [0, 1].

Let denote by [Γ1(0),Γ1(t)], the image of Γ1. We consider a geodesic

triangle [Γ1(0),Γ1(t)] ∪ [Γ1(0),Γ2(0)] ∪ [Γ2(0),Γ2(s)]. There exist S ∈ S and

p1, p2, a ∈ S such that

[Γ1(0),Γ1(t)] = [Γ1(0), p1] ∪ [p1, a] ∪ [a,Γ1(t)],

[Γ2(0),Γ2(s)] = [Γ2(0), p2] ∪ [p2, a] ∪ [a,Γ2(s)], and,

d∗(Γ1(0),Γ2(0)) = d∗(Γ1(0), p1) + d∗(p1, p2) + d∗(p2,Γ2(0))

32



holds. We set

p1 := Γ1(c0t),

p2 := Γ2(c
′
0s),

a := Γ1(c1t) = Γ2(c
′
1s),

where c0, c1, c
′
0, c

′
1 ∈ [0, 1]. Since Γ1 and Γ2 are geodesic segments, we have

(1− c1)t = (1− c′1)s.

Without loss of generality, we may assume that 1 − c0 ≤ 1 − c′0. By the

same argument as in the proof of (3.1), we have

d∗(p1, p2) ≤ (1− c′0) · d∗(Γ1(0),Γ2(0)). (3.7)

We divide the proof into the following cases:

2-I) Γ1(ct) ∈ Γ2([cs, s]), or Γ2(cs) ∈ Γ1([ct, t]).

2-II) Γ1(ct) ∈ [p1, a] and Γ2(cs) ∈ [p2, a] (see Figure 3.6).

2-III) Γ1(ct) ∈ [Γ1(0), p1] and Γ2(cs) ∈ [p2, a] (see Figure 3.7).

2-IV) Γ1(ct) ∈ [Γ1(0), p1] and Γ2(cs) ∈ [Γ2(0), p2]

We consider case 2-I). In case 2-I), we suppose that Γ1(t), Γ1(ct), and

Γ2(cs) are on the same geodesic segment. Then we have

d∗(Γ1(ct),Γ2(cs)) = c|t− s|
≤ cd∗(Γ1(0),Γ2(0)).

In case 2-II), we can put

Γ1(ct) = γS(p1, a)

(
c− c0
c1 − c0

T

)
,

Γ2(cs) = γS(p2, a)

(
c− c′0
c′1 − c′0

S

)
.

Set T := (c1 − c0)t and S := (c′1 − c′0)s. Note that

33



Γ1(0)
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p2

a Γ1(t)

Γ2(0)

Γ1(ct)

Γ2(cs)

Figure 3.6: Case 2-II)

p1 = γS(p1, a) (0) , p2 = γS(p2, a) (0) ,

Γ1(ct) = γS(p1, a)

(
c− c0
c1 − c0

T

)
, Γ2(cs) = γS(p2, a)

(
c− c′0
c′1 − c′0

S

)
,

a = γS(p1, a) (T ) = γS(p2, a)(S).

We define a′ ∈ [p, a] to be

a′ := γS(p1, a)

(
c− c′0
c′1 − c′0

T

)
.
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Since S is a (E,C)-geodesic coarsely convex space and inequality (3.7),

we have

d∗(a
′,Γ2(cs)) = d∗

(
γS(p1, a)

(
c− c′0
c′1 − c′0

T

)
, γS(p2, a)

(
c− c′0
c′1 − c′0

S

))
≤

(
1− c− c′0

c′1 − c′0

)
· Ed∗(γS(p1, a)(0), γS(p2, a)(0)) + C

=
c′1 − c

c′1 − c′0
· Ed∗(p1, p2) + C

=
(1− c)− (1− c′1)

(1− c′0)− (1− c′1)
· Ed∗(p1, p2) + C

≤ (1− c)(1− c′0)− (1− c′1)(1− c′0)

(1− c′0)− (1− c′1)
· Ed∗(Γ1(0),Γ2(0)) + C

≤ (1− c) · Ed∗(Γ1(0),Γ2(0)) + C. (3.8)

Inequality (3.8) follows from c′0 ≤ c ≤ c′1.

Next, we consider the distance between a′ and Γ1(ct). Then

d∗(a
′,Γ1(ct)) = d∗

(
γS(p1, a)

(
c− c′0
c′1 − c′0

T

)
, γS(p1, a)

(
c− c0
c1 − c0

T

))
=

∣∣∣∣ c− c′0
c′1 − c′0

T − c− c0
c1 − c0

T

∣∣∣∣ .
Note that T = (c1 − c0)t and S = (c′1 − c′0)s. By the triangle inequality

(c1 − c0)t ≥ (c′1 − c′0)s− d∗(p1, p2), we have(
c− c′0
c′1 − c′0

− c− c0
c1 − c0

)
(c1 − c0)t =

{(
1− c− c0

c1 − c0

)
−
(
1− c− c′0

c′1 − c′0

)}
(c1 − c0)t

=

(
c1 − c

c1 − c0
− c′1 − c

c′1 − c′0

)
(c1 − c0)t

≤ (c1 − c)t− c′1 − c

c′1 − c′0
(c1 − c0)t

≤ (c1 − c)t− c′1 − c

c′1 − c′0
{(c′1 − c′0)s− d∗(p1, p2)}

≤ (c1 − c)t− (c′1 − c)s+
c′1 − c

c′1 − c′0
d∗(p1, p2).

(3.9)
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By the equation (1− c1)t = (1− c′1)s, the sum of the first two terms of (3.9)

can be estimated as follows:

(c1 − c)t− (c′1 − c)s = {(1− c)− (1− c1)}t− {(1− c)− (1− c′1)}s
= (1− c)(t− s)

= (1− c)(d∗(Γ1(0),Γ1(t))− d∗(Γ2(0),Γ2(s)))

≤ (1− c)d∗(Γ1(0),Γ2(0)).

By the inequality (3.7), we estimate the third term of (3.9)

c′1 − c

c′1 − c′0
d∗(p1, p2) =

(1− c)− (1− c′1)

(1− c′0)− (1− c′1)
d∗(p1, p2)

≤ (1− c)(1− c′0)− (1− c′1)(1− c′0)

(1− c′0)− (1− c′1)
d∗(Γ1(0),Γ2(0))

≤ (1− c)d∗(Γ1(0),Γ2(0)).

Thus, we obtain

c− c′0
c′1 − c′0

T − c− c0
c1 − c0

T ≤ (1− c){2d∗(Γ1(0),Γ2(0))}.

By the similar argument, we have

c− c0
c1 − c0

T − c− c′0
c′1 − c′0

T ≤ (1− c){2d∗(Γ1(0),Γ2(0))}.

Therefore,

d∗(a
′,Γ1(c)) =

∣∣∣∣ c− c′0
c′1 − c′0

T − c− c0
c1 − c0

T

∣∣∣∣
≤ (1− c) · {2d∗(Γ1(0),Γ2(0))}. (3.10)

holds.

Combining (3.8) and (3.10) yields

d∗(Γ1(c),Γ2(c)) ≤ d∗(Γ1(c), a
′) + d∗(a

′,Γ2(c))

≤ (1− c){2d∗(Γ1(0),Γ2(0))}+ (1− c)Ed∗(Γ1(0),Γ2(0)) + C

= (1− c)(2 + E)d∗(Γ1(0),Γ2(0)) + C.
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We consider case 2-III). In case 2-III), we supposed that Γ1(ct) ∈ [Γ1(0), p1]

and Γ2(cs) ∈ [p2, a]. Here p1 = Γ1(c0t) and p2 = Γ2(c
′
0s). Let Γ′

1 =

Γ(p1,Γ1(t)) and Γ′
2 = Γ(p2,Γ2(s)). Since p1 and p2 is identified points when

concatenating geodesic segments, we have

Γ1([c0t, t]) = Γ′
1([0, (1− c0)t]).

Γ2([c
′
0s, s]) = Γ′

2([0, (1− c′0)s]).

Let t′ = (1 − c0)t and s′ = (1 − c0)s and let a′ = Γ′
1(ct

′) and b′ = Γ′
2(cs

′).

Note that a′ ∈ [p1, a] ∪ [a,Γ1(t)] and b′ ∈ [p2, a] ∪ [a,Γ2(s)]. By the same

Γ1(ct)

Γ1(0)

p1

p2

a Γ1(t)

Γ2(0)

a′

Γ2(cs)
b′

Figure 3.7: Case 2-III)

argument as in case 2-I) or 2-II), we have

d∗(a
′, b′) = d∗(Γ

′
1(ct

′),Γ′
2(cs

′))

≤ (1− c)(2 + E)d∗(Γ
′
1(0),Γ

′
2(0)) + C

= (1− c)(2 + E)d∗(p1, p2) + C.

Note that

d∗(Γ1(0),Γ2(0)) = d∗(Γ1(0), p1) + d∗(p1, p2) + d∗(p2,Γ2(0)),

a′ = Γ′
1(ct

′) = Γ1(c0t+ (1− c0)ct), and

b′ = Γ′
2(cs

′) = Γ2(c
′
0s+ (1− c′0)cs).
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Then we have

d∗(Γ1(ct),Γ2(cs))

≤ d∗(Γ1(ct), a
′) + d∗(a

′, b′) + d∗(b
′,Γ2(cs))

= d∗(Γ1(ct),Γ
′
1(ct

′)) + (1− c)(2 + E)d∗(p1, p2) + d∗(Γ
′
2(cs

′),Γ2(cs)) + C

= d∗(Γ1(ct),Γ1(c0t+ (1− c0)ct)) + (1− c)(2 + E)d∗(p1, p2)

+ d∗(Γ2(cs),Γ2(c
′
0s+ (1− c′0)cs)) + C

= {(c0 + c− c0c)− c}t+ (1− c)(2 + E)d∗(p1, p2) + {(c′0 + c− c′0c)− c}s+ C

= (1− c)c0t+ (1− c)c′0s+ (1− c)(2 + E)d∗(p1, p2) + C

= (1− c){d∗(Γ1(0), p1) + d∗(Γ2(0), p2)}+ (1− c)(2 + E)d∗(p1, p2) + C

= (1− c)(2 + E)d∗(Γ1(0),Γ2(0)) + C.

We consider case 2-IV). In case 2-IV), we supposed that Γ1(ct) ∈ [Γ1(0), p1]

and Γ2(cs) ∈ [Γ2(0), p2]. Here that p1 = Γ1(c0t) and p2 = Γ2(c
′
0s). Note that

1− c′0 ≤ 1− c. Then, by inequality (3.7), we have

d∗(Γ1(ct),Γ2(cs))

= d∗(Γ1(ct), p1) + d∗(p1, p2) + d∗(p2,Γ2(cs))

= d∗(Γ1(ct),Γ1(c0t)) + d∗(p1, p2) + d∗(Γ2(c
′
0s),Γ2(cs))

≤ (c0 − c)t+ (1− c′0)d∗(Γ1(0),Γ2(0)) + (c′0 − c)s

= {(1− c)− (1− c0)}t+ {(1− c)− (1− c′0)}s+ (1− c′0)d∗(Γ1(0),Γ2(0))

= (1− c)

(
1− 1− c0

1− c

)
t+ (1− c)

(
1− 1− c′0

1− c

)
s+ (1− c′0)d∗(Γ1(0),Γ2(0))

≤ (1− c){1− (1− c0)}t+ (1− c){1− (1− c′0)}s+ (1− c′0)d∗(Γ1(0),Γ2(0))

= (1− c)c0t+ (1− c)c′0s+ (1− c′0)d∗(Γ1(0),Γ2(0))

≤ (1− c)d∗(Γ1(0), p1) + (1− c)d∗(Γ2(0), p2) + (1− c)d∗(Γ1(0),Γ2(0))

≤ (1− c){2d∗(Γ1(0),Γ2(0))}.

Therefore,

d∗(Γ1(ct),Γ2(cs)) ≤ (1− c)(2 + E)d∗(Γ1(0),Γ2(0)) + C (3.11)
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holds for all c ∈ [0, 1].

For t ∈ [0, 1], let a = Γ1(t). Let Γ′
1 = Γ(Γ1(0), a) and Γ′

2 = Γ(Γ2(0), a).

Let d = d∗(Γ2(0), a). By Lemma 3.1.3,

d∗(Γ1(ct),Γ
′
1(ct)) ≤ C.

holds for c ∈ [0, 1]. Then, we have

d∗(Γ1(ct),Γ
′
2(cd)) ≤ d∗(Γ1(ct),Γ

′
1(ct)) + d∗(Γ

′
1(ct),Γ

′
2(cd))

≤ (1− c)(2 + E)d∗(Γ
′
1(0),Γ

′
2(0)) + 2C (3.12)

= (1− c)(2 + E)d∗(Γ1(0),Γ2(0)) + 2C

Inequality (3.12) follows from (3.11). Therefore, L∗ satisfies (gCC3). This

completes the proof.

Proof of Theorem 3.1.1. By Proposition 2.2.3 and 3.1.4, the free product X∗
Y is a geodesic coarsely convex space, in particular, X ∗ Y is a (1, 0, 2 +

E, 6C,L∗, idR≥0
)-coarsely convex space.

3.2 Group actions on free products of metric

spaces

Let (X, dX , eX) and (Y, dY , eY ) be metric spaces with base points eX and eY ,

respectively. Let G and H be groups acting properly and cocompactly on X

and Y , respectively. Bridson and Haefliger [2, Theorem II.11.18] construct a

metric space Z on which the free product G ∗ H acts properly and cocom-

pactly. Moreover, when X and Y are CAT(0) spaces, they showed that Z

is a CAT(0) space. In this section, we will show that Z is isometric to the

free product X ∗ Y with respect to the G-net (G, o(eX), eX) and the H-net

(H, o(eY ), eY ), where o(eX) and o(eY ) are the orbit maps.

First, we briefly review their construction. Let Γ = G ∗H. Define Z by

Z := (Γ×X)
⊔

(Γ× [0, 1])
⊔

(Γ× Y ).
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Let Z be the quotient of Z by the equivalent relation generated by:

(ωg, x) ∼ (ω, g(x)), (ωh, y) ∼ (ω, h(y)),

(ω, eX) ∼ (ω, 0), (ω, eY ) ∼ (ω, 1)

for all ω ∈ G ∗H, g ∈ G, h ∈ H, x ∈ X, and y ∈ Y . Let X be the quotient

of Γ×X by the restriction of the above relation, and let Y be the quotient of

Γ×Y by the restriction of the above relation. We remark that X is isometric

to (WX ∪{ϵ})×X, where WX is the set of words of G ∗H such that the last

letter of each word of WX is in H, and Y is isometric to (WY ∪ {ϵ}) × Y ,

where WY is the set of words of G ∗H such that the last letter of each word

of WY is in G.

Let ω = ugh, where u ∈ G ∗ H, g ∈ G, and h ∈ H. By the above

equivalent relation, we have (ω, eX) ∼ (ω, 0) and we have

(ω, 1) ∼ (ω, eY ),

= (ugh, eY ),

∼ (ug, h(eY )).

Let τ = vghg′, where v ∈ G ∗ H, g, g′ ∈ G, and h ∈ H. By the above

equivalent relation, we have (τ, eY ) ∼ (τ, 1) and we have

(τ, 0) ∼ (τ, eX),

= (ughg′, eX),

∼ (ugh, g′(eX)).

Note that (ϵ, eX) ∼ (ϵ, 0) and (ϵ, 1) ∼ (ϵ, eY ). Therefore, Z consists of the

following two types of components.

• The sheets consist of {ω} ×X and {τ} × Y , where ω ∈ WX ∪ {ϵ} and

τ ∈ WY ∪ {ϵ}.

• The edges consist of the following three:
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– There exists an edge {ϵ}× [0, 1] connecting (ϵ, eX) ∈ {ϵ}×X and

(ϵ, eY ) ∈ {ϵ} × Y

– Let ω ∈ WX and g ∈ G. Then there exists an edge {ω}×{g}×[0, 1]

connecting (ω, g(eX)) ∈ {ω} ×X and (ωg, eY ) ∈ {ωg} × Y .

– Let τ ∈ WY and h ∈ H. Then there exists an edge {τ}×{h}×[0, 1]

connecting (τ, h(eY )) ∈ {τ} × Y and (τh, eX) ∈ {τh} ×X.

Bridson and Haefliger [2, Theorem II.11.18] showed that G∗H acts properly

and cocompactly on Z.

We can easily show that Z is isometric to the free product X ∗ Y with

respect to the G-net (G, o(eX), eX) and theH-net (H, o(eY ), eY ), where o(eX)

and o(eY ) are the orbit maps. Therefore, we have

Proposition 3.2.1 ([2, Theorem II.11.18]). Let X and Y be metric

spaces. Let G and H be groups acting properly and cocompactly on X and

Y , respectively. We associate X and Y with the G-net and the H-net, re-

spectively. Then G ∗H acts properly and cocompactly on X ∗ Y .

Corollary 3.2.2. Let X and Y be geodesic coarsely convex spaces. Let

G and H be groups acting properly and cocompactly on X and Y , respectively.

Then G ∗H is a coarsely convex group.
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Chapter 4

Application to the coarse

Baum–Connes conjecture

4.1 Review of the coarse Baum–Connes con-

jecture

Let Y be a proper metric space. We say that Y satisfies the coarse Baum–

Connes conjecture if the following coarse assembly map µY of Y is an iso-

morphism:

µY : KX∗(Y ) → K∗(C
∗(Y )).

Here, the left-hand side is the coarse K-homology of Y , and the right-hand

side is the K-theory of the C∗-algebra C∗(Y ), called the Roe algebra of Y .

Both are invariant under coarse equivalence, and the coarse assembly map

behaves naturally for coarse maps. Therefore we have the following.

Proposition 4.1.1. Let X and Y be proper metric spaces. We suppose

that X and Y are coarsely equivalent. If X satisfies the coarse Baum–Connes

conjecture, then so does Y .

For details, see [11], [12], and [17]. Fukaya and Oguni show the following.

42



Theorem 4.1.2 ([9, Theorem 1.3]). Let X be a proper coarsely convex

space. Then X satisfies the coarse Baum–Connes conjecture.

We will apply Theorem 4.1.2 for free products of proper geodesic coarsely

convex spaces.

Lemma 4.1.3. Let X and Y be proper metric spaces with nets. Then the

free product X ∗ Y is a proper metric space.

Proof. Let (X, dX) and (Y, dY ) be proper metric spaces . Let (X0, iX , eX)

and (Y0, iY , eY ) be nets of X and Y , respectively. Set a ∈ X ∗ Y and R ≥ 0.

Let n be the height of the sheet that contains a ∈ X ∗Y . We define B∗(a,R)

to be

B∗(a,R) := {b ∈ X ∗ Y | d∗(a, b) ≤ R}.

By the definition of nets, the height of the sheets that intersect B∗(a,R) is

in the interval [n− [R]− 1, n+ [R] + 1]. Since X and Y are proper metric

spaces, by the definition of nets, for any bounded closed subset K in each

sheet, the preimage ofK by the index maps is a finite set. Therefore, B∗(a,R)

is the finite union of bounded closed subsets in the sheets. Since X and Y

are proper metric spaces, B∗(a,R) is compact.

Combining Theorem 3.1.1, Theorem 4.1.2, and Lemma 4.1.3, we obtain

the following.

Theorem 4.1.4. Let X and Y be proper metric spaces with nets. If X

and Y are geodesic coarsely convex spaces, then the free product X∗Y satisfies

the coarse Baum–Connes conjecture.

Let G and H be finitely generated groups acting properly and cocom-

pactly on X and Y , respectively. As mentioned in Section 3.2, the free

product G ∗H acts properly and cocompactly on X ∗ Y with respect to the

G-net and the H-net. Therefore, combining Theorem 4.1.4, the Švarc–Milnor

Lemma, and Proposition 4.1.1, we obtain the following result.
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Theorem 4.1.5. Let X and Y be proper metric spaces with nets. We

suppose that X and Y are geodesic coarsely convex spaces. Let G and H be

groups acting properly and cocompactly on X and Y , respectively. Then the

free product G ∗H satisfies the coarse Baum–Connes conjecture.

Finally, we compare Theorem 4.1.4 and Theorem 4.1.5 with some known

results for relatively hyperbolic groups, and spaces admitting a coarse em-

bedding into a Hilbert space.

4.2 Relatively hyperbolic groups

Fukaya and Oguni [7] showed the following.

Theorem 4.2.1 ([7, Theorem 1.1]). Let G be a finitely generated group

and P = {P1, . . . , Pk} be a finite family of infinite subgroups. Suppose that

(G,P) is a relatively hyperbolic group. If each subgroup Pi satisfies the coarse

Baum–Connes conjecture, and admits a finite Pi-simplicial complex which

is a universal space for proper actions, then G satisfies the coarse Baum–

Connes conjecture.

Let G and H be finitely generated groups. The free product G ∗ H is

hyperbolic relative to {G,H}. If G and H act properly and cocompactly

on any spaces listed in Table 1.1, then G and H admit finite G-simplicial

(resp. H-simplicial) complexes which are universal spaces for proper actions.

Therefore, G ∗H satisfies the assumptions of Theorem 4.2.1. However, it is

not known in general whether groups acting properly and cocompactly on

geodesic coarsely convex spaces always admit finite G-simplicial complexes

which are universal spaces for proper actions.
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4.3 Spaces admitting a coarse embedding into

a Hilbert space

The notion of coarse embedding into a Hilbert space is introduced by Gro-

mov [10]. Yu [18] showed the following.

Theorem 4.3.1 ([18, Theorem 1.1]). Let Γ be a discrete metric space with

bounded geometry. If Γ admits a uniform embedding into a Hilbert space, then

the coarse Baum–Connes conjecture holds for Γ.

Let X and Y be proper metric spaces. Let G and H be groups acting

properly and cocompactly on X and Y , respectively. We suppose that X

and Y admit coarse embeddings into Hilbert spaces. Then G and H also

admit coarse embeddings into Hilbert spaces. By the work of Dadarlat–

Guentner [4], the free product G ∗H embeds coarsely into the Hilbert space.

By Theorem 4.3.1, the free product G ∗H satisfies the coarse Baum–Connes

conjecture. We remark that G ∗H acts properly and cocompactly on X ∗ Y .

Then, by the Švarc–Milnor Lemma and Proposition 4.1.1, it follows that

X ∗ Y satisfies the coarse Baum–Connes conjecture.

We remark that in the above setting, all X, Y , and X ∗ Y are with

bounded coarse geometry in the sense of [8, Definition A.2]. However, there

exist geodesic coarsely convex spaces without bounded coarse geometry.

Example 4.3.2. Let Γ be the Cayley graph of Z/2Z ∗ Z/3Z for some

generating set. Since Z/2Z ∗ Z/3Z is a hyperbolic group, Γ is a geodesic

coarsely convex space.

For p ∈ (0,∞), letXp be the proper Busemann space given in [8, Example

2.2]. As described in [8], Xp is constructed from the half-line [0,∞) by

identifying each integer n ∈ [0,∞) with the origin of the n-dimensional lp

space. By Theorem 4.1.4, the free product Γ ∗Xp satisfies the coarse Baum–

Connes conjecture.

In [8, Appendix], it is shown that Xp is without bounded coarse geometry.

Thus Γ ∗Xp does not satisfy the assumptions of Theorem 4.3.1.
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It also follows that Xp does not admit any proper cocompact actions by

discrete groups. Therefore we cannot apply Theorem 4.2.1 to Γ ∗Xp.

Using expander graphs, Kondo [13] constructed a CAT(0) space which is

not coarsely embeddable into a Hilbert space. The space given in [13] is not

proper, however, with a slight modification, we obtain a proper CAT(0) space

which is not coarsely embeddable into a Hilbert space. Following Kondo’s

argument [13], we give the construction of the space.

First, we briefly review expander graphs. Let G = (V,E) be a graph. For

A ⊂ V , we denote by ∂eA, the set of edges connecting a vertex in A and a

vertex in Ac, that is,

∂eA := {e ∈ E : #(e ∩ A) = 1}.

The Cheeger constant h(G) is defined by

h(G) := min

{
#∂eA

#A
: A ⊂ G, 0 < #A ≤ #V

2

}
.

The girth of G is the length of the shortest embedded cycle contained in G,

denoted by girth(G).

A family of expander graphs is a sequence of finite connected graphs

{Gn = (Vn, En)}∞n=1 satisfying the following conditions:

(1) #Vn → ∞ (n → ∞).

(2) There exists k ∈ N such that for any n ∈ N and v ∈ Vn, the degree of

v is less than or equal to k.

(3) There exists c > 0 such that h(Gn) > c for any n ∈ N.

We remark that a family of expander graphs is not coarsely embeddable into

Hilbert space.

Let a sequence of finite connected k-regular graphs {Gn = (Vn, En)}∞n=1

form a family of expander graphs satisfying girth(Gn) → ∞(n → ∞) while

diam(Gn)

girth(Gn)
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remains bounded. Let ρn be the combinatorial distance on Gn and let

dn :=
2π

girth(Gn)
ρn.

Then each (Gn, dn) is a CAT(1) space since we are considering the scaled

distance dn on Gn and the length of the shortest embedded circle in it is 2π.

For each Gn, let G̃n := Gn × R≥0/Gn × {0}. We construct a metric

space Y0 from the half-line [0,∞) by identifying each integer n ∈ [0,∞) with

Gn × {0} of G̃n and the distance of Y0 is defined by

dY0((v1, r1), (v2, r2))
2 := r21 + r22 − 2r1r2 cos(min{dn(v1, v2), π}),

when v1 and v2 are in the same Gn, and

dY0((v1, r1), (v2, r2)) = r1 + r2 + |m− n|,

when v1 ∈ Gn, v2 ∈ Gm for n ̸= m. It is clear that (Y0, dY0) is proper.

For each n ∈ N, the metric space (G̃n, dY0 |G̃n
) is the Euclidean cone over

Gn. Since Gn is a CAT(1) space, by Berestovskĭı’s theorem [1] (see also

[2, Theorem II.3.14]), the Euclidean cone (G̃n, dY0 |G̃n
) is a CAT(0) space.

Therefore, by using the gluing lemma [2, Theorem II.11.3] repeatedly, it

follows that (Y0, dY0) is a proper CAT(0) space. Since (Y0, dY0) contains a

bi-Lipschitz embedded family of expanders [13, Proposition 4.4 and Remark

4.6], this space is not coarsely embeddable into a Hilbert space.

Remark 4.3.3. Such a family of expanders is obtained from the Ramanu-

jan graphs constructed by Lubotzky et al. [14].

Example 4.3.4. Let Γ be the Cayley graph of Z/2Z∗Z/3Z for some gen-

erating set. Since Z/2Z∗Z/3Z is a hyperbolic group, Γ is a geodesic coarsely

convex space. We remark that Γ is not a CAT(0) space. By Theorem 4.1.4,

the free product Γ ∗ Y0 satisfies the coarse Baum–Connes conjecture.

The free product Γ ∗ Y0 is neither CAT(0) nor coarsely embeddable into

any Hilbert space. Thus, Γ ∗ Y0 does not satisfy the assumptions of Theo-

rem 4.3.1.
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[2] Martin R. Bridson and André Haefliger. Metric spaces of non-

positive curvature, volume 319 of Grundlehren der mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, 1999.

[3] Jérémie Chalopin, Victor Chepoi, Anthony Genevois, Hiroshi Hirai, and

Damian Osajda. Helly groups. arXiv e-prints, page arXiv:2002.06895,

February 2020.

[4] Marius Dadarlat and Erik Guentner. Uniform embeddability of rela-

tively hyperbolic groups. J. Reine Angew. Math., 612:1–15, 2007.

[5] Dominic Descombes and Urs Lang. Convex geodesic bicombings and

hyperbolicity. Geom. Dedicata, 177:367–384, 2015.

[6] Tomohiro Fukaya and Takumi Matsuka. Free products of coarsely con-

vex spaces and the coarse Baum-Connes conjecture. To appear in Kyoto

J. Math.

[7] Tomohiro Fukaya and Shin-ichi Oguni. The coarse Baum-Connes con-

jecture for relatively hyperbolic groups. J. Topol. Anal., 4(1):99–113,

2012.

49



[8] Tomohiro Fukaya and Shin-ichi Oguni. The coarse Baum–Connes con-

jecture for Busemann nonpositively curved spaces. Kyoto J. Math.,

56(1):1–12, 2016.

[9] Tomohiro Fukaya and Shin-ichi Oguni. A coarse Cartan-Hadamard the-

orem with application to the coarse Baum-Connes conjecture. J. Topol.

Anal., 12(3):857–895, 2020.

[10] M. Gromov. Asymptotic invariants of infinite groups. In Geometric

group theory, Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc.

Lecture Note Ser., pages 1–295. Cambridge Univ. Press, Cambridge,

1993.

[11] Nigel Higson and John Roe. On the coarse Baum-Connes conjecture. In

Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach,

1993), volume 227 of London Math. Soc. Lecture Note Ser., pages 227–

254. Cambridge Univ. Press, Cambridge, 1995.

[12] Nigel Higson and John Roe. Analytic K-homology. Oxford Mathematical

Monographs. Oxford University Press, Oxford, 2000. Oxford Science

Publications.

[13] Takefumi Kondo. CAT(0) spaces and expanders. Math. Z., 271(1-

2):343–355, 2012.

[14] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-

torica, 8(3):261–277, 1988.

[15] Damian Osajda and Piotr Przytycki. Boundaries of systolic groups.

Geom. Topol., 13(5):2807–2880, 2009.
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