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Chapter 1. Introduction 1

1 Introduction

1.1 Network identification problems

In recent years, large progress is made in the field of network theory resulting from the
developments of hardware and communication technologies. Complex networks form an
essential part of modern infrastructure, and as networks become larger in scale and more
complex in structures, understanding the structures of networks can no longer be achieved
intuitively with simple calculations but requires new methodologies [1]. In many cases,
precise mathematical models of given networks are desired, but only time-series data of
the nodes of the network can be measured as available information, and this leads to the
problem of network structure identification.

Networks play important role in our daily lives, and many real-life problems can be
solved by modelling complex systems as network systems and analysing the structures.
For example, human brains can be modeled as groups of interconnected neurons whose
electrical activities represent the activity of the underlying structures. The specific struc-
ture of the brain is then revealed as the patterns of data exchanges between certain groups
of neurons, which are identified from temporal measurements by EEG [2] and spatial mea-
surements by fMRI [3]. In [4], the dependence between signals from human cardiovascular
systems is studied to reveal the influences on human heart rate variability. In financial
markets, stock returns were considered random processes before the correlations of differ-
ences in daily stock prices were studied. Mathematical models are constructed using the
correlations of measured data and reveal new structures of stock trades in financial mar-
kets [5]. A social media platform can be modeled as a communication network, where the
activities of the assets are the posted comments, photos or videos, and the data exchanges
are the interactions between users. Specific properties of such network, e.g., heterogene-
ity, allow the providers to fully grasp the platform and help optimize network service in
various aspects such as the allocations of server resources, advertisement delivery and
targeted content recommendation [6]. In the case of rumors or computer virus spreading,
the problem of source tracing can be considered as finding the root of a tree network using
measured time series of individuals [7]. Similarly in a pandemic, patient zero, which is
the root of the infection network, can be identified from the time order of close contracts
between patients to stop the spreading of infection and find infected suspects [8]. Gene

regulatory networks reveal the functions of cells from the level of gene expression [9], and
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the climate network helps search patterns of global weather [10].

From the viewpoint of system engineering, network identification also plays important
rolls. In many cases, failures of network systems can be modeled as sudden disconnections
of certain paths of the associated network [11]. As an example, infrastructures such as
power grids that are supposed to work under synchronized (or consensus) states may
desynchronize under failure situations [12]. Such failure may be located by monitoring
the influenced nodes and identifying the change in network topology and dynamics. In
communication systems, a server suffering from malicious attacks can be modeled as a
network with external input signals, and the attack signals may give false commands and
destabilize nodes in the original network. The problem of recovering from the attack
can be reduced to the problem of identifying the attack signal and locating the attacked
channel, so the attack can be blocked and the communication path can be cut off [13, 14].
In machine learning, studying the structure of Bayesian networks is an important topic,
which can be represented by a graph that models the characteristic relationship between
the nodes [15].

As mentioned above, identifying the network structures is of great importance in mod-
eling, analyzing and maintening the systems. Nowadays, gathering data becomes easier
with the help of the Internet, and the development of network identification methodolo-
gies are highly desired. In the next section, a brief review of previous studies concerning

the network identification problem is given.

1.2 Background studies

From a historical perspective, the network identification problem can be traced back to the
study of whether any dependence exists between signals, processes or subsystems (transfer
functions) [16, 17, 18, 19]. The dependence was considered as random processes, and
statistical tools were often employed such as entropy analysis [20, 15|, Granger causality
[21, 22] and other statistic-based methods, e.g., [23]. Also, the viewpoint of control
engineering brings controlling methods such as applied synchronization [24, 25|, response
dynamics [26] and phase/variable resetting [27, 28]. As networks become larger in scale
and more complex, the expressions of state-space models are widely adopted, and graphs
from graph theory are employed to model network topology. It is found that the topology
of networks can be derived from the covariance (correlations) of signals in terms of the
adjacency matrix associated with the network topology [29], and correlation becomes an
important tool that leads to the methods of delay coordinating [30, 31|, noise injection
[32], etc. On the other hand, with the developments of computers and data processing
techniques [33], solving the identification problem using large amounts of data by direct

calculation becomes possible. This leads to the sparsity based methods [34, 35, 36, 37,
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38, 39] and other iterative methods [40, 41].
Next, some milestone identification methods are described along with their problem

settings.

Granger causality and transfer entropy

Granger causality [42, 43| and transfer entropy [16, 19, 44] are statistical tools that
reveal causal relationships between signals or processes from measured data.

Consider two processes z(t) and y(t). In Granger causality analysis, process y(t) is
considered to be (at least a part of) the ’cause’ of the process z(t) if past time series
data of y(t) is 'useful’ for prediction of future values of z(t). Let S, = {z;(k) | 1 =
Lo om, k=ty, - ,tg}and S, ={y;({) | j=1,--- ,n, L =t5,--- ,t1} denote the sets
of measured data of processes x and y, respectively, then y is considered to be independent

on x if the following equality holds:

P (tes)Se) = P (i) S, Sy),

where p(x(tr4+1)|Sz) is the conditional probability of x(fx41) being measured. Methods
of verifying the equation are omitted here and can be found in, e.g., [42, 21]. Granger
causality is widely used in various fields, such as identifying Bayesian networks in machine
learning studies [43].

On the other hand, the term transfer entropy quantifies the ’incorrectness’ of the hy-
pothesis that two processes are independent, and is another measure that describes casual
relationships.

Consider a process z(t) and its measurements x1, T, - - - , T,. Suppose that samples are
measured following some probabilistic distribution p(-), i.e., the probability of x; being
measured is p(z;), such that > " p(x;) = 1. The information, also known as the surprise,
of measurement x; is defined by —log p(z;), and the average amount of information H(x)
is

m

H(z) ==Y pla;)log p(xs),
i=1
which is more commonly known as the Shannon Entropy of x considered as a random
variable. Also, consider another process y(t) and its measurements yi,ys, - - , ¥, which
are measured under probability ¢(y;), respectively for j =1,--- ,n and Z?:l q(y;) = 1.
Denote the joint probability of measured z; and y; by P(z;,y;) for i = 1,--- ,m and
j=1,---,m, and define the joint entropy H(x,y) by

H(z,y) = —Zzp(xmyj)logp(l’i;yj),

i=1 j=1
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which is also known as the mutual information. If the two processes z(t) and y(¢) are in-
dependent, then P(z;,y;) = p(x;)q(y;) and H(z,y) = H(z)+ H(y) hold. The dependence
between the two processes is then defined by the error of assuming the two processes are

independent, i.e.,

m n

M(z,y) ZZP (x5, y;) log ———~ P(%’y])

~ = p(xi)a(y;)’

which is also known as the Kullback entropy. By using the conditional entropy H (z|y) =
— > i1 4(y5) Do, pwily;) log p(x4]y;), the following equation holds:

M(z,y) = H(x) + H(y) — H(z,y).

The concept of transfer entropy extends the above measure in the sense that the dynam-
ics of information transportation is taken into account. Suppose that x is a Markov pro-

cess of order k, and denote the probability of x;,; being measured by p(xtH]a:gk)), where

azgk) denotes the multiple {x;, x4 1, -+ ,2;_py1}. Consider another process y with mea-

surements 41, -+, Yi—rs1. 1 the two processes are independent, one has p(xt+1|m£k)) =

p(mt+1|x§k), yfk)) Then the transfer entropy from y to z is defined by the difference

(k)

(k)

k P\ Zi41|Z¢ 7, Y
ﬂﬂzgpmﬂﬁﬁﬁﬂ%<“|ﬂgx
Pz

The transfer entropy T}, is 0 if process x is independent of process y.

Transfer entropy analysis releases the requirement that data have to be measured from
regressive processes, which is required by the Granger causality analysis, and therefore
can be applied to a wider range of systems. As an example, the transfer entropy between
neurons is studied to identify synapses in [45], where simulated spike data from a Hudgkin-

Huxley type model are employed.

Applied Synchronization

The applied-synchronization-based methods [24, 25| are successful attempts of applying
controlling strategies to the network identification problem. The structure of a network is
modeled as the entries of the adjacency matrix associated with the topology, and the key
idea is to construct an auxiliary system (also named estimator) making use of measured
data as input. The dynamics of the auxiliary system is carefully designed such that the
state variables converge to the entries of the adjacency matrix.

Consider networks of N autonomous systems (nodes) modeled by

i) = filws) + ) aizg;(x;),

j=1
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fori =1,---, N, where x € R" is the state vector of node i, fi(z;) : R* — R™ describes
the unforced dynamics, g;(x;) : R® — R" describes the transported information from
node j. Functions f;, g; are assumed to be known, and the goal is to identify a,; with
measured time series of x;(t).

In [24], the following estimator is proposed:

N
B =Fi(@) + ) €gi(#5) + Ail@, &y ) + us

j=1
&ij = — %9y (&)(& — m3),

where v;; > 0, 2; € R, ¢ € R, and A;(Z,&;;,t) represents the unknown nonlinearity
such as modeling errors and noises, which is assumed to be bounded by known nonlinear

functions of z; and t. The input can be designed as
1
up = =k (& — @) — f(&:) + f(@) — 4—552(@ — i),

where ki,e,0 > 0. The variables &;; converge to a;; as &; — x; — 0, and the entries of the
adjacency matrix are estimated. Note that the convergence is not asymptotic, although
the estimation error can be arbitrarily small by adjusting k; and .

In [25], an estimator with a dynamical input is proposed to ensure asymptotic con-
vergence of §; — a;;. The coupling functions are assumed to be identical, i.e., g(z) :=

g1(x) = g2(x) = - -+ = gn(x), and the estimator is designed by

N
B =fi(®)i+ ) &ig(E;) +wi

j=1

where

up = — k(& — x;),
éij = - (lfz - -f’fi)Tg(i“j)-

Asymptotic stability of tracking error z; — x; is ensured by Lyapunov’s direct method,
and &;; — a;; is ensured by applying the invariance principle [46]. It is also remarked that
when the nodes in the network synchronize, the estimator-based approach fails, because
data exchange, i.e., Z;VZI a;;9(z;), would vanish in such a case. If the network allows state
resetting or external inputs, then identification can be achieved by introducing manual

desynchronization to the network, which can be found in [47].

Data correlation
In statistics, data correlation [29, 48, 49, 50, 51, 32] also describes the dependence

between data sets.
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It is found in [29] that noise helps reveal the topology of networks. Consider a network

of N dynamical systems described by

N
Ti(t) = fi(z:) + Z ai;9(x;) + i,
j=1
fori=1,---, N, where x € R" is the state of node 7, f;(z;) : R® = R", g;(z;) : R* = R,
and n; is the noise signal. Here f; and g are considered to be known. Suppose that z;
differs a small perturbation ¢; from y;, the situation with no noises, i.e., x; = y; + ¢; and
v = fi(yi) + Z;VZI a;;9(y;). Then the following equations hold:

0 =filyi +6:) — flys) + Zaij(g(yj +6;) — g(y;)) + mi

=(Fi(yi) + Z a;;G(y;))0: + i,
j=1
where F;(y) and G;(y) are the Jacobian matrices of f(y) and ¢(y), respectively. By left
multiplying ;] and defining a time-averaging operator (-) by (r) = =3>7\" r(t), the
following equations hold:
ds; §;

0={(—")

= (0] Bi(y:)0:) + (6, Bi(y;)d;) + (8; ms) + (6 my),

where B;(y;) := Fi(y;) + Zjvzl a;;G(y;). The first equality holds since the perturbations

are considered independent and 0-mean signals. Define correlation matrices

B = diag(Fi(v1), -+, Fn(yn)) + H, where [H];; = a;;G(y;),
[Cli; =67 05),
[Nij =6 m;),
where [C];; denotes the (7, ) entry of matrix C, and it follows that
0=BC+CB"'+N+N".

Also, N + N = D holds where D is the covariance matrix of the noises 7;. Entries of
the adjacency matrix associated with the network are then identified by solving the above
equation. Refer to [29] for computational details. Specifically in the case that the network
is undirected, and the perturbation F'(y;) can be considered small, the Laplacian matrix

L associated with an undirected network is given by

1
C==-DL!
2 )

where LT denotes the pseudo-inverse of L, and C' is estimated from measured data.
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In [48], the correlation between variables and their derivatives is employed to reveal

the topology of the associated network. Consider a network of N dynamical systems
described by

@y(t) = fiz:) + Z ai;g;(x;),

for i = 1,---,N, where z € R", fi(z;) : R — R™ and g;(z;) : R* — R". Define
correlation matrices B, C, F' € R" by

where ¢(z) : R* — R" is a specially designed observable function. By left-multiplying
Y (z;) to the dynamical model and applying time-averaging, B = F + AC' is obtained,
which leads to

A=CYB-F),

where A is the adjacency matrix associated with the network topology.
The data correlation-based methods are also employed in the cases where time delays

occur in data transmission paths, see, e.g., [31, 52].

Compressive Sensing

Sparse identification (compressive sensing) [53] is a method that recovers sparse signals
from the measurements making use of sparsity, and the method is applied to the network
identification problem [34, 35, 36, 37, 38, 39].

In [34], the network identification problem is transformed into the form of
finding x, such that y = Ax.
Networks with nodes modeled in discrete-time by
zilk + 1] = Fy(a}[k]) + AFy(z[K]) (2:[k] — 2} [k]) + O(||z:[k] — 2 [K]][*),

are considered, where zf[k] is a chosen expansion point of the first order Taylor series.
F;(xf[k]) is a constant matrix and is considered known. The adjacency matrix correspond-
ing to the network topology is then calculated by augmenting vectors and performing
{1-minimization with thresholding.

In [38], sparse identification is employed to identify nonlinear networks with the help

of basis functions. Networks with nodes modeled by nonlinear structural equation models
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are considered:

N
Yim = Z Gij¢T(yjm)Cji + biiTim + €im,
J#i
where ;,, denotes the mth observation, and =z, denotes the mth input of node 1.
¥ " (yjm)cji is a nonlinear function, where 1 is the vector of known basis functions, and
c;; is an unknown coefficient. Data matrices X, Y and coefficient matrices W, B are con-

structed with measured data, and it follows the above equation that
Y =9W + XB,

where the entries of W Matrix X is then solved by minimizing the ¢;-norms of its columns
with the alternating direction method of multipliers (ADMM). Finally, the entries a;; of

the adjacency matrix associated with the network topology are extracted from matrix X.

1.3 Purposes and outline of this dissertation

Although the network structure identification problem has been widely studied, there
are still open problems remaining and an identification method is desired which has the

following properties:

1) the method only gives connectivity results,
2) the method does not apply to networks with topology changes,

3) the method requires the full states of the nodes to be measurable.

The data-correlation-based methods are model-free and are only able to recover the
adjacency matrices in terms of casual relationships, which makes the methods hardly
applicable to networks with nonlinear data exchanges, i.e., the Kuramoto model [54].
The sparsity-based methods make use of the dynamical models of the nodes to con-
struct equations of the form y = Az and require all the states to be measured, which
is a strict and unpractical requirement in most cases. On the other hand, both the
correlation-based methods and the sparse identification-based methods are intended for
post-processing uses, which does not apply to networks with time-varying topology. The
applied synchronization-based methods perform identification in real-time, although it
requires both the unforced dynamics and the coupling function to be known.

In this work, identification problems of networks consisting of possibly nonlinear systems

with possibly nonlinear data exchanges are addressed. In detail, interconnected N nodes
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modeled in discrete time are considered, i.e.,

z;lk + 1] =f (x;[k]) + Bu[k], (1.1a)
N
wilk] = aiigi; (wilk], v k), (1.1b)
J#i
yilk] =Cu;[k], (1.1c)
fori =1,---, N, where x; € R" is the state of node i, u; € R™ is the coupling input,

y; € R™ is the output, B € R™™ C € R™" f : R" — R" describes the unforced
dynamics, and g : R™ x R™ — R™ describes the transmitted information from node j
to node i. a;; is the (i,7) entry of the adjacency matrix associated with the network
topology. The purpose of this work is to develop a method that identifies
the data transmission u; = Z;\;Z a;;9ij(z;, x;) from measured output data series
yi[1], -+ ,y:[M], which is capable of detecting changes in network structures. For
simplicity, the case where the outputs of the nodes are the full states is first considered,

i.e., networks consisting of nodes modeled by
zilk + 1] = (z:[k]) + uilk], (1.2a)

N
Z ai;9ij (K], z;[k]), (1.2b)
J#i

where u; € R", and g;; : R" x R" = R".

Chapters 2 and 3 consider the case where all the states of the nodes can be measured
as data. Throughout Chapters 2 and 3, networks modeled by (1.2) are considered.

Chapter 2 assumes that at least one node can be isolated from the network, and the
full-state data series of all the nodes in the network system can be measured. The identi-
fication method proposed in the chapter gives the core idea of the proposed identification
method using Koopman operators and a sparse identification technique. First, define
two Koopman operators K; and K5 corresponding to the dynamics of the original net-
work and a fully unconnected network where all the nodes in the network are isolated,
respectively. The coupling function describing the data exchange among nodes is then
extracted from the operator K, defined by K, = K; — K3, acting on the state variables.
Numerically, finite-dimensional approximations of infinite-dimensional operators K; and
K, are calculated from measured data, and an approximation of K, can be obtained
as the difference between K; and K,. Sparse identification techniques are employed to
reduce the required amount of measured data and construct an identification algorithm.
It is also shown theoretically that the obtained coupling function is a projection of the
original coupling function into the space spanned by the observable functions, which are

designed for identifications of nonlinearity.
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Chapter 3 modifies the method proposed in Chapter 2 to achieve the identification of
structure changes in networks. The assumption on the existence of an isolated node is re-
laxed by assuming instead that the network topology is undirected and data transmissions
in both directions between any two nodes are symmetric. The modified method allows
to detect changes in network structures by performing the method proposed in Chap-
ter 2 with streaming data sets, i.e., using time-varying data matrices which are updated
with newly measured data at every time step. A Koopman operator associated with the
dynamics of the original network is defined and approximated with measured data, and
the unforced dynamical models of all the nodes are then extracted from the Koopman
operator under the relaxed assumption. It is also shown that the modified method applies
to networks with topology changes. On the other side, the case where the restrictions on
the network structure do not hold is also addressed.

Chapters 4 and 5 consider the case where only the output signals of the nodes are
available as measured data. Specifically, Chapter 4 considers a special case of the identi-
fication problem where the dynamics of isolated nodes are known. In these two chapters,
networks modeled by (1.1) are considered.

Chapter 4 considers the case where both B,C and the unforced dynamics f;(-) are
known. It is assumed that each node can be decomposed into the input-output dynamics
and the internal dynamics and that the internal dynamics is convergent, i.e., the difference
between two trajectories of the nodes converge to 0 if they have the same outputs. A
drive-response system is designed by imitating the known models of the nodes and tracking
past data of the original network system. The coupling function is formulated as a linear
combination of the observables, and the coefficient matrix is considered a variable in the
response system. The dynamics of the response system is then designed such that the
error between the coefficient matrix as a variable and the true expansion matrix of the
coupling function converges to 0 asymptotically. On the other side, although the response
system tracks past data of the original, the states of the original network system at the
current step are obtained by iterating the identified dynamical model of the response
system.

Chapter 5 also considers the identification problem using output signals, and it is as-
sumed that the dynamical models of the nodes are unknown. The dynamical model of
the network is reformulated such that the outputs of each node are considered as the full
states and the dynamics of the output signals as the dynamics of the node. Then the
unmeasurable hidden states are modeled as unknown dynamical inputs. Defining such
dynamical inputs as new variables, time series data of the new variables are calculated
and the dynamics of such variables can be identified with the help of Koopman operators.
The network dynamics is then identified in terms of the outputs and the new variables
using measured data, and the network structure is extracted as the data transmission in

the network. If the dimension of the output is so low that the dynamics of the network
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Fig. 1.1: The outline of this dissertation.

cannot be embedded into the space spanned by the outputs and the new variables, then
additional variables are introduced based on past data. In this case, it may be impossible
to identify the coupling function in its original form, so the goal here is to identify what
is equivalent to the hidden nodes in the sense that the identified network system admits
the same dynamical behaviors as the original. The method proposed in this chapter also

applies to the problem considered in Chapter 4.

Chapter 6 concludes this dissertation and gives some remarks. The chapter also dis-
cusses problems that remain in this study and provides future directions to which this

study can be extended.

An outline of this dissertation is given as follows and shown in Fig.1.1. Chapters 2 and 3
consider identifications using measured full states, where Chapter 3 describes an extension
of the method proposed in Chapter 2 for identifying network topology changes. Chapters
4 and 5 consider identifications using measured output data, assuming the dynamical
models of the nodes are known or not, respectively. Chapter 4 considers the case where
the dynamical models of the nodes without inputs are known, and Chapter 5 considers the
more general case where the dynamics of the nodes is unknown. Specifically, the method
proposed in chapter 5 can be considered as an extension of the methods described in
Chapters 2 and 3. Finally, Chapter 6 summarizes the dissertation and gives some remarks

and discussions.
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1.4 Mathematical preliminaries

1.4.1 Notations

Throughout this dissertation, R and C denote the space of all the real numbers and all
the complex numbers, receptively. x* denotes the complex conjugate of x, where x is a
complex scalar number, a vector, or a matrix. Let K be either R or C. K" denotes the

n-dimensional vector space:

T
Kt=<x=1: r,eKii=1,--- n,,

Tn

where x is a vector in K", which is an ordered n-tuples of numbers in K. ||z||, denotes the
p-norm of vector z defined by ||z, = (321, |#:[P)}/? where p = 1,2,--+ ,00. €; denotes

the ith basis vector of vector space K", i.e.,

R Loj=i
€; = €l =L-n, € = . .
i ’ 0, j#i.
f(z) : X = Y denotes a function f that maps elements z in a set X to elements in set

Y. K™ denotes the space of matrices, which are linear maps, that maps (subspaces of)
K™ to (subspaces of ) K™:

a1 -+ Qim .
AI:yv CLijEK, Z:]-?"'vna y:]-)"'am)

reXCK" yeY CK"

KnXm — A —

Qp1 **  Qpm

A = [a;j] denotes a matrix A whose (i, j) entry is a;;, and [A];; returns the (¢, j) entry
of matrix A. AT denotes the transpose of matrix (or vector) A, and A* denotes the
conjugate transpose of A, ie., [AT];; = aj; and [A*];; = af;. | fllL,x) denotes the Lo-
norm of function f calculated over set X. ||A|l; and ||A|r denote the induced 2-norm

and the Frobenious norm of matrix A defined by ||A|ls = max)g,=1 ||Az[|2 and ||A|r =

> Z;”Zl la;;|%, respectively. F denotes the space of complex-valued scalar functions,
ie, F={f]f: X — C, X CK"}, and Fj denotes the k-dimensional space of functions

in the sense that

k
Fk:{fef|3ci€C:f=ZC¢¢i, Y € F}.

i=1
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Yy, ,1Yy are called the basis of space Fj, and Fj is said to be spanned by basis
Py, g, or Fr = span{y, - ¢ }. F™ denote the space of ordered n-tuple of func-

tions in F, i.e.,

S
Fr={f=|:||fieF i=1-,n
Jn

col?(x;) denotes the column composing operator by

T
col’ (x;) = col(zy, - ,zp) = | |,

Tn

where x; can be scalar numbers, vectors, matrices, or functions. For a function f in F
defined over some subset of K", Pg,anqw) : F — F} denotes the projection operator defined
by

]P)span{\ll}f = (argminnf - C\DH%Q)*\D?
ceClxk
where ¥ : K® — K? is a set of ¢ basis functions. 2*" denotes the time evolution of

discrete-time variable z such that z*"[k] = x[k + i]. Specifically, 2°" = z and 2 = 2.

1.4.2 Linear algebra, functional analysis and measure basics

This section gives brief introductions to fundamental concepts of linear algebra and func-
tional analysis. Vectors and spaces are introduced, and then inner products and norms.
Functions (maps) and operators are then introduced, and linear functions are studied in
detail in terms of eigendecomposition. Specifically, basic measure theory is included to
introduce L, spaces. Here K denotes a scalar field, which can be C, R or the set of all

rational numbers, etc.

Vector spaces [55, 56|

Definition 1.1. A wvector space (or linear space) X is a set of vectors over field K, on
which two operations, addition and scalar multiplication, are defined with the following

properties:

a) Forany z,y,2 € X, z+y € X. Also,z+y=y+zand (r+y)+2z=x+ (y+2) hold.

b) X contains a unique vector 0 such that  + 0 = z for every x € X. Also, there exists

a —r € X corresponding to x such that = + (—z) = 0 for every x € X.
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¢) For any x € X and «, € K, there exists an ax contained in X in such a way that
lz =z and a(fzx) = (af)x.

Definition 1.2. Let S be a subset of vector space X over K. The span of S, denoted by

span{S}, is the intersection of all subspaces of X that contains S.

If S is nonempty, then span{S} = {a1v1 + - -+ apvg | a; € Kjv; € S;k=1,2---}. Set S
is said to span X if span{S} = X.

Definition 1.3. A [linear combination of vectors in a vector space X over field K is an
expression of the form aj;vy + - -+ + apvg, where a; € K and v; € X for k=1,2,---. A list
of vectors is said to be linearly dependent if there exists a; € K, which are not all zeros,

such that ajvy + - - - + agvr = 0.

Note that a linear combination is a sum of finitely many elements in the vector space, i.e.,
k < oo. A list of vectors is said to be linearly independent if it is not linearly dependent.
Note that it is often convenient to say, 'the vectors are linearly dependent’ instead of
using the statement the list’. A set S of vectors is linearly independent if every finite list

of distinct vectors in S' is linearly dependent.

Definition 1.4. Let X be a vector space over K. The basis of X is a list of linearly

independent vectors whose span is X. The basis of an empty space is an empty list.
Example 1.1.

e Let S={(1,0,0)",(0,1,0)"}. Then span{S} = {[a,b,0]" | a,b € R}.
o Let S = {e™" | k=0,1,2,---} where i=y/—1. Then span{S} is the space of all

bounded w~!-periodic functions.
e The polynomials 1,¢,¢2 3, --- are linearly independent.
e The list of vectors e; = (1,0,0)", e, = (0,1,0)",e3 = (0,0,1) " is a basis of R3.

Definition 1.5. The dimension of a vector space X is a positive integer n, such that

every basis of X consists of exactly n vectors.

The dimension of a vector can also be defined in other equivalent ways, e.g., the minimum
number of vectors in S such that span{S} = X. A vector space can be infinite-dimensional

or finite-dimensional.

Definition 1.6. Let X be a vector space over K. A norm is a real-valued nonnegative

scalar function || - || : X — R with the following properties: for any x € X and « € K,

a) ||z|| > 0, and the equality holds only = = 0.

b) |ax|| = |«|||x||, where |a| denotes the absolute value of a.
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c) llz+yll < llll + llyll-
Example 1.2.

o (x,y) =" x;y; is an inner product, where z,y € R™.
o (f.g) = f:f(t)g*(t)dt is an inner product, where f, g : [a,b] — C.
o ||z, = (N, |#:|P)/? and |||« = max |z;| are norms, where z € R".

e cvery inner product induces a norm ||z|| = (z, z) (Cauchy-Schwarz).

A vector space equipped with an inner product is called a Hilbert space, and a vector

space equipped with a norm is called a Banach space.

Functions and bounded linear operators [55, 57]

Definition 1.7. A function (or a map) f: X — Y is a binary relation defined on a set
X that associates elements in X with an exact element in another set Y. The notation
y = f(x) means that f associates z € X with y € Y.

Here X and Y are called the domain and the image of f, respectively. The notation of
Y = f(X) is also adopted in this dissertation.

Definition 1.8. Consider f: X — Y. If B C Y, then the inverse image f~!(B) of B is
defined by A = {z € X | f(z) € B}.

Definition 1.9. A function f : X — Y is said to be linear if f(ax+fy) = af(z)+Lf(y)
holds for any z,y € X and «, § € K.

Definition 1.10. Let X and Y be Banach spaces equipped with the same norm || -||. An
operator A : X — Y is a map that maps X to Y. If the map is linear, then A is called
a linear operator (or a linear transformation). If further there exists a constant ¢ > 0
such that ||Az|| < ¢||z] for any € X and A is linear, then A is called a bounded linear

operator.

Let A: H — H be a bounded operator defined on H, which is a Hilbert space. Then

the adjoint operator A* of A is such that (Ax,y) = (x, A*y) and ||A|| = ||A*||, where the

operator norm is defined by ||A| = sup,cy ”ﬁ”ﬂ”. It is often convenient to say that A is

an operator on H if A: H — H.

Definition 1.11. An operator A defined on a Hilbert space H is said to be
a) normal if AA* = A*A.

b) self-adjoint or Hermitian if A* = A.

c) unitary if AA* = A*A = I, where [ is the identity operator on H.
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Example 1.3.

e The ceiling function f(x) = [x],2 € [0,2) is a function whose domain is [0,2) and
image is {0, 1, 2}.

e A matrix A € R" ™ is a bounded linear operator that maps R” to R™. If R” and R™

: . . A
are considered as Banach spaces equipped with 2-norms, then || Al = max,cgm ””xﬂf
or ||Al| = maxzerm |o,=1 ||Az||2, which is known as the induced 2-norm of matrix

A.

e The adjoint operator A* of matrix A € R™ ™ is its conjugate transpose [A*];; = [A];;.

e A(z) = €z is a linear unitary operator over C, where z € C.

1.4.3 The Koopman operator theory

Koopman operators [58, 59, 60]

The Koopman operator, named after mathematician Bernard O. Koopman (1900-1981),
was first proposed in [58] in 1931. In [58], energy transformation in Hamiltonian systems
was described with a linear unitary operator, which is known as the Koopman operator.
The operator, together with its dual, the Perron-Frobenius operator [61], mainly describes
measure-preserving dynamics, and is then extended to non-conservative systems (e.g.,
[62]). Together with the success of powerful data processing tools (POD [63], DMD
[64], EDMD [65], etc.), a great amount of interest has been focused on the Koopman
operator framework. Originating from [66], Koopman operators play important roles in
fluid analysis [67, 68], stability analysis [69], control design [70, 71, 72], thermal analysis
[73] and identification [74].

Definition 1.12. Consider a (Banach) space F of observable (functions) ¢ : X — C.
The Koopman operator K associated with a map f : X — X is defined through the

composition
K¢y =dof.

In this dissertation, X usually stands for R”, and f : R® — R", ¢ : R® — C. Specifically,

if f describes the dynamics of a discrete-time time-invariant system, i.e.,
zlk +1] = f(x[k]), (1.3)

where £ = 1,2,--- ,, then Koopman operator K describes the evolution of the states in

terms of the evolution of the observables, i.e.,

Kp(z[k]) = ¢ (alk +1]) = ©(f («[k])),
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where ¢ € F. Koopman operators are also defined for continuous-time systems and
time-varying systems, refer to [59, 60] for more details.

Koopman operators are linear operators in the sense that
K(ayy + bipa) = aKpy + bK1a,

for ¢q,19 € F and a,b € C, and the linearity allows eigenvalues and eigenfunctions to be

defined (these are also known as the spectral properties).

Definition 1.13. An eigenvalue A € C of Koopman operator K associated with map
f:R™ — R" is such that

K¢ =¢of=2Ag,
where ¢(x) € F is the eigenfunction associated with \.
Example 1.4.

e Let X be the space of ordered triplets of real numbers, i.e., X = {(a,b,¢) | a,b,c €
R}, and f : X — X be a permutation map such that f((a,b,c)) = (¢,a,b). Define an
observable by ¢ ((a, b, c)) = 2b+ ¢, then K¢ = ¢(f((a,b,¢))) = ¥((c,a,b)) = 2a+b.
Further, ¢((a,b,c)) = \/Lga—i-(—\/%—i-%i)b—k(—\/%— Li)c is an eigenfunction associated

2
V3:

with eigenvalue 3 + 1.

e Consider the linear system x[k + 1] = Az[k] where x € R". If A is diagonalizable
by A = P7'AP where A = diag{\,--- ,\,}, then Px[k + 1] = APx[k] holds. As

a result, (A1, p12), -, (An, pu) are eigenpairs of Koopman operator K associated
with z[k + 1] = Ax[k], where p; is the ith row of P, and ); is the ith eigenvalue of
matrix A.

In this dissertation, Koopman operators act on vectors in entry-wise manners, i.e.,
Kv = col(Kwvy,---, Kv,) for v =col(vy,--- ,v,).

Koopman mode decomposition [59, 75]

Unless the state space is a finite set, the Koopman operator is infinite-dimensional
in the sense that F has an infinite amount of basis [60]. Suppose that ¢q, ¢, -+, the
eigenfunctions of K, span the observable space F. Then for any f € F, there exists ¢; for
i=1,2,--- such that f = >"°, ¢;¢;, and the action of Koopman operator K on f can be

decomposed into

i=1 i=1
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where \; is the eigenvalue associated with eigenfunction ¢;. Decomposition (1.4) is called
the Koopman Mode Decomposition (KMD) of K f, and ¢; are called the eigenmodes.
It is usually convenient to consider finite-dimensional dimensional approximations of

Koopman operators using the first k& dominant eigenpairs:
k k
Kf~ KZQ‘@‘ = KZCMNZ”
i=1 i=1

where k is chosen such that the first & linearly independent dominant eigenfunctions
approximately span the observable space, i.e., Fj := span{¢y,--- ,¢r} ~ F. Here ¢; is
such that the linear combination Zle ¢;¢; minimizes the projection error of f from F to
./—"k, i.e.,

k
Cr- ey ey = argmin | f =Y 0l Ly
R i=1
where p is a positive measure defined on R". In a vector form, define & = col(¢q, - , dn)
and A = diag{\,--- ,\,}. For any f € F, the following equation holds:

Kf=cA?, (1.5)

where ¢ € C" is such that ¢® ~ f. Decomposition (1.5) is said to be a finite-dimensional
approximation of K f on space Fy.

Numerically, it is usually hard to find the eigenfunctions explicitly, however, KMD can
also be obtained with other appropriately defined basis functions. Let ¥ = col(¢y, - -+ , %)
be a set of observables such that span{W¥} ~ F. If the basis functions 1;’s are linearly
independent, then there exists an invertible map 7" such that ¥ = T'®. Then,

KU = KT® =TA® = (TAT H)V.
Specifically, for some b € C" such that b¥ =~ f, the following equations hold:
Kf=0KVU =bTAT )V, (1.6)

Compared to (1.5), decomposition (1.6) allows us to obtain an approximation of K f using
basis functions (observables) designed manually. K f is then obtained by designing ¥ such
that f = bW, and finding the matrix TAT ! such that V(f(x)) = TAT'U(z).

The problem of finding approximations of Koopman operators is often related to the
Dynamic Mode Decomposition (DMD) method [64] and the Extend DMD (EDMD)
method [65], which are data-driven identification methods of dynamical models. The
DMD method can be related to the Koopman operator theory by considering the states

as observables: consider the relationship between data matrices

Vg Uz - vnﬂ}:[vl Vy v Up| S+,
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where v; € RY consists of N snapshots measured at time step i, 7, is the residual and S

is a transition matrix of the form

0 a1
1 0 az
S = I
1 0 a,1
L ]' an J
where aq,- - ,a, are unknown. S is then obtained from data by minimizing the residual

., and spectral information of the underlying dynamics can be extracted. On the other
hand, the EDMD method makes use of observables and does not assume the data to be

measured from the same trajectory. Define data matrices X,Y by
V= [‘Il(yl) Ulya) -+ ‘I’(ym)} :

where W are usually polynomials or radius-basis functions, and x;,y; are such that y; =
f(x;). Then the underlying dynamics f can be approximated by f(z) ~ CY X'z, where
C is such that C¥(z) = x and T denotes the Moore-Penrose pseudo-inverse.

The DMD and the EDMD methods have been studied widely, and various extensions
have been proposed, e.g., DMD with noisy data [76], DMD with streaming data set [77],
DMD for compressive systems [78], controlled system analysis [79, 80], etc. The methods
are also employed in various fields, e.g., model predictive control design [71], perturbation
estimation [81], fluid analysis [77], etc. However, note that these numerical methods
can only recover eigenvalues of Koopman operators, which are the point spectra of the

operator. The spectrum o(K) of Koopman operators is defined by
o(K) ={X| K — Al is not invertible}.

This happens in three cases where a) (K — A1)y = 0, b) (K — A1) is not closed over F and
c) the image of (K — A1) is not dense over F, respectively. The corresponding spectra are

named point spectra, compression/continuous spectra and residual spectra, respectively.

1.4.4 Sparse identification (compressive sensing)

In many practical situations of scientific and engineering studies like image processing,
sampling theory and signal processing, the problem of recovering signals from their mea-
surements often appear (refer to [82] and references there). Suppose that y € K™ is the

measurement of signal x € K" measured by A € K™*" where K is either R or C, or

y = Ax.
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Suppose that A has full rank. Traditionally, the problem of recovering = from the pair
(A,y) is achieved by left-multiplying the pseudo-inverse of A to both sides, i.e., Afz =
AtAy. Let USV* = A be the singular value decomposition of matrix A, then the following

equation holds:
Alx =V STSV*y,

where S € K™ " contains the singular values of A. In the case that m > n, rank(S'S) = n,
and S'S = I,. This allows = to be obtained as = A'y. However, if m < n, then
S1S = diag{1,,, O(n—m)x(n-m)} 7# In, and the pseudo-inverse based method fails.

Sparse identification, first introduced in [83] and named compressive sensing in [53], is
a method that recovers x from incomplete information, i.e., with m < n, under the con-
straint that x is a sparse vector. A vector (or a signal) is sparse if most of its components

are zero, and the sparsity of a vector is evaluated by its 0-norm defined by

Definition 1.14. The 0-norm of vector x € K", denoted by ||z||o is defined by
lzllo = card({=; | z; #0,i=1,--- ,n}),
where card(S) denotes the cardinality of set S.

Note that [|z||o does not satisfy property b) in Definition 1.6, and hence is not a norm
or a quasi-norm (which are positive real scalar functions that satisfy property a) and
property b) in Definition 1.6). Intrinsically, y can be considered as a linear combination
of columns of A as basis and entries of = as coefficients. The sparsity of x means that y
only has a small amount of basis, which makes the information contained in y sufficient
for recovering the coefficients.

The sparse identification theory mainly considers two problems:
1) To design reconstruction algorithms for certain given (A, y) pairs.
2) To design the measuring process, i.e., matrix A, optimally.

Only problem 1) will be introduced here, and more details about problem 2) can be found
in [53, 82, 84].
The recovery of x from (A, y) is achieved by minimizing the sparsity of x, i.e., to solve
the fp-minimization problem
x = argmin||z||o,
z (1.7)
subject to Az = y.
Since the fy-minimization problem is in general an NP-hard problem, the following ¢;-
minimization is usually solved instead:
x = argmin||z||,

(1.8)
subject to Az = y.
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The problem can also be solved by considering the unconstrained form
.1
v = argmin(z[|Az = yll5 + [[z]1), (1.9)
which is also known as the Lasso (least absolute shrinkage and selection operator, [85]).

Alternating direction method of multipliers (ADMM)

In this dissertation, the alternating direction method of multipliers (ADMM, [86]) is
employed to solve optimization problems in the form of (1.9). The ADMM is a con-
vex optimization algorithm that takes the advantages of the dual ascent method and the
augmented Lagrangian method in the sense that the decomposability of dual ascent is
preserved while a quadratic term is employed in the augmented Lagrangian to obtain

higher order convergence ([86]). The ADMM solves problems in the form of
minimize f(xy, -+, 2,) + g(2) (1.10)
st. Ao+ + Ay, + Bz =0,
where x; € R™, 2z € R™, A, € RP*™ and B € RP*™. The maps f and g are often assumed
to be convex while it is shown in [87] that the ADMM can also handle non-convex non-
smooth situations.
Consider optimization problem (1.10), and define the augmented Lagrangian by
Lp<x17 L, T, R, U)) :f(xla e 7‘rn) + Q<Z) + wT(Alxl + -+ An«rn + BZ)
+g||A1x1+---+Ana;n+Bz||§, (1.11)

where p > 0, z1,- -+ , x,, z are the primal variables and w is the dual variable. An iterating

algorithm for variable updating is given by

o) =argmin L,(z}, - af @i 20, 2, 0), (1.12a)
T

2" =argmin L,(zf, -,z 2, w), (1.12Db)
z

wt =argmin L,(zf, -z}, 2% w), (1.12¢)
w

for i = 1,--- ,n, where z; denotes the update of variable z;. For convergence analysis,

applications, and more details about ADMM, refer to [86, 33, 87, 39] and references there.

1.4.5 Graph theory basics

This section introduces some basic concepts in graph theory.

Definition 1.15. A graph G is a structure of two sets V and &, i.e., G = (V, ), where V
is a set of objects, and £ CV x V.
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O
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Fig. 1.2: Graph G.

The elements in V are called the nodes or vertices, and the elements in £ are called the
edges of graph G. Let v; and e;; denote the nodes and the edges, respectively. In this

dissertation, only graphs with no self-loops are considered, i.e., e; & £.

Definition 1.16. If ¢;; € £, then nodes v; and v; are adjacent. A graph G is a complete
graph if e;; € € for any i # j, and G is an unconnected graph if £ = @.

Definition 1.17. A graph G is an undirected graph if e;; € £ indicates ej; € £ for any
i .
A graph is called a directed graph if it is not an undirected graph.

Definition 1.18. Consider a graph G such that card{V} = n. The adjacency matriz
A = [a;j] € R™" of graph G is defined by

g4, if (Uiavi) S 57
[Al;; =4

0, else,

where a;; is the weight of edge (v;,v;), and the degree matrix D = [d;;] € R™™ of G is
defined by

T~L_ Qij, ifi= ',
[Dl];; = 2= 4 ’
0, else.
The Laplacian matriz L of G is defined by
L=D-A.

Example 1.5. Consider the graph shown in Fig.1.2, where the weights of all the edges

are 1. The degree matrix and the adjacent matrix of graph G are given by
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2 Identification of Network Structures for
Network Systems with Measurable Full-

states

2.1 Introduction

The network identification problem has been studied from various perspectives, and
many identification methods have been developed based on Granger causality [23], noise
injection [32, 29|, data correlation [32, 88, 50, 36, 51, 49, 48, 89|, sparse identifica-
tion(compressive sensing) [39, 52, 35, 36, 34, 37|, applied synchronization [25, 24], vari-
able [28] or phase resetting [27], entropy transfer [16], just to name a few. However, a
majority of the studies assume prior information on an unforced model of a system in
networks[24, 35, 40, 90, 91, 48, 88, 41, 51, 32, 34, 41], and these assumptions usually do
not hold in practice. Also, most of the existing methods estimate only the connectivity
(in terms of the adjacency matrices) of the networks [32, 29, 49, 48|, which fail to provide
information on the exact possibly nonlinear coupling functions.

In this chapter, an approach is proposed that identifies both the connectivity and the
nonlinear coupling functions of networks solely from measured data making use of Koop-
man operators. The proposed approach is realized by defining two Koopman operators
associated with the original network and an unconnected virtual network, respectively,
and obtaining the coupling function as the difference between the two Koopman operators
acting on the state variables. To obtain the Koopman operator associated with the un-
connected virtual network, it is assumed that a node can be isolated from the network so
data of an unforced node can be measured. In addition, the problem is transformed into
a standard LASSO [85] problem, and the sparse identification technique is employed to
reduce the amount of required data, and improve robustness against measurement noise.

This chapter also shows that what the proposed method obtains is a projection of the
true coupling function onto the space spanned by the pre-designed observables. The idea
of employing observables is not new and can be found in, e.g., [92, 4, 38, 93, 51, 37].
These usages can be comprehended as variable changes or basis changes, as known that
augmented variable sets using Taylor expansion series [37, 4] or trigonometric functions

[92] of the states allow extracting higher-order approximations of nonlinearity. Instead

25
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of approximations in point-wise manners, the proposed method focuses on the space
spanned by the observables, which is considered invariant under the Koopman operator,
to obtain global approximations of nonlinear coupling functions. It is also shown that the
identification accuracy significantly depends on the design of the observable dictionary.
This chapter is organized as follows. In Section 2.1, technical details about the proposed
method are described. Section 2.2 shows that the obtained result is a projection of the
true coupling function onto the space spanned by the observables, and Section 2.3 gives
numerical examples of a Kuramoto oscillator network and a Hindmarsh-Rose oscillators
network with nonlinear coupling functions to illustrate the usefulness of the proposed

method. In Section 2.4, the obtained results are summarized and some remarks are given.

2.2 Network identification via Koopman operator

representations

2.2.1 Koopman operator representations of the problem

Consider a network system of N identical discrete-time systems described by

af =f (i) + wi, (2.1a)
N

w =y ayg(xs, ), (2.1b)
j=1

where z; € R*, f : R® — R", q;; is the (i,j) entry of the adjacency matrix associ-
ated with the network topology, and g : R” x R® — R" describes the data exchange
between two nodes via the network. Define f(z) := col(f(z1), -, f(zn)), g(z) =
Col(zyzlaljg(xl,xj),--~ ,Z;V:laNjg(xN,xj)). The dynamics of all the systems in the
network is described by the following equation:

o = @) + glo), (2:2)

where g(z) is called the coupling function of the nodes in the network. Note that g(x)
contains both information about the network connectivity and the data exchange functions
between nodes, which are considered together as the network structure.

Besides, if all the nodes are isolated, the dynamics of all the systems in the network
can be described as

= f(x). (2.3)

Here, the goal of this chapter is then reduced to identifying g(x) from the time-series data

of the connected network and the isolated nodes. Denote the space of all the observables
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RN — C by F, and define Koopman operators K; and K, associated with dynamics
(2.2) and (2.3) as follows.

Kyp(z) =9 (f (z) + g(x)),
Kyp(z) = (f (z)),

where ¢p € F. Then, considering the states as observables, the dynamics of the network

and the isolated nodes can be represented as

Kz =f(x) + g(2), (2.4a)
Kyx =f(x), (2.4Db)

respectively, where the Koopman operators act on vectors in an entry-wise manner. Fur-

thermore, defining a new operator K, by the difference of K; and K, as
K, =K, — Ky, (2.5)
from (2.4a) and (2.4b), the following equations hold:

Kz =f(x) + g(z), (2.6a)
Kyr =f(x), (2.6b)

and

Koz =f(z) + g(z) — f(z)
=g(). (2.7)

Note that here K, is defined by

Kgp(x) = 0(f(x) + g(x)) — o (f(2)),

for ¢ € F.

As a result, the identification problem considered here is reduced to determining K.
Since there is no information on g(z) or f(x), g(z) is approximated using a linear combi-
nation of the observables, which corresponds to a projection of g(x) onto the span of the
observables. However, in general, an infinite amount of observables are needed to make
the projection accurate, and practically, only a finite-dimensional approximation of K, is
numerically obtained.

Consider a set consisting of ¢ observables {11 (z),--- ,9,(x)}, and define ¥(z) as

U(x) = col(vy (), ..., ,(z)) : RN — C2. (2.8)
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Suppose that the data sequences z[k| and Z[k] for £ = 0,...,m are available, where
denotes data of a virtual network where all the nodes were isolated. Define data matrices
X17 }/17 X27 }/2 € Cr*™ as

X, = |w 2.9a

[\
N

(
vi=[w ofml) | (295

[\)

)
)
9c)
9d)

([0) W(a[1) (
(1) W(x[2) (

Xo = w(@lo) W) - v - 1)), (
(1) w(af2) (

Y, = |v #lm])] 2

Here, it is additionally assumed that all the nodes in the network do not synchronize.
This assumption guarantees that K,z never vanishes. By the above definitions, Koopman
operators K; and Ky map X; to Y; and X5 to Y5 in a entry-wise manner, respectively,

i.e.,
Yi(m) = K1X:1(m),
As a result, finite-dimensional approximations of the Koopman operators can be ob-

tained as the matrices A; and A, that map X; and X5 to Y; and Y, respectively, by

solving the following optimization problems.
Ay =argmin [|[AX; — Yi||F, (2.10a)
A
Ay =argmin [|[AXs — Yal|F. (2.10Db)
A

It follows that a finite-dimensional approximation of K is obtained by calculating A; —As,

and the coupling function is identified as follows.
9" (x) = Co(A; — Ay)V(x), (2.11)

where C, € CN™*4 is such that x = C,¥(x). Note that C, can be obtained by designing
the observable set W(x) to contain x, e.g., if one designs ¥(z) = col(x, 1, - , Yy—nn),

then C, is obtained as C, = [Inn, Onnx (g—nn)]-

2.2.2 Calculation of K, using sparse identification techniques

If m is sufficiently large, the solutions of the two minimization problems (2.10) may be
solved explicitly by A; = YleT and Ay = YQX;L , respectively. However, considering the
limited number of available data, a more effective calculation method is required from a
practical point of view. In this subsection, a calculation method of the coupling function

K,z is proposed based on the sparse identification techniques. To be specific, rows of
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Aj; — A, are obtained by minimizing the sparsity of rows of A; — As, which corresponds

to solving the following optimization problem:

minimize  ||ay; — ag)x (2.12)
a14,a24

subject to  a1; X1 = yi1,
a2 Xo = Yia,

or equivalently

2
minimize ! § i’ - yi’ + AMvill1 (2.13)
1,a2i,0i X3 | \aai Y2i ) ||y
subject to A1; — Ag; — V; = O,
for i = 1,---,q, where A > 0, a;; and ay; € C*7 are the ith rows of A; and A,, and ¥y;

and yo; € CY*™ are the ith rows of Y; and Y5, respectively.
The optimization problem (2.13) can be solved via the alternating direction method
of multipliers (ADMM) with the existing algorithm [86] as follows. First, define the

augmented Lagrangian L;, by

L;, 3:||Xfay1‘z‘ - yikz”% + (| X3a5;, — y;z”;

*

+ Aeills + wila; — a3 — o) + Ellaws — az — wil}3, (2.14)

where p > 0, and w; € C'*? is the dual variable. Next, update the optimization variables

according to the following iterative algorithm:

(a)" = = (0K + 21) 7 (<2X0mis + wf — plas + 7)), (2.150)
()7 == 506X5 + E1)7 (<22 — wf +p(—(@) T +40)), (2150)
(1) =Sua(@l)" = (@) + u). (2.15¢)
(wi)* =w; + p((@)* — (a3)* — (0)F), (2.154)

where a® denotes the update of variable a and I, is the g-dimensional identity matrix.

Here S, is a soft-thresholding function defined by

S (I) _ T — ngn(x% “T| > Y,
! 0, |z <7,

with v > 0, and acts on a matrix (or a vector) in an entry-wise manner ([85, 87]).
Updating the variables under the above settings, the optimal solution of (2.13) can be

obtained. Finally, the coupling function is obtained as

g'(x) = GU(x), (2.16)
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where G := C,V in which V' = col(vy, - - - ,v,) € C?*? and C, is such that z = C, U (x).
The identification method of network topology proposed above is summarized as an

algorithm shown in Algorithm 2.1.

Algorithm 2.1 Proposed identification algorithm

Input: z[k] and z[k] for £k =0,1,...,m, convergence criterion € and V' = [0] € C9*9
Output: g'(z) = C,V¥(x)
1. Define observables: ¥(z) : RV — C4
2. Define data sets: X1,Y), X5, Y5 in (2.9)
3. Optimization:
forie{l,--- ,q} do
while |[v;" — ;|| > ¢ do
Update the optimization variables according to (2.15)
end while
Set e,V « v, where e; € R? is the ith standard basis vector
end for
4. Result: obtain g'(z) = C,V¥(x)

2.3 The obtained estimation as a projection

In this section, the relationship between the coupling functions estimated via the Koopman
operators and the true coupling functions is considered. As mentioned above, if m is
sufficiently large, the solution of the minimization problem (2.10) can be solved explicitly
by A; = Y1X1T and Ay, = Yng , respectively, and the coupling function is obtained as
g'(z) = Kyo = C,(A;— A3)V(z). This section shows that the obtained coupling function
g'(x) is an L, projection of the true coupling function onto the functional space spanned
by the observables, such relationship is revealed by increasing the amount of data m,
which is considered as a variable.

The following statement holds.

Proposition 2.1. Let A;(m) = Yi(m)X](m) and Ay(m) = Yay(m)XJ(m) denote the
transition matrices between Xi(m), Y;(m) and Xs(m), Y2(m), respectively, where the data
matrices are defined by (2.9). Then,

lim e Cp(Ai(m) — Ay(m))¥(x) = Py (e g(z)), (2.17)
m—r0o0
for : = 1,---, Nn, where C, is such that x = C,¥(x), e; is the ith natural base of the

Nn-dimensional Euclidean space, and P4v denotes the Lo(p) projection of v € F onto
Fy
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Proof. Let K ,,, and Ks,,, denote the g-dimensional approximations of K; and K,
obtained from triplets (V(z), X;(m), Y1(m)) and (¥(z), Xa(m), Yo(m)), respectively, as

K qmp(a) =¢, Y1 (m) X{(m) ¥ (x),
K qmp(t) =¢,Ya(m) X3 (m) ¥ (),

where ¢ € F,, and ¢, satisfies ¢, ¥(x) = ¢. Theorem 2 in [94] shows that if m goes to
infinity, the following equations hold.

i [ Ky ~ Kraold =0, (2.182)
m—ro0 M
lim / | K2 gme — Ko qg0*dp =0, (2.18Db)
m—0o0 M

for all p € F, where M is a subset of R? and p is a given positive measure on M (e.g.,
the Euclidean distance). Here K, ,, K», : F, — F, are the ¢g-dimensional approximations
of K1, Ky defined by

Kigp =P/ Ky pp, Kagp=PKyr,p,

for all p € F, where K|, : F;, — F is the restriction of the operator K to F;, and P
denotes the g-dimensional projection operator defined by

o :argmin/ If — o|*du = (argmin/ |c* U — ¢\2d,u) v,
M M

FE€Fq ceCa

It follows that, for ¢ =1,--- , Nn,
lim e Cyp(Ar(m) — Ax(m))¥(z) = lim e C,(Yi(m)X](m) — Ya(m) X} (m))¥(x)

= lim Ky gmz; — lim K 2
m—0o0 m—ro0

:Kl,qxi - Kz,qffi
_pK ) )
—]P)qu‘]:qLUZ ]PqKQU:qZEl

=Py (e (f(2) +g(z) — f(2))), (2.19)

where W(r) is designed such that x € V(z), so Kiz,2; = Kiz; and Kz, 2; = Koz I,
further, g(x) lies in the span of entries of W(x), then there exists a G € CV™ 4 such that
coli} (P (e g(2))) = g(2) = G¥(x), ie.,

m—o0

where C, is such that C,W(x) = x. In such case, the set of observables W(z) is said

complete. Il
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It should be mentioned that DMD-like methods could only extract the point spectra
of the Koopman operator and do not apply to systems with continuous spectra. How-
ever, as stated in Proposition 2.1, the proposed method estimates the coupling function
as a projection onto the span of ¢ observables, i.e., obtaining K,z directly as the differ-
ence between Kix and Ksx. As a result, the estimated coupling function may be just a
finite-dimensional approximation based on the observables. Therefore, although the iden-
tification accuracy depends on the construction of the observables, the proposed method

is expected to apply to a larger class of nonlinear systems.

Remark 2.1. If data are abundant, then A;, A; and in turn K, can be obtained directly

by calculating pseudo-inverse matrices, i.e., let A =0 and
A =X, Ay =Y. X]. (2.21)

The method can be regarded as performing EDMD proposed in [65] twice for K; and Ko,
respectively, and will be valid if the data are abundant. However, the proposed method
would show better performance in the sense of robustness and accuracy when applied

with noisy measurements.

Remark 2.2. Although theoretically, the proposed method can also identify the models
of the unforced nodes, i.e., the f(z) function, by obtaining approximations of K5, such
model identification may not reach high accuracy because Kyx is not required to be in
]-'év ™. To make the proposed method applicable to identifying f(x), further requirements

on ¥(x) are needed.

2.4 Numerical examples

In this section, two numerical examples show the usefulness and validity of the proposed
method. The first example shows details of the proposed method in the case that functions
included in the coupling function are contained in a pre-designed observable dictionary,
and the second example considers the case that the functions in the coupling function are
not in the dictionary. In addition, the second example shows that the proposed method
can estimate the coupling by approximating the coupling function with functions in the
dictionary. For both examples, the proposed method is compared with the pseudo-inverse-
based method concerning the accuracy of the identification results.

In addition, throughout these examples, the vectors of observable functions ¥(z) are
designed to be real-valued functions instead of complex-valued functions. This restric-
tion comes from that the proposed method can be considered as an embedding of the
true coupling function g(z) into the space spanned by the observables in W(z), or an

approximation of g(z) using the entries of ¥(z).
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Fig. 2.1: The topology of the Kuramoto model. (a) the connections between nodes, and

(b) the graph Laplacian matrix shown in color.

2.4.1 The Kuramoto model: identification with a complete

observable set

The proposed method is based on Koopman operators defined in discrete-time settings,
so only discrete-time models are obtained. In this example, the identified discrete-time
models are transformed into continuous-time manually using the first-order Euler method
for the simplicity of visualizing and comparing with the original systems.

Consider the Kuramoto model consisting of N = 15 oscillators whose dynamical models

are given by
) 15
01‘ = w + Z [ sin(Qj — 01)7
7j=1

fori=1,---,15, where #; € R, w is the constant oscillating frequency of all the nodes,
and a;; is the (4, j) entry of the adjacency matrix associated with the network topology.
The topology of the network shown in Fig.2.1 is an undirected unweighted graph randomly
generated such that the probability of a;; = a;; = 1 is 50%. Note that it is not required
that the connections in the network be sparse, but it is required to design the observables
such that the rows of matrices G in (2.16) are sparse. In most cases, this condition is
naturally satisfied since the observables should be designed sufficiently rich to contain the
coupling function in the spanned space.

As for measured data, each node system is assigned an initial state randomly in the
range [—m, 7|, and the time series data from those initial states are then obtained by
numerical simulations. Suppose that 200 trajectories, each consisting of 51 steps from
k = 0 to 50 with a sampling time of 0.01s for each node in the network, are available.
Also, suppose that another 200 trajectories of 51 steps from k£ = 0 to 50 of an isolated
node are available. All the data are measured with random noise uniformly distributed
in some range.

Here, let #[k] € RY and 6/[k] € R denote the values of the kth steps of the jth

measured trajectories of the network system and the isolated node, respectively, where
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0 := (01, -+ ,015)". Then, the measured states are described as the following signals with
noise, 67[k] + 6%, where 7 € R' denotes a noise vector whose elements are assumed to
be uniformly distributed in the range [—0.005, 0.005].

The observable set ¥(#) : R — R?4! is defined as

U(0) = col(1, 6, colil(col;il(cos 6;sinb;))), (2.22)

and data matrices X;,Y; € R2X10" gre then constructed using 6% for j = 0 to 49 and

7 =1 to 50, respectively, as
Xy = [U(O[0] 610 - W(OUH9)+6M) o W(EO[A9] + 520 |
Y, = [\1,(91[1] SN W(O[50] 4 6Y) .. W(620]50] + 5200,50))} ‘

On the other hand, data series 67[k] is insufficient in dimensions to be the argument of
function ¥(-), so an unconnected network with dynamics (2.3) is imitated using 6. The
time order of #%7 is shuffled randomly 15 times while preserving the information on the

time evolution of data, i.e., define

4
c RQXIO ’

_|@to] - 6M49] 6[0] --- 6°0[49]
$= O] .- 6'[50] 6%[1] --- 6X°[50]

and define a column shuffling operator s;(§) which shuffles the columns of ¢ into some
random order i. Let &_ € R0 and &, € R0 denote the first and the second row of

si(€), respectively, and define

6_— = 001(51—7 e 7515—)7 0_+ = COI(§1+7 e 75154—)'

Data matrices X5 and Y5 are then constructed as

Xy = [\Il(él_) v(H?) --- \11(9*1_04)} €R241><104’
Y = [\If(éi) () - \1;<§1+04)} € R24X10"

where 6 , 0%, denote the ith columns of 6_, 6., respectively.

The coupling function of the network is then obtained by solving (2.13) and substituting
the solution into (2.16), where the parameters are set to A = 0.1 and p = 3. Denote the
coefficient matrix of the observable vector W(#) in the identified coupling function by G,

g (0) = G ().

As a comparison, let §/() = GU(A) denote the identification results obtained by the

pseudo-inverse based method, i.e., let

G = Cy(ViX| - Yo X]).
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Fig. 2.2: The entries of the identified coefficient matrices: the value of each entry is
indicated in color. (a) the values of all the entries in matrix G' € R**24L; (b) the values

of all the entries in matrix G € R15%241,

Fig.2.2 shows the calculated values of the entries of G € R¥%*24 and G € R¥ 24 in color.
As the figures show, the identification result obtained with the proposed method shown in
Fig.2.2(a) is less noisy than that of the pseudo-inverse based method shown in Fig.2.2(b).
As an example of reading Fig.2.2, the first entry of g'é(f) is obtained as the first row of
matrix G multiplying the observable vector W(6), which reads

el g"(0) = — 1.00¢)15 — 0.99¢)59 + 0.99)35 + 0.961)21,
= —1.00cos8ysin8; — 0.99 cos B4 sin by + 0.99 cos 8, sin O,
+ 0.96 cos #; sin 014,

where all the values are rounded to 1072, The estimated coupling function almost coincides

with the original function e] g() = sin(fy — 0;) + sin(6y4 — 6;).

To verify the correctness of the identified coupling functions, the true coupling function
g(f) = col®, Zjlil a;jsin(6; — 6;) is projected onto the space spanned by the entries of
U (#) to obtain a correct coefficient matrix G*“¢ € R'¥*?4! such that g(f) = G“¥(0).
Note that the projection is unique, and the equality holds strictly with W(6) designed
in (2.22). The relationship between all the entries in G*™“¢ and the respective identified
values in G, G are plotted in Fig.2.3. As the figures show, the coefficient matrix obtained

with the proposed method achieves better accuracy.

Although this example considers the case where measurement noises are present, it
should be mentioned that the presence of larger noises would disable the proposed method.
The method extracts the coupling function from the dynamics of the network, which is
obtained by finding the optimal nonlinear function that governs the evolution of measured
data. In the presence of large noises, the obtained function would differ from the original
dynamics, and the proposed method fails. Due to the same reason, the proposed method

requires that the data are sampled simultaneously and no packet loss occurs.
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Fig. 2.3: The relationship between the true values and the identified values of all the
entries in the obtained coefficient matrices: (a) entries in G obtained using the proposed
method, and (b) entries in G obtained using the pseudo-inverse based method. An entry

is perfectly identified if the associated "<’ marker is on the black line.

2.4.2 A network of Hindmarsh-Rose neuron systems:

identification with an incomplete observable set

Consider a network consisting of 10 Hindmarsh-Rose neuron models, which are chaotic

oscillators modeled by

xf =0.01(—}) + 327, + 30 — i3+ 3.25 + ),
xiy =0.01(1 — 5:5371 — Ti2),
25 =0.01(0.005(4(z;1 + 1.618) — z;3)),

fort=1,---,10. Here, suppose that each coupling input u; is given by

10
2
U; = % E aijatan(xﬂ — xi,l);
=1

where a;; denotes the (i, j) entry of the adjacency matrix associated with the network.
From this equation, it is known that each input is in the range (—1,1). The topology
of the network shown in Fig.2.4 is also randomly generated as an undirected unweighted
graph with a 25% probability of a;; = a;; = 1.

As original measurements, suppose that measured data of 300 trajectories consisting
of 51 steps from both all the nodes in the network and an isolated node are available,
respectively. The initial values of all the trajectories are randomly taken in the range
[—2,2], and all the measured data were generated by numerical simulations. Denote the
kth step of the jth trajectory of the two time-series by z7[k] € R3?, z7[k] € R3, respectively,
where z := (331,1, T, X10,1, 1,25 000 5 210,25, 01,35 0 7$10,3)T-

Define the observables ¥(x) : R3 — R to be all the states as well as the combinations



Chapter 2. Identification of Network Structures for Network Systems with
Measurable Full-states 37

Fig. 2.4: The topology of the Hindmarsh-Rose neuron network. (a) the connection be-

tween neurons, and (b) the graph Laplacian matrix shown in color.
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Fig. 2.5: The values of the entries of the identified coefficient matrix G with the proposed

method shown in color.

of the first components x;1,x;; up to the third power, i.e.,

U(x) = col(l, col%ﬂl(xi’l), colilgl(xi’g), colgl(xiﬁg),
. X2 wiq X T2
col}gl(coljlii(%)%col}il(col}ii( 1716 ]’1, ’16 j’l))), (2.23)

from which all the duplicate elements are removed. Then data matrices X, Y] are calcu-

lated directly from W(z) and {z*’}, while data matrices X5, Y5 are obtained by shuffling
the time order of z/ to imitate an unconnected network. Also, suppose that measure-
ment noise exists which is modeled as uniformly distributed random variables in the range
[—0.005,0.005]. The optimization problem (2.13) is then solved with A = 0.1, p = 4.
Figure 2.6 shows the true and the identified coupling function of the first node restricted
to the space spanned by x3; and z7;, respectively. To compare the identified coupling
function with the true coupling function e g(z) = 2atan(z3, —21,), e{ g(z) —e] g"(z) is
plotted restricted to the space spanned by z;; and z3; in Fig.2.7. As the figure shows, the
identified coupling function matches the true coupling function in the domain where data
are measured (as indicated by the frame) and deviates otherwise. This is the best one
can get with the designed observables and the measured data, while better identification
accuracy can be obtained if the observable dictionary contains elements that approximate
g(z) better, e.g., including atan(x;, — x;1),Vi,j =1,--- , N, j # i as entries of ¥(z).
Next, simulation results about how the identification accuracy is influenced by the

amount of measured data are shown. The identification results are also compared with
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Fig. 2.6: (a) The true coupling function and (b) the identified coupling function restricted
to the space spanned by z;; and 3.

0 0
2 ‘ -0.01
4 -0.02
-4 2 0 2 4
Fig. 2.7: The difference of the true coupling function e g(z) and the identified coupling

function e] g(x) of the first state plotted near the origin of the space spanned by

and x5 ;. The true coupling function is correctly approximated over [—1,2] x [—1,2] (i.e.,

the area within the frame), which is the domain where data are measured from.

those obtained with the pseudo-inverse-based method.

Here, the set of observables is also defined by (2.23) as in the previous simulation.
The set is incomplete, in the sense that the spanned space of its entries does not con-
tain the coupling function g(z) which are arc-tangent functions. As a result, obtain-
ing a G could be hard, and the identification accuracy is quantified in terms of
the identified network connectivity, instead of some other metrics that are related to
every entry in GG. In the case that the coupling strength 7% is known, the connectiv-
ity of the network can be extracted from the coefficients of the x observables, i.e., the
col}®, (w41), coli2, (w;9), coli? (z;3) terms in (2.23). Here, the connectivity identification

accuracy of the proposed method and the pseudo-inverse-based method are compared.

Suppose that M trajectories each consisting of 11 steps (with a sampling time of 0.01[s])

from both the nodes in the network and an isolated node are available where M € N. To
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Fig. 2.8: The relationship between the identification accuracy and the amount of measure-
ment data plotted in logarithmic scale. The proposed method can identify the network

connectivity with smaller errors and achieves better identification accuracy.

quantify the identification accuracy, define the identification error by

B Hde_ Ltrue”F
- HLtrueHF

x 100%,

where L% and L*® are the true and the identified graph Laplacian matrices, respectively,
associated with the network.

Let M = 10,25,20,---,130. For each M, the identification is performed 5 times
with different random initial data, and the average identification error is recorded. The
topology of the network is generated randomly in each identification where the probability
of two nodes being directly connected is 25%, and the parameters of the optimization
algorithm are set to A = 0.1, p = 4. Fig.2.8 shows the identification errors obtained via
the proposed method and the pseudo-inverse based method as functions of the data ratio,

which is defined to be the ratio of the amount of data pairs to the number of observables,
10M

q
As Fig.2.8 shows, both the two methods reach higher identification accuracy with more

ie.,

data, while the proposed method provides relatively higher accuracy. Also, the identifi-
cation accuracy of the proposed method converges to that of the pseudo-inverse matrix
method, as shown in Proposition 2.1. On the other hand, the identification error of
the proposed method is bounded, while the error blows up in the pseudo-inverse-based
method case. This is because the pseudo-inverses are calculated via the singular value
decomposition (SVD) method, i.e., 41 = Y1 X] = ¥;(VEIU*) where

di T 0';1, g; 0,
ET = [dlag(a;r) 0] or lag<al) s 0';.[ = #
0 0, o0;,=0,

and Xf = diag(aj ) when % = 1. As a result, a small singular value could lead to a large

identification error. While in the proposed method, the identity matrix I, is introduced

to the first terms in (2.15a) and (2.15b), which ensures that the matrices are invertible.
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2.5 Conclusions and discussions

In this chapter, the identification problem of network structures is considered, and an
identification method is proposed. The structural characteristics are formulated as the
coupling function of the nodes and extracted as a linear combination of manually defined
observables using Koopman analysis and sparse identification techniques. Two identifi-
cation examples are shown to verify the usefulness of the proposed algorithm. The com-
parisons with the pseudo-inverse-based method show that the proposed method remains
valid even under the influence of measurement noise.

The proposed method does not require that all the measured data belong to the same
trajectory, because what matters is how data evolves, i.e., the pair (2%, 2% *1). Actually
in the identification process, the time order of 7% is randomly, but the pair 7%/, 247! is
kept bound. A similar consideration can be found in the EDMD method proposed in [65]
where only randomly taken data pairs are required.

There are still drawbacks and problems that remain to be solved in the future. The
method proposed in this chapter requires data from isolated nodes, which is a very strict
assumption from a practical point of view. If the nodes in the network fully synchro-
nize, then the dynamics on the synchronization manifold can be considered as that of the
isolated nodes, however, such synchronization would make the network structure uniden-
tifiable as shown in [25], because g(x) vanishes. The proposed method also requires that
the full states of all the nodes be measurable, although generally, only output data of
the nodes may be available in practice. Also, the proposed method does not apply to
networks whose topology is time-varying such as networks with switching topology.

On the other hand, as mentioned in Proposition 2.1, the proposed method obtains a
projection of the coupling function over the space spanned by the observables. The design
of the observable set W(z) greatly influences the identification accuracy, but it lacks an
optimal design method for the coupling function. In the numerical examples, combinations
of basis functions constructed out of the states of all the nodes are employed, which ensures
accurate approximation over certain domains, but also leads to high computational costs.
Design of the observables can be performed theoretically by using GLA methods, or by

considering the physical characteristics of the network and measured data.



3 Identification of Network Structure Changes
Using Streaming Data Sets of Measurable
Full-states

3.1 Introduction

In the previous chapter, an identification method for network structures is proposed based
on Koopman analysis and sparse identification. The proposed method treats the struc-
ture of a network as the coupling function that describes the data flow in the network and
approximates the coupling function using linear combinations of pre-defined observables.
However, the proposed method has two significant drawbacks. First, the coupling func-
tion is obtained as the difference between two Koopman operators corresponding to the
network and some isolated nodes, respectively, to approximate which both data from the
network and the isolated nodes are required. However, it is generally difficult to obtain
a large amount of data from an isolated node, especially in the case where networks are
in operation. Second, the method solves the problem in a post-processing manner, so it
cannot be applied to cases in which the network structures change during data recording.

In this chapter, an identification algorithm for network structures is proposed by adding
some restrictions to the network structures to overcome these drawbacks. In particular,
under the assumptions that the network topology is an undirected graph and that the
data flows between any two nodes are symmetric, the first drawback is solved. To solve
the second drawback, the previous algorithm is modified so it employs streaming data
sets to detect changes in network structures. Similar implementations can be found in
the streaming dynamical mode decomposition (sDMD) method proposed in [77]. Such
implementations can also be found in, e.g., [24, 25, 77]. In [24], assuming the dynamics
and the coupling functions to be known, an observer-like auxiliary system is designed to
synchronize with the network system, and the variables converge to the coupling strengths
practically. In [25], a dynamical coupling input to the auxiliary system replaces the static
input in [24] which makes the convergence asymptotic. Besides, [77] performs the DMD
method with streaming data sets which bring the DMD in real-time. In this chapter,
design nonlinear observables are designed to identify nonlinear coupling functions accu-

rately. From the viewpoint of Koopman analysis, the proposed method can be considered

41
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as obtaining and updating an approximation of a Koopman operator at every time step
using newly measured data. The relationship between the identification result and the
actual coupling function is also theoretically verified, and derive conditions under which
a time-invariant approximation of the Koopman operator can be obtained using time-
varying data matrices.

This chapter is organized as follows. Section 3.2 proposes a modification of the method
proposed in the previous chapter to relax some requirements and construct an identifi-
cation algorithm that detects network structure changes. Convergence conditions of the
proposed method are also derived in Section 3.2. Section 3.3 presents numerical examples
to illustrate the validity of the modified algorithm and in Section 3.4, a summary of the

results obtained in this chapter and some additional remarks are given.

3.2 Identification of Network Structure Changes

Consider a network system consisting of N identical discrete-time systems described by

N

wf = flo) + Y g, ), (3.1)
j=1
forte=1,--- N, where z; € R*, f : R — R”, and g : R® x R* — R". The function g
denotes the coupling function between any two systems, and a;; is the (¢, j) entry of the
adjacency matrix associated with the network topology.
To simplify the description, define z = col(zy, -+ ,zy) € RV and rewrite the dynamics

of the network as the following compact form:

vt = f(x) +g(x), (3.2)

where f(z) = coll,(f(x;)) and g(z) = colfil(Z;.V:l a;;9(z;, ;). Here, g(x) is called the
coupling function of the network, which contains information about both the data flow in
the network and the network topology, and corresponds to the network structure to be

identified. On the other hand, N uncoupled systems can be described as
= f(z). (3.3)

Let F denote the functional space consisting of all of the observables ¥(z), i.e., F =
{¢ | ¥ : R¥® — C}. Now, define two Koopman operators K; : F — F and K, : F — F

corresponding to systems (3.2) and (3.3) as follows:

Kyp(z) =¢(f(z) + g(x)), (3.4)
Kayp(z) =¢(f (2)). (3.5)
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Then, the evolution of the state of each system can be described as K1z = f(x)+g(x) and
Kyx = f(x), respectively. In addition, defining the difference operator for two operators
as K, = K; — Kj, one has

Kyx =f(z) + g(z) — f(z)
=g(). (3.6)

This equation means that the identification problem for the network structure can be
solved by determining K; and K, from the measured data.

As a result, as shown in the previous Chapter, if measured data for the states of both
the coupled system (3.2) and the completely uncoupled system (3.3) could be obtained,
then the network structure of system (3.2) could be detected as an approximation of the

difference operator K.

3.2.1 Detection of K, from measured data

In the previous Chapter, it is assumed that data can be measured from at least one isolated
node to obtain an approximation of K corresponding to system (3.3), but this assumption
is not realistic in practical situations. Therefore, this chapter considers relaxing the
assumption by adding some restrictions to the network structure.

Throughout this chapter, the following assumptions are made for the coupling function

g(x;, x;) and the adjacency matrix associated with network system (3.1).

Assumption 3.1. The coupling function g(z;,z;) is skew-symmetric, i.e., g(z;, ;) =

—g(xj, x;) for any z; and z;.
Assumption 3.2. The adjacency matrix [a;;] satisfies a;; = aj; and a; = 0.

Assumption 3.1 means that the numerical summation of g(x;, x;) and g(x;,z;) is always
0, and it is well known that diffusive couplings in reaction-diffusion systems satisfy this
assumption. Assumption 3.2 means that the graph representation of the network topology
is undirected and has no self-loop. Under these assumptions, it is shown show that K,,
which is the difference between K; and K5, can be obtained approximately without any
data for the completely uncoupled systems.

The coupling function is identified following two steps: first to obtain an approximation
of Kiz, and then to determine Ksx from K;zx.

In the first step, to obtain an approximation of Kix from data, assume that a time
series of the states of system (3.1) for m + 1 steps is measured as {z[0],--- ,z[m|}. In
addition, define a set of ¢ observables as ¥(z) = col(vy (), ,¥,(z)) : RN — C? where
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Y :R¥N" 5 Cfori=1,---,q, and define data matrices X and Y as

X =[wafo)) Walt)) - Ul 1)),
Y =[] ) - walm))].

For K, satisfying (3.4), ¥(z[k + 1]) = K1 ¥(z[k]), and, in turn, the following equation
hold:

W) o )] = (K)o K Y(aim - 1)
As a result, a ¢g-dimensional approximation of Kjx is obtained as
Kl.il,’ ~ Al\I’(ac), (37)

where A, := C, A, C, € CN"* is such that = C,¥(z), and Ay is a transition matrix
that maps X to Y, i.e.,

Ay = argmin [|[AX —Y||r. (3.8)
A

Note that although C, contains the expansion coefficients of  from W(x), one can design
U(x) such that the expansion is trivial, i.e., let U(z) = col(z, 1, -+ ,¥q—nn), then C, =
Nns ONnx(g—Nn))-

Next, as the second step, it is shown that K,z can be obtained from Kjx without using
the data for the completely uncoupled system (3.3). The core idea here is that, under
Assumptions 3.1 and 3.2, a;;9(z;, x;) always cancels out a;;g(x;, z;) numerically for any
j # i. This means that the terms describing data transmissions vanish if added, and
what remains is the unforced dynamical models of the node systems corresponding to

Kyx. Under the assumptions, a;;g(z;, z;) + a;i9(x;, ;) = 0 holds, and

N i—1 N j—1
ZZLMJQ T, T;) ZZGUQ T, ;) + ZZ“UQ ey
i=1 j=1 i=1 j=1 =1 i=1
N -1
:ZZ aij9(zi, ;) + ajig(x;, ;) =0, (3.9)
i=1 j=1

where a;; = 0 is substituted to the first equality. Equation (3.9) indicates that if x;[k] =
Zi[k] fori =1,--- , N, then 3% a,[k+1] = SN, #;[k+1] holds with respect to dynamics
(3.2) and (3.3). Using the definitions of Koopman operators K; and Ks, the following

equation holds

N N
i=1 i=1
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which acts as a bridge between K,z and K;z. Defining matrices Cy, - ,Cy € RN
such that z; = Cyx for i = 1,--- | N, and substituting (3.7) into (3.10), the following

equation holds

N N
> Kywim Y CiA U (z). (3.11)
1=1 =1

Note that the right-hand side of (3.11) has already been identified from data and is
considered known.

Next, individuals, i.e., Kox;, from the summation based on the known right-hand side
of (3.11) are extracted from the summation. Note that 31  Kyz; is a summation of the
same function f(-) mapping different variables x1, - - - , zx, which is highly symmetric. As
a result, if an approximation of Ksz in terms of a linear combination of the observables
U(z) is desired, as one of Kz, then all of the coefficients of multi-variable observables,
e.g., Yr(x;, x;), in such a linear combination must have 0 as coefficients. As a result,

equation (3.11) can be rewritten as

N
Y Kow;~ D+ By (21) + -+ + By Uh(an) + 0, sov 0 Uo(2), (3.12)
i=1

where D € R™ is a vector of constants, ¥.(z;) : R" — CPi with some p; < ¢/N is a

sub-vector of observables contained in W(z), which contains all of the observables that

only have x; as variables, and W/ (z) contains observables of multiple variables. Here,

B; € C"*Pi is the coefficient matrix of the linear combination B;V’(x;), and D will appear

if the observable set W(x) is designed to contain a constant observable. It follows (3.12)

that

D

which is an approximation of Ksx;. To obtain matrix A, such that Koz ~ A,V (x), rewrite
Kyx; = D/N + B;V(x;) fori=1,--- | N as a linear combination of ¥(z). Since V}(x;) is
a sub-vector of W (x), there always exists B, € C"*? such that Kex; = D/N + B;V)(z;) =
B!{W(x). Then A can be obtained as

Ay =col(By, -+, By) € CNnxa, (3.13)

Finally, to obtain K, recall that K, is defined as the difference between K; and K.
As a result, the coupling function g(z) can be identified from the approximations of Kz

and Koz, i.e.,

g (z) = K,x ~ (A; — Ap) V(). (3.14)
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3.2.2 Detecting Network Structure Changes using Streaming
Data Sets

To detect changes in network structure, the identification procedures are performed over
an (m + 1)-step-long horizon making use of newly measured data at every time step. At
step k, define data matrices X[k| and Y'[k] by

X[k = |W(alk = m)) W(alk—2)) - Walk-1])], .

Y[k] = [\If(x[k “mt1]) U(alk—m]) - qf(x[k]ﬂ .
Then, an approximation of Kjx at step k, i.e., A1[k]¥(z), can be calculated with X[k]
and Y'[k]. For the case in which m > ¢, A;[k] can be directly obtained by

Ak = Coargiin AX[K) ~ Y [Hl = CoAolk] = CYWXTH,  (3.16)

where X T denotes the Moore-Penrose inverse of matrix X, and C, is such that C, ¥ (z) = .
However, if the amount of data is limited due to practical reasons such as the capacity
of data storage systems, then A;[k] cannot be detected with high accuracy. In such a
case, sparse identification techniques are employed to obtain A;[k] and hence K,. For

1=1,---,q, consider the optimization problem
ao;[k] = argmin ||a||;
subject to aX|[k] = y;[k],
or equivalently ([85]),
apilk] = miniamize | X*[K)a* — yi[K]||3 + |al|L, (3.17)

where A > 0, ag;[k] is the ith row of Ag[k|, and y;[k] is the ith row of Y[k].
To solve the optimization problem (3.17), ADMM ([87]) is employed. A vector-wise
updating algorithm of the variables is given explicitly by

(k] = — S (XTI TH] + 20) " (~2X ] + ik — 1) = puik — 1), (3.180)

1
v; [k] =8xp(ag; k] + ;wf [k —1]), (3.18Db)
w; k] =w; [k — 1] + p(ag;[k] — v} [k]), (3.18¢)
for v = 1,---,q where ag;, v; are the primal variables, w; is the dual variable and p > 0.

Here, S, is a soft-thresholding operator defined by

! 0 2] <y



Chapter 3. Identification of Network Structure Changes Using Streaming Data
Sets of Measurable Full-states 47

for some v > 0, and the operator acts on a vector or a matrix in an entry-wise manner.

Furthermore, update the variables in a matrix-wise manner to reduce computational costs:

Axk] = — %(X[k:]X*[k] LI XY R+ WOk — 1] - oV k- 1)), (3.199)
VAIR) =Sa,p (ALK + %W* e — 1)), (3.19D)
W] =Wk — 1] + p(AL[K] — V*[k]). (3.19)

The optimal A is used for constructing A;, A, and g'(x) via A; = C,Af, (3.13) and
(3.14), respectively.

Finally, an algorithm for the above-mentioned network identification approach is con-
structed in Algorithm 3.1.

Remark 3.1. Assumptions 3.1 and 3.2 ensure that the influence of f(z) can be totally
removed, and the coupling function g(z) can be accurately identified. If the assumptions
do not hold, the equation (3.10) does not hold and Ksrz; cannot be extracted, so the
coupling function could not be accurately identified. However, the information sent from
node j to node i can still be identified as a linear combination of the observables that are

dependent on x;, which may be a coupling function to be identified.

Algorithm 3.1 Proposed identification algorithm
Input: Observables ¥(x) € CY, matrix C, € CV"*4 such that x = C,¥(z), parameters
p, A, m and convergence criteria L,e > (
Output: g'(z) = C,(A; — Ay)¥(x)
1. Initialization: Define variables Ay, V, W € R?*? and data matrices X,Y € R?*™
as zero matrices.
2. At time step k: Construct data matrices X k], Y[k] with (3.15)
Update Ay, V, and W with (3.19a), (3.19b) and (3.19¢), respectively.
4. Convergence verification:
if LS4 | Agli] — Aoli — 1] < ¢ then
record Aplk] as A and go to step 5

else
set k <— k+ 1 and go to step 2
end if
5. Result: Calculate A;, Ay and g"(z) via A; = C, A}, (3.13), and (3.14), respectively.

3.2.3 Error and convergence analysis

In this subsection, a brief theoretical analysis of the proposed identification method is

given. It is first shown that the identified result is a projection of the actual coupling
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function, and then conditions are derived under which a time-invariant solution to the
optimization problem (3.8) can be obtained using time-varying data matrices X[k] and
Y[k].

Proposition 3.1. If the obtained data sequence is sufficiently long and distributes uni-
formly, then the identified coupling function g*¢(x) = (A; — As) is an L, projection of the

coupling function g(z) onto the space spanned by the entries of ¥(x), i.e.,

gld(‘r) = ]P)span{‘ll(z)}N”g(x)a
on the manifold where the data are measured.

Proof. Tt is known that if m — oo, then Ay obtained by solving (3.8) is the optimal
approximation of Koopman operator K in the sense that Ay minimizes ||Ag¥ — KV,
([94, 95]). For any observable ¢ € F = {f | f: RN" — C}, K¢ can be approximated as
Ko ~ c,A¢¥, where ¢, minimizes ||c,V — ¢||,. As a result,

AU (z) =CLAY (z) = Cp(argmin 4| AV (x) — KU (z)||1,) ¥ (x)
:C:EPspan{‘l/(x)}N" (K‘Ij(x)) = ]P)Spal’l{‘l/(x)}N" (K:E)
:]P)span{\Il(w)}N”<f(‘r) + g(ZL‘)),

fori=1,---, Nn where C, satisfies C, U(z) = z. On the other hand, the construction of

A, indicates

N

AW (x) =col’y (Papaniuyr (> _(CjA1¥(z) + D/N)))

j=1
N

N
:COIiJ\Ll (]PSPan{\I/;}” (Popan{w(z)}n (Z Cif(x) + Z CjQ(@)))

j=1 j=1

:]P)span{\ll(x)}N”K2x7
where the fact that Popanpwryn f(2i) = Popan{w(e)y» f(7:) is used. As a result,

gld(l‘) :(Al - AQ)\I/(Z’) = ]P)span{\ll(w)}N"le - Pspan{\lf(m)}N"K2x

:Pspan{\ll(x)}N"g(x) :

]

Next, conditions on the number of measured data and the design of observables are
derived under which a time-invariant approximation of Koopman operator K, i.e., A;[k]
in (3.16), exists.
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Proposition 3.2. Assume that the network structure is time-invariant over an interval
[T, T3], where T — T} > m + 1. In the case where m > ¢, if the observable set ¥(z) is
sufficiently rich, i.e., there exists a matrix F' such that F¥(z) = f(x) + g(x), then the
optimality of (3.16) is time-invariant over [T7 +m + 1, T3).

Proof. Note that f(x[k]) + g(z[k]) = z[k + 1] = C,V(x[k + 1]) holds and consider the
matrix A; obtained at step k:
Ay k] = C, Ao[k] =argmin(||C,AX[k] — C.Y[K]||%)
(CzA)
=argmin(||(C,A) X [k] — FX[K]|7),

(Cz4)
where C,Y[k] = [---, f(z[k + j]) + g(z[k + j]),-- -] . = FX[k] is used. The
optimization problem becomes time-invariant with a globally unique optimality as long
as X[k] has full rank. O

.7:07 yn—

Note that in the case where data are not sufficient, (C,A)X[k] — FX[k] = 0 may not
indicate C, A — F = 0. In such a case, the algorithm (3.19) is used to solve the inverse
problem to find Ay[k] using sparsity. The fixed point of the algorithm also minimizes
| Ao¥ () — U(f(z) + g(2))||L,, but would deviate slightly from Af™“c. The deviation

depends on the parameters p and .

3.3 Numerical examples

In this section, three numerical examples are given to show the validity of the obtained
results. Specifically, the first example is a detailed example of determining Kyx and g(x)
from Kjx, and the second example shows that the proposed method successfully detects
and records changes in network topology. In the third example, data generated using a
SPICE model are employed, which are sampled aperiodically, to simulate measured real
data.

3.3.1 A network of chaotic scalar oscillators

This example shows in detail how matrices A; and Ay are constructed and how the
coupling function is obtained.
Consider a network of 10 scalar oscillators ([96]), the ith node of which is modeled by

af =B1(x;) + 6 + u;, (3.20)

10
j=1
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o 0o A~ N

Fig. 3.1: The identification results at & = 250: (a) matrix A; which corresponds to
dynamics (3.20). The color plotted at coordinate (i, 7) in the figure corresponds to the
(,7) entry in matrix A;; (b) matrix A constructed based on A; which corresponds to
the dynamics of all the nodes when isolated and (c¢) matrix A; — Ay which corresponds

to the coupling function.

Fig. 3.2: The identified network topology.

for i = 1,---,10, where z; € R, I(x) = 0.5(1 — cosz) and [;; is the (i,7) entry of
the Laplacian matrix £ associated with the network topology. Each oscillator behaves
chaotically when the parameters are set to § = 1.457 and § = 0.525. The network is a
randomly generated undirected unweighted graph in which the probability of a;; = aj; =1
is 50%.

Suppose that the data storage system is capable of storing 36 steps of measured data
from all of the nodes, i.e., m = 35. Define the observable set ¥(z) : R — R3! by

U (x) = col(1, z, coli (cos x;), coli’ , (sin z;)), (3.22)

and initialize data matrices X, Y € R3%35 as zero matrices. Specifically, let the data be
measured with some measurement noises, which are random signals distributed uniformly
in [—0.05,0.05]. At each time step of the simulation process, optimization (3.19a)-(3.19¢)
is performed with parameters set to p = 3 and A = 1074

The time evolution of the states is obtained in terms of Kjz as A;V(z). In addition,
A, is constructed based on A;W(x). Here, take A;[250] obtained at the last step of the

simulation as an example. The entries of A; € R'%*3! are shown in Figure 3.1(a) in color,
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step [k]

Fig. 3.3: Time evolution of all the entries in A; and A}. (a) Time evolution of entries in
Aj, which is obtained by the proposed method and (b) time evolution of entries in A7,

which is obtained by calculating the pseudo-inverses.
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Fig. 3.4: A comparison between the obtained coupling function of the first node using
the proposed method and pseudo-inverse restricted to the space spanned by x; and xs.
(a) e g"(x) obtained with the proposed method; (b) e/ g*¥(x) obtained with pseudo-
inverse; (c) the identification error e (g*¥(z) — g(z)) of the proposed method and (d) the

identification error e] (g'(x) — g(x)) of using pseudo-inverse.

and the identified Kyz = A,V (x) reads

e] A1V (z) =2.783¢1 — 3.751¢b10 + 0.512th16 + 0.517¢)1g9 + 0.478t;
=2.783 — 3.751 cosxy + 0.512 cos x5 + 0.517 cos xg + 0.478 cos x 1,

ey A1V (2) =2.805¢; 4 0.4921p15 + 0.495)99 — 3.2700;
=2.805 + 0.492 cos 1 + 0.495 cos xg — 3.270 cos x19,

where e € R1 is the ith standard basis vector, and entries of O(107!) are omitted. By

adding all of the entries of Kjx, the following equation holds
10
> Kiw; =27.933 — 2.306 cos &y — 2.176 cos 2z — 2.245 cos 23 - -+ — 2.305 cos .

The above equation corresponds to (3.12) with D = 27.933, B; = (0,—2.306,0), - - -,
Big = (0,-2.305,0) and W)(x;) = (x;,cosz;,sinz;)". Then, for i = 1,---,10, Ko, is
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100 200 300 400 500 600 700 800 900 1000
step [k]

Fig. 3.5: Time evolution of entries in A; — A, using observables defined in (3.24). The

entries fail to converge to constant values.

extracted as

f(x1) =Koz = 27.933/10 — 2.306 cos 1 = BV (x),

f(.fl?lo) :KQ.??lO = 27933/10 — 2.305 cos T10 = BiO\IJ(QZ),
where

Bi = [2793 01><1(] —2306 01><19]7

Bgoz[2.793 01t —2.305 lem].

Matrix A, is then constructed using (3.13) as Ay = col(B},-- -, Bj,), and the values of
the entries are shown in Figure 3.1(b) in color. The coupling function is then identified
as g'l(x) = (A; — A)¥(z), and the entries of matrix A; — Ay are shown in Figure 3.1(c)

in color. As the figure shows, the coupling function is identified as

engid(x) = —1.445cosx1 + 0.512 cos x5 + 0.517 cos xg + 0.478 cos x 19,

e109" (z) =0.492 cos 21 + 0.495 cos zy — 0.965 cos z19,

which approximately match the true inputs of g(z) = Lecol!2,(I(z;)), where £ is the
Laplacian matrix associated with the network structure, and I(x) = 0.5(1 — cosx). The
connectivity of the network is identified as shown in Figure 3.2.

In addition, the identification results are compared with the results obtained in a com-
parison simulation in which sparse identification techniques are not used, and A; is ob-
tained with (3.16), which is denoted by A}. The time evolution of all of the entries of A,
and A} is shown in Figure 3.3. As the figures show, the proposed method obtains higher

accuracy. Figure 3.4 shows the identified coupling function of the first node restricted to
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Fig. 3.6: The first component of the identified coupling function restricted to the spaces
spanned by z; and z; for j = 1,---,10. It can be seen that e/ g"¥(z) is only dependent

on x1, s, xrs and xqg.
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Fig. 3.7: The obtained A; — Ay € R®*%! shown in color, which fails to reveal a direct

relationship as in Figure 3.1.

the space spanned by z; and x5, where both the results obtained with pseudo-inverse and
the proposed method are plotted. As the figure shows, the identification error obtained
using the proposed method is smaller compared to that obtained using the pseudo-inverse.

To quantify the identification errors, introduce the error index Z(A;) defined by

T(4,[k]) = 19 |)| . )”i e o 1009, (3.23)

where the Lo, norm is approximated by dividing the space into lattices of side length

0.1 and calculating the average error for every grid. Here, the error index restricted
to span{zy, x5} for both results are Z(A;[250])|s, s = 9.815% and Z(AJ[250])|z, 25 =
55.049%.

As stated in Proposition 3.2, the observable set ¥(z) contains the true coupling function
9(z;,x;) = I(x;)—1(z;) = cosx;—cos z;, and all the entries in A; —A, converge to constant
values. Next, consider the case where the coupling function is not contained in ¥(x).

Define the observable set ¥(x) by

U(z) = col(1, z, coliercoli2; (s,(24, 1)), coliercoli2; (se(x;, 1)) : R — RO, (3.24)
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1

Fig. 3.8: The identification error of the first component of the coupling function, where a
black x represents a pair (z[i],z5[i]) for i € {0,1,2,---,250}. As the figure shows, the
identification error is relatively small over the manifold where the data are measured and

deviates elsewhere.

where T = {0.17,0.27,--- 37} and s,(x,t), s.(z,t) are square waves with periods ¢t > 0

that are odd functions and even functions, respectively, i.e.,

o=l med@nelgn) o )L moed(t) €05 Uit
o\, —1, mod(%t)e[%tw’ elT, 1 mod(q;)t)e[%t’%t)

Let m = 350 and perform the proposed identification method for 1050 steps, where the
parameters are set to A = 0.5 and p = 5. Figure 3.5 shows the time evolution of entries
in A; — As, and the entries fail to converge. However, Figure 3.6 shows the identified
coupling function of the first node at k = 1050 restricted to the space spanned by z;
and z; for j = 2,---,10. It can be seen from the figures that e g’’(z) depends solely
on x1,Ts,rs and x19, which indicates that the network topology is correctly identified.
The obtained A; — Ay € R©*6 matrix is shown in Figure 3.7. Here, the entries fail to
show a direct relationship with the Laplacian matrix. Figure 3.8 shows the identification
error restricted to span{x; € [—4, 8], x5 € [—4,8]}, and it can be seen that the proposed
method guarantees the error to be small over the manifold where data are measured, i.e.,
span{z; € [—2,6],z5 € [—2,6]}. In conclusion, although the entries in A; — A, did not
converge, the coupling function is still identified numerically. Nevertheless, convergence
is still considered as the stop criterion of the proposed algorithm, because the above
comparison is not available in practical situations, and therefore, there lacks an indication
to end the process.

The influence of parameter m is revealed in Figure 3.9(a) where the identification
error defined by (3.23) is plotted, which is also restricted to span{zi,z5}. For every
m € {100, 150, 200, - -- ,800}, the identification is performed 10 times and the average
values of the errors are plotted. Specifically, for each m the result at £k = 3m is taken,
the observable set is defined as in (3.24), and the parameters A and p remain the same.
As the figure shows, the identification error decreases as m becomes larger, however, the

error would not converge to 0 because no linear combination of the observables could
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Fig. 3.9: (a) The relationship between the identification error and the parameters m which
is represented as multiples of ¢, the number of observables. Note that if m > 1.0¢q, then A,
could be obtained using pseudo-inverse. (b) The relationship between the identification

error and ¢, the number of observables.

approximate the coupling function perfectly. On the other hand, to show the influence of
the richness of the observable set, define another observable set ¥(z) : R9 — R!1120¢ by

U(z) = col(1, z, colier, coli2, (s,(:, 1)), colier, coli?, (se(wi, 1)), (3.25)

where T, = {137”,237’7,3%”,--~ ,a%’r}. Let a = 1,---,40 and perform the identification
with m(a) = [0.8(11+20a)] for 3m(a) steps. For each parameter setting, the identification
is repeated 10 times with different trajectories, and the average values of the errors defined
by (3.23) are recorded. The identification result is shown in Figure 3.9(b). As the figure
shows, as the number of square wave functions grows, the observables approximate the

true coupling functions better and the error becomes smaller.

3.3.2 A network of Lorenz systems

In this example, the availability of the proposed method for multi-dimensional chaotic
system networks with topology changes is shown. Since the convergence of the entries
greatly depends on the design of the observable set, the case where the assumptions of
Proposition 3.2 are satisfied is considered, i.e., the span of the observable set contains the
coupling function. Consider the Lorenz oscillators discretized with the first-order Euler
method with sampling intervals A = 0.01s.

Consider a network of 10 Lorenz systems modeled by
le =z;1+ h- (—10x;1 + 10z, 2),
:L‘Z_Q =52 + h - (—ZL‘Z‘71ZEZ‘73 + 281’1'71 — X2 + Ui)7

vy =wig+ - (Tia2io — 8/3w;3), (3.26)

10
up =0 ) eyt — Ti2),
7j=1
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Fig. 3.10: (a)-(d) Time evolution of entries in matrix A; — Ay obtained with parameter
m = 250, 230,450 and 550, respectively. Specifically, the entries correspond with ¢35 and
c31 are emphasized with bold red lines and bold blue lines, respectively; (e) the second state
components of the trajectories of the Lorenz oscillators, i.e., z; 2, used for identification and
(f) time evolution of card{eig(X[k]X*[k]) > 1072}, which is approximately rank(X[k]).
From the top to the bottom, the four lines correspond to m = 550,450,350 and 250,

respectively.

fori =1,---,10, ¢;; is the (4, j) entry of the adjacency matrix associated with the network
topology, and o = 1 is the coupling strength. Consider the case that the network topology
changes randomly every 30 seconds where the probability of ¢;; = ¢j; = 1 is 40% for any
1 # j, and perform identifications with m = 250, 350,450 and 550, i.e., using recorded
trajectories of 2.5s, 3.5s, 4.5s and 5.5s. The observable set ¥(x) : R3 — R is defined by

U(z) = col(l,col?zlcoli]il(xi,j), col}il(xi,lxm), col}il(xi,lmiyg), colgl(azmxi,g)). (3.27)

The identification process is performed for 120s, and the parameters are set to p = 1073
and A = 1077, The identification results are shown in Figure 3.10. Figure 3.10(a)-(d)
show the time evolution of entries in the identified A; — A5 matrix for m = 250, - - - , 550,
respectively, and the entries associated with the connection between node 1 and node

3 are emphasized with bold lines. It can be confirmed that node 1 and node 3 are
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Fig. 3.11: The actual topology of the network, where (a)-(d) correspond to t = [0, 30),
t =[30,60), t = [60,90) and t = [90, 120], respectively.

directly connected for approximately ¢ = [3,30] U [36,60] and not directly connected for
t € [65,90]U[95, 120]. As shown by Figure 3.11, the topology is correctly identified. Figure
3.10(e) shows the second state components of all the nodes, and Figure 3.10(f) plots the
number of eigenvalues of X [k]X*[k] that are larger than 1072, i.e., card{eig( X [k] X *[k]) >
1072}, which can be considered the rank of the matrix. As stated in Proposition 3.2,
the span of the observables in W(x) contains the coupling function, and there exists a
time-invariant optimality for each period that the network topology does not change.
Convergence to the optimality is also highly related to the rank of matrix X [k]X*[k],
which depends on both m and the distribution of measured data. For t € [—30, 60|, some
of the nodes synchronize practically, so the rank of X[k]X*[k] falls and more data are
required to achieve convergence. Note that in the case z; ~ x;, the optimal solution
described in Proposition 3.2 is not unique since X [k] no longer has full rank, as shown
in Figure 3.10(b)-(d) where the entries converge to different values. For ¢ € [60,120],
a comparison of the figures indicates that convergence can be ensured by enlarging m,
however, at least m + 1 steps are required for X and Y to be filled with data measured
after the topology change. Note that as an exception, the reason that the entries converge
with less than m steps for ¢ € [0,30] is that X and Y are initialized as zero matrices.
Figure 3.12 shows the obtained A, Ay and A; — Ay matrices at ¢ = 120 in the case where
m = 450, and the network topology can be revealed from Figure 3.12(c).

Generally speaking, dynamical mode decomposition (DMD)-like methods could not
reach high accuracy when applied to systems with continuous spectra, such as a chaotic
system ([65]). However, intrinsically, the proposed method obtains a projection of the
coupling function onto the span of the observables and is expected to be applicable to a

large class of nonlinear systems.

3.3.3 A network of Chua’s Circuits simulating real data

identifications

Consider a network of 4 Chua’s circuits shown in Fig.3.13, which are realized in an

inductor-less manner ([97]). The parameters of the components are shown in the fig-
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Fig. 3.12: Matrices obtained at t = 120 in the case where m = 450. (a) The A; matrix;
(b) the As matrix and (c) the A; — Ay matrix.

ure, where the units of the resistors, the capacitors and the voltage sources are Ohm (),
Farad (F) and Volt (V), respectively.

As measured signals, let the voltages at nodes x11, 212, 221,222, - -- 241, 242, P1, P2,
P3 and P4 marked in Fig.3.13 be recorded as x11(t), - - - , pa(t), respectively. The currents
of the equivalent inductors, i.e., the third components of the Chua’s circuits, are then
calculated as x3; = (z2;—p;)/1,000 for j = 1,--- ,4 with units Ampere (A, [97]). Consider
the case that a 0.5-second long trajectory is recorded, as shown in Fig.3.14 where the first
0.1s of the trajectories are plotted. Here, the raw data are generated strongly aperiodically,
as shown in Fig.3.15(a) where the sampling intervals of the raw data are plotted. As
a result, data for identification are re-sampled with approximately 0.00005s intervals.
Fig.3.16 shows a comparison of the raw signals x11,--- , x4 and the sampled signals for
identification. Note that the data used for identification is still slightly aperiodic, as shown
in Fig.3.15(b). Such misalignment is then considered measurement noise.

Also, consider the situation that one has basic knowledge about Chua’s circuits, but
does not know the specific parameters. Define & = col(z11, -+, Ta1, T12, "+ , Ta2, T13, "+ , Tg3) €
R'? to be a permutation of z and define the observables set ¥(x) : R'? — R*® for identi-

fication by
U(z) = col(1, &, atan(0.8¢), atan(€), atan(1.2¢)),

where the atan functions act on every entry of a vector, and are used to approximate
Chua’s diode. Specifically, the observables are defined using z;3 in microAmpere (mA)
units considering the scales of the data. Other parameters of the identification are set to
m = 450, p = 12 and A = 15. The convergence criteria is ||Ao[k] — Ao[k — 1]|| + ||Ao[k —
1] — Aplk — 2]|| < e =0.05.

As the identification result, the identification algorithm ends at k = 3495, i.e., approx-

imately ¢ = 0.175s. The time evolution of the coefficients which correspond to the states
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System 4 System 3

10n

System 2

Fig. 3.13: The circuit diagram of 4 coupled Chua’s systems. Here, 'k’ denotes ’kilo’ and

'n’ denotes 'nano’, i.e., 2k denotes 2,000 and 10n denotes 10 x 1079,

as observables are plotted in Fig.3.17. As the figure shows, the convergence of zero-value
entries is achieved, while the nonzero entries fail to converge to constant values. Still, the
convergence criterion is satisfied at k£ = 3495, where the algorithm ends. The obtained
matrix A; — A, is shown in Fig.3.18 in color, which indicates that the Chua’s systems are
coupled by the first components x;;, and the network structure can be inferred from the
sub-block (A; — A3)(1:4,2:5. On the other hand, small identification errors exist which are
considered to be caused by two factors that the data are samples of a continuous system,
and that the data are sampled aperiodically. Using the obtained result and assuming
Assumptions 3.1 and 3.2 hold, the Laplacian matrix is identified as

; 1
L 25((141 - A2)(Tl;472;5) + (A1 — A)1a25))
—0.1823 0.1532 0.0542 0
~ | 0.1532 —0.1976 0 0
| 0.0542 0 —0.1574  0.1327 |’
0 0 0.1327 —0.1839

where terms smaller than 0.01 were omitted. The obtained result matches the circuit
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Fig. 3.14: Raw data measured from the circuit diagram shown in Fig.3.13. Note that the

third components x;3(t) are plotted with units microAmpere (mA).
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Fig. 3.15: The sampling intervals of (a) the raw signals and (b) the re-sampled data.

diagram in Fig.3.13, and the weights of the edges are identified qualitatively correctly.

3.4 Conclusions and discussions

In this chapter, the identification problem of network structures was considered and the
identification method proposed in Chapter 2 was modified to detect structure changes in
networks. The requirement on measured data for isolated nodes was released by posing
some restrictions to the network structures. An identification algorithm is constructed
that performs optimization at each time step to detect network structure changes. The
modified method can detect possibly nonlinear coupling functions and is applicable to
networks with topology changes. Numerical simulation results demonstrated the validity
and applicability of the proposed method.

Generally, Assumptions 3.1 and 3.2 are satisfied in networks where data transmissions
between nodes are symmetric. Therefore, these assumptions hold for undirected networks
with linear diffusive couplings and electric circuits coupled by linear resistors in practical

structures. As a result, the proposed method will be applicable for a wide range of actual
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Fig. 3.17: Time evolution of the entries in A; — A, associated with the states as observables,
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network systems for purposes such as fault detection and monitoring in power supply
systems, multi-robot communication and electric circuit networks.

To apply the proposed method, the is no theoretical limitation on the size of networks
N, but for accurate identification, the observable set should be designed sufficiently rich,
and the computational cost would blow up. On the other hand, although sparsity-based
methods are employed, it is not required that the network be sparsely connected since
the sparsity of rows of Ay can be manually manipulated by the design of the observable
set U(zx).
method, there exists a trade-off between the accuracy of identification and the amount of

However, since small values are simply set to 0 by the sparse identification

required data in the case where the coupling function is not contained in the span of the
observables.

There are still drawbacks remaining as future tasks. The optimal values of the opti-
mization parameters A, p, and the record length m are not clear, and there is no design
method for the observable set W(x). As stated in Chapter 2.3, the proposed method
obtains a projection of g(z) onto span{t;}V". Thus, theoretically, there is no need to
require entries of f(z) to be in the span. However, the identification accuracy may de-
crease in such a case. Moreover, it is also assumed that all the states of the nodes were
measurable, but, in practical situations, only the outputs of the nodes may be available.

On the other hand, compared to the sSDMD method ([77]), the proposed method requires
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0.5

Fig. 3.18: The obtained A; — Ay matrix shown in color.

higher computational capability, since data matrices are updated and matrix inverses are
calculated at every step. It remains a future task to develop an algorithm that detects
changes in network structures. Also, the proposed method does not apply to networks
whose structure changes continuously with time. When the network structure changes,
the proposed method requires the network structure to not change in the following at least
m steps for the data matrices to be filled with data corresponding to the dynamics after
the structure change. If the network structure changes again within the m step window,
then the first structure change will not be identified. If the network structure changes

continuously, then the proposed method fails.



4 Identification of Networks Structures for
Networks with Partially-measurable States

and Known Dynamical Models

4.1 Introduction

Including the identification methods described in the previous chapters, although most
of the above-mentioned methods assume that all the states of the nodes are measurable,
in practical cases, there may exist states that cannot be measured, which are known as
hidden variables. In [32, 89, 98|, the hidden variables are considered colored noises, and
the identification is performed in the subspace spanned by the measurable states. In
[90], networks with hidden nodes are identified by reconstructing the adjacency matrix
corresponding to the network and calculating the covariance of the obtained results, where
inputs signals from hidden nodes would enlarge the covariance, and [52] extends the results
to networks with transmission time delays.

On the other hand, in [24], the problem of identifying the topology of networks is
considered assuming both the dynamics of isolated nodes and the coupling function is
known. A drive-response system is designed whose variables converge practically to the
states of the original network system, and the topology of the network is obtained as
the coefficients of the coupling functions in the dynamics of the network. [25] designed
a dynamical input for the drive-response system to make the convergence to the states
asymptotic. In [47], the method is extended to the situation where nodes synchronize.
However, a problem exists that the convergence of the variables in the drive-response
system to the coefficients of the coupling function in the network dynamics is not strictly
ensured.

Although the adaptive-synchronization-based method achieved much success, there are
still open problems that remain to be solved. First, the method requires both the unforced
dynamics and the coupling function of all the nodes to be known, which is sometimes
impractical. Second, the auxiliary system is designed such that some of its states converge
to those of the original, and others converge to the to-be-identified parameters. In previous
efforts, the convergence of the former is ensured by constructing Lyapunov functions, and

the latter is ensured by applying the invariance principle. However, the equilibrium of the

63



64 4.2. Identification using a drive-response system

error dynamics of the latter may not be uniquely the origin, so the identification may fail
even in the case where all the state variables are correctly identified. Third, as described
in [25], the method fails in the case where the nodes synchronize and no inputs are allowed
to be applied to the original. In other words, it lacks explanations for the results obtained

by applying the method.

This chapter proposes an identification method that solves the above-mentioned prob-
lems. The case where only the outputs of all the nodes can be measured is considered,
and only the unforced dynamical models of the nodes are assumed known. An auxiliary
system is constructed where the unknown coupling function is modeled as a linear com-
bination of pre-defined basis functions, and the auxiliary system uses a streaming data
set of past data to obtain the gain matrix of the linear combination. Also, the auxiliary
system tracks past values of the original state variables, and the current values of the
original states are then obtained by iterating the states of the auxiliary system using
the identified dynamics. It is shown theoretically that under certain assumptions, the
identification results converge to the respective true values asymptotically. This chapter
also shows that if the nodes synchronize partially, then the proposed method obtains a
reduction of the original network.

This chapter is organized as follows. Section 4.2 describes the proposed drive-response-
system-based network identification method, and Section 4.3 gives numerical examples
to show the usefulness of the obtained results. Section 4.4 summarizes this chapter and

gives some remarks.

4.2 Identification using a drive-response system

Consider a network of N interconnected systems described by

(2

N
u;() :Zaijg(xiaxj)a w; = Cry,

Jj=1

for v = 1,---, N, where x; € R" denotes the states, w; € R™ denotes the output and
ui(z) : R¥™ — R™ denotes the to-be-identified coupling function of node i. Suppose that
f:R®™ — R™ is known, and the goal of this chapter is to identify u;(x) from f(x;) and
measured data of w;.

Define f(z,u) = f(z) + Bu, and let f*!(x,u) denote f(f*(x,u)) + Bu fori=0,1,---.
Specifically, fO(z,u) = x. For £ = 1,---,m, let r, denote the relative degree of the /-

th output w;,, which is defined as the minimum of the relative degrees of (wjs, w;1),- -,



Chapter 4. Identification of Networks Structures for Networks with
Partially-measurable States and Known Dynamical Models 65

(Wip, Ui) pairs. Define y;, € R™ by
rp—1
Yie :COI(U)M, U);Z, e 7w7fgz )+)

:C()l(Cfxiu Cff_(xi7 U), e 7C€f_rl71(xi7 U’))7

and define y; € R™ = col(yi1, - - , Yim). Define rpy = max{ry,--- ,rfandrs = > ,", (1e).
Assume that the following statements hold.

Assumption 4.1. The following matrix has full rank for all x € R", i.e.,

OC f(z,u), + OC, frm (z,u)

rank | ( )T =m, (4.2)

where Cy € R™™ is the ¢-th row of C'in (4.1).

Assumption 4.2. There exists a mapping & = S(z;) : R" — R"™"= defined globally such

that there exists an invertible transformation ¢ such that

Ty = (b(COl(ylvg’L)) g ¢71(xi> = COl(y27€1>

Assumptions 4.1 and 4.2 ensure that the dynamical model (4.1) can be decoupled into

the following form

vy =AGya + Bibie(y, €), (4.3a)
& =aly, &), (4.3b)

Al — 0 Irwl Bl — 0(re—l)xl
1o o |7 ° 1 ’

fori=1,---, N where y = col(yi, - ,yn) € RN™, € =col(&y,--- ,Ey) € RN and

big =Co f™ (s, ui(x))
=Cof" (¢(col(ys, &), ui(coliL, (¢(col(yi, £))))).-

Assumption 4.3. For any y* € R™ and &,& € R"™™, the following inequality holds:
la(y™, &) — a(y™, &)1l < w@)lIé& — &, (4.4)
with 79 : R™ — [0,1) and supyo(y*) = v < 1.

The problem of obtaining the coupling function u;(x) is then reduced to identifying the
by function from data. Throughout this chapter, suppose that the measured outputs are

bounded, and the time series of the outputs are recorded for certain steps.
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4.2.1 Construction of a response system

Consider a drive-response system that is designed to track past values of the original full
states of (4.3), and identify the coupling function in terms of a linear combination of

pre-defined basis functions. Define
wip[k] = wielk —rar, K] = &k —ra,

where 7y, denotes the largest relative degree of all the outputs. Also, define y&[k] =
vilk — rar], yd[k] = yilk — M] and €9[k] = £[k — ], and note that y¢[k] is numerically
available at step k. Consider the response system

~

& =alyl, &), (4.5)

fori=1,---, N where & € R""=. For aset of basis functions U(y, &) : RN=xRN—rs)
R? where ¢ > Nm, suppose that the to-be-identified functions b;(y, ) admits an approx-

imation

C01£1<bi€(ya 5)) ~ HT\P(y’ 5)7

where H € RN ig a constant matrix. Define H € RN™ 0 be a variable updated by

~

H™ = H+ G[E|(Y[k] — X[k]H), (4.6)

where G[k] € R”*M is to be designed, and X [k] € RM*? YV[k] € RM*N™ are data matrices
defined by

X[k = [‘I’(yd[k’ — M+ 1,8k = M+1)) - Uk, ER)| (4.7a)
Yk = bk = M +1—ry] o blk— 1] ' (4.7b)
where M > ¢ is a constant and
blj] =coliLycoliZ, (bur(ylj], 13])
=col;L;colyL, (wie[j + 7))

forj=k—ry—M+1,--- k—ry.
On the other hand, let F(H,col(y,£)) denote the estimated dynamics of the network

as

ol (a(y:. ) (48)

where H;, € RY denotes the (m(i — 1) + £)-th column of H. Let F*!'(H, col(y,£)) denote
F(H,Fi(H,col(y,£))), and define

F(,-) = <C°12'N=10017:1(A€yw+BéﬁJ\I’(y,£)))

O[k] =F" (H[K], col(y”[K], £[k])), (4.9)
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as an estimation of the original states £[k] and y[k] at the current step where § € RV™.

Let ¢ : R¥™ — RM" be an invertible transformation such that

z = ¢(col(y,§)) & ¢ '(z) = col(y, ).

The dynamics of the outputs, i.e., coll colf”  (by(y, €)), is then identified as H ¥(y, &),

and the dynamics of the network is then identified as
w1 = @(F(H, col(y,£))).
The coupling function is then obtained as
ol (u(@)) = B (a4 — colY, (f(2,))). (4.10)

where B = Iy ® B.

4.2.2 Stability analysis of the identification errors

Suppose that the states of the original network system are uniformly bounded, i.e., ||z|] <

B for some B < co. Then the following statement holds.

Proposition 4.1. If X[k] is column full-rank and there exists a matrix H € R?”*N™ such

that
COI£1C01ZH=1 (bz‘z(ya f)) = H'¥(y,$) (4.11)
holds strictly, then
Tim (€[] — k] =0, (4.12a)
—00
lim ol (y[K]. £[k]) — 61K]]| = 0, (4.12b)
lim ||H — H[k]|| =0, (4.12¢)
k—o0

hold with G[k] in (4.6) given by G[k] = pXT[k] where 0 < p < 1 is a constant and T

denotes the pseudo-inverse.

Proof. To account for the delayed data in matrices X, two extended systems are con-

structed based on € and &, respectively. Define 7,7 € RNM (=) by

col(€4k], &4k — 1], - , €%k — M + 1)),

col(¢[k], &k — 1], -+, &k — M +1]).

nk]
n[k]
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Define the estimation errors by e =n—n, £ = H — Hand e = col(y, &) — 0, and consider

the error dynamics:

et = coll 2 (e[, yi 1)) — al€ld), 9°0D)), (4.13a)
ET =E - G(Y[k] — X[k]|H), (4.13D)
et =F™HY ([ col(E,y?)) — F™+Y(H, col(€7, y%)). (4.13¢)

For the simplicity of denotation, let X?[k] denote [Psi(¢4[k — M + 1],y [k — M +1]),-- -,
W (&k], y¢[k])] which contains the true past data of the original network system. By the
construction of Y'[k] and X[k],

Y[k — X[k|H[k] =X [k]H — X [k]|H|[K]
=(Xk] — X[k))H + X[k](H — H[K]).

Thus, it can be verified that e =0, F = 0 and e = 0 is an equilibrium of (4.13):

0 = coli ™ (a(¢’[s), yili]) — a€?], w'[4).
0 =0 — G((X[k] — X[k])H + X[k](H — H)),
0 :FTM—&-l(H’ Col(fd, yd)) - FT]\/I'Fl(H’ COl(fd, yd))’

where £ = ¢4, X = X% and H = H are substituted.
Under the assumptions that M > ¢ and X[k]| having full column rank, define G[k| =
pXT[k] and (4.13b) is transformed into

E*Y = (1—p)E + pX'[k](Xk] — X[k])H.
Here, the second term is bounded by
pX K] (X K] = X[ H < cillyl]ell,

for some constant ¢, > 0. Since y? contains the measured output data of the original
network which are bounded, and H is a constant matrix, there exists a ¢; > 0 such that

A l|yd|| < c1. As a result,
IEk + 1| < (1 = p)|ELK]N| + call[#]]
holds. On the other hand, by Assumption 4.3 the following inequality holds:

el + 111 < vlI9[k] = nlk]].
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Also, since f(z;) is locally Lipschitz, dynamic (4.3) is also Lipschitz continuous and there
exists a positive constant L with which the following inequalities hold.

| F™ Y (H , col(€, y)) — Frt(H, col(€%, y) ||
<L||F™ (H,col(§,yf)) — F™ (H, col(&, y?))||

IN

SLrM+1||001(§’ yzd) — col(fd, yf)ll
+ L H = HI[w(E y") — (e y")]
<Ly llell + L™ Lplly I E ek,

where L, is a constant depending on ¥(y, &) and || Bov| = ||v]| for any v € R¥™. As a

result, there exists a positive constant ¢y with which
e[k + 1]|| < calle[k][| + c2[| E[K][][[[K]]

holds.

Next, define auxiliary variables z; = || E||||¢]|, z2 = ||¢]|?, and it follows that

[z [k +1]]

< el®II (1 = PRI + erl[k]]])
=y(1 = p)l|z21[K]l] + cryllz2 K],
2ok + ]IF <y*llelk]I* = 7* |22 [k]l

Now, consider the stability of the origin of (4.13). Consider the augmented error dynamics:

e[k + 1] 00 ¢ e 0] (el
[k + 1]]] 0 p a 0 0 |[E[F]
lelb+11 [ <10 0 v 0 0| | [ell | (4.14)
[z [k + 1] 0.0 0 v av| | =l
[[z2[k + 1]| 00 0 0 ] \[[=[]

where p/ = 1 — p. Here the inequality holds in an entry-wise manner. It can be verified
that the origin of (4.13) is globally asymptotically stable since all the diagonal elements

of the above upper-triangle matrix are positive and smaller than 1. O]

Remark 4.1. Let K be the Koopman operator which corresponds to dynamics (4.3), then
K(e;y%) = by(yi, &, ui(y,&)) holds, where ej{{yw is the ryth entry of y;,, € R™. AOn the
other hand, if (4.11) holds, then Kcolﬁilcolznzl(e:;yw) = HY(w,y) holds. Since H - H
holds, from the perspective of identification using Koopman mode decomposition, the

obtained H T ¥(y,£) corresponds to the approximation of Kcol;\;colf’, (e, y).

The identification algorithm is summarized in Algorithm 4.1.
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Fig. 4.1: (a). A comparison between the estimated first states y;; estimated with
01,04, -+ 02, and their true values. (b). The estimation errors plotted in logarith-

mic scales.

Algorithm 4.1 Proposed identification algorithm
Input: Model f(z;), B, C, parameter M, observable set W(&,y) and stop criteria L € N
and € > 0
Output: g(z) and z[k]
1. Initialization: Obtain model (4.3) according to f(z;), B and C. Define X € RM*4
Y € RM*XNm and 0 € R?*N™ as zero matrices
2. Matrices update: At time step k, construct X|[k] and Y[k] with (4.7)
3. Variables update: Update £ and H with (4.5) and (4.6), respectively
4. Convergence Verification:
if 377 [|H[k — ] — H[k — j — 1]|| <& then
go to step 5

else
set k <— k + 1 and repeat steps 2-4
end if
5. Result: Obtain g“(x) with (4.10). Obtain z*[k] = ¢(0[k])

4.3 Numerical examples

4.3.1 Identification of a network of SISO nodes

Consider a network of 8 generalized Hénon maps described by

zf =—0.32; (4.15a)
zh =i + 0323 + 0.1sin” 2 (4.15b)
rh =1+ 2 — 10705 + u;, (4.15c¢)

w; =101,
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Fig. 4.2: (a). Time evolution of the entries in H. (b) The HT € R¥4% matrix obtained

at k = 100 shown in color, where the color at row ¢ and column j corresponds with

A

-
[H100])],-
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4 v 2
Nane
6 8
7
Fig. 4.3: The topology of the network.
for i = 1,---,8 where a;; is the (4, j) entry of the adjacency matrix associated with the

network topology. Define y; = (1021, —33) ", & = 340 and rewrite (4.15) into

0 1 0
= i + bi(§is i, i), 4.16
Y; [o ol ¥ (1> (& yir wi) (4.16a)
& =0.3y;1 — 0.3y;0 + 0.3sin*(&;/3), (4.16b)

where b;(&,yi,u;) = (=3 — & + 2%y% — 3u;). It can be verified that Assumptions 4.1
and 4.2 are satisfied. Noting that 0.1|sin?a — sin?b| < 0.1v/2|a — b|, Assumption 4.3 is
satisfied with v = 0.1v/2/3.

First, construct the drive-response system described in (4.5). Let y& [k] and y%[k] denote
ya |k — 2| and y;»[k — 2], respectively, and define

& =0.3y¢ — 0.3y% + 0.3sin2(&;/3).
Next, col®_, (b(&;, yi, u;)) is approximated with HTW¥(£,y?), where H € R4S,

U, y) :C01(1, v, &, C01§:1(Z/¢21)7 COI?:l(y?Q)v COI?:I( 121))
(R 5 RY
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Fig. 4.4: (a). A comparison between the estimated first states y;; estimated with
01,05, ,0s, and their true values in the case where the coupling function is not con-

tained in the span of ¥(&,y). (b). The estimation errors plotted in logarithmic scales.

and the dynamics of H follows (4.6) where the data matrices X, Y consist of data of 50
steps, i.e., M = 50. Also, define a variable § € R?** as described in (4.9) to estimate the
states (€7,y7)T in real-time.

The parameter p is set to 0.5 and the results of the identification are shown in Fig.4.1. In
Fig.4.1(a) a comparison between the estimated first states using 61, - - - , fg defined in (4.9)
and the original states is shown, and Fig.4.1(b) plots the estimation errors in logarithmic
scales. As the figure shows, the errors converge exponentially which matches the results
of Proposition 4.1. However, note that the convergence starts after k = M = 50, which is
the time step when X becomes full-rank. Fig.4.2(a) shows the evolution of the entries in
H, and Fig.4.2(b) shows the H matrix obtained at k& = 100. The function col ,b(&;, y:, u;)
is obtained as H TW(&,y), and a brief example of obtaining the coupling function from H

is given as follows. The first row of H TW(¢, y) reads
el H = (—0.300 —0.270 0 —0.030 0 3.567 0) :

which means that b(&1,y1, u1) is identified as

bid(flayl,ul) ZeIHT‘P(&y)
= — 3.000); — 0.800%9 — 0.100%g — 0.1002)g + 0.357)49
= — 3.000 — 0.800&; — 0.100&5 — 0.100&7 + 0.357y2-22.

Combining (&, y1,u;) with (4.16a), it can be obtained that
1.07

BIFIT\I’(&y) =—3- §1+Ty12_3 ut?

3ui’ = — 0.200&; + 0.100&5 + 0.100&7,

which matches the true input u; = 0.1(z52 — x12) + 0.1(272 — x12). Finally, the topology

of the network is obtained as shown in Fig.4.3.
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Fig. 4.5: (a). Time evolution of the entries in H. (b) The HT € R¥4% matrix obtained

at & = 300 shown in color, which unclear readings appear.
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Fig. 4.6: The identified coupling function associated with yi, restricted to the spaces
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-

spanned by & and & for i =2,--- | 8.

0.05

-0.05

Fig. 4.7: The identification error of the coupling function associated with y;, calculated

in the space spanned by &; and &5.

Next, consider the case where the coupling function is not contained in the span of

U(,y). Suppose that u; in (4.15¢) is given by

Z ai(I(z)2) — I(x:2)),
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Fig. 4.8: Trajectory of system (4.17) with u;; = 0 and u;; = 0.
where I(z) = 0.5(1 — cosx). Redefine ¥(&,y) as

V(E,y) :col(l, y, &, col’_ (y2), col’_ (y3), col’_, (€2),
COl?il(log H(ZTa yT)T - CjH2)) : R24 - R109,

where ¢; € R* for j = 1,---,60 are snapshots taken from the trajectories of 8 unforced
generalized Hénon maps using k-means clustering. Let M = 300 and other parameters
remain the same. Fig.4.4(a) shows a comparison between the y;; states estimated with
0 and their true values, and Fig.4.4(b) plots the errors in logarithmic scales, from which
one can verify that the errors are not asymptotically stable, but still ultimately bounded.
Fig.4.5(a) shows the time-evolution of the entries in H. The coupling function cannot
be completely represented by any linear combination of ¥, so the origin of the error
dynamics (4.13) is no longer an equilibrium. Nevertheless, the obtained values stay in
small neighborhoods of the true values. Fig.4.5(b) shows the H matrix obtained at k =
200, and unclear readings that are hard to comprehend appear. To verify the correctness
of the obtained results, the obtained coupling function associated with yi;, restricted to
the spaces spanned by & and &; for j = 2,---,8 is shown in Fig.4.6. As the figures
show, the coupling function shows a clear dependence on &1, &5 and &7, and is not sensitive
to the changes in other states. The fact matches the topology of the network shown in
Fig.4.3, and the topology can be correctly inferred. Fig.4.7 shows a comparison between
the obtained and the true coupling function associated with 1, restricted to span{{; €
[—2,2],& € [-2,2]}, ie., (ur — ui?)|[_o22, which indicates that the nonlinear coupling
function is correctly identified in the region where data are measured, i.e., approximately
[—1,1]%. This example indicates that if u; is not contained in span{¥}, then the proposed
method can only identify the nonlinear coupling function locally over the manifold where

data are measured.
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4.3.2 Identification of a network of MIMO nodes

Consider the network of 15 nodes described by

ri =1 4+ h(=102;1 + 102, 2), (4.17a)
x;,L2 =T+ h(—2i1753 + 2871 — T + Ui1), (4.17Db)
Ty =253+ h(wi4 — 8/3%i3 + ui2) (4.17¢)
Ty =ia 4 h(=102;4 + 2175 2), (4.17d)

Wi1 =241, Wi,2 = 4,3,

which are modified Lorenz oscillators discretized using the 1st order Euler method where
h = 0.01. The trajectory of an oscillator described by (4.17) when u;; = 0 and u;2 = 0
is shown in Fig.4.8. Here u;; = Zjvzl a;j(xjo — x;2) and u; o = Zjvzl a;jsin(zjs — x;3).
Consider the time-evolution of the outputs:
w;fl =0.92;1 + 0.1z, 5
wT =0.9(0.9251 + 0.12;5) + 0.1(0.282; 1 + 0.9925 3 — 0.0z 125 5 + 0.01u; 1)
w;y =2.92/3x;3 + 0.01z;4 + 0.01u, 5,

which indicates that the relative degrees of w;; and w; o are 2 and 1, respectively. Define
& = w4 and ¢(x;) = (251,0.97;1 + 0.132, 753, 2:4) ", and it can be verified that the
requirements of all the assumptions are satisfied. Define y; 11 = 2,1, %12 = 0.92;1 +

0.12;2,vi1 = (Yi11,¥i12) " and y;2 = ;3. Noting that
[(0.96; + 0.01273) — (0.9§; + 0.01z723)|| = 0.9]|& — &1l

the requirement of Assumption 4.3 is also satisfied. Rewrite (4.17) into the following form:

01 0
v = [o o| vt (1> (—0.863y;11 + 1.89y; 15 — 0.001y; 11950 + 0.001u;1),  (4.18a)
+ _
Uiy =2.92/3yi2 + 0.01&; + 0.01u, 9, (4.18b)
& =0.9& + 0.01y;11(10y: 12 — Yyi11).- (4.18c¢)

Define y?[k] = yi[k — 2], £2[k] = &k — 2] and define a drive-response system as described
in (4.5) by

éj :0'9& + 0.019211(10%12 - 9yzd,11)' (4.19)
Define ¥(,y) : R — R3™ by

‘I’(f> y) :COI(L § Y, 001%21(%,11%,12), 0011121(%',11%,2), COI};(%,H&% C01§i1(yi,1zyi,2),

coli? | (yi12&;), coli2, (yi2&i), colilcoljl»i1 (cosyj o sin ylg)) , (4.20)



76 4.3. Numerical examples

— — —original |
estimated

the first states

0 100 200 300 400 500 600 700 800 900 1000
step

Fig. 4.9: A comparison between the estimated first states 6y, -- 65 and the original

Y, 5 Yis,11-

and let the inputs w1, u; 2 be approximated by

<colzil<uz-,1>> C ATy,

col}il (ui2)

where H € R330 Let M = 400 and define data matrices X [k] € R*0*37 and Y[k] €
JR20x376 by

X[k = [ WLy -,
YIK = [+ col(colf2, (wialf]), colf?, (wialj = 1)) -]

for j = k,k—1,---,k —399. Then, matrix H is updated according to (4.6) using the
above-defined X [k] and Y'[k] matrices. The parameter p is set to 0.5. On the other hand,
Let F(HIk],&,y) defined by

001321 (%,12)
F(H[K], & y) = HIK(E, y)
00121;(0-9& + 0.01y;11 (10y;,12 — 9yi11))

denote the dynamics of the drive response system obtained at step [k], and define § € R
by

0 = F o F(H[K], £[K], y*[k])

to estimate (y',£7)7 in real-time.

The result of state estimation is shown in Fig.4.9, where the estimated and the original
of the two inputs of the nodes are plotted. As shown by the figures, the states are
correctly estimated for & > M, which indicates that the dynamics of the nodes are
correctly identified. Time-evolution of the entries in H is shown in Fig.4.10, and as
the figure shows, the entries converge to constant values for £k > M. The obtained
HT[1000] € R30X376 matrix obtained at the end of the identification process is shown in

Fig.4.11, where the top 15 rows correspond to v; ; and the bottom 15 rows corresponds to
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Fig. 4.10: Time-evolution of the entries in H.
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Fig. 4.11: The HT[1000] matrix shown in color.

v;o for i =1,--- 15, respectively. As an illustrative example, the 1st row and the 16th
row read
0(1, 91, u1) =ef HT[1000]W (€, y)
= — 0.845¢17 — 0.009¢19 — 0.009¢97 + 1.870¢32 + 0.0102)34
+ OO]_O'QDZLQ - OOOl’Il)Ty

= — 0.845y1,11 — 0.009y3 11 — 0.009y11,11 + 1.870y1 12 + 0.010y5 12
+ 0.010y11,12 — 0.001y3 1191 2,
b5 (&1, y1, w) :elT(ijT[lOOO]\II(f,y)
=0.01092 + 0.973v47 — 0.010¢154 — 0.010%)162 + 0.010%)182 + 0.010¢)302
=0.010&; 4+ 0.973y1,2 — 0.010 cos y3 2 sin y1 2
— 0.010 cos y11,28in Y1 2 + 0.010 cos yq 2 sin y3 2 + 0.010 cos y1 2 SIn Y11 2.

On the other hand, it can be obtained from (4.18) that

b1(&,y1,ur) = — 0.863y1,11 + 1.89y1,12 — 0.001y1 11912 + 0.001wy
bg(gl, Y1, ul) :2.92/3y172 + 00151 + 0.0111,172,

which results in

OOOl’LLlliil :O-Ol&yl,ll - 0.02y1712 — 0.009?}3’11 — 0.009y11711 + 0.010?}3’12 + 0.010y11712
Uﬁfil = —2(10y1,12 — Yy1,11) + (10y3,12 — Yyz.11) + (10y11,12 — Iy11.11),
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Fig. 4.13: A comparison between the estimated and the original first states in the case

where the span of the observables does not contain the coupling function.

and

O.Olui‘f2 = —0.010cos ys2siny; 2 — 0.010 cos y11,28in Y1 2 + 0.010 cos yq 2 Sin y3 2
+ 0.010 cos Y1,2 sin Y112

uply =sin(ys2 — y12) +sin(yi e — ya).

Note that by definition, z;; = ;11 and z;2 = —9y,; 11 + 10y;12 hold. As a result, the

inputs are transformed into

sz,il =(232 — T12) + (T112 — T1,2),

uyly =sin(zsz — x13) +sin(zi3 — 713),

which match the true inputs and the identification is considered successful. The identified

network topology is shown in Fig.4.12.
Next, consider the case where the coupling function is not contained in the span of the

observables. Define ¥(¢,y) : R — RSt by

V(& y) :COI(L § Y, 0011121 (yi,llyi,12)> COlili1 (yi,llyi,Z)’ 001;21(%,11&), COI}; (%,12%,2),
coli2, (yi12&:), coli2y (9i2&i))
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Fig. 4.14: A comparison of the state estimation errors with M = 200 and M = 300, where

the average values of the first states of all the nodes are shown, respectively.
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Fig. 4.15: (a) Time-evolution of the entries in H in the case where the span of the
observables does not contain the coupling function; (b) the H T[1000] matrix shown in

color.

where the trigonometric functions are removed from (4.20). Let M = 200 and other
conditions and parameters remain the same. Fig.4.13 shows the result of state estima-
tion, and as the figures show, estimation errors exist. Time-evolution of entries in H
is shown in Fig.4.15(a), and the entries fail to converge to constant values. Fig.4.15(b)
shows the obtained H matrix, whose bottom part fails to show a direct relationship with
the network topology. In this case, there does not exist an H with which |[HV(§,y) —
col ol (be(&:, yi, w;))|| = 0, and H is obtained as a practical minimizer. As a result,
the estimation errors depend greatly on the amount of data, i.e., M. Fig.4.14 shows a
comparison of the identification errors of the average values of the first states y; 1; with
M = 200 and M = 300, respectively, and the latter obtains smaller error. On the
other hand, since the estimations of the states of the original network system, i.e., entries
in 6, are obtained by iterating the dynamics of the derive-response system two times,
small errors between (0, ,615)" and (yy11,--+ ,y1511)  indicate that v; approximates
coly® | (be(&:, yi, ui)) decently. Also, since all the states are estimated, the method described

in Chapter 2 can be employed to obtain the nonlinear coupling function.
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4.4 Conclusions and discussions

In this chapter, the identification problem of network structures using measured output
data is considered, where the dynamics of nodes in the network are assumed to be known.
Under the assumptions that the nodes can be input-output decoupled [99] and that the
internal dynamics of the nodes are convergent [100], a drive-response system is designed
to estimate delayed past data of the original network system as well as the unknown
network dynamics. The states of the network in real-time are also estimated by iterating
the dynamics of the drive-response system. Numerical identification examples showed the
usefulness and validity of the obtained results.

In this chapter, three assumptions are posed which ensure that the input-output model
can be constructed, that the reconstructed system is equivalent to the original and that the
internal dynamics is convergent. If Assumption 4.1 or Assumption 4.3 fails to hold, then
the proposed method would fail and it is encouraged to employ the method proposed in
Chapter 5 for such networks. If Assumption 4.2 fails to hold, then b(y, £) can be obtained
but it may not be able to recover % and therefore g(z) any longer. In such case, the
network structure may be recovered in terms of y and £ as the information sent from

others, as in the case in Chapter 3 where the assumptions do not hold.



5 Identification of Networks Structures for
Networks with Partially-measurable States

and Unknown Dynamical Models

5.1 Introduction

In the previous chapter, a drive-response-system-based method is proposed to identify
the structures of networks, the dynamical models of whose nodes are considered known.
In this chapter, the requirement of knowledge about the dynamical models of the nodes
is released, and an identification method is proposed for networks of nodes with partially
known or unknown dynamics using measured output data.

Compared to many other topics in the field of network structure identification, the iden-
tification of networks having hidden variables with unknown dynamics is a less-considered
topic due to lacking available information. The hidden variables are usually modeled as
functions of time acting as an external input ([32, 89, 90, 52, 98, 36]), and the net-
work is reconstructed in the subspace spanned by the measurable states. In [32, 89],
data-correlation-based methods are employed, where the hidden variables are considered
noises and the adjacency matrix of the subnetwork consisting of measurable nodes is de-
rived using data correlation. [98] describes the effect of hidden variables on the result
of such correlation-based methods. On the other hand, [90, 52] use a covariance-based
method under the principle that hidden inputs would enlarge the covariance of the identi-
fied adjacency matrix of the measurable sub-network. In [36], a similar method combined
with data entropy detects hidden sources of propagation networks. Besides, [101] stud-
ies the identifiabililty of networks modeled by unknown transfer functions, assuming the
topology of the network to be known.

This chapter considers the identification problem of network structures, the dynamics
of whose nodes are partially known or unknown. It is supposed that the outputs of all
the signals are measurable. Under the assumption that a subspace model of the nodes
in the space spanned by the measurable states is available, the network is reconsidered
as a network of fully known nodes coupled dynamically, where the measurable states are
considered as the full states of the new nodes, and the hidden states are considered as the

unknown dynamical couplings. Under the assumption that the dimension of the hidden

81
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variables is smaller than that of the measurable ones, new variables with to-be-determined
dynamical models are defined which approximates the hidden dynamical inputs, in the
sense that they have the same influence on the dynamics of the known variables. Here, it
may be impossible to identify the original coupling function accurately, so the structure
is defined as the function describing the data flow in the network in terms of the new
variables.

This chapter is organized as follows. Section 5.2 describes the details of the identification
method of networks consisting of nodes with partially known dynamical models. Section
5.3 shows an identification example of a network of Lorenz systems to show the usefulness

of the proposed method. Section 5.4 concludes this chapter and gives some remarks.

5.2 Identification by considering hidden variables as

new states

In practical situations, it is common that some knowledge of the dynamical models of the
nodes in networks is available a priori. However, such knowledge may only be a linearized
subspace model or is inaccurate due to modeling errors or other limitations. This chapter
considers the case that the dynamical models of the nodes are partially known, and tries
to extract the data flow in the network.

Consider the network system of N nodes described by

=f(z;) + Bu,(x), (5.1)

N
g aijg(x;,xj), w; =Cuz;
7=1

where z; € R", 2 = col¥; (z;) € RV denotes the states, f : R* — R” is locally Lipschitz
continuous, w; € R™ is the output of node 7, and u;(x) : R¥ — R™ denotes the trans-
mission sent to node ¢ via the network where a;; is the (¢, j) entry of the adjacency matrix
associated with the network topology. Define w = collY, (w;) and rewrite the dynamics of

the network into

=f(z) + Bg(z), (5.2)

w =C'z,

where f(z) = coll | (f(x;)), g(z) = col | (u;), B= Iy ® B, C = Iy ® C and ® denotes
the Kronecker product. Here, information about the network structure is fully contained
in g(z), so the network structure identification problem is reduced to identifying g(x).
Specifically, this chapter considers the case where a linear approximation of the dynamical
model is known and attempts to identify the network structure from measured output
data.
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First, the dynamical models of the nodes are reformulated such that the outputs w;
correspond to the full states, and the unmeasurable states are considered some unknown
dynamical inputs to the outputs. Let Fx be a linear approximation of f(z) where F' €
R™ " f(z) = Fr +7(z) and 7(z) denotes the modeling error. Let T € R®~™)*" he such
that col(C,T') has full rank, and rewrite (5.1) into

w; = Cx} =CFx; + C1(x;) + CBuy(x), (5.3a)
Tz =TFx; + T7(z;) + T Bu;(x). (5.3b)

Since only data of the outputs w; of the nodes can be measured, rewrite C'F asil into
CFzx; = Fiw; + Fyx;, where F; € R"™*™ consists of the first m columns of C'F' i and
Fy, € R™*™. Define y; = Fox; + C1(x;) + CBu;(x) for i = 1,--- | N. Substituting y; into
(5.3a), y; is considered a dynamical input to w;, i.e., w;” = Fjw; + y;, where the dynamics
of y; is unknown. The merits of defining the variables y; are twofold: the dynamics of
w; becomes fully known and y;[k] can be obtained as w;[k + 1] — Fyw;[k]. This chapter
considers two cases where the dimension of col(w;,y;) is smaller than the dimensional of
x; or not, respectively. Note that although y; is unknown, data for y; can be calculated
from w; and the dimension of y; can be inferred by checking the linear dependency of the
data series.

First, consider the case where dim(y;) +m > n. In this case, no additional variables
are required to span the dynamics of x;, so let the dynamics of y; be described by y;" =
hi(w,y), where y = collY  (y;) € RN™ and h; : RV™ x RN™ — R™. Reformulate the
dynamical models of the nodes as

w;” =Fiw; + yi, (5.4a)
yi =hi(w,y), (5.4b)
fori=1,---, N, and rewrite the dynamics of the network into
wt =Fw+y, (5.5a)
yt =h(w,y), (5.5b)

where h(w,y) = colY, (hi(w,y)), Fi = Iy ® F} and ® denotes the Kronecker product.
Next, the dynamics of y, i.e., h(w,y), is extracted from measured data w[k] and y[k]
using the Koopman operator theory. Define ¢;(w,y) € F to be an observable for i =
1,---,q where F is the space of all the complex-valued scalar functions, i.e., F = {f | f:
R¥™ x RN™ — C}. Define W(w,y) = col(y, -+ ,1,) : RN™ x RN™ — C4 to be the
observable set. Let K denote the Koopman operator that governs the evolution of the

observables associated with dynamics (5.5), i.e.,

Kii(w,y) = i(Fiw +y, h(w, y)), (5.6)
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fori=1,--- ,¢q. Then, a ¢g-dimensional approximation of K¢ can be obtained as
Ky~ c,AV,

for any ¢ € F where ¢, = argmin_||f — cV||z, and A = argming ||V (Fiw +y, h(w,y)) —
HV||L,. As a result, the right-hand side of (5.5b) can be approximated as

h(w, y) = Ky ~ CyA\II(w7y)7

where C}, is such that y = C,¥(w,y). Note that the existence of the expansion matrix
C, can always be ensured by including the states w and y as observables in V(w,y).

To obtain A from data, suppose that M + 2 steps of data, indexed by w[0], w[1],--- |
w[M],w[M + 1], are measured. It is required that M > ¢ and M can be designed
considering the dynamical characteristics of the nodes, e.g., enlarging M for nodes that
oscillate slowly. Then data for y[k] can be obtained as ylk] = w[k + 1] — Fiwl[k] for
k=0,---, M. Define data matrices X,Y € CI*M as

X = [wwlo]ylo) - WM —1],y[M 1)), (5.7a)
Y = Wt ylt]) - wlw[M]y[M])]. (5.7h)

According to the definition of K, KX =Y holds, and a matrix approximation of K can

be obtained as the transition matrix A that maps X to Y, i.e.,

A = argmin |HX —Y|%, (5.8)
H

where || - || denotes the Frobenius norm. Denote the optimality of optimization problem

(5.8) by A" and an approximation of dynamics (5.5b) is obtained as
y it = b (w,y) = C, APV (w,y). (5.9)

Next, information about the network structure is obtained from the identified dynamics
of y, i.e., h'd(w,y). Specifically, data transmission sent to the nodes from other nodes via
the network is extracted. If all the connections in the network were cut, then g(z) = 0
and y;" should depend solely on y; and w;. This fact indicates that the transmission from
node j to node ¢ can be identified as the terms in the dynamical model of node ¢ that

depend on w; or y;. It follows (5.9) that
y = C;C, AP U (w,y), (5.10)

where C; € R™N™ ig such that y; = Ciy. Define U;(w;,y;) € R? to be the observable

vector such that all the entries, which are dependent on w; or y; for any j # 4, in ¥(w,y)
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are set to 0, and define V(w,y) = ¥(w,y) — ¥;(w;, y;). Note that ¥;(w;, y;) now contains

observables that only depend on the states of node i. Then (5.10) can be rewritten as
yj_ = CiCyAOpt\I’i(wi, yz) + CZ‘CyAOpt\If;(’LU, y) (511)

Here, C;C,AP"W!(w,y) corresponds to the information sent from other nodes to node i
via the network and is considered as the network structure to be identified. As a result,

the dynamics of the network is identified as

wt =Flw+y (5.12a)

yj_ :CiConpt\Iji (wia yl) + gid(wv y) (512b)
where

g (w, y) = col;L, (C;C AP W (w, y)) (5.13)

is the identified coupling function.

Remark 5.1. Since T'z; in (5.3b) is n —m dimensional, theoretically only n —m linearly
independent variables are required to fully describe the dynamics. Without loss of gener-
ality, define y; to be the vector consisting of the first n — m linearly independent entries

in y; and define § = collY, (;) € RN™=™) Then, dynamics (5.5b) can be rewritten into
yt =h(w,7), (5.14)
where b/ : RN™ x RN(=m) — RNm,

Next, consider the case where dim(y;) + m < n. In such case, with y; defined by
y; = CFyx; + C1(x;) + CBg(x) as in (5.4), dim(col(w;, y;)) < dim(z;), which means that
additional variables are required for the dynamics of x; to be fully embedded into the space
spanned by the new variables. Here, delay coordinates are employed to complement the
dimension. Let r be the smallest integer such that r - dim(y;) + m > n, and rewrite the

dynamics of the network (5.5) into

wt =Fw+y, (5.15a)
yT+ :h(w, Yy, 7y(r_1)+)7 (515b>

where F} is defined the same as in (5.5). Further, define z; = y'= € RY™ for i =
1,-+- ,r—1and define 2 = col(zy, - -+ , 2z,_1). Then, dim(col(w,y, z)) = r-dim(y;)+m > n
holds and the dynamics of x can be embedded into the space spanned by w,y and z.
The identification is then performed by finding an approximation A°* of the Koopman
operator defined by

K¢i(way7217' t 7Z7‘—1) = wZ(Flw—'—ya 21,22, " ah(”LU,y;Z)); (516)
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using data matrices defined by
X = [m(w[o],y[o], 20) - W(w[M —1],y[M — 1], 2[M — 1])} , (5.17a)
Y = (W) yl1), 1)) - Ww[M]y[M],2[M])]. (5.17D)

The dynamics of the network is then identified as

wh =Fiw + v,
+

Yy =z,
+

21 =Z2,

Zv—"’——l - COI?LI (CiConpt\I[i (U}, Y, Z)) + gid<w7 Y, 2)7

where C, € RY™*4 is such that z,_; = C,¥(w,y, 21, - ,2_1), ¥; contains observables

that solely depend on the states of node 7, and
g“(w,y, 2) = colY | (C;C, APV (w,y, 2)) (5.18)

is the identified coupling function, where W, = W — U, as in (5.11). Note that the case
where dim(y;) + m > n can be considered as a special case where r = 1 and z does not
exist.

The proposed identification algorithm is summarized in Algorithm 5.1.

Next, consider the relationship between the identified coupling function g*(w,y, z) and
the original g(z), and discuss the identification error in terms of the difference between

the original and the identified dynamics of the measured output w.

Proposition 5.1. If data are sufficient (M — oo) and are sampled uniformly randomly,
then for ¢ = 1,--- ,N and 7 = 1,--- ,m, the jth component of the identified coupling
function for the ith node, i.e., ejTCZ-gid(w, y,2), is a projection of e;(w;" — Fyw;)"" onto
span{W,}:

e;‘rcigid(wv Y, Z) :Pspan{\lf;(w,y,z)}(e;‘r(wj_ - Flwi)r—i_) (519)
with respective to dynamics (5.15).

Proof. First, the relationship between the theoretical and the identified dynamics of y is
considered, and then the validity of equation (5.19) is verified.

As shown in [94] the solution of optimization problem (5.8), i.e., A" minimizes
|AY (w,y,z) — KW¥(w,y,2)||L, over the manifold where data are measured, so A%" is
an approximation of the Koopman operator defined in (5.6), in the sense that for any

complex-value scalar function ¢(w,y, z) ([94]),

]P)span{\I/} (K(]P)span{\ll}@)) = C(pAopt\Ij(wa Y, Z);
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Algorithm 5.1 Proposed identification algorithm
Input: measured time series of the outputs of the nodes, Fz; as an approximation of

f(), €. and n
Output: g'(w,y) or g

(w,y, 2)
1. Initialization: find r as the minimum integer with which r - dim(y;) + m > n
2. Matrices construction:
if » =1 then
design an observable set W(w,y) and construct data matrices X,Y with (5.7)
else
design an observable set W(w,y, z) and construct data matrices X,Y with (5.17)
end if
3. Approximate the Koopman operator: calculate A" with (5.8)
4. Obtain the coupling function:
if » =1 then
obtain g*(w,y) with (5.13)
else
obtain g“(w,y, z) with (5.18)
end if
5. Output: g“(w,y) or g“(w,y, 2)

where ¢, = argmin_ ¢ — c¥(w,y, z)||. Since one can design ¥ to contain w,y and z as

observables, the evolution of the jth entry of y; is obtained as

Ty rid _ T id _ T opt
e; Ciy =e,; Ciz, | =e; C;C. A"V (w,y, 2)

:]P)span{\ll} (G;FCZ'Z;’—_I) = ]P)span{\ll} (BJ*TCz’yH)a

i.e., the identified evolution ejTC',;y““id is a projection of the true evolution ejTC’iy“r onto
the space spanned by the observables in ¥ (w,y, z).
On the other hand, by the construction of g(w,y, z) in (5.18), the coupling function

of node i is obtained as a linear combination of the observables in V’(w,y, 2), i.e.,
T id T id
ej ng (U), Y, Z) :Pspan{\ll;(w,y,z)}(ej Cizrfl )
:]P)span{\lf,’i(w,y,z)}]P)span{\I'}(e;'rcinJr)'
Making use of dynamics (5.15a) that w™ — Fyw = y and the fact that span{V}(w,y, z)} C
span{W¥(w,y, 2)}, the following equations hold
ejTCigid(wa Y, Z) :]P)Span{\I/;(w,y,z)}(ejTCin+)

:]P)span{\llg(w,y,z)}(e;'r(w;_ - Flwi)r+)'

where Ciy = y; = w;” — Fyw; is substituted. O
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Proposition 5.1 means that the coupling function is obtained in terms of the r-step-
future and the (r + 1)-step-future values of w, which is estimated using the dynamics

identified from measured data.

Remark 5.2. The identification error of the proposed method depends on two factors,

namely the design of the observable set W(w,y,2) and the amount of measured data.
Define

r+< r+,id(

e(waya 2) =Y w,y, Z) -y wayvz)
=h(w,y,z) — C,APV(w,y, 2)

to be the identification error, then € can be estimated as

”5” :”h’(wa Y, Z) - IP>span{\11}h(fw7 Y, Z) + Pspan{\ll}h(wa Y, Z) - Conpt\Ij(wa Y, Z)H
<||lh(w,y, 2) = Popanguyh(w, y, 2)|| + |Pepanguy (K — KPP0 C.0 (w, y, 2)) |

Here, the first term corresponds to the identification error caused by the design of the
observable set, and the second term corresponds to the error between the approximated
and the original Koopman operator. If b € span{W¥}"™, then ||h—Pg,anquih|| = 0. Also, if
Cr_1(Y — AP X)) = 0 holds for all the trajectories of the system, then KW (w,y, z) =
U(w™,y*, 21) always holds (at least on M), which leads to (K — K" %)C, U (w,y, z) = 0.

Remark 5.3. By using streaming data sets, i.e., defining data matrices X and Y over a
horizon of length M and updating the recorded data at every step k, the proposed can

be implemented in real-time for networks with topology changes, as stated in Chapter 3.

Remark 5.2 indicates that to reduce the identification error, the observable set should
be designed sufficiently rich to cover h(w,y, z) as much as possible. Also, more samples

should be measured independently from various points in the state space.

5.3 Numerical Examples

5.3.1 Identification without dimension complement

Consider a network of 8 interconnected systems described by

%JE =i + 0.1(—xs + 40 — x?ﬂm + 2i3), (5.20b)
T =iz + 0.1(—2i3 + u;), (5.20¢)

8 T
U; = E az‘j(l’2j - $2z), w; = (Izl 13z‘2> )
Jj=1
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Fig. 5.1: Entries of the obtained matrix Cy,A € R'%*321 where the value of [C,A};; entry
is represented by the color at coordinate (i, 7). The network topology can be inferred by

the non-diagonal entries in the 8 x 8 sub-block of rows 9 to 16 and columns 10 to 17.

for i« = 1,---,8, which are Van der Pol oscillators with damped inputs and discretized
using the 1st order Euler method with 0.1-long time steps. Suppose that only a linearized

model of the oscillators is known:
U)jl =W;1 -+ Olwlz + Tﬂ(l’),
’LU;g = — Olwzl + 11?1]12 —+ T,L'Q(.I'),
ZL‘;E :091)13 + Tig(l’).
Define y;1 = 7i1(x), yio = Ti2(x) and consider the nodes described by (w;, y;):
w; =wiy + 0.1wis + Y,
’LU,L—; = — 0111}21 + 11w22 + Yi2,
y;‘i :hil (U], y)a
yz+2 :h‘i2<w7 y)a
where w = col>_, (w;) and y = col?_, (;). Rewrite the dynamics of the network into
wt =Fw + v,
y" =h(w,y),

where F = Ig ®

1 0.1
-0.1 1.1}
Suppose that 5000 trajectories of 3 steps of the outputs, denoted by Jw,/w™,/w?*, are

measured from random initial points distributed uniformly in [—2,2]'6. Then, data for y

and y* can be calculated as
jyu :jw;i — Iy — 0.1(jw¢2)7
Tyiy =Iwh 4+ 0.10wi) — 1100 w),
Ty = wi —Twi = 0.10wh),
Ty = wi +0.10wh) — L10wy),
for y =1,---,5000. Define Koopman operator K by
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Fig. 5.2: The identified network topology.

where 1) : R x R — C. To obtain an approximation of K, define ¥(w,y) : R x R16 —
R32 as

U(w,y) :C01(1, W, Y, Wit W2, WinYi1, WirYi2, Wi2lYi1, Wi2li2, Yi1Yi2, w?p w?za yi217 y?z;
wflwiz, wuw?z, w¢21yz'17 wi1y,~217 wflyiz, wily?m w?zyﬂ, wi2yi217 w?zyi%
wi2y1‘227 92'21?/1‘2, yil?/?z, W;i1Wi2Yi1, Wit Wi2lYi2,

COS W;1, COS W;a, COS Y1, COS Y;o, SIN W;1, SIN Wjg, SIN Y41, SIN Y;o,

COS W;1 SN W;q, COS W;o SIN Wjo, COS Y51 SN Y1, COS Y;o SN yig) , (5.22)

where the variables with subscript ¢ denote abbreviations of the corresponding states of
all the nodes, i.e., y;;w;; is an abbreviation of Colfil(yilwil). Define data matrices X,Y
by

X — [@(1% ) - \11(5000w,5000y)] 7
Y

[\Ij<1w+’ ) \11(5000w+,5000y+)] .

Then, a matrix approximation of K can be obtained as A = argming||HX — Y||r, and

h(w,y) can be obtained as
h’id<w7 y) - CyA\II(U), y)7

where C, = [016X17 L 016X288} is such that C,V(w,y) = y. Entries of the obtained
Cy,A are plotted in Fig.5.1, where the color at coordinates (i,j) represents the value of
entry [CyAl;;.

Next, the first node is taken as an illustrative example to show the process of obtaining
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Fig. 5.3: A comparison of the first components of the 12 nodes in the original network

and the reconstructed network starting from the same initial positions.

the coupling function. The dynamics of ¥y, and y;o is identified as

yﬁ,id :elThz‘d -0,

Y =ed b = —0.0841)5 — 0.029%10 + 0.010¢15 + 0.010th17 + 0.899196 — 0.180¢)114
— 0.0221P122 — 0.100¢139 — 0.001%)162 — 0.020t0219 — 0.093¢)255 + 0.010¢266
+0.009%290 — 0.001tm0s

= — 0.084w;; — 0.029wy5 + 0.010wes + 0.010wss + 0.899y15 — 0.180w, wsy

— 0.022wy w3, — 0.100w? y12 — 0.001w,y1 — 0.020ws Wiy

— 0.093 sin wq7 + 0.0102 sin wq5 + 0.009 cos wq1 cos w1 — 0.001 cos wqs Sin wqo,

where entries smaller than O(5 x 107%) are omitted. Here only the terms 0.010t5 +
0.010¢)17 contain states sent from other nodes and are hence considered the coupling

function. As a result, the dynamics of the first node is identified as

wfl =wq; + 0.1wi2 + y11,

wE = — 0.1wy; + 1.1wi2 + Y12,

yi, =0,
=Y [CyAl 0¥ + 0.01wes + 0.01w
Y12 y<41](9,5) Vi 62 82,
€Ny

where N; = {2, 10,26, 114,122,130, 162, 210, 258, 266, 290, 298}. By performing the same
procedures to all the nodes, the topology of the network is then identified as shown in
Fig.5.2. A comparison between a reconstructed system using the identified result and
the original is also shown in Fig.5.3. As the figure shows, starting from the same initial
position, the reconstructed system tracks the original for about the first 50 steps and

deviates due to identification errors.

5.3.2 Identification with dimension complement

In this subsection, consider the case where the dimension of the output is too low that

the dynamics of the nodes cannot be embedded into the space spanned by w and v, i.e.,
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Fig. 5.4: Trajectory of system ¢ described by (5.23) with u; = 0.

the case where r > 1. Consider the network of 12 nodes described by

rf =097 + @i + 243, (5.23a)
Ty == 0.9259 + Ti3 + wi, (5.23Db)
‘7513 =0.01z; 3 + 1.2(z;1 + @io + i3) (Tig + Tio + 253 — 1), (5.23¢)

12
U; =0.1 Z a/ij(.ri’Q — IL‘ij), w; = Tj1,
j=1
fore=1,---
Fig.5.4.

Suppose that only a linearized model in the space spanned by the output, which is also

,12. The trajectory of node i described by (5.23) when u; = 0 is shown in

inaccurate, is known, i.e., w;” = 1.0w; + 7;(z) where 1.0w; is the inaccurate known part
and 7;(z) denotes the unknown dynamics. Reformulate the dynamics of the nodes into

the following form

+
w; =w; + Yi,

y1+ _zi7
zt =hi(w,y, 2),

and rewrite the dynamics of the network into

wt =w +y, (5.24a)
yt =z, (5.24b)
T =h(w,y,2), (5.24¢)

€ R2 y e R2 and 2 € R'2. Let ¢(w,y,2) : R — C denote an

observable and defined Koopman operator K by

- @Z)(w +Y, %, h’(wayvz»

where w = col;2, (w;)

Kip(w,y, 2)
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Fig. 5.5: The obtained C'A € R3¢*1% matrix shown in color.

Next, consider the problem of obtaining an approximation of K. Define a set of ob-

servable functions ¥ (w,y, z) : R% — R by

\Ij(w7 Y, Z) :C()lilil (17 w, Y, z, COlilil(wiyi)a COL}il(wizi)a COI}il(ini>7

0011‘131(%‘2% 001221(%‘2)7 C01£1(Z‘2)>7 (5.25)

7

and suppose that a 203-step-long trajectory of the outputs of the coupled nodes in the
network is measured, which is denoted by w[k] € R'? for k = 1,---,203. Then, data

series of y and z are obtained as

ylk] =w[k + 1] —w[k], k=1,---,202,
k] =ylk+1], k=1,---,201,

and col(wlk], ylk], z[k]) for k = 1,---,201 is a 201-step-long trajectory of system (5.24).
Define data matrices X,Y € R199%200 by

X = [w(lt) yf1],#[1]) - w(w[200],y[200], 2[200])| (5.262)
Y = [\Il(w[2],y[2],z[2]) \If(w[201],y[201],z[201])} , (5.26D)
and a matrix approximation A of Koopman K can be obtained as

A = argmin||HX —Y||p.
H

As the result of the identification, the obtained C'A matrix, where C' is such that
CVU(w,y,z) = col(w,y, z), is shown in Fig.5.5, which corresponds to the identified dy-

namics of w,y and z. The h(w,y, z) function can be identified obtained as
hid(wa Y, Z) = CZA\I[(U}, Y, Z))

where C, € R?*1% is such that z = C,¥(w,y,z). As an illustrative example, the 26th

row of A, which corresponds to the unknown dynamics of the second node, i.e., ha(w,y, 2),
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reads

e AV (w,y, 2) = — 3.87421h3 — 0.1419¢5 — 3.65100015 — 0.1290¢)17 — 2.0900¢57
— 0.1000¢99 + 7.6560139 + 0.26401)4; + 2.64000)51 + 2.6400¢63
+ 4.06561)75 + 0.14521)77 + 3.61200057 + 0.1200¢)g9 + 1.2000)99
= — 3.8742w, — 0.1419w, — 3.6510y, — 0.1290y4 — 2.09002,
— 0.1000z4 + 7.6560wsys + 0.2640w,y, + 2.6400ws 2y 4 2.6400y22,
+ 4.0656w3 + 0.1452w3 + 3.6120y3 + 0.1200y7 + 1.200023,

where readings smaller than O(107%) were omitted. It can be seen that node 2 only re-
ceives transmissions from node 4, which is explicitly identified as the terms in ejg AV (w, y, 2),

ie.,
g5 = —0.1419w4 — 0.1290y — 0.1000z4 + 0.2640w,y, + 0.1452w? + 0.1200y72.

Fig.5.6 shows comparisons of trajectories of system (5.24) with the identified h%(w,y, 2)
function and the original system starting from the same initial values. Specifically, the

new states w,y, z and the corresponding true values w?, 3, 2!, calculated by

t
w; =1,

t
Y =Tz + ;3 — 0.1x; 1,

Z,Lt = — 0~09Ii,1 — 1.01’1‘72 + 0.911'1"3 + ]_.2(1‘1‘71 + l’@g + ZL‘Z‘73>(ZE2‘71 + l‘@g + £L'Z‘73 — ].O) + UZ(ZE),

respectively, are compared. As the figures show, the errors between the trajectories stay
low for around 250 steps, and deviate due to small identification errors. The identified
network topology is shown in Fig.5.7, and the coupling function is obtained from h® using
(5.18). This example also indicates that the incorrectness of the a priori linear model in

the space of the output would not disable the proposed identification method.

5.4 Conclusions

In this chapter, the identification problem of network structures using measured output
data was considered. The structures of networks were modeled as coupling functions that
describe the data transmission in the networks and proposed identification methods to
identify the coupling functions from measured data. The identification was performed
in a three-step manner, where the unmeasurable states of the nodes were considered
dynamical inputs. Then, the dynamical input signals were considered new variables, and
the dynamics of the network was identified using the Koopman operator theory. Finally,

the coupling function was obtained as the information that was sent to the nodes from
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Fig. 5.6: Comparisons between the trajectories of the reconstructed system using the
identification results and the original system. Note that the time interval of k£ € [200, 300]

is shown.

e
n

Fig. 5.7: The identified network topology.

other nodes via the network. Numerical identification examples showed the usefulness
and validity of the obtained results.

A significant drawback of the proposed methods is that the computational cost would
blow up as the number of nodes or the complexity of the coupling function increase.
Since there is no a priori knowledge about the coupling functions, one can only design the
observable set to be as rich as possible to hope the span contains the coupling function,
i.e., by using trigonometric basis and power series. Such a fact reveals a trade-off between

computation costs and identification accuracy of nonlinearity.






6 Conclusions and Discussions

6.1 Summary and conclusions

This dissertation addressed the problem of network identification. Methods were devel-
oped which recover the structures of networks using measured data, and the developed
methods are based on the Koopman operator theory. In the cases where the full states
of the nodes in the networks are measurable, the key idea was to note that the difference
between the two Koopman operators K; and K, associated with the original network
dynamics and the unconnected network dynamics, respectively, is related to the structure
of the network, which is represented by the coupling functions. Approximations of Koop-
man operators acting on the states, i.e., Kix and Koz were obtained from measured data
and the coupling function is extracted as g*(z) = Kz — Koz. For networks where only
the outputs of the nodes are measurable, two cases are considered where the dynamical
models of the nodes are known or not, respectively. In the case where the dynamical
models of the nodes are known and the full states can be recovered from measured data,
a response system was designed to identify the coupling function and recover the hidden
states simultaneously. In the cases where the hidden states cannot be recovered, new
variables were designed based on measured data to span the manifold of the dynamics,
and identification was performed based on the newly defined variables.

Chapter 2 and Chapter 3 considered identifications assuming that the full states of the
nodes were measurable. In Chapter 2, it was assumed that both Koopman operators
K, and K5 can be directly obtained from data. Data of an isolated node was employed
to approximate Koopman operator K, associated with the network with isolated nodes.
Approximations of Koopman operators K; and K, are obtained as the transition matrices
relating two different data matrices, respectively, and the coupling function is extracted
as the difference between the images of two Koopman operators acting on the states as
observables. Theoretically, it was shown that the identified coupling function is an Lso-
projection of the (infinite-dimensional) space of observable to the g-dimensional subspace
spanned by the pre-designed observables. The proposed method obtains an approximation
of the coupling function, also in terms of a linear combination of the observables, such
that the obtained coupling function minimizes the Lo-norm of the identification error as
a (vector of) function(s) over the subspace where the data are measured. Two numerical

examples verified the usefulness of the proposed method: the first example served as a

97



98 6.1. Summary and conclusions

detailed example of imitating an unconnected network and performing identification, and
the second example addressed the case where the span of observables does not contain
the coupling function.

Chapter 3 extends the method proposed in Chapter 2 for detecting network topology
changes. The assumption of data for an isolated node posed in Chapter 2 is released
by posing some restrictions on the network structure, i.e., to assume that the graph
associated with the topology is undirected and that the coupling functions between any
two nodes are skew-symmetric. The new assumptions mean that the data exchange
pattern between any two nodes is symmetric, so they would cancel out if numerically
added up. This relationship bridges the dynamics of nodes in the network (K;z) and
the dynamics of isolated nodes (Kyx) and enables K,z to be recovered from Kjz. On
the other hand, the method proposed in Chapter 2 is a post-processing method, i.e., the
method collects all the data and obtains a result with one optimization. If the network
topology changes with time, then data taken after the topology change would contradict
those taken before the topology change, and the method would fail. To account for
networks with topology changes, the method proposed in Chapter 3 employs a streaming
data set that is updated at every time step with newly measured data. It is also shown
theoretically that the obtained result is a projection of the coupling function onto the
space spanned by the observables, and the design of the observables greatly influences the
identification performance. Numerical examples including one with data from a SPICE
model showed the usefulness of the proposed method.

On the other hand, Chapter 4 and Chapter 5 considered identifications using only out-
put data. In Chapter 4, it was assumed that the dynamical models of the nodes without
inputs are known. The strategy was to first define a response system that tracks past data
of the original. Under assumptions, the dynamical models of the nodes are decoupled into
the input-output dynamics and the internal dynamics. The coupling function was formu-
lated as a linear combination of the observables, and the coefficient matrix of the linear
combination was considered a variable in the response system. The coefficient matrix as
a variable was then updated in such a manner that the errors between the variable and
the true expansion matrix of the coupling function converge to 0 asymptotically, and the
convergence was theoretically ensured. The states of the original network system at the
current step were also obtained by iterating the dynamical model reconstructed out of
the identification results. Two numerical examples concerning SISO and MIMO cases,
respectively, were presented to show the validity of the proposed method.

In Chapter 5, the identification problem of networks consisting of nodes with unknown
dynamics was considered. It was assumed that some a priori knowledge on the dynamics
of the nodes, e.g., a linearized model in the spanned space of the measurable outputs,
is available. The strategy was to consider the dynamics of the output signals as the

full dynamic of the nodes, and consider the hidden variables as dynamical couplings
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with unknown dynamics which connect these nodes. Two cases were considered where
the dimension of the output signal is sufficiently high or not, and the low dimension is
complemented using past data. The dynamics of the network was then obtained in terms
of the measurable outputs and the newly defined variables. The reconstructed system is
equivalent to the original in the sense that its outputs have the same dynamical behaviors.
Numerical examples addressing the cases where dimension complement is applied or not,

respectively, showed the validity of the proposed method.

6.2 Discussions and future works

This section summarizes some drawbacks and problems that remain to be solved and
discusses the tasks that should be done in the future. Possible extensions and applications

of the results are also addressed.

From the perspective of technical improvements, the following problems exist and may

be improved.

Requirements on the measured signals

Conceptually, the methods proposed in this dissertation minimize 3™, [lg(z;) — g"(z;)|
by finding a proper g'?, where z; are the measured data. The obtained results are ap-
proximations of certain coupling functions and are only valid over the field where data
are measured. Therefore, it is desired that the output signals are exciting and ergodic,
i.e., the outputs cover the domain where one concerns about the coupling function. If
the outputs and the coupling functions converge to constant values including 0, then the
proposed methods fail. If the outputs converge to some manifold which is a subset of the
state space, then the identified coupling function would be some function which has the

same projection over the manifold as the true coupling function.

Robustness of the identification result

In Chapter 2, it is supposed that data are measured with measurement noises, which are
modeled as random variables uniformly distributed over a small interval ([—0.005, 0.005]).
While in other chapters, no measurement noise is involved. The proposed method may
remain valid if noises are present, and it remains an important problem to derive the

allowable upper bound of the noise signals with which the proposed method stays valid.

For the methods proposed in Chapter 2 and 3, the validity of the proposed methods

is equivalent to the recoverability of the sparse vectors by solving the ¢;-minimization
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problems, i.e.,
minimize  ||ay; — ag|1,
a13,a24
subject to a; X1 = y;1,
a2i X2 = Yia,

taking the identification method proposed in Chapter 2 as an example. When measure-
ment noises are present, the constraints no longer hold strictly, and the ¢;-minimization
problem can be transformed into
minimize  ||ay; — ag|1,
13,024

subject to  ||an; X1 — v llz < m,

Ha2z‘X2 - yz2||§ <,

for some n > 0. If the measurement noise is so large that there exists some aj; such
that [|a};]]1 < ||af%¢|l; and |lat, X1 — yitll2 < [|al7“¢X1 — yi1]|2, then the true vector is
unrecoverable and the identification fails. It lacks quantitative analysis of the influences
of optimization parameters and noise size on the accuracy of the identifications. Towards
such problems, the robust basis pursuit analysis (see, e.g., chapters 4-6 [82]) addressed
with the null space property, the covariance and the restricted isometry property of the
data matrices may help establish the robustness analysis of the proposed identification
method.

For the method considered in Chapter 4, it can be verified that if noise presents, then
the origin of the tracking error dynamics of the response system would no longer be
asymptotically stable. However, the error would stay bounded in a region containing the
origin. In Chapter 5, if data are sufficient, then the identification error would be related

to the statistical characteristics of the measurement noise.

Evaluation of obtained results

Throughout this dissertation, the obtained results are evaluated by comparing them to the
theoretical results. However, knowledge of such theoretical results is not available, and it
becomes an important problem to verify if the obtained results are correct. Verification in
such cases can be achieved by comparing the data for the reconstructed network to those
for the original, using spectral analysis, Fourier analysis or comparing their trajectories
from the same initial states. This problem becomes even more obvious when the true
coupling function is not in the spanned space of the observables, like in the example in
Chapter 3 where square wave functions are employed as the basis to approximate the
hidden dynamics. As the number of the radial basis functions increases, more accurate

reconstruction of the behavior of the dynamics may be achieved, but the identification
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results become more difficult to be comprehended. It remains a future work to develop

an evaluating algorithm that estimates the accuracy of the obtained result.

Optimal design of observables

Throughout this dissertation, the coupling functions are identified in terms of linear com-
binations of observables. The design of observable vector ¥(z) influences the performance
of the proposed method greatly since the observables span the functional space onto which
the coupling function is projected. Numerically in the case where sufficient data are mea-
sured over a certain set, the proposed method obtains an approximation that minimizes
the L, norm over the set where data are measured. Also, when sparse identification is
applied, different choices of observable sets lead to different sparsity of the coefficient vec-
tors, which is related to the amount of required data. For nodes with unknown dynamical
models, the optimal design of observables remains an important problem.

From the viewpoint of Koopman theory, to obtain an approximation of the Koopman
operator, the space spanned by the observables should be (at least almost) invariant under
the action of the Koopman operator. Making use of the Koopman mode decomposition,
there should exist an invertible linear transformation between the first ¢ dominant eigen-
functions and the observables. Also, the propositions in this dissertation showed that
the spanned space of the observables should contain the coupling function to obtain high
accuracy. Practically, since the coupling functions are unknown, the observables could be
designed as power series, radial basis functions, Fourier series or polynomial basis of the
variables, with which an approximation is ensured to exist by the Weierstrass theorem.
Also, since data are available, the basis functions can be designed as the eigenfunctions
of the Koopman operator calculated theoretically using the GLA method.

Designing the observables simply as a group of basis functions also has some drawbacks.
The major one is that the calculation cost may become unaffordably large if the observ-
ables are designed as polynomials. It remains an open problem to design the observables
optimally making use of known information, such as the measured data series of the nodes

or the physical characteristics of the systems from which data are measured.

From the perspective of applying the proposed methods to a wider range of network

systems, the following problems exist.

Networks with nonidentical nodes
Throughout this dissertation, networks consisting of identical dynamical systems are con-
sidered. While in reality, it is usually the case that there exist differences between pa-

rameters of dynamical systems due to practical reasons.
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In Chapter 2, it is assumed that data series can be measured from at least one isolated
node, and these data were used to imitate data for a network without connections. If the
assumption is strengthened such that all the connections in the network can be manually
cut off, and data can be taken from all the isolated nodes, then the method becomes
applicable to networks with nonidentical nodes. In such case, data matrices X5, Y5 in
(2.9) are constructed with the data from the isolated nodes, and the imitating procedure,

as shown in Chapter 2.3, can be omitted.

In Chapter 3, the assumption of data from isolated nodes was replaced by the assump-
tion that data transmission between any pair of nodes is symmetric. If the nodes are not
identical, the proposed method may fail, because the unforced models of the nodes, i.e.,
Ksz;, can no longer be extracted from the summation Zf\il Ksyz;. In such case for node
7, the best to do is to formulate the coupling function as the information sent from other

nodes, i.e., node j, to node ¢ by checking the observables having z; as variables for j # i.

Chapters 4 and 5 allow the nodes to be nonidentical, because the nodes are assumed
known, or the coupling function is already reformulated as the information sent from

other nodes, respectively.

To extend the proposed method to networks with nonidentical nodes, two cases should
be considered separately. The first case is that the nodes are slightly different, such as
in the situation where the nodes possess parameter uncertainty. Robust identification
methods may be employed in such cases. The second case is that the nodes are largely
different, such as networks consisting of different physical systems. In such cases, identi-

fication methods can be developed based on the method described in Chapter 5.

Identifiability of networks using the proposed methods

This dissertation proposed several methods for identifying network structures formulated
as a coupling function g(x). The identifiability problem concerns whether the obtained
results are ensured to be unique, and the problem can be considered from two perspectives
considering whether the obtained g(x) is unique and whether the identified network struc-
ture is unique, respectively. In Chapters 2, 3 and 4, the network structure is formulated
as the inputs originating from the network transmissions, and assumptions are posed,
respectively, to ensure that g(z) can be recovered from measured data. It is considered
that the obtained results under the assumptions are unique, however, the necessity and
the sufficiency of these conditions are not addressed. On the other hand, in Chapter 5,
the network structure is formulated as the terms in the dynamical model of the output
signals originating from other nodes in the network. In this case, the obtained results
are also considered unique. However, the necessity and the sufficiency of the conditions
are not theoretically discussed. Future works should focus on determining the optimized

formulation and verifying the necessity and the sufficiency of the proposed conditions.



Chapter 6. Conclusions and Discussions 103

Other problems

There are other problems such as dealing with synchronized or non-exciting signals, ana-
lyzing the convergence of the methods with streaming data sets, deriving the amount of
required data, visualizing the obtained results and optimizing the parameters of ADMM,

which are left as future tasks.

Next, besides applying to network identification-related problems, discussions about

two possible extensions of this work are presented.
Network Structure design

Given some desired behaviors of dynamical systems, the proposed method can be used
to design connections among these systems to realize such behaviors. This is achieved
by considering these desired behaviors as those of existing nodes of an unknown virtual
network, and ’identifying’ the structure of the virtual network. An example of such a

problem is the design of central pattern generators ([102, 103]).
Network reduction

The proposed methods can be applied to obtain a reduced model of networks with
partially synchronized nodes. When p partial synchronization clusters exist, the set
{1,2,---, N} can be partitioned into p sets My, --- , M, such that

Ui M ={1,2,--- N},
M, NM; =2, i #7,
z;[k] =xi[k], Vj,le M,.
Define z = col(zy,- - , 2,) € RP" such that z; = z; where j is the smallest integer in M,
then z; accounts for the dynamical behaviors of the nodes in the i-th cluster. In this
case, the data matrices X and Y defined as described in this dissertation no longer have
full ranks, and the matrices consisting of the linearly independent rows can be considered

instead.

For the matrix approximation A of a Koopman operator such that
U(z") = A¥(z),

Let ¥(z) denote the sub-vector which contains all the linearly independent entries in W(z).
Then

U(2T) = TIAT, U (2)
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holds and A := TI AT, can be considered an approximation of the Koopman operator
associated with the reduced network represented with z. Then the coupling function can

be obtained in terms of z, which corresponds to the dynamics of the reduced network.
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