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Chapter 1. Introduction 1

1 Introduction

1.1 Network identification problems

In recent years, large progress is made in the field of network theory resulting from the

developments of hardware and communication technologies. Complex networks form an

essential part of modern infrastructure, and as networks become larger in scale and more

complex in structures, understanding the structures of networks can no longer be achieved

intuitively with simple calculations but requires new methodologies [1]. In many cases,

precise mathematical models of given networks are desired, but only time-series data of

the nodes of the network can be measured as available information, and this leads to the

problem of network structure identification.

Networks play important role in our daily lives, and many real-life problems can be

solved by modelling complex systems as network systems and analysing the structures.

For example, human brains can be modeled as groups of interconnected neurons whose

electrical activities represent the activity of the underlying structures. The specific struc-

ture of the brain is then revealed as the patterns of data exchanges between certain groups

of neurons, which are identified from temporal measurements by EEG [2] and spatial mea-

surements by fMRI [3]. In [4], the dependence between signals from human cardiovascular

systems is studied to reveal the influences on human heart rate variability. In financial

markets, stock returns were considered random processes before the correlations of differ-

ences in daily stock prices were studied. Mathematical models are constructed using the

correlations of measured data and reveal new structures of stock trades in financial mar-

kets [5]. A social media platform can be modeled as a communication network, where the

activities of the assets are the posted comments, photos or videos, and the data exchanges

are the interactions between users. Specific properties of such network, e.g., heterogene-

ity, allow the providers to fully grasp the platform and help optimize network service in

various aspects such as the allocations of server resources, advertisement delivery and

targeted content recommendation [6]. In the case of rumors or computer virus spreading,

the problem of source tracing can be considered as finding the root of a tree network using

measured time series of individuals [7]. Similarly in a pandemic, patient zero, which is

the root of the infection network, can be identified from the time order of close contracts

between patients to stop the spreading of infection and find infected suspects [8]. Gene

regulatory networks reveal the functions of cells from the level of gene expression [9], and
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the climate network helps search patterns of global weather [10].

From the viewpoint of system engineering, network identification also plays important

rolls. In many cases, failures of network systems can be modeled as sudden disconnections

of certain paths of the associated network [11]. As an example, infrastructures such as

power grids that are supposed to work under synchronized (or consensus) states may

desynchronize under failure situations [12]. Such failure may be located by monitoring

the influenced nodes and identifying the change in network topology and dynamics. In

communication systems, a server suffering from malicious attacks can be modeled as a

network with external input signals, and the attack signals may give false commands and

destabilize nodes in the original network. The problem of recovering from the attack

can be reduced to the problem of identifying the attack signal and locating the attacked

channel, so the attack can be blocked and the communication path can be cut off [13, 14].

In machine learning, studying the structure of Bayesian networks is an important topic,

which can be represented by a graph that models the characteristic relationship between

the nodes [15].

As mentioned above, identifying the network structures is of great importance in mod-

eling, analyzing and maintening the systems. Nowadays, gathering data becomes easier

with the help of the Internet, and the development of network identification methodolo-

gies are highly desired. In the next section, a brief review of previous studies concerning

the network identification problem is given.

1.2 Background studies

From a historical perspective, the network identification problem can be traced back to the

study of whether any dependence exists between signals, processes or subsystems (transfer

functions) [16, 17, 18, 19]. The dependence was considered as random processes, and

statistical tools were often employed such as entropy analysis [20, 15], Granger causality

[21, 22] and other statistic-based methods, e.g., [23]. Also, the viewpoint of control

engineering brings controlling methods such as applied synchronization [24, 25], response

dynamics [26] and phase/variable resetting [27, 28]. As networks become larger in scale

and more complex, the expressions of state-space models are widely adopted, and graphs

from graph theory are employed to model network topology. It is found that the topology

of networks can be derived from the covariance (correlations) of signals in terms of the

adjacency matrix associated with the network topology [29], and correlation becomes an

important tool that leads to the methods of delay coordinating [30, 31], noise injection

[32], etc. On the other hand, with the developments of computers and data processing

techniques [33], solving the identification problem using large amounts of data by direct

calculation becomes possible. This leads to the sparsity based methods [34, 35, 36, 37,
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38, 39] and other iterative methods [40, 41].

Next, some milestone identification methods are described along with their problem

settings.

Granger causality and transfer entropy

Granger causality [42, 43] and transfer entropy [16, 19, 44] are statistical tools that

reveal causal relationships between signals or processes from measured data.

Consider two processes x(t) and y(t). In Granger causality analysis, process y(t) is

considered to be (at least a part of) the ’cause’ of the process x(t) if past time series

data of y(t) is ’useful’ for prediction of future values of x(t). Let Sx = {xi(k) | i =

1, · · · ,m, k = t1, · · · , tK} and Sy = {yj(l) | j = 1, · · · , n, l = t1, · · · , tL} denote the sets

of measured data of processes x and y, respectively, then y is considered to be independent

on x if the following equality holds:

p(x(tk+1)|Sx) = p(x(tk+1)|Sx,Sy),

where p(x(tk+1)|Sx) is the conditional probability of x(tk+1) being measured. Methods

of verifying the equation are omitted here and can be found in, e.g., [42, 21]. Granger

causality is widely used in various fields, such as identifying Bayesian networks in machine

learning studies [43].

On the other hand, the term transfer entropy quantifies the ’incorrectness’ of the hy-

pothesis that two processes are independent, and is another measure that describes casual

relationships.

Consider a process x(t) and its measurements x1, x2, · · · , xm. Suppose that samples are

measured following some probabilistic distribution p(·), i.e., the probability of xi being

measured is p(xi), such that
∑m

i=1 p(xi) = 1. The information, also known as the surprise,

of measurement xi is defined by − log p(xi), and the average amount of information H(x)

is

H(x) = −
m∑
i=1

p(xi) log p(xi),

which is more commonly known as the Shannon Entropy of x considered as a random

variable. Also, consider another process y(t) and its measurements y1, y2, · · · , yn which

are measured under probability q(yj), respectively for j = 1, · · · , n and
∑n

j=1 q(yj) = 1.

Denote the joint probability of measured xi and yj by P (xi, yj) for i = 1, · · · ,m and

j = 1, · · · ,m, and define the joint entropy H(x, y) by

H(x, y) = −
m∑
i=1

n∑
j=1

P (xi, yj) logP (xi, yj),
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which is also known as the mutual information. If the two processes x(t) and y(t) are in-

dependent, then P (xi, yj) = p(xi)q(yj) and H(x, y) = H(x)+H(y) hold. The dependence

between the two processes is then defined by the error of assuming the two processes are

independent, i.e.,

M(x, y) =
m∑
i=1

n∑
j=1

P (xi, yj) log
P (xi, yj)

p(xi)q(yj)
,

which is also known as the Kullback entropy. By using the conditional entropy H(x|y) =
−
∑n

j=1 q(yj)
∑n

i=1 p(xi|yj) log p(xi|yj), the following equation holds:

M(x, y) = H(x) +H(y)−H(x, y).

The concept of transfer entropy extends the above measure in the sense that the dynam-

ics of information transportation is taken into account. Suppose that x is a Markov pro-

cess of order k, and denote the probability of xt+1 being measured by p(xt+1|x(k)t ), where

x
(k)
t denotes the multiple {xt, xt−1, · · · , xt−k+1}. Consider another process y with mea-

surements yt+1, · · · , yt−k+1. If the two processes are independent, one has p(xt+1|x(k)t ) =

p(xt+1|x(k)t , y
(k)
t ). Then the transfer entropy from y to x is defined by the difference

Ty→x =
∑

p(xt+1|x(k)t , y
(t)
t ) log

p(xt+1|x(k)t , y
(k)
t )

p(xt+1|x(k)t )
.

The transfer entropy Ty→x is 0 if process x is independent of process y.

Transfer entropy analysis releases the requirement that data have to be measured from

regressive processes, which is required by the Granger causality analysis, and therefore

can be applied to a wider range of systems. As an example, the transfer entropy between

neurons is studied to identify synapses in [45], where simulated spike data from a Hudgkin-

Huxley type model are employed.

Applied Synchronization

The applied-synchronization-based methods [24, 25] are successful attempts of applying

controlling strategies to the network identification problem. The structure of a network is

modeled as the entries of the adjacency matrix associated with the topology, and the key

idea is to construct an auxiliary system (also named estimator) making use of measured

data as input. The dynamics of the auxiliary system is carefully designed such that the

state variables converge to the entries of the adjacency matrix.

Consider networks of N autonomous systems (nodes) modeled by

ẋi(t) = fi(xi) +
N∑
j=1

aijgj(xj),
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for i = 1, · · · , N , where x ∈ Rn is the state vector of node i, fi(xi) : Rn → Rn describes

the unforced dynamics, gj(xj) : Rn → Rn describes the transported information from

node j. Functions fi, gi are assumed to be known, and the goal is to identify aij with

measured time series of xi(t).

In [24], the following estimator is proposed:

˙̂xi =fi(x̂i) +
N∑
j=1

ξijgj(x̂j) + ∆i(x̂, ξij, t) + ui

ξ̇ij =− γijg⊤j (x̂j)(x̂i − xi),

where γij > 0, x̂i ∈ Rn, ξ ∈ R, and ∆i(x̂, ξij, t) represents the unknown nonlinearity

such as modeling errors and noises, which is assumed to be bounded by known nonlinear

functions of x̂i and t. The input can be designed as

ui = −k1(x̂i − xi)− f(x̂i) + f(xi)−
1

4ε
δ2(x̂i − xi),

where k1, ε, δ > 0. The variables ξij converge to aij as x̂i − xi → 0, and the entries of the

adjacency matrix are estimated. Note that the convergence is not asymptotic, although

the estimation error can be arbitrarily small by adjusting k1 and ε.

In [25], an estimator with a dynamical input is proposed to ensure asymptotic con-

vergence of ξij → aij. The coupling functions are assumed to be identical, i.e., g(x) :=

g1(x) = g2(x) = · · · = gN(x), and the estimator is designed by

˙̂xi =fi(x̂)i +
N∑
j=1

ξijg(x̂j) + ui

where

ui =− ki(x̂i − xi),
k̇i =ci(x̂i − xi)⊤(x̂i − xi),
ξ̇ij =− (x̂i − xi)⊤g(x̂j).

Asymptotic stability of tracking error x̂i − xi is ensured by Lyapunov’s direct method,

and ξij → aij is ensured by applying the invariance principle [46]. It is also remarked that

when the nodes in the network synchronize, the estimator-based approach fails, because

data exchange, i.e.,
∑N

j=1 aijg(xj), would vanish in such a case. If the network allows state

resetting or external inputs, then identification can be achieved by introducing manual

desynchronization to the network, which can be found in [47].

Data correlation

In statistics, data correlation [29, 48, 49, 50, 51, 32] also describes the dependence

between data sets.
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It is found in [29] that noise helps reveal the topology of networks. Consider a network

of N dynamical systems described by

ẋi(t) = fi(xi) +
N∑
j=1

aijg(xj) + ηi,

for i = 1, · · · , N , where x ∈ Rn is the state of node i, fi(xi) : Rn → Rn, gj(xj) : Rn → Rn,

and ηi is the noise signal. Here fi and g are considered to be known. Suppose that xi

differs a small perturbation δi from yi, the situation with no noises, i.e., xi = yi + δi and

ẏi = fi(yi) +
∑N

j=1 aijg(yj). Then the following equations hold:

δ̇i =fi(yi + δi)− f(yi) +
N∑
j=1

aij(g(yj + δj)− g(yj)) + ηi

=(Fi(yi) +
N∑
j=1

aijG(yj))δi + ηi,

where Fi(y) and Gi(y) are the Jacobian matrices of f(y) and g(y), respectively. By left

multiplying δ⊤j and defining a time-averaging operator ⟨·⟩ by ⟨r⟩ = 1
m

∑m
k=1 r(tk), the

following equations hold:

0 = ⟨dδ
⊤
i δj
dt
⟩ = ⟨δ⊤j Bi(yi)δi⟩+ ⟨δ⊤i Bi(yj)δj⟩+ ⟨δ⊤j ηi⟩+ ⟨δ⊤i ηj⟩,

where Bi(yi) := Fi(yi) +
∑N

j=1 aijG(yj). The first equality holds since the perturbations

are considered independent and 0-mean signals. Define correlation matrices

B = diag(F1(y1), · · · , FN(yN)) +H, where [H]ij = aijG(yj),

[C]ij =⟨δ⊤i δj⟩,
[N ]ij =⟨δ⊤i ηj⟩,

where [C]ij denotes the (i, j) entry of matrix C, and it follows that

0 = BC + CB⊤ +N +N⊤.

Also, N + N⊤ = D holds where D is the covariance matrix of the noises ηi. Entries of

the adjacency matrix associated with the network are then identified by solving the above

equation. Refer to [29] for computational details. Specifically in the case that the network

is undirected, and the perturbation F (yi) can be considered small, the Laplacian matrix

L associated with an undirected network is given by

C =
1

2
DL†,

where L† denotes the pseudo-inverse of L, and C is estimated from measured data.
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In [48], the correlation between variables and their derivatives is employed to reveal

the topology of the associated network. Consider a network of N dynamical systems

described by

ẋi(t) = fi(xi) +
N∑
j=1

aijgj(xj),

for i = 1, · · · , N , where x ∈ Rn, fi(xi) : Rn → Rn and gj(xj) : Rn → Rn. Define

correlation matrices B,C, F ∈ Rn by

[B]ij =⟨ψ⊤(xi)ẋj⟩,
[F ]ij =⟨ψ⊤(xi)fj(xj)⟩,
[C]ij =⟨ψ⊤(xi)gj(xj)⟩,

where ψ(x) : Rn → Rn is a specially designed observable function. By left-multiplying

ψ(xi) to the dynamical model and applying time-averaging, B = F + AC is obtained,

which leads to

A = C−1(B − F ),

where A is the adjacency matrix associated with the network topology.

The data correlation-based methods are also employed in the cases where time delays

occur in data transmission paths, see, e.g., [31, 52].

Compressive Sensing

Sparse identification (compressive sensing) [53] is a method that recovers sparse signals

from the measurements making use of sparsity, and the method is applied to the network

identification problem [34, 35, 36, 37, 38, 39].

In [34], the network identification problem is transformed into the form of

finding x, such that y = Ax.

Networks with nodes modeled in discrete-time by

xi[k + 1] = Fi(x
∗
i [k]) + AFi(x

∗
i [k])(xi[k]− x∗i [k]) +O(∥xi[k]− x∗i [k]∥2),

are considered, where x∗i [k] is a chosen expansion point of the first order Taylor series.

Fi(x
∗
i [k]) is a constant matrix and is considered known. The adjacency matrix correspond-

ing to the network topology is then calculated by augmenting vectors and performing

ℓ1-minimization with thresholding.

In [38], sparse identification is employed to identify nonlinear networks with the help

of basis functions. Networks with nodes modeled by nonlinear structural equation models
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are considered:

yim =
N∑
j ̸=i

aijψ
⊤(yjm)cji + biixim + eim,

where yim denotes the mth observation, and xim denotes the mth input of node i.

ψ⊤(yjm)cji is a nonlinear function, where ψ is the vector of known basis functions, and

cij is an unknown coefficient. Data matrices X,Y and coefficient matrices W,B are con-

structed with measured data, and it follows the above equation that

Y = ΨW +XB,

where the entries ofW Matrix X is then solved by minimizing the ℓ1-norms of its columns

with the alternating direction method of multipliers (ADMM). Finally, the entries aij of

the adjacency matrix associated with the network topology are extracted from matrix X.

1.3 Purposes and outline of this dissertation

Although the network structure identification problem has been widely studied, there

are still open problems remaining and an identification method is desired which has the

following properties:

1) the method only gives connectivity results,

2) the method does not apply to networks with topology changes,

3) the method requires the full states of the nodes to be measurable.

The data-correlation-based methods are model-free and are only able to recover the

adjacency matrices in terms of casual relationships, which makes the methods hardly

applicable to networks with nonlinear data exchanges, i.e., the Kuramoto model [54].

The sparsity-based methods make use of the dynamical models of the nodes to con-

struct equations of the form y = Ax and require all the states to be measured, which

is a strict and unpractical requirement in most cases. On the other hand, both the

correlation-based methods and the sparse identification-based methods are intended for

post-processing uses, which does not apply to networks with time-varying topology. The

applied synchronization-based methods perform identification in real-time, although it

requires both the unforced dynamics and the coupling function to be known.

In this work, identification problems of networks consisting of possibly nonlinear systems

with possibly nonlinear data exchanges are addressed. In detail, interconnected N nodes
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modeled in discrete time are considered, i.e.,

xi[k + 1] =f(xi[k]) + Bui[k], (1.1a)

ui[k] =
N∑
j ̸=i

aijgij(yi[k], yj[k]), (1.1b)

yi[k] =Cxi[k], (1.1c)

for i = 1, · · · , N , where xi ∈ Rn is the state of node i, ui ∈ Rm is the coupling input,

yi ∈ Rm is the output, B ∈ Rn×m, C ∈ Rm×n, f : Rn → Rn describes the unforced

dynamics, and g : Rm × Rm → Rm describes the transmitted information from node j

to node i. aij is the (i, j) entry of the adjacency matrix associated with the network

topology. The purpose of this work is to develop a method that identifies

the data transmission ui =
∑N

j ̸=i aijgij(xi, xj) from measured output data series

yi[1], · · · , yi[M ], which is capable of detecting changes in network structures. For

simplicity, the case where the outputs of the nodes are the full states is first considered,

i.e., networks consisting of nodes modeled by

xi[k + 1] =f(xi[k]) + ui[k], (1.2a)

ui[k] =
N∑
j ̸=i

aijgij(xi[k], xj[k]), (1.2b)

where ui ∈ Rn, and gij : Rn × Rn → Rn.

Chapters 2 and 3 consider the case where all the states of the nodes can be measured

as data. Throughout Chapters 2 and 3, networks modeled by (1.2) are considered.

Chapter 2 assumes that at least one node can be isolated from the network, and the

full-state data series of all the nodes in the network system can be measured. The identi-

fication method proposed in the chapter gives the core idea of the proposed identification

method using Koopman operators and a sparse identification technique. First, define

two Koopman operators K1 and K2 corresponding to the dynamics of the original net-

work and a fully unconnected network where all the nodes in the network are isolated,

respectively. The coupling function describing the data exchange among nodes is then

extracted from the operator Kg, defined by Kg = K1 −K2, acting on the state variables.

Numerically, finite-dimensional approximations of infinite-dimensional operators K1 and

K2 are calculated from measured data, and an approximation of Kg can be obtained

as the difference between K1 and K2. Sparse identification techniques are employed to

reduce the required amount of measured data and construct an identification algorithm.

It is also shown theoretically that the obtained coupling function is a projection of the

original coupling function into the space spanned by the observable functions, which are

designed for identifications of nonlinearity.
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Chapter 3 modifies the method proposed in Chapter 2 to achieve the identification of

structure changes in networks. The assumption on the existence of an isolated node is re-

laxed by assuming instead that the network topology is undirected and data transmissions

in both directions between any two nodes are symmetric. The modified method allows

to detect changes in network structures by performing the method proposed in Chap-

ter 2 with streaming data sets, i.e., using time-varying data matrices which are updated

with newly measured data at every time step. A Koopman operator associated with the

dynamics of the original network is defined and approximated with measured data, and

the unforced dynamical models of all the nodes are then extracted from the Koopman

operator under the relaxed assumption. It is also shown that the modified method applies

to networks with topology changes. On the other side, the case where the restrictions on

the network structure do not hold is also addressed.

Chapters 4 and 5 consider the case where only the output signals of the nodes are

available as measured data. Specifically, Chapter 4 considers a special case of the identi-

fication problem where the dynamics of isolated nodes are known. In these two chapters,

networks modeled by (1.1) are considered.

Chapter 4 considers the case where both B,C and the unforced dynamics fi(·) are

known. It is assumed that each node can be decomposed into the input-output dynamics

and the internal dynamics and that the internal dynamics is convergent, i.e., the difference

between two trajectories of the nodes converge to 0 if they have the same outputs. A

drive-response system is designed by imitating the known models of the nodes and tracking

past data of the original network system. The coupling function is formulated as a linear

combination of the observables, and the coefficient matrix is considered a variable in the

response system. The dynamics of the response system is then designed such that the

error between the coefficient matrix as a variable and the true expansion matrix of the

coupling function converges to 0 asymptotically. On the other side, although the response

system tracks past data of the original, the states of the original network system at the

current step are obtained by iterating the identified dynamical model of the response

system.

Chapter 5 also considers the identification problem using output signals, and it is as-

sumed that the dynamical models of the nodes are unknown. The dynamical model of

the network is reformulated such that the outputs of each node are considered as the full

states and the dynamics of the output signals as the dynamics of the node. Then the

unmeasurable hidden states are modeled as unknown dynamical inputs. Defining such

dynamical inputs as new variables, time series data of the new variables are calculated

and the dynamics of such variables can be identified with the help of Koopman operators.

The network dynamics is then identified in terms of the outputs and the new variables

using measured data, and the network structure is extracted as the data transmission in

the network. If the dimension of the output is so low that the dynamics of the network
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Fig. 1.1: The outline of this dissertation.

cannot be embedded into the space spanned by the outputs and the new variables, then

additional variables are introduced based on past data. In this case, it may be impossible

to identify the coupling function in its original form, so the goal here is to identify what

is equivalent to the hidden nodes in the sense that the identified network system admits

the same dynamical behaviors as the original. The method proposed in this chapter also

applies to the problem considered in Chapter 4.

Chapter 6 concludes this dissertation and gives some remarks. The chapter also dis-

cusses problems that remain in this study and provides future directions to which this

study can be extended.

An outline of this dissertation is given as follows and shown in Fig.1.1. Chapters 2 and 3

consider identifications using measured full states, where Chapter 3 describes an extension

of the method proposed in Chapter 2 for identifying network topology changes. Chapters

4 and 5 consider identifications using measured output data, assuming the dynamical

models of the nodes are known or not, respectively. Chapter 4 considers the case where

the dynamical models of the nodes without inputs are known, and Chapter 5 considers the

more general case where the dynamics of the nodes is unknown. Specifically, the method

proposed in chapter 5 can be considered as an extension of the methods described in

Chapters 2 and 3. Finally, Chapter 6 summarizes the dissertation and gives some remarks

and discussions.
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1.4 Mathematical preliminaries

1.4.1 Notations

Throughout this dissertation, R and C denote the space of all the real numbers and all

the complex numbers, receptively. x∗ denotes the complex conjugate of x, where x is a

complex scalar number, a vector, or a matrix. Let K be either R or C. Kn denotes the

n-dimensional vector space:

Kn =

x =

x1...
xn


∣∣∣∣∣∣∣ xi ∈ K, i = 1, · · · , n

 ,

where x is a vector in Kn, which is an ordered n-tuples of numbers in K. ∥x∥p denotes the
p-norm of vector x defined by ∥x∥p = (

∑n
i=1 |xi|p)1/p where p = 1, 2, · · · ,∞. ei denotes

the ith basis vector of vector space Kn, i.e.,

ei =


...

ej
...

 , j = 1, · · · , n, ej =

{
1, j = i,

0, j ̸= i.

f(x) : X → Y denotes a function f that maps elements x in a set X to elements in set

Y . Kn×m denotes the space of matrices, which are linear maps, that maps (subspaces of)

Km to (subspaces of) Kn:

Kn×m =

A =

a11 · · · a1m
...

. . .
...

an1 · · · anm


∣∣∣∣∣∣∣
Ax = y, aij ∈ K, i = 1, · · · , n, y = 1, · · · ,m,
x ∈ X ⊆ Km, y ∈ Y ⊆ Kn

 .

A = [aij] denotes a matrix A whose (i, j) entry is aij, and [A]ij returns the (i, j) entry

of matrix A. A⊤ denotes the transpose of matrix (or vector) A, and A∗ denotes the

conjugate transpose of A, i.e., [A⊤]ij = aji and [A∗]ij = a∗ji. ∥f∥L2(X) denotes the L2-

norm of function f calculated over set X. ∥A∥2 and ∥A∥F denote the induced 2-norm

and the Frobenious norm of matrix A defined by ∥A∥2 = max∥x∥2=1 ∥Ax∥2 and ∥A∥F =√∑n
i=1

∑m
j=1 |aij|2, respectively. F denotes the space of complex-valued scalar functions,

i.e., F = {f | f : X → C, X ⊆ Kn}, and Fk denotes the k-dimensional space of functions

in the sense that

Fk = {f ∈ F | ∃ci ∈ C : f =
k∑

i=1

ciψi, ψi ∈ F}.
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ψ1, · · · , ψk are called the basis of space Fk, and Fk is said to be spanned by basis

ψ1, · · · , ψk, or Fk = span{ψ1, · · · , ψk}. Fn denote the space of ordered n-tuple of func-

tions in F , i.e.,

Fn =

f =

f1...
fn


∣∣∣∣∣∣∣ fi ∈ F , i = 1, · · · , n

 .

colni (xi) denotes the column composing operator by

colni (xi) = col(x1, · · · , xn) =

x1...
xn

 ,

where xi can be scalar numbers, vectors, matrices, or functions. For a function f in F
defined over some subset of Kn, Pspan{Ψ} : F → Fk denotes the projection operator defined

by

Pspan{Ψ}f = (argmin
c∈C1×k

∥f − cΨ∥2L2
)∗Ψ,

where Ψ : Kn → Kq is a set of q basis functions. xi+ denotes the time evolution of

discrete-time variable x such that xi+[k] = x[k + i]. Specifically, x0+ = x and x+ = x1+.

1.4.2 Linear algebra, functional analysis and measure basics

This section gives brief introductions to fundamental concepts of linear algebra and func-

tional analysis. Vectors and spaces are introduced, and then inner products and norms.

Functions (maps) and operators are then introduced, and linear functions are studied in

detail in terms of eigendecomposition. Specifically, basic measure theory is included to

introduce Lp spaces. Here K denotes a scalar field, which can be C, R or the set of all

rational numbers, etc.

Vector spaces [55, 56]

Definition 1.1. A vector space (or linear space) X is a set of vectors over field K, on

which two operations, addition and scalar multiplication, are defined with the following

properties:

a) For any x, y, z ∈ X, x+ y ∈ X. Also, x+ y = y+x and (x+ y)+ z = x+(y+ z) hold.

b) X contains a unique vector 0 such that x+ 0 = x for every x ∈ X. Also, there exists

a −x ∈ X corresponding to x such that x+ (−x) = 0 for every x ∈ X.
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c) For any x ∈ X and α, β ∈ K, there exists an αx contained in X in such a way that

1x = x and α(βx) = (αβ)x.

Definition 1.2. Let S be a subset of vector space X over K. The span of S, denoted by

span{S}, is the intersection of all subspaces of X that contains S.

If S is nonempty, then span{S} = {a1v1 + · · ·+ akvk | ai ∈ K, vi ∈ S, k = 1, 2 · · · }. Set S
is said to span X if span{S} = X.

Definition 1.3. A linear combination of vectors in a vector space X over field K is an

expression of the form a1v1 + · · ·+ akvk, where ai ∈ K and vi ∈ X for k = 1, 2, · · · . A list

of vectors is said to be linearly dependent if there exists ai ∈ K, which are not all zeros,

such that a1v1 + · · ·+ akvk = 0.

Note that a linear combination is a sum of finitely many elements in the vector space, i.e.,

k <∞. A list of vectors is said to be linearly independent if it is not linearly dependent.

Note that it is often convenient to say, ’the vectors are linearly dependent’ instead of

using the statement ’the list’. A set S of vectors is linearly independent if every finite list

of distinct vectors in S is linearly dependent.

Definition 1.4. Let X be a vector space over K. The basis of X is a list of linearly

independent vectors whose span is X. The basis of an empty space is an empty list.

Example 1.1.

• Let S = {(1, 0, 0)⊤, (0, 1, 0)⊤}. Then span{S} = {[a, b, 0]⊤ | a, b ∈ R}.

• Let S = {eikωt | k = 0, 1, 2, · · · } where i=
√
−1. Then span{S} is the space of all

bounded ω−1-periodic functions.

• The polynomials 1, t, t2, t3, · · · are linearly independent.

• The list of vectors e1 = (1, 0, 0)⊤, e2 = (0, 1, 0)⊤, e3 = (0, 0, 1)⊤ is a basis of R3.

Definition 1.5. The dimension of a vector space X is a positive integer n, such that

every basis of X consists of exactly n vectors.

The dimension of a vector can also be defined in other equivalent ways, e.g., the minimum

number of vectors in S such that span{S} = X. A vector space can be infinite-dimensional

or finite-dimensional.

Definition 1.6. Let X be a vector space over K. A norm is a real-valued nonnegative

scalar function ∥ · ∥ : X → R with the following properties: for any x ∈ X and α ∈ K,

a) ∥x∥ ≥ 0, and the equality holds only x = 0.

b) ∥αx∥ = |α|∥x∥, where |a| denotes the absolute value of α.
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c) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Example 1.2.

• ⟨x, y⟩ =
∑n

i=1 xiyi is an inner product, where x, y ∈ Rn.

• ⟨f, g⟩ =
∫ b

a
f(t)g∗(t)dt is an inner product, where f, g : [a, b]→ C.

• ∥x∥p = (
∑N

i=1 |xi|p)1/p and ∥x∥∞ = max |xi| are norms, where x ∈ Rn.

• every inner product induces a norm ∥x∥ = ⟨x, x⟩ (Cauchy-Schwarz).

A vector space equipped with an inner product is called a Hilbert space, and a vector

space equipped with a norm is called a Banach space.

Functions and bounded linear operators [55, 57]

Definition 1.7. A function (or a map) f : X → Y is a binary relation defined on a set

X that associates elements in X with an exact element in another set Y . The notation

y = f(x) means that f associates x ∈ X with y ∈ Y .

Here X and Y are called the domain and the image of f , respectively. The notation of

Y = f(X) is also adopted in this dissertation.

Definition 1.8. Consider f : X → Y . If B ⊂ Y , then the inverse image f−1(B) of B is

defined by A = {x ∈ X | f(x) ∈ B}.

Definition 1.9. A function f : X → Y is said to be linear if f(αx+βy) = αf(x)+βf(y)

holds for any x, y ∈ X and α, β ∈ K.

Definition 1.10. Let X and Y be Banach spaces equipped with the same norm ∥ · ∥. An
operator A : X → Y is a map that maps X to Y . If the map is linear, then A is called

a linear operator (or a linear transformation). If further there exists a constant c > 0

such that ∥Ax∥ ≤ c∥x∥ for any x ∈ X and A is linear, then A is called a bounded linear

operator.

Let A : H → H be a bounded operator defined on H, which is a Hilbert space. Then

the adjoint operator A∗ of A is such that ⟨Ax, y⟩ = ⟨x,A∗y⟩ and ∥A∥ = ∥A∗∥, where the

operator norm is defined by ∥A∥ = supx∈H
∥Ax∥
∥x∥ . It is often convenient to say that A is

an operator on H if A : H → H.

Definition 1.11. An operator A defined on a Hilbert space H is said to be

a) normal if AA∗ = A∗A.

b) self-adjoint or Hermitian if A∗ = A.

c) unitary if AA∗ = A∗A = I, where I is the identity operator on H.
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Example 1.3.

• The ceiling function f(x) = ⌈x⌉, x ∈ [0, 2) is a function whose domain is [0, 2) and

image is {0, 1, 2}.

• A matrix A ∈ Rn×m is a bounded linear operator that maps Rm to Rn. If Rn and Rm

are considered as Banach spaces equipped with 2-norms, then ∥A∥ = maxx∈Rm
∥Ax∥2
∥x∥2

or ∥A∥ = maxx∈Rm,∥x∥2=1 ∥Ax∥2, which is known as the induced 2-norm of matrix

A.

• The adjoint operator A∗ of matrix A ∈ Rn×m is its conjugate transpose [A∗]ij = [A]ji.

• A(z) = eiθz is a linear unitary operator over C, where z ∈ C.

1.4.3 The Koopman operator theory

Koopman operators [58, 59, 60]

The Koopman operator, named after mathematician Bernard O. Koopman (1900-1981),

was first proposed in [58] in 1931. In [58], energy transformation in Hamiltonian systems

was described with a linear unitary operator, which is known as the Koopman operator.

The operator, together with its dual, the Perron-Frobenius operator [61], mainly describes

measure-preserving dynamics, and is then extended to non-conservative systems (e.g.,

[62]). Together with the success of powerful data processing tools (POD [63], DMD

[64], EDMD [65], etc.), a great amount of interest has been focused on the Koopman

operator framework. Originating from [66], Koopman operators play important roles in

fluid analysis [67, 68], stability analysis [69], control design [70, 71, 72], thermal analysis

[73] and identification [74].

Definition 1.12. Consider a (Banach) space F of observable (functions) ψ : X → C.
The Koopman operator K associated with a map f : X → X is defined through the

composition

Kψ = ψ ◦ f.

In this dissertation, X usually stands for Rn, and f : Rn → Rn, ψ : Rn → C. Specifically,
if f describes the dynamics of a discrete-time time-invariant system, i.e.,

x[k + 1] = f(x[k]), (1.3)

where k = 1, 2, · · · ,, then Koopman operator K describes the evolution of the states in

terms of the evolution of the observables, i.e.,

Kψ(x[k]) = ψ(x[k + 1]) = ψ(f(x[k])),
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where ψ ∈ F . Koopman operators are also defined for continuous-time systems and

time-varying systems, refer to [59, 60] for more details.

Koopman operators are linear operators in the sense that

K(aψ1 + bψ2) = aKψ1 + bKψ2,

for ψ1, ψ2 ∈ F and a, b ∈ C, and the linearity allows eigenvalues and eigenfunctions to be

defined (these are also known as the spectral properties).

Definition 1.13. An eigenvalue λ ∈ C of Koopman operator K associated with map

f : Rn → Rn is such that

Kϕ = ϕ ◦ f = λϕ,

where ϕ(x) ∈ F is the eigenfunction associated with λ.

Example 1.4.

• Let X be the space of ordered triplets of real numbers, i.e., X = {(a, b, c) | a, b, c ∈
R}, and f : X → X be a permutation map such that f((a, b, c)) = (c, a, b). Define an

observable by ψ((a, b, c)) = 2b+ c, then Kψ = ψ(f((a, b, c))) = ψ((c, a, b)) = 2a+ b.

Further, ϕ((a, b, c)) = 1√
3
a+(− 1√

12
+ 1

2
i)b+(− 1√

12
− 1

2
i)c is an eigenfunction associated

with eigenvalue 1
2
+

√
3
2
i.

• Consider the linear system x[k + 1] = Ax[k] where x ∈ Rn. If A is diagonalizable

by A = P−1ΛP where Λ = diag{λ1, · · · , λn}, then Px[k + 1] = ΛPx[k] holds. As

a result, (λ1, p1x), · · · , (λn, pnx) are eigenpairs of Koopman operator K associated

with x[k + 1] = Ax[k], where pi is the ith row of P , and λi is the ith eigenvalue of

matrix A.

In this dissertation, Koopman operators act on vectors in entry-wise manners, i.e.,

Kv = col(Kv1, · · · , Kvn) for v = col(v1, · · · , vn).

Koopman mode decomposition [59, 75]

Unless the state space is a finite set, the Koopman operator is infinite-dimensional

in the sense that F has an infinite amount of basis [60]. Suppose that ϕ1, ϕ2, · · · , the
eigenfunctions of K, span the observable space F . Then for any f ∈ F , there exists ci for
i = 1, 2, · · · such that f =

∑∞
i=1 ciϕi, and the action of Koopman operator K on f can be

decomposed into

Kf = K

∞∑
i=1

ciϕi = K

∞∑
i=1

ciλiϕi, (1.4)
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where λi is the eigenvalue associated with eigenfunction ϕi. Decomposition (1.4) is called

the Koopman Mode Decomposition (KMD) of Kf , and ci are called the eigenmodes.

It is usually convenient to consider finite-dimensional dimensional approximations of

Koopman operators using the first k dominant eigenpairs:

Kf ≈ K

k∑
i=1

ciϕi = K

k∑
i=1

ciλiϕi,

where k is chosen such that the first k linearly independent dominant eigenfunctions

approximately span the observable space, i.e., Fk := span{ϕ1, · · · , ϕk} ≈ F . Here ci is

such that the linear combination
∑k

i=1 ciϕi minimizes the projection error of f from F to

Fk, i.e.,

c1, · · · , cn = argmin
v1,··· ,vn

∥f −
k∑

i=1

viϕi∥L2(µ),

where µ is a positive measure defined on Rn. In a vector form, define Φ = col(ϕ1, · · · , ϕN)

and Λ = diag{λ1, · · · , λn}. For any f ∈ F , the following equation holds:

Kf = c∗ΛΦ, (1.5)

where c ∈ Cn is such that cΦ ≈ f . Decomposition (1.5) is said to be a finite-dimensional

approximation of Kf on space Fk.

Numerically, it is usually hard to find the eigenfunctions explicitly, however, KMD can

also be obtained with other appropriately defined basis functions. Let Ψ = col(ψ1, · · · , ψk)

be a set of observables such that span{Ψ} ≈ F . If the basis functions ψi’s are linearly

independent, then there exists an invertible map T such that Ψ = TΦ. Then,

KΨ = KTΦ = TΛΦ = (TΛT−1)Ψ.

Specifically, for some b ∈ Cn such that bΨ ≈ f , the following equations hold:

Kf = bKΨ = b(TΛT−1)Ψ. (1.6)

Compared to (1.5), decomposition (1.6) allows us to obtain an approximation of Kf using

basis functions (observables) designed manually. Kf is then obtained by designing Ψ such

that f = bΨ, and finding the matrix TΛT−1 such that Ψ(f(x)) = TΛT−1Ψ(x).

The problem of finding approximations of Koopman operators is often related to the

Dynamic Mode Decomposition (DMD) method [64] and the Extend DMD (EDMD)

method [65], which are data-driven identification methods of dynamical models. The

DMD method can be related to the Koopman operator theory by considering the states

as observables: consider the relationship between data matrices[
v2 v3 · · · vn+1

]
=
[
v1 v2 · · · vn

]
S + rn,
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where vi ∈ RN consists of N snapshots measured at time step i, rn is the residual and S

is a transition matrix of the form

S =


0 a1

1 0 a2
. . . . . .

...

1 0 an−1

1 an

 ,

where a1, · · · , an are unknown. S is then obtained from data by minimizing the residual

rn, and spectral information of the underlying dynamics can be extracted. On the other

hand, the EDMD method makes use of observables and does not assume the data to be

measured from the same trajectory. Define data matrices X,Y by

X =
[
Ψ(x1) Ψ(x2) · · · Ψ(xm)

]
,

Y =
[
Ψ(y1) Ψ(y2) · · · Ψ(ym)

]
,

where Ψ are usually polynomials or radius-basis functions, and xi, yi are such that yi =

f(xi). Then the underlying dynamics f can be approximated by f(x) ≈ CY X†x, where

C is such that CΨ(x) = x and † denotes the Moore-Penrose pseudo-inverse.

The DMD and the EDMD methods have been studied widely, and various extensions

have been proposed, e.g., DMD with noisy data [76], DMD with streaming data set [77],

DMD for compressive systems [78], controlled system analysis [79, 80], etc. The methods

are also employed in various fields, e.g., model predictive control design [71], perturbation

estimation [81], fluid analysis [77], etc. However, note that these numerical methods

can only recover eigenvalues of Koopman operators, which are the point spectra of the

operator. The spectrum σ(K) of Koopman operators is defined by

σ(K) = {λ | K − λ1 is not invertible}.

This happens in three cases where a) (K−λ1)ψ = 0, b) (K−λ1) is not closed over F and

c) the image of (K−λ1) is not dense over F , respectively. The corresponding spectra are

named point spectra, compression/continuous spectra and residual spectra, respectively.

1.4.4 Sparse identification (compressive sensing)

In many practical situations of scientific and engineering studies like image processing,

sampling theory and signal processing, the problem of recovering signals from their mea-

surements often appear (refer to [82] and references there). Suppose that y ∈ Km is the

measurement of signal x ∈ Kn measured by A ∈ Km×n where K is either R or C, or

y = Ax.
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Suppose that A has full rank. Traditionally, the problem of recovering x from the pair

(A, y) is achieved by left-multiplying the pseudo-inverse of A to both sides, i.e., A†x =

A†Ay. Let USV ∗ = A be the singular value decomposition of matrix A, then the following

equation holds:

A†x = V S†SV ∗y,

where S ∈ Km×n contains the singular values of A. In the case thatm > n, rank(S†S) = n,

and S†S = In. This allows x to be obtained as x = A†y. However, if m < n, then

S†S = diag{Im,0(n−m)×(n−m)} ̸= In, and the pseudo-inverse based method fails.

Sparse identification, first introduced in [83] and named compressive sensing in [53], is

a method that recovers x from incomplete information, i.e., with m < n, under the con-

straint that x is a sparse vector. A vector (or a signal) is sparse if most of its components

are zero, and the sparsity of a vector is evaluated by its 0-norm defined by

Definition 1.14. The 0-norm of vector x ∈ Kn, denoted by ∥x∥0 is defined by

∥x∥0 = card({xi | xi ̸= 0, i = 1, · · · , n}),

where card(S) denotes the cardinality of set S.

Note that ∥x∥0 does not satisfy property b) in Definition 1.6, and hence is not a norm

or a quasi-norm (which are positive real scalar functions that satisfy property a) and

property b) in Definition 1.6). Intrinsically, y can be considered as a linear combination

of columns of A as basis and entries of x as coefficients. The sparsity of x means that y

only has a small amount of basis, which makes the information contained in y sufficient

for recovering the coefficients.

The sparse identification theory mainly considers two problems:

1) To design reconstruction algorithms for certain given (A, y) pairs.

2) To design the measuring process, i.e., matrix A, optimally.

Only problem 1) will be introduced here, and more details about problem 2) can be found

in [53, 82, 84].

The recovery of x from (A, y) is achieved by minimizing the sparsity of x, i.e., to solve

the ℓ0-minimization problem

x = argmin
z
∥z∥0,

subject to Az = y.
(1.7)

Since the ℓ0-minimization problem is in general an NP-hard problem, the following ℓ1-

minimization is usually solved instead:

x = argmin
z
∥z∥1,

subject to Az = y.
(1.8)
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The problem can also be solved by considering the unconstrained form

x = argmin
z

(
1

2
∥Az − y∥22 + ∥z∥1), (1.9)

which is also known as the Lasso (least absolute shrinkage and selection operator, [85]).

Alternating direction method of multipliers (ADMM)

In this dissertation, the alternating direction method of multipliers (ADMM, [86]) is

employed to solve optimization problems in the form of (1.9). The ADMM is a con-

vex optimization algorithm that takes the advantages of the dual ascent method and the

augmented Lagrangian method in the sense that the decomposability of dual ascent is

preserved while a quadratic term is employed in the augmented Lagrangian to obtain

higher order convergence ([86]). The ADMM solves problems in the form of

minimize f(x1, · · · , xn) + g(z) (1.10)

s.t. A1x1 + · · ·+ Anxn +Bz = 0,

where xi ∈ Rni , z ∈ Rm, Ai ∈ Rp×ni and B ∈ Rp×m. The maps f and g are often assumed

to be convex while it is shown in [87] that the ADMM can also handle non-convex non-

smooth situations.

Consider optimization problem (1.10), and define the augmented Lagrangian by

Lρ(x1, · · · , xn, z, w) =f(x1, · · · , xn) + g(z) + w⊤(A1x1 + · · ·+ Anxn +Bz)

+
ρ

2
∥A1x1 + · · ·+ Anxn +Bz∥22, (1.11)

where ρ > 0, x1, · · · , xn, z are the primal variables and w is the dual variable. An iterating

algorithm for variable updating is given by

x+i =argmin
xi

Lρ(x
+
1 , · · · , x+i−1, xi, · · · , xn, z, w), (1.12a)

z+ =argmin
z

Lρ(x
+
1 , · · · , x+n , z, w), (1.12b)

w+ =argmin
w

Lρ(x
+
1 , · · · , x+n , z+, w), (1.12c)

for i = 1, · · · , n, where x+i denotes the update of variable xi. For convergence analysis,

applications, and more details about ADMM, refer to [86, 33, 87, 39] and references there.

1.4.5 Graph theory basics

This section introduces some basic concepts in graph theory.

Definition 1.15. A graph G is a structure of two sets V and E , i.e., G = (V , E), where V
is a set of objects, and E ⊆ V × V .
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Fig. 1.2: Graph G.

The elements in V are called the nodes or vertices, and the elements in E are called the

edges of graph G. Let vi and eij denote the nodes and the edges, respectively. In this

dissertation, only graphs with no self-loops are considered, i.e., eii /∈ E .

Definition 1.16. If eij ∈ E , then nodes vi and vj are adjacent. A graph G is a complete

graph if eij ∈ E for any i ̸= j, and G is an unconnected graph if E = ∅.

Definition 1.17. A graph G is an undirected graph if eij ∈ E indicates eji ∈ E for any

i ̸= j.

A graph is called a directed graph if it is not an undirected graph.

Definition 1.18. Consider a graph G such that card{V} = n. The adjacency matrix

A = [aij] ∈ Rn×n of graph G is defined by

[A]ij =

aij, if (vi, vi) ∈ E ,

0, else,

where aij is the weight of edge (vi, vj), and the degree matrix D = [dij] ∈ Rn×n of G is

defined by

[D]ij =


∑n

j=1 aij, if i = j,

0, else.

The Laplacian matrix L of G is defined by

L = D − A.

Example 1.5. Consider the graph shown in Fig.1.2, where the weights of all the edges

are 1. The degree matrix and the adjacent matrix of graph G are given by
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2 Identification of Network Structures for

Network Systems with Measurable Full-

states

2.1 Introduction

The network identification problem has been studied from various perspectives, and

many identification methods have been developed based on Granger causality [23], noise

injection [32, 29], data correlation [32, 88, 50, 36, 51, 49, 48, 89], sparse identifica-

tion(compressive sensing) [39, 52, 35, 36, 34, 37], applied synchronization [25, 24], vari-

able [28] or phase resetting [27], entropy transfer [16], just to name a few. However, a

majority of the studies assume prior information on an unforced model of a system in

networks[24, 35, 40, 90, 91, 48, 88, 41, 51, 32, 34, 41], and these assumptions usually do

not hold in practice. Also, most of the existing methods estimate only the connectivity

(in terms of the adjacency matrices) of the networks [32, 29, 49, 48], which fail to provide

information on the exact possibly nonlinear coupling functions.

In this chapter, an approach is proposed that identifies both the connectivity and the

nonlinear coupling functions of networks solely from measured data making use of Koop-

man operators. The proposed approach is realized by defining two Koopman operators

associated with the original network and an unconnected virtual network, respectively,

and obtaining the coupling function as the difference between the two Koopman operators

acting on the state variables. To obtain the Koopman operator associated with the un-

connected virtual network, it is assumed that a node can be isolated from the network so

data of an unforced node can be measured. In addition, the problem is transformed into

a standard LASSO [85] problem, and the sparse identification technique is employed to

reduce the amount of required data, and improve robustness against measurement noise.

This chapter also shows that what the proposed method obtains is a projection of the

true coupling function onto the space spanned by the pre-designed observables. The idea

of employing observables is not new and can be found in, e.g., [92, 4, 38, 93, 51, 37].

These usages can be comprehended as variable changes or basis changes, as known that

augmented variable sets using Taylor expansion series [37, 4] or trigonometric functions

[92] of the states allow extracting higher-order approximations of nonlinearity. Instead

25
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of approximations in point-wise manners, the proposed method focuses on the space

spanned by the observables, which is considered invariant under the Koopman operator,

to obtain global approximations of nonlinear coupling functions. It is also shown that the

identification accuracy significantly depends on the design of the observable dictionary.

This chapter is organized as follows. In Section 2.1, technical details about the proposed

method are described. Section 2.2 shows that the obtained result is a projection of the

true coupling function onto the space spanned by the observables, and Section 2.3 gives

numerical examples of a Kuramoto oscillator network and a Hindmarsh-Rose oscillators

network with nonlinear coupling functions to illustrate the usefulness of the proposed

method. In Section 2.4, the obtained results are summarized and some remarks are given.

2.2 Network identification via Koopman operator

representations

2.2.1 Koopman operator representations of the problem

Consider a network system of N identical discrete-time systems described by

x+i =f(xi) + ui, (2.1a)

ui =
N∑
j=1

aijg(xi, xj), (2.1b)

where xi ∈ Rn, f : Rn → Rn, aij is the (i, j) entry of the adjacency matrix associ-

ated with the network topology, and g : Rn × Rn → Rn describes the data exchange

between two nodes via the network. Define f(x) := col(f(x1), · · · , f(xN)), g(x) =

col(
∑N

j=1a1jg(x1, xj), · · · ,
∑N

j=1aNjg(xN , xj)). The dynamics of all the systems in the

network is described by the following equation:

x+ = f(x) + g(x), (2.2)

where g(x) is called the coupling function of the nodes in the network. Note that g(x)

contains both information about the network connectivity and the data exchange functions

between nodes, which are considered together as the network structure.

Besides, if all the nodes are isolated, the dynamics of all the systems in the network

can be described as

x+ = f(x). (2.3)

Here, the goal of this chapter is then reduced to identifying g(x) from the time-series data

of the connected network and the isolated nodes. Denote the space of all the observables
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RNn → C by F , and define Koopman operators K1 and K2 associated with dynamics

(2.2) and (2.3) as follows.

K1ψ(x) =ψ(f(x) + g(x)),

K2ψ(x) =ψ(f(x)),

where ψ ∈ F . Then, considering the states as observables, the dynamics of the network

and the isolated nodes can be represented as

K1x =f(x) + g(x), (2.4a)

K2x =f(x), (2.4b)

respectively, where the Koopman operators act on vectors in an entry-wise manner. Fur-

thermore, defining a new operator Kg by the difference of K1 and K2 as

Kg = K1 −K2, (2.5)

from (2.4a) and (2.4b), the following equations hold:

K1x =f(x) + g(x), (2.6a)

K2x =f(x), (2.6b)

and

Kgx =f(x) + g(x)− f(x)

=g(x). (2.7)

Note that here Kg is defined by

Kgψ(x) = ψ(f(x) + g(x))− ψ(f(x)),

for ψ ∈ F .
As a result, the identification problem considered here is reduced to determining Kg.

Since there is no information on g(x) or f(x), g(x) is approximated using a linear combi-

nation of the observables, which corresponds to a projection of g(x) onto the span of the

observables. However, in general, an infinite amount of observables are needed to make

the projection accurate, and practically, only a finite-dimensional approximation of Kg is

numerically obtained.

Consider a set consisting of q observables {ψ1(x), · · · , ψq(x)}, and define Ψ(x) as

Ψ(x) = col(ψ1(x), . . . , ψq(x)) : RNn → Cq. (2.8)
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Suppose that the data sequences x[k] and x̄[k] for k = 0, . . . ,m are available, where x̄

denotes data of a virtual network where all the nodes were isolated. Define data matrices

X1, Y1, X2, Y2 ∈ Cq×m as

X1 =
[
Ψ(x[0]) Ψ(x[1]) · · · Ψ(x[m− 1])

]
, (2.9a)

Y1 =
[
Ψ(x[1]) Ψ(x[2]) · · · Ψ(x[m])

]
, (2.9b)

X2 =
[
Ψ(x̄[0]) Ψ(x̄[1]) · · · Ψ(x̄[m− 1])

]
, (2.9c)

Y2 =
[
Ψ(x̄[1]) Ψ(x̄[2]) · · · Ψ(x̄[m])

]
. (2.9d)

Here, it is additionally assumed that all the nodes in the network do not synchronize.

This assumption guarantees that Kgx never vanishes. By the above definitions, Koopman

operators K1 and K2 map X1 to Y1 and X2 to Y2 in a entry-wise manner, respectively,

i.e.,

Y1(m) = K1X1(m),

Y2(m) = K2X2(m).

As a result, finite-dimensional approximations of the Koopman operators can be ob-

tained as the matrices A1 and A2 that map X1 and X2 to Y1 and Y2, respectively, by

solving the following optimization problems.

A1 =argmin
A

∥AX1 − Y1∥F , (2.10a)

A2 =argmin
A

∥AX2 − Y2∥F . (2.10b)

It follows that a finite-dimensional approximation of Kg is obtained by calculating A1−A2,

and the coupling function is identified as follows.

gid(x) = Cx(A1 − A2)Ψ(x), (2.11)

where Cx ∈ CNn×q is such that x = CxΨ(x). Note that Cx can be obtained by designing

the observable set Ψ(x) to contain x, e.g., if one designs Ψ(x) = col(x, ψ1, · · · , ψq−Nn),

then Cx is obtained as Cx = [INn,0Nn×(q−Nn)].

2.2.2 Calculation of Kg using sparse identification techniques

If m is sufficiently large, the solutions of the two minimization problems (2.10) may be

solved explicitly by A1 = Y1X
†
1 and A2 = Y2X

†
2, respectively. However, considering the

limited number of available data, a more effective calculation method is required from a

practical point of view. In this subsection, a calculation method of the coupling function

Kgx is proposed based on the sparse identification techniques. To be specific, rows of
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A1 − A2 are obtained by minimizing the sparsity of rows of A1 − A2, which corresponds

to solving the following optimization problem:

minimize
a1i,a2i

∥a1i − a2i∥1 (2.12)

subject to a1iX1 = yi1,

a2iX2 = yi2,

or equivalently

minimize
a1i,a2i,vi

∥∥∥∥∥
[
X∗

1

X∗
2

](
a∗1i
a∗2i

)
−

(
y∗1i
y∗2i

)∥∥∥∥∥
2

2

+ λ∥vi∥1 (2.13)

subject to a1i − a2i − vi = 0,

for i = 1, · · · , q, where λ > 0, a1i and a2i ∈ C1×q are the ith rows of A1 and A2, and y1i

and y2i ∈ C1×m are the ith rows of Y1 and Y2, respectively.

The optimization problem (2.13) can be solved via the alternating direction method

of multipliers (ADMM) with the existing algorithm [86] as follows. First, define the

augmented Lagrangian Liρ by

Liρ :=∥X∗
1a

∗
1i − y∗1i∥22 + ∥X∗

2a
∗
2i − y∗2i∥22

+ λ∥vi∥1 + wi(a
∗
1i − a∗2i − v∗i ) +

ρ

2
∥a1i − a2i − vi∥22, (2.14)

where ρ > 0, and wi ∈ C1×q is the dual variable. Next, update the optimization variables

according to the following iterative algorithm:

(a∗1i)
+ =− 1

2
(X1X

∗
1 +

ρ

2
Iq)

−1(−2X1y
∗
i1 + w∗

i − ρ(a∗2 + v∗i )), (2.15a)

(a∗2i)
+ =− 1

2
(X2X

∗
2 +

ρ

2
Iq)

−1(−2X2y
∗
i2 − w∗

i + ρ(−(a∗1)+ + v∗i )), (2.15b)

(v∗i )
+ =Sλ/ρ((a∗1)+ − (a∗2)

+ +
1

ρ
w∗

i ), (2.15c)

(w∗
i )

+ =w∗
i + ρ((a∗1i)

+ − (a∗2i)
+ − (v∗i )

+), (2.15d)

where a+ denotes the update of variable a and Iq is the q-dimensional identity matrix.

Here Sγ is a soft-thresholding function defined by

Sγ(x) =

{
x− γsgn(x), |x| > γ,

0, |x| ≤ γ,

with γ > 0, and acts on a matrix (or a vector) in an entry-wise manner ([85, 87]).

Updating the variables under the above settings, the optimal solution of (2.13) can be

obtained. Finally, the coupling function is obtained as

gid(x) = GΨ(x), (2.16)
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where G := CxV in which V = col(v1, · · · , vq) ∈ Cq×q, and Cx is such that x = CxΨ(x).

The identification method of network topology proposed above is summarized as an

algorithm shown in Algorithm 2.1.

Algorithm 2.1 Proposed identification algorithm

Input: x[k] and x̄[k] for k = 0, 1, . . . ,m, convergence criterion ε and V = [0] ∈ Cq×q

Output: gid(x) = CxVΨ(x)

1. Define observables: Ψ(x) : RNn → Cq

2. Define data sets: X1, Y1, X2, Y2 in (2.9)

3. Optimization:

for i ∈ {1, · · · , q} do
while ∥v+i − vi∥ ≥ ε do

Update the optimization variables according to (2.15)

end while

Set e⊤
i V ← vopti , where ei ∈ Rq is the ith standard basis vector

end for

4. Result: obtain gid(x) = CxVΨ(x)

2.3 The obtained estimation as a projection

In this section, the relationship between the coupling functions estimated via the Koopman

operators and the true coupling functions is considered. As mentioned above, if m is

sufficiently large, the solution of the minimization problem (2.10) can be solved explicitly

by A1 = Y1X
†
1 and A2 = Y2X

†
2, respectively, and the coupling function is obtained as

gid(x) = Kgx = Cx(A1−A2)Ψ(x). This section shows that the obtained coupling function

gid(x) is an L2 projection of the true coupling function onto the functional space spanned

by the observables, such relationship is revealed by increasing the amount of data m,

which is considered as a variable.

The following statement holds.

Proposition 2.1. Let A1(m) = Y1(m)X†
1(m) and A2(m) = Y2(m)X†

2(m) denote the

transition matrices between X1(m), Y1(m) and X2(m), Y2(m), respectively, where the data

matrices are defined by (2.9). Then,

lim
m→∞

e⊤
i Cx(A1(m)− A2(m))Ψ(x) = Pµ

q

(
e⊤
i g(x)

)
, (2.17)

for i = 1, · · · , Nn, where Cx is such that x = CxΨ(x), ei is the ith natural base of the

Nn-dimensional Euclidean space, and Pµ
q v denotes the L2(µ) projection of v ∈ F onto

Fq.
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Proof. Let K1,q,m and K2,q,m denote the q-dimensional approximations of K1 and K2

obtained from triplets (Ψ(x), X1(m), Y1(m)) and (Ψ(x), X2(m), Y2(m)), respectively, as

K1,q,mφ(x) =cφY1(m)X†
1(m)Ψ(x),

K2,q,mφ(x) =cφY2(m)X†
2(m)Ψ(x),

where φ ∈ Fq, and cφ satisfies cφΨ(x) = φ. Theorem 2 in [94] shows that if m goes to

infinity, the following equations hold.

lim
m→∞

∫
M
|K1,q,mφ−K1,qφ|2dµ =0, (2.18a)

lim
m→∞

∫
M
|K2,q,mφ−K2,qφ|2dµ =0, (2.18b)

for all φ ∈ Fq whereM is a subset of Rq and µ is a given positive measure on M (e.g.,

the Euclidean distance). Here K1,q, K2,q : Fq → Fq are the q-dimensional approximations

of K1, K2 defined by

K1,qφ = Pµ
qK1|Fq

φ, K2,qφ = Pµ
qK2|Fq

φ,

for all φ ∈ Fq where K|Fq : Fq → F is the restriction of the operator K to Fq, and Pµ
q

denotes the q-dimensional projection operator defined by

Pµ
qϕ =argmin

f∈Fq

∫
M
|f − ϕ|2dµ =

(
argmin

c∈Cq

∫
M
|c∗Ψ− ϕ|2dµ

)∗

Ψ.

It follows that, for i = 1, · · · , Nn,

lim
m→∞

e⊤
i Cx(A1(m)− A2(m))Ψ(x) = lim

m→∞
e⊤
i Cx

(
Y1(m)X†

1(m)− Y2(m)X†
2(m)

)
Ψ(x)

= lim
m→∞

K1,q,mxi − lim
m→∞

K2,q,mxi

=K1,qxi −K2,qxi

=Pµ
qK1|Fq

xi − Pµ
qK2|Fq

xi

=Pµ
q

(
e⊤
i (f(x) + g(x)− f(x))

)
, (2.19)

where Ψ(x) is designed such that x ∈ Ψ(x), so K1|Fq
xi = K1xi and K2|Fq

xi = K2xi. If,

further, g(x) lies in the span of entries of Ψ(x), then there exists a G ∈ CNn×q such that

colNn
i=1(Pµ

q (e
⊤
i g(x))) = g(x) = GΨ(x), i.e.,

lim
m→∞

Cx(A1 − A2)Ψ = GΨ = g(x), (2.20)

where Cx is such that CxΨ(x) = x. In such case, the set of observables Ψ(x) is said

complete.
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It should be mentioned that DMD-like methods could only extract the point spectra

of the Koopman operator and do not apply to systems with continuous spectra. How-

ever, as stated in Proposition 2.1, the proposed method estimates the coupling function

as a projection onto the span of q observables, i.e., obtaining Kgx directly as the differ-

ence between K1x and K2x. As a result, the estimated coupling function may be just a

finite-dimensional approximation based on the observables. Therefore, although the iden-

tification accuracy depends on the construction of the observables, the proposed method

is expected to apply to a larger class of nonlinear systems.

Remark 2.1. If data are abundant, then A1, A2 and in turn Kg can be obtained directly

by calculating pseudo-inverse matrices, i.e., let λ = 0 and

A1 = Y1X
†
1, A2 = Y2X

†
2. (2.21)

The method can be regarded as performing EDMD proposed in [65] twice for K1 and K2,

respectively, and will be valid if the data are abundant. However, the proposed method

would show better performance in the sense of robustness and accuracy when applied

with noisy measurements.

Remark 2.2. Although theoretically, the proposed method can also identify the models

of the unforced nodes, i.e., the f(x) function, by obtaining approximations of K2, such

model identification may not reach high accuracy because K2x is not required to be in

FNn
q . To make the proposed method applicable to identifying f(x), further requirements

on Ψ(x) are needed.

2.4 Numerical examples

In this section, two numerical examples show the usefulness and validity of the proposed

method. The first example shows details of the proposed method in the case that functions

included in the coupling function are contained in a pre-designed observable dictionary,

and the second example considers the case that the functions in the coupling function are

not in the dictionary. In addition, the second example shows that the proposed method

can estimate the coupling by approximating the coupling function with functions in the

dictionary. For both examples, the proposed method is compared with the pseudo-inverse-

based method concerning the accuracy of the identification results.

In addition, throughout these examples, the vectors of observable functions Ψ(x) are

designed to be real-valued functions instead of complex-valued functions. This restric-

tion comes from that the proposed method can be considered as an embedding of the

true coupling function g(x) into the space spanned by the observables in Ψ(x), or an

approximation of g(x) using the entries of Ψ(x).
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Fig. 2.1: The topology of the Kuramoto model. (a) the connections between nodes, and

(b) the graph Laplacian matrix shown in color.

2.4.1 The Kuramoto model: identification with a complete

observable set

The proposed method is based on Koopman operators defined in discrete-time settings,

so only discrete-time models are obtained. In this example, the identified discrete-time

models are transformed into continuous-time manually using the first-order Euler method

for the simplicity of visualizing and comparing with the original systems.

Consider the Kuramoto model consisting of N = 15 oscillators whose dynamical models

are given by

θ̇i = ω +
15∑
j=1

aij sin(θj − θi),

for i = 1, · · · , 15, where θi ∈ R, ω is the constant oscillating frequency of all the nodes,

and aij is the (i, j) entry of the adjacency matrix associated with the network topology.

The topology of the network shown in Fig.2.1 is an undirected unweighted graph randomly

generated such that the probability of aij = aji = 1 is 50%. Note that it is not required

that the connections in the network be sparse, but it is required to design the observables

such that the rows of matrices G in (2.16) are sparse. In most cases, this condition is

naturally satisfied since the observables should be designed sufficiently rich to contain the

coupling function in the spanned space.

As for measured data, each node system is assigned an initial state randomly in the

range [−π, π], and the time series data from those initial states are then obtained by

numerical simulations. Suppose that 200 trajectories, each consisting of 51 steps from

k = 0 to 50 with a sampling time of 0.01s for each node in the network, are available.

Also, suppose that another 200 trajectories of 51 steps from k = 0 to 50 of an isolated

node are available. All the data are measured with random noise uniformly distributed

in some range.

Here, let θj[k] ∈ R15 and θ̄j[k] ∈ R denote the values of the kth steps of the jth

measured trajectories of the network system and the isolated node, respectively, where
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θ := (θ1, · · · , θ15)⊤. Then, the measured states are described as the following signals with

noise, θj[k] + δi,j, where δi,j ∈ R15 denotes a noise vector whose elements are assumed to

be uniformly distributed in the range [−0.005, 0.005].
The observable set Ψ(θ) : R15 → R241 is defined as

Ψ(θ) = col(1, θ, col15i=1(col
15
j=1(cos θj sin θi))), (2.22)

and data matrices X1, Y1 ∈ R241×104 are then constructed using θi,j for j = 0 to 49 and

j = 1 to 50, respectively, as

X1 =
[
Ψ(θ1[0] + δ1,0) · · · Ψ(θ1[49] + δ1,49) · · · Ψ(θ200[49] + δ200,49))

]
,

Y1 =
[
Ψ(θ1[1] + δ1,1) · · · Ψ(θ1[50] + δ1,50) · · · Ψ(θ200[50] + δ200,50))

]
.

On the other hand, data series θ̄j[k] is insufficient in dimensions to be the argument of

function Ψ(·), so an unconnected network with dynamics (2.3) is imitated using θ̄i,j. The

time order of θ̄i,j is shuffled randomly 15 times while preserving the information on the

time evolution of data, i.e., define

ξ :=

[
θ̄1[0] · · · θ̄1[49] θ̄2[0] · · · θ̄200[49]

θ̄1[1] · · · θ̄1[50] θ̄2[1] · · · θ̄200[50]

]
∈ R2×104 ,

and define a column shuffling operator si(ξ) which shuffles the columns of ξ into some

random order i. Let ξi− ∈ R1×104 and ξi+ ∈ R1×104 denote the first and the second row of

si(ξ), respectively, and define

θ̄− = col(ξ1−, · · · , ξ15−), θ̄+ = col(ξ1+, · · · , ξ15+).

Data matrices X2 and Y2 are then constructed as

X2 =
[
Ψ(θ̄1−) Ψ(θ̄2−) · · · Ψ(θ̄10

4

− )
]
∈ R241×104 ,

Y2 =
[
Ψ(θ̄1+) Ψ(θ̄2+) · · · Ψ(θ̄10

4

+ )
]
∈ R241×104 ,

where θ̄i−, θ̄
i
+ denote the ith columns of θ̄−, θ̄+, respectively.

The coupling function of the network is then obtained by solving (2.13) and substituting

the solution into (2.16), where the parameters are set to λ = 0.1 and ρ = 3. Denote the

coefficient matrix of the observable vector Ψ(θ) in the identified coupling function by G,

i.e.,

gid(θ) = GΨ(θ).

As a comparison, let g̃id(θ) = G̃Ψ(θ) denote the identification results obtained by the

pseudo-inverse based method, i.e., let

G̃ = Cθ(Y1X
†
1 − Y2X

†
2).
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Fig. 2.2: The entries of the identified coefficient matrices: the value of each entry is

indicated in color. (a) the values of all the entries in matrix G ∈ R15×241; (b) the values

of all the entries in matrix G̃ ∈ R15×241.

Fig.2.2 shows the calculated values of the entries of G ∈ R15×241 and G̃ ∈ R15×241 in color.

As the figures show, the identification result obtained with the proposed method shown in

Fig.2.2(a) is less noisy than that of the pseudo-inverse based method shown in Fig.2.2(b).

As an example of reading Fig.2.2, the first entry of gid(θ) is obtained as the first row of

matrix G multiplying the observable vector Ψ(θ), which reads

e⊤
1 g

id(θ) =− 1.00ψ18 − 0.99ψ30 + 0.99ψ32 + 0.96ψ212,

=− 1.00 cos θ2 sin θ1 − 0.99 cos θ14 sin θ1 + 0.99 cos θ1 sin θ2

+ 0.96 cos θ1 sin θ14,

where all the values are rounded to 10−2. The estimated coupling function almost coincides

with the original function e⊤
1 g(θ) = sin(θ2 − θ1) + sin(θ14 − θ1).

To verify the correctness of the identified coupling functions, the true coupling function

g(θ) = col15i=1

∑15
j=1 aij sin(θj − θi) is projected onto the space spanned by the entries of

Ψ(θ) to obtain a correct coefficient matrix Gtrue ∈ R15×241 such that g(θ) = GtrueΨ(θ).

Note that the projection is unique, and the equality holds strictly with Ψ(θ) designed

in (2.22). The relationship between all the entries in Gtrue and the respective identified

values in G, G̃ are plotted in Fig.2.3. As the figures show, the coefficient matrix obtained

with the proposed method achieves better accuracy.

Although this example considers the case where measurement noises are present, it

should be mentioned that the presence of larger noises would disable the proposed method.

The method extracts the coupling function from the dynamics of the network, which is

obtained by finding the optimal nonlinear function that governs the evolution of measured

data. In the presence of large noises, the obtained function would differ from the original

dynamics, and the proposed method fails. Due to the same reason, the proposed method

requires that the data are sampled simultaneously and no packet loss occurs.
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Fig. 2.3: The relationship between the true values and the identified values of all the

entries in the obtained coefficient matrices: (a) entries in G obtained using the proposed

method, and (b) entries in G̃ obtained using the pseudo-inverse based method. An entry

is perfectly identified if the associated ’×’ marker is on the black line.

2.4.2 A network of Hindmarsh-Rose neuron systems:

identification with an incomplete observable set

Consider a network consisting of 10 Hindmarsh-Rose neuron models, which are chaotic

oscillators modeled by

x+i,1 =0.01(−x3i,1 + 3x2i,1 + xi,2 − xi,3 + 3.25 + ui),

x+i,2 =0.01(1− 5x2i,1 − xi,2),
x+i,3 =0.01(0.005(4(xi,1 + 1.618)− xi,3)),

for i = 1, · · · , 10. Here, suppose that each coupling input ui is given by

ui =
2

π

10∑
j=1

aijatan(xj,1 − xi,1),

where aij denotes the (i, j) entry of the adjacency matrix associated with the network.

From this equation, it is known that each input is in the range (−1, 1). The topology

of the network shown in Fig.2.4 is also randomly generated as an undirected unweighted

graph with a 25% probability of aij = aji = 1.

As original measurements, suppose that measured data of 300 trajectories consisting

of 51 steps from both all the nodes in the network and an isolated node are available,

respectively. The initial values of all the trajectories are randomly taken in the range

[−2, 2], and all the measured data were generated by numerical simulations. Denote the

kth step of the jth trajectory of the two time-series by xj[k] ∈ R30, x̄j[k] ∈ R3, respectively,

where x := (x1,1, · · · , x10,1, x1,2, · · · , x10,2, x1,3, · · · , x10,3)⊤.
Define the observables Ψ(x) : R30 → R186 to be all the states as well as the combinations



Chapter 2. Identification of Network Structures for Network Systems with
Measurable Full-states 37

Fig. 2.4: The topology of the Hindmarsh-Rose neuron network. (a) the connection be-

tween neurons, and (b) the graph Laplacian matrix shown in color.
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Fig. 2.5: The values of the entries of the identified coefficient matrix G with the proposed

method shown in color.

of the first components xi,1, xj,1 up to the third power, i.e.,

Ψ(x) = col
(
1, col10i=1(xi,1), col

10
i=1(xi,2), col

10
i=1(xi,3),

col10i=1(col
10
j=i(

xi,1xj,1
2

)), col10i=1(col
10
j=i(

x2i,1xj,1

6
,
xi,1x

2
j,1

6
))
)
, (2.23)

from which all the duplicate elements are removed. Then data matrices X1, Y1 are calcu-

lated directly from Ψ(x) and {xi,j}, while data matrices X2, Y2 are obtained by shuffling

the time order of x̄i,j to imitate an unconnected network. Also, suppose that measure-

ment noise exists which is modeled as uniformly distributed random variables in the range

[−0.005, 0.005]. The optimization problem (2.13) is then solved with λ = 0.1, ρ = 4.

Figure 2.6 shows the true and the identified coupling function of the first node restricted

to the space spanned by x3,1 and x1,1, respectively. To compare the identified coupling

function with the true coupling function e⊤
1 g(x) =

2
π
atan(x3,1−x1,1), e⊤

1 g(x)−e⊤
1 g

id(x) is

plotted restricted to the space spanned by x1,1 and x3,1 in Fig.2.7. As the figure shows, the

identified coupling function matches the true coupling function in the domain where data

are measured (as indicated by the frame) and deviates otherwise. This is the best one

can get with the designed observables and the measured data, while better identification

accuracy can be obtained if the observable dictionary contains elements that approximate

g(x) better, e.g., including atan(xj,1 − xi,1), ∀i, j = 1, · · · , N, j ̸= i as entries of Ψ(x).

Next, simulation results about how the identification accuracy is influenced by the

amount of measured data are shown. The identification results are also compared with
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Fig. 2.6: (a) The true coupling function and (b) the identified coupling function restricted

to the space spanned by x1,1 and x3,1.

Fig. 2.7: The difference of the true coupling function e⊤
1 g(x) and the identified coupling

function e⊤
1 g

id(x) of the first state plotted near the origin of the space spanned by x1,1

and x3,1. The true coupling function is correctly approximated over [−1, 2]× [−1, 2] (i.e.,
the area within the frame), which is the domain where data are measured from.

those obtained with the pseudo-inverse-based method.

Here, the set of observables is also defined by (2.23) as in the previous simulation.

The set is incomplete, in the sense that the spanned space of its entries does not con-

tain the coupling function g(x) which are arc-tangent functions. As a result, obtain-

ing a Gtrue could be hard, and the identification accuracy is quantified in terms of

the identified network connectivity, instead of some other metrics that are related to

every entry in G. In the case that the coupling strength 2
π
is known, the connectiv-

ity of the network can be extracted from the coefficients of the x observables, i.e., the

col10i=1(xi,1), col
10
i=1(xi,2), col

10
i=1(xi,3) terms in (2.23). Here, the connectivity identification

accuracy of the proposed method and the pseudo-inverse-based method are compared.

Suppose thatM trajectories each consisting of 11 steps (with a sampling time of 0.01[s])

from both the nodes in the network and an isolated node are available where M ∈ N. To
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Fig. 2.8: The relationship between the identification accuracy and the amount of measure-

ment data plotted in logarithmic scale. The proposed method can identify the network

connectivity with smaller errors and achieves better identification accuracy.

quantify the identification accuracy, define the identification error by

e =
∥Lid − Ltrue∥F
∥Ltrue∥F

× 100%,

where Ltrue and Lid are the true and the identified graph Laplacian matrices, respectively,

associated with the network.

Let M = 10, 25, 20, · · · , 130. For each M , the identification is performed 5 times

with different random initial data, and the average identification error is recorded. The

topology of the network is generated randomly in each identification where the probability

of two nodes being directly connected is 25%, and the parameters of the optimization

algorithm are set to λ = 0.1, ρ = 4. Fig.2.8 shows the identification errors obtained via

the proposed method and the pseudo-inverse based method as functions of the data ratio,

which is defined to be the ratio of the amount of data pairs to the number of observables,

i.e., 10M
q
.

As Fig.2.8 shows, both the two methods reach higher identification accuracy with more

data, while the proposed method provides relatively higher accuracy. Also, the identifi-

cation accuracy of the proposed method converges to that of the pseudo-inverse matrix

method, as shown in Proposition 2.1. On the other hand, the identification error of

the proposed method is bounded, while the error blows up in the pseudo-inverse-based

method case. This is because the pseudo-inverses are calculated via the singular value

decomposition (SVD) method, i.e., A1 = Y1X
†
1 = Y1(V Σ†U∗) where

Σ† =
[
diag(σ†

i ) 0
]
or

[
diag(σ†

i )

0

]
, σ†

i =

σ−1
i , σi ̸= 0,

0, σi = 0,

and Σ† = diag(σ†
i ) when

10M
q

= 1. As a result, a small singular value could lead to a large

identification error. While in the proposed method, the identity matrix Iq is introduced

to the first terms in (2.15a) and (2.15b), which ensures that the matrices are invertible.
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2.5 Conclusions and discussions

In this chapter, the identification problem of network structures is considered, and an

identification method is proposed. The structural characteristics are formulated as the

coupling function of the nodes and extracted as a linear combination of manually defined

observables using Koopman analysis and sparse identification techniques. Two identifi-

cation examples are shown to verify the usefulness of the proposed algorithm. The com-

parisons with the pseudo-inverse-based method show that the proposed method remains

valid even under the influence of measurement noise.

The proposed method does not require that all the measured data belong to the same

trajectory, because what matters is how data evolves, i.e., the pair (xi,j, xi,j+1). Actually

in the identification process, the time order of x̄i,j is randomly, but the pair x̄i,j, x̄i,j+1 is

kept bound. A similar consideration can be found in the EDMD method proposed in [65]

where only randomly taken data pairs are required.

There are still drawbacks and problems that remain to be solved in the future. The

method proposed in this chapter requires data from isolated nodes, which is a very strict

assumption from a practical point of view. If the nodes in the network fully synchro-

nize, then the dynamics on the synchronization manifold can be considered as that of the

isolated nodes, however, such synchronization would make the network structure uniden-

tifiable as shown in [25], because g(x) vanishes. The proposed method also requires that

the full states of all the nodes be measurable, although generally, only output data of

the nodes may be available in practice. Also, the proposed method does not apply to

networks whose topology is time-varying such as networks with switching topology.

On the other hand, as mentioned in Proposition 2.1, the proposed method obtains a

projection of the coupling function over the space spanned by the observables. The design

of the observable set Ψ(x) greatly influences the identification accuracy, but it lacks an

optimal design method for the coupling function. In the numerical examples, combinations

of basis functions constructed out of the states of all the nodes are employed, which ensures

accurate approximation over certain domains, but also leads to high computational costs.

Design of the observables can be performed theoretically by using GLA methods, or by

considering the physical characteristics of the network and measured data.



3 Identification of Network Structure Changes

Using Streaming Data Sets of Measurable

Full-states

3.1 Introduction

In the previous chapter, an identification method for network structures is proposed based

on Koopman analysis and sparse identification. The proposed method treats the struc-

ture of a network as the coupling function that describes the data flow in the network and

approximates the coupling function using linear combinations of pre-defined observables.

However, the proposed method has two significant drawbacks. First, the coupling func-

tion is obtained as the difference between two Koopman operators corresponding to the

network and some isolated nodes, respectively, to approximate which both data from the

network and the isolated nodes are required. However, it is generally difficult to obtain

a large amount of data from an isolated node, especially in the case where networks are

in operation. Second, the method solves the problem in a post-processing manner, so it

cannot be applied to cases in which the network structures change during data recording.

In this chapter, an identification algorithm for network structures is proposed by adding

some restrictions to the network structures to overcome these drawbacks. In particular,

under the assumptions that the network topology is an undirected graph and that the

data flows between any two nodes are symmetric, the first drawback is solved. To solve

the second drawback, the previous algorithm is modified so it employs streaming data

sets to detect changes in network structures. Similar implementations can be found in

the streaming dynamical mode decomposition (sDMD) method proposed in [77]. Such

implementations can also be found in, e.g., [24, 25, 77]. In [24], assuming the dynamics

and the coupling functions to be known, an observer-like auxiliary system is designed to

synchronize with the network system, and the variables converge to the coupling strengths

practically. In [25], a dynamical coupling input to the auxiliary system replaces the static

input in [24] which makes the convergence asymptotic. Besides, [77] performs the DMD

method with streaming data sets which bring the DMD in real-time. In this chapter,

design nonlinear observables are designed to identify nonlinear coupling functions accu-

rately. From the viewpoint of Koopman analysis, the proposed method can be considered

41
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as obtaining and updating an approximation of a Koopman operator at every time step

using newly measured data. The relationship between the identification result and the

actual coupling function is also theoretically verified, and derive conditions under which

a time-invariant approximation of the Koopman operator can be obtained using time-

varying data matrices.

This chapter is organized as follows. Section 3.2 proposes a modification of the method

proposed in the previous chapter to relax some requirements and construct an identifi-

cation algorithm that detects network structure changes. Convergence conditions of the

proposed method are also derived in Section 3.2. Section 3.3 presents numerical examples

to illustrate the validity of the modified algorithm and in Section 3.4, a summary of the

results obtained in this chapter and some additional remarks are given.

3.2 Identification of Network Structure Changes

Consider a network system consisting of N identical discrete-time systems described by

x+i = f(xi) +
N∑
j=1

aijg(xi, xj), (3.1)

for i = 1, · · · , N , where xi ∈ Rn, f : Rn → Rn, and g : Rn × Rn → Rn. The function g

denotes the coupling function between any two systems, and aij is the (i, j) entry of the

adjacency matrix associated with the network topology.

To simplify the description, define x = col(x1, · · · , xN) ∈ RNn and rewrite the dynamics

of the network as the following compact form:

x+ = f(x) + g(x), (3.2)

where f(x) = colNi=1(f(xi)) and g(x) = colNi=1(
∑N

j=1 aijg(xi, xj)). Here, g(x) is called the

coupling function of the network, which contains information about both the data flow in

the network and the network topology, and corresponds to the network structure to be

identified. On the other hand, N uncoupled systems can be described as

x+ = f(x). (3.3)

Let F denote the functional space consisting of all of the observables ψ(x), i.e., F =

{ψ | ψ : RNn → C}. Now, define two Koopman operators K1 : F → F and K2 : F → F
corresponding to systems (3.2) and (3.3) as follows:

K1ψ(x) =ψ(f(x) + g(x)), (3.4)

K2ψ(x) =ψ(f(x)). (3.5)
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Then, the evolution of the state of each system can be described as K1x = f(x)+g(x) and

K2x = f(x), respectively. In addition, defining the difference operator for two operators

as Kg = K1 −K2, one has

Kgx =f(x) + g(x)− f(x)

=g(x). (3.6)

This equation means that the identification problem for the network structure can be

solved by determining K1 and K2 from the measured data.

As a result, as shown in the previous Chapter, if measured data for the states of both

the coupled system (3.2) and the completely uncoupled system (3.3) could be obtained,

then the network structure of system (3.2) could be detected as an approximation of the

difference operator Kg.

3.2.1 Detection of Kg from measured data

In the previous Chapter, it is assumed that data can be measured from at least one isolated

node to obtain an approximation of K2 corresponding to system (3.3), but this assumption

is not realistic in practical situations. Therefore, this chapter considers relaxing the

assumption by adding some restrictions to the network structure.

Throughout this chapter, the following assumptions are made for the coupling function

g(xi, xj) and the adjacency matrix associated with network system (3.1).

Assumption 3.1. The coupling function g(xi, xj) is skew-symmetric, i.e., g(xi, xj) =

−g(xj, xi) for any xi and xj.

Assumption 3.2. The adjacency matrix [aij] satisfies aij = aji and aii = 0.

Assumption 3.1 means that the numerical summation of g(xi, xj) and g(xj, xi) is always

0, and it is well known that diffusive couplings in reaction-diffusion systems satisfy this

assumption. Assumption 3.2 means that the graph representation of the network topology

is undirected and has no self-loop. Under these assumptions, it is shown show that Kg,

which is the difference between K1 and K2, can be obtained approximately without any

data for the completely uncoupled systems.

The coupling function is identified following two steps: first to obtain an approximation

of K1x, and then to determine K2x from K1x.

In the first step, to obtain an approximation of K1x from data, assume that a time

series of the states of system (3.1) for m + 1 steps is measured as {x[0], · · · , x[m]}. In

addition, define a set of q observables as Ψ(x) = col(ψ1(x), · · · , ψq(x)) : RNn → Cq where
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ψi : RNn → C for i = 1, · · · , q, and define data matrices X and Y as

X =
[
Ψ(x[0]) Ψ(x[1]) · · · Ψ(x[m− 1])

]
,

Y =
[
Ψ(x[1]) Ψ(x[2]) · · · Ψ(x[m])

]
.

For K1 satisfying (3.4), Ψ(x[k + 1]) = K1Ψ(x[k]), and, in turn, the following equation

hold: [
Ψ(x[1]) · · · Ψ(x[m])

]
=
[
K1Ψ(x[0]) · · · K1Ψ(x[m− 1])

]
.

As a result, a q-dimensional approximation of K1x is obtained as

K1x ≈ A1Ψ(x), (3.7)

where A1 := CxA0, Cx ∈ CNn×q is such that x = CxΨ(x), and A0 is a transition matrix

that maps X to Y , i.e.,

A0 = argmin
A

∥AX − Y ∥F . (3.8)

Note that although Cx contains the expansion coefficients of x from Ψ(x), one can design

Ψ(x) such that the expansion is trivial, i.e., let Ψ(x) = col(x, ψ1, · · · , ψq−Nn), then Cx =

[INn,0Nn×(q−Nn)].

Next, as the second step, it is shown that K2x can be obtained from K1x without using

the data for the completely uncoupled system (3.3). The core idea here is that, under

Assumptions 3.1 and 3.2, aijg(xi, xj) always cancels out aijg(xj, xi) numerically for any

j ̸= i. This means that the terms describing data transmissions vanish if added, and

what remains is the unforced dynamical models of the node systems corresponding to

K2x. Under the assumptions, aijg(xi, xj) + ajig(xj, xi) = 0 holds, and

N∑
i=1

N∑
j=1

aijg(xi, xj) =
N∑
i=1

i−1∑
j=1

aijg(xi, xj) +
N∑
j=1

j−1∑
i=1

aijg(xi, xj)

=
N∑
i=1

i−1∑
j=1

(
aijg(xi, xj) + ajig(xj, xi)

)
= 0, (3.9)

where aii = 0 is substituted to the first equality. Equation (3.9) indicates that if xi[k] =

x̄i[k] for i = 1, · · · , N , then
∑N

i=1 xi[k+1] =
∑N

i=1 x̄i[k+1] holds with respect to dynamics

(3.2) and (3.3). Using the definitions of Koopman operators K1 and K2, the following

equation holds

N∑
i=1

K1xi =
N∑
i=1

K2xi, (3.10)
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which acts as a bridge between K2x and K1x. Defining matrices C1, · · · , CN ∈ Rn×Nn

such that xi = Cix for i = 1, · · · , N , and substituting (3.7) into (3.10), the following

equation holds

N∑
i=1

K2xi ≈
N∑
i=1

CiA1Ψ(x). (3.11)

Note that the right-hand side of (3.11) has already been identified from data and is

considered known.

Next, individuals, i.e., K2xi, from the summation based on the known right-hand side

of (3.11) are extracted from the summation. Note that
∑N

i=1K2xi is a summation of the

same function f(·) mapping different variables x1, · · · , xN , which is highly symmetric. As

a result, if an approximation of K2x in terms of a linear combination of the observables

Ψ(x) is desired, as one of K1x, then all of the coefficients of multi-variable observables,

e.g., ψk(xi, xj), in such a linear combination must have 0 as coefficients. As a result,

equation (3.11) can be rewritten as

N∑
i=1

K2xi ≈ D +B1Ψ
′
1(x1) + · · ·+BNΨ

′
2(xN) + 0n×(q−

∑N
i=1 pi)

Ψ′
o(x), (3.12)

where D ∈ Rn is a vector of constants, Ψ′
i(xi) : Rn → Cpi with some pi ≤ q/N is a

sub-vector of observables contained in Ψ(x), which contains all of the observables that

only have xi as variables, and Ψ′
o(x) contains observables of multiple variables. Here,

Bi ∈ Cn×pi is the coefficient matrix of the linear combination BiΨ
′
i(xi), and D will appear

if the observable set Ψ(x) is designed to contain a constant observable. It follows (3.12)

that

f(xi) = K2xi ≈
D

N
+BiΨ

′
i(xi),

which is an approximation of K2xi. To obtain matrix A2 such that K2x ≈ A2Ψ(x), rewrite

K2xi = D/N +BiΨ
′
i(xi) for i = 1, · · · , N as a linear combination of Ψ(x). Since Ψ′

i(xi) is

a sub-vector of Ψ(x), there always exists B′
i ∈ Cn×q such that K2xi = D/N +BiΨ

′
i(xi) =

B′
iΨ(x). Then A2 can be obtained as

A2 = col(B′
1, · · · , B′

N) ∈ CNn×q. (3.13)

Finally, to obtain Kg, recall that Kg is defined as the difference between K1 and K2.

As a result, the coupling function g(x) can be identified from the approximations of K1x

and K2x, i.e.,

gid(x) = Kgx ≈ (A1 − A2)Ψ(x). (3.14)
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3.2.2 Detecting Network Structure Changes using Streaming

Data Sets

To detect changes in network structure, the identification procedures are performed over

an (m+ 1)-step-long horizon making use of newly measured data at every time step. At

step k, define data matrices X[k] and Y [k] by

X[k] =
[
Ψ(x[k −m]) Ψ(x[k − 2]) · · · Ψ(x[k − 1])

]
,

Y [k] =
[
Ψ(x[k −m+ 1]) Ψ(x[k −m]) · · · Ψ(x[k])

]
.

(3.15)

Then, an approximation of K1x at step k, i.e., A1[k]Ψ(x), can be calculated with X[k]

and Y [k]. For the case in which m≫ q, A1[k] can be directly obtained by

A1[k] = Cxargmin
A
∥AX[k]− Y [k]∥F = CxA0[k] = CxY [k]X†[k], (3.16)

whereX† denotes the Moore-Penrose inverse of matrixX, and Cx is such that CxΨ(x) = x.

However, if the amount of data is limited due to practical reasons such as the capacity

of data storage systems, then A1[k] cannot be detected with high accuracy. In such a

case, sparse identification techniques are employed to obtain A1[k] and hence Kg. For

i = 1, · · · , q, consider the optimization problem

a0i[k] = argmin
a

∥a∥1

subject to aX[k] = yi[k],

or equivalently ([85]),

a0i[k] = minimize
a

∥X∗[k]a∗ − y∗i [k]∥22 + λ∥a∥1, (3.17)

where λ > 0, a0i[k] is the ith row of A0[k], and yi[k] is the ith row of Y [k].

To solve the optimization problem (3.17), ADMM ([87]) is employed. A vector-wise

updating algorithm of the variables is given explicitly by

a∗0i[k] =−
1

2
(X[k]X∗[k] +

ρ

2
Iq)

−1(−2X[k]y∗i [k] + w∗
i [k − 1]− ρv∗i [k − 1]), (3.18a)

v∗i [k] =Sλ/ρ(a∗0i[k] +
1

ρ
w∗

i [k − 1]), (3.18b)

w∗
i [k] =w

∗
i [k − 1] + ρ(a∗0i[k]− v∗i [k]), (3.18c)

for i = 1, · · · , q where a0i, vi are the primal variables, wi is the dual variable and ρ > 0.

Here, Sγ is a soft-thresholding operator defined by

Sγ(x) =

{
x− γsgn(x) |x| > γ

0 |x| ≤ γ
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for some γ > 0, and the operator acts on a vector or a matrix in an entry-wise manner.

Furthermore, update the variables in a matrix-wise manner to reduce computational costs:

A∗
0[k] =−

1

2
(X[k]X∗[k] +

ρ

2
Iq)

−1(−2X[k]Y ∗[k] +W ∗[k − 1]− ρV ∗[k − 1]), (3.19a)

V ∗[k] =Sλ/ρ(A∗
0[k] +

1

ρ
W ∗[k − 1]), (3.19b)

W ∗[k] =W ∗[k − 1] + ρ(A∗
0[k]− V ∗[k]). (3.19c)

The optimal A⋆
0 is used for constructing A1, A2 and gid(x) via A1 = CxA

⋆
0, (3.13) and

(3.14), respectively.

Finally, an algorithm for the above-mentioned network identification approach is con-

structed in Algorithm 3.1.

Remark 3.1. Assumptions 3.1 and 3.2 ensure that the influence of f(x) can be totally

removed, and the coupling function g(x) can be accurately identified. If the assumptions

do not hold, the equation (3.10) does not hold and K2xi cannot be extracted, so the

coupling function could not be accurately identified. However, the information sent from

node j to node i can still be identified as a linear combination of the observables that are

dependent on xj, which may be a coupling function to be identified.

Algorithm 3.1 Proposed identification algorithm

Input: Observables Ψ(x) ∈ Cq, matrix Cx ∈ CNn×q such that x = CxΨ(x), parameters

ρ, λ, m and convergence criteria L, ε > 0

Output: gid(x) = Cx(A1 − A2)Ψ(x)

1. Initialization: Define variables A0, V,W ∈ Rq×q and data matrices X,Y ∈ Rq×m

as zero matrices.

2. At time step k: Construct data matrices X[k], Y [k] with (3.15)

Update A0, V , and W with (3.19a), (3.19b) and (3.19c), respectively.

4. Convergence verification:

if 1
L

∑k−L+1
i=k ∥A0[i]− A0[i− 1]∥ < ε then

record A0[k] as A
⋆
0 and go to step 5

else

set k ← k + 1 and go to step 2

end if

5. Result: Calculate A1, A2 and gid(x) via A1 = CxA
⋆
0, (3.13), and (3.14), respectively.

3.2.3 Error and convergence analysis

In this subsection, a brief theoretical analysis of the proposed identification method is

given. It is first shown that the identified result is a projection of the actual coupling



48 3.2. Identification of Network Structure Changes

function, and then conditions are derived under which a time-invariant solution to the

optimization problem (3.8) can be obtained using time-varying data matrices X[k] and

Y [k].

Proposition 3.1. If the obtained data sequence is sufficiently long and distributes uni-

formly, then the identified coupling function gid(x) = (A1−A2) is an L2 projection of the

coupling function g(x) onto the space spanned by the entries of Ψ(x), i.e.,

gid(x) = Pspan{Ψ(x)}Nng(x),

on the manifold where the data are measured.

Proof. It is known that if m → ∞, then A0 obtained by solving (3.8) is the optimal

approximation of Koopman operator K1 in the sense that A0 minimizes ∥A0Ψ−KΨ∥L2

([94, 95]). For any observable φ ∈ F = {f | f : RNn → C}, Kφ can be approximated as

Kφ ≈ cφA0Ψ, where cφ minimizes ∥cφΨ− φ∥L2 . As a result,

A1Ψ(x) =CxA0Ψ(x) = Cx(argminA∥AΨ(x)−KΨ(x)∥L2)Ψ(x)

=CxPspan{Ψ(x)}Nn(KΨ(x)) = Pspan{Ψ(x)}Nn(Kx)

=Pspan{Ψ(x)}Nn(f(x) + g(x)),

for i = 1, · · · , Nn where Cx satisfies CxΨ(x) = x. On the other hand, the construction of

A2 indicates

A2Ψ(x) =colNi=1

(
Pspan{Ψ′

i}n(
N∑
j=1

(CjA1Ψ(x) +D/N))
)

=colNi=1

(
Pspan{Ψ′

i}n(Pspan{Ψ(x)}n(
N∑
j=1

Cjf(x) +
N∑
j=1

Cjg(x)))
)

=Pspan{Ψ(x)}NnK2x,

where the fact that Pspan{Ψ′
i}nf(xi) = Pspan{Ψ(x)}nf(xi) is used. As a result,

gid(x) =(A1 − A2)Ψ(x) = Pspan{Ψ(x)}NnK1x− Pspan{Ψ(x)}NnK2x

=Pspan{Ψ(x)}Nng(x).

Next, conditions on the number of measured data and the design of observables are

derived under which a time-invariant approximation of Koopman operator K1, i.e., A1[k]

in (3.16), exists.
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Proposition 3.2. Assume that the network structure is time-invariant over an interval

[T1, T2], where T2 − T1 > m + 1. In the case where m ≥ q, if the observable set Ψ(x) is

sufficiently rich, i.e., there exists a matrix F such that FΨ(x) = f(x) + g(x), then the

optimality of (3.16) is time-invariant over [T1 +m+ 1, T2].

Proof. Note that f(x[k]) + g(x[k]) = x[k + 1] = CxΨ(x[k + 1]) holds and consider the

matrix A1 obtained at step k:

A1[k] = CxA0[k] =argmin
(CxA)

(∥CxAX[k]− CxY [k]∥2F )

=argmin
(CxA)

(∥(CxA)X[k]− FX[k]∥2F ),

where CxY [k] =
[
· · · ,f(x[k + j]) + g(x[k + j]), · · ·

]
j=0,··· ,m−1

= FX[k] is used. The

optimization problem becomes time-invariant with a globally unique optimality as long

as X[k] has full rank.

Note that in the case where data are not sufficient, (CxA)X[k] − FX[k] = 0 may not

indicate CxA − F = 0. In such a case, the algorithm (3.19) is used to solve the inverse

problem to find A0[k] using sparsity. The fixed point of the algorithm also minimizes

∥A0Ψ(x) − Ψ(f(x) + g(x))∥L2 , but would deviate slightly from Atrue
0 . The deviation

depends on the parameters ρ and λ.

3.3 Numerical examples

In this section, three numerical examples are given to show the validity of the obtained

results. Specifically, the first example is a detailed example of determining K2x and g(x)

from K1x, and the second example shows that the proposed method successfully detects

and records changes in network topology. In the third example, data generated using a

SPICE model are employed, which are sampled aperiodically, to simulate measured real

data.

3.3.1 A network of chaotic scalar oscillators

This example shows in detail how matrices A1 and A2 are constructed and how the

coupling function is obtained.

Consider a network of 10 scalar oscillators ([96]), the ith node of which is modeled by

x+i =βI(xi) + δ + ui, (3.20)

ui =
10∑
j=1

lijI(xi), (3.21)
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Fig. 3.1: The identification results at k = 250: (a) matrix A1 which corresponds to

dynamics (3.20). The color plotted at coordinate (i, j) in the figure corresponds to the

(i, j) entry in matrix A1; (b) matrix A2 constructed based on A1 which corresponds to

the dynamics of all the nodes when isolated and (c) matrix A1 − A2 which corresponds

to the coupling function.
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Fig. 3.2: The identified network topology.

for i = 1, · · · , 10, where xi ∈ R, I(x) = 0.5(1 − cos x) and lij is the (i, j) entry of

the Laplacian matrix L associated with the network topology. Each oscillator behaves

chaotically when the parameters are set to β = 1.45π and δ = 0.525. The network is a

randomly generated undirected unweighted graph in which the probability of aij = aji = 1

is 50%.

Suppose that the data storage system is capable of storing 36 steps of measured data

from all of the nodes, i.e., m = 35. Define the observable set Ψ(x) : R10 → R31 by

Ψ(x) = col(1, x, col10i=1(cos xi), col
10
i=1(sin xi)), (3.22)

and initialize data matrices X,Y ∈ R31×35 as zero matrices. Specifically, let the data be

measured with some measurement noises, which are random signals distributed uniformly

in [−0.05, 0.05]. At each time step of the simulation process, optimization (3.19a)-(3.19c)

is performed with parameters set to ρ = 3 and λ = 10−4.

The time evolution of the states is obtained in terms of K1x as A1Ψ(x). In addition,

A2 is constructed based on A1Ψ(x). Here, take A1[250] obtained at the last step of the

simulation as an example. The entries of A1 ∈ R10×31 are shown in Figure 3.1(a) in color,
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Fig. 3.3: Time evolution of all the entries in A1 and Ap
1. (a) Time evolution of entries in

A1, which is obtained by the proposed method and (b) time evolution of entries in Ap
1,

which is obtained by calculating the pseudo-inverses.
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Fig. 3.4: A comparison between the obtained coupling function of the first node using

the proposed method and pseudo-inverse restricted to the space spanned by x1 and x5.

(a) e⊤
1 g

id(x) obtained with the proposed method; (b) e⊤
1 g

id(x) obtained with pseudo-

inverse; (c) the identification error e⊤
1 (g

id(x)− g(x)) of the proposed method and (d) the

identification error e⊤
1 (g

id(x)− g(x)) of using pseudo-inverse.

and the identified K1x = A1Ψ(x) reads

e⊤
1 A1Ψ(x) =2.783ψ1 − 3.751ψ12 + 0.512ψ16 + 0.517ψ19 + 0.478ψ21

=2.783− 3.751 cos x1 + 0.512 cos x5 + 0.517 cos x8 + 0.478 cos x10,

...

e⊤
10A1Ψ(x) =2.805ψ1 + 0.492ψ12 + 0.495ψ20 − 3.270ψ21

=2.805 + 0.492 cos x1 + 0.495 cos x9 − 3.270 cos x10,

where e⊤
i ∈ R10 is the ith standard basis vector, and entries of O(10−1) are omitted. By

adding all of the entries of K1x, the following equation holds∑10

i=1
K1xi =27.933− 2.306 cos x1 − 2.176 cos x2 − 2.245 cos x3 · · · − 2.305 cos x10.

The above equation corresponds to (3.12) with D = 27.933, B1 = (0,−2.306, 0), · · · ,
B10 = (0,−2.305, 0) and Ψ′

i(xi) = (xi, cos xi, sin xi)
⊤. Then, for i = 1, · · · , 10, K2xi is
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Fig. 3.5: Time evolution of entries in A1 − A2 using observables defined in (3.24). The

entries fail to converge to constant values.

extracted as

f(x1) =K2x1 = 27.933/10− 2.306 cos x1 = B′
1Ψ(x),

...

f(x10) =K2x10 = 27.933/10− 2.305 cos x10 = B′
10Ψ(x),

where

B′
1 =

[
2.793 01×10 −2.306 01×19

]
,

...

B′
10 =

[
2.793 01×19 −2.305 01×10

]
.

Matrix A2 is then constructed using (3.13) as A2 = col(B′
1, · · · , B′

10), and the values of

the entries are shown in Figure 3.1(b) in color. The coupling function is then identified

as gid(x) = (A1 −A2)Ψ(x), and the entries of matrix A1 −A2 are shown in Figure 3.1(c)

in color. As the figure shows, the coupling function is identified as

e⊤
1 g

id(x) =− 1.445 cos x1 + 0.512 cos x5 + 0.517 cos x8 + 0.478 cos x10,

...

e⊤
10g

id(x) =0.492 cos x1 + 0.495 cos x9 − 0.965 cos x10,

which approximately match the true inputs of g(x) = Lcol10i=1(I(xi)), where L is the

Laplacian matrix associated with the network structure, and I(x) = 0.5(1 − cos x). The

connectivity of the network is identified as shown in Figure 3.2.

In addition, the identification results are compared with the results obtained in a com-

parison simulation in which sparse identification techniques are not used, and A1 is ob-

tained with (3.16), which is denoted by Ap
1. The time evolution of all of the entries of A1

and Ap
1 is shown in Figure 3.3. As the figures show, the proposed method obtains higher

accuracy. Figure 3.4 shows the identified coupling function of the first node restricted to
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Fig. 3.6: The first component of the identified coupling function restricted to the spaces

spanned by x1 and xj for j = 1, · · · , 10. It can be seen that e⊤
1 g

id(x) is only dependent

on x1, x5, x8 and x10.
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Fig. 3.7: The obtained A1 − A2 ∈ R61×611 shown in color, which fails to reveal a direct

relationship as in Figure 3.1.

the space spanned by x1 and x5, where both the results obtained with pseudo-inverse and

the proposed method are plotted. As the figure shows, the identification error obtained

using the proposed method is smaller compared to that obtained using the pseudo-inverse.

To quantify the identification errors, introduce the error index I(A1) defined by

I(A1[k]) =
∥g(x)− gid(x)∥L2

∥g(x)∥L2

× 100%, (3.23)

where the L2 norm is approximated by dividing the space into lattices of side length

0.1 and calculating the average error for every grid. Here, the error index restricted

to span{x1, x5} for both results are I(A1[250])|x1,x5 = 9.815% and I(Ap
1[250])|x1,x5 =

55.049%.

As stated in Proposition 3.2, the observable set Ψ(x) contains the true coupling function

g(xi, xj) = I(xi)−I(xj) = cos xj−cos xi, and all the entries in A1−A2 converge to constant

values. Next, consider the case where the coupling function is not contained in Ψ(x).

Define the observable set Ψ(x) by

Ψ(x) = col
(
1, x, colt∈T col

10
i=1(so(xi, t)), colt∈T col

10
i=1(se(xi, t))

)
: R10 → R611, (3.24)
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Fig. 3.8: The identification error of the first component of the coupling function, where a

black × represents a pair (x1[i], x5[i]) for i ∈ {0, 1, 2, · · · , 250}. As the figure shows, the

identification error is relatively small over the manifold where the data are measured and

deviates elsewhere.

where T = {0.1π, 0.2π, · · · , 3π} and so(x, t), se(x, t) are square waves with periods t > 0

that are odd functions and even functions, respectively, i.e.,

so(x, t) =

1, mod(x, t) ∈ [0, 1
2
t)

−1, mod(x, t) ∈ [1
2
t, t)

, se(x, t) =

1, mod(x, t) ∈ [0, 1
4
t) ∪ [3

4
t, t)

−1, mod(x, t) ∈ [1
4
t, 3

4
t)

.

Let m = 350 and perform the proposed identification method for 1050 steps, where the

parameters are set to λ = 0.5 and ρ = 5. Figure 3.5 shows the time evolution of entries

in A1 − A2, and the entries fail to converge. However, Figure 3.6 shows the identified

coupling function of the first node at k = 1050 restricted to the space spanned by x1

and xj for j = 2, · · · , 10. It can be seen from the figures that e⊤
1 g

id(x) depends solely

on x1, x5, x8 and x10, which indicates that the network topology is correctly identified.

The obtained A1 − A2 ∈ R10×611 matrix is shown in Figure 3.7. Here, the entries fail to

show a direct relationship with the Laplacian matrix. Figure 3.8 shows the identification

error restricted to span{x1 ∈ [−4, 8], x5 ∈ [−4, 8]}, and it can be seen that the proposed

method guarantees the error to be small over the manifold where data are measured, i.e.,

span{x1 ∈ [−2, 6], x5 ∈ [−2, 6]}. In conclusion, although the entries in A1 − A2 did not

converge, the coupling function is still identified numerically. Nevertheless, convergence

is still considered as the stop criterion of the proposed algorithm, because the above

comparison is not available in practical situations, and therefore, there lacks an indication

to end the process.

The influence of parameter m is revealed in Figure 3.9(a) where the identification

error defined by (3.23) is plotted, which is also restricted to span{x1, x5}. For every

m ∈ {100, 150, 200, · · · , 800}, the identification is performed 10 times and the average

values of the errors are plotted. Specifically, for each m the result at k = 3m is taken,

the observable set is defined as in (3.24), and the parameters λ and ρ remain the same.

As the figure shows, the identification error decreases as m becomes larger, however, the

error would not converge to 0 because no linear combination of the observables could
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Fig. 3.9: (a) The relationship between the identification error and the parameters m which

is represented as multiples of q, the number of observables. Note that if m > 1.0q, then A0

could be obtained using pseudo-inverse. (b) The relationship between the identification

error and q, the number of observables.

approximate the coupling function perfectly. On the other hand, to show the influence of

the richness of the observable set, define another observable set Ψ(x) : R10 → R11+20a by

Ψ(x) = col
(
1, x, colt∈Tacol

10
i=1(so(xi, t)), colt∈Tacol

10
i=1(se(xi, t))

)
, (3.25)

where Ta = {13π
a
, 23π

a
, 33π

a
, · · · , a3π

a
}. Let a = 1, · · · , 40 and perform the identification

withm(a) = ⌈0.8(11+20a)⌉ for 3m(a) steps. For each parameter setting, the identification

is repeated 10 times with different trajectories, and the average values of the errors defined

by (3.23) are recorded. The identification result is shown in Figure 3.9(b). As the figure

shows, as the number of square wave functions grows, the observables approximate the

true coupling functions better and the error becomes smaller.

3.3.2 A network of Lorenz systems

In this example, the availability of the proposed method for multi-dimensional chaotic

system networks with topology changes is shown. Since the convergence of the entries

greatly depends on the design of the observable set, the case where the assumptions of

Proposition 3.2 are satisfied is considered, i.e., the span of the observable set contains the

coupling function. Consider the Lorenz oscillators discretized with the first-order Euler

method with sampling intervals h = 0.01s.

Consider a network of 10 Lorenz systems modeled by

x+i,1 =xi,1 + h · (−10xi,1 + 10xi,2),

x+i,2 =xi,2 + h · (−xi,1xi,3 + 28xi,1 − xi,2 + ui),

x+i,3 =xi,3 + h · (xi,1xi,2 − 8/3xi,3),

ui =σ
10∑
j=1

cij(xj,2 − xi,2),

(3.26)
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Fig. 3.10: (a)-(d) Time evolution of entries in matrix A1 − A2 obtained with parameter

m = 250, 230, 450 and 550, respectively. Specifically, the entries correspond with c13 and

c31 are emphasized with bold red lines and bold blue lines, respectively; (e) the second state

components of the trajectories of the Lorenz oscillators, i.e., xi,2, used for identification and

(f) time evolution of card{eig(X[k]X∗[k]) > 10−2}, which is approximately rank(X[k]).

From the top to the bottom, the four lines correspond to m = 550, 450, 350 and 250,

respectively.

for i = 1, · · · , 10, cij is the (i, j) entry of the adjacency matrix associated with the network

topology, and σ = 1 is the coupling strength. Consider the case that the network topology

changes randomly every 30 seconds where the probability of cij = cji = 1 is 40% for any

i ̸= j, and perform identifications with m = 250, 350, 450 and 550, i.e., using recorded

trajectories of 2.5s, 3.5s, 4.5s and 5.5s. The observable set Ψ(x) : R30 → R61 is defined by

Ψ(x) = col(1, col3j=1col
N
i=1(xi,j), col

10
i=1(xi,1xi,2), col

10
i=1(xi,1xi,3), col

10
i=1(xi,2xi,3)). (3.27)

The identification process is performed for 120s, and the parameters are set to ρ = 10−3

and λ = 10−7. The identification results are shown in Figure 3.10. Figure 3.10(a)-(d)

show the time evolution of entries in the identified A1 −A2 matrix for m = 250, · · · , 550,
respectively, and the entries associated with the connection between node 1 and node

3 are emphasized with bold lines. It can be confirmed that node 1 and node 3 are
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Fig. 3.11: The actual topology of the network, where (a)-(d) correspond to t = [0, 30),

t = [30, 60), t = [60, 90) and t = [90, 120], respectively.

directly connected for approximately t = [3, 30] ∪ [36, 60] and not directly connected for

t ∈ [65, 90]∪[95, 120]. As shown by Figure 3.11, the topology is correctly identified. Figure

3.10(e) shows the second state components of all the nodes, and Figure 3.10(f) plots the

number of eigenvalues of X[k]X∗[k] that are larger than 10−2, i.e., card{eig(X[k]X∗[k]) >

10−2}, which can be considered the rank of the matrix. As stated in Proposition 3.2,

the span of the observables in Ψ(x) contains the coupling function, and there exists a

time-invariant optimality for each period that the network topology does not change.

Convergence to the optimality is also highly related to the rank of matrix X[k]X∗[k],

which depends on both m and the distribution of measured data. For t ∈ [−30, 60], some

of the nodes synchronize practically, so the rank of X[k]X∗[k] falls and more data are

required to achieve convergence. Note that in the case xi ≈ xj, the optimal solution

described in Proposition 3.2 is not unique since X[k] no longer has full rank, as shown

in Figure 3.10(b)-(d) where the entries converge to different values. For t ∈ [60, 120],

a comparison of the figures indicates that convergence can be ensured by enlarging m,

however, at least m + 1 steps are required for X and Y to be filled with data measured

after the topology change. Note that as an exception, the reason that the entries converge

with less than m steps for t ∈ [0, 30] is that X and Y are initialized as zero matrices.

Figure 3.12 shows the obtained A1, A2 and A1−A2 matrices at t = 120 in the case where

m = 450, and the network topology can be revealed from Figure 3.12(c).

Generally speaking, dynamical mode decomposition (DMD)-like methods could not

reach high accuracy when applied to systems with continuous spectra, such as a chaotic

system ([65]). However, intrinsically, the proposed method obtains a projection of the

coupling function onto the span of the observables and is expected to be applicable to a

large class of nonlinear systems.

3.3.3 A network of Chua’s Circuits simulating real data

identifications

Consider a network of 4 Chua’s circuits shown in Fig.3.13, which are realized in an

inductor-less manner ([97]). The parameters of the components are shown in the fig-
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Fig. 3.12: Matrices obtained at t = 120 in the case where m = 450. (a) The A1 matrix;

(b) the A2 matrix and (c) the A1 − A2 matrix.

ure, where the units of the resistors, the capacitors and the voltage sources are Ohm (Ω),

Farad (F) and Volt (V), respectively.

As measured signals, let the voltages at nodes x11, x12, x21, x22, · · · , x41, x42, P1, P2,
P3 and P4 marked in Fig.3.13 be recorded as x11(t), · · · , p4(t), respectively. The currents
of the equivalent inductors, i.e., the third components of the Chua’s circuits, are then

calculated as x3j = (x2j−pj)/1, 000 for j = 1, · · · , 4 with units Ampere (A, [97]). Consider

the case that a 0.5-second long trajectory is recorded, as shown in Fig.3.14 where the first

0.1s of the trajectories are plotted. Here, the raw data are generated strongly aperiodically,

as shown in Fig.3.15(a) where the sampling intervals of the raw data are plotted. As

a result, data for identification are re-sampled with approximately 0.00005s intervals.

Fig.3.16 shows a comparison of the raw signals x11, · · · , x41 and the sampled signals for

identification. Note that the data used for identification is still slightly aperiodic, as shown

in Fig.3.15(b). Such misalignment is then considered measurement noise.

Also, consider the situation that one has basic knowledge about Chua’s circuits, but

does not know the specific parameters. Define ξ = col(x11, · · · , x41, x12, · · · , x42, x13, · · · , x43) ∈
R12 to be a permutation of x and define the observables set Ψ(x) : R12 → R49 for identi-

fication by

Ψ(x) = col
(
1, ξ, atan(0.8ξ), atan(ξ), atan(1.2ξ)

)
,

where the atan functions act on every entry of a vector, and are used to approximate

Chua’s diode. Specifically, the observables are defined using xi3 in microAmpere (mA)

units considering the scales of the data. Other parameters of the identification are set to

m = 450, ρ = 12 and λ = 15. The convergence criteria is ∥A0[k] − A0[k − 1]∥ + ∥A0[k −
1]− A0[k − 2]∥ ≤ ε = 0.05.

As the identification result, the identification algorithm ends at k = 3495, i.e., approx-

imately t = 0.175s. The time evolution of the coefficients which correspond to the states
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Fig. 3.13: The circuit diagram of 4 coupled Chua’s systems. Here, ’k’ denotes ’kilo’ and

’n’ denotes ’nano’, i.e., 2k denotes 2, 000 and 10n denotes 10 × 10−9.

as observables are plotted in Fig.3.17. As the figure shows, the convergence of zero-value

entries is achieved, while the nonzero entries fail to converge to constant values. Still, the

convergence criterion is satisfied at k = 3495, where the algorithm ends. The obtained

matrix A1−A2 is shown in Fig.3.18 in color, which indicates that the Chua’s systems are

coupled by the first components xi1, and the network structure can be inferred from the

sub-block (A1−A2)(1:4,2:5). On the other hand, small identification errors exist which are

considered to be caused by two factors that the data are samples of a continuous system,

and that the data are sampled aperiodically. Using the obtained result and assuming

Assumptions 3.1 and 3.2 hold, the Laplacian matrix is identified as

Lid =
1

2

(
(A1 − A2)

⊤
(1:4,2:5) + (A1 − A2)(1:4,2:5)

)

=


−0.1823 0.1532 0.0542 0

0.1532 −0.1976 0 0

0.0542 0 −0.1574 0.1327

0 0 0.1327 −0.1839

 ,
where terms smaller than 0.01 were omitted. The obtained result matches the circuit
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Fig. 3.14: Raw data measured from the circuit diagram shown in Fig.3.13. Note that the

third components xi3(t) are plotted with units microAmpere (mA).
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Fig. 3.15: The sampling intervals of (a) the raw signals and (b) the re-sampled data.

diagram in Fig.3.13, and the weights of the edges are identified qualitatively correctly.

3.4 Conclusions and discussions

In this chapter, the identification problem of network structures was considered and the

identification method proposed in Chapter 2 was modified to detect structure changes in

networks. The requirement on measured data for isolated nodes was released by posing

some restrictions to the network structures. An identification algorithm is constructed

that performs optimization at each time step to detect network structure changes. The

modified method can detect possibly nonlinear coupling functions and is applicable to

networks with topology changes. Numerical simulation results demonstrated the validity

and applicability of the proposed method.

Generally, Assumptions 3.1 and 3.2 are satisfied in networks where data transmissions

between nodes are symmetric. Therefore, these assumptions hold for undirected networks

with linear diffusive couplings and electric circuits coupled by linear resistors in practical

structures. As a result, the proposed method will be applicable for a wide range of actual
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Fig. 3.16: A comparison of the first components x11(t), · · · , x41(t) between (a) the raw

signals and (b) the re-sampled data.

Fig. 3.17: Time evolution of the entries in A1−A2 associated with the states as observables,

i.e., ψ2, · · · , ψ13.

network systems for purposes such as fault detection and monitoring in power supply

systems, multi-robot communication and electric circuit networks.

To apply the proposed method, the is no theoretical limitation on the size of networks

N , but for accurate identification, the observable set should be designed sufficiently rich,

and the computational cost would blow up. On the other hand, although sparsity-based

methods are employed, it is not required that the network be sparsely connected since

the sparsity of rows of A0 can be manually manipulated by the design of the observable

set Ψ(x). However, since small values are simply set to 0 by the sparse identification

method, there exists a trade-off between the accuracy of identification and the amount of

required data in the case where the coupling function is not contained in the span of the

observables.

There are still drawbacks remaining as future tasks. The optimal values of the opti-

mization parameters λ, ρ, and the record length m are not clear, and there is no design

method for the observable set Ψ(x). As stated in Chapter 2.3, the proposed method

obtains a projection of g(x) onto span{ψi}Nn. Thus, theoretically, there is no need to

require entries of f(x) to be in the span. However, the identification accuracy may de-

crease in such a case. Moreover, it is also assumed that all the states of the nodes were

measurable, but, in practical situations, only the outputs of the nodes may be available.

On the other hand, compared to the sDMD method ([77]), the proposed method requires
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Fig. 3.18: The obtained A1 − A2 matrix shown in color.

higher computational capability, since data matrices are updated and matrix inverses are

calculated at every step. It remains a future task to develop an algorithm that detects

changes in network structures. Also, the proposed method does not apply to networks

whose structure changes continuously with time. When the network structure changes,

the proposed method requires the network structure to not change in the following at least

m steps for the data matrices to be filled with data corresponding to the dynamics after

the structure change. If the network structure changes again within the m step window,

then the first structure change will not be identified. If the network structure changes

continuously, then the proposed method fails.



4 Identification of Networks Structures for

Networks with Partially-measurable States

and Known Dynamical Models

4.1 Introduction

Including the identification methods described in the previous chapters, although most

of the above-mentioned methods assume that all the states of the nodes are measurable,

in practical cases, there may exist states that cannot be measured, which are known as

hidden variables. In [32, 89, 98], the hidden variables are considered colored noises, and

the identification is performed in the subspace spanned by the measurable states. In

[90], networks with hidden nodes are identified by reconstructing the adjacency matrix

corresponding to the network and calculating the covariance of the obtained results, where

inputs signals from hidden nodes would enlarge the covariance, and [52] extends the results

to networks with transmission time delays.

On the other hand, in [24], the problem of identifying the topology of networks is

considered assuming both the dynamics of isolated nodes and the coupling function is

known. A drive-response system is designed whose variables converge practically to the

states of the original network system, and the topology of the network is obtained as

the coefficients of the coupling functions in the dynamics of the network. [25] designed

a dynamical input for the drive-response system to make the convergence to the states

asymptotic. In [47], the method is extended to the situation where nodes synchronize.

However, a problem exists that the convergence of the variables in the drive-response

system to the coefficients of the coupling function in the network dynamics is not strictly

ensured.

Although the adaptive-synchronization-based method achieved much success, there are

still open problems that remain to be solved. First, the method requires both the unforced

dynamics and the coupling function of all the nodes to be known, which is sometimes

impractical. Second, the auxiliary system is designed such that some of its states converge

to those of the original, and others converge to the to-be-identified parameters. In previous

efforts, the convergence of the former is ensured by constructing Lyapunov functions, and

the latter is ensured by applying the invariance principle. However, the equilibrium of the

63
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error dynamics of the latter may not be uniquely the origin, so the identification may fail

even in the case where all the state variables are correctly identified. Third, as described

in [25], the method fails in the case where the nodes synchronize and no inputs are allowed

to be applied to the original. In other words, it lacks explanations for the results obtained

by applying the method.

This chapter proposes an identification method that solves the above-mentioned prob-

lems. The case where only the outputs of all the nodes can be measured is considered,

and only the unforced dynamical models of the nodes are assumed known. An auxiliary

system is constructed where the unknown coupling function is modeled as a linear com-

bination of pre-defined basis functions, and the auxiliary system uses a streaming data

set of past data to obtain the gain matrix of the linear combination. Also, the auxiliary

system tracks past values of the original state variables, and the current values of the

original states are then obtained by iterating the states of the auxiliary system using

the identified dynamics. It is shown theoretically that under certain assumptions, the

identification results converge to the respective true values asymptotically. This chapter

also shows that if the nodes synchronize partially, then the proposed method obtains a

reduction of the original network.

This chapter is organized as follows. Section 4.2 describes the proposed drive-response-

system-based network identification method, and Section 4.3 gives numerical examples

to show the usefulness of the obtained results. Section 4.4 summarizes this chapter and

gives some remarks.

4.2 Identification using a drive-response system

Consider a network of N interconnected systems described by

x+i =f(xi) + Bui(x), (4.1)

ui(x) =
N∑
j=1

aijg(xi, xj), wi = Cxi,

for i = 1, · · · , N , where xi ∈ Rn denotes the states, wi ∈ Rm denotes the output and

ui(x) : RNn → Rm denotes the to-be-identified coupling function of node i. Suppose that

f : Rn → Rn is known, and the goal of this chapter is to identify ui(x) from f(xi) and

measured data of wi.

Define f̄(x, u) = f(x) +Bu, and let f̄ i+1(x, u) denote f̄(f̄ i(x, u)) +Bu for i = 0, 1, · · · .
Specifically, f̄ 0(x, u) = x. For ℓ = 1, · · · ,m, let rℓ denote the relative degree of the ℓ-

th output wiℓ, which is defined as the minimum of the relative degrees of (wiℓ, ui1), · · · ,
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(wiℓ, uim) pairs. Define yiℓ ∈ Rrℓ by

yiℓ =col(wiℓ, w
+
iℓ , · · · , w

(rℓ−1)+
iℓ )

=col(Cℓxi, Cℓf̄(xi, u), · · · , Cℓf̄
rℓ−1(xi, u)),

and define yi ∈ RrΣ = col(yi1, · · · , yim). Define rM = max{r1, · · · , rm} and rΣ =
∑m

ℓ=1(rℓ).

Assume that the following statements hold.

Assumption 4.1. The following matrix has full rank for all x ∈ Rn, i.e.,

rank

[
(
∂C1f̄

r1(x, u)

∂u
)⊤ · · · (

∂Cmf̄
rm(x, u)

∂u
)⊤
]
= m, (4.2)

where Cℓ ∈ R1×n is the ℓ-th row of C in (4.1).

Assumption 4.2. There exists a mapping ξi = S(xi) : Rn → Rn−rΣ defined globally such

that there exists an invertible transformation ϕ such that

xi = ϕ(col(yi, ξi)) ⇔ ϕ−1(xi) = col(yi, ξi).

Assumptions 4.1 and 4.2 ensure that the dynamical model (4.1) can be decoupled into

the following form

y+iℓ =A
ℓ
0yil +Bℓ

0biℓ(y, ξ), (4.3a)

ξ+i =a(yi, ξi), (4.3b)

Aℓ
0 =

[
0 Irℓ−1

0 0

]
, Bℓ

0 =

(
0(rℓ−1)×1

1

)
,

for i = 1, · · · , N where y = col(y1, · · · , yN) ∈ RNrΣ , ξ = col(ξ1, · · · , ξN) ∈ RN(n−rΣ) and

biℓ =Cℓf̄
rℓ
(
xi, ui(x)

)
=Cℓf̄

rℓ
(
ϕ(col(yi, ξi)), ui(col

N
i=1(ϕ(col(yi, ξi))))

)
.

Assumption 4.3. For any y∗ ∈ RrΣ and ξ1, ξ2 ∈ Rn−rΣ , the following inequality holds:

∥a(y∗, ξ1)− a(y∗, ξ2)∥ ≤ γ0(y
∗)∥ξ1 − ξ2∥, (4.4)

with γ0 : RrΣ → [0, 1) and sup γ0(y
∗) = γ < 1.

The problem of obtaining the coupling function ui(x) is then reduced to identifying the

biℓ function from data. Throughout this chapter, suppose that the measured outputs are

bounded, and the time series of the outputs are recorded for certain steps.
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4.2.1 Construction of a response system

Consider a drive-response system that is designed to track past values of the original full

states of (4.3), and identify the coupling function in terms of a linear combination of

pre-defined basis functions. Define

wd
iℓ[k] = wiℓ[k − rM ], ξdi [k] = ξi[k − rM ],

where rM denotes the largest relative degree of all the outputs. Also, define ydiℓ[k] =

yi[k − rM ], ydi [k] = yi[k −M ] and ξd[k] = ξ[k − rM ], and note that ydi [k] is numerically

available at step k. Consider the response system

ξ̂+i =a(ydi , ξ̂i), (4.5)

for i = 1, · · · , N where ξ̂i ∈ Rn−rΣ . For a set of basis functions Ψ(y, ξ) : RNrΣ×RN(n−rΣ) →
Rq where q > Nm, suppose that the to-be-identified functions biℓ(y, ξ) admits an approx-

imation

colNi=1(biℓ(y, ξ)) ≈ H⊤Ψ(y, ξ),

where H ∈ Rq×Nm is a constant matrix. Define Ĥ ∈ Rq×Nm to be a variable updated by

Ĥ+ = Ĥ +G[k](Y [k]−X[k]Ĥ), (4.6)

where G[k] ∈ Rq×M is to be designed, and X[k] ∈ RM×q, Y [k] ∈ RM×Nm are data matrices

defined by

X[k] =
[
Ψ(yd[k −M + 1], ξ̂[k −M + 1]) · · · Ψ(yd[k], ξ̂[k])

]⊤
, (4.7a)

Y [k] =
[
b[k −M + 1− rM ] · · · b[k − rM ]

]⊤
, (4.7b)

where M > q is a constant and

b[j] =colNi=1col
m
ℓ=1(biℓ(y[j], ξ[j]))

=colNi=1col
m
ℓ=1(wiℓ[j + rℓ])

for j = k − rM −M + 1, · · · , k − rM .

On the other hand, let F (Ĥ, col(y, ξ)) denote the estimated dynamics of the network

as

F (·, ·) =

(
colNi=1col

m
ℓ=1(A

ℓ
0yiℓ +Bℓ

0Ĥ
⊤
iℓΨ(y, ξ))

colNi=1(a(yi, ξi))

)
, (4.8)

where Ĥiℓ ∈ Rq denotes the (m(i− 1) + ℓ)-th column of Ĥ. Let F i+1(Ĥ, col(y, ξ)) denote

F (Ĥ, F i(Ĥ, col(y, ξ))), and define

θ[k] =F rM (Ĥ[k], col(yd[k], ξ̂[k])), (4.9)



Chapter 4. Identification of Networks Structures for Networks with
Partially-measurable States and Known Dynamical Models 67

as an estimation of the original states ξ[k] and y[k] at the current step where θ ∈ RNn.

Let ϕ : RNn → RNn be an invertible transformation such that

x = ϕ(col(y, ξ)) ⇔ ϕ−1(x) = col(y, ξ).

The dynamics of the outputs, i.e., colNi=1col
m
ℓ=1(biℓ(y, ξ)), is then identified as Ĥ⊤Ψ(y, ξ),

and the dynamics of the network is then identified as

x+,id = ϕ(F (Ĥ, col(y, ξ))).

The coupling function is then obtained as

colNi=1(u
id
i (x)) = B†(x+,id − colNi=1(f(xi))

)
, (4.10)

where B = IN ⊗ B.

4.2.2 Stability analysis of the identification errors

Suppose that the states of the original network system are uniformly bounded, i.e., ∥x∥ ≤
B for some B <∞. Then the following statement holds.

Proposition 4.1. If X[k] is column full-rank and there exists a matrix H ∈ Rq×Nm such

that

colNi=1col
m
ℓ=1

(
biℓ(y, ξ)

)
= H⊤Ψ(y, ξ) (4.11)

holds strictly, then

lim
k→∞
∥ξd[k]− ξ̂[k]∥ = 0, (4.12a)

lim
k→∞
∥col(y[k], ξ[k])− θ[k]∥ = 0, (4.12b)

lim
k→∞
∥H − Ĥ[k]∥ = 0, (4.12c)

hold with G[k] in (4.6) given by G[k] = ρX†[k] where 0 < ρ < 1 is a constant and †

denotes the pseudo-inverse.

Proof. To account for the delayed data in matrices X, two extended systems are con-

structed based on ξ̂ and ξ, respectively. Define η, η̂ ∈ RNM(n−rΣ) by

η[k] = col(ξd[k], ξd[k − 1], · · · , ξd[k −M + 1]),

η̂[k] = col(ξ̂[k], ξ̂[k − 1], · · · , ξ̂[k −M + 1]).
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Define the estimation errors by ε = η− η̂, E = H − Ĥ and e = col(y, ξ)− θ, and consider

the error dynamics:

ε+ = colk−M+1
j=k

(
a(ξd[j], ydi [j])− a(ξ̂[j], ŷd[j])

)
, (4.13a)

E+ =E −G(Y [k]−X[k]Ĥ), (4.13b)

e+ =F rM+1(Ĥ, col(ξ̂, yd))− F rM+1(H, col(ξd, yd)). (4.13c)

For the simplicity of denotation, let Xd[k] denote [Psi(ξd[k−M +1], yd[k−M +1]), · · · ,
Ψ(ξd[k], yd[k])] which contains the true past data of the original network system. By the

construction of Y [k] and X[k],

Y [k]−X[k]Ĥ[k] =Xd[k]H −X[k]Ĥ[k]

=(Xd[k]−X[k])H +X[k](H − Ĥ[k]).

Thus, it can be verified that ε = 0, E = 0 and e = 0 is an equilibrium of (4.13):

0 = colk−M+1
j=k

(
a(ξd[j], ydi [j])− a(ξd[j], ydi [j])

)
,

0 =0−G((Xd[k]−Xd[k])H +X[k](H −H)),

0 =F rM+1(H, col(ξd, yd))− F rM+1(H, col(ξd, yd)),

where ξ̂ = ξd, X = Xd and Ĥ = H are substituted.

Under the assumptions that M > q and X[k] having full column rank, define G[k] =

ρX†[k] and (4.13b) is transformed into

E+ = (1− ρ)E + ρX†[k](Xd[k]−X[k])H.

Here, the second term is bounded by

ρX†[k](Xd[k]−X[k])H ≤ c′1∥yd∥∥ε∥,

for some constant c′1 > 0. Since yd contains the measured output data of the original

network which are bounded, and H is a constant matrix, there exists a c1 > 0 such that

c′1∥yd∥ ≤ c1. As a result,

∥E[k + 1]∥ ≤ (1− ρ)∥E[k]∥+ c1∥ε[k]∥

holds. On the other hand, by Assumption 4.3 the following inequality holds:

∥ε[k + 1]]∥ ≤ γ∥η̂[k]− η[k]∥.
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Also, since f(xi) is locally Lipschitz, dynamic (4.3) is also Lipschitz continuous and there

exists a positive constant L with which the following inequalities hold.

∥F rM+1(Ĥ, col(ξ̂, ydi ))− F rM+1(H, col(ξd, ydi ))∥
≤L∥F rM (Ĥ, col(ξ̂, ydi ))− F rM (H, col(ξd, ydi ))∥
≤ · · ·
≤LrM+1∥col(ξ̂, ydi )− col(ξd, ydi )∥
+ LrM∥H − Ĥ∥∥Ψ(ξ̂, yd)−Ψ(ξd, yd)∥
≤LrM+1∥yd∥∥ε∥+ LrMLp∥yd∥∥E∥∥ε[k]∥,

where Lp is a constant depending on Ψ(y, ξ) and ∥B0v∥ = ∥v∥ for any v ∈ RNm. As a

result, there exists a positive constant c2 with which

∥e[k + 1]∥ ≤ c2∥ε[k]∥+ c2∥E[k]∥∥ε[k]∥

holds.

Next, define auxiliary variables z1 = ∥E∥∥ε∥, z2 = ∥ε∥2, and it follows that

∥z1[k + 1]∥ ≤γ∥ε[k]∥
(
(1− ρ)∥E[k]∥+ c1∥ε[k]∥

)
=γ(1− ρ)∥z1[k]∥+ c1γ∥z2[k]∥,

∥z2[k + 1]∥ ≤γ2∥ε[k]∥2 = γ2∥z2[k]∥.

Now, consider the stability of the origin of (4.13). Consider the augmented error dynamics:
∥e[k + 1]∥
∥E[k + 1]∥
∥ε[k + 1]∥
∥z1[k + 1]∥
∥z2[k + 1]∥

 ≤

0 0 c2 c2 0

0 ρ′ c1 0 0

0 0 γ 0 0

0 0 0 γρ′ c1γ

0 0 0 0 γ2




∥e[k]∥
∥E[k]∥
∥ε[k]∥
∥z1[k]∥
∥z2[k]∥

 , (4.14)

where ρ′ = 1 − ρ. Here the inequality holds in an entry-wise manner. It can be verified

that the origin of (4.13) is globally asymptotically stable since all the diagonal elements

of the above upper-triangle matrix are positive and smaller than 1.

Remark 4.1. LetK be the Koopman operator which corresponds to dynamics (4.3), then

K(e⊤
rℓ
yiℓ) = bℓ(yi, ξi, ui(y, ξ)) holds, where e⊤

rℓ
yiℓ is the rℓth entry of yiℓ ∈ Rrℓ . On the

other hand, if (4.11) holds, then KcolNi=1col
m
ℓ=1(e

⊤
rℓ
yiℓ) = HΨ(w, y) holds. Since Ĥ → H

holds, from the perspective of identification using Koopman mode decomposition, the

obtained Ĥ⊤Ψ(y, ξ) corresponds to the approximation of KcolNi=1col
m
ℓ=1(e

⊤
rℓ
yiℓ).

The identification algorithm is summarized in Algorithm 4.1.
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Fig. 4.1: (a). A comparison between the estimated first states yi1 estimated with

θ1, θ4, · · · , θ22, and their true values. (b). The estimation errors plotted in logarith-

mic scales.

Algorithm 4.1 Proposed identification algorithm

Input: Model f(xi), B, C, parameter M , observable set Ψ(ξ, y) and stop criteria L ∈ N
and ε > 0

Output: gid(x) and xid[k]

1. Initialization: Obtain model (4.3) according to f(xi), B and C. Define X ∈ RM×q,

Y ∈ RM×Nm and Ĥ ∈ Rq×Nm as zero matrices

2. Matrices update: At time step k, construct X[k] and Y [k] with (4.7)

3. Variables update: Update ξ̂ and Ĥ with (4.5) and (4.6), respectively

4. Convergence Verification:

if
∑L−1

j=0 ∥Ĥ[k − j]− Ĥ[k − j − 1]∥ ≤ ε then

go to step 5

else

set k ← k + 1 and repeat steps 2-4

end if

5. Result: Obtain gid(x) with (4.10). Obtain xid[k] = ϕ(θ[k])

4.3 Numerical examples

4.3.1 Identification of a network of SISO nodes

Consider a network of 8 generalized Hénon maps described by

x+i1 =− 0.3xi3 (4.15a)

x+i2 =xi1 + 0.3xi3 + 0.1 sin2 xi2 (4.15b)

x+i3 =1 + xi2 − 1.07x2i3 + ui, (4.15c)

wi =10xi1,
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Fig. 4.2: (a). Time evolution of the entries in Ĥ. (b) The Ĥ⊤ ∈ R8×49 matrix obtained

at k = 100 shown in color, where the color at row i and column j corresponds with

[Ĥ[100]]⊤(i,j).
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Fig. 4.3: The topology of the network.

for i = 1, · · · , 8 where aij is the (i, j) entry of the adjacency matrix associated with the

network topology. Define yi = (10xi1,−3xi3)⊤, ξi = 3xi2 and rewrite (4.15) into

y+i =

[
0 1

0 0

]
yi +

(
0

1

)
bi(ξi, yi, ui), (4.16a)

ξ+i =0.3yi1 − 0.3yi2 + 0.3 sin2(ξi/3), (4.16b)

where bi(ξi, yi, ui) = (−3 − ξi +
1.07
3
y2i2 − 3ui). It can be verified that Assumptions 4.1

and 4.2 are satisfied. Noting that 0.1| sin2 a − sin2 b| ≤ 0.1
√
2|a − b|, Assumption 4.3 is

satisfied with γ = 0.1
√
2/3.

First, construct the drive-response system described in (4.5). Let ydi1[k] and y
d
i2[k] denote

yi1[k − 2] and yi2[k − 2], respectively, and define

ξ̂+i =0.3ydi1 − 0.3ydi2 + 0.3 sin2(ξ̂i/3).

Next, col8i=1(b(ξi, yi, ui)) is approximated with Ĥ⊤Ψ(ξ̂, yd), where Ĥ ∈ R49×8,

Ψ(ξ, y) =col
(
1, y, ξ, col8i=1(y

2
i1), col

8
i=1(y

2
i2), col

8
i=1(ξ

2
i1)
)

: R24 → R49,
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Fig. 4.4: (a). A comparison between the estimated first states yi1 estimated with

θ1, θ2, · · · , θ8, and their true values in the case where the coupling function is not con-

tained in the span of Ψ(ξ, y). (b). The estimation errors plotted in logarithmic scales.

and the dynamics of Ĥ follows (4.6) where the data matrices X,Y consist of data of 50

steps, i.e., M = 50. Also, define a variable θ ∈ R24 as described in (4.9) to estimate the

states (ξ⊤, y⊤)⊤ in real-time.

The parameter ρ is set to 0.5 and the results of the identification are shown in Fig.4.1. In

Fig.4.1(a) a comparison between the estimated first states using θ1, · · · , θ8 defined in (4.9)

and the original states is shown, and Fig.4.1(b) plots the estimation errors in logarithmic

scales. As the figure shows, the errors converge exponentially which matches the results

of Proposition 4.1. However, note that the convergence starts after k =M = 50, which is

the time step when X becomes full-rank. Fig.4.2(a) shows the evolution of the entries in

H, and Fig.4.2(b) shows the Ĥ matrix obtained at k = 100. The function colNi=1b(ξi, yi, ui)

is obtained as Ĥ⊤Ψ(ξ, y), and a brief example of obtaining the coupling function from Ĥ

is given as follows. The first row of Ĥ⊤Ψ(ξ, y) reads

e⊤
1 Ĥ

⊤ =
(
−0.300 −0.270 0 −0.030 0 3.567 0

)
,

which means that b(ξ1, y1, u1) is identified as

bid(ξ1, y1, u1) =e⊤
1 Ĥ

⊤Ψ(ξ, y)

=− 3.000ψ1 − 0.800ψ2 − 0.100ψ6 − 0.100ψ8 + 0.357ψ42

=− 3.000− 0.800ξ1 − 0.100ξ5 − 0.100ξ7 + 0.357y2i2.

Combining bid(ξ1, y1, u1) with (4.16a), it can be obtained that

e⊤
1 Ĥ

⊤Ψ(ξ, y) =− 3− ξ1 +
1.07

3
y212 − 3uid1

3uid1 =− 0.200ξ1 + 0.100ξ5 + 0.100ξ7,

which matches the true input u1 = 0.1(x52 − x12) + 0.1(x72 − x12). Finally, the topology

of the network is obtained as shown in Fig.4.3.
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Fig. 4.5: (a). Time evolution of the entries in Ĥ. (b) The Ĥ⊤ ∈ R8×49 matrix obtained

at k = 300 shown in color, which unclear readings appear.

Fig. 4.6: The identified coupling function associated with y+12 restricted to the spaces

spanned by ξ1 and ξi for i = 2, · · · , 8.
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Fig. 4.7: The identification error of the coupling function associated with y+12 calculated

in the space spanned by ξ1 and ξ5.

Next, consider the case where the coupling function is not contained in the span of

Ψ(ξ, y). Suppose that ui in (4.15c) is given by

ui =
N∑
j=1

aij(I(xj2)− I(xi2)),
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Fig. 4.8: Trajectory of system (4.17) with ui1 = 0 and ui2 = 0.

where I(x) = 0.5(1− cos x). Redefine Ψ(ξ, y) as

Ψ(ξ, y) =col
(
1, y, ξ, col8i=1(y

2
i1), col

8
i=1(y

2
i2), col

8
i=1(ξ

2
i1),

col60j=1(log ∥(z⊤, y⊤)⊤ − cj∥2)
)
: R24 → R109,

where cj ∈ R24 for j = 1, · · · , 60 are snapshots taken from the trajectories of 8 unforced

generalized Hénon maps using k-means clustering. Let M = 300 and other parameters

remain the same. Fig.4.4(a) shows a comparison between the yi1 states estimated with

θ and their true values, and Fig.4.4(b) plots the errors in logarithmic scales, from which

one can verify that the errors are not asymptotically stable, but still ultimately bounded.

Fig.4.5(a) shows the time-evolution of the entries in Ĥ. The coupling function cannot

be completely represented by any linear combination of Ψ, so the origin of the error

dynamics (4.13) is no longer an equilibrium. Nevertheless, the obtained values stay in

small neighborhoods of the true values. Fig.4.5(b) shows the Ĥ matrix obtained at k =

200, and unclear readings that are hard to comprehend appear. To verify the correctness

of the obtained results, the obtained coupling function associated with y+12 restricted to

the spaces spanned by ξ1 and ξj for j = 2, · · · , 8 is shown in Fig.4.6. As the figures

show, the coupling function shows a clear dependence on ξ1, ξ5 and ξ7, and is not sensitive

to the changes in other states. The fact matches the topology of the network shown in

Fig.4.3, and the topology can be correctly inferred. Fig.4.7 shows a comparison between

the obtained and the true coupling function associated with y+12 restricted to span{ξ1 ∈
[−2, 2], ξ5 ∈ [−2, 2]}, i.e.,

(
u1 − uid1

)
|[−2,2]2 , which indicates that the nonlinear coupling

function is correctly identified in the region where data are measured, i.e., approximately

[−1, 1]2. This example indicates that if ui is not contained in span{Ψ}, then the proposed

method can only identify the nonlinear coupling function locally over the manifold where

data are measured.
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4.3.2 Identification of a network of MIMO nodes

Consider the network of 15 nodes described by

x+i,1 =xi,1 + h(−10xi,1 + 10xi,2), (4.17a)

x+i,2 =xi,2 + h(−xi,1xi,3 + 28xi,1 − xi,2 + ui,1), (4.17b)

x+i,3 =xi,3 + h(xi,4 − 8/3xi,3 + ui,2) (4.17c)

x+i,4 =xi,4 + h(−10xi,4 + xi,1xi,2), (4.17d)

wi,1 =xi,1, wi,2 = xi,3,

which are modified Lorenz oscillators discretized using the 1st order Euler method where

h = 0.01. The trajectory of an oscillator described by (4.17) when ui,1 = 0 and ui,2 = 0

is shown in Fig.4.8. Here ui,1 =
∑N

j=1 aij(xj2 − xi,2) and ui,2 =
∑N

j=1 aij sin(xj3 − xi,3).
Consider the time-evolution of the outputs:

w+
i,1 =0.9xi,1 + 0.1xi,2

w2+
i,1 =0.9(0.9xi,1 + 0.1xi,2) + 0.1(0.28xi,1 + 0.99xi,2 − 0.01xi,1xi,3 + 0.01ui,1)

w+
i,2 =2.92/3xi,3 + 0.01xi,4 + 0.01ui,2,

which indicates that the relative degrees of wi,1 and wi,2 are 2 and 1, respectively. Define

ξi = xi,4 and ϕ(xi) = (xi,1, 0.9xi,1 + 0.1xi,2, xi,3, xi,4)
⊤, and it can be verified that the

requirements of all the assumptions are satisfied. Define yi,11 = xi,1, yi,12 = 0.9xi,1 +

0.1xi,2, yi,1 = (yi,11, yi,12)
⊤ and yi,2 = xi,3. Noting that

∥(0.9ξi + 0.01x∗1x
∗
2)− (0.9ξj + 0.01x∗1x

∗
2)∥ = 0.9∥ξi − ξj∥,

the requirement of Assumption 4.3 is also satisfied. Rewrite (4.17) into the following form:

y+i,1 =

[
0 1

0 0

]
yi,1 +

(
0

1

)
(−0.863yi,11 + 1.89yi,12 − 0.001yi,11yi,2 + 0.001ui,1), (4.18a)

y+i,2 =2.92/3yi,2 + 0.01ξi + 0.01ui,2, (4.18b)

ξ+i =0.9ξi + 0.01yi,11(10yi,12 − 9yi,11). (4.18c)

Define ydi [k] = yi[k − 2], ξdi [k] = ξi[k − 2] and define a drive-response system as described

in (4.5) by

ξ̂+i =0.9ξ̂i + 0.01ydi,11(10y
d
i,12 − 9ydi,11). (4.19)

Define Ψ(ξ, y) : R45 → R376 by

Ψ(ξ, y) =col
(
1, ξ, y, col15i=1(yi,11yi,12), col

15
i=1(yi,11yi,2), col

15
i=1(yi,11ξi), col

15
i=1(yi,12yi,2),

col15i=1(yi,12ξi), col
15
i=1(yi,2ξi), col

15
i=1col

15
j=1(cos yj,2 sin yi,2)

)
, (4.20)
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Fig. 4.9: A comparison between the estimated first states θ1, · · · , θ15 and the original

y1,11, · · · , y15,11.

and let the inputs ui,1, ui,2 be approximated by(
col15i=1(ui,1)

col15i=1(ui,2)

)
= Ĥ⊤Ψ(ξ̂, ydi ),

where Ĥ ∈ R376×30. Let M = 400 and define data matrices X[k] ∈ R400×376 and Y [k] ∈
R20×376 by

X[k] =
[
· · · Ψ(ξ̂[j], yd[j]) · · ·

]
,

Y [k] =
[
· · · col

(
col15i=1(wi,1[j]), col

15
i=1(wi,2[j − 1])

)
· · ·
]
,

for j = k, k − 1, · · · , k − 399. Then, matrix Ĥ is updated according to (4.6) using the

above-defined X[k] and Y [k] matrices. The parameter ρ is set to 0.5. On the other hand,

Let F (H[k], ξ, y) defined by

F (H[k], ξ, y) =

 col15i=1(yi,12)

H[k]Ψ(ξ, y)

col15i=1(0.9ξi + 0.01yi,11(10yi,12 − 9yi,11))


denote the dynamics of the drive response system obtained at step [k], and define θ ∈ R60

by

θ = F ◦ F (H[k], ξ̂[k], yd[k])

to estimate (y⊤, ξ⊤)⊤ in real-time.

The result of state estimation is shown in Fig.4.9, where the estimated and the original

of the two inputs of the nodes are plotted. As shown by the figures, the states are

correctly estimated for k > M , which indicates that the dynamics of the nodes are

correctly identified. Time-evolution of the entries in Ĥ is shown in Fig.4.10, and as

the figure shows, the entries converge to constant values for k > M . The obtained

Ĥ⊤[1000] ∈ R30×376 matrix obtained at the end of the identification process is shown in

Fig.4.11, where the top 15 rows correspond to vi,1 and the bottom 15 rows corresponds to
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Fig. 4.10: Time-evolution of the entries in Ĥ.
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Fig. 4.11: The Ĥ⊤[1000] matrix shown in color.

vi,2 for i = 1, · · · , 15, respectively. As an illustrative example, the 1st row and the 16th

row read

bid1 (ξ1, y1, u1) =e⊤
1 Ĥ

⊤[1000]Ψ(ξ, y)

=− 0.845ψ17 − 0.009ψ19 − 0.009ψ27 + 1.870ψ32 + 0.010ψ34

+ 0.010ψ42 − 0.001ψ77

=− 0.845y1,11 − 0.009y3,11 − 0.009y11,11 + 1.870y1,12 + 0.010y3,12

+ 0.010y11,12 − 0.001y1,11y1,2,

bid2 (ξ1, y1, u1) =e⊤
16Ĥ

⊤[1000]Ψ(ξ, y)

=0.010ψ2 + 0.973ψ47 − 0.010ψ154 − 0.010ψ162 + 0.010ψ182 + 0.010ψ302

=0.010ξ1 + 0.973y1,2 − 0.010 cos y3,2 sin y1,2

− 0.010 cos y11,2 sin y1,2 + 0.010 cos y1,2 sin y3,2 + 0.010 cos y1,2 sin y11,2.

On the other hand, it can be obtained from (4.18) that

b1(ξ1, y1, u1) =− 0.863y1,11 + 1.89y1,12 − 0.001y1,11y1,2 + 0.001u1,1

b2(ξ1, y1, u1) =2.92/3y1,2 + 0.01ξ1 + 0.01u1,2,

which results in

0.001uid1,1 =0.018y1,11 − 0.02y1,12 − 0.009y3,11 − 0.009y11,11 + 0.010y3,12 + 0.010y11,12

uidi,1 =− 2(10y1,12 − 9y1,11) + (10y3,12 − 9y3,11) + (10y11,12 − 9y11,11),
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Fig. 4.12: The identified network topology.
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Fig. 4.13: A comparison between the estimated and the original first states in the case

where the span of the observables does not contain the coupling function.

and

0.01uid1,2 =− 0.010 cos y3,2 sin y1,2 − 0.010 cos y11,2 sin y1,2 + 0.010 cos y1,2 sin y3,2

+ 0.010 cos y1,2 sin y11,2

uid1,2 =sin(y3,2 − y1,2) + sin(y11,2 − y1,2).

Note that by definition, xi,1 = yi,11 and xi,2 = −9yi,11 + 10yi,12 hold. As a result, the

inputs are transformed into

uid1,1 =(x3,2 − x1,2) + (x11,2 − x1,2),
uid1,2 =sin(x3,3 − x1,3) + sin(x11,3 − x1,3),

which match the true inputs and the identification is considered successful. The identified

network topology is shown in Fig.4.12.

Next, consider the case where the coupling function is not contained in the span of the

observables. Define Ψ(ξ, y) : R60 → R151 by

Ψ(ξ, y) =col
(
1, ξ, y, col15i=1(yi,11yi,12), col

15
i=1(yi,11yi,2), col

15
i=1(yi,11ξi), col

15
i=1(yi,12yi,2),

col15i=1(yi,12ξi), col
15
i=1(yi,2ξi)

)
,



Chapter 4. Identification of Networks Structures for Networks with
Partially-measurable States and Known Dynamical Models 79

0 100 200 300 400 500 600 700 800 900 1000

10-4

10-2

100

102

a
v
g

. 
s
ta

te
 e

s
t.

 e
rr

o
r

Fig. 4.14: A comparison of the state estimation errors with M = 200 andM = 300, where

the average values of the first states of all the nodes are shown, respectively.

Fig. 4.15: (a) Time-evolution of the entries in Ĥ in the case where the span of the

observables does not contain the coupling function; (b) the Ĥ⊤[1000] matrix shown in

color.

where the trigonometric functions are removed from (4.20). Let M = 200 and other

conditions and parameters remain the same. Fig.4.13 shows the result of state estima-

tion, and as the figures show, estimation errors exist. Time-evolution of entries in Ĥ

is shown in Fig.4.15(a), and the entries fail to converge to constant values. Fig.4.15(b)

shows the obtained Ĥ matrix, whose bottom part fails to show a direct relationship with

the network topology. In this case, there does not exist an H with which ∥HΨ(ξ, y) −
colNi=1col

m
ℓ=1(bℓ(ξi, yi, ui))∥ = 0, and Ĥ is obtained as a practical minimizer. As a result,

the estimation errors depend greatly on the amount of data, i.e., M . Fig.4.14 shows a

comparison of the identification errors of the average values of the first states yi,11 with

M = 200 and M = 300, respectively, and the latter obtains smaller error. On the

other hand, since the estimations of the states of the original network system, i.e., entries

in θ, are obtained by iterating the dynamics of the derive-response system two times,

small errors between (θ1, · · · , θ15)⊤ and (y1,11, · · · , y15,11)⊤ indicate that vi approximates

colmℓ=1(bℓ(ξi, yi, ui)) decently. Also, since all the states are estimated, the method described

in Chapter 2 can be employed to obtain the nonlinear coupling function.



80 4.4. Conclusions and discussions

4.4 Conclusions and discussions

In this chapter, the identification problem of network structures using measured output

data is considered, where the dynamics of nodes in the network are assumed to be known.

Under the assumptions that the nodes can be input-output decoupled [99] and that the

internal dynamics of the nodes are convergent [100], a drive-response system is designed

to estimate delayed past data of the original network system as well as the unknown

network dynamics. The states of the network in real-time are also estimated by iterating

the dynamics of the drive-response system. Numerical identification examples showed the

usefulness and validity of the obtained results.

In this chapter, three assumptions are posed which ensure that the input-output model

can be constructed, that the reconstructed system is equivalent to the original and that the

internal dynamics is convergent. If Assumption 4.1 or Assumption 4.3 fails to hold, then

the proposed method would fail and it is encouraged to employ the method proposed in

Chapter 5 for such networks. If Assumption 4.2 fails to hold, then b(y, ξ) can be obtained

but it may not be able to recover x+,id and therefore g(x) any longer. In such case, the

network structure may be recovered in terms of y and ξ as the information sent from

others, as in the case in Chapter 3 where the assumptions do not hold.



5 Identification of Networks Structures for

Networks with Partially-measurable States

and Unknown Dynamical Models

5.1 Introduction

In the previous chapter, a drive-response-system-based method is proposed to identify

the structures of networks, the dynamical models of whose nodes are considered known.

In this chapter, the requirement of knowledge about the dynamical models of the nodes

is released, and an identification method is proposed for networks of nodes with partially

known or unknown dynamics using measured output data.

Compared to many other topics in the field of network structure identification, the iden-

tification of networks having hidden variables with unknown dynamics is a less-considered

topic due to lacking available information. The hidden variables are usually modeled as

functions of time acting as an external input ([32, 89, 90, 52, 98, 36]), and the net-

work is reconstructed in the subspace spanned by the measurable states. In [32, 89],

data-correlation-based methods are employed, where the hidden variables are considered

noises and the adjacency matrix of the subnetwork consisting of measurable nodes is de-

rived using data correlation. [98] describes the effect of hidden variables on the result

of such correlation-based methods. On the other hand, [90, 52] use a covariance-based

method under the principle that hidden inputs would enlarge the covariance of the identi-

fied adjacency matrix of the measurable sub-network. In [36], a similar method combined

with data entropy detects hidden sources of propagation networks. Besides, [101] stud-

ies the identifiabililty of networks modeled by unknown transfer functions, assuming the

topology of the network to be known.

This chapter considers the identification problem of network structures, the dynamics

of whose nodes are partially known or unknown. It is supposed that the outputs of all

the signals are measurable. Under the assumption that a subspace model of the nodes

in the space spanned by the measurable states is available, the network is reconsidered

as a network of fully known nodes coupled dynamically, where the measurable states are

considered as the full states of the new nodes, and the hidden states are considered as the

unknown dynamical couplings. Under the assumption that the dimension of the hidden

81
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variables is smaller than that of the measurable ones, new variables with to-be-determined

dynamical models are defined which approximates the hidden dynamical inputs, in the

sense that they have the same influence on the dynamics of the known variables. Here, it

may be impossible to identify the original coupling function accurately, so the structure

is defined as the function describing the data flow in the network in terms of the new

variables.

This chapter is organized as follows. Section 5.2 describes the details of the identification

method of networks consisting of nodes with partially known dynamical models. Section

5.3 shows an identification example of a network of Lorenz systems to show the usefulness

of the proposed method. Section 5.4 concludes this chapter and gives some remarks.

5.2 Identification by considering hidden variables as

new states

In practical situations, it is common that some knowledge of the dynamical models of the

nodes in networks is available a priori. However, such knowledge may only be a linearized

subspace model or is inaccurate due to modeling errors or other limitations. This chapter

considers the case that the dynamical models of the nodes are partially known, and tries

to extract the data flow in the network.

Consider the network system of N nodes described by

x+i =f(xi) + Bui(x), (5.1)

ui(x) =
N∑
j=1

aijg(xi, xj), wi = Cxi

where xi ∈ Rn, x = colNi=1(xi) ∈ RNn denotes the states, f : Rn → Rn is locally Lipschitz

continuous, wi ∈ Rm is the output of node i, and ui(x) : RNn → Rm denotes the trans-

mission sent to node i via the network where aij is the (i, j) entry of the adjacency matrix

associated with the network topology. Define w = colNi=1(wi) and rewrite the dynamics of

the network into

x+ =f(x) +Bg(x), (5.2)

w =Cx,

where f(x) = colNi=1(f(xi)), g(x) = colNi=1(ui), B = IN ⊗ B, C = IN ⊗ C and ⊗ denotes

the Kronecker product. Here, information about the network structure is fully contained

in g(x), so the network structure identification problem is reduced to identifying g(x).

Specifically, this chapter considers the case where a linear approximation of the dynamical

model is known and attempts to identify the network structure from measured output

data.
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First, the dynamical models of the nodes are reformulated such that the outputs wi

correspond to the full states, and the unmeasurable states are considered some unknown

dynamical inputs to the outputs. Let Fx be a linear approximation of f(x) where F ∈
Rn×n, f(x) ≡ Fx+ τ(x) and τ(x) denotes the modeling error. Let T ∈ R(n−m)×n be such

that col(C, T ) has full rank, and rewrite (5.1) into

w+
i = Cx+i =CFxi + Cτ(xi) + CBui(x), (5.3a)

Tx+i =TFxi + Tτ(xi) + TBui(x). (5.3b)

Since only data of the outputs wi of the nodes can be measured, rewrite CFxi into

CFxi ≡ F1wi+F2xi, where F1 ∈ Rm×m consists of the first m columns of CF

[
C

T

]−1

and

F2 ∈ Rm×n. Define yi = F2xi + Cτ(xi) + CBui(x) for i = 1, · · · , N . Substituting yi into

(5.3a), yi is considered a dynamical input to wi, i.e., w
+
i = F1wi+ yi, where the dynamics

of yi is unknown. The merits of defining the variables yi are twofold: the dynamics of

wi becomes fully known and yi[k] can be obtained as wi[k + 1] − F1wi[k]. This chapter

considers two cases where the dimension of col(wi, yi) is smaller than the dimensional of

xi or not, respectively. Note that although yi is unknown, data for yi can be calculated

from wi and the dimension of yi can be inferred by checking the linear dependency of the

data series.

First, consider the case where dim(yi) +m ≥ n. In this case, no additional variables

are required to span the dynamics of xi, so let the dynamics of yi be described by y+i =

hi(w, y), where y = colNi=1(yi) ∈ RNm and hi : RNm × RNm → Rm. Reformulate the

dynamical models of the nodes as

w+
i =F1wi + yi, (5.4a)

y+i =hi(w, y), (5.4b)

for i = 1, · · · , N , and rewrite the dynamics of the network into

w+ =F1w + y, (5.5a)

y+ =h(w, y), (5.5b)

where h(w, y) = colNi=1(hi(w, y)), F1 = IN ⊗ F1 and ⊗ denotes the Kronecker product.

Next, the dynamics of y, i.e., h(w, y), is extracted from measured data w[k] and y[k]

using the Koopman operator theory. Define ψi(w, y) ∈ F to be an observable for i =

1, · · · , q where F is the space of all the complex-valued scalar functions, i.e., F = {f | f :

RNm × RNm → C}. Define Ψ(w, y) = col(ψ1, · · · , ψq) : RNm × RNm → Cq to be the

observable set. Let K denote the Koopman operator that governs the evolution of the

observables associated with dynamics (5.5), i.e.,

Kψi(w, y) = ψi(F1w + y,h(w, y)), (5.6)
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for i = 1, · · · , q. Then, a q-dimensional approximation of Kφ can be obtained as

Kφ ≈ cφAΨ,

for any φ ∈ F where cφ = argminc∥f − cΨ∥L2 and A = argminH∥Ψ(F1w + y,h(w, y))−
HΨ∥L2 . As a result, the right-hand side of (5.5b) can be approximated as

h(w, y) = Ky ≈ CyAΨ(w, y),

where Cy is such that y ≡ CyΨ(w, y). Note that the existence of the expansion matrix

Cy can always be ensured by including the states w and y as observables in Ψ(w, y).

To obtain A from data, suppose that M + 2 steps of data, indexed by w[0], w[1], · · · ,
w[M ], w[M + 1], are measured. It is required that M > q and M can be designed

considering the dynamical characteristics of the nodes, e.g., enlarging M for nodes that

oscillate slowly. Then data for y[k] can be obtained as y[k] = w[k + 1] − F1w[k] for

k = 0, · · · ,M . Define data matrices X,Y ∈ Cq×M as

X =
[
Ψ(w[0], y[0]) · · · Ψ(w[M − 1], y[M − 1])

]
, (5.7a)

Y =
[
Ψ(w[1], y[1]) · · · Ψ(w[M ], y[M ])

]
. (5.7b)

According to the definition of K, KX = Y holds, and a matrix approximation of K can

be obtained as the transition matrix A that maps X to Y , i.e.,

A = argmin
H

∥HX − Y ∥2F , (5.8)

where ∥ · ∥F denotes the Frobenius norm. Denote the optimality of optimization problem

(5.8) by Aopt, and an approximation of dynamics (5.5b) is obtained as

y+,id = hid(w, y) = CyA
optΨ(w, y). (5.9)

Next, information about the network structure is obtained from the identified dynamics

of y, i.e., hid(w, y). Specifically, data transmission sent to the nodes from other nodes via

the network is extracted. If all the connections in the network were cut, then g(x) = 0

and y+i should depend solely on yi and wi. This fact indicates that the transmission from

node j to node i can be identified as the terms in the dynamical model of node i that

depend on wj or yj. It follows (5.9) that

y+i = CiCyA
optΨ(w, y), (5.10)

where Ci ∈ Rm×Nm is such that yi ≡ Ciy. Define Ψi(wi, yi) ∈ Rq to be the observable

vector such that all the entries, which are dependent on wj or yj for any j ̸= i, in Ψ(w, y)
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are set to 0, and define Ψ′
i(w, y) = Ψ(w, y)−Ψi(wi, yi). Note that Ψi(wi, yi) now contains

observables that only depend on the states of node i. Then (5.10) can be rewritten as

y+i = CiCyA
optΨi(wi, yi) + CiCyA

optΨ′
i(w, y). (5.11)

Here, CiCyA
optΨ′

i(w, y) corresponds to the information sent from other nodes to node i

via the network and is considered as the network structure to be identified. As a result,

the dynamics of the network is identified as

w+ =F1w + y (5.12a)

y+i =CiCyA
optΨi(wi, yi) + gid(w, y). (5.12b)

where

gid(w, y) = colNi=1(CiCyA
optΨ′

i(w, y)) (5.13)

is the identified coupling function.

Remark 5.1. Since Txi in (5.3b) is n−m dimensional, theoretically only n−m linearly

independent variables are required to fully describe the dynamics. Without loss of gener-

ality, define ỹi to be the vector consisting of the first n −m linearly independent entries

in yi and define ỹ = colNi=1(ỹi) ∈ RN(n−m). Then, dynamics (5.5b) can be rewritten into

y+ = h′(w, ỹ), (5.14)

where h′ : RNm × RN(n−m) → RNm.

Next, consider the case where dim(yi) + m < n. In such case, with yi defined by

yi = CF2xi + Cτ(xi) + CBg(x) as in (5.4), dim(col(wi, yi)) < dim(xi), which means that

additional variables are required for the dynamics of xi to be fully embedded into the space

spanned by the new variables. Here, delay coordinates are employed to complement the

dimension. Let r be the smallest integer such that r · dim(yi) +m ≥ n, and rewrite the

dynamics of the network (5.5) into

w+ =F1w + y, (5.15a)

yr+ =h(w, y, · · · , y(r−1)+), (5.15b)

where F1 is defined the same as in (5.5). Further, define zi = yi+ ∈ RNm for i =

1, · · · , r−1 and define z = col(z1, · · · , zr−1). Then, dim(col(w, y, z)) = r ·dim(yi)+m ≥ n

holds and the dynamics of x can be embedded into the space spanned by w, y and z.

The identification is then performed by finding an approximation Aopt of the Koopman

operator defined by

Kψi(w, y, z1, · · · , zr−1) = ψi(F1w + y, z1, z2, · · · ,h(w, y, z)), (5.16)
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using data matrices defined by

X =
[
Ψ(w[0], y[0], z[0]) · · · Ψ(w[M − 1], y[M − 1], z[M − 1])

]
, (5.17a)

Y =
[
Ψ(w[1], y[1], z[1]) · · · Ψ(w[M ], y[M ], z[M ])

]
. (5.17b)

The dynamics of the network is then identified as

w+ =F1w + y,

y+ =z1,

z+1 =z2,

...

z+r−1 = colNi=1(CiCzA
optΨi(w, y, z)) + gid(w, y, z),

where Cz ∈ RNm×q is such that zr−1 ≡ CzΨ(w, y, z1, · · · , zr−1), Ψi contains observables

that solely depend on the states of node i, and

gid(w, y, z) = colNi=1(CiCzA
optΨ′

i(w, y, z)) (5.18)

is the identified coupling function, where Ψ′
i = Ψ − Ψi as in (5.11). Note that the case

where dim(yi) +m ≥ n can be considered as a special case where r = 1 and z does not

exist.

The proposed identification algorithm is summarized in Algorithm 5.1.

Next, consider the relationship between the identified coupling function gid(w, y, z) and

the original g(x), and discuss the identification error in terms of the difference between

the original and the identified dynamics of the measured output w.

Proposition 5.1. If data are sufficient (M →∞) and are sampled uniformly randomly,

then for i = 1, · · · , N and j = 1, · · · ,m, the jth component of the identified coupling

function for the ith node, i.e., e⊤
j Cig

id(w, y, z), is a projection of ej(w
+
i − F1wi)

r+ onto

span{Ψi}:

e⊤
j Cig

id(w, y, z) =Pspan{Ψ′
i(w,y,z)}(e

⊤
j (w

+
i − F1wi)

r+) (5.19)

with respective to dynamics (5.15).

Proof. First, the relationship between the theoretical and the identified dynamics of y is

considered, and then the validity of equation (5.19) is verified.

As shown in [94] the solution of optimization problem (5.8), i.e., Aopt, minimizes

∥AΨ(w, y, z) − KΨ(w, y, z)∥L2 over the manifold where data are measured, so Aopt is

an approximation of the Koopman operator defined in (5.6), in the sense that for any

complex-value scalar function φ(w, y, z) ([94]),

Pspan{Ψ}
(
K(Pspan{Ψ}φ)

)
= cφA

optΨ(w, y, z),
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Algorithm 5.1 Proposed identification algorithm

Input: measured time series of the outputs of the nodes, Fxi as an approximation of

f(xi), C, and n

Output: gid(w, y) or gid(w, y, z)

1. Initialization: find r as the minimum integer with which r · dim(yi) +m ≥ n

2. Matrices construction:

if r = 1 then

design an observable set Ψ(w, y) and construct data matrices X,Y with (5.7)

else

design an observable set Ψ(w, y, z) and construct data matrices X,Y with (5.17)

end if

3. Approximate the Koopman operator: calculate Aopt with (5.8)

4. Obtain the coupling function:

if r = 1 then

obtain gid(w, y) with (5.13)

else

obtain gid(w, y, z) with (5.18)

end if

5. Output: gid(w, y) or gid(w, y, z)

where cφ = argminc∥φ − cΨ(w, y, z)∥. Since one can design Ψ to contain w, y and z as

observables, the evolution of the jth entry of yi is obtained as

e⊤
j Ciy

r+,id = e⊤
j Ciz

+,id
r−1 =e⊤

j CiCzA
optΨ(w, y, z)

=Pspan{Ψ}(e
⊤
j Ciz

+
r−1) = Pspan{Ψ}(e

⊤
j Ciy

r+),

i.e., the identified evolution e⊤
j Ciy

r+,id is a projection of the true evolution e⊤
j Ciy

r+ onto

the space spanned by the observables in Ψ(w, y, z).

On the other hand, by the construction of gid(w, y, z) in (5.18), the coupling function

of node i is obtained as a linear combination of the observables in Ψ′
i(w, y, z), i.e.,

e⊤
j Cig

id(w, y, z) =Pspan{Ψ′
i(w,y,z)}(e

⊤
j Ciz

+,id
r−1 )

=Pspan{Ψ′
i(w,y,z)}Pspan{Ψ}(e

⊤
j Ciy

r+).

Making use of dynamics (5.15a) that w+−F1w = y and the fact that span{Ψ′
i(w, y, z)} ⊂

span{Ψ(w, y, z)}, the following equations hold

e⊤
j Cig

id(w, y, z) =Pspan{Ψ′
i(w,y,z)}(e

⊤
j Ciy

r+)

=Pspan{Ψ′
i(w,y,z)}(e

⊤
j (w

+
i − F1wi)

r+).

where Ciy = yi = w+
i − F1wi is substituted.
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Proposition 5.1 means that the coupling function is obtained in terms of the r-step-

future and the (r + 1)-step-future values of w, which is estimated using the dynamics

identified from measured data.

Remark 5.2. The identification error of the proposed method depends on two factors,

namely the design of the observable set Ψ(w, y, z) and the amount of measured data.

Define

ε(w, y, z) =yr+(w, y, z)− yr+,id(w, y, z)

=h(w, y, z)− CzA
optΨ(w, y, z)

to be the identification error, then ε can be estimated as

∥ε∥ =∥h(w, y, z)− Pspan{Ψ}h(w, y, z) + Pspan{Ψ}h(w, y, z)− CzA
optΨ(w, y, z)∥

≤∥h(w, y, z)− Pspan{Ψ}h(w, y, z)∥+ ∥Pspan{Ψ}
(
(K −Kapprox)CzΨ(w, y, z)

)
∥.

Here, the first term corresponds to the identification error caused by the design of the

observable set, and the second term corresponds to the error between the approximated

and the original Koopman operator. If h ∈ span{Ψ}Nm, then ∥h−Pspan{Ψ}h∥ = 0. Also, if

Cr−1(Y −AoptX) = 0 holds for all the trajectories of the system, then KapproxΨ(w, y, z) =

Ψ(w+, y+, z+) always holds (at least onM), which leads to (K−Kapprox)CyΨ(w, y, z) = 0.

Remark 5.3. By using streaming data sets, i.e., defining data matrices X and Y over a

horizon of length M and updating the recorded data at every step k, the proposed can

be implemented in real-time for networks with topology changes, as stated in Chapter 3.

Remark 5.2 indicates that to reduce the identification error, the observable set should

be designed sufficiently rich to cover h(w, y, z) as much as possible. Also, more samples

should be measured independently from various points in the state space.

5.3 Numerical Examples

5.3.1 Identification without dimension complement

Consider a network of 8 interconnected systems described by

x+i1 =xi1 + 0.1(xi2), (5.20a)

x+i2 =xi2 + 0.1(−xi1 + xi2 − x2i1xi2 + xi3), (5.20b)

x+i3 =xi3 + 0.1(−xi3 + ui), (5.20c)

ui =
8∑

j=1

aij(x2j − x2i), wi =
(
xi1 xi2

)⊤
,
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Fig. 5.1: Entries of the obtained matrix CyA ∈ R16×321, where the value of [CyA]ij entry

is represented by the color at coordinate (i, j). The network topology can be inferred by

the non-diagonal entries in the 8 × 8 sub-block of rows 9 to 16 and columns 10 to 17.

for i = 1, · · · , 8, which are Van der Pol oscillators with damped inputs and discretized

using the 1st order Euler method with 0.1-long time steps. Suppose that only a linearized

model of the oscillators is known:

w+
i1 =wi1 + 0.1wi2 + τi1(x),

w+
i2 =− 0.1wi1 + 1.1wi2 + τi2(x),

x+i3 =0.9xi3 + τi3(x).

Define yi1 = τi1(x), yi2 = τi2(x) and consider the nodes described by (wi, yi):

w+
i1 =wi1 + 0.1wi2 + yi1,

w+
i2 =− 0.1wi1 + 1.1wi2 + yi2,

y+i1 =hi1(w, y),

y+i2 =hi2(w, y),

where w = col8i=1(wi) and y = col8i=1(yi). Rewrite the dynamics of the network into

w+ =Fw + y,

y+ =h(w, y),

where F = I8 ⊗

[
1 0.1

−0.1 1.1

]
.

Suppose that 5000 trajectories of 3 steps of the outputs, denoted by jw, jw+, jw2+, are

measured from random initial points distributed uniformly in [−2, 2]16. Then, data for y

and y+ can be calculated as

jyi1 =
jw+

i1 − jwi1 − 0.1(jwi2),

jyi2 =
jw+

i2 + 0.1(jwi1)− 1.1(jwi2),

jy+i1 =
jw2+

i1 − jw+
i1 − 0.1(jw+

i2),

jy+i2 =
jw2+

i2 + 0.1(jw+
i1)− 1.1(jw+

i2),

for j = 1, · · · , 5000. Define Koopman operator K by

Kψ(w, y) = ψ(Fw + y,h(w, y)), (5.21)
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Fig. 5.2: The identified network topology.

where ψ : R16×R16 → C. To obtain an approximation of K, define Ψ(w, y) : R16×R16 →
R321 as

Ψ(w, y) =col
(
1, w, y, wi1wi2, wi1yi1, wi1yi2, wi2yi1, wi2yi2, yi1yi2, w

2
i1, w

2
i2, y

2
i1, y

2
i2,

w2
i1wi2, wi1w

2
i2, w

2
i1yi1, wi1y

2
i1, w

2
i1yi2, wi1y

2
i2, w

2
i2yi1, wi2y

2
i1, w

2
i2yi2,

wi2y
2
i2, y

2
i1yi2, yi1y

2
i2, wi1wi2yi1, wi1wi2yi2,

coswi1, coswi2, cos yi1, cos yi2, sinwi1, sinwi2, sin yi1, sin yi2,

coswi1 sinwi1, coswi2 sinwi2, cos yi1 sin yi1, cos yi2 sin yi2
)
, (5.22)

where the variables with subscript i denote abbreviations of the corresponding states of

all the nodes, i.e., yi1wi1 is an abbreviation of colNi=1(yi1wi1). Define data matrices X,Y

by

X =
[
Ψ(1w, 1y) · · · Ψ(5000w, 5000y)

]
,

Y =
[
Ψ(1w+, 1y+) · · · Ψ(5000w+, 5000y+)

]
.

Then, a matrix approximation of K can be obtained as A = argminH∥HX − Y ∥F , and
h(w, y) can be obtained as

hid(w, y) = CyAΨ(w, y),

where Cy =
[
016×17 I16 016×288

]
is such that CyΨ(w, y) = y. Entries of the obtained

CyA are plotted in Fig.5.1, where the color at coordinates (i, j) represents the value of

entry [CyA]ij.

Next, the first node is taken as an illustrative example to show the process of obtaining
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Fig. 5.3: A comparison of the first components of the 12 nodes in the original network

and the reconstructed network starting from the same initial positions.

the coupling function. The dynamics of y11 and y12 is identified as

y+,id
11 =e⊤

1 h
id = 0,

y+,id
12 =e⊤

9 h
id = −0.084ψ2 − 0.029ψ10 + 0.010ψ15 + 0.010ψ17 + 0.899ψ26 − 0.180ψ114

− 0.022ψ122 − 0.100ψ130 − 0.001ψ162 − 0.020ψ210 − 0.093ψ258 + 0.010ψ266

+ 0.009ψ290 − 0.001ψ298

=− 0.084w11 − 0.029w12 + 0.010w62 + 0.010w82 + 0.899y12 − 0.180w2
11w21

− 0.022w11w
2
21 − 0.100w2

11y12 − 0.001w2
12y12 − 0.020wi1wi2yi1

− 0.093 sinw11 + 0.0102 sinw12 + 0.009 cosw11 cosw11 − 0.001 cosw12 sinw12,

where entries smaller than O(5 × 10−4) are omitted. Here only the terms 0.010ψ15 +

0.010ψ17 contain states sent from other nodes and are hence considered the coupling

function. As a result, the dynamics of the first node is identified as

w+
11 =w11 + 0.1w12 + y11,

w+
12 =− 0.1w11 + 1.1w12 + y12,

y+11 =0,

y+12 =
∑
i∈N1

[CyA](9,i)ψi + 0.01w62 + 0.01w82,

where N1 = {2, 10, 26, 114, 122, 130, 162, 210, 258, 266, 290, 298}. By performing the same

procedures to all the nodes, the topology of the network is then identified as shown in

Fig.5.2. A comparison between a reconstructed system using the identified result and

the original is also shown in Fig.5.3. As the figure shows, starting from the same initial

position, the reconstructed system tracks the original for about the first 50 steps and

deviates due to identification errors.

5.3.2 Identification with dimension complement

In this subsection, consider the case where the dimension of the output is too low that

the dynamics of the nodes cannot be embedded into the space spanned by w and y, i.e.,
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Fig. 5.4: Trajectory of system i described by (5.23) with ui = 0.

the case where r ≥ 1. Consider the network of 12 nodes described by

x+i,1 =0.9xi,1 + xi,2 + xi,3, (5.23a)

x+i,2 =− 0.9xi,2 + xi,3 + ui, (5.23b)

x+i,3 =0.01xi,3 + 1.2(xi,1 + xi,2 + xi,3)(xi,1 + xi,2 + xi,3 − 1), (5.23c)

ui =0.1
12∑
j=1

aij(xi,2 − xj,2), wi = xi,1,

for i = 1, · · · , 12. The trajectory of node i described by (5.23) when ui = 0 is shown in

Fig.5.4.

Suppose that only a linearized model in the space spanned by the output, which is also

inaccurate, is known, i.e., w+
i = 1.0wi + τi(x) where 1.0wi is the inaccurate known part

and τi(x) denotes the unknown dynamics. Reformulate the dynamics of the nodes into

the following form

w+
i =wi + yi,

y+i =zi,

z+i =hi(w, y, z),

and rewrite the dynamics of the network into

w+ =w + y, (5.24a)

y+ =z, (5.24b)

z+ =h(w, y, z), (5.24c)

where w = col12i=1(wi) ∈ R12, y ∈ R12 and z ∈ R12. Let ψ(w, y, z) : R36 → C denote an

observable and defined Koopman operator K by

Kψ(w, y, z) = ψ(w + y, z,h(w, y, z)).
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Fig. 5.5: The obtained CA ∈ R36×109 matrix shown in color.

Next, consider the problem of obtaining an approximation of K. Define a set of ob-

servable functions Ψ(w, y, z) : R36 → R109 by

Ψ(w, y, z) =col12i=1

(
1, w, y, z, col12i=1(wiyi), col

12
i=1(wizi), col

12
i=1(yizi),

col12i=1(w
2
i ), col

12
i=1(y

2
i ), col

12
i=1(z

2
i )
)
, (5.25)

and suppose that a 203-step-long trajectory of the outputs of the coupled nodes in the

network is measured, which is denoted by w[k] ∈ R12 for k = 1, · · · , 203. Then, data

series of y and z are obtained as

y[k] =w[k + 1]− w[k], k = 1, · · · , 202,
z[k] =y[k + 1], k = 1, · · · , 201,

and col(w[k], y[k], z[k]) for k = 1, · · · , 201 is a 201-step-long trajectory of system (5.24).

Define data matrices X,Y ∈ R109×200 by

X =
[
Ψ(w[1], y[1], z[1]) · · · Ψ(w[200], y[200], z[200])

]
, (5.26a)

Y =
[
Ψ(w[2], y[2], z[2]) · · · Ψ(w[201], y[201], z[201])

]
, (5.26b)

and a matrix approximation A of Koopman K can be obtained as

A = argmin
H
∥HX − Y ∥F .

As the result of the identification, the obtained CA matrix, where C is such that

CΨ(w, y, z) = col(w, y, z), is shown in Fig.5.5, which corresponds to the identified dy-

namics of w, y and z. The h(w, y, z) function can be identified obtained as

hid(w, y, z) = CzAΨ(w, y, z),

where Cz ∈ R12×109 is such that z ≡ CzΨ(w, y, z). As an illustrative example, the 26th

row of A, which corresponds to the unknown dynamics of the second node, i.e., h2(w, y, z),
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reads

e⊤
26AΨ(w, y, z) =− 3.8742ψ3 − 0.1419ψ5 − 3.6510ψ15 − 0.1290ψ17 − 2.0900ψ27

− 0.1000ψ29 + 7.6560ψ39 + 0.2640ψ41 + 2.6400ψ51 + 2.6400ψ63

+ 4.0656ψ75 + 0.1452ψ77 + 3.6120ψ87 + 0.1200ψ89 + 1.2000ψ99

=− 3.8742w2 − 0.1419w4 − 3.6510y2 − 0.1290y4 − 2.0900z2

− 0.1000z4 + 7.6560w2y2 + 0.2640w4y4 + 2.6400w2z2 + 2.6400y2z2

+ 4.0656w2
2 + 0.1452w2

4 + 3.6120y22 + 0.1200y24 + 1.2000z22 ,

where readings smaller than O(10−4) were omitted. It can be seen that node 2 only re-

ceives transmissions from node 4, which is explicitly identified as the terms in e⊤
26AΨ(w, y, z),

i.e.,

gid2 = −0.1419w4 − 0.1290y4 − 0.1000z4 + 0.2640w4y4 + 0.1452w2
4 + 0.1200y24.

Fig.5.6 shows comparisons of trajectories of system (5.24) with the identified hid(w, y, z)

function and the original system starting from the same initial values. Specifically, the

new states w, y, z and the corresponding true values wt, yt, zt, calculated by

wt
i =xi,1,

yti =xi,2 + xi,3 − 0.1xi,1,

zti =− 0.09xi,1 − 1.0xi,2 + 0.91xi,3 + 1.2(xi,1 + xi,2 + xi,3)(xi,1 + xi,2 + xi,3 − 1.0) + ui(x),

respectively, are compared. As the figures show, the errors between the trajectories stay

low for around 250 steps, and deviate due to small identification errors. The identified

network topology is shown in Fig.5.7, and the coupling function is obtained from hid using

(5.18). This example also indicates that the incorrectness of the a priori linear model in

the space of the output would not disable the proposed identification method.

5.4 Conclusions

In this chapter, the identification problem of network structures using measured output

data was considered. The structures of networks were modeled as coupling functions that

describe the data transmission in the networks and proposed identification methods to

identify the coupling functions from measured data. The identification was performed

in a three-step manner, where the unmeasurable states of the nodes were considered

dynamical inputs. Then, the dynamical input signals were considered new variables, and

the dynamics of the network was identified using the Koopman operator theory. Finally,

the coupling function was obtained as the information that was sent to the nodes from
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Fig. 5.6: Comparisons between the trajectories of the reconstructed system using the

identification results and the original system. Note that the time interval of k ∈ [200, 300]

is shown.
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Fig. 5.7: The identified network topology.

other nodes via the network. Numerical identification examples showed the usefulness

and validity of the obtained results.

A significant drawback of the proposed methods is that the computational cost would

blow up as the number of nodes or the complexity of the coupling function increase.

Since there is no a priori knowledge about the coupling functions, one can only design the

observable set to be as rich as possible to hope the span contains the coupling function,

i.e., by using trigonometric basis and power series. Such a fact reveals a trade-off between

computation costs and identification accuracy of nonlinearity.





6 Conclusions and Discussions

6.1 Summary and conclusions

This dissertation addressed the problem of network identification. Methods were devel-

oped which recover the structures of networks using measured data, and the developed

methods are based on the Koopman operator theory. In the cases where the full states

of the nodes in the networks are measurable, the key idea was to note that the difference

between the two Koopman operators K1 and K2, associated with the original network

dynamics and the unconnected network dynamics, respectively, is related to the structure

of the network, which is represented by the coupling functions. Approximations of Koop-

man operators acting on the states, i.e., K1x and K2x were obtained from measured data

and the coupling function is extracted as gid(x) = K1x−K2x. For networks where only

the outputs of the nodes are measurable, two cases are considered where the dynamical

models of the nodes are known or not, respectively. In the case where the dynamical

models of the nodes are known and the full states can be recovered from measured data,

a response system was designed to identify the coupling function and recover the hidden

states simultaneously. In the cases where the hidden states cannot be recovered, new

variables were designed based on measured data to span the manifold of the dynamics,

and identification was performed based on the newly defined variables.

Chapter 2 and Chapter 3 considered identifications assuming that the full states of the

nodes were measurable. In Chapter 2, it was assumed that both Koopman operators

K1 and K2 can be directly obtained from data. Data of an isolated node was employed

to approximate Koopman operator K2 associated with the network with isolated nodes.

Approximations of Koopman operators K1 and K2 are obtained as the transition matrices

relating two different data matrices, respectively, and the coupling function is extracted

as the difference between the images of two Koopman operators acting on the states as

observables. Theoretically, it was shown that the identified coupling function is an L2-

projection of the (infinite-dimensional) space of observable to the q-dimensional subspace

spanned by the pre-designed observables. The proposed method obtains an approximation

of the coupling function, also in terms of a linear combination of the observables, such

that the obtained coupling function minimizes the L2-norm of the identification error as

a (vector of) function(s) over the subspace where the data are measured. Two numerical

examples verified the usefulness of the proposed method: the first example served as a

97
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detailed example of imitating an unconnected network and performing identification, and

the second example addressed the case where the span of observables does not contain

the coupling function.

Chapter 3 extends the method proposed in Chapter 2 for detecting network topology

changes. The assumption of data for an isolated node posed in Chapter 2 is released

by posing some restrictions on the network structure, i.e., to assume that the graph

associated with the topology is undirected and that the coupling functions between any

two nodes are skew-symmetric. The new assumptions mean that the data exchange

pattern between any two nodes is symmetric, so they would cancel out if numerically

added up. This relationship bridges the dynamics of nodes in the network (K1x) and

the dynamics of isolated nodes (K2x) and enables K2x to be recovered from K1x. On

the other hand, the method proposed in Chapter 2 is a post-processing method, i.e., the

method collects all the data and obtains a result with one optimization. If the network

topology changes with time, then data taken after the topology change would contradict

those taken before the topology change, and the method would fail. To account for

networks with topology changes, the method proposed in Chapter 3 employs a streaming

data set that is updated at every time step with newly measured data. It is also shown

theoretically that the obtained result is a projection of the coupling function onto the

space spanned by the observables, and the design of the observables greatly influences the

identification performance. Numerical examples including one with data from a SPICE

model showed the usefulness of the proposed method.

On the other hand, Chapter 4 and Chapter 5 considered identifications using only out-

put data. In Chapter 4, it was assumed that the dynamical models of the nodes without

inputs are known. The strategy was to first define a response system that tracks past data

of the original. Under assumptions, the dynamical models of the nodes are decoupled into

the input-output dynamics and the internal dynamics. The coupling function was formu-

lated as a linear combination of the observables, and the coefficient matrix of the linear

combination was considered a variable in the response system. The coefficient matrix as

a variable was then updated in such a manner that the errors between the variable and

the true expansion matrix of the coupling function converge to 0 asymptotically, and the

convergence was theoretically ensured. The states of the original network system at the

current step were also obtained by iterating the dynamical model reconstructed out of

the identification results. Two numerical examples concerning SISO and MIMO cases,

respectively, were presented to show the validity of the proposed method.

In Chapter 5, the identification problem of networks consisting of nodes with unknown

dynamics was considered. It was assumed that some a priori knowledge on the dynamics

of the nodes, e.g., a linearized model in the spanned space of the measurable outputs,

is available. The strategy was to consider the dynamics of the output signals as the

full dynamic of the nodes, and consider the hidden variables as dynamical couplings
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with unknown dynamics which connect these nodes. Two cases were considered where

the dimension of the output signal is sufficiently high or not, and the low dimension is

complemented using past data. The dynamics of the network was then obtained in terms

of the measurable outputs and the newly defined variables. The reconstructed system is

equivalent to the original in the sense that its outputs have the same dynamical behaviors.

Numerical examples addressing the cases where dimension complement is applied or not,

respectively, showed the validity of the proposed method.

6.2 Discussions and future works

This section summarizes some drawbacks and problems that remain to be solved and

discusses the tasks that should be done in the future. Possible extensions and applications

of the results are also addressed.

From the perspective of technical improvements, the following problems exist and may

be improved.

Requirements on the measured signals

Conceptually, the methods proposed in this dissertation minimize
∑M

i=1 ∥g(xi)− gid(xi)∥
by finding a proper gid, where xi are the measured data. The obtained results are ap-

proximations of certain coupling functions and are only valid over the field where data

are measured. Therefore, it is desired that the output signals are exciting and ergodic,

i.e., the outputs cover the domain where one concerns about the coupling function. If

the outputs and the coupling functions converge to constant values including 0, then the

proposed methods fail. If the outputs converge to some manifold which is a subset of the

state space, then the identified coupling function would be some function which has the

same projection over the manifold as the true coupling function.

Robustness of the identification result

In Chapter 2, it is supposed that data are measured with measurement noises, which are

modeled as random variables uniformly distributed over a small interval ([−0.005, 0.005]).
While in other chapters, no measurement noise is involved. The proposed method may

remain valid if noises are present, and it remains an important problem to derive the

allowable upper bound of the noise signals with which the proposed method stays valid.

For the methods proposed in Chapter 2 and 3, the validity of the proposed methods

is equivalent to the recoverability of the sparse vectors by solving the ℓ1-minimization
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problems, i.e.,

minimize
a1i,a2i

∥a1i − a2i∥1,

subject to a1iX1 = yi1,

a2iX2 = yi2,

taking the identification method proposed in Chapter 2 as an example. When measure-

ment noises are present, the constraints no longer hold strictly, and the ℓ1-minimization

problem can be transformed into

minimize
a1i,a2i

∥a1i − a2i∥1,

subject to ∥a1iX1 − yi1∥22 ≤ η,

∥a2iX2 − yi2∥22 ≤ η,

for some η > 0. If the measurement noise is so large that there exists some a⋆1i such

that ∥a⋆1i∥1 ≤ ∥atrue1i ∥1 and ∥a⋆1iX1 − yi1∥2 ≤ ∥atrue1i X1 − yi1∥2, then the true vector is

unrecoverable and the identification fails. It lacks quantitative analysis of the influences

of optimization parameters and noise size on the accuracy of the identifications. Towards

such problems, the robust basis pursuit analysis (see, e.g., chapters 4-6 [82]) addressed

with the null space property, the covariance and the restricted isometry property of the

data matrices may help establish the robustness analysis of the proposed identification

method.

For the method considered in Chapter 4, it can be verified that if noise presents, then

the origin of the tracking error dynamics of the response system would no longer be

asymptotically stable. However, the error would stay bounded in a region containing the

origin. In Chapter 5, if data are sufficient, then the identification error would be related

to the statistical characteristics of the measurement noise.

Evaluation of obtained results

Throughout this dissertation, the obtained results are evaluated by comparing them to the

theoretical results. However, knowledge of such theoretical results is not available, and it

becomes an important problem to verify if the obtained results are correct. Verification in

such cases can be achieved by comparing the data for the reconstructed network to those

for the original, using spectral analysis, Fourier analysis or comparing their trajectories

from the same initial states. This problem becomes even more obvious when the true

coupling function is not in the spanned space of the observables, like in the example in

Chapter 3 where square wave functions are employed as the basis to approximate the

hidden dynamics. As the number of the radial basis functions increases, more accurate

reconstruction of the behavior of the dynamics may be achieved, but the identification
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results become more difficult to be comprehended. It remains a future work to develop

an evaluating algorithm that estimates the accuracy of the obtained result.

Optimal design of observables

Throughout this dissertation, the coupling functions are identified in terms of linear com-

binations of observables. The design of observable vector Ψ(x) influences the performance

of the proposed method greatly since the observables span the functional space onto which

the coupling function is projected. Numerically in the case where sufficient data are mea-

sured over a certain set, the proposed method obtains an approximation that minimizes

the L2 norm over the set where data are measured. Also, when sparse identification is

applied, different choices of observable sets lead to different sparsity of the coefficient vec-

tors, which is related to the amount of required data. For nodes with unknown dynamical

models, the optimal design of observables remains an important problem.

From the viewpoint of Koopman theory, to obtain an approximation of the Koopman

operator, the space spanned by the observables should be (at least almost) invariant under

the action of the Koopman operator. Making use of the Koopman mode decomposition,

there should exist an invertible linear transformation between the first q dominant eigen-

functions and the observables. Also, the propositions in this dissertation showed that

the spanned space of the observables should contain the coupling function to obtain high

accuracy. Practically, since the coupling functions are unknown, the observables could be

designed as power series, radial basis functions, Fourier series or polynomial basis of the

variables, with which an approximation is ensured to exist by the Weierstrass theorem.

Also, since data are available, the basis functions can be designed as the eigenfunctions

of the Koopman operator calculated theoretically using the GLA method.

Designing the observables simply as a group of basis functions also has some drawbacks.

The major one is that the calculation cost may become unaffordably large if the observ-

ables are designed as polynomials. It remains an open problem to design the observables

optimally making use of known information, such as the measured data series of the nodes

or the physical characteristics of the systems from which data are measured.

From the perspective of applying the proposed methods to a wider range of network

systems, the following problems exist.

Networks with nonidentical nodes

Throughout this dissertation, networks consisting of identical dynamical systems are con-

sidered. While in reality, it is usually the case that there exist differences between pa-

rameters of dynamical systems due to practical reasons.
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In Chapter 2, it is assumed that data series can be measured from at least one isolated

node, and these data were used to imitate data for a network without connections. If the

assumption is strengthened such that all the connections in the network can be manually

cut off, and data can be taken from all the isolated nodes, then the method becomes

applicable to networks with nonidentical nodes. In such case, data matrices X2, Y2 in

(2.9) are constructed with the data from the isolated nodes, and the imitating procedure,

as shown in Chapter 2.3, can be omitted.

In Chapter 3, the assumption of data from isolated nodes was replaced by the assump-

tion that data transmission between any pair of nodes is symmetric. If the nodes are not

identical, the proposed method may fail, because the unforced models of the nodes, i.e.,

K2xi, can no longer be extracted from the summation
∑N

i=1K2xi. In such case for node

i, the best to do is to formulate the coupling function as the information sent from other

nodes, i.e., node j, to node i by checking the observables having xj as variables for j ̸= i.

Chapters 4 and 5 allow the nodes to be nonidentical, because the nodes are assumed

known, or the coupling function is already reformulated as the information sent from

other nodes, respectively.

To extend the proposed method to networks with nonidentical nodes, two cases should

be considered separately. The first case is that the nodes are slightly different, such as

in the situation where the nodes possess parameter uncertainty. Robust identification

methods may be employed in such cases. The second case is that the nodes are largely

different, such as networks consisting of different physical systems. In such cases, identi-

fication methods can be developed based on the method described in Chapter 5.

Identifiability of networks using the proposed methods

This dissertation proposed several methods for identifying network structures formulated

as a coupling function g(x). The identifiability problem concerns whether the obtained

results are ensured to be unique, and the problem can be considered from two perspectives

considering whether the obtained g(x) is unique and whether the identified network struc-

ture is unique, respectively. In Chapters 2, 3 and 4, the network structure is formulated

as the inputs originating from the network transmissions, and assumptions are posed,

respectively, to ensure that g(x) can be recovered from measured data. It is considered

that the obtained results under the assumptions are unique, however, the necessity and

the sufficiency of these conditions are not addressed. On the other hand, in Chapter 5,

the network structure is formulated as the terms in the dynamical model of the output

signals originating from other nodes in the network. In this case, the obtained results

are also considered unique. However, the necessity and the sufficiency of the conditions

are not theoretically discussed. Future works should focus on determining the optimized

formulation and verifying the necessity and the sufficiency of the proposed conditions.
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Other problems

There are other problems such as dealing with synchronized or non-exciting signals, ana-

lyzing the convergence of the methods with streaming data sets, deriving the amount of

required data, visualizing the obtained results and optimizing the parameters of ADMM,

which are left as future tasks.

Next, besides applying to network identification-related problems, discussions about

two possible extensions of this work are presented.

Network Structure design

Given some desired behaviors of dynamical systems, the proposed method can be used

to design connections among these systems to realize such behaviors. This is achieved

by considering these desired behaviors as those of existing nodes of an unknown virtual

network, and ’identifying’ the structure of the virtual network. An example of such a

problem is the design of central pattern generators ([102, 103]).

Network reduction

The proposed methods can be applied to obtain a reduced model of networks with

partially synchronized nodes. When p partial synchronization clusters exist, the set

{1, 2, · · · , N} can be partitioned into p setsM1, · · · ,Mp such that

∪p
i=1Mi ={1, 2, · · · , N},

Mi ∩Mj =∅, i ̸= j,

xj[k] =xl[k], ∀j, l ∈Mi.

Define z = col(z1, · · · , zp) ∈ Rpn such that zi = xj where j is the smallest integer inMi,

then zi accounts for the dynamical behaviors of the nodes in the i-th cluster. In this

case, the data matrices X and Y defined as described in this dissertation no longer have

full ranks, and the matrices consisting of the linearly independent rows can be considered

instead.

For the matrix approximation A of a Koopman operator such that

Ψ(x+) = AΨ(x),

Let Ψ(z) denote the sub-vector which contains all the linearly independent entries in Ψ(z).

Then

Ψ(z+) = T †
xATxΨ(z)
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holds and Ā := T †
xATx can be considered an approximation of the Koopman operator

associated with the reduced network represented with z. Then the coupling function can

be obtained in terms of z, which corresponds to the dynamics of the reduced network.
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[69] A. Mauroy and I. Mezić. Global stability analysis using the eigenfunctions of the

koopman operator. IEEE Transactions on Automatic Control, Vol. 61, No. 11, pp.

3356–3369, 2016.
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